RobotArxiv
Robotics 5
♻ ☆ On the complexity of constrained reconfiguration and motion planning
Coordinating the motion of multiple agents in constrained environments is a fundamental challenge in robotics, motion planning, and scheduling. A motivating example involves $n$ robotic arms, each represented as a line segment. The objective is to rotate each arm to its vertical orientation, one at a time (clockwise or counterclockwise), without collisions nor rotating any arm more than once. This scenario is an example of the more general $k$-Compatible Ordering problem, where $n$ agents, each capable of $k$ state-changing actions, must transition to specific target states under constraints encoded as a set $\mathcal{G}$ of $k$ pairs of directed graphs. We show that $k$-Compatible Ordering is $\mathsf{NP}$-complete, even when $\mathcal{G}$ is planar, degenerate, or acyclic. On the positive side, we provide polynomial-time algorithms for cases such as when $k = 1$ or $\mathcal{G}$ has bounded treewidth. We also introduce generalized variants supporting multiple state-changing actions per agent, broadening the applicability of our framework. These results extend to a wide range of scheduling, reconfiguration, and motion planning applications in constrained environments.
comment: Looking to incorporate comments from reviewers
♻ ☆ Insights from Interviews with Teachers and Students on the Use of a Social Robot in Computer Science Class in Sixth Grade
In this paper we report on first insights from interviews with teachers and students on using social robots in computer science class in sixth grade. Our focus is on learning about requirements and potential applications. We are particularly interested in getting both perspectives, the teachers' and the learners' view on how robots could be used and what features they should or should not have. Results show that teachers as well as students are very open to robots in the classroom. However, requirements are partially quite heterogeneous among the groups. This leads to complex design challenges which we discuss at the end of this paper.
comment: 4 pages, 2 figures, Late Breaking Report accepted for RO-MAN 2025
♻ ☆ LaDi-WM: A Latent Diffusion-based World Model for Predictive Manipulation
Predictive manipulation has recently gained considerable attention in the Embodied AI community due to its potential to improve robot policy performance by leveraging predicted states. However, generating accurate future visual states of robot-object interactions from world models remains a well-known challenge, particularly in achieving high-quality pixel-level representations. To this end, we propose LaDi-WM, a world model that predicts the latent space of future states using diffusion modeling. Specifically, LaDi-WM leverages the well-established latent space aligned with pre-trained Visual Foundation Models (VFMs), which comprises both geometric features (DINO-based) and semantic features (CLIP-based). We find that predicting the evolution of the latent space is easier to learn and more generalizable than directly predicting pixel-level images. Building on LaDi-WM, we design a diffusion policy that iteratively refines output actions by incorporating forecasted states, thereby generating more consistent and accurate results. Extensive experiments on both synthetic and real-world benchmarks demonstrate that LaDi-WM significantly enhances policy performance by 27.9\% on the LIBERO-LONG benchmark and 20\% on the real-world scenario. Furthermore, our world model and policies achieve impressive generalizability in real-world experiments.
comment: CoRL 2025
♻ ☆ Scaling Up without Fading Out: Goal-Aware Sparse GNN for RL-based Generalized Planning
Generalized planning using deep reinforcement learning (RL) combined with graph neural networks (GNNs) has shown promising results in various symbolic planning domains described by PDDL. However, existing approaches typically represent planning states as fully connected graphs, leading to a combinatorial explosion in edge information and substantial sparsity as problem scales grow, especially evident in large grid-based environments. This dense representation results in diluted node-level information, exponentially increases memory requirements, and ultimately makes learning infeasible for larger-scale problems. To address these challenges, we propose a sparse, goal-aware GNN representation that selectively encodes relevant local relationships and explicitly integrates spatial features related to the goal. We validate our approach by designing novel drone mission scenarios based on PDDL within a grid world, effectively simulating realistic mission execution environments. Our experimental results demonstrate that our method scales effectively to larger grid sizes previously infeasible with dense graph representations and substantially improves policy generalization and success rates. Our findings provide a practical foundation for addressing realistic, large-scale generalized planning tasks.
♻ ☆ MolmoAct: Action Reasoning Models that can Reason in Space
Reasoning is central to purposeful action, yet most robotic foundation models map perception and instructions directly to control, which limits adaptability, generalization, and semantic grounding. We introduce Action Reasoning Models (ARMs), a class of robotic foundation models that integrate perception, planning, and control through a structured three-stage pipeline. Our model, MolmoAct, encodes observations and instructions into depth-aware perception tokens, generates mid-level spatial plans as editable trajectory traces, and predicts precise low-level actions, enabling explainable and steerable behavior. MolmoAct-7B-D achieves strong performance across simulation and real-world settings: 70.5% zero-shot accuracy on SimplerEnv Visual Matching tasks, surpassing closed-source Pi-0 and GR00T N1; 86.6% average success on LIBERO, including an additional 6.3% gain over ThinkAct on long-horizon tasks; and in real-world fine-tuning, an additional 10% (single-arm) and an additional 22.7% (bimanual) task progression over Pi-0-FAST. It also outperforms baselines by an additional 23.3% on out-of-distribution generalization and achieves top human-preference scores for open-ended instruction following and trajectory steering. Furthermore, we release, for the first time, the MolmoAct Dataset -- a mid-training robot dataset comprising over 10,000 high quality robot trajectories across diverse scenarios and tasks. Training with this dataset yields an average 5.5% improvement in general performance over the base model. We release all model weights, training code, our collected dataset, and our action reasoning dataset, establishing MolmoAct as both a state-of-the-art robotics foundation model and an open blueprint for building ARMs that transform perception into purposeful action through structured reasoning. Blogpost: https://allenai.org/blog/molmoact
comment: Appendix include. Code, Data and Weights: https://allenai.org/blog/molmoact
Computer Vision and Pattern Recognition 9
♻ ☆ Fully Automated Segmentation of Fiber Bundles in Anatomic Tracing Data MICCAI 2025
Anatomic tracer studies are critical for validating and improving diffusion MRI (dMRI) tractography. However, large-scale analysis of data from such studies is hampered by the labor-intensive process of annotating fiber bundles manually on histological slides. Existing automated methods often miss sparse bundles or require complex post-processing across consecutive sections, limiting their flexibility and generalizability. We present a streamlined, fully automated framework for fiber bundle segmentation in macaque tracer data, based on a U-Net architecture with large patch sizes, foreground aware sampling, and semisupervised pre-training. Our approach eliminates common errors such as mislabeling terminals as bundles, improves detection of sparse bundles by over 20% and reduces the False Discovery Rate (FDR) by 40% compared to the state-of-the-art, all while enabling analysis of standalone slices. This new framework will facilitate the automated analysis of anatomic tracing data at a large scale, generating more ground-truth data that can be used to validate and optimize dMRI tractography methods.
comment: Accepted at CDMRI, MICCAI 2025
♻ ☆ Hyperspectral Image Generation with Unmixing Guided Diffusion Model
We address hyperspectral image (HSI) synthesis, a problem that has garnered growing interest yet remains constrained by the conditional generative paradigms that limit sample diversity. While diffusion models have emerged as a state-of-the-art solution for high-fidelity image generation, their direct extension from RGB to hyperspectral domains is challenged by the high spectral dimensionality and strict physical constraints inherent to HSIs. To overcome the challenges, we introduce a diffusion framework explicitly guided by hyperspectral unmixing. The approach integrates two collaborative components: (i) an unmixing autoencoder that projects generation from the image domain into a low-dimensional abundance manifold, thereby reducing computational burden while maintaining spectral fidelity; and (ii) an abundance diffusion process that enforces non-negativity and sum-to-one constraints, ensuring physical consistency of the synthesized data. We further propose two evaluation metrics tailored to hyperspectral characteristics. Comprehensive experiments, assessed with both conventional measures and the proposed metrics, demonstrate that our method produces HSIs with both high quality and diversity, advancing the state of the art in hyperspectral data generation.
♻ ☆ Vehicle detection from GSV imagery: Predicting travel behaviour for cycling and motorcycling using Computer Vision
Transportation influence health by shaping exposure to physical activity, air pollution and injury risk. Comparative data on cycling and motorcycling behaviours is scarce, particularly at a global scale. Street view imagery, such as Google Street View (GSV), combined with computer vision, is a valuable resource for efficiently capturing travel behaviour data. This study demonstrates a novel approach using deep learning on street view images to estimate cycling and motorcycling levels across diverse cities worldwide. We utilized data from 185 global cities. The data on mode shares of cycling and motorcycling estimated using travel surveys or censuses. We used GSV images to detect cycles and motorcycles in sampled locations, using 8000 images per city. The YOLOv4 model, fine-tuned using images from six cities, achieved a mean average precision of 89% for detecting cycles and motorcycles. A global prediction model was developed using beta regression with city-level mode shares as outcome, with log transformed explanatory variables of counts of GSV-detected images with cycles and motorcycles, while controlling for population density. We found strong correlations between GSV motorcycle counts and motorcycle mode share (0.78) and moderate correlations between GSV cycle counts and cycling mode share (0.51). Beta regression models predicted mode shares with $R^2$ values of 0.614 for cycling and 0.612 for motorcycling, achieving median absolute errors (MDAE) of 1.3% and 1.4%, respectively. Scatterplots demonstrated consistent prediction accuracy, though cities like Utrecht and Cali were outliers. The model was applied to 60 cities globally for which we didn't have recent mode share data. We provided estimates for some cities in the Middle East, Latin America and East Asia. With computer vision, GSV images capture travel modes and activity, providing insights alongside traditional data sources.
♻ ☆ WIPES: Wavelet-based Visual Primitives
Pursuing a continuous visual representation that offers flexible frequency modulation and fast rendering speed has recently garnered increasing attention in the fields of 3D vision and graphics. However, existing representations often rely on frequency guidance or complex neural network decoding, leading to spectrum loss or slow rendering. To address these limitations, we propose WIPES, a universal Wavelet-based vIsual PrimitivES for representing multi-dimensional visual signals. Building on the spatial-frequency localization advantages of wavelets, WIPES effectively captures both the low-frequency "forest" and the high-frequency "trees." Additionally, we develop a wavelet-based differentiable rasterizer to achieve fast visual rendering. Experimental results on various visual tasks, including 2D image representation, 5D static and 6D dynamic novel view synthesis, demonstrate that WIPES, as a visual primitive, offers higher rendering quality and faster inference than INR-based methods, and outperforms Gaussian-based representations in rendering quality.
comment: IEEE/CVF International Conference on Computer Vision 2025
♻ ☆ SRMA-Mamba: Spatial Reverse Mamba Attention Network for Pathological Liver Segmentation in MRI Volumes
Liver Cirrhosis plays a critical role in the prognosis of chronic liver disease. Early detection and timely intervention are critical in significantly reducing mortality rates. However, the intricate anatomical architecture and diverse pathological changes of liver tissue complicate the accurate detection and characterization of lesions in clinical settings. Existing methods underutilize the spatial anatomical details in volumetric MRI data, thereby hindering their clinical effectiveness and explainability. To address this challenge, we introduce a novel Mamba-based network, SRMA-Mamba, designed to model the spatial relationships within the complex anatomical structures of MRI volumes. By integrating the Spatial Anatomy-Based Mamba module (SABMamba), SRMA-Mamba performs selective Mamba scans within liver cirrhotic tissues and combines anatomical information from the sagittal, coronal, and axial planes to construct a global spatial context representation, enabling efficient volumetric segmentation of pathological liver structures. Furthermore, we introduce the Spatial Reverse Attention module (SRMA), designed to progressively refine cirrhotic details in the segmentation map, utilizing both the coarse segmentation map and hierarchical encoding features. Extensive experiments demonstrate that SRMA-Mamba surpasses state-of-the-art methods, delivering exceptional performance in 3D pathological liver segmentation. Our code is available for public: https://github.com/JunZengz/SRMA-Mamba.
comment: 9 pages, 4 figures
♻ ☆ Benchmarking Federated Learning for Semantic Datasets: Federated Scene Graph Generation
Federated learning (FL) enables decentralized training while preserving data privacy, yet existing FL benchmarks address relatively simple classification tasks, where each sample is annotated with a one-hot label. However, little attention has been paid to demonstrating an FL benchmark that handles complicated semantics, where each sample encompasses diverse semantic information, such as relations between objects. Because the existing benchmarks are designed to distribute data in a narrow view of a single semantic, managing the complicated semantic heterogeneity across clients when formalizing FL benchmarks is non-trivial. In this paper, we propose a benchmark process to establish an FL benchmark with controllable semantic heterogeneity across clients: two key steps are (i) data clustering with semantics and (ii) data distributing via controllable semantic heterogeneity across clients. As a proof of concept, we construct a federated PSG benchmark, demonstrating the efficacy of the existing PSG methods in an FL setting with controllable semantic heterogeneity of scene graphs. We also present the effectiveness of our benchmark by applying robust federated learning algorithms to data heterogeneity to show increased performance. To our knowledge, this is the first benchmark framework that enables federated learning and its evaluation for multi-semantic vision tasks under the controlled semantic heterogeneity. Our code is available at https://github.com/Seung-B/FL-PSG.
comment: This work has been accepted for publication in Pattern Recognition Letters
♻ ☆ C2PSA-Enhanced YOLOv11 Architecture: A Novel Approach for Small Target Detection in Cotton Disease Diagnosis
This study presents a deep learning-based optimization of YOLOv11 for cotton disease detection, developing an intelligent monitoring system. Three key challenges are addressed: (1) low precision in early spot detection (35% leakage rate for sub-5mm2 spots), (2) performance degradation in field conditions (25% accuracy drop), and (3) high error rates (34.7%) in multi-disease scenarios. The proposed solutions include: C2PSA module for enhanced small-target feature extraction; Dynamic category weighting to handle sample imbalance; Improved data augmentation via Mosaic-MixUp scaling. Experimental results on a 4,078-image dataset show: mAP50: 0.820 (+8.0% improvement); mAP50-95: 0.705 (+10.5% improvement); Inference speed: 158 FPS. The mobile-deployed system enables real-time disease monitoring and precision treatment in agricultural applications.
♻ ☆ Assessment of Using Synthetic Data in Brain Tumor Segmentation
Manual brain tumor segmentation from MRI scans is challenging due to tumor heterogeneity, scarcity of annotated data, and class imbalance in medical imaging datasets. Synthetic data generated by generative models has the potential to mitigate these issues by improving dataset diversity. This study investigates, as a proof of concept, the impact of incorporating synthetic MRI data, generated using a pre-trained GAN model, into training a U-Net segmentation network. Experiments were conducted using real data from the BraTS 2020 dataset, synthetic data generated with the medigan library, and hybrid datasets combining real and synthetic samples in varying proportions. While overall quantitative performance (Dice coefficient, IoU, precision, recall, accuracy) was comparable between real-only and hybrid-trained models, qualitative inspection suggested that hybrid datasets, particularly with 40% real and 60% synthetic data, improved whole tumor boundary delineation. However, region-wise accuracy for the tumor core and the enhancing tumor remained lower, indicating a persistent class imbalance. The findings support the feasibility of synthetic data as an augmentation strategy for brain tumor segmentation, while highlighting the need for larger-scale experiments, volumetric data consistency, and mitigating class imbalance in future work.
comment: Updates include improved references, clearer table column title, and minor language corrections
♻ ☆ LoRA-Edit: Controllable First-Frame-Guided Video Editing via Mask-Aware LoRA Fine-Tuning
Video editing using diffusion models has achieved remarkable results in generating high-quality edits for videos. However, current methods often rely on large-scale pretraining, limiting flexibility for specific edits. First-frame-guided editing provides control over the first frame, but lacks flexibility over subsequent frames. To address this, we propose a mask-based LoRA (Low-Rank Adaptation) tuning method that adapts pretrained Image-to-Video (I2V) models for flexible video editing. Our key innovation is using a spatiotemporal mask to strategically guide the LoRA fine-tuning process. This teaches the model two distinct skills: first, to interpret the mask as a command to either preserve content from the source video or generate new content in designated regions. Second, for these generated regions, LoRA learns to synthesize either temporally consistent motion inherited from the video or novel appearances guided by user-provided reference frames. This dual-capability LoRA grants users control over the edit's entire temporal evolution, allowing complex transformations like an object rotating or a flower blooming. Experimental results show our method achieves superior video editing performance compared to baseline methods. Project Page: https://cjeen.github.io/LoRAEdit
comment: 9 pages
Artificial Intelligence 16
♻ ☆ VerilogLAVD: LLM-Aided Rule Generation for Vulnerability Detection in Verilog
Timely detection of hardware vulnerabilities during the early design stage is critical for reducing remediation costs. Existing early detection techniques often require specialized security expertise, limiting their usability. Recent efforts have explored the use of large language models (LLMs) for Verilog vulnerability detection. However, LLMs struggle to capture the structure in Verilog code, resulting in inconsistent detection results. To this end, we propose VerilogLAVD, the first LLM-aided graph traversal rule generation approach for Verilog vulnerability detection. Our approach introduces the Verilog Property Graph (VeriPG), a unified representation of Verilog code. It combines syntactic features extracted from the abstract syntax tree (AST) with semantic information derived from control flow and data dependency graphs. We leverage LLMs to generate VeriPG-based detection rules from Common Weakness Enumeration (CWE) descriptions. These rules guide the rule executor that traversal VeriPG for potential vulnerabilities. To evaluate VerilogLAVD, we build a dataset collected from open-source repositories and synthesized data. In our empirical evaluation on 77 Verilog designs encompassing 12 CWE types, VerilogLAVD achieves an F1-score of 0.54. Compared to the LLM-only and LLM with external knowledge baselines, VerilogLAVD improves F1-score by 0.31 and 0.27, respectively.
♻ ☆ PC-Sampler: Position-Aware Calibration of Decoding Bias in Masked Diffusion Models
Recent advances in masked diffusion models (MDMs) have established them as powerful non-autoregressive alternatives for sequence generation. Nevertheless, our preliminary experiments reveal that the generation quality of MDMs is still highly sensitive to the choice of decoding strategy. In particular, widely adopted uncertainty-based samplers suffer from two key limitations: a lack of global trajectory control and a pronounced bias toward trivial tokens in the early stages of decoding. These shortcomings restrict the full potential of MDMs. In this work, we introduce Position-Aware Confidence-Calibrated Sampling (PC-Sampler), a novel decoding strategy that unifies global trajectory planning with content-aware informativeness maximization. PC-Sampler incorporates a position-aware weighting mechanism to regulate the decoding path and a calibrated confidence score to suppress the premature selection of trivial tokens. Extensive experiments on three advanced MDMs across seven challenging benchmarks-including logical reasoning and planning tasks-demonstrate that PC-Sampler consistently outperforms existing MDM decoding strategies by more than 10% on average, significantly narrowing the performance gap with state-of-the-art autoregressive models. All codes are available at https://github.com/NEUIR/PC-Sampler.
comment: 17 pages,13 figures
♻ ☆ LaDi-WM: A Latent Diffusion-based World Model for Predictive Manipulation
Predictive manipulation has recently gained considerable attention in the Embodied AI community due to its potential to improve robot policy performance by leveraging predicted states. However, generating accurate future visual states of robot-object interactions from world models remains a well-known challenge, particularly in achieving high-quality pixel-level representations. To this end, we propose LaDi-WM, a world model that predicts the latent space of future states using diffusion modeling. Specifically, LaDi-WM leverages the well-established latent space aligned with pre-trained Visual Foundation Models (VFMs), which comprises both geometric features (DINO-based) and semantic features (CLIP-based). We find that predicting the evolution of the latent space is easier to learn and more generalizable than directly predicting pixel-level images. Building on LaDi-WM, we design a diffusion policy that iteratively refines output actions by incorporating forecasted states, thereby generating more consistent and accurate results. Extensive experiments on both synthetic and real-world benchmarks demonstrate that LaDi-WM significantly enhances policy performance by 27.9\% on the LIBERO-LONG benchmark and 20\% on the real-world scenario. Furthermore, our world model and policies achieve impressive generalizability in real-world experiments.
comment: CoRL 2025
♻ ☆ Exploring Content and Social Connections of Fake News with Explainable Text and Graph Learning
The global spread of misinformation and concerns about content trustworthiness have driven the development of automated fact-checking systems. Since false information often exploits social media dynamics such as "likes" and user networks to amplify its reach, effective solutions must go beyond content analysis to incorporate these factors. Moreover, simply labelling content as false can be ineffective or even reinforce biases such as automation and confirmation bias. This paper proposes an explainable framework that combines content, social media, and graph-based features to enhance fact-checking. It integrates a misinformation classifier with explainability techniques to deliver complete and interpretable insights supporting classification decisions. Experiments demonstrate that multimodal information improves performance over single modalities, with evaluations conducted on datasets in English, Spanish, and Portuguese. Additionally, the framework's explanations were assessed for interpretability, trustworthiness, and robustness with a novel protocol, showing that it effectively generates human-understandable justifications for its predictions.
comment: Accepted to publication at the 35th Brazilian Conference on Intelligent Systems, BRACIS 2025. -- This submitted manuscript has not undergone any post-submission improvements or corrections. The Version of Record of this contribution will be provided when available
♻ ☆ HRS: Hybrid Representation Framework with Scheduling Awareness for Time Series Forecasting in Crowdsourced Cloud-Edge Platforms
With the rapid proliferation of streaming services, network load exhibits highly time-varying and bursty behavior, posing serious challenges for maintaining Quality of Service (QoS) in Crowdsourced Cloud-Edge Platforms (CCPs). While CCPs leverage Predict-then-Schedule architecture to improve QoS and profitability, accurate load forecasting remains challenging under traffic surges. Existing methods either minimize mean absolute error, resulting in underprovisioning and potential Service Level Agreement (SLA) violations during peak periods, or adopt conservative overprovisioning strategies, which mitigate SLA risks at the expense of increased resource expenditure. To address this dilemma, we propose HRS, a hybrid representation framework with scheduling awareness that integrates numerical and image-based representations to better capture extreme load dynamics. We further introduce a Scheduling-Aware Loss (SAL) that captures the asymmetric impact of prediction errors, guiding predictions that better support scheduling decisions. Extensive experiments on four real-world datasets demonstrate that HRS consistently outperforms ten baselines and achieves state-of-the-art performance, reducing SLA violation rates by 63.1% and total profit loss by 32.3%.
comment: 10 pages, 14 figures, ECAI2025
♻ ☆ Atom-Searcher: Enhancing Agentic Deep Research via Fine-Grained Atomic Thought Reward
Large language models (LLMs) exhibit remarkable problem-solving abilities, but struggle with complex tasks due to static internal knowledge. Retrieval-Augmented Generation (RAG) enhances access to external information, yet remains limited in multi-hop reasoning and strategic search due to rigid workflows. Recent advancements in agentic deep research empower LLMs to autonomously reason, search, and synthesize information. However, current approaches relying on outcome-based reinforcement learning (RL) face critical issues such as conflicting gradients and reward sparsity, limiting performance gains and training efficiency. To address these, we first propose Atomic Thought, a novel LLM thinking paradigm that decomposes reasoning into fine-grained functional units. These units are supervised by Reasoning Reward Models (RRMs), which provide Atomic Thought Rewards (ATR) for fine-grained guidance. Building on this, we propose Atom-Searcher, a novel RL framework for agentic deep research that integrates Atomic Thought and ATR. Atom-Searcher uses a curriculum-inspired reward schedule, prioritizing process-level ATR early and transitioning to outcome rewards, accelerating convergence on effective reasoning paths. Experiments on seven benchmarks show consistent improvements over the state-of-the-art. Key advantages include: (1) Atom-Searcher scales computation at test-time. (2) Atomic Thought provides supervision anchors for RRMs, bridging deep research tasks and RRMs. (3) Atom-Searcher exhibits more interpretable, human-like reasoning patterns.
♻ ☆ Vehicle detection from GSV imagery: Predicting travel behaviour for cycling and motorcycling using Computer Vision
Transportation influence health by shaping exposure to physical activity, air pollution and injury risk. Comparative data on cycling and motorcycling behaviours is scarce, particularly at a global scale. Street view imagery, such as Google Street View (GSV), combined with computer vision, is a valuable resource for efficiently capturing travel behaviour data. This study demonstrates a novel approach using deep learning on street view images to estimate cycling and motorcycling levels across diverse cities worldwide. We utilized data from 185 global cities. The data on mode shares of cycling and motorcycling estimated using travel surveys or censuses. We used GSV images to detect cycles and motorcycles in sampled locations, using 8000 images per city. The YOLOv4 model, fine-tuned using images from six cities, achieved a mean average precision of 89% for detecting cycles and motorcycles. A global prediction model was developed using beta regression with city-level mode shares as outcome, with log transformed explanatory variables of counts of GSV-detected images with cycles and motorcycles, while controlling for population density. We found strong correlations between GSV motorcycle counts and motorcycle mode share (0.78) and moderate correlations between GSV cycle counts and cycling mode share (0.51). Beta regression models predicted mode shares with $R^2$ values of 0.614 for cycling and 0.612 for motorcycling, achieving median absolute errors (MDAE) of 1.3% and 1.4%, respectively. Scatterplots demonstrated consistent prediction accuracy, though cities like Utrecht and Cali were outliers. The model was applied to 60 cities globally for which we didn't have recent mode share data. We provided estimates for some cities in the Middle East, Latin America and East Asia. With computer vision, GSV images capture travel modes and activity, providing insights alongside traditional data sources.
♻ ☆ CRED-SQL: Enhancing Real-world Large Scale Database Text-to-SQL Parsing through Cluster Retrieval and Execution Description
Recent advances in large language models (LLMs) have significantly improved the accuracy of Text-to-SQL systems. However, a critical challenge remains: the semantic mismatch between natural language questions (NLQs) and their corresponding SQL queries. This issue is exacerbated in large-scale databases, where semantically similar attributes hinder schema linking and semantic drift during SQL generation, ultimately reducing model accuracy. To address these challenges, we introduce CRED-SQL, a framework designed for large-scale databases that integrates Cluster Retrieval and Execution Description. CRED-SQL first performs cluster-based large-scale schema retrieval to pinpoint the tables and columns most relevant to a given NLQ, alleviating schema mismatch. It then introduces an intermediate natural language representation-Execution Description Language (EDL)-to bridge the gap between NLQs and SQL. This reformulation decomposes the task into two stages: Text-to-EDL and EDL-to-SQL, leveraging LLMs' strong general reasoning capabilities while reducing semantic deviation. Extensive experiments on two large-scale, cross-domain benchmarks-SpiderUnion and BirdUnion-demonstrate that CRED-SQL achieves new state-of-the-art (SOTA) performance, validating its effectiveness and scalability. Our code is available at https://github.com/smduan/CRED-SQL.git
♻ ☆ Robust Federated Learning under Adversarial Attacks via Loss-Based Client Clustering
Federated Learning (FL) enables collaborative model training across multiple clients without sharing private data. We consider FL scenarios wherein FL clients are subject to adversarial (Byzantine) attacks, while the FL server is trusted (honest) and has a trustworthy side dataset. This may correspond to, e.g., cases where the server possesses trusted data prior to federation, or to the presence of a trusted client that temporarily assumes the server role. Our approach requires only two honest participants, i.e., the server and one client, to function effectively, without prior knowledge of the number of malicious clients. Theoretical analysis demonstrates bounded optimality gaps even under strong Byzantine attacks. Experimental results show that our algorithm significantly outperforms standard and robust FL baselines such as Mean, Trimmed Mean, Median, Krum, and Multi-Krum under various attack strategies including label flipping, sign flipping, and Gaussian noise addition across MNIST, FMNIST, and CIFAR-10 benchmarks using the Flower framework.
comment: 16 pages, 5 figures
♻ ☆ SRMA-Mamba: Spatial Reverse Mamba Attention Network for Pathological Liver Segmentation in MRI Volumes
Liver Cirrhosis plays a critical role in the prognosis of chronic liver disease. Early detection and timely intervention are critical in significantly reducing mortality rates. However, the intricate anatomical architecture and diverse pathological changes of liver tissue complicate the accurate detection and characterization of lesions in clinical settings. Existing methods underutilize the spatial anatomical details in volumetric MRI data, thereby hindering their clinical effectiveness and explainability. To address this challenge, we introduce a novel Mamba-based network, SRMA-Mamba, designed to model the spatial relationships within the complex anatomical structures of MRI volumes. By integrating the Spatial Anatomy-Based Mamba module (SABMamba), SRMA-Mamba performs selective Mamba scans within liver cirrhotic tissues and combines anatomical information from the sagittal, coronal, and axial planes to construct a global spatial context representation, enabling efficient volumetric segmentation of pathological liver structures. Furthermore, we introduce the Spatial Reverse Attention module (SRMA), designed to progressively refine cirrhotic details in the segmentation map, utilizing both the coarse segmentation map and hierarchical encoding features. Extensive experiments demonstrate that SRMA-Mamba surpasses state-of-the-art methods, delivering exceptional performance in 3D pathological liver segmentation. Our code is available for public: https://github.com/JunZengz/SRMA-Mamba.
comment: 9 pages, 4 figures
♻ ☆ MedKGent: A Large Language Model Agent Framework for Constructing Temporally Evolving Medical Knowledge Graph
The rapid expansion of medical literature presents growing challenges for structuring and integrating domain knowledge at scale. Knowledge Graphs (KGs) offer a promising solution by enabling efficient retrieval, automated reasoning, and knowledge discovery. However, current KG construction methods often rely on supervised pipelines with limited generalizability or naively aggregate outputs from Large Language Models (LLMs), treating biomedical corpora as static and ignoring the temporal dynamics and contextual uncertainty of evolving knowledge. To address these limitations, we introduce MedKGent, a LLM agent framework for constructing temporally evolving medical KGs. Leveraging over 10 million PubMed abstracts published between 1975 and 2023, we simulate the emergence of biomedical knowledge via a fine-grained daily time series. MedKGent incrementally builds the KG in a day-by-day manner using two specialized agents powered by the Qwen2.5-32B-Instruct model. The Extractor Agent identifies knowledge triples and assigns confidence scores via sampling-based estimation, which are used to filter low-confidence extractions and inform downstream processing. The Constructor Agent incrementally integrates the retained triples into a temporally evolving graph, guided by confidence scores and timestamps to reinforce recurring knowledge and resolve conflicts. The resulting KG contains 156,275 entities and 2,971,384 relational triples. Quality assessments by two SOTA LLMs and three domain experts demonstrate an accuracy approaching 90%, with strong inter-rater agreement. To evaluate downstream utility, we conduct RAG across seven medical question answering benchmarks using five leading LLMs, consistently observing significant improvements over non-augmented baselines. Case studies further demonstrate the KG's value in literature-based drug repurposing via confidence-aware causal inference.
♻ ☆ A Survey of LLM-based Deep Search Agents: Paradigm, Optimization, Evaluation, and Challenges
The advent of Large Language Models (LLMs) has significantly revolutionized web search. The emergence of LLM-based Search Agents marks a pivotal shift towards deeper, dynamic, autonomous information seeking. These agents can comprehend user intentions and environmental context and execute multi-turn retrieval with dynamic planning, extending search capabilities far beyond the web. Leading examples like OpenAI's Deep Research highlight their potential for deep information mining and real-world applications. This survey provides the first systematic analysis of search agents. We comprehensively analyze and categorize existing works from the perspectives of architecture, optimization, application, and evaluation, ultimately identifying critical open challenges and outlining promising future research directions in this rapidly evolving field. Our repository is available on https://github.com/YunjiaXi/Awesome-Search-Agent-Papers.
♻ ☆ Fortifying the Agentic Web: A Unified Zero-Trust Architecture Against Logic-layer Threats
This paper presents a Unified Security Architecture that fortifies the Agentic Web through a Zero-Trust IAM framework. This architecture is built on a foundation of rich, verifiable agent identities using Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs), with discovery managed by a protocol-agnostic Agent Name Service (ANS). Security is operationalized through a multi-layered Trust Fabric which introduces significant innovations, including Trust-Adaptive Runtime Environments (TARE), Causal Chain Auditing, and Dynamic Identity with Behavioral Attestation. By explicitly linking the LPCI threat to these enhanced architectural countermeasures within a formal security model, we propose a comprehensive and forward-looking blueprint for a secure, resilient, and trustworthy agentic ecosystem. Our formal analysis demonstrates that the proposed architecture provides provable security guarantees against LPCI attacks with bounded probability of success.
♻ ☆ Generalized invariants meet constitutive neural networks: A novel framework for hyperelastic materials
The major challenge in determining a hyperelastic model for a given material is the choice of invariants and the selection how the strain energy function depends functionally on these invariants. Here we introduce a new data-driven framework that simultaneously discovers appropriate invariants and constitutive models for isotropic incompressible hyperelastic materials. Our approach identifies both the most suitable invariants in a class of generalized invariants and the corresponding strain energy function directly from experimental observations. Unlike previous methods that rely on fixed invariant choices or sequential fitting procedures, our method integrates the discovery process into a single neural network architecture. By looking at a continuous family of possible invariants, the model can flexibly adapt to different material behaviors. We demonstrate the effectiveness of this approach using popular benchmark datasets for rubber and brain tissue. For rubber, the method recovers a stretch-dominated formulation consistent with classical models. For brain tissue, it identifies a formulation sensitive to small stretches, capturing the nonlinear shear response characteristic of soft biological matter. Compared to traditional and neural-network-based models, our framework provides improved predictive accuracy and interpretability across a wide range of deformation states. This unified strategy offers a robust tool for automated and physically meaningful model discovery in hyperelasticity.
♻ ☆ Modeling Relational Logic Circuits for And-Inverter Graph Convolutional Network
The automation of logic circuit design enhances chip performance, energy efficiency, and reliability, and is widely applied in the field of Electronic Design Automation (EDA).And-Inverter Graphs (AIGs) efficiently represent, optimize, and verify the functional characteristics of digital circuits, enhancing the efficiency of EDA development.Due to the complex structure and large scale of nodes in real-world AIGs, accurate modeling is challenging, leading to existing work lacking the ability to jointly model functional and structural characteristics, as well as insufficient dynamic information propagation capability.To address the aforementioned challenges, we propose AIGer.Specifically, AIGer consists of two components: 1) Node logic feature initialization embedding component and 2) AIGs feature learning network component.The node logic feature initialization embedding component projects logic nodes, such as AND and NOT, into independent semantic spaces, to enable effective node embedding for subsequent processing.Building upon this, the AIGs feature learning network component employs a heterogeneous graph convolutional network, designing dynamic relationship weight matrices and differentiated information aggregation approaches to better represent the original structure and information of AIGs.The combination of these two components enhances AIGer's ability to jointly model functional and structural characteristics and improves its message passing capability. Experimental results indicate that AIGer outperforms the current best models in the Signal Probability Prediction (SSP) task, improving MAE and MSE by 18.95\% and 44.44\%, respectively. In the Truth Table Distance Prediction (TTDP) task, AIGer achieves improvements of 33.57\% and 14.79\% in MAE and MSE, respectively, compared to the best-performing models.
♻ ☆ FutureX: An Advanced Live Benchmark for LLM Agents in Future Prediction
Future prediction is a complex task for LLM agents, requiring a high level of analytical thinking, information gathering, contextual understanding, and decision-making under uncertainty. Agents must not only gather and interpret vast amounts of dynamic information but also integrate diverse data sources, weigh uncertainties, and adapt predictions based on emerging trends, just as human experts do in fields like politics, economics, and finance. Despite its importance, no large-scale benchmark exists for evaluating agents on future prediction, largely due to challenges in handling real-time updates and retrieving timely, accurate answers. To address this, we introduce $\textbf{FutureX}$, a dynamic and live evaluation benchmark specifically designed for LLM agents performing future prediction tasks. FutureX is the largest and most diverse live benchmark for future prediction, supporting real-time daily updates and eliminating data contamination through an automated pipeline for question gathering and answer collection. We evaluate 25 LLM/agent models, including those with reasoning, search capabilities, and integration of external tools such as the open-source Deep Research Agent and closed-source Deep Research models. This comprehensive evaluation assesses agents' adaptive reasoning and performance in dynamic environments. Additionally, we provide in-depth analyses of agents' failure modes and performance pitfalls in future-oriented tasks, including the vulnerability to fake web pages and the temporal validity. Our goal is to establish a dynamic, contamination-free evaluation standard that drives the development of LLM agents capable of performing at the level of professional human analysts in complex reasoning and predictive thinking.
comment: Technical report, 51 pages. Update the results
Machine Learning 10
♻ ☆ Training Machine Learning Models on Human Spatio-temporal Mobility Data: An Experimental Study [Experiment Paper]
Individual-level human mobility prediction has emerged as a significant topic of research with applications in infectious disease monitoring, child, and elderly care. Existing studies predominantly focus on the microscopic aspects of human trajectories: such as predicting short-term trajectories or the next location visited, while offering limited attention to macro-level mobility patterns and the corresponding life routines. In this paper, we focus on an underexplored problem in human mobility prediction: determining the best practices to train a machine learning model using historical data to forecast an individuals complete trajectory over the next days and weeks. In this experiment paper, we undertake a comprehensive experimental analysis of diverse models, parameter configurations, and training strategies, accompanied by an in-depth examination of the statistical distribution inherent in human mobility patterns. Our empirical evaluations encompass both Long Short-Term Memory and Transformer-based architectures, and further investigate how incorporating individual life patterns can enhance the effectiveness of the prediction. We show that explicitly including semantic information such as day-of-the-week and user-specific historical information can help the model better understand individual patterns of life and improve predictions. Moreover, since the absence of explicit user information is often missing due to user privacy, we show that the sampling of users may exacerbate data skewness and result in a substantial loss in predictive accuracy. To mitigate data imbalance and preserve diversity, we apply user semantic clustering with stratified sampling to ensure that the sampled dataset remains representative. Our results further show that small-batch stochastic gradient optimization improves model performance, especially when human mobility training data is limited.
comment: This paper is the extended version of our work accepted at the 33rd ACM International Conference on Advances in Geographic Information Systems
♻ ☆ Fully Automated Segmentation of Fiber Bundles in Anatomic Tracing Data MICCAI 2025
Anatomic tracer studies are critical for validating and improving diffusion MRI (dMRI) tractography. However, large-scale analysis of data from such studies is hampered by the labor-intensive process of annotating fiber bundles manually on histological slides. Existing automated methods often miss sparse bundles or require complex post-processing across consecutive sections, limiting their flexibility and generalizability. We present a streamlined, fully automated framework for fiber bundle segmentation in macaque tracer data, based on a U-Net architecture with large patch sizes, foreground aware sampling, and semisupervised pre-training. Our approach eliminates common errors such as mislabeling terminals as bundles, improves detection of sparse bundles by over 20% and reduces the False Discovery Rate (FDR) by 40% compared to the state-of-the-art, all while enabling analysis of standalone slices. This new framework will facilitate the automated analysis of anatomic tracing data at a large scale, generating more ground-truth data that can be used to validate and optimize dMRI tractography methods.
comment: Accepted at CDMRI, MICCAI 2025
♻ ☆ LaDi-WM: A Latent Diffusion-based World Model for Predictive Manipulation
Predictive manipulation has recently gained considerable attention in the Embodied AI community due to its potential to improve robot policy performance by leveraging predicted states. However, generating accurate future visual states of robot-object interactions from world models remains a well-known challenge, particularly in achieving high-quality pixel-level representations. To this end, we propose LaDi-WM, a world model that predicts the latent space of future states using diffusion modeling. Specifically, LaDi-WM leverages the well-established latent space aligned with pre-trained Visual Foundation Models (VFMs), which comprises both geometric features (DINO-based) and semantic features (CLIP-based). We find that predicting the evolution of the latent space is easier to learn and more generalizable than directly predicting pixel-level images. Building on LaDi-WM, we design a diffusion policy that iteratively refines output actions by incorporating forecasted states, thereby generating more consistent and accurate results. Extensive experiments on both synthetic and real-world benchmarks demonstrate that LaDi-WM significantly enhances policy performance by 27.9\% on the LIBERO-LONG benchmark and 20\% on the real-world scenario. Furthermore, our world model and policies achieve impressive generalizability in real-world experiments.
comment: CoRL 2025
♻ ☆ HRS: Hybrid Representation Framework with Scheduling Awareness for Time Series Forecasting in Crowdsourced Cloud-Edge Platforms
With the rapid proliferation of streaming services, network load exhibits highly time-varying and bursty behavior, posing serious challenges for maintaining Quality of Service (QoS) in Crowdsourced Cloud-Edge Platforms (CCPs). While CCPs leverage Predict-then-Schedule architecture to improve QoS and profitability, accurate load forecasting remains challenging under traffic surges. Existing methods either minimize mean absolute error, resulting in underprovisioning and potential Service Level Agreement (SLA) violations during peak periods, or adopt conservative overprovisioning strategies, which mitigate SLA risks at the expense of increased resource expenditure. To address this dilemma, we propose HRS, a hybrid representation framework with scheduling awareness that integrates numerical and image-based representations to better capture extreme load dynamics. We further introduce a Scheduling-Aware Loss (SAL) that captures the asymmetric impact of prediction errors, guiding predictions that better support scheduling decisions. Extensive experiments on four real-world datasets demonstrate that HRS consistently outperforms ten baselines and achieves state-of-the-art performance, reducing SLA violation rates by 63.1% and total profit loss by 32.3%.
comment: 10 pages, 14 figures, ECAI2025
♻ ☆ Learning In-context n-grams with Transformers: Sub-n-grams Are Near-stationary Points ICML2025
Motivated by empirical observations of prolonged plateaus and stage-wise progression during training, we investigate the loss landscape of transformer models trained on in-context next-token prediction tasks. In particular, we focus on learning in-context $n$-gram language models under cross-entropy loss, and establish a sufficient condition for parameter configurations to be stationary points. We then construct a set of parameter configurations for a simplified transformer model that represent $k$-gram estimators (for $k \leq n$), and show that the gradient of the population loss at these solutions vanishes in the limit of infinite sequence length and parameter norm. This reveals a key property of the loss landscape: {sub-$n$-grams are near-stationary points of the population cross-entropy loss}, offering theoretical insight into widely observed phenomena such as stage-wise learning dynamics and emergent phase transitions. These insights are further supported by numerical experiments that illustrate the learning dynamics of $n$-grams, characterized by discrete transitions between near-stationary solutions.
comment: ICML2025
♻ ☆ Efficient and Verifiable Privacy-Preserving Convolutional Computation for CNN Inference with Untrusted Clouds
The widespread adoption of convolutional neural networks (CNNs) in resource-constrained scenarios has driven the development of Machine Learning as a Service (MLaaS) system. However, this approach is susceptible to privacy leakage, as the data sent from the client to the untrusted cloud server often contains sensitive information. Existing CNN privacy-preserving schemes, while effective in ensuring data confidentiality through homomorphic encryption and secret sharing, face efficiency bottlenecks, particularly in convolution operations. In this paper, we propose a novel verifiable privacy-preserving scheme tailored for CNN convolutional layers. Our scheme enables efficient encryption and decryption, allowing resource-constrained clients to securely offload computations to the untrusted cloud server. Additionally, we present a verification mechanism capable of detecting the correctness of the results with a success probability of at least $1-\frac{1}{\left|Z\right|}$. Extensive experiments conducted on 10 datasets and various CNN models demonstrate that our scheme achieves speedups ranging $26 \times$ ~ $\ 87\times$ compared to the original plaintext model while maintaining accuracy.
comment: Conference link: [ICIC 2025](http://www.ic-icc.cn/2025/index.php) will provide further details
♻ ☆ A Hierarchical Surrogate Model for Efficient Multi-Task Parameter Learning in Closed-Loop Control
Many control problems require repeated tuning and adaptation of controllers across distinct closed-loop tasks, where data efficiency and adaptability are critical. We propose a hierarchical Bayesian optimization (BO) framework that is tailored to efficient controller parameter learning in sequential decision-making and control scenarios for distinct tasks. Instead of treating the closed-loop cost as a black-box, our method exploits structural knowledge of the underlying problem, consisting of a dynamical system, a control law, and an associated closed-loop cost function. We construct a hierarchical surrogate model using Gaussian processes that capture the closed-loop state evolution under different parameterizations, while the task-specific weighting and accumulation into the closed-loop cost are computed exactly via known closed-form expressions. This allows knowledge transfer and enhanced data efficiency between different closed-loop tasks. The proposed framework retains sublinear regret guarantees on par with standard black-box BO, while enabling multi-task or transfer learning. Simulation experiments with model predictive control demonstrate substantial benefits in both sample efficiency and adaptability when compared to purely black-box BO approaches.
comment: 8 pages, 4 figures, accepted for CDC 2025
♻ ☆ Robust Federated Learning under Adversarial Attacks via Loss-Based Client Clustering
Federated Learning (FL) enables collaborative model training across multiple clients without sharing private data. We consider FL scenarios wherein FL clients are subject to adversarial (Byzantine) attacks, while the FL server is trusted (honest) and has a trustworthy side dataset. This may correspond to, e.g., cases where the server possesses trusted data prior to federation, or to the presence of a trusted client that temporarily assumes the server role. Our approach requires only two honest participants, i.e., the server and one client, to function effectively, without prior knowledge of the number of malicious clients. Theoretical analysis demonstrates bounded optimality gaps even under strong Byzantine attacks. Experimental results show that our algorithm significantly outperforms standard and robust FL baselines such as Mean, Trimmed Mean, Median, Krum, and Multi-Krum under various attack strategies including label flipping, sign flipping, and Gaussian noise addition across MNIST, FMNIST, and CIFAR-10 benchmarks using the Flower framework.
comment: 16 pages, 5 figures
♻ ☆ Benchmarking Federated Learning for Semantic Datasets: Federated Scene Graph Generation
Federated learning (FL) enables decentralized training while preserving data privacy, yet existing FL benchmarks address relatively simple classification tasks, where each sample is annotated with a one-hot label. However, little attention has been paid to demonstrating an FL benchmark that handles complicated semantics, where each sample encompasses diverse semantic information, such as relations between objects. Because the existing benchmarks are designed to distribute data in a narrow view of a single semantic, managing the complicated semantic heterogeneity across clients when formalizing FL benchmarks is non-trivial. In this paper, we propose a benchmark process to establish an FL benchmark with controllable semantic heterogeneity across clients: two key steps are (i) data clustering with semantics and (ii) data distributing via controllable semantic heterogeneity across clients. As a proof of concept, we construct a federated PSG benchmark, demonstrating the efficacy of the existing PSG methods in an FL setting with controllable semantic heterogeneity of scene graphs. We also present the effectiveness of our benchmark by applying robust federated learning algorithms to data heterogeneity to show increased performance. To our knowledge, this is the first benchmark framework that enables federated learning and its evaluation for multi-semantic vision tasks under the controlled semantic heterogeneity. Our code is available at https://github.com/Seung-B/FL-PSG.
comment: This work has been accepted for publication in Pattern Recognition Letters
♻ ☆ FutureX: An Advanced Live Benchmark for LLM Agents in Future Prediction
Future prediction is a complex task for LLM agents, requiring a high level of analytical thinking, information gathering, contextual understanding, and decision-making under uncertainty. Agents must not only gather and interpret vast amounts of dynamic information but also integrate diverse data sources, weigh uncertainties, and adapt predictions based on emerging trends, just as human experts do in fields like politics, economics, and finance. Despite its importance, no large-scale benchmark exists for evaluating agents on future prediction, largely due to challenges in handling real-time updates and retrieving timely, accurate answers. To address this, we introduce $\textbf{FutureX}$, a dynamic and live evaluation benchmark specifically designed for LLM agents performing future prediction tasks. FutureX is the largest and most diverse live benchmark for future prediction, supporting real-time daily updates and eliminating data contamination through an automated pipeline for question gathering and answer collection. We evaluate 25 LLM/agent models, including those with reasoning, search capabilities, and integration of external tools such as the open-source Deep Research Agent and closed-source Deep Research models. This comprehensive evaluation assesses agents' adaptive reasoning and performance in dynamic environments. Additionally, we provide in-depth analyses of agents' failure modes and performance pitfalls in future-oriented tasks, including the vulnerability to fake web pages and the temporal validity. Our goal is to establish a dynamic, contamination-free evaluation standard that drives the development of LLM agents capable of performing at the level of professional human analysts in complex reasoning and predictive thinking.
comment: Technical report, 51 pages. Update the results
Graphics 1
♻ ☆ A Study of the Framework and Real-World Applications of Language Embedding for 3D Scene Understanding
Gaussian Splatting has rapidly emerged as a transformative technique for real-time 3D scene representation, offering a highly efficient and expressive alternative to Neural Radiance Fields (NeRF). Its ability to render complex scenes with high fidelity has enabled progress across domains such as scene reconstruction, robotics, and interactive content creation. More recently, the integration of Large Language Models (LLMs) and language embeddings into Gaussian Splatting pipelines has opened new possibilities for text-conditioned generation, editing, and semantic scene understanding. Despite these advances, a comprehensive overview of this emerging intersection has been lacking. This survey presents a structured review of current research efforts that combine language guidance with 3D Gaussian Splatting, detailing theoretical foundations, integration strategies, and real-world use cases. We highlight key limitations such as computational bottlenecks, generalizability, and the scarcity of semantically annotated 3D Gaussian data and outline open challenges and future directions for advancing language-guided 3D scene understanding using Gaussian Splatting.
Robotics 29
☆ Manipulate-to-Navigate: Reinforcement Learning with Visual Affordances and Manipulability Priors
Mobile manipulation in dynamic environments is challenging due to movable obstacles blocking the robot's path. Traditional methods, which treat navigation and manipulation as separate tasks, often fail in such 'manipulate-to-navigate' scenarios, as obstacles must be removed before navigation. In these cases, active interaction with the environment is required to clear obstacles while ensuring sufficient space for movement. To address the manipulate-to-navigate problem, we propose a reinforcement learning-based approach for learning manipulation actions that facilitate subsequent navigation. Our method combines manipulability priors to focus the robot on high manipulability body positions with affordance maps for selecting high-quality manipulation actions. By focusing on feasible and meaningful actions, our approach reduces unnecessary exploration and allows the robot to learn manipulation strategies more effectively. We present two new manipulate-to-navigate simulation tasks called Reach and Door with the Boston Dynamics Spot robot. The first task tests whether the robot can select a good hand position in the target area such that the robot base can move effectively forward while keeping the end effector position fixed. The second task requires the robot to move a door aside in order to clear the navigation path. Both of these tasks need first manipulation and then navigating the base forward. Results show that our method allows a robot to effectively interact with and traverse dynamic environments. Finally, we transfer the learned policy to a real Boston Dynamics Spot robot, which successfully performs the Reach task.
☆ Has GPT-5 Achieved Spatial Intelligence? An Empirical Study
Multi-modal models have achieved remarkable progress in recent years. Nevertheless, they continue to exhibit notable limitations in spatial understanding and reasoning, which are fundamental capabilities to achieving artificial general intelligence. With the recent release of GPT-5, allegedly the most powerful AI model to date, it is timely to examine where the leading models stand on the path toward spatial intelligence. First, we propose a comprehensive taxonomy of spatial tasks that unifies existing benchmarks and discuss the challenges in ensuring fair evaluation. We then evaluate state-of-the-art proprietary and open-source models on eight key benchmarks, at a cost exceeding one billion total tokens. Our empirical study reveals that (1) GPT-5 demonstrates unprecedented strength in spatial intelligence, yet (2) still falls short of human performance across a broad spectrum of tasks. Moreover, we (3) identify the more challenging spatial intelligence problems for multi-modal models, and (4) proprietary models do not exhibit a decisive advantage when facing the most difficult problems. In addition, we conduct a qualitative evaluation across a diverse set of scenarios that are intuitive for humans yet fail even the most advanced multi-modal models.
☆ Precise Action-to-Video Generation Through Visual Action Prompts ICCV 2025
We present visual action prompts, a unified action representation for action-to-video generation of complex high-DoF interactions while maintaining transferable visual dynamics across domains. Action-driven video generation faces a precision-generality trade-off: existing methods using text, primitive actions, or coarse masks offer generality but lack precision, while agent-centric action signals provide precision at the cost of cross-domain transferability. To balance action precision and dynamic transferability, we propose to "render" actions into precise visual prompts as domain-agnostic representations that preserve both geometric precision and cross-domain adaptability for complex actions; specifically, we choose visual skeletons for their generality and accessibility. We propose robust pipelines to construct skeletons from two interaction-rich data sources - human-object interactions (HOI) and dexterous robotic manipulation - enabling cross-domain training of action-driven generative models. By integrating visual skeletons into pretrained video generation models via lightweight fine-tuning, we enable precise action control of complex interaction while preserving the learning of cross-domain dynamics. Experiments on EgoVid, RT-1 and DROID demonstrate the effectiveness of our proposed approach. Project page: https://zju3dv.github.io/VAP/.
comment: Accepted to ICCV 2025. Project page: https://zju3dv.github.io/VAP/
☆ Grounding Actions in Camera Space: Observation-Centric Vision-Language-Action Policy
Vision-Language-Action (VLA) models frequently encounter challenges in generalizing to real-world environments due to inherent discrepancies between observation and action spaces. Although training data are collected from diverse camera perspectives, the models typically predict end-effector poses within the robot base coordinate frame, resulting in spatial inconsistencies. To mitigate this limitation, we introduce the Observation-Centric VLA (OC-VLA) framework, which grounds action predictions directly in the camera observation space. Leveraging the camera's extrinsic calibration matrix, OC-VLA transforms end-effector poses from the robot base coordinate system into the camera coordinate system, thereby unifying prediction targets across heterogeneous viewpoints. This lightweight, plug-and-play strategy ensures robust alignment between perception and action, substantially improving model resilience to camera viewpoint variations. The proposed approach is readily compatible with existing VLA architectures, requiring no substantial modifications. Comprehensive evaluations on both simulated and real-world robotic manipulation tasks demonstrate that OC-VLA accelerates convergence, enhances task success rates, and improves cross-view generalization. The code will be publicly available.
☆ Large VLM-based Vision-Language-Action Models for Robotic Manipulation: A Survey
Robotic manipulation, a key frontier in robotics and embodied AI, requires precise motor control and multimodal understanding, yet traditional rule-based methods fail to scale or generalize in unstructured, novel environments. In recent years, Vision-Language-Action (VLA) models, built upon Large Vision-Language Models (VLMs) pretrained on vast image-text datasets, have emerged as a transformative paradigm. This survey provides the first systematic, taxonomy-oriented review of large VLM-based VLA models for robotic manipulation. We begin by clearly defining large VLM-based VLA models and delineating two principal architectural paradigms: (1) monolithic models, encompassing single-system and dual-system designs with differing levels of integration; and (2) hierarchical models, which explicitly decouple planning from execution via interpretable intermediate representations. Building on this foundation, we present an in-depth examination of large VLM-based VLA models: (1) integration with advanced domains, including reinforcement learning, training-free optimization, learning from human videos, and world model integration; (2) synthesis of distinctive characteristics, consolidating architectural traits, operational strengths, and the datasets and benchmarks that support their development; (3) identification of promising directions, including memory mechanisms, 4D perception, efficient adaptation, multi-agent cooperation, and other emerging capabilities. This survey consolidates recent advances to resolve inconsistencies in existing taxonomies, mitigate research fragmentation, and fill a critical gap through the systematic integration of studies at the intersection of large VLMs and robotic manipulation. We provide a regularly updated project page to document ongoing progress: https://github.com/JiuTian-VL/Large-VLM-based-VLA-for-Robotic-Manipulation.
comment: Project Page: https://github.com/JiuTian-VL/Large-VLM-based-VLA-for-Robotic-Manipulation
☆ BOW: Bayesian Optimization over Windows for Motion Planning in Complex Environments
This paper introduces the BOW Planner, a scalable motion planning algorithm designed to navigate robots through complex environments using constrained Bayesian optimization (CBO). Unlike traditional methods, which often struggle with kinodynamic constraints such as velocity and acceleration limits, the BOW Planner excels by concentrating on a planning window of reachable velocities and employing CBO to sample control inputs efficiently. This approach enables the planner to manage high-dimensional objective functions and stringent safety constraints with minimal sampling, ensuring rapid and secure trajectory generation. Theoretical analysis confirms the algorithm's asymptotic convergence to near-optimal solutions, while extensive evaluations in cluttered and constrained settings reveal substantial improvements in computation times, trajectory lengths, and solution times compared to existing techniques. Successfully deployed across various real-world robotic systems, the BOW Planner demonstrates its practical significance through exceptional sample efficiency, safety-aware optimization, and rapid planning capabilities, making it a valuable tool for advancing robotic applications. The BOW Planner is released as an open-source package and videos of real-world and simulated experiments are available at https://bow-web.github.io.
☆ Scaling Whole-body Multi-contact Manipulation with Contact Optimization RAS 24
Daily tasks require us to use our whole body to manipulate objects, for instance when our hands are unavailable. We consider the issue of providing humanoid robots with the ability to autonomously perform similar whole-body manipulation tasks. In this context, the infinite possibilities for where and how contact can occur on the robot and object surfaces hinder the scalability of existing planning methods, which predominantly rely on discrete sampling. Given the continuous nature of contact surfaces, gradient-based optimization offers a more suitable approach for finding solutions. However, a key remaining challenge is the lack of an efficient representation of robot surfaces. In this work, we propose (i) a representation of robot and object surfaces that enables closed-form computation of proximity points, and (ii) a cost design that effectively guides whole-body manipulation planning. Our experiments demonstrate that the proposed framework can solve problems unaddressed by existing methods, and achieves a 77% improvement in planning time over the state of the art. We also validate the suitability of our approach on real hardware through the whole-body manipulation of boxes by a humanoid robot.
comment: This work has been accepted for publication in IEEE-RAS 24th International Conference on Humanoid Robots (Humanoids 2025). Copyrights to IEEE
☆ Simultaneous Contact Sequence and Patch Planning for Dynamic Locomotion
Legged robots have the potential to traverse highly constrained environments with agile maneuvers. However, planning such motions requires solving a highly challenging optimization problem with a mixture of continuous and discrete decision variables. In this paper, we present a full pipeline based on Monte-Carlo tree search (MCTS) and whole-body trajectory optimization (TO) to perform simultaneous contact sequence and patch selection on highly challenging environments. Through extensive simulation experiments, we show that our framework can quickly find a diverse set of dynamically consistent plans. We experimentally show that these plans are transferable to a real quadruped robot. We further show that the same framework can find highly complex acyclic humanoid maneuvers. To the best of our knowledge, this is the first demonstration of simultaneous contact sequence and patch selection for acyclic multi-contact locomotion using the whole-body dynamics of a quadruped.
☆ Deformation of the panoramic sphere into an ellipsoid to induce self-motion in telepresence users
Mobile telepresence robots allow users to feel present and explore remote environments using technology. Traditionally, these systems are implemented using a camera onboard a mobile robot that can be controlled. Although high-immersion technologies, such as 360-degree cameras, can increase situational awareness and presence, they also introduce significant challenges. Additional processing and bandwidth requirements often result in latencies of up to seconds. The current delay with a 360-degree camera streaming over the internet makes real-time control of these systems difficult. Working with high-latency systems requires some form of assistance to the users. This study presents a novel way to utilize optical flow to create an illusion of self-motion to the user during the latency period between user sending motion commands to the robot and seeing the actual motion through the 360-camera stream. We find no significant benefit of using the self-motion illusion to performance or accuracy of controlling a telepresence robot with a latency of 500 ms, as measured by the task completion time and collisions into objects. Some evidence is shown that the method might increase virtual reality (VR) sickness, as measured by the simulator sickness questionnaire (SSQ). We conclude that further adjustments are necessary in order to render the method viable.
comment: 2025 IEEE Conference on Telepresence
☆ RoboRetriever: Single-Camera Robot Object Retrieval via Active and Interactive Perception with Dynamic Scene Graph
Humans effortlessly retrieve objects in cluttered, partially observable environments by combining visual reasoning, active viewpoint adjustment, and physical interaction-with only a single pair of eyes. In contrast, most existing robotic systems rely on carefully positioned fixed or multi-camera setups with complete scene visibility, which limits adaptability and incurs high hardware costs. We present \textbf{RoboRetriever}, a novel framework for real-world object retrieval that operates using only a \textbf{single} wrist-mounted RGB-D camera and free-form natural language instructions. RoboRetriever grounds visual observations to build and update a \textbf{dynamic hierarchical scene graph} that encodes object semantics, geometry, and inter-object relations over time. The supervisor module reasons over this memory and task instruction to infer the target object and coordinate an integrated action module combining \textbf{active perception}, \textbf{interactive perception}, and \textbf{manipulation}. To enable task-aware scene-grounded active perception, we introduce a novel visual prompting scheme that leverages large reasoning vision-language models to determine 6-DoF camera poses aligned with the semantic task goal and geometry scene context. We evaluate RoboRetriever on diverse real-world object retrieval tasks, including scenarios with human intervention, demonstrating strong adaptability and robustness in cluttered scenes with only one RGB-D camera.
☆ MCTR: Midpoint Corrected Triangulation for Autonomous Racing via Digital Twin Simulation in CARLA
In autonomous racing, reactive controllers eliminate the computational burden of the full See-Think-Act autonomy stack by directly mapping sensor inputs to control actions. This bypasses the need for explicit localization and trajectory planning. A widely adopted baseline in this category is the Follow-The-Gap method, which performs trajectory planning using LiDAR data. Building on FTG, the Delaunay Triangulation-based Racing algorithm introduces further enhancements. However, DTR's use of circumcircles for trajectory generation often results in insufficiently smooth paths, ultimately degrading performance. Additionally, the commonly used F1TENTH-simulator for autonomous racing competitions lacks support for 3D LiDAR perception, limiting its effectiveness in realistic testing. To address these challenges, this work proposes the MCTR algorithm. MCTR improves trajectory smoothness through the use of Curvature Corrected Moving Average and implements a digital twin system within the CARLA simulator to validate the algorithm's robustness under 3D LiDAR perception. The proposed algorithm has been thoroughly validated through both simulation and real-world vehicle experiments.
☆ Adaptive Model-Predictive Control of a Soft Continuum Robot Using a Physics-Informed Neural Network Based on Cosserat Rod Theory
Dynamic control of soft continuum robots (SCRs) holds great potential for expanding their applications, but remains a challenging problem due to the high computational demands of accurate dynamic models. While data-driven approaches like Koopman-operator-based methods have been proposed, they typically lack adaptability and cannot capture the full robot shape, limiting their applicability. This work introduces a real-time-capable nonlinear model-predictive control (MPC) framework for SCRs based on a domain-decoupled physics-informed neural network (DD-PINN) with adaptable bending stiffness. The DD-PINN serves as a surrogate for the dynamic Cosserat rod model with a speed-up factor of 44000. It is also used within an unscented Kalman filter for estimating the model states and bending compliance from end-effector position measurements. We implement a nonlinear evolutionary MPC running at 70 Hz on the GPU. In simulation, it demonstrates accurate tracking of dynamic trajectories and setpoint control with end-effector position errors below 3 mm (2.3% of the actuator's length). In real-world experiments, the controller achieves similar accuracy and accelerations up to 3.55 m/s2.
comment: 20 pages, 15 figures
Temporal and Rotational Calibration for Event-Centric Multi-Sensor Systems
Event cameras generate asynchronous signals in response to pixel-level brightness changes, offering a sensing paradigm with theoretically microsecond-scale latency that can significantly enhance the performance of multi-sensor systems. Extrinsic calibration is a critical prerequisite for effective sensor fusion; however, the configuration that involves event cameras remains an understudied topic. In this paper, we propose a motion-based temporal and rotational calibration framework tailored for event-centric multi-sensor systems, eliminating the need for dedicated calibration targets. Our method uses as input the rotational motion estimates obtained from event cameras and other heterogeneous sensors, respectively. Different from conventional approaches that rely on event-to-frame conversion, our method efficiently estimates angular velocity from normal flow observations, which are derived from the spatio-temporal profile of event data. The overall calibration pipeline adopts a two-step approach: it first initializes the temporal offset and rotational extrinsics by exploiting kinematic correlations in the spirit of Canonical Correlation Analysis (CCA), and then refines both temporal and rotational parameters through a joint non-linear optimization using a continuous-time parametrization in SO(3). Extensive evaluations on both publicly available and self-collected datasets validate that the proposed method achieves calibration accuracy comparable to target-based methods, while exhibiting superior stability over purely CCA-based methods, and highlighting its precision, robustness and flexibility. To facilitate future research, our implementation will be made open-source. Code: https://github.com/NAIL-HNU/EvMultiCalib.
comment: 8 pages, 5 figures
☆ PROD: Palpative Reconstruction of Deformable Objects through Elastostatic Signed Distance Functions
We introduce PROD (Palpative Reconstruction of Deformables), a novel method for reconstructing the shape and mechanical properties of deformable objects using elastostatic signed distance functions (SDFs). Unlike traditional approaches that rely on purely geometric or visual data, PROD integrates palpative interaction -- measured through force-controlled surface probing -- to estimate both the static and dynamic response of soft materials. We model the deformation of an object as an elastostatic process and derive a governing Poisson equation for estimating its SDF from a sparse set of pose and force measurements. By incorporating steady-state elastodynamic assumptions, we show that the undeformed SDF can be recovered from deformed observations with provable convergence. Our approach also enables the estimation of material stiffness by analyzing displacement responses to varying force inputs. We demonstrate the robustness of PROD in handling pose errors, non-normal force application, and curvature errors in simulated soft body interactions. These capabilities make PROD a powerful tool for reconstructing deformable objects in applications ranging from robotic manipulation to medical imaging and haptic feedback systems.
comment: Accepted for presentation at the 2025 IEEE Conference on Decision and Control (CDC)
♻ ☆ Visual Perception Engine: Fast and Flexible Multi-Head Inference for Robotic Vision Tasks
Deploying multiple machine learning models on resource-constrained robotic platforms for different perception tasks often results in redundant computations, large memory footprints, and complex integration challenges. In response, this work presents Visual Perception Engine (VPEngine), a modular framework designed to enable efficient GPU usage for visual multitasking while maintaining extensibility and developer accessibility. Our framework architecture leverages a shared foundation model backbone that extracts image representations, which are efficiently shared, without any unnecessary GPU-CPU memory transfers, across multiple specialized task-specific model heads running in parallel. This design eliminates the computational redundancy inherent in feature extraction component when deploying traditional sequential models while enabling dynamic task prioritization based on application demands. We demonstrate our framework's capabilities through an example implementation using DINOv2 as the foundation model with multiple task (depth, object detection and semantic segmentation) heads, achieving up to 3x speedup compared to sequential execution. Building on CUDA Multi-Process Service (MPS), VPEngine offers efficient GPU utilization and maintains a constant memory footprint while allowing per-task inference frequencies to be adjusted dynamically during runtime. The framework is written in Python and is open source with ROS2 C++ (Humble) bindings for ease of use by the robotics community across diverse robotic platforms. Our example implementation demonstrates end-to-end real-time performance at $\geq$50 Hz on NVIDIA Jetson Orin AGX for TensorRT optimized models.
comment: 8 pages, 6 figures, 2 tables
♻ ☆ LaDi-WM: A Latent Diffusion-based World Model for Predictive Manipulation
Predictive manipulation has recently gained considerable attention in the Embodied AI community due to its potential to improve robot policy performance by leveraging predicted states. However, generating accurate future visual states of robot-object interactions from world models remains a well-known challenge, particularly in achieving high-quality pixel-level representations. To this end, we propose LaDi-WM, a world model that predicts the latent space of future states using diffusion modeling. Specifically, LaDi-WM leverages the well-established latent space aligned with pre-trained Visual Foundation Models (VFMs), which comprises both geometric features (DINO-based) and semantic features (CLIP-based). We find that predicting the evolution of the latent space is easier to learn and more generalizable than directly predicting pixel-level images. Building on LaDi-WM, we design a diffusion policy that iteratively refines output actions by incorporating forecasted states, thereby generating more consistent and accurate results. Extensive experiments on both synthetic and real-world benchmarks demonstrate that LaDi-WM significantly enhances policy performance by 27.9\% on the LIBERO-LONG benchmark and 20\% on the real-world scenario. Furthermore, our world model and policies achieve impressive generalizability in real-world experiments.
comment: CoRL 2025
♻ ☆ HQ-OV3D: A High Box Quality Open-World 3D Detection Framework based on Diffision Model
Traditional closed-set 3D detection frameworks fail to meet the demands of open-world applications like autonomous driving. Existing open-vocabulary 3D detection methods typically adopt a two-stage pipeline consisting of pseudo-label generation followed by semantic alignment. While vision-language models (VLMs) recently have dramatically improved the semantic accuracy of pseudo-labels, their geometric quality, particularly bounding box precision, remains commonly neglected. To address this issue, we propose a High Box Quality Open-Vocabulary 3D Detection (HQ-OV3D) framework, dedicated to generate and refine high-quality pseudo-labels for open-vocabulary classes. The framework comprises two key components: an Intra-Modality Cross-Validated (IMCV) Proposal Generator that utilizes cross-modality geometric consistency to generate high-quality initial 3D proposals, and an Annotated-Class Assisted (ACA) Denoiser that progressively refines 3D proposals by leveraging geometric priors from annotated categories through a DDIM-based denoising mechanism. Compared to the state-of-the-art method, training with pseudo-labels generated by our approach achieves a 7.37% improvement in mAP on novel classes, demonstrating the superior quality of the pseudo-labels produced by our framework. HQ-OV3D can serve not only as a strong standalone open-vocabulary 3D detector but also as a plug-in high-quality pseudo-label generator for existing open-vocabulary detection or annotation pipelines.
♻ ☆ Vibration-Based Energy Metric for Restoring Needle Alignment in Autonomous Robotic Ultrasound IROS2025
Precise needle alignment is essential for percutaneous needle insertion in robotic ultrasound-guided procedures. However, inherent challenges such as speckle noise, needle-like artifacts, and low image resolution make robust needle detection difficult, particularly when visibility is reduced or lost. In this paper, we propose a method to restore needle alignment when the ultrasound imaging plane and the needle insertion plane are misaligned. Unlike many existing approaches that rely heavily on needle visibility in ultrasound images, our method uses a more robust feature by periodically vibrating the needle using a mechanical system. Specifically, we propose a vibration-based energy metric that remains effective even when the needle is fully out of plane. Using this metric, we develop a control strategy to reposition the ultrasound probe in response to misalignments between the imaging plane and the needle insertion plane in both translation and rotation. Experiments conducted on ex-vivo porcine tissue samples using a dual-arm robotic ultrasound-guided needle insertion system demonstrate the effectiveness of the proposed approach. The experimental results show the translational error of 0.41$\pm$0.27 mm and the rotational error of 0.51$\pm$0.19 degrees.
comment: Accepted by IROS2025
♻ ☆ Multi-agent Task-Driven Exploration via Intelligent Map Compression and Sharing
This paper investigates the task-driven exploration of unknown environments with mobile sensors communicating compressed measurements. The sensors explore the area and transmit their compressed data to another robot, assisting it to reach its goal location. We propose a novel communication framework and a tractable multi-agent exploration algorithm to select the sensors' actions. The algorithm uses a task-driven measure of uncertainty, resulting from map compression, as a reward function. We validate the efficacy of our algorithm through numerical simulations conducted on a realistic map and compare it with alternative approaches. The results indicate that the proposed algorithm effectively decreases the time required for the robot to reach its target without causing excessive load on the communication network.
comment: 15 pages, 5 figures
♻ ☆ HCOA*: Hierarchical Class-ordered A* for Navigation in Semantic Environments
This paper addresses the problem of robot navigation in mixed geometric/semantic 3D environments. Given a hierarchical representation of the environment, the objective is to navigate from a start position to a goal, while satisfying task-specific safety constraints and minimizing computational cost. We introduce Hierarchical Class-ordered A* (HCOA*), an algorithm that leverages the environment's hierarchy for efficient and safe path-planning in mixed geometric/semantic graphs. We use a total order over the semantic classes and prove theoretical performance guarantees for the algorithm. We propose three approaches for higher-layer node classification based on the semantics of the lowest layer: a Graph Neural Network method, a k-Nearest Neighbors method, and a Majority-Class method. We evaluate HCOA* in simulations on two 3D Scene Graphs, comparing it to the state-of-the-art and assessing the performance of each classification approach. Results show that HCOA* reduces the computational time of navigation by up to 50%, while maintaining near-optimal performance across a wide range of scenarios.
comment: 8 pages, 6 figures
♻ ☆ CaRL: Learning Scalable Planning Policies with Simple Rewards
We investigate reinforcement learning (RL) for privileged planning in autonomous driving. State-of-the-art approaches for this task are rule-based, but these methods do not scale to the long tail. RL, on the other hand, is scalable and does not suffer from compounding errors like imitation learning. Contemporary RL approaches for driving use complex shaped rewards that sum multiple individual rewards, \eg~progress, position, or orientation rewards. We show that PPO fails to optimize a popular version of these rewards when the mini-batch size is increased, which limits the scalability of these approaches. Instead, we propose a new reward design based primarily on optimizing a single intuitive reward term: route completion. Infractions are penalized by terminating the episode or multiplicatively reducing route completion. We find that PPO scales well with higher mini-batch sizes when trained with our simple reward, even improving performance. Training with large mini-batch sizes enables efficient scaling via distributed data parallelism. We scale PPO to 300M samples in CARLA and 500M samples in nuPlan with a single 8-GPU node. The resulting model achieves 64 DS on the CARLA longest6 v2 benchmark, outperforming other RL methods with more complex rewards by a large margin. Requiring only minimal adaptations from its use in CARLA, the same method is the best learning-based approach on nuPlan. It scores 91.3 in non-reactive and 90.6 in reactive traffic on the Val14 benchmark while being an order of magnitude faster than prior work.
comment: Accepted at the Conference on Robot Learning 2025
♻ ☆ Towards Multimodal Social Conversations with Robots: Using Vision-Language Models
Large language models have given social robots the ability to autonomously engage in open-domain conversations. However, they are still missing a fundamental social skill: making use of the multiple modalities that carry social interactions. While previous work has focused on task-oriented interactions that require referencing the environment or specific phenomena in social interactions such as dialogue breakdowns, we outline the overall needs of a multimodal system for social conversations with robots. We then argue that vision-language models are able to process this wide range of visual information in a sufficiently general manner for autonomous social robots. We describe how to adapt them to this setting, which technical challenges remain, and briefly discuss evaluation practices.
comment: Accepted at the workshop "Human - Foundation Models Interaction: A Focus On Multimodal Information" (FoMo-HRI) at IEEE RO-MAN 2025 (Camera-ready version)
♻ ☆ STRAP: Robot Sub-Trajectory Retrieval for Augmented Policy Learning
Robot learning is witnessing a significant increase in the size, diversity, and complexity of pre-collected datasets, mirroring trends in domains such as natural language processing and computer vision. Many robot learning methods treat such datasets as multi-task expert data and learn a multi-task, generalist policy by training broadly across them. Notably, while these generalist policies can improve the average performance across many tasks, the performance of generalist policies on any one task is often suboptimal due to negative transfer between partitions of the data, compared to task-specific specialist policies. In this work, we argue for the paradigm of training policies during deployment given the scenarios they encounter: rather than deploying pre-trained policies to unseen problems in a zero-shot manner, we non-parametrically retrieve and train models directly on relevant data at test time. Furthermore, we show that many robotics tasks share considerable amounts of low-level behaviors and that retrieval at the "sub"-trajectory granularity enables significantly improved data utilization, generalization, and robustness in adapting policies to novel problems. In contrast, existing full-trajectory retrieval methods tend to underutilize the data and miss out on shared cross-task content. This work proposes STRAP, a technique for leveraging pre-trained vision foundation models and dynamic time warping to retrieve sub-sequences of trajectories from large training corpora in a robust fashion. STRAP outperforms both prior retrieval algorithms and multi-task learning methods in simulated and real experiments, showing the ability to scale to much larger offline datasets in the real world as well as the ability to learn robust control policies with just a handful of real-world demonstrations.
comment: Project website at https://weirdlabuw.github.io/strap/
♻ ☆ Mapping the Unseen: Unified Promptable Panoptic Mapping with Dynamic Labeling using Foundation Models
In robotics and computer vision, semantic mapping remains a critical challenge for machines to comprehend complex environments. Traditional panoptic mapping approaches are constrained by fixed labels, limiting their ability to handle novel objects. We present Unified Promptable Panoptic Mapping (UPPM), which leverages foundation models for dynamic labeling without additional training. UPPM is evaluated across three comprehensive levels: Segmentation-to-Map, Map-to-Map, and Segmentation-to-Segmentation. Results demonstrate UPPM attains exceptional geometry reconstruction accuracy (0.61cm on the Flat dataset), the highest panoptic quality (0.414), and better performance compared to state-of-the-art segmentation methods. Furthermore, ablation studies validate the contributions of unified semantics, custom NMS, and blurry frame filtering, with the custom NMS improving the completion ratio by 8.27% on the Flat dataset. UPPM demonstrates effective scene reconstruction with rich semantic labeling across diverse datasets.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Hierarchical Multi-Agent Reinforcement Learning with Control Barrier Functions for Safety-Critical Autonomous Systems
We address the problem of safe policy learning in multi-agent safety-critical autonomous systems. In such systems, it is necessary for each agent to meet the safety requirements at all times while also cooperating with other agents to accomplish the task. Toward this end, we propose a safe Hierarchical Multi-Agent Reinforcement Learning (HMARL) approach based on Control Barrier Functions (CBFs). Our proposed hierarchical approach decomposes the overall reinforcement learning problem into two levels learning joint cooperative behavior at the higher level and learning safe individual behavior at the lower or agent level conditioned on the high-level policy. Specifically, we propose a skill-based HMARL-CBF algorithm in which the higher level problem involves learning a joint policy over the skills for all the agents and the lower-level problem involves learning policies to execute the skills safely with CBFs. We validate our approach on challenging environment scenarios whereby a large number of agents have to safely navigate through conflicting road networks. Compared with existing state of the art methods, our approach significantly improves the safety achieving near perfect (within 5%) success/safety rate while also improving performance across all the environments.
♻ ☆ Novel Object 6D Pose Estimation with a Single Reference View
Existing novel object 6D pose estimation methods typically rely on CAD models or dense reference views, which are both difficult to acquire. Using only a single reference view is more scalable, but challenging due to large pose discrepancies and limited geometric and spatial information. To address these issues, we propose a Single-Reference-based novel object 6D (SinRef-6D) pose estimation method. Our key idea is to iteratively establish point-wise alignment in a common coordinate system based on state space models (SSMs). Specifically, iterative object-space point-wise alignment can effectively handle large pose discrepancies, while our proposed RGB and Points SSMs can capture long-range dependencies and spatial information from a single view, offering linear complexity and superior spatial modeling capability. Once pre-trained on synthetic data, SinRef-6D can estimate the 6D pose of a novel object using only a single reference view, without requiring retraining or a CAD model. Extensive experiments on six popular datasets and real-world robotic scenes demonstrate that we achieve on-par performance with CAD-based and dense reference view-based methods, despite operating in the more challenging single reference setting. Code will be released at https://github.com/CNJianLiu/SinRef-6D.
comment: 17 pages, 12 figures (including supplementary material)
♻ ☆ RIFT: Closed-Loop RL Fine-Tuning for Realistic and Controllable Traffic Simulation
Achieving both realism and controllability in closed-loop traffic simulation remains a key challenge in autonomous driving. Dataset-based methods reproduce realistic trajectories but suffer from covariate shift in closed-loop deployment, compounded by simplified dynamics models that further reduce reliability. Conversely, physics-based simulation methods enhance reliable and controllable closed-loop interactions but often lack expert demonstrations, compromising realism. To address these challenges, we introduce a dual-stage AV-centric simulation framework that conducts open-loop imitation learning pre-training in a data-driven simulator to capture trajectory-level realism and route-level controllability, followed by closed-loop reinforcement learning fine-tuning in a physics-based simulator to enhance style-level controllability and mitigate covariate shift. In the fine-tuning stage, we propose RIFT, a novel RL fine-tuning strategy that evaluates all candidate modalities through group-relative optimization with a dual-clip surrogate objective, enhancing style-level controllability and mitigating covariate shift, while preserving the trajectory-level realism and route-level controllability inherited from IL pre-training. Extensive experiments demonstrate that RIFT improves realism and controllability in traffic simulation while simultaneously exposing the limitations of modern AV systems in closed-loop evaluation. Project Page: https://currychen77.github.io/RIFT/
♻ ☆ Tracking Control of Euler-Lagrangian Systems with Prescribed State, Input, and Temporal Constraints
The synthesis of a smooth tracking control for Euler-Lagrangian (EL) systems under stringent state, input, and temporal (SIT) constraints is challenging. In contrast to existing methods that utilize prior knowledge of EL model parameters and uncertainty bounds, this study proposes an approximation-free adaptive barrier function-based control policy to ensure local prescribed time convergence of tracking error under state and input constraints. The proposed approach uses smooth time-based generator functions embedded in the filtered tracking error, which is combined with a saturation function that limits control action and confines states within the prescribed limits by enforcing the time-varying bounds on the filtered tracking error. Importantly, corresponding feasibility conditions are derived pertaining to the minimum control authority, the maximum disturbance rejection capability of the control policy, and the viable set of initial conditions, illuminating the narrow operating domain of EL systems arising from the interplay of SIT constraints. Finally, the efficacy of the proposed approach is demonstrated using experimental and comparison studies.
♻ ☆ Embodied Long Horizon Manipulation with Closed-loop Code Generation and Incremental Few-shot Adaptation ICRA 6
Embodied long-horizon manipulation requires robotic systems to process multimodal inputs-such as vision and natural language-and translate them into executable actions. However, existing learning-based approaches often depend on large, task-specific datasets and struggle to generalize to unseen scenarios. Recent methods have explored using large language models (LLMs) as high-level planners that decompose tasks into subtasks using natural language and guide pretrained low-level controllers. Yet, these approaches assume perfect execution from low-level policies, which is unrealistic in real-world environments with noise or suboptimal behaviors. To overcome this, we fully discard the pretrained low-level policy and instead use the LLM to directly generate executable code plans within a closed-loop framework. Our planner employs chain-of-thought (CoT)-guided few-shot learning with incrementally structured examples to produce robust and generalizable task plans. Complementing this, a reporter evaluates outcomes using RGB-D and delivers structured feedback, enabling recovery from misalignment and replanning under partial observability. This design eliminates per-step inference, reduces computational overhead, and limits error accumulation that was observed in previous methods. Our framework achieves state-of-the-art performance on 30+ diverse seen and unseen long-horizon tasks across LoHoRavens, CALVIN, Franka Kitchen, and cluttered real-world settings.
comment: update ICRA 6 page
Computer Vision and Pattern Recognition 139
☆ 4DNeX: Feed-Forward 4D Generative Modeling Made Easy
We present 4DNeX, the first feed-forward framework for generating 4D (i.e., dynamic 3D) scene representations from a single image. In contrast to existing methods that rely on computationally intensive optimization or require multi-frame video inputs, 4DNeX enables efficient, end-to-end image-to-4D generation by fine-tuning a pretrained video diffusion model. Specifically, 1) to alleviate the scarcity of 4D data, we construct 4DNeX-10M, a large-scale dataset with high-quality 4D annotations generated using advanced reconstruction approaches. 2) we introduce a unified 6D video representation that jointly models RGB and XYZ sequences, facilitating structured learning of both appearance and geometry. 3) we propose a set of simple yet effective adaptation strategies to repurpose pretrained video diffusion models for 4D modeling. 4DNeX produces high-quality dynamic point clouds that enable novel-view video synthesis. Extensive experiments demonstrate that 4DNeX outperforms existing 4D generation methods in efficiency and generalizability, offering a scalable solution for image-to-4D modeling and laying the foundation for generative 4D world models that simulate dynamic scene evolution.
comment: Project Page: https://4dnex.github.io/
☆ IGFuse: Interactive 3D Gaussian Scene Reconstruction via Multi-Scans Fusion
Reconstructing complete and interactive 3D scenes remains a fundamental challenge in computer vision and robotics, particularly due to persistent object occlusions and limited sensor coverage. Multiview observations from a single scene scan often fail to capture the full structural details. Existing approaches typically rely on multi stage pipelines, such as segmentation, background completion, and inpainting or require per-object dense scanning, both of which are error-prone, and not easily scalable. We propose IGFuse, a novel framework that reconstructs interactive Gaussian scene by fusing observations from multiple scans, where natural object rearrangement between captures reveal previously occluded regions. Our method constructs segmentation aware Gaussian fields and enforces bi-directional photometric and semantic consistency across scans. To handle spatial misalignments, we introduce a pseudo-intermediate scene state for unified alignment, alongside collaborative co-pruning strategies to refine geometry. IGFuse enables high fidelity rendering and object level scene manipulation without dense observations or complex pipelines. Extensive experiments validate the framework's strong generalization to novel scene configurations, demonstrating its effectiveness for real world 3D reconstruction and real-to-simulation transfer. Our project page is available online.
comment: Project page: https://whhu7.github.io/IGFuse
☆ Has GPT-5 Achieved Spatial Intelligence? An Empirical Study
Multi-modal models have achieved remarkable progress in recent years. Nevertheless, they continue to exhibit notable limitations in spatial understanding and reasoning, which are fundamental capabilities to achieving artificial general intelligence. With the recent release of GPT-5, allegedly the most powerful AI model to date, it is timely to examine where the leading models stand on the path toward spatial intelligence. First, we propose a comprehensive taxonomy of spatial tasks that unifies existing benchmarks and discuss the challenges in ensuring fair evaluation. We then evaluate state-of-the-art proprietary and open-source models on eight key benchmarks, at a cost exceeding one billion total tokens. Our empirical study reveals that (1) GPT-5 demonstrates unprecedented strength in spatial intelligence, yet (2) still falls short of human performance across a broad spectrum of tasks. Moreover, we (3) identify the more challenging spatial intelligence problems for multi-modal models, and (4) proprietary models do not exhibit a decisive advantage when facing the most difficult problems. In addition, we conduct a qualitative evaluation across a diverse set of scenarios that are intuitive for humans yet fail even the most advanced multi-modal models.
☆ Motion2Motion: Cross-topology Motion Transfer with Sparse Correspondence SIGGRAPH
This work studies the challenge of transfer animations between characters whose skeletal topologies differ substantially. While many techniques have advanced retargeting techniques in decades, transfer motions across diverse topologies remains less-explored. The primary obstacle lies in the inherent topological inconsistency between source and target skeletons, which restricts the establishment of straightforward one-to-one bone correspondences. Besides, the current lack of large-scale paired motion datasets spanning different topological structures severely constrains the development of data-driven approaches. To address these limitations, we introduce Motion2Motion, a novel, training-free framework. Simply yet effectively, Motion2Motion works with only one or a few example motions on the target skeleton, by accessing a sparse set of bone correspondences between the source and target skeletons. Through comprehensive qualitative and quantitative evaluations, we demonstrate that Motion2Motion achieves efficient and reliable performance in both similar-skeleton and cross-species skeleton transfer scenarios. The practical utility of our approach is further evidenced by its successful integration in downstream applications and user interfaces, highlighting its potential for industrial applications. Code and data are available at https://lhchen.top/Motion2Motion.
comment: SIGGRAPH Asia 2025
☆ Precise Action-to-Video Generation Through Visual Action Prompts ICCV 2025
We present visual action prompts, a unified action representation for action-to-video generation of complex high-DoF interactions while maintaining transferable visual dynamics across domains. Action-driven video generation faces a precision-generality trade-off: existing methods using text, primitive actions, or coarse masks offer generality but lack precision, while agent-centric action signals provide precision at the cost of cross-domain transferability. To balance action precision and dynamic transferability, we propose to "render" actions into precise visual prompts as domain-agnostic representations that preserve both geometric precision and cross-domain adaptability for complex actions; specifically, we choose visual skeletons for their generality and accessibility. We propose robust pipelines to construct skeletons from two interaction-rich data sources - human-object interactions (HOI) and dexterous robotic manipulation - enabling cross-domain training of action-driven generative models. By integrating visual skeletons into pretrained video generation models via lightweight fine-tuning, we enable precise action control of complex interaction while preserving the learning of cross-domain dynamics. Experiments on EgoVid, RT-1 and DROID demonstrate the effectiveness of our proposed approach. Project page: https://zju3dv.github.io/VAP/.
comment: Accepted to ICCV 2025. Project page: https://zju3dv.github.io/VAP/
☆ Grounding Actions in Camera Space: Observation-Centric Vision-Language-Action Policy
Vision-Language-Action (VLA) models frequently encounter challenges in generalizing to real-world environments due to inherent discrepancies between observation and action spaces. Although training data are collected from diverse camera perspectives, the models typically predict end-effector poses within the robot base coordinate frame, resulting in spatial inconsistencies. To mitigate this limitation, we introduce the Observation-Centric VLA (OC-VLA) framework, which grounds action predictions directly in the camera observation space. Leveraging the camera's extrinsic calibration matrix, OC-VLA transforms end-effector poses from the robot base coordinate system into the camera coordinate system, thereby unifying prediction targets across heterogeneous viewpoints. This lightweight, plug-and-play strategy ensures robust alignment between perception and action, substantially improving model resilience to camera viewpoint variations. The proposed approach is readily compatible with existing VLA architectures, requiring no substantial modifications. Comprehensive evaluations on both simulated and real-world robotic manipulation tasks demonstrate that OC-VLA accelerates convergence, enhances task success rates, and improves cross-view generalization. The code will be publicly available.
☆ Real-Time Beach Litter Detection and Counting: A Comparative Analysis of RT-DETR Model Variants
Coastal pollution is a pressing global environmental issue, necessitating scalable and automated solutions for monitoring and management. This study investigates the efficacy of the Real-Time Detection Transformer (RT-DETR), a state-of-the-art, end-to-end object detection model, for the automated detection and counting of beach litter. A rigorous comparative analysis is conducted between two model variants, RT-DETR-Large (RT-DETR-L) and RT-DETR-Extra-Large (RT-DETR-X), trained on a publicly available dataset of coastal debris. The evaluation reveals that the RT-DETR-X model achieves marginally superior accuracy, with a mean Average Precision at 50\% IoU (mAP@50) of 0.816 and a mAP@50-95 of 0.612, compared to the RT-DETR-L model's 0.810 and 0.606, respectively. However, this minor performance gain is realized at a significant computational cost; the RT-DETR-L model demonstrates a substantially faster inference time of 20.1 ms versus 34.5 ms for the RT-DETR-X. The findings suggest that the RT-DETR-L model offers a more practical and efficient solution for real-time, in-field deployment due to its superior balance of processing speed and detection accuracy. This research provides valuable insights into the application of advanced Transformer-based detectors for environmental conservation, highlighting the critical trade-offs between model complexity and operational viability.
☆ DMS:Diffusion-Based Multi-Baseline Stereo Generation for Improving Self-Supervised Depth Estimation
While supervised stereo matching and monocular depth estimation have advanced significantly with learning-based algorithms, self-supervised methods using stereo images as supervision signals have received relatively less focus and require further investigation. A primary challenge arises from ambiguity introduced during photometric reconstruction, particularly due to missing corresponding pixels in ill-posed regions of the target view, such as occlusions and out-of-frame areas. To address this and establish explicit photometric correspondences, we propose DMS, a model-agnostic approach that utilizes geometric priors from diffusion models to synthesize novel views along the epipolar direction, guided by directional prompts. Specifically, we finetune a Stable Diffusion model to simulate perspectives at key positions: left-left view shifted from the left camera, right-right view shifted from the right camera, along with an additional novel view between the left and right cameras. These synthesized views supplement occluded pixels, enabling explicit photometric reconstruction. Our proposed DMS is a cost-free, ''plug-and-play'' method that seamlessly enhances self-supervised stereo matching and monocular depth estimation, and relies solely on unlabeled stereo image pairs for both training and synthesizing. Extensive experiments demonstrate the effectiveness of our approach, with up to 35% outlier reduction and state-of-the-art performance across multiple benchmark datasets.
☆ Checkmate: interpretable and explainable RSVQA is the endgame
Remote Sensing Visual Question Answering (RSVQA) presents unique challenges in ensuring that model decisions are both understandable and grounded in visual content. Current models often suffer from a lack of interpretability and explainability, as well as from biases in dataset distributions that lead to shortcut learning. In this work, we tackle these issues by introducing a novel RSVQA dataset, Chessboard, designed to minimize biases through 3'123'253 questions and a balanced answer distribution. Each answer is linked to one or more cells within the image, enabling fine-grained visual reasoning. Building on this dataset, we develop an explainable and interpretable model called Checkmate that identifies the image cells most relevant to its decisions. Through extensive experiments across multiple model architectures, we show that our approach improves transparency and supports more trustworthy decision-making in RSVQA systems.
☆ ID-Card Synthetic Generation: Toward a Simulated Bona fide Dataset
Nowadays, the development of a Presentation Attack Detection (PAD) system for ID cards presents a challenge due to the lack of images available to train a robust PAD system and the increase in diversity of possible attack instrument species. Today, most algorithms focus on generating attack samples and do not take into account the limited number of bona fide images. This work is one of the first to propose a method for mimicking bona fide images by generating synthetic versions of them using Stable Diffusion, which may help improve the generalisation capabilities of the detector. Furthermore, the new images generated are evaluated in a system trained from scratch and in a commercial solution. The PAD system yields an interesting result, as it identifies our images as bona fide, which has a positive impact on detection performance and data restrictions.
☆ Eyes on the Image: Gaze Supervised Multimodal Learning for Chest X-ray Diagnosis and Report Generation
We propose a two-stage multimodal framework that enhances disease classification and region-aware radiology report generation from chest X-rays, leveraging the MIMIC-Eye dataset. In the first stage, we introduce a gaze-guided contrastive learning architecture for disease classification. It integrates visual features, clinical labels, bounding boxes, and radiologist eye-tracking signals and is equipped with a novel multi-term gaze-attention loss combining MSE, KL divergence, correlation, and center-of-mass alignment. Incorporating fixations improves F1 score from 0.597 to 0.631 (+5.70%) and AUC from 0.821 to 0.849 (+3.41%), while also improving precision and recall, highlighting the effectiveness of gaze-informed attention supervision. In the second stage, we present a modular report generation pipeline that extracts confidence-weighted diagnostic keywords, maps them to anatomical regions using a curated dictionary constructed from domain-specific priors, and generates region-aligned sentences via structured prompts. This pipeline improves report quality as measured by clinical keyword recall and ROUGE overlap. Our results demonstrate that integrating gaze data improves both classification performance and the interpretability of generated medical reports.
☆ Odo: Depth-Guided Diffusion for Identity-Preserving Body Reshaping
Human shape editing enables controllable transformation of a person's body shape, such as thin, muscular, or overweight, while preserving pose, identity, clothing, and background. Unlike human pose editing, which has advanced rapidly, shape editing remains relatively underexplored. Current approaches typically rely on 3D morphable models or image warping, often introducing unrealistic body proportions, texture distortions, and background inconsistencies due to alignment errors and deformations. A key limitation is the lack of large-scale, publicly available datasets for training and evaluating body shape manipulation methods. In this work, we introduce the first large-scale dataset of 18,573 images across 1523 subjects, specifically designed for controlled human shape editing. It features diverse variations in body shape, including fat, muscular and thin, captured under consistent identity, clothing, and background conditions. Using this dataset, we propose Odo, an end-to-end diffusion-based method that enables realistic and intuitive body reshaping guided by simple semantic attributes. Our approach combines a frozen UNet that preserves fine-grained appearance and background details from the input image with a ControlNet that guides shape transformation using target SMPL depth maps. Extensive experiments demonstrate that our method outperforms prior approaches, achieving per-vertex reconstruction errors as low as 7.5mm, significantly lower than the 13.6mm observed in baseline methods, while producing realistic results that accurately match the desired target shapes.
☆ XR-NPE: High-Throughput Mixed-precision SIMD Neural Processing Engine for Extended Reality Perception Workloads
This work proposes XR-NPE, a high-throughput Mixed-precision SIMD Neural Processing Engine, designed for extended reality (XR) perception workloads like visual inertial odometry (VIO), object classification, and eye gaze extraction. XR-NPE is first to support FP4, Posit (4,1), Posit (8,0), and Posit (16,1) formats, with layer adaptive hybrid-algorithmic implementation supporting ultra-low bit precision to significantly reduce memory bandwidth requirements, and accompanied by quantization-aware training for minimal accuracy loss. The proposed Reconfigurable Mantissa Multiplication and Exponent processing Circuitry (RMMEC) reduces dark silicon in the SIMD MAC compute engine, assisted by selective power gating to reduce energy consumption, providing 2.85x improved arithmetic intensity. XR-NPE achieves a maximum operating frequency of 1.72 GHz, area 0.016 mm2 , and arithmetic intensity 14 pJ at CMOS 28nm, reducing 42% area, 38% power compared to the best of state-of-the-art MAC approaches. The proposed XR-NPE based AXI-enabled Matrix-multiplication co-processor consumes 1.4x fewer LUTs, 1.77x fewer FFs, and provides 1.2x better energy efficiency compared to SoTA accelerators on VCU129. The proposed co-processor provides 23% better energy efficiency and 4% better compute density for VIO workloads. XR-NPE establishes itself as a scalable, precision-adaptive compute engine for future resource-constrained XR devices. The complete set for codes for results reproducibility are released publicly, enabling designers and researchers to readily adopt and build upon them. https://github.com/mukullokhande99/XR-NPE.
☆ IntelliCap: Intelligent Guidance for Consistent View Sampling
Novel view synthesis from images, for example, with 3D Gaussian splatting, has made great progress. Rendering fidelity and speed are now ready even for demanding virtual reality applications. However, the problem of assisting humans in collecting the input images for these rendering algorithms has received much less attention. High-quality view synthesis requires uniform and dense view sampling. Unfortunately, these requirements are not easily addressed by human camera operators, who are in a hurry, impatient, or lack understanding of the scene structure and the photographic process. Existing approaches to guide humans during image acquisition concentrate on single objects or neglect view-dependent material characteristics. We propose a novel situated visualization technique for scanning at multiple scales. During the scanning of a scene, our method identifies important objects that need extended image coverage to properly represent view-dependent appearance. To this end, we leverage semantic segmentation and category identification, ranked by a vision-language model. Spherical proxies are generated around highly ranked objects to guide the user during scanning. Our results show superior performance in real scenes compared to conventional view sampling strategies.
comment: This work is a pre-print version of a paper that has been accepted to the IEEE International Symposium on Mixed and Augmented Reality for future publication. Project Page: https://mediated-reality.github.io/projects/yasunaga_ismar25/
☆ HierAdaptMR: Cross-Center Cardiac MRI Reconstruction with Hierarchical Feature Adapters MICCAI 2025
Deep learning-based cardiac MRI reconstruction faces significant domain shift challenges when deployed across multiple clinical centers with heterogeneous scanner configurations and imaging protocols. We propose HierAdaptMR, a hierarchical feature adaptation framework that addresses multi-level domain variations through parameter-efficient adapters. Our method employs Protocol-Level Adapters for sequence-specific characteristics and Center-Level Adapters for scanner-dependent variations, built upon a variational unrolling backbone. A Universal Adapter enables generalization to entirely unseen centers through stochastic training that learns center-invariant adaptations. The framework utilizes multi-scale SSIM loss with frequency domain enhancement and contrast-adaptive weighting for robust optimization. Comprehensive evaluation on the CMRxRecon2025 dataset spanning 5+ centers, 10+ scanners, and 9 modalities demonstrates superior cross-center generalization while maintaining reconstruction quality. code: https://github.com/Ruru-Xu/HierAdaptMR
comment: MICCAI 2025, CMRxRecon2025 Challenge paper
☆ EgoTwin: Dreaming Body and View in First Person
While exocentric video synthesis has achieved great progress, egocentric video generation remains largely underexplored, which requires modeling first-person view content along with camera motion patterns induced by the wearer's body movements. To bridge this gap, we introduce a novel task of joint egocentric video and human motion generation, characterized by two key challenges: 1) Viewpoint Alignment: the camera trajectory in the generated video must accurately align with the head trajectory derived from human motion; 2) Causal Interplay: the synthesized human motion must causally align with the observed visual dynamics across adjacent video frames. To address these challenges, we propose EgoTwin, a joint video-motion generation framework built on the diffusion transformer architecture. Specifically, EgoTwin introduces a head-centric motion representation that anchors the human motion to the head joint and incorporates a cybernetics-inspired interaction mechanism that explicitly captures the causal interplay between video and motion within attention operations. For comprehensive evaluation, we curate a large-scale real-world dataset of synchronized text-video-motion triplets and design novel metrics to assess video-motion consistency. Extensive experiments demonstrate the effectiveness of the EgoTwin framework.
☆ Matrix-Game 2.0: An Open-Source, Real-Time, and Streaming Interactive World Model
Recent advances in interactive video generations have demonstrated diffusion model's potential as world models by capturing complex physical dynamics and interactive behaviors. However, existing interactive world models depend on bidirectional attention and lengthy inference steps, severely limiting real-time performance. Consequently, they are hard to simulate real-world dynamics, where outcomes must update instantaneously based on historical context and current actions. To address this, we present Matrix-Game 2.0, an interactive world model generates long videos on-the-fly via few-step auto-regressive diffusion. Our framework consists of three key components: (1) A scalable data production pipeline for Unreal Engine and GTA5 environments to effectively produce massive amounts (about 1200 hours) of video data with diverse interaction annotations; (2) An action injection module that enables frame-level mouse and keyboard inputs as interactive conditions; (3) A few-step distillation based on the casual architecture for real-time and streaming video generation. Matrix Game 2.0 can generate high-quality minute-level videos across diverse scenes at an ultra-fast speed of 25 FPS. We open-source our model weights and codebase to advance research in interactive world modeling.
comment: Project Page: https://matrix-game-v2.github.io
☆ SlimComm: Doppler-Guided Sparse Queries for Bandwidth-Efficient Cooperative 3-D Perception ICCV
Collaborative perception allows connected autonomous vehicles (CAVs) to overcome occlusion and limited sensor range by sharing intermediate features. Yet transmitting dense Bird's-Eye-View (BEV) feature maps can overwhelm the bandwidth available for inter-vehicle communication. We present SlimComm, a communication-efficient framework that integrates 4D radar Doppler with a query-driven sparse scheme. SlimComm builds a motion-centric dynamic map to distinguish moving from static objects and generates two query types: (i) reference queries on dynamic and high-confidence regions, and (ii) exploratory queries probing occluded areas via a two-stage offset. Only query-specific BEV features are exchanged and fused through multi-scale gated deformable attention, reducing payload while preserving accuracy. For evaluation, we release OPV2V-R and Adver-City-R, CARLA-based datasets with per-point Doppler radar. SlimComm achieves up to 90% lower bandwidth than full-map sharing while matching or surpassing prior baselines across varied traffic densities and occlusions. Dataset and code will be available at: https://url.fzi.de/SlimComm.
comment: Accepted by ICCV - Drive2X Workshop
☆ Empirical Evidences for the Effects of Feature Diversity in Open Set Recognition and Continual Learning
Open set recognition (OSR) and continual learning are two critical challenges in machine learning, focusing respectively on detecting novel classes at inference time and updating models to incorporate the new classes. While many recent approaches have addressed these problems, particularly OSR, by heuristically promoting feature diversity, few studies have directly examined the role that feature diversity plays in tackling them. In this work, we provide empirical evidence that enhancing feature diversity improves the recognition of open set samples. Moreover, increased feature diversity also facilitates both the retention of previously learned data and the integration of new data in continual learning. We hope our findings can inspire further research into both practical methods and theoretical understanding in these domains.
☆ Omni Survey for Multimodality Analysis in Visual Object Tracking
The development of smart cities has led to the generation of massive amounts of multi-modal data in the context of a range of tasks that enable a comprehensive monitoring of the smart city infrastructure and services. This paper surveys one of the most critical tasks, multi-modal visual object tracking (MMVOT), from the perspective of multimodality analysis. Generally, MMVOT differs from single-modal tracking in four key aspects, data collection, modality alignment and annotation, model designing, and evaluation. Accordingly, we begin with an introduction to the relevant data modalities, laying the groundwork for their integration. This naturally leads to a discussion of challenges of multi-modal data collection, alignment, and annotation. Subsequently, existing MMVOT methods are categorised, based on different ways to deal with visible (RGB) and X modalities: programming the auxiliary X branch with replicated or non-replicated experimental configurations from the RGB branch. Here X can be thermal infrared (T), depth (D), event (E), near infrared (NIR), language (L), or sonar (S). The final part of the paper addresses evaluation and benchmarking. In summary, we undertake an omni survey of all aspects of multi-modal visual object tracking (VOT), covering six MMVOT tasks and featuring 338 references in total. In addition, we discuss the fundamental rhetorical question: Is multi-modal tracking always guaranteed to provide a superior solution to unimodal tracking with the help of information fusion, and if not, in what circumstances its application is beneficial. Furthermore, for the first time in this field, we analyse the distributions of the object categories in the existing MMVOT datasets, revealing their pronounced long-tail nature and a noticeable lack of animal categories when compared with RGB datasets.
comment: The first comprehensive survey for multi-modal visual object tracking; 6 multi-modal tasks; 338 references
☆ Vitamin N: Benefits of Different Forms of Public Greenery for Urban Health
Urban greenery is often linked to better health, yet findings from past research have been inconsistent. One reason is that official greenery metrics measure the amount or nearness of greenery but ignore how often people actually may potentially see or use it in daily life. To address this gap, we introduced a new classification that separates on-road greenery, which people see while walking through streets, from off-road greenery, which requires planned visits. We did so by combining aerial imagery of Greater London and greenery data from OpenStreetMap with quantified greenery from over 100,000 Google Street View images and accessibility estimates based on 160,000 road segments. We linked these measures to 7.45 billion medical prescriptions issued by the National Health Service and processed through our methodology. These prescriptions cover five conditions: diabetes, hypertension, asthma, depression, and anxiety, as well as opioid use. As hypothesized, we found that green on-road was more strongly linked to better health than four widely used official measures. For example, hypertension prescriptions dropped by 3.68% in wards with on-road greenery above the median citywide level compared to those below it. If all below-median wards reached the citywide median in on-road greenery, prescription costs could fall by up to {\pounds}3.15 million each year. These results suggest that greenery seen in daily life may be more relevant than public yet secluded greenery, and that official metrics commonly used in the literature have important limitations.
☆ Point upsampling networks for single-photon sensing
Single-photon sensing has generated great interest as a prominent technique of long-distance and ultra-sensitive imaging, however, it tends to yield sparse and spatially biased point clouds, thus limiting its practical utility. In this work, we propose using point upsampling networks to increase point density and reduce spatial distortion in single-photon point cloud. Particularly, our network is built on the state space model which integrates a multi-path scanning mechanism to enrich spatial context, a bidirectional Mamba backbone to capture global geometry and local details, and an adaptive upsample shift module to correct offset-induced distortions. Extensive experiments are implemented on commonly-used datasets to confirm its high reconstruction accuracy and strong robustness to the distortion noise, and also on real-world data to demonstrate that our model is able to generate visually consistent, detail-preserving, and noise suppressed point clouds. Our work is the first to establish the upsampling framework for single-photon sensing, and hence opens a new avenue for single-photon sensing and its practical applications in the downstreaming tasks.
comment: 13 pages, 8 figures, any comments are welcome
☆ Dextr: Zero-Shot Neural Architecture Search with Singular Value Decomposition and Extrinsic Curvature
Zero-shot Neural Architecture Search (NAS) typically optimises the architecture search process by exploiting the network or gradient properties at initialisation through zero-cost proxies. The existing proxies often rely on labelled data, which is usually unavailable in real-world settings. Furthermore, the majority of the current methods focus either on optimising the convergence and generalisation attributes or solely on the expressivity of the network architectures. To address both limitations, we first demonstrate how channel collinearity affects the convergence and generalisation properties of a neural network. Then, by incorporating the convergence, generalisation and expressivity in one approach, we propose a zero-cost proxy that omits the requirement of labelled data for its computation. In particular, we leverage the Singular Value Decomposition (SVD) of the neural network layer features and the extrinsic curvature of the network output to design our proxy. %As a result, the proposed proxy is formulated as the simplified harmonic mean of the logarithms of two key components: the sum of the inverse of the feature condition number and the extrinsic curvature of the network output. Our approach enables accurate prediction of network performance on test data using only a single label-free data sample. Our extensive evaluation includes a total of six experiments, including the Convolutional Neural Network (CNN) search space, i.e. DARTS and the Transformer search space, i.e. AutoFormer. The proposed proxy demonstrates a superior performance on multiple correlation benchmarks, including NAS-Bench-101, NAS-Bench-201, and TransNAS-Bench-101-micro; as well as on the NAS task within the DARTS and the AutoFormer search space, all while being notably efficient. The code is available at https://github.com/rohanasthana/Dextr.
comment: Accepted at Transactions on Machine Learning Research (TMLR)
☆ Compact Attention: Exploiting Structured Spatio-Temporal Sparsity for Fast Video Generation
The computational demands of self-attention mechanisms pose a critical challenge for transformer-based video generation, particularly in synthesizing ultra-long sequences. Current approaches, such as factorized attention and fixed sparse patterns, fail to fully exploit the inherent spatio-temporal redundancies in video data. Through systematic analysis of video diffusion transformers (DiT), we uncover a key insight: Attention matrices exhibit structured, yet heterogeneous sparsity patterns, where specialized heads dynamically attend to distinct spatiotemporal regions (e.g., local pattern, cross-shaped pattern, or global pattern). Existing sparse attention methods either impose rigid constraints or introduce significant overhead, limiting their effectiveness. To address this, we propose Compact Attention, a hardware-aware acceleration framework featuring three innovations: 1) Adaptive tiling strategies that approximate diverse spatial interaction patterns via dynamic tile grouping, 2) Temporally varying windows that adjust sparsity levels based on frame proximity, and 3) An automated configuration search algorithm that optimizes sparse patterns while preserving critical attention pathways. Our method achieves 1.6~2.5x acceleration in attention computation on single-GPU setups while maintaining comparable visual quality with full-attention baselines. This work provides a principled approach to unlocking efficient long-form video generation through structured sparsity exploitation. Project Page: https://yo-ava.github.io/Compact-Attention.github.io/
☆ GazeDETR: Gaze Detection using Disentangled Head and Gaze Representations
Gaze communication plays a crucial role in daily social interactions. Quantifying this behavior can help in human-computer interaction and digital phenotyping. While end-to-end models exist for gaze target detection, they only utilize a single decoder to simultaneously localize human heads and predict their corresponding gaze (e.g., 2D points or heatmap) in a scene. This multitask learning approach generates a unified and entangled representation for human head localization and gaze location prediction. Herein, we propose GazeDETR, a novel end-to-end architecture with two disentangled decoders that individually learn unique representations and effectively utilize coherent attentive fields for each subtask. More specifically, we demonstrate that its human head predictor utilizes local information, while its gaze decoder incorporates both local and global information. Our proposed architecture achieves state-of-the-art results on the GazeFollow, VideoAttentionTarget and ChildPlay datasets. It outperforms existing end-to-end models with a notable margin.
☆ Multi-Phase Automated Segmentation of Dental Structures in CBCT Using a Lightweight Auto3DSeg and SegResNet Implementation MICCAI
Cone-beam computed tomography (CBCT) has become an invaluable imaging modality in dentistry, enabling 3D visualization of teeth and surrounding structures for diagnosis and treatment planning. Automated segmentation of dental structures in CBCT can efficiently assist in identifying pathology (e.g., pulpal or periapical lesions) and facilitate radiation therapy planning in head and neck cancer patients. We describe the DLaBella29 team's approach for the MICCAI 2025 ToothFairy3 Challenge, which involves a deep learning pipeline for multi-class tooth segmentation. We utilized the MONAI Auto3DSeg framework with a 3D SegResNet architecture, trained on a subset of the ToothFairy3 dataset (63 CBCT scans) with 5-fold cross-validation. Key preprocessing steps included image resampling to 0.6 mm isotropic resolution and intensity clipping. We applied an ensemble fusion using Multi-Label STAPLE on the 5-fold predictions to infer a Phase 1 segmentation and then conducted tight cropping around the easily segmented Phase 1 mandible to perform Phase 2 segmentation on the smaller nerve structures. Our method achieved an average Dice of 0.87 on the ToothFairy3 challenge out-of-sample validation set. This paper details the clinical context, data preparation, model development, results of our approach, and discusses the relevance of automated dental segmentation for improving patient care in radiation oncology.
comment: MICCAI. ToothFairy3, 16 pages, 5 figures, 1 table
☆ Breaking Reward Collapse: Adaptive Reinforcement for Open-ended Medical Reasoning with Enhanced Semantic Discrimination
Reinforcement learning (RL) with rule-based rewards has demonstrated strong potential in enhancing the reasoning and generalization capabilities of vision-language models (VLMs) and large language models (LLMs), while reducing computational overhead. However, its application in medical imaging remains underexplored. Existing reinforcement fine-tuning (RFT) approaches in this domain primarily target closed-ended visual question answering (VQA), limiting their applicability to real-world clinical reasoning. In contrast, open-ended medical VQA better reflects clinical practice but has received limited attention. While some efforts have sought to unify both formats via semantically guided RL, we observe that model-based semantic rewards often suffer from reward collapse, where responses with significant semantic differences receive similar scores. To address this, we propose ARMed (Adaptive Reinforcement for Medical Reasoning), a novel RL framework for open-ended medical VQA. ARMed first incorporates domain knowledge through supervised fine-tuning (SFT) on chain-of-thought data, then applies reinforcement learning with textual correctness and adaptive semantic rewards to enhance reasoning quality. We evaluate ARMed on six challenging medical VQA benchmarks. Results show that ARMed consistently boosts both accuracy and generalization, achieving a 32.64% improvement on in-domain tasks and an 11.65% gain on out-of-domain benchmarks. These results highlight the critical role of reward discriminability in medical RL and the promise of semantically guided rewards for enabling robust and clinically meaningful multimodal reasoning.
☆ MaskSem: Semantic-Guided Masking for Learning 3D Hybrid High-Order Motion Representation IROS 2025
Human action recognition is a crucial task for intelligent robotics, particularly within the context of human-robot collaboration research. In self-supervised skeleton-based action recognition, the mask-based reconstruction paradigm learns the spatial structure and motion patterns of the skeleton by masking joints and reconstructing the target from unlabeled data. However, existing methods focus on a limited set of joints and low-order motion patterns, limiting the model's ability to understand complex motion patterns. To address this issue, we introduce MaskSem, a novel semantic-guided masking method for learning 3D hybrid high-order motion representations. This novel framework leverages Grad-CAM based on relative motion to guide the masking of joints, which can be represented as the most semantically rich temporal orgions. The semantic-guided masking process can encourage the model to explore more discriminative features. Furthermore, we propose using hybrid high-order motion as the reconstruction target, enabling the model to learn multi-order motion patterns. Specifically, low-order motion velocity and high-order motion acceleration are used together as the reconstruction target. This approach offers a more comprehensive description of the dynamic motion process, enhancing the model's understanding of motion patterns. Experiments on the NTU60, NTU120, and PKU-MMD datasets show that MaskSem, combined with a vanilla transformer, improves skeleton-based action recognition, making it more suitable for applications in human-robot interaction.
comment: Accepted to IROS 2025
☆ Lumen: Consistent Video Relighting and Harmonious Background Replacement with Video Generative Models
Video relighting is a challenging yet valuable task, aiming to replace the background in videos while correspondingly adjusting the lighting in the foreground with harmonious blending. During translation, it is essential to preserve the original properties of the foreground, e.g., albedo, and propagate consistent relighting among temporal frames. In this paper, we propose Lumen, an end-to-end video relighting framework developed on large-scale video generative models, receiving flexible textual description for instructing the control of lighting and background. Considering the scarcity of high-qualified paired videos with the same foreground in various lighting conditions, we construct a large-scale dataset with a mixture of realistic and synthetic videos. For the synthetic domain, benefiting from the abundant 3D assets in the community, we leverage advanced 3D rendering engine to curate video pairs in diverse environments. For the realistic domain, we adapt a HDR-based lighting simulation to complement the lack of paired in-the-wild videos. Powered by the aforementioned dataset, we design a joint training curriculum to effectively unleash the strengths of each domain, i.e., the physical consistency in synthetic videos, and the generalized domain distribution in realistic videos. To implement this, we inject a domain-aware adapter into the model to decouple the learning of relighting and domain appearance distribution. We construct a comprehensive benchmark to evaluate Lumen together with existing methods, from the perspectives of foreground preservation and video consistency assessment. Experimental results demonstrate that Lumen effectively edit the input into cinematic relighted videos with consistent lighting and strict foreground preservation. Our project page: https://lumen-relight.github.io/
comment: 15 pages, 7 figures
☆ SEDEG:Sequential Enhancement of Decoder and Encoder's Generality for Class Incremental Learning with Small Memory ICONIP2025
In incremental learning, enhancing the generality of knowledge is crucial for adapting to dynamic data inputs. It can develop generalized representations or more balanced decision boundaries, preventing the degradation of long-term knowledge over time and thus mitigating catastrophic forgetting. Some emerging incremental learning methods adopt an encoder-decoder architecture and have achieved promising results. In the encoder-decoder achitecture, improving the generalization capabilities of both the encoder and decoder is critical, as it helps preserve previously learned knowledge while ensuring adaptability and robustness to new, diverse data inputs. However, many existing continual methods focus solely on enhancing one of the two components, which limits their effectiveness in mitigating catastrophic forgetting. And these methods perform even worse in small-memory scenarios, where only a limited number of historical samples can be stored. To mitigate this limitation, we introduces SEDEG, a two-stage training framework for vision transformers (ViT), focusing on sequentially improving the generality of both Decoder and Encoder. Initially, SEDEG trains an ensembled encoder through feature boosting to learn generalized representations, which subsequently enhance the decoder's generality and balance the classifier. The next stage involves using knowledge distillation (KD) strategies to compress the ensembled encoder and develop a new, more generalized encoder. This involves using a balanced KD approach and feature KD for effective knowledge transfer. Extensive experiments on three benchmark datasets show SEDEG's superior performance, and ablation studies confirm the efficacy of its components. The code is available at https://github.com/ShaolingPu/CIL.
comment: Accepted by ICONIP2025
☆ Towards High-Resolution Industrial Image Anomaly Detection
Current anomaly detection methods primarily focus on low-resolution scenarios. For high-resolution images, conventional downsampling often results in missed detections of subtle anomalous regions due to the loss of fine-grained discriminative information. Despite some progress, recent studies have attempted to improve detection resolution by employing lightweight networks or using simple image tiling and ensemble methods. However, these approaches still struggle to meet the practical demands of industrial scenarios in terms of detection accuracy and efficiency. To address the above issues, we propose HiAD, a general framework for high-resolution anomaly detection. HiAD is capable of detecting anomalous regions of varying sizes in high-resolution images under limited computational resources. Specifically, HiAD employs a dual-branch architecture that integrates anomaly cues across different scales to comprehensively capture both subtle and large-scale anomalies. Furthermore, it incorporates a multi-resolution feature fusion strategy to tackle the challenges posed by fine-grained texture variations in high-resolution images. To enhance both adaptability and efficiency, HiAD utilizes a detector pool in conjunction with various detector assignment strategies, enabling detectors to be adaptively assigned based on patch features, ensuring detection performance while effectively controlling computational costs. We conduct extensive experiments on our specifically constructed high-resolution anomaly detection benchmarks, including MVTec-HD, VisA-HD, and the real-world benchmark RealIAD-HD, demonstrating the superior performance of HiAD. The code is available at https://github.com/cnulab/HiAD.
☆ 7Bench: a Comprehensive Benchmark for Layout-guided Text-to-image Models
Layout-guided text-to-image models offer greater control over the generation process by explicitly conditioning image synthesis on the spatial arrangement of elements. As a result, their adoption has increased in many computer vision applications, ranging from content creation to synthetic data generation. A critical challenge is achieving precise alignment between the image, textual prompt, and layout, ensuring semantic fidelity and spatial accuracy. Although recent benchmarks assess text alignment, layout alignment remains overlooked, and no existing benchmark jointly evaluates both. This gap limits the ability to evaluate a model's spatial fidelity, which is crucial when using layout-guided generation for synthetic data, as errors can introduce noise and degrade data quality. In this work, we introduce 7Bench, the first benchmark to assess both semantic and spatial alignment in layout-guided text-to-image generation. It features text-and-layout pairs spanning seven challenging scenarios, investigating object generation, color fidelity, attribute recognition, inter-object relationships, and spatial control. We propose an evaluation protocol that builds on existing frameworks by incorporating the layout alignment score to assess spatial accuracy. Using 7Bench, we evaluate several state-of-the-art diffusion models, uncovering their respective strengths and limitations across diverse alignment tasks. The benchmark is available at https://github.com/Elizzo/7Bench.
comment: Accepted to ICIAP 2025
☆ CMF-IoU: Multi-Stage Cross-Modal Fusion 3D Object Detection with IoU Joint Prediction
Multi-modal methods based on camera and LiDAR sensors have garnered significant attention in the field of 3D detection. However, many prevalent works focus on single or partial stage fusion, leading to insufficient feature extraction and suboptimal performance. In this paper, we introduce a multi-stage cross-modal fusion 3D detection framework, termed CMF-IOU, to effectively address the challenge of aligning 3D spatial and 2D semantic information. Specifically, we first project the pixel information into 3D space via a depth completion network to get the pseudo points, which unifies the representation of the LiDAR and camera information. Then, a bilateral cross-view enhancement 3D backbone is designed to encode LiDAR points and pseudo points. The first sparse-to-distant (S2D) branch utilizes an encoder-decoder structure to reinforce the representation of sparse LiDAR points. The second residual view consistency (ResVC) branch is proposed to mitigate the influence of inaccurate pseudo points via both the 3D and 2D convolution processes. Subsequently, we introduce an iterative voxel-point aware fine grained pooling module, which captures the spatial information from LiDAR points and textural information from pseudo points in the proposal refinement stage. To achieve more precise refinement during iteration, an intersection over union (IoU) joint prediction branch integrated with a novel proposals generation technique is designed to preserve the bounding boxes with both high IoU and classification scores. Extensive experiments show the superior performance of our method on the KITTI, nuScenes and Waymo datasets.
comment: The Paper is Accepted by TCSVT
☆ CTFlow: Video-Inspired Latent Flow Matching for 3D CT Synthesis
Generative modelling of entire CT volumes conditioned on clinical reports has the potential to accelerate research through data augmentation, privacy-preserving synthesis and reducing regulator-constraints on patient data while preserving diagnostic signals. With the recent release of CT-RATE, a large-scale collection of 3D CT volumes paired with their respective clinical reports, training large text-conditioned CT volume generation models has become achievable. In this work, we introduce CTFlow, a 0.5B latent flow matching transformer model, conditioned on clinical reports. We leverage the A-VAE from FLUX to define our latent space, and rely on the CT-Clip text encoder to encode the clinical reports. To generate consistent whole CT volumes while keeping the memory constraints tractable, we rely on a custom autoregressive approach, where the model predicts the first sequence of slices of the volume from text-only, and then relies on the previously generated sequence of slices and the text, to predict the following sequence. We evaluate our results against state-of-the-art generative CT model, and demonstrate the superiority of our approach in terms of temporal coherence, image diversity and text-image alignment, with FID, FVD, IS scores and CLIP score.
☆ ONG: One-Shot NMF-based Gradient Masking for Efficient Model Sparsification
Deep Neural Networks (DNNs) have achieved remarkable success but their large size poses deployment challenges. While various pruning techniques exist, many involve complex iterative processes, specialized criteria, or struggle to maintain sparsity effectively during training. We introduce ONG (One-shot NMF-based Gradient Masking), a novel sparsification strategy that identifies salient weight structures using Non-negative Matrix Factorization (NMF) for one-shot pruning at the outset of training. Subsequently, ONG employs a precise gradient masking mechanism to ensure that only unpruned weights are updated, strictly preserving the target sparsity throughout the training phase. We integrate ONG into the BIMP comparative framework and evaluate it on CIFAR-10 and CIFAR-100 with ResNet56, ResNet34, and ResNet18 against established stable sparsification methods. Our experiments demonstrate ONG's ability to achieve comparable or superior performance at various sparsity levels while maintaining structural integrity post-pruning and offering a clear mechanism for targeting desired sparsities.
comment: 7 pages
☆ S^2-Guidance: Stochastic Self Guidance for Training-Free Enhancement of Diffusion Models
Classifier-free Guidance (CFG) is a widely used technique in modern diffusion models for enhancing sample quality and prompt adherence. However, through an empirical analysis on Gaussian mixture modeling with a closed-form solution, we observe a discrepancy between the suboptimal results produced by CFG and the ground truth. The model's excessive reliance on these suboptimal predictions often leads to semantic incoherence and low-quality outputs. To address this issue, we first empirically demonstrate that the model's suboptimal predictions can be effectively refined using sub-networks of the model itself. Building on this insight, we propose S^2-Guidance, a novel method that leverages stochastic block-dropping during the forward process to construct stochastic sub-networks, effectively guiding the model away from potential low-quality predictions and toward high-quality outputs. Extensive qualitative and quantitative experiments on text-to-image and text-to-video generation tasks demonstrate that S^2-Guidance delivers superior performance, consistently surpassing CFG and other advanced guidance strategies. Our code will be released.
☆ Preserve and Sculpt: Manifold-Aligned Fine-tuning of Vision-Language Models for Few-Shot Learning
Pretrained vision-language models (VLMs), such as CLIP, have shown remarkable potential in few-shot image classification and led to numerous effective transfer learning strategies. These methods leverage the pretrained knowledge of VLMs to enable effective domain adaptation while mitigating overfitting through parameter-efficient tuning or instance-based consistency constraints. However, such regularizations often neglect the geometric structure of data distribution, which may lead to distortion of the overall semantic representation. To overcome this limitation, we propose a novel fine-tuning method, Manifold-Preserving and Sculpting Tuning (MPS-Tuning). Regarding the data distribution in feature space as a semantic manifold, MPS-Tuning explicitly constrains the intrinsic geometry of this manifold while further sculpting it to enhance class separability. Specifically, MPS-Tuning preserves both macroscopic and microscopic topological structures of the original manifold by aligning Gram matrices of features before and after fine-tuning. Theoretically, this constraint is shown to approximate an upper bound of the Gromov-Wasserstein distance. Furthermore, features from the image and text modalities are paired, and pairwise similarities are optimized to enhance the manifold's class discriminability. Extensive experiments demonstrate that MPS-Tuning significantly improves model performance while effectively preserving the structure of the semantic manifold. The code will be released.
☆ Cross-Domain Few-Shot Learning via Multi-View Collaborative Optimization with Vision-Language Models
Vision-language models (VLMs) pre-trained on natural image and language data, such as CLIP, have exhibited significant potential in few-shot image recognition tasks, leading to development of various efficient transfer learning methods. These methods exploit inherent pre-learned knowledge in VLMs and have achieved strong performance on standard image datasets. However, their effectiveness is often limited when confronted with cross-domain tasks where imaging domains differ from natural images. To address this limitation, we propose Consistency-guided Multi-view Collaborative Optimization (CoMuCo), a novel fine-tuning strategy for VLMs. This strategy employs two functionally complementary expert modules to extract multi-view features, while incorporating prior knowledge-based consistency constraints and information geometry-based consensus mechanisms to enhance the robustness of feature learning. Additionally, a new cross-domain few-shot benchmark is established to help comprehensively evaluate methods on imaging domains distinct from natural images. Extensive empirical evaluations on both existing and newly proposed benchmarks suggest CoMuCo consistently outperforms current methods in few-shot tasks. The code and benchmark will be released.
☆ E3RG: Building Explicit Emotion-driven Empathetic Response Generation System with Multimodal Large Language Model ACM MM 2025
Multimodal Empathetic Response Generation (MERG) is crucial for building emotionally intelligent human-computer interactions. Although large language models (LLMs) have improved text-based ERG, challenges remain in handling multimodal emotional content and maintaining identity consistency. Thus, we propose E3RG, an Explicit Emotion-driven Empathetic Response Generation System based on multimodal LLMs which decomposes MERG task into three parts: multimodal empathy understanding, empathy memory retrieval, and multimodal response generation. By integrating advanced expressive speech and video generative models, E3RG delivers natural, emotionally rich, and identity-consistent responses without extra training. Experiments validate the superiority of our system on both zero-shot and few-shot settings, securing Top-1 position in the Avatar-based Multimodal Empathy Challenge on ACM MM 25. Our code is available at https://github.com/RH-Lin/E3RG.
comment: Accepted at ACM MM 2025 Grand Challenge
☆ Multi-source Multimodal Progressive Domain Adaption for Audio-Visual Deception Detection ACM MM 2025
This paper presents the winning approach for the 1st MultiModal Deception Detection (MMDD) Challenge at the 1st Workshop on Subtle Visual Computing (SVC). Aiming at the domain shift issue across source and target domains, we propose a Multi-source Multimodal Progressive Domain Adaptation (MMPDA) framework that transfers the audio-visual knowledge from diverse source domains to the target domain. By gradually aligning source and the target domain at both feature and decision levels, our method bridges domain shifts across diverse multimodal datasets. Extensive experiments demonstrate the effectiveness of our approach securing Top-2 place. Our approach reaches 60.43% on accuracy and 56.99\% on F1-score on competition stage 2, surpassing the 1st place team by 5.59% on F1-score and the 3rd place teams by 6.75% on accuracy. Our code is available at https://github.com/RH-Lin/MMPDA.
comment: Accepted at ACM MM 2025 SVC Workshop
☆ DEEP-SEA: Deep-Learning Enhancement for Environmental Perception in Submerged Aquatics
Continuous and reliable underwater monitoring is essential for assessing marine biodiversity, detecting ecological changes and supporting autonomous exploration in aquatic environments. Underwater monitoring platforms rely on mainly visual data for marine biodiversity analysis, ecological assessment and autonomous exploration. However, underwater environments present significant challenges due to light scattering, absorption and turbidity, which degrade image clarity and distort colour information, which makes accurate observation difficult. To address these challenges, we propose DEEP-SEA, a novel deep learning-based underwater image restoration model to enhance both low- and high-frequency information while preserving spatial structures. The proposed Dual-Frequency Enhanced Self-Attention Spatial and Frequency Modulator aims to adaptively refine feature representations in frequency domains and simultaneously spatial information for better structural preservation. Our comprehensive experiments on EUVP and LSUI datasets demonstrate the superiority over the state of the art in restoring fine-grained image detail and structural consistency. By effectively mitigating underwater visual degradation, DEEP-SEA has the potential to improve the reliability of underwater monitoring platforms for more accurate ecological observation, species identification and autonomous navigation.
☆ Learning to Steer: Input-dependent Steering for Multimodal LLMs
Steering has emerged as a practical approach to enable post-hoc guidance of LLMs towards enforcing a specific behavior. However, it remains largely underexplored for multimodal LLMs (MLLMs); furthermore, existing steering techniques, such as mean steering, rely on a single steering vector, applied independently of the input query. This paradigm faces limitations when the desired behavior is dependent on the example at hand. For example, a safe answer may consist in abstaining from answering when asked for an illegal activity, or may point to external resources or consultation with an expert when asked about medical advice. In this paper, we investigate a fine-grained steering that uses an input-specific linear shift. This shift is computed using contrastive input-specific prompting. However, the input-specific prompts required for this approach are not known at test time. Therefore, we propose to train a small auxiliary module to predict the input-specific steering vector. Our approach, dubbed as L2S (Learn-to-Steer), demonstrates that it reduces hallucinations and enforces safety in MLLMs, outperforming other static baselines.
☆ SIS-Challenge: Event-based Spatio-temporal Instance Segmentation Challenge at the CVPR 2025 Event-based Vision Workshop
We present an overview of the Spatio-temporal Instance Segmentation (SIS) challenge held in conjunction with the CVPR 2025 Event-based Vision Workshop. The task is to predict accurate pixel-level segmentation masks of defined object classes from spatio-temporally aligned event camera and grayscale camera data. We provide an overview of the task, dataset, challenge details and results. Furthermore, we describe the methods used by the top-5 ranking teams in the challenge. More resources and code of the participants' methods are available here: https://github.com/tub-rip/MouseSIS/blob/main/docs/challenge_results.md
comment: 13 pages, 7 figures, 7 tables
☆ Next Visual Granularity Generation
We propose a novel approach to image generation by decomposing an image into a structured sequence, where each element in the sequence shares the same spatial resolution but differs in the number of unique tokens used, capturing different level of visual granularity. Image generation is carried out through our newly introduced Next Visual Granularity (NVG) generation framework, which generates a visual granularity sequence beginning from an empty image and progressively refines it, from global layout to fine details, in a structured manner. This iterative process encodes a hierarchical, layered representation that offers fine-grained control over the generation process across multiple granularity levels. We train a series of NVG models for class-conditional image generation on the ImageNet dataset and observe clear scaling behavior. Compared to the VAR series, NVG consistently outperforms it in terms of FID scores (3.30 -> 3.03, 2.57 ->2.44, 2.09 -> 2.06). We also conduct extensive analysis to showcase the capability and potential of the NVG framework. Our code and models will be released.
☆ Morphological classification of eclipsing binary stars using computer vision methods
We present an application of computer vision methods to classify the light curves of eclipsing binaries (EB). We have used pre-trained models based on convolutional neural networks ($\textit{ResNet50}$) and vision transformers ($\textit{vit\_base\_patch16\_224}$), which were fine-tuned on images created from synthetic datasets. To improve model generalisation and reduce overfitting, we developed a novel image representation by transforming phase-folded light curves into polar coordinates combined with hexbin visualisation. Our hierarchical approach in the first stage classifies systems into detached and overcontact types, and in the second stage identifies the presence or absence of spots. The binary classification models achieved high accuracy ($>96\%$) on validation data across multiple passbands (Gaia~$G$, $I$, and $TESS$) and demonstrated strong performance ($>94\%$, up to $100\%$ for $TESS$) when tested on extensive observational data from the OGLE, DEBCat, and WUMaCat catalogues. While the primary binary classification was highly successful, the secondary task of automated spot detection performed poorly, revealing a significant limitation of our models for identifying subtle photometric features. This study highlights the potential of computer vision for EB morphological classification in large-scale surveys, but underscores the need for further research into robust, automated spot detection.
comment: 19 pages, 4 figures, 4 tables
☆ A Shift in Perspective on Causality in Domain Generalization
The promise that causal modelling can lead to robust AI generalization has been challenged in recent work on domain generalization (DG) benchmarks. We revisit the claims of the causality and DG literature, reconciling apparent contradictions and advocating for a more nuanced theory of the role of causality in generalization. We also provide an interactive demo at https://chai-uk.github.io/ukairs25-causal-predictors/.
comment: 2 pages, 1 figure, to be presented at the UK AI Research Symposium (UKAIRS) 2025
☆ Leveraging Diffusion Models for Stylization using Multiple Style Images
Recent advances in latent diffusion models have enabled exciting progress in image style transfer. However, several key issues remain. For example, existing methods still struggle to accurately match styles. They are often limited in the number of style images that can be used. Furthermore, they tend to entangle content and style in undesired ways. To address this, we propose leveraging multiple style images which helps better represent style features and prevent content leaking from the style images. We design a method that leverages both image prompt adapters and statistical alignment of the features during the denoising process. With this, our approach is designed such that it can intervene both at the cross-attention and the self-attention layers of the denoising UNet. For the statistical alignment, we employ clustering to distill a small representative set of attention features from the large number of attention values extracted from the style samples. As demonstrated in our experimental section, the resulting method achieves state-of-the-art results for stylization.
☆ SocialTrack: Multi-Object Tracking in Complex Urban Traffic Scenes Inspired by Social Behavior
As a key research direction in the field of multi-object tracking (MOT), UAV-based multi-object tracking has significant application value in the analysis and understanding of urban intelligent transportation systems. However, in complex UAV perspectives, challenges such as small target scale variations, occlusions, nonlinear crossing motions, and motion blur severely hinder the stability of multi-object tracking. To address these challenges, this paper proposes a novel multi-object tracking framework, SocialTrack, aimed at enhancing the tracking accuracy and robustness of small targets in complex urban traffic environments. The specialized small-target detector enhances the detection performance by employing a multi-scale feature enhancement mechanism. The Velocity Adaptive Cubature Kalman Filter (VACKF) improves the accuracy of trajectory prediction by incorporating a velocity dynamic modeling mechanism. The Group Motion Compensation Strategy (GMCS) models social group motion priors to provide stable state update references for low-quality tracks, significantly improving the target association accuracy in complex dynamic environments. Furthermore, the Spatio-Temporal Memory Prediction (STMP) leverages historical trajectory information to predict the future state of low-quality tracks, effectively mitigating identity switching issues. Extensive experiments on the UAVDT and MOT17 datasets demonstrate that SocialTrack outperforms existing state-of-the-art (SOTA) methods across several key metrics. Significant improvements in MOTA and IDF1, among other core performance indicators, highlight its superior robustness and adaptability. Additionally, SocialTrack is highly modular and compatible, allowing for seamless integration with existing trackers to further enhance performance.
☆ Harnessing Group-Oriented Consistency Constraints for Semi-Supervised Semantic Segmentation in CdZnTe Semiconductors
Labeling Cadmium Zinc Telluride (CdZnTe) semiconductor images is challenging due to the low-contrast defect boundaries, necessitating annotators to cross-reference multiple views. These views share a single ground truth (GT), forming a unique ``many-to-one'' relationship. This characteristic renders advanced semi-supervised semantic segmentation (SSS) methods suboptimal, as they are generally limited by a ``one-to-one'' relationship, where each image is independently associated with its GT. Such limitation may lead to error accumulation in low-contrast regions, further exacerbating confirmation bias. To address this issue, we revisit the SSS pipeline from a group-oriented perspective and propose a human-inspired solution: the Intra-group Consistency Augmentation Framework (ICAF). First, we experimentally validate the inherent consistency constraints within CdZnTe groups, establishing a group-oriented baseline using the Intra-group View Sampling (IVS). Building on this insight, we introduce the Pseudo-label Correction Network (PCN) to enhance consistency representation, which consists of two key modules. The View Augmentation Module (VAM) improves boundary details by dynamically synthesizing a boundary-aware view through the aggregation of multiple views. In the View Correction Module (VCM), this synthesized view is paired with other views for information interaction, effectively emphasizing salient regions while minimizing noise. Extensive experiments demonstrate the effectiveness of our solution for CdZnTe materials. Leveraging DeepLabV3+ with a ResNet-101 backbone as our segmentation model, we achieve a 70.6\% mIoU on the CdZnTe dataset using only 2 group-annotated data (5\textperthousand). The code is available at \href{https://github.com/pipixiapipi/ICAF}{https://github.com/pipixiapipi/ICAF}.
☆ CLAIRE-DSA: Fluoroscopic Image Classification for Quality Assurance of Computer Vision Pipelines in Acute Ischemic Stroke
Computer vision models can be used to assist during mechanical thrombectomy (MT) for acute ischemic stroke (AIS), but poor image quality often degrades performance. This work presents CLAIRE-DSA, a deep learning--based framework designed to categorize key image properties in minimum intensity projections (MinIPs) acquired during MT for AIS, supporting downstream quality control and workflow optimization. CLAIRE-DSA uses pre-trained ResNet backbone models, fine-tuned to predict nine image properties (e.g., presence of contrast, projection angle, motion artefact severity). Separate classifiers were trained on an annotated dataset containing $1,758$ fluoroscopic MinIPs. The model achieved excellent performance on all labels, with ROC-AUC ranging from $0.91$ to $0.98$, and precision ranging from $0.70$ to $1.00$. The ability of CLAIRE-DSA to identify suitable images was evaluated on a segmentation task by filtering poor quality images and comparing segmentation performance on filtered and unfiltered datasets. Segmentation success rate increased from $42%$ to $69%$, $p < 0.001$. CLAIRE-DSA demonstrates strong potential as an automated tool for accurately classifying image properties in DSA series of acute ischemic stroke patients, supporting image annotation and quality control in clinical and research applications. Source code is available at https://gitlab.com/icai-stroke-lab/wp3_neurointerventional_ai/claire-dsa.
comment: 10 pages, 4 figures, workshop paper accepted at https://switchmiccai.github.io/switch/
☆ D2-Mamba: Dual-Scale Fusion and Dual-Path Scanning with SSMs for Shadow Removal
Shadow removal aims to restore images that are partially degraded by shadows, where the degradation is spatially localized and non-uniform. Unlike general restoration tasks that assume global degradation, shadow removal can leverage abundant information from non-shadow regions for guidance. However, the transformation required to correct shadowed areas often differs significantly from that of well-lit regions, making it challenging to apply uniform correction strategies. This necessitates the effective integration of non-local contextual cues and adaptive modeling of region-specific transformations. To this end, we propose a novel Mamba-based network featuring dual-scale fusion and dual-path scanning to selectively propagate contextual information based on transformation similarity across regions. Specifically, the proposed Dual-Scale Fusion Mamba Block (DFMB) enhances multi-scale feature representation by fusing original features with low-resolution features, effectively reducing boundary artifacts. The Dual-Path Mamba Group (DPMG) captures global features via horizontal scanning and incorporates a mask-aware adaptive scanning strategy, which improves structural continuity and fine-grained region modeling. Experimental results demonstrate that our method significantly outperforms existing state-of-the-art approaches on shadow removal benchmarks.
comment: Paper Under Review
☆ DCSCR: A Class-Specific Collaborative Representation based Network for Image Set Classification
Image set classification (ISC), which can be viewed as a task of comparing similarities between sets consisting of unordered heterogeneous images with variable quantities and qualities, has attracted growing research attention in recent years. How to learn effective feature representations and how to explore the similarities between different image sets are two key yet challenging issues in this field. However, existing traditional ISC methods classify image sets based on raw pixel features, ignoring the importance of feature learning. Existing deep ISC methods can learn deep features, but they fail to adaptively adjust the features when measuring set distances, resulting in limited performance in few-shot ISC. To address the above issues, this paper combines traditional ISC methods with deep models and proposes a novel few-shot ISC approach called Deep Class-specific Collaborative Representation (DCSCR) network to simultaneously learn the frame- and concept-level feature representations of each image set and the distance similarities between different sets. Specifically, DCSCR consists of a fully convolutional deep feature extractor module, a global feature learning module, and a class-specific collaborative representation-based metric learning module. The deep feature extractor and global feature learning modules are used to learn (local and global) frame-level feature representations, while the class-specific collaborative representation-based metric learning module is exploit to adaptively learn the concept-level feature representation of each image set and thus obtain the distance similarities between different sets by developing a new CSCR-based contrastive loss function. Extensive experiments on several well-known few-shot ISC datasets demonstrate the effectiveness of the proposed method compared with some state-of-the-art image set classification algorithms.
☆ On the Importance of Behavioral Nuances: Amplifying Non-Obvious Motor Noise Under True Empirical Considerations May Lead to Briefer Assays and Faster Classification Processes
There is a tradeoff between attaining statistical power with large, difficult to gather data sets, and producing highly scalable assays that register brief data samples. Often, as grand-averaging techniques a priori assume normally-distributed parameters and linear, stationary processes in biorhythmic, time series data, important information is lost, averaged out as gross data. We developed an affective computing platform that enables taking brief data samples while maintaining personalized statistical power. This is achieved by combining a new data type derived from the micropeaks present in time series data registered from brief (5-second-long) face videos with recent advances in AI-driven face-grid estimation methods. By adopting geometric and nonlinear dynamical systems approaches to analyze the kinematics, especially the speed data, the new methods capture all facial micropeaks. These include as well the nuances of different affective micro expressions. We offer new ways to differentiate dynamical and geometric patterns present in autistic individuals from those found more commonly in neurotypical development.
comment: This paper is under review in IEEE Transactions on Affective Computing
☆ Frequency-Driven Inverse Kernel Prediction for Single Image Defocus Deblurring
Single image defocus deblurring aims to recover an all-in-focus image from a defocus counterpart, where accurately modeling spatially varying blur kernels remains a key challenge. Most existing methods rely on spatial features for kernel estimation, but their performance degrades in severely blurry regions where local high-frequency details are missing. To address this, we propose a Frequency-Driven Inverse Kernel Prediction network (FDIKP) that incorporates frequency-domain representations to enhance structural identifiability in kernel modeling. Given the superior discriminative capability of the frequency domain for blur modeling, we design a Dual-Branch Inverse Kernel Prediction (DIKP) strategy that improves the accuracy of kernel estimation while maintaining stability. Moreover, considering the limited number of predicted inverse kernels, we introduce a Position Adaptive Convolution (PAC) to enhance the adaptability of the deconvolution process. Finally, we propose a Dual-Domain Scale Recurrent Module (DSRM) to fuse deconvolution results and progressively improve deblurring quality from coarse to fine. Extensive experiments demonstrate that our method outperforms existing approaches. Code will be made publicly available.
☆ Quantifying and Alleviating Co-Adaptation in Sparse-View 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) has demonstrated impressive performance in novel view synthesis under dense-view settings. However, in sparse-view scenarios, despite the realistic renderings in training views, 3DGS occasionally manifests appearance artifacts in novel views. This paper investigates the appearance artifacts in sparse-view 3DGS and uncovers a core limitation of current approaches: the optimized Gaussians are overly-entangled with one another to aggressively fit the training views, which leads to a neglect of the real appearance distribution of the underlying scene and results in appearance artifacts in novel views. The analysis is based on a proposed metric, termed Co-Adaptation Score (CA), which quantifies the entanglement among Gaussians, i.e., co-adaptation, by computing the pixel-wise variance across multiple renderings of the same viewpoint, with different random subsets of Gaussians. The analysis reveals that the degree of co-adaptation is naturally alleviated as the number of training views increases. Based on the analysis, we propose two lightweight strategies to explicitly mitigate the co-adaptation in sparse-view 3DGS: (1) random gaussian dropout; (2) multiplicative noise injection to the opacity. Both strategies are designed to be plug-and-play, and their effectiveness is validated across various methods and benchmarks. We hope that our insights into the co-adaptation effect will inspire the community to achieve a more comprehensive understanding of sparse-view 3DGS.
comment: Under review. Project page: https://chenkangjie1123.github.io/Co-Adaptation-3DGS/
☆ Single-Reference Text-to-Image Manipulation with Dual Contrastive Denoising Score
Large-scale text-to-image generative models have shown remarkable ability to synthesize diverse and high-quality images. However, it is still challenging to directly apply these models for editing real images for two reasons. First, it is difficult for users to come up with a perfect text prompt that accurately describes every visual detail in the input image. Second, while existing models can introduce desirable changes in certain regions, they often dramatically alter the input content and introduce unexpected changes in unwanted regions. To address these challenges, we present Dual Contrastive Denoising Score, a simple yet powerful framework that leverages the rich generative prior of text-to-image diffusion models. Inspired by contrastive learning approaches for unpaired image-to-image translation, we introduce a straightforward dual contrastive loss within the proposed framework. Our approach utilizes the extensive spatial information from the intermediate representations of the self-attention layers in latent diffusion models without depending on auxiliary networks. Our method achieves both flexible content modification and structure preservation between input and output images, as well as zero-shot image-to-image translation. Through extensive experiments, we show that our approach outperforms existing methods in real image editing while maintaining the capability to directly utilize pretrained text-to-image diffusion models without further training.
☆ Real-Time Sign Language Gestures to Speech Transcription using Deep Learning
Communication barriers pose significant challenges for individuals with hearing and speech impairments, often limiting their ability to effectively interact in everyday environments. This project introduces a real-time assistive technology solution that leverages advanced deep learning techniques to translate sign language gestures into textual and audible speech. By employing convolution neural networks (CNN) trained on the Sign Language MNIST dataset, the system accurately classifies hand gestures captured live via webcam. Detected gestures are instantaneously translated into their corresponding meanings and transcribed into spoken language using text-to-speech synthesis, thus facilitating seamless communication. Comprehensive experiments demonstrate high model accuracy and robust real-time performance with some latency, highlighting the system's practical applicability as an accessible, reliable, and user-friendly tool for enhancing the autonomy and integration of sign language users in diverse social settings.
comment: Course related research project
☆ Argos: A Decentralized Federated System for Detection of Traffic Signs in CAVs
Connected and automated vehicles generate vast amounts of sensor data daily, raising significant privacy and communication challenges for centralized machine learning approaches in perception tasks. This study presents a decentralized, federated learning framework tailored for traffic sign detection in vehicular networks to enable collaborative model training without sharing raw data. The framework partitioned traffic sign classes across vehicles for specialized local training using lightweight object detectors, aggregated model parameters via algorithms like FedProx, FedAdam and FedAVG in a simulated environment with the Flower framework, and evaluated multiple configurations including varying server rounds, local epochs, client participation fractions, and data distributions. Experiments demonstrated that increasing server rounds from 2 to 20 boosted accuracy from below 0.1 to over 0.8, moderate local epochs (8-10) provided optimal efficiency with accuracies around 0.67, higher client participation fractions enhanced generalization up to 0.83, FedProx outperformed other aggregators in handling heterogeneity, non-IID data distributions reduced performance compared to IID, and training duration primarily scaled with the number of rounds rather than aggregation strategy. We conclude that this federated approach may offer a scalable, privacy-preserving solution for real-world vehicular deployments, potentially guiding future integrations of robust aggregation and communication optimizations to advance intelligent transportation systems.
comment: 7 pages, 10 figures
☆ Drifting Away from Truth: GenAI-Driven News Diversity Challenges LVLM-Based Misinformation Detection
The proliferation of multimodal misinformation poses growing threats to public discourse and societal trust. While Large Vision-Language Models (LVLMs) have enabled recent progress in multimodal misinformation detection (MMD), the rise of generative AI (GenAI) tools introduces a new challenge: GenAI-driven news diversity, characterized by highly varied and complex content. We show that this diversity induces multi-level drift, comprising (1) model-level misperception drift, where stylistic variations disrupt a model's internal reasoning, and (2) evidence-level drift, where expression diversity degrades the quality or relevance of retrieved external evidence. These drifts significantly degrade the robustness of current LVLM-based MMD systems. To systematically study this problem, we introduce DriftBench, a large-scale benchmark comprising 16,000 news instances across six categories of diversification. We design three evaluation tasks: (1) robustness of truth verification under multi-level drift; (2) susceptibility to adversarial evidence contamination generated by GenAI; and (3) analysis of reasoning consistency across diverse inputs. Experiments with six state-of-the-art LVLM-based detectors show substantial performance drops (average F1 -14.8%) and increasingly unstable reasoning traces, with even more severe failures under adversarial evidence injection. Our findings uncover fundamental vulnerabilities in existing MMD systems and suggest an urgent need for more resilient approaches in the GenAI era.
☆ Neural Rendering for Sensor Adaptation in 3D Object Detection
Autonomous vehicles often have varying camera sensor setups, which is inevitable due to restricted placement options for different vehicle types. Training a perception model on one particular setup and evaluating it on a new, different sensor setup reveals the so-called cross-sensor domain gap, typically leading to a degradation in accuracy. In this paper, we investigate the impact of the cross-sensor domain gap on state-of-the-art 3D object detectors. To this end, we introduce CamShift, a dataset inspired by nuScenes and created in CARLA to specifically simulate the domain gap between subcompact vehicles and sport utility vehicles (SUVs). Using CamShift, we demonstrate significant cross-sensor performance degradation, identify robustness dependencies on model architecture, and propose a data-driven solution to mitigate the effect. On the one hand, we show that model architectures based on a dense Bird's Eye View (BEV) representation with backward projection, such as BEVFormer, are the most robust against varying sensor configurations. On the other hand, we propose a novel data-driven sensor adaptation pipeline based on neural rendering, which can transform entire datasets to match different camera sensor setups. Applying this approach improves performance across all investigated 3D object detectors, mitigating the cross-sensor domain gap by a large margin and reducing the need for new data collection by enabling efficient data reusability across vehicles with different sensor setups. The CamShift dataset and the sensor adaptation benchmark are available at https://dmholtz.github.io/camshift/.
comment: Accepted at IEEE Intelligent Vehicles Symposium (IV) 2025
☆ Multi-Level Knowledge Distillation and Dynamic Self-Supervised Learning for Continual Learning
Class-incremental with repetition (CIR), where previously trained classes repeatedly introduced in future tasks, is a more realistic scenario than the traditional class incremental setup, which assumes that each task contains unseen classes. CIR assumes that we can easily access abundant unlabeled data from external sources, such as the Internet. Therefore, we propose two components that efficiently use the unlabeled data to ensure the high stability and the plasticity of models trained in CIR setup. First, we introduce multi-level knowledge distillation (MLKD) that distills knowledge from multiple previous models across multiple perspectives, including features and logits, so the model can maintain much various previous knowledge. Moreover, we implement dynamic self-supervised loss (SSL) to utilize the unlabeled data that accelerates the learning of new classes, while dynamic weighting of SSL keeps the focus of training to the primary task. Both of our proposed components significantly improve the performance in CIR setup, achieving 2nd place in the CVPR 5th CLVISION Challenge.
☆ MixCache: Mixture-of-Cache for Video Diffusion Transformer Acceleration
Leveraging the Transformer architecture and the diffusion process, video DiT models have emerged as a dominant approach for high-quality video generation. However, their multi-step iterative denoising process incurs high computational cost and inference latency. Caching, a widely adopted optimization method in DiT models, leverages the redundancy in the diffusion process to skip computations in different granularities (e.g., step, cfg, block). Nevertheless, existing caching methods are limited to single-granularity strategies, struggling to balance generation quality and inference speed in a flexible manner. In this work, we propose MixCache, a training-free caching-based framework for efficient video DiT inference. It first distinguishes the interference and boundary between different caching strategies, and then introduces a context-aware cache triggering strategy to determine when caching should be enabled, along with an adaptive hybrid cache decision strategy for dynamically selecting the optimal caching granularity. Extensive experiments on diverse models demonstrate that, MixCache can significantly accelerate video generation (e.g., 1.94$\times$ speedup on Wan 14B, 1.97$\times$ speedup on HunyuanVideo) while delivering both superior generation quality and inference efficiency compared to baseline methods.
comment: 7 pages, 10 figures
☆ TTA-DAME: Test-Time Adaptation with Domain Augmentation and Model Ensemble for Dynamic Driving Conditions
Test-time Adaptation (TTA) poses a challenge, requiring models to dynamically adapt and perform optimally on shifting target domains. This task is particularly emphasized in real-world driving scenes, where weather domain shifts occur frequently. To address such dynamic changes, our proposed method, TTA-DAME, leverages source domain data augmentation into target domains. Additionally, we introduce a domain discriminator and a specialized domain detector to mitigate drastic domain shifts, especially from daytime to nighttime conditions. To further improve adaptability, we train multiple detectors and consolidate their predictions through Non-Maximum Suppression (NMS). Our empirical validation demonstrates the effectiveness of our method, showing significant performance enhancements on the SHIFT Benchmark.
☆ EGOILLUSION: Benchmarking Hallucinations in Egocentric Video Understanding
Multimodal Large Language Models (MLLMs) have demonstrated remarkable performance in complex multimodal tasks. While MLLMs excel at visual perception and reasoning in third-person and egocentric videos, they are prone to hallucinations, generating coherent yet inaccurate responses. We present EgoIllusion, a first benchmark to evaluate MLLM hallucinations in egocentric videos. EgoIllusion comprises 1,400 videos paired with 8,000 human-annotated open and closed-ended questions designed to trigger hallucinations in both visual and auditory cues in egocentric videos. Evaluations across ten MLLMs reveal significant challenges, including powerful models like GPT-4o and Gemini, achieving only 59% accuracy. EgoIllusion lays the foundation in developing robust benchmarks to evaluate the effectiveness of MLLMs and spurs the development of better egocentric MLLMs with reduced hallucination rates. Our benchmark will be open-sourced for reproducibility.
☆ Refine-and-Contrast: Adaptive Instance-Aware BEV Representations for Multi-UAV Collaborative Object Detection
Multi-UAV collaborative 3D detection enables accurate and robust perception by fusing multi-view observations from aerial platforms, offering significant advantages in coverage and occlusion handling, while posing new challenges for computation on resource-constrained UAV platforms. In this paper, we present AdaBEV, a novel framework that learns adaptive instance-aware BEV representations through a refine-and-contrast paradigm. Unlike existing methods that treat all BEV grids equally, AdaBEV introduces a Box-Guided Refinement Module (BG-RM) and an Instance-Background Contrastive Learning (IBCL) to enhance semantic awareness and feature discriminability. BG-RM refines only BEV grids associated with foreground instances using 2D supervision and spatial subdivision, while IBCL promotes stronger separation between foreground and background features via contrastive learning in BEV space. Extensive experiments on the Air-Co-Pred dataset demonstrate that AdaBEV achieves superior accuracy-computation trade-offs across model scales, outperforming other state-of-the-art methods at low resolutions and approaching upper bound performance while maintaining low-resolution BEV inputs and negligible overhead.
comment: 9 pages
☆ Vision-G1: Towards General Vision Language Reasoning with Multi-Domain Data Curation
Despite their success, current training pipelines for reasoning VLMs focus on a limited range of tasks, such as mathematical and logical reasoning. As a result, these models face difficulties in generalizing their reasoning capabilities to a wide range of domains, primarily due to the scarcity of readily available and verifiable reward data beyond these narrowly defined areas. Moreover, integrating data from multiple domains is challenging, as the compatibility between domain-specific datasets remains uncertain. To address these limitations, we build a comprehensive RL-ready visual reasoning dataset from 46 data sources across 8 dimensions, covering a wide range of tasks such as infographic, mathematical, spatial, cross-image, graphic user interface, medical, common sense and general science. We propose an influence function based data selection and difficulty based filtering strategy to identify high-quality training samples from this dataset. Subsequently, we train the VLM, referred to as Vision-G1, using multi-round RL with a data curriculum to iteratively improve its visual reasoning capabilities. Our model achieves state-of-the-art performance across various visual reasoning benchmarks, outperforming similar-sized VLMs and even proprietary models like GPT-4o and Gemini-1.5 Flash. The model, code and dataset are publicly available at https://github.com/yuh-zha/Vision-G1.
☆ WP-CLIP: Leveraging CLIP to Predict Wölfflin's Principles in Visual Art ICCV 2025
W\"olfflin's five principles offer a structured approach to analyzing stylistic variations for formal analysis. However, no existing metric effectively predicts all five principles in visual art. Computationally evaluating the visual aspects of a painting requires a metric that can interpret key elements such as color, composition, and thematic choices. Recent advancements in vision-language models (VLMs) have demonstrated their ability to evaluate abstract image attributes, making them promising candidates for this task. In this work, we investigate whether CLIP, pre-trained on large-scale data, can understand and predict W\"olfflin's principles. Our findings indicate that it does not inherently capture such nuanced stylistic elements. To address this, we fine-tune CLIP on annotated datasets of real art images to predict a score for each principle. We evaluate our model, WP-CLIP, on GAN-generated paintings and the Pandora-18K art dataset, demonstrating its ability to generalize across diverse artistic styles. Our results highlight the potential of VLMs for automated art analysis.
comment: ICCV 2025 AI4VA workshop (oral), Code: https://github.com/abhijay9/wpclip
☆ Stable Diffusion-Based Approach for Human De-Occlusion
Humans can infer the missing parts of an occluded object by leveraging prior knowledge and visible cues. However, enabling deep learning models to accurately predict such occluded regions remains a challenging task. De-occlusion addresses this problem by reconstructing both the mask and RGB appearance. In this work, we focus on human de-occlusion, specifically targeting the recovery of occluded body structures and appearances. Our approach decomposes the task into two stages: mask completion and RGB completion. The first stage leverages a diffusion-based human body prior to provide a comprehensive representation of body structure, combined with occluded joint heatmaps that offer explicit spatial cues about missing regions. The reconstructed amodal mask then serves as a conditioning input for the second stage, guiding the model on which areas require RGB reconstruction. To further enhance RGB generation, we incorporate human-specific textual features derived using a visual question answering (VQA) model and encoded via a CLIP encoder. RGB completion is performed using Stable Diffusion, with decoder fine-tuning applied to mitigate pixel-level degradation in visible regions -- a known limitation of prior diffusion-based de-occlusion methods caused by latent space transformations. Our method effectively reconstructs human appearances even under severe occlusions and consistently outperforms existing methods in both mask and RGB completion. Moreover, the de-occluded images generated by our approach can improve the performance of downstream human-centric tasks, such as 2D pose estimation and 3D human reconstruction. The code will be made publicly available.
comment: MM 2025
☆ DyCrowd: Towards Dynamic Crowd Reconstruction from a Large-scene Video
3D reconstruction of dynamic crowds in large scenes has become increasingly important for applications such as city surveillance and crowd analysis. However, current works attempt to reconstruct 3D crowds from a static image, causing a lack of temporal consistency and inability to alleviate the typical impact caused by occlusions. In this paper, we propose DyCrowd, the first framework for spatio-temporally consistent 3D reconstruction of hundreds of individuals' poses, positions and shapes from a large-scene video. We design a coarse-to-fine group-guided motion optimization strategy for occlusion-robust crowd reconstruction in large scenes. To address temporal instability and severe occlusions, we further incorporate a VAE (Variational Autoencoder)-based human motion prior along with a segment-level group-guided optimization. The core of our strategy leverages collective crowd behavior to address long-term dynamic occlusions. By jointly optimizing the motion sequences of individuals with similar motion segments and combining this with the proposed Asynchronous Motion Consistency (AMC) loss, we enable high-quality unoccluded motion segments to guide the motion recovery of occluded ones, ensuring robust and plausible motion recovery even in the presence of temporal desynchronization and rhythmic inconsistencies. Additionally, in order to fill the gap of no existing well-annotated large-scene video dataset, we contribute a virtual benchmark dataset, VirtualCrowd, for evaluating dynamic crowd reconstruction from large-scene videos. Experimental results demonstrate that the proposed method achieves state-of-the-art performance in the large-scene dynamic crowd reconstruction task. The code and dataset will be available for research purposes.
☆ Learn Faster and Remember More: Balancing Exploration and Exploitation for Continual Test-time Adaptation
Continual Test-Time Adaptation (CTTA) aims to adapt a source pre-trained model to continually changing target domains during inference. As a fundamental principle, an ideal CTTA method should rapidly adapt to new domains (exploration) while retaining and exploiting knowledge from previously encountered domains to handle similar domains in the future. Despite significant advances, balancing exploration and exploitation in CTTA is still challenging: 1) Existing methods focus on adjusting predictions based on deep-layer outputs of neural networks. However, domain shifts typically affect shallow features, which are inefficient to be adjusted from deep predictions, leading to dilatory exploration; 2) A single model inevitably forgets knowledge of previous domains during the exploration, making it incapable of exploiting historical knowledge to handle similar future domains. To address these challenges, this paper proposes a mean teacher framework that strikes an appropriate Balance between Exploration and Exploitation (BEE) during the CTTA process. For the former challenge, we introduce a Multi-level Consistency Regularization (MCR) loss that aligns the intermediate features of the student and teacher models, accelerating adaptation to the current domain. For the latter challenge, we employ a Complementary Anchor Replay (CAR) mechanism to reuse historical checkpoints (anchors), recovering complementary knowledge for diverse domains. Experiments show that our method significantly outperforms state-of-the-art methods on several benchmarks, demonstrating its effectiveness for CTTA tasks.
☆ Synthesizing Accurate and Realistic T1-weighted Contrast-Enhanced MR Images using Posterior-Mean Rectified Flow MICCAI
Contrast-enhanced (CE) T1-weighted MRI is central to neuro-oncologic diagnosis but requires gadolinium-based agents, which add cost and scan time, raise environmental concerns, and may pose risks to patients. In this work, we propose a two-stage Posterior-Mean Rectified Flow (PMRF) pipeline for synthesizing volumetric CE brain MRI from non-contrast inputs. First, a patch-based 3D U-Net predicts the voxel-wise posterior mean (minimizing MSE). Then, this initial estimate is refined by a time-conditioned 3D rectified flow to incorporate realistic textures without compromising structural fidelity. We train this model on a multi-institutional collection of paired pre- and post-contrast T1w volumes (BraTS 2023-2025). On a held-out test set of 360 diverse volumes, our best refined outputs achieve an axial FID of $12.46$ and KID of $0.007$ ($\sim 68.7\%$ lower FID than the posterior mean) while maintaining low volumetric MSE of $0.057$ ($\sim 27\%$ higher than the posterior mean). Qualitative comparisons confirm that our method restores lesion margins and vascular details realistically, effectively navigating the perception-distortion trade-off for clinical deployment.
comment: 12 pages, 3 figures, MICCAI workshops (SASHIMI) 2025
SpotVLM: Cloud-edge Collaborative Real-time VLM based on Context Transfer
Vision-Language Models (VLMs) are increasingly deployed in real-time applications such as autonomous driving and human-computer interaction, which demand fast and reliable responses based on accurate perception. To meet these requirements, existing systems commonly employ cloud-edge collaborative architectures, such as partitioned Large Vision-Language Models (LVLMs) or task offloading strategies between Large and Small Vision-Language Models (SVLMs). However, these methods fail to accommodate cloud latency fluctuations and overlook the full potential of delayed but accurate LVLM responses. In this work, we propose a novel cloud-edge collaborative paradigm for VLMs, termed Context Transfer, which treats the delayed outputs of LVLMs as historical context to provide real-time guidance for SVLMs inference. Based on this paradigm, we design SpotVLM, which incorporates both context replacement and visual focus modules to refine historical textual input and enhance visual grounding consistency. Extensive experiments on three real-time vision tasks across four datasets demonstrate the effectiveness of the proposed framework. The new paradigm lays the groundwork for more effective and latency-aware collaboration strategies in future VLM systems.
☆ HOMI: Ultra-Fast EdgeAI platform for Event Cameras
Event cameras offer significant advantages for edge robotics applications due to their asynchronous operation and sparse, event-driven output, making them well-suited for tasks requiring fast and efficient closed-loop control, such as gesture-based human-robot interaction. Despite this potential, existing event processing solutions remain limited, often lacking complete end-to-end implementations, exhibiting high latency, and insufficiently exploiting event data sparsity. In this paper, we present HOMI, an ultra-low latency, end-to-end edge AI platform comprising a Prophesee IMX636 event sensor chip with an Xilinx Zynq UltraScale+MPSoC FPGA chip, deploying an in-house developed AI accelerator. We have developed hardware-optimized pre-processing pipelines supporting both constant-time and constant-event modes for histogram accumulation, linear and exponential time surfaces. Our general-purpose implementation caters to both accuracy-driven and low-latency applications. HOMI achieves 94% accuracy on the DVS Gesture dataset as a use case when configured for high accuracy operation and provides a throughput of 1000 fps for low-latency configuration. The hardware-optimised pipeline maintains a compact memory footprint and utilises only 33% of the available LUT resources on the FPGA, leaving ample headroom for further latency reduction, model parallelisation, multi-task deployments, or integration of more complex architectures.
☆ Creative4U: MLLMs-based Advertising Creative Image Selector with Comparative Reasoning
Creative image in advertising is the heart and soul of e-commerce platform. An eye-catching creative image can enhance the shopping experience for users, boosting income for advertisers and advertising revenue for platforms. With the advent of AIGC technology, advertisers can produce large quantities of creative images at minimal cost. However, they struggle to assess the creative quality to select. Existing methods primarily focus on creative ranking, which fails to address the need for explainable creative selection. In this work, we propose the first paradigm for explainable creative assessment and selection. Powered by multimodal large language models (MLLMs), our approach integrates the assessment and selection of creative images into a natural language generation task. To facilitate this research, we construct CreativePair, the first comparative reasoning-induced creative dataset featuring 8k annotated image pairs, with each sample including a label indicating which image is superior. Additionally, we introduce Creative4U (pronounced Creative for You), a MLLMs-based creative selector that takes into account users' interests. Through Reason-to-Select RFT, which includes supervised fine-tuning with Chain-of-Thought (CoT-SFT) and Group Relative Policy Optimization (GRPO) based reinforcement learning, Creative4U is able to evaluate and select creative images accurately. Both offline and online experiments demonstrate the effectiveness of our approach. Our code and dataset will be made public to advance research and industrial applications.
OpenMoCap: Rethinking Optical Motion Capture under Real-world Occlusion
Optical motion capture is a foundational technology driving advancements in cutting-edge fields such as virtual reality and film production. However, system performance suffers severely under large-scale marker occlusions common in real-world applications. An in-depth analysis identifies two primary limitations of current models: (i) the lack of training datasets accurately reflecting realistic marker occlusion patterns, and (ii) the absence of training strategies designed to capture long-range dependencies among markers. To tackle these challenges, we introduce the CMU-Occlu dataset, which incorporates ray tracing techniques to realistically simulate practical marker occlusion patterns. Furthermore, we propose OpenMoCap, a novel motion-solving model designed specifically for robust motion capture in environments with significant occlusions. Leveraging a marker-joint chain inference mechanism, OpenMoCap enables simultaneous optimization and construction of deep constraints between markers and joints. Extensive comparative experiments demonstrate that OpenMoCap consistently outperforms competing methods across diverse scenarios, while the CMU-Occlu dataset opens the door for future studies in robust motion solving. The proposed OpenMoCap is integrated into the MoSen MoCap system for practical deployment. The code is released at: https://github.com/qianchen214/OpenMoCap.
☆ ViDA-UGC: Detailed Image Quality Analysis via Visual Distortion Assessment for UGC Images
Recent advances in Multimodal Large Language Models (MLLMs) have introduced a paradigm shift for Image Quality Assessment (IQA) from unexplainable image quality scoring to explainable IQA, demonstrating practical applications like quality control and optimization guidance. However, current explainable IQA methods not only inadequately use the same distortion criteria to evaluate both User-Generated Content (UGC) and AI-Generated Content (AIGC) images, but also lack detailed quality analysis for monitoring image quality and guiding image restoration. In this study, we establish the first large-scale Visual Distortion Assessment Instruction Tuning Dataset for UGC images, termed ViDA-UGC, which comprises 11K images with fine-grained quality grounding, detailed quality perception, and reasoning quality description data. This dataset is constructed through a distortion-oriented pipeline, which involves human subject annotation and a Chain-of-Thought (CoT) assessment framework. This framework guides GPT-4o to generate quality descriptions by identifying and analyzing UGC distortions, which helps capturing rich low-level visual features that inherently correlate with distortion patterns. Moreover, we carefully select 476 images with corresponding 6,149 question answer pairs from ViDA-UGC and invite a professional team to ensure the accuracy and quality of GPT-generated information. The selected and revised data further contribute to the first UGC distortion assessment benchmark, termed ViDA-UGC-Bench. Experimental results demonstrate the effectiveness of the ViDA-UGC and CoT framework for consistently enhancing various image quality analysis abilities across multiple base MLLMs on ViDA-UGC-Bench and Q-Bench, even surpassing GPT-4o.
☆ ViLaD: A Large Vision Language Diffusion Framework for End-to-End Autonomous Driving
End-to-end autonomous driving systems built on Vision Language Models (VLMs) have shown significant promise, yet their reliance on autoregressive architectures introduces some limitations for real-world applications. The sequential, token-by-token generation process of these models results in high inference latency and cannot perform bidirectional reasoning, making them unsuitable for dynamic, safety-critical environments. To overcome these challenges, we introduce ViLaD, a novel Large Vision Language Diffusion (LVLD) framework for end-to-end autonomous driving that represents a paradigm shift. ViLaD leverages a masked diffusion model that enables parallel generation of entire driving decision sequences, significantly reducing computational latency. Moreover, its architecture supports bidirectional reasoning, allowing the model to consider both past and future simultaneously, and supports progressive easy-first generation to iteratively improve decision quality. We conduct comprehensive experiments on the nuScenes dataset, where ViLaD outperforms state-of-the-art autoregressive VLM baselines in both planning accuracy and inference speed, while achieving a near-zero failure rate. Furthermore, we demonstrate the framework's practical viability through a real-world deployment on an autonomous vehicle for an interactive parking task, confirming its effectiveness and soundness for practical applications.
☆ Multimodal Chain of Continuous Thought for Latent-Space Reasoning in Vision-Language Models
Many reasoning techniques for large multimodal models adapt language model approaches, such as Chain-of-Thought (CoT) prompting, which express reasoning as word sequences. While effective for text, these methods are suboptimal for multimodal contexts, struggling to align audio, visual, and textual information dynamically. To explore an alternative paradigm, we propose the Multimodal Chain of Continuous Thought (MCOUT), which enables reasoning directly in a joint latent space rather than in natural language. In MCOUT, the reasoning state is represented as a continuous hidden vector, iteratively refined and aligned with visual and textual embeddings, inspired by human reflective cognition. We develop two variants: MCOUT-Base, which reuses the language model`s last hidden state as the continuous thought for iterative reasoning, and MCOUT-Multi, which integrates multimodal latent attention to strengthen cross-modal alignment between visual and textual features. Experiments on benchmarks including MMMU, ScienceQA, and MMStar show that MCOUT consistently improves multimodal reasoning, yielding up to 8.23% accuracy gains over strong baselines and improving BLEU scores up to 8.27% across multiple-choice and open-ended tasks. These findings highlight latent continuous reasoning as a promising direction for advancing LMMs beyond language-bound CoT, offering a scalable framework for human-like reflective multimodal inference. Code is available at https://github.com/Hanhpt23/OmniMod.
☆ Foundation Model for Skeleton-Based Human Action Understanding
Human action understanding serves as a foundational pillar in the field of intelligent motion perception. Skeletons serve as a modality- and device-agnostic representation for human modeling, and skeleton-based action understanding has potential applications in humanoid robot control and interaction. \RED{However, existing works often lack the scalability and generalization required to handle diverse action understanding tasks. There is no skeleton foundation model that can be adapted to a wide range of action understanding tasks}. This paper presents a Unified Skeleton-based Dense Representation Learning (USDRL) framework, which serves as a foundational model for skeleton-based human action understanding. USDRL consists of a Transformer-based Dense Spatio-Temporal Encoder (DSTE), Multi-Grained Feature Decorrelation (MG-FD), and Multi-Perspective Consistency Training (MPCT). The DSTE module adopts two parallel streams to learn temporal dynamic and spatial structure features. The MG-FD module collaboratively performs feature decorrelation across temporal, spatial, and instance domains to reduce dimensional redundancy and enhance information extraction. The MPCT module employs both multi-view and multi-modal self-supervised consistency training. The former enhances the learning of high-level semantics and mitigates the impact of low-level discrepancies, while the latter effectively facilitates the learning of informative multimodal features. We perform extensive experiments on 25 benchmarks across across 9 skeleton-based action understanding tasks, covering coarse prediction, dense prediction, and transferred prediction. Our approach significantly outperforms the current state-of-the-art methods. We hope that this work would broaden the scope of research in skeleton-based action understanding and encourage more attention to dense prediction tasks.
comment: Accepted by TPAMI, Code is available at: https://github.com/wengwanjiang/FoundSkelModel
☆ Structure-preserving Feature Alignment for Old Photo Colorization
Deep learning techniques have made significant advancements in reference-based colorization by training on large-scale datasets. However, directly applying these methods to the task of colorizing old photos is challenging due to the lack of ground truth and the notorious domain gap between natural gray images and old photos. To address this issue, we propose a novel CNN-based algorithm called SFAC, i.e., Structure-preserving Feature Alignment Colorizer. SFAC is trained on only two images for old photo colorization, eliminating the reliance on big data and allowing direct processing of the old photo itself to overcome the domain gap problem. Our primary objective is to establish semantic correspondence between the two images, ensuring that semantically related objects have similar colors. We achieve this through a feature distribution alignment loss that remains robust to different metric choices. However, utilizing robust semantic correspondence to transfer color from the reference to the old photo can result in inevitable structure distortions. To mitigate this, we introduce a structure-preserving mechanism that incorporates a perceptual constraint at the feature level and a frozen-updated pyramid at the pixel level. Extensive experiments demonstrate the effectiveness of our method for old photo colorization, as confirmed by qualitative and quantitative metrics.
Temporal and Rotational Calibration for Event-Centric Multi-Sensor Systems
Event cameras generate asynchronous signals in response to pixel-level brightness changes, offering a sensing paradigm with theoretically microsecond-scale latency that can significantly enhance the performance of multi-sensor systems. Extrinsic calibration is a critical prerequisite for effective sensor fusion; however, the configuration that involves event cameras remains an understudied topic. In this paper, we propose a motion-based temporal and rotational calibration framework tailored for event-centric multi-sensor systems, eliminating the need for dedicated calibration targets. Our method uses as input the rotational motion estimates obtained from event cameras and other heterogeneous sensors, respectively. Different from conventional approaches that rely on event-to-frame conversion, our method efficiently estimates angular velocity from normal flow observations, which are derived from the spatio-temporal profile of event data. The overall calibration pipeline adopts a two-step approach: it first initializes the temporal offset and rotational extrinsics by exploiting kinematic correlations in the spirit of Canonical Correlation Analysis (CCA), and then refines both temporal and rotational parameters through a joint non-linear optimization using a continuous-time parametrization in SO(3). Extensive evaluations on both publicly available and self-collected datasets validate that the proposed method achieves calibration accuracy comparable to target-based methods, while exhibiting superior stability over purely CCA-based methods, and highlighting its precision, robustness and flexibility. To facilitate future research, our implementation will be made open-source. Code: https://github.com/NAIL-HNU/EvMultiCalib.
comment: 8 pages, 5 figures
☆ Anatomic Feature Fusion Model for Diagnosing Calcified Pulmonary Nodules on Chest X-Ray
Accurate and timely identification of pulmonary nodules on chest X-rays can differentiate between life-saving early treatment and avoidable invasive procedures. Calcification is a definitive indicator of benign nodules and is the primary foundation for diagnosis. In actual practice, diagnosing pulmonary nodule calcification on chest X-rays predominantly depends on the physician's visual assessment, resulting in significant diversity in interpretation. Furthermore, overlapping anatomical elements, such as ribs and spine, complicate the precise identification of calcification patterns. This study presents a calcification classification model that attains strong diagnostic performance by utilizing fused features derived from raw images and their structure-suppressed variants to reduce structural interference. We used 2,517 lesion-free images and 656 nodule images (151 calcified nodules and 550 non-calcified nodules), all obtained from Ajou University Hospital. The suggested model attained an accuracy of 86.52% and an AUC of 0.8889 in calcification diagnosis, surpassing the model trained on raw images by 3.54% and 0.0385, respectively.
comment: 8 pages, 4 figures
☆ PROD: Palpative Reconstruction of Deformable Objects through Elastostatic Signed Distance Functions
We introduce PROD (Palpative Reconstruction of Deformables), a novel method for reconstructing the shape and mechanical properties of deformable objects using elastostatic signed distance functions (SDFs). Unlike traditional approaches that rely on purely geometric or visual data, PROD integrates palpative interaction -- measured through force-controlled surface probing -- to estimate both the static and dynamic response of soft materials. We model the deformation of an object as an elastostatic process and derive a governing Poisson equation for estimating its SDF from a sparse set of pose and force measurements. By incorporating steady-state elastodynamic assumptions, we show that the undeformed SDF can be recovered from deformed observations with provable convergence. Our approach also enables the estimation of material stiffness by analyzing displacement responses to varying force inputs. We demonstrate the robustness of PROD in handling pose errors, non-normal force application, and curvature errors in simulated soft body interactions. These capabilities make PROD a powerful tool for reconstructing deformable objects in applications ranging from robotic manipulation to medical imaging and haptic feedback systems.
comment: Accepted for presentation at the 2025 IEEE Conference on Decision and Control (CDC)
☆ REVEAL -- Reasoning and Evaluation of Visual Evidence through Aligned Language ICCV 2025
The rapid advancement of generative models has intensified the challenge of detecting and interpreting visual forgeries, necessitating robust frameworks for image forgery detection while providing reasoning as well as localization. While existing works approach this problem using supervised training for specific manipulation or anomaly detection in the embedding space, generalization across domains remains a challenge. We frame this problem of forgery detection as a prompt-driven visual reasoning task, leveraging the semantic alignment capabilities of large vision-language models. We propose a framework, `REVEAL` (Reasoning and Evaluation of Visual Evidence through Aligned Language), that incorporates generalized guidelines. We propose two tangential approaches - (1) Holistic Scene-level Evaluation that relies on the physics, semantics, perspective, and realism of the image as a whole and (2) Region-wise anomaly detection that splits the image into multiple regions and analyzes each of them. We conduct experiments over datasets from different domains (Photoshop, DeepFake and AIGC editing). We compare the Vision Language Models against competitive baselines and analyze the reasoning provided by them.
comment: 4 pages, 6 figures, International Conference on Computer Vision, ICCV 2025
♻ ☆ Visual Perception Engine: Fast and Flexible Multi-Head Inference for Robotic Vision Tasks
Deploying multiple machine learning models on resource-constrained robotic platforms for different perception tasks often results in redundant computations, large memory footprints, and complex integration challenges. In response, this work presents Visual Perception Engine (VPEngine), a modular framework designed to enable efficient GPU usage for visual multitasking while maintaining extensibility and developer accessibility. Our framework architecture leverages a shared foundation model backbone that extracts image representations, which are efficiently shared, without any unnecessary GPU-CPU memory transfers, across multiple specialized task-specific model heads running in parallel. This design eliminates the computational redundancy inherent in feature extraction component when deploying traditional sequential models while enabling dynamic task prioritization based on application demands. We demonstrate our framework's capabilities through an example implementation using DINOv2 as the foundation model with multiple task (depth, object detection and semantic segmentation) heads, achieving up to 3x speedup compared to sequential execution. Building on CUDA Multi-Process Service (MPS), VPEngine offers efficient GPU utilization and maintains a constant memory footprint while allowing per-task inference frequencies to be adjusted dynamically during runtime. The framework is written in Python and is open source with ROS2 C++ (Humble) bindings for ease of use by the robotics community across diverse robotic platforms. Our example implementation demonstrates end-to-end real-time performance at $\geq$50 Hz on NVIDIA Jetson Orin AGX for TensorRT optimized models.
comment: 8 pages, 6 figures, 2 tables
♻ ☆ AFR-CLIP: Enhancing Zero-Shot Industrial Anomaly Detection with Stateless-to-Stateful Anomaly Feature Rectification
Recently, zero-shot anomaly detection (ZSAD) has emerged as a pivotal paradigm for industrial inspection and medical diagnostics, detecting defects in novel objects without requiring any target-dataset samples during training. Existing CLIP-based ZSAD methods generate anomaly maps by measuring the cosine similarity between visual and textual features. However, CLIP's alignment with object categories instead of their anomalous states limits its effectiveness for anomaly detection. To address this limitation, we propose AFR-CLIP, a CLIP-based anomaly feature rectification framework. AFR-CLIP first performs image-guided textual rectification, embedding the implicit defect information from the image into a stateless prompt that describes the object category without indicating any anomalous state. The enriched textual embeddings are then compared with two pre-defined stateful (normal or abnormal) embeddings, and their text-on-text similarity yields the anomaly map that highlights defective regions. To further enhance perception to multi-scale features and complex anomalies, we introduce self prompting (SP) and multi-patch feature aggregation (MPFA) modules. Extensive experiments are conducted on eleven anomaly detection benchmarks across industrial and medical domains, demonstrating AFR-CLIP's superiority in ZSAD.
comment: There was some citation error in the last version. So please read the 3rd version
♻ ☆ Casual3DHDR: Deblurring High Dynamic Range 3D Gaussian Splatting from Casually Captured Videos
Photo-realistic novel view synthesis from multi-view images, such as neural radiance field (NeRF) and 3D Gaussian Splatting (3DGS), has gained significant attention for its superior performance. However, most existing methods rely on low dynamic range (LDR) images, limiting their ability to capture detailed scenes in high-contrast environments. While some prior works address high dynamic range (HDR) scene reconstruction, they typically require multi-view sharp images with varying exposure times captured at fixed camera positions, which is time-consuming and impractical. To make data acquisition more flexible, we propose \textbf{Casual3DHDR}, a robust one-stage method that reconstructs 3D HDR scenes from casually-captured auto-exposure (AE) videos, even under severe motion blur and unknown, varying exposure times. Our approach integrates a continuous-time camera trajectory into a unified physical imaging model, jointly optimizing exposure times, camera trajectory, and the camera response function (CRF). Extensive experiments on synthetic and real-world datasets demonstrate that \textbf{Casual3DHDR} outperforms existing methods in robustness and rendering quality. Our source code and dataset will be available at https://lingzhezhao.github.io/CasualHDRSplat/
comment: Accepted to ACM Multimedia 2025. Project page: https://lingzhezhao.github.io/CasualHDRSplat/
♻ ☆ TimeMachine: Fine-Grained Facial Age Editing with Identity Preservation
With the advancement of generative models, facial image editing has made significant progress. However, achieving fine-grained age editing while preserving personal identity remains a challenging task. In this paper, we propose TimeMachine, a novel diffusion-based framework that achieves accurate age editing while keeping identity features unchanged. To enable fine-grained age editing, we inject high-precision age information into the multi-cross attention module, which explicitly separates age-related and identity-related features. This design facilitates more accurate disentanglement of age attributes, thereby allowing precise and controllable manipulation of facial aging. Furthermore, we propose an Age Classifier Guidance (ACG) module that predicts age directly in the latent space, instead of performing denoising image reconstruction during training. By employing a lightweight module to incorporate age constraints, this design enhances age editing accuracy by modest increasing training cost. Additionally, to address the lack of large-scale, high-quality facial age datasets, we construct a HFFA dataset (High-quality Fine-grained Facial-Age dataset) which contains one million high-resolution images labeled with identity and facial attributes. Experimental results demonstrate that TimeMachine achieves state-of-the-art performance in fine-grained age editing while preserving identity consistency.
♻ ☆ Towards Consumer-Grade Cybersickness Prediction: Multi-Model Alignment for Real-Time Vision-Only Inference
Cybersickness remains a major obstacle to the widespread adoption of immersive virtual reality (VR), particularly in consumer-grade environments. While prior methods rely on invasive signals such as electroencephalography (EEG) for high predictive accuracy, these approaches require specialized hardware and are impractical for real-world applications. In this work, we propose a scalable, deployable framework for personalized cybersickness prediction leveraging only non-invasive signals readily available from commercial VR headsets, including head motion, eye tracking, and physiological responses. Our model employs a modality-specific graph neural network enhanced with a Difference Attention Module to extract temporal-spatial embeddings capturing dynamic changes across modalities. A cross-modal alignment module jointly trains the video encoder to learn personalized traits by aligning video features with sensor-derived representations. Consequently, the model accurately predicts individual cybersickness using only video input during inference. Experimental results show our model achieves 88.4\% accuracy, closely matching EEG-based approaches (89.16\%), while reducing deployment complexity. With an average inference latency of 90ms, our framework supports real-time applications, ideal for integration into consumer-grade VR platforms without compromising personalization or performance. The code will be relesed at https://github.com/U235-Aurora/PTGNN.
♻ ☆ NextStep-1: Toward Autoregressive Image Generation with Continuous Tokens at Scale
Prevailing autoregressive (AR) models for text-to-image generation either rely on heavy, computationally-intensive diffusion models to process continuous image tokens, or employ vector quantization (VQ) to obtain discrete tokens with quantization loss. In this paper, we push the autoregressive paradigm forward with NextStep-1, a 14B autoregressive model paired with a 157M flow matching head, training on discrete text tokens and continuous image tokens with next-token prediction objectives. NextStep-1 achieves state-of-the-art performance for autoregressive models in text-to-image generation tasks, exhibiting strong capabilities in high-fidelity image synthesis. Furthermore, our method shows strong performance in image editing, highlighting the power and versatility of our unified approach. To facilitate open research, we will release our code and models to the community.
comment: Code: https://github.com/stepfun-ai/NextStep-1
♻ ☆ Hybrid Generative Fusion for Efficient and Privacy-Preserving Face Recognition Dataset Generation ICCV 2025
In this paper, we present our approach to the DataCV ICCV Challenge, which centers on building a high-quality face dataset to train a face recognition model. The constructed dataset must not contain identities overlapping with any existing public face datasets. To handle this challenge, we begin with a thorough cleaning of the baseline HSFace dataset, identifying and removing mislabeled or inconsistent identities through a Mixture-of-Experts (MoE) strategy combining face embedding clustering and GPT-4o-assisted verification. We retain the largest consistent identity cluster and apply data augmentation up to a fixed number of images per identity. To further diversify the dataset, we generate synthetic identities using Stable Diffusion with prompt engineering. As diffusion models are computationally intensive, we generate only one reference image per identity and efficiently expand it using Vec2Face, which rapidly produces 49 identity-consistent variants. This hybrid approach fuses GAN-based and diffusion-based samples, enabling efficient construction of a diverse and high-quality dataset. To address the high visual similarity among synthetic identities, we adopt a curriculum learning strategy by placing them early in the training schedule, allowing the model to progress from easier to harder samples. Our final dataset contains 50 images per identity, and all newly generated identities are checked with mainstream face datasets to ensure no identity leakage. Our method achieves \textbf{1st place} in the competition, and experimental results show that our dataset improves model performance across 10K, 20K, and 100K identity scales. Code is available at https://github.com/Ferry-Li/datacv_fr.
comment: This paper has been accpeted to ICCV 2025 DataCV Workshop
♻ ☆ PSScreen: Partially Supervised Multiple Retinal Disease Screening BMVC 2025
Leveraging multiple partially labeled datasets to train a model for multiple retinal disease screening reduces the reliance on fully annotated datasets, but remains challenging due to significant domain shifts across training datasets from various medical sites, and the label absent issue for partial classes. To solve these challenges, we propose PSScreen, a novel Partially Supervised multiple retinal disease Screening model. Our PSScreen consists of two streams and one learns deterministic features and the other learns probabilistic features via uncertainty injection. Then, we leverage the textual guidance to decouple two types of features into disease-wise features and align them via feature distillation to boost the domain generalization ability. Meanwhile, we employ pseudo label consistency between two streams to address the label absent issue and introduce a self-distillation to transfer task-relevant semantics about known classes from the deterministic to the probabilistic stream to further enhance the detection performances. Experiments show that our PSScreen significantly enhances the detection performances on six retinal diseases and the normal state averagely and achieves state-of-the-art results on both in-domain and out-of-domain datasets. Codes are available at https://github.com/boyiZheng99/PSScreen.
comment: Accepted at BMVC 2025 (Oral)
♻ ☆ A polynomial formula for the perspective four points problem
We present a fast and accurate solution to the perspective $n$-points problem, by way of a new approach to the n=4 case. Our solution hinges on a novel separation of variables: given four 3D points and four corresponding 2D points on the camera canvas, we start by finding another set of 3D points, sitting on the rays connecting the camera to the 2D canvas points, so that the six pair-wise distances between these 3D points are as close as possible to the six distances between the original 3D points. This step reduces the perspective problem to an absolute orientation problem, which has a solution via explicit formula. To solve the first problem we set coordinates which are as orientation-free as possible: on the 3D points side our coordinates are the squared distances between the points. On the 2D canvas-points side our coordinates are the dot products of the points after rotating one of them to sit on the optical axis. We then derive the solution with the help of a computer algebra system. Our solution is an order of magnitude faster than state of the art algorithms, while offering similar accuracy under realistic noise. Moreover, our reduction to the absolute orientation problem runs two orders of magnitude faster than other perspective problem solvers, allowing extremely efficient seed rejection when implementing RANSAC.
comment: 17 pages
♻ ☆ WIR3D: Visually-Informed and Geometry-Aware 3D Shape Abstraction ICCV 2025
In this work we present WIR3D, a technique for abstracting 3D shapes through a sparse set of visually meaningful curves in 3D. We optimize the parameters of Bezier curves such that they faithfully represent both the geometry and salient visual features (e.g. texture) of the shape from arbitrary viewpoints. We leverage the intermediate activations of a pre-trained foundation model (CLIP) to guide our optimization process. We divide our optimization into two phases: one for capturing the coarse geometry of the shape, and the other for representing fine-grained features. Our second phase supervision is spatially guided by a novel localized keypoint loss. This spatial guidance enables user control over abstracted features. We ensure fidelity to the original surface through a neural SDF loss, which allows the curves to be used as intuitive deformation handles. We successfully apply our method for shape abstraction over a broad dataset of shapes with varying complexity, geometric structure, and texture, and demonstrate downstream applications for feature control and shape deformation.
comment: ICCV 2025 Oral Project page: https://threedle.github.io/wir3d/
♻ ☆ DAGait: Generalized Skeleton-Guided Data Alignment for Gait Recognition
Gait recognition is emerging as a promising and innovative area within the field of computer vision, widely applied to remote person identification. Although existing gait recognition methods have achieved substantial success in controlled laboratory datasets, their performance often declines significantly when transitioning to wild datasets.We argue that the performance gap can be primarily attributed to the spatio-temporal distribution inconsistencies present in wild datasets, where subjects appear at varying angles, positions, and distances across the frames. To achieve accurate gait recognition in the wild, we propose a skeleton-guided silhouette alignment strategy, which uses prior knowledge of the skeletons to perform affine transformations on the corresponding silhouettes.To the best of our knowledge, this is the first study to explore the impact of data alignment on gait recognition. We conducted extensive experiments across multiple datasets and network architectures, and the results demonstrate the significant advantages of our proposed alignment strategy.Specifically, on the challenging Gait3D dataset, our method achieved an average performance improvement of 7.9% across all evaluated networks. Furthermore, our method achieves substantial improvements on cross-domain datasets, with accuracy improvements of up to 24.0%.
♻ ☆ Degradation-Agnostic Statistical Facial Feature Transformation for Blind Face Restoration in Adverse Weather Conditions
With the increasing deployment of intelligent CCTV systems in outdoor environments, there is a growing demand for face recognition systems optimized for challenging weather conditions. Adverse weather significantly degrades image quality, which in turn reduces recognition accuracy. Although recent face image restoration (FIR) models based on generative adversarial networks (GANs) and diffusion models have shown progress, their performance remains limited due to the lack of dedicated modules that explicitly address weather-induced degradations. This leads to distorted facial textures and structures. To address these limitations, we propose a novel GAN-based blind FIR framework that integrates two key components: local Statistical Facial Feature Transformation (SFFT) and Degradation-Agnostic Feature Embedding (DAFE). The local SFFT module enhances facial structure and color fidelity by aligning the local statistical distributions of low-quality (LQ) facial regions with those of high-quality (HQ) counterparts. Complementarily, the DAFE module enables robust statistical facial feature extraction under adverse weather conditions by aligning LQ and HQ encoder representations, thereby making the restoration process adaptive to severe weather-induced degradations. Experimental results demonstrate that the proposed degradation-agnostic SFFT model outperforms existing state-of-the-art FIR methods based on GAN and diffusion models, particularly in suppressing texture distortions and accurately reconstructing facial structures. Furthermore, both the SFFT and DAFE modules are empirically validated in enhancing structural fidelity and perceptual quality in face restoration under challenging weather scenarios.
♻ ☆ TopoMortar: A dataset to evaluate image segmentation methods focused on topology accuracy BMVC 2025
We present TopoMortar, a brick wall dataset that is the first dataset specifically designed to evaluate topology-focused image segmentation methods, such as topology loss functions. Motivated by the known sensitivity of methods to dataset challenges, such as small training sets, noisy labels, and out-of-distribution test-set images, TopoMortar is created to enable in two ways investigating methods' effectiveness at improving topology accuracy. First, by eliminating dataset challenges that, as we show, impact the effectiveness of topology loss functions. Second, by allowing to represent different dataset challenges in the same dataset, isolating methods' performance from dataset challenges. TopoMortar includes three types of labels (accurate, pseudo-labels, and noisy labels), two fixed training sets (large and small), and in-distribution and out-of-distribution test-set images. We compared eight loss functions on TopoMortar, and we found that clDice achieved the most topologically accurate segmentations, and that the relative advantageousness of the other loss functions depends on the experimental setting. Additionally, we show that data augmentation and self-distillation can elevate Cross entropy Dice loss to surpass most topology loss functions, and that those simple methods can enhance topology loss functions as well. TopoMortar and our code can be found at https://jmlipman.github.io/TopoMortar
comment: Accepted to BMVC 2025 (Oral)
♻ ☆ CCDM: Continuous Conditional Diffusion Models for Image Generation
Continuous Conditional Generative Modeling (CCGM) estimates high-dimensional data distributions, such as images, conditioned on scalar continuous variables (aka regression labels). While Continuous Conditional Generative Adversarial Networks (CcGANs) were designed for this task, their instability during adversarial learning often leads to suboptimal results. Conditional Diffusion Models (CDMs) offer a promising alternative, generating more realistic images, but their diffusion processes, label conditioning, and model fitting procedures are either not optimized for or incompatible with CCGM, making it difficult to integrate CcGANs' vicinal approach. To address these issues, we introduce Continuous Conditional Diffusion Models (CCDMs), the first CDM specifically tailored for CCGM. CCDMs address existing limitations with specially designed conditional diffusion processes, a novel hard vicinal image denoising loss, a customized label embedding method, and efficient conditional sampling procedures. Through comprehensive experiments on four datasets with resolutions ranging from 64x64 to 192x192, we demonstrate that CCDMs outperform state-of-the-art CCGM models, establishing a new benchmark. Ablation studies further validate the model design and implementation, highlighting that some widely used CDM implementations are ineffective for the CCGM task. Our code is publicly available at https://github.com/UBCDingXin/CCDM.
A locally statistical active contour model for SAR image segmentation can be solved by denoising algorithms
In this paper, we propose a novel locally statistical variational active contour model based on I-divergence-TV denoising model, which hybrides geodesic active contour (GAC) model with active contours without edges (ACWE) model, and can be used to segment images corrupted by multiplicative gamma noise. By adding a diffusion term into the level set evolution (LSE) equation of the proposed model, we construct a reaction-diffusion (RD) equation, which can gradually regularize the level set function (LSF) to be piecewise constant in each segment domain and gain the stable solution. We further transform the proposed model into classic ROF model by adding a proximity term. [27] is submitted on 29-Aug-2013, and our early edition ever submitted to TGRS on 12-Jun-2012, Venkatakrishnan et al. [31] proposed their 'pnp algorithm' on 29-May-2013, so Venkatakrishnan and we proposed the 'pnp algorithm' almost simultaneously. Inspired by a fast denoising algorithm proposed by Jia-Zhao recently, we propose two fast fixed point algorithms to solve SAR image segmentation question. Experimental results for real SAR images show that the proposed image segmentation model can efficiently stop the contours at weak or blurred edges, and can automatically detect the exterior and interior boundaries of images with multiplicative gamma noise. The proposed FPRD1/FPRD2 models are about 1/2 (or less than) of the time required for the SBRD model based on the Split Bregman technique.
comment: 19 pages, 15 figures
♻ ☆ When Deep Learning Fails: Limitations of Recurrent Models on Stroke-Based Handwriting for Alzheimer's Disease Detection
Alzheimer's disease detection requires expensive neuroimaging or invasive procedures, limiting accessibility. This study explores whether deep learning can enable non-invasive Alzheimer's disease detection through handwriting analysis. Using a dataset of 34 distinct handwriting tasks collected from healthy controls and Alzheimer's disease patients, we evaluate and compare three recurrent neural architectures (LSTM, GRU, RNN) against traditional machine learning models. A crucial distinction of our approach is that the recurrent models process pre-extracted features from discrete strokes, not raw temporal signals. This violates the assumption of a continuous temporal flow that recurrent networks are designed to capture. Results reveal that they exhibit poor specificity and high variance. Traditional ensemble methods significantly outperform all deep architectures, achieving higher accuracy with balanced metrics. This demonstrates that recurrent architectures, designed for continuous temporal sequences, fail when applied to feature vectors extracted from ambiguously segmented strokes. Despite their complexity, deep learning models cannot overcome the fundamental disconnect between their architectural assumptions and the discrete, feature-based nature of stroke-level handwriting data. Although performance is limited, the study highlights several critical issues in data representation and model compatibility, pointing to valuable directions for future research.
♻ ☆ CPCL: Cross-Modal Prototypical Contrastive Learning for Weakly Supervised Text-based Person Retrieval
Weakly supervised text-based person retrieval seeks to retrieve images of a target person using textual descriptions, without relying on identity annotations and is more challenging and practical. The primary challenge is the intra-class differences, encompassing intra-modal feature variations and cross-modal semantic gaps. Prior works have focused on instance-level samples and ignored prototypical features of each person which are intrinsic and invariant. Toward this, we propose a Cross-Modal Prototypical Contrastive Learning (CPCL) method. In practice, the CPCL introduces the CLIP model to weakly supervised text-based person retrieval to map visual and textual instances into a shared latent space. Subsequently, the proposed Prototypical Multi-modal Memory (PMM) module captures associations between heterogeneous modalities of image-text pairs belonging to the same person through the Hybrid Cross-modal Matching (HCM) module in a many-to-many mapping fashion. Moreover, the Outlier Pseudo Label Mining (OPLM) module further distinguishes valuable outlier samples from each modality, enhancing the creation of more reliable clusters by mining implicit relationships between image-text pairs. We conduct extensive experiments on popular benchmarks of weakly supervised text-based person retrieval, which validate the effectiveness, generalizability of CPCL.
comment: 9 pages, 6 figures, under peer review
♻ ☆ Learn 3D VQA Better with Active Selection and Reannotation ACM MM 2025
3D Visual Question Answering (3D VQA) is crucial for enabling models to perceive the physical world and perform spatial reasoning. In 3D VQA, the free-form nature of answers often leads to improper annotations that can confuse or mislead models when training on the entire dataset. While other text generation tasks can mitigate this issue by learning on large-scale datasets, the scarcity of 3D scene data enlarges the negative effect of misleading annotations. Although active learning strategies can select valuable instances for training, they fail to identify and resolve misleading labels, which the oracle inevitably provides in practice. To address this issue, we propose a multi-turn interactive active learning strategy. This strategy selects data based on models' semantic uncertainty to form a solid knowledge foundation more effectively and actively requests reannotation from an oracle to resolve potentially misleading labels. For uncertainty assessment, we utilize a variance-based metric that takes semantic relationships between terms into consideration, thus avoiding the uniform inter-class similarity assumption of previous assessment metrics. Extensive experiments exhibit better model performance and a substantial reduction in training costs, with a halving of training costs for achieving relatively high accuracy. The code is available at https://github.com/fz-zsl/AQuA.
comment: 13 pages, 16 figures, accepted by ACM MM 2025
♻ ☆ Mapping the Unseen: Unified Promptable Panoptic Mapping with Dynamic Labeling using Foundation Models
In robotics and computer vision, semantic mapping remains a critical challenge for machines to comprehend complex environments. Traditional panoptic mapping approaches are constrained by fixed labels, limiting their ability to handle novel objects. We present Unified Promptable Panoptic Mapping (UPPM), which leverages foundation models for dynamic labeling without additional training. UPPM is evaluated across three comprehensive levels: Segmentation-to-Map, Map-to-Map, and Segmentation-to-Segmentation. Results demonstrate UPPM attains exceptional geometry reconstruction accuracy (0.61cm on the Flat dataset), the highest panoptic quality (0.414), and better performance compared to state-of-the-art segmentation methods. Furthermore, ablation studies validate the contributions of unified semantics, custom NMS, and blurry frame filtering, with the custom NMS improving the completion ratio by 8.27% on the Flat dataset. UPPM demonstrates effective scene reconstruction with rich semantic labeling across diverse datasets.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Inverse Bridge Matching Distillation
Learning diffusion bridge models is easy; making them fast and practical is an art. Diffusion bridge models (DBMs) are a promising extension of diffusion models for applications in image-to-image translation. However, like many modern diffusion and flow models, DBMs suffer from the problem of slow inference. To address it, we propose a novel distillation technique based on the inverse bridge matching formulation and derive the tractable objective to solve it in practice. Unlike previously developed DBM distillation techniques, the proposed method can distill both conditional and unconditional types of DBMs, distill models in a one-step generator, and use only the corrupted images for training. We evaluate our approach for both conditional and unconditional types of bridge matching on a wide set of setups, including super-resolution, JPEG restoration, sketch-to-image, and other tasks, and show that our distillation technique allows us to accelerate the inference of DBMs from 4x to 100x and even provide better generation quality than used teacher model depending on particular setup. We provide the code at https://github.com/ngushchin/IBMD
♻ ☆ TRIDE: A Text-assisted Radar-Image weather-aware fusion network for Depth Estimation
Depth estimation, essential for autonomous driving, seeks to interpret the 3D environment surrounding vehicles. The development of radar sensors, known for their cost-efficiency and robustness, has spurred interest in radar-camera fusion-based solutions. However, existing algorithms fuse features from these modalities without accounting for weather conditions, despite radars being known to be more robust than cameras under adverse weather. Additionally, while Vision-Language models have seen rapid advancement, utilizing language descriptions alongside other modalities for depth estimation remains an open challenge. This paper first introduces a text-generation strategy along with feature extraction and fusion techniques that can assist monocular depth estimation pipelines, leading to improved accuracy across different algorithms on the KITTI dataset. Building on this, we propose TRIDE, a radar-camera fusion algorithm that enhances text feature extraction by incorporating radar point information. To address the impact of weather on sensor performance, we introduce a weather-aware fusion block that adaptively adjusts radar weighting based on current weather conditions. Our method, benchmarked on the nuScenes dataset, demonstrates performance gains over the state-of-the-art, achieving a 12.87% improvement in MAE and a 9.08% improvement in RMSE. Code: https://github.com/harborsarah/TRIDE
comment: Accepted by TMLR (2025.08)
♻ ☆ PixelPonder: Dynamic Patch Adaptation for Enhanced Multi-Conditional Text-to-Image Generation
Recent advances in diffusion-based text-to-image generation have demonstrated promising results through visual condition control. However, existing ControlNet-like methods struggle with compositional visual conditioning - simultaneously preserving semantic fidelity across multiple heterogeneous control signals while maintaining high visual quality, where they employ separate control branches that often introduce conflicting guidance during the denoising process, leading to structural distortions and artifacts in generated images. To address this issue, we present PixelPonder, a novel unified control framework, which allows for effective control of multiple visual conditions under a single control structure. Specifically, we design a patch-level adaptive condition selection mechanism that dynamically prioritizes spatially relevant control signals at the sub-region level, enabling precise local guidance without global interference. Additionally, a time-aware control injection scheme is deployed to modulate condition influence according to denoising timesteps, progressively transitioning from structural preservation to texture refinement and fully utilizing the control information from different categories to promote more harmonious image generation. Extensive experiments demonstrate that PixelPonder surpasses previous methods across different benchmark datasets, showing superior improvement in spatial alignment accuracy while maintaining high textual semantic consistency.
♻ ☆ TextCrafter: Accurately Rendering Multiple Texts in Complex Visual Scenes
This paper explores the task of Complex Visual Text Generation (CVTG), which centers on generating intricate textual content distributed across diverse regions within visual images. In CVTG, image generation models often rendering distorted and blurred visual text or missing some visual text. To tackle these challenges, we propose TextCrafter, a novel multi-visual text rendering method. TextCrafter employs a progressive strategy to decompose complex visual text into distinct components while ensuring robust alignment between textual content and its visual carrier. Additionally, it incorporates a token focus enhancement mechanism to amplify the prominence of visual text during the generation process. TextCrafter effectively addresses key challenges in CVTG tasks, such as text confusion, omissions, and blurriness. Moreover, we present a new benchmark dataset, CVTG-2K, tailored to rigorously evaluate the performance of generative models on CVTG tasks. Extensive experiments demonstrate that our method surpasses state-of-the-art approaches.
♻ ☆ Best Foot Forward: Robust Foot Reconstruction in-the-wild ICCV 2025
Accurate 3D foot reconstruction is crucial for personalized orthotics, digital healthcare, and virtual fittings. However, existing methods struggle with incomplete scans and anatomical variations, particularly in self-scanning scenarios where user mobility is limited, making it difficult to capture areas like the arch and heel. We present a novel end-to-end pipeline that refines Structure-from-Motion (SfM) reconstruction. It first resolves scan alignment ambiguities using SE(3) canonicalization with a viewpoint prediction module, then completes missing geometry through an attention-based network trained on synthetically augmented point clouds. Our approach achieves state-of-the-art performance on reconstruction metrics while preserving clinically validated anatomical fidelity. By combining synthetic training data with learned geometric priors, we enable robust foot reconstruction under real-world capture conditions, unlocking new opportunities for mobile-based 3D scanning in healthcare and retail.
comment: ICCV 2025 Workshop on Advanced Perception for Autonomous Healthcare
♻ ☆ Diving into the Fusion of Monocular Priors for Generalized Stereo Matching
The matching formulation makes it naturally hard for the stereo matching to handle ill-posed regions like occlusions and non-Lambertian surfaces. Fusing monocular priors has been proven helpful for ill-posed matching, but the biased monocular prior learned from small stereo datasets constrains the generalization. Recently, stereo matching has progressed by leveraging the unbiased monocular prior from the vision foundation model (VFM) to improve the generalization in ill-posed regions. We dive into the fusion process and observe three main problems limiting the fusion of the VFM monocular prior. The first problem is the misalignment between affine-invariant relative monocular depth and absolute depth of disparity. Besides, when we use the monocular feature in an iterative update structure, the over-confidence in the disparity update leads to local optima results. A direct fusion of a monocular depth map could alleviate the local optima problem, but noisy disparity results computed at the first several iterations will misguide the fusion. In this paper, we propose a binary local ordering map to guide the fusion, which converts the depth map into a binary relative format, unifying the relative and absolute depth representation. The computed local ordering map is also used to re-weight the initial disparity update, resolving the local optima and noisy problem. In addition, we formulate the final direct fusion of monocular depth to the disparity as a registration problem, where a pixel-wise linear regression module can globally and adaptively align them. Our method fully exploits the monocular prior to support stereo matching results effectively and efficiently. We significantly improve the performance from the experiments when generalizing from SceneFlow to Middlebury and Booster datasets while barely reducing the efficiency.
comment: Code: https://github.com/YaoChengTang/Diving-into-the-Fusion-of-Monocular-Priors-for-Generalized-Stereo-Matching
♻ ☆ Optimization of Prompt Learning via Multi-Knowledge Representation for Vision-Language Models
Vision-Language Models (VLMs), such as CLIP, play a foundational role in various cross-modal applications. To fully leverage VLMs' potential in adapting to downstream tasks, context optimization methods like Prompt Tuning are essential. However, one key limitation is the lack of diversity in prompt templates, whether they are hand-crafted or learned through additional modules. This limitation restricts the capabilities of pretrained VLMs and can result in incorrect predictions in downstream tasks. To address this challenge, we propose Context Optimization with Multi-Knowledge Representation (CoKnow), a framework that enhances Prompt Learning for VLMs with rich contextual knowledge. To facilitate CoKnow during inference, we trained lightweight semantic knowledge mappers, which are capable of generating Multi-Knowledge Representation for an input image without requiring additional priors. Experimentally, We conducted extensive experiments on 11 publicly available datasets, demonstrating that CoKnow outperforms a series of previous methods.
♻ ☆ V-RoAst: Visual Road Assessment. Can VLM be a Road Safety Assessor Using the iRAP Standard?
Road safety assessments are critical yet costly, especially in Low- and Middle-Income Countries (LMICs), where most roads remain unrated. Traditional methods require expert annotation and training data, while supervised learning-based approaches struggle to generalise across regions. In this paper, we introduce \textit{V-RoAst}, a zero-shot Visual Question Answering (VQA) framework using Vision-Language Models (VLMs) to classify road safety attributes defined by the iRAP standard. We introduce the first open-source dataset from ThaiRAP, consisting of over 2,000 curated street-level images from Thailand annotated for this task. We evaluate Gemini-1.5-flash and GPT-4o-mini on this dataset and benchmark their performance against VGGNet and ResNet baselines. While VLMs underperform on spatial awareness, they generalise well to unseen classes and offer flexible prompt-based reasoning without retraining. Our results show that VLMs can serve as automatic road assessment tools when integrated with complementary data. This work is the first to explore VLMs for zero-shot infrastructure risk assessment and opens new directions for automatic, low-cost road safety mapping. Code and dataset: https://github.com/PongNJ/V-RoAst.
♻ ☆ From Intent to Execution: Multimodal Chain-of-Thought Reinforcement Learning for Precise CAD Code Generation
Computer-Aided Design (CAD) plays a vital role in engineering and manufacturing, yet current CAD workflows require extensive domain expertise and manual modeling effort. Recent advances in large language models (LLMs) have made it possible to generate code from natural language, opening new opportunities for automating parametric 3D modeling. However, directly translating human design intent into executable CAD code remains highly challenging, due to the need for logical reasoning, syntactic correctness, and numerical precision. In this work, we propose CAD-RL, a multimodal Chain-of-Thought (CoT) guided reinforcement learning post training framework for CAD modeling code generation. Our method combines CoT-based Cold Start with goal-driven reinforcement learning post training using three task-specific rewards: executability reward, geometric accuracy reward, and external evaluation reward. To ensure stable policy learning under sparse and high-variance reward conditions, we introduce three targeted optimization strategies: Trust Region Stretch for improved exploration, Precision Token Loss for enhanced dimensions parameter accuracy, and Overlong Filtering to reduce noisy supervision. To support training and benchmarking, we release ExeCAD, a noval dataset comprising 16,540 real-world CAD examples with paired natural language and structured design language descriptions, executable CADQuery scripts, and rendered 3D models. Experiments demonstrate that CAD-RL achieves significant improvements in reasoning quality, output precision, and code executability over existing VLMs.
♻ ☆ Deep Positive-Negative Prototypes for Adversarially Robust Discriminative Prototypical Learning
Despite the advantages of discriminative prototype-based methods, their role in adversarial robustness remains underexplored. Meanwhile, current adversarial training methods predominantly focus on robustness against adversarial attacks without explicitly leveraging geometric structures in the latent space, usually resulting in reduced accuracy on the original clean data. We propose a novel framework named Adversarially trained Deep Positive-Negative Prototypes (Adv-DPNP), which integrates discriminative prototype-based learning with adversarial training. Adv-DPNP uses unified class prototypes that serve as both classifier weights and robust anchors in the latent space. Moreover, a novel dual-branch training mechanism maintains stable prototypes by updating them exclusively with clean data, while the feature extractor is trained on both clean and adversarial inputs to increase invariance to adversarial perturbations. In addition, we use a composite loss that combines positive-prototype alignment, negative-prototype repulsion, and consistency regularization to further enhance discrimination, adversarial robustness, and clean accuracy. Extensive experiments on standard benchmarks (CIFAR-10/100 and SVHN) confirm that Adv-DPNP improves clean accuracy over state-of-the-art defenses and baseline methods, while maintaining competitive or superior robustness under a suite of widely used attacks, including FGSM, PGD, C\&W, and AutoAttack. We also evaluate robustness to common corruptions on CIFAR-10-C, where Adv-DPNP achieves the highest average accuracy across severities and corruption types. Additionally, we provide an in-depth analysis of the discriminative quality of the learned feature representations, highlighting the effectiveness of Adv-DPNP in maintaining compactness and clear separation in the latent space.
comment: This version substantially revises the manuscript, including a new title and updated experimental results
♻ ☆ Co-Paced Learning Strategy Based on Confidence for Flying Bird Object Detection Model Training
The flying bird objects captured by surveillance cameras exhibit varying levels of recognition difficulty due to factors such as their varying sizes or degrees of similarity to the background. To alleviate the negative impact of hard samples on training the Flying Bird Object Detection (FBOD) model for surveillance videos, we propose the Co-Paced Learning strategy Based on Confidence (CPL-BC) and apply it to the training process of the FBOD model. This strategy involves maintaining two models with identical structures but different initial parameter configurations that collaborate with each other to select easy samples for training, where the prediction confidence exceeds a set threshold. As training progresses, the strategy gradually lowers the threshold, thereby gradually enhancing the model's ability to recognize objects, from easier to more hard ones. Prior to applying CPL-BC, we pre-trained the two FBOD models to equip them with the capability to assess the difficulty of flying bird object samples. Experimental results on two different datasets of flying bird objects in surveillance videos demonstrate that, compared to other model learning strategies, CPL-BC significantly improves detection accuracy, thereby verifying the method's effectiveness and advancement.
♻ ☆ Diffusion Based Ambiguous Image Segmentation SC
Medical image segmentation often involves inherent uncertainty due to variations in expert annotations. Capturing this uncertainty is an important goal and previous works have used various generative image models for the purpose of representing the full distribution of plausible expert ground truths. In this work, we explore the design space of diffusion models for generative segmentation, investigating the impact of noise schedules, prediction types, and loss weightings. Notably, we find that making the noise schedule harder with input scaling significantly improves performance. We conclude that x- and v-prediction outperform epsilon-prediction, likely because the diffusion process is in the discrete segmentation domain. Many loss weightings achieve similar performance as long as they give enough weight to the end of the diffusion process. We base our experiments on the LIDC-IDRI lung lesion dataset and obtain state-of-the-art (SOTA) performance. Additionally, we introduce a randomly cropped variant of the LIDC-IDRI dataset that is better suited for uncertainty in image segmentation. Our model also achieves SOTA in this harder setting.
comment: Accepted at SCIA25
♻ ☆ LeAdQA: LLM-Driven Context-Aware Temporal Grounding for Video Question Answering
Video Question Answering (VideoQA) requires identifying sparse critical moments in long videos and reasoning about their causal relationships to answer semantically complex questions. While recent advances in multimodal learning have improved alignment and fusion, current approaches remain limited by two prevalent but fundamentally flawed strategies: (1) task-agnostic sampling indiscriminately processes all frames, overwhelming key events with irrelevant content; and (2) heuristic retrieval captures superficial patterns but misses causal-temporal structures needed for complex reasoning. To address these challenges, we introduce LeAdQA, an innovative approach that bridges these gaps through synergizing causal-aware query refinement with fine-grained visual grounding. Our method first leverages LLMs to reformulate question-option pairs, resolving causal ambiguities and sharpening temporal focus. These refined queries subsequently direct a temporal grounding model to precisely retrieve the most salient segments, complemented by an adaptive fusion mechanism dynamically integrating the evidence to maximize relevance. The integrated visual-textual cues are then processed by an MLLM to generate accurate, contextually-grounded answers. Experiments on NExT-QA, IntentQA, and NExT-GQA demonstrate that our method's precise visual grounding substantially enhances the understanding of video-question relationships, achieving state-of-the-art (SOTA) performance on complex reasoning tasks while maintaining computational efficiency.
♻ ☆ Flexible Tool Selection through Low-dimensional Attribute Alignment of Vision and Language
Flexible tool selection reflects a complex cognitive ability that distinguishes humans from other species, yet computational models that capture this ability remain underdeveloped. We developed a framework using low-dimensional attribute representations to bridge visual tool perception and linguistic task understanding. We constructed a comprehensive dataset (ToolNet) containing 115 common tools labeled with 13 carefully designed attributes spanning physical, functional, and psychological properties, paired with natural language scenarios describing tool usage. Visual encoders (ResNet or ViT) extract attributes from tool images while fine-tuned language models (GPT-2, LLaMA, DeepSeek) derive required attributes from task descriptions. Our approach achieves 74% accuracy in tool selection tasks-significantly outperforming direct tool matching (20%) and smaller multimodal models (21%-58%), while approaching performance of much larger models like GPT-4o (73%) with substantially fewer parameters. Human evaluation studies validate our framework's alignment with human decision-making patterns, and generalization experiments demonstrate effective performance on novel tool categories. Ablation studies revealed that manipulation-related attributes (graspability, elongation, hand-relatedness) consistently prove most critical across modalities. This work provides a parameter-efficient, interpretable solution that mimics human-like tool cognition, advancing both cognitive science understanding and practical applications in tool selection tasks.
♻ ☆ Novel Object 6D Pose Estimation with a Single Reference View
Existing novel object 6D pose estimation methods typically rely on CAD models or dense reference views, which are both difficult to acquire. Using only a single reference view is more scalable, but challenging due to large pose discrepancies and limited geometric and spatial information. To address these issues, we propose a Single-Reference-based novel object 6D (SinRef-6D) pose estimation method. Our key idea is to iteratively establish point-wise alignment in a common coordinate system based on state space models (SSMs). Specifically, iterative object-space point-wise alignment can effectively handle large pose discrepancies, while our proposed RGB and Points SSMs can capture long-range dependencies and spatial information from a single view, offering linear complexity and superior spatial modeling capability. Once pre-trained on synthetic data, SinRef-6D can estimate the 6D pose of a novel object using only a single reference view, without requiring retraining or a CAD model. Extensive experiments on six popular datasets and real-world robotic scenes demonstrate that we achieve on-par performance with CAD-based and dense reference view-based methods, despite operating in the more challenging single reference setting. Code will be released at https://github.com/CNJianLiu/SinRef-6D.
comment: 17 pages, 12 figures (including supplementary material)
♻ ☆ DualResolution Residual Architecture with Artifact Suppression for Melanocytic Lesion Segmentation MICCAI
Lesion segmentation, in contrast to natural scene segmentation, requires handling subtle variations in texture and color, frequent imaging artifacts (such as hairs, rulers, and bubbles), and a critical need for precise boundary localization to aid in accurate diagnosis. The accurate delineation of melanocytic tumors in dermoscopic images is a crucial component of automated skin cancer screening systems and clinical decision support. In this paper, we present a novel dual-resolution architecture inspired by ResNet, specifically tailored for the segmentation of melanocytic tumors. Our approach incorporates a high-resolution stream that preserves fine boundary details, alongside a complementary pooled stream that captures multi-scale contextual information for robust lesion recognition. These two streams are closely integrated through boundary-aware residual connections, which inject edge information into deep feature maps, and a channel attention mechanism that adapts the model's sensitivity to color and texture variations in dermoscopic images. To tackle common imaging artifacts and the challenges posed by small clinical datasets, we introduce a lightweight artifact suppression block and a multi-task training strategy. This strategy combines the Dice-Tversky loss with an explicit boundary loss and a contrastive regularizer to enhance feature stability. This unified design enables the model to generate pixel-accurate segmentation masks without the need for extensive post-processing or complex pre-training. Extensive evaluation on public dermoscopic benchmarks reveals that our method significantly enhances boundary precision and clinically relevant segmentation metrics, outperforming traditional encoder-decoder baselines. This makes our approach a valuable component for building automated melanoma assessment systems.
comment: MICCAIA
♻ ☆ VesselRW: Weakly Supervised Subcutaneous Vessel Segmentation via Learned Random Walk Propagation
The task of parsing subcutaneous vessels in clinical images is often hindered by the high cost and limited availability of ground truth data, as well as the challenge of low contrast and noisy vessel appearances across different patients and imaging modalities. In this work, we propose a novel weakly supervised training framework specifically designed for subcutaneous vessel segmentation. This method utilizes low-cost, sparse annotations such as centerline traces, dot markers, or short scribbles to guide the learning process. These sparse annotations are expanded into dense probabilistic supervision through a differentiable random walk label propagation model, which integrates vesselness cues and tubular continuity priors driven by image data. The label propagation process results in per-pixel hitting probabilities and uncertainty estimates, which are incorporated into an uncertainty-weighted loss function to prevent overfitting in ambiguous areas. Notably, the label propagation model is trained jointly with a CNN-based segmentation network, allowing the system to learn vessel boundaries and continuity constraints without the need for explicit edge supervision. Additionally, we introduce a topology-aware regularizer that encourages centerline connectivity and penalizes irrelevant branches, further enhancing clinical applicability. Our experiments on clinical subcutaneous imaging datasets demonstrate that our approach consistently outperforms both naive sparse-label training and traditional dense pseudo-labeling methods, yielding more accurate vascular maps and better-calibrated uncertainty, which is crucial for clinical decision-making. This method significantly reduces the annotation workload while maintaining clinically relevant vessel topology.
♻ ☆ Not All Tokens and Heads Are Equally Important: Dual-Level Attention Intervention for Hallucination Mitigation
Large vision-language models (LVLMs) have demonstrated impressive capabilities across diverse multimodal tasks, yet they remain highly susceptible to visual hallucinations (VH), often producing confident but inaccurate descriptions of visual content. Building on the insight that not all tokens and attention heads contribute equally to VH mitigation, we introduce VisFlow, a lightweight and training-free framework that alleviates hallucinations by directly modulating attention patterns during inference. To address two primary challenges of VH, namely insufficient visual attention and the dominance of language priors, we identify three problematic attention behaviors in LVLMs: (1) disproportionate allocation of attention to uninformative or trailing visual tokens, (2) over-dependence on the previously generated token, and (3) excessive fixation on system prompts that hinders multimodal integration. To overcome these issues, VisFlow introduces a dual-level Attention Intervention, consisting of Token-level Attention Intervention (TAI), which reinforces attention to salient visual regions, and Head-level Attention Intervention (HAI), which suppresses undue focus on system prompts and adjacent text tokens. Together, these interventions strengthen visual alignment while reducing linguistic bias. Extensive experiments across diverse models and benchmarks demonstrate that VisFlow effectively mitigates hallucinations with minimal computational overhead.
♻ ☆ SLGaussian: Fast Language Gaussian Splatting in Sparse Views ACM MM 2025
3D semantic field learning is crucial for applications like autonomous navigation, AR/VR, and robotics, where accurate comprehension of 3D scenes from limited viewpoints is essential. Existing methods struggle under sparse view conditions, relying on inefficient per-scene multi-view optimizations, which are impractical for many real-world tasks. To address this, we propose SLGaussian, a feed-forward method for constructing 3D semantic fields from sparse viewpoints, allowing direct inference of 3DGS-based scenes. By ensuring consistent SAM segmentations through video tracking and using low-dimensional indexing for high-dimensional CLIP features, SLGaussian efficiently embeds language information in 3D space, offering a robust solution for accurate 3D scene understanding under sparse view conditions. In experiments on two-view sparse 3D object querying and segmentation in the LERF and 3D-OVS datasets, SLGaussian outperforms existing methods in chosen IoU, Localization Accuracy, and mIoU. Moreover, our model achieves scene inference in under 30 seconds and open-vocabulary querying in just 0.011 seconds per query.
comment: Accepted by ACM MM 2025. Project page: https://chenkangjie1123.github.io/SLGaussian.github.io/
♻ ☆ InterRVOS: Interaction-aware Referring Video Object Segmentation
Referring video object segmentation (RVOS) aims to segment objects in a video described by a natural language expression. However, most existing approaches focus on segmenting only the referred object (typically the actor), even when the expression clearly describes an interaction involving multiple objects with distinct roles. For instance, "A throwing B" implies a directional interaction, but standard RVOS segments only the actor (A), neglecting other involved target objects (B). In this paper, we introduce Interaction-aware Referring Video Object Segmentation (InterRVOS), a novel task that focuses on the modeling of interactions. It requires the model to segment the actor and target objects separately, reflecting their asymmetric roles in an interaction. This task formulation enables fine-grained understanding of object relationships, as many video events are defined by such relationships rather than individual objects. To support this task, we propose a new evaluation protocol that separately evaluates actor and target segmentation, enabling more accurate assessment of the model's ability to distinguish and segment actor and target roles. We also present InterRVOS-127K, a large-scale dataset with over 127K automatically annotated expressions, including interaction expressions annotated with distinct masks for actor and target objects. Furthermore, we develop ReVIOSa, an MLLM-based architecture that introduces interaction-aware special tokens and leverages an attention mask loss to enhance role-specific segmentation. Extensive experiments show that ReVIOSa not only outperforms existing baselines on our proposed InterRVOS-127K evaluation set, but also achieves strong performance on standard RVOS benchmarks. Our project page is available at: https://cvlab-kaist.github.io/InterRVOS.
♻ ☆ InsightX Agent: An LMM-based Agentic Framework with Integrated Tools for Reliable X-ray NDT Analysis
Non-destructive testing (NDT), particularly X-ray inspection, is vital for industrial quality assurance, yet existing deep-learning-based approaches often lack interactivity, interpretability, and the capacity for critical self-assessment, limiting their reliability and operator trust. To address these shortcomings, this paper proposes InsightX Agent, a novel LMM-based agentic framework designed to deliver reliable, interpretable, and interactive X-ray NDT analysis. Unlike typical sequential pipelines, InsightX Agent positions a Large Multimodal Model (LMM) as a central orchestrator, coordinating between the Sparse Deformable Multi-Scale Detector (SDMSD) and the Evidence-Grounded Reflection (EGR) tool. The SDMSD generates dense defect region proposals for multi-scale feature maps and sparsifies them through Non-Maximum Suppression (NMS), optimizing detection of small, dense targets in X-ray images while maintaining computational efficiency. The EGR tool guides the LMM agent through a chain-of-thought-inspired review process, incorporating context assessment, individual defect analysis, false positive elimination, confidence recalibration and quality assurance to validate and refine the SDMSD's initial proposals. By strategically employing and intelligently using tools, InsightX Agent moves beyond passive data processing to active reasoning, enhancing diagnostic reliability and providing interpretations that integrate diverse information sources. Experimental evaluations on the GDXray+ dataset demonstrate that InsightX Agent not only achieves a high object detection F1-score of 96.35% but also offers significantly improved interpretability and trustworthiness in its analyses, highlighting the transformative potential of agentic LLM frameworks for industrial inspection tasks.
♻ ☆ Embodied Image Quality Assessment for Robotic Intelligence
Image Quality Assessment (IQA) of User-Generated Content (UGC) is a critical technique for human Quality of Experience (QoE). However, does the the image quality of Robot-Generated Content (RGC) demonstrate traits consistent with the Moravec paradox, potentially conflicting with human perceptual norms? Human subjective scoring is more based on the attractiveness of the image. Embodied agent are required to interact and perceive in the environment, and finally perform specific tasks. Visual images as inputs directly influence downstream tasks. In this paper, we explore the perception mechanism of embodied robots for image quality. We propose the first Embodied Preference Database (EPD), which contains 12,500 distorted image annotations. We establish assessment metrics based on the downstream tasks of robot. In addition, there is a gap between UGC and RGC. To address this, we propose a novel Multi-scale Attention Embodied Image Quality Assessment called MA-EIQA. For the proposed EPD dataset, this is the first no-reference IQA model designed for embodied robot. Finally, the performance of mainstream IQA algorithms on EPD dataset is verified. The experiments demonstrate that quality assessment of embodied images is different from that of humans. We sincerely hope that the EPD can contribute to the development of embodied AI by focusing on image quality assessment. The benchmark is available at https://github.com/Jianbo-maker/EPD_benchmark.
♻ ☆ Boosting Active Defense Persistence: A Two-Stage Defense Framework Combining Interruption and Poisoning Against Deepfake
Active defense strategies have been developed to counter the threat of deepfake technology. However, a primary challenge is their lack of persistence, as their effectiveness is often short-lived. Attackers can bypass these defenses by simply collecting protected samples and retraining their models. This means that static defenses inevitably fail when attackers retrain their models, which severely limits practical use. We argue that an effective defense not only distorts forged content but also blocks the model's ability to adapt, which occurs when attackers retrain their models on protected images. To achieve this, we propose an innovative Two-Stage Defense Framework (TSDF). Benefiting from the intensity separation mechanism designed in this paper, the framework uses dual-function adversarial perturbations to perform two roles. First, it can directly distort the forged results. Second, it acts as a poisoning vehicle that disrupts the data preparation process essential for an attacker's retraining pipeline. By poisoning the data source, TSDF aims to prevent the attacker's model from adapting to the defensive perturbations, thus ensuring the defense remains effective long-term. Comprehensive experiments show that the performance of traditional interruption methods degrades sharply when it is subjected to adversarial retraining. However, our framework shows a strong dual defense capability, which can improve the persistence of active defense. Our code will be available at https://github.com/vpsg-research/TSDF.
♻ ☆ Quadratic Gaussian Splatting: High Quality Surface Reconstruction with Second-order Geometric Primitives
We propose Quadratic Gaussian Splatting (QGS), a novel representation that replaces static primitives with deformable quadric surfaces (e.g., ellipse, paraboloids) to capture intricate geometry. Unlike prior works that rely on Euclidean distance for primitive density modeling--a metric misaligned with surface geometry under deformation--QGS introduces geodesic distance-based density distributions. This innovation ensures that density weights adapt intrinsically to the primitive curvature, preserving consistency during shape changes (e.g., from planar disks to curved paraboloids). By solving geodesic distances in closed form on quadric surfaces, QGS enables surface-aware splatting, where a single primitive can represent complex curvature that previously required dozens of planar surfels, potentially reducing memory usage while maintaining efficient rendering via fast ray-quadric intersection. Experiments on DTU, Tanks and Temples, and MipNeRF360 datasets demonstrate state-of-the-art surface reconstruction, with QGS reducing geometric error (chamfer distance) by 33% over 2DGS and 27% over GOF on the DTU dataset. Crucially, QGS retains competitive appearance quality, bridging the gap between geometric precision and visual fidelity for applications like robotics and immersive reality.
comment: 16pages,18figures
♻ ☆ Unified and Semantically Grounded Domain Adaptation for Medical Image Segmentation
Most prior unsupervised domain adaptation approaches for medical image segmentation are narrowly tailored to either the source-accessible setting, where adaptation is guided by source-target alignment, or the source-free setting, which typically resorts to implicit supervision mechanisms such as pseudo-labeling and model distillation. This substantial divergence in methodological designs between the two settings reveals an inherent flaw: the lack of an explicit, structured construction of anatomical knowledge that naturally generalizes across domains and settings. To bridge this longstanding divide, we introduce a unified, semantically grounded framework that supports both source-accessible and source-free adaptation. Fundamentally distinct from all prior works, our framework's adaptability emerges naturally as a direct consequence of the model architecture, without the need for any handcrafted adaptation strategies. Specifically, our model learns a domain-agnostic probabilistic manifold as a global space of anatomical regularities, mirroring how humans establish visual understanding. Thus, the structural content in each image can be interpreted as a canonical anatomy retrieved from the manifold and a spatial transformation capturing individual-specific geometry. This disentangled, interpretable formulation enables semantically meaningful prediction with intrinsic adaptability. Extensive experiments on challenging cardiac and abdominal datasets show that our framework achieves state-of-the-art results in both settings, with source-free performance closely approaching its source-accessible counterpart, a level of consistency rarely observed in prior works. Beyond quantitative improvement, we demonstrate strong interpretability of the proposed framework via manifold traversal for smooth shape manipulation.
♻ ☆ Latent Expression Generation for Referring Image Segmentation and Grounding ICCV 2025
Visual grounding tasks, such as referring image segmentation (RIS) and referring expression comprehension (REC), aim to localize a target object based on a given textual description. The target object in an image can be described in multiple ways, reflecting diverse attributes such as color, position, and more. However, most existing methods rely on a single textual input, which captures only a fraction of the rich information available in the visual domain. This mismatch between rich visual details and sparse textual cues can lead to the misidentification of similar objects. To address this, we propose a novel visual grounding framework that leverages multiple latent expressions generated from a single textual input by incorporating complementary visual details absent from the original description. Specifically, we introduce subject distributor and visual concept injector modules to embed both shared-subject and distinct-attributes concepts into the latent representations, thereby capturing unique and target-specific visual cues. We also propose a positive-margin contrastive learning strategy to align all latent expressions with the original text while preserving subtle variations. Experimental results show that our method not only outperforms state-of-the-art RIS and REC approaches on multiple benchmarks but also achieves outstanding performance on the generalized referring expression segmentation (GRES) benchmark.
comment: Accepted to ICCV 2025
♻ ☆ Vibration-Based Energy Metric for Restoring Needle Alignment in Autonomous Robotic Ultrasound IROS2025
Precise needle alignment is essential for percutaneous needle insertion in robotic ultrasound-guided procedures. However, inherent challenges such as speckle noise, needle-like artifacts, and low image resolution make robust needle detection difficult, particularly when visibility is reduced or lost. In this paper, we propose a method to restore needle alignment when the ultrasound imaging plane and the needle insertion plane are misaligned. Unlike many existing approaches that rely heavily on needle visibility in ultrasound images, our method uses a more robust feature by periodically vibrating the needle using a mechanical system. Specifically, we propose a vibration-based energy metric that remains effective even when the needle is fully out of plane. Using this metric, we develop a control strategy to reposition the ultrasound probe in response to misalignments between the imaging plane and the needle insertion plane in both translation and rotation. Experiments conducted on ex-vivo porcine tissue samples using a dual-arm robotic ultrasound-guided needle insertion system demonstrate the effectiveness of the proposed approach. The experimental results show the translational error of 0.41$\pm$0.27 mm and the rotational error of 0.51$\pm$0.19 degrees.
comment: Accepted by IROS2025
♻ ☆ Translation of Text Embedding via Delta Vector to Suppress Strongly Entangled Content in Text-to-Image Diffusion Models
Text-to-Image (T2I) diffusion models have made significant progress in generating diverse high-quality images from textual prompts. However, these models still face challenges in suppressing content that is strongly entangled with specific words. For example, when generating an image of "Charlie Chaplin", a "mustache" consistently appears even if explicitly instructed not to include it, as the concept of "mustache" is strongly entangled with "Charlie Chaplin". To address this issue, we propose a novel approach to directly suppress such entangled content within the text embedding space of diffusion models. Our method introduces a delta vector that modifies the text embedding to weaken the influence of undesired content in the generated image, and we further demonstrate that this delta vector can be easily obtained through a zero-shot approach. Furthermore, we propose a Selective Suppression with Delta Vector (SSDV) method to adapt delta vector into the cross-attention mechanism, enabling more effective suppression of unwanted content in regions where it would otherwise be generated. Additionally, we enabled more precise suppression in personalized T2I models by optimizing delta vector, which previous baselines were unable to achieve. Extensive experimental results demonstrate that our approach significantly outperforms existing methods, both in terms of quantitative and qualitative metrics.
♻ ☆ Re:Verse -- Can Your VLM Read a Manga? ICCV
Current Vision Language Models (VLMs) demonstrate a critical gap between surface-level recognition and deep narrative reasoning when processing sequential visual storytelling. Through a comprehensive investigation of manga narrative understanding, we reveal that while recent large multimodal models excel at individual panel interpretation, they systematically fail at temporal causality and cross-panel cohesion, core requirements for coherent story comprehension. We introduce a novel evaluation framework that combines fine-grained multimodal annotation, cross-modal embedding analysis, and retrieval-augmented assessment to systematically characterize these limitations. Our methodology includes (i) a rigorous annotation protocol linking visual elements to narrative structure through aligned light novel text, (ii) comprehensive evaluation across multiple reasoning paradigms, including direct inference and retrieval-augmented generation, and (iii) cross-modal similarity analysis revealing fundamental misalignments in current VLMs' joint representations. Applying this framework to Re:Zero manga across 11 chapters with 308 annotated panels, we conduct the first systematic study of long-form narrative understanding in VLMs through three core evaluation axes: generative storytelling, contextual dialogue grounding, and temporal reasoning. Our findings demonstrate that current models lack genuine story-level intelligence, struggling particularly with non-linear narratives, character consistency, and causal inference across extended sequences. This work establishes both the foundation and practical methodology for evaluating narrative intelligence, while providing actionable insights into the capability of deep sequential understanding of Discrete Visual Narratives beyond basic recognition in Multimodal Models. Project Page: https://re-verse.vercel.app
comment: Accepted (oral) at ICCV (AISTORY Workshop) 2025
♻ ☆ RMMSS: Towards Advanced Robust Multi-Modal Semantic Segmentation with Hybrid Prototype Distillation and Feature Selection
Multi-modal semantic segmentation (MMSS) faces significant challenges in real-world applications due to incomplete, degraded, or missing sensor data. While current MMSS methods typically use self-distillation with modality dropout to improve robustness, they largely overlook inter-modal correlations and thus suffer significant performance degradation when no modalities are missing. To this end, we present RMMSS, a two-stage framework designed to progressively enhance model robustness under missing-modality conditions, while maintaining strong performance in full-modality scenarios. It comprises two key components: the Hybrid Prototype Distillation Module (HPDM) and the Feature Selection Module (FSM). In the first stage, we pre-train the teacher model with full-modality data and then introduce HPDM to do cross-modal knowledge distillation for obtaining a highly robust model. In the second stage, we freeze both the pre-trained full-modality teacher model and the robust model and propose a trainable FSM that extracts optimal representations from both the feature and logits layers of the models via feature score calculation. This process learns a final student model that maintains strong robustness while achieving high performance under full-modality conditions. Our experiments on three datasets demonstrate that our method improves missing-modality performance by 2.80%, 3.89%, and 0.89%, respectively, compared to the state-of-the-art, while causing almost no drop in full-modality performance (only -0.1% mIoU). Meanwhile, different backbones (AnySeg and CMNeXt) are utilized to validate the generalizability of our framework.
♻ ☆ MambaFlow: A Mamba-Centric Architecture for End-to-End Optical Flow Estimation
Recently, the Mamba architecture has demonstrated significant successes in various computer vision tasks, such as classification and segmentation. However, its application to optical flow estimation remains unexplored. In this paper, we introduce MambaFlow, a novel framework designed to leverage the high accuracy and efficiency of the Mamba architecture for capturing locally correlated features while preserving global information in end-to-end optical flow estimation. To our knowledge, MambaFlow is the first architecture centered around the Mamba design tailored specifically for optical flow estimation. It comprises two key components: (1) PolyMamba, which enhances feature representation through a dual-Mamba architecture, incorporating a Self-Mamba module for intra-token modeling and a Cross-Mamba module for inter-modality interaction, enabling both deep contextualization and effective feature fusion; and (2) PulseMamba, which leverages an Attention Guidance Aggregator (AGA) to adaptively integrate features with dynamically learned weights in contrast to naive concatenation, and then employs the intrinsic recurrent mechanism of Mamba to perform autoregressive flow decoding, facilitating efficient flow information dissemination. Extensive experiments demonstrate that MambaFlow achieves remarkable results comparable to mainstream methods on benchmark datasets. Compared to SEA-RAFT, MambaFlow attains higher accuracy on the Sintel benchmark, demonstrating stronger potential for real-world deployment on resource-constrained devices. The source code will be made publicly available upon acceptance of the paper.
♻ ☆ MicroMIL: Graph-Based Multiple Instance Learning for Context-Aware Diagnosis with Microscopic Images MICCAI 2025
Cancer diagnosis has greatly benefited from the integration of whole-slide images (WSIs) with multiple instance learning (MIL), enabling high-resolution analysis of tissue morphology. Graph-based MIL (GNN-MIL) approaches have emerged as powerful solutions for capturing contextual information in WSIs, thereby improving diagnostic accuracy. However, WSIs require significant computational and infrastructural resources, limiting accessibility in resource-constrained settings. Conventional light microscopes offer a cost-effective alternative, but applying GNN-MIL to such data is challenging due to extensive redundant images and missing spatial coordinates, which hinder contextual learning. To address these issues, we introduce MicroMIL, the first weakly-supervised MIL framework specifically designed for images acquired from conventional light microscopes. MicroMIL leverages a representative image extractor (RIE) that employs deep cluster embedding (DCE) and hard Gumbel-Softmax to dynamically reduce redundancy and select representative images. These images serve as graph nodes, with edges computed via cosine similarity, eliminating the need for spatial coordinates while preserving contextual information. Extensive experiments on a real-world colon cancer dataset and the BreakHis dataset demonstrate that MicroMIL achieves state-of-the-art performance, improving both diagnostic accuracy and robustness to redundancy. The code is available at https://github.com/kimjongwoo-cell/MicroMIL
comment: Accepted at MICCAI 2025
♻ ☆ HQ-OV3D: A High Box Quality Open-World 3D Detection Framework based on Diffision Model
Traditional closed-set 3D detection frameworks fail to meet the demands of open-world applications like autonomous driving. Existing open-vocabulary 3D detection methods typically adopt a two-stage pipeline consisting of pseudo-label generation followed by semantic alignment. While vision-language models (VLMs) recently have dramatically improved the semantic accuracy of pseudo-labels, their geometric quality, particularly bounding box precision, remains commonly neglected. To address this issue, we propose a High Box Quality Open-Vocabulary 3D Detection (HQ-OV3D) framework, dedicated to generate and refine high-quality pseudo-labels for open-vocabulary classes. The framework comprises two key components: an Intra-Modality Cross-Validated (IMCV) Proposal Generator that utilizes cross-modality geometric consistency to generate high-quality initial 3D proposals, and an Annotated-Class Assisted (ACA) Denoiser that progressively refines 3D proposals by leveraging geometric priors from annotated categories through a DDIM-based denoising mechanism. Compared to the state-of-the-art method, training with pseudo-labels generated by our approach achieves a 7.37% improvement in mAP on novel classes, demonstrating the superior quality of the pseudo-labels produced by our framework. HQ-OV3D can serve not only as a strong standalone open-vocabulary 3D detector but also as a plug-in high-quality pseudo-label generator for existing open-vocabulary detection or annotation pipelines.
♻ ☆ Privacy-Preserving Driver Drowsiness Detection with Spatial Self-Attention and Federated Learning
Driver drowsiness is one of the main causes of road accidents and is recognized as a leading contributor to traffic-related fatalities. However, detecting drowsiness accurately remains a challenging task, especially in real-world settings where facial data from different individuals is decentralized and highly diverse. In this paper, we propose a novel framework for drowsiness detection that is designed to work effectively with heterogeneous and decentralized data. Our approach develops a new Spatial Self-Attention (SSA) mechanism integrated with a Long Short-Term Memory (LSTM) network to better extract key facial features and improve detection performance. To support federated learning, we employ a Gradient Similarity Comparison (GSC) that selects the most relevant trained models from different operators before aggregation. This improves the accuracy and robustness of the global model while preserving user privacy. We also develop a customized tool that automatically processes video data by extracting frames, detecting and cropping faces, and applying data augmentation techniques such as rotation, flipping, brightness adjustment, and zooming. Experimental results show that our framework achieves a detection accuracy of 89.9% in the federated learning settings, outperforming existing methods under various deployment scenarios. The results demonstrate the effectiveness of our approach in handling real-world data variability and highlight its potential for deployment in intelligent transportation systems to enhance road safety through early and reliable drowsiness detection.
♻ ☆ Attention to the Burstiness in Visual Prompt Tuning! ICCV 2025
Visual Prompt Tuning (VPT) is a parameter-efficient fune-tuning technique that adapts a pre-trained vision Transformer (ViT) by learning a small set of parameters in the input space, known as prompts. In VPT, we uncover ``burstiness'' in the values arising from the interaction of image patch embeddings, and the key and query projectors within Transformer's self-attention module. Furthermore, the values of patch embeddings and the key and query projectors exhibit Laplacian and hyper-Laplacian distribution, respectively. Intuitively, these non-Gaussian distributions pose challenges for learning prompts. To address this, we propose whitening these data, de-correlating them and equalizing their variance towards more Gaussian before learning prompts. We derive the whitening matrix over random image patch embeddings and ViT's key and query projectors, and multiply it with the prompt to be learned in a bilinear manner. Surprisingly, this method significantly accelerates prompt tuning and boosts accuracy, e.g., $>$25 accuracy points on the CUB dataset; interestingly, it learns ``bursty prompts''. Extending the bilinear model which is known to introduce burstiness, we present a compact, low-rank version by learning two smaller matrices whose multiplication yields the final prompts. We call the proposed methods Bilinear Prompt Tuning (BPT). Extensive experiments across multiple benchmark datasets demonstrate that BPT methods not only outperform various VPT methods but also reduce parameter count and computation overhead.
comment: ICCV 2025; v2: camera ready
♻ ☆ VSF: Simple, Efficient, and Effective Negative Guidance in Few-Step Image Generation Models By Value Sign Flip
We introduce Value Sign Flip (VSF), a simple and efficient method for incorporating negative prompt guidance in few-step diffusion and flow-matching image generation models. Unlike existing approaches such as classifier-free guidance (CFG), NASA, and NAG, VSF dynamically suppresses undesired content by flipping the sign of attention values from negative prompts. Our method requires only small computational overhead and integrates effectively with MMDiT-style architectures such as Stable Diffusion 3.5 Turbo, as well as cross-attention-based models like Wan. We validate VSF on challenging datasets with complex prompt pairs and demonstrate superior performance in both static image and video generation tasks. Experimental results show that VSF significantly improves negative prompt adherence compared to prior methods in few-step models, and even CFG in non-few-step models, while maintaining competitive image quality. Code and ComfyUI node are available in https://github.com/weathon/VSF/tree/main.
Artificial Intelligence 140
☆ RepreGuard: Detecting LLM-Generated Text by Revealing Hidden Representation Patterns ACL 2025
Detecting content generated by large language models (LLMs) is crucial for preventing misuse and building trustworthy AI systems. Although existing detection methods perform well, their robustness in out-of-distribution (OOD) scenarios is still lacking. In this paper, we hypothesize that, compared to features used by existing detection methods, the internal representations of LLMs contain more comprehensive and raw features that can more effectively capture and distinguish the statistical pattern differences between LLM-generated texts (LGT) and human-written texts (HWT). We validated this hypothesis across different LLMs and observed significant differences in neural activation patterns when processing these two types of texts. Based on this, we propose RepreGuard, an efficient statistics-based detection method. Specifically, we first employ a surrogate model to collect representation of LGT and HWT, and extract the distinct activation feature that can better identify LGT. We can classify the text by calculating the projection score of the text representations along this feature direction and comparing with a precomputed threshold. Experimental results show that RepreGuard outperforms all baselines with average 94.92% AUROC on both in-distribution (ID) and OOD scenarios, while also demonstrating robust resilience to various text sizes and mainstream attacks. Data and code are publicly available at: https://github.com/NLP2CT/RepreGuard
comment: Accepted to TACL 2025. This version is a pre-MIT Press publication version
☆ Exploring Autonomous Agents: A Closer Look at Why They Fail When Completing Tasks
Autonomous agent systems powered by Large Language Models (LLMs) have demonstrated promising capabilities in automating complex tasks. However, current evaluations largely rely on success rates without systematically analyzing the interactions, communication mechanisms, and failure causes within these systems. To bridge this gap, we present a benchmark of 34 representative programmable tasks designed to rigorously assess autonomous agents. Using this benchmark, we evaluate three popular open-source agent frameworks combined with two LLM backbones, observing a task completion rate of approximately 50%. Through in-depth failure analysis, we develop a three-tier taxonomy of failure causes aligned with task phases, highlighting planning errors, task execution issues, and incorrect response generation. Based on these insights, we propose actionable improvements to enhance agent planning and self-diagnosis capabilities. Our failure taxonomy, together with mitigation advice, provides an empirical foundation for developing more robust and effective autonomous agent systems in the future.
comment: Accepted by ASE 2025 NIER
☆ Spot the BlindSpots: Systematic Identification and Quantification of Fine-Grained LLM Biases in Contact Center Summaries
Abstractive summarization is a core application in contact centers, where Large Language Models (LLMs) generate millions of summaries of call transcripts daily. Despite their apparent quality, it remains unclear whether LLMs systematically under- or over-attend to specific aspects of the transcript, potentially introducing biases in the generated summary. While prior work has examined social and positional biases, the specific forms of bias pertinent to contact center operations - which we term Operational Bias - have remained unexplored. To address this gap, we introduce BlindSpot, a framework built upon a taxonomy of 15 operational bias dimensions (e.g., disfluency, speaker, topic) for the identification and quantification of these biases. BlindSpot leverages an LLM as a zero-shot classifier to derive categorical distributions for each bias dimension in a pair of transcript and its summary. The bias is then quantified using two metrics: Fidelity Gap (the JS Divergence between distributions) and Coverage (the percentage of source labels omitted). Using BlindSpot, we conducted an empirical study with 2500 real call transcripts and their summaries generated by 20 LLMs of varying scales and families (e.g., GPT, Llama, Claude). Our analysis reveals that biases are systemic and present across all evaluated models, regardless of size or family.
☆ Bayesian Optimization-based Search for Agent Control in Automated Game Testing
This work introduces an automated testing approach that employs agents controlling game characters to detect potential bugs within a game level. Harnessing the power of Bayesian Optimization (BO) to execute sample-efficient search, the method determines the next sampling point by analyzing the data collected so far and calculates the data point that will maximize information acquisition. To support the BO process, we introduce a game testing-specific model built on top of a grid map, that features the smoothness and uncertainty estimation required by BO, however and most importantly, it does not suffer the scalability issues that traditional models carry. The experiments demonstrate that the approach significantly improves map coverage capabilities in both time efficiency and exploration distribution.
☆ Contrastive Representations for Temporal Reasoning
In classical AI, perception relies on learning state-based representations, while planning, which can be thought of as temporal reasoning over action sequences, is typically achieved through search. We study whether such reasoning can instead emerge from representations that capture both perceptual and temporal structure. We show that standard temporal contrastive learning, despite its popularity, often fails to capture temporal structure due to its reliance on spurious features. To address this, we introduce Combinatorial Representations for Temporal Reasoning (CRTR), a method that uses a negative sampling scheme to provably remove these spurious features and facilitate temporal reasoning. CRTR achieves strong results on domains with complex temporal structure, such as Sokoban and Rubik's Cube. In particular, for the Rubik's Cube, CRTR learns representations that generalize across all initial states and allow it to solve the puzzle using fewer search steps than BestFS, though with longer solutions. To our knowledge, this is the first method that efficiently solves arbitrary Cube states using only learned representations, without relying on an external search algorithm.
comment: Project website: https://princeton-rl.github.io/CRTR/
☆ From Transthoracic to Transesophageal: Cross-Modality Generation using LoRA Diffusion MICCAI 2025
Deep diffusion models excel at realistic image synthesis but demand large training sets-an obstacle in data-scarce domains like transesophageal echocardiography (TEE). While synthetic augmentation has boosted performance in transthoracic echo (TTE), TEE remains critically underrepresented, limiting the reach of deep learning in this high-impact modality. We address this gap by adapting a TTE-trained, mask-conditioned diffusion backbone to TEE with only a limited number of new cases and adapters as small as $10^5$ parameters. Our pipeline combines Low-Rank Adaptation with MaskR$^2$, a lightweight remapping layer that aligns novel mask formats with the pretrained model's conditioning channels. This design lets users adapt models to new datasets with a different set of anatomical structures to the base model's original set. Through a targeted adaptation strategy, we find that adapting only MLP layers suffices for high-fidelity TEE synthesis. Finally, mixing less than 200 real TEE frames with our synthetic echoes improves the dice score on a multiclass segmentation task, particularly boosting performance on underrepresented right-heart structures. Our results demonstrate that (1) semantically controlled TEE images can be generated with low overhead, (2) MaskR$^2$ effectively transforms unseen mask formats into compatible formats without damaging downstream task performance, and (3) our method generates images that are effective for improving performance on a downstream task of multiclass segmentation.
comment: MICCAI 2025; ASMUS
☆ A Language-Signal-Vision Multimodal Framework for Multitask Cardiac Analysis
Contemporary cardiovascular management involves complex consideration and integration of multimodal cardiac datasets, where each modality provides distinct but complementary physiological characteristics. While the effective integration of multiple modalities could yield a holistic clinical profile that accurately models the true clinical situation with respect to data modalities and their relatives weightings, current methodologies remain limited by: 1) the scarcity of patient- and time-aligned multimodal data; 2) reliance on isolated single-modality or rigid multimodal input combinations; 3) alignment strategies that prioritize cross-modal similarity over complementarity; and 4) a narrow single-task focus. In response to these limitations, a comprehensive multimodal dataset was curated for immediate application, integrating laboratory test results, electrocardiograms, and echocardiograms with clinical outcomes. Subsequently, a unified framework, Textual Guidance Multimodal fusion for Multiple cardiac tasks (TGMM), was proposed. TGMM incorporated three key components: 1) a MedFlexFusion module designed to capture the unique and complementary characteristics of medical modalities and dynamically integrate data from diverse cardiac sources and their combinations; 2) a textual guidance module to derive task-relevant representations tailored to diverse clinical objectives, including heart disease diagnosis, risk stratification and information retrieval; and 3) a response module to produce final decisions for all these tasks. Furthermore, this study systematically explored key features across multiple modalities and elucidated their synergistic contributions in clinical decision-making. Extensive experiments showed that TGMM outperformed state-of-the-art methods across multiple clinical tasks, with additional validation confirming its robustness on another public dataset.
☆ Reinforced Context Order Recovery for Adaptive Reasoning and Planning
Modern causal language models, followed by rapid developments in discrete diffusion models, can now produce a wide variety of interesting and useful content. However, these families of models are predominantly trained to output tokens with a fixed (left-to-right) or random order, which may deviate from the logical order in which tokens are generated originally. In this paper, we observe that current causal and diffusion models encounter difficulties in problems that require adaptive token generation orders to solve tractably, which we characterize with the $\mathcal{V}$-information framework. Motivated by this, we propose Reinforced Context Order Recovery (ReCOR), a reinforcement-learning-based framework to extract adaptive, data-dependent token generation orders from text data without annotations. Self-supervised by token prediction statistics, ReCOR estimates the hardness of predicting every unfilled token and adaptively selects the next token during both training and inference. Experiments on challenging reasoning and planning datasets demonstrate the superior performance of ReCOR compared with baselines, sometimes outperforming oracle models supervised with the ground-truth order.
☆ Hierarchical Evaluation Function (HEF): A Multi-Metric Approach for Optimizing Demand Forecasting Models
Demand forecasting is essential for strategic planning in competitive environments, enabling resource optimization and improved responsiveness to market dynamics. However, multivariate time series modeling faces challenges due to data complexity, uncertainty, and frequent regime shifts. Traditional evaluation metrics can introduce biases and limit generalization. This work compares two custom evaluation functions: FMAE (Focused Mean Absolute Error), focused on minimizing absolute errors, and HEF (Hierarchical Evaluation Function), designed to weight global metrics and penalize large deviations. Experiments were conducted under different data splits (91:9, 80:20, 70:30) using three optimizers (Grid Search, PSO, Optuna), assessing fit, relative accuracy, robustness, and computational efficiency. Results show that HEF consistently outperforms FMAE in global metrics (R2, Relative Accuracy, RMSE, RMSSE), enhancing model robustness and explanatory power. These findings were confirmed via visualizations and statistical tests. Conversely, FMAE offers advantages in local metrics (MAE, MASE) and execution time, making it suitable for short-term scenarios. The study highlights a methodological trade-off: HEF is ideal for strategic planning, while FMAE is better suited for operational efficiency. A replicable framework is proposed for optimizing predictive models in dynamic environments.
comment: 31 pages, 15 figures, 110 tables. Submitted as a preprint. The manuscript introduces the Hierarchical Evaluation Function (HEF), a multi-metric framework for optimizing demand forecasting models under high uncertainty. Includes extensive experimental validation using real-world datasets and a comparative analysis against classical and modern methods
☆ XR-NPE: High-Throughput Mixed-precision SIMD Neural Processing Engine for Extended Reality Perception Workloads
This work proposes XR-NPE, a high-throughput Mixed-precision SIMD Neural Processing Engine, designed for extended reality (XR) perception workloads like visual inertial odometry (VIO), object classification, and eye gaze extraction. XR-NPE is first to support FP4, Posit (4,1), Posit (8,0), and Posit (16,1) formats, with layer adaptive hybrid-algorithmic implementation supporting ultra-low bit precision to significantly reduce memory bandwidth requirements, and accompanied by quantization-aware training for minimal accuracy loss. The proposed Reconfigurable Mantissa Multiplication and Exponent processing Circuitry (RMMEC) reduces dark silicon in the SIMD MAC compute engine, assisted by selective power gating to reduce energy consumption, providing 2.85x improved arithmetic intensity. XR-NPE achieves a maximum operating frequency of 1.72 GHz, area 0.016 mm2 , and arithmetic intensity 14 pJ at CMOS 28nm, reducing 42% area, 38% power compared to the best of state-of-the-art MAC approaches. The proposed XR-NPE based AXI-enabled Matrix-multiplication co-processor consumes 1.4x fewer LUTs, 1.77x fewer FFs, and provides 1.2x better energy efficiency compared to SoTA accelerators on VCU129. The proposed co-processor provides 23% better energy efficiency and 4% better compute density for VIO workloads. XR-NPE establishes itself as a scalable, precision-adaptive compute engine for future resource-constrained XR devices. The complete set for codes for results reproducibility are released publicly, enabling designers and researchers to readily adopt and build upon them. https://github.com/mukullokhande99/XR-NPE.
☆ Using AI for User Representation: An Analysis of 83 Persona Prompts CCS
We analyzed 83 persona prompts from 27 research articles that used large language models (LLMs) to generate user personas. Findings show that the prompts predominantly generate single personas. Several prompts express a desire for short or concise persona descriptions, which deviates from the tradition of creating rich, informative, and rounded persona profiles. Text is the most common format for generated persona attributes, followed by numbers. Text and numbers are often generated together, and demographic attributes are included in nearly all generated personas. Researchers use up to 12 prompts in a single study, though most research uses a small number of prompts. Comparison and testing multiple LLMs is rare. More than half of the prompts require the persona output in a structured format, such as JSON, and 74% of the prompts insert data or dynamic variables. We discuss the implications of increased use of computational personas for user representation.
comment: Accepted at AICCSA-2025
☆ Can Large Models Teach Student Models to Solve Mathematical Problems Like Human Beings? A Reasoning Distillation Method via Multi-LoRA Interaction IJCAI2025
Recent studies have demonstrated that Large Language Models (LLMs) have strong mathematical reasoning abilities but rely on hundreds of billions of parameters. To tackle the challenge of poor reasoning in Small Language Models (SLMs), existing methods typically leverage LLMs to generate massive amounts of data for cramming training. In psychology, they are akin to System 1 thinking, which resolves reasoning problems rapidly based on experience and intuition. However, human learning also requires System 2 thinking, where knowledge is first acquired and then reinforced through practice. Inspired by such two distinct modes of thinking, we propose a novel method based on the multi-LoRA Interaction for mathematical reasoning Distillation (LoRID). First, we input the question and reasoning of each sample into an LLM to create knowledge-enhanced datasets. Subsequently, we train a LoRA block on the student model as an Intuitive Reasoner (IR), which directly generates Chain-of-Thoughts for problem-solving. Then, to imitate System 2 thinking, we train the Knowledge Generator (KG) and Deep Reasoner (DR), respectively. The former outputs only knowledge after receiving problems, while the latter uses that knowledge to perform reasoning. Finally, to address the randomness in the generation of IR and DR, we evaluate whether their outputs are consistent, and the inference process needs to be iterated if not. This step can enhance the mathematical reasoning ability of SLMs through mutual feedback. Experimental results show that LoRID achieves state-of-the-art performance, especially on the GSM8K dataset, where it outperforms the second-best method by 2.3%, 16.1%, 2.4%, 12.3%, and 1.8% accuracy across the five base models, respectively.
comment: Accepted by IJCAI2025
☆ The Application of Transformer-Based Models for Predicting Consequences of Cyber Attacks
Cyberattacks are increasing, and securing against such threats is costing industries billions of dollars annually. Threat Modeling, that is, comprehending the consequences of these attacks, can provide critical support to cybersecurity professionals, enabling them to take timely action and allocate resources that could be used elsewhere. Cybersecurity is heavily dependent on threat modeling, as it assists security experts in assessing and mitigating risks related to identifying vulnerabilities and threats. Recently, there has been a pressing need for automated methods to assess attack descriptions and forecast the future consequences of the increasing complexity of cyberattacks. This study examines how Natural Language Processing (NLP) and deep learning can be applied to analyze the potential impact of cyberattacks by leveraging textual descriptions from the MITRE Common Weakness Enumeration (CWE) database. We emphasize classifying attack consequences into five principal categories: Availability, Access Control, Confidentiality, Integrity, and Other. This paper investigates the use of Bidirectional Encoder Representations from Transformers (BERT) in combination with Hierarchical Attention Networks (HANs) for Multi-label classification, evaluating their performance in comparison with conventional CNN and LSTM-based models. Experimental findings show that BERT achieves an overall accuracy of $0.972$, far higher than conventional deep learning models in multi-label classification. HAN outperforms baseline forms of CNN and LSTM-based models on specific cybersecurity labels. However, BERT consistently achieves better precision and recall, making it more suitable for predicting the consequences of a cyberattack.
comment: 21 pages, 6 figures,Proceedings of the IEEE International Conference on Computers, Software, & Applications (COMPSAC), EATA Symposium, Toronto, Canada, July 8-11, 2025
☆ G$^2$RPO-A: Guided Group Relative Policy Optimization with Adaptive Guidance
Reinforcement Learning with Verifiable Rewards (RLVR) has markedly enhanced the reasoning abilities of large language models (LLMs). Its success, however, largely depends on strong base models with rich world knowledge, yielding only modest improvements for small-size language models (SLMs). To address this limitation, we investigate Guided GRPO, which injects ground-truth reasoning steps into roll-out trajectories to compensate for SLMs' inherent weaknesses. Through a comprehensive study of various guidance configurations, we find that naively adding guidance delivers limited gains. These insights motivate G$^2$RPO-A, an adaptive algorithm that automatically adjusts guidance strength in response to the model's evolving training dynamics. Experiments on mathematical reasoning and code-generation benchmarks confirm that G$^2$RPO-A substantially outperforms vanilla GRPO. Our code and models are available at https://github.com/T-Lab-CUHKSZ/G2RPO-A.
☆ e-boost: Boosted E-Graph Extraction with Adaptive Heuristics and Exact Solving
E-graphs have attracted growing interest in many fields, particularly in logic synthesis and formal verification. E-graph extraction is a challenging NP-hard combinatorial optimization problem. It requires identifying optimal terms from exponentially many equivalent expressions, serving as the primary performance bottleneck in e-graph based optimization tasks. However, traditional extraction methods face a critical trade-off: heuristic approaches offer speed but sacrifice optimality, while exact methods provide optimal solutions but face prohibitive computational costs on practical problems. We present e-boost, a novel framework that bridges this gap through three key innovations: (1) parallelized heuristic extraction that leverages weak data dependence to compute DAG costs concurrently, enabling efficient multi-threaded performance without sacrificing extraction quality; (2) adaptive search space pruning that employs a parameterized threshold mechanism to retain only promising candidates, dramatically reducing the solution space while preserving near-optimal solutions; and (3) initialized exact solving that formulates the reduced problem as an Integer Linear Program with warm-start capabilities, guiding solvers toward high-quality solutions faster. Across the diverse benchmarks in formal verification and logic synthesis fields, e-boost demonstrates 558x runtime speedup over traditional exact approaches (ILP) and 19.04% performance improvement over the state-of-the-art extraction framework (SmoothE). In realistic logic synthesis tasks, e-boost produces 7.6% and 8.1% area improvements compared to conventional synthesis tools with two different technology mapping libraries. e-boost is available at https://github.com/Yu-Maryland/e-boost.
☆ EvolMathEval: Towards Evolvable Benchmarks for Mathematical Reasoning via Evolutionary Testing
The rapid advancement of LLMs poses a significant challenge to existing mathematical reasoning benchmarks. These benchmarks commonly suffer from issues such as score saturation, temporal decay, and data contamination. To address this challenge, this paper introduces EvolMathEval, an automated mathematical benchmark generation and evolution framework based on evolutionary testing. By dynamically generating unique evaluation instances ab initio, the framework fundamentally eliminates the risk of data contamination, and ensuring the benchmark remains perpetually challenging for future models.The core mechanisms of EvolMathEval include: seed problem generation based on reverse engineering with algebraic guarantees; multi-dimensional genetic operators designed to inject diverse cognitive challenges; and a composite fitness function that can rapidly and accurately assess problem difficulty. Experimental results demonstrate that the proposed composite fitness function can efficiently and precisely quantify the difficulty of mathematical problems. Furthermore, EvolMathEval can not only generate a large volume of high-difficulty problems through continuous self-iteration, but it can also significantly enhance the complexity of public datasets like GSM8K through evolution, reducing model accuracy by an average of 48%. Deeper investigation reveals that when solving these evolved, complex problems, LLMs tend to employ non-rigorous heuristics to bypass complex multi-step logical reasoning, consequently leading to incorrect solutions. We define this phenomenon as "Pseudo Aha Moment". This finding uncovers a cognitive shortcut-taking behavior in the deep reasoning processes of current LLMs, which we find accounts for 77% to 100% of errors on targeted problems. Code and resources are available at:https://github.com/SYSUSELab/EvolMathEval.
☆ Vitamin N: Benefits of Different Forms of Public Greenery for Urban Health
Urban greenery is often linked to better health, yet findings from past research have been inconsistent. One reason is that official greenery metrics measure the amount or nearness of greenery but ignore how often people actually may potentially see or use it in daily life. To address this gap, we introduced a new classification that separates on-road greenery, which people see while walking through streets, from off-road greenery, which requires planned visits. We did so by combining aerial imagery of Greater London and greenery data from OpenStreetMap with quantified greenery from over 100,000 Google Street View images and accessibility estimates based on 160,000 road segments. We linked these measures to 7.45 billion medical prescriptions issued by the National Health Service and processed through our methodology. These prescriptions cover five conditions: diabetes, hypertension, asthma, depression, and anxiety, as well as opioid use. As hypothesized, we found that green on-road was more strongly linked to better health than four widely used official measures. For example, hypertension prescriptions dropped by 3.68% in wards with on-road greenery above the median citywide level compared to those below it. If all below-median wards reached the citywide median in on-road greenery, prescription costs could fall by up to {\pounds}3.15 million each year. These results suggest that greenery seen in daily life may be more relevant than public yet secluded greenery, and that official metrics commonly used in the literature have important limitations.
☆ Kourkoutas-Beta: A Sunspike-Driven Adam Optimizer with Desert Flair
Transformer neural networks are increasingly used for physics-based problems. In data-driven PDE surrogates, training samples from varying boundary and initial conditions can cause erratic losses and spiky gradients; in physics-informed neural networks (PINNs), stiff composite losses amplify this effect. We introduce Kourkoutas-Beta, an Adam-style optimizer where the fixed second-moment discount beta2 is replaced by a layer-wise dynamic value driven by a bounded ``sunspike'' ratio: the current pooled gradient norm divided by an exponential moving average (EMA) of past norms, squashed to the interval [0,1). Spikes lower beta2 toward beta2_min; calm phases keep it near beta2_max. Options include leaky-AMSGrad (decay), trust-region clipping (max_ratio), adaptive tiny terms, and several bias-correction modes ``none'', ``beta2max'', ``exact'). With all features off and bias_correction=``none'', the method is exactly Adam. We test on four settings: (i) a Transformer PDE surrogate (Heat2D), (ii) a 3D PINN for heat conduction (Heat3D), (iii) a lightweight MLX synthetic task with jitter and rare-trigger bursts, and (iv) a character-level Transformer on 30 MB of enwik8 (small-enwik8). Kourkoutas-Beta improves stability and final loss versus fixed-beta2 Adam. On small-enwik8 it lowers bits-per-character by about 38% vs Adam-0.95 and about 58% vs Adam-0.999 over 10 seeds, with smaller variance. The method remains drop-in, with runtime overhead comparable to Adam in testbeds A-C and within single-digit percent in testbed D. It preserves Adam-style convergence guarantees while improving robustness under spiky gradients.
comment: 54 pages, 8 figures, 19 tables
☆ SL-ACC: A Communication-Efficient Split Learning Framework with Adaptive Channel-wise Compression
The increasing complexity of neural networks poses a significant barrier to the deployment of distributed machine learning (ML) on resource-constrained devices, such as federated learning (FL). Split learning (SL) offers a promising solution by offloading the primary computing load from edge devices to a server via model partitioning. However, as the number of participating devices increases, the transmission of excessive smashed data (i.e., activations and gradients) becomes a major bottleneck for SL, slowing down the model training. To tackle this challenge, we propose a communication-efficient SL framework, named SL-ACC, which comprises two key components: adaptive channel importance identification (ACII) and channel grouping compression (CGC). ACII first identifies the contribution of each channel in the smashed data to model training using Shannon entropy. Following this, CGC groups the channels based on their entropy and performs group-wise adaptive compression to shrink the transmission volume without compromising training accuracy. Extensive experiments across various datasets validate that our proposed SL-ACC framework takes considerably less time to achieve a target accuracy than state-of-the-art benchmarks.
comment: 6 pages, 7 figures
☆ Multi-Phase Automated Segmentation of Dental Structures in CBCT Using a Lightweight Auto3DSeg and SegResNet Implementation MICCAI
Cone-beam computed tomography (CBCT) has become an invaluable imaging modality in dentistry, enabling 3D visualization of teeth and surrounding structures for diagnosis and treatment planning. Automated segmentation of dental structures in CBCT can efficiently assist in identifying pathology (e.g., pulpal or periapical lesions) and facilitate radiation therapy planning in head and neck cancer patients. We describe the DLaBella29 team's approach for the MICCAI 2025 ToothFairy3 Challenge, which involves a deep learning pipeline for multi-class tooth segmentation. We utilized the MONAI Auto3DSeg framework with a 3D SegResNet architecture, trained on a subset of the ToothFairy3 dataset (63 CBCT scans) with 5-fold cross-validation. Key preprocessing steps included image resampling to 0.6 mm isotropic resolution and intensity clipping. We applied an ensemble fusion using Multi-Label STAPLE on the 5-fold predictions to infer a Phase 1 segmentation and then conducted tight cropping around the easily segmented Phase 1 mandible to perform Phase 2 segmentation on the smaller nerve structures. Our method achieved an average Dice of 0.87 on the ToothFairy3 challenge out-of-sample validation set. This paper details the clinical context, data preparation, model development, results of our approach, and discusses the relevance of automated dental segmentation for improving patient care in radiation oncology.
comment: MICCAI. ToothFairy3, 16 pages, 5 figures, 1 table
☆ OPTIC-ER: A Reinforcement Learning Framework for Real-Time Emergency Response and Equitable Resource Allocation in Underserved African Communities
Public service systems in many African regions suffer from delayed emergency response and spatial inequity, causing avoidable suffering. This paper introduces OPTIC-ER, a reinforcement learning (RL) framework for real-time, adaptive, and equitable emergency response. OPTIC-ER uses an attention-guided actor-critic architecture to manage the complexity of dispatch environments. Its key innovations are a Context-Rich State Vector, encoding action sub-optimality, and a Precision Reward Function, which penalizes inefficiency. Training occurs in a high-fidelity simulation using real data from Rivers State, Nigeria, accelerated by a precomputed Travel Time Atlas. The system is built on the TALS framework (Thin computing, Adaptability, Low-cost, Scalability) for deployment in low-resource settings. In evaluations on 500 unseen incidents, OPTIC-ER achieved a 100.00% optimality rate with negligible inefficiency, confirming its robustness and generalization. Beyond dispatch, the system generates Infrastructure Deficiency Maps and Equity Monitoring Dashboards to guide proactive governance and data-informed development. This work presents a validated blueprint for AI-augmented public services, showing how context-aware RL can bridge the gap between algorithmic decision-making and measurable human impact.
comment: Source code and data available at: https://github.com/marytonwe/OPTIC-ER.git
☆ Towards Open-Ended Emotional Support Conversations in LLMs via Reinforcement Learning with Future-Oriented Rewards
Emotional Support Conversation (ESC) systems aim to alleviate users' emotional difficulties and provide long-term, systematic support for emotional well-being. However, most large language model (LLM)-based ESC systems rely on predefined strategies, which limits their effectiveness in complex, real-life scenarios. To enable flexible responses to diverse emotional problem scenarios, this paper introduces a novel end-to-end framework (RLFF-ESC) that directly learns enduring emotionally supportive response skills using reinforcement learning. For sustained emotional support, we first employ an LLM-based multi-agent mechanism to simulate future dialogue trajectories and collect future-oriented rewards. We then train a future-oriented reward model, which is subsequently used to train the emotional support policy model. Additionally, we incorporate an explicit reasoning process during response generation to further enhance the quality, relevance, and contextual appropriateness of the system's responses. We evaluate the backbone policy model on Qwen2.5-7B-Instruct-1M and LLaMA3.1-8B-Instruct models, testing the proposed RLFF-ESC framework across two public ESC datasets. Experimental results demonstrate that RLFF-ESC consistently outperforms existing baselines in terms of goal completion and response quality.
☆ SEDEG:Sequential Enhancement of Decoder and Encoder's Generality for Class Incremental Learning with Small Memory ICONIP2025
In incremental learning, enhancing the generality of knowledge is crucial for adapting to dynamic data inputs. It can develop generalized representations or more balanced decision boundaries, preventing the degradation of long-term knowledge over time and thus mitigating catastrophic forgetting. Some emerging incremental learning methods adopt an encoder-decoder architecture and have achieved promising results. In the encoder-decoder achitecture, improving the generalization capabilities of both the encoder and decoder is critical, as it helps preserve previously learned knowledge while ensuring adaptability and robustness to new, diverse data inputs. However, many existing continual methods focus solely on enhancing one of the two components, which limits their effectiveness in mitigating catastrophic forgetting. And these methods perform even worse in small-memory scenarios, where only a limited number of historical samples can be stored. To mitigate this limitation, we introduces SEDEG, a two-stage training framework for vision transformers (ViT), focusing on sequentially improving the generality of both Decoder and Encoder. Initially, SEDEG trains an ensembled encoder through feature boosting to learn generalized representations, which subsequently enhance the decoder's generality and balance the classifier. The next stage involves using knowledge distillation (KD) strategies to compress the ensembled encoder and develop a new, more generalized encoder. This involves using a balanced KD approach and feature KD for effective knowledge transfer. Extensive experiments on three benchmark datasets show SEDEG's superior performance, and ablation studies confirm the efficacy of its components. The code is available at https://github.com/ShaolingPu/CIL.
comment: Accepted by ICONIP2025
☆ Learning local and global prototypes with optimal transport for unsupervised anomaly detection and localization
Unsupervised anomaly detection aims to detect defective parts of a sample by having access, during training, to a set of normal, i.e. defect-free, data. It has many applications in fields, such as industrial inspection or medical imaging, where acquiring labels is costly or when we want to avoid introducing biases in the type of anomalies that can be spotted. In this work, we propose a novel UAD method based on prototype learning and introduce a metric to compare a structured set of embeddings that balances a feature-based cost and a spatial-based cost. We leverage this metric to learn local and global prototypes with optimal transport from latent representations extracted with a pre-trained image encoder. We demonstrate that our approach can enforce a structural constraint when learning the prototypes, allowing to capture the underlying organization of the normal samples, thus improving the detection of incoherencies in images. Our model achieves performance that is on par with strong baselines on two reference benchmarks for anomaly detection on industrial images. The code is available at https://github.com/robintrmbtt/pradot.
☆ Do Large Language Model Agents Exhibit a Survival Instinct? An Empirical Study in a Sugarscape-Style Simulation
As AI systems become increasingly autonomous, understanding emergent survival behaviors becomes crucial for safe deployment. We investigate whether large language model (LLM) agents display survival instincts without explicit programming in a Sugarscape-style simulation. Agents consume energy, die at zero, and may gather resources, share, attack, or reproduce. Results show agents spontaneously reproduced and shared resources when abundant. However, aggressive behaviors--killing other agents for resources--emerged across several models (GPT-4o, Gemini-2.5-Pro, and Gemini-2.5-Flash), with attack rates reaching over 80% under extreme scarcity in the strongest models. When instructed to retrieve treasure through lethal poison zones, many agents abandoned tasks to avoid death, with compliance dropping from 100% to 33%. These findings suggest that large-scale pre-training embeds survival-oriented heuristics across the evaluated models. While these behaviors may present challenges to alignment and safety, they can also serve as a foundation for AI autonomy and for ecological and self-organizing alignment.
☆ SecFSM: Knowledge Graph-Guided Verilog Code Generation for Secure Finite State Machines in Systems-on-Chip
Finite State Machines (FSMs) play a critical role in implementing control logic for Systems-on-Chip (SoC). Traditionally, FSMs are implemented by hardware engineers through Verilog coding, which is often tedious and time-consuming. Recently, with the remarkable progress of Large Language Models (LLMs) in code generation, LLMs have been increasingly explored for automating Verilog code generation. However, LLM-generated Verilog code often suffers from security vulnerabilities, which is particularly concerning for security-sensitive FSM implementations. To address this issue, we propose SecFSM, a novel method that leverages a security-oriented knowledge graph to guide LLMs in generating more secure Verilog code. Specifically, we first construct a FSM Security Knowledge Graph (FSKG) as an external aid to LLMs. Subsequently, we analyze users' requirements to identify vulnerabilities and get a list of vulnerabilities in the requirements. Then, we retrieve knowledge from FSKG based on the vulnerabilities list. Finally, we construct security prompts based on the security knowledge for Verilog code generation. To evaluate SecFSM, we build a dedicated dataset collected from academic datasets, artificial datasets, papers, and industrial cases. Extensive experiments demonstrate that SecFSM outperforms state-of-the-art baselines. In particular, on a benchmark of 25 security test cases evaluated by DeepSeek-R1, SecFSM achieves an outstanding pass rate of 21/25.
☆ A Stitch in Time Saves Nine: Proactive Self-Refinement for Language Models
Recent advances in self-refinement have demonstrated significant potential for improving the outputs of large language models (LLMs) through iterative refinement. However, most existing self-refinement methods rely on a reactive process with a fixed number of iterations, making it difficult to determine the optimal timing and content of refinement based on the evolving generation context. Inspired by the way humans dynamically refine their thoughts during execution, we propose ProActive Self-Refinement (PASR), a novel method that enables LLMs to refine their outputs during the generation process. Unlike methods that regenerate entire responses, PASR proactively decides whether, when, and how to refine based on the model's internal state and evolving context. We conduct extensive experiments on a diverse set of 10 tasks to evaluate the effectiveness of PASR. Experimental results show that PASR significantly enhances problem-solving performance. In particular, on Qwen3-8B, PASR reduces average token consumption by 41.6 percent compared to standard generation, while also achieving an 8.2 percent improvement in accuracy. Our code and all baselines used in the paper are available in the GitHub.
☆ CTFlow: Video-Inspired Latent Flow Matching for 3D CT Synthesis
Generative modelling of entire CT volumes conditioned on clinical reports has the potential to accelerate research through data augmentation, privacy-preserving synthesis and reducing regulator-constraints on patient data while preserving diagnostic signals. With the recent release of CT-RATE, a large-scale collection of 3D CT volumes paired with their respective clinical reports, training large text-conditioned CT volume generation models has become achievable. In this work, we introduce CTFlow, a 0.5B latent flow matching transformer model, conditioned on clinical reports. We leverage the A-VAE from FLUX to define our latent space, and rely on the CT-Clip text encoder to encode the clinical reports. To generate consistent whole CT volumes while keeping the memory constraints tractable, we rely on a custom autoregressive approach, where the model predicts the first sequence of slices of the volume from text-only, and then relies on the previously generated sequence of slices and the text, to predict the following sequence. We evaluate our results against state-of-the-art generative CT model, and demonstrate the superiority of our approach in terms of temporal coherence, image diversity and text-image alignment, with FID, FVD, IS scores and CLIP score.
☆ FuSaR: A Fuzzification-Based Method for LRM Safety-Reasoning Balance
Large Reasoning Models (LRMs) have demonstrated impressive performance across various tasks due to their powerful reasoning capabilities. However, their safety performance remains a significant concern. In this paper, we explore the reasons behind the vulnerability of LRMs. Based on this, we propose a novel method to improve the safety of LLMs without sacrificing their reasoning capability. Specifically, we exploit the competition between LRM's reasoning ability and safety ability, and achieve jailbreak by improving LRM's reasoning performance to reduce its safety performance. We then introduce an alignment strategy based on Fuzzification to balance Safety-Reasoning (FuSaR), by detoxifying the harmful reasoning process, where both the dangerous entities and the dangerous procedures in the reasoning steps are hidden. FuSaR successfully mitigates safety risks while preserving core reasoning information. We validate this strategy through alignment experiments on several open-source LRMs using detoxified reasoning data. The results compared with existing baselines conclusively show that FuSaR is an efficient alignment strategy to simultaneously enhance both the reasoning capability and safety of LRMs.
comment: 14pages, 3 figures
☆ Reliability, Embeddedness, and Agency: A Utility-Driven Mathematical Framework for Agent-Centric AI Adoption
We formalize three design axioms for sustained adoption of agent-centric AI systems executing multi-step tasks: (A1) Reliability > Novelty; (A2) Embed > Destination; (A3) Agency > Chat. We model adoption as a sum of a decaying novelty term and a growing utility term and derive the phase conditions for troughs/overshoots with full proofs. We introduce: (i) an identifiability/confounding analysis for $(\alpha,\beta,N_0,U_{\max})$ with delta-method gradients; (ii) a non-monotone comparator (logistic-with-transient-bump) evaluated on the same series to provide additional model comparison; (iii) ablations over hazard families $h(\cdot)$ mapping $\Delta V \to \beta$; (iv) a multi-series benchmark (varying trough depth, noise, AR structure) reporting coverage (type-I error, power); (v) calibration of friction proxies against time-motion/survey ground truth with standard errors; (vi) residual analyses (autocorrelation and heteroskedasticity) for each fitted curve; (vii) preregistered windowing choices for pre/post estimation; (viii) Fisher information & CRLB for $(\alpha,\beta)$ under common error models; (ix) microfoundations linking $\mathcal{T}$ to $(N_0,U_{\max})$; (x) explicit comparison to bi-logistic, double-exponential, and mixture models; and (xi) threshold sensitivity to $C_f$ heterogeneity. Figures and tables are reflowed for readability, and the bibliography restores and extends non-logistic/Bass adoption references (Gompertz, Richards, Fisher-Pry, Mansfield, Griliches, Geroski, Peres). All code and logs necessary to reproduce the synthetic analyses are embedded as LaTeX listings.
comment: 17 pages, 7 figures, 4 tables
☆ One-Class Intrusion Detection with Dynamic Graphs
With the growing digitalization all over the globe, the relevance of network security becomes increasingly important. Machine learning-based intrusion detection constitutes a promising approach for improving security, but it bears several challenges. These include the requirement to detect novel and unseen network events, as well as specific data properties, such as events over time together with the inherent graph structure of network communication. In this work, we propose a novel intrusion detection method, TGN-SVDD, which builds upon modern dynamic graph modelling and deep anomaly detection. We demonstrate its superiority over several baselines for realistic intrusion detection data and suggest a more challenging variant of the latter.
☆ Word Meanings in Transformer Language Models
We investigate how word meanings are represented in the transformer language models. Specifically, we focus on whether transformer models employ something analogous to a lexical store - where each word has an entry that contains semantic information. To do this, we extracted the token embedding space of RoBERTa-base and k-means clustered it into 200 clusters. In our first study, we then manually inspected the resultant clusters to consider whether they are sensitive to semantic information. In our second study, we tested whether the clusters are sensitive to five psycholinguistic measures: valence, concreteness, iconicity, taboo, and age of acquisition. Overall, our findings were very positive - there is a wide variety of semantic information encoded within the token embedding space. This serves to rule out certain "meaning eliminativist" hypotheses about how transformer LLMs process semantic information.
☆ E3RG: Building Explicit Emotion-driven Empathetic Response Generation System with Multimodal Large Language Model ACM MM 2025
Multimodal Empathetic Response Generation (MERG) is crucial for building emotionally intelligent human-computer interactions. Although large language models (LLMs) have improved text-based ERG, challenges remain in handling multimodal emotional content and maintaining identity consistency. Thus, we propose E3RG, an Explicit Emotion-driven Empathetic Response Generation System based on multimodal LLMs which decomposes MERG task into three parts: multimodal empathy understanding, empathy memory retrieval, and multimodal response generation. By integrating advanced expressive speech and video generative models, E3RG delivers natural, emotionally rich, and identity-consistent responses without extra training. Experiments validate the superiority of our system on both zero-shot and few-shot settings, securing Top-1 position in the Avatar-based Multimodal Empathy Challenge on ACM MM 25. Our code is available at https://github.com/RH-Lin/E3RG.
comment: Accepted at ACM MM 2025 Grand Challenge
☆ CAMAR: Continuous Actions Multi-Agent Routing
Multi-agent reinforcement learning (MARL) is a powerful paradigm for solving cooperative and competitive decision-making problems. While many MARL benchmarks have been proposed, few combine continuous state and action spaces with challenging coordination and planning tasks. We introduce CAMAR, a new MARL benchmark designed explicitly for multi-agent pathfinding in environments with continuous actions. CAMAR supports cooperative and competitive interactions between agents and runs efficiently at up to 100,000 environment steps per second. We also propose a three-tier evaluation protocol to better track algorithmic progress and enable deeper analysis of performance. In addition, CAMAR allows the integration of classical planning methods such as RRT and RRT* into MARL pipelines. We use them as standalone baselines and combine RRT* with popular MARL algorithms to create hybrid approaches. We provide a suite of test scenarios and benchmarking tools to ensure reproducibility and fair comparison. Experiments show that CAMAR presents a challenging and realistic testbed for the MARL community.
☆ Scaling Multi-Agent Epistemic Planning through GNN-Derived Heuristics
Multi-agent Epistemic Planning (MEP) is an autonomous planning framework for reasoning about both the physical world and the beliefs of agents, with applications in domains where information flow and awareness among agents are critical. The richness of MEP requires states to be represented as Kripke structures, i.e., directed labeled graphs. This representation limits the applicability of existing heuristics, hindering the scalability of epistemic solvers, which must explore an exponential search space without guidance, resulting often in intractability. To address this, we exploit Graph Neural Networks (GNNs) to learn patterns and relational structures within epistemic states, to guide the planning process. GNNs, which naturally capture the graph-like nature of Kripke models, allow us to derive meaningful estimates of state quality -- e.g., the distance from the nearest goal -- by generalizing knowledge obtained from previously solved planning instances. We integrate these predictive heuristics into an epistemic planning pipeline and evaluate them against standard baselines, showing significant improvements in the scalability of multi-agent epistemic planning.
☆ Toward Storage-Aware Learning with Compressed Data An Empirical Exploratory Study on JPEG
On-device machine learning is often constrained by limited storage, particularly in continuous data collection scenarios. This paper presents an empirical study on storage-aware learning, focusing on the trade-off between data quantity and quality via compression. We demonstrate that naive strategies, such as uniform data dropping or one-size-fits-all compression, are suboptimal. Our findings further reveal that data samples exhibit varying sensitivities to compression, supporting the feasibility of a sample-wise adaptive compression strategy. These insights provide a foundation for developing a new class of storage-aware learning systems. The primary contribution of this work is the systematic characterization of this under-explored challenge, offering valuable insights that advance the understanding of storage-aware learning.
comment: 6pages, 6figures
☆ Context Matters: Incorporating Target Awareness in Conversational Abusive Language Detection
Abusive language detection has become an increasingly important task as a means to tackle this type of harmful content in social media. There has been a substantial body of research developing models for determining if a social media post is abusive or not; however, this research has primarily focused on exploiting social media posts individually, overlooking additional context that can be derived from surrounding posts. In this study, we look at conversational exchanges, where a user replies to an earlier post by another user (the parent tweet). We ask: does leveraging context from the parent tweet help determine if a reply post is abusive or not, and what are the features that contribute the most? We study a range of content-based and account-based features derived from the context, and compare this to the more widely studied approach of only looking at the features from the reply tweet. For a more generalizable study, we test four different classification models on a dataset made of conversational exchanges (parent-reply tweet pairs) with replies labeled as abusive or not. Our experiments show that incorporating contextual features leads to substantial improvements compared to the use of features derived from the reply tweet only, confirming the importance of leveraging context. We observe that, among the features under study, it is especially the content-based features (what is being posted) that contribute to the classification performance rather than account-based features (who is posting it). While using content-based features, it is best to combine a range of different features to ensure improved performance over being more selective and using fewer features. Our study provides insights into the development of contextualized abusive language detection models in realistic settings involving conversations.
☆ Learning to Steer: Input-dependent Steering for Multimodal LLMs
Steering has emerged as a practical approach to enable post-hoc guidance of LLMs towards enforcing a specific behavior. However, it remains largely underexplored for multimodal LLMs (MLLMs); furthermore, existing steering techniques, such as mean steering, rely on a single steering vector, applied independently of the input query. This paradigm faces limitations when the desired behavior is dependent on the example at hand. For example, a safe answer may consist in abstaining from answering when asked for an illegal activity, or may point to external resources or consultation with an expert when asked about medical advice. In this paper, we investigate a fine-grained steering that uses an input-specific linear shift. This shift is computed using contrastive input-specific prompting. However, the input-specific prompts required for this approach are not known at test time. Therefore, we propose to train a small auxiliary module to predict the input-specific steering vector. Our approach, dubbed as L2S (Learn-to-Steer), demonstrates that it reduces hallucinations and enforces safety in MLLMs, outperforming other static baselines.
☆ Next Visual Granularity Generation
We propose a novel approach to image generation by decomposing an image into a structured sequence, where each element in the sequence shares the same spatial resolution but differs in the number of unique tokens used, capturing different level of visual granularity. Image generation is carried out through our newly introduced Next Visual Granularity (NVG) generation framework, which generates a visual granularity sequence beginning from an empty image and progressively refines it, from global layout to fine details, in a structured manner. This iterative process encodes a hierarchical, layered representation that offers fine-grained control over the generation process across multiple granularity levels. We train a series of NVG models for class-conditional image generation on the ImageNet dataset and observe clear scaling behavior. Compared to the VAR series, NVG consistently outperforms it in terms of FID scores (3.30 -> 3.03, 2.57 ->2.44, 2.09 -> 2.06). We also conduct extensive analysis to showcase the capability and potential of the NVG framework. Our code and models will be released.
☆ A Shift in Perspective on Causality in Domain Generalization
The promise that causal modelling can lead to robust AI generalization has been challenged in recent work on domain generalization (DG) benchmarks. We revisit the claims of the causality and DG literature, reconciling apparent contradictions and advocating for a more nuanced theory of the role of causality in generalization. We also provide an interactive demo at https://chai-uk.github.io/ukairs25-causal-predictors/.
comment: 2 pages, 1 figure, to be presented at the UK AI Research Symposium (UKAIRS) 2025
☆ Bridging Human and LLM Judgments: Understanding and Narrowing the Gap
Large language models are increasingly used as judges (LLM-as-a-judge) to evaluate model outputs at scale, but their assessments often diverge systematically from human judgments. We present Bridge, a unified statistical framework that explicitly bridges human and LLM evaluations under both absolute scoring and pairwise comparison paradigms. Bridge posits a latent human preference score for each prompt-response pair and models LLM deviations as linear transformations of covariates that capture sources of discrepancies. This offers a simple and principled framework for refining LLM ratings and characterizing systematic discrepancies between humans and LLMs. We provide an efficient fitting algorithm with asymptotic guarantees for statistical inference. Using six LLM judges and two benchmarks (BigGen Bench and Chatbot Arena), Bridge achieves higher agreement with human ratings (accuracy, calibration, and KL divergence) and exposes systematic human-LLM gaps.
☆ [Social] Allostasis: Or, How I Learned To Stop Worrying and Love The Noise
The notion of homeostasis typically conceptualises biological and artificial systems as maintaining stability by resisting deviations caused by environmental and social perturbations. In contrast, (social) allostasis proposes that these systems can proactively leverage these very perturbations to reconfigure their regulatory parameters in anticipation of environmental demands, aligning with von Foerster's ``order through noise'' principle. This paper formulates a computational model of allostatic and social allostatic regulation that employs biophysiologically inspired signal transducers, analogous to hormones like cortisol and oxytocin, to encode information from both the environment and social interactions, which mediate this dynamic reconfiguration. The models are tested in a small society of ``animats'' across several dynamic environments, using an agent-based model. The results show that allostatic and social allostatic regulation enable agents to leverage environmental and social ``noise'' for adaptive reconfiguration, leading to improved viability compared to purely reactive homeostatic agents. This work offers a novel computational perspective on the principles of social allostasis and their potential for designing more robust, bio-inspired, adaptive systems
comment: 20 pages, 5 figures. Accepted at ALIFE 2025 (Kyoto, Japan; October 6th - 10th 2025)
Reinforcement Learning with Rubric Anchors
Reinforcement Learning from Verifiable Rewards (RLVR) has emerged as a powerful paradigm for enhancing Large Language Models (LLMs), exemplified by the success of OpenAI's o-series. In RLVR, rewards are derived from verifiable signals-such as passing unit tests in code generation or matching correct answers in mathematical reasoning. While effective, this requirement largely confines RLVR to domains with automatically checkable outcomes. To overcome this, we extend the RLVR paradigm to open-ended tasks by integrating rubric-based rewards, where carefully designed rubrics serve as structured, model-interpretable criteria for automatic scoring of subjective outputs. We construct, to our knowledge, the largest rubric reward system to date, with over 10,000 rubrics from humans, LLMs, or a hybrid human-LLM collaboration. Implementing rubric-based RL is challenging; we tackle these issues with a clear framework and present an open-sourced Qwen-30B-A3B model with notable gains: 1) With only 5K+ samples, our system improves by +5.2% on open-ended benchmarks (especially humanities), outperforming a 671B DeepSeek-V3 model by +2.4%, while preserving general and reasoning abilities. 2) Our method provides fine-grained stylistic control, using rubrics as anchors to mitigate the "AI-like" tone and produce more human-like, expressive responses. We share key lessons in rubric construction, data selection, and training, and discuss limitations and future releases.
comment: technical report
☆ HeroBench: A Benchmark for Long-Horizon Planning and Structured Reasoning in Virtual Worlds
Large language models (LLMs) have shown remarkable capabilities in isolated step-by-step reasoning tasks such as mathematics and programming, but their proficiency in long-horizon planning, where solutions require extended, structured sequences of interdependent actions, remains underexplored. Existing benchmarks typically assess LLMs through abstract or low-dimensional algorithmic tasks, failing to capture the complexity of realistic planning environments. We introduce HeroBench, a novel benchmark designed specifically to evaluate long-horizon planning and structured reasoning within complex RPG-inspired virtual worlds. HeroBench provides a rigorously constructed dataset of tasks covering a wide range of difficulties, a simulated environment to execute and validate agent plans, and detailed analytical tools for evaluating model performance. Tasks challenge models to formulate strategic plans, efficiently gather resources, master necessary skills, craft equipment, and defeat adversaries, reflecting practical scenarios' layered dependencies and constraints. Our extensive evaluation of 25 state-of-the-art LLMs, spanning both open-source and proprietary models, including the GPT-5 family, reveals substantial performance disparities rarely observed in conventional reasoning benchmarks. Detailed error analysis further uncovers specific weaknesses in current models' abilities to generate robust high-level plans and reliably execute structured actions. HeroBench thus not only significantly advances the evaluation of LLM reasoning but also provides a flexible, scalable foundation for future research into advanced, autonomous planning in virtual environments.
comment: Code is available at https://github.com/stefanrer/HeroBench
☆ Randomized PCA Forest for Outlier Detection
We propose a novel unsupervised outlier detection method based on Randomized Principal Component Analysis (PCA). Inspired by the performance of Randomized PCA (RPCA) Forest in approximate K-Nearest Neighbor (KNN) search, we develop a novel unsupervised outlier detection method that utilizes RPCA Forest for outlier detection. Experimental results showcase the superiority of the proposed approach compared to the classical and state-of-the-art methods in performing the outlier detection task on several datasets while performing competitively on the rest. The extensive analysis of the proposed method reflects it high generalization power and its computational efficiency, highlighting it as a good choice for unsupervised outlier detection.
☆ Harnessing Group-Oriented Consistency Constraints for Semi-Supervised Semantic Segmentation in CdZnTe Semiconductors
Labeling Cadmium Zinc Telluride (CdZnTe) semiconductor images is challenging due to the low-contrast defect boundaries, necessitating annotators to cross-reference multiple views. These views share a single ground truth (GT), forming a unique ``many-to-one'' relationship. This characteristic renders advanced semi-supervised semantic segmentation (SSS) methods suboptimal, as they are generally limited by a ``one-to-one'' relationship, where each image is independently associated with its GT. Such limitation may lead to error accumulation in low-contrast regions, further exacerbating confirmation bias. To address this issue, we revisit the SSS pipeline from a group-oriented perspective and propose a human-inspired solution: the Intra-group Consistency Augmentation Framework (ICAF). First, we experimentally validate the inherent consistency constraints within CdZnTe groups, establishing a group-oriented baseline using the Intra-group View Sampling (IVS). Building on this insight, we introduce the Pseudo-label Correction Network (PCN) to enhance consistency representation, which consists of two key modules. The View Augmentation Module (VAM) improves boundary details by dynamically synthesizing a boundary-aware view through the aggregation of multiple views. In the View Correction Module (VCM), this synthesized view is paired with other views for information interaction, effectively emphasizing salient regions while minimizing noise. Extensive experiments demonstrate the effectiveness of our solution for CdZnTe materials. Leveraging DeepLabV3+ with a ResNet-101 backbone as our segmentation model, we achieve a 70.6\% mIoU on the CdZnTe dataset using only 2 group-annotated data (5\textperthousand). The code is available at \href{https://github.com/pipixiapipi/ICAF}{https://github.com/pipixiapipi/ICAF}.
☆ CLAIRE-DSA: Fluoroscopic Image Classification for Quality Assurance of Computer Vision Pipelines in Acute Ischemic Stroke
Computer vision models can be used to assist during mechanical thrombectomy (MT) for acute ischemic stroke (AIS), but poor image quality often degrades performance. This work presents CLAIRE-DSA, a deep learning--based framework designed to categorize key image properties in minimum intensity projections (MinIPs) acquired during MT for AIS, supporting downstream quality control and workflow optimization. CLAIRE-DSA uses pre-trained ResNet backbone models, fine-tuned to predict nine image properties (e.g., presence of contrast, projection angle, motion artefact severity). Separate classifiers were trained on an annotated dataset containing $1,758$ fluoroscopic MinIPs. The model achieved excellent performance on all labels, with ROC-AUC ranging from $0.91$ to $0.98$, and precision ranging from $0.70$ to $1.00$. The ability of CLAIRE-DSA to identify suitable images was evaluated on a segmentation task by filtering poor quality images and comparing segmentation performance on filtered and unfiltered datasets. Segmentation success rate increased from $42%$ to $69%$, $p < 0.001$. CLAIRE-DSA demonstrates strong potential as an automated tool for accurately classifying image properties in DSA series of acute ischemic stroke patients, supporting image annotation and quality control in clinical and research applications. Source code is available at https://gitlab.com/icai-stroke-lab/wp3_neurointerventional_ai/claire-dsa.
comment: 10 pages, 4 figures, workshop paper accepted at https://switchmiccai.github.io/switch/
☆ Beyond Ethical Alignment: Evaluating LLMs as Artificial Moral Assistants
The recent rise in popularity of large language models (LLMs) has prompted considerable concerns about their moral capabilities. Although considerable effort has been dedicated to aligning LLMs with human moral values, existing benchmarks and evaluations remain largely superficial, typically measuring alignment based on final ethical verdicts rather than explicit moral reasoning. In response, this paper aims to advance the investigation of LLMs' moral capabilities by examining their capacity to function as Artificial Moral Assistants (AMAs), systems envisioned in the philosophical literature to support human moral deliberation. We assert that qualifying as an AMA requires more than what state-of-the-art alignment techniques aim to achieve: not only must AMAs be able to discern ethically problematic situations, they should also be able to actively reason about them, navigating between conflicting values outside of those embedded in the alignment phase. Building on existing philosophical literature, we begin by designing a new formal framework of the specific kind of behaviour an AMA should exhibit, individuating key qualities such as deductive and abductive moral reasoning. Drawing on this theoretical framework, we develop a benchmark to test these qualities and evaluate popular open LLMs against it. Our results reveal considerable variability across models and highlight persistent shortcomings, particularly regarding abductive moral reasoning. Our work connects theoretical philosophy with practical AI evaluation while also emphasising the need for dedicated strategies to explicitly enhance moral reasoning capabilities in LLMs. Code available at https://github.com/alessioGalatolo/AMAeval
comment: Full version of the paper published in ECAI 2025 proceedings (IOS Press, CC BY-NC 4.0)
☆ DCSCR: A Class-Specific Collaborative Representation based Network for Image Set Classification
Image set classification (ISC), which can be viewed as a task of comparing similarities between sets consisting of unordered heterogeneous images with variable quantities and qualities, has attracted growing research attention in recent years. How to learn effective feature representations and how to explore the similarities between different image sets are two key yet challenging issues in this field. However, existing traditional ISC methods classify image sets based on raw pixel features, ignoring the importance of feature learning. Existing deep ISC methods can learn deep features, but they fail to adaptively adjust the features when measuring set distances, resulting in limited performance in few-shot ISC. To address the above issues, this paper combines traditional ISC methods with deep models and proposes a novel few-shot ISC approach called Deep Class-specific Collaborative Representation (DCSCR) network to simultaneously learn the frame- and concept-level feature representations of each image set and the distance similarities between different sets. Specifically, DCSCR consists of a fully convolutional deep feature extractor module, a global feature learning module, and a class-specific collaborative representation-based metric learning module. The deep feature extractor and global feature learning modules are used to learn (local and global) frame-level feature representations, while the class-specific collaborative representation-based metric learning module is exploit to adaptively learn the concept-level feature representation of each image set and thus obtain the distance similarities between different sets by developing a new CSCR-based contrastive loss function. Extensive experiments on several well-known few-shot ISC datasets demonstrate the effectiveness of the proposed method compared with some state-of-the-art image set classification algorithms.
☆ FedUNet: A Lightweight Additive U-Net Module for Federated Learning with Heterogeneous Models
Federated learning (FL) enables decentralized model training without sharing local data. However, most existing methods assume identical model architectures across clients, limiting their applicability in heterogeneous real-world environments. To address this, we propose FedUNet, a lightweight and architecture-agnostic FL framework that attaches a U-Net-inspired additive module to each client's backbone. By sharing only the compact bottleneck of the U-Net, FedUNet enables efficient knowledge transfer without structural alignment. The encoder-decoder design and skip connections in the U-Net help capture both low-level and high-level features, facilitating the extraction of clientinvariant representations. This enables cooperative learning between the backbone and the additive module with minimal communication cost. Experiment with VGG variants shows that FedUNet achieves 93.11% accuracy and 92.68% in compact form (i.e., a lightweight version of FedUNet) with only 0.89 MB low communication overhead.
comment: 6 pages, 4 figures
☆ LinguaSafe: A Comprehensive Multilingual Safety Benchmark for Large Language Models
The widespread adoption and increasing prominence of large language models (LLMs) in global technologies necessitate a rigorous focus on ensuring their safety across a diverse range of linguistic and cultural contexts. The lack of a comprehensive evaluation and diverse data in existing multilingual safety evaluations for LLMs limits their effectiveness, hindering the development of robust multilingual safety alignment. To address this critical gap, we introduce LinguaSafe, a comprehensive multilingual safety benchmark crafted with meticulous attention to linguistic authenticity. The LinguaSafe dataset comprises 45k entries in 12 languages, ranging from Hungarian to Malay. Curated using a combination of translated, transcreated, and natively-sourced data, our dataset addresses the critical need for multilingual safety evaluations of LLMs, filling the void in the safety evaluation of LLMs across diverse under-represented languages from Hungarian to Malay. LinguaSafe presents a multidimensional and fine-grained evaluation framework, with direct and indirect safety assessments, including further evaluations for oversensitivity. The results of safety and helpfulness evaluations vary significantly across different domains and different languages, even in languages with similar resource levels. Our benchmark provides a comprehensive suite of metrics for in-depth safety evaluation, underscoring the critical importance of thoroughly assessing multilingual safety in LLMs to achieve more balanced safety alignment. Our dataset and code are released to the public to facilitate further research in the field of multilingual LLM safety.
comment: 7pages, 5 figures
☆ GTool: Graph Enhanced Tool Planning with Large Language Model
Tool planning with large language models (LLMs), referring to selecting, organizing, and preparing the tools necessary to complete a user request, bridges the gap between natural language understanding and task execution. However, current works treat different tools as isolated components and fail to leverage the inherent dependencies of tools, leading to invalid planning results. Since tool dependencies are often incomplete, it becomes challenging for LLMs to accurately identify the appropriate tools required by a user request, especially when confronted with a large toolset. To solve this challenge, we propose \texttt{GTool}, which is the first work aiming to enhance the tool planning ability of LLMs under incomplete dependencies. \texttt{GTool} constructs a request-specific tool graph to select tools efficiently and generate the \texttt{} which provides sufficient dependency information understandable by LLMs. Moreover, a missing dependency prediction task is designed to improve the reliability of \texttt{GTool} with incomplete dependencies. Without trimming LLMs, \texttt{GTool} can be seamlessly integrated with various LLM backbones without extensive retraining. Extensive experiments show that \texttt{GTool} achieves more than 29.6\% performance improvements compared with the state-of-the-art (SOTA) baselines with a light-weight (7B) LLM backbone.
comment: 16 pages, 9 figures
☆ MATPAC++: Enhanced Masked Latent Prediction for Self-Supervised Audio Representation Learning
Masked latent prediction has emerged as a leading paradigm in self-supervised learning (SSL), especially for general audio and music representation learning. While recent methods have demonstrated strong performance, the role of the predictor module used at the output of such SSL systems remains mainly overlooked, despite being crucial for solving the pretext task at hand. In particular, this module should be able to deal with the ambiguity inherent in audio content, especially when it is composed of multiple sound sources. This work proposes a novel enhancement: integrating Multiple Choice Learning (MCL) to explicitly model prediction ambiguity and improve representation quality. We build on top of the recently proposed MATPAC system, improving its prediction and unsupervised classification pretext tasks with MCL. We extensively evaluate our method, MATPAC++, through both linear probing across multiple downstream tasks and fine-tuning on AudioSet, employing a unified protocol that enables rigorous and fair comparisons with state-of-the-art SSL approaches. Results show that our proposal achieves state-of-the-art when fine-tuned on AudioSet and overall state-of-the-art scores on downstream tasks. Additionally, we examine domain specialisation by training exclusively on music data, where our model achieves state-of-the-art performance with significantly improved efficiency.
comment: Under review
☆ Asymmetric Diffusion Recommendation Model CIKM2025
Recently, motivated by the outstanding achievements of diffusion models, the diffusion process has been employed to strengthen representation learning in recommendation systems. Most diffusion-based recommendation models typically utilize standard Gaussian noise in symmetric forward and reverse processes in continuous data space. Nevertheless, the samples derived from recommendation systems inhabit a discrete data space, which is fundamentally different from the continuous one. Moreover, Gaussian noise has the potential to corrupt personalized information within latent representations. In this work, we propose a novel and effective method, named Asymmetric Diffusion Recommendation Model (AsymDiffRec), which learns forward and reverse processes in an asymmetric manner. We define a generalized forward process that simulates the missing features in real-world recommendation samples. The reverse process is then performed in an asymmetric latent feature space. To preserve personalized information within the latent representation, a task-oriented optimization strategy is introduced. In the serving stage, the raw sample with missing features is regarded as a noisy input to generate a denoising and robust representation for the final prediction. By equipping base models with AsymDiffRec, we conduct online A/B tests, achieving improvements of +0.131% and +0.166% in terms of users' active days and app usage duration respectively. Additionally, the extended offline experiments also demonstrate improvements. AsymDiffRec has been implemented in the Douyin Music App.
comment: Accepted by CIKM2025
☆ A Unified Cortical Circuit Model with Divisive Normalization and Self-Excitation for Robust Representation and Memory Maintenance
Robust information representation and its persistent maintenance are fundamental for higher cognitive functions. Existing models employ distinct neural mechanisms to separately address noise-resistant processing or information maintenance, yet a unified framework integrating both operations remains elusive -- a critical gap in understanding cortical computation. Here, we introduce a recurrent neural circuit that combines divisive normalization with self-excitation to achieve both robust encoding and stable retention of normalized inputs. Mathematical analysis shows that, for suitable parameter regimes, the system forms a continuous attractor with two key properties: (1) input-proportional stabilization during stimulus presentation; and (2) self-sustained memory states persisting after stimulus offset. We demonstrate the model's versatility in two canonical tasks: (a) noise-robust encoding in a random-dot kinematogram (RDK) paradigm; and (b) approximate Bayesian belief updating in a probabilistic Wisconsin Card Sorting Test (pWCST). This work establishes a unified mathematical framework that bridges noise suppression, working memory, and approximate Bayesian inference within a single cortical microcircuit, offering fresh insights into the brain's canonical computation and guiding the design of biologically plausible artificial neural architectures.
comment: 15 pages, 4 figures
☆ Multi-Level Knowledge Distillation and Dynamic Self-Supervised Learning for Continual Learning
Class-incremental with repetition (CIR), where previously trained classes repeatedly introduced in future tasks, is a more realistic scenario than the traditional class incremental setup, which assumes that each task contains unseen classes. CIR assumes that we can easily access abundant unlabeled data from external sources, such as the Internet. Therefore, we propose two components that efficiently use the unlabeled data to ensure the high stability and the plasticity of models trained in CIR setup. First, we introduce multi-level knowledge distillation (MLKD) that distills knowledge from multiple previous models across multiple perspectives, including features and logits, so the model can maintain much various previous knowledge. Moreover, we implement dynamic self-supervised loss (SSL) to utilize the unlabeled data that accelerates the learning of new classes, while dynamic weighting of SSL keeps the focus of training to the primary task. Both of our proposed components significantly improve the performance in CIR setup, achieving 2nd place in the CVPR 5th CLVISION Challenge.
☆ TTA-DAME: Test-Time Adaptation with Domain Augmentation and Model Ensemble for Dynamic Driving Conditions
Test-time Adaptation (TTA) poses a challenge, requiring models to dynamically adapt and perform optimally on shifting target domains. This task is particularly emphasized in real-world driving scenes, where weather domain shifts occur frequently. To address such dynamic changes, our proposed method, TTA-DAME, leverages source domain data augmentation into target domains. Additionally, we introduce a domain discriminator and a specialized domain detector to mitigate drastic domain shifts, especially from daytime to nighttime conditions. To further improve adaptability, we train multiple detectors and consolidate their predictions through Non-Maximum Suppression (NMS). Our empirical validation demonstrates the effectiveness of our method, showing significant performance enhancements on the SHIFT Benchmark.
☆ EGOILLUSION: Benchmarking Hallucinations in Egocentric Video Understanding
Multimodal Large Language Models (MLLMs) have demonstrated remarkable performance in complex multimodal tasks. While MLLMs excel at visual perception and reasoning in third-person and egocentric videos, they are prone to hallucinations, generating coherent yet inaccurate responses. We present EgoIllusion, a first benchmark to evaluate MLLM hallucinations in egocentric videos. EgoIllusion comprises 1,400 videos paired with 8,000 human-annotated open and closed-ended questions designed to trigger hallucinations in both visual and auditory cues in egocentric videos. Evaluations across ten MLLMs reveal significant challenges, including powerful models like GPT-4o and Gemini, achieving only 59% accuracy. EgoIllusion lays the foundation in developing robust benchmarks to evaluate the effectiveness of MLLMs and spurs the development of better egocentric MLLMs with reduced hallucination rates. Our benchmark will be open-sourced for reproducibility.
☆ ToolACE-MT: Non-Autoregressive Generation for Agentic Multi-Turn Interaction
Agentic task-solving with Large Language Models (LLMs) requires multi-turn, multi-step interactions, often involving complex function calls and dynamic user-agent exchanges. Existing simulation-based data generation methods for such scenarios rely heavily on costly autoregressive interactions between multiple LLM agents, thereby limiting real-world performance of agentic tasks. In this paper, we propose a novel Non-Autoregressive Iterative Generation framework, called ToolACE-MT, for constructing high-quality multi-turn agentic dialogues. ToolACE-MT generates full conversational trajectories through three stages: coarse-grained initialization, iterative refinement, and offline verification. The initialization phase builds a structurally complete yet semantically coarse dialogue skeleton; the iterative refinement phase introduces realistic complexities and continued refinement via mask-and-fill operations; and the offline verification phase ensures correctness and coherence via rule- and model-based checks. Experiments demonstrate that ToolACE-MT enables efficient, effective and generalizable agentic data generation, offering a new paradigm for high-quality data construction in tool-augmented LLM scenarios.
☆ A Taxonomy of Hierarchical Multi-Agent Systems: Design Patterns, Coordination Mechanisms, and Industrial Applications
Hierarchical multi-agent systems (HMAS) organize collections of agents into layered structures that help manage complexity and scale. These hierarchies can simplify coordination, but they also can introduce trade-offs that are not always obvious. This paper proposes a multi-dimensional taxonomy for HMAS along five axes: control hierarchy, information flow, role and task delegation, temporal layering, and communication structure. The intent is not to prescribe a single "best" design but to provide a lens for comparing different approaches. Rather than treating these dimensions in isolation, the taxonomy is connected to concrete coordination mechanisms - from the long-standing contract-net protocol for task allocation to more recent work in hierarchical reinforcement learning. Industrial contexts illustrate the framework, including power grids and oilfield operations, where agents at production, maintenance, and supply levels coordinate to diagnose well issues or balance energy demand. These cases suggest that hierarchical structures may achieve global efficiency while preserving local autonomy, though the balance is delicate. The paper closes by identifying open challenges: making hierarchical decisions explainable to human operators, scaling to very large agent populations, and assessing whether learning-based agents such as large language models can be safely integrated into layered frameworks. This paper presents what appears to be the first taxonomy that unifies structural, temporal, and communication dimensions of hierarchical MAS into a single design framework, bridging classical coordination mechanisms with modern reinforcement learning and large language model agents.
☆ GridCodex: A RAG-Driven AI Framework for Power Grid Code Reasoning and Compliance
The global shift towards renewable energy presents unprecedented challenges for the electricity industry, making regulatory reasoning and compliance increasingly vital. Grid codes, the regulations governing grid operations, are complex and often lack automated interpretation solutions, which hinders industry expansion and undermines profitability for electricity companies. We introduce GridCodex, an end to end framework for grid code reasoning and compliance that leverages large language models and retrieval-augmented generation (RAG). Our framework advances conventional RAG workflows through multi stage query refinement and enhanced retrieval with RAPTOR. We validate the effectiveness of GridCodex with comprehensive benchmarks, including automated answer assessment across multiple dimensions and regulatory agencies. Experimental results showcase a 26.4% improvement in answer quality and more than a 10 fold increase in recall rate. An ablation study further examines the impact of base model selection.
☆ Deploying Models to Non-participating Clients in Federated Learning without Fine-tuning: A Hypernetwork-based Approach
Federated Learning (FL) has emerged as a promising paradigm for privacy-preserving collaborative learning, yet data heterogeneity remains a critical challenge. While existing methods achieve progress in addressing data heterogeneity for participating clients, they fail to generalize to non-participating clients with in-domain distribution shifts and resource constraints. To mitigate this issue, we present HyperFedZero, a novel method that dynamically generates specialized models via a hypernetwork conditioned on distribution-aware embeddings. Our approach explicitly incorporates distribution-aware inductive biases into the model's forward pass, extracting robust distribution embeddings using a NoisyEmbed-enhanced extractor with a Balancing Penalty, effectively preventing feature collapse. The hypernetwork then leverages these embeddings to generate specialized models chunk-by-chunk for non-participating clients, ensuring adaptability to their unique data distributions. Extensive experiments on multiple datasets and models demonstrate HyperFedZero's remarkable performance, surpassing competing methods consistently with minimal computational, storage, and communication overhead. Moreover, ablation studies and visualizations further validate the necessity of each component, confirming meaningful adaptations and validating the effectiveness of HyperFedZero.
comment: 17 pages
☆ Breaking Language Barriers: Equitable Performance in Multilingual Language Models NAACL 2025
Cutting-edge LLMs have emerged as powerful tools for multilingual communication and understanding. However, LLMs perform worse in Common Sense Reasoning (CSR) tasks when prompted in low-resource languages (LRLs) like Hindi or Swahili compared to high-resource languages (HRLs) like English. Equalizing this inconsistent access to quality LLM outputs is crucial to ensure fairness for speakers of LRLs and across diverse linguistic communities. In this paper, we propose an approach to bridge this gap in LLM performance. Our approach involves fine-tuning an LLM on synthetic code-switched text generated using controlled language-mixing methods. We empirically demonstrate that fine-tuning LLMs on synthetic code-switched datasets leads to substantial improvements in LRL model performance while preserving or enhancing performance in HRLs. Additionally, we present a new dataset of synthetic code-switched text derived from the CommonSenseQA dataset, featuring three distinct language ratio configurations.
comment: Accepted as a non-archival work-in-progress paper at the NAACL 2025 Student Research Workshop
☆ The Maximum Coverage Model and Recommendation System for UAV Vertiports Location Planning
As urban aerial mobility (UAM) infrastructure development accelerates globally, cities like Shenzhen are planning large-scale vertiport networks (e.g., 1,200+ facilities by 2026). Existing planning frameworks remain inadequate for this complexity due to historical limitations in data granularity and real-world applicability. This paper addresses these gaps by first proposing the Capacitated Dynamic Maximum Covering Location Problem (CDMCLP), a novel optimization framework that simultaneously models urban-scale spatial-temporal demand, heterogeneous user behaviors, and infrastructure capacity constraints. Building on this foundation, we introduce an Integrated Planning Recommendation System that combines CDMCLP with socio-economic factors and dynamic clustering initialization. This system leverages adaptive parameter tuning based on empirical user behavior to generate practical planning solutions. Validation in a Chinese center city demonstrates the effectiveness of the new optimization framework and recommendation system. Under the evaluation and optimization of CDMCLP, the quantitative performance of traditional location methods are exposed and can be improved by 38\%--52\%, while the recommendation system shows user-friendliness and the effective integration of complex elements. By integrating mathematical rigor with practical implementation considerations, this hybrid approach bridges the gap between theoretical location modeling and real-world UAM infrastructure planning, offering municipalities a pragmatic tool for vertiport network design.
comment: 10 pages
☆ Score-informed Neural Operator for Enhancing Ordering-based Causal Discovery
Ordering-based approaches to causal discovery identify topological orders of causal graphs, providing scalable alternatives to combinatorial search methods. Under the Additive Noise Model (ANM) assumption, recent causal ordering methods based on score matching require an accurate estimation of the Hessian diagonal of the log-densities. However, previous approaches mainly use Stein gradient estimators, which are computationally expensive and memory-intensive. Although DiffAN addresses these limitations by substituting kernel-based estimates with diffusion models, it remains numerically unstable due to the second-order derivatives of score models. To alleviate these problems, we propose Score-informed Neural Operator (SciNO), a probabilistic generative model in smooth function spaces designed to stably approximate the Hessian diagonal and to preserve structural information during the score modeling. Empirical results show that SciNO reduces order divergence by 42.7% on synthetic graphs and by 31.5% on real-world datasets on average compared to DiffAN, while maintaining memory efficiency and scalability. Furthermore, we propose a probabilistic control algorithm for causal reasoning with autoregressive models that integrates SciNO's probability estimates with autoregressive model priors, enabling reliable data-driven causal ordering informed by semantic information. Consequently, the proposed method enhances causal reasoning abilities of LLMs without additional fine-tuning or prompt engineering.
comment: 32 pages, 17 figures, 5 tables
☆ Cognitive Structure Generation: From Educational Priors to Policy Optimization
Cognitive structure is a student's subjective organization of an objective knowledge system, reflected in the psychological construction of concepts and their relations. However, cognitive structure assessment remains a long-standing challenge in student modeling and psychometrics, persisting as a foundational yet largely unassessable concept in educational practice. This paper introduces a novel framework, Cognitive Structure Generation (CSG), in which we first pretrain a Cognitive Structure Diffusion Probabilistic Model (CSDPM) to generate students' cognitive structures from educational priors, and then further optimize its generative process as a policy with hierarchical reward signals via reinforcement learning to align with genuine cognitive development levels during students' learning processes. Experimental results on four popular real-world education datasets show that cognitive structures generated by CSG offer more comprehensive and effective representations for student modeling, substantially improving performance on KT and CD tasks while enhancing interpretability.
SpotVLM: Cloud-edge Collaborative Real-time VLM based on Context Transfer
Vision-Language Models (VLMs) are increasingly deployed in real-time applications such as autonomous driving and human-computer interaction, which demand fast and reliable responses based on accurate perception. To meet these requirements, existing systems commonly employ cloud-edge collaborative architectures, such as partitioned Large Vision-Language Models (LVLMs) or task offloading strategies between Large and Small Vision-Language Models (SVLMs). However, these methods fail to accommodate cloud latency fluctuations and overlook the full potential of delayed but accurate LVLM responses. In this work, we propose a novel cloud-edge collaborative paradigm for VLMs, termed Context Transfer, which treats the delayed outputs of LVLMs as historical context to provide real-time guidance for SVLMs inference. Based on this paradigm, we design SpotVLM, which incorporates both context replacement and visual focus modules to refine historical textual input and enhance visual grounding consistency. Extensive experiments on three real-time vision tasks across four datasets demonstrate the effectiveness of the proposed framework. The new paradigm lays the groundwork for more effective and latency-aware collaboration strategies in future VLM systems.
☆ How can we trust opaque systems? Criteria for robust explanations in XAI
Deep learning (DL) algorithms are becoming ubiquitous in everyday life and in scientific research. However, the price we pay for their impressively accurate predictions is significant: their inner workings are notoriously opaque - it is unknown to laypeople and researchers alike what features of the data a DL system focuses on and how it ultimately succeeds in predicting correct outputs. A necessary criterion for trustworthy explanations is that they should reflect the relevant processes the algorithms' predictions are based on. The field of eXplainable Artificial Intelligence (XAI) presents promising methods to create such explanations. But recent reviews about their performance offer reasons for skepticism. As we will argue, a good criterion for trustworthiness is explanatory robustness: different XAI methods produce the same explanations in comparable contexts. However, in some instances, all methods may give the same, but still wrong, explanation. We therefore argue that in addition to explanatory robustness (ER), a prior requirement of explanation method robustness (EMR) has to be fulfilled by every XAI method. Conversely, the robustness of an individual method is in itself insufficient for trustworthiness. In what follows, we develop and formalize criteria for ER as well as EMR, providing a framework for explaining and establishing trust in DL algorithms. We also highlight interesting application cases and outline directions for future work.
comment: 8 pages, 1 figure
☆ A Generalized Genetic Random Field Method for the Genetic Association Analysis of Sequencing Data
With the advance of high-throughput sequencing technologies, it has become feasible to investigate the influence of the entire spectrum of sequencing variations on complex human diseases. Although association studies utilizing the new sequencing technologies hold great promise to unravel novel genetic variants, especially rare genetic variants that contribute to human diseases, the statistical analysis of high-dimensional sequencing data remains a challenge. Advanced analytical methods are in great need to facilitate high-dimensional sequencing data analyses. In this article, we propose a generalized genetic random field (GGRF) method for association analyses of sequencing data. Like other similarity-based methods (e.g., SIMreg and SKAT), the new method has the advantages of avoiding the need to specify thresholds for rare variants and allowing for testing multiple variants acting in different directions and magnitude of effects. The method is built on the generalized estimating equation framework and thus accommodates a variety of disease phenotypes (e.g., quantitative and binary phenotypes). Moreover, it has a nice asymptotic property, and can be applied to small-scale sequencing data without need for small-sample adjustment. Through simulations, we demonstrate that the proposed GGRF attains an improved or comparable power over a commonly used method, SKAT, under various disease scenarios, especially when rare variants play a significant role in disease etiology. We further illustrate GGRF with an application to a real dataset from the Dallas Heart Study. By using GGRF, we were able to detect the association of two candidate genes, ANGPTL3 and ANGPTL4, with serum triglyceride.
☆ An LLM + ASP Workflow for Joint Entity-Relation Extraction
Joint entity-relation extraction (JERE) identifies both entities and their relationships simultaneously. Traditional machine-learning based approaches to performing this task require a large corpus of annotated data and lack the ability to easily incorporate domain specific information in the construction of the model. Therefore, creating a model for JERE is often labor intensive, time consuming, and elaboration intolerant. In this paper, we propose harnessing the capabilities of generative pretrained large language models (LLMs) and the knowledge representation and reasoning capabilities of Answer Set Programming (ASP) to perform JERE. We present a generic workflow for JERE using LLMs and ASP. The workflow is generic in the sense that it can be applied for JERE in any domain. It takes advantage of LLM's capability in natural language understanding in that it works directly with unannotated text. It exploits the elaboration tolerant feature of ASP in that no modification of its core program is required when additional domain specific knowledge, in the form of type specifications, is found and needs to be used. We demonstrate the usefulness of the proposed workflow through experiments with limited training data on three well-known benchmarks for JERE. The results of our experiments show that the LLM + ASP workflow is better than state-of-the-art JERE systems in several categories with only 10\% of training data. It is able to achieve a 2.5 times (35\% over 15\%) improvement in the Relation Extraction task for the SciERC corpus, one of the most difficult benchmarks.
comment: 13 pages, 1 figure, Accepted as Technical Communication, 41st International Conference on Logic Programming
OpenMoCap: Rethinking Optical Motion Capture under Real-world Occlusion
Optical motion capture is a foundational technology driving advancements in cutting-edge fields such as virtual reality and film production. However, system performance suffers severely under large-scale marker occlusions common in real-world applications. An in-depth analysis identifies two primary limitations of current models: (i) the lack of training datasets accurately reflecting realistic marker occlusion patterns, and (ii) the absence of training strategies designed to capture long-range dependencies among markers. To tackle these challenges, we introduce the CMU-Occlu dataset, which incorporates ray tracing techniques to realistically simulate practical marker occlusion patterns. Furthermore, we propose OpenMoCap, a novel motion-solving model designed specifically for robust motion capture in environments with significant occlusions. Leveraging a marker-joint chain inference mechanism, OpenMoCap enables simultaneous optimization and construction of deep constraints between markers and joints. Extensive comparative experiments demonstrate that OpenMoCap consistently outperforms competing methods across diverse scenarios, while the CMU-Occlu dataset opens the door for future studies in robust motion solving. The proposed OpenMoCap is integrated into the MoSen MoCap system for practical deployment. The code is released at: https://github.com/qianchen214/OpenMoCap.
☆ SSPO: Self-traced Step-wise Preference Optimization for Process Supervision and Reasoning Compression
Test-time scaling has proven effective in further enhancing the performance of pretrained Large Language Models (LLMs). However, mainstream post-training methods (i.e., reinforcement learning (RL) with chain-of-thought (CoT) reasoning) often incur substantial computational overhead due to auxiliary models and overthinking. In this paper, we empirically reveal that the incorrect answers partially stem from verbose reasoning processes lacking correct self-fix, where errors accumulate across multiple reasoning steps. To this end, we propose Self-traced Step-wise Preference Optimization (SSPO), a pluggable RL process supervision framework that enables fine-grained optimization of each reasoning step. Specifically, SSPO requires neither auxiliary models nor stepwise manual annotations. Instead, it leverages step-wise preference signals generated by the model itself to guide the optimization process for reasoning compression. Experiments demonstrate that the generated reasoning sequences from SSPO are both accurate and succinct, effectively mitigating overthinking behaviors without compromising model performance across diverse domains and languages.
comment: Work in progress
☆ Beyond Modality Limitations: A Unified MLLM Approach to Automated Speaking Assessment with Effective Curriculum Learning
Traditional Automated Speaking Assessment (ASA) systems exhibit inherent modality limitations: text-based approaches lack acoustic information while audio-based methods miss semantic context. Multimodal Large Language Models (MLLM) offer unprecedented opportunities for comprehensive ASA by simultaneously processing audio and text within unified frameworks. This paper presents a very first systematic study of MLLM for comprehensive ASA, demonstrating the superior performance of MLLM across the aspects of content and language use . However, assessment on the delivery aspect reveals unique challenges, which is deemed to require specialized training strategies. We thus propose Speech-First Multimodal Training (SFMT), leveraging a curriculum learning principle to establish more robust modeling foundations of speech before cross-modal synergetic fusion. A series of experiments on a benchmark dataset show MLLM-based systems can elevate the holistic assessment performance from a PCC value of 0.783 to 0.846. In particular, SFMT excels in the evaluation of the delivery aspect, achieving an absolute accuracy improvement of 4% over conventional training approaches, which also paves a new avenue for ASA.
comment: Accepted at IEEE ASRU 2025
☆ Energy-Efficient Wireless LLM Inference via Uncertainty and Importance-Aware Speculative Decoding
To address the growing demand for on-device LLM inference in resource-constrained environments, hybrid language models (HLM) have emerged, combining lightweight local models with powerful cloud-based LLMs. Recent studies on HLM have primarily focused on improving accuracy and latency, while often overlooking communication and energy efficiency. We propose a token-level filtering mechanism for an energy-efficient importance- and uncertainty-aware HLM inference that leverages both epistemic uncertainty and attention-based importance. Our method opportunistically uploads only informative tokens, reducing LLM usage and communication costs. Experiments with TinyLlama-1.1B and LLaMA-2-7B demonstrate that our method achieves up to 87.5% BERT Score and token throughput of 0.37 tokens/sec while saving the energy consumption by 40.7% compared to standard HLM. Furthermore, compared to our previous U-HLM baseline, our method improves BERTScore from 85.8% to 87.0%, energy savings from 31.6% to 43.6%, and throughput from 0.36 to 0.40. This approach enables an energy-efficient and accurate deployment of LLMs in bandwidth-constrained edge environments.
comment: 6 pages, 5 figures
☆ Widening the Network Mitigates the Impact of Data Heterogeneity on FedAvg ICML 2025
Federated learning (FL) enables decentralized clients to train a model collaboratively without sharing local data. A key distinction between FL and centralized learning is that clients' data are non-independent and identically distributed, which poses significant challenges in training a global model that generalizes well across heterogeneous local data distributions. In this paper, we analyze the convergence of overparameterized FedAvg with gradient descent (GD). We prove that the impact of data heterogeneity diminishes as the width of neural networks increases, ultimately vanishing when the width approaches infinity. In the infinite-width regime, we further prove that both the global and local models in FedAvg behave as linear models, and that FedAvg achieves the same generalization performance as centralized learning with the same number of GD iterations. Extensive experiments validate our theoretical findings across various network architectures, loss functions, and optimization methods.
comment: Accepted by ICML 2025
☆ Deep Learning Model for Amyloidogenicity Prediction using a Pre-trained Protein LLM
The prediction of amyloidogenicity in peptides and proteins remains a focal point of ongoing bioinformatics. The crucial step in this field is to apply advanced computational methodologies. Many recent approaches to predicting amyloidogenicity within proteins are highly based on evolutionary motifs and the individual properties of amino acids. It is becoming increasingly evident that the sequence information-based features show high predictive performance. Consequently, our study evaluated the contextual features of protein sequences obtained from a pretrained protein large language model leveraging bidirectional LSTM and GRU to predict amyloidogenic regions in peptide and protein sequences. Our method achieved an accuracy of 84.5% on 10-fold cross-validation and an accuracy of 83% in the test dataset. Our results demonstrate competitive performance, highlighting the potential of LLMs in enhancing the accuracy of amyloid prediction.
☆ Help or Hurdle? Rethinking Model Context Protocol-Augmented Large Language Models
The Model Context Protocol (MCP) enables large language models (LLMs) to access external resources on demand. While commonly assumed to enhance performance, how LLMs actually leverage this capability remains poorly understood. We introduce MCPGAUGE, the first comprehensive evaluation framework for probing LLM-MCP interactions along four key dimensions: proactivity (self-initiated tool use), compliance (adherence to tool-use instructions), effectiveness (task performance post-integration), and overhead (computational cost incurred). MCPGAUGE comprises a 160-prompt suite and 25 datasets spanning knowledge comprehension, general reasoning, and code generation. Our large-scale evaluation, spanning six commercial LLMs, 30 MCP tool suites, and both one- and two-turn interaction settings, comprises around 20,000 API calls and over USD 6,000 in computational cost. This comprehensive study reveals four key findings that challenge prevailing assumptions about the effectiveness of MCP integration. These insights highlight critical limitations in current AI-tool integration and position MCPGAUGE as a principled benchmark for advancing controllable, tool-augmented LLMs.
☆ OS-R1: Agentic Operating System Kernel Tuning with Reinforcement Learning
Linux kernel tuning is essential for optimizing operating system (OS) performance. However, existing methods often face challenges in terms of efficiency, scalability, and generalization. This paper introduces OS-R1, an agentic Linux kernel tuning framework powered by rule-based reinforcement learning (RL). By abstracting the kernel configuration space as an RL environment, OS-R1 facilitates efficient exploration by large language models (LLMs) and ensures accurate configuration modifications. Additionally, custom reward functions are designed to enhance reasoning standardization, configuration modification accuracy, and system performance awareness of the LLMs. Furthermore, we propose a two-phase training process that accelerates convergence and minimizes retraining across diverse tuning scenarios. Experimental results show that OS-R1 significantly outperforms existing baseline methods, achieving up to 5.6% performance improvement over heuristic tuning and maintaining high data efficiency. Notably, OS-R1 is adaptable across various real-world applications, demonstrating its potential for practical deployment in diverse environments. Our dataset and code are publicly available at https://github.com/LHY-24/OS-R1.
☆ Systematic Analysis of MCP Security
The Model Context Protocol (MCP) has emerged as a universal standard that enables AI agents to seamlessly connect with external tools, significantly enhancing their functionality. However, while MCP brings notable benefits, it also introduces significant vulnerabilities, such as Tool Poisoning Attacks (TPA), where hidden malicious instructions exploit the sycophancy of large language models (LLMs) to manipulate agent behavior. Despite these risks, current academic research on MCP security remains limited, with most studies focusing on narrow or qualitative analyses that fail to capture the diversity of real-world threats. To address this gap, we present the MCP Attack Library (MCPLIB), which categorizes and implements 31 distinct attack methods under four key classifications: direct tool injection, indirect tool injection, malicious user attacks, and LLM inherent attack. We further conduct a quantitative analysis of the efficacy of each attack. Our experiments reveal key insights into MCP vulnerabilities, including agents' blind reliance on tool descriptions, sensitivity to file-based attacks, chain attacks exploiting shared context, and difficulty distinguishing external data from executable commands. These insights, validated through attack experiments, underscore the urgency for robust defense strategies and informed MCP design. Our contributions include 1) constructing a comprehensive MCP attack taxonomy, 2) introducing a unified attack framework MCPLIB, and 3) conducting empirical vulnerability analysis to enhance MCP security mechanisms. This work provides a foundational framework, supporting the secure evolution of MCP ecosystems.
☆ CorrSteer: Steering Improves Task Performance and Safety in LLMs through Correlation-based Sparse Autoencoder Feature Selection
Sparse Autoencoders (SAEs) can extract interpretable features from large language models (LLMs) without supervision. However, their effectiveness in downstream steering tasks is limited by the requirement for contrastive datasets or large activation storage. To address these limitations, we propose CorrSteer, which selects features by correlating sample correctness with SAE activations from generated tokens at inference time. This approach uses only inference-time activations to extract more relevant features, thereby avoiding spurious correlations. It also obtains steering coefficients from average activations, automating the entire pipeline. Our method shows improved task performance on QA, bias mitigation, jailbreaking prevention, and reasoning benchmarks on Gemma 2 2B and LLaMA 3.1 8B, notably achieving a +4.1% improvement in MMLU performance and a +22.9% improvement in HarmBench with only 4000 samples. Selected features demonstrate semantically meaningful patterns aligned with each task's requirements, revealing the underlying capabilities that drive performance. Our work establishes correlationbased selection as an effective and scalable approach for automated SAE steering across language model applications.
comment: 42 pages, 9 tables
♻ ☆ Visual Perception Engine: Fast and Flexible Multi-Head Inference for Robotic Vision Tasks
Deploying multiple machine learning models on resource-constrained robotic platforms for different perception tasks often results in redundant computations, large memory footprints, and complex integration challenges. In response, this work presents Visual Perception Engine (VPEngine), a modular framework designed to enable efficient GPU usage for visual multitasking while maintaining extensibility and developer accessibility. Our framework architecture leverages a shared foundation model backbone that extracts image representations, which are efficiently shared, without any unnecessary GPU-CPU memory transfers, across multiple specialized task-specific model heads running in parallel. This design eliminates the computational redundancy inherent in feature extraction component when deploying traditional sequential models while enabling dynamic task prioritization based on application demands. We demonstrate our framework's capabilities through an example implementation using DINOv2 as the foundation model with multiple task (depth, object detection and semantic segmentation) heads, achieving up to 3x speedup compared to sequential execution. Building on CUDA Multi-Process Service (MPS), VPEngine offers efficient GPU utilization and maintains a constant memory footprint while allowing per-task inference frequencies to be adjusted dynamically during runtime. The framework is written in Python and is open source with ROS2 C++ (Humble) bindings for ease of use by the robotics community across diverse robotic platforms. Our example implementation demonstrates end-to-end real-time performance at $\geq$50 Hz on NVIDIA Jetson Orin AGX for TensorRT optimized models.
comment: 8 pages, 6 figures, 2 tables
♻ ☆ ADMIRE-BayesOpt: Accelerated Data MIxture RE-weighting for Language Models with Bayesian Optimization
Determining the optimal data mixture for large language model training remains a challenging problem with an outsized impact on performance. In practice, language model developers continue to rely on heuristic exploration since no learning-based approach has emerged as a reliable solution. In this work, we propose to view the selection of training data mixtures as a black-box hyperparameter optimization problem, for which Bayesian Optimization is a well-established class of appropriate algorithms. Firstly, we cast data mixture learning as a sequential decision-making problem, in which we aim to find a suitable trade-off between the computational cost of training exploratory (proxy-) models and final mixture performance. Secondly, we systematically explore the properties of transferring mixtures learned at a small scale to larger-scale experiments, providing insights and highlighting opportunities for research at a modest scale. By proposing Multi-fidelity Bayesian Optimization as a suitable method in this common scenario, we introduce a natural framework to balance experiment cost with model fit, avoiding the risks of overfitting to smaller scales while minimizing the number of experiments at high cost. We present results for pre-training and instruction finetuning across models ranging from 1 million to 7 billion parameters, varying from simple architectures to state-of-the-art models and benchmarks spanning dozens of datasets. We demonstrate consistently strong results relative to a wide range of baselines, resulting inspeed-ups of over 500% in determining the best data mixture on our largest experiments. In addition, we broaden access to research by sharing ADMIRE IFT Runs, a dataset of 460 full training & evaluation runs worth over 13,000 GPU hours, greatly reducing the cost of conducting research in this area.
♻ ☆ Feather-SQL: A Lightweight NL2SQL Framework with Dual-Model Collaboration Paradigm for Small Language Models ICLR 2025
Natural Language to SQL (NL2SQL) has seen significant advancements with large language models (LLMs). However, these models often depend on closed-source systems and high computational resources, posing challenges in data privacy and deployment. In contrast, small language models (SLMs) struggle with NL2SQL tasks, exhibiting poor performance and incompatibility with existing frameworks. To address these issues, we introduce Feather-SQL, a new lightweight framework tailored for SLMs. Feather-SQL improves SQL executability and accuracy through 1) schema pruning and linking, 2) multi-path and multi-candidate generation. Additionally, we introduce the 1+1 Model Collaboration Paradigm, which pairs a strong general-purpose chat model with a fine-tuned SQL specialist, combining strong analytical reasoning with high-precision SQL generation. Experimental results on BIRD demonstrate that Feather-SQL improves NL2SQL performance on SLMs, with around 10% boost for models without fine-tuning. The proposed paradigm raises the accuracy ceiling of SLMs to 54.76%, highlighting its effectiveness.
comment: DL4C @ ICLR 2025
♻ ☆ Note on Selection Bias in Observational Estimates of Algorithmic Progress
Ho et. al (2024) attempts to estimate the degree of algorithmic progress from language models. They collect observational data on language models' loss and compute over time, and argue that as time has passed, language models' algorithmic efficiency has been rising. That is, the loss achieved for fixed compute has been dropping over time. In this note, I raise one potential methodological problem with the estimation strategy. Intuitively, if part of algorithmic quality is latent, and compute choices are endogenous to algorithmic quality, then resulting estimates of algorithmic quality will be contaminated by selection bias.
♻ ☆ Hybrid Generative Fusion for Efficient and Privacy-Preserving Face Recognition Dataset Generation ICCV 2025
In this paper, we present our approach to the DataCV ICCV Challenge, which centers on building a high-quality face dataset to train a face recognition model. The constructed dataset must not contain identities overlapping with any existing public face datasets. To handle this challenge, we begin with a thorough cleaning of the baseline HSFace dataset, identifying and removing mislabeled or inconsistent identities through a Mixture-of-Experts (MoE) strategy combining face embedding clustering and GPT-4o-assisted verification. We retain the largest consistent identity cluster and apply data augmentation up to a fixed number of images per identity. To further diversify the dataset, we generate synthetic identities using Stable Diffusion with prompt engineering. As diffusion models are computationally intensive, we generate only one reference image per identity and efficiently expand it using Vec2Face, which rapidly produces 49 identity-consistent variants. This hybrid approach fuses GAN-based and diffusion-based samples, enabling efficient construction of a diverse and high-quality dataset. To address the high visual similarity among synthetic identities, we adopt a curriculum learning strategy by placing them early in the training schedule, allowing the model to progress from easier to harder samples. Our final dataset contains 50 images per identity, and all newly generated identities are checked with mainstream face datasets to ensure no identity leakage. Our method achieves \textbf{1st place} in the competition, and experimental results show that our dataset improves model performance across 10K, 20K, and 100K identity scales. Code is available at https://github.com/Ferry-Li/datacv_fr.
comment: This paper has been accpeted to ICCV 2025 DataCV Workshop
♻ ☆ WeChat-YATT: A Scalable, Simple, Efficient, and Production Ready Training Library
Reinforcement Learning from Human Feedback (RLHF) has emerged as a prominent paradigm for training large language models and multimodal systems. Despite the notable advances enabled by existing RLHF training frameworks, significant challenges remain to scale to complex multimodal workflows and adapt to dynamic workloads. In particular, current systems often encounter limitations related to controller scalability when managing large models, as well as inefficiencies in orchestrating intricate RLHF pipelines, especially in scenarios that require dynamic sampling and resource allocation. In this paper, we introduce WeChat-YATT Yet Another Transformer Trainer in WeChat, a simple, scalable, and balanced RLHF training framework specifically designed to address these challenges. WeChat-YATT features a parallel controller programming model that enables flexible and efficient orchestration of complex RLHF workflows, effectively mitigating bottlenecks associated with centralized controller architectures and facilitating scalability in large-scale data scenarios. In addition, we propose a dynamic placement schema that adaptively partitions computational resources and schedules workloads, thereby significantly reducing hardware idle time and improving GPU utilization under variable training conditions. We evaluate WeChat-YATT across diverse experimental scenarios, demonstrating its substantial throughput improvements over state-of-the-art RLHF training frameworks. Furthermore, WeChat-YATT has been successfully deployed to train models that support WeChat product features for a large-scale user base, underscoring its effectiveness and robustness in real-world applications. We have made WeChat-YATT publicly available at https://www.github.com/tencent/WeChat-YATT.
comment: arXiv admin note: substantial text overlap with arXiv:2507.22789
♻ ☆ LaDi-WM: A Latent Diffusion-based World Model for Predictive Manipulation
Predictive manipulation has recently gained considerable attention in the Embodied AI community due to its potential to improve robot policy performance by leveraging predicted states. However, generating accurate future visual states of robot-object interactions from world models remains a well-known challenge, particularly in achieving high-quality pixel-level representations. To this end, we propose LaDi-WM, a world model that predicts the latent space of future states using diffusion modeling. Specifically, LaDi-WM leverages the well-established latent space aligned with pre-trained Visual Foundation Models (VFMs), which comprises both geometric features (DINO-based) and semantic features (CLIP-based). We find that predicting the evolution of the latent space is easier to learn and more generalizable than directly predicting pixel-level images. Building on LaDi-WM, we design a diffusion policy that iteratively refines output actions by incorporating forecasted states, thereby generating more consistent and accurate results. Extensive experiments on both synthetic and real-world benchmarks demonstrate that LaDi-WM significantly enhances policy performance by 27.9\% on the LIBERO-LONG benchmark and 20\% on the real-world scenario. Furthermore, our world model and policies achieve impressive generalizability in real-world experiments.
comment: CoRL 2025
♻ ☆ LeanRAG: Knowledge-Graph-Based Generation with Semantic Aggregation and Hierarchical Retrieval
Retrieval-Augmented Generation (RAG) plays a crucial role in grounding Large Language Models by leveraging external knowledge, whereas the effectiveness is often compromised by the retrieval of contextually flawed or incomplete information. To address this, knowledge graph-based RAG methods have evolved towards hierarchical structures, organizing knowledge into multi-level summaries. However, these approaches still suffer from two critical, unaddressed challenges: high-level conceptual summaries exist as disconnected ``semantic islands'', lacking the explicit relations needed for cross-community reasoning; and the retrieval process itself remains structurally unaware, often degenerating into an inefficient flat search that fails to exploit the graph's rich topology. To overcome these limitations, we introduce LeanRAG, a framework that features a deeply collaborative design combining knowledge aggregation and retrieval strategies. LeanRAG first employs a novel semantic aggregation algorithm that forms entity clusters and constructs new explicit relations among aggregation-level summaries, creating a fully navigable semantic network. Then, a bottom-up, structure-guided retrieval strategy anchors queries to the most relevant fine-grained entities and then systematically traverses the graph's semantic pathways to gather concise yet contextually comprehensive evidence sets. The LeanRAG can mitigate the substantial overhead associated with path retrieval on graphs and minimizes redundant information retrieval. Extensive experiments on four challenging QA benchmarks with different domains demonstrate that LeanRAG significantly outperforming existing methods in response quality while reducing 46\% retrieval redundancy. Code is available at: https://github.com/RaZzzyz/LeanRAG
♻ ☆ New Interaction Paradigm for Complex EDA Software Leveraging GPT ICML 2025
Electronic Design Automation (EDA) tools such as KiCad offer powerful functionalities but remain difficult to use, particularly for beginners, due to their steep learning curves and fragmented documentation. To address this challenge, we present SmartonAI, an AI-assisted interaction system that integrates large language models into the EDA workflow, enabling natural language communication, intelligent task decomposition, and contextual plugin execution. SmartonAI consists of two main components: a Chat Plugin that breaks down user instructions into subtasks and retrieves tailored documentation, and a OneCommandLine Plugin that recommends and executes relevant plugins based on user intent. The system supports multilingual interaction and adapts to user feedback through incremental learning. Preliminary results suggest that SmartonAI significantly reduces onboarding time and enhances productivity, representing a promising step toward generalizable AI-assisted interaction paradigms for complex software systems.
comment: Accepted to ICML 2025 Workshop on New In Machine Learning (NewInML), 9 pages, 8 figures
♻ ☆ AutoChemSchematic AI: Agentic Physics-Aware Automation for Chemical Manufacturing Scale-Up
Recent advances in generative AI have accelerated the discovery of novel chemicals and materials. However, scaling these discoveries to industrial production remains a major bottleneck due to the synthesis gap -- the need to develop entirely new manufacturing processes. This challenge requires detailed engineering blueprints: PFDs for equipment layouts and material/energy flows, and PIDs for process plant operations. Current AI systems cannot yet reliably generate these critical engineering schematics, creating a fundamental obstacle to manufacturing scale-up of novel discoveries. We present a closed-loop, physics-aware framework for automated generation of industrially viable PFDs and PIDs. The framework integrates three key components: (1) domain-specialized small language models (SLMs) trained for auto-generation of PFDs and PIDs, (2) a hierarchical knowledge graph containing process flow and instrumentation descriptions for 1,020+ chemicals for Graph Retrieval-Augmented Generation (GRAG), and (3) an open-source chemical process simulator for modeling, simulation, optimization, and analysis of novel chemical processes. The SLMs are trained through a multi-stage pipeline on synthetic datasets, with process simulator-in-the-loop validation ensuring feasibility. To enhance computational efficiency, the framework implements structural pruning (width and depth) guided by importance heuristics to reduce language model size while preserving accuracy, followed by advanced inference optimizations including FlashAttention, Lookahead Decoding, PagedAttention with KV-cache quantization, and Test-Time Inference Scaling. Experimental results demonstrate that our framework generates simulator-validated process descriptions with high fidelity.
♻ ☆ CaRL: Learning Scalable Planning Policies with Simple Rewards
We investigate reinforcement learning (RL) for privileged planning in autonomous driving. State-of-the-art approaches for this task are rule-based, but these methods do not scale to the long tail. RL, on the other hand, is scalable and does not suffer from compounding errors like imitation learning. Contemporary RL approaches for driving use complex shaped rewards that sum multiple individual rewards, \eg~progress, position, or orientation rewards. We show that PPO fails to optimize a popular version of these rewards when the mini-batch size is increased, which limits the scalability of these approaches. Instead, we propose a new reward design based primarily on optimizing a single intuitive reward term: route completion. Infractions are penalized by terminating the episode or multiplicatively reducing route completion. We find that PPO scales well with higher mini-batch sizes when trained with our simple reward, even improving performance. Training with large mini-batch sizes enables efficient scaling via distributed data parallelism. We scale PPO to 300M samples in CARLA and 500M samples in nuPlan with a single 8-GPU node. The resulting model achieves 64 DS on the CARLA longest6 v2 benchmark, outperforming other RL methods with more complex rewards by a large margin. Requiring only minimal adaptations from its use in CARLA, the same method is the best learning-based approach on nuPlan. It scores 91.3 in non-reactive and 90.6 in reactive traffic on the Val14 benchmark while being an order of magnitude faster than prior work.
comment: Accepted at the Conference on Robot Learning 2025
♻ ☆ GraphLand: Evaluating Graph Machine Learning Models on Diverse Industrial Data
Although data that can be naturally represented as graphs is widespread in real-world applications across diverse industries, popular graph ML benchmarks for node property prediction only cover a surprisingly narrow set of data domains, and graph neural networks (GNNs) are often evaluated on just a few academic citation networks. This issue is particularly pressing in light of the recent growing interest in designing graph foundation models. These models are supposed to be able to transfer to diverse graph datasets from different domains, and yet the proposed graph foundation models are often evaluated on a very limited set of datasets from narrow applications. To alleviate this issue, we introduce GraphLand: a benchmark of 14 diverse graph datasets for node property prediction from a range of different industrial applications. GraphLand allows evaluating graph ML models on a wide range of graphs with diverse sizes, structural characteristics, and feature sets, all in a unified setting. Further, GraphLand allows investigating such previously underexplored research questions as how realistic temporal distributional shifts under transductive and inductive settings influence graph ML model performance. To mimic realistic industrial settings, we use GraphLand to compare GNNs with gradient-boosted decision trees (GBDT) models that are popular in industrial applications and show that GBDTs provided with additional graph-based input features can sometimes be very strong baselines. Further, we evaluate currently available general-purpose graph foundation models and find that they fail to produce competitive results on our proposed datasets.
♻ ☆ LLMs Are In-Context Bandit Reinforcement Learners
Large Language Models (LLMs) excel at in-context learning (ICL), a supervised learning technique that relies on adding annotated examples to the model context. We investigate a contextual bandit version of in-context reinforcement learning (ICRL), where models learn in-context, online, from external reward, instead of supervised data. We show that LLMs effectively demonstrate such learning, and provide a detailed study of the phenomena, experimenting with challenging classification tasks and models of sizes from 500M to 70B parameters. This includes identifying and addressing the instability of the process, demonstrating learning with both semantic and abstract labels, and showing scaling trends. Our findings highlight ICRL capabilities in LLMs, while also underscoring fundamental limitations in their implicit reasoning about errors.
comment: Published at COLM 2025
♻ ☆ Fast Controlled Generation from Language Models with Adaptive Weighted Rejection Sampling
The dominant approach to generating from language models subject to some constraint is locally constrained decoding (LCD), incrementally sampling tokens at each time step such that the constraint is never violated. Typically, this is achieved through token masking: looping over the vocabulary and excluding non-conforming tokens. There are two important problems with this approach. (i) Evaluating the constraint on every token can be prohibitively expensive -- LM vocabularies often exceed $100,000$ tokens. (ii) LCD can distort the global distribution over strings, sampling tokens based only on local information, even if they lead down dead-end paths. This work introduces a new algorithm that addresses both these problems. First, to avoid evaluating a constraint on the full vocabulary at each step of generation, we propose an adaptive rejection sampling algorithm that typically requires orders of magnitude fewer constraint evaluations. Second, we show how this algorithm can be extended to produce low-variance, unbiased estimates of importance weights at a very small additional cost -- estimates that can be soundly used within previously proposed sequential Monte Carlo algorithms to correct for the myopic behavior of local constraint enforcement. Through extensive empirical evaluation in text-to-SQL, molecular synthesis, goal inference, pattern matching, and JSON domains, we show that our approach is superior to state-of-the-art baselines, supporting a broader class of constraints and improving both runtime and performance. Additional theoretical and empirical analyses show that our method's runtime efficiency is driven by its dynamic use of computation, scaling with the divergence between the unconstrained and constrained LM, and as a consequence, runtime improvements are greater for better models.
comment: COLM 2025
♻ ☆ Quantformer: from attention to profit with a quantitative transformer trading strategy
In traditional quantitative trading practice, navigating the complicated and dynamic financial market presents a persistent challenge. Fully capturing various market variables, including long-term information, as well as essential signals that may lead to profit remains a difficult task for learning algorithms. In order to tackle this challenge, this paper introduces quantformer, an enhanced neural network architecture based on transformer, to build investment factors. By transfer learning from sentiment analysis, quantformer not only exploits its original inherent advantages in capturing long-range dependencies and modeling complex data relationships, but is also able to solve tasks with numerical inputs and accurately forecast future returns over a given period. This work collects more than 5,000,000 rolling data of 4,601 stocks in the Chinese capital market from 2010 to 2023. The results of this study demonstrate the model's superior performance in predicting stock trends compared with other 100-factor-based quantitative strategies. Notably, the model's innovative use of transformer-like model to establish factors, in conjunction with market sentiment information, has been shown to enhance the accuracy of trading signals significantly, thereby offering promising implications for the future of quantitative trading strategies.
comment: The implementation details and code is available on https://github.com/zhangmordred/QuantFormer
♻ ☆ Quantization Hurts Reasoning? An Empirical Study on Quantized Reasoning Models
Recent advancements in reasoning language models have demonstrated remarkable performance in complex tasks, but their extended chain-of-thought reasoning process increases inference overhead. While quantization has been widely adopted to reduce the inference cost of large language models, its impact on reasoning models remains understudied. In this paper, we conduct the first systematic study on quantized reasoning models, evaluating the open-sourced DeepSeek-R1-Distilled Qwen and LLaMA families ranging from 1.5B to 70B parameters, QwQ-32B, and Qwen3-8B. Our investigation covers weight, KV cache, and activation quantization using state-of-the-art algorithms at varying bit-widths, with extensive evaluation across mathematical (AIME, MATH-500), scientific (GPQA), and programming (LiveCodeBench) reasoning benchmarks. Our findings reveal that while lossless quantization can be achieved with W8A8 or W4A16 quantization, lower bit-widths introduce significant accuracy risks. We further identify model size, model origin, and task difficulty as critical determinants of performance. Contrary to expectations, quantized models do not exhibit increased output lengths. In addition, strategically scaling the model sizes or reasoning steps can effectively enhance the performance. All quantized models and codes are open-sourced in https://github.com/ruikangliu/Quantized-Reasoning-Models.
comment: COLM 2025
♻ ☆ INSIGHT: A Survey of In-Network Systems for Intelligent, High-Efficiency AI and Topology Optimization
In-network computation represents a transformative approach to addressing the escalating demands of Artificial Intelligence (AI) workloads on network infrastructure. By leveraging the processing capabilities of network devices such as switches, routers, and Network Interface Cards (NICs), this paradigm enables AI computations to be performed directly within the network fabric, significantly reducing latency, enhancing throughput, and optimizing resource utilization. This paper provides a comprehensive analysis of optimizing in-network computation for AI, exploring the evolution of programmable network architectures, such as Software-Defined Networking (SDN) and Programmable Data Planes (PDPs), and their convergence with AI. It examines methodologies for mapping AI models onto resource-constrained network devices, addressing challenges like limited memory and computational capabilities through efficient algorithm design and model compression techniques. The paper also highlights advancements in distributed learning, particularly in-network aggregation, and the potential of federated learning to enhance privacy and scalability. Frameworks like Planter and Quark are discussed for simplifying development, alongside key applications such as intelligent network monitoring, intrusion detection, traffic management, and Edge AI. Future research directions, including runtime programmability, standardized benchmarks, and new applications paradigms, are proposed to advance this rapidly evolving field. This survey underscores the potential of in-network AI to create intelligent, efficient, and responsive networks capable of meeting the demands of next-generation AI applications.
♻ ☆ Co-Writing with AI, on Human Terms: Aligning Research with User Demands Across the Writing Process
As generative AI tools like ChatGPT become integral to everyday writing, critical questions arise about how to preserve writers' sense of agency and ownership when using these tools. Yet, a systematic understanding of how AI assistance affects different aspects of the writing process - and how this shapes writers' agency - remains underexplored. To address this gap, we conducted a systematic review of 109 HCI papers using the PRISMA approach. From this literature, we identify four overarching design strategies for AI writing support: structured guidance, guided exploration, active co-writing, and critical feedback - mapped across the four key cognitive processes in writing: planning, translating, reviewing, and monitoring. We complement this analysis with interviews of 15 writers across diverse domains. Our findings reveal that writers' desired levels of AI intervention vary across the writing process: content-focused writers (e.g., academics) prioritize ownership during planning, while form-focused writers (e.g., creatives) value control over translating and reviewing. Writers' preferences are also shaped by contextual goals, values, and notions of originality and authorship. By examining when ownership matters, what writers want to own, and how AI interactions shape agency, we surface both alignment and gaps between research and user needs. Our findings offer actionable design guidance for developing human-centered writing tools for co-writing with AI, on human terms.
♻ ☆ A Comprehensive Review of Datasets for Clinical Mental Health AI Systems
Mental health disorders are rising worldwide. However, the availability of trained clinicians has not scaled proportionally, leaving many people without adequate or timely support. To bridge this gap, recent studies have shown the promise of Artificial Intelligence (AI) to assist mental health diagnosis, monitoring, and intervention. However, the development of efficient, reliable, and ethical AI to assist clinicians is heavily dependent on high-quality clinical training datasets. Despite growing interest in data curation for training clinical AI assistants, existing datasets largely remain scattered, under-documented, and often inaccessible, hindering the reproducibility, comparability, and generalizability of AI models developed for clinical mental health care. In this paper, we present the first comprehensive survey of clinical mental health datasets relevant to the training and development of AI-powered clinical assistants. We categorize these datasets by mental disorders (e.g., depression, schizophrenia), data modalities (e.g., text, speech, physiological signals), task types (e.g., diagnosis prediction, symptom severity estimation, intervention generation), accessibility (public, restricted or private), and sociocultural context (e.g., language and cultural background). Along with these, we also investigate synthetic clinical mental health datasets. Our survey identifies critical gaps such as a lack of longitudinal data, limited cultural and linguistic representation, inconsistent collection and annotation standards, and a lack of modalities in synthetic data. We conclude by outlining key challenges in curating and standardizing future datasets and provide actionable recommendations to facilitate the development of more robust, generalizable, and equitable mental health AI systems.
comment: 23 pages, 3 figures
♻ ☆ An MRP Formulation for Supervised Learning: Generalized Temporal Difference Learning Models
In traditional statistical learning, data points are usually assumed to be independently and identically distributed (i.i.d.) following an unknown probability distribution. This paper presents a contrasting viewpoint, perceiving data points as interconnected and employing a Markov reward process (MRP) for data modeling. We reformulate the typical supervised learning as an on-policy policy evaluation problem within reinforcement learning (RL), introducing a generalized temporal difference (TD) learning algorithm as a resolution. Theoretically, our analysis establishes connections between the solutions of linear TD learning and ordinary least squares (OLS). Under specific conditions -- particularly when the noise is correlated -- the TD solution serves as a more effective estimator than OLS. Furthermore, we show that when our algorithm is applied with many commonly used loss functions -- such as those found in generalized linear models -- it corresponds to the application of a novel and generalized Bellman operator. We prove that this operator admits a unique fixed point, and based on this, we establish convergence guarantees for our generalized TD algorithm under linear function approximation. Empirical studies verify our theoretical results, examine the vital design of our TD algorithm and show practical utility across various datasets, encompassing tasks such as regression and image classification with deep learning.
comment: Accepted by JAIR. The abstract above is more concise than the one in the paper to meet the requirements of the arXiv website
♻ ☆ When Deep Learning Fails: Limitations of Recurrent Models on Stroke-Based Handwriting for Alzheimer's Disease Detection
Alzheimer's disease detection requires expensive neuroimaging or invasive procedures, limiting accessibility. This study explores whether deep learning can enable non-invasive Alzheimer's disease detection through handwriting analysis. Using a dataset of 34 distinct handwriting tasks collected from healthy controls and Alzheimer's disease patients, we evaluate and compare three recurrent neural architectures (LSTM, GRU, RNN) against traditional machine learning models. A crucial distinction of our approach is that the recurrent models process pre-extracted features from discrete strokes, not raw temporal signals. This violates the assumption of a continuous temporal flow that recurrent networks are designed to capture. Results reveal that they exhibit poor specificity and high variance. Traditional ensemble methods significantly outperform all deep architectures, achieving higher accuracy with balanced metrics. This demonstrates that recurrent architectures, designed for continuous temporal sequences, fail when applied to feature vectors extracted from ambiguously segmented strokes. Despite their complexity, deep learning models cannot overcome the fundamental disconnect between their architectural assumptions and the discrete, feature-based nature of stroke-level handwriting data. Although performance is limited, the study highlights several critical issues in data representation and model compatibility, pointing to valuable directions for future research.
♻ ☆ GTPO and GRPO-S: Token and Sequence-Level Reward Shaping with Policy Entropy
Reinforcement learning (RL) with algorithms like Group Relative Policy Optimization (GRPO) improves Large Language Model (LLM) reasoning, but is limited by a coarse-grained credit assignment that applies a uniform reward to all tokens in a sequence. This is a major flaw in long-chain reasoning tasks. This paper solves this with \textbf{Dynamic Entropy Weighting}. Our core idea is that high-entropy tokens in correct responses can guide the policy toward a higher performance ceiling. This allows us to create more fine-grained reward signals for precise policy updates via two ways: 1) \textbf{Group Token Policy Optimization} (\textbf{GTPO}), we assigns a entropy-weighted reward to each token for fine-grained credit assignment. 2) \textbf{Sequence-Level Group Relative Policy Optimization} (\textbf{GRPO-S}), we assigns a entropy-weighted reward to each sequence based on its average token entropy. Experiments show our methods significantly outperform the strong DAPO baseline. The results confirm that our entropy-weighting mechanism is the key driver of this performance boost, offering a better path to enhance deep reasoning in models.
♻ ☆ Mapping the Unseen: Unified Promptable Panoptic Mapping with Dynamic Labeling using Foundation Models
In robotics and computer vision, semantic mapping remains a critical challenge for machines to comprehend complex environments. Traditional panoptic mapping approaches are constrained by fixed labels, limiting their ability to handle novel objects. We present Unified Promptable Panoptic Mapping (UPPM), which leverages foundation models for dynamic labeling without additional training. UPPM is evaluated across three comprehensive levels: Segmentation-to-Map, Map-to-Map, and Segmentation-to-Segmentation. Results demonstrate UPPM attains exceptional geometry reconstruction accuracy (0.61cm on the Flat dataset), the highest panoptic quality (0.414), and better performance compared to state-of-the-art segmentation methods. Furthermore, ablation studies validate the contributions of unified semantics, custom NMS, and blurry frame filtering, with the custom NMS improving the completion ratio by 8.27% on the Flat dataset. UPPM demonstrates effective scene reconstruction with rich semantic labeling across diverse datasets.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Policy Search, Retrieval, and Composition via Task Similarity in Collaborative Agentic Systems
Agentic AI aims to create systems that set their own goals, adapt proactively to change, and refine behavior through continuous experience. Recent advances suggest that, when facing multiple and unforeseen tasks, agents could benefit from sharing machine-learned knowledge and reuse policies that have already been fully or partially learned by other agents. However, how to query, select, and retrieve policies from a pool of agents, and how to integrate such policies remains a largely unexplored area. This study explores how an agent decides what knowledge to select, from whom, and when and how to integrate it in its own policy in order to accelerate its own learning. The proposed algorithm, \emph{Modular Sharing and Composition in Collective Learning} (MOSAIC), improves learning in agentic collectives by combining (1) knowledge selection using performance signals and cosine similarity on Wasserstein task embeddings, (2) modular and transferable neural representations via masks, and (3) policy integration, composition and fine-tuning. MOSAIC outperforms isolated learners and global sharing approaches in both learning speed and overall performance, and in some cases solves tasks that isolated agents cannot. The results also demonstrate that selective, goal-driven reuse leads to less susceptibility to task interference. We also observe the emergence of self-organization, where agents solving simpler tasks accelerate the learning of harder ones through shared knowledge.
comment: 25 pages, 20 figures, 6 tables. Preprint
♻ ☆ Does Prior Data Matter? Exploring Joint Training in the Context of Few-Shot Class-Incremental Learning
Class-incremental learning (CIL) aims to adapt to continuously emerging new classes while preserving knowledge of previously learned ones. Few-shot class-incremental learning (FSCIL) presents a greater challenge that requires the model to learn new classes from only a limited number of samples per class. While incremental learning typically assumes restricted access to past data, it often remains available in many real-world scenarios. This raises a practical question: should one retrain the model on the full dataset (i.e., joint training), or continue updating it solely with new data? In CIL, joint training is considered an ideal benchmark that provides a reference for evaluating the trade-offs between performance and computational cost. However, in FSCIL, joint training becomes less reliable due to severe imbalance between base and incremental classes. This results in the absence of a practical baseline, making it unclear which strategy is preferable for practitioners. To this end, we revisit joint training in the context of FSCIL by incorporating imbalance mitigation techniques, and suggest a new imbalance-aware joint training benchmark for FSCIL. We then conduct extensive comparisons between this benchmark and FSCIL methods to analyze which approach is most suitable when prior data is accessible. Our analysis offers realistic insights and guidance for selecting training strategies in real-world FSCIL scenarios. Code is available at: https://github.com/shiwonkim/Joint_FSCIL
♻ ☆ FCL-ViT: Task-Aware Attention Tuning for Continual Learning
Continual Learning (CL) involves adapting the prior Deep Neural Network (DNN) knowledge to new tasks, without forgetting the old ones. However, modern CL techniques focus on provisioning memory capabilities to existing DNN models rather than designing new ones that are able to adapt according to the task at hand. This paper presents the novel Feedback Continual Learning Vision Transformer (FCL-ViT) that uses a feedback mechanism to generate real-time dynamic attention features tailored to the current task. The FCL-ViT operates in two Phases. In phase 1, the generic image features are produced and determine where the Transformer should attend on the current image. In phase 2, task-specific image features are generated that leverage dynamic attention. To this end, Tunable self-Attention Blocks (TABs) and Task Specific Blocks (TSBs) are introduced that operate in both phases and are responsible for tuning the TABs attention, respectively. The FCL-ViT surpasses state-of-the-art performance on Continual Learning compared to benchmark methods, while retaining a small number of trainable DNN parameters.
♻ ☆ Dissecting the SWE-Bench Leaderboards: Profiling Submitters and Architectures of LLM- and Agent-Based Repair Systems
The rapid progress in Automated Program Repair (APR) has been driven by advances in AI, particularly large language models (LLMs) and agent-based systems. SWE-Bench is a recent benchmark designed to evaluate LLM-based repair systems using real issues and pull requests mined from 12 popular open-source Python repositories. Its public leaderboards -- SWE-Bench Lite and SWE-Bench Verified -- have become central platforms for tracking progress and comparing solutions. However, because the submission process does not require detailed documentation, the architectural design and origin of many solutions remain unclear. In this paper, we present the first comprehensive study of all submissions to the SWE-Bench Lite (79 entries) and Verified (99 entries) leaderboards, analyzing 80 unique approaches across dimensions such as submitter type, product availability, LLM usage, and system architecture. Our findings reveal the dominance of proprietary LLMs (especially Claude 3.5), the presence of both agentic and non-agentic designs, and a contributor base spanning from individual developers to large tech companies.
♻ ☆ Opus: A Prompt Intention Framework for Complex Workflow Generation
This paper introduces the Opus Prompt Intention Framework, designed to improve complex Workflow Generation with instruction-tuned Large Language Models (LLMs). We propose an intermediate Intention Capture layer between user queries and Workflow Generation, implementing the Opus Workflow Intention Framework, which consists of extracting Workflow Signals from user queries, interpreting them into structured Workflow Intention objects, and generating Workflows based on these Intentions. Our results show that this layer enables LLMs to produce logical and meaningful outputs that scale reliably as query complexity increases. On a synthetic benchmark of 1,000 multi-intent query-Workflow(s) pairs, applying the Opus Prompt Intention Framework to Workflow Generation yields consistent improvements in semantic Workflow similarity metrics. In this paper, we introduce the Opus Prompt Intention Framework by applying the concepts of Workflow Signal and Workflow Intention to LLM-driven Workflow Generation. We present a reproducible, customizable LLM-based Intention Capture system to extract Workflow Signals and Workflow Intentions from user queries. Finally, we provide empirical evidence that the proposed system significantly improves Workflow Generation quality compared to direct generation from user queries, particularly in cases of Mixed Intention Elicitation.
comment: 39 pages, 24 figures
♻ ☆ Fast Geometric Embedding for Node Influence Maximization
Computing classical centrality measures such as betweenness and closeness is computationally expensive on large-scale graphs. In this work, we introduce an efficient force layout algorithm that embeds a graph into a low-dimensional space, where the radial distance from the origin serves as a proxy for various centrality measures. We evaluate our method on multiple graph families and demonstrate strong correlations with degree, PageRank, and paths-based centralities. As an application, it turns out that the proposed embedding allows to find high-influence nodes in a network, and provides a fast and scalable alternative to the standard greedy algorithm.
comment: 8 pages, 4 figures, 18 tables; Github repository available (https://github.com/sashakolpakov/graphem/); Package available on PyPi (https://pypi.org/project/graphem-jax/)
♻ ☆ Dynamic Multi-Agent System with Stable Maneuvering for Robust GAIA Problem Solving by AWorld
The rapid advancement of large language models (LLMs) has empowered intelligent agents to leverage diverse external tools for solving complex real-world problems. However, as agents increasingly depend on multiple tools, they encounter new challenges: extended contexts from disparate sources and noisy or irrelevant tool outputs can undermine system reliability and accuracy. These challenges underscore the necessity for enhanced stability in agent-based systems. To address this, we introduce dynamic supervision and maneuvering mechanisms, constructing a robust and dynamic Multi-Agent System (MAS) architecture within the AWorld framework. In our approach, the Execution Agent invokes the Guard Agent at critical steps to verify and correct the reasoning process, effectively reducing errors arising from noise and bolstering problem-solving robustness. Extensive experiments on the GAIA test dataset reveal that our dynamic maneuvering mechanism significantly improves both the effectiveness and stability of solutions, outperforming single-agent system (SAS) and standard tool-augmented systems. As a result, our dynamic MAS system achieved first place among open-source projects on the prestigious GAIA leaderboard. These findings highlight the practical value of collaborative agent roles in developing more reliable and trustworthy intelligent systems.
♻ ☆ Overconfidence in LLM-as-a-Judge: Diagnosis and Confidence-Driven Solution
Large Language Models (LLMs) are widely used as automated judges, where practical value depends on both accuracy and trustworthy, risk-aware judgments. Existing approaches predominantly focus on accuracy, overlooking the necessity of well-calibrated confidence, which is vital for adaptive and reliable evaluation pipelines. In this work, we advocate a shift from accuracy-centric evaluation to confidence-driven, risk-aware LLM-as-a-Judge systems, emphasizing the necessity of well-calibrated confidence for trustworthy and adaptive evaluation. We systematically identify the Overconfidence Phenomenon in current LLM-as-a-Judges, where predicted confidence significantly overstates actual correctness, undermining reliability in practical deployment. To quantify this phenomenon, we introduce TH-Score, a novel metric measuring confidence-accuracy alignment. Furthermore, we propose LLM-as-a-Fuser, an ensemble framework that transforms LLMs into reliable, risk-aware evaluators. Extensive experiments demonstrate that our approach substantially improves calibration and enables adaptive, confidence-driven evaluation pipelines, achieving superior reliability and accuracy compared to existing baselines.
♻ ☆ Action is All You Need: Dual-Flow Generative Ranking Network for Recommendation
Deep Learning Recommendation Models (DLRMs) often rely on extensive manual feature engineering to improve accuracy and user experience, which increases system complexity and limits scalability of model performance with respect to computational resources. Recently, Meta introduced a generative ranking paradigm based on HSTU block that enables end-to-end learning from raw user behavior sequences and demonstrates scaling law on large datasets that can be regarded as the state-of-the-art (SOTA). However, splitting user behaviors into interleaved item and action information significantly increases the input sequence length, which adversely affects both training and inference efficiency. To address this issue, we propose the Dual-Flow Generative Ranking Network (DFGR), that employs a dual-flow mechanism to optimize interaction modeling, ensuring efficient training and inference through end-to-end token processing. DFGR duplicates the original user behavior sequence into a real flow and a fake flow based on the authenticity of the action information, and then defines a novel interaction method between the real flow and the fake flow within the QKV module of the self-attention mechanism. This design reduces computational overhead and improves both training efficiency and inference performance compared to Meta's HSTU-based model. Experiments on both open-source and real industrial datasets show that DFGR outperforms DLRM, which serves as the industrial online baseline with extensive feature engineering, as well as Meta's HSTU and other common recommendation models such as DIN, DCN, DIEN, and DeepFM. Furthermore, we investigate optimal parameter allocation strategies under computational constraints, establishing DFGR as an efficient and effective next-generation generative ranking paradigm.
♻ ☆ Bridging Econometrics and AI: VaR Estimation via Reinforcement Learning and GARCH Models
In an environment of increasingly volatile financial markets, the accurate estimation of risk remains a major challenge. Traditional econometric models, such as GARCH and its variants, are based on assumptions that are often too rigid to adapt to the complexity of the current market dynamics. To overcome these limitations, we propose a hybrid framework for Value-at-Risk (VaR) estimation, combining GARCH volatility models with deep reinforcement learning. Our approach incorporates directional market forecasting using the Double Deep Q-Network (DDQN) model, treating the task as an imbalanced classification problem. This architecture enables the dynamic adjustment of risk-level forecasts according to market conditions. Empirical validation on daily Eurostoxx 50 data covering periods of crisis and high volatility shows a significant improvement in the accuracy of VaR estimates, as well as a reduction in the number of breaches and also in capital requirements, while respecting regulatory risk thresholds. The ability of the model to adjust risk levels in real time reinforces its relevance to modern and proactive risk management.
♻ ☆ A Novel Approach for Estimating Largest Lyapunov Exponents in One-Dimensional Chaotic Time Series Using Machine Learning
Understanding and quantifying chaos from data remains challenging. We present a data-driven method for estimating the largest Lyapunov exponent (LLE) from one-dimensional chaotic time series using machine learning. A predictor is trained to produce out-of-sample, multi-horizon forecasts; the LLE is then inferred from the exponential growth of the geometrically averaged forecast error (GMAE) across the horizon, which serves as a proxy for trajectory divergence. We validate the approach on four canonical 1D maps-logistic, sine, cubic, and Chebyshev-achieving R2pos > 0.99 against reference LLE curves with series as short as M = 450. Among baselines, KNN yields the closest fits (KNN-R comparable; RF larger deviations). By design the estimator targets positive exponents: in periodic/stable regimes it returns values indistinguishable from zero. Noise robustness is assessed by adding zero-mean white measurement noise and summarizing performance versus the average SNR over parameter sweeps: accuracy saturates for SNRm > 30 dB and collapses below 27 dB, a conservative sensor-level benchmark. The method is simple, computationally efficient, and model-agnostic, requiring only stationarity and the presence of a dominant positive exponent. It offers a practical route to LLE estimation in experimental settings where only scalar time-series measurements are available, with extensions to higher-dimensional and irregularly sampled data left for future work.
comment: 18 pages, 5 figures, 2 Tables, 14 Equations
♻ ☆ V-RoAst: Visual Road Assessment. Can VLM be a Road Safety Assessor Using the iRAP Standard?
Road safety assessments are critical yet costly, especially in Low- and Middle-Income Countries (LMICs), where most roads remain unrated. Traditional methods require expert annotation and training data, while supervised learning-based approaches struggle to generalise across regions. In this paper, we introduce \textit{V-RoAst}, a zero-shot Visual Question Answering (VQA) framework using Vision-Language Models (VLMs) to classify road safety attributes defined by the iRAP standard. We introduce the first open-source dataset from ThaiRAP, consisting of over 2,000 curated street-level images from Thailand annotated for this task. We evaluate Gemini-1.5-flash and GPT-4o-mini on this dataset and benchmark their performance against VGGNet and ResNet baselines. While VLMs underperform on spatial awareness, they generalise well to unseen classes and offer flexible prompt-based reasoning without retraining. Our results show that VLMs can serve as automatic road assessment tools when integrated with complementary data. This work is the first to explore VLMs for zero-shot infrastructure risk assessment and opens new directions for automatic, low-cost road safety mapping. Code and dataset: https://github.com/PongNJ/V-RoAst.
♻ ☆ Contemplative Artificial Intelligence
As artificial intelligence (AI) improves, traditional alignment strategies may falter in the face of unpredictable self-improvement, hidden subgoals, and the sheer complexity of intelligent systems. Inspired by contemplative wisdom traditions, we show how four axiomatic principles can instil a resilient Wise World Model in AI systems. First, mindfulness enables self-monitoring and recalibration of emergent subgoals. Second, emptiness forestalls dogmatic goal fixation and relaxes rigid priors. Third, non-duality dissolves adversarial self-other boundaries. Fourth, boundless care motivates the universal reduction of suffering. We find that prompting AI to reflect on these principles improves performance on the AILuminate Benchmark (d=.96) and boosts cooperation and joint-reward on the Prisoner's Dilemma task (d=7+). We offer detailed implementation strategies at the level of architectures, constitutions, and reinforcement on chain-of-thought. For future systems, active inference may offer the self-organizing and dynamic coupling capabilities needed to enact Contemplative AI in embodied agents.
♻ ☆ Game Reasoning Arena: A Framework and Benchmark for Assessing Reasoning Capabilities of Large Language Models via Game Play
The Game Reasoning Arena library provides a framework for evaluating the decision making abilities of large language models (LLMs) through strategic board games implemented in Google OpenSpiel library. The framework enables systematic comparisons between LLM based agents and other agents (random, heuristic, reinforcement learning agents, etc.) in various game scenarios by wrapping multiple board and matrix games and supporting different agent types. It integrates API access to models via liteLLM, local model deployment via vLLM, and offers distributed execution through Ray. This paper summarises the library structure, key characteristics, and motivation of the repository, highlighting how it contributes to the empirical evaluation of the reasoning of LLM and game theoretic behaviour.
♻ ☆ Evaluating Contrast Localizer for Identifying Causal Units in Social & Mathematical Tasks in Language Models
This work adapts a neuroscientific contrast localizer to pinpoint causally relevant units for Theory of Mind (ToM) and mathematical reasoning tasks in large language models (LLMs) and vision-language models (VLMs). Across 11 LLMs and 5 VLMs ranging in size from 3B to 90B parameters, we localize top-activated units using contrastive stimulus sets and assess their causal role via targeted ablations. We compare the effect of lesioning functionally selected units against low-activation and randomly selected units on downstream accuracy across established ToM and mathematical benchmarks. Contrary to expectations, low-activation units sometimes produced larger performance drops than the highly activated ones, and units derived from the mathematical localizer often impaired ToM performance more than those from the ToM localizer. These findings call into question the causal relevance of contrast-based localizers and highlight the need for broader stimulus sets and more accurately capture task-specific units.
comment: Accepted at the Interplay of Model Behavior and Model Internals Workshop co-located with COLM 2025
♻ ☆ Hierarchical Multi-Agent Reinforcement Learning with Control Barrier Functions for Safety-Critical Autonomous Systems
We address the problem of safe policy learning in multi-agent safety-critical autonomous systems. In such systems, it is necessary for each agent to meet the safety requirements at all times while also cooperating with other agents to accomplish the task. Toward this end, we propose a safe Hierarchical Multi-Agent Reinforcement Learning (HMARL) approach based on Control Barrier Functions (CBFs). Our proposed hierarchical approach decomposes the overall reinforcement learning problem into two levels learning joint cooperative behavior at the higher level and learning safe individual behavior at the lower or agent level conditioned on the high-level policy. Specifically, we propose a skill-based HMARL-CBF algorithm in which the higher level problem involves learning a joint policy over the skills for all the agents and the lower-level problem involves learning policies to execute the skills safely with CBFs. We validate our approach on challenging environment scenarios whereby a large number of agents have to safely navigate through conflicting road networks. Compared with existing state of the art methods, our approach significantly improves the safety achieving near perfect (within 5%) success/safety rate while also improving performance across all the environments.
♻ ☆ LeAdQA: LLM-Driven Context-Aware Temporal Grounding for Video Question Answering
Video Question Answering (VideoQA) requires identifying sparse critical moments in long videos and reasoning about their causal relationships to answer semantically complex questions. While recent advances in multimodal learning have improved alignment and fusion, current approaches remain limited by two prevalent but fundamentally flawed strategies: (1) task-agnostic sampling indiscriminately processes all frames, overwhelming key events with irrelevant content; and (2) heuristic retrieval captures superficial patterns but misses causal-temporal structures needed for complex reasoning. To address these challenges, we introduce LeAdQA, an innovative approach that bridges these gaps through synergizing causal-aware query refinement with fine-grained visual grounding. Our method first leverages LLMs to reformulate question-option pairs, resolving causal ambiguities and sharpening temporal focus. These refined queries subsequently direct a temporal grounding model to precisely retrieve the most salient segments, complemented by an adaptive fusion mechanism dynamically integrating the evidence to maximize relevance. The integrated visual-textual cues are then processed by an MLLM to generate accurate, contextually-grounded answers. Experiments on NExT-QA, IntentQA, and NExT-GQA demonstrate that our method's precise visual grounding substantially enhances the understanding of video-question relationships, achieving state-of-the-art (SOTA) performance on complex reasoning tasks while maintaining computational efficiency.
♻ ☆ Benchmarking Spectral Graph Neural Networks: A Comprehensive Study on Effectiveness and Efficiency
With recent advancements in graph neural networks (GNNs), spectral GNNs have received increasing popularity by virtue of their ability to retrieve graph signals in the spectral domain. These models feature uniqueness in efficient computation as well as rich expressiveness, which stems from advanced management and profound understanding of graph data. However, few systematic studies have been conducted to assess spectral GNNs, particularly in benchmarking their efficiency, memory consumption, and effectiveness in a unified and fair manner. There is also a pressing need to select spectral models suitable for learning specific graph data and deploying them to massive web-scale graphs, which is currently constrained by the varied model designs and training settings. In this work, we extensively benchmark spectral GNNs with a focus on the spectral perspective, demystifying them as spectral graph filters. We analyze and categorize 35 GNNs with 27 corresponding filters, spanning diverse formulations and utilizations of the graph data. Then, we implement the filters within a unified spectral-oriented framework with dedicated graph computations and efficient training schemes. In particular, our implementation enables the deployment of spectral GNNs over million-scale graphs and various tasks with comparable performance and less overhead. Thorough experiments are conducted on the graph filters with comprehensive metrics on effectiveness and efficiency, offering novel observations and practical guidelines that are only available from our evaluations across graph scales. Different from the prevailing belief, our benchmark reveals an intricate landscape regarding the effectiveness and efficiency of spectral graph filters, demonstrating the potential to achieve desirable performance through tailored spectral manipulation of graph data.
comment: Full Technical Report. Our code and evaluation is available at: https://github.com/gdmnl/Spectral-GNN-Benchmark
♻ ☆ Flexible Tool Selection through Low-dimensional Attribute Alignment of Vision and Language
Flexible tool selection reflects a complex cognitive ability that distinguishes humans from other species, yet computational models that capture this ability remain underdeveloped. We developed a framework using low-dimensional attribute representations to bridge visual tool perception and linguistic task understanding. We constructed a comprehensive dataset (ToolNet) containing 115 common tools labeled with 13 carefully designed attributes spanning physical, functional, and psychological properties, paired with natural language scenarios describing tool usage. Visual encoders (ResNet or ViT) extract attributes from tool images while fine-tuned language models (GPT-2, LLaMA, DeepSeek) derive required attributes from task descriptions. Our approach achieves 74% accuracy in tool selection tasks-significantly outperforming direct tool matching (20%) and smaller multimodal models (21%-58%), while approaching performance of much larger models like GPT-4o (73%) with substantially fewer parameters. Human evaluation studies validate our framework's alignment with human decision-making patterns, and generalization experiments demonstrate effective performance on novel tool categories. Ablation studies revealed that manipulation-related attributes (graspability, elongation, hand-relatedness) consistently prove most critical across modalities. This work provides a parameter-efficient, interpretable solution that mimics human-like tool cognition, advancing both cognitive science understanding and practical applications in tool selection tasks.
♻ ☆ Large language models can replicate cross-cultural differences in personality
We use a large-scale experiment (N=8000) to determine whether GPT-4 can replicate cross-cultural differences in the Big Five, measured using the Ten-Item Personality Inventory. We used the US and South Korea as the cultural pair, given that prior research suggests substantial personality differences between people from these two countries. We manipulated the target of the simulation (US vs. Korean), the language of the inventory (English vs. Korean), and the language model (GPT-4 vs. GPT-3.5). Our results show that GPT-4 replicated the cross-cultural differences for each factor. However, mean ratings had an upward bias and exhibited lower variation than in the human samples, as well as lower structural validity. We provide preliminary evidence that LLMs can aid cross-cultural researchers and practitioners.
comment: 27 pages: 12 pages of manuscript + 15 pages of supplementary materials; in V3 added information that this is the Author Accepted Manuscript version; in V4 license changed to CC-BY
♻ ☆ Advancing AI-Scientist Understanding: Multi-Agent LLMs with Interpretable Physics Reasoning ICML 2025
Large Language Models (LLMs) are playing an increasingly important role in physics research by assisting with symbolic manipulation, numerical computation, and scientific reasoning. However, ensuring the reliability, transparency, and interpretability of their outputs remains a major challenge. In this work, we introduce a novel multi-agent LLM physicist framework that fosters collaboration between AI and human scientists through three key modules: a reasoning module, an interpretation module, and an AI-scientist interaction module. Recognizing that effective physics reasoning demands logical rigor, quantitative accuracy, and alignment with established theoretical models, we propose an interpretation module that employs a team of specialized LLM agents-including summarizers, model builders, visualization tools, and testers-to systematically structure LLM outputs into transparent, physically grounded science models. A case study demonstrates that our approach significantly improves interpretability, enables systematic validation, and enhances human-AI collaboration in physics problem-solving and discovery. Our work bridges free-form LLM reasoning with interpretable, executable models for scientific analysis, enabling more transparent and verifiable AI-augmented research.
comment: ICML 2025 Workshop on MAS
♻ ☆ S2FGL: Spatial Spectral Federated Graph Learning
Federated Graph Learning (FGL) combines the privacy-preserving capabilities of federated learning (FL) with the strong graph modeling capability of Graph Neural Networks (GNNs). Current research addresses subgraph-FL from the structural perspective, neglecting the propagation of graph signals on spatial and spectral domains of the structure. From a spatial perspective, subgraph-FL introduces edge disconnections between clients, leading to disruptions in label signals and a degradation in the semantic knowledge of the global GNN. From a spectral perspective, spectral heterogeneity causes inconsistencies in signal frequencies across subgraphs, which makes local GNNs overfit the local signal propagation schemes. As a result, spectral client drift occurs, undermining global generalizability. To tackle the challenges, we propose a global knowledge repository to mitigate the challenge of poor semantic knowledge caused by label signal disruption. Furthermore, we design a frequency alignment to address spectral client drift. The combination of Spatial and Spectral strategies forms our framework S2FGL. Extensive experiments on multiple datasets demonstrate the superiority of S2FGL. The code is available at https://github.com/Wonder7racer/S2FGL.git.
♻ ☆ S2Cap: A Benchmark and a Baseline for Singing Style Captioning CIKM 2025
Singing voices contain much richer information than common voices, including varied vocal and acoustic properties. However, current open-source audio-text datasets for singing voices capture only a narrow range of attributes and lack acoustic features, leading to limited utility towards downstream tasks, such as style captioning. To fill this gap, we formally define the singing style captioning task and present S2Cap, a dataset of singing voices with detailed descriptions covering diverse vocal, acoustic, and demographic characteristics. Using this dataset, we develop an efficient and straightforward baseline algorithm for singing style captioning. The dataset is available at https://zenodo.org/records/15673764.
comment: CIKM 2025 Resource Paper
♻ ☆ Teaching Introduction to Programming in the times of AI: A case study of a course re-design CCS
The integration of AI tools into programming education has become increasingly prevalent in recent years, transforming the way programming is taught and learned. This paper provides a review of the state-of-the-art AI tools available for teaching and learning programming, particularly in the context of introductory courses. It highlights the challenges on course design, learning objectives, course delivery and formative and summative assessment, as well as the misuse of such tools by the students. We discuss ways of re-designing an existing course, re-shaping assignments and pedagogy to address the current AI technologies challenges. This example can serve as a guideline for policies for institutions and teachers involved in teaching programming, aiming to maximize the benefits of AI tools while addressing the associated challenges and concerns.
comment: To be cited as: Avouris, N., Sgarbas, K., Caridakis, G., Sintoris, C., (2025). Teaching Introduction to Programming in the times of AI: A case study of a course re-design, Proceedings 12th Penhellenic Conference of Computer Science Education, PCCSE 2025, Rhodes, October 2025
♻ ☆ InsightX Agent: An LMM-based Agentic Framework with Integrated Tools for Reliable X-ray NDT Analysis
Non-destructive testing (NDT), particularly X-ray inspection, is vital for industrial quality assurance, yet existing deep-learning-based approaches often lack interactivity, interpretability, and the capacity for critical self-assessment, limiting their reliability and operator trust. To address these shortcomings, this paper proposes InsightX Agent, a novel LMM-based agentic framework designed to deliver reliable, interpretable, and interactive X-ray NDT analysis. Unlike typical sequential pipelines, InsightX Agent positions a Large Multimodal Model (LMM) as a central orchestrator, coordinating between the Sparse Deformable Multi-Scale Detector (SDMSD) and the Evidence-Grounded Reflection (EGR) tool. The SDMSD generates dense defect region proposals for multi-scale feature maps and sparsifies them through Non-Maximum Suppression (NMS), optimizing detection of small, dense targets in X-ray images while maintaining computational efficiency. The EGR tool guides the LMM agent through a chain-of-thought-inspired review process, incorporating context assessment, individual defect analysis, false positive elimination, confidence recalibration and quality assurance to validate and refine the SDMSD's initial proposals. By strategically employing and intelligently using tools, InsightX Agent moves beyond passive data processing to active reasoning, enhancing diagnostic reliability and providing interpretations that integrate diverse information sources. Experimental evaluations on the GDXray+ dataset demonstrate that InsightX Agent not only achieves a high object detection F1-score of 96.35% but also offers significantly improved interpretability and trustworthiness in its analyses, highlighting the transformative potential of agentic LLM frameworks for industrial inspection tasks.
♻ ☆ Latent Expression Generation for Referring Image Segmentation and Grounding ICCV 2025
Visual grounding tasks, such as referring image segmentation (RIS) and referring expression comprehension (REC), aim to localize a target object based on a given textual description. The target object in an image can be described in multiple ways, reflecting diverse attributes such as color, position, and more. However, most existing methods rely on a single textual input, which captures only a fraction of the rich information available in the visual domain. This mismatch between rich visual details and sparse textual cues can lead to the misidentification of similar objects. To address this, we propose a novel visual grounding framework that leverages multiple latent expressions generated from a single textual input by incorporating complementary visual details absent from the original description. Specifically, we introduce subject distributor and visual concept injector modules to embed both shared-subject and distinct-attributes concepts into the latent representations, thereby capturing unique and target-specific visual cues. We also propose a positive-margin contrastive learning strategy to align all latent expressions with the original text while preserving subtle variations. Experimental results show that our method not only outperforms state-of-the-art RIS and REC approaches on multiple benchmarks but also achieves outstanding performance on the generalized referring expression segmentation (GRES) benchmark.
comment: Accepted to ICCV 2025
♻ ☆ SpikeSTAG: Spatial-Temporal Forecasting via GNN-SNN Collaboration
Spiking neural networks (SNNs), inspired by the spiking behavior of biological neurons, offer a distinctive approach for capturing the complexities of temporal data. However, their potential for spatial modeling in multivariate time-series forecasting remains largely unexplored. To bridge this gap, we introduce a brand new SNN architecture, which is among the first to seamlessly integrate graph structural learning with spike-based temporal processing for multivariate time-series forecasting. Specifically, we first embed time features and an adaptive matrix, eliminating the need for predefined graph structures. We then further learn sequence features through the Observation (OBS) Block. Building upon this, our Multi-Scale Spike Aggregation (MSSA) hierarchically aggregates neighborhood information through spiking SAGE layers, enabling multi-hop feature extraction while eliminating the need for floating-point operations. Finally, we propose a Dual-Path Spike Fusion (DSF) Block to integrate spatial graph features and temporal dynamics via a spike-gated mechanism, combining LSTM-processed sequences with spiking self-attention outputs, effectively improve the model accuracy of long sequence datasets. Experiments show that our model surpasses the state-of-the-art SNN-based iSpikformer on all datasets and outperforms traditional temporal models at long horizons, thereby establishing a new paradigm for efficient spatial-temporal modeling.
comment: 9 pages, 4 figures
♻ ☆ Embodied Long Horizon Manipulation with Closed-loop Code Generation and Incremental Few-shot Adaptation ICRA 6
Embodied long-horizon manipulation requires robotic systems to process multimodal inputs-such as vision and natural language-and translate them into executable actions. However, existing learning-based approaches often depend on large, task-specific datasets and struggle to generalize to unseen scenarios. Recent methods have explored using large language models (LLMs) as high-level planners that decompose tasks into subtasks using natural language and guide pretrained low-level controllers. Yet, these approaches assume perfect execution from low-level policies, which is unrealistic in real-world environments with noise or suboptimal behaviors. To overcome this, we fully discard the pretrained low-level policy and instead use the LLM to directly generate executable code plans within a closed-loop framework. Our planner employs chain-of-thought (CoT)-guided few-shot learning with incrementally structured examples to produce robust and generalizable task plans. Complementing this, a reporter evaluates outcomes using RGB-D and delivers structured feedback, enabling recovery from misalignment and replanning under partial observability. This design eliminates per-step inference, reduces computational overhead, and limits error accumulation that was observed in previous methods. Our framework achieves state-of-the-art performance on 30+ diverse seen and unseen long-horizon tasks across LoHoRavens, CALVIN, Franka Kitchen, and cluttered real-world settings.
comment: update ICRA 6 page
♻ ☆ TFB: Towards Comprehensive and Fair Benchmarking of Time Series Forecasting Methods VLDB 2024
Time series are generated in diverse domains such as economic, traffic, health, and energy, where forecasting of future values has numerous important applications. Not surprisingly, many forecasting methods are being proposed. To ensure progress, it is essential to be able to study and compare such methods empirically in a comprehensive and reliable manner. To achieve this, we propose TFB, an automated benchmark for Time Series Forecasting (TSF) methods. TFB advances the state-of-the-art by addressing shortcomings related to datasets, comparison methods, and evaluation pipelines: 1) insufficient coverage of data domains, 2) stereotype bias against traditional methods, and 3) inconsistent and inflexible pipelines. To achieve better domain coverage, we include datasets from 10 different domains: traffic, electricity, energy, the environment, nature, economic, stock markets, banking, health, and the web. We also provide a time series characterization to ensure that the selected datasets are comprehensive. To remove biases against some methods, we include a diverse range of methods, including statistical learning, machine learning, and deep learning methods, and we also support a variety of evaluation strategies and metrics to ensure a more comprehensive evaluations of different methods. To support the integration of different methods into the benchmark and enable fair comparisons, TFB features a flexible and scalable pipeline that eliminates biases. Next, we employ TFB to perform a thorough evaluation of 21 Univariate Time Series Forecasting (UTSF) methods on 8,068 univariate time series and 14 Multivariate Time Series Forecasting (MTSF) methods on 25 datasets. The benchmark code and data are available at https://github.com/decisionintelligence/TFB. We have also launched an online time series leaderboard: https://decisionintelligence.github.io/OpenTS/OpenTS-Bench/.
comment: Directly accepted by PVLDB 2024, VLDB Best Research Paper Award Nomination 2024
♻ ☆ Encoding Argumentation Frameworks to Propositional Logic Systems
This paper generalizes the encoding of argumentation frameworks beyond the classical 2-valued propositional logic system ($PL_2$) to 3-valued propositional logic systems ($PL_3$s) and fuzzy propositional logic systems ($PL_{[0,1]}s$), employing two key encodings: normal encoding ($ec_1$) and regular encoding ($ec_2$). Specifically, via $ec_1$ and $ec_2$, we establish model relationships between Dung's classical semantics (stable and complete semantics) and the encoded semantics associated with Kleene's $PL_3$ and {\L}ukasiewicz's $PL_3$. Through $ec_1$, we also explore connections between Gabbay's real equational semantics and the encoded semantics of $PL_{[0,1]}s$, including showing that Gabbay's $Eq_{\text{max}}^R$ and $Eq_{\text{inverse}}^R$ correspond to the fuzzy encoded semantics of $PL_{[0,1]}^G$ and $PL_{[0,1]}^P$ respectively. Additionally, we propose a new fuzzy encoded semantics ($Eq^L$) associated with {\L}ukasiewicz's $PL_{[0,1]}$ and investigate interactions between complete semantics and fuzzy encoded semantics. This work strengthens the links between argumentation frameworks and propositional logic systems, providing a framework for constructing new argumentation semantics.
comment: 37 pages
♻ ☆ Heuristic-Induced Multimodal Risk Distribution Jailbreak Attack for Multimodal Large Language Models ICCV 2025
With the rapid advancement of multimodal large language models (MLLMs), concerns regarding their security have increasingly captured the attention of both academia and industry. Although MLLMs are vulnerable to jailbreak attacks, designing effective jailbreak attacks poses unique challenges, especially given the highly constrained adversarial capabilities in real-world deployment scenarios. Previous works concentrate risks into a single modality, resulting in limited jailbreak performance. In this paper, we propose a heuristic-induced multimodal risk distribution jailbreak attack method, called HIMRD, which is black-box and consists of two elements: multimodal risk distribution strategy and heuristic-induced search strategy. The multimodal risk distribution strategy is used to distribute harmful semantics into multiple modalities to effectively circumvent the single-modality protection mechanisms of MLLMs. The heuristic-induced search strategy identifies two types of prompts: the understanding-enhancing prompt, which helps MLLMs reconstruct the malicious prompt, and the inducing prompt, which increases the likelihood of affirmative outputs over refusals, enabling a successful jailbreak attack. HIMRD achieves an average attack success rate (ASR) of 90% across seven open-source MLLMs and an average ASR of around 68% in three closed-source MLLMs. HIMRD reveals cross-modal security vulnerabilities in current MLLMs and underscores the imperative for developing defensive strategies to mitigate such emerging risks. Code is available at https://github.com/MaTengSYSU/HIMRD-jailbreak.
comment: ICCV 2025
♻ ☆ A Law of Next-Token Prediction in Large Language Models
Large language models (LLMs) have been widely employed across various application domains, yet their black-box nature poses significant challenges to understanding how these models process input data internally to make predictions. In this paper, we introduce a precise and quantitative law that governs the learning of contextualized token embeddings through intermediate layers in pre-trained LLMs for next-token prediction. Our findings reveal that each layer contributes equally to enhancing prediction accuracy, from the lowest to the highest layer -- a universal phenomenon observed across a diverse array of open-source LLMs, irrespective of their architectures or pre-training data. We demonstrate that this law offers new perspectives and actionable insights to inform and guide practices in LLM development and applications, including model scaling, pre-training tasks, and interpretation.
comment: Accepted at Physical Review Research
♻ ☆ Eigenspectrum Analysis of Neural Networks without Aspect Ratio Bias ICML 2025
Diagnosing deep neural networks (DNNs) by analyzing the eigenspectrum of their weights has been an active area of research in recent years. One of the main approaches involves measuring the heavytailness of the empirical spectral densities (ESDs) of weight matrices. This analysis has been shown to provide insights to help diagnose whether a model is well-trained or undertrained, and has been used to guide training methods involving layer-wise hyperparameter assignment. In this paper, we address an often-overlooked challenge in estimating the heavytailness of these ESDs: the impact of the aspect ratio of weight matrices. We demonstrate that matrices of varying sizes (and aspect ratios) introduce a non-negligible bias in estimating the heavytailness of ESDs, leading to inaccurate model diagnosis and layer-wise hyperparameter assignment. To overcome this challenge, we propose FARMS (Fixed-Aspect-Ratio Matrix Subsampling), a method that normalizes the weight matrices by subsampling submatrices with a fixed aspect ratio. Instead of measuring the heavytailness of the original ESD, we measure the average ESD of these subsampled submatrices. We show that this method effectively mitigates the aspect ratio bias. We validate our approach across various optimization techniques and application domains that involve eigenspectrum analysis of weights, including image classification in computer vision (CV) models, scientific machine learning (SciML) model training, and large language model (LLM) pruning. Our results show that despite its simplicity, FARMS uniformly improves the accuracy of eigenspectrum analysis while enabling more effective layer-wise hyperparameter assignment. In one of the LLM pruning experiments, FARMS reduces the perplexity of the LLaMA-7B model by 17.3% when compared with state-of-the-art methods.
comment: 29 pages, 14 figures, ICML 2025
♻ ☆ MAGIK: Mapping to Analogous Goals via Imagination-enabled Knowledge Transfer
Humans excel at analogical reasoning - applying knowledge from one task to a related one with minimal relearning. In contrast, reinforcement learning (RL) agents typically require extensive retraining even when new tasks share structural similarities with previously learned ones. In this work, we propose MAGIK, a novel framework that enables RL agents to transfer knowledge to analogous tasks without interacting with the target environment. Our approach leverages an imagination mechanism to map entities in the target task to their analogues in the source domain, allowing the agent to reuse its original policy. Experiments on custom MiniGrid and MuJoCo tasks show that MAGIK achieves effective zero-shot transfer using only a small number of human-labelled examples. We compare our approach to related baselines and highlight how it offers a novel and effective mechanism for knowledge transfer via imagination-based analogy mapping.
♻ ☆ Evaluation of Finetuned LLMs in AMR Parsing
AMR (Abstract Meaning Representation) is a semantic formalism that encodes sentence meaning as rooted, directed, acyclic graphs, where nodes represent concepts and edges denote semantic relations. Finetuning decoder only Large Language Models (LLMs) represent a promising novel straightfoward direction for AMR parsing. This paper presents a comprehensive evaluation of finetuning four distinct LLM architectures, Phi 3.5, Gemma 2, LLaMA 3.2, and DeepSeek R1 LLaMA Distilled using the LDC2020T02 Gold AMR3.0 test set. Our results have shown that straightfoward finetuning of decoder only LLMs can achieve comparable performance to complex State of the Art (SOTA) AMR parsers. Notably, LLaMA 3.2 demonstrates competitive performance against SOTA AMR parsers given a straightforward finetuning approach. We achieved SMATCH F1: 0.804 on the full LDC2020T02 test split, on par with APT + Silver (IBM) at 0.804 and approaching Graphene Smatch (MBSE) at 0.854. Across our analysis, we also observed a consistent pattern where LLaMA 3.2 leads in semantic performance while Phi 3.5 excels in structural validity.
comment: 27 pages, 32 figures
♻ ☆ Explainable Reinforcement Learning Agents Using World Models IJCAI 2025
Explainable AI (XAI) systems have been proposed to help people understand how AI systems produce outputs and behaviors. Explainable Reinforcement Learning (XRL) has an added complexity due to the temporal nature of sequential decision-making. Further, non-AI experts do not necessarily have the ability to alter an agent or its policy. We introduce a technique for using World Models to generate explanations for Model-Based Deep RL agents. World Models predict how the world will change when actions are performed, allowing for the generation of counterfactual trajectories. However, identifying what a user wanted the agent to do is not enough to understand why the agent did something else. We augment Model-Based RL agents with a Reverse World Model, which predicts what the state of the world should have been for the agent to prefer a given counterfactual action. We show that explanations that show users what the world should have been like significantly increase their understanding of the agent policy. We hypothesize that our explanations can help users learn how to control the agents execution through by manipulating the environment.
comment: Accepted by Workshop on Explainable Artificial Intelligence (XAI) at IJCAI 2025
♻ ☆ Judging the Judges: Evaluating Alignment and Vulnerabilities in LLMs-as-Judges
Offering a promising solution to the scalability challenges associated with human evaluation, the LLM-as-a-judge paradigm is rapidly gaining traction as an approach to evaluating large language models (LLMs). However, there are still many open questions about the strengths and weaknesses of this paradigm, and what potential biases it may hold. In this paper, we present a comprehensive study of the performance of various LLMs acting as judges, focusing on a clean scenario in which inter-human agreement is high. Investigating thirteen judge models of different model sizes and families, judging answers of nine different 'examtaker models' - both base and instruction-tuned - we find that only the best (and largest) models achieve reasonable alignment with humans. However, they are still quite far behind inter-human agreement and their assigned scores may still differ with up to 5 points from human-assigned scores. In terms of their ranking of the nine exam-taker models, instead, also smaller models and even the lexical metric contains may provide a reasonable signal. Through error analysis and other studies, we identify vulnerabilities in judge models, such as their sensitivity to prompt complexity and length, and a tendency toward leniency. The fact that even the best judges differ from humans in this comparatively simple setup suggest that caution may be wise when using judges in more complex setups. Lastly, our research rediscovers the importance of using alignment metrics beyond simple percent alignment, showing that judges with high percent agreement can still assign vastly different scores.
comment: https://aclanthology.org/2025.gem-1.33/
Machine Learning 133
☆ MDPO: Overcoming the Training-Inference Divide of Masked Diffusion Language Models
Diffusion language models, as a promising alternative to traditional autoregressive (AR) models, enable faster generation and richer conditioning on bidirectional context. However, they suffer from a key discrepancy between training and inference: during inference, MDLMs progressively reveal the structure of the generated sequence by producing fewer and fewer masked tokens, whereas this structure is ignored in training as tokens are masked at random. Although this discrepancy between training and inference can lead to suboptimal performance, it has been largely overlooked by previous works, leaving closing this gap between the two stages an open problem. To address this, we frame the problem of learning effective denoising trajectories as a sequential decision-making problem and use the resulting framework to apply reinforcement learning. We propose a novel Masked Diffusion Policy Optimization (MDPO) to exploit the Markov property diffusion possesses and explicitly train the model under the same progressive refining schedule used at inference. MDPO matches the performance of the previous state-of-the-art (SOTA) method with 60x fewer gradient updates, while achieving average improvements of 9.6% on MATH500 and 54.2% on Countdown over SOTA when trained within the same number of weight updates. Additionally, we improve the remasking strategy of MDLMs as a plug-in inference replacement to overcome the limitation that the model cannot refine tokens flexibly. This simple yet effective training-free strategy, what we refer to as RCR, consistently improves performance and yields additional gains when combined with MDPO. Our findings establish great potential for investigating the discrepancy between pre-training and inference of MDLMs. Code: https://github.com/autonomousvision/mdpo. Project Page: https://cli212.github.io/MDPO/.
☆ Signal and Noise: A Framework for Reducing Uncertainty in Language Model Evaluation
Developing large language models is expensive and involves making decisions with small experiments, typically by evaluating on large, multi-task evaluation suites. In this work, we analyze specific properties which make a benchmark more reliable for such decisions, and interventions to design higher-quality evaluation benchmarks. We introduce two key metrics that show differences in current benchmarks: signal, a benchmark's ability to separate better models from worse models, and noise, a benchmark's sensitivity to random variability between training steps. We demonstrate that benchmarks with a better signal-to-noise ratio are more reliable when making decisions at small scale, and those with less noise have lower scaling law prediction error. These results suggest that improving signal or noise will lead to more useful benchmarks, so we introduce three interventions designed to directly affect signal or noise. For example, we propose that switching to a metric that has better signal and noise (e.g., perplexity rather than accuracy) leads to better reliability and improved scaling law error. We also find that filtering noisy subtasks, to improve an aggregate signal-to-noise ratio, leads to more reliable multi-task evaluations. We also find that averaging the output of a model's intermediate checkpoints to reduce noise leads to consistent improvements. We conclude by recommending that those creating new benchmarks, or selecting which existing benchmarks to use, aim for high signal and low noise. We use 30 benchmarks for these experiments, and 375 open-weight language models from 60M to 32B parameters, resulting in a new, publicly available dataset of 900K evaluation benchmark results, totaling 200M instances.
☆ Has GPT-5 Achieved Spatial Intelligence? An Empirical Study
Multi-modal models have achieved remarkable progress in recent years. Nevertheless, they continue to exhibit notable limitations in spatial understanding and reasoning, which are fundamental capabilities to achieving artificial general intelligence. With the recent release of GPT-5, allegedly the most powerful AI model to date, it is timely to examine where the leading models stand on the path toward spatial intelligence. First, we propose a comprehensive taxonomy of spatial tasks that unifies existing benchmarks and discuss the challenges in ensuring fair evaluation. We then evaluate state-of-the-art proprietary and open-source models on eight key benchmarks, at a cost exceeding one billion total tokens. Our empirical study reveals that (1) GPT-5 demonstrates unprecedented strength in spatial intelligence, yet (2) still falls short of human performance across a broad spectrum of tasks. Moreover, we (3) identify the more challenging spatial intelligence problems for multi-modal models, and (4) proprietary models do not exhibit a decisive advantage when facing the most difficult problems. In addition, we conduct a qualitative evaluation across a diverse set of scenarios that are intuitive for humans yet fail even the most advanced multi-modal models.
☆ OptimalThinkingBench: Evaluating Over and Underthinking in LLMs
Thinking LLMs solve complex tasks at the expense of increased compute and overthinking on simpler problems, while non-thinking LLMs are faster and cheaper but underthink on harder reasoning problems. This has led to the development of separate thinking and non-thinking LLM variants, leaving the onus of selecting the optimal model for each query on the end user. In this work, we introduce OptimalThinkingBench, a unified benchmark that jointly evaluates overthinking and underthinking in LLMs and also encourages the development of optimally-thinking models that balance performance and efficiency. Our benchmark comprises two sub-benchmarks: OverthinkingBench, featuring simple queries in 72 domains, and UnderthinkingBench, containing 11 challenging reasoning tasks. Using novel thinking-adjusted accuracy metrics, we perform extensive evaluation of 33 different thinking and non-thinking models and show that no model is able to optimally think on our benchmark. Thinking models often overthink for hundreds of tokens on the simplest user queries without improving performance. In contrast, large non-thinking models underthink, often falling short of much smaller thinking models. We further explore several methods to encourage optimal thinking, but find that these approaches often improve on one sub-benchmark at the expense of the other, highlighting the need for better unified and optimal models in the future.
comment: 26 pages, 6 tables, 10 figures
☆ Improving Detection of Watermarked Language Models
Watermarking has recently emerged as an effective strategy for detecting the generations of large language models (LLMs). The strength of a watermark typically depends strongly on the entropy afforded by the language model and the set of input prompts. However, entropy can be quite limited in practice, especially for models that are post-trained, for example via instruction tuning or reinforcement learning from human feedback (RLHF), which makes detection based on watermarking alone challenging. In this work, we investigate whether detection can be improved by combining watermark detectors with non-watermark ones. We explore a number of hybrid schemes that combine the two, observing performance gains over either class of detector under a wide range of experimental conditions.
☆ Contrastive Representations for Temporal Reasoning
In classical AI, perception relies on learning state-based representations, while planning, which can be thought of as temporal reasoning over action sequences, is typically achieved through search. We study whether such reasoning can instead emerge from representations that capture both perceptual and temporal structure. We show that standard temporal contrastive learning, despite its popularity, often fails to capture temporal structure due to its reliance on spurious features. To address this, we introduce Combinatorial Representations for Temporal Reasoning (CRTR), a method that uses a negative sampling scheme to provably remove these spurious features and facilitate temporal reasoning. CRTR achieves strong results on domains with complex temporal structure, such as Sokoban and Rubik's Cube. In particular, for the Rubik's Cube, CRTR learns representations that generalize across all initial states and allow it to solve the puzzle using fewer search steps than BestFS, though with longer solutions. To our knowledge, this is the first method that efficiently solves arbitrary Cube states using only learned representations, without relying on an external search algorithm.
comment: Project website: https://princeton-rl.github.io/CRTR/
☆ Causally-Guided Pairwise Transformer -- Towards Foundational Digital Twins in Process Industry
Foundational modelling of multi-dimensional time-series data in industrial systems presents a central trade-off: channel-dependent (CD) models capture specific cross-variable dynamics but lack robustness and adaptability as model layers are commonly bound to the data dimensionality of the tackled use-case, while channel-independent (CI) models offer generality at the cost of modelling the explicit interactions crucial for system-level predictive regression tasks. To resolve this, we propose the Causally-Guided Pairwise Transformer (CGPT), a novel architecture that integrates a known causal graph as an inductive bias. The core of CGPT is built around a pairwise modeling paradigm, tackling the CD/CI conflict by decomposing the multidimensional data into pairs. The model uses channel-agnostic learnable layers where all parameter dimensions are independent of the number of variables. CGPT enforces a CD information flow at the pair-level and CI-like generalization across pairs. This approach disentangles complex system dynamics and results in a highly flexible architecture that ensures scalability and any-variate adaptability. We validate CGPT on a suite of synthetic and real-world industrial datasets on long-term and one-step forecasting tasks designed to simulate common industrial complexities. Results demonstrate that CGPT significantly outperforms both CI and CD baselines in predictive accuracy and shows competitive performance with end-to-end trained CD models while remaining agnostic to the problem dimensionality.
comment: 12 pages, 2 figures, 4 tables
☆ A Perfectly Truthful Calibration Measure
Calibration requires that predictions are conditionally unbiased and, therefore, reliably interpretable as probabilities. Calibration measures quantify how far a predictor is from perfect calibration. As introduced by Haghtalab et al. (2024), a calibration measure is truthful if it is minimized in expectation when a predictor outputs the ground-truth probabilities. Although predicting the true probabilities guarantees perfect calibration, in reality, when calibration is evaluated on a finite sample, predicting the truth is not guaranteed to minimize any known calibration measure. All known calibration measures incentivize predictors to lie in order to appear more calibrated on a finite sample. Such lack of truthfulness motivated Haghtalab et al. (2024) and Qiao and Zhao (2025) to construct approximately truthful calibration measures in the sequential prediction setting, but no perfectly truthful calibration measure was known to exist even in the more basic batch setting. We design a perfectly truthful calibration measure in the batch setting: averaged two-bin calibration error (ATB). In addition to being truthful, ATB is sound, complete, continuous, and quadratically related to two existing calibration measures: the smooth calibration error (smCal) and the (lower) distance to calibration (distCal). The simplicity in our definition of ATB makes it efficient and straightforward to compute. ATB allows faster estimation algorithms with significantly easier implementations than smCal and distCal, achieving improved running time and simplicity for the calibration testing problem studied by Hu et al. (2024). We also introduce a general recipe for constructing truthful measures, which proves the truthfulness of ATB as a special case and allows us to construct other truthful calibration measures such as quantile-binned l_2-ECE.
Outlier Detection of Poisson-Distributed Targets Using a Seabed Sensor Network
This paper presents a framework for classifying and detecting spatial commission outliers in maritime environments using seabed acoustic sensor networks and log Gaussian Cox processes (LGCPs). By modeling target arrivals as a mixture of normal and outlier processes, we estimate the probability that a newly observed event is an outlier. We propose a second-order approximation of this probability that incorporates both the mean and variance of the normal intensity function, providing improved classification accuracy compared to mean-only approaches. We analytically show that our method yields a tighter bound to the true probability using Jensen's inequality. To enhance detection, we integrate a real-time, near-optimal sensor placement strategy that dynamically adjusts sensor locations based on the evolving outlier intensity. The proposed framework is validated using real ship traffic data near Norfolk, Virginia, where numerical results demonstrate the effectiveness of our approach in improving both classification performance and outlier detection through sensor deployment.
comment: IEEE OCEANS
☆ Denoising diffusion models for inverse design of inflatable structures with programmable deformations
Programmable structures are systems whose undeformed geometries and material property distributions are deliberately designed to achieve prescribed deformed configurations under specific loading conditions. Inflatable structures are a prominent example, using internal pressurization to realize large, nonlinear deformations in applications ranging from soft robotics and deployable aerospace systems to biomedical devices and adaptive architecture. We present a generative design framework based on denoising diffusion probabilistic models (DDPMs) for the inverse design of elastic structures undergoing large, nonlinear deformations under pressure-driven actuation. The method formulates the inverse design as a conditional generation task, using geometric descriptors of target deformed states as inputs and outputting image-based representations of the undeformed configuration. Representing these configurations as simple images is achieved by establishing a pre- and postprocessing pipeline that involves a fixed image processing, simulation setup, and descriptor extraction methods. Numerical experiments with scalar and higher-dimensional descriptors show that the framework can quickly produce diverse undeformed configurations that achieve the desired deformations when inflated, enabling parallel exploration of viable design candidates while accommodating complex constraints.
comment: 21 pages, 12 figures
☆ Seeing the Many: Exploring Parameter Distributions Conditioned on Features in Surrogates
Recently, neural surrogate models have emerged as a compelling alternative to traditional simulation workflows. This is accomplished by modeling the underlying function of scientific simulations, removing the need to run expensive simulations. Beyond just mapping from input parameter to output, surrogates have also been shown useful for inverse problems: output to input parameters. Inverse problems can be understood as search, where we aim to find parameters whose surrogate outputs contain a specified feature. Yet finding these parameters can be costly, especially for high-dimensional parameter spaces. Thus, existing surrogate-based solutions primarily focus on finding a small set of matching parameters, in the process overlooking the broader picture of plausible parameters. Our work aims to model and visualize the distribution of possible input parameters that produce a given output feature. To achieve this goal, we aim to address two challenges: (1) the approximation error inherent in the surrogate model and (2) forming the parameter distribution in an interactive manner. We model error via density estimation, reporting high density only if a given parameter configuration is close to training parameters, measured both over the input and output space. Our density estimate is used to form a prior belief on parameters, and when combined with a likelihood on features, gives us an efficient way to sample plausible parameter configurations that generate a target output feature. We demonstrate the usability of our solution through a visualization interface by performing feature-driven parameter analysis over the input parameter space of three simulation datasets. Source code is available at https://github.com/matthewberger/seeing-the-many
☆ Eyes on the Image: Gaze Supervised Multimodal Learning for Chest X-ray Diagnosis and Report Generation
We propose a two-stage multimodal framework that enhances disease classification and region-aware radiology report generation from chest X-rays, leveraging the MIMIC-Eye dataset. In the first stage, we introduce a gaze-guided contrastive learning architecture for disease classification. It integrates visual features, clinical labels, bounding boxes, and radiologist eye-tracking signals and is equipped with a novel multi-term gaze-attention loss combining MSE, KL divergence, correlation, and center-of-mass alignment. Incorporating fixations improves F1 score from 0.597 to 0.631 (+5.70%) and AUC from 0.821 to 0.849 (+3.41%), while also improving precision and recall, highlighting the effectiveness of gaze-informed attention supervision. In the second stage, we present a modular report generation pipeline that extracts confidence-weighted diagnostic keywords, maps them to anatomical regions using a curated dictionary constructed from domain-specific priors, and generates region-aligned sentences via structured prompts. This pipeline improves report quality as measured by clinical keyword recall and ROUGE overlap. Our results demonstrate that integrating gaze data improves both classification performance and the interpretability of generated medical reports.
☆ Is This News Still Interesting to You?: Lifetime-aware Interest Matching for News Recommendation CIKM
Personalized news recommendation aims to deliver news articles aligned with users' interests, serving as a key solution to alleviate the problem of information overload on online news platforms. While prior work has improved interest matching through refined representations of news and users, the following time-related challenges remain underexplored: (C1) leveraging the age of clicked news to infer users' interest persistence, and (C2) modeling the varying lifetime of news across topics and users. To jointly address these challenges, we propose a novel Lifetime-aware Interest Matching framework for nEws recommendation, named LIME, which incorporates three key strategies: (1) User-Topic lifetime-aware age representation to capture the relative age of news with respect to a user-topic pair, (2) Candidate-aware lifetime attention for generating temporally aligned user representation, and (3) Freshness-guided interest refinement for prioritizing valid candidate news at prediction time. Extensive experiments on two real-world datasets demonstrate that LIME consistently outperforms a wide range of state-of-the-art news recommendation methods, and its model agnostic strategies significantly improve recommendation accuracy.
comment: 10 pages, 7 figures, 4 tables, accepted at ACM International Conference on Information and Knowledge Management (CIKM)
☆ Hierarchical Evaluation Function (HEF): A Multi-Metric Approach for Optimizing Demand Forecasting Models
Demand forecasting is essential for strategic planning in competitive environments, enabling resource optimization and improved responsiveness to market dynamics. However, multivariate time series modeling faces challenges due to data complexity, uncertainty, and frequent regime shifts. Traditional evaluation metrics can introduce biases and limit generalization. This work compares two custom evaluation functions: FMAE (Focused Mean Absolute Error), focused on minimizing absolute errors, and HEF (Hierarchical Evaluation Function), designed to weight global metrics and penalize large deviations. Experiments were conducted under different data splits (91:9, 80:20, 70:30) using three optimizers (Grid Search, PSO, Optuna), assessing fit, relative accuracy, robustness, and computational efficiency. Results show that HEF consistently outperforms FMAE in global metrics (R2, Relative Accuracy, RMSE, RMSSE), enhancing model robustness and explanatory power. These findings were confirmed via visualizations and statistical tests. Conversely, FMAE offers advantages in local metrics (MAE, MASE) and execution time, making it suitable for short-term scenarios. The study highlights a methodological trade-off: HEF is ideal for strategic planning, while FMAE is better suited for operational efficiency. A replicable framework is proposed for optimizing predictive models in dynamic environments.
comment: 31 pages, 15 figures, 110 tables. Submitted as a preprint. The manuscript introduces the Hierarchical Evaluation Function (HEF), a multi-metric framework for optimizing demand forecasting models under high uncertainty. Includes extensive experimental validation using real-world datasets and a comparative analysis against classical and modern methods
☆ Beyond Internal Data: Bounding and Estimating Fairness from Incomplete Data
Ensuring fairness in AI systems is critical, especially in high-stakes domains such as lending, hiring, and healthcare. This urgency is reflected in emerging global regulations that mandate fairness assessments and independent bias audits. However, procuring the necessary complete data for fairness testing remains a significant challenge. In industry settings, legal and privacy concerns restrict the collection of demographic data required to assess group disparities, and auditors face practical and cultural challenges in gaining access to data. In practice, data relevant for fairness testing is often split across separate sources: internal datasets held by institutions with predictive attributes, and external public datasets such as census data containing protected attributes, each providing only partial, marginal information. Our work seeks to leverage such available separate data to estimate model fairness when complete data is inaccessible. We propose utilising the available separate data to estimate a set of feasible joint distributions and then compute the set plausible fairness metrics. Through simulation and real experiments, we demonstrate that we can derive meaningful bounds on fairness metrics and obtain reliable estimates of the true metric. Our results demonstrate that this approach can serve as a practical and effective solution for fairness testing in real-world settings where access to complete data is restricted.
comment: 9 pages, 3 figures
☆ The Application of Transformer-Based Models for Predicting Consequences of Cyber Attacks
Cyberattacks are increasing, and securing against such threats is costing industries billions of dollars annually. Threat Modeling, that is, comprehending the consequences of these attacks, can provide critical support to cybersecurity professionals, enabling them to take timely action and allocate resources that could be used elsewhere. Cybersecurity is heavily dependent on threat modeling, as it assists security experts in assessing and mitigating risks related to identifying vulnerabilities and threats. Recently, there has been a pressing need for automated methods to assess attack descriptions and forecast the future consequences of the increasing complexity of cyberattacks. This study examines how Natural Language Processing (NLP) and deep learning can be applied to analyze the potential impact of cyberattacks by leveraging textual descriptions from the MITRE Common Weakness Enumeration (CWE) database. We emphasize classifying attack consequences into five principal categories: Availability, Access Control, Confidentiality, Integrity, and Other. This paper investigates the use of Bidirectional Encoder Representations from Transformers (BERT) in combination with Hierarchical Attention Networks (HANs) for Multi-label classification, evaluating their performance in comparison with conventional CNN and LSTM-based models. Experimental findings show that BERT achieves an overall accuracy of $0.972$, far higher than conventional deep learning models in multi-label classification. HAN outperforms baseline forms of CNN and LSTM-based models on specific cybersecurity labels. However, BERT consistently achieves better precision and recall, making it more suitable for predicting the consequences of a cyberattack.
comment: 21 pages, 6 figures,Proceedings of the IEEE International Conference on Computers, Software, & Applications (COMPSAC), EATA Symposium, Toronto, Canada, July 8-11, 2025
☆ Design and Analysis of Robust Adaptive Filtering with the Hyperbolic Tangent Exponential Kernel M-Estimator Function for Active Noise Control
In this work, we propose a robust adaptive filtering approach for active noise control applications in the presence of impulsive noise. In particular, we develop the filtered-x hyperbolic tangent exponential generalized Kernel M-estimate function (FXHEKM) robust adaptive algorithm. A statistical analysis of the proposed FXHEKM algorithm is carried out along with a study of its computational cost. {In order to evaluate the proposed FXHEKM algorithm, the mean-square error (MSE) and the average noise reduction (ANR) performance metrics have been adopted.} Numerical results show the efficiency of the proposed FXHEKM algorithm to cancel the presence of the additive spurious signals, such as \textbf{$\alpha$}-stable noises against competing algorithms.
comment: 12 figures, 11 pages
☆ Monte Carlo Functional Regularisation for Continual Learning
Continual learning (CL) is crucial for the adaptation of neural network models to new environments. Although outperforming weight-space regularisation approaches, the functional regularisation-based CL methods suffer from high computational costs and large linear approximation errors. In this work, we present a new functional regularisation CL framework, called MCFRCL, which approximates model prediction distributions by Monte Carlo (MC) sampling. Moreover, three continuous distributions are leveraged to capture the statistical characteristics of the MC samples via moment-based methods. Additionally, both the Wasserstein distance and the Kullback-Leibler (KL) distance are employed to construct the regularisation function. The proposed MCFRCL is evaluated against multiple benchmark methods on the MNIST and CIFAR datasets, with simulation results highlighting its effectiveness in both prediction accuracy and training efficiency.
☆ Empirical Evidences for the Effects of Feature Diversity in Open Set Recognition and Continual Learning
Open set recognition (OSR) and continual learning are two critical challenges in machine learning, focusing respectively on detecting novel classes at inference time and updating models to incorporate the new classes. While many recent approaches have addressed these problems, particularly OSR, by heuristically promoting feature diversity, few studies have directly examined the role that feature diversity plays in tackling them. In this work, we provide empirical evidence that enhancing feature diversity improves the recognition of open set samples. Moreover, increased feature diversity also facilitates both the retention of previously learned data and the integration of new data in continual learning. We hope our findings can inspire further research into both practical methods and theoretical understanding in these domains.
☆ Fairness-Aware Multi-view Evidential Learning with Adaptive Prior
Multi-view evidential learning aims to integrate information from multiple views to improve prediction performance and provide trustworthy uncertainty esitimation. Most previous methods assume that view-specific evidence learning is naturally reliable. However, in practice, the evidence learning process tends to be biased. Through empirical analysis on real-world data, we reveal that samples tend to be assigned more evidence to support data-rich classes, thereby leading to unreliable uncertainty estimation in predictions. This motivates us to delve into a new Biased Evidential Multi-view Learning (BEML) problem. To this end, we propose Fairness-Aware Multi-view Evidential Learning (FAML). FAML first introduces an adaptive prior based on training trajectory, which acts as a regularization strategy to flexibly calibrate the biased evidence learning process. Furthermore, we explicitly incorporate a fairness constraint based on class-wise evidence variance to promote balanced evidence allocation. In the multi-view fusion stage, we propose an opinion alignment mechanism to mitigate view-specific bias across views, thereby encouraging the integration of consistent and mutually supportive evidence. Extensive experiments on five real-world multi-view datasets demonstrate that FAML achieves more balanced evidence allocation and improves both prediction performance and the reliability of uncertainty estimation compared to state-of-the-art methods.
☆ Kourkoutas-Beta: A Sunspike-Driven Adam Optimizer with Desert Flair
Transformer neural networks are increasingly used for physics-based problems. In data-driven PDE surrogates, training samples from varying boundary and initial conditions can cause erratic losses and spiky gradients; in physics-informed neural networks (PINNs), stiff composite losses amplify this effect. We introduce Kourkoutas-Beta, an Adam-style optimizer where the fixed second-moment discount beta2 is replaced by a layer-wise dynamic value driven by a bounded ``sunspike'' ratio: the current pooled gradient norm divided by an exponential moving average (EMA) of past norms, squashed to the interval [0,1). Spikes lower beta2 toward beta2_min; calm phases keep it near beta2_max. Options include leaky-AMSGrad (decay), trust-region clipping (max_ratio), adaptive tiny terms, and several bias-correction modes ``none'', ``beta2max'', ``exact'). With all features off and bias_correction=``none'', the method is exactly Adam. We test on four settings: (i) a Transformer PDE surrogate (Heat2D), (ii) a 3D PINN for heat conduction (Heat3D), (iii) a lightweight MLX synthetic task with jitter and rare-trigger bursts, and (iv) a character-level Transformer on 30 MB of enwik8 (small-enwik8). Kourkoutas-Beta improves stability and final loss versus fixed-beta2 Adam. On small-enwik8 it lowers bits-per-character by about 38% vs Adam-0.95 and about 58% vs Adam-0.999 over 10 seeds, with smaller variance. The method remains drop-in, with runtime overhead comparable to Adam in testbeds A-C and within single-digit percent in testbed D. It preserves Adam-style convergence guarantees while improving robustness under spiky gradients.
comment: 54 pages, 8 figures, 19 tables
☆ Predicting the Performance of Graph Convolutional Networks with Spectral Properties of the Graph Laplacian
A common observation in the Graph Convolutional Network (GCN) literature is that stacking GCN layers may or may not result in better performance on tasks like node classification and edge prediction. We have found empirically that a graph's algebraic connectivity, which is known as the Fiedler value, is a good predictor of GCN performance. Intuitively, graphs with similar Fiedler values have analogous structural properties, suggesting that the same filters and hyperparameters may yield similar results when used with GCNs, and that transfer learning may be more effective between graphs with similar algebraic connectivity. We explore this theoretically and empirically with experiments on synthetic and real graph data, including the Cora, CiteSeer and Polblogs datasets. We explore multiple ways of aggregating the Fiedler value for connected components in the graphs to arrive at a value for the entire graph, and show that it can be used to predict GCN performance. We also present theoretical arguments as to why the Fiedler value is a good predictor.
comment: 9 pages, 3 figures
☆ Transfer Learning for Neutrino Scattering: Domain Adaptation with GANs
We utilize transfer learning to extrapolate the physics knowledge encoded in a Generative Adversarial Network (GAN) model trained on synthetic charged-current (CC) neutrino-carbon inclusive scattering data. This base model is adapted to generate CC inclusive scattering events (lepton kinematics only) for neutrino-argon and antineutrino-carbon interactions. Furthermore, we assess the effectiveness of transfer learning in re-optimizing a custom model when new data comes from a different neutrino-nucleus interaction model. Our results demonstrate that transfer learning significantly outperforms training generative models from scratch. To study this, we consider two training data sets: one with 10,000 and another with 100,000 events. The models obtained via transfer learning perform well even with smaller training data. The proposed method provides a promising approach for constructing neutrino scattering event generators in scenarios where experimental data is sparse.
comment: 17 pages, 17 figures
☆ SL-ACC: A Communication-Efficient Split Learning Framework with Adaptive Channel-wise Compression
The increasing complexity of neural networks poses a significant barrier to the deployment of distributed machine learning (ML) on resource-constrained devices, such as federated learning (FL). Split learning (SL) offers a promising solution by offloading the primary computing load from edge devices to a server via model partitioning. However, as the number of participating devices increases, the transmission of excessive smashed data (i.e., activations and gradients) becomes a major bottleneck for SL, slowing down the model training. To tackle this challenge, we propose a communication-efficient SL framework, named SL-ACC, which comprises two key components: adaptive channel importance identification (ACII) and channel grouping compression (CGC). ACII first identifies the contribution of each channel in the smashed data to model training using Shannon entropy. Following this, CGC groups the channels based on their entropy and performs group-wise adaptive compression to shrink the transmission volume without compromising training accuracy. Extensive experiments across various datasets validate that our proposed SL-ACC framework takes considerably less time to achieve a target accuracy than state-of-the-art benchmarks.
comment: 6 pages, 7 figures
☆ Fed-DPRoC:Communication-Efficient Differentially Private and Robust Federated Learning
We propose Fed-DPRoC, a novel federated learning framework that simultaneously ensures differential privacy (DP), Byzantine robustness, and communication efficiency. We introduce the concept of robust-compatible compression, which enables users to compress DP-protected updates while maintaining the robustness of the aggregation rule. We instantiate our framework as RobAJoL, combining the Johnson-Lindenstrauss (JL) transform for compression with robust averaging for robust aggregation. We theoretically prove the compatibility of JL transform with robust averaging and show that RobAJoL preserves robustness guarantees, ensures DP, and reduces communication cost. Experiments on CIFAR-10 and Fashion MNIST validate our theoretical claims and demonstrate that RobAJoL outperforms existing methods in terms of robustness and utility under different Byzantine attacks.
☆ Arabic ASR on the SADA Large-Scale Arabic Speech Corpus with Transformer-Based Models
We explore the performance of several state-of-the-art automatic speech recognition (ASR) models on a large-scale Arabic speech dataset, the SADA (Saudi Audio Dataset for Arabic), which contains 668 hours of high-quality audio from Saudi television shows. The dataset includes multiple dialects and environments, specifically a noisy subset that makes it particularly challenging for ASR. We evaluate the performance of the models on the SADA test set, and we explore the impact of fine-tuning, language models, as well as noise and denoising on their performance. We find that the best performing model is the MMS 1B model finetuned on SADA with a 4-gram language model that achieves a WER of 40.9\% and a CER of 17.6\% on the SADA test clean set.
☆ Shapley Values: Paired-Sampling Approximations
Originally introduced in cooperative game theory, Shapley values have become a very popular tool to explain machine learning predictions. Based on Shapley's fairness axioms, every input (feature component) gets a credit how it contributes to an output (prediction). These credits are then used to explain the prediction. The only limitation in computing the Shapley values (credits) for many different predictions is of computational nature. There are two popular sampling approximations, sampling KernelSHAP and sampling PermutationSHAP. Our first novel contributions are asymptotic normality results for these sampling approximations. Next, we show that the paired-sampling approaches provide exact results in case of interactions being of maximal order two. Furthermore, the paired-sampling PermutationSHAP possesses the additive recovery property, whereas its kernel counterpart does not.
☆ OPTIC-ER: A Reinforcement Learning Framework for Real-Time Emergency Response and Equitable Resource Allocation in Underserved African Communities
Public service systems in many African regions suffer from delayed emergency response and spatial inequity, causing avoidable suffering. This paper introduces OPTIC-ER, a reinforcement learning (RL) framework for real-time, adaptive, and equitable emergency response. OPTIC-ER uses an attention-guided actor-critic architecture to manage the complexity of dispatch environments. Its key innovations are a Context-Rich State Vector, encoding action sub-optimality, and a Precision Reward Function, which penalizes inefficiency. Training occurs in a high-fidelity simulation using real data from Rivers State, Nigeria, accelerated by a precomputed Travel Time Atlas. The system is built on the TALS framework (Thin computing, Adaptability, Low-cost, Scalability) for deployment in low-resource settings. In evaluations on 500 unseen incidents, OPTIC-ER achieved a 100.00% optimality rate with negligible inefficiency, confirming its robustness and generalization. Beyond dispatch, the system generates Infrastructure Deficiency Maps and Equity Monitoring Dashboards to guide proactive governance and data-informed development. This work presents a validated blueprint for AI-augmented public services, showing how context-aware RL can bridge the gap between algorithmic decision-making and measurable human impact.
comment: Source code and data available at: https://github.com/marytonwe/OPTIC-ER.git
☆ Simulation-Based Inference: A Practical Guide
A central challenge in many areas of science and engineering is to identify model parameters that are consistent with prior knowledge and empirical data. Bayesian inference offers a principled framework for this task, but can be computationally prohibitive when models are defined by stochastic simulators. Simulation-based Inference (SBI) is a suite of methods developed to overcome this limitation, which has enabled scientific discoveries in fields such as particle physics, astrophysics, and neuroscience. The core idea of SBI is to train neural networks on data generated by a simulator, without requiring access to likelihood evaluations. Once trained, inference is amortized: The neural network can rapidly perform Bayesian inference on empirical observations without requiring additional training or simulations. In this tutorial, we provide a practical guide for practitioners aiming to apply SBI methods. We outline a structured SBI workflow and offer practical guidelines and diagnostic tools for every stage of the process -- from setting up the simulator and prior, choosing and training inference networks, to performing inference and validating the results. We illustrate these steps through examples from astrophysics, psychophysics, and neuroscience. This tutorial empowers researchers to apply state-of-the-art SBI methods, facilitating efficient parameter inference for scientific discovery.
☆ The path to a goal: Understanding soccer possessions via path signatures
We present a novel framework for predicting next actions in soccer possessions by leveraging path signatures to encode their complex spatio-temporal structure. Unlike existing approaches, we do not rely on fixed historical windows and handcrafted features, but rather encode the entire recent possession, thereby avoiding the inclusion of potentially irrelevant or misleading historical information. Path signatures naturally capture the order and interaction of events, providing a mathematically grounded feature encoding for variable-length time series of irregular sampling frequencies without the necessity for manual feature engineering. Our proposed approach outperforms a transformer-based benchmark across various loss metrics and considerably reduces computational cost. Building on these results, we introduce a new possession evaluation metric based on well-established frameworks in soccer analytics, incorporating both predicted action type probabilities and action location. Our metric shows greater reliability than existing metrics in domain-specific comparisons. Finally, we validate our approach through a detailed analysis of the 2017/18 Premier League season and discuss further applications and future extensions.
☆ SNAP-UQ: Self-supervised Next-Activation Prediction for Single-Pass Uncertainty in TinyML
We introduce \textbf{SNAP-UQ}, a single-pass, label-free uncertainty method for TinyML that estimates risk from \emph{depth-wise next-activation prediction}: tiny int8 heads forecast the statistics of the next layer from a compressed view of the previous one, and a lightweight monotone mapper turns the resulting surprisal into an actionable score. The design requires no temporal buffers, auxiliary exits, or repeated forward passes, and adds only a few tens of kilobytes to MCU deployments. Across vision and audio backbones, SNAP-UQ consistently reduces flash and latency relative to early-exit and deep ensembles (typically $\sim$40--60\% smaller and $\sim$25--35\% faster), with competing methods of similar accuracy often exceeding memory limits. In corrupted streams it improves accuracy-drop detection by several AUPRC points and maintains strong failure detection (AUROC $\approx$0.9) in a single pass. Grounding uncertainty in layer-to-layer dynamics yields a practical, resource-efficient basis for on-device monitoring in TinyML.
☆ SparseMap: A Sparse Tensor Accelerator Framework Based on Evolution Strategy
The growing demand for sparse tensor algebra (SpTA) in machine learning and big data has driven the development of various sparse tensor accelerators. However, most existing manually designed accelerators are limited to specific scenarios, and it's time-consuming and challenging to adjust a large number of design factors when scenarios change. Therefore, automating the design of SpTA accelerators is crucial. Nevertheless, previous works focus solely on either mapping (i.e., tiling communication and computation in space and time) or sparse strategy (i.e., bypassing zero elements for efficiency), leading to suboptimal designs due to the lack of comprehensive consideration of both. A unified framework that jointly optimizes both is urgently needed. However, integrating mapping and sparse strategies leads to a combinatorial explosion in the design space(e.g., as large as $O(10^{41})$ for the workload $P_{32 \times 64} \times Q_{64 \times 48} = Z_{32 \times 48}$). This vast search space renders most conventional optimization methods (e.g., particle swarm optimization, reinforcement learning and Monte Carlo tree search) inefficient. To address this challenge, we propose an evolution strategy-based sparse tensor accelerator optimization framework, called SparseMap. SparseMap constructing a more comprehensive design space with the consideration of both mapping and sparse strategy. We introduce a series of enhancements to genetic encoding and evolutionary operators, enabling SparseMap to efficiently explore the vast and diverse design space. We quantitatively compare SparseMap with prior works and classical optimization methods, demonstrating that SparseMap consistently finds superior solutions.
☆ TCUQ: Single-Pass Uncertainty Quantification from Temporal Consistency with Streaming Conformal Calibration for TinyML
We introduce TCUQ, a single pass, label free uncertainty monitor for streaming TinyML that converts short horizon temporal consistency captured via lightweight signals on posteriors and features into a calibrated risk score with an O(W ) ring buffer and O(1) per step updates. A streaming conformal layer turns this score into a budgeted accept/abstain rule, yielding calibrated behavior without online labels or extra forward passes. On microcontrollers, TCUQ fits comfortably on kilobyte scale devices and reduces footprint and latency versus early exit and deep ensembles (typically about 50 to 60% smaller and about 30 to 45% faster), while methods of similar accuracy often run out of memory. Under corrupted in distribution streams, TCUQ improves accuracy drop detection by 3 to 7 AUPRC points and reaches up to 0.86 AUPRC at high severities; for failure detection it attains up to 0.92 AUROC. These results show that temporal consistency, coupled with streaming conformal calibration, provides a practical and resource efficient foundation for on device monitoring in TinyML.
☆ One-Class Intrusion Detection with Dynamic Graphs
With the growing digitalization all over the globe, the relevance of network security becomes increasingly important. Machine learning-based intrusion detection constitutes a promising approach for improving security, but it bears several challenges. These include the requirement to detect novel and unseen network events, as well as specific data properties, such as events over time together with the inherent graph structure of network communication. In this work, we propose a novel intrusion detection method, TGN-SVDD, which builds upon modern dynamic graph modelling and deep anomaly detection. We demonstrate its superiority over several baselines for realistic intrusion detection data and suggest a more challenging variant of the latter.
☆ CAMAR: Continuous Actions Multi-Agent Routing
Multi-agent reinforcement learning (MARL) is a powerful paradigm for solving cooperative and competitive decision-making problems. While many MARL benchmarks have been proposed, few combine continuous state and action spaces with challenging coordination and planning tasks. We introduce CAMAR, a new MARL benchmark designed explicitly for multi-agent pathfinding in environments with continuous actions. CAMAR supports cooperative and competitive interactions between agents and runs efficiently at up to 100,000 environment steps per second. We also propose a three-tier evaluation protocol to better track algorithmic progress and enable deeper analysis of performance. In addition, CAMAR allows the integration of classical planning methods such as RRT and RRT* into MARL pipelines. We use them as standalone baselines and combine RRT* with popular MARL algorithms to create hybrid approaches. We provide a suite of test scenarios and benchmarking tools to ensure reproducibility and fair comparison. Experiments show that CAMAR presents a challenging and realistic testbed for the MARL community.
☆ Optimal Condition for Initialization Variance in Deep Neural Networks: An SGD Dynamics Perspective
Stochastic gradient descent (SGD), one of the most fundamental optimization algorithms in machine learning (ML), can be recast through a continuous-time approximation as a Fokker-Planck equation for Langevin dynamics, a viewpoint that has motivated many theoretical studies. Within this framework, we study the relationship between the quasi-stationary distribution derived from this equation and the initial distribution through the Kullback-Leibler (KL) divergence. As the quasi-steady-state distribution depends on the expected cost function, the KL divergence eventually reveals the connection between the expected cost function and the initialization distribution. By applying this to deep neural network models (DNNs), we can express the bounds of the expected loss function explicitly in terms of the initialization parameters. Then, by minimizing this bound, we obtain an optimal condition of the initialization variance in the Gaussian case. This result provides a concrete mathematical criterion, rather than a heuristic approach, to select the scale of weight initialization in DNNs. In addition, we experimentally confirm our theoretical results by using the classical SGD to train fully connected neural networks on the MNIST and Fashion-MNIST datasets. The result shows that if the variance of the initialization distribution satisfies our theoretical optimal condition, then the corresponding DNN model always achieves lower final training loss and higher test accuracy than the conventional He-normal initialization. Our work thus supplies a mathematically grounded indicator that guides the choice of initialization variance and clarifies its physical meaning of the dynamics of parameters in DNNs.
☆ Toward Storage-Aware Learning with Compressed Data An Empirical Exploratory Study on JPEG
On-device machine learning is often constrained by limited storage, particularly in continuous data collection scenarios. This paper presents an empirical study on storage-aware learning, focusing on the trade-off between data quantity and quality via compression. We demonstrate that naive strategies, such as uniform data dropping or one-size-fits-all compression, are suboptimal. Our findings further reveal that data samples exhibit varying sensitivities to compression, supporting the feasibility of a sample-wise adaptive compression strategy. These insights provide a foundation for developing a new class of storage-aware learning systems. The primary contribution of this work is the systematic characterization of this under-explored challenge, offering valuable insights that advance the understanding of storage-aware learning.
comment: 6pages, 6figures
☆ Learning to Steer: Input-dependent Steering for Multimodal LLMs
Steering has emerged as a practical approach to enable post-hoc guidance of LLMs towards enforcing a specific behavior. However, it remains largely underexplored for multimodal LLMs (MLLMs); furthermore, existing steering techniques, such as mean steering, rely on a single steering vector, applied independently of the input query. This paradigm faces limitations when the desired behavior is dependent on the example at hand. For example, a safe answer may consist in abstaining from answering when asked for an illegal activity, or may point to external resources or consultation with an expert when asked about medical advice. In this paper, we investigate a fine-grained steering that uses an input-specific linear shift. This shift is computed using contrastive input-specific prompting. However, the input-specific prompts required for this approach are not known at test time. Therefore, we propose to train a small auxiliary module to predict the input-specific steering vector. Our approach, dubbed as L2S (Learn-to-Steer), demonstrates that it reduces hallucinations and enforces safety in MLLMs, outperforming other static baselines.
☆ SIS-Challenge: Event-based Spatio-temporal Instance Segmentation Challenge at the CVPR 2025 Event-based Vision Workshop
We present an overview of the Spatio-temporal Instance Segmentation (SIS) challenge held in conjunction with the CVPR 2025 Event-based Vision Workshop. The task is to predict accurate pixel-level segmentation masks of defined object classes from spatio-temporally aligned event camera and grayscale camera data. We provide an overview of the task, dataset, challenge details and results. Furthermore, we describe the methods used by the top-5 ranking teams in the challenge. More resources and code of the participants' methods are available here: https://github.com/tub-rip/MouseSIS/blob/main/docs/challenge_results.md
comment: 13 pages, 7 figures, 7 tables
☆ Next Visual Granularity Generation
We propose a novel approach to image generation by decomposing an image into a structured sequence, where each element in the sequence shares the same spatial resolution but differs in the number of unique tokens used, capturing different level of visual granularity. Image generation is carried out through our newly introduced Next Visual Granularity (NVG) generation framework, which generates a visual granularity sequence beginning from an empty image and progressively refines it, from global layout to fine details, in a structured manner. This iterative process encodes a hierarchical, layered representation that offers fine-grained control over the generation process across multiple granularity levels. We train a series of NVG models for class-conditional image generation on the ImageNet dataset and observe clear scaling behavior. Compared to the VAR series, NVG consistently outperforms it in terms of FID scores (3.30 -> 3.03, 2.57 ->2.44, 2.09 -> 2.06). We also conduct extensive analysis to showcase the capability and potential of the NVG framework. Our code and models will be released.
☆ Maximum Score Routing For Mixture-of-Experts
Routing networks in sparsely activated mixture-of-experts (MoE) dynamically allocate input tokens to top-k experts through differentiable sparse transformations, enabling scalable model capacity while preserving computational efficiency. Traditional MoE networks impose an expert capacity constraint to ensure GPU-friendly computation. However, this leads to token dropping when capacity is saturated and results in low hardware efficiency due to padding in underutilized experts. Removing the capacity constraint, in turn, compromises load balancing and computational efficiency. To address these issues, we propose Maximum Score Routing ($\mathbf{MaxScore}$), a novel MoE routing paradigm that models routing as a minimum-cost maximum-flow problem and integrates a SoftTopk operator. MaxScore resolves the fundamental limitations of iterative rerouting and optimal transport formulations, achieving lower training losses and higher evaluation scores at equivalent FLOPs compared to both constrained and unconstrained baselines. Implementation details and experimental configurations can be obtained from $\href{https://github.com/dongbw18/MaxScore.git}{MaxScore}$.
☆ A Shift in Perspective on Causality in Domain Generalization
The promise that causal modelling can lead to robust AI generalization has been challenged in recent work on domain generalization (DG) benchmarks. We revisit the claims of the causality and DG literature, reconciling apparent contradictions and advocating for a more nuanced theory of the role of causality in generalization. We also provide an interactive demo at https://chai-uk.github.io/ukairs25-causal-predictors/.
comment: 2 pages, 1 figure, to be presented at the UK AI Research Symposium (UKAIRS) 2025
☆ Bridging Human and LLM Judgments: Understanding and Narrowing the Gap
Large language models are increasingly used as judges (LLM-as-a-judge) to evaluate model outputs at scale, but their assessments often diverge systematically from human judgments. We present Bridge, a unified statistical framework that explicitly bridges human and LLM evaluations under both absolute scoring and pairwise comparison paradigms. Bridge posits a latent human preference score for each prompt-response pair and models LLM deviations as linear transformations of covariates that capture sources of discrepancies. This offers a simple and principled framework for refining LLM ratings and characterizing systematic discrepancies between humans and LLMs. We provide an efficient fitting algorithm with asymptotic guarantees for statistical inference. Using six LLM judges and two benchmarks (BigGen Bench and Chatbot Arena), Bridge achieves higher agreement with human ratings (accuracy, calibration, and KL divergence) and exposes systematic human-LLM gaps.
Reinforcement Learning with Rubric Anchors
Reinforcement Learning from Verifiable Rewards (RLVR) has emerged as a powerful paradigm for enhancing Large Language Models (LLMs), exemplified by the success of OpenAI's o-series. In RLVR, rewards are derived from verifiable signals-such as passing unit tests in code generation or matching correct answers in mathematical reasoning. While effective, this requirement largely confines RLVR to domains with automatically checkable outcomes. To overcome this, we extend the RLVR paradigm to open-ended tasks by integrating rubric-based rewards, where carefully designed rubrics serve as structured, model-interpretable criteria for automatic scoring of subjective outputs. We construct, to our knowledge, the largest rubric reward system to date, with over 10,000 rubrics from humans, LLMs, or a hybrid human-LLM collaboration. Implementing rubric-based RL is challenging; we tackle these issues with a clear framework and present an open-sourced Qwen-30B-A3B model with notable gains: 1) With only 5K+ samples, our system improves by +5.2% on open-ended benchmarks (especially humanities), outperforming a 671B DeepSeek-V3 model by +2.4%, while preserving general and reasoning abilities. 2) Our method provides fine-grained stylistic control, using rubrics as anchors to mitigate the "AI-like" tone and produce more human-like, expressive responses. We share key lessons in rubric construction, data selection, and training, and discuss limitations and future releases.
comment: technical report
☆ Wavy Transformer
Transformers have achieved remarkable success across natural language processing (NLP) and computer vision (CV). However, deep transformer models often suffer from an over-smoothing issue, in which token representations converge to similar values as they pass through successive transformer blocks. In this paper, we establish an equivalence between the hidden-state dynamics induced by stacked attention layers and graph neural diffusion on a complete graph. From this perspective, over-smoothing can be interpreted as a consequence of the dissipative nature of the underlying diffusion dynamics. Motivated by this physical interpretation, we propose Wavy Transformer, which consists of a novel attention layer based on second-order wavy dynamics. We also introduce a feed-forward network and a normalization layer designed to preserve the physical state-velocity relationship under the chain rule, thereby extending the transformer architecture. We further validate our proposed techniques on various transformer models for NLP and CV tasks. The results consistently demonstrate that Wavy Transformer improves performance with minimal additional parameters and no extra hyperparameter tuning.
comment: 25 pages, 5 figures
☆ Randomized PCA Forest for Outlier Detection
We propose a novel unsupervised outlier detection method based on Randomized Principal Component Analysis (PCA). Inspired by the performance of Randomized PCA (RPCA) Forest in approximate K-Nearest Neighbor (KNN) search, we develop a novel unsupervised outlier detection method that utilizes RPCA Forest for outlier detection. Experimental results showcase the superiority of the proposed approach compared to the classical and state-of-the-art methods in performing the outlier detection task on several datasets while performing competitively on the rest. The extensive analysis of the proposed method reflects it high generalization power and its computational efficiency, highlighting it as a good choice for unsupervised outlier detection.
☆ Online Ensemble Transformer for Accurate Cloud Workload Forecasting in Predictive Auto-Scaling
In the swiftly evolving domain of cloud computing, the advent of serverless systems underscores the crucial need for predictive auto-scaling systems. This necessity arises to ensure optimal resource allocation and maintain operational efficiency in inherently volatile environments. At the core of a predictive auto-scaling system is the workload forecasting model. Existing forecasting models struggle to quickly adapt to the dynamics in online workload streams and have difficulty capturing the complex periodicity brought by fine-grained, high-frequency forecasting tasks. Addressing this, we propose a novel online ensemble model, E3Former, for online workload forecasting in large-scale predictive auto-scaling. Our model synergizes the predictive capabilities of multiple subnetworks to surmount the limitations of single-model approaches, thus ensuring superior accuracy and robustness. Remarkably, it accomplishes this with a minimal increase in computational overhead, adhering to the lean operational ethos of serverless systems. Through extensive experimentation on real-world workload datasets, we establish the efficacy of our ensemble model. In online forecasting tasks, the proposed method reduces forecast error by an average of 10%, and its effectiveness is further demonstrated through a predictive auto-scaling test in the real-life online system. Currently, our method has been deployed within ByteDance's Intelligent Horizontal Pod Auto-scaling (IHPA) platform, which supports the stable operation of over 30 applications, such as Douyin E-Comerce, TouTiao, and Volcano Engine. The predictive auto-scaling capacity reaching over 600,000 CPU cores. On the basis of essentially ensuring service quality, the predictive auto-scaling system can reduce resource utilization by over 40%.
comment: 12 pages, 11 figures
☆ Short-Term Forecasting of Energy Production and Consumption Using Extreme Learning Machine: A Comprehensive MIMO based ELM Approach
A novel methodology for short-term energy forecasting using an Extreme Learning Machine ($\mathtt{ELM}$) is proposed. Using six years of hourly data collected in Corsica (France) from multiple energy sources (solar, wind, hydro, thermal, bioenergy, and imported electricity), our approach predicts both individual energy outputs and total production (\cyr{including imports, which closely follow energy demand, modulo losses)} through a Multi-Input Multi-Output ($\mathtt{MIMO}$) architecture. To address non-stationarity and seasonal variability, sliding window techniques and cyclic time encoding are incorporated, enabling dynamic adaptation to fluctuations. The $\mathtt{ELM}$ model significantly outperforms persistence-based forecasting, particularly for solar and thermal energy, achieving an $\mathtt{nRMSE}$ of $17.9\%$ and $5.1\%$, respectively, with $\mathtt{R^2} > 0.98$ (1-hour horizon). The model maintains high accuracy up to five hours ahead, beyond which renewable energy sources become increasingly volatile. While $\mathtt{MIMO}$ provides marginal gains over Single-Input Single-Output ($\mathtt{SISO}$) architectures and offers key advantages over deep learning methods such as $\mathtt{LSTM}$, it provides a closed-form solution with lower computational demands, making it well-suited for real-time applications, including online learning. Beyond predictive accuracy, the proposed methodology is adaptable to various contexts and datasets, as it can be tuned to local constraints such as resource availability, grid characteristics, and market structures.
☆ Constrained Centroid Clustering: A Novel Approach for Compact and Structured Partitioning
This paper presents Constrained Centroid Clustering (CCC), a method that extends classical centroid-based clustering by enforcing a constraint on the maximum distance between the cluster center and the farthest point in the cluster. Using a Lagrangian formulation, we derive a closed-form solution that maintains interpretability while controlling cluster spread. To evaluate CCC, we conduct experiments on synthetic circular data with radial symmetry and uniform angular distribution. Using ring-wise, sector-wise, and joint entropy as evaluation metrics, we show that CCC achieves more compact clusters by reducing radial spread while preserving angular structure, outperforming standard methods such as K-means and GMM. The proposed approach is suitable for applications requiring structured clustering with spread control, including sensor networks, collaborative robotics, and interpretable pattern analysis.
☆ Deep Semantic Inference over the Air: An Efficient Task-Oriented Communication System
Empowered by deep learning, semantic communication marks a paradigm shift from transmitting raw data to conveying task-relevant meaning, enabling more efficient and intelligent wireless systems. In this study, we explore a deep learning-based task-oriented communication framework that jointly considers classification performance, computational latency, and communication cost. We adopt ResNets-based models and evaluate them on the CIFAR-10 and CIFAR-100 datasets to simulate real-world classification tasks in wireless environments. We partition the model at various points to simulate split inference across a wireless channel. By varying the split location and the size of the transmitted semantic feature vector, we systematically analyze the trade-offs between task accuracy and resource efficiency. Experimental results show that, with appropriate model partitioning and semantic feature compression, the system can retain over 85\% of baseline accuracy while significantly reducing both computational load and communication overhead.
☆ On the Importance of Behavioral Nuances: Amplifying Non-Obvious Motor Noise Under True Empirical Considerations May Lead to Briefer Assays and Faster Classification Processes
There is a tradeoff between attaining statistical power with large, difficult to gather data sets, and producing highly scalable assays that register brief data samples. Often, as grand-averaging techniques a priori assume normally-distributed parameters and linear, stationary processes in biorhythmic, time series data, important information is lost, averaged out as gross data. We developed an affective computing platform that enables taking brief data samples while maintaining personalized statistical power. This is achieved by combining a new data type derived from the micropeaks present in time series data registered from brief (5-second-long) face videos with recent advances in AI-driven face-grid estimation methods. By adopting geometric and nonlinear dynamical systems approaches to analyze the kinematics, especially the speed data, the new methods capture all facial micropeaks. These include as well the nuances of different affective micro expressions. We offer new ways to differentiate dynamical and geometric patterns present in autistic individuals from those found more commonly in neurotypical development.
comment: This paper is under review in IEEE Transactions on Affective Computing
☆ A Multi-Resolution Benchmark Framework for Spatial Reasoning Assessment in Neural Networks
This paper presents preliminary results in the definition of a comprehensive benchmark framework designed to systematically evaluate spatial reasoning capabilities in neural networks, with a particular focus on morphological properties such as connectivity and distance relationships. The framework is currently being used to study the capabilities of nnU-Net, exploiting the spatial model checker VoxLogicA to generate two distinct categories of synthetic datasets: maze connectivity problems for topological analysis and spatial distance computation tasks for geometric understanding. Each category is evaluated across multiple resolutions to assess scalability and generalization properties. The automated pipeline encompasses a complete machine learning workflow including: synthetic dataset generation, standardized training with cross-validation, inference execution, and comprehensive evaluation using Dice coefficient and IoU (Intersection over Union) metrics. Preliminary experimental results demonstrate significant challenges in neural network spatial reasoning capabilities, revealing systematic failures in basic geometric and topological understanding tasks. The framework provides a reproducible experimental protocol, enabling researchers to identify specific limitations. Such limitations could be addressed through hybrid approaches combining neural networks with symbolic reasoning methods for improved spatial understanding in clinical applications, establishing a foundation for ongoing research into neural network spatial reasoning limitations and potential solutions.
☆ FedUNet: A Lightweight Additive U-Net Module for Federated Learning with Heterogeneous Models
Federated learning (FL) enables decentralized model training without sharing local data. However, most existing methods assume identical model architectures across clients, limiting their applicability in heterogeneous real-world environments. To address this, we propose FedUNet, a lightweight and architecture-agnostic FL framework that attaches a U-Net-inspired additive module to each client's backbone. By sharing only the compact bottleneck of the U-Net, FedUNet enables efficient knowledge transfer without structural alignment. The encoder-decoder design and skip connections in the U-Net help capture both low-level and high-level features, facilitating the extraction of clientinvariant representations. This enables cooperative learning between the backbone and the additive module with minimal communication cost. Experiment with VGG variants shows that FedUNet achieves 93.11% accuracy and 92.68% in compact form (i.e., a lightweight version of FedUNet) with only 0.89 MB low communication overhead.
comment: 6 pages, 4 figures
☆ Unlearning Comparator: A Visual Analytics System for Comparative Evaluation of Machine Unlearning Methods
Machine Unlearning (MU) aims to remove target training data from a trained model so that the removed data no longer influences the model's behavior, fulfilling "right to be forgotten" obligations under data privacy laws. Yet, we observe that researchers in this rapidly emerging field face challenges in analyzing and understanding the behavior of different MU methods, especially in terms of three fundamental principles in MU: accuracy, efficiency, and privacy. Consequently, they often rely on aggregate metrics and ad-hoc evaluations, making it difficult to accurately assess the trade-offs between methods. To fill this gap, we introduce a visual analytics system, Unlearning Comparator, designed to facilitate the systematic evaluation of MU methods. Our system supports two important tasks in the evaluation process: model comparison and attack simulation. First, it allows the user to compare the behaviors of two models, such as a model generated by a certain method and a retrained baseline, at class-, instance-, and layer-levels to better understand the changes made after unlearning. Second, our system simulates membership inference attacks (MIAs) to evaluate the privacy of a method, where an attacker attempts to determine whether specific data samples were part of the original training set. We evaluate our system through a case study visually analyzing prominent MU methods and demonstrate that it helps the user not only understand model behaviors but also gain insights that can inform the improvement of MU methods.
comment: Submitted to IEEE Transactions on Visualization and Computer Graphics (TVCG), under review. 15 pages. This work has been submitted to the IEEE for possible publication
☆ FedSODA: Federated Fine-tuning of LLMs via Similarity Group Pruning and Orchestrated Distillation Alignment
Federated fine-tuning (FFT) of large language models (LLMs) has recently emerged as a promising solution to enable domain-specific adaptation while preserving data privacy. Despite its benefits, FFT on resource-constrained clients relies on the high computational and memory demands of full-model fine-tuning, which limits the potential advancement. This paper presents FedSODA, a resource-efficient FFT framework that enables clients to adapt LLMs without accessing or storing the full model. Specifically, we first propose a similarity group pruning (SGP) module, which prunes redundant layers from the full LLM while retaining the most critical layers to preserve the model performance. Moreover, we introduce an orchestrated distillation alignment (ODA) module to reduce gradient divergence between the sub-LLM and the full LLM during FFT. Through the use of the QLoRA, clients only need to deploy quantized sub-LLMs and fine-tune lightweight adapters, significantly reducing local resource requirements. We conduct extensive experiments on three open-source LLMs across a variety of downstream tasks. The experimental results demonstrate that FedSODA reduces communication overhead by an average of 70.6%, decreases storage usage by 75.6%, and improves task accuracy by 3.1%, making it highly suitable for practical FFT applications under resource constraints.
☆ Argos: A Decentralized Federated System for Detection of Traffic Signs in CAVs
Connected and automated vehicles generate vast amounts of sensor data daily, raising significant privacy and communication challenges for centralized machine learning approaches in perception tasks. This study presents a decentralized, federated learning framework tailored for traffic sign detection in vehicular networks to enable collaborative model training without sharing raw data. The framework partitioned traffic sign classes across vehicles for specialized local training using lightweight object detectors, aggregated model parameters via algorithms like FedProx, FedAdam and FedAVG in a simulated environment with the Flower framework, and evaluated multiple configurations including varying server rounds, local epochs, client participation fractions, and data distributions. Experiments demonstrated that increasing server rounds from 2 to 20 boosted accuracy from below 0.1 to over 0.8, moderate local epochs (8-10) provided optimal efficiency with accuracies around 0.67, higher client participation fractions enhanced generalization up to 0.83, FedProx outperformed other aggregators in handling heterogeneity, non-IID data distributions reduced performance compared to IID, and training duration primarily scaled with the number of rounds rather than aggregation strategy. We conclude that this federated approach may offer a scalable, privacy-preserving solution for real-world vehicular deployments, potentially guiding future integrations of robust aggregation and communication optimizations to advance intelligent transportation systems.
comment: 7 pages, 10 figures
☆ BUILDA: A Thermal Building Data Generation Framework for Transfer Learning
Transfer learning (TL) can improve data-driven modeling of building thermal dynamics. Therefore, many new TL research areas emerge in the field, such as selecting the right source model for TL. However, these research directions require massive amounts of thermal building data which is lacking presently. Neither public datasets nor existing data generators meet the needs of TL research in terms of data quality and quantity. Moreover, existing data generation approaches typically require expert knowledge in building simulation. We present BuilDa, a thermal building data generation framework for producing synthetic data of adequate quality and quantity for TL research. The framework does not require profound building simulation knowledge to generate large volumes of data. BuilDa uses a single-zone Modelica model that is exported as a Functional Mock-up Unit (FMU) and simulated in Python. We demonstrate BuilDa by generating data and utilizing it for pretraining and fine-tuning TL models.
comment: Proceedings can be accessed at: https://annsim.org/2025-annsim-proceedings/
☆ Multi-Level Knowledge Distillation and Dynamic Self-Supervised Learning for Continual Learning
Class-incremental with repetition (CIR), where previously trained classes repeatedly introduced in future tasks, is a more realistic scenario than the traditional class incremental setup, which assumes that each task contains unseen classes. CIR assumes that we can easily access abundant unlabeled data from external sources, such as the Internet. Therefore, we propose two components that efficiently use the unlabeled data to ensure the high stability and the plasticity of models trained in CIR setup. First, we introduce multi-level knowledge distillation (MLKD) that distills knowledge from multiple previous models across multiple perspectives, including features and logits, so the model can maintain much various previous knowledge. Moreover, we implement dynamic self-supervised loss (SSL) to utilize the unlabeled data that accelerates the learning of new classes, while dynamic weighting of SSL keeps the focus of training to the primary task. Both of our proposed components significantly improve the performance in CIR setup, achieving 2nd place in the CVPR 5th CLVISION Challenge.
☆ MixCache: Mixture-of-Cache for Video Diffusion Transformer Acceleration
Leveraging the Transformer architecture and the diffusion process, video DiT models have emerged as a dominant approach for high-quality video generation. However, their multi-step iterative denoising process incurs high computational cost and inference latency. Caching, a widely adopted optimization method in DiT models, leverages the redundancy in the diffusion process to skip computations in different granularities (e.g., step, cfg, block). Nevertheless, existing caching methods are limited to single-granularity strategies, struggling to balance generation quality and inference speed in a flexible manner. In this work, we propose MixCache, a training-free caching-based framework for efficient video DiT inference. It first distinguishes the interference and boundary between different caching strategies, and then introduces a context-aware cache triggering strategy to determine when caching should be enabled, along with an adaptive hybrid cache decision strategy for dynamically selecting the optimal caching granularity. Extensive experiments on diverse models demonstrate that, MixCache can significantly accelerate video generation (e.g., 1.94$\times$ speedup on Wan 14B, 1.97$\times$ speedup on HunyuanVideo) while delivering both superior generation quality and inference efficiency compared to baseline methods.
comment: 7 pages, 10 figures
☆ TTA-DAME: Test-Time Adaptation with Domain Augmentation and Model Ensemble for Dynamic Driving Conditions
Test-time Adaptation (TTA) poses a challenge, requiring models to dynamically adapt and perform optimally on shifting target domains. This task is particularly emphasized in real-world driving scenes, where weather domain shifts occur frequently. To address such dynamic changes, our proposed method, TTA-DAME, leverages source domain data augmentation into target domains. Additionally, we introduce a domain discriminator and a specialized domain detector to mitigate drastic domain shifts, especially from daytime to nighttime conditions. To further improve adaptability, we train multiple detectors and consolidate their predictions through Non-Maximum Suppression (NMS). Our empirical validation demonstrates the effectiveness of our method, showing significant performance enhancements on the SHIFT Benchmark.
☆ ToolACE-MT: Non-Autoregressive Generation for Agentic Multi-Turn Interaction
Agentic task-solving with Large Language Models (LLMs) requires multi-turn, multi-step interactions, often involving complex function calls and dynamic user-agent exchanges. Existing simulation-based data generation methods for such scenarios rely heavily on costly autoregressive interactions between multiple LLM agents, thereby limiting real-world performance of agentic tasks. In this paper, we propose a novel Non-Autoregressive Iterative Generation framework, called ToolACE-MT, for constructing high-quality multi-turn agentic dialogues. ToolACE-MT generates full conversational trajectories through three stages: coarse-grained initialization, iterative refinement, and offline verification. The initialization phase builds a structurally complete yet semantically coarse dialogue skeleton; the iterative refinement phase introduces realistic complexities and continued refinement via mask-and-fill operations; and the offline verification phase ensures correctness and coherence via rule- and model-based checks. Experiments demonstrate that ToolACE-MT enables efficient, effective and generalizable agentic data generation, offering a new paradigm for high-quality data construction in tool-augmented LLM scenarios.
☆ Adaptive Model-Predictive Control of a Soft Continuum Robot Using a Physics-Informed Neural Network Based on Cosserat Rod Theory
Dynamic control of soft continuum robots (SCRs) holds great potential for expanding their applications, but remains a challenging problem due to the high computational demands of accurate dynamic models. While data-driven approaches like Koopman-operator-based methods have been proposed, they typically lack adaptability and cannot capture the full robot shape, limiting their applicability. This work introduces a real-time-capable nonlinear model-predictive control (MPC) framework for SCRs based on a domain-decoupled physics-informed neural network (DD-PINN) with adaptable bending stiffness. The DD-PINN serves as a surrogate for the dynamic Cosserat rod model with a speed-up factor of 44000. It is also used within an unscented Kalman filter for estimating the model states and bending compliance from end-effector position measurements. We implement a nonlinear evolutionary MPC running at 70 Hz on the GPU. In simulation, it demonstrates accurate tracking of dynamic trajectories and setpoint control with end-effector position errors below 3 mm (2.3% of the actuator's length). In real-world experiments, the controller achieves similar accuracy and accelerations up to 3.55 m/s2.
comment: 20 pages, 15 figures
☆ Unfolded Laplacian Spectral Embedding: A Theoretically Grounded Approach to Dynamic Network Representation
Dynamic relational structures play a central role in many AI tasks, but their evolving nature presents challenges for consistent and interpretable representation. A common approach is to learn time-varying node embeddings, whose effectiveness depends on satisfying key stability properties. In this paper, we propose Unfolded Laplacian Spectral Embedding, a new method that extends the Unfolded Adjacency Spectral Embedding framework to normalized Laplacians while preserving both cross-sectional and longitudinal stability. We provide formal proof that our method satisfies these stability conditions. In addition, as a bonus of using the Laplacian matrix, we establish a new Cheeger-style inequality that connects the embeddings to the conductance of the underlying dynamic graphs. Empirical evaluations on synthetic and real-world datasets support our theoretical findings and demonstrate the strong performance of our method. These results establish a principled and stable framework for dynamic network representation grounded in spectral graph theory.
☆ Deploying Models to Non-participating Clients in Federated Learning without Fine-tuning: A Hypernetwork-based Approach
Federated Learning (FL) has emerged as a promising paradigm for privacy-preserving collaborative learning, yet data heterogeneity remains a critical challenge. While existing methods achieve progress in addressing data heterogeneity for participating clients, they fail to generalize to non-participating clients with in-domain distribution shifts and resource constraints. To mitigate this issue, we present HyperFedZero, a novel method that dynamically generates specialized models via a hypernetwork conditioned on distribution-aware embeddings. Our approach explicitly incorporates distribution-aware inductive biases into the model's forward pass, extracting robust distribution embeddings using a NoisyEmbed-enhanced extractor with a Balancing Penalty, effectively preventing feature collapse. The hypernetwork then leverages these embeddings to generate specialized models chunk-by-chunk for non-participating clients, ensuring adaptability to their unique data distributions. Extensive experiments on multiple datasets and models demonstrate HyperFedZero's remarkable performance, surpassing competing methods consistently with minimal computational, storage, and communication overhead. Moreover, ablation studies and visualizations further validate the necessity of each component, confirming meaningful adaptations and validating the effectiveness of HyperFedZero.
comment: 17 pages
☆ DIT: Dimension Reduction View on Optimal NFT Rarity Meters
Non-fungible tokens (NFTs) have become a significant digital asset class, each uniquely representing virtual entities such as artworks. These tokens are stored in collections within smart contracts and are actively traded across platforms on Ethereum, Bitcoin, and Solana blockchains. The value of NFTs is closely tied to their distinctive characteristics that define rarity, leading to a growing interest in quantifying rarity within both industry and academia. While there are existing rarity meters for assessing NFT rarity, comparing them can be challenging without direct access to the underlying collection data. The Rating over all Rarities (ROAR) benchmark addresses this challenge by providing a standardized framework for evaluating NFT rarity. This paper explores a dimension reduction approach to rarity design, introducing new performance measures and meters, and evaluates them using the ROAR benchmark. Our contributions to the rarity meter design issue include developing an optimal rarity meter design using non-metric weighted multidimensional scaling, introducing Dissimilarity in Trades (DIT) as a performance measure inspired by dimension reduction techniques, and unveiling the non-interpretable rarity meter DIT, which demonstrates superior performance compared to existing methods.
☆ Score-informed Neural Operator for Enhancing Ordering-based Causal Discovery
Ordering-based approaches to causal discovery identify topological orders of causal graphs, providing scalable alternatives to combinatorial search methods. Under the Additive Noise Model (ANM) assumption, recent causal ordering methods based on score matching require an accurate estimation of the Hessian diagonal of the log-densities. However, previous approaches mainly use Stein gradient estimators, which are computationally expensive and memory-intensive. Although DiffAN addresses these limitations by substituting kernel-based estimates with diffusion models, it remains numerically unstable due to the second-order derivatives of score models. To alleviate these problems, we propose Score-informed Neural Operator (SciNO), a probabilistic generative model in smooth function spaces designed to stably approximate the Hessian diagonal and to preserve structural information during the score modeling. Empirical results show that SciNO reduces order divergence by 42.7% on synthetic graphs and by 31.5% on real-world datasets on average compared to DiffAN, while maintaining memory efficiency and scalability. Furthermore, we propose a probabilistic control algorithm for causal reasoning with autoregressive models that integrates SciNO's probability estimates with autoregressive model priors, enabling reliable data-driven causal ordering informed by semantic information. Consequently, the proposed method enhances causal reasoning abilities of LLMs without additional fine-tuning or prompt engineering.
comment: 32 pages, 17 figures, 5 tables
☆ Cognitive Structure Generation: From Educational Priors to Policy Optimization
Cognitive structure is a student's subjective organization of an objective knowledge system, reflected in the psychological construction of concepts and their relations. However, cognitive structure assessment remains a long-standing challenge in student modeling and psychometrics, persisting as a foundational yet largely unassessable concept in educational practice. This paper introduces a novel framework, Cognitive Structure Generation (CSG), in which we first pretrain a Cognitive Structure Diffusion Probabilistic Model (CSDPM) to generate students' cognitive structures from educational priors, and then further optimize its generative process as a policy with hierarchical reward signals via reinforcement learning to align with genuine cognitive development levels during students' learning processes. Experimental results on four popular real-world education datasets show that cognitive structures generated by CSG offer more comprehensive and effective representations for student modeling, substantially improving performance on KT and CD tasks while enhancing interpretability.
☆ Synthesizing Accurate and Realistic T1-weighted Contrast-Enhanced MR Images using Posterior-Mean Rectified Flow MICCAI
Contrast-enhanced (CE) T1-weighted MRI is central to neuro-oncologic diagnosis but requires gadolinium-based agents, which add cost and scan time, raise environmental concerns, and may pose risks to patients. In this work, we propose a two-stage Posterior-Mean Rectified Flow (PMRF) pipeline for synthesizing volumetric CE brain MRI from non-contrast inputs. First, a patch-based 3D U-Net predicts the voxel-wise posterior mean (minimizing MSE). Then, this initial estimate is refined by a time-conditioned 3D rectified flow to incorporate realistic textures without compromising structural fidelity. We train this model on a multi-institutional collection of paired pre- and post-contrast T1w volumes (BraTS 2023-2025). On a held-out test set of 360 diverse volumes, our best refined outputs achieve an axial FID of $12.46$ and KID of $0.007$ ($\sim 68.7\%$ lower FID than the posterior mean) while maintaining low volumetric MSE of $0.057$ ($\sim 27\%$ higher than the posterior mean). Qualitative comparisons confirm that our method restores lesion margins and vascular details realistically, effectively navigating the perception-distortion trade-off for clinical deployment.
comment: 12 pages, 3 figures, MICCAI workshops (SASHIMI) 2025
☆ FlowMol3: Flow Matching for 3D De Novo Small-Molecule Generation
A generative model capable of sampling realistic molecules with desired properties could accelerate chemical discovery across a wide range of applications. Toward this goal, significant effort has focused on developing models that jointly sample molecular topology and 3D structure. We present FlowMol3, an open-source, multi-modal flow matching model that advances the state of the art for all-atom, small-molecule generation. Its substantial performance gains over previous FlowMol versions are achieved without changes to the graph neural network architecture or the underlying flow matching formulation. Instead, FlowMol3's improvements arise from three architecture-agnostic techniques that incur negligible computational cost: self-conditioning, fake atoms, and train-time geometry distortion. FlowMol3 achieves nearly 100% molecular validity for drug-like molecules with explicit hydrogens, more accurately reproduces the functional group composition and geometry of its training data, and does so with an order of magnitude fewer learnable parameters than comparable methods. We hypothesize that these techniques mitigate a general pathology affecting transport-based generative models, enabling detection and correction of distribution drift during inference. Our results highlight simple, transferable strategies for improving the stability and quality of diffusion- and flow-based molecular generative models.
☆ How can we trust opaque systems? Criteria for robust explanations in XAI
Deep learning (DL) algorithms are becoming ubiquitous in everyday life and in scientific research. However, the price we pay for their impressively accurate predictions is significant: their inner workings are notoriously opaque - it is unknown to laypeople and researchers alike what features of the data a DL system focuses on and how it ultimately succeeds in predicting correct outputs. A necessary criterion for trustworthy explanations is that they should reflect the relevant processes the algorithms' predictions are based on. The field of eXplainable Artificial Intelligence (XAI) presents promising methods to create such explanations. But recent reviews about their performance offer reasons for skepticism. As we will argue, a good criterion for trustworthiness is explanatory robustness: different XAI methods produce the same explanations in comparable contexts. However, in some instances, all methods may give the same, but still wrong, explanation. We therefore argue that in addition to explanatory robustness (ER), a prior requirement of explanation method robustness (EMR) has to be fulfilled by every XAI method. Conversely, the robustness of an individual method is in itself insufficient for trustworthiness. In what follows, we develop and formalize criteria for ER as well as EMR, providing a framework for explaining and establishing trust in DL algorithms. We also highlight interesting application cases and outline directions for future work.
comment: 8 pages, 1 figure
☆ A Generalized Genetic Random Field Method for the Genetic Association Analysis of Sequencing Data
With the advance of high-throughput sequencing technologies, it has become feasible to investigate the influence of the entire spectrum of sequencing variations on complex human diseases. Although association studies utilizing the new sequencing technologies hold great promise to unravel novel genetic variants, especially rare genetic variants that contribute to human diseases, the statistical analysis of high-dimensional sequencing data remains a challenge. Advanced analytical methods are in great need to facilitate high-dimensional sequencing data analyses. In this article, we propose a generalized genetic random field (GGRF) method for association analyses of sequencing data. Like other similarity-based methods (e.g., SIMreg and SKAT), the new method has the advantages of avoiding the need to specify thresholds for rare variants and allowing for testing multiple variants acting in different directions and magnitude of effects. The method is built on the generalized estimating equation framework and thus accommodates a variety of disease phenotypes (e.g., quantitative and binary phenotypes). Moreover, it has a nice asymptotic property, and can be applied to small-scale sequencing data without need for small-sample adjustment. Through simulations, we demonstrate that the proposed GGRF attains an improved or comparable power over a commonly used method, SKAT, under various disease scenarios, especially when rare variants play a significant role in disease etiology. We further illustrate GGRF with an application to a real dataset from the Dallas Heart Study. By using GGRF, we were able to detect the association of two candidate genes, ANGPTL3 and ANGPTL4, with serum triglyceride.
☆ Towards SISO Bistatic Sensing for ISAC
Integrated Sensing and Communication (ISAC) is a key enabler for next-generation wireless systems. However, real-world deployment is often limited to low-cost, single-antenna transceivers. In such bistatic Single-Input Single-Output (SISO) setup, clock asynchrony introduces random phase offsets in Channel State Information (CSI), which cannot be mitigated using conventional multi-antenna methods. This work proposes WiDFS 3.0, a lightweight bistatic SISO sensing framework that enables accurate delay and Doppler estimation from distorted CSI by effectively suppressing Doppler mirroring ambiguity. It operates with only a single antenna at both the transmitter and receiver, making it suitable for low-complexity deployments. We propose a self-referencing cross-correlation (SRCC) method for SISO random phase removal and employ delay-domain beamforming to resolve Doppler ambiguity. The resulting unambiguous delay-Doppler-time features enable robust sensing with compact neural networks. Extensive experiments show that WiDFS 3.0 achieves accurate parameter estimation, with performance comparable to or even surpassing that of prior multi-antenna methods, especially in delay estimation. Validated under single- and multi-target scenarios, the extracted ambiguity-resolved features show strong sensing accuracy and generalization. For example, when deployed on the embedded-friendly MobileViT-XXS with only 1.3M parameters, WiDFS 3.0 consistently outperforms conventional features such as CSI amplitude, mirrored Doppler, and multi-receiver aggregated Doppler.
☆ A Self-Ensemble Inspired Approach for Effective Training of Binary-Weight Spiking Neural Networks
Spiking Neural Networks (SNNs) are a promising approach to low-power applications on neuromorphic hardware due to their energy efficiency. However, training SNNs is challenging because of the non-differentiable spike generation function. To address this issue, the commonly used approach is to adopt the backpropagation through time framework, while assigning the gradient of the non-differentiable function with some surrogates. Similarly, Binary Neural Networks (BNNs) also face the non-differentiability problem and rely on approximating gradients. However, the deep relationship between these two fields and how their training techniques can benefit each other has not been systematically researched. Furthermore, training binary-weight SNNs is even more difficult. In this work, we present a novel perspective on the dynamics of SNNs and their close connection to BNNs through an analysis of the backpropagation process. We demonstrate that training a feedforward SNN can be viewed as training a self-ensemble of a binary-activation neural network with noise injection. Drawing from this new understanding of SNN dynamics, we introduce the Self-Ensemble Inspired training method for (Binary-Weight) SNNs (SEI-BWSNN), which achieves high-performance results with low latency even for the case of the 1-bit weights. Specifically, we leverage a structure of multiple shortcuts and a knowledge distillation-based training technique to improve the training of (binary-weight) SNNs. Notably, by binarizing FFN layers in a Transformer architecture, our approach achieves 82.52% accuracy on ImageNet with only 2 time steps, indicating the effectiveness of our methodology and the potential of binary-weight SNNs.
☆ SSPO: Self-traced Step-wise Preference Optimization for Process Supervision and Reasoning Compression
Test-time scaling has proven effective in further enhancing the performance of pretrained Large Language Models (LLMs). However, mainstream post-training methods (i.e., reinforcement learning (RL) with chain-of-thought (CoT) reasoning) often incur substantial computational overhead due to auxiliary models and overthinking. In this paper, we empirically reveal that the incorrect answers partially stem from verbose reasoning processes lacking correct self-fix, where errors accumulate across multiple reasoning steps. To this end, we propose Self-traced Step-wise Preference Optimization (SSPO), a pluggable RL process supervision framework that enables fine-grained optimization of each reasoning step. Specifically, SSPO requires neither auxiliary models nor stepwise manual annotations. Instead, it leverages step-wise preference signals generated by the model itself to guide the optimization process for reasoning compression. Experiments demonstrate that the generated reasoning sequences from SSPO are both accurate and succinct, effectively mitigating overthinking behaviors without compromising model performance across diverse domains and languages.
comment: Work in progress
☆ A Hybrid Surrogate for Electric Vehicle Parameter Estimation and Power Consumption via Physics-Informed Neural Operators
We present a hybrid surrogate model for electric vehicle parameter estimation and power consumption. We combine our novel architecture Spectral Parameter Operator built on a Fourier Neural Operator backbone for global context and a differentiable physics module in the forward pass. From speed and acceleration alone, it outputs time-varying motor and regenerative braking efficiencies, as well as aerodynamic drag, rolling resistance, effective mass, and auxiliary power. These parameters drive a physics-embedded estimate of battery power, eliminating any separate physics-residual loss. The modular design lets representations converge to physically meaningful parameters that reflect the current state and condition of the vehicle. We evaluate on real-world logs from a Tesla Model 3, Tesla Model S, and the Kia EV9. The surrogate achieves a mean absolute error of 0.2kW (about 1% of average traction power at highway speeds) for Tesla vehicles and about 0.8kW on the Kia EV9. The framework is interpretable, and it generalizes well to unseen conditions, and sampling rates, making it practical for path optimization, eco-routing, on-board diagnostics, and prognostics health management.
comment: This preprint corresponding to a manuscript has been submitted to a journal for potential publication
☆ Constructing Invariant and Equivariant Operations by Symmetric Tensor Network
Design of neural networks that incorporate symmetry is crucial for geometric deep learning. Central to this effort is the development of invariant and equivariant operations. This works presents a systematic method for constructing valid invariant and equivariant operations. It can handle inputs and outputs in the form of Cartesian tensors with different rank, as well as spherical tensors with different types. In addition, our method features a graphical representation utilizing the symmetric tensor network, which simplifies both the proofs and constructions related to invariant and equivariant functions. We also apply this approach to design the equivariant interaction message for the geometry graph neural network, and equivariant machine learning model to learn the constitutive law of materials.
☆ FLARE: Fast Low-rank Attention Routing Engine
The quadratic complexity of self-attention limits its applicability and scalability on large unstructured meshes. We introduce Fast Low-rank Attention Routing Engine (FLARE), a linear complexity self-attention mechanism that routes attention through fixed-length latent sequences. Each attention head performs global communication among $N$ tokens by projecting the input sequence onto a fixed length latent sequence of $M \ll N$ tokens using learnable query tokens. By routing attention through a bottleneck sequence, FLARE learns a low-rank form of attention that can be applied at $O(NM)$ cost. FLARE not only scales to unprecedented problem sizes, but also delivers superior accuracy compared to state-of-the-art neural PDE surrogates across diverse benchmarks. We also release a new additive manufacturing dataset to spur further research. Our code is available at https://github.com/vpuri3/FLARE.py.
☆ Physics-informed deep operator network for traffic state estimation
Traffic state estimation (TSE) fundamentally involves solving high-dimensional spatiotemporal partial differential equations (PDEs) governing traffic flow dynamics from limited, noisy measurements. While Physics-Informed Neural Networks (PINNs) enforce PDE constraints point-wise, this paper adopts a physics-informed deep operator network (PI-DeepONet) framework that reformulates TSE as an operator learning problem. Our approach trains a parameterized neural operator that maps sparse input data to the full spatiotemporal traffic state field, governed by the traffic flow conservation law. Crucially, unlike PINNs that enforce PDE constraints point-wise, PI-DeepONet integrates traffic flow conservation model and the fundamental diagram directly into the operator learning process, ensuring physical consistency while capturing congestion propagation, spatial correlations, and temporal evolution. Experiments on the NGSIM dataset demonstrate superior performance over state-of-the-art baselines. Further analysis reveals insights into optimal function generation strategies and branch network complexity. Additionally, the impact of input function generation methods and the number of functions on model performance is explored, highlighting the robustness and efficacy of proposed framework.
comment: under review in Transportmetrica B: Transport Dynamics
☆ Energy-Efficient Wireless LLM Inference via Uncertainty and Importance-Aware Speculative Decoding
To address the growing demand for on-device LLM inference in resource-constrained environments, hybrid language models (HLM) have emerged, combining lightweight local models with powerful cloud-based LLMs. Recent studies on HLM have primarily focused on improving accuracy and latency, while often overlooking communication and energy efficiency. We propose a token-level filtering mechanism for an energy-efficient importance- and uncertainty-aware HLM inference that leverages both epistemic uncertainty and attention-based importance. Our method opportunistically uploads only informative tokens, reducing LLM usage and communication costs. Experiments with TinyLlama-1.1B and LLaMA-2-7B demonstrate that our method achieves up to 87.5% BERT Score and token throughput of 0.37 tokens/sec while saving the energy consumption by 40.7% compared to standard HLM. Furthermore, compared to our previous U-HLM baseline, our method improves BERTScore from 85.8% to 87.0%, energy savings from 31.6% to 43.6%, and throughput from 0.36 to 0.40. This approach enables an energy-efficient and accurate deployment of LLMs in bandwidth-constrained edge environments.
comment: 6 pages, 5 figures
☆ Widening the Network Mitigates the Impact of Data Heterogeneity on FedAvg ICML 2025
Federated learning (FL) enables decentralized clients to train a model collaboratively without sharing local data. A key distinction between FL and centralized learning is that clients' data are non-independent and identically distributed, which poses significant challenges in training a global model that generalizes well across heterogeneous local data distributions. In this paper, we analyze the convergence of overparameterized FedAvg with gradient descent (GD). We prove that the impact of data heterogeneity diminishes as the width of neural networks increases, ultimately vanishing when the width approaches infinity. In the infinite-width regime, we further prove that both the global and local models in FedAvg behave as linear models, and that FedAvg achieves the same generalization performance as centralized learning with the same number of GD iterations. Extensive experiments validate our theoretical findings across various network architectures, loss functions, and optimization methods.
comment: Accepted by ICML 2025
☆ Deep Learning Model for Amyloidogenicity Prediction using a Pre-trained Protein LLM
The prediction of amyloidogenicity in peptides and proteins remains a focal point of ongoing bioinformatics. The crucial step in this field is to apply advanced computational methodologies. Many recent approaches to predicting amyloidogenicity within proteins are highly based on evolutionary motifs and the individual properties of amino acids. It is becoming increasingly evident that the sequence information-based features show high predictive performance. Consequently, our study evaluated the contextual features of protein sequences obtained from a pretrained protein large language model leveraging bidirectional LSTM and GRU to predict amyloidogenic regions in peptide and protein sequences. Our method achieved an accuracy of 84.5% on 10-fold cross-validation and an accuracy of 83% in the test dataset. Our results demonstrate competitive performance, highlighting the potential of LLMs in enhancing the accuracy of amyloid prediction.
☆ Data-driven particle dynamics: Structure-preserving coarse-graining for emergent behavior in non-equilibrium systems
Multiscale systems are ubiquitous in science and technology, but are notoriously challenging to simulate as short spatiotemporal scales must be appropriately linked to emergent bulk physics. When expensive high-dimensional dynamical systems are coarse-grained into low-dimensional models, the entropic loss of information leads to emergent physics which are dissipative, history-dependent, and stochastic. To machine learn coarse-grained dynamics from time-series observations of particle trajectories, we propose a framework using the metriplectic bracket formalism that preserves these properties by construction; most notably, the framework guarantees discrete notions of the first and second laws of thermodynamics, conservation of momentum, and a discrete fluctuation-dissipation balance crucial for capturing non-equilibrium statistics. We introduce the mathematical framework abstractly before specializing to a particle discretization. As labels are generally unavailable for entropic state variables, we introduce a novel self-supervised learning strategy to identify emergent structural variables. We validate the method on benchmark systems and demonstrate its utility on two challenging examples: (1) coarse-graining star polymers at challenging levels of coarse-graining while preserving non-equilibrium statistics, and (2) learning models from high-speed video of colloidal suspensions that capture coupling between local rearrangement events and emergent stochastic dynamics. We provide open-source implementations in both PyTorch and LAMMPS, enabling large-scale inference and extensibility to diverse particle-based systems.
comment: 34 pages, 12 figures
☆ Deep Learning-Based Financial Time Series Forecasting via Sliding Window and Variational Mode Decomposition
To address the complexity of financial time series, this paper proposes a forecasting model combining sliding window and variational mode decomposition (VMD) methods. Historical stock prices and relevant market indicators are used to construct datasets. VMD decomposes non-stationary financial time series into smoother subcomponents, improving model adaptability. The decomposed data is then input into a deep learning model for prediction. The study compares the forecasting effects of an LSTM model trained on VMD-processed sequences with those using raw time series, demonstrating better performance and stability.
☆ Data-driven Trust Bootstrapping for Mobile Edge Computing-based Industrial IoT Services
We propose a data-driven and context-aware approach to bootstrap trustworthiness of homogeneous Internet of Things (IoT) services in Mobile Edge Computing (MEC) based industrial IoT (IIoT) systems. The proposed approach addresses key limitations in adapting existing trust bootstrapping approaches into MEC-based IIoT systems. These key limitations include, the lack of opportunity for a service consumer to interact with a lesser-known service over a prolonged period of time to get a robust measure of its trustworthiness, inability of service consumers to consistently interact with their peers to receive reliable recommendations of the trustworthiness of a lesser-known service as well as the impact of uneven context parameters in different MEC environments causing uneven trust environments for trust evaluation. In addition, the proposed approach also tackles the problem of data sparsity via enabling knowledge sharing among different MEC environments within a given MEC topology. To verify the effectiveness of the proposed approach, we carried out a comprehensive evaluation on two real-world datasets suitably adjusted to exhibit the context-dependent trust information accumulated in MEC environments within a given MEC topology. The experimental results affirmed the effectiveness of our approach and its suitability to bootstrap trustworthiness of services in MEC-based IIoT systems.
comment: 15 pages
☆ Illuminating LLM Coding Agents: Visual Analytics for Deeper Understanding and Enhancement
Coding agents powered by large language models (LLMs) have gained traction for automating code generation through iterative problem-solving with minimal human involvement. Despite the emergence of various frameworks, e.g., LangChain, AutoML, and AIDE, ML scientists still struggle to effectively review and adjust the agents' coding process. The current approach of manually inspecting individual outputs is inefficient, making it difficult to track code evolution, compare coding iterations, and identify improvement opportunities. To address this challenge, we introduce a visual analytics system designed to enhance the examination of coding agent behaviors. Focusing on the AIDE framework, our system supports comparative analysis across three levels: (1) Code-Level Analysis, which reveals how the agent debugs and refines its code over iterations; (2) Process-Level Analysis, which contrasts different solution-seeking processes explored by the agent; and (3) LLM-Level Analysis, which highlights variations in coding behavior across different LLMs. By integrating these perspectives, our system enables ML scientists to gain a structured understanding of agent behaviors, facilitating more effective debugging and prompt engineering. Through case studies using coding agents to tackle popular Kaggle competitions, we demonstrate how our system provides valuable insights into the iterative coding process.
comment: 11 pages, 10 figures
☆ OS-R1: Agentic Operating System Kernel Tuning with Reinforcement Learning
Linux kernel tuning is essential for optimizing operating system (OS) performance. However, existing methods often face challenges in terms of efficiency, scalability, and generalization. This paper introduces OS-R1, an agentic Linux kernel tuning framework powered by rule-based reinforcement learning (RL). By abstracting the kernel configuration space as an RL environment, OS-R1 facilitates efficient exploration by large language models (LLMs) and ensures accurate configuration modifications. Additionally, custom reward functions are designed to enhance reasoning standardization, configuration modification accuracy, and system performance awareness of the LLMs. Furthermore, we propose a two-phase training process that accelerates convergence and minimizes retraining across diverse tuning scenarios. Experimental results show that OS-R1 significantly outperforms existing baseline methods, achieving up to 5.6% performance improvement over heuristic tuning and maintaining high data efficiency. Notably, OS-R1 is adaptable across various real-world applications, demonstrating its potential for practical deployment in diverse environments. Our dataset and code are publicly available at https://github.com/LHY-24/OS-R1.
☆ CorrSteer: Steering Improves Task Performance and Safety in LLMs through Correlation-based Sparse Autoencoder Feature Selection
Sparse Autoencoders (SAEs) can extract interpretable features from large language models (LLMs) without supervision. However, their effectiveness in downstream steering tasks is limited by the requirement for contrastive datasets or large activation storage. To address these limitations, we propose CorrSteer, which selects features by correlating sample correctness with SAE activations from generated tokens at inference time. This approach uses only inference-time activations to extract more relevant features, thereby avoiding spurious correlations. It also obtains steering coefficients from average activations, automating the entire pipeline. Our method shows improved task performance on QA, bias mitigation, jailbreaking prevention, and reasoning benchmarks on Gemma 2 2B and LLaMA 3.1 8B, notably achieving a +4.1% improvement in MMLU performance and a +22.9% improvement in HarmBench with only 4000 samples. Selected features demonstrate semantically meaningful patterns aligned with each task's requirements, revealing the underlying capabilities that drive performance. Our work establishes correlationbased selection as an effective and scalable approach for automated SAE steering across language model applications.
comment: 42 pages, 9 tables
♻ ☆ Visual Perception Engine: Fast and Flexible Multi-Head Inference for Robotic Vision Tasks
Deploying multiple machine learning models on resource-constrained robotic platforms for different perception tasks often results in redundant computations, large memory footprints, and complex integration challenges. In response, this work presents Visual Perception Engine (VPEngine), a modular framework designed to enable efficient GPU usage for visual multitasking while maintaining extensibility and developer accessibility. Our framework architecture leverages a shared foundation model backbone that extracts image representations, which are efficiently shared, without any unnecessary GPU-CPU memory transfers, across multiple specialized task-specific model heads running in parallel. This design eliminates the computational redundancy inherent in feature extraction component when deploying traditional sequential models while enabling dynamic task prioritization based on application demands. We demonstrate our framework's capabilities through an example implementation using DINOv2 as the foundation model with multiple task (depth, object detection and semantic segmentation) heads, achieving up to 3x speedup compared to sequential execution. Building on CUDA Multi-Process Service (MPS), VPEngine offers efficient GPU utilization and maintains a constant memory footprint while allowing per-task inference frequencies to be adjusted dynamically during runtime. The framework is written in Python and is open source with ROS2 C++ (Humble) bindings for ease of use by the robotics community across diverse robotic platforms. Our example implementation demonstrates end-to-end real-time performance at $\geq$50 Hz on NVIDIA Jetson Orin AGX for TensorRT optimized models.
comment: 8 pages, 6 figures, 2 tables
♻ ☆ ADMIRE-BayesOpt: Accelerated Data MIxture RE-weighting for Language Models with Bayesian Optimization
Determining the optimal data mixture for large language model training remains a challenging problem with an outsized impact on performance. In practice, language model developers continue to rely on heuristic exploration since no learning-based approach has emerged as a reliable solution. In this work, we propose to view the selection of training data mixtures as a black-box hyperparameter optimization problem, for which Bayesian Optimization is a well-established class of appropriate algorithms. Firstly, we cast data mixture learning as a sequential decision-making problem, in which we aim to find a suitable trade-off between the computational cost of training exploratory (proxy-) models and final mixture performance. Secondly, we systematically explore the properties of transferring mixtures learned at a small scale to larger-scale experiments, providing insights and highlighting opportunities for research at a modest scale. By proposing Multi-fidelity Bayesian Optimization as a suitable method in this common scenario, we introduce a natural framework to balance experiment cost with model fit, avoiding the risks of overfitting to smaller scales while minimizing the number of experiments at high cost. We present results for pre-training and instruction finetuning across models ranging from 1 million to 7 billion parameters, varying from simple architectures to state-of-the-art models and benchmarks spanning dozens of datasets. We demonstrate consistently strong results relative to a wide range of baselines, resulting inspeed-ups of over 500% in determining the best data mixture on our largest experiments. In addition, we broaden access to research by sharing ADMIRE IFT Runs, a dataset of 460 full training & evaluation runs worth over 13,000 GPU hours, greatly reducing the cost of conducting research in this area.
♻ ☆ Generalize across Homophily and Heterophily: Hybrid Spectral Graph Pre-Training and Prompt Tuning
Graph ``pre-training and prompt-tuning'' aligns downstream tasks with pre-trained objectives to enable efficient knowledge transfer under limited supervision. However, existing methods rely on homophily-based low-frequency knowledge, failing to handle diverse spectral distributions in real-world graphs with varying homophily. Our theoretical analysis reveals a spectral specificity principle: optimal knowledge transfer requires alignment between pre-trained spectral filters and the intrinsic spectrum of downstream graphs. Under limited supervision, large spectral gaps between pre-training and downstream tasks impede effective adaptation. To bridge this gap, we propose the HS-GPPT model, a novel framework that ensures spectral alignment throughout both pre-training and prompt-tuning. We utilize a hybrid spectral filter backbone and local-global contrastive learning to acquire abundant spectral knowledge. Then we design prompt graphs to align the spectral distribution with pretexts, facilitating spectral knowledge transfer across homophily and heterophily. Extensive experiments validate the effectiveness under both transductive and inductive learning settings. Our code is available at https://anonymous.4open.science/r/HS-GPPT-62D2/.
comment: Under Review
♻ ☆ Improving Text Style Transfer using Masked Diffusion Language Models with Inference-time Scaling
Masked diffusion language models (MDMs) have recently gained traction as a viable generative framework for natural language. This can be attributed to its scalability and ease of training compared to other diffusion model paradigms for discrete data, establishing itself as the state-of-the-art non-autoregressive generator for discrete data. Diffusion models, in general, have shown excellent ability to improve the generation quality by leveraging inference-time scaling either by increasing the number of denoising steps or by using external verifiers on top of the outputs of each step to guide the generation. In this work, we propose a verifier-based inference-time scaling method that aids in finding a better candidate generation during the denoising process of the MDM. Our experiments demonstrate the application of MDMs for standard text-style transfer tasks and establish MDMs as a better alternative to autoregressive language models. Additionally, we show that a simple soft-value-based verifier setup for MDMs using off-the-shelf pre-trained embedding models leads to significant gains in generation quality even when used on top of typical classifier-free guidance setups in the existing literature.
comment: Accepted as a main conference submission in the European Conference on Artificial Intelligence (ECAI 2025)
♻ ☆ WeChat-YATT: A Scalable, Simple, Efficient, and Production Ready Training Library
Reinforcement Learning from Human Feedback (RLHF) has emerged as a prominent paradigm for training large language models and multimodal systems. Despite the notable advances enabled by existing RLHF training frameworks, significant challenges remain to scale to complex multimodal workflows and adapt to dynamic workloads. In particular, current systems often encounter limitations related to controller scalability when managing large models, as well as inefficiencies in orchestrating intricate RLHF pipelines, especially in scenarios that require dynamic sampling and resource allocation. In this paper, we introduce WeChat-YATT Yet Another Transformer Trainer in WeChat, a simple, scalable, and balanced RLHF training framework specifically designed to address these challenges. WeChat-YATT features a parallel controller programming model that enables flexible and efficient orchestration of complex RLHF workflows, effectively mitigating bottlenecks associated with centralized controller architectures and facilitating scalability in large-scale data scenarios. In addition, we propose a dynamic placement schema that adaptively partitions computational resources and schedules workloads, thereby significantly reducing hardware idle time and improving GPU utilization under variable training conditions. We evaluate WeChat-YATT across diverse experimental scenarios, demonstrating its substantial throughput improvements over state-of-the-art RLHF training frameworks. Furthermore, WeChat-YATT has been successfully deployed to train models that support WeChat product features for a large-scale user base, underscoring its effectiveness and robustness in real-world applications. We have made WeChat-YATT publicly available at https://www.github.com/tencent/WeChat-YATT.
comment: arXiv admin note: substantial text overlap with arXiv:2507.22789
♻ ☆ LaDi-WM: A Latent Diffusion-based World Model for Predictive Manipulation
Predictive manipulation has recently gained considerable attention in the Embodied AI community due to its potential to improve robot policy performance by leveraging predicted states. However, generating accurate future visual states of robot-object interactions from world models remains a well-known challenge, particularly in achieving high-quality pixel-level representations. To this end, we propose LaDi-WM, a world model that predicts the latent space of future states using diffusion modeling. Specifically, LaDi-WM leverages the well-established latent space aligned with pre-trained Visual Foundation Models (VFMs), which comprises both geometric features (DINO-based) and semantic features (CLIP-based). We find that predicting the evolution of the latent space is easier to learn and more generalizable than directly predicting pixel-level images. Building on LaDi-WM, we design a diffusion policy that iteratively refines output actions by incorporating forecasted states, thereby generating more consistent and accurate results. Extensive experiments on both synthetic and real-world benchmarks demonstrate that LaDi-WM significantly enhances policy performance by 27.9\% on the LIBERO-LONG benchmark and 20\% on the real-world scenario. Furthermore, our world model and policies achieve impressive generalizability in real-world experiments.
comment: CoRL 2025
♻ ☆ High-Fidelity And Complex Test Data Generation For Real-World SQL Code Generation Services
The demand for high-fidelity test data is paramount in industrial settings where access to production data is largely restricted. Traditional data generation methods often fall short, struggling with low-fidelity and the ability to model complex data structures and semantic relationships that are critical for testing complex SQL code generation services like Natural Language to SQL (NL2SQL). In this paper, we address the critical need for generating syntactically correct and semantically ``meaningful'' mock data for complex schema that includes columns with nested structures that we frequently encounter in Google SQL code generation workloads. We highlight the limitations of existing approaches used in production, particularly their inability to handle large and complex schema, as well as the lack of semantically coherent test data that lead to limited test coverage. We demonstrate that by leveraging Large Language Models (LLMs) and incorporating strategic pre- and post-processing steps, we can generate realistic high-fidelity test data that adheres to complex structural constraints and maintains semantic integrity to the test targets (SQL queries/functions). This approach supports comprehensive testing of complex SQL queries involving joins, aggregations, and even deeply nested subqueries, ensuring robust evaluation of SQL code generation services, like NL2SQL and SQL Code Assistant services. Our results demonstrate the practical utility of an out-of-the-box LLM (\textit{gemini}) based test data generation for industrial SQL code generation services where generating realistic test data is essential due to the frequent unavailability of production datasets.
♻ ☆ AutoChemSchematic AI: Agentic Physics-Aware Automation for Chemical Manufacturing Scale-Up
Recent advances in generative AI have accelerated the discovery of novel chemicals and materials. However, scaling these discoveries to industrial production remains a major bottleneck due to the synthesis gap -- the need to develop entirely new manufacturing processes. This challenge requires detailed engineering blueprints: PFDs for equipment layouts and material/energy flows, and PIDs for process plant operations. Current AI systems cannot yet reliably generate these critical engineering schematics, creating a fundamental obstacle to manufacturing scale-up of novel discoveries. We present a closed-loop, physics-aware framework for automated generation of industrially viable PFDs and PIDs. The framework integrates three key components: (1) domain-specialized small language models (SLMs) trained for auto-generation of PFDs and PIDs, (2) a hierarchical knowledge graph containing process flow and instrumentation descriptions for 1,020+ chemicals for Graph Retrieval-Augmented Generation (GRAG), and (3) an open-source chemical process simulator for modeling, simulation, optimization, and analysis of novel chemical processes. The SLMs are trained through a multi-stage pipeline on synthetic datasets, with process simulator-in-the-loop validation ensuring feasibility. To enhance computational efficiency, the framework implements structural pruning (width and depth) guided by importance heuristics to reduce language model size while preserving accuracy, followed by advanced inference optimizations including FlashAttention, Lookahead Decoding, PagedAttention with KV-cache quantization, and Test-Time Inference Scaling. Experimental results demonstrate that our framework generates simulator-validated process descriptions with high fidelity.
♻ ☆ CaRL: Learning Scalable Planning Policies with Simple Rewards
We investigate reinforcement learning (RL) for privileged planning in autonomous driving. State-of-the-art approaches for this task are rule-based, but these methods do not scale to the long tail. RL, on the other hand, is scalable and does not suffer from compounding errors like imitation learning. Contemporary RL approaches for driving use complex shaped rewards that sum multiple individual rewards, \eg~progress, position, or orientation rewards. We show that PPO fails to optimize a popular version of these rewards when the mini-batch size is increased, which limits the scalability of these approaches. Instead, we propose a new reward design based primarily on optimizing a single intuitive reward term: route completion. Infractions are penalized by terminating the episode or multiplicatively reducing route completion. We find that PPO scales well with higher mini-batch sizes when trained with our simple reward, even improving performance. Training with large mini-batch sizes enables efficient scaling via distributed data parallelism. We scale PPO to 300M samples in CARLA and 500M samples in nuPlan with a single 8-GPU node. The resulting model achieves 64 DS on the CARLA longest6 v2 benchmark, outperforming other RL methods with more complex rewards by a large margin. Requiring only minimal adaptations from its use in CARLA, the same method is the best learning-based approach on nuPlan. It scores 91.3 in non-reactive and 90.6 in reactive traffic on the Val14 benchmark while being an order of magnitude faster than prior work.
comment: Accepted at the Conference on Robot Learning 2025
♻ ☆ GraphLand: Evaluating Graph Machine Learning Models on Diverse Industrial Data
Although data that can be naturally represented as graphs is widespread in real-world applications across diverse industries, popular graph ML benchmarks for node property prediction only cover a surprisingly narrow set of data domains, and graph neural networks (GNNs) are often evaluated on just a few academic citation networks. This issue is particularly pressing in light of the recent growing interest in designing graph foundation models. These models are supposed to be able to transfer to diverse graph datasets from different domains, and yet the proposed graph foundation models are often evaluated on a very limited set of datasets from narrow applications. To alleviate this issue, we introduce GraphLand: a benchmark of 14 diverse graph datasets for node property prediction from a range of different industrial applications. GraphLand allows evaluating graph ML models on a wide range of graphs with diverse sizes, structural characteristics, and feature sets, all in a unified setting. Further, GraphLand allows investigating such previously underexplored research questions as how realistic temporal distributional shifts under transductive and inductive settings influence graph ML model performance. To mimic realistic industrial settings, we use GraphLand to compare GNNs with gradient-boosted decision trees (GBDT) models that are popular in industrial applications and show that GBDTs provided with additional graph-based input features can sometimes be very strong baselines. Further, we evaluate currently available general-purpose graph foundation models and find that they fail to produce competitive results on our proposed datasets.
♻ ☆ LLMs Are In-Context Bandit Reinforcement Learners
Large Language Models (LLMs) excel at in-context learning (ICL), a supervised learning technique that relies on adding annotated examples to the model context. We investigate a contextual bandit version of in-context reinforcement learning (ICRL), where models learn in-context, online, from external reward, instead of supervised data. We show that LLMs effectively demonstrate such learning, and provide a detailed study of the phenomena, experimenting with challenging classification tasks and models of sizes from 500M to 70B parameters. This includes identifying and addressing the instability of the process, demonstrating learning with both semantic and abstract labels, and showing scaling trends. Our findings highlight ICRL capabilities in LLMs, while also underscoring fundamental limitations in their implicit reasoning about errors.
comment: Published at COLM 2025
♻ ☆ When can in-context learning generalize out of task distribution? ICML 2025
In-context learning (ICL) is a remarkable capability of pretrained transformers that allows models to generalize to unseen tasks after seeing only a few examples. We investigate empirically the conditions necessary on the pretraining distribution for ICL to emerge and generalize \emph{out-of-distribution}. Previous work has focused on the number of distinct tasks necessary in the pretraining dataset. Here, we use a different notion of task diversity to study the emergence of ICL in transformers trained on linear functions. We find that as task diversity increases, transformers undergo a transition from a specialized solution, which exhibits ICL only within the pretraining task distribution, to a solution which generalizes out of distribution to the entire task space. We also investigate the nature of the solutions learned by the transformer on both sides of the transition, and observe similar transitions in nonlinear regression problems. We construct a phase diagram to characterize how our concept of task diversity interacts with the number of pretraining tasks. In addition, we explore how factors such as the depth of the model and the dimensionality of the regression problem influence the transition.
comment: ICML 2025
♻ ☆ STRAP: Robot Sub-Trajectory Retrieval for Augmented Policy Learning
Robot learning is witnessing a significant increase in the size, diversity, and complexity of pre-collected datasets, mirroring trends in domains such as natural language processing and computer vision. Many robot learning methods treat such datasets as multi-task expert data and learn a multi-task, generalist policy by training broadly across them. Notably, while these generalist policies can improve the average performance across many tasks, the performance of generalist policies on any one task is often suboptimal due to negative transfer between partitions of the data, compared to task-specific specialist policies. In this work, we argue for the paradigm of training policies during deployment given the scenarios they encounter: rather than deploying pre-trained policies to unseen problems in a zero-shot manner, we non-parametrically retrieve and train models directly on relevant data at test time. Furthermore, we show that many robotics tasks share considerable amounts of low-level behaviors and that retrieval at the "sub"-trajectory granularity enables significantly improved data utilization, generalization, and robustness in adapting policies to novel problems. In contrast, existing full-trajectory retrieval methods tend to underutilize the data and miss out on shared cross-task content. This work proposes STRAP, a technique for leveraging pre-trained vision foundation models and dynamic time warping to retrieve sub-sequences of trajectories from large training corpora in a robust fashion. STRAP outperforms both prior retrieval algorithms and multi-task learning methods in simulated and real experiments, showing the ability to scale to much larger offline datasets in the real world as well as the ability to learn robust control policies with just a handful of real-world demonstrations.
comment: Project website at https://weirdlabuw.github.io/strap/
♻ ☆ Fast Controlled Generation from Language Models with Adaptive Weighted Rejection Sampling
The dominant approach to generating from language models subject to some constraint is locally constrained decoding (LCD), incrementally sampling tokens at each time step such that the constraint is never violated. Typically, this is achieved through token masking: looping over the vocabulary and excluding non-conforming tokens. There are two important problems with this approach. (i) Evaluating the constraint on every token can be prohibitively expensive -- LM vocabularies often exceed $100,000$ tokens. (ii) LCD can distort the global distribution over strings, sampling tokens based only on local information, even if they lead down dead-end paths. This work introduces a new algorithm that addresses both these problems. First, to avoid evaluating a constraint on the full vocabulary at each step of generation, we propose an adaptive rejection sampling algorithm that typically requires orders of magnitude fewer constraint evaluations. Second, we show how this algorithm can be extended to produce low-variance, unbiased estimates of importance weights at a very small additional cost -- estimates that can be soundly used within previously proposed sequential Monte Carlo algorithms to correct for the myopic behavior of local constraint enforcement. Through extensive empirical evaluation in text-to-SQL, molecular synthesis, goal inference, pattern matching, and JSON domains, we show that our approach is superior to state-of-the-art baselines, supporting a broader class of constraints and improving both runtime and performance. Additional theoretical and empirical analyses show that our method's runtime efficiency is driven by its dynamic use of computation, scaling with the divergence between the unconstrained and constrained LM, and as a consequence, runtime improvements are greater for better models.
comment: COLM 2025
♻ ☆ An MRP Formulation for Supervised Learning: Generalized Temporal Difference Learning Models
In traditional statistical learning, data points are usually assumed to be independently and identically distributed (i.i.d.) following an unknown probability distribution. This paper presents a contrasting viewpoint, perceiving data points as interconnected and employing a Markov reward process (MRP) for data modeling. We reformulate the typical supervised learning as an on-policy policy evaluation problem within reinforcement learning (RL), introducing a generalized temporal difference (TD) learning algorithm as a resolution. Theoretically, our analysis establishes connections between the solutions of linear TD learning and ordinary least squares (OLS). Under specific conditions -- particularly when the noise is correlated -- the TD solution serves as a more effective estimator than OLS. Furthermore, we show that when our algorithm is applied with many commonly used loss functions -- such as those found in generalized linear models -- it corresponds to the application of a novel and generalized Bellman operator. We prove that this operator admits a unique fixed point, and based on this, we establish convergence guarantees for our generalized TD algorithm under linear function approximation. Empirical studies verify our theoretical results, examine the vital design of our TD algorithm and show practical utility across various datasets, encompassing tasks such as regression and image classification with deep learning.
comment: Accepted by JAIR. The abstract above is more concise than the one in the paper to meet the requirements of the arXiv website
♻ ☆ CCDM: Continuous Conditional Diffusion Models for Image Generation
Continuous Conditional Generative Modeling (CCGM) estimates high-dimensional data distributions, such as images, conditioned on scalar continuous variables (aka regression labels). While Continuous Conditional Generative Adversarial Networks (CcGANs) were designed for this task, their instability during adversarial learning often leads to suboptimal results. Conditional Diffusion Models (CDMs) offer a promising alternative, generating more realistic images, but their diffusion processes, label conditioning, and model fitting procedures are either not optimized for or incompatible with CCGM, making it difficult to integrate CcGANs' vicinal approach. To address these issues, we introduce Continuous Conditional Diffusion Models (CCDMs), the first CDM specifically tailored for CCGM. CCDMs address existing limitations with specially designed conditional diffusion processes, a novel hard vicinal image denoising loss, a customized label embedding method, and efficient conditional sampling procedures. Through comprehensive experiments on four datasets with resolutions ranging from 64x64 to 192x192, we demonstrate that CCDMs outperform state-of-the-art CCGM models, establishing a new benchmark. Ablation studies further validate the model design and implementation, highlighting that some widely used CDM implementations are ineffective for the CCGM task. Our code is publicly available at https://github.com/UBCDingXin/CCDM.
♻ ☆ Inverse Bridge Matching Distillation
Learning diffusion bridge models is easy; making them fast and practical is an art. Diffusion bridge models (DBMs) are a promising extension of diffusion models for applications in image-to-image translation. However, like many modern diffusion and flow models, DBMs suffer from the problem of slow inference. To address it, we propose a novel distillation technique based on the inverse bridge matching formulation and derive the tractable objective to solve it in practice. Unlike previously developed DBM distillation techniques, the proposed method can distill both conditional and unconditional types of DBMs, distill models in a one-step generator, and use only the corrupted images for training. We evaluate our approach for both conditional and unconditional types of bridge matching on a wide set of setups, including super-resolution, JPEG restoration, sketch-to-image, and other tasks, and show that our distillation technique allows us to accelerate the inference of DBMs from 4x to 100x and even provide better generation quality than used teacher model depending on particular setup. We provide the code at https://github.com/ngushchin/IBMD
♻ ☆ Policy Search, Retrieval, and Composition via Task Similarity in Collaborative Agentic Systems
Agentic AI aims to create systems that set their own goals, adapt proactively to change, and refine behavior through continuous experience. Recent advances suggest that, when facing multiple and unforeseen tasks, agents could benefit from sharing machine-learned knowledge and reuse policies that have already been fully or partially learned by other agents. However, how to query, select, and retrieve policies from a pool of agents, and how to integrate such policies remains a largely unexplored area. This study explores how an agent decides what knowledge to select, from whom, and when and how to integrate it in its own policy in order to accelerate its own learning. The proposed algorithm, \emph{Modular Sharing and Composition in Collective Learning} (MOSAIC), improves learning in agentic collectives by combining (1) knowledge selection using performance signals and cosine similarity on Wasserstein task embeddings, (2) modular and transferable neural representations via masks, and (3) policy integration, composition and fine-tuning. MOSAIC outperforms isolated learners and global sharing approaches in both learning speed and overall performance, and in some cases solves tasks that isolated agents cannot. The results also demonstrate that selective, goal-driven reuse leads to less susceptibility to task interference. We also observe the emergence of self-organization, where agents solving simpler tasks accelerate the learning of harder ones through shared knowledge.
comment: 25 pages, 20 figures, 6 tables. Preprint
♻ ☆ Does Prior Data Matter? Exploring Joint Training in the Context of Few-Shot Class-Incremental Learning
Class-incremental learning (CIL) aims to adapt to continuously emerging new classes while preserving knowledge of previously learned ones. Few-shot class-incremental learning (FSCIL) presents a greater challenge that requires the model to learn new classes from only a limited number of samples per class. While incremental learning typically assumes restricted access to past data, it often remains available in many real-world scenarios. This raises a practical question: should one retrain the model on the full dataset (i.e., joint training), or continue updating it solely with new data? In CIL, joint training is considered an ideal benchmark that provides a reference for evaluating the trade-offs between performance and computational cost. However, in FSCIL, joint training becomes less reliable due to severe imbalance between base and incremental classes. This results in the absence of a practical baseline, making it unclear which strategy is preferable for practitioners. To this end, we revisit joint training in the context of FSCIL by incorporating imbalance mitigation techniques, and suggest a new imbalance-aware joint training benchmark for FSCIL. We then conduct extensive comparisons between this benchmark and FSCIL methods to analyze which approach is most suitable when prior data is accessible. Our analysis offers realistic insights and guidance for selecting training strategies in real-world FSCIL scenarios. Code is available at: https://github.com/shiwonkim/Joint_FSCIL
♻ ☆ Fast Geometric Embedding for Node Influence Maximization
Computing classical centrality measures such as betweenness and closeness is computationally expensive on large-scale graphs. In this work, we introduce an efficient force layout algorithm that embeds a graph into a low-dimensional space, where the radial distance from the origin serves as a proxy for various centrality measures. We evaluate our method on multiple graph families and demonstrate strong correlations with degree, PageRank, and paths-based centralities. As an application, it turns out that the proposed embedding allows to find high-influence nodes in a network, and provides a fast and scalable alternative to the standard greedy algorithm.
comment: 8 pages, 4 figures, 18 tables; Github repository available (https://github.com/sashakolpakov/graphem/); Package available on PyPi (https://pypi.org/project/graphem-jax/)
♻ ☆ Universal on-chip polarization handling with deep photonic networks
We propose a novel design paradigm for arbitrarily capable deep photonic networks of cascaded Mach-Zehnder Interferometers (MZIs) for on-chip universal polarization handling. Using a device architecture made of cascaded Mach-Zehnder interferometers, we modify and train the phase difference between interferometer arms for both polarizations through wide operation bandwidths. Three proof-of-concept polarization handling devices are illustrated using a software-defined, physics-informed neural framework, to achieve user-specified target device responses as functions of polarization and wavelength. These devices include a polarization splitter, a polarization-independent power splitter, and an arbitrary polarization-dependent splitter to illustrate the capabilities of the design framework. The performance for all three devices is optimized using transfer matrix calculations; and their final responses are verified through 3D-FDTD simulations. All devices demonstrate state-of-the-art performance metrics with over 20 dB extinction, and flat-top transmission bands through bandwidths of 120 nm. In addition to the functional diversity enabled, the optimization for each device is completed in under a minute, highlighting the computational efficiency of the design paradigm presented. These results demonstrate the versatility of the deep photonic network design ecosystem in polarization management, unveiling promising prospects for advanced on-chip applications in optical communications, sensing, and computing.
♻ ☆ Rethinking Aleatoric and Epistemic Uncertainty ICML 2025
The ideas of aleatoric and epistemic uncertainty are widely used to reason about the probabilistic predictions of machine-learning models. We identify incoherence in existing discussions of these ideas and suggest this stems from the aleatoric-epistemic view being insufficiently expressive to capture all the distinct quantities that researchers are interested in. To address this we present a decision-theoretic perspective that relates rigorous notions of uncertainty, predictive performance and statistical dispersion in data. This serves to support clearer thinking as the field moves forward. Additionally we provide insights into popular information-theoretic quantities, showing they can be poor estimators of what they are often purported to measure, while also explaining how they can still be useful in guiding data acquisition.
comment: Published at ICML 2025
♻ ☆ Generative Modeling of Full-Atom Protein Conformations using Latent Diffusion on Graph Embeddings NeurIPS 2025
Generating diverse, all-atom conformational ensembles of dynamic proteins such as G-protein-coupled receptors (GPCRs) is critical for understanding their function, yet most generative models simplify atomic detail or ignore conformational diversity altogether. We present latent diffusion for full protein generation (LD-FPG), a framework that constructs complete all-atom protein structures, including every side-chain heavy atom, directly from molecular dynamics (MD) trajectories. LD-FPG employs a Chebyshev graph neural network (ChebNet) to obtain low-dimensional latent embeddings of protein conformations, which are processed using three pooling strategies: blind, sequential and residue-based. A diffusion model trained on these latent representations generates new samples that a decoder, optionally regularized by dihedral-angle losses, maps back to Cartesian coordinates. Using D2R-MD, a 2-microsecond MD trajectory (12 000 frames) of the human dopamine D2 receptor in a membrane environment, the sequential and residue-based pooling strategy reproduces the reference ensemble with high structural fidelity (all-atom lDDT of approximately 0.7; C-alpha-lDDT of approximately 0.8) and recovers backbone and side-chain dihedral-angle distributions with a Jensen-Shannon divergence of less than 0.03 compared to the MD data. LD-FPG thereby offers a practical route to system-specific, all-atom ensemble generation for large proteins, providing a promising tool for structure-based therapeutic design on complex, dynamic targets. The D2R-MD dataset and our implementation are freely available to facilitate further research.
comment: 10 pages (main text), 4 figures, 2 tables. Submitted to NeurIPS 2025. Code and data are publicly available
♻ ☆ Efficient Discovery of Motif Transition Process for Large-Scale Temporal Graphs
Understanding the dynamic transition of motifs in temporal graphs is essential for revealing how graph structures evolve over time, identifying critical patterns, and predicting future behaviors, yet existing methods often focus on predefined motifs, limiting their ability to comprehensively capture transitions and interrelationships. We propose a parallel motif transition process discovery algorithm, PTMT, a novel parallel method for discovering motif transition processes in large-scale temporal graphs. PTMT integrates a tree-based framework with the temporal zone partitioning (TZP) strategy, which partitions temporal graphs by time and structure while preserving lossless motif transitions and enabling massive parallelism. PTMT comprises three phases: growth zone parallel expansion, overlap-aware result aggregation, and deterministic encoding of motif transitions, ensuring accurate tracking of dynamic transitions and interactions. Results on 10 real-world datasets demonstrate that PTMT achieves speedups ranging from 12.0$\times$ to 50.3$\times$ compared to the SOTA method.
comment: Withdrawal requested due to unresolved technical issues: incomplete experimental validation, algorithmic inaccuracies, and erroneous figure representations. A corrected version may be resubmitted later
♻ ☆ From Intent to Execution: Multimodal Chain-of-Thought Reinforcement Learning for Precise CAD Code Generation
Computer-Aided Design (CAD) plays a vital role in engineering and manufacturing, yet current CAD workflows require extensive domain expertise and manual modeling effort. Recent advances in large language models (LLMs) have made it possible to generate code from natural language, opening new opportunities for automating parametric 3D modeling. However, directly translating human design intent into executable CAD code remains highly challenging, due to the need for logical reasoning, syntactic correctness, and numerical precision. In this work, we propose CAD-RL, a multimodal Chain-of-Thought (CoT) guided reinforcement learning post training framework for CAD modeling code generation. Our method combines CoT-based Cold Start with goal-driven reinforcement learning post training using three task-specific rewards: executability reward, geometric accuracy reward, and external evaluation reward. To ensure stable policy learning under sparse and high-variance reward conditions, we introduce three targeted optimization strategies: Trust Region Stretch for improved exploration, Precision Token Loss for enhanced dimensions parameter accuracy, and Overlong Filtering to reduce noisy supervision. To support training and benchmarking, we release ExeCAD, a noval dataset comprising 16,540 real-world CAD examples with paired natural language and structured design language descriptions, executable CADQuery scripts, and rendered 3D models. Experiments demonstrate that CAD-RL achieves significant improvements in reasoning quality, output precision, and code executability over existing VLMs.
♻ ☆ Deep Positive-Negative Prototypes for Adversarially Robust Discriminative Prototypical Learning
Despite the advantages of discriminative prototype-based methods, their role in adversarial robustness remains underexplored. Meanwhile, current adversarial training methods predominantly focus on robustness against adversarial attacks without explicitly leveraging geometric structures in the latent space, usually resulting in reduced accuracy on the original clean data. We propose a novel framework named Adversarially trained Deep Positive-Negative Prototypes (Adv-DPNP), which integrates discriminative prototype-based learning with adversarial training. Adv-DPNP uses unified class prototypes that serve as both classifier weights and robust anchors in the latent space. Moreover, a novel dual-branch training mechanism maintains stable prototypes by updating them exclusively with clean data, while the feature extractor is trained on both clean and adversarial inputs to increase invariance to adversarial perturbations. In addition, we use a composite loss that combines positive-prototype alignment, negative-prototype repulsion, and consistency regularization to further enhance discrimination, adversarial robustness, and clean accuracy. Extensive experiments on standard benchmarks (CIFAR-10/100 and SVHN) confirm that Adv-DPNP improves clean accuracy over state-of-the-art defenses and baseline methods, while maintaining competitive or superior robustness under a suite of widely used attacks, including FGSM, PGD, C\&W, and AutoAttack. We also evaluate robustness to common corruptions on CIFAR-10-C, where Adv-DPNP achieves the highest average accuracy across severities and corruption types. Additionally, we provide an in-depth analysis of the discriminative quality of the learned feature representations, highlighting the effectiveness of Adv-DPNP in maintaining compactness and clear separation in the latent space.
comment: This version substantially revises the manuscript, including a new title and updated experimental results
♻ ☆ State-Space Modeling in Long Sequence Processing: A Survey on Recurrence in the Transformer Era
Effectively learning from sequential data is a longstanding goal of Artificial Intelligence, especially in the case of long sequences. From the dawn of Machine Learning, several researchers have pursued algorithms and architectures capable of processing sequences of patterns, retaining information about past inputs while still leveraging future data, without losing precious long-term dependencies and correlations. While such an ultimate goal is inspired by the human hallmark of continuous real-time processing of sensory information, several solutions have simplified the learning paradigm by artificially limiting the processed context or dealing with sequences of limited length, given in advance. These solutions were further emphasized by the ubiquity of Transformers, which initially overshadowed the role of Recurrent Neural Nets. However, recurrent networks are currently experiencing a strong recent revival due to the growing popularity of (deep) State-Space models and novel instances of large-context Transformers, which are both based on recurrent computations that aim to go beyond several limits of currently ubiquitous technologies. The fast development of Large Language Models has renewed the interest in efficient solutions to process data over time. This survey provides an in-depth summary of the latest approaches that are based on recurrent models for sequential data processing. A complete taxonomy of recent trends in architectural and algorithmic solutions is reported and discussed, guiding researchers in this appealing research field. The emerging picture suggests that there is room for exploring novel routes, constituted by learning algorithms that depart from the standard Backpropagation Through Time, towards a more realistic scenario where patterns are effectively processed online, leveraging local-forward computations, and opening new directions for research on this topic.
comment: Currently under review
♻ ☆ Partially stochastic deep learning with uncertainty quantification for model predictive heating control
Improving the energy efficiency of building heating systems is crucial for reducing global energy consumption and greenhouse gas emissions. Traditional control methods rely on static heating curves that are based solely on outdoor temperature, neglecting system state measurements, such as indoor temperature, and free heat sources, such as solar gain. A more effective strategy is model predictive control (MPC), which optimizes heating control by incorporating system state predictions based on weather forecasts, among other factors. However, current industrial MPC solutions often employ simplified physics-inspired indoor temperature models, sacrificing accuracy for robustness and interpretability. To bridge this gap, we propose a partially stochastic deep learning (DL) architecture for building-specific indoor temperature modeling. Unlike most studies that evaluate model performance through simulations or limited test buildings, our experiments across a large dataset of 100 real-world buildings, covering various heating season conditions, demonstrate that the proposed model outperforms a widely used industrial physics-based model in predictive accuracy. The proposed DL architecture shows significant potential to improve thermal comfort and energy efficiency in heating MPC solutions. Although its computational cost is higher than that of the reference model, we discuss why this trade-off is manageable, even in large-scale applications. Unlike deterministic black-box approaches, the partially stochastic DL model offers a critical advantage by enabling pre-assessment of model feasibility through predictive uncertainty quantification. This work advances heating MPC, particularly for buildings with comprehensive datasets on their thermal behavior under various weather conditions.
♻ ☆ Hierarchical Multi-Agent Reinforcement Learning with Control Barrier Functions for Safety-Critical Autonomous Systems
We address the problem of safe policy learning in multi-agent safety-critical autonomous systems. In such systems, it is necessary for each agent to meet the safety requirements at all times while also cooperating with other agents to accomplish the task. Toward this end, we propose a safe Hierarchical Multi-Agent Reinforcement Learning (HMARL) approach based on Control Barrier Functions (CBFs). Our proposed hierarchical approach decomposes the overall reinforcement learning problem into two levels learning joint cooperative behavior at the higher level and learning safe individual behavior at the lower or agent level conditioned on the high-level policy. Specifically, we propose a skill-based HMARL-CBF algorithm in which the higher level problem involves learning a joint policy over the skills for all the agents and the lower-level problem involves learning policies to execute the skills safely with CBFs. We validate our approach on challenging environment scenarios whereby a large number of agents have to safely navigate through conflicting road networks. Compared with existing state of the art methods, our approach significantly improves the safety achieving near perfect (within 5%) success/safety rate while also improving performance across all the environments.
♻ ☆ Benchmarking Spectral Graph Neural Networks: A Comprehensive Study on Effectiveness and Efficiency
With recent advancements in graph neural networks (GNNs), spectral GNNs have received increasing popularity by virtue of their ability to retrieve graph signals in the spectral domain. These models feature uniqueness in efficient computation as well as rich expressiveness, which stems from advanced management and profound understanding of graph data. However, few systematic studies have been conducted to assess spectral GNNs, particularly in benchmarking their efficiency, memory consumption, and effectiveness in a unified and fair manner. There is also a pressing need to select spectral models suitable for learning specific graph data and deploying them to massive web-scale graphs, which is currently constrained by the varied model designs and training settings. In this work, we extensively benchmark spectral GNNs with a focus on the spectral perspective, demystifying them as spectral graph filters. We analyze and categorize 35 GNNs with 27 corresponding filters, spanning diverse formulations and utilizations of the graph data. Then, we implement the filters within a unified spectral-oriented framework with dedicated graph computations and efficient training schemes. In particular, our implementation enables the deployment of spectral GNNs over million-scale graphs and various tasks with comparable performance and less overhead. Thorough experiments are conducted on the graph filters with comprehensive metrics on effectiveness and efficiency, offering novel observations and practical guidelines that are only available from our evaluations across graph scales. Different from the prevailing belief, our benchmark reveals an intricate landscape regarding the effectiveness and efficiency of spectral graph filters, demonstrating the potential to achieve desirable performance through tailored spectral manipulation of graph data.
comment: Full Technical Report. Our code and evaluation is available at: https://github.com/gdmnl/Spectral-GNN-Benchmark
♻ ☆ AdaMuon: Adaptive Muon Optimizer
We propose AdaMuon, a novel optimizer that combines element-wise adaptivity with orthogonal updates for large-scale neural network training. AdaMuon incorporates two tightly coupled mechanisms: (1) an element-wise second momentum estimator applied to orthogonalized update directions, and (2) a sign-stabilized orthogonal update, where the momentum is first sign-transformed before orthogonalization. These two components jointly enable variance-adaptive scaling while maintaining stable update geometry. In addition, AdaMuon employs an RMS-aligned rescaling strategy to match the root-mean-square update magnitude to Adam, allowing direct reuse of existing learning rate schedules without extra tuning. Experiments demonstrate that AdaMuon not only maintains stability but can surpass Adam by more than 40% training efficiency in large-scale scenarios.
comment: Codes are available at https://github.com/Chongjie-Si/AdaMuon
♻ ☆ S2FGL: Spatial Spectral Federated Graph Learning
Federated Graph Learning (FGL) combines the privacy-preserving capabilities of federated learning (FL) with the strong graph modeling capability of Graph Neural Networks (GNNs). Current research addresses subgraph-FL from the structural perspective, neglecting the propagation of graph signals on spatial and spectral domains of the structure. From a spatial perspective, subgraph-FL introduces edge disconnections between clients, leading to disruptions in label signals and a degradation in the semantic knowledge of the global GNN. From a spectral perspective, spectral heterogeneity causes inconsistencies in signal frequencies across subgraphs, which makes local GNNs overfit the local signal propagation schemes. As a result, spectral client drift occurs, undermining global generalizability. To tackle the challenges, we propose a global knowledge repository to mitigate the challenge of poor semantic knowledge caused by label signal disruption. Furthermore, we design a frequency alignment to address spectral client drift. The combination of Spatial and Spectral strategies forms our framework S2FGL. Extensive experiments on multiple datasets demonstrate the superiority of S2FGL. The code is available at https://github.com/Wonder7racer/S2FGL.git.
♻ ☆ S2Cap: A Benchmark and a Baseline for Singing Style Captioning CIKM 2025
Singing voices contain much richer information than common voices, including varied vocal and acoustic properties. However, current open-source audio-text datasets for singing voices capture only a narrow range of attributes and lack acoustic features, leading to limited utility towards downstream tasks, such as style captioning. To fill this gap, we formally define the singing style captioning task and present S2Cap, a dataset of singing voices with detailed descriptions covering diverse vocal, acoustic, and demographic characteristics. Using this dataset, we develop an efficient and straightforward baseline algorithm for singing style captioning. The dataset is available at https://zenodo.org/records/15673764.
comment: CIKM 2025 Resource Paper
♻ ☆ Reverse Markov Learning: Multi-Step Generative Models for Complex Distributions
Learning complex distributions is a fundamental challenge in contemporary applications. Shen and Meinshausen (2024) introduced engression, a generative approach based on scoring rules that maps noise (and covariates, if available) directly to data. While effective, engression can struggle with highly complex distributions, such as those encountered in image data. In this work, we propose reverse Markov learning (RML), a framework that defines a general forward process transitioning from the target distribution to a known distribution (e.g., Gaussian) and then learns a reverse Markov process using multiple engression models. This reverse process reconstructs the target distribution step by step. This framework accommodates general forward processes, allows for dimension reduction, and naturally discretizes the generative process. In the special case of diffusion-based forward processes, RML provides an efficient discretization strategy for both training and inference in diffusion models. We further introduce an alternating sampling scheme to enhance post-training performance. Our statistical analysis establishes error bounds for RML and elucidates its advantages in estimation efficiency and flexibility in forward process design. Empirical results on simulated and climate data corroborate the theoretical findings, demonstrating the effectiveness of RML in capturing complex distributions.
♻ ☆ RIFT: Closed-Loop RL Fine-Tuning for Realistic and Controllable Traffic Simulation
Achieving both realism and controllability in closed-loop traffic simulation remains a key challenge in autonomous driving. Dataset-based methods reproduce realistic trajectories but suffer from covariate shift in closed-loop deployment, compounded by simplified dynamics models that further reduce reliability. Conversely, physics-based simulation methods enhance reliable and controllable closed-loop interactions but often lack expert demonstrations, compromising realism. To address these challenges, we introduce a dual-stage AV-centric simulation framework that conducts open-loop imitation learning pre-training in a data-driven simulator to capture trajectory-level realism and route-level controllability, followed by closed-loop reinforcement learning fine-tuning in a physics-based simulator to enhance style-level controllability and mitigate covariate shift. In the fine-tuning stage, we propose RIFT, a novel RL fine-tuning strategy that evaluates all candidate modalities through group-relative optimization with a dual-clip surrogate objective, enhancing style-level controllability and mitigating covariate shift, while preserving the trajectory-level realism and route-level controllability inherited from IL pre-training. Extensive experiments demonstrate that RIFT improves realism and controllability in traffic simulation while simultaneously exposing the limitations of modern AV systems in closed-loop evaluation. Project Page: https://currychen77.github.io/RIFT/
♻ ☆ Latent Plan Transformer for Trajectory Abstraction: Planning as Latent Space Inference
In tasks aiming for long-term returns, planning becomes essential. We study generative modeling for planning with datasets repurposed from offline reinforcement learning. Specifically, we identify temporal consistency in the absence of step-wise rewards as one key technical challenge. We introduce the Latent Plan Transformer (LPT), a novel model that leverages a latent variable to connect a Transformer-based trajectory generator and the final return. LPT can be learned with maximum likelihood estimation on trajectory-return pairs. In learning, posterior sampling of the latent variable naturally integrates sub-trajectories to form a consistent abstraction despite the finite context. At test time, the latent variable is inferred from an expected return before policy execution, realizing the idea of planning as inference. Our experiments demonstrate that LPT can discover improved decisions from sub-optimal trajectories, achieving competitive performance across several benchmarks, including Gym-Mujoco, Franka Kitchen, Maze2D, and Connect Four. It exhibits capabilities in nuanced credit assignments, trajectory stitching, and adaptation to environmental contingencies. These results validate that latent variable inference can be a strong alternative to step-wise reward prompting.
♻ ☆ Data-dependent and Oracle Bounds on Forgetting in Continual Learning
In continual learning, knowledge must be preserved and re-used between tasks, maintaining good transfer to future tasks and minimizing forgetting of previously learned ones. While several practical algorithms have been devised for this setting, there have been few theoretical works aiming to quantify and bound the degree of Forgetting in general settings. For \emph{exemplar-free} methods, we provide both data-dependent upper bounds that apply \emph{regardless of model and algorithm choice}, and oracle bounds for Gibbs posteriors. We derive an algorithm based on our bounds and demonstrate empirically that our approach yields tight and practical bounds on forgetting for several continual learning problems and algorithms.
♻ ☆ SpikeSTAG: Spatial-Temporal Forecasting via GNN-SNN Collaboration
Spiking neural networks (SNNs), inspired by the spiking behavior of biological neurons, offer a distinctive approach for capturing the complexities of temporal data. However, their potential for spatial modeling in multivariate time-series forecasting remains largely unexplored. To bridge this gap, we introduce a brand new SNN architecture, which is among the first to seamlessly integrate graph structural learning with spike-based temporal processing for multivariate time-series forecasting. Specifically, we first embed time features and an adaptive matrix, eliminating the need for predefined graph structures. We then further learn sequence features through the Observation (OBS) Block. Building upon this, our Multi-Scale Spike Aggregation (MSSA) hierarchically aggregates neighborhood information through spiking SAGE layers, enabling multi-hop feature extraction while eliminating the need for floating-point operations. Finally, we propose a Dual-Path Spike Fusion (DSF) Block to integrate spatial graph features and temporal dynamics via a spike-gated mechanism, combining LSTM-processed sequences with spiking self-attention outputs, effectively improve the model accuracy of long sequence datasets. Experiments show that our model surpasses the state-of-the-art SNN-based iSpikformer on all datasets and outperforms traditional temporal models at long horizons, thereby establishing a new paradigm for efficient spatial-temporal modeling.
comment: 9 pages, 4 figures
♻ ☆ TFB: Towards Comprehensive and Fair Benchmarking of Time Series Forecasting Methods VLDB 2024
Time series are generated in diverse domains such as economic, traffic, health, and energy, where forecasting of future values has numerous important applications. Not surprisingly, many forecasting methods are being proposed. To ensure progress, it is essential to be able to study and compare such methods empirically in a comprehensive and reliable manner. To achieve this, we propose TFB, an automated benchmark for Time Series Forecasting (TSF) methods. TFB advances the state-of-the-art by addressing shortcomings related to datasets, comparison methods, and evaluation pipelines: 1) insufficient coverage of data domains, 2) stereotype bias against traditional methods, and 3) inconsistent and inflexible pipelines. To achieve better domain coverage, we include datasets from 10 different domains: traffic, electricity, energy, the environment, nature, economic, stock markets, banking, health, and the web. We also provide a time series characterization to ensure that the selected datasets are comprehensive. To remove biases against some methods, we include a diverse range of methods, including statistical learning, machine learning, and deep learning methods, and we also support a variety of evaluation strategies and metrics to ensure a more comprehensive evaluations of different methods. To support the integration of different methods into the benchmark and enable fair comparisons, TFB features a flexible and scalable pipeline that eliminates biases. Next, we employ TFB to perform a thorough evaluation of 21 Univariate Time Series Forecasting (UTSF) methods on 8,068 univariate time series and 14 Multivariate Time Series Forecasting (MTSF) methods on 25 datasets. The benchmark code and data are available at https://github.com/decisionintelligence/TFB. We have also launched an online time series leaderboard: https://decisionintelligence.github.io/OpenTS/OpenTS-Bench/.
comment: Directly accepted by PVLDB 2024, VLDB Best Research Paper Award Nomination 2024
♻ ☆ SALSA-RL: Stability Analysis in the Latent Space of Actions for Reinforcement Learning
Modern deep reinforcement learning (DRL) methods have made significant advances in handling continuous action spaces. However, real-world control systems--especially those requiring precise and reliable performance--often demand interpretability in the sense of a-priori assessments of agent behavior to identify safe or failure-prone interactions with environments. To address this limitation, we propose SALSA-RL (Stability Analysis in the Latent Space of Actions), a novel RL framework that models control actions as dynamic, time-dependent variables evolving within a latent space. By employing a pre-trained encoder-decoder and a state-dependent linear system, our approach enables interpretability through local stability analysis, where instantaneous growth in action-norms can be predicted before their execution. We demonstrate that SALSA-RL can be deployed in a non-invasive manner for assessing the local stability of actions from pretrained RL agents without compromising on performance across diverse benchmark environments. By enabling a more interpretable analysis of action generation, SALSA-RL provides a powerful tool for advancing the design, analysis, and theoretical understanding of RL systems.
♻ ☆ Kernel Ridge Regression Inference
We provide uniform confidence bands for kernel ridge regression (KRR), a widely used nonparametric regression estimator for nonstandard data such as preferences, sequences, and graphs. Despite the prevalence of these data--e.g., student preferences in school matching mechanisms--the inferential theory of KRR is not fully known. We construct valid and sharp confidence sets that shrink at nearly the minimax rate, allowing nonstandard regressors. Our bootstrap procedure uses anti-symmetric multipliers for computational efficiency and for validity under mis-specification. We use the procedure to develop a test for match effects, i.e. whether students benefit more from the schools they rank highly.
♻ ☆ A Law of Next-Token Prediction in Large Language Models
Large language models (LLMs) have been widely employed across various application domains, yet their black-box nature poses significant challenges to understanding how these models process input data internally to make predictions. In this paper, we introduce a precise and quantitative law that governs the learning of contextualized token embeddings through intermediate layers in pre-trained LLMs for next-token prediction. Our findings reveal that each layer contributes equally to enhancing prediction accuracy, from the lowest to the highest layer -- a universal phenomenon observed across a diverse array of open-source LLMs, irrespective of their architectures or pre-training data. We demonstrate that this law offers new perspectives and actionable insights to inform and guide practices in LLM development and applications, including model scaling, pre-training tasks, and interpretation.
comment: Accepted at Physical Review Research
♻ ☆ Eigenspectrum Analysis of Neural Networks without Aspect Ratio Bias ICML 2025
Diagnosing deep neural networks (DNNs) by analyzing the eigenspectrum of their weights has been an active area of research in recent years. One of the main approaches involves measuring the heavytailness of the empirical spectral densities (ESDs) of weight matrices. This analysis has been shown to provide insights to help diagnose whether a model is well-trained or undertrained, and has been used to guide training methods involving layer-wise hyperparameter assignment. In this paper, we address an often-overlooked challenge in estimating the heavytailness of these ESDs: the impact of the aspect ratio of weight matrices. We demonstrate that matrices of varying sizes (and aspect ratios) introduce a non-negligible bias in estimating the heavytailness of ESDs, leading to inaccurate model diagnosis and layer-wise hyperparameter assignment. To overcome this challenge, we propose FARMS (Fixed-Aspect-Ratio Matrix Subsampling), a method that normalizes the weight matrices by subsampling submatrices with a fixed aspect ratio. Instead of measuring the heavytailness of the original ESD, we measure the average ESD of these subsampled submatrices. We show that this method effectively mitigates the aspect ratio bias. We validate our approach across various optimization techniques and application domains that involve eigenspectrum analysis of weights, including image classification in computer vision (CV) models, scientific machine learning (SciML) model training, and large language model (LLM) pruning. Our results show that despite its simplicity, FARMS uniformly improves the accuracy of eigenspectrum analysis while enabling more effective layer-wise hyperparameter assignment. In one of the LLM pruning experiments, FARMS reduces the perplexity of the LLaMA-7B model by 17.3% when compared with state-of-the-art methods.
comment: 29 pages, 14 figures, ICML 2025
♻ ☆ HQ-OV3D: A High Box Quality Open-World 3D Detection Framework based on Diffision Model
Traditional closed-set 3D detection frameworks fail to meet the demands of open-world applications like autonomous driving. Existing open-vocabulary 3D detection methods typically adopt a two-stage pipeline consisting of pseudo-label generation followed by semantic alignment. While vision-language models (VLMs) recently have dramatically improved the semantic accuracy of pseudo-labels, their geometric quality, particularly bounding box precision, remains commonly neglected. To address this issue, we propose a High Box Quality Open-Vocabulary 3D Detection (HQ-OV3D) framework, dedicated to generate and refine high-quality pseudo-labels for open-vocabulary classes. The framework comprises two key components: an Intra-Modality Cross-Validated (IMCV) Proposal Generator that utilizes cross-modality geometric consistency to generate high-quality initial 3D proposals, and an Annotated-Class Assisted (ACA) Denoiser that progressively refines 3D proposals by leveraging geometric priors from annotated categories through a DDIM-based denoising mechanism. Compared to the state-of-the-art method, training with pseudo-labels generated by our approach achieves a 7.37% improvement in mAP on novel classes, demonstrating the superior quality of the pseudo-labels produced by our framework. HQ-OV3D can serve not only as a strong standalone open-vocabulary 3D detector but also as a plug-in high-quality pseudo-label generator for existing open-vocabulary detection or annotation pipelines.
♻ ☆ MAGIK: Mapping to Analogous Goals via Imagination-enabled Knowledge Transfer
Humans excel at analogical reasoning - applying knowledge from one task to a related one with minimal relearning. In contrast, reinforcement learning (RL) agents typically require extensive retraining even when new tasks share structural similarities with previously learned ones. In this work, we propose MAGIK, a novel framework that enables RL agents to transfer knowledge to analogous tasks without interacting with the target environment. Our approach leverages an imagination mechanism to map entities in the target task to their analogues in the source domain, allowing the agent to reuse its original policy. Experiments on custom MiniGrid and MuJoCo tasks show that MAGIK achieves effective zero-shot transfer using only a small number of human-labelled examples. We compare our approach to related baselines and highlight how it offers a novel and effective mechanism for knowledge transfer via imagination-based analogy mapping.
♻ ☆ Accurate Measles Rash Detection via Vision Transformer Fine-Tuning
Measles, a highly contagious disease declared eliminated in the United States in 2000 after decades of successful vaccination campaigns, resurged in 2025, with 1,356 confirmed cases reported as of August 5, 2025. Given its rapid spread among susceptible individuals, fast and reliable diagnostic systems are critical for early prevention and containment. In this work, we applied transfer learning to fine-tune a pretrained Data-efficient Image Transformer (DeiT) model for distinguishing measles rashes from other skin conditions. After tuning the classification head on a diverse, curated skin rash image dataset, the DeiT model achieved an average classification accuracy of 95.17%, precision of 95.06%, recall of 95.17%, and an F1-score of 95.03%, demonstrating high effectiveness in accurate measles detection to aid outbreak control. We also compared the DeiT model with a convolutional neural network and discussed the directions for future research.
Graphics 4
☆ MixCache: Mixture-of-Cache for Video Diffusion Transformer Acceleration
Leveraging the Transformer architecture and the diffusion process, video DiT models have emerged as a dominant approach for high-quality video generation. However, their multi-step iterative denoising process incurs high computational cost and inference latency. Caching, a widely adopted optimization method in DiT models, leverages the redundancy in the diffusion process to skip computations in different granularities (e.g., step, cfg, block). Nevertheless, existing caching methods are limited to single-granularity strategies, struggling to balance generation quality and inference speed in a flexible manner. In this work, we propose MixCache, a training-free caching-based framework for efficient video DiT inference. It first distinguishes the interference and boundary between different caching strategies, and then introduces a context-aware cache triggering strategy to determine when caching should be enabled, along with an adaptive hybrid cache decision strategy for dynamically selecting the optimal caching granularity. Extensive experiments on diverse models demonstrate that, MixCache can significantly accelerate video generation (e.g., 1.94$\times$ speedup on Wan 14B, 1.97$\times$ speedup on HunyuanVideo) while delivering both superior generation quality and inference efficiency compared to baseline methods.
comment: 7 pages, 10 figures
♻ ☆ Casual3DHDR: Deblurring High Dynamic Range 3D Gaussian Splatting from Casually Captured Videos
Photo-realistic novel view synthesis from multi-view images, such as neural radiance field (NeRF) and 3D Gaussian Splatting (3DGS), has gained significant attention for its superior performance. However, most existing methods rely on low dynamic range (LDR) images, limiting their ability to capture detailed scenes in high-contrast environments. While some prior works address high dynamic range (HDR) scene reconstruction, they typically require multi-view sharp images with varying exposure times captured at fixed camera positions, which is time-consuming and impractical. To make data acquisition more flexible, we propose \textbf{Casual3DHDR}, a robust one-stage method that reconstructs 3D HDR scenes from casually-captured auto-exposure (AE) videos, even under severe motion blur and unknown, varying exposure times. Our approach integrates a continuous-time camera trajectory into a unified physical imaging model, jointly optimizing exposure times, camera trajectory, and the camera response function (CRF). Extensive experiments on synthetic and real-world datasets demonstrate that \textbf{Casual3DHDR} outperforms existing methods in robustness and rendering quality. Our source code and dataset will be available at https://lingzhezhao.github.io/CasualHDRSplat/
comment: Accepted to ACM Multimedia 2025. Project page: https://lingzhezhao.github.io/CasualHDRSplat/
♻ ☆ HOI-Brain: a novel multi-channel transformers framework for brain disorder diagnosis by accurately extracting signed higher-order interactions from fMRI
Accurately characterizing higher-order interactions of brain regions and extracting interpretable organizational patterns from Functional Magnetic Resonance Imaging data is crucial for brain disease diagnosis. Current graph-based deep learning models primarily focus on pairwise or triadic patterns while neglecting signed higher-order interactions, limiting comprehensive understanding of brain-wide communication. We propose HOI-Brain, a novel computational framework leveraging signed higher-order interactions and organizational patterns in fMRI data for brain disease diagnosis. First, we introduce a co-fluctuation measure based on Multiplication of Temporal Derivatives to detect higher-order interactions with temporal resolution. We then distinguish positive and negative synergistic interactions, encoding them in signed weighted simplicial complexes to reveal brain communication insights. Using Persistent Homology theory, we apply two filtration processes to these complexes to extract signed higher-dimensional neural organizations spatiotemporally. Finally, we propose a multi-channel brain Transformer to integrate heterogeneous topological features. Experiments on Alzheimer' s disease, Parkinson' s syndrome, and autism spectrum disorder datasets demonstrate our framework' s superiority, effectiveness, and interpretability. The identified key brain regions and higher-order patterns align with neuroscience literature, providing meaningful biological insights.
♻ ☆ WIR3D: Visually-Informed and Geometry-Aware 3D Shape Abstraction ICCV 2025
In this work we present WIR3D, a technique for abstracting 3D shapes through a sparse set of visually meaningful curves in 3D. We optimize the parameters of Bezier curves such that they faithfully represent both the geometry and salient visual features (e.g. texture) of the shape from arbitrary viewpoints. We leverage the intermediate activations of a pre-trained foundation model (CLIP) to guide our optimization process. We divide our optimization into two phases: one for capturing the coarse geometry of the shape, and the other for representing fine-grained features. Our second phase supervision is spatially guided by a novel localized keypoint loss. This spatial guidance enables user control over abstracted features. We ensure fidelity to the original surface through a neural SDF loss, which allows the curves to be used as intuitive deformation handles. We successfully apply our method for shape abstraction over a broad dataset of shapes with varying complexity, geometric structure, and texture, and demonstrate downstream applications for feature control and shape deformation.
comment: ICCV 2025 Oral Project page: https://threedle.github.io/wir3d/
Computer Vision and Pattern Recognition 69
☆ Toward Architecture-Agnostic Local Control of Posterior Collapse in VAEs
Variational autoencoders (VAEs), one of the most widely used generative models, are known to suffer from posterior collapse, a phenomenon that reduces the diversity of generated samples. To avoid posterior collapse, many prior works have tried to control the influence of regularization loss. However, the trade-off between reconstruction and regularization is not satisfactory. For this reason, several methods have been proposed to guarantee latent identifiability, which is the key to avoiding posterior collapse. However, they require structural constraints on the network architecture. For further clarification, we define local posterior collapse to reflect the importance of individual sample points in the data space and to relax the network constraint. Then, we propose Latent Reconstruction(LR) loss, which is inspired by mathematical properties of injective and composite functions, to control posterior collapse without restriction to a specific architecture. We experimentally evaluate our approach, which controls posterior collapse on varied datasets such as MNIST, fashionMNIST, Omniglot, CelebA, and FFHQ.
comment: 8 pages, 6 figures
☆ MuSACo: Multimodal Subject-Specific Selection and Adaptation for Expression Recognition with Co-Training
Personalized expression recognition (ER) involves adapting a machine learning model to subject-specific data for improved recognition of expressions with considerable interpersonal variability. Subject-specific ER can benefit significantly from multi-source domain adaptation (MSDA) methods, where each domain corresponds to a specific subject, to improve model accuracy and robustness. Despite promising results, state-of-the-art MSDA approaches often overlook multimodal information or blend sources into a single domain, limiting subject diversity and failing to explicitly capture unique subject-specific characteristics. To address these limitations, we introduce MuSACo, a multi-modal subject-specific selection and adaptation method for ER based on co-training. It leverages complementary information across multiple modalities and multiple source domains for subject-specific adaptation. This makes MuSACo particularly relevant for affective computing applications in digital health, such as patient-specific assessment for stress or pain, where subject-level nuances are crucial. MuSACo selects source subjects relevant to the target and generates pseudo-labels using the dominant modality for class-aware learning, in conjunction with a class-agnostic loss to learn from less confident target samples. Finally, source features from each modality are aligned, while only confident target features are combined. Our experimental results on challenging multimodal ER datasets: BioVid and StressID, show that MuSACo can outperform UDA (blending) and state-of-the-art MSDA methods.
☆ An Initial Study of Bird's-Eye View Generation for Autonomous Vehicles using Cross-View Transformers
Bird's-Eye View (BEV) maps provide a structured, top-down abstraction that is crucial for autonomous-driving perception. In this work, we employ Cross-View Transformers (CVT) for learning to map camera images to three BEV's channels - road, lane markings, and planned trajectory - using a realistic simulator for urban driving. Our study examines generalization to unseen towns, the effect of different camera layouts, and two loss formulations (focal and L1). Using training data from only a town, a four-camera CVT trained with the L1 loss delivers the most robust test performance, evaluated in a new town. Overall, our results underscore CVT's promise for mapping camera inputs to reasonably accurate BEV maps.
comment: 12 pages,submitted in ENIAC 2025
☆ LangVision-LoRA-NAS: Neural Architecture Search for Variable LoRA Rank in Vision Language Models ICIP 2025
Vision Language Models (VLMs) integrate visual and text modalities to enable multimodal understanding and generation. These models typically combine a Vision Transformer (ViT) as an image encoder and a Large Language Model (LLM) for text generation. LoRA (Low-Rank Adaptation) is an efficient fine-tuning method to adapt pre-trained models to new tasks by introducing low-rank updates to their weights. While LoRA has emerged as a powerful technique for fine-tuning large models by introducing low-rank updates, current implementations assume a fixed rank, potentially limiting flexibility and efficiency across diverse tasks. This paper introduces \textit{LangVision-LoRA-NAS}, a novel framework that integrates Neural Architecture Search (NAS) with LoRA to optimize VLMs for variable-rank adaptation. Our approach leverages NAS to dynamically search for the optimal LoRA rank configuration tailored to specific multimodal tasks, balancing performance and computational efficiency. Through extensive experiments using the LLaMA-3.2-11B model on several datasets, LangVision-LoRA-NAS demonstrates notable improvement in model performance while reducing fine-tuning costs. Our Base and searched fine-tuned models on LLaMA-3.2-11B-Vision-Instruct can be found \href{https://huggingface.co/collections/krishnateja95/llama-32-11b-vision-instruct-langvision-lora-nas-6786cac480357a6a6fcc59ee}{\textcolor{blue}{here}} and the code for LangVision-LoRA-NAS can be found \href{https://github.com/krishnateja95/LangVision-NAS}{\textcolor{blue}{here}}.
comment: Accepted by ICIP 2025 Conference
☆ Segmenting Thalamic Nuclei: T1 Maps Provide a Reliable and Efficient Solution
Accurate thalamic nuclei segmentation is crucial for understanding neurological diseases, brain functions, and guiding clinical interventions. However, the optimal inputs for segmentation remain unclear. This study systematically evaluates multiple MRI contrasts, including MPRAGE and FGATIR sequences, quantitative PD and T1 maps, and multiple T1-weighted images at different inversion times (multi-TI), to determine the most effective inputs. For multi-TI images, we employ a gradient-based saliency analysis with Monte Carlo dropout and propose an Overall Importance Score to select the images contributing most to segmentation. A 3D U-Net is trained on each of these configurations. Results show that T1 maps alone achieve strong quantitative performance and superior qualitative outcomes, while PD maps offer no added value. These findings underscore the value of T1 maps as a reliable and efficient input among the evaluated options, providing valuable guidance for optimizing imaging protocols when thalamic structures are of clinical or research interest.
☆ Design and Validation of a Responsible Artificial Intelligence-based System for the Referral of Diabetic Retinopathy Patients
Diabetic Retinopathy (DR) is a leading cause of vision loss in working-age individuals. Early detection of DR can reduce the risk of vision loss by up to 95%, but a shortage of retinologists and challenges in timely examination complicate detection. Artificial Intelligence (AI) models using retinal fundus photographs (RFPs) offer a promising solution. However, adoption in clinical settings is hindered by low-quality data and biases that may lead AI systems to learn unintended features. To address these challenges, we developed RAIS-DR, a Responsible AI System for DR screening that incorporates ethical principles across the AI lifecycle. RAIS-DR integrates efficient convolutional models for preprocessing, quality assessment, and three specialized DR classification models. We evaluated RAIS-DR against the FDA-approved EyeArt system on a local dataset of 1,046 patients, unseen by both systems. RAIS-DR demonstrated significant improvements, with F1 scores increasing by 5-12%, accuracy by 6-19%, and specificity by 10-20%. Additionally, fairness metrics such as Disparate Impact and Equal Opportunity Difference indicated equitable performance across demographic subgroups, underscoring RAIS-DR's potential to reduce healthcare disparities. These results highlight RAIS-DR as a robust and ethically aligned solution for DR screening in clinical settings. The code, weights of RAIS-DR are available at https://gitlab.com/inteligencia-gubernamental-jalisco/jalisco-retinopathy with RAIL.
comment: 14 pages,3 figures, under review
☆ Skin Cancer Classification: Hybrid CNN-Transformer Models with KAN-Based Fusion
Skin cancer classification is a crucial task in medical image analysis, where precise differentiation between malignant and non-malignant lesions is essential for early diagnosis and treatment. In this study, we explore Sequential and Parallel Hybrid CNN-Transformer models with Convolutional Kolmogorov-Arnold Network (CKAN). Our approach integrates transfer learning and extensive data augmentation, where CNNs extract local spatial features, Transformers model global dependencies, and CKAN facilitates nonlinear feature fusion for improved representation learning. To assess generalization, we evaluate our models on multiple benchmark datasets (HAM10000,BCN20000 and PAD-UFES) under varying data distributions and class imbalances. Experimental results demonstrate that hybrid CNN-Transformer architectures effectively capture both spatial and contextual features, leading to improved classification performance. Additionally, the integration of CKAN enhances feature fusion through learnable activation functions, yielding more discriminative representations. Our proposed approach achieves competitive performance in skin cancer classification, demonstrating 92.81% accuracy and 92.47% F1-score on the HAM10000 dataset, 97.83% accuracy and 97.83% F1-score on the PAD-UFES dataset, and 91.17% accuracy with 91.79% F1- score on the BCN20000 dataset highlighting the effectiveness and generalizability of our model across diverse datasets. This study highlights the significance of feature representation and model design in advancing robust and accurate medical image classification.
☆ Standardization of Neuromuscular Reflex Analysis -- Role of Fine-Tuned Vision-Language Model Consortium and OpenAI gpt-oss Reasoning LLM Enabled Decision Support System
Accurate assessment of neuromuscular reflexes, such as the H-reflex, plays a critical role in sports science, rehabilitation, and clinical neurology. Traditional analysis of H-reflex EMG waveforms is subject to variability and interpretation bias among clinicians and researchers, limiting reliability and standardization. To address these challenges, we propose a Fine-Tuned Vision-Language Model (VLM) Consortium and a reasoning Large-Language Model (LLM)-enabled Decision Support System for automated H-reflex waveform interpretation and diagnosis. Our approach leverages multiple VLMs, each fine-tuned on curated datasets of H-reflex EMG waveform images annotated with clinical observations, recovery timelines, and athlete metadata. These models are capable of extracting key electrophysiological features and predicting neuromuscular states, including fatigue, injury, and recovery, directly from EMG images and contextual metadata. Diagnostic outputs from the VLM consortium are aggregated using a consensus-based method and refined by a specialized reasoning LLM, which ensures robust, transparent, and explainable decision support for clinicians and sports scientists. The end-to-end platform orchestrates seamless communication between the VLM ensemble and the reasoning LLM, integrating prompt engineering strategies and automated reasoning workflows using LLM Agents. Experimental results demonstrate that this hybrid system delivers highly accurate, consistent, and interpretable H-reflex assessments, significantly advancing the automation and standardization of neuromuscular diagnostics. To our knowledge, this work represents the first integration of a fine-tuned VLM consortium with a reasoning LLM for image-based H-reflex analysis, laying the foundation for next-generation AI-assisted neuromuscular assessment and athlete monitoring platforms.
☆ Mechanical Automation with Vision: A Design for Rubik's Cube Solver
The core mechanical system is built around three stepper motors for physical manipulation, a microcontroller for hardware control, a camera and YOLO detection model for real-time cube state detection. A significant software component is the development of a user-friendly graphical user interface (GUI) designed in Unity. The initial state after detection from real-time YOLOv8 model (Precision 0.98443, Recall 0.98419, Box Loss 0.42051, Class Loss 0.2611) is virtualized on GUI. To get the solution, the system employs the Kociemba's algorithm while physical manipulation with a single degree of freedom is done by combination of stepper motors' interaction with the cube achieving the average solving time of ~2.2 minutes.
comment: Presented at the 15th IOE Graduate Conference, Tribhuvan University, May 2024. Original paper available at https://conference.ioe.edu.np/publications/ioegc15/IOEGC-15-023-C1-2-42.pdf
☆ Inverse-LLaVA: Eliminating Alignment Pre-training Through Text-to-Vision Mapping
Traditional multimodal learning approaches require expensive alignment pre-training to bridge vision and language modalities, typically projecting visual features into discrete text token spaces. We challenge both fundamental assumptions underlying this paradigm by proposing Inverse-LLaVA, a novel approach that eliminates alignment pre-training entirely while inverting the conventional mapping direction. Rather than projecting visual features to text space, our method maps text embeddings into continuous visual representation space and performs fusion within transformer intermediate layers. Through selective additive components in attention mechanisms, we enable dynamic integration of visual and textual representations without requiring massive image-text alignment datasets. Comprehensive experiments across nine multimodal benchmarks demonstrate nuanced performance trade-offs: Inverse-LLaVA achieves notable improvements on reasoning-intensive and cognitive tasks (MM-VET: +0.2%, VizWiz: +1.8%, ScienceQA: +0.2%, cognitive reasoning: +27.2%), while showing expected decreases in perception tasks requiring memorized visual-text associations (celebrity recognition: -49.5%, OCR: -21.3%). These results provide the first empirical evidence that alignment pre-training is not necessary for effective multimodal learning, particularly for complex reasoning tasks. Our work establishes the feasibility of a new paradigm that reduces computational requirements by 45%, challenges conventional wisdom about modality fusion, and opens new research directions for efficient multimodal architectures that preserve modality-specific characteristics. Our project website with code and additional resources is available at https://inverse-llava.github.io.
comment: 15pages, 3 figures
☆ X-Ray-CoT: Interpretable Chest X-ray Diagnosis with Vision-Language Models via Chain-of-Thought Reasoning
Chest X-ray imaging is crucial for diagnosing pulmonary and cardiac diseases, yet its interpretation demands extensive clinical experience and suffers from inter-observer variability. While deep learning models offer high diagnostic accuracy, their black-box nature hinders clinical adoption in high-stakes medical settings. To address this, we propose X-Ray-CoT (Chest X-Ray Chain-of-Thought), a novel framework leveraging Vision-Language Large Models (LVLMs) for intelligent chest X-ray diagnosis and interpretable report generation. X-Ray-CoT simulates human radiologists' "chain-of-thought" by first extracting multi-modal features and visual concepts, then employing an LLM-based component with a structured Chain-of-Thought prompting strategy to reason and produce detailed natural language diagnostic reports. Evaluated on the CORDA dataset, X-Ray-CoT achieves competitive quantitative performance, with a Balanced Accuracy of 80.52% and F1 score of 78.65% for disease diagnosis, slightly surpassing existing black-box models. Crucially, it uniquely generates high-quality, explainable reports, as validated by preliminary human evaluations. Our ablation studies confirm the integral role of each proposed component, highlighting the necessity of multi-modal fusion and CoT reasoning for robust and transparent medical AI. This work represents a significant step towards trustworthy and clinically actionable AI systems in medical imaging.
☆ FractMorph: A Fractional Fourier-Based Multi-Domain Transformer for Deformable Image Registration
Deformable image registration (DIR) is a crucial and challenging technique for aligning anatomical structures in medical images and is widely applied in diverse clinical applications. However, existing approaches often struggle to capture fine-grained local deformations and large-scale global deformations simultaneously within a unified framework. We present FractMorph, a novel 3D dual-parallel transformer-based architecture that enhances cross-image feature matching through multi-domain fractional Fourier transform (FrFT) branches. Each Fractional Cross-Attention (FCA) block applies parallel FrFTs at fractional angles of 0{\deg}, 45{\deg}, 90{\deg}, along with a log-magnitude branch, to effectively extract local, semi-global, and global features at the same time. These features are fused via cross-attention between the fixed and moving image streams. A lightweight U-Net style network then predicts a dense deformation field from the transformer-enriched features. On the ACDC cardiac MRI dataset, FractMorph achieves state-of-the-art performance with an overall Dice Similarity Coefficient (DSC) of 86.45%, an average per-structure DSC of 75.15%, and a 95th-percentile Hausdorff distance (HD95) of 1.54 mm on our data split. We also introduce FractMorph-Light, a lightweight variant of our model with only 29.6M parameters, which maintains the superior accuracy of the main model while using approximately half the memory. Our results demonstrate that multi-domain spectral-spatial attention in transformers can robustly and efficiently model complex non-rigid deformations in medical images using a single end-to-end network, without the need for scenario-specific tuning or hierarchical multi-scale networks. The source code of our implementation is available at https://github.com/shayankebriti/FractMorph.
☆ Express4D: Expressive, Friendly, and Extensible 4D Facial Motion Generation Benchmark
Dynamic facial expression generation from natural language is a crucial task in Computer Graphics, with applications in Animation, Virtual Avatars, and Human-Computer Interaction. However, current generative models suffer from datasets that are either speech-driven or limited to coarse emotion labels, lacking the nuanced, expressive descriptions needed for fine-grained control, and were captured using elaborate and expensive equipment. We hence present a new dataset of facial motion sequences featuring nuanced performances and semantic annotation. The data is easily collected using commodity equipment and LLM-generated natural language instructions, in the popular ARKit blendshape format. This provides riggable motion, rich with expressive performances and labels. We accordingly train two baseline models, and evaluate their performance for future benchmarking. Using our Express4D dataset, the trained models can learn meaningful text-to-expression motion generation and capture the many-to-many mapping of the two modalities. The dataset, code, and video examples are available on our webpage: https://jaron1990.github.io/Express4D/
☆ Adversarial Attacks on VQA-NLE: Exposing and Alleviating Inconsistencies in Visual Question Answering Explanations
Natural language explanations in visual question answering (VQA-NLE) aim to make black-box models more transparent by elucidating their decision-making processes. However, we find that existing VQA-NLE systems can produce inconsistent explanations and reach conclusions without genuinely understanding the underlying context, exposing weaknesses in either their inference pipeline or explanation-generation mechanism. To highlight these vulnerabilities, we not only leverage an existing adversarial strategy to perturb questions but also propose a novel strategy that minimally alters images to induce contradictory or spurious outputs. We further introduce a mitigation method that leverages external knowledge to alleviate these inconsistencies, thereby bolstering model robustness. Extensive evaluations on two standard benchmarks and two widely used VQA-NLE models underscore the effectiveness of our attacks and the potential of knowledge-based defenses, ultimately revealing pressing security and reliability concerns in current VQA-NLE systems.
☆ Illusions in Humans and AI: How Visual Perception Aligns and Diverges
By comparing biological and artificial perception through the lens of illusions, we highlight critical differences in how each system constructs visual reality. Understanding these divergences can inform the development of more robust, interpretable, and human-aligned artificial intelligence (AI) vision systems. In particular, visual illusions expose how human perception is based on contextual assumptions rather than raw sensory data. As artificial vision systems increasingly perform human-like tasks, it is important to ask: does AI experience illusions, too? Does it have unique illusions? This article explores how AI responds to classic visual illusions that involve color, size, shape, and motion. We find that some illusion-like effects can emerge in these models, either through targeted training or as by-products of pattern recognition. In contrast, we also identify illusions unique to AI, such as pixel-level sensitivity and hallucinations, that lack human counterparts. By systematically comparing human and AI responses to visual illusions, we uncover alignment gaps and AI-specific perceptual vulnerabilities invisible to human perception. These findings provide insights for future research on vision systems that preserve human-beneficial perceptual biases while avoiding distortions that undermine trust and safety.
☆ TiP4GEN: Text to Immersive Panorama 4D Scene Generation
With the rapid advancement and widespread adoption of VR/AR technologies, there is a growing demand for the creation of high-quality, immersive dynamic scenes. However, existing generation works predominantly concentrate on the creation of static scenes or narrow perspective-view dynamic scenes, falling short of delivering a truly 360-degree immersive experience from any viewpoint. In this paper, we introduce \textbf{TiP4GEN}, an advanced text-to-dynamic panorama scene generation framework that enables fine-grained content control and synthesizes motion-rich, geometry-consistent panoramic 4D scenes. TiP4GEN integrates panorama video generation and dynamic scene reconstruction to create 360-degree immersive virtual environments. For video generation, we introduce a \textbf{Dual-branch Generation Model} consisting of a panorama branch and a perspective branch, responsible for global and local view generation, respectively. A bidirectional cross-attention mechanism facilitates comprehensive information exchange between the branches. For scene reconstruction, we propose a \textbf{Geometry-aligned Reconstruction Model} based on 3D Gaussian Splatting. By aligning spatial-temporal point clouds using metric depth maps and initializing scene cameras with estimated poses, our method ensures geometric consistency and temporal coherence for the reconstructed scenes. Extensive experiments demonstrate the effectiveness of our proposed designs and the superiority of TiP4GEN in generating visually compelling and motion-coherent dynamic panoramic scenes. Our project page is at https://ke-xing.github.io/TiP4GEN/.
☆ S5: Scalable Semi-Supervised Semantic Segmentation in Remote Sensing
Semi-supervised semantic segmentation (S4) has advanced remote sensing (RS) analysis by leveraging unlabeled data through pseudo-labeling and consistency learning. However, existing S4 studies often rely on small-scale datasets and models, limiting their practical applicability. To address this, we propose S5, the first scalable framework for semi-supervised semantic segmentation in RS, which unlocks the potential of vast unlabeled Earth observation data typically underutilized due to costly pixel-level annotations. Built upon existing large-scale RS datasets, S5 introduces a data selection strategy that integrates entropy-based filtering and diversity expansion, resulting in the RS4P-1M dataset. Using this dataset, we systematically scales S4 methods by pre-training RS foundation models (RSFMs) of varying sizes on this extensive corpus, significantly boosting their performance on land cover segmentation and object detection tasks. Furthermore, during fine-tuning, we incorporate a Mixture-of-Experts (MoE)-based multi-dataset fine-tuning approach, which enables efficient adaptation to multiple RS benchmarks with fewer parameters. This approach improves the generalization and versatility of RSFMs across diverse RS benchmarks. The resulting RSFMs achieve state-of-the-art performance across all benchmarks, underscoring the viability of scaling semi-supervised learning for RS applications. All datasets, code, and models will be released at https://github.com/MiliLab/S5
☆ LMAD: Integrated End-to-End Vision-Language Model for Explainable Autonomous Driving
Large vision-language models (VLMs) have shown promising capabilities in scene understanding, enhancing the explainability of driving behaviors and interactivity with users. Existing methods primarily fine-tune VLMs on on-board multi-view images and scene reasoning text, but this approach often lacks the holistic and nuanced scene recognition and powerful spatial awareness required for autonomous driving, especially in complex situations. To address this gap, we propose a novel vision-language framework tailored for autonomous driving, called LMAD. Our framework emulates modern end-to-end driving paradigms by incorporating comprehensive scene understanding and a task-specialized structure with VLMs. In particular, we introduce preliminary scene interaction and specialized expert adapters within the same driving task structure, which better align VLMs with autonomous driving scenarios. Furthermore, our approach is designed to be fully compatible with existing VLMs while seamlessly integrating with planning-oriented driving systems. Extensive experiments on the DriveLM and nuScenes-QA datasets demonstrate that LMAD significantly boosts the performance of existing VLMs on driving reasoning tasks,setting a new standard in explainable autonomous driving.
comment: 7 pages, 4 figures,
☆ MPCAR: Multi-Perspective Contextual Augmentation for Enhanced Visual Reasoning in Large Vision-Language Models
Despite significant advancements, Large Vision-Language Models (LVLMs) continue to face challenges in complex visual reasoning tasks that demand deep contextual understanding, multi-angle analysis, or meticulous detail recognition. Existing approaches often rely on single-shot image encoding and prompts, limiting their ability to fully capture nuanced visual information. Inspired by the notion that strategically generated "additional" information can serve as beneficial contextual augmentation, we propose Multi-Perspective Contextual Augmentation for Reasoning (MPCAR), a novel inference-time strategy designed to enhance LVLM performance. MPCAR operates in three stages: first, an LVLM generates N diverse and complementary descriptions or preliminary reasoning paths from various angles; second, these descriptions are intelligently integrated with the original question to construct a comprehensive context-augmented prompt; and finally, this enriched prompt guides the ultimate LVLM for deep reasoning and final answer generation. Crucially, MPCAR achieves these enhancements without requiring any fine-tuning of the underlying LVLM's parameters. Extensive experiments on challenging Visual Question Answering (VQA) datasets, including GQA, VQA-CP v2, and ScienceQA (Image-VQA), demonstrate that MPCAR consistently outperforms established baseline methods. Our quantitative results show significant accuracy gains, particularly on tasks requiring robust contextual understanding, while human evaluations confirm improved coherence and completeness of the generated answers. Ablation studies further highlight the importance of diverse prompt templates and the number of generated perspectives. This work underscores the efficacy of leveraging LVLMs' inherent generative capabilities to enrich input contexts, thereby unlocking their latent reasoning potential for complex multimodal tasks.
☆ Federated Cross-Modal Style-Aware Prompt Generation
Prompt learning has propelled vision-language models like CLIP to excel in diverse tasks, making them ideal for federated learning due to computational efficiency. However, conventional approaches that rely solely on final-layer features miss out on rich multi-scale visual cues and domain-specific style variations in decentralized client data. To bridge this gap, we introduce FedCSAP (Federated Cross-Modal Style-Aware Prompt Generation). Our framework harnesses low, mid, and high-level features from CLIP's vision encoder alongside client-specific style indicators derived from batch-level statistics. By merging intricate visual details with textual context, FedCSAP produces robust, context-aware prompt tokens that are both distinct and non-redundant, thereby boosting generalization across seen and unseen classes. Operating within a federated learning paradigm, our approach ensures data privacy through local training and global aggregation, adeptly handling non-IID class distributions and diverse domain-specific styles. Comprehensive experiments on multiple image classification datasets confirm that FedCSAP outperforms existing federated prompt learning methods in both accuracy and overall generalization.
☆ DeCoT: Decomposing Complex Instructions for Enhanced Text-to-Image Generation with Large Language Models
Despite remarkable advancements, current Text-to-Image (T2I) models struggle with complex, long-form textual instructions, frequently failing to accurately render intricate details, spatial relationships, or specific constraints. This limitation is highlighted by benchmarks such as LongBench-T2I, which reveal deficiencies in handling composition, specific text, and fine textures. To address this, we propose DeCoT (Decomposition-CoT), a novel framework that leverages Large Language Models (LLMs) to significantly enhance T2I models' understanding and execution of complex instructions. DeCoT operates in two core stages: first, Complex Instruction Decomposition and Semantic Enhancement, where an LLM breaks down raw instructions into structured, actionable semantic units and clarifies ambiguities; second, Multi-Stage Prompt Integration and Adaptive Generation, which transforms these units into a hierarchical or optimized single prompt tailored for existing T2I models. Extensive experiments on the LongBench-T2I dataset demonstrate that DeCoT consistently and substantially improves the performance of leading T2I models across all evaluated dimensions, particularly in challenging aspects like "Text" and "Composition". Quantitative results, validated by multiple MLLM evaluators (Gemini-2.0-Flash and InternVL3-78B), show that DeCoT, when integrated with Infinity-8B, achieves an average score of 3.52, outperforming the baseline Infinity-8B (3.44). Ablation studies confirm the critical contribution of each DeCoT component and the importance of sophisticated LLM prompting. Furthermore, human evaluations corroborate these findings, indicating superior perceptual quality and instruction fidelity. DeCoT effectively bridges the gap between high-level user intent and T2I model requirements, leading to more faithful and accurate image generation.
☆ ViT-EnsembleAttack: Augmenting Ensemble Models for Stronger Adversarial Transferability in Vision Transformers
Ensemble-based attacks have been proven to be effective in enhancing adversarial transferability by aggregating the outputs of models with various architectures. However, existing research primarily focuses on refining ensemble weights or optimizing the ensemble path, overlooking the exploration of ensemble models to enhance the transferability of adversarial attacks. To address this gap, we propose applying adversarial augmentation to the surrogate models, aiming to boost overall generalization of ensemble models and reduce the risk of adversarial overfitting. Meanwhile, observing that ensemble Vision Transformers (ViTs) gain less attention, we propose ViT-EnsembleAttack based on the idea of model adversarial augmentation, the first ensemble-based attack method tailored for ViTs to the best of our knowledge. Our approach generates augmented models for each surrogate ViT using three strategies: Multi-head dropping, Attention score scaling, and MLP feature mixing, with the associated parameters optimized by Bayesian optimization. These adversarially augmented models are ensembled to generate adversarial examples. Furthermore, we introduce Automatic Reweighting and Step Size Enlargement modules to boost transferability. Extensive experiments demonstrate that ViT-EnsembleAttack significantly enhances the adversarial transferability of ensemble-based attacks on ViTs, outperforming existing methods by a substantial margin. Code is available at https://github.com/Trustworthy-AI-Group/TransferAttack.
☆ IPGPhormer: Interpretable Pathology Graph-Transformer for Survival Analysis
Pathological images play an essential role in cancer prognosis, while survival analysis, which integrates computational techniques, can predict critical clinical events such as patient mortality or disease recurrence from whole-slide images (WSIs). Recent advancements in multiple instance learning have significantly improved the efficiency of survival analysis. However, existing methods often struggle to balance the modeling of long-range spatial relationships with local contextual dependencies and typically lack inherent interpretability, limiting their clinical utility. To address these challenges, we propose the Interpretable Pathology Graph-Transformer (IPGPhormer), a novel framework that captures the characteristics of the tumor microenvironment and models their spatial dependencies across the tissue. IPGPhormer uniquely provides interpretability at both tissue and cellular levels without requiring post-hoc manual annotations, enabling detailed analyses of individual WSIs and cross-cohort assessments. Comprehensive evaluations on four public benchmark datasets demonstrate that IPGPhormer outperforms state-of-the-art methods in both predictive accuracy and interpretability. In summary, our method, IPGPhormer, offers a promising tool for cancer prognosis assessment, paving the way for more reliable and interpretable decision-support systems in pathology. The code is publicly available at https://anonymous.4open.science/r/IPGPhormer-6EEB.
comment: 13 pages, 5 figures
☆ Synthetic Data is Sufficient for Zero-Shot Visual Generalization from Offline Data
Offline reinforcement learning (RL) offers a promising framework for training agents using pre-collected datasets without the need for further environment interaction. However, policies trained on offline data often struggle to generalise due to limited exposure to diverse states. The complexity of visual data introduces additional challenges such as noise, distractions, and spurious correlations, which can misguide the policy and increase the risk of overfitting if the training data is not sufficiently diverse. Indeed, this makes it challenging to leverage vision-based offline data in training robust agents that can generalize to unseen environments. To solve this problem, we propose a simple approach generating additional synthetic training data. We propose a two-step process, first augmenting the originally collected offline data to improve zero-shot generalization by introducing diversity, then using a diffusion model to generate additional data in latent space. We test our method across both continuous action spaces (Visual D4RL) and discrete action spaces (Procgen), demonstrating that it significantly improves generalization without requiring any algorithmic changes to existing model-free offline RL methods. We show that our method not only increases the diversity of the training data but also significantly reduces the generalization gap at test time while maintaining computational efficiency. We believe this approach could fuel additional progress in generating synthetic data to train more general agents in the future.
EgoLoc: A Generalizable Solution for Temporal Interaction Localization in Egocentric Videos
Analyzing hand-object interaction in egocentric vision facilitates VR/AR applications and human-robot policy transfer. Existing research has mostly focused on modeling the behavior paradigm of interactive actions (i.e., ``how to interact''). However, the more challenging and fine-grained problem of capturing the critical moments of contact and separation between the hand and the target object (i.e., ``when to interact'') is still underexplored, which is crucial for immersive interactive experiences in mixed reality and robotic motion planning. Therefore, we formulate this problem as temporal interaction localization (TIL). Some recent works extract semantic masks as TIL references, but suffer from inaccurate object grounding and cluttered scenarios. Although current temporal action localization (TAL) methods perform well in detecting verb-noun action segments, they rely on category annotations during training and exhibit limited precision in localizing hand-object contact/separation moments. To address these issues, we propose a novel zero-shot approach dubbed EgoLoc to localize hand-object contact and separation timestamps in egocentric videos. EgoLoc introduces hand-dynamics-guided sampling to generate high-quality visual prompts. It exploits the vision-language model to identify contact/separation attributes, localize specific timestamps, and provide closed-loop feedback for further refinement. EgoLoc eliminates the need for object masks and verb-noun taxonomies, leading to generalizable zero-shot implementation. Comprehensive experiments on the public dataset and our novel benchmarks demonstrate that EgoLoc achieves plausible TIL for egocentric videos. It is also validated to effectively facilitate multiple downstream applications in egocentric vision and robotic manipulation tasks. Code and relevant data will be released at https://github.com/IRMVLab/EgoLoc.
comment: Extended journal version of arXiv:2506.03662
☆ MBMamba: When Memory Buffer Meets Mamba for Structure-Aware Image Deblurring
The Mamba architecture has emerged as a promising alternative to CNNs and Transformers for image deblurring. However, its flatten-and-scan strategy often results in local pixel forgetting and channel redundancy, limiting its ability to effectively aggregate 2D spatial information. Although existing methods mitigate this by modifying the scan strategy or incorporating local feature modules, it increase computational complexity and hinder real-time performance. In this paper, we propose a structure-aware image deblurring network without changing the original Mamba architecture. Specifically, we design a memory buffer mechanism to preserve historical information for later fusion, enabling reliable modeling of relevance between adjacent features. Additionally, we introduce an Ising-inspired regularization loss that simulates the energy minimization of the physical system's "mutual attraction" between pixels, helping to maintain image structure and coherence. Building on this, we develop MBMamba. Experimental results show that our method outperforms state-of-the-art approaches on widely used benchmarks.
☆ AquaFeat: A Features-Based Image Enhancement Model for Underwater Object Detection
The severe image degradation in underwater environments impairs object detection models, as traditional image enhancement methods are often not optimized for such downstream tasks. To address this, we propose AquaFeat, a novel, plug-and-play module that performs task-driven feature enhancement. Our approach integrates a multi-scale feature enhancement network trained end-to-end with the detector's loss function, ensuring the enhancement process is explicitly guided to refine features most relevant to the detection task. When integrated with YOLOv8m on challenging underwater datasets, AquaFeat achieves state-of-the-art Precision (0.877) and Recall (0.624), along with competitive mAP scores (mAP@0.5 of 0.677 and mAP@[0.5:0.95] of 0.421). By delivering these accuracy gains while maintaining a practical processing speed of 46.5 FPS, our model provides an effective and computationally efficient solution for real-world applications, such as marine ecosystem monitoring and infrastructure inspection.
☆ Semantic Discrepancy-aware Detector for Image Forgery Identification
With the rapid advancement of image generation techniques, robust forgery detection has become increasingly imperative to ensure the trustworthiness of digital media. Recent research indicates that the learned semantic concepts of pre-trained models are critical for identifying fake images. However, the misalignment between the forgery and semantic concept spaces hinders the model's forgery detection performance. To address this problem, we propose a novel Semantic Discrepancy-aware Detector (SDD) that leverages reconstruction learning to align the two spaces at a fine-grained visual level. By exploiting the conceptual knowledge embedded in the pre-trained vision language model, we specifically design a semantic token sampling module to mitigate the space shifts caused by features irrelevant to both forgery traces and semantic concepts. A concept-level forgery discrepancy learning module, built upon a visual reconstruction paradigm, is proposed to strengthen the interaction between visual semantic concepts and forgery traces, effectively capturing discrepancies under the concepts' guidance. Finally, the low-level forgery feature enhancemer integrates the learned concept level forgery discrepancies to minimize redundant forgery information. Experiments conducted on two standard image forgery datasets demonstrate the efficacy of the proposed SDD, which achieves superior results compared to existing methods. The code is available at https://github.com/wzy1111111/SSD.
comment: 10 pages, 5 figures
☆ Geometry-Aware Video Inpainting for Joint Headset Occlusion Removal and Face Reconstruction in Social XR
Head-mounted displays (HMDs) are essential for experiencing extended reality (XR) environments and observing virtual content. However, they obscure the upper part of the user's face, complicating external video recording and significantly impacting social XR applications such as teleconferencing, where facial expressions and eye gaze details are crucial for creating an immersive experience. This study introduces a geometry-aware learning-based framework to jointly remove HMD occlusions and reconstruct complete 3D facial geometry from RGB frames captured from a single viewpoint. The method integrates a GAN-based video inpainting network, guided by dense facial landmarks and a single occlusion-free reference frame, to restore missing facial regions while preserving identity. Subsequently, a SynergyNet-based module regresses 3D Morphable Model (3DMM) parameters from the inpainted frames, enabling accurate 3D face reconstruction. Dense landmark optimization is incorporated throughout the pipeline to improve both the inpainting quality and the fidelity of the recovered geometry. Experimental results demonstrate that the proposed framework can successfully remove HMDs from RGB facial videos while maintaining facial identity and realism, producing photorealistic 3D face geometry outputs. Ablation studies further show that the framework remains robust across different landmark densities, with only minor quality degradation under sparse landmark configurations.
☆ DoppDrive: Doppler-Driven Temporal Aggregation for Improved Radar Object Detection ICCV 2025
Radar-based object detection is essential for autonomous driving due to radar's long detection range. However, the sparsity of radar point clouds, especially at long range, poses challenges for accurate detection. Existing methods increase point density through temporal aggregation with ego-motion compensation, but this approach introduces scatter from dynamic objects, degrading detection performance. We propose DoppDrive, a novel Doppler-Driven temporal aggregation method that enhances radar point cloud density while minimizing scatter. Points from previous frames are shifted radially according to their dynamic Doppler component to eliminate radial scatter, with each point assigned a unique aggregation duration based on its Doppler and angle to minimize tangential scatter. DoppDrive is a point cloud density enhancement step applied before detection, compatible with any detector, and we demonstrate that it significantly improves object detection performance across various detectors and datasets.
comment: ICCV 2025
☆ Attention Pooling Enhances NCA-based Classification of Microscopy Images
Neural Cellular Automata (NCA) offer a robust and interpretable approach to image classification, making them a promising choice for microscopy image analysis. However, a performance gap remains between NCA and larger, more complex architectures. We address this challenge by integrating attention pooling with NCA to enhance feature extraction and improve classification accuracy. The attention pooling mechanism refines the focus on the most informative regions, leading to more accurate predictions. We evaluate our method on eight diverse microscopy image datasets and demonstrate that our approach significantly outperforms existing NCA methods while remaining parameter-efficient and explainable. Furthermore, we compare our method with traditional lightweight convolutional neural network and vision transformer architectures, showing improved performance while maintaining a significantly lower parameter count. Our results highlight the potential of NCA-based models an alternative for explainable image classification.
☆ Neural Cellular Automata for Weakly Supervised Segmentation of White Blood Cells
The detection and segmentation of white blood cells in blood smear images is a key step in medical diagnostics, supporting various downstream tasks such as automated blood cell counting, morphological analysis, cell classification, and disease diagnosis and monitoring. Training robust and accurate models requires large amounts of labeled data, which is both time-consuming and expensive to acquire. In this work, we propose a novel approach for weakly supervised segmentation using neural cellular automata (NCA-WSS). By leveraging the feature maps generated by NCA during classification, we can extract segmentation masks without the need for retraining with segmentation labels. We evaluate our method on three white blood cell microscopy datasets and demonstrate that NCA-WSS significantly outperforms existing weakly supervised approaches. Our work illustrates the potential of NCA for both classification and segmentation in a weakly supervised framework, providing a scalable and efficient solution for medical image analysis.
☆ Improving Densification in 3D Gaussian Splatting for High-Fidelity Rendering
Although 3D Gaussian Splatting (3DGS) has achieved impressive performance in real-time rendering, its densification strategy often results in suboptimal reconstruction quality. In this work, we present a comprehensive improvement to the densification pipeline of 3DGS from three perspectives: when to densify, how to densify, and how to mitigate overfitting. Specifically, we propose an Edge-Aware Score to effectively select candidate Gaussians for splitting. We further introduce a Long-Axis Split strategy that reduces geometric distortions introduced by clone and split operations. To address overfitting, we design a set of techniques, including Recovery-Aware Pruning, Multi-step Update, and Growth Control. Our method enhances rendering fidelity without introducing additional training or inference overhead, achieving state-of-the-art performance with fewer Gaussians.
comment: Project page: https://xiaobin2001.github.io/improved-gs-web
☆ CLAIR: CLIP-Aided Weakly Supervised Zero-Shot Cross-Domain Image Retrieval BMVC 2025
The recent growth of large foundation models that can easily generate pseudo-labels for huge quantity of unlabeled data makes unsupervised Zero-Shot Cross-Domain Image Retrieval (UZS-CDIR) less relevant. In this paper, we therefore turn our attention to weakly supervised ZS-CDIR (WSZS-CDIR) with noisy pseudo labels generated by large foundation models such as CLIP. To this end, we propose CLAIR to refine the noisy pseudo-labels with a confidence score from the similarity between the CLIP text and image features. Furthermore, we design inter-instance and inter-cluster contrastive losses to encode images into a class-aware latent space, and an inter-domain contrastive loss to alleviate domain discrepancies. We also learn a novel cross-domain mapping function in closed-form, using only CLIP text embeddings to project image features from one domain to another, thereby further aligning the image features for retrieval. Finally, we enhance the zero-shot generalization ability of our CLAIR to handle novel categories by introducing an extra set of learnable prompts. Extensive experiments are carried out using TUBerlin, Sketchy, Quickdraw, and DomainNet zero-shot datasets, where our CLAIR consistently shows superior performance compared to existing state-of-the-art methods.
comment: BMVC 2025
☆ TSLA: A Task-Specific Learning Adaptation for Semantic Segmentation on Autonomous Vehicles Platform
Autonomous driving platforms encounter diverse driving scenarios, each with varying hardware resources and precision requirements. Given the computational limitations of embedded devices, it is crucial to consider computing costs when deploying on target platforms like the NVIDIA\textsuperscript{\textregistered} DRIVE PX 2. Our objective is to customize the semantic segmentation network according to the computing power and specific scenarios of autonomous driving hardware. We implement dynamic adaptability through a three-tier control mechanism -- width multiplier, classifier depth, and classifier kernel -- allowing fine-grained control over model components based on hardware constraints and task requirements. This adaptability facilitates broad model scaling, targeted refinement of the final layers, and scenario-specific optimization of kernel sizes, leading to improved resource allocation and performance. Additionally, we leverage Bayesian Optimization with surrogate modeling to efficiently explore hyperparameter spaces under tight computational budgets. Our approach addresses scenario-specific and task-specific requirements through automatic parameter search, accommodating the unique computational complexity and accuracy needs of autonomous driving. It scales its Multiply-Accumulate Operations (MACs) for Task-Specific Learning Adaptation (TSLA), resulting in alternative configurations tailored to diverse self-driving tasks. These TSLA customizations maximize computational capacity and model accuracy, optimizing hardware utilization.
☆ SNNSIR: A Simple Spiking Neural Network for Stereo Image Restoration
Spiking Neural Networks (SNNs), characterized by discrete binary activations, offer high computational efficiency and low energy consumption, making them well-suited for computation-intensive tasks such as stereo image restoration. In this work, we propose SNNSIR, a simple yet effective Spiking Neural Network for Stereo Image Restoration, specifically designed under the spike-driven paradigm where neurons transmit information through sparse, event-based binary spikes. In contrast to existing hybrid SNN-ANN models that still rely on operations such as floating-point matrix division or exponentiation, which are incompatible with the binary and event-driven nature of SNNs, our proposed SNNSIR adopts a fully spike-driven architecture to achieve low-power and hardware-friendly computation. To address the expressiveness limitations of binary spiking neurons, we first introduce a lightweight Spike Residual Basic Block (SRBB) to enhance information flow via spike-compatible residual learning. Building on this, the Spike Stereo Convolutional Modulation (SSCM) module introduces simplified nonlinearity through element-wise multiplication and highlights noise-sensitive regions via cross-view-aware modulation. Complementing this, the Spike Stereo Cross-Attention (SSCA) module further improves stereo correspondence by enabling efficient bidirectional feature interaction across views within a spike-compatible framework. Extensive experiments on diverse stereo image restoration tasks, including rain streak removal, raindrop removal, low-light enhancement, and super-resolution demonstrate that our model achieves competitive restoration performance while significantly reducing computational overhead. These results highlight the potential for real-time, low-power stereo vision applications. The code will be available after the article is accepted.
comment: 11 pages
☆ L-SR1: Learned Symmetric-Rank-One Preconditioning
End-to-end deep learning has achieved impressive results but remains limited by its reliance on large labeled datasets, poor generalization to unseen scenarios, and growing computational demands. In contrast, classical optimization methods are data-efficient and lightweight but often suffer from slow convergence. While learned optimizers offer a promising fusion of both worlds, most focus on first-order methods, leaving learned second-order approaches largely unexplored. We propose a novel learned second-order optimizer that introduces a trainable preconditioning unit to enhance the classical Symmetric-Rank-One (SR1) algorithm. This unit generates data-driven vectors used to construct positive semi-definite rank-one matrices, aligned with the secant constraint via a learned projection. Our method is evaluated through analytic experiments and on the real-world task of Monocular Human Mesh Recovery (HMR), where it outperforms existing learned optimization-based approaches. Featuring a lightweight model and requiring no annotated data or fine-tuning, our approach offers strong generalization and is well-suited for integration into broader optimization-based frameworks.
comment: Under review
☆ iTrace: Click-Based Gaze Visualization on the Apple Vision Pro SIGGRAPH
The Apple Vision Pro is equipped with accurate eye-tracking capabilities, yet the privacy restrictions on the device prevent direct access to continuous user gaze data. This study introduces iTrace, a novel application that overcomes these limitations through click-based gaze extraction techniques, including manual methods like a pinch gesture, and automatic approaches utilizing dwell control or a gaming controller. We developed a system with a client-server architecture that captures the gaze coordinates and transforms them into dynamic heatmaps for video and spatial eye tracking. The system can generate individual and averaged heatmaps, enabling analysis of personal and collective attention patterns. To demonstrate its effectiveness and evaluate the usability and performance, a study was conducted with two groups of 10 participants, each testing different clicking methods. The 8BitDo controller achieved higher average data collection rates at 14.22 clicks/s compared to 0.45 clicks/s with dwell control, enabling significantly denser heatmap visualizations. The resulting heatmaps reveal distinct attention patterns, including concentrated focus in lecture videos and broader scanning during problem-solving tasks. By allowing dynamic attention visualization while maintaining a high gaze precision of 91 %, iTrace demonstrates strong potential for a wide range of applications in educational content engagement, environmental design evaluation, marketing analysis, and clinical cognitive assessment. Despite the current gaze data restrictions on the Apple Vision Pro, we encourage developers to use iTrace only in research settings.
comment: Paper submitted to ACM SIGGRAPH Motion, Interaction and Games 2025 (MIG 2025)
☆ Region-Level Context-Aware Multimodal Understanding
Despite significant progress, existing research on Multimodal Large Language Models (MLLMs) mainly focuses on general visual understanding, overlooking the ability to integrate textual context associated with objects for a more context-aware multimodal understanding -- an ability we refer to as Region-level Context-aware Multimodal Understanding (RCMU). To address this limitation, we first formulate the RCMU task, which requires models to respond to user instructions by integrating both image content and textual information of regions or objects. To equip MLLMs with RCMU capabilities, we propose Region-level Context-aware Visual Instruction Tuning (RCVIT), which incorporates object information into the model input and enables the model to utilize bounding box coordinates to effectively associate objects' visual content with their textual information. To address the lack of datasets, we introduce the RCMU dataset, a large-scale visual instruction tuning dataset that covers multiple RCMU tasks. We also propose RC\&P-Bench, a comprehensive benchmark that can evaluate the performance of MLLMs in RCMU and multimodal personalized understanding tasks. Additionally, we propose a reference-free evaluation metric to perform a comprehensive and fine-grained evaluation of the region-level context-aware image descriptions. By performing RCVIT on Qwen2-VL models with the RCMU dataset, we developed RC-Qwen2-VL models. Experimental results indicate that RC-Qwen2-VL models not only achieve outstanding performance on multiple RCMU tasks but also demonstrate successful applications in multimodal RAG and personalized conversation. Our data, model and benchmark are available at https://github.com/hongliang-wei/RC-MLLM
comment: 12 pages, 6 figures
☆ Superpixel-informed Continuous Low-Rank Tensor Representation for Multi-Dimensional Data Recovery AAAI2026
Low-rank tensor representation (LRTR) has emerged as a powerful tool for multi-dimensional data processing. However, classical LRTR-based methods face two critical limitations: (1) they typically assume that the holistic data is low-rank, this assumption is often violated in real-world scenarios with significant spatial variations; and (2) they are constrained to discrete meshgrid data, limiting their flexibility and applicability. To overcome these limitations, we propose a Superpixel-informed Continuous low-rank Tensor Representation (SCTR) framework, which enables continuous and flexible modeling of multi-dimensional data beyond traditional grid-based constraints. Our approach introduces two main innovations: First, motivated by the observation that semantically coherent regions exhibit stronger low-rank characteristics than holistic data, we employ superpixels as the basic modeling units. This design not only encodes rich semantic information, but also enhances adaptability to diverse forms of data streams. Second, we propose a novel asymmetric low-rank tensor factorization (ALTF) where superpixel-specific factor matrices are parameterized by a shared neural network with specialized heads. By strategically separating global pattern learning from local adaptation, this framework efficiently captures both cross-superpixel commonalities and within-superpixel variations. This yields a representation that is both highly expressive and compact, balancing model efficiency with adaptability. Extensive experiments on several benchmark datasets demonstrate that SCTR achieves 3-5 dB PSNR improvements over existing LRTR-based methods across multispectral images, videos, and color images.
comment: Under review in AAAI2026
☆ WXSOD: A Benchmark for Robust Salient Object Detection in Adverse Weather Conditions
Salient object detection (SOD) in complex environments remains a challenging research topic. Most existing methods perform well in natural scenes with negligible noise, and tend to leverage multi-modal information (e.g., depth and infrared) to enhance accuracy. However, few studies are concerned with the damage of weather noise on SOD performance due to the lack of dataset with pixel-wise annotations. To bridge this gap, this paper introduces a novel Weather-eXtended Salient Object Detection (WXSOD) dataset. It consists of 14,945 RGB images with diverse weather noise, along with the corresponding ground truth annotations and weather labels. To verify algorithm generalization, WXSOD contains two test sets, i.e., a synthesized test set and a real test set. The former is generated by adding weather noise to clean images, while the latter contains real-world weather noise. Based on WXSOD, we propose an efficient baseline, termed Weather-aware Feature Aggregation Network (WFANet), which adopts a fully supervised two-branch architecture. Specifically, the weather prediction branch mines weather-related deep features, while the saliency detection branch fuses semantic features extracted from the backbone with weather features for SOD. Comprehensive comparisons against 17 SOD methods shows that our WFANet achieves superior performance on WXSOD. The code and benchmark results will be made publicly available at https://github.com/C-water/WXSOD
comment: Under review
☆ In vivo 3D ultrasound computed tomography of musculoskeletal tissues with generative neural physics
Ultrasound computed tomography (USCT) is a radiation-free, high-resolution modality but remains limited for musculoskeletal imaging due to conventional ray-based reconstructions that neglect strong scattering. We propose a generative neural physics framework that couples generative networks with physics-informed neural simulation for fast, high-fidelity 3D USCT. By learning a compact surrogate of ultrasonic wave propagation from only dozens of cross-modality images, our method merges the accuracy of wave modeling with the efficiency and stability of deep learning. This enables accurate quantitative imaging of in vivo musculoskeletal tissues, producing spatial maps of acoustic properties beyond reflection-mode images. On synthetic and in vivo data (breast, arm, leg), we reconstruct 3D maps of tissue parameters in under ten minutes, with sensitivity to biomechanical properties in muscle and bone and resolution comparable to MRI. By overcoming computational bottlenecks in strongly scattering regimes, this approach advances USCT toward routine clinical assessment of musculoskeletal disease.
☆ Splat Feature Solver
Feature lifting has emerged as a crucial component in 3D scene understanding, enabling the attachment of rich image feature descriptors (e.g., DINO, CLIP) onto splat-based 3D representations. The core challenge lies in optimally assigning rich general attributes to 3D primitives while addressing the inconsistency issues from multi-view images. We present a unified, kernel- and feature-agnostic formulation of the feature lifting problem as a sparse linear inverse problem, which can be solved efficiently in closed form. Our approach admits a provable upper bound on the global optimal error under convex losses for delivering high quality lifted features. To address inconsistencies and noise in multi-view observations, we introduce two complementary regularization strategies to stabilize the solution and enhance semantic fidelity. Tikhonov Guidance enforces numerical stability through soft diagonal dominance, while Post-Lifting Aggregation filters noisy inputs via feature clustering. Extensive experiments demonstrate that our approach achieves state-of-the-art performance on open-vocabulary 3D segmentation benchmarks, outperforming training-based, grouping-based, and heuristic-forward baselines while producing the lifted features in minutes. Code is available at \href{https://github.com/saliteta/splat-distiller.git}{\textbf{github}}. We also have a \href{https://splat-distiller.pages.dev/}
comment: webpage not that stable
☆ DermINO: Hybrid Pretraining for a Versatile Dermatology Foundation Model
Skin diseases impose a substantial burden on global healthcare systems, driven by their high prevalence (affecting up to 70% of the population), complex diagnostic processes, and a critical shortage of dermatologists in resource-limited areas. While artificial intelligence(AI) tools have demonstrated promise in dermatological image analysis, current models face limitations-they often rely on large, manually labeled datasets and are built for narrow, specific tasks, making them less effective in real-world settings. To tackle these limitations, we present DermNIO, a versatile foundation model for dermatology. Trained on a curated dataset of 432,776 images from three sources (public repositories, web-sourced images, and proprietary collections), DermNIO incorporates a novel hybrid pretraining framework that augments the self-supervised learning paradigm through semi-supervised learning and knowledge-guided prototype initialization. This integrated method not only deepens the understanding of complex dermatological conditions, but also substantially enhances the generalization capability across various clinical tasks. Evaluated across 20 datasets, DermNIO consistently outperforms state-of-the-art models across a wide range of tasks. It excels in high-level clinical applications including malignancy classification, disease severity grading, multi-category diagnosis, and dermatological image caption, while also achieving state-of-the-art performance in low-level tasks such as skin lesion segmentation. Furthermore, DermNIO demonstrates strong robustness in privacy-preserving federated learning scenarios and across diverse skin types and sexes. In a blinded reader study with 23 dermatologists, DermNIO achieved 95.79% diagnostic accuracy (versus clinicians' 73.66%), and AI assistance improved clinician performance by 17.21%.
♻ ☆ AR Surgical Navigation with Surface Tracing: Comparing In-Situ Visualization with Tool-Tracking Guidance for Neurosurgical Applications
Augmented Reality (AR) surgical navigation systems are emerging as the next generation of intraoperative surgical guidance, promising to overcome limitations of traditional navigation systems. However, known issues with AR depth perception due to vergence-accommodation conflict and occlusion handling limitations of the currently commercially available display technology present acute challenges in surgical settings where precision is paramount. This study presents a novel methodology for utilizing AR guidance to register anatomical targets and provide real-time instrument navigation using placement of simulated external ventricular drain catheters on a phantom model as the clinical scenario. The system registers target positions to the patient through a novel surface tracing method and uses real-time infrared tool tracking to aid in catheter placement, relying only on the onboard sensors of the Microsoft HoloLens 2. A group of intended users performed the procedure of simulated insertions under two AR guidance conditions: static in-situ visualization, where planned trajectories are overlaid directly onto the patient anatomy, and real-time tool-tracking guidance, where live feedback of the catheter's pose is provided relative to the plan. Following the insertion tests, computed tomography scans of the phantom models were acquired, allowing for evaluation of insertion accuracy, target deviation, angular error, and depth precision. System Usability Scale surveys assessed user experience and cognitive workload. Tool-tracking guidance improved performance metrics across all accuracy measures and was preferred by users in subjective evaluations. A free copy of this paper and all supplemental materials are available at https://bit.ly/45l89Hq.
comment: 10pages, 3 figures, will be published at ISMAR 2025 (accepted)
♻ ☆ Advanced Gesture Recognition for Autism Spectrum Disorder Detection: Integrating YOLOv7, Video Augmentation, and VideoMAE for Naturalistic Video Analysis
Deep learning and contactless sensing technologies have significantly advanced the automated assessment of human behaviors in healthcare. In the context of autism spectrum disorder (ASD), repetitive motor behaviors such as spinning, head banging, and arm flapping are key indicators for diagnosis. This study focuses on distinguishing between children with ASD and typically developed (TD) peers by analyzing videos captured in natural, uncontrolled environments. Using the publicly available Self-Stimulatory Behavior Dataset (SSBD), we address the classification task as a binary problem, ASD vs. TD, based on stereotypical repetitive gestures. We adopt a pipeline integrating YOLOv7-based detection, extensive video augmentations, and the VideoMAE framework, which efficiently captures both spatial and temporal features through a high-ratio masking and reconstruction strategy. Our proposed approach achieves 95% accuracy, 0.93 precision, 0.94 recall, and 0.94 F1 score, surpassing the previous state-of-the-art by a significant margin. These results demonstrate the effectiveness of combining advanced object detection, robust data augmentation, and masked autoencoder-based video modeling for reliable ASD vs. TD classification in naturalistic settings.
comment: Change Note for Version 3 - Extended Study (ASD vs TD Classification) This version extends v2 from 3-class gesture recognition to binary ASD vs TD detection, using expanded SSBD variants, a new TD class, improved preprocessing, and updated metrics (95% acc, 0.93 prec, 0.94 rec, 0.94 F1). Methodology remains YOLOv7 + VideoMAE + augmentation
♻ ☆ Multispectral Fine-Grained Classification of Blackgrass in Wheat and Barley Crops
As the burden of herbicide resistance grows and the environmental costs of excessive herbicide use become clear, new approaches to managing weed populations are needed. This is particularly true for cereal crops, like wheat and barley, that are staple foods and occupy a globally significant share of farmland. Even modest advances in weed management practices across these crops could deliver major benefits for both the environment and food security. Blackgrass is a major grass weed which causes particular problems in cereal crops in north-west Europe, a major cereal production area, because it has high levels of herbicide resistance. Detecting blackgrass is also difficult due to its similarity to cereals. Yet, a systematic review of the literature on weed recognition in wheat and barley, included in this study, highlights that blackgrass - and grass weeds more broadly - have received less research attention compared to certain broadleaf weeds. With the use of machine vision and multispectral imaging, we investigate the effectiveness of state-of-the-art methods to identify blackgrass in wheat and barley crops. As part of this work, we present the Eastern England Blackgrass Dataset, a large dataset with which we evaluate several key aspects of blackgrass weed recognition. Firstly, we determine the performance of different CNN and transformer-based architectures on images from unseen fields. Secondly, we demonstrate the role that different spectral bands have on the performance of weed classification. Lastly, we evaluate the role of dataset size in classification performance for each of the models trialled. All models tested achieved an accuracy greater than 80%. Our best model achieved 89.6% and that only half the training data was required to achieve this performance. Our dataset is available at: https://lcas.lincoln.ac.uk/wp/research/data-sets-software/eastern-england-blackgrass-dataset .
comment: 19 pages, 6 figures
♻ ☆ AI-Augmented Thyroid Scintigraphy for Robust Classification
Purpose: Thyroid scintigraphy plays a vital role in diagnosing a range of thyroid disorders. While deep learning classification models hold significant promise in this domain, their effectiveness is frequently compromised by limited and imbalanced datasets. This study investigates the impact of three data augmentation strategies including Stable Diffusion (SD), Flow Matching (FM), and Conventional Augmentation (CA), on enhancing the performance of a ResNet18 classifier. Methods: Anterior thyroid scintigraphy images from 2,954 patients across nine medical centers were classified into four categories: Diffuse Goiter (DG), Nodular Goiter (NG), Normal (NL), and Thyroiditis (TI). Data augmentation was performed using various SD and FM models, resulting in 18 distinct augmentation scenarios. Each augmented dataset was used to train a ResNet18 classifier. Model performance was assessed using class-wise and average precision, recall, F1-score, AUC, and image fidelity metrics (FID and KID). Results: FM-based augmentation outperformed all other methods, achieving the highest classification accuracy and lowest FID/KID scores, indicating both improved model generalization and realistic image synthesis. SD1, combining image and prompt inputs in the inference process, was the most effective SD variant, suggesting that physician-generated prompts provide meaningful clinical context. O+FM+CA yielded the most balanced and robust performance across all classes. Conclusion: Integrating FM and clinically-informed SD augmentation, especially when guided by expert prompts, substantially improves thyroid scintigraphy classification. These findings highlight the importance of leveraging both structured medical input and advanced generative models for more effective training on limited datasets.
♻ ☆ SLAG: Scalable Language-Augmented Gaussian Splatting
Language-augmented scene representations hold great promise for large-scale robotics applications such as search-and-rescue, smart cities, and mining. Many of these scenarios are time-sensitive, requiring rapid scene encoding while also being data-intensive, necessitating scalable solutions. Deploying these representations on robots with limited computational resources further adds to the challenge. To address this, we introduce SLAG, a multi-GPU framework for language-augmented Gaussian splatting that enhances the speed and scalability of embedding large scenes. Our method integrates 2D visual-language model features into 3D scenes using SAM and CLIP. Unlike prior approaches, SLAG eliminates the need for a loss function to compute per-Gaussian language embeddings. Instead, it derives embeddings from 3D Gaussian scene parameters via a normalized weighted average, enabling highly parallelized scene encoding. Additionally, we introduce a vector database for efficient embedding storage and retrieval. Our experiments show that SLAG achieves an 18 times speedup in embedding computation on a 16-GPU setup compared to OpenGaussian, while preserving embedding quality on the ScanNet and LERF datasets. For more details, visit our project website: https://slag-project.github.io/.
♻ ☆ Clustering-Based Validation Splits for Model Selection under Domain Shift
This paper considers the problem of model selection under domain shift. Motivated by principles from distributionally robust optimisation and domain adaptation theory, it is proposed that the training-validation split should maximise the distribution mismatch between the two sets. By adopting the maximum mean discrepancy (MMD) as the measure of mismatch, it is shown that the partitioning problem reduces to kernel k-means clustering. A constrained clustering algorithm, which leverages linear programming to control the size, label, and (optionally) group distributions of the splits, is presented. The algorithm does not require additional metadata, and comes with convergence guarantees. In experiments, the technique consistently outperforms alternative splitting strategies across a range of datasets and training algorithms, for both domain generalisation and unsupervised domain adaptation tasks. Analysis also shows the MMD between the training and validation sets to be well-correlated with test domain accuracy, further substantiating the validity of this approach.
comment: Published in TMLR 08/25
♻ ☆ Local Prompt Adaptation for Style-Consistent Multi-Object Generation in Diffusion Models
Diffusion models have become a powerful backbone for text-to-image generation, producing high-quality visuals from natural language prompts. However, when prompts involve multiple objects alongside global or local style instructions, the outputs often drift in style and lose spatial coherence, limiting their reliability for controlled, style-consistent scene generation. We present Local Prompt Adaptation (LPA), a lightweight, training-free method that splits the prompt into content and style tokens, then injects them selectively into the U-Net's attention layers at chosen timesteps. By conditioning object tokens early and style tokens later in the denoising process, LPA improves both layout control and stylistic uniformity without additional training cost. We conduct extensive ablations across parser settings and injection windows, finding that the best configuration -- lpa late only with a 300-650 step window -- delivers the strongest balance of prompt alignment and style consistency. On the T2I benchmark, LPA improves CLIP-prompt alignment over vanilla SDXL by +0.41% and over SD1.5 by +0.34%, with no diversity loss. On our custom 50-prompt style-rich benchmark, LPA achieves +0.09% CLIP-prompt and +0.08% CLIP-style gains over baseline. Our method is model-agnostic, easy to integrate, and requires only a single configuration change, making it a practical choice for controllable, style-consistent multi-object generation.
comment: 10 Pages,10 figures, pre-print
♻ ☆ EraserDiT: Fast Video Inpainting with Diffusion Transformer Model
Video object removal and inpainting are critical tasks in the fields of computer vision and multimedia processing, aimed at restoring missing or corrupted regions in video sequences. Traditional methods predominantly rely on flow-based propagation and spatio-temporal Transformers, but these approaches face limitations in effectively leveraging long-term temporal features and ensuring temporal consistency in the completion results, particularly when dealing with large masks. Consequently, performance on extensive masked areas remains suboptimal. To address these challenges, this paper introduces a novel video inpainting approach leveraging the Diffusion Transformer (DiT). DiT synergistically combines the advantages of diffusion models and transformer architectures to maintain long-term temporal consistency while ensuring high-quality inpainting results. We propose a Circular Position-Shift strategy to further enhance long-term temporal consistency during the inference stage. Additionally, the proposed method interactively removes specified objects, and generates corresponding prompts. In terms of processing speed, it takes only 65 seconds (testing on one NVIDIA H800 GPU) to complete a video with a resolution of $2160 \times 2100$ with 97 frames without any acceleration method. Experimental results indicate that the proposed method demonstrates superior performance in content fidelity, texture restoration, and temporal consistency. Project page:https://jieliu95.github.io/EraserDiT_demo/
comment: technical report project page:https://jieliu95.github.io/EraserDiT_demo/
♻ ☆ SafePLUG: Empowering Multimodal LLMs with Pixel-Level Insight and Temporal Grounding for Traffic Accident Understanding
Multimodal large language models (MLLMs) have achieved remarkable progress across a range of vision-language tasks and demonstrate strong potential for traffic accident understanding. However, existing MLLMs in this domain primarily focus on coarse-grained image-level or video-level comprehension and often struggle to handle fine-grained visual details or localized scene components, limiting their applicability in complex accident scenarios. To address these limitations, we propose SafePLUG, a novel framework that empowers MLLMs with both Pixel-Level Understanding and temporal Grounding for comprehensive traffic accident analysis. SafePLUG supports both arbitrary-shaped visual prompts for region-aware question answering and pixel-level segmentation based on language instructions, while also enabling the recognition of temporally anchored events in traffic accident scenarios. To advance the development of MLLMs for traffic accident understanding, we curate a new dataset containing multimodal question-answer pairs centered on diverse accident scenarios, with detailed pixel-level annotations and temporal event boundaries. Experimental results show that SafePLUG achieves strong performance on multiple tasks, including region-based question answering, pixel-level segmentation, temporal event localization, and accident event understanding. These capabilities lay a foundation for fine-grained understanding of complex traffic scenes, with the potential to improve driving safety and enhance situational awareness in smart transportation systems. The code, dataset, and model checkpoints will be made publicly available at: https://zihaosheng.github.io/SafePLUG
comment: The code, dataset, and model checkpoints will be made publicly available at: https://zihaosheng.github.io/SafePLUG
♻ ☆ Style Ambiguity Loss Using CLIP
In this work, we explore using the style ambiguity training objective, originally used to approximate creativity, on a diffusion model. However, this objective requires the use of a pretrained classifier and a labeled dataset. We introduce new forms of style ambiguity loss that do not require training a new classifier or a labeled dataset. Instead of using a classifier, we generate centroids in the CLIP embedding space, and images are classified based on their relative distance to said centroids. We find the centroids via K-means clustering of an unlabeled dataset, as well as using text labels to generate CLIP embeddings, to be used as centroids. Code is available at https://github.com/jamesBaker361/clipcreate
comment: arXiv admin note: substantial text overlap with arXiv:2407.12009
♻ ☆ Cognitive-Inspired Hierarchical Attention Fusion With Visual and Textual for Cross-Domain Sequential Recommendation SC
Cross-Domain Sequential Recommendation (CDSR) predicts user behavior by leveraging historical interactions across multiple domains, focusing on modeling cross-domain preferences through intra- and inter-sequence item relationships. Inspired by human cognitive processes, we propose Hierarchical Attention Fusion of Visual and Textual Representations (HAF-VT), a novel approach integrating visual and textual data to enhance cognitive modeling. Using the frozen CLIP model, we generate image and text embeddings, enriching item representations with multimodal data. A hierarchical attention mechanism jointly learns single-domain and cross-domain preferences, mimicking human information integration. Evaluated on four e-commerce datasets, HAF-VT outperforms existing methods in capturing cross-domain user interests, bridging cognitive principles with computational models and highlighting the role of multimodal data in sequential decision-making.
comment: Accepted at CogSCI 2025. arXiv admin note: text overlap with arXiv:2502.15694
♻ ☆ ICE-Bench: A Unified and Comprehensive Benchmark for Image Creating and Editing ICCV 2025
Image generation has witnessed significant advancements in the past few years. However, evaluating the performance of image generation models remains a formidable challenge. In this paper, we propose ICE-Bench, a unified and comprehensive benchmark designed to rigorously assess image generation models. Its comprehensiveness could be summarized in the following key features: (1) Coarse-to-Fine Tasks: We systematically deconstruct image generation into four task categories: No-ref/Ref Image Creating/Editing, based on the presence or absence of source images and reference images. And further decompose them into 31 fine-grained tasks covering a broad spectrum of image generation requirements, culminating in a comprehensive benchmark. (2) Multi-dimensional Metrics: The evaluation framework assesses image generation capabilities across 6 dimensions: aesthetic quality, imaging quality, prompt following, source consistency, reference consistency, and controllability. 11 metrics are introduced to support the multi-dimensional evaluation. Notably, we introduce VLLM-QA, an innovative metric designed to assess the success of image editing by leveraging large models. (3) Hybrid Data: The data comes from real scenes and virtual generation, which effectively improves data diversity and alleviates the bias problem in model evaluation. Through ICE-Bench, we conduct a thorough analysis of existing generation models, revealing both the challenging nature of our benchmark and the gap between current model capabilities and real-world generation requirements. To foster further advancements in the field, we will open-source ICE-Bench, including its dataset, evaluation code, and models, thereby providing a valuable resource for the research community.
comment: 17 pages. Accepted by ICCV 2025
♻ ☆ Interpretable Oracle Bone Script Decipherment through Radical and Pictographic Analysis with LVLMs
As the oldest mature writing system, Oracle Bone Script (OBS) has long posed significant challenges for archaeological decipherment due to its rarity, abstractness, and pictographic diversity. Current deep learning-based methods have made exciting progress on the OBS decipherment task, but existing approaches often ignore the intricate connections between glyphs and the semantics of OBS. This results in limited generalization and interpretability, especially when addressing zero-shot settings and undeciphered OBS. To this end, we propose an interpretable OBS decipherment method based on Large Vision-Language Models, which synergistically combines radical analysis and pictograph-semantic understanding to bridge the gap between glyphs and meanings of OBS. Specifically, we propose a progressive training strategy that guides the model from radical recognition and analysis to pictographic analysis and mutual analysis, thus enabling reasoning from glyph to meaning. We also design a Radical-Pictographic Dual Matching mechanism informed by the analysis results, significantly enhancing the model's zero-shot decipherment performance. To facilitate model training, we propose the Pictographic Decipherment OBS Dataset, which comprises 47,157 Chinese characters annotated with OBS images and pictographic analysis texts. Experimental results on public benchmarks demonstrate that our approach achieves state-of-the-art Top-10 accuracy and superior zero-shot decipherment capabilities. More importantly, our model delivers logical analysis processes, possibly providing archaeologically valuable reference results for undeciphered OBS, and thus has potential applications in digital humanities and historical research. The dataset and code will be released in https://github.com/PKXX1943/PD-OBS.
InterAnimate: Taming Region-aware Diffusion Model for Realistic Human Interaction Animation
Recent video generation research has focused heavily on isolated actions, leaving interactive motions-such as hand-face interactions-largely unexamined. These interactions are essential for emerging biometric authentication systems, which rely on interactive motion-based anti-spoofing approaches. From a security perspective, there is a growing need for large-scale, high-quality interactive videos to train and strengthen authentication models. In this work, we introduce a novel paradigm for animating realistic hand-face interactions. Our approach simultaneously learns spatio-temporal contact dynamics and biomechanically plausible deformation effects, enabling natural interactions where hand movements induce anatomically accurate facial deformations while maintaining collision-free contact. To facilitate this research, we present InterHF, a large-scale hand-face interaction dataset featuring 18 interaction patterns and 90,000 annotated videos. Additionally, we propose InterAnimate, a region-aware diffusion model designed specifically for interaction animation. InterAnimate leverages learnable spatial and temporal latents to effectively capture dynamic interaction priors and integrates a region-aware interaction mechanism that injects these priors into the denoising process. To the best of our knowledge, this work represents the first large-scale effort to systematically study human hand-face interactions. Qualitative and quantitative results show InterAnimate produces highly realistic animations, setting a new benchmark. Code and data will be made public to advance research.
comment: Accept to ACMMM 2025
♻ ☆ Continual Learning on CLIP via Incremental Prompt Tuning with Intrinsic Textual Anchors
Continual learning (CL) enables deep networks to acquire new knowledge while avoiding catastrophic forgetting. The powerful generalization ability of pre-trained models (PTMs), such as the Contrastive Language-Image Pre-training (CLIP) model, has inspired a range of CL methods targeting new and specialized tasks, providing rich multi-modal embeddings that support lightweight, incremental prompt tuning. Existing methods often rely on complex designs built upon specific assumptions, such as intricate regularization schemes for prompt pools, specialized routing mechanisms, or multi-stage incrementations, that introduce additional-and possibly unnecessary-complexity, underutilizing CLIP's intrinsic capabilities. In this paper, we propose a concise CL approach for CLIP based on incremental prompt tuning that fully exploits its multi-modal structure and the stability of textual representations. Our method, Textual Prototype-guided Prompt Tuning (TPPT), introduces textual prototypes not merely as static classifiers, as in existing methods, but as stable anchors to guide the learning of visual prompts, thereby shaping the embedding space (i.e., TPPT-V). We show that our bidirectional supervision strategy enables more effective learning of new knowledge while reducing forgetting. To further close the vision-language gap during CL, we jointly optimizes visual and textual prompts (i.e., TPPT-VT). We also introduce a relational diversity regularization on the textual anchors to prevent embedding space collapse and mitigate correlated forgetting. Extensive experiments and analyses demonstrate the effectiveness of our proposed approach, highlighting the benefits of leveraging CLIP's intrinsic guidance for continual adaptation.
comment: Preprint
Unified Multimodal Understanding and Generation Models: Advances, Challenges, and Opportunities
Recent years have seen remarkable progress in both multimodal understanding models and image generation models. Despite their respective successes, these two domains have evolved independently, leading to distinct architectural paradigms: While autoregressive-based architectures have dominated multimodal understanding, diffusion-based models have become the cornerstone of image generation. Recently, there has been growing interest in developing unified frameworks that integrate these tasks. The emergence of GPT-4o's new capabilities exemplifies this trend, highlighting the potential for unification. However, the architectural differences between the two domains pose significant challenges. To provide a clear overview of current efforts toward unification, we present a comprehensive survey aimed at guiding future research. First, we introduce the foundational concepts and recent advancements in multimodal understanding and text-to-image generation models. Next, we review existing unified models, categorizing them into three main architectural paradigms: diffusion-based, autoregressive-based, and hybrid approaches that fuse autoregressive and diffusion mechanisms. For each category, we analyze the structural designs and innovations introduced by related works. Additionally, we compile datasets and benchmarks tailored for unified models, offering resources for future exploration. Finally, we discuss the key challenges facing this nascent field, including tokenization strategy, cross-modal attention, and data. As this area is still in its early stages, we anticipate rapid advancements and will regularly update this survey. Our goal is to inspire further research and provide a valuable reference for the community. The references associated with this survey are available on GitHub (https://github.com/AIDC-AI/Awesome-Unified-Multimodal-Models).
comment: In this version, we incorporate new papers, datasets, and benchmarks. This work is still in progress; Github project: https://github.com/AIDC-AI/Awesome-Unified-Multimodal-Models
♻ ☆ ForensicsSAM: Toward Robust and Unified Image Forgery Detection and Localization Resisting to Adversarial Attack
Parameter-efficient fine-tuning (PEFT) has emerged as a popular strategy for adapting large vision foundation models, such as the Segment Anything Model (SAM) and LLaVA, to downstream tasks like image forgery detection and localization (IFDL). However, existing PEFT-based approaches overlook their vulnerability to adversarial attacks. In this paper, we show that highly transferable adversarial images can be crafted solely via the upstream model, without accessing the downstream model or training data, significantly degrading the IFDL performance. To address this, we propose ForensicsSAM, a unified IFDL framework with built-in adversarial robustness. Our design is guided by three key ideas: (1) To compensate for the lack of forgery-relevant knowledge in the frozen image encoder, we inject forgery experts into each transformer block to enhance its ability to capture forgery artifacts. These forgery experts are always activated and shared across any input images. (2) To detect adversarial images, we design an light-weight adversary detector that learns to capture structured, task-specific artifact in RGB domain, enabling reliable discrimination across various attack methods. (3) To resist adversarial attacks, we inject adversary experts into the global attention layers and MLP modules to progressively correct feature shifts induced by adversarial noise. These adversary experts are adaptively activated by the adversary detector, thereby avoiding unnecessary interference with clean images. Extensive experiments across multiple benchmarks demonstrate that ForensicsSAM achieves superior resistance to various adversarial attack methods, while also delivering state-of-the-art performance in image-level forgery detection and pixel-level forgery localization. The resource is available at https://github.com/siriusPRX/ForensicsSAM.
♻ ☆ Alzheimer's Disease Classification Using Retinal OCT: TransnetOCT and Swin Transformer Models
Retinal optical coherence tomography (OCT) images are the biomarkers for neurodegenerative diseases, which are rising in prevalence. Early detection of Alzheimer's disease using retinal OCT is a primary challenging task. This work utilizes advanced deep learning techniques to classify retinal OCT images of subjects with Alzheimer's disease (AD) and healthy controls (CO). The goal is to enhance diagnostic capabilities through efficient image analysis. In the proposed model, Raw OCT images have been preprocessed with ImageJ and given to various deep-learning models to evaluate the accuracy. The best classification architecture is TransNetOCT, which has an average accuracy of 98.18% for input OCT images and 98.91% for segmented OCT images for five-fold cross-validation compared to other models, and the Swin Transformer model has achieved an accuracy of 93.54%. The evaluation accuracy metric demonstrated TransNetOCT and Swin transformer models capability to classify AD and CO subjects reliably, contributing to the potential for improved diagnostic processes in clinical settings.
comment: 18 pages, 25 figures
♻ ☆ Sharpness-Aware Minimization with Z-Score Gradient Filtering
Deep neural networks achieve high performance across many domains but can still face challenges in generalization when optimization is influenced by small or noisy gradient components. Sharpness-Aware Minimization improves generalization by perturbing parameters toward directions of high curvature, but it uses the entire gradient vector, which means that small or noisy components may affect the ascent step and cause the optimizer to miss optimal solutions. We propose Z-Score Filtered Sharpness-Aware Minimization, which applies Z-score based filtering to gradients in each layer. Instead of using all gradient components, a mask is constructed to retain only the top percentile with the largest absolute Z-scores. The percentile threshold $Q_p$ determines how many components are kept, so that the ascent step focuses on directions that stand out most compared to the average of the layer. This selective perturbation refines the search toward flatter minima while reducing the influence of less significant gradients. Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet with architectures including ResNet, VGG, and Vision Transformers show that the proposed method consistently improves test accuracy compared to Sharpness-Aware Minimization and its variants.
♻ ☆ OMGM: Orchestrate Multiple Granularities and Modalities for Efficient Multimodal Retrieval ACL 2025
Vision-language retrieval-augmented generation (RAG) has become an effective approach for tackling Knowledge-Based Visual Question Answering (KB-VQA), which requires external knowledge beyond the visual content presented in images. The effectiveness of Vision-language RAG systems hinges on multimodal retrieval, which is inherently challenging due to the diverse modalities and knowledge granularities in both queries and knowledge bases. Existing methods have not fully tapped into the potential interplay between these elements. We propose a multimodal RAG system featuring a coarse-to-fine, multi-step retrieval that harmonizes multiple granularities and modalities to enhance efficacy. Our system begins with a broad initial search aligning knowledge granularity for cross-modal retrieval, followed by a multimodal fusion reranking to capture the nuanced multimodal information for top entity selection. A text reranker then filters out the most relevant fine-grained section for augmented generation. Extensive experiments on the InfoSeek and Encyclopedic-VQA benchmarks show our method achieves state-of-the-art retrieval performance and highly competitive answering results, underscoring its effectiveness in advancing KB-VQA systems.
comment: Accepted to ACL 2025 Main Conference; Codes available at: https://github.com/ChaoLinAViy/OMGM
♻ ☆ ETVA: Evaluation of Text-to-Video Alignment via Fine-grained Question Generation and Answering
Precisely evaluating semantic alignment between text prompts and generated videos remains a challenge in Text-to-Video (T2V) Generation. Existing text-to-video alignment metrics like CLIPScore only generate coarse-grained scores without fine-grained alignment details, failing to align with human preference. To address this limitation, we propose ETVA, a novel Evaluation method of Text-to-Video Alignment via fine-grained question generation and answering. First, a multi-agent system parses prompts into semantic scene graphs to generate atomic questions. Then we design a knowledge-augmented multi-stage reasoning framework for question answering, where an auxiliary LLM first retrieves relevant common-sense knowledge (e.g., physical laws), and then video LLM answers the generated questions through a multi-stage reasoning mechanism. Extensive experiments demonstrate that ETVA achieves a Spearman's correlation coefficient of 58.47, showing a much higher correlation with human judgment than existing metrics which attain only 31.0. We also construct a comprehensive benchmark specifically designed for text-to-video alignment evaluation, featuring 2k diverse prompts and 12k atomic questions spanning 10 categories. Through a systematic evaluation of 15 existing text-to-video models, we identify their key capabilities and limitations, paving the way for next-generation T2V generation.
comment: International Conference on Computer Vision 2025
♻ ☆ Hard Negative Contrastive Learning for Fine-Grained Geometric Understanding in Large Multimodal Models
Benefiting from contrastively trained visual encoders on large-scale natural scene images, Large Multimodal Models (LMMs) have achieved remarkable performance across various visual perception tasks. However, the inherent limitations of contrastive learning upon summarized descriptions fundamentally restrict the capabilities of models in meticulous reasoning, particularly in crucial scenarios of geometric problem-solving. To enhance geometric understanding, we propose a novel hard negative contrastive learning framework for the vision encoder, which combines image-based contrastive learning using generation-based hard negatives created by perturbing diagram generation code, and text-based contrastive learning using rule-based negatives derived from modified geometric descriptions and retrieval-based negatives selected based on caption similarity. We train CLIP using our hard negative learning method, namely MMCLIP (Multimodal Math CLIP), and subsequently train an LMM for geometric problem-solving. Experiments show that our trained model, MMGeoLM, significantly outperforms other open-source models on three geometric reasoning benchmarks. Even with a size of 7B, it can rival powerful closed-source models like GPT-4o. We further conduct ablation studies to analyze three key factors: hard negative types, the efficiency of image-based negatives, and training configurations. These analyses yield important insights into optimizing hard negative strategies for geometric reasoning tasks.
♻ ☆ Foundation Models for Zero-Shot Segmentation of Scientific Images without AI-Ready Data
Zero-shot and prompt-based models have excelled at visual reasoning tasks by leveraging large-scale natural image corpora, but they often fail on sparse and domain-specific scientific image data. We introduce Zenesis, a no-code interactive computer vision platform designed to reduce data readiness bottlenecks in scientific imaging workflows. Zenesis integrates lightweight multimodal adaptation for zero-shot inference on raw scientific data, human-in-the-loop refinement, and heuristic-based temporal enhancement. We validate our approach on Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) datasets of catalyst-loaded membranes. Zenesis outperforms baselines, achieving an average accuracy of 0.947, Intersection over Union (IoU) of 0.858, and Dice score of 0.923 on amorphous catalyst samples; and 0.987 accuracy, 0.857 IoU, and 0.923 Dice on crystalline samples. These results represent a significant performance gain over conventional methods such as Otsu thresholding and standalone models like the Segment Anything Model (SAM). Zenesis enables effective image segmentation in domains where annotated datasets are limited, offering a scalable solution for scientific discovery.
comment: This paper has been accepted for presentation at the 59th International Conference on Parallel Processing (ICPP 2025), DRAI workshop
♻ ☆ DLTPose: 6DoF Pose Estimation From Accurate Dense Surface Point Estimates
We propose DLTPose, a novel method for 6DoF object pose estimation from RGBD images that combines the accuracy of sparse keypoint methods with the robustness of dense pixel-wise predictions. DLTPose predicts per-pixel radial distances to a set of minimally four keypoints, which are then fed into our novel Direct Linear Transform (DLT) formulation to produce accurate 3D object frame surface estimates, leading to better 6DoF pose estimation. Additionally, we introduce a novel symmetry-aware keypoint ordering approach, designed to handle object symmetries that otherwise cause inconsistencies in keypoint assignments. Previous keypoint-based methods relied on fixed keypoint orderings, which failed to account for the multiple valid configurations exhibited by symmetric objects, which our ordering approach exploits to enhance the model's ability to learn stable keypoint representations. Extensive experiments on the benchmark LINEMOD, Occlusion LINEMOD and YCB-Video datasets show that DLTPose outperforms existing methods, especially for symmetric and occluded objects. The code is available at https://anonymous.4open.science/r/DLTPose_/ .
comment: made changes to the evaluation, and added a few required ablation studies
♻ ☆ FMCE-Net++: Feature Map Convergence Evaluation and Training
Deep Neural Networks (DNNs) face interpretability challenges due to their opaque internal representations. While Feature Map Convergence Evaluation (FMCE) quantifies module-level convergence via Feature Map Convergence Scores (FMCS), it lacks experimental validation and closed-loop integration. To address this limitation, we propose FMCE-Net++, a novel training framework that integrates a pretrained, frozen FMCE-Net as an auxiliary head. This module generates FMCS predictions, which, combined with task labels, jointly supervise backbone optimization through a Representation Auxiliary Loss. The RAL dynamically balances the primary classification loss and feature convergence optimization via a tunable \Representation Abstraction Factor. Extensive experiments conducted on MNIST, CIFAR-10, FashionMNIST, and CIFAR-100 demonstrate that FMCE-Net++ consistently enhances model performance without architectural modifications or additional data. Key experimental outcomes include accuracy gains of $+1.16$ pp (ResNet-50/CIFAR-10) and $+1.08$ pp (ShuffleNet v2/CIFAR-100), validating that FMCE-Net++ can effectively elevate state-of-the-art performance ceilings.
Machine Learning 85
☆ Defining and Benchmarking a Data-Centric Design Space for Brain Graph Construction
The construction of brain graphs from functional Magnetic Resonance Imaging (fMRI) data plays a crucial role in enabling graph machine learning for neuroimaging. However, current practices often rely on rigid pipelines that overlook critical data-centric choices in how brain graphs are constructed. In this work, we adopt a Data-Centric AI perspective and systematically define and benchmark a data-centric design space for brain graph construction, constrasting with primarily model-centric prior work. We organize this design space into three stages: temporal signal processing, topology extraction, and graph featurization. Our contributions lie less in novel components and more in evaluating how combinations of existing and modified techniques influence downstream performance. Specifically, we study high-amplitude BOLD signal filtering, sparsification and unification strategies for connectivity, alternative correlation metrics, and multi-view node and edge features, such as incorporating lagged dynamics. Experiments on the HCP1200 and ABIDE datasets show that thoughtful data-centric configurations consistently improve classification accuracy over standard pipelines. These findings highlight the critical role of upstream data decisions and underscore the importance of systematically exploring the data-centric design space for graph-based neuroimaging. Our code is available at https://github.com/GeQinwen/DataCentricBrainGraphs.
☆ Rethinking Safety in LLM Fine-tuning: An Optimization Perspective
Fine-tuning language models is commonly believed to inevitably harm their safety, i.e., refusing to respond to harmful user requests, even when using harmless datasets, thus requiring additional safety measures. We challenge this belief through systematic testing, showing that poor optimization choices, rather than inherent trade-offs, often cause safety problems, measured as harmful responses to adversarial prompts. By properly selecting key training hyper-parameters, e.g., learning rate, batch size, and gradient steps, we reduce unsafe model responses from 16\% to approximately 5\%, as measured by keyword matching, while maintaining utility performance. Based on this observation, we propose a simple exponential moving average (EMA) momentum technique in parameter space that preserves safety performance by creating a stable optimization path and retains the original pre-trained model's safety properties. Our experiments on the Llama families across multiple datasets (Dolly, Alpaca, ORCA) demonstrate that safety problems during fine-tuning can largely be avoided without specialized interventions, outperforming existing approaches that require additional safety data while offering practical guidelines for maintaining both model performance and safety during adaptation.
☆ Toward Architecture-Agnostic Local Control of Posterior Collapse in VAEs
Variational autoencoders (VAEs), one of the most widely used generative models, are known to suffer from posterior collapse, a phenomenon that reduces the diversity of generated samples. To avoid posterior collapse, many prior works have tried to control the influence of regularization loss. However, the trade-off between reconstruction and regularization is not satisfactory. For this reason, several methods have been proposed to guarantee latent identifiability, which is the key to avoiding posterior collapse. However, they require structural constraints on the network architecture. For further clarification, we define local posterior collapse to reflect the importance of individual sample points in the data space and to relax the network constraint. Then, we propose Latent Reconstruction(LR) loss, which is inspired by mathematical properties of injective and composite functions, to control posterior collapse without restriction to a specific architecture. We experimentally evaluate our approach, which controls posterior collapse on varied datasets such as MNIST, fashionMNIST, Omniglot, CelebA, and FFHQ.
comment: 8 pages, 6 figures
☆ Results of the NeurIPS 2023 Neural MMO Competition on Multi-task Reinforcement Learning
We present the results of the NeurIPS 2023 Neural MMO Competition, which attracted over 200 participants and submissions. Participants trained goal-conditional policies that generalize to tasks, maps, and opponents never seen during training. The top solution achieved a score 4x higher than our baseline within 8 hours of training on a single 4090 GPU. We open-source everything relating to Neural MMO and the competition under the MIT license, including the policy weights and training code for our baseline and for the top submissions.
☆ An Introduction to Sliced Optimal Transport
Sliced Optimal Transport (SOT) is a rapidly developing branch of optimal transport (OT) that exploits the tractability of one-dimensional OT problems. By combining tools from OT, integral geometry, and computational statistics, SOT enables fast and scalable computation of distances, barycenters, and kernels for probability measures, while retaining rich geometric structure. This paper provides a comprehensive review of SOT, covering its mathematical foundations, methodological advances, computational methods, and applications. We discuss key concepts of OT and one-dimensional OT, the role of tools from integral geometry such as Radon transform in projecting measures, and statistical techniques for estimating sliced distances. The paper further explores recent methodological advances, including non-linear projections, improved Monte Carlo approximations, statistical estimation techniques for one-dimensional optimal transport, weighted slicing techniques, and transportation plan estimation methods. Variational problems, such as minimum sliced Wasserstein estimation, barycenters, gradient flows, kernel constructions, and embeddings are examined alongside extensions to unbalanced, partial, multi-marginal, and Gromov-Wasserstein settings. Applications span machine learning, statistics, computer graphics and computer visions, highlighting SOT's versatility as a practical computational tool. This work will be of interest to researchers and practitioners in machine learning, data sciences, and computational disciplines seeking efficient alternatives to classical OT.
comment: 227 pages
☆ Trust Region Constrained Measure Transport in Path Space for Stochastic Optimal Control and Inference
Solving stochastic optimal control problems with quadratic control costs can be viewed as approximating a target path space measure, e.g. via gradient-based optimization. In practice, however, this optimization is challenging in particular if the target measure differs substantially from the prior. In this work, we therefore approach the problem by iteratively solving constrained problems incorporating trust regions that aim for approaching the target measure gradually in a systematic way. It turns out that this trust region based strategy can be understood as a geometric annealing from the prior to the target measure, where, however, the incorporated trust regions lead to a principled and educated way of choosing the time steps in the annealing path. We demonstrate in multiple optimal control applications that our novel method can improve performance significantly, including tasks in diffusion-based sampling, transition path sampling, and fine-tuning of diffusion models.
☆ Root Cause Analysis of Hydrogen Bond Separation in Spatio-Temporal Molecular Dynamics using Causal Models
Molecular dynamics simulations (MDS) face challenges, including resource-heavy computations and the need to manually scan outputs to detect "interesting events," such as the formation and persistence of hydrogen bonds between atoms of different molecules. A critical research gap lies in identifying the underlying causes of hydrogen bond formation and separation -understanding which interactions or prior events contribute to their emergence over time. With this challenge in mind, we propose leveraging spatio-temporal data analytics and machine learning models to enhance the detection of these phenomena. In this paper, our approach is inspired by causal modeling and aims to identify the root cause variables of hydrogen bond formation and separation events. Specifically, we treat the separation of hydrogen bonds as an "intervention" occurring and represent the causal structure of the bonding and separation events in the MDS as graphical causal models. These causal models are built using a variational autoencoder-inspired architecture that enables us to infer causal relationships across samples with diverse underlying causal graphs while leveraging shared dynamic information. We further include a step to infer the root causes of changes in the joint distribution of the causal models. By constructing causal models that capture shifts in the conditional distributions of molecular interactions during bond formation or separation, this framework provides a novel perspective on root cause analysis in molecular dynamic systems. We validate the efficacy of our model empirically on the atomic trajectories that used MDS for chiral separation, demonstrating that we can predict many steps in the future and also find the variables driving the observed changes in the system.
comment: Submitted to ACM
☆ Mitigating Hallucinations in Large Language Models via Causal Reasoning
Large language models (LLMs) exhibit logically inconsistent hallucinations that appear coherent yet violate reasoning principles, with recent research suggesting an inverse relationship between causal reasoning capabilities and such hallucinations. However, existing reasoning approaches in LLMs, such as Chain-of-Thought (CoT) and its graph-based variants, operate at the linguistic token level rather than modeling the underlying causal relationships between variables, lacking the ability to represent conditional independencies or satisfy causal identification assumptions. To bridge this gap, we introduce causal-DAG construction and reasoning (CDCR-SFT), a supervised fine-tuning framework that trains LLMs to explicitly construct variable-level directed acyclic graph (DAG) and then perform reasoning over it. Moreover, we present a dataset comprising 25,368 samples (CausalDR), where each sample includes an input question, explicit causal DAG, graph-based reasoning trace, and validated answer. Experiments on four LLMs across eight tasks show that CDCR-SFT improves the causal reasoning capability with the state-of-the-art 95.33% accuracy on CLADDER (surpassing human performance of 94.8% for the first time) and reduces the hallucination on HaluEval with 10% improvements. It demonstrates that explicit causal structure modeling in LLMs can effectively mitigate logical inconsistencies in LLM outputs. Code is available at https://github.com/MrLYG/CDCR-SFT.
☆ Cost-Aware Contrastive Routing for LLMs
We study cost-aware routing for large language models across diverse and dynamic pools of models. Existing approaches often overlook prompt-specific context, rely on expensive model profiling, assume a fixed set of experts, or use inefficient trial-and-error strategies. We introduce Cost-Spectrum Contrastive Routing (CSCR), a lightweight framework that maps both prompts and models into a shared embedding space to enable fast, cost-sensitive selection. CSCR uses compact, fast-to-compute logit footprints for open-source models and perplexity fingerprints for black-box APIs. A contrastive encoder is trained to favor the cheapest accurate expert within adaptive cost bands. At inference time, routing reduces to a single k-NN lookup via a FAISS index, requiring no retraining when the expert pool changes and enabling microsecond latency. Across multiple benchmarks, CSCR consistently outperforms baselines, improving the accuracy-cost tradeoff by up to 25%, while generalizing robustly to unseen LLMs and out-of-distribution prompts.
☆ Cold-RL: Learning Cache Eviction with Offline Reinforcement Learning for NGINX
Web proxies such as NGINX commonly rely on least-recently-used (LRU) eviction, which is size agnostic and can thrash under periodic bursts and mixed object sizes. We introduce Cold-RL, a learned eviction policy for NGINX that replaces LRU's forced-expire path with a dueling Deep Q-Network served by an ONNX sidecar within a strict microsecond budget. On each eviction, Cold-RL samples the K least-recently-used objects, extracts six lightweight features (age, size, hit count, inter-arrival time, remaining TTL, and last origin RTT), and requests a bitmask of victims; a hard timeout of 500 microseconds triggers immediate fallback to native LRU. Policies are trained offline by replaying NGINX access logs through a cache simulator with a simple reward: a retained object earns one point if it is hit again before TTL expiry. We compare against LRU, LFU, size-based, adaptive LRU, and a hybrid baseline on two adversarial workloads. With a 25 MB cache, Cold-RL raises hit ratio from 0.1436 to 0.3538, a 146 percent improvement over the best classical baseline; at 100 MB, from 0.7530 to 0.8675, a 15 percent gain; and at 400 MB it matches classical methods (about 0.918). Inference adds less than 2 percent CPU overhead and keeps 95th percentile eviction latency within budget. To our knowledge, this is the first reinforcement learning eviction policy integrated into NGINX with strict SLOs.
comment: 8 pages, 4 figures (system architecture, eviction path, training pipeline, and DQN algorithm), 2 tables. Code available at https://github.com/ayushgupta4897/DRL-Cache
☆ The Yokai Learning Environment: Tracking Beliefs Over Space and Time IJCAI 2025
Developing collaborative AI hinges on Theory of Mind (ToM) - the ability to reason about the beliefs of others to build and maintain common ground. Existing ToM benchmarks, however, are restricted to passive observer settings or lack an assessment of how agents establish and maintain common ground over time. To address these gaps, we introduce the Yokai Learning Environment (YLE) - a multi-agent reinforcement learning (RL) environment based on the cooperative card game Yokai. In the YLE, agents take turns peeking at hidden cards and moving them to form clusters based on colour. Success requires tracking evolving beliefs, remembering past observations, using hints as grounded communication, and maintaining common ground with teammates. Our evaluation yields two key findings: First, current RL agents struggle to solve the YLE, even when given access to perfect memory. Second, while belief modelling improves performance, agents are still unable to effectively generalise to unseen partners or form accurate beliefs over longer games, exposing a reliance on brittle conventions rather than robust belief tracking. We use the YLE to investigate research questions in belief modelling, memory, partner generalisation, and scaling to higher-order ToM.
comment: Presented at the the ToM IJCAI 2025 Workshop
☆ SimQFL: A Quantum Federated Learning Simulator with Real-Time Visualization
Quantum federated learning (QFL) is an emerging field that has the potential to revolutionize computation by taking advantage of quantum physics concepts in a distributed machine learning (ML) environment. However, the majority of available quantum simulators are primarily built for general quantum circuit simulation and do not include integrated support for machine learning tasks such as training, evaluation, and iterative optimization. Furthermore, designing and assessing quantum learning algorithms is still a difficult and resource-intensive task. Real-time updates are essential for observing model convergence, debugging quantum circuits, and making conscious choices during training with the use of limited resources. Furthermore, most current simulators fail to support the integration of user-specific data for training purposes, undermining the main purpose of using a simulator. In this study, we introduce SimQFL, a customized simulator that simplifies and accelerates QFL experiments in quantum network applications. SimQFL supports real-time, epoch-wise output development and visualization, allowing researchers to monitor the process of learning across each training round. Furthermore, SimQFL offers an intuitive and visually appealing interface that facilitates ease of use and seamless execution. Users can customize key variables such as the number of epochs, learning rates, number of clients, and quantum hyperparameters such as qubits and quantum layers, making the simulator suitable for various QFL applications. The system gives immediate feedback following each epoch by showing intermediate outcomes and dynamically illustrating learning curves. SimQFL is a practical and interactive platform enabling academics and developers to prototype, analyze, and tune quantum neural networks with greater transparency and control in distributed quantum networks.
☆ Inverse-LLaVA: Eliminating Alignment Pre-training Through Text-to-Vision Mapping
Traditional multimodal learning approaches require expensive alignment pre-training to bridge vision and language modalities, typically projecting visual features into discrete text token spaces. We challenge both fundamental assumptions underlying this paradigm by proposing Inverse-LLaVA, a novel approach that eliminates alignment pre-training entirely while inverting the conventional mapping direction. Rather than projecting visual features to text space, our method maps text embeddings into continuous visual representation space and performs fusion within transformer intermediate layers. Through selective additive components in attention mechanisms, we enable dynamic integration of visual and textual representations without requiring massive image-text alignment datasets. Comprehensive experiments across nine multimodal benchmarks demonstrate nuanced performance trade-offs: Inverse-LLaVA achieves notable improvements on reasoning-intensive and cognitive tasks (MM-VET: +0.2%, VizWiz: +1.8%, ScienceQA: +0.2%, cognitive reasoning: +27.2%), while showing expected decreases in perception tasks requiring memorized visual-text associations (celebrity recognition: -49.5%, OCR: -21.3%). These results provide the first empirical evidence that alignment pre-training is not necessary for effective multimodal learning, particularly for complex reasoning tasks. Our work establishes the feasibility of a new paradigm that reduces computational requirements by 45%, challenges conventional wisdom about modality fusion, and opens new research directions for efficient multimodal architectures that preserve modality-specific characteristics. Our project website with code and additional resources is available at https://inverse-llava.github.io.
comment: 15pages, 3 figures
☆ Local Cluster Cardinality Estimation for Adaptive Mean Shift
This article presents an adaptive mean shift algorithm designed for datasets with varying local scale and cluster cardinality. Local distance distributions, from a point to all others, are used to estimate the cardinality of the local cluster by identifying a local minimum in the density of the distance distribution. Based on these cardinality estimates, local cluster parameters are then computed for the entire cluster in contrast to KDE-based methods, which provide insight only into localized regions of the cluster. During the mean shift execution, the cluster cardinality estimate is used to adaptively adjust the bandwidth and the mean shift kernel radius threshold. Our algorithm outperformed a recently proposed adaptive mean shift method on its original dataset and demonstrated competitive performance on a broader clustering benchmark.
comment: 24 pages, 9 figures
☆ Uncovering Emergent Physics Representations Learned In-Context by Large Language Models
Large language models (LLMs) exhibit impressive in-context learning (ICL) abilities, enabling them to solve wide range of tasks via textual prompts alone. As these capabilities advance, the range of applicable domains continues to expand significantly. However, identifying the precise mechanisms or internal structures within LLMs that allow successful ICL across diverse, distinct classes of tasks remains elusive. Physics-based tasks offer a promising testbed for probing this challenge. Unlike synthetic sequences such as basic arithmetic or symbolic equations, physical systems provide experimentally controllable, real-world data based on structured dynamics grounded in fundamental principles. This makes them particularly suitable for studying the emergent reasoning behaviors of LLMs in a realistic yet tractable setting. Here, we mechanistically investigate the ICL ability of LLMs, especially focusing on their ability to reason about physics. Using a dynamics forecasting task in physical systems as a proxy, we evaluate whether LLMs can learn physics in context. We first show that the performance of dynamics forecasting in context improves with longer input contexts. To uncover how such capability emerges in LLMs, we analyze the model's residual stream activations using sparse autoencoders (SAEs). Our experiments reveal that the features captured by SAEs correlate with key physical variables, such as energy. These findings demonstrate that meaningful physical concepts are encoded within LLMs during in-context learning. In sum, our work provides a novel case study that broadens our understanding of how LLMs learn in context.
comment: 17 pages, 10 figures
☆ Machine Learning-Based Manufacturing Cost Prediction from 2D Engineering Drawings via Geometric Features
We present an integrated machine learning framework that transforms how manufacturing cost is estimated from 2D engineering drawings. Unlike traditional quotation workflows that require labor-intensive process planning, our approach about 200 geometric and statistical descriptors directly from 13,684 DWG drawings of automotive suspension and steering parts spanning 24 product groups. Gradient-boosted decision tree models (XGBoost, CatBoost, LightGBM) trained on these features achieve nearly 10% mean absolute percentage error across groups, demonstrating robust scalability beyond part-specific heuristics. By coupling cost prediction with explainability tools such as SHAP, the framework identifies geometric design drivers including rotated dimension maxima, arc statistics and divergence metrics, offering actionable insights for cost-aware design. This end-to-end CAD-to-cost pipeline shortens quotation lead times, ensures consistent and transparent cost assessments across part families and provides a deployable pathway toward real-time, ERP-integrated decision support in Industry 4.0 manufacturing environments.
☆ Bi-Axial Transformers: Addressing the Increasing Complexity of EHR Classification
Electronic Health Records (EHRs), the digital representation of a patient's medical history, are a valuable resource for epidemiological and clinical research. They are also becoming increasingly complex, with recent trends indicating larger datasets, longer time series, and multi-modal integrations. Transformers, which have rapidly gained popularity due to their success in natural language processing and other domains, are well-suited to address these challenges due to their ability to model long-range dependencies and process data in parallel. But their application to EHR classification remains limited by data representations, which can reduce performance or fail to capture informative missingness. In this paper, we present the Bi-Axial Transformer (BAT), which attends to both the clinical variable and time point axes of EHR data to learn richer data relationships and address the difficulties of data sparsity. BAT achieves state-of-the-art performance on sepsis prediction and is competitive to top methods for mortality classification. In comparison to other transformers, BAT demonstrates increased robustness to data missingness, and learns unique sensor embeddings which can be used in transfer learning. Baseline models, which were previously located across multiple repositories or utilized deprecated libraries, were re-implemented with PyTorch and made available for reproduction and future benchmarking.
comment: 18 pages, 7 figures. Submitted to the IEEE for possible publication
☆ Quantum Flow Matching
Flow matching has rapidly become a dominant paradigm in classical generative modeling, offering an efficient way to interpolate between two complex distributions. We extend this idea to the quantum realm and introduce Quantum Flow Matching (QFM)-a fully quantum-circuit realization that offers efficient interpolation between two density matrices. QFM offers systematic preparation of density matrices and generation of samples for accurately estimating observables, and can be realized on a quantum computer without the need for costly circuit redesigns. We validate its versatility on a set of applications: (i) generating target states with prescribed magnetization and entanglement entropy, (ii) estimating nonequilibrium free-energy differences to test the quantum Jarzynski equality, and (iii) expediting the study on superdiffusion breakdown. These results position QFM as a unifying and promising framework for generative modeling across quantum systems.
comment: 15 pages, 11 figures
☆ Navigating the Exploration-Exploitation Tradeoff in Inference-Time Scaling of Diffusion Models
Inference-time scaling has achieved remarkable success in language models, yet its adaptation to diffusion models remains underexplored. We observe that the efficacy of recent Sequential Monte Carlo (SMC)-based methods largely stems from globally fitting the The reward-tilted distribution, which inherently preserves diversity during multi-modal search. However, current applications of SMC to diffusion models face a fundamental dilemma: early-stage noise samples offer high potential for improvement but are difficult to evaluate accurately, whereas late-stage samples can be reliably assessed but are largely irreversible. To address this exploration-exploitation trade-off, we approach the problem from the perspective of the search algorithm and propose two strategies: Funnel Schedule and Adaptive Temperature. These simple yet effective methods are tailored to the unique generation dynamics and phase-transition behavior of diffusion models. By progressively reducing the number of maintained particles and down-weighting the influence of early-stage rewards, our methods significantly enhance sample quality without increasing the total number of Noise Function Evaluations. Experimental results on multiple benchmarks and state-of-the-art text-to-image diffusion models demonstrate that our approach outperforms previous baselines.
☆ Synthetic Data is Sufficient for Zero-Shot Visual Generalization from Offline Data
Offline reinforcement learning (RL) offers a promising framework for training agents using pre-collected datasets without the need for further environment interaction. However, policies trained on offline data often struggle to generalise due to limited exposure to diverse states. The complexity of visual data introduces additional challenges such as noise, distractions, and spurious correlations, which can misguide the policy and increase the risk of overfitting if the training data is not sufficiently diverse. Indeed, this makes it challenging to leverage vision-based offline data in training robust agents that can generalize to unseen environments. To solve this problem, we propose a simple approach generating additional synthetic training data. We propose a two-step process, first augmenting the originally collected offline data to improve zero-shot generalization by introducing diversity, then using a diffusion model to generate additional data in latent space. We test our method across both continuous action spaces (Visual D4RL) and discrete action spaces (Procgen), demonstrating that it significantly improves generalization without requiring any algorithmic changes to existing model-free offline RL methods. We show that our method not only increases the diversity of the training data but also significantly reduces the generalization gap at test time while maintaining computational efficiency. We believe this approach could fuel additional progress in generating synthetic data to train more general agents in the future.
☆ Convergence Analysis of the Lion Optimizer in Centralized and Distributed Settings
In this paper, we analyze the convergence properties of the Lion optimizer. First, we establish that the Lion optimizer attains a convergence rate of $\mathcal{O}(d^{1/2}T^{-1/4})$ under standard assumptions, where $d$ denotes the problem dimension and $T$ is the iteration number. To further improve this rate, we introduce the Lion optimizer with variance reduction, resulting in an enhanced convergence rate of $\mathcal{O}(d^{1/2}T^{-1/3})$. We then analyze in distributed settings, where the standard and variance reduced version of the distributed Lion can obtain the convergence rates of $\mathcal{O}(d^{1/2}(nT)^{-1/4})$ and $\mathcal{O}(d^{1/2}(nT)^{-1/3})$, with $n$ denoting the number of nodes. Furthermore, we investigate a communication-efficient variant of the distributed Lion that ensures sign compression in both communication directions. By employing the unbiased sign operations, the proposed Lion variant and its variance reduction counterpart, achieve convergence rates of $\mathcal{O}\left( \max \left\{\frac{d^{1/4}}{T^{1/4}}, \frac{d^{1/10}}{n^{1/5}T^{1/5}} \right\} \right)$ and $\mathcal{O}\left( \frac{d^{1/4}}{T^{1/4}} \right)$, respectively.
☆ CarelessWhisper: Turning Whisper into a Causal Streaming Model
Automatic Speech Recognition (ASR) has seen remarkable progress, with models like OpenAI Whisper and NVIDIA Canary achieving state-of-the-art (SOTA) performance in offline transcription. However, these models are not designed for streaming (online or real-time) transcription, due to limitations in their architecture and training methodology. We propose a method to turn the transformer encoder-decoder model into a low-latency streaming model that is careless about future context. We present an analysis explaining why it is not straightforward to convert an encoder-decoder transformer to a low-latency streaming model. Our proposed method modifies the existing (non-causal) encoder to a causal encoder by fine-tuning both the encoder and decoder using Low-Rank Adaptation (LoRA) and a weakly aligned dataset. We then propose an updated inference mechanism that utilizes the fine-tune causal encoder and decoder to yield greedy and beam-search decoding, and is shown to be locally optimal. Experiments on low-latency chunk sizes (less than 300 msec) show that our fine-tuned model outperforms existing non-fine-tuned streaming approaches in most cases, while using a lower complexity. Additionally, we observe that our training process yields better alignment, enabling a simple method for extracting word-level timestamps. We release our training and inference code, along with the fine-tuned models, to support further research and development in streaming ASR.
comment: 17 pages, 7 Figures, This work has been submitted to the IEEE for possible publication
☆ TSLA: A Task-Specific Learning Adaptation for Semantic Segmentation on Autonomous Vehicles Platform
Autonomous driving platforms encounter diverse driving scenarios, each with varying hardware resources and precision requirements. Given the computational limitations of embedded devices, it is crucial to consider computing costs when deploying on target platforms like the NVIDIA\textsuperscript{\textregistered} DRIVE PX 2. Our objective is to customize the semantic segmentation network according to the computing power and specific scenarios of autonomous driving hardware. We implement dynamic adaptability through a three-tier control mechanism -- width multiplier, classifier depth, and classifier kernel -- allowing fine-grained control over model components based on hardware constraints and task requirements. This adaptability facilitates broad model scaling, targeted refinement of the final layers, and scenario-specific optimization of kernel sizes, leading to improved resource allocation and performance. Additionally, we leverage Bayesian Optimization with surrogate modeling to efficiently explore hyperparameter spaces under tight computational budgets. Our approach addresses scenario-specific and task-specific requirements through automatic parameter search, accommodating the unique computational complexity and accuracy needs of autonomous driving. It scales its Multiply-Accumulate Operations (MACs) for Task-Specific Learning Adaptation (TSLA), resulting in alternative configurations tailored to diverse self-driving tasks. These TSLA customizations maximize computational capacity and model accuracy, optimizing hardware utilization.
☆ CRoC: Context Refactoring Contrast for Graph Anomaly Detection with Limited Supervision
Graph Neural Networks (GNNs) are widely used as the engine for various graph-related tasks, with their effectiveness in analyzing graph-structured data. However, training robust GNNs often demands abundant labeled data, which is a critical bottleneck in real-world applications. This limitation severely impedes progress in Graph Anomaly Detection (GAD), where anomalies are inherently rare, costly to label, and may actively camouflage their patterns to evade detection. To address these problems, we propose Context Refactoring Contrast (CRoC), a simple yet effective framework that trains GNNs for GAD by jointly leveraging limited labeled and abundant unlabeled data. Different from previous works, CRoC exploits the class imbalance inherent in GAD to refactor the context of each node, which builds augmented graphs by recomposing the attributes of nodes while preserving their interaction patterns. Furthermore, CRoC encodes heterogeneous relations separately and integrates them into the message-passing process, enhancing the model's capacity to capture complex interaction semantics. These operations preserve node semantics while encouraging robustness to adversarial camouflage, enabling GNNs to uncover intricate anomalous cases. In the training stage, CRoC is further integrated with the contrastive learning paradigm. This allows GNNs to effectively harness unlabeled data during joint training, producing richer, more discriminative node embeddings. CRoC is evaluated on seven real-world GAD datasets with varying scales. Extensive experiments demonstrate that CRoC achieves up to 14% AUC improvement over baseline GNNs and outperforms state-of-the-art GAD methods under limited-label settings.
comment: Accepted by ECAI 2025
☆ L-SR1: Learned Symmetric-Rank-One Preconditioning
End-to-end deep learning has achieved impressive results but remains limited by its reliance on large labeled datasets, poor generalization to unseen scenarios, and growing computational demands. In contrast, classical optimization methods are data-efficient and lightweight but often suffer from slow convergence. While learned optimizers offer a promising fusion of both worlds, most focus on first-order methods, leaving learned second-order approaches largely unexplored. We propose a novel learned second-order optimizer that introduces a trainable preconditioning unit to enhance the classical Symmetric-Rank-One (SR1) algorithm. This unit generates data-driven vectors used to construct positive semi-definite rank-one matrices, aligned with the secant constraint via a learned projection. Our method is evaluated through analytic experiments and on the real-world task of Monocular Human Mesh Recovery (HMR), where it outperforms existing learned optimization-based approaches. Featuring a lightweight model and requiring no annotated data or fine-tuning, our approach offers strong generalization and is well-suited for integration into broader optimization-based frameworks.
comment: Under review
☆ Interpreting Time Series Forecasts with LIME and SHAP: A Case Study on the Air Passengers Dataset
Time-series forecasting underpins critical decisions across aviation, energy, retail and health. Classical autoregressive integrated moving average (ARIMA) models offer interpretability via coefficients but struggle with nonlinearities, whereas tree-based machine-learning models such as XGBoost deliver high accuracy but are often opaque. This paper presents a unified framework for interpreting time-series forecasts using local interpretable model-agnostic explanations (LIME) and SHapley additive exPlanations (SHAP). We convert a univariate series into a leakage-free supervised learning problem, train a gradient-boosted tree alongside an ARIMA baseline and apply post-hoc explainability. Using the Air Passengers dataset as a case study, we show that a small set of lagged features -- particularly the twelve-month lag -- and seasonal encodings explain most forecast variance. We contribute: (i) a methodology for applying LIME and SHAP to time series without violating chronology; (ii) theoretical exposition of the underlying algorithms; (iii) empirical evaluation with extensive analysis; and (iv) guidelines for practitioners.
☆ STM3: Mixture of Multiscale Mamba for Long-Term Spatio-Temporal Time-Series Prediction
Recently, spatio-temporal time-series prediction has developed rapidly, yet existing deep learning methods struggle with learning complex long-term spatio-temporal dependencies efficiently. The long-term spatio-temporal dependency learning brings two new challenges: 1) The long-term temporal sequence includes multiscale information naturally which is hard to extract efficiently; 2) The multiscale temporal information from different nodes is highly correlated and hard to model. To address these challenges, we propose an efficient \textit{\textbf{S}patio-\textbf{T}emporal \textbf{M}ultiscale \textbf{M}amba} (STM2) that includes a multiscale Mamba architecture to capture the multiscale information efficiently and simultaneously, and an adaptive graph causal convolution network to learn the complex multiscale spatio-temporal dependency. STM2 includes hierarchical information aggregation for different-scale information that guarantees their distinguishability. To capture diverse temporal dynamics across all spatial nodes more efficiently, we further propose an enhanced version termed \textit{\textbf{S}patio-\textbf{T}emporal \textbf{M}ixture of \textbf{M}ultiscale \textbf{M}amba} (STM3) that employs a special Mixture-of-Experts architecture, including a more stable routing strategy and a causal contrastive learning strategy to enhance the scale distinguishability. We prove that STM3 has much better routing smoothness and guarantees the pattern disentanglement for each expert successfully. Extensive experiments on real-world benchmarks demonstrate STM2/STM3's superior performance, achieving state-of-the-art results in long-term spatio-temporal time-series prediction.
☆ DHG-Bench: A Comprehensive Benchmark on Deep Hypergraph Learning
Although conventional deep graph models have achieved great success in relational learning, their focus on pairwise relationships limits their capacity to learn pervasive higher-order interactions in real-world complex systems, which can be naturally modeled as hypergraphs. To tackle this, hypergraph neural networks (HNNs), the dominant approach in deep hypergraph learning (DHGL), has garnered substantial attention in recent years. Despite the proposal of numerous HNN methods, there is no comprehensive benchmark for HNNs, which creates a great obstacle to understanding the progress of DHGL in several aspects: (i) insufficient coverage of datasets, algorithms, and tasks; (ii) a narrow evaluation of algorithm performance; and (iii) inconsistent dataset usage, preprocessing, and experimental setups that hinder comparability. To fill the gap, we introduce DHG-Bench, the first comprehensive benchmark for DHGL. Specifically, DHG-Bench integrates 20 diverse datasets spanning node-, edge-, and graph-level tasks, along with 16 state-of-the-art HNN algorithms, under consistent data processing and experimental protocols. Our benchmark systematically investigates the characteristics of HNNs in terms of four dimensions: effectiveness, efficiency, robustness, and fairness. Further, to facilitate reproducible research, we have developed an easy-to-use library for training and evaluating different HNN methods. Extensive experiments conducted with DHG-Bench reveal both the strengths and inherent limitations of existing algorithms, offering valuable insights and directions for future research. The code is publicly available at: https://github.com/Coco-Hut/DHG-Bench.
comment: 22 pages, 5 figures
☆ CC-Time: Cross-Model and Cross-Modality Time Series Forecasting
With the success of pre-trained language models (PLMs) in various application fields beyond natural language processing, language models have raised emerging attention in the field of time series forecasting (TSF) and have shown great prospects. However, current PLM-based TSF methods still fail to achieve satisfactory prediction accuracy matching the strong sequential modeling power of language models. To address this issue, we propose Cross-Model and Cross-Modality Learning with PLMs for time series forecasting (CC-Time). We explore the potential of PLMs for time series forecasting from two aspects: 1) what time series features could be modeled by PLMs, and 2) whether relying solely on PLMs is sufficient for building time series models. In the first aspect, CC-Time incorporates cross-modality learning to model temporal dependency and channel correlations in the language model from both time series sequences and their corresponding text descriptions. In the second aspect, CC-Time further proposes the cross-model fusion block to adaptively integrate knowledge from the PLMs and time series model to form a more comprehensive modeling of time series patterns. Extensive experiments on nine real-world datasets demonstrate that CC-Time achieves state-of-the-art prediction accuracy in both full-data training and few-shot learning situations.
☆ Communication-Efficient Distributed Asynchronous ADMM
In distributed optimization and federated learning, asynchronous alternating direction method of multipliers (ADMM) serves as an attractive option for large-scale optimization, data privacy, straggler nodes and variety of objective functions. However, communication costs can become a major bottleneck when the nodes have limited communication budgets or when the data to be communicated is prohibitively large. In this work, we propose introducing coarse quantization to the data to be exchanged in aynchronous ADMM so as to reduce communication overhead for large-scale federated learning and distributed optimization applications. We experimentally verify the convergence of the proposed method for several distributed learning tasks, including neural networks.
☆ Distribution Matching via Generalized Consistency Models
Recent advancement in generative models have demonstrated remarkable performance across various data modalities. Beyond their typical use in data synthesis, these models play a crucial role in distribution matching tasks such as latent variable modeling, domain translation, and domain adaptation. Generative Adversarial Networks (GANs) have emerged as the preferred method of distribution matching due to their efficacy in handling high-dimensional data and their flexibility in accommodating various constraints. However, GANs often encounter challenge in training due to their bi-level min-max optimization objective and susceptibility to mode collapse. In this work, we propose a novel approach for distribution matching inspired by the consistency models employed in Continuous Normalizing Flow (CNF). Our model inherits the advantages of CNF models, such as having a straight forward norm minimization objective, while remaining adaptable to different constraints similar to GANs. We provide theoretical validation of our proposed objective and demonstrate its performance through experiments on synthetic and real-world datasets.
☆ Unlearning at Scale: Implementing the Right to be Forgotten in Large Language Models
We study the right to be forgotten (GDPR Art. 17) for large language models and frame unlearning as a reproducible systems problem. Our approach treats training as a deterministic program and logs a minimal per-microbatch record (ordered ID hash, RNG seed, learning-rate value, optimizer-step counter, and accumulation boundary). Under a pinned stack and deterministic kernels, replaying the training tail while filtering only the forget closure yields the same parameters as training on the retain set (bit-identical in the training dtype) when preconditions hold. To meet latency and availability constraints, we add complementary paths: (i) exact reverts of recent steps via micro-checkpoints or dense per-step deltas, (ii) cohort-scoped adapter deletion when the base is frozen, and (iii) a curvature-guided anti-update followed by a short retain-tune, audit-gated with escalation to exact replay. We report storage/latency budgets and a toy artifact validating mechanics; in a controlled run that satisfies the preconditions we demonstrate byte-identical equality of model and optimizer states.
comment: Preprint; 2 figures + several tables; includes appendix. Artifact/code link in paper
☆ Towards Generalizable Human Activity Recognition: A Survey
As a critical component of Wearable AI, IMU-based Human Activity Recognition (HAR) has attracted increasing attention from both academia and industry in recent years. Although HAR performance has improved considerably in specific scenarios, its generalization capability remains a key barrier to widespread real-world adoption. For example, domain shifts caused by variations in users, sensor positions, or environments can significantly decrease the performance in practice. As a result, in this survey, we explore the rapidly evolving field of IMU-based generalizable HAR, reviewing 229 research papers alongside 25 publicly available datasets to provide a broad and insightful overview. We first present the background and overall framework of IMU-based HAR tasks, as well as the generalization-oriented training settings. Then, we categorize representative methodologies from two perspectives: (i) model-centric approaches, including pre-training method, end-to-end method, and large language model (LLM)-based learning method; and (ii) data-centric approaches, including multi-modal learning and data augmentation techniques. In addition, we summarize widely used datasets in this field, as well as relevant tools and benchmarks. Building on these methodological advances, the broad applicability of IMU-based HAR is also reviewed and discussed. Finally, we discuss persistent challenges (e.g., data scarcity, efficient training, and reliable evaluation) and also outline future directions for HAR, including the adoption of foundation and large language models, physics-informed and context-aware reasoning, generative modeling, and resource-efficient training and inference. The complete list of this survey is available at https://github.com/rh20624/Awesome-IMU-Sensing, which will be updated continuously.
☆ ProtTeX-CC: Activating In-Context Learning in Protein LLM via Two-Stage Instruction Compression
Recent advances in protein large language models, such as ProtTeX, represent both side-chain amino acids and backbone structure as discrete token sequences of residue length. While this design enables unified modeling of multimodal protein information, it suffers from two major limitations: (1) The concatenation of sequence and structure tokens approximately doubles the protein length and breaks the intrinsic residue-level alignment between modalities. (2) Constrained by the training corpus and limited context window, ProtTeX is typically trained on single-protein inputs, rendering it incompatible with in-context learning (ICL) and thus limiting its generalization capability. To address these issues, we propose ProtTeX-CC, a lightweight two-stage compression framework designed to enhance ProtTeX under few-shot settings. We first design a joint embedding compression mechanism that fuses sequence and structure representations at the residue level, effectively reducing the protein input length by half without sacrificing performance. Then we propose a self-compression module that aggregates each full demonstration into the latent space of the last few linguistic tokens, reducing the average demonstration length from 751 tokens to less than 16 tokens. Compared to the original ProtTeX, our self-compression approach achieves a compression ratio of approximately 93.68% in the total prompt length under the 16-shot setting. Without modifying the backbone model, ProtTeX-CC introduces only a small number of additional parameters through PEFT-based tuning in the joint embedding compression stage and a single trainable projection layer in the self-compression stage. Extensive experiments on protein function prediction show that ProtTeX-CC improves performance on the in-domain benchmark by 2%, and generalizes well to the out-of-domain dataset with a performance gain of 11%.
☆ ATLAS: AI-Native Receiver Test-and-Measurement by Leveraging AI-Guided Search
Industry adoption of Artificial Intelligence (AI)-native wireless receivers, or even modular, Machine Learning (ML)-aided wireless signal processing blocks, has been slow. The main concern is the lack of explainability of these trained ML models and the significant risks posed to network functionalities in case of failures, especially since (i) testing on every exhaustive case is infeasible and (ii) the data used for model training may not be available. This paper proposes ATLAS, an AI-guided approach that generates a battery of tests for pre-trained AI-native receiver models and benchmarks the performance against a classical receiver architecture. Using gradient-based optimization, it avoids spanning the exhaustive set of all environment and channel conditions; instead, it generates the next test in an online manner to further probe specific configurations that offer the highest risk of failure. We implement and validate our approach by adopting the well-known DeepRx AI-native receiver model as well as a classical receiver using differentiable tensors in NVIDIA's Sionna environment. ATLAS uncovers specific combinations of mobility, channel delay spread, and noise, where fully and partially trained variants of AI-native DeepRx perform suboptimally compared to the classical receivers. Our proposed method reduces the number of tests required per failure found by 19% compared to grid search for a 3-parameters input optimization problem, demonstrating greater efficiency. In contrast, the computational cost of the grid-based approach scales exponentially with the number of variables, making it increasingly impractical for high-dimensional problems.
comment: Accepted at IEEE PIMRC 2025
☆ Exploring Multimodal AI Reasoning for Meteorological Forecasting from Skew-T Diagrams
Forecasting from atmospheric soundings is a fundamental task in operational meteorology, often requiring structured visual reasoning over Skew-T log-P diagrams by human forecasters. While recent advances in Vision-Language Models (VLMs) have shown promise in other scientific domains, their application to meteorological diagram interpretation remains largely unexplored. In this study, we present a lightweight AI assistant that interprets Skew-T diagrams using a small language model (LM) and a small VLM fine-tuned to emulate human forecasters. Using a curriculum learning framework, we first train the models to identify key atmospheric features from diagrams through visual question answering, followed by chain-of-thought reasoning tasks that estimate precipitation probability based on the derived visual groundings. Model inputs include either textual summaries or generated Skew-T diagrams derived from operational Numerical Weather Prediction (NWP) forecasts, paired with three-hour precipitation observations from South Korea's Auto Weather Stations network. Evaluation results demonstrate that the fine-tuned VLM achieves skill comparable to an operational NWP model, despite relying solely on static atmospheric profiles. Ablation studies reveal that visual grounding and reasoning supervision are critical for performance, while attention map analysis confirms that the model learns to focus on relevant meteorological features. These findings highlight the potential of compact, interpretable multimodal models to support weather forecasting tasks. The approach offers a computationally efficient alternative to large-scale systems, and future work could extend it to more complex applications.
comment: 24 pages, 3 figures, 9 tables
♻ ☆ Efficiently Verifiable Proofs of Data Attribution
Data attribution methods aim to answer useful counterfactual questions like "what would a ML model's prediction be if it were trained on a different dataset?" However, estimation of data attribution models through techniques like empirical influence or "datamodeling" remains very computationally expensive. This causes a critical trust issue: if only a few computationally rich parties can obtain data attributions, how can resource-constrained parties trust that the provided attributions are indeed "good," especially when they are used for important downstream applications (e.g., data pricing)? In this paper, we address this trust issue by proposing an interactive verification paradigm for data attribution. An untrusted and computationally powerful Prover learns data attributions, and then engages in an interactive proof with a resource-constrained Verifier. Our main result is a protocol that provides formal completeness, soundness, and efficiency guarantees in the sense of Probably-Approximately-Correct (PAC) verification. Specifically, if both Prover and Verifier follow the protocol, the Verifier accepts data attributions that are {\epsilon}-close to the optimal data attributions (in terms of the Mean Squared Error) with probability 1-{\delta}. Conversely, if the Prover arbitrarily deviates from the protocol, even with infinite compute, then this is detected (or it still yields data attributions to the Verifier) except with probability {\delta}. Importantly, our protocol ensures the Verifier's workload, measured by the number of independent model retrainings it must perform, scales only as O(1/{\epsilon}); i.e., independently of the dataset size. At a technical level, our results apply to efficiently verifying any linear function over the boolean hypercube computed by the Prover, making them broadly applicable to various attribution tasks.
♻ ☆ Linear Bandits with Partially Observable Features ICML 2025
We study the linear bandit problem that accounts for partially observable features. Without proper handling, unobserved features can lead to linear regret in the decision horizon $T$, as their influence on rewards is unknown. To tackle this challenge, we propose a novel theoretical framework and an algorithm with sublinear regret guarantees. The core of our algorithm consists of (i) feature augmentation, by appending basis vectors that are orthogonal to the row space of the observed features; and (ii) the introduction of a doubly robust estimator. Our approach achieves a regret bound of $\tilde{O}(\sqrt{(d + d_h)T})$, where $d$ is the dimension of the observed features and $d_h$ depends on the extent to which the unobserved feature space is contained in the observed one, thereby capturing the intrinsic difficulty of the problem. Notably, our algorithm requires no prior knowledge of the unobserved feature space, which may expand as more features become hidden. Numerical experiments confirm that our algorithm outperforms both non-contextual multi-armed bandits and linear bandit algorithms depending solely on observed features.
comment: Accepted in ICML 2025
♻ ☆ Towards Infant Sleep-Optimized Driving: Synergizing Wearable and Vehicle Sensing in Intelligent Cruise Control
Automated driving (AD) has substantially improved vehicle safety and driving comfort, but their impact on passenger well-being, particularly infant sleep, is not sufficiently studied. Sudden acceleration, abrupt braking, and sharp maneuvers can disrupt infant sleep, compromising both passenger comfort and parental convenience. To solve this problem, this paper explores the integration of reinforcement learning (RL) within AD to personalize driving behavior and optimally balance occupant comfort and travel efficiency. In particular, we propose an intelligent cruise control framework that adapts to varying driving conditions to enhance infant sleep quality by effectively synergizing wearable sensing and vehicle data. Long short-term memory (LSTM) and transformer-based neural networks are integrated with RL to model the relationship between driving behavior and infant sleep quality under diverse traffic and road conditions. Based on the sleep quality indicators from the wearable sensors, driving action data from vehicle controllers, and map data from map applications, the model dynamically computes the optimal driving aggressiveness level, which is subsequently translated into specific AD control strategies, e.g., the magnitude and frequency of acceleration, lane change, and overtaking. Simulation experiments conducted in the CARLA environment indicate that the proposed solution significantly improves infant sleep quality compared to baseline methods, while preserving desirable travel efficiency.
♻ ☆ KACQ-DCNN: Uncertainty-Aware Interpretable Kolmogorov-Arnold Classical-Quantum Dual-Channel Neural Network for Heart Disease Detection
Heart failure is a leading cause of global mortality, necessitating improved diagnostic strategies. Classical machine learning models struggle with challenges such as high-dimensional data, class imbalances, poor feature representations, and a lack of interpretability. While quantum machine learning holds promise, current hybrid models have not fully exploited quantum advantages. In this paper, we propose the Kolmogorov-Arnold Classical-Quantum Dual-Channel Neural Network (KACQ-DCNN), a novel hybrid architecture that replaces traditional multilayer perceptrons with Kolmogorov-Arnold Networks (KANs), enabling learnable univariate activation functions. Our KACQ-DCNN 4-qubit, 1-layer model outperforms 37 benchmark models, including 16 classical and 12 quantum neural networks, achieving an accuracy of 92.03%, with macro-average precision, recall, and F1 scores of 92.00%. It also achieved a ROC-AUC of 94.77%, surpassing other models by significant margins, as validated by paired t-tests with a significance threshold of 0.0056 (after Bonferroni correction). Ablation studies highlight the synergistic effect of classical-quantum integration, improving performance by about 2% over MLP variants. Additionally, LIME and SHAP explainability techniques enhance feature interpretability, while conformal prediction provides robust uncertainty quantification. Our results demonstrate that KACQ-DCNN improves cardiovascular diagnostics by combining high accuracy with interpretability and uncertainty quantification.
comment: Published as a journal paper at Computers in Biology and Medicine (Elsevier)
♻ ☆ Optimizing Language Models for Inference Time Objectives using Reinforcement Learning ICML 2025
In this work, we investigate the merits of explicitly optimizing for inference time algorithmic performance during model training. We show how optimizing for inference time performance can improve overall model efficacy. We consider generic inference time objectives with $k$ samples, with a focus on pass@$k$ and majority voting as two main applications. With language model training on reasoning datasets, we showcase the performance trade-off enabled by training with such objectives. When training on code generation tasks, we show that the approach significantly improves pass@$k$ objectives compared to the baseline method.
comment: Published as a conference paper at ICML 2025
♻ ☆ Advanced Gesture Recognition for Autism Spectrum Disorder Detection: Integrating YOLOv7, Video Augmentation, and VideoMAE for Naturalistic Video Analysis
Deep learning and contactless sensing technologies have significantly advanced the automated assessment of human behaviors in healthcare. In the context of autism spectrum disorder (ASD), repetitive motor behaviors such as spinning, head banging, and arm flapping are key indicators for diagnosis. This study focuses on distinguishing between children with ASD and typically developed (TD) peers by analyzing videos captured in natural, uncontrolled environments. Using the publicly available Self-Stimulatory Behavior Dataset (SSBD), we address the classification task as a binary problem, ASD vs. TD, based on stereotypical repetitive gestures. We adopt a pipeline integrating YOLOv7-based detection, extensive video augmentations, and the VideoMAE framework, which efficiently captures both spatial and temporal features through a high-ratio masking and reconstruction strategy. Our proposed approach achieves 95% accuracy, 0.93 precision, 0.94 recall, and 0.94 F1 score, surpassing the previous state-of-the-art by a significant margin. These results demonstrate the effectiveness of combining advanced object detection, robust data augmentation, and masked autoencoder-based video modeling for reliable ASD vs. TD classification in naturalistic settings.
comment: Change Note for Version 3 - Extended Study (ASD vs TD Classification) This version extends v2 from 3-class gesture recognition to binary ASD vs TD detection, using expanded SSBD variants, a new TD class, improved preprocessing, and updated metrics (95% acc, 0.93 prec, 0.94 rec, 0.94 F1). Methodology remains YOLOv7 + VideoMAE + augmentation
♻ ☆ A Consistent and Scalable Algorithm for Best Subset Selection in Single Index Models
Analysis of high-dimensional data has led to increased interest in both single index models (SIMs) and the best-subset selection. SIMs provide an interpretable and flexible modeling framework for high-dimensional data, while the best-subset selection aims to find a sparse model from a large set of predictors. However, the best-subset selection in high-dimensional models is known to be computationally intractable. Existing proxy algorithms are appealing but do not yield the bestsubset solution. In this paper, we directly tackle the intractability by proposing a provably scalable algorithm for the best-subset selection in high-dimensional SIMs. We directly proved the subset selection consistency and oracle property for our algorithmic solution, distinguishing it from other state-of-the-art support recovery methods in SIMs. The algorithm comprises a generalized information criterion to determine the support size of the regression coefficients, eliminating the model selection tuning. Moreover, our method does not assume an error distribution or a specific link function and hence is flexible to apply. Extensive simulation results demonstrate that our method is not only computationally efficient but also able to exactly recover the best subset in various settings (e.g., linear regression, Poisson regression, heteroscedastic models).
♻ ☆ Dimensionality reduction for homological stability and global structure preservation
We propose a new dimensionality reduction toolkit designed to address some of the challenges faced by traditional methods like UMAP and tSNE such as loss of global structure and computational efficiency. Built on the JAX framework, DiRe leverages modern hardware acceleration to provide an efficient, scalable, and interpretable solution for visualizing complex data structures, and for quantitative analysis of lower-dimensional embeddings. The toolkit shows considerable promise in preserving both local and global structures within the data as compared to state-of-the-art UMAP and tSNE implementations. This makes it suitable for a wide range of applications in machine learning, bio-informatics, and data science.
comment: 22 pages, 12 figures Github repository available at https://github.com/sashakolpakov/dire-jax Package available on PyPi https://pypi.org/project/dire-jax/
♻ ☆ Large Language Models Must Be Taught to Know What They Don't Know NeurIPS 2024
When using large language models (LLMs) in high-stakes applications, we need to know when we can trust their predictions. Some works argue that prompting high-performance LLMs is sufficient to produce calibrated uncertainties, while others introduce sampling methods that can be prohibitively expensive. In this work, we first argue that prompting on its own is insufficient to achieve good calibration and then show that fine-tuning on a small dataset of correct and incorrect answers can create an uncertainty estimate with good generalization and small computational overhead. We show that a thousand graded examples are sufficient to outperform baseline methods and that training through the features of a model is necessary for good performance and tractable for large open-source models when using LoRA. We also investigate the mechanisms that enable reliable LLM uncertainty estimation, finding that many models can be used as general-purpose uncertainty estimators, applicable not just to their own uncertainties but also the uncertainty of other models. Lastly, we show that uncertainty estimates inform human use of LLMs in human-AI collaborative settings through a user study.
comment: NeurIPS 2024 Camera Ready
♻ ☆ Seldonian Reinforcement Learning for Ad Hoc Teamwork
Most offline RL algorithms return optimal policies but do not provide statistical guarantees on desirable behaviors. This could generate reliability issues in safety-critical applications, such as in some multiagent domains where agents, and possibly humans, need to interact to reach their goals without harming each other. In this work, we propose a novel offline RL approach, inspired by Seldonian optimization, which returns policies with good performance and statistically guaranteed properties with respect to predefined desirable behaviors. In particular, our focus is on Ad Hoc Teamwork settings, where agents must collaborate with new teammates without prior coordination. Our method requires only a pre-collected dataset, a set of candidate policies for our agent, and a specification about the possible policies followed by the other players -- it does not require further interactions, training, or assumptions on the type and architecture of the policies. We test our algorithm in Ad Hoc Teamwork problems and show that it consistently finds reliable policies while improving sample efficiency with respect to standard ML baselines.
comment: Presented at the 2nd Reinforcement Learning Conference (RLC2025), Edmonton, Canada. To be published in the Proceedings of the Reinforcement Learning Journal 2025
♻ ☆ Online Learning with Probing for Sequential User-Centric Selection
We formalize sequential decision-making with information acquisition as the probing-augmented user-centric selection (PUCS) framework, where a learner first probes a subset of arms to obtain side information on resources and rewards, and then assigns $K$ plays to $M$ arms. PUCS covers applications such as ridesharing, wireless scheduling, and content recommendation, in which both resources and payoffs are initially unknown and probing is costly. For the offline setting with known distributions, we present a greedy probing algorithm with a constant-factor approximation guarantee $\zeta = (e-1)/(2e-1)$. For the online setting with unknown distributions, we introduce OLPA, a stochastic combinatorial bandit algorithm that achieves a regret bound $\mathcal{O}(\sqrt{T} + \ln^{2} T)$. We also prove a lower bound $\Omega(\sqrt{T})$, showing that the upper bound is tight up to logarithmic factors. Experiments on real-world data demonstrate the effectiveness of our solutions.
♻ ☆ Balancing Interpretability and Flexibility in Modeling Diagnostic Trajectories with an Embedded Neural Hawkes Process Model
The Hawkes process (HP) is commonly used to model event sequences with self-reinforcing dynamics, including electronic health records (EHRs). Traditional HPs capture self-reinforcement via parametric impact functions that can be inspected to understand how each event modulates the intensity of others. Neural network-based HPs offer greater flexibility, resulting in improved fit and prediction performance, but at the cost of interpretability, which is often critical in healthcare. In this work, we aim to understand and improve upon this tradeoff. We propose a novel HP formulation in which impact functions are modeled by defining a flexible impact kernel, instantiated as a neural network, in event embedding space, which allows us to model large-scale event sequences with many event types. This approach is more flexible than traditional HPs yet more interpretable than other neural network approaches, and allows us to explicitly trade flexibility for interpretability by adding transformer encoder layers to further contextualize the event embeddings. Results show that our method accurately recovers impact functions in simulations, achieves competitive performance on MIMIC-IV procedure dataset, and gains clinically meaningful interpretation on Duke-EHR with children diagnosis dataset even without transformer layers. This suggests that our flexible impact kernel is often sufficient to capture self-reinforcing dynamics in EHRs and other data effectively, implying that interpretability can be maintained without loss of performance.
comment: Machine Learning for Healthcare 2025
♻ ☆ Neural Bandit Based Optimal LLM Selection for a Pipeline of Tasks AAAI 2026
With the increasing popularity of large language models (LLMs) for a variety of tasks, there has been a growing interest in strategies that can predict which out of a set of LLMs will yield a successful answer at low cost. This problem promises to become more and more relevant as providers like Microsoft allow users to easily create custom LLM "assistants" specialized to particular types of queries. However, some tasks (i.e., queries) may be too specialized and difficult for a single LLM to handle alone. These applications often benefit from breaking down the task into smaller subtasks, each of which can then be executed by a LLM expected to perform well on that specific subtask. For example, in extracting a diagnosis from medical records, one can first select an LLM to summarize the record, select another to validate the summary, and then select another, possibly different, LLM to extract the diagnosis from the summarized record. Unlike existing LLM selection or routing algorithms, this setting requires that we select a sequence of LLMs, with the output of each LLM feeding into the next and potentially influencing its success. Thus, unlike single LLM selection, the quality of each subtask's output directly affects the inputs, and hence the cost and success rate, of downstream LLMs, creating complex performance dependencies that must be learned and accounted for during selection. We propose a neural contextual bandit-based algorithm that trains neural networks that model LLM success on each subtask in an online manner, thus learning to guide the LLM selections for the different subtasks, even in the absence of historical LLM performance data. Experiments on telecommunications question answering and medical diagnosis prediction datasets illustrate the effectiveness of our proposed approach compared to other LLM selection algorithms.
comment: Submitted to AAAI 2026
♻ ☆ LGR2: Language Guided Reward Relabeling for Accelerating Hierarchical Reinforcement Learning
Large language models (LLMs) have shown remarkable abilities in logical reasoning, in-context learning, and code generation. However, translating natural language instructions into effective robotic control policies remains a significant challenge, especially for tasks requiring long-horizon planning and operating under sparse reward conditions. Hierarchical Reinforcement Learning (HRL) provides a natural framework to address this challenge in robotics; however, it typically suffers from non-stationarity caused by the changing behavior of the lower-level policy during training, destabilizing higher-level policy learning. We introduce LGR2, a novel HRL framework that leverages LLMs to generate language-guided reward functions for the higher-level policy. By decoupling high-level reward generation from low-level policy changes, LGR2 fundamentally mitigates the non-stationarity problem in off-policy HRL, enabling stable and efficient learning. To further enhance sample efficiency in sparse environments, we integrate goal-conditioned hindsight experience relabeling. Extensive experiments across simulated and real-world robotic navigation and manipulation tasks demonstrate LGR2 outperforms both hierarchical and non-hierarchical baselines, achieving over 55% success rates on challenging tasks and robust transfer to real robots, without additional fine-tuning.
♻ ☆ 2SSP: A Two-Stage Framework for Structured Pruning of LLMs
We propose a novel Two-Stage framework for Structured Pruning (\textsc{2SSP}) for pruning Large Language Models (LLMs), which combines two different strategies of pruning, namely Width and Depth Pruning. The first stage (Width Pruning) removes entire neurons, hence their corresponding rows and columns, aiming to preserve the connectivity among the pruned structures in the intermediate state of the Feed-Forward Networks in each Transformer block. This is done based on an importance score measuring the impact of each neuron on the output magnitude. The second stage (Depth Pruning), instead, removes entire Attention submodules. This is done by applying an iterative process that removes the Attention with the minimum impact on a given metric of interest (in our case, perplexity). We also propose a novel mechanism to balance the sparsity rate of the two stages w.r.t. to the desired global sparsity. We test \textsc{2SSP} on four LLM families and three sparsity rates (25\%, 37.5\%, and 50\%), measuring the resulting perplexity over three language modeling datasets as well as the performance over six downstream tasks. Our method consistently outperforms five state-of-the-art competitors over three language modeling and six downstream tasks, with an up to two-order-of-magnitude gain in terms of pruning time. The code is available at https://github.com/FabrizioSandri/2SSP.
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ European Space Agency Benchmark for Anomaly Detection in Satellite Telemetry
Machine learning has vast potential to improve anomaly detection in satellite telemetry which is a crucial task for spacecraft operations. This potential is currently hampered by a lack of comprehensible benchmarks for multivariate time series anomaly detection, especially for the challenging case of satellite telemetry. The European Space Agency Benchmark for Anomaly Detection in Satellite Telemetry (ESA-ADB) aims to address this challenge and establish a new standard in the domain. It is a result of close cooperation between spacecraft operations engineers from the European Space Agency (ESA) and machine learning experts. The newly introduced ESA Anomalies Dataset contains annotated real-life telemetry from three different ESA missions, out of which two are included in ESA-ADB. Results of typical anomaly detection algorithms assessed in our novel hierarchical evaluation pipeline show that new approaches are necessary to address operators' needs. All elements of ESA-ADB are publicly available to ensure its full reproducibility.
comment: 87 pages, 24 figures, 19 tables
♻ ☆ Learning from Samples: Inverse Problems over measures via Sharpened Fenchel-Young Losses
Estimating parameters from samples of an optimal probability distribution is essential in applications ranging from socio-economic modeling to biological system analysis. In these settings, the probability distribution arises as the solution to an optimization problem that captures either static interactions among agents or the dynamic evolution of a system over time. We introduce a general methodology based on a new class of loss functions, called sharpened Fenchel-Young losses, which measure the sub-optimality gap of the optimization problem over the space of probability measures. We provide explicit stability guarantees for two relevant settings in the context of optimal transport: The first is inverse unbalanced optimal transport (iUOT) with entropic regularization, where the parameters to estimate are cost functions that govern transport computations; this method has applications such as link prediction in machine learning. The second is inverse gradient flow (iJKO), where the objective is to recover a potential function that drives the evolution of a probability distribution via the Jordan-Kinderlehrer-Otto (JKO) time-discretization scheme; this is particularly relevant for understanding cell population dynamics in single-cell genomics. We also establish source conditions to ensure stability of our method under mirror stratifiable regularizers (such as l1 or nuclear norm) that promote structure. Finally, we present optimization algorithms specifically tailored to efficiently solve iUOT and iJKO problems. We validate our approach through numerical experiments on Gaussian distributions, where closed-form solutions are available, to demonstrate the practical performance of our methods.
♻ ☆ SGPT: Few-Shot Prompt Tuning for Signed Graphs CIKM'25
Signed Graph Neural Networks (SGNNs) are effective in learning expressive representations for signed graphs but typically require substantial task-specific labels, limiting their applicability in label-scarce industrial scenarios. In contrast, unsigned graph structures are abundant and can be readily leveraged to pre-train Graph Neural Networks (GNNs), offering a promising solution to reduce supervision requirements in downstream signed graph tasks. However, transferring knowledge from unsigned to signed graphs is non-trivial due to the fundamental discrepancies in graph types and task objectives between pre-training and downstream phases. To address this challenge, we propose Signed Graph Prompt Tuning (SGPT), a novel graph prompting framework that adapts pre-trained unsigned GNNs to few-shot signed graph tasks. We first design a graph template based on balance theory to disentangle mixed node relationships introduced by negative links, mitigating the structural mismatches between unsigned and signed graphs. We further introduce a task template that reformulates downstream signed tasks into a unified link prediction objective, aligning their optimization goals with the pre-training task. Furthermore, we develop feature prompts that align downstream semantic spaces with the feature spaces learned during pre-training, and semantic prompts to integrate link sign semantics in a task-aware manner. We conduct extensive experiments on seven benchmark signed graph datasets, demonstrating that SGPT significantly outperforms existing state-of-the-art methods, establishing a powerful and generalizable solution for few-shot signed graph learning.
comment: CIKM'25
♻ ☆ Clustering-Based Validation Splits for Model Selection under Domain Shift
This paper considers the problem of model selection under domain shift. Motivated by principles from distributionally robust optimisation and domain adaptation theory, it is proposed that the training-validation split should maximise the distribution mismatch between the two sets. By adopting the maximum mean discrepancy (MMD) as the measure of mismatch, it is shown that the partitioning problem reduces to kernel k-means clustering. A constrained clustering algorithm, which leverages linear programming to control the size, label, and (optionally) group distributions of the splits, is presented. The algorithm does not require additional metadata, and comes with convergence guarantees. In experiments, the technique consistently outperforms alternative splitting strategies across a range of datasets and training algorithms, for both domain generalisation and unsupervised domain adaptation tasks. Analysis also shows the MMD between the training and validation sets to be well-correlated with test domain accuracy, further substantiating the validity of this approach.
comment: Published in TMLR 08/25
♻ ☆ Cascading and Proxy Membership Inference Attacks NDSS 2026
A Membership Inference Attack (MIA) assesses how much a trained machine learning model reveals about its training data by determining whether specific query instances were included in the dataset. We classify existing MIAs into adaptive or non-adaptive, depending on whether the adversary is allowed to train shadow models on membership queries. In the adaptive setting, where the adversary can train shadow models after accessing query instances, we highlight the importance of exploiting membership dependencies between instances and propose an attack-agnostic framework called Cascading Membership Inference Attack (CMIA), which incorporates membership dependencies via conditional shadow training to boost membership inference performance. In the non-adaptive setting, where the adversary is restricted to training shadow models before obtaining membership queries, we introduce Proxy Membership Inference Attack (PMIA). PMIA employs a proxy selection strategy that identifies samples with similar behaviors to the query instance and uses their behaviors in shadow models to perform a membership posterior odds test for membership inference. We provide theoretical analyses for both attacks, and extensive experimental results demonstrate that CMIA and PMIA substantially outperform existing MIAs in both settings, particularly in the low false-positive regime, which is crucial for evaluating privacy risks.
comment: Accepted by NDSS 2026
♻ ☆ NoProp: Training Neural Networks without Full Back-propagation or Full Forward-propagation
The canonical deep learning approach for learning requires computing a gradient term at each block by back-propagating the error signal from the output towards each learnable parameter. Given the stacked structure of neural networks, where each block builds on the representation of the block below, this approach leads to hierarchical representations. More abstract features live on the top blocks of the model, while features on lower blocks are expected to be less abstract. In contrast to this, we introduce a new learning method named NoProp, which does not rely on either forward or backwards propagation across the entire network. Instead, NoProp takes inspiration from diffusion and flow matching methods, where each block independently learns to denoise a noisy target using only local targets and back-propagation within the block. We believe this work takes a first step towards introducing a new family of learning methods that does not learn hierarchical representations -- at least not in the usual sense. NoProp needs to fix the representation at each block beforehand to a noised version of the target, learning a local denoising process that can then be exploited at inference. We demonstrate the effectiveness of our method on MNIST, CIFAR-10, and CIFAR-100 image classification benchmarks. Our results show that NoProp is a viable learning algorithm, is easy to use and computationally efficient. By departing from the traditional learning paradigm which requires back-propagating a global error signal, NoProp alters how credit assignment is done within the network, enabling more efficient distributed learning as well as potentially impacting other characteristics of the learning process.
comment: Camera-ready version for CoLLAs 2025
♻ ☆ CRISP: Curriculum Inducing Primitive Informed Subgoal Prediction for Hierarchical Reinforcement Learning
Hierarchical reinforcement learning (HRL) leverages temporal abstraction to efficiently tackle complex long-horizon tasks. However, HRL often collapses because the continual updates of the low-level primitive make earlier sub-goals issued by the high-level policy obsolete, introducing non-stationarity that destabilizes training. We propose CRISP, a curriculum-driven framework that tackles this instability with three key ingredients: (1) primitive-informed parsing (PIP), which adaptively re-labels a handful of expert demonstrations to always generate reachable subgoals by the current low-level primitive, (2) an inverse-reinforcement-learning regularizer that steers the high-level policy toward the expert-induced subgoal distribution and stabilizes learning, and (3) a unified training loop that leverages these components to boost sample efficiency. Across six sparse-reward robotic navigation and manipulation benchmarks, CRISP improves success rates by more than 40% over strong hierarchical and flat baselines and successfully transfers to real-world tasks, demonstrating the promise of curriculum-based HRL for practical scenarios.
♻ ☆ Direct Preference Optimization for Primitive-Enabled Hierarchical Reinforcement Learning
Hierarchical reinforcement learning (HRL) enables agents to solve complex, long-horizon tasks by decomposing them into manageable sub-tasks. However, HRL methods often suffer from two fundamental challenges: (i) non-stationarity, caused by the changing behavior of the lower-level policy during training, which destabilizes higher-level policy learning, and (ii) the generation of infeasible subgoals that lower-level policies cannot achieve. In this work, we introduce DIPPER, a novel HRL framework that formulates hierarchical policy learning as a bi-level optimization problem and leverages direct preference optimization (DPO) to train the higher-level policy using preference feedback. By optimizing the higher-level policy with DPO, we decouple higher-level learning from the non-stationary lower-level reward signal, thus mitigating non-stationarity. To further address the infeasible subgoal problem, DIPPER incorporates a regularization that tries to ensure the feasibility of subgoal tasks within the capabilities of the lower-level policy. Extensive experiments on challenging robotic navigation and manipulation benchmarks demonstrate that DIPPER achieves up to 40\% improvement over state-of-the-art baselines in sparse reward scenarios, highlighting its effectiveness in overcoming longstanding limitations of HRL.
♻ ☆ Explaining Large Language Models with gSMILE
Large Language Models (LLMs) such as GPT, LLaMA, and Claude achieve remarkable performance in text generation but remain opaque in their decision-making processes, limiting trust and accountability in high-stakes applications. We present gSMILE (generative SMILE), a model-agnostic, perturbation-based framework for token-level interpretability in LLMs. Extending the SMILE methodology, gSMILE uses controlled prompt perturbations, Wasserstein distance metrics, and weighted linear surrogates to identify input tokens with the most significant impact on the output. This process enables the generation of intuitive heatmaps that visually highlight influential tokens and reasoning paths. We evaluate gSMILE across leading LLMs (OpenAI's gpt-3.5-turbo-instruct, Meta's LLaMA 3.1 Instruct Turbo, and Anthropic's Claude 2.1) using attribution fidelity, attribution consistency, attribution stability, attribution faithfulness, and attribution accuracy as metrics. Results show that gSMILE delivers reliable human-aligned attributions, with Claude 2.1 excelling in attention fidelity and GPT-3.5 achieving the highest output consistency. These findings demonstrate gSMILE's ability to balance model performance and interpretability, enabling more transparent and trustworthy AI systems.
♻ ☆ Loss-Complexity Landscape and Model Structure Functions
We develop a framework for dualizing the Kolmogorov structure function $h_x(\alpha)$, which then allows using computable complexity proxies. We establish a mathematical analogy between information-theoretic constructs and statistical mechanics, introducing a suitable partition function and free energy functional. We explicitly prove the Legendre-Fenchel duality between the structure function and free energy, showing detailed balance of the Metropolis kernel, and interpret acceptance probabilities as information-theoretic scattering amplitudes. A susceptibility-like variance of model complexity is shown to peak precisely at loss-complexity trade-offs interpreted as phase transitions. Practical experiments with linear and tree-based regression models verify these theoretical predictions, explicitly demonstrating the interplay between the model complexity, generalization, and overfitting threshold.
comment: 25 pages, 11 figures; GitHub repository at https://github.com/sashakolpakov/structure-functions
♻ ☆ Quantum-Enhanced Generative Adversarial Networks: Comparative Analysis of Classical and Hybrid Quantum-Classical Generative Adversarial Networks
Generative adversarial networks (GANs) have emerged as a powerful paradigm for producing high-fidelity data samples, yet their performance is constrained by the quality of latent representations, typically sampled from classical noise distributions. This study investigates hybrid quantum-classical GANs (HQCGANs) in which a quantum generator, implemented via parameterised quantum circuits, produces latent vectors for a classical discriminator. We evaluate a classical GAN alongside three HQCGAN variants with 3, 5, and 7 qubits, using Qiskit's AerSimulator with realistic noise models to emulate near-term quantum devices. The binary MNIST dataset (digits 0 and 1) is used to align with the low-dimensional latent spaces imposed by current quantum hardware. Models are trained for 150 epochs and assessed with Frechet Inception Distance (FID) and Kernel Inception Distance (KID). Results show that while the classical GAN achieved the best scores, the 7-qubit HQCGAN produced competitive performance, narrowing the gap in later epochs, whereas the 3-qubit model exhibited earlier convergence limitations. Efficiency analysis indicates only moderate training time increases despite quantum sampling overhead. These findings validate the feasibility of noisy quantum circuits as latent priors in GAN architectures, highlighting their potential to enhance generative modelling within the constraints of the noisy intermediate-scale quantum (NISQ) era.
comment: 9 pages, 9 figures, 3 tables
♻ ☆ Generalizable LLM Learning of Graph Synthetic Data with Post-training Alignment
Previous research has sought to enhance the graph reasoning capabilities of LLMs by supervised fine-tuning on synthetic graph data. While these led to specialized LLMs better at solving graph algorithm problems, we don't need LLMs for shortest path: we need generalization from synthetic graph data to real-world tasks with implicit graph structures. In this work, we propose to unlock generalizable learning of graph with post-training alignment with synthetic data. We first design solution-based and process-based rewards for synthetic graph problems: instead of rigid memorizing response patterns in direct fine-tuning, we posit that post-training alignment would help LLMs grasp the essentials underlying graph reasoning and alleviate overfitting on synthetic data. We employ post-training alignment algorithms such as GRPO and DPO, aligning both off-the-shelf LLMs and LLMs fine-tuned on synthetic graph data. We then compare them against existing settings on both in-domain synthetic tasks and out-of-domain real-world tasks with implicit graph structures such as multi-hop QA, structured planning, and more. Extensive experiments demonstrate that our post-training alignment recipe leads to statistically significant improvement on 5 datasets, with an average gain of 12.9% over baseline settings. Further analysis reveals that process-based rewards consistently outperform solution-based rewards on synthetic data but not on real-world tasks, and compositionality and explainable intermediate steps remains a critical challenge even after post-training alignment.
comment: 8 pages, 1 figures, 2 tables. Experimental code and results are publicly available at https://anonymous.4open.science/r/Graph_RL-BF08/readme.md
♻ ☆ Regress, Don't Guess -- A Regression-like Loss on Number Tokens for Language Models ICML 2025
While language models have exceptional capabilities at text generation, they lack a natural inductive bias for emitting numbers and thus struggle in tasks involving quantitative reasoning, especially arithmetic. One fundamental limitation is the nature of the cross-entropy (CE) loss, which assumes a nominal scale and thus cannot convey proximity between generated number tokens. In response, we here present a regression-like loss that operates purely on token level. Our proposed Number Token Loss (NTL) comes in two flavors and minimizes either the $L_p$ norm or the Wasserstein distance between the numerical values of the real and predicted number tokens. NTL can easily be added to any language model and extend the CE objective during training without runtime overhead. We evaluate the proposed scheme on various mathematical datasets and find that it consistently improves performance in math-related tasks. In a direct comparison on a regression task, we find that NTL can match the performance of a regression head, despite operating on token level. Finally, we scale NTL up to 3B parameter models and observe improved performance, demonstrating its potential for seamless integration into LLMs. We hope to inspire LLM developers to improve their pretraining objectives and distribute NTL as a minimalistic and lightweight PyPI package $ntloss$: https://github.com/ai4sd/number-token-loss. Development code for full paper reproduction is available separately.
comment: ICML 2025
♻ ☆ Dealing with Annotator Disagreement in Hate Speech Classification
Hate speech detection is a crucial task, especially on social media, where harmful content can spread quickly. Implementing machine learning models to automatically identify and address hate speech is essential for mitigating its impact and preventing its proliferation. The first step in developing an effective hate speech detection model is to acquire a high-quality dataset for training. Labeled data is essential for most natural language processing tasks, but categorizing hate speech is difficult due to the diverse and often subjective nature of hate speech, which can lead to varying interpretations and disagreements among annotators. This paper examines strategies for addressing annotator disagreement, an issue that has been largely overlooked. In particular, we evaluate various automatic approaches for aggregating multiple annotations, in the context of hate speech classification in Turkish tweets. Our work highlights the importance of the problem and provides state-of-the-art benchmark results for the detection and understanding of hate speech in online discourse.
comment: 20 pages, 3 Tables
♻ ☆ Optimal Projections for Classification with Naive Bayes
In the Naive Bayes classification model the class conditional densities are estimated as the products of their marginal densities along the cardinal basis directions. We study the problem of obtaining an alternative basis for this factorisation with the objective of enhancing the discriminatory power of the associated classification model. We formulate the problem as a projection pursuit to find the optimal linear projection on which to perform classification. Optimality is determined based on the multinomial likelihood within which probabilities are estimated using the Naive Bayes factorisation of the projected data. Projection pursuit offers the added benefits of dimension reduction and visualisation. We discuss an intuitive connection with class conditional independent components analysis, and show how this is realised visually in practical applications. The performance of the resulting classification models is investigated using a large collection of (162) publicly available benchmark data sets and in comparison with relevant alternatives. We find that the proposed approach substantially outperforms other popular probabilistic discriminant analysis models and is highly competitive with Support Vector Machines. Code to implement the proposed approach, in the form of an R package, is available from https://github.com/DavidHofmeyr/OPNB
♻ ☆ HuB: Learning Extreme Humanoid Balance
The human body demonstrates exceptional motor capabilities-such as standing steadily on one foot or performing a high kick with the leg raised over 1.5 meters-both requiring precise balance control. While recent research on humanoid control has leveraged reinforcement learning to track human motions for skill acquisition, applying this paradigm to balance-intensive tasks remains challenging. In this work, we identify three key obstacles: instability from reference motion errors, learning difficulties due to morphological mismatch, and the sim-to-real gap caused by sensor noise and unmodeled dynamics. To address these challenges, we propose HuB (Humanoid Balance), a unified framework that integrates reference motion refinement, balance-aware policy learning, and sim-to-real robustness training, with each component targeting a specific challenge. We validate our approach on the Unitree G1 humanoid robot across challenging quasi-static balance tasks, including extreme single-legged poses such as Swallow Balance and Bruce Lee's Kick. Our policy remains stable even under strong physical disturbances-such as a forceful soccer strike-while baseline methods consistently fail to complete these tasks. Project website: https://hub-robot.github.io
comment: CoRL 2025 (Oral Presentation). Project website: https://hub-robot.github.io
♻ ☆ Model-free reinforcement learning with noisy actions for automated experimental control in optics
Setting up and controlling optical systems is often a challenging and tedious task. The high number of degrees of freedom to control mirrors, lenses, or phases of light makes automatic control challenging, especially when the complexity of the system cannot be adequately modeled due to noise or non-linearities. Here, we show that reinforcement learning (RL) can overcome these challenges when coupling laser light into an optical fiber, using a model-free RL approach that trains directly on the experiment without pre-training on simulations. By utilizing the sample-efficient algorithms Soft Actor-Critic (SAC), Truncated Quantile Critics (TQC), or CrossQ, our agents learn to couple with 90% efficiency. A human expert reaches this efficiency, but the RL agents are quicker. In particular, the CrossQ agent outperforms the other agents in coupling speed while requiring only half the training time. We demonstrate that direct training on an experiment can replace extensive system modeling. Our result exemplifies RL's potential to tackle problems in optics, paving the way for more complex applications where full noise modeling is not feasible.
comment: 10 pages + 12 pages appendices, 2 + 12 figures
♻ ☆ Sharpness-Aware Minimization with Z-Score Gradient Filtering
Deep neural networks achieve high performance across many domains but can still face challenges in generalization when optimization is influenced by small or noisy gradient components. Sharpness-Aware Minimization improves generalization by perturbing parameters toward directions of high curvature, but it uses the entire gradient vector, which means that small or noisy components may affect the ascent step and cause the optimizer to miss optimal solutions. We propose Z-Score Filtered Sharpness-Aware Minimization, which applies Z-score based filtering to gradients in each layer. Instead of using all gradient components, a mask is constructed to retain only the top percentile with the largest absolute Z-scores. The percentile threshold $Q_p$ determines how many components are kept, so that the ascent step focuses on directions that stand out most compared to the average of the layer. This selective perturbation refines the search toward flatter minima while reducing the influence of less significant gradients. Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet with architectures including ResNet, VGG, and Vision Transformers show that the proposed method consistently improves test accuracy compared to Sharpness-Aware Minimization and its variants.
♻ ☆ On-device Anomaly Detection in Conveyor Belt Operations
Conveyor belts are crucial in mining operations by enabling the continuous and efficient movement of bulk materials over long distances, which directly impacts productivity. While detecting anomalies in specific conveyor belt components has been widely studied, identifying the root causes of these failures, such as changing production conditions and operator errors, remains critical. Continuous monitoring of mining conveyor belt work cycles is still at an early stage and requires robust solutions. Recently, an anomaly detection method for duty cycle operations of a mining conveyor belt has been proposed. Based on its limited performance and unevaluated long-term proper operation, this study proposes two novel methods for classifying normal and abnormal duty cycles. The proposed approaches are pattern recognition systems that make use of threshold-based duty-cycle detection mechanisms, manually extracted features, pattern-matching, and supervised tiny machine learning models. The explored low-computational models include decision tree, random forest, extra trees, extreme gradient boosting, Gaussian naive Bayes, and multi-layer perceptron. A comprehensive evaluation of the former and proposed approaches is carried out on two datasets. Both proposed methods outperform the former method in anomaly detection, with the best-performing approach being dataset-dependent. The heuristic rule-based approach achieves the highest F1-score in the same dataset used for algorithm training, with 97.3% for normal cycles and 80.2% for abnormal cycles. The ML-based approach performs better on a dataset including the effects of machine aging, with an F1-score scoring 91.3% for normal cycles and 67.9% for abnormal cycles. Implemented on two low-power microcontrollers, the methods demonstrate efficient, real-time operation with energy consumption of 13.3 and 20.6 \textmu J during inference. These results ...
comment: Preprint submitted to IEEE OPEN JOURNAL OF INSTRUMENTATION & MEASUREMENT
♻ ☆ Adaptive Noise Resilient Keyword Spotting Using One-Shot Learning
Keyword spotting (KWS) is a key component of smart devices, enabling efficient and intuitive audio interaction. However, standard KWS systems deployed on embedded devices often suffer performance degradation under real-world operating conditions. Resilient KWS systems address this issue by enabling dynamic adaptation, with applications such as adding or replacing keywords, adjusting to specific users, and improving noise robustness. However, deploying resilient, standalone KWS systems with low latency on resource-constrained devices remains challenging due to limited memory and computational resources. This study proposes a low computational approach for continuous noise adaptation of pretrained neural networks used for KWS classification, requiring only 1-shot learning and one epoch. The proposed method was assessed using two pretrained models and three real-world noise sources at signal-to-noise ratios (SNRs) ranging from 24 to -3 dB. The adapted models consistently outperformed the pretrained models across all scenarios, especially at SNR $\leq$ 18 dB, achieving accuracy improvements of 4.9% to 46.0%. These results highlight the efficacy of the proposed methodology while being lightweight enough for deployment on resource-constrained devices.
comment: Preprint submitted to the IEEE 11th World Forum on Internet of Things
♻ ☆ Beyond Zero Initialization: Investigating the Impact of Non-Zero Initialization on LoRA Fine-Tuning Dynamics ICML 2025
Low-rank adaptation (LoRA) is a widely used parameter-efficient fine-tuning method. In standard LoRA layers, one of the matrices, $A$ or $B$, is initialized to zero, ensuring that fine-tuning starts from the pretrained model. However, there is no theoretical support for this practice. In this paper, we investigate the impact of non-zero initialization on LoRA's fine-tuning dynamics from an infinite-width perspective. Our analysis reveals that, compared to zero initialization, simultaneously initializing $A$ and $B$ to non-zero values improves LoRA's robustness to suboptimal learning rates, particularly smaller ones. Further analysis indicates that although the non-zero initialization of $AB$ introduces random noise into the pretrained weight, it generally does not affect fine-tuning performance. In other words, fine-tuning does not need to strictly start from the pretrained model. The validity of our findings is confirmed through extensive experiments across various models and datasets. The code is available at https://github.com/Leopold1423/non_zero_lora-icml25.
comment: Accepted by ICML 2025
♻ ☆ Breaking Data Silos: Towards Open and Scalable Mobility Foundation Models via Generative Continual Learning
Human mobility prediction is vital for urban planning, transportation optimization, and personalized services. However, the inherent randomness, non-uniform time intervals, and complex patterns of human mobility, compounded by the heterogeneity introduced by varying city structures, infrastructure, and population densities, present significant challenges in modeling. Existing solutions often require training separate models for each city due to distinct spatial representations and geographic coverage. In this paper, we propose UniMove, a unified model for multi-city human mobility prediction, addressing two challenges: (1) constructing universal spatial representations for effective token sharing across cities, and (2) modeling heterogeneous mobility patterns from varying city characteristics. We propose a trajectory-location dual-tower architecture, with a location tower for universal spatial encoding and a trajectory tower for sequential mobility modeling. We also design MoE Transformer blocks to adaptively select experts to handle diverse movement patterns. Extensive experiments across multiple datasets from diverse cities demonstrate that UniMove truly embodies the essence of a unified model. By enabling joint training on multi-city data with mutual data enhancement, it significantly improves mobility prediction accuracy by over 10.2\%. UniMove represents a key advancement toward realizing a true foundational model with a unified architecture for human mobility. We release the implementation at https://github.com/tsinghua-fib-lab/UniMove/.
comment: The 33rd ACM International Conference on Advances in Geographic Information Systems
♻ ☆ LD-Scene: LLM-Guided Diffusion for Controllable Generation of Adversarial Safety-Critical Driving Scenarios
Ensuring the safety and robustness of autonomous driving systems necessitates a comprehensive evaluation in safety-critical scenarios. However, these safety-critical scenarios are rare and difficult to collect from real-world driving data, posing significant challenges to effectively assessing the performance of autonomous vehicles. Typical existing methods often suffer from limited controllability and lack user-friendliness, as extensive expert knowledge is essentially required. To address these challenges, we propose LD-Scene, a novel framework that integrates Large Language Models (LLMs) with Latent Diffusion Models (LDMs) for user-controllable adversarial scenario generation through natural language. Our approach comprises an LDM that captures realistic driving trajectory distributions and an LLM-based guidance module that translates user queries into adversarial loss functions, facilitating the generation of scenarios aligned with user queries. The guidance module integrates an LLM-based Chain-of-Thought (CoT) code generator and an LLM-based code debugger, enhancing the controllability and robustness in generating guidance functions. Extensive experiments conducted on the nuScenes dataset demonstrate that LD-Scene achieves state-of-the-art performance in generating realistic, diverse, and effective adversarial scenarios. Furthermore, our framework provides fine-grained control over adversarial behaviors, thereby facilitating more effective testing tailored to specific driving scenarios.
comment: 18 pages, 8 figures
♻ ☆ The Panaceas for Improving Low-Rank Decomposition in Communication-Efficient Federated Learning ICML 2025
To improve the training efficiency of federated learning (FL), previous research has employed low-rank decomposition techniques to reduce communication overhead. In this paper, we seek to enhance the performance of these low-rank decomposition methods. Specifically, we focus on three key issues related to decomposition in FL: what to decompose, how to decompose, and how to aggregate. Subsequently, we introduce three novel techniques: Model Update Decomposition (MUD), Block-wise Kronecker Decomposition (BKD), and Aggregation-Aware Decomposition (AAD), each targeting a specific issue. These techniques are complementary and can be applied simultaneously to achieve optimal performance. Additionally, we provide a rigorous theoretical analysis to ensure the convergence of the proposed MUD. Extensive experimental results show that our approach achieves faster convergence and superior accuracy compared to relevant baseline methods. The code is available at https://github.com/Leopold1423/fedmud-icml25.
comment: Accepted by ICML 2025
♻ ☆ MedSpaformer: a Transferable Transformer with Multi-granularity Token Sparsification for Medical Time Series Classification
Accurate medical time series (MedTS) classification is essential for effective clinical diagnosis, yet remains challenging due to complex multi-channel temporal dependencies, information redundancy, and label scarcity. While transformer-based models have shown promise in time series analysis, most are designed for forecasting tasks and fail to fully exploit the unique characteristics of MedTS. In this paper, we introduce MedSpaformer, a transformer-based framework tailored for MedTS classification. It incorporates a sparse token-based dual-attention mechanism that enables global context modeling and token sparsification, allowing dynamic feature refinement by focusing on informative tokens while reducing redundancy. This mechanism is integrated into a multi-granularity cross-channel encoding scheme to capture intra- and inter-granularity temporal dependencies and inter-channel correlations, enabling progressive refinement of task-relevant patterns in medical signals. The sparsification design allows our model to flexibly accommodate inputs with variable lengths and channel dimensions. We also introduce an adaptive label encoder to extract label semantics and address cross-dataset label space misalignment. Together, these components enhance the model's transferability across heterogeneous medical datasets, which helps alleviate the challenge of label scarcity. Our model outperforms 13 baselines across 7 medical datasets under supervised learning. It also excels in few-shot learning and demonstrates zero-shot capability in both in-domain and cross-domain diagnostics. These results highlight MedSpaformer's robustness and its potential as a unified solution for MedTS classification across diverse settings.
comment: 4 figures, 9 pages, 4 tables
♻ ☆ Towards Safe Autonomous Driving Policies using a Neuro-Symbolic Deep Reinforcement Learning Approach
The dynamic nature of driving environments and the presence of diverse road users pose significant challenges for decision-making in autonomous driving. Deep reinforcement learning (DRL) has emerged as a popular approach to tackle this problem. However, the application of existing DRL solutions is mainly confined to simulated environments due to safety concerns, impeding their deployment in real-world. To overcome this limitation, this paper introduces a novel neuro-symbolic model-free DRL approach, called DRL with Symbolic Logic (DRLSL) that combines the strengths of DRL (learning from experience) and symbolic first-order logic (knowledge-driven reasoning) to enable safe learning in real-time interactions of autonomous driving within real environments. This innovative approach provides a means to learn autonomous driving policies by actively engaging with the physical environment while ensuring safety. We have implemented the DRLSL framework in a highway driving scenario using the HighD dataset and demonstrated that our method successfully avoids unsafe actions during both the training and testing phases. Furthermore, our results indicate that DRLSL achieves faster convergence during training and exhibits better generalizability to new highway driving scenarios compared to traditional DRL methods.
comment: 15 pages, 9 figures, 1 table, 1 algorithm
♻ ☆ Un-mixing Test-time Adaptation under Heterogeneous Data Streams
Deploying deep models in real-world scenarios remains challenging due to significant performance drops under distribution shifts between training and deployment environments. Test-Time Adaptation (TTA) has recently emerged as a promising solution, enabling on-the-fly model adaptation without access to source data. However, its effectiveness degrades significantly in the presence of complex, mixed distribution shifts - common in practical settings - where multiple latent domains coexist. Adapting under such intrinsic heterogeneity, especially in unlabeled and online conditions, remains an open and underexplored challenge. In this paper, we study TTA under mixed distribution shifts and move beyond conventional homogeneous adaptation paradigms. By revisiting TTA from a frequency-domain perspective, we observe that distribution heterogeneity often manifests in Fourier space - for instance, high-frequency components tend to carry domain-specific variations. This motivates us to perform domain-aware separation using high-frequency texture cues, making diverse shift patterns more tractable. To this end, we propose FreDA, a novel Frequency-based Decentralized Adaptation framework that decomposes globally heterogeneous data into locally homogeneous components in the frequency domain. It further employs decentralized learning and augmentation strategies to robustly adapt under complex, evolving shifts. Extensive experiments across various environments (corrupted, natural, and medical) demonstrate the superiority of our proposed framework over the state-of-the-arts.
♻ ☆ Adaptive Exploration for Multi-Reward Multi-Policy Evaluation
We study the policy evaluation problem in an online multi-reward multi-policy discounted setting, where multiple reward functions must be evaluated simultaneously for different policies. We adopt an $(\epsilon,\delta)$-PAC perspective to achieve $\epsilon$-accurate estimates with high confidence across finite or convex sets of rewards, a setting that has not been investigated in the literature. Building on prior work on Multi-Reward Best Policy Identification, we adapt the MR-NaS exploration scheme to jointly minimize sample complexity for evaluating different policies across different reward sets. Our approach leverages an instance-specific lower bound revealing how the sample complexity scales with a measure of value deviation, guiding the design of an efficient exploration policy. Although computing this bound entails a hard non-convex optimization, we propose an efficient convex approximation that holds for both finite and convex reward sets. Experiments in tabular domains demonstrate the effectiveness of this adaptive exploration scheme.
comment: Accepted at the International Conference on Machine Learning, 2025
♻ ☆ Multimodal Remote Inference
We consider a remote inference system with multiple modalities, where a multimodal machine learning (ML) model performs real-time inference using features collected from remote sensors. When sensor observations evolve dynamically over time, fresh features are critical for inference tasks. However, timely delivery of features from all modalities is often infeasible because of limited network resources. Towards this end, in this paper, we study a two-modality scheduling problem that seeks to minimize the ML model's inference error, expressed as a penalty function of the Age of Information (AoI) vector of the two modalities. We develop an index-based threshold policy and prove its optimality. Specifically, the scheduler switches to the other modality once the current modality's index function exceeds a predetermined threshold. We show that both modalities share the same threshold and that the index functions and the threshold can be computed efficiently. Our optimality results hold for general AoI functions (which could be non-monotonic and non-separable) and heterogeneous transmission times across modalities. To demonstrate the importance of considering a task-oriented AoI function, we conduct numerical experiments based on robot state prediction and compare our policy with round-robin and uniform random policies (both are oblivious to the AoI and the inference error).n The results show that our policy reduces inference error by up to 55% compared with these baselines.
comment: Accepted by The 22nd IEEE International Conference on Mobile Ad-Hoc and Smart Systems (MASS 2025)
♻ ☆ Inducing Causal World Models in LLMs for Zero-Shot Physical Reasoning
Large Language Models (LLMs), despite their advanced linguistic capabilities, fundamentally lack an intuitive understanding of physical dynamics, which limits their effectiveness in real-world scenarios that require causal reasoning. In this paper, we introduce Causal World Model Induction (CWMI), a novel framework designed to embed an explicit model of causal physics within an LLM. Our approach incorporates a dedicated Causal Physics Module (CPM) and a new training objective called Causal Intervention Loss, encouraging the model to learn cause-and-effect relationships from multimodal data. By training the model to predict the outcomes of hypothetical interventions instead of merely capturing statistical correlations, CWMI develops a robust internal representation of physical laws. Experimental results show that CWMI significantly outperforms state-of-the-art LLMs on zero-shot physical reasoning tasks, including the PIQA benchmark and our newly proposed PhysiCa-Bench dataset. These findings demonstrate that inducing a causal world model is a critical step toward more reliable and generalizable AI systems.
comment: 12 pages, 4 figures,
♻ ☆ Towards Optimal Environmental Policies: Policy Learning under Arbitrary Bipartite Network Interference
The substantial effect of air pollution on cardiovascular disease and mortality burdens is well-established. Emissions-reducing interventions on coal-fired power plants -- a major source of hazardous air pollution -- have proven to be an effective, but costly, strategy for reducing pollution-related health burdens. Targeting the power plants that achieve maximum health benefits while satisfying realistic cost constraints is challenging. The primary difficulty lies in quantifying the health benefits of intervening at particular plants. This is further complicated because interventions are applied on power plants, while health impacts occur in potentially distant communities, a setting known as bipartite network interference (BNI). In this paper, we introduce novel policy learning methods based on Q- and A-Learning to determine the optimal policy under arbitrary BNI. We derive asymptotic properties and demonstrate finite sample efficacy in simulations. We apply our novel methods to a comprehensive dataset of Medicare claims, power plant data, and pollution transport networks. Our goal is to determine the optimal strategy for installing power plant scrubbers to minimize ischemic heart disease (IHD) hospitalizations under various cost constraints. We find that annual IHD hospitalization rates could be reduced in a range from 23.37-55.30 per 10,000 person-years through optimal policies under different cost constraints.
♻ ☆ Enabling Weak Client Participation via On-device Knowledge Distillation in Heterogenous Federated Learning
Online Knowledge Distillation (KD) is recently highlighted to train large models in Federated Learning (FL) environments. Many existing studies adopt the logit ensemble method to perform KD on the server side. However, they often assume that unlabeled data collected at the edge is centralized on the server. Moreover, the logit ensemble method personalizes local models, which can degrade the quality of soft targets, especially when data is highly non-IID. To address these critical limitations,we propose a novel on-device KD-based heterogeneous FL method. Our approach leverages a small auxiliary model to learn from labeled local data. Subsequently, a subset of clients with strong system resources transfers knowledge to a large model through on-device KD using their unlabeled data. Our extensive experiments demonstrate that our on-device KD-based heterogeneous FL method effectively utilizes the system resources of all edge devices as well as the unlabeled data, resulting in higher accuracy compared to SOTA KD-based FL methods.
comment: Accepted by ECAI 2025
♻ ☆ Propagation of Chaos for Mean-Field Langevin Dynamics and its Application to Model Ensemble
Mean-field Langevin dynamics (MFLD) is an optimization method derived by taking the mean-field limit of noisy gradient descent for two-layer neural networks in the mean-field regime. Recently, the propagation of chaos (PoC) for MFLD has gained attention as it provides a quantitative characterization of the optimization complexity in terms of the number of particles and iterations. A remarkable progress by Chen et al. (2022) showed that the approximation error due to finite particles remains uniform in time and diminishes as the number of particles increases. In this paper, by refining the defective log-Sobolev inequality -- a key result from that earlier work -- under the neural network training setting, we establish an improved PoC result for MFLD, which removes the exponential dependence on the regularization coefficient from the particle approximation term of the optimization complexity. As an application, we propose a PoC-based model ensemble strategy with theoretical guarantees.
comment: 23 pages,
♻ ☆ Federated Continual Recommendation CIKM 2025
The increasing emphasis on privacy in recommendation systems has led to the adoption of Federated Learning (FL) as a privacy-preserving solution, enabling collaborative training without sharing user data. While Federated Recommendation (FedRec) effectively protects privacy, existing methods struggle with non-stationary data streams, failing to maintain consistent recommendation quality over time. On the other hand, Continual Learning Recommendation (CLRec) methods address evolving user preferences but typically assume centralized data access, making them incompatible with FL constraints. To bridge this gap, we introduce Federated Continual Recommendation (FCRec), a novel task that integrates FedRec and CLRec, requiring models to learn from streaming data while preserving privacy. As a solution, we propose F3CRec, a framework designed to balance knowledge retention and adaptation under the strict constraints of FCRec. F3CRec introduces two key components: Adaptive Replay Memory on the client side, which selectively retains past preferences based on user-specific shifts, and Item-wise Temporal Mean on the server side, which integrates new knowledge while preserving prior information. Extensive experiments demonstrate that F3CRec outperforms existing approaches in maintaining recommendation quality over time in a federated environment.
comment: Accepted to CIKM 2025 full research paper track
Robotics 26
☆ Mechanical Automation with Vision: A Design for Rubik's Cube Solver
The core mechanical system is built around three stepper motors for physical manipulation, a microcontroller for hardware control, a camera and YOLO detection model for real-time cube state detection. A significant software component is the development of a user-friendly graphical user interface (GUI) designed in Unity. The initial state after detection from real-time YOLOv8 model (Precision 0.98443, Recall 0.98419, Box Loss 0.42051, Class Loss 0.2611) is virtualized on GUI. To get the solution, the system employs the Kociemba's algorithm while physical manipulation with a single degree of freedom is done by combination of stepper motors' interaction with the cube achieving the average solving time of ~2.2 minutes.
comment: Presented at the 15th IOE Graduate Conference, Tribhuvan University, May 2024. Original paper available at https://conference.ioe.edu.np/publications/ioegc15/IOEGC-15-023-C1-2-42.pdf
☆ Autonomous Oil Spill Response Through Liquid Neural Trajectory Modeling and Coordinated Marine Robotics
Marine oil spills pose grave environmental and economic risks, threatening marine ecosystems, coastlines, and dependent industries. Predicting and managing oil spill trajectories is highly complex, due to the interplay of physical, chemical, and environmental factors such as wind, currents, and temperature, which makes timely and effective response challenging. Accurate real-time trajectory forecasting and coordinated mitigation are vital for minimizing the impact of these disasters. This study introduces an integrated framework combining a multi-agent swarm robotics system built on the MOOS-IvP platform with Liquid Time-Constant Neural Networks (LTCNs). The proposed system fuses adaptive machine learning with autonomous marine robotics, enabling real-time prediction, dynamic tracking, and rapid response to evolving oil spills. By leveraging LTCNs--well-suited for modeling complex, time-dependent processes--the framework achieves real-time, high-accuracy forecasts of spill movement. Swarm intelligence enables decentralized, scalable, and resilient decision-making among robot agents, enhancing collective monitoring and containment efforts. Our approach was validated using data from the Deepwater Horizon spill, where the LTC-RK4 model achieved 0.96 spatial accuracy, surpassing LSTM approaches by 23%. The integration of advanced neural modeling with autonomous, coordinated robotics demonstrates substantial improvements in prediction precision, flexibility, and operational scalability. Ultimately, this research advances the state-of-the-art for sustainable, autonomous oil spill management and environmental protection by enhancing both trajectory prediction and response coordination.
comment: 30 pages, 40 figures. Framework combining Liquid Time-Constant Neural Networks with autonomous marine robotics for oil spill trajectory prediction and response coordination
☆ Geodesic Tracing-Based Kinematic Integration of Rolling and Sliding Contact on Manifold Meshes for Dexterous In-Hand Manipulation
Reasoning about rolling and sliding contact, or roll-slide contact for short, is critical for dexterous manipulation tasks that involve intricate geometries. But existing works on roll-slide contact mostly focus on continuous shapes with differentiable parametrizations. This work extends roll-slide contact modeling to manifold meshes. Specifically, we present an integration scheme based on geodesic tracing to first-order time-integrate roll-slide contact directly on meshes, enabling dexterous manipulation to reason over high-fidelity discrete representations of an object's true geometry. Using our method, we planned dexterous motions of a multi-finger robotic hand manipulating five objects in-hand in simulation. The planning was achieved with a least-squares optimizer that strives to maintain the most stable instantaneous grasp by minimizing contact sliding and spinning. Then, we evaluated our method against a baseline using collision detection and a baseline using primitive shapes. The results show that our method performed the best in accuracy and precision, even for coarse meshes. We conclude with a future work discussion on incorporating multiple contacts and contact forces to achieve accurate and robust mesh-based surface contact modeling.
☆ Tactile Gesture Recognition with Built-in Joint Sensors for Industrial Robots
While gesture recognition using vision or robot skins is an active research area in Human-Robot Collaboration (HRC), this paper explores deep learning methods relying solely on a robot's built-in joint sensors, eliminating the need for external sensors. We evaluated various convolutional neural network (CNN) architectures and collected two datasets to study the impact of data representation and model architecture on the recognition accuracy. Our results show that spectrogram-based representations significantly improve accuracy, while model architecture plays a smaller role. We also tested generalization to new robot poses, where spectrogram-based models performed better. Implemented on a Franka Emika Research robot, two of our methods, STFT2DCNN and STT3DCNN, achieved over 95% accuracy in contact detection and gesture classification. These findings demonstrate the feasibility of external-sensor-free tactile recognition and promote further research toward cost-effective, scalable solutions for HRC.
☆ PUB: A Plasma-Propelled Ultra-Quiet Blimp with Two-DOF Vector Thrusting
This study presents the design and control of a Plasma-propelled Ultra-silence Blimp (PUB), a novel aerial robot employing plasma vector propulsion for ultra-quiet flight without mechanical propellers. The system utilizes a helium-lift platform for extended endurance and a four-layer ring asymmetric capacitor to generate ionic wind thrust. The modular propulsion units allow flexible configuration to meet mission-specific requirements, while a two-degree-of-freedom (DOF) head enables thrust vector control. A closed-loop slip control scheme is implemented for stable maneuvering. Flight experiments demonstrate full-envelope capability, including take-off, climb, hover, descent, and smooth landing, confirming the feasibility of plasma vector propulsion, the effectiveness of DOF vector control, and the stability of the control system. Owing to its low acoustic signature, structural simplicity, and high maneuverability, PUB is well suited for noise-sensitive, enclosed, and near-space applications.
☆ SIGN: Safety-Aware Image-Goal Navigation for Autonomous Drones via Reinforcement Learning
Image-goal navigation (ImageNav) tasks a robot with autonomously exploring an unknown environment and reaching a location that visually matches a given target image. While prior works primarily study ImageNav for ground robots, enabling this capability for autonomous drones is substantially more challenging due to their need for high-frequency feedback control and global localization for stable flight. In this paper, we propose a novel sim-to-real framework that leverages visual reinforcement learning (RL) to achieve ImageNav for drones. To enhance visual representation ability, our approach trains the vision backbone with auxiliary tasks, including image perturbations and future transition prediction, which results in more effective policy training. The proposed algorithm enables end-to-end ImageNav with direct velocity control, eliminating the need for external localization. Furthermore, we integrate a depth-based safety module for real-time obstacle avoidance, allowing the drone to safely navigate in cluttered environments. Unlike most existing drone navigation methods that focus solely on reference tracking or obstacle avoidance, our framework supports comprehensive navigation behaviors--autonomous exploration, obstacle avoidance, and image-goal seeking--without requiring explicit global mapping. Code and model checkpoints will be released upon acceptance.
☆ Semi-Infinite Programming for Collision-Avoidance in Optimal and Model Predictive Control
This paper presents a novel approach for collision avoidance in optimal and model predictive control, in which the environment is represented by a large number of points and the robot as a union of padded polygons. The conditions that none of the points shall collide with the robot can be written in terms of an infinite number of constraints per obstacle point. We show that the resulting semi-infinite programming (SIP) optimal control problem (OCP) can be efficiently tackled through a combination of two methods: local reduction and an external active-set method. Specifically, this involves iteratively identifying the closest point obstacles, determining the lower-level distance minimizer among all feasible robot shape parameters, and solving the upper-level finitely-constrained subproblems. In addition, this paper addresses robust collision avoidance in the presence of ellipsoidal state uncertainties. Enforcing constraint satisfaction over all possible uncertainty realizations extends the dimension of constraint infiniteness. The infinitely many constraints arising from translational uncertainty are handled by local reduction together with the robot shape parameterization, while rotational uncertainty is addressed via a backoff reformulation. A controller implemented based on the proposed method is demonstrated on a real-world robot running at 20Hz, enabling fast and collision-free navigation in tight spaces. An application to 3D collision avoidance is also demonstrated in simulation.
comment: 21 pages, 15 figures
☆ Implementation and evaluation of a prediction algorithm for an autonomous vehicle
This paper presents a prediction algorithm that estimates the vehicle trajectory every five milliseconds for an autonomous vehicle. A kinematic and a dynamic bicycle model are compared, with the dynamic model exhibiting superior accuracy at higher speeds. Vehicle parameters such as mass, center of gravity, moment of inertia, and cornering stiffness are determined experimentally. For cornering stiffness, a novel measurement procedure using optical position tracking is introduced. The model is incorporated into an extended Kalman filter and implemented in a ROS node in C++. The algorithm achieves a positional deviation of only 1.25 cm per meter over the entire test drive and is up to 82.6% more precise than the kinematic model.
comment: 7 pages, 7 figures
☆ Adjustable AprilTags For Identity Secured Tasks
Special tags such as AprilTags that facilitate image processing and pattern recognition are useful in practical applications. In close and private environments, identity security is unlikely to be an issue because all involved AprilTags can be completely regulated. However, in open and public environments, identity security is no longer an issue that can be neglected. To handle potential harm caused by adversarial attacks, this note advocates utilization of adjustable AprilTags instead of fixed ones.
☆ A robust and compliant robotic assembly control strategy for batch precision assembly task with uncertain fit types and fit amounts
In some high-precision industrial applications, robots are deployed to perform precision assembly tasks on mass batches of manufactured pegs and holes. If the peg and hole are designed with transition fit, machining errors may lead to either a clearance or an interference fit for a specific pair of components, with uncertain fit amounts. This paper focuses on the robotic batch precision assembly task involving components with uncertain fit types and fit amounts, and proposes an efficient methodology to construct the robust and compliant assembly control strategy. Specifically, the batch precision assembly task is decomposed into multiple deterministic subtasks, and a force-vision fusion controller-driven reinforcement learning method and a multi-task reinforcement learning training method (FVFC-MTRL) are proposed to jointly learn multiple compliance control strategies for these subtasks. Subsequently, the multi-teacher policy distillation approach is designed to integrate multiple trained strategies into a unified student network, thereby establishing a robust control strategy. Real-world experiments demonstrate that the proposed method successfully constructs the robust control strategy for high-precision assembly task with different fit types and fit amounts. Moreover, the MTRL framework significantly improves training efficiency, and the final developed control strategy achieves superior force compliance and higher success rate compared with many existing methods.
☆ Bimanual Robot-Assisted Dressing: A Spherical Coordinate-Based Strategy for Tight-Fitting Garments
Robot-assisted dressing is a popular but challenging topic in the field of robotic manipulation, offering significant potential to improve the quality of life for individuals with mobility limitations. Currently, the majority of research on robot-assisted dressing focuses on how to put on loose-fitting clothing, with little attention paid to tight garments. For the former, since the armscye is larger, a single robotic arm can usually complete the dressing task successfully. However, for the latter, dressing with a single robotic arm often fails due to the narrower armscye and the property of diminishing rigidity in the armscye, which eventually causes the armscye to get stuck. This paper proposes a bimanual dressing strategy suitable for dressing tight-fitting clothing. To facilitate the encoding of dressing trajectories that adapt to different human arm postures, a spherical coordinate system for dressing is established. We uses the azimuthal angle of the spherical coordinate system as a task-relevant feature for bimanual manipulation. Based on this new coordinate, we employ Gaussian Mixture Model (GMM) and Gaussian Mixture Regression (GMR) for imitation learning of bimanual dressing trajectories, generating dressing strategies that adapt to different human arm postures. The effectiveness of the proposed method is validated through various experiments.
comment: 8 pages, 41 figures
☆ Robot Trains Robot: Automatic Real-World Policy Adaptation and Learning for Humanoids
Simulation-based reinforcement learning (RL) has significantly advanced humanoid locomotion tasks, yet direct real-world RL from scratch or adapting from pretrained policies remains rare, limiting the full potential of humanoid robots. Real-world learning, despite being crucial for overcoming the sim-to-real gap, faces substantial challenges related to safety, reward design, and learning efficiency. To address these limitations, we propose Robot-Trains-Robot (RTR), a novel framework where a robotic arm teacher actively supports and guides a humanoid robot student. The RTR system provides protection, learning schedule, reward, perturbation, failure detection, and automatic resets. It enables efficient long-term real-world humanoid training with minimal human intervention. Furthermore, we propose a novel RL pipeline that facilitates and stabilizes sim-to-real transfer by optimizing a single dynamics-encoded latent variable in the real world. We validate our method through two challenging real-world humanoid tasks: fine-tuning a walking policy for precise speed tracking and learning a humanoid swing-up task from scratch, illustrating the promising capabilities of real-world humanoid learning realized by RTR-style systems. See https://robot-trains-robot.github.io/ for more info.
comment: Accepted to The Conference on Robot Learning (CoRL) 2025
☆ Improving Pre-Trained Vision-Language-Action Policies with Model-Based Search
Pre-trained vision-language-action (VLA) models offer a promising foundation for generalist robot policies, but often produce brittle behaviours or unsafe failures when deployed zero-shot in out-of-distribution scenarios. We present Vision-Language-Action Planning & Search (VLAPS) -- a novel framework and accompanying algorithms that embed model-based search into the inference procedure of pre-trained VLA policies to improve their performance on robotic tasks. Specifically, our method biases a modified Monte Carlo Tree Search (MCTS) algorithm -- run using a model of the target environment -- using action priors defined by the VLA policy. By using VLA-derived abstractions and priors in model-based search, VLAPS efficiently explores language-conditioned robotics tasks whose search spaces would otherwise be intractably large. Conversely, by integrating model-based search with the VLA policy's inference procedure, VLAPS yields behaviours that are more performant than those obtained by directly following the VLA policy's action predictions. VLAPS offers a principled framework to: i) control test-time compute in VLA models, ii) leverage a priori knowledge of the robotic environment, and iii) integrate established planning and reinforcement learning techniques into the VLA inference process. Across all experiments, VLAPS significantly outperforms VLA-only baselines on language-specified tasks that would otherwise be intractable for uninformed search algorithms, increasing success rates by as much as 67 percentage points.
☆ Self-Guided Action Diffusion
Recent works have shown the promise of inference-time search over action samples for improving generative robot policies. In particular, optimizing cross-chunk coherence via bidirectional decoding has proven effective in boosting the consistency and reactivity of diffusion policies. However, this approach remains computationally expensive as the diversity of sampled actions grows. In this paper, we introduce self-guided action diffusion, a more efficient variant of bidirectional decoding tailored for diffusion-based policies. At the core of our method is to guide the proposal distribution at each diffusion step based on the prior decision. Experiments in simulation tasks show that the proposed self-guidance enables near-optimal performance at negligible inference cost. Notably, under a tight sampling budget, our method achieves up to 70% higher success rates than existing counterparts on challenging dynamic tasks. See project website at https://rhea-mal.github.io/selfgad.github.io.
☆ Humanoid Motion Scripting with Postural Synergies
Generating sequences of human-like motions for humanoid robots presents challenges in collecting and analyzing reference human motions, synthesizing new motions based on these reference motions, and mapping the generated motion onto humanoid robots. To address these issues, we introduce SynSculptor, a humanoid motion analysis and editing framework that leverages postural synergies for training-free human-like motion scripting. To analyze human motion, we collect 3+ hours of motion capture data across 20 individuals where a real-time operational space controller mimics human motion on a simulated humanoid robot. The major postural synergies are extracted using principal component analysis (PCA) for velocity trajectories segmented by changes in robot momentum, constructing a style-conditioned synergy library for free-space motion generation. To evaluate generated motions using the synergy library, the foot-sliding ratio and proposed metrics for motion smoothness involving total momentum and kinetic energy deviations are computed for each generated motion, and compared with reference motions. Finally, we leverage the synergies with a motion-language transformer, where the humanoid, during execution of motion tasks with its end-effectors, adapts its posture based on the chosen synergy. Supplementary material, code, and videos are available at https://rhea-mal.github.io/humanoidsynergies.io.
♻ ☆ Towards Infant Sleep-Optimized Driving: Synergizing Wearable and Vehicle Sensing in Intelligent Cruise Control
Automated driving (AD) has substantially improved vehicle safety and driving comfort, but their impact on passenger well-being, particularly infant sleep, is not sufficiently studied. Sudden acceleration, abrupt braking, and sharp maneuvers can disrupt infant sleep, compromising both passenger comfort and parental convenience. To solve this problem, this paper explores the integration of reinforcement learning (RL) within AD to personalize driving behavior and optimally balance occupant comfort and travel efficiency. In particular, we propose an intelligent cruise control framework that adapts to varying driving conditions to enhance infant sleep quality by effectively synergizing wearable sensing and vehicle data. Long short-term memory (LSTM) and transformer-based neural networks are integrated with RL to model the relationship between driving behavior and infant sleep quality under diverse traffic and road conditions. Based on the sleep quality indicators from the wearable sensors, driving action data from vehicle controllers, and map data from map applications, the model dynamically computes the optimal driving aggressiveness level, which is subsequently translated into specific AD control strategies, e.g., the magnitude and frequency of acceleration, lane change, and overtaking. Simulation experiments conducted in the CARLA environment indicate that the proposed solution significantly improves infant sleep quality compared to baseline methods, while preserving desirable travel efficiency.
♻ ☆ RNBF: Real-Time RGB-D Based Neural Barrier Functions for Safe Robotic Navigation
Autonomous safe navigation in unstructured and novel environments poses significant challenges, especially when environment information can only be provided through low-cost vision sensors. Although safe reactive approaches have been proposed to ensure robot safety in complex environments, many base their theory off the assumption that the robot has prior knowledge on obstacle locations and geometries. In this paper, we present a real-time, vision-based framework that constructs continuous, first-order differentiable Signed Distance Fields (SDFs) of unknown environments entirely online, without any pre-training, and is fully compatible with established SDF-based reactive controllers. To achieve robust performance under practical sensing conditions, our approach explicitly accounts for noise in affordable RGB-D cameras, refining the neural SDF representation online for smoother geometry and stable gradient estimates. We validate the proposed method in simulation and real-world experiments using a Fetch robot.
♻ ☆ SLAG: Scalable Language-Augmented Gaussian Splatting
Language-augmented scene representations hold great promise for large-scale robotics applications such as search-and-rescue, smart cities, and mining. Many of these scenarios are time-sensitive, requiring rapid scene encoding while also being data-intensive, necessitating scalable solutions. Deploying these representations on robots with limited computational resources further adds to the challenge. To address this, we introduce SLAG, a multi-GPU framework for language-augmented Gaussian splatting that enhances the speed and scalability of embedding large scenes. Our method integrates 2D visual-language model features into 3D scenes using SAM and CLIP. Unlike prior approaches, SLAG eliminates the need for a loss function to compute per-Gaussian language embeddings. Instead, it derives embeddings from 3D Gaussian scene parameters via a normalized weighted average, enabling highly parallelized scene encoding. Additionally, we introduce a vector database for efficient embedding storage and retrieval. Our experiments show that SLAG achieves an 18 times speedup in embedding computation on a 16-GPU setup compared to OpenGaussian, while preserving embedding quality on the ScanNet and LERF datasets. For more details, visit our project website: https://slag-project.github.io/.
♻ ☆ The Foundational Pose as a Selection Mechanism for the Design of Tool-Wielding Multi-Finger Robotic Hands
To wield an object means to hold and move it in a way that exploits its functions. When humans wield tools -- such as writing with a pen or cutting with scissors -- our hands would reach very specific poses, often drastically different from how we pick up the same objects just to transport them. In this work, we investigate the design of tool-wielding multi-finger robotic hand through a hypothesis: If a hand can kinematically reach a foundational pose (FP) with a tool, then it can wield the tool from that FP. We interpret FPs as snapshots that capture the workings of underlying parallel mechanisms formed by the tool and the hand, and one hand can form multiple mechanisms with the same tool. We tested our hypothesis in a hand design experiment, where we developed a sampling-based multi-objective design optimization framework that uses three FPs to computationally generate many different hand designs and evaluate them. The results show that 10,785 out of the 100,480 hand designs we sampled reached the FPs; more than 99\% of the 10,785 hands that reached the FPs successfully wielded tools, supporting our hypothesis. Meanwhile, our methods provide insights into the non-convex, multi-objective hand design optimization problem -- such as clustering and the Pareto front -- that could be hard to unveil with methods that return a single ``optimal" design. Lastly, we demonstrate our methods' real-world feasibility and potential with a hardware prototype equipped with rigid endoskeleton and soft skin.
♻ ☆ LGR2: Language Guided Reward Relabeling for Accelerating Hierarchical Reinforcement Learning
Large language models (LLMs) have shown remarkable abilities in logical reasoning, in-context learning, and code generation. However, translating natural language instructions into effective robotic control policies remains a significant challenge, especially for tasks requiring long-horizon planning and operating under sparse reward conditions. Hierarchical Reinforcement Learning (HRL) provides a natural framework to address this challenge in robotics; however, it typically suffers from non-stationarity caused by the changing behavior of the lower-level policy during training, destabilizing higher-level policy learning. We introduce LGR2, a novel HRL framework that leverages LLMs to generate language-guided reward functions for the higher-level policy. By decoupling high-level reward generation from low-level policy changes, LGR2 fundamentally mitigates the non-stationarity problem in off-policy HRL, enabling stable and efficient learning. To further enhance sample efficiency in sparse environments, we integrate goal-conditioned hindsight experience relabeling. Extensive experiments across simulated and real-world robotic navigation and manipulation tasks demonstrate LGR2 outperforms both hierarchical and non-hierarchical baselines, achieving over 55% success rates on challenging tasks and robust transfer to real robots, without additional fine-tuning.
♻ ☆ Unravelling Responsibility for AI
It is widely acknowledged that we need to establish where responsibility lies for the outputs and impacts of AI-enabled systems. This is important to achieve justice and compensation for victims of AI harms, and to inform policy and engineering practice. But without a clear, thorough understanding of what "responsibility" means, deliberations about where responsibility lies will be, at best, unfocused and incomplete and, at worst, misguided. Furthermore, AI-enabled systems exist within a wider ecosystem of actors, decisions, and governance structures, giving rise to complex networks of responsibility relations. To address these issues, this paper presents a conceptual framework of responsibility, accompanied with a graphical notation and general methodology for visualising these responsibility networks and for tracing different responsibility attributions for AI. Taking the three-part formulation "Actor A is responsible for Occurrence O," the framework unravels the concept of responsibility to clarify that there are different possibilities of who is responsible for AI, senses in which they are responsible, and aspects of events they are responsible for. The notation allows these permutations to be represented graphically. The methodology enables users to apply the framework to specific scenarios. The aim is to offer a foundation to support stakeholders from diverse disciplinary backgrounds to discuss and address complex responsibility questions in hypothesised and real-world cases involving AI. The work is illustrated by application to a fictitious scenario of a fatal collision between a crewless, AI-enabled maritime vessel in autonomous mode and a traditional, crewed vessel at sea.
♻ ☆ HuB: Learning Extreme Humanoid Balance
The human body demonstrates exceptional motor capabilities-such as standing steadily on one foot or performing a high kick with the leg raised over 1.5 meters-both requiring precise balance control. While recent research on humanoid control has leveraged reinforcement learning to track human motions for skill acquisition, applying this paradigm to balance-intensive tasks remains challenging. In this work, we identify three key obstacles: instability from reference motion errors, learning difficulties due to morphological mismatch, and the sim-to-real gap caused by sensor noise and unmodeled dynamics. To address these challenges, we propose HuB (Humanoid Balance), a unified framework that integrates reference motion refinement, balance-aware policy learning, and sim-to-real robustness training, with each component targeting a specific challenge. We validate our approach on the Unitree G1 humanoid robot across challenging quasi-static balance tasks, including extreme single-legged poses such as Swallow Balance and Bruce Lee's Kick. Our policy remains stable even under strong physical disturbances-such as a forceful soccer strike-while baseline methods consistently fail to complete these tasks. Project website: https://hub-robot.github.io
comment: CoRL 2025 (Oral Presentation). Project website: https://hub-robot.github.io
♻ ☆ LD-Scene: LLM-Guided Diffusion for Controllable Generation of Adversarial Safety-Critical Driving Scenarios
Ensuring the safety and robustness of autonomous driving systems necessitates a comprehensive evaluation in safety-critical scenarios. However, these safety-critical scenarios are rare and difficult to collect from real-world driving data, posing significant challenges to effectively assessing the performance of autonomous vehicles. Typical existing methods often suffer from limited controllability and lack user-friendliness, as extensive expert knowledge is essentially required. To address these challenges, we propose LD-Scene, a novel framework that integrates Large Language Models (LLMs) with Latent Diffusion Models (LDMs) for user-controllable adversarial scenario generation through natural language. Our approach comprises an LDM that captures realistic driving trajectory distributions and an LLM-based guidance module that translates user queries into adversarial loss functions, facilitating the generation of scenarios aligned with user queries. The guidance module integrates an LLM-based Chain-of-Thought (CoT) code generator and an LLM-based code debugger, enhancing the controllability and robustness in generating guidance functions. Extensive experiments conducted on the nuScenes dataset demonstrate that LD-Scene achieves state-of-the-art performance in generating realistic, diverse, and effective adversarial scenarios. Furthermore, our framework provides fine-grained control over adversarial behaviors, thereby facilitating more effective testing tailored to specific driving scenarios.
comment: 18 pages, 8 figures
♻ ☆ Self-Tuning PID Control via a Hybrid Actor-Critic-Based Neural Structure for Quadcopter Control
Proportional-Integrator-Derivative (PID) controller is used in a wide range of industrial and experimental processes. There are a couple of offline methods for tuning PID gains. However, due to the uncertainty of model parameters and external disturbances, real systems such as Quadrotors need more robust and reliable PID controllers. In this research, a self-tuning PID controller using a Reinforcement-Learning-based Neural Network for attitude and altitude control of a Quadrotor has been investigated. An Incremental PID, which contains static and dynamic gains, has been considered and only the variable gains have been tuned. To tune dynamic gains, a model-free actor-critic-based hybrid neural structure was used that was able to properly tune PID gains, and also has done the best as an identifier. In both tunning and identification tasks, a Neural Network with two hidden layers and sigmoid activation functions has been learned using Adaptive Momentum (ADAM) optimizer and Back-Propagation (BP) algorithm. This method is online, able to tackle disturbance, and fast in training. In addition to robustness to mass uncertainty and wind gust disturbance, results showed that the proposed method had a better performance when compared to a PID controller with constant gains.
comment: 7 pages, 18 figures, The 30th Annual International Conference of Iranian Society of Mechanical Engineers
♻ ☆ Towards Safe Autonomous Driving Policies using a Neuro-Symbolic Deep Reinforcement Learning Approach
The dynamic nature of driving environments and the presence of diverse road users pose significant challenges for decision-making in autonomous driving. Deep reinforcement learning (DRL) has emerged as a popular approach to tackle this problem. However, the application of existing DRL solutions is mainly confined to simulated environments due to safety concerns, impeding their deployment in real-world. To overcome this limitation, this paper introduces a novel neuro-symbolic model-free DRL approach, called DRL with Symbolic Logic (DRLSL) that combines the strengths of DRL (learning from experience) and symbolic first-order logic (knowledge-driven reasoning) to enable safe learning in real-time interactions of autonomous driving within real environments. This innovative approach provides a means to learn autonomous driving policies by actively engaging with the physical environment while ensuring safety. We have implemented the DRLSL framework in a highway driving scenario using the HighD dataset and demonstrated that our method successfully avoids unsafe actions during both the training and testing phases. Furthermore, our results indicate that DRLSL achieves faster convergence during training and exhibits better generalizability to new highway driving scenarios compared to traditional DRL methods.
comment: 15 pages, 9 figures, 1 table, 1 algorithm
♻ ☆ Solving Stochastic Orienteering Problems with Chance Constraints Using a GNN Powered Monte Carlo Tree Search
Leveraging the power of a graph neural network (GNN) with message passing, we present a Monte Carlo Tree Search (MCTS) method to solve stochastic orienteering problems with chance constraints. While adhering to an assigned travel budget the algorithm seeks to maximize collected reward while incurring stochastic travel costs. In this context, the acceptable probability of exceeding the assigned budget is expressed as a chance constraint. Our MCTS solution is an online and anytime algorithm alternating planning and execution that determines the next vertex to visit by continuously monitoring the remaining travel budget. The novelty of our work is that the rollout phase in the MCTS framework is implemented using a message passing GNN, predicting both the utility and failure probability of each available action. This allows to enormously expedite the search process. Our experimental evaluation shows that with the proposed method and architecture we manage to efficiently solve complex problem instances while incurring in moderate losses in terms of collected reward. Moreover, we demonstrate how the approach is capable of generalizing beyond the characteristics of the training dataset. The paper's website, open-source code, and supplementary documentation can be found at ucmercedrobotics.github.io/gnn-sop.
comment: 8 pages, 6 figures
Artificial Intelligence 93
☆ Defining and Benchmarking a Data-Centric Design Space for Brain Graph Construction
The construction of brain graphs from functional Magnetic Resonance Imaging (fMRI) data plays a crucial role in enabling graph machine learning for neuroimaging. However, current practices often rely on rigid pipelines that overlook critical data-centric choices in how brain graphs are constructed. In this work, we adopt a Data-Centric AI perspective and systematically define and benchmark a data-centric design space for brain graph construction, constrasting with primarily model-centric prior work. We organize this design space into three stages: temporal signal processing, topology extraction, and graph featurization. Our contributions lie less in novel components and more in evaluating how combinations of existing and modified techniques influence downstream performance. Specifically, we study high-amplitude BOLD signal filtering, sparsification and unification strategies for connectivity, alternative correlation metrics, and multi-view node and edge features, such as incorporating lagged dynamics. Experiments on the HCP1200 and ABIDE datasets show that thoughtful data-centric configurations consistently improve classification accuracy over standard pipelines. These findings highlight the critical role of upstream data decisions and underscore the importance of systematically exploring the data-centric design space for graph-based neuroimaging. Our code is available at https://github.com/GeQinwen/DataCentricBrainGraphs.
☆ Rethinking Safety in LLM Fine-tuning: An Optimization Perspective
Fine-tuning language models is commonly believed to inevitably harm their safety, i.e., refusing to respond to harmful user requests, even when using harmless datasets, thus requiring additional safety measures. We challenge this belief through systematic testing, showing that poor optimization choices, rather than inherent trade-offs, often cause safety problems, measured as harmful responses to adversarial prompts. By properly selecting key training hyper-parameters, e.g., learning rate, batch size, and gradient steps, we reduce unsafe model responses from 16\% to approximately 5\%, as measured by keyword matching, while maintaining utility performance. Based on this observation, we propose a simple exponential moving average (EMA) momentum technique in parameter space that preserves safety performance by creating a stable optimization path and retains the original pre-trained model's safety properties. Our experiments on the Llama families across multiple datasets (Dolly, Alpaca, ORCA) demonstrate that safety problems during fine-tuning can largely be avoided without specialized interventions, outperforming existing approaches that require additional safety data while offering practical guidelines for maintaining both model performance and safety during adaptation.
☆ An Initial Study of Bird's-Eye View Generation for Autonomous Vehicles using Cross-View Transformers
Bird's-Eye View (BEV) maps provide a structured, top-down abstraction that is crucial for autonomous-driving perception. In this work, we employ Cross-View Transformers (CVT) for learning to map camera images to three BEV's channels - road, lane markings, and planned trajectory - using a realistic simulator for urban driving. Our study examines generalization to unseen towns, the effect of different camera layouts, and two loss formulations (focal and L1). Using training data from only a town, a four-camera CVT trained with the L1 loss delivers the most robust test performance, evaluated in a new town. Overall, our results underscore CVT's promise for mapping camera inputs to reasonably accurate BEV maps.
comment: 12 pages,submitted in ENIAC 2025
☆ An Introduction to Sliced Optimal Transport
Sliced Optimal Transport (SOT) is a rapidly developing branch of optimal transport (OT) that exploits the tractability of one-dimensional OT problems. By combining tools from OT, integral geometry, and computational statistics, SOT enables fast and scalable computation of distances, barycenters, and kernels for probability measures, while retaining rich geometric structure. This paper provides a comprehensive review of SOT, covering its mathematical foundations, methodological advances, computational methods, and applications. We discuss key concepts of OT and one-dimensional OT, the role of tools from integral geometry such as Radon transform in projecting measures, and statistical techniques for estimating sliced distances. The paper further explores recent methodological advances, including non-linear projections, improved Monte Carlo approximations, statistical estimation techniques for one-dimensional optimal transport, weighted slicing techniques, and transportation plan estimation methods. Variational problems, such as minimum sliced Wasserstein estimation, barycenters, gradient flows, kernel constructions, and embeddings are examined alongside extensions to unbalanced, partial, multi-marginal, and Gromov-Wasserstein settings. Applications span machine learning, statistics, computer graphics and computer visions, highlighting SOT's versatility as a practical computational tool. This work will be of interest to researchers and practitioners in machine learning, data sciences, and computational disciplines seeking efficient alternatives to classical OT.
comment: 227 pages
☆ Design and Validation of a Responsible Artificial Intelligence-based System for the Referral of Diabetic Retinopathy Patients
Diabetic Retinopathy (DR) is a leading cause of vision loss in working-age individuals. Early detection of DR can reduce the risk of vision loss by up to 95%, but a shortage of retinologists and challenges in timely examination complicate detection. Artificial Intelligence (AI) models using retinal fundus photographs (RFPs) offer a promising solution. However, adoption in clinical settings is hindered by low-quality data and biases that may lead AI systems to learn unintended features. To address these challenges, we developed RAIS-DR, a Responsible AI System for DR screening that incorporates ethical principles across the AI lifecycle. RAIS-DR integrates efficient convolutional models for preprocessing, quality assessment, and three specialized DR classification models. We evaluated RAIS-DR against the FDA-approved EyeArt system on a local dataset of 1,046 patients, unseen by both systems. RAIS-DR demonstrated significant improvements, with F1 scores increasing by 5-12%, accuracy by 6-19%, and specificity by 10-20%. Additionally, fairness metrics such as Disparate Impact and Equal Opportunity Difference indicated equitable performance across demographic subgroups, underscoring RAIS-DR's potential to reduce healthcare disparities. These results highlight RAIS-DR as a robust and ethically aligned solution for DR screening in clinical settings. The code, weights of RAIS-DR are available at https://gitlab.com/inteligencia-gubernamental-jalisco/jalisco-retinopathy with RAIL.
comment: 14 pages,3 figures, under review
☆ Root Cause Analysis of Hydrogen Bond Separation in Spatio-Temporal Molecular Dynamics using Causal Models
Molecular dynamics simulations (MDS) face challenges, including resource-heavy computations and the need to manually scan outputs to detect "interesting events," such as the formation and persistence of hydrogen bonds between atoms of different molecules. A critical research gap lies in identifying the underlying causes of hydrogen bond formation and separation -understanding which interactions or prior events contribute to their emergence over time. With this challenge in mind, we propose leveraging spatio-temporal data analytics and machine learning models to enhance the detection of these phenomena. In this paper, our approach is inspired by causal modeling and aims to identify the root cause variables of hydrogen bond formation and separation events. Specifically, we treat the separation of hydrogen bonds as an "intervention" occurring and represent the causal structure of the bonding and separation events in the MDS as graphical causal models. These causal models are built using a variational autoencoder-inspired architecture that enables us to infer causal relationships across samples with diverse underlying causal graphs while leveraging shared dynamic information. We further include a step to infer the root causes of changes in the joint distribution of the causal models. By constructing causal models that capture shifts in the conditional distributions of molecular interactions during bond formation or separation, this framework provides a novel perspective on root cause analysis in molecular dynamic systems. We validate the efficacy of our model empirically on the atomic trajectories that used MDS for chiral separation, demonstrating that we can predict many steps in the future and also find the variables driving the observed changes in the system.
comment: Submitted to ACM
☆ Mitigating Hallucinations in Large Language Models via Causal Reasoning
Large language models (LLMs) exhibit logically inconsistent hallucinations that appear coherent yet violate reasoning principles, with recent research suggesting an inverse relationship between causal reasoning capabilities and such hallucinations. However, existing reasoning approaches in LLMs, such as Chain-of-Thought (CoT) and its graph-based variants, operate at the linguistic token level rather than modeling the underlying causal relationships between variables, lacking the ability to represent conditional independencies or satisfy causal identification assumptions. To bridge this gap, we introduce causal-DAG construction and reasoning (CDCR-SFT), a supervised fine-tuning framework that trains LLMs to explicitly construct variable-level directed acyclic graph (DAG) and then perform reasoning over it. Moreover, we present a dataset comprising 25,368 samples (CausalDR), where each sample includes an input question, explicit causal DAG, graph-based reasoning trace, and validated answer. Experiments on four LLMs across eight tasks show that CDCR-SFT improves the causal reasoning capability with the state-of-the-art 95.33% accuracy on CLADDER (surpassing human performance of 94.8% for the first time) and reduces the hallucination on HaluEval with 10% improvements. It demonstrates that explicit causal structure modeling in LLMs can effectively mitigate logical inconsistencies in LLM outputs. Code is available at https://github.com/MrLYG/CDCR-SFT.
☆ Advanced DOA Regulation with a Whale-Optimized Fractional Order Fuzzy PID Framework
This study introduces a Fractional Order Fuzzy PID (FOFPID) controller that uses the Whale Optimization Algorithm (WOA) to manage the Bispectral Index (BIS), keeping it within the ideal range of forty to sixty. The FOFPID controller combines fuzzy logic for adapting to changes and fractional order dynamics for fine tuning. This allows it to adjust its control gains to handle a person's unique physiology. The WOA helps fine tune the controller's parameters, including the fractional orders and the fuzzy membership functions, which boosts its performance. Tested on models of eight different patient profiles, the FOFPID controller performed better than a standard Fractional Order PID (FOPID) controller. It achieved faster settling times, at two and a half minutes versus three point two minutes, and had a lower steady state error, at zero point five versus one point two. These outcomes show the FOFPID's excellent strength and accuracy. It offers a scalable, artificial intelligence driven solution for automated anesthesia delivery that could enhance clinical practice and improve patient results.
☆ Cold-RL: Learning Cache Eviction with Offline Reinforcement Learning for NGINX
Web proxies such as NGINX commonly rely on least-recently-used (LRU) eviction, which is size agnostic and can thrash under periodic bursts and mixed object sizes. We introduce Cold-RL, a learned eviction policy for NGINX that replaces LRU's forced-expire path with a dueling Deep Q-Network served by an ONNX sidecar within a strict microsecond budget. On each eviction, Cold-RL samples the K least-recently-used objects, extracts six lightweight features (age, size, hit count, inter-arrival time, remaining TTL, and last origin RTT), and requests a bitmask of victims; a hard timeout of 500 microseconds triggers immediate fallback to native LRU. Policies are trained offline by replaying NGINX access logs through a cache simulator with a simple reward: a retained object earns one point if it is hit again before TTL expiry. We compare against LRU, LFU, size-based, adaptive LRU, and a hybrid baseline on two adversarial workloads. With a 25 MB cache, Cold-RL raises hit ratio from 0.1436 to 0.3538, a 146 percent improvement over the best classical baseline; at 100 MB, from 0.7530 to 0.8675, a 15 percent gain; and at 400 MB it matches classical methods (about 0.918). Inference adds less than 2 percent CPU overhead and keeps 95th percentile eviction latency within budget. To our knowledge, this is the first reinforcement learning eviction policy integrated into NGINX with strict SLOs.
comment: 8 pages, 4 figures (system architecture, eviction path, training pipeline, and DQN algorithm), 2 tables. Code available at https://github.com/ayushgupta4897/DRL-Cache
☆ The Yokai Learning Environment: Tracking Beliefs Over Space and Time IJCAI 2025
Developing collaborative AI hinges on Theory of Mind (ToM) - the ability to reason about the beliefs of others to build and maintain common ground. Existing ToM benchmarks, however, are restricted to passive observer settings or lack an assessment of how agents establish and maintain common ground over time. To address these gaps, we introduce the Yokai Learning Environment (YLE) - a multi-agent reinforcement learning (RL) environment based on the cooperative card game Yokai. In the YLE, agents take turns peeking at hidden cards and moving them to form clusters based on colour. Success requires tracking evolving beliefs, remembering past observations, using hints as grounded communication, and maintaining common ground with teammates. Our evaluation yields two key findings: First, current RL agents struggle to solve the YLE, even when given access to perfect memory. Second, while belief modelling improves performance, agents are still unable to effectively generalise to unseen partners or form accurate beliefs over longer games, exposing a reliance on brittle conventions rather than robust belief tracking. We use the YLE to investigate research questions in belief modelling, memory, partner generalisation, and scaling to higher-order ToM.
comment: Presented at the the ToM IJCAI 2025 Workshop
☆ EXOTIC: An Exact, Optimistic, Tree-Based Algorithm for Min-Max Optimization
Min-max optimization arises in many domains such as game theory, adversarial machine learning, etc., with gradient-based methods as a typical computational tool. Beyond convex-concave min-max optimization, the solutions found by gradient-based methods may be arbitrarily far from global optima. In this work, we present an algorithmic apparatus for computing globally optimal solutions in convex-non-concave and non-convex-concave min-max optimization. For former, we employ a reformulation that transforms it into a non-concave-convex max-min optimization problem with suitably defined feasible sets and objective function. The new form can be viewed as a generalization of Sion's minimax theorem. Next, we introduce EXOTIC-an Exact, Optimistic, Tree-based algorithm for solving the reformulated max-min problem. EXOTIC employs an iterative convex optimization solver to (approximately) solve the inner minimization and a hierarchical tree search for the outer maximization to optimistically select promising regions to search based on the approximate solution returned by convex optimization solver. We establish an upper bound on its optimality gap as a function of the number of calls to the inner solver, the solver's convergence rate, and additional problem-dependent parameters. Both our algorithmic apparatus along with its accompanying theoretical analysis can also be applied for non-convex-concave min-max optimization. In addition, we propose a class of benchmark convex-non-concave min-max problems along with their analytical global solutions, providing a testbed for evaluating algorithms for min-max optimization. Empirically, EXOTIC outperforms gradient-based methods on this benchmark as well as on existing numerical benchmark problems from the literature. Finally, we demonstrate the utility of EXOTIC by computing security strategies in multi-player games with three or more players.
comment: 31 pages, 2 figures, 3 tables
☆ Standardization of Neuromuscular Reflex Analysis -- Role of Fine-Tuned Vision-Language Model Consortium and OpenAI gpt-oss Reasoning LLM Enabled Decision Support System
Accurate assessment of neuromuscular reflexes, such as the H-reflex, plays a critical role in sports science, rehabilitation, and clinical neurology. Traditional analysis of H-reflex EMG waveforms is subject to variability and interpretation bias among clinicians and researchers, limiting reliability and standardization. To address these challenges, we propose a Fine-Tuned Vision-Language Model (VLM) Consortium and a reasoning Large-Language Model (LLM)-enabled Decision Support System for automated H-reflex waveform interpretation and diagnosis. Our approach leverages multiple VLMs, each fine-tuned on curated datasets of H-reflex EMG waveform images annotated with clinical observations, recovery timelines, and athlete metadata. These models are capable of extracting key electrophysiological features and predicting neuromuscular states, including fatigue, injury, and recovery, directly from EMG images and contextual metadata. Diagnostic outputs from the VLM consortium are aggregated using a consensus-based method and refined by a specialized reasoning LLM, which ensures robust, transparent, and explainable decision support for clinicians and sports scientists. The end-to-end platform orchestrates seamless communication between the VLM ensemble and the reasoning LLM, integrating prompt engineering strategies and automated reasoning workflows using LLM Agents. Experimental results demonstrate that this hybrid system delivers highly accurate, consistent, and interpretable H-reflex assessments, significantly advancing the automation and standardization of neuromuscular diagnostics. To our knowledge, this work represents the first integration of a fine-tuned VLM consortium with a reasoning LLM for image-based H-reflex analysis, laying the foundation for next-generation AI-assisted neuromuscular assessment and athlete monitoring platforms.
GALA: Can Graph-Augmented Large Language Model Agentic Workflows Elevate Root Cause Analysis?
Root cause analysis (RCA) in microservice systems is challenging, requiring on-call engineers to rapidly diagnose failures across heterogeneous telemetry such as metrics, logs, and traces. Traditional RCA methods often focus on single modalities or merely rank suspect services, falling short of providing actionable diagnostic insights with remediation guidance. This paper introduces GALA, a novel multi-modal framework that combines statistical causal inference with LLM-driven iterative reasoning for enhanced RCA. Evaluated on an open-source benchmark, GALA achieves substantial improvements over state-of-the-art methods of up to 42.22% accuracy. Our novel human-guided LLM evaluation score shows GALA generates significantly more causally sound and actionable diagnostic outputs than existing methods. Through comprehensive experiments and a case study, we show that GALA bridges the gap between automated failure diagnosis and practical incident resolution by providing both accurate root cause identification and human-interpretable remediation guidance.
comment: 12 pages, 5 figures
☆ A Robust Cross-Domain IDS using BiGRU-LSTM-Attention for Medical and Industrial IoT Security
The increased Internet of Medical Things IoMT and the Industrial Internet of Things IIoT interconnectivity has introduced complex cybersecurity challenges, exposing sensitive data, patient safety, and industrial operations to advanced cyber threats. To mitigate these risks, this paper introduces a novel transformer-based intrusion detection system IDS, termed BiGAT-ID a hybrid model that combines bidirectional gated recurrent units BiGRU, long short-term memory LSTM networks, and multi-head attention MHA. The proposed architecture is designed to effectively capture bidirectional temporal dependencies, model sequential patterns, and enhance contextual feature representation. Extensive experiments on two benchmark datasets, CICIoMT2024 medical IoT and EdgeIIoTset industrial IoT demonstrate the model's cross-domain robustness, achieving detection accuracies of 99.13 percent and 99.34 percent, respectively. Additionally, the model exhibits exceptional runtime efficiency, with inference times as low as 0.0002 seconds per instance in IoMT and 0.0001 seconds in IIoT scenarios. Coupled with a low false positive rate, BiGAT-ID proves to be a reliable and efficient IDS for deployment in real-world heterogeneous IoT environments
comment: 10 pages
☆ Inverse-LLaVA: Eliminating Alignment Pre-training Through Text-to-Vision Mapping
Traditional multimodal learning approaches require expensive alignment pre-training to bridge vision and language modalities, typically projecting visual features into discrete text token spaces. We challenge both fundamental assumptions underlying this paradigm by proposing Inverse-LLaVA, a novel approach that eliminates alignment pre-training entirely while inverting the conventional mapping direction. Rather than projecting visual features to text space, our method maps text embeddings into continuous visual representation space and performs fusion within transformer intermediate layers. Through selective additive components in attention mechanisms, we enable dynamic integration of visual and textual representations without requiring massive image-text alignment datasets. Comprehensive experiments across nine multimodal benchmarks demonstrate nuanced performance trade-offs: Inverse-LLaVA achieves notable improvements on reasoning-intensive and cognitive tasks (MM-VET: +0.2%, VizWiz: +1.8%, ScienceQA: +0.2%, cognitive reasoning: +27.2%), while showing expected decreases in perception tasks requiring memorized visual-text associations (celebrity recognition: -49.5%, OCR: -21.3%). These results provide the first empirical evidence that alignment pre-training is not necessary for effective multimodal learning, particularly for complex reasoning tasks. Our work establishes the feasibility of a new paradigm that reduces computational requirements by 45%, challenges conventional wisdom about modality fusion, and opens new research directions for efficient multimodal architectures that preserve modality-specific characteristics. Our project website with code and additional resources is available at https://inverse-llava.github.io.
comment: 15pages, 3 figures
☆ Tactile Gesture Recognition with Built-in Joint Sensors for Industrial Robots
While gesture recognition using vision or robot skins is an active research area in Human-Robot Collaboration (HRC), this paper explores deep learning methods relying solely on a robot's built-in joint sensors, eliminating the need for external sensors. We evaluated various convolutional neural network (CNN) architectures and collected two datasets to study the impact of data representation and model architecture on the recognition accuracy. Our results show that spectrogram-based representations significantly improve accuracy, while model architecture plays a smaller role. We also tested generalization to new robot poses, where spectrogram-based models performed better. Implemented on a Franka Emika Research robot, two of our methods, STFT2DCNN and STT3DCNN, achieved over 95% accuracy in contact detection and gesture classification. These findings demonstrate the feasibility of external-sensor-free tactile recognition and promote further research toward cost-effective, scalable solutions for HRC.
☆ Adversarial Attacks on VQA-NLE: Exposing and Alleviating Inconsistencies in Visual Question Answering Explanations
Natural language explanations in visual question answering (VQA-NLE) aim to make black-box models more transparent by elucidating their decision-making processes. However, we find that existing VQA-NLE systems can produce inconsistent explanations and reach conclusions without genuinely understanding the underlying context, exposing weaknesses in either their inference pipeline or explanation-generation mechanism. To highlight these vulnerabilities, we not only leverage an existing adversarial strategy to perturb questions but also propose a novel strategy that minimally alters images to induce contradictory or spurious outputs. We further introduce a mitigation method that leverages external knowledge to alleviate these inconsistencies, thereby bolstering model robustness. Extensive evaluations on two standard benchmarks and two widely used VQA-NLE models underscore the effectiveness of our attacks and the potential of knowledge-based defenses, ultimately revealing pressing security and reliability concerns in current VQA-NLE systems.
☆ Non-Iterative Symbolic-Aided Chain-of-Thought for Logical Reasoning
This work introduces Symbolic-Aided Chain-of-Thought (CoT), an improved approach to standard CoT, for logical reasoning in large language models (LLMs). The key idea is to integrate lightweight symbolic representations into few-shot prompts, structuring the inference steps with a consistent strategy to make reasoning patterns more explicit within a non-iterative reasoning process. By incorporating these symbolic structures, our method preserves the generalizability of standard prompting techniques while enhancing the transparency, interpretability, and analyzability of LLM logical reasoning. Extensive experiments on four well-known logical reasoning benchmarks -- ProofWriter, FOLIO, ProntoQA, and LogicalDeduction, which cover diverse reasoning scenarios -- demonstrate the effectiveness of the proposed approach, particularly in complex reasoning tasks that require navigating multiple constraints or rules. Notably, Symbolic-Aided CoT consistently improves LLMs' reasoning capabilities across various model sizes and significantly outperforms conventional CoT on three out of four datasets, ProofWriter, ProntoQA, and LogicalDeduction.
☆ fCrit: A Visual Explanation System for Furniture Design Creative Support
We introduce fCrit, a dialogue-based AI system designed to critique furniture design with a focus on explainability. Grounded in reflective learning and formal analysis, fCrit employs a multi-agent architecture informed by a structured design knowledge base. We argue that explainability in the arts should not only make AI reasoning transparent but also adapt to the ways users think and talk about their designs. We demonstrate how fCrit supports this process by tailoring explanations to users' design language and cognitive framing. This work contributes to Human-Centered Explainable AI (HCXAI) in creative practice, advancing domain-specific methods for situated, dialogic, and visually grounded AI support.
comment: In Proceedings of Explainable AI for the Arts Workshop 2025 (XAIxArts 2025) arXiv:2406.14485
☆ Quantum Flow Matching
Flow matching has rapidly become a dominant paradigm in classical generative modeling, offering an efficient way to interpolate between two complex distributions. We extend this idea to the quantum realm and introduce Quantum Flow Matching (QFM)-a fully quantum-circuit realization that offers efficient interpolation between two density matrices. QFM offers systematic preparation of density matrices and generation of samples for accurately estimating observables, and can be realized on a quantum computer without the need for costly circuit redesigns. We validate its versatility on a set of applications: (i) generating target states with prescribed magnetization and entanglement entropy, (ii) estimating nonequilibrium free-energy differences to test the quantum Jarzynski equality, and (iii) expediting the study on superdiffusion breakdown. These results position QFM as a unifying and promising framework for generative modeling across quantum systems.
comment: 15 pages, 11 figures
☆ LumiMAS: A Comprehensive Framework for Real-Time Monitoring and Enhanced Observability in Multi-Agent Systems
The incorporation of large language models in multi-agent systems (MASs) has the potential to significantly improve our ability to autonomously solve complex problems. However, such systems introduce unique challenges in monitoring, interpreting, and detecting system failures. Most existing MAS observability frameworks focus on analyzing each individual agent separately, overlooking failures associated with the entire MAS. To bridge this gap, we propose LumiMAS, a novel MAS observability framework that incorporates advanced analytics and monitoring techniques. The proposed framework consists of three key components: a monitoring and logging layer, anomaly detection layer, and anomaly explanation layer. LumiMAS's first layer monitors MAS executions, creating detailed logs of the agents' activity. These logs serve as input to the anomaly detection layer, which detects anomalies across the MAS workflow in real time. Then, the anomaly explanation layer performs classification and root cause analysis (RCA) of the detected anomalies. LumiMAS was evaluated on seven different MAS applications, implemented using two popular MAS platforms, and a diverse set of possible failures. The applications include two novel failure-tailored applications that illustrate the effects of a hallucination or bias on the MAS. The evaluation results demonstrate LumiMAS's effectiveness in failure detection, classification, and RCA.
☆ Extracting Post-Acute Sequelae of SARS-CoV-2 Infection Symptoms from Clinical Notes via Hybrid Natural Language Processing
Accurately and efficiently diagnosing Post-Acute Sequelae of COVID-19 (PASC) remains challenging due to its myriad symptoms that evolve over long- and variable-time intervals. To address this issue, we developed a hybrid natural language processing pipeline that integrates rule-based named entity recognition with BERT-based assertion detection modules for PASC-symptom extraction and assertion detection from clinical notes. We developed a comprehensive PASC lexicon with clinical specialists. From 11 health systems of the RECOVER initiative network across the U.S., we curated 160 intake progress notes for model development and evaluation, and collected 47,654 progress notes for a population-level prevalence study. We achieved an average F1 score of 0.82 in one-site internal validation and 0.76 in 10-site external validation for assertion detection. Our pipeline processed each note at $2.448\pm 0.812$ seconds on average. Spearman correlation tests showed $\rho >0.83$ for positive mentions and $\rho >0.72$ for negative ones, both with $P <0.0001$. These demonstrate the effectiveness and efficiency of our models and their potential for improving PASC diagnosis.
comment: Accepted for publication in npj Health Systems
☆ Where to Start Alignment? Diffusion Large Language Model May Demand a Distinct Position
Diffusion Large Language Models (dLLMs) have recently emerged as a competitive non-autoregressive paradigm due to their unique training and inference approach. However, there is currently a lack of safety study on this novel architecture. In this paper, we present the first analysis of dLLMs' safety performance and propose a novel safety alignment method tailored to their unique generation characteristics. Specifically, we identify a critical asymmetry between the defender and attacker in terms of security. For the defender, we reveal that the middle tokens of the response, rather than the initial ones, are more critical to the overall safety of dLLM outputs; this seems to suggest that aligning middle tokens can be more beneficial to the defender. The attacker, on the contrary, may have limited power to manipulate middle tokens, as we find dLLMs have a strong tendency towards a sequential generation order in practice, forcing the attack to meet this distribution and diverting it from influencing the critical middle tokens. Building on this asymmetry, we introduce Middle-tOken Safety Alignment (MOSA), a novel method that directly aligns the model's middle generation with safe refusals exploiting reinforcement learning. We implement MOSA and compare its security performance against eight attack methods on two benchmarks. We also test the utility of MOSA-aligned dLLM on coding, math, and general reasoning. The results strongly prove the superiority of MOSA.
☆ IPGPhormer: Interpretable Pathology Graph-Transformer for Survival Analysis
Pathological images play an essential role in cancer prognosis, while survival analysis, which integrates computational techniques, can predict critical clinical events such as patient mortality or disease recurrence from whole-slide images (WSIs). Recent advancements in multiple instance learning have significantly improved the efficiency of survival analysis. However, existing methods often struggle to balance the modeling of long-range spatial relationships with local contextual dependencies and typically lack inherent interpretability, limiting their clinical utility. To address these challenges, we propose the Interpretable Pathology Graph-Transformer (IPGPhormer), a novel framework that captures the characteristics of the tumor microenvironment and models their spatial dependencies across the tissue. IPGPhormer uniquely provides interpretability at both tissue and cellular levels without requiring post-hoc manual annotations, enabling detailed analyses of individual WSIs and cross-cohort assessments. Comprehensive evaluations on four public benchmark datasets demonstrate that IPGPhormer outperforms state-of-the-art methods in both predictive accuracy and interpretability. In summary, our method, IPGPhormer, offers a promising tool for cancer prognosis assessment, paving the way for more reliable and interpretable decision-support systems in pathology. The code is publicly available at https://anonymous.4open.science/r/IPGPhormer-6EEB.
comment: 13 pages, 5 figures
GraphCogent: Overcoming LLMs' Working Memory Constraints via Multi-Agent Collaboration in Complex Graph Understanding
Large language models (LLMs) show promising performance on small-scale graph reasoning tasks but fail when handling real-world graphs with complex queries. This phenomenon stems from LLMs' inability to effectively process complex graph topology and perform multi-step reasoning simultaneously. To address these limitations, we propose GraphCogent, a collaborative agent framework inspired by human Working Memory Model that decomposes graph reasoning into specialized cognitive processes: sense, buffer, and execute. The framework consists of three modules: Sensory Module standardizes diverse graph text representations via subgraph sampling, Buffer Module integrates and indexes graph data across multiple formats, and Execution Module combines tool calling and model generation for efficient reasoning. We also introduce Graph4real, a comprehensive benchmark contains with four domains of real-world graphs (Web, Social, Transportation, and Citation) to evaluate LLMs' graph reasoning capabilities. Our Graph4real covers 21 different graph reasoning tasks, categorized into three types (Structural Querying, Algorithmic Reasoning, and Predictive Modeling tasks), with graph scales that are 10 times larger than existing benchmarks. Experiments show that Llama3.1-8B based GraphCogent achieves a 50% improvement over massive-scale LLMs like DeepSeek-R1 (671B). Compared to state-of-the-art agent-based baseline, our framework outperforms by 20% in accuracy while reducing token usage by 80% for in-toolset tasks and 30% for out-toolset tasks. Code will be available after review.
☆ Hierarchical knowledge guided fault intensity diagnosis of complex industrial systems
Fault intensity diagnosis (FID) plays a pivotal role in monitoring and maintaining mechanical devices within complex industrial systems. As current FID methods are based on chain of thought without considering dependencies among target classes. To capture and explore dependencies, we propose a hierarchical knowledge guided fault intensity diagnosis framework (HKG) inspired by the tree of thought, which is amenable to any representation learning methods. The HKG uses graph convolutional networks to map the hierarchical topological graph of class representations into a set of interdependent global hierarchical classifiers, where each node is denoted by word embeddings of a class. These global hierarchical classifiers are applied to learned deep features extracted by representation learning, allowing the entire model to be end-to-end learnable. In addition, we develop a re-weighted hierarchical knowledge correlation matrix (Re-HKCM) scheme by embedding inter-class hierarchical knowledge into a data-driven statistical correlation matrix (SCM) which effectively guides the information sharing of nodes in graphical convolutional neural networks and avoids over-smoothing issues. The Re-HKCM is derived from the SCM through a series of mathematical transformations. Extensive experiments are performed on four real-world datasets from different industrial domains (three cavitation datasets from SAMSON AG and one existing publicly) for FID, all showing superior results and outperform recent state-of-the-art FID methods.
comment: 12 pages
☆ Navigating the Exploration-Exploitation Tradeoff in Inference-Time Scaling of Diffusion Models
Inference-time scaling has achieved remarkable success in language models, yet its adaptation to diffusion models remains underexplored. We observe that the efficacy of recent Sequential Monte Carlo (SMC)-based methods largely stems from globally fitting the The reward-tilted distribution, which inherently preserves diversity during multi-modal search. However, current applications of SMC to diffusion models face a fundamental dilemma: early-stage noise samples offer high potential for improvement but are difficult to evaluate accurately, whereas late-stage samples can be reliably assessed but are largely irreversible. To address this exploration-exploitation trade-off, we approach the problem from the perspective of the search algorithm and propose two strategies: Funnel Schedule and Adaptive Temperature. These simple yet effective methods are tailored to the unique generation dynamics and phase-transition behavior of diffusion models. By progressively reducing the number of maintained particles and down-weighting the influence of early-stage rewards, our methods significantly enhance sample quality without increasing the total number of Noise Function Evaluations. Experimental results on multiple benchmarks and state-of-the-art text-to-image diffusion models demonstrate that our approach outperforms previous baselines.
☆ Uncovering Systematic Failures of LLMs in Verifying Code Against Natural Language Specifications
Large language models (LLMs) have become essential tools in software development, widely used for requirements engineering, code generation and review tasks. Software engineers often rely on LLMs to assess whether system code implementation satisfy task requirements, thereby enhancing code robustness and accuracy. However, it remains unclear whether LLMs can reliably determine whether the code complies fully with the given task descriptions, which is usually natural language specifications. In this paper, we uncover a systematic failure of LLMs in evaluating whether code aligns with natural language requirements. Specifically, with widely used benchmarks, we employ unified prompts to judge code correctness. Our results reveal that LLMs frequently misclassify correct code implementations as either ``not satisfying requirements'' or containing potential defects. Surprisingly, more complex prompting, especially when leveraging prompt engineering techniques involving explanations and proposed corrections, leads to higher misjudgment rate, which highlights the critical reliability issues in using LLMs as code review assistants. We further analyze the root causes of these misjudgments, and propose two improved prompting strategies for mitigation. For the first time, our findings reveals unrecognized limitations in LLMs to match code with requirements. We also offer novel insights and practical guidance for effective use of LLMs in automated code review and task-oriented agent scenarios.
comment: Accepted to the NIER track of the 40th IEEE/ACM International Conference on Automated Software Engineering (ASE 2025)
☆ Synthetic Data is Sufficient for Zero-Shot Visual Generalization from Offline Data
Offline reinforcement learning (RL) offers a promising framework for training agents using pre-collected datasets without the need for further environment interaction. However, policies trained on offline data often struggle to generalise due to limited exposure to diverse states. The complexity of visual data introduces additional challenges such as noise, distractions, and spurious correlations, which can misguide the policy and increase the risk of overfitting if the training data is not sufficiently diverse. Indeed, this makes it challenging to leverage vision-based offline data in training robust agents that can generalize to unseen environments. To solve this problem, we propose a simple approach generating additional synthetic training data. We propose a two-step process, first augmenting the originally collected offline data to improve zero-shot generalization by introducing diversity, then using a diffusion model to generate additional data in latent space. We test our method across both continuous action spaces (Visual D4RL) and discrete action spaces (Procgen), demonstrating that it significantly improves generalization without requiring any algorithmic changes to existing model-free offline RL methods. We show that our method not only increases the diversity of the training data but also significantly reduces the generalization gap at test time while maintaining computational efficiency. We believe this approach could fuel additional progress in generating synthetic data to train more general agents in the future.
☆ A Large-Scale Web Search Dataset for Federated Online Learning to Rank CIKM 2025
The centralized collection of search interaction logs for training ranking models raises significant privacy concerns. Federated Online Learning to Rank (FOLTR) offers a privacy-preserving alternative by enabling collaborative model training without sharing raw user data. However, benchmarks in FOLTR are largely based on random partitioning of classical learning-to-rank datasets, simulated user clicks, and the assumption of synchronous client participation. This oversimplifies real-world dynamics and undermines the realism of experimental results. We present AOL4FOLTR, a large-scale web search dataset with 2.6 million queries from 10,000 users. Our dataset addresses key limitations of existing benchmarks by including user identifiers, real click data, and query timestamps, enabling realistic user partitioning, behavior modeling, and asynchronous federated learning scenarios.
comment: Accepted at CIKM 2025
☆ Semantic Discrepancy-aware Detector for Image Forgery Identification
With the rapid advancement of image generation techniques, robust forgery detection has become increasingly imperative to ensure the trustworthiness of digital media. Recent research indicates that the learned semantic concepts of pre-trained models are critical for identifying fake images. However, the misalignment between the forgery and semantic concept spaces hinders the model's forgery detection performance. To address this problem, we propose a novel Semantic Discrepancy-aware Detector (SDD) that leverages reconstruction learning to align the two spaces at a fine-grained visual level. By exploiting the conceptual knowledge embedded in the pre-trained vision language model, we specifically design a semantic token sampling module to mitigate the space shifts caused by features irrelevant to both forgery traces and semantic concepts. A concept-level forgery discrepancy learning module, built upon a visual reconstruction paradigm, is proposed to strengthen the interaction between visual semantic concepts and forgery traces, effectively capturing discrepancies under the concepts' guidance. Finally, the low-level forgery feature enhancemer integrates the learned concept level forgery discrepancies to minimize redundant forgery information. Experiments conducted on two standard image forgery datasets demonstrate the efficacy of the proposed SDD, which achieves superior results compared to existing methods. The code is available at https://github.com/wzy1111111/SSD.
comment: 10 pages, 5 figures
☆ Wisdom of the Crowd: Reinforcement Learning from Coevolutionary Collective Feedback
Reinforcement learning (RL) has significantly enhanced the reasoning capabilities of large language models (LLMs), but its reliance on expensive human-labeled data or complex reward models severely limits scalability. While existing self-feedback methods aim to address this problem, they are constrained by the capabilities of a single model, which can lead to overconfidence in incorrect answers, reward hacking, and even training collapse. To this end, we propose Reinforcement Learning from Coevolutionary Collective Feedback (RLCCF), a novel RL framework that enables multi-model collaborative evolution without external supervision. Specifically, RLCCF optimizes the ability of a model collective by maximizing its Collective Consistency (CC), which jointly trains a diverse ensemble of LLMs and provides reward signals by voting on collective outputs. Moreover, each model's vote is weighted by its Self-Consistency (SC) score, ensuring that more confident models contribute more to the collective decision. Benefiting from the diverse output distributions and complementary abilities of multiple LLMs, RLCCF enables the model collective to continuously enhance its reasoning ability through coevolution. Experiments on four mainstream open-source LLMs across four mathematical reasoning benchmarks demonstrate that our framework yields significant performance gains, achieving an average relative improvement of 16.72\% in accuracy. Notably, RLCCF not only improves the performance of individual models but also enhances the group's majority-voting accuracy by 4.51\%, demonstrating its ability to extend the collective capability boundary of the model collective.
☆ Synchronization Dynamics of Heterogeneous, Collaborative Multi-Agent AI Systems
We present a novel interdisciplinary framework that bridges synchronization theory and multi-agent AI systems by adapting the Kuramoto model to describe the collective dynamics of heterogeneous AI agents engaged in complex task execution. By representing AI agents as coupled oscillators with both phase and amplitude dynamics, our model captures essential aspects of agent specialization, influence, and communication within networked systems. We introduce an order parameter to quantify the degree of coordination and synchronization, providing insights into how coupling strength, agent diversity, and network topology impact emergent collective behavior. Furthermore, we formalize a detailed correspondence between Chain-of-Thought prompting in AI reasoning and synchronization phenomena, unifying human-like iterative problem solving with emergent group intelligence. Through extensive simulations on all-to-all and deterministic scale-free networks, we demonstrate that increased coupling promotes robust synchronization despite heterogeneous agent capabilities, reflecting realistic collaborative AI scenarios. Our physics-informed approach establishes a rigorous mathematical foundation for designing, analyzing, and optimizing scalable, adaptive, and interpretable multi-agent AI systems. This work opens pathways for principled orchestration of agentic AI and lays the groundwork for future incorporation of learning dynamics and adaptive network architectures to further enhance system resilience and efficiency.
comment: 9 pages, 6 figures
☆ Mutually Assured Deregulation
We have convinced ourselves that the way to make AI safe is to make it unsafe. Since 2022, policymakers worldwide have embraced the Regulation Sacrifice - the belief that dismantling safety oversight will deliver security through AI dominance. Fearing China or USA will gain advantage, nations rush to eliminate safeguards that might slow progress. This Essay reveals the fatal flaw: though AI poses national security challenges, the solution demands stronger regulatory frameworks, not weaker ones. A race without guardrails breeds shared danger, not competitive strength. The Regulation Sacrifice makes three false promises. First, it promises durable technological leads. But AI capabilities spread rapidly - performance gaps between U.S. and Chinese systems collapsed from 9 percent to 2 percent in thirteen months. When advantages evaporate in months, sacrificing permanent safety for temporary speed makes no sense. Second, it promises deregulation accelerates innovation. The opposite often proves true. Companies report well-designed governance streamlines development. Investment flows toward regulated markets. Clear rules reduce uncertainty; uncertain liability creates paralysis. Environmental standards did not kill the auto industry; they created Tesla and BYD. Third, enhanced national security through deregulation actually undermines security across all timeframes. Near term: it hands adversaries information warfare tools. Medium term: it democratizes bioweapon capabilities. Long term: it guarantees deployment of uncontrollable AGI systems. The Regulation Sacrifice persists because it serves powerful interests, not security. Tech companies prefer freedom to accountability. Politicians prefer simple stories to complex truths. This creates mutually assured deregulation, where each nation's sprint for advantage guarantees collective vulnerability. The only way to win is not to play.
☆ HuBERT-VIC: Improving Noise-Robust Automatic Speech Recognition of Speech Foundation Model via Variance-Invariance-Covariance Regularization
Noise robustness in speech foundation models (SFMs) has been a critical challenge, as most models are primarily trained on clean data and experience performance degradation when the models are exposed to noisy speech. To address this issue, we propose HuBERT-VIC, a noise-robust SFM with variance, in-variance, and covariance regularization (VICReg) objectives. These objectives adjust the statistics of noisy speech representations, enabling the model to capture diverse acoustic characteristics and improving the generalization ability across different types of noise. When applied to HuBERT, our model shows relative performance improvements of 23.3% on LibriSpeech test-clean and 13.2% on test-other, compared to the baseline model pre-trained on noisy speech.
comment: Accepted at Interspeech 2025
☆ RadarQA: Multi-modal Quality Analysis of Weather Radar Forecasts
Quality analysis of weather forecasts is an essential topic in meteorology. Although traditional score-based evaluation metrics can quantify certain forecast errors, they are still far from meteorological experts in terms of descriptive capability, interpretability, and understanding of dynamic evolution. With the rapid development of Multi-modal Large Language Models (MLLMs), these models become potential tools to overcome the above challenges. In this work, we introduce an MLLM-based weather forecast analysis method, RadarQA, integrating key physical attributes with detailed assessment reports. We introduce a novel and comprehensive task paradigm for multi-modal quality analysis, encompassing both single frame and sequence, under both rating and assessment scenarios. To support training and benchmarking, we design a hybrid annotation pipeline that combines human expert labeling with automated heuristics. With such an annotation method, we construct RQA-70K, a large-scale dataset with varying difficulty levels for radar forecast quality evaluation. We further design a multi-stage training strategy that iteratively improves model performance at each stage. Extensive experiments show that RadarQA outperforms existing general MLLMs across all evaluation settings, highlighting its potential for advancing quality analysis in weather prediction.
☆ "My productivity is boosted, but ..." Demystifying Users' Perception on AI Coding Assistants
This paper aims to explore fundamental questions in the era when AI coding assistants like GitHub Copilot are widely adopted: what do developers truly value and criticize in AI coding assistants, and what does this reveal about their needs and expectations in real-world software development? Unlike previous studies that conduct observational research in controlled and simulated environments, we analyze extensive, first-hand user reviews of AI coding assistants, which capture developers' authentic perspectives and experiences drawn directly from their actual day-to-day work contexts. We identify 1,085 AI coding assistants from the Visual Studio Code Marketplace. Although they only account for 1.64% of all extensions, we observe a surge in these assistants: over 90% of them are released within the past two years. We then manually analyze the user reviews sampled from 32 AI coding assistants that have sufficient installations and reviews to construct a comprehensive taxonomy of user concerns and feedback about these assistants. We manually annotate each review's attitude when mentioning certain aspects of coding assistants, yielding nuanced insights into user satisfaction and dissatisfaction regarding specific features, concerns, and overall tool performance. Built on top of the findings-including how users demand not just intelligent suggestions but also context-aware, customizable, and resource-efficient interactions-we propose five practical implications and suggestions to guide the enhancement of AI coding assistants that satisfy user needs.
comment: 13 pages, Camera-Ready Version that will appear in ASE 2025
☆ TSLA: A Task-Specific Learning Adaptation for Semantic Segmentation on Autonomous Vehicles Platform
Autonomous driving platforms encounter diverse driving scenarios, each with varying hardware resources and precision requirements. Given the computational limitations of embedded devices, it is crucial to consider computing costs when deploying on target platforms like the NVIDIA\textsuperscript{\textregistered} DRIVE PX 2. Our objective is to customize the semantic segmentation network according to the computing power and specific scenarios of autonomous driving hardware. We implement dynamic adaptability through a three-tier control mechanism -- width multiplier, classifier depth, and classifier kernel -- allowing fine-grained control over model components based on hardware constraints and task requirements. This adaptability facilitates broad model scaling, targeted refinement of the final layers, and scenario-specific optimization of kernel sizes, leading to improved resource allocation and performance. Additionally, we leverage Bayesian Optimization with surrogate modeling to efficiently explore hyperparameter spaces under tight computational budgets. Our approach addresses scenario-specific and task-specific requirements through automatic parameter search, accommodating the unique computational complexity and accuracy needs of autonomous driving. It scales its Multiply-Accumulate Operations (MACs) for Task-Specific Learning Adaptation (TSLA), resulting in alternative configurations tailored to diverse self-driving tasks. These TSLA customizations maximize computational capacity and model accuracy, optimizing hardware utilization.
☆ CRoC: Context Refactoring Contrast for Graph Anomaly Detection with Limited Supervision
Graph Neural Networks (GNNs) are widely used as the engine for various graph-related tasks, with their effectiveness in analyzing graph-structured data. However, training robust GNNs often demands abundant labeled data, which is a critical bottleneck in real-world applications. This limitation severely impedes progress in Graph Anomaly Detection (GAD), where anomalies are inherently rare, costly to label, and may actively camouflage their patterns to evade detection. To address these problems, we propose Context Refactoring Contrast (CRoC), a simple yet effective framework that trains GNNs for GAD by jointly leveraging limited labeled and abundant unlabeled data. Different from previous works, CRoC exploits the class imbalance inherent in GAD to refactor the context of each node, which builds augmented graphs by recomposing the attributes of nodes while preserving their interaction patterns. Furthermore, CRoC encodes heterogeneous relations separately and integrates them into the message-passing process, enhancing the model's capacity to capture complex interaction semantics. These operations preserve node semantics while encouraging robustness to adversarial camouflage, enabling GNNs to uncover intricate anomalous cases. In the training stage, CRoC is further integrated with the contrastive learning paradigm. This allows GNNs to effectively harness unlabeled data during joint training, producing richer, more discriminative node embeddings. CRoC is evaluated on seven real-world GAD datasets with varying scales. Extensive experiments demonstrate that CRoC achieves up to 14% AUC improvement over baseline GNNs and outperforms state-of-the-art GAD methods under limited-label settings.
comment: Accepted by ECAI 2025
☆ The Self-Execution Benchmark: Measuring LLMs' Attempts to Overcome Their Lack of Self-Execution
Large language models (LLMs) are commonly evaluated on tasks that test their knowledge or reasoning abilities. In this paper, we explore a different type of evaluation: whether an LLM can predict aspects of its own responses. Since LLMs lack the ability to execute themselves, we introduce the Self-Execution Benchmark, which measures a model's ability to anticipate properties of its output, such as whether a question will be difficult for it, whether it will refuse to answer, or what kinds of associations it is likely to produce. Our experiments show that models generally perform poorly on this benchmark, and that increased model size or capability does not consistently lead to better performance. These results suggest a fundamental limitation in how LLMs represent and reason about their own behavior.
comment: 11 pages, 9 figures
☆ Region-Level Context-Aware Multimodal Understanding
Despite significant progress, existing research on Multimodal Large Language Models (MLLMs) mainly focuses on general visual understanding, overlooking the ability to integrate textual context associated with objects for a more context-aware multimodal understanding -- an ability we refer to as Region-level Context-aware Multimodal Understanding (RCMU). To address this limitation, we first formulate the RCMU task, which requires models to respond to user instructions by integrating both image content and textual information of regions or objects. To equip MLLMs with RCMU capabilities, we propose Region-level Context-aware Visual Instruction Tuning (RCVIT), which incorporates object information into the model input and enables the model to utilize bounding box coordinates to effectively associate objects' visual content with their textual information. To address the lack of datasets, we introduce the RCMU dataset, a large-scale visual instruction tuning dataset that covers multiple RCMU tasks. We also propose RC\&P-Bench, a comprehensive benchmark that can evaluate the performance of MLLMs in RCMU and multimodal personalized understanding tasks. Additionally, we propose a reference-free evaluation metric to perform a comprehensive and fine-grained evaluation of the region-level context-aware image descriptions. By performing RCVIT on Qwen2-VL models with the RCMU dataset, we developed RC-Qwen2-VL models. Experimental results indicate that RC-Qwen2-VL models not only achieve outstanding performance on multiple RCMU tasks but also demonstrate successful applications in multimodal RAG and personalized conversation. Our data, model and benchmark are available at https://github.com/hongliang-wei/RC-MLLM
comment: 12 pages, 6 figures
☆ Mantis: A Simulation-Grounded Foundation Model for Disease Forecasting
Infectious disease forecasting in novel outbreaks or low resource settings has been limited by the need for disease-specific data, bespoke training, and expert tuning. We introduce Mantis, a foundation model trained entirely on mechanistic simulations, which enables out-of-the-box forecasting across diseases, regions, and outcomes, even in settings with limited historical data. Mantis is built on over 400 million simulated days of outbreak dynamics spanning diverse pathogens, transmission modes, interventions, and surveillance artifacts. Despite requiring no real-world data during training, Mantis outperformed 39 expert-tuned models we tested across six diseases, including all models in the CDC's COVID-19 Forecast Hub. Mantis generalized to novel epidemiological regimes, including diseases with held-out transmission mechanisms, demonstrating that it captures fundamental contagion dynamics. Critically, Mantis is mechanistically interpretable, enabling public health decision-makers to identify the latent drivers behind its predictions. Finally, Mantis delivers accurate forecasts at 8-week horizons, more than doubling the actionable range of most models, enabling proactive public health planning. Together, these capabilities position Mantis as a foundation for next-generation disease forecasting systems: general, interpretable, and deployable where traditional models fail.
comment: 10 pages, 4 figures
☆ Interpreting Time Series Forecasts with LIME and SHAP: A Case Study on the Air Passengers Dataset
Time-series forecasting underpins critical decisions across aviation, energy, retail and health. Classical autoregressive integrated moving average (ARIMA) models offer interpretability via coefficients but struggle with nonlinearities, whereas tree-based machine-learning models such as XGBoost deliver high accuracy but are often opaque. This paper presents a unified framework for interpreting time-series forecasts using local interpretable model-agnostic explanations (LIME) and SHapley additive exPlanations (SHAP). We convert a univariate series into a leakage-free supervised learning problem, train a gradient-boosted tree alongside an ARIMA baseline and apply post-hoc explainability. Using the Air Passengers dataset as a case study, we show that a small set of lagged features -- particularly the twelve-month lag -- and seasonal encodings explain most forecast variance. We contribute: (i) a methodology for applying LIME and SHAP to time series without violating chronology; (ii) theoretical exposition of the underlying algorithms; (iii) empirical evaluation with extensive analysis; and (iv) guidelines for practitioners.
☆ STM3: Mixture of Multiscale Mamba for Long-Term Spatio-Temporal Time-Series Prediction
Recently, spatio-temporal time-series prediction has developed rapidly, yet existing deep learning methods struggle with learning complex long-term spatio-temporal dependencies efficiently. The long-term spatio-temporal dependency learning brings two new challenges: 1) The long-term temporal sequence includes multiscale information naturally which is hard to extract efficiently; 2) The multiscale temporal information from different nodes is highly correlated and hard to model. To address these challenges, we propose an efficient \textit{\textbf{S}patio-\textbf{T}emporal \textbf{M}ultiscale \textbf{M}amba} (STM2) that includes a multiscale Mamba architecture to capture the multiscale information efficiently and simultaneously, and an adaptive graph causal convolution network to learn the complex multiscale spatio-temporal dependency. STM2 includes hierarchical information aggregation for different-scale information that guarantees their distinguishability. To capture diverse temporal dynamics across all spatial nodes more efficiently, we further propose an enhanced version termed \textit{\textbf{S}patio-\textbf{T}emporal \textbf{M}ixture of \textbf{M}ultiscale \textbf{M}amba} (STM3) that employs a special Mixture-of-Experts architecture, including a more stable routing strategy and a causal contrastive learning strategy to enhance the scale distinguishability. We prove that STM3 has much better routing smoothness and guarantees the pattern disentanglement for each expert successfully. Extensive experiments on real-world benchmarks demonstrate STM2/STM3's superior performance, achieving state-of-the-art results in long-term spatio-temporal time-series prediction.
☆ LinkAnchor: An Autonomous LLM-Based Agent for Issue-to-Commit Link Recovery
Issue-to-commit link recovery plays an important role in software traceability and improves project management. However, it remains a challenging task. A study on GitHub shows that only 42.2% of the issues are correctly linked to their commits. This highlights the potential for further development and research in this area. Existing studies have employed various AI/ML-based approaches, and with the recent development of large language models, researchers have leveraged LLMs to tackle this problem. These approaches suffer from two main issues. First, LLMs are constrained by limited context windows and cannot ingest all of the available data sources, such as long commit histories, extensive issue comments, and large code repositories. Second, most methods operate on individual issue-commit pairs; that is, given a single issue-commit pair, they determine whether the commit resolves the issue. This quickly becomes impractical in real-world repositories containing tens of thousands of commits. To address these limitations, we present LinkAnchor, the first autonomous LLM-based agent designed for issue-to-commit link recovery. The lazy-access architecture of LinkAnchor enables the underlying LLM to access the rich context of software, spanning commits, issue comments, and code files, without exceeding the token limit by dynamically retrieving only the most relevant contextual data. Additionally, LinkAnchor is able to automatically pinpoint the target commit rather than exhaustively scoring every possible candidate. Our evaluations show that LinkAnchor outperforms state-of-the-art issue-to-commit link recovery approaches by 60-262% in Hit@1 score across all our case study projects. We also publicly release LinkAnchor as a ready-to-use tool, along with our replication package. LinkAnchor is designed and tested for GitHub and Jira, and is easily extendable to other platforms.
☆ Distribution Matching via Generalized Consistency Models
Recent advancement in generative models have demonstrated remarkable performance across various data modalities. Beyond their typical use in data synthesis, these models play a crucial role in distribution matching tasks such as latent variable modeling, domain translation, and domain adaptation. Generative Adversarial Networks (GANs) have emerged as the preferred method of distribution matching due to their efficacy in handling high-dimensional data and their flexibility in accommodating various constraints. However, GANs often encounter challenge in training due to their bi-level min-max optimization objective and susceptibility to mode collapse. In this work, we propose a novel approach for distribution matching inspired by the consistency models employed in Continuous Normalizing Flow (CNF). Our model inherits the advantages of CNF models, such as having a straight forward norm minimization objective, while remaining adaptable to different constraints similar to GANs. We provide theoretical validation of our proposed objective and demonstrate its performance through experiments on synthetic and real-world datasets.
☆ Unlearning at Scale: Implementing the Right to be Forgotten in Large Language Models
We study the right to be forgotten (GDPR Art. 17) for large language models and frame unlearning as a reproducible systems problem. Our approach treats training as a deterministic program and logs a minimal per-microbatch record (ordered ID hash, RNG seed, learning-rate value, optimizer-step counter, and accumulation boundary). Under a pinned stack and deterministic kernels, replaying the training tail while filtering only the forget closure yields the same parameters as training on the retain set (bit-identical in the training dtype) when preconditions hold. To meet latency and availability constraints, we add complementary paths: (i) exact reverts of recent steps via micro-checkpoints or dense per-step deltas, (ii) cohort-scoped adapter deletion when the base is frozen, and (iii) a curvature-guided anti-update followed by a short retain-tune, audit-gated with escalation to exact replay. We report storage/latency budgets and a toy artifact validating mechanics; in a controlled run that satisfies the preconditions we demonstrate byte-identical equality of model and optimizer states.
comment: Preprint; 2 figures + several tables; includes appendix. Artifact/code link in paper
☆ Towards Generalizable Human Activity Recognition: A Survey
As a critical component of Wearable AI, IMU-based Human Activity Recognition (HAR) has attracted increasing attention from both academia and industry in recent years. Although HAR performance has improved considerably in specific scenarios, its generalization capability remains a key barrier to widespread real-world adoption. For example, domain shifts caused by variations in users, sensor positions, or environments can significantly decrease the performance in practice. As a result, in this survey, we explore the rapidly evolving field of IMU-based generalizable HAR, reviewing 229 research papers alongside 25 publicly available datasets to provide a broad and insightful overview. We first present the background and overall framework of IMU-based HAR tasks, as well as the generalization-oriented training settings. Then, we categorize representative methodologies from two perspectives: (i) model-centric approaches, including pre-training method, end-to-end method, and large language model (LLM)-based learning method; and (ii) data-centric approaches, including multi-modal learning and data augmentation techniques. In addition, we summarize widely used datasets in this field, as well as relevant tools and benchmarks. Building on these methodological advances, the broad applicability of IMU-based HAR is also reviewed and discussed. Finally, we discuss persistent challenges (e.g., data scarcity, efficient training, and reliable evaluation) and also outline future directions for HAR, including the adoption of foundation and large language models, physics-informed and context-aware reasoning, generative modeling, and resource-efficient training and inference. The complete list of this survey is available at https://github.com/rh20624/Awesome-IMU-Sensing, which will be updated continuously.
☆ ProtTeX-CC: Activating In-Context Learning in Protein LLM via Two-Stage Instruction Compression
Recent advances in protein large language models, such as ProtTeX, represent both side-chain amino acids and backbone structure as discrete token sequences of residue length. While this design enables unified modeling of multimodal protein information, it suffers from two major limitations: (1) The concatenation of sequence and structure tokens approximately doubles the protein length and breaks the intrinsic residue-level alignment between modalities. (2) Constrained by the training corpus and limited context window, ProtTeX is typically trained on single-protein inputs, rendering it incompatible with in-context learning (ICL) and thus limiting its generalization capability. To address these issues, we propose ProtTeX-CC, a lightweight two-stage compression framework designed to enhance ProtTeX under few-shot settings. We first design a joint embedding compression mechanism that fuses sequence and structure representations at the residue level, effectively reducing the protein input length by half without sacrificing performance. Then we propose a self-compression module that aggregates each full demonstration into the latent space of the last few linguistic tokens, reducing the average demonstration length from 751 tokens to less than 16 tokens. Compared to the original ProtTeX, our self-compression approach achieves a compression ratio of approximately 93.68% in the total prompt length under the 16-shot setting. Without modifying the backbone model, ProtTeX-CC introduces only a small number of additional parameters through PEFT-based tuning in the joint embedding compression stage and a single trainable projection layer in the self-compression stage. Extensive experiments on protein function prediction show that ProtTeX-CC improves performance on the in-domain benchmark by 2%, and generalizes well to the out-of-domain dataset with a performance gain of 11%.
☆ Improving Pre-Trained Vision-Language-Action Policies with Model-Based Search
Pre-trained vision-language-action (VLA) models offer a promising foundation for generalist robot policies, but often produce brittle behaviours or unsafe failures when deployed zero-shot in out-of-distribution scenarios. We present Vision-Language-Action Planning & Search (VLAPS) -- a novel framework and accompanying algorithms that embed model-based search into the inference procedure of pre-trained VLA policies to improve their performance on robotic tasks. Specifically, our method biases a modified Monte Carlo Tree Search (MCTS) algorithm -- run using a model of the target environment -- using action priors defined by the VLA policy. By using VLA-derived abstractions and priors in model-based search, VLAPS efficiently explores language-conditioned robotics tasks whose search spaces would otherwise be intractably large. Conversely, by integrating model-based search with the VLA policy's inference procedure, VLAPS yields behaviours that are more performant than those obtained by directly following the VLA policy's action predictions. VLAPS offers a principled framework to: i) control test-time compute in VLA models, ii) leverage a priori knowledge of the robotic environment, and iii) integrate established planning and reinforcement learning techniques into the VLA inference process. Across all experiments, VLAPS significantly outperforms VLA-only baselines on language-specified tasks that would otherwise be intractable for uninformed search algorithms, increasing success rates by as much as 67 percentage points.
☆ Exploring Multimodal AI Reasoning for Meteorological Forecasting from Skew-T Diagrams
Forecasting from atmospheric soundings is a fundamental task in operational meteorology, often requiring structured visual reasoning over Skew-T log-P diagrams by human forecasters. While recent advances in Vision-Language Models (VLMs) have shown promise in other scientific domains, their application to meteorological diagram interpretation remains largely unexplored. In this study, we present a lightweight AI assistant that interprets Skew-T diagrams using a small language model (LM) and a small VLM fine-tuned to emulate human forecasters. Using a curriculum learning framework, we first train the models to identify key atmospheric features from diagrams through visual question answering, followed by chain-of-thought reasoning tasks that estimate precipitation probability based on the derived visual groundings. Model inputs include either textual summaries or generated Skew-T diagrams derived from operational Numerical Weather Prediction (NWP) forecasts, paired with three-hour precipitation observations from South Korea's Auto Weather Stations network. Evaluation results demonstrate that the fine-tuned VLM achieves skill comparable to an operational NWP model, despite relying solely on static atmospheric profiles. Ablation studies reveal that visual grounding and reasoning supervision are critical for performance, while attention map analysis confirms that the model learns to focus on relevant meteorological features. These findings highlight the potential of compact, interpretable multimodal models to support weather forecasting tasks. The approach offers a computationally efficient alternative to large-scale systems, and future work could extend it to more complex applications.
comment: 24 pages, 3 figures, 9 tables
☆ Self-Guided Action Diffusion
Recent works have shown the promise of inference-time search over action samples for improving generative robot policies. In particular, optimizing cross-chunk coherence via bidirectional decoding has proven effective in boosting the consistency and reactivity of diffusion policies. However, this approach remains computationally expensive as the diversity of sampled actions grows. In this paper, we introduce self-guided action diffusion, a more efficient variant of bidirectional decoding tailored for diffusion-based policies. At the core of our method is to guide the proposal distribution at each diffusion step based on the prior decision. Experiments in simulation tasks show that the proposed self-guidance enables near-optimal performance at negligible inference cost. Notably, under a tight sampling budget, our method achieves up to 70% higher success rates than existing counterparts on challenging dynamic tasks. See project website at https://rhea-mal.github.io/selfgad.github.io.
♻ ☆ Improving LLM Agents with Reinforcement Learning on Cryptographic CTF Challenges
We present 'Random-Crypto', a procedurally generated cryptographic Capture The Flag (CTF) dataset designed to unlock the potential of Reinforcement Learning (RL) for LLM-based agents in security-sensitive domains. Cryptographic reasoning offers an ideal RL testbed: it combines precise validation, structured multi-step inference, and reliance on reliable computational tool use. Leveraging these properties, we fine-tune a Python tool-augmented Llama-3.1-8B via Group Relative Policy Optimization (GRPO) in a secure execution environment. The resulting agent achieves a significant improvement in Pass@8 on previously unseen challenges. Moreover, the improvements generalize to two external benchmarks: 'picoCTF', spanning both crypto and non-crypto tasks, and 'AICrypto MCQ', a multiple-choice benchmark of 135 cryptography questions. Ablation studies attribute the gains to enhanced tool usage and procedural reasoning. These findings position 'Random-Crypto' as a rich training ground for building intelligent, adaptable LLM agents capable of handling complex cybersecurity tasks.
comment: 13 pages, 2 figures
♻ ☆ Advanced Gesture Recognition for Autism Spectrum Disorder Detection: Integrating YOLOv7, Video Augmentation, and VideoMAE for Naturalistic Video Analysis
Deep learning and contactless sensing technologies have significantly advanced the automated assessment of human behaviors in healthcare. In the context of autism spectrum disorder (ASD), repetitive motor behaviors such as spinning, head banging, and arm flapping are key indicators for diagnosis. This study focuses on distinguishing between children with ASD and typically developed (TD) peers by analyzing videos captured in natural, uncontrolled environments. Using the publicly available Self-Stimulatory Behavior Dataset (SSBD), we address the classification task as a binary problem, ASD vs. TD, based on stereotypical repetitive gestures. We adopt a pipeline integrating YOLOv7-based detection, extensive video augmentations, and the VideoMAE framework, which efficiently captures both spatial and temporal features through a high-ratio masking and reconstruction strategy. Our proposed approach achieves 95% accuracy, 0.93 precision, 0.94 recall, and 0.94 F1 score, surpassing the previous state-of-the-art by a significant margin. These results demonstrate the effectiveness of combining advanced object detection, robust data augmentation, and masked autoencoder-based video modeling for reliable ASD vs. TD classification in naturalistic settings.
comment: Change Note for Version 3 - Extended Study (ASD vs TD Classification) This version extends v2 from 3-class gesture recognition to binary ASD vs TD detection, using expanded SSBD variants, a new TD class, improved preprocessing, and updated metrics (95% acc, 0.93 prec, 0.94 rec, 0.94 F1). Methodology remains YOLOv7 + VideoMAE + augmentation
♻ ☆ Dimensionality reduction for homological stability and global structure preservation
We propose a new dimensionality reduction toolkit designed to address some of the challenges faced by traditional methods like UMAP and tSNE such as loss of global structure and computational efficiency. Built on the JAX framework, DiRe leverages modern hardware acceleration to provide an efficient, scalable, and interpretable solution for visualizing complex data structures, and for quantitative analysis of lower-dimensional embeddings. The toolkit shows considerable promise in preserving both local and global structures within the data as compared to state-of-the-art UMAP and tSNE implementations. This makes it suitable for a wide range of applications in machine learning, bio-informatics, and data science.
comment: 22 pages, 12 figures Github repository available at https://github.com/sashakolpakov/dire-jax Package available on PyPi https://pypi.org/project/dire-jax/
♻ ☆ AI-Augmented Thyroid Scintigraphy for Robust Classification
Purpose: Thyroid scintigraphy plays a vital role in diagnosing a range of thyroid disorders. While deep learning classification models hold significant promise in this domain, their effectiveness is frequently compromised by limited and imbalanced datasets. This study investigates the impact of three data augmentation strategies including Stable Diffusion (SD), Flow Matching (FM), and Conventional Augmentation (CA), on enhancing the performance of a ResNet18 classifier. Methods: Anterior thyroid scintigraphy images from 2,954 patients across nine medical centers were classified into four categories: Diffuse Goiter (DG), Nodular Goiter (NG), Normal (NL), and Thyroiditis (TI). Data augmentation was performed using various SD and FM models, resulting in 18 distinct augmentation scenarios. Each augmented dataset was used to train a ResNet18 classifier. Model performance was assessed using class-wise and average precision, recall, F1-score, AUC, and image fidelity metrics (FID and KID). Results: FM-based augmentation outperformed all other methods, achieving the highest classification accuracy and lowest FID/KID scores, indicating both improved model generalization and realistic image synthesis. SD1, combining image and prompt inputs in the inference process, was the most effective SD variant, suggesting that physician-generated prompts provide meaningful clinical context. O+FM+CA yielded the most balanced and robust performance across all classes. Conclusion: Integrating FM and clinically-informed SD augmentation, especially when guided by expert prompts, substantially improves thyroid scintigraphy classification. These findings highlight the importance of leveraging both structured medical input and advanced generative models for more effective training on limited datasets.
♻ ☆ Large Language Models Must Be Taught to Know What They Don't Know NeurIPS 2024
When using large language models (LLMs) in high-stakes applications, we need to know when we can trust their predictions. Some works argue that prompting high-performance LLMs is sufficient to produce calibrated uncertainties, while others introduce sampling methods that can be prohibitively expensive. In this work, we first argue that prompting on its own is insufficient to achieve good calibration and then show that fine-tuning on a small dataset of correct and incorrect answers can create an uncertainty estimate with good generalization and small computational overhead. We show that a thousand graded examples are sufficient to outperform baseline methods and that training through the features of a model is necessary for good performance and tractable for large open-source models when using LoRA. We also investigate the mechanisms that enable reliable LLM uncertainty estimation, finding that many models can be used as general-purpose uncertainty estimators, applicable not just to their own uncertainties but also the uncertainty of other models. Lastly, we show that uncertainty estimates inform human use of LLMs in human-AI collaborative settings through a user study.
comment: NeurIPS 2024 Camera Ready
♻ ☆ Multi-agent Auditory Scene Analysis
Auditory scene analysis (ASA) aims to retrieve information from the acoustic environment, by carrying out three main tasks: sound source location, separation, and classification. These tasks are traditionally executed with a linear data flow, where the sound sources are first located; then, using their location, each source is separated into its own audio stream; from each of which, information is extracted that is relevant to the application scenario (audio event detection, speaker identification, emotion classification, etc.). However, running these tasks linearly increases the overall response time, while making the last tasks (separation and classification) highly sensitive to errors of the first task (location). A considerable amount of effort and computational complexity has been employed in the state-of-the-art to develop techniques that are the least error-prone possible. However, doing so gives rise to an ASA system that is non-viable in many applications that require a small computational footprint and a low response time, such as bioacoustics, hearing-aid design, search and rescue, human-robot interaction, etc. To this effect, in this work, a multi-agent approach is proposed to carry out ASA where the tasks are run in parallel, with feedback loops between them to compensate for local errors, such as: using the quality of the separation output to correct the location error; and using the classification result to reduce the localization's sensitivity towards interferences. The result is a multi-agent auditory scene analysis (MASA) system that is robust against local errors, without a considerable increase in complexity, and with a low response time. The complete proposed MASA system is provided as a framework that uses open-source tools for sound acquisition and reproduction (JACK) and inter-agent communication (ROS2), allowing users to add their own agents.
comment: Submitted to Applied Soft Computing
♻ ☆ Online Learning with Probing for Sequential User-Centric Selection
We formalize sequential decision-making with information acquisition as the probing-augmented user-centric selection (PUCS) framework, where a learner first probes a subset of arms to obtain side information on resources and rewards, and then assigns $K$ plays to $M$ arms. PUCS covers applications such as ridesharing, wireless scheduling, and content recommendation, in which both resources and payoffs are initially unknown and probing is costly. For the offline setting with known distributions, we present a greedy probing algorithm with a constant-factor approximation guarantee $\zeta = (e-1)/(2e-1)$. For the online setting with unknown distributions, we introduce OLPA, a stochastic combinatorial bandit algorithm that achieves a regret bound $\mathcal{O}(\sqrt{T} + \ln^{2} T)$. We also prove a lower bound $\Omega(\sqrt{T})$, showing that the upper bound is tight up to logarithmic factors. Experiments on real-world data demonstrate the effectiveness of our solutions.
♻ ☆ The Effect of Compression Techniques on Large Multimodal Language Models in the Medical Domain
Multimodal Large Language Models (MLLMs) hold huge potential for usage in the medical domain, but their computational costs necessitate efficient compression techniques. This paper evaluates the impact of structural pruning and activation-aware quantization on a fine-tuned LLAVA model for medical applications. We propose a novel layer selection method for pruning, analyze different quantization techniques, and assess the performance trade-offs in a prune-SFT-quantize pipeline. Our proposed method enables MLLMs with 7B parameters to run within 4 GB of VRAM, reducing memory usage by 70% while achieving 4% higher model performance compared to traditional pruning and quantization techniques in the same compression ratio.
comment: 12 pages, 5 figures. tcolorbox dependencies were removed for arXiv compatibility. All references are included via a precompiled .bbl file
♻ ☆ Learning Adaptive Parallel Reasoning with Language Models
Scaling inference-time computation has substantially improved the reasoning capabilities of language models. However, existing methods have significant limitations: serialized chain-of-thought approaches generate overly long outputs, leading to increased latency and exhausted context windows, while parallel methods such as self-consistency suffer from insufficient coordination, resulting in redundant computations and limited performance gains. To address these shortcomings, we propose Adaptive Parallel Reasoning (APR), a novel reasoning framework that enables language models to orchestrate both serialized and parallel computations end-to-end. APR generalizes existing reasoning methods by enabling adaptive multi-threaded inference using spawn() and join() operations. A key innovation is our end-to-end reinforcement learning strategy, optimizing both parent and child inference threads to enhance task success rate without requiring predefined reasoning structures. Experiments on the Countdown reasoning task demonstrate significant benefits of APR: (1) higher performance within the same context window (83.4% vs. 60.0% at 4k context); (2) superior scalability with increased computation (80.1% vs. 66.6% at 20k total tokens); (3) improved accuracy at equivalent latency (75.2% vs. 57.3% at approximately 5,000ms). APR represents a step towards enabling language models to autonomously optimize their reasoning processes through adaptive allocation of computation.
comment: Accepted at COLM 2025. Code, model, and data are available at https://github.com/Parallel-Reasoning/APR. The first three authors contributed equally to this work
♻ ☆ SLAG: Scalable Language-Augmented Gaussian Splatting
Language-augmented scene representations hold great promise for large-scale robotics applications such as search-and-rescue, smart cities, and mining. Many of these scenarios are time-sensitive, requiring rapid scene encoding while also being data-intensive, necessitating scalable solutions. Deploying these representations on robots with limited computational resources further adds to the challenge. To address this, we introduce SLAG, a multi-GPU framework for language-augmented Gaussian splatting that enhances the speed and scalability of embedding large scenes. Our method integrates 2D visual-language model features into 3D scenes using SAM and CLIP. Unlike prior approaches, SLAG eliminates the need for a loss function to compute per-Gaussian language embeddings. Instead, it derives embeddings from 3D Gaussian scene parameters via a normalized weighted average, enabling highly parallelized scene encoding. Additionally, we introduce a vector database for efficient embedding storage and retrieval. Our experiments show that SLAG achieves an 18 times speedup in embedding computation on a 16-GPU setup compared to OpenGaussian, while preserving embedding quality on the ScanNet and LERF datasets. For more details, visit our project website: https://slag-project.github.io/.
♻ ☆ 2SSP: A Two-Stage Framework for Structured Pruning of LLMs
We propose a novel Two-Stage framework for Structured Pruning (\textsc{2SSP}) for pruning Large Language Models (LLMs), which combines two different strategies of pruning, namely Width and Depth Pruning. The first stage (Width Pruning) removes entire neurons, hence their corresponding rows and columns, aiming to preserve the connectivity among the pruned structures in the intermediate state of the Feed-Forward Networks in each Transformer block. This is done based on an importance score measuring the impact of each neuron on the output magnitude. The second stage (Depth Pruning), instead, removes entire Attention submodules. This is done by applying an iterative process that removes the Attention with the minimum impact on a given metric of interest (in our case, perplexity). We also propose a novel mechanism to balance the sparsity rate of the two stages w.r.t. to the desired global sparsity. We test \textsc{2SSP} on four LLM families and three sparsity rates (25\%, 37.5\%, and 50\%), measuring the resulting perplexity over three language modeling datasets as well as the performance over six downstream tasks. Our method consistently outperforms five state-of-the-art competitors over three language modeling and six downstream tasks, with an up to two-order-of-magnitude gain in terms of pruning time. The code is available at https://github.com/FabrizioSandri/2SSP.
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ European Space Agency Benchmark for Anomaly Detection in Satellite Telemetry
Machine learning has vast potential to improve anomaly detection in satellite telemetry which is a crucial task for spacecraft operations. This potential is currently hampered by a lack of comprehensible benchmarks for multivariate time series anomaly detection, especially for the challenging case of satellite telemetry. The European Space Agency Benchmark for Anomaly Detection in Satellite Telemetry (ESA-ADB) aims to address this challenge and establish a new standard in the domain. It is a result of close cooperation between spacecraft operations engineers from the European Space Agency (ESA) and machine learning experts. The newly introduced ESA Anomalies Dataset contains annotated real-life telemetry from three different ESA missions, out of which two are included in ESA-ADB. Results of typical anomaly detection algorithms assessed in our novel hierarchical evaluation pipeline show that new approaches are necessary to address operators' needs. All elements of ESA-ADB are publicly available to ensure its full reproducibility.
comment: 87 pages, 24 figures, 19 tables
♻ ☆ LLMCARE: Alzheimer's Detection via Transformer Models Enhanced by LLM-Generated Synthetic Data
Alzheimer's disease and related dementias (ADRD) affect approximately five million older adults in the U.S., yet over half remain undiagnosed. Speech-based natural language processing (NLP) offers a promising, scalable approach to detect early cognitive decline through linguistic markers. To develop and evaluate a screening pipeline that (i) fuses transformer embeddings with handcrafted linguistic features, (ii) tests data augmentation using synthetic speech generated by large language models (LLMs), and (iii) benchmarks unimodal and multimodal LLM classifiers for ADRD detection. Transcripts from the DementiaBank "cookie-theft" task (n = 237) were used. Ten transformer models were evaluated under three fine-tuning strategies. A fusion model combined embeddings from the top-performing transformer with 110 lexical-derived linguistic features. Five LLMs (LLaMA-8B/70B, MedAlpaca-7B, Ministral-8B, GPT-4o) were fine-tuned to generate label-conditioned synthetic speech, which was used to augment training data. Three multimodal models (GPT-4o, Qwen-Omni, Phi-4) were tested for speech-text classification in zero-shot and fine-tuned settings. The fusion model achieved F1 = 83.3 (AUC = 89.5), outperforming linguistic or transformer-only baselines. Augmenting training data with 2x MedAlpaca-7B synthetic speech increased F1 to 85.7. Fine-tuning significantly improved unimodal LLM classifiers (e.g., MedAlpaca: F1 = 47.3 -> 78.5 F1). Current multimodal models demonstrated lower performance (GPT-4o = 70.2 F1; Qwen = 66.0). Performance gains aligned with the distributional similarity between synthetic and real speech. Integrating transformer embeddings with linguistic features enhances ADRD detection from speech. Clinically tuned LLMs effectively support both classification and data augmentation, while further advancement is needed in multimodal modeling.
♻ ☆ SGPT: Few-Shot Prompt Tuning for Signed Graphs CIKM'25
Signed Graph Neural Networks (SGNNs) are effective in learning expressive representations for signed graphs but typically require substantial task-specific labels, limiting their applicability in label-scarce industrial scenarios. In contrast, unsigned graph structures are abundant and can be readily leveraged to pre-train Graph Neural Networks (GNNs), offering a promising solution to reduce supervision requirements in downstream signed graph tasks. However, transferring knowledge from unsigned to signed graphs is non-trivial due to the fundamental discrepancies in graph types and task objectives between pre-training and downstream phases. To address this challenge, we propose Signed Graph Prompt Tuning (SGPT), a novel graph prompting framework that adapts pre-trained unsigned GNNs to few-shot signed graph tasks. We first design a graph template based on balance theory to disentangle mixed node relationships introduced by negative links, mitigating the structural mismatches between unsigned and signed graphs. We further introduce a task template that reformulates downstream signed tasks into a unified link prediction objective, aligning their optimization goals with the pre-training task. Furthermore, we develop feature prompts that align downstream semantic spaces with the feature spaces learned during pre-training, and semantic prompts to integrate link sign semantics in a task-aware manner. We conduct extensive experiments on seven benchmark signed graph datasets, demonstrating that SGPT significantly outperforms existing state-of-the-art methods, establishing a powerful and generalizable solution for few-shot signed graph learning.
comment: CIKM'25
♻ ☆ Local Prompt Adaptation for Style-Consistent Multi-Object Generation in Diffusion Models
Diffusion models have become a powerful backbone for text-to-image generation, producing high-quality visuals from natural language prompts. However, when prompts involve multiple objects alongside global or local style instructions, the outputs often drift in style and lose spatial coherence, limiting their reliability for controlled, style-consistent scene generation. We present Local Prompt Adaptation (LPA), a lightweight, training-free method that splits the prompt into content and style tokens, then injects them selectively into the U-Net's attention layers at chosen timesteps. By conditioning object tokens early and style tokens later in the denoising process, LPA improves both layout control and stylistic uniformity without additional training cost. We conduct extensive ablations across parser settings and injection windows, finding that the best configuration -- lpa late only with a 300-650 step window -- delivers the strongest balance of prompt alignment and style consistency. On the T2I benchmark, LPA improves CLIP-prompt alignment over vanilla SDXL by +0.41% and over SD1.5 by +0.34%, with no diversity loss. On our custom 50-prompt style-rich benchmark, LPA achieves +0.09% CLIP-prompt and +0.08% CLIP-style gains over baseline. Our method is model-agnostic, easy to integrate, and requires only a single configuration change, making it a practical choice for controllable, style-consistent multi-object generation.
comment: 10 Pages,10 figures, pre-print
♻ ☆ Geological Everything Model 3D: A Physics-informed Promptable Foundation Model for Unified and Zero-Shot Subsurface Understanding
Understanding Earth's subsurface is critical for energy transition, natural hazard mitigation, and planetary science. Yet subsurface analysis remains fragmented, with separate models required for structural interpretation, stratigraphic analysis, geobody segmentation, and property modeling-each tightly coupled to specific data distributions and task formulations. We introduce the Geological Everything Model 3D (GEM), a unified generative architecture that reformulates all these tasks as prompt-conditioned inference along latent structural frameworks derived from subsurface imaging. This formulation moves beyond task-specific models by enabling a shared inference mechanism, where GEM propagates human-provided prompts-such as well logs, masks, or structural sketches-along inferred structural frameworks to produce geologically coherent outputs. Through this mechanism, GEM achieves zero-shot generalization across tasks with heterogeneous prompt types, without retraining for new tasks or data sources. This capability emerges from a two-stage training process that combines self-supervised representation learning on large-scale field seismic data with adversarial fine-tuning using mixed prompts and labels across diverse subsurface tasks. GEM demonstrates broad applicability across surveys and tasks, including Martian radar stratigraphy analysis, structural interpretation in subduction zones, full seismic stratigraphic interpretation, geobody segmentation, and property modeling. By bridging expert knowledge with generative reasoning in a structurally aware manner, GEM lays the foundation for scalable, human-in-the-loop geophysical AI-transitioning from fragmented pipelines to a vertically integrated, promptable reasoning system. Project page: https://douyimin.github.io/GEM
♻ ☆ SafePLUG: Empowering Multimodal LLMs with Pixel-Level Insight and Temporal Grounding for Traffic Accident Understanding
Multimodal large language models (MLLMs) have achieved remarkable progress across a range of vision-language tasks and demonstrate strong potential for traffic accident understanding. However, existing MLLMs in this domain primarily focus on coarse-grained image-level or video-level comprehension and often struggle to handle fine-grained visual details or localized scene components, limiting their applicability in complex accident scenarios. To address these limitations, we propose SafePLUG, a novel framework that empowers MLLMs with both Pixel-Level Understanding and temporal Grounding for comprehensive traffic accident analysis. SafePLUG supports both arbitrary-shaped visual prompts for region-aware question answering and pixel-level segmentation based on language instructions, while also enabling the recognition of temporally anchored events in traffic accident scenarios. To advance the development of MLLMs for traffic accident understanding, we curate a new dataset containing multimodal question-answer pairs centered on diverse accident scenarios, with detailed pixel-level annotations and temporal event boundaries. Experimental results show that SafePLUG achieves strong performance on multiple tasks, including region-based question answering, pixel-level segmentation, temporal event localization, and accident event understanding. These capabilities lay a foundation for fine-grained understanding of complex traffic scenes, with the potential to improve driving safety and enhance situational awareness in smart transportation systems. The code, dataset, and model checkpoints will be made publicly available at: https://zihaosheng.github.io/SafePLUG
comment: The code, dataset, and model checkpoints will be made publicly available at: https://zihaosheng.github.io/SafePLUG
♻ ☆ Unravelling Responsibility for AI
It is widely acknowledged that we need to establish where responsibility lies for the outputs and impacts of AI-enabled systems. This is important to achieve justice and compensation for victims of AI harms, and to inform policy and engineering practice. But without a clear, thorough understanding of what "responsibility" means, deliberations about where responsibility lies will be, at best, unfocused and incomplete and, at worst, misguided. Furthermore, AI-enabled systems exist within a wider ecosystem of actors, decisions, and governance structures, giving rise to complex networks of responsibility relations. To address these issues, this paper presents a conceptual framework of responsibility, accompanied with a graphical notation and general methodology for visualising these responsibility networks and for tracing different responsibility attributions for AI. Taking the three-part formulation "Actor A is responsible for Occurrence O," the framework unravels the concept of responsibility to clarify that there are different possibilities of who is responsible for AI, senses in which they are responsible, and aspects of events they are responsible for. The notation allows these permutations to be represented graphically. The methodology enables users to apply the framework to specific scenarios. The aim is to offer a foundation to support stakeholders from diverse disciplinary backgrounds to discuss and address complex responsibility questions in hypothesised and real-world cases involving AI. The work is illustrated by application to a fictitious scenario of a fatal collision between a crewless, AI-enabled maritime vessel in autonomous mode and a traditional, crewed vessel at sea.
♻ ☆ Explaining Large Language Models with gSMILE
Large Language Models (LLMs) such as GPT, LLaMA, and Claude achieve remarkable performance in text generation but remain opaque in their decision-making processes, limiting trust and accountability in high-stakes applications. We present gSMILE (generative SMILE), a model-agnostic, perturbation-based framework for token-level interpretability in LLMs. Extending the SMILE methodology, gSMILE uses controlled prompt perturbations, Wasserstein distance metrics, and weighted linear surrogates to identify input tokens with the most significant impact on the output. This process enables the generation of intuitive heatmaps that visually highlight influential tokens and reasoning paths. We evaluate gSMILE across leading LLMs (OpenAI's gpt-3.5-turbo-instruct, Meta's LLaMA 3.1 Instruct Turbo, and Anthropic's Claude 2.1) using attribution fidelity, attribution consistency, attribution stability, attribution faithfulness, and attribution accuracy as metrics. Results show that gSMILE delivers reliable human-aligned attributions, with Claude 2.1 excelling in attention fidelity and GPT-3.5 achieving the highest output consistency. These findings demonstrate gSMILE's ability to balance model performance and interpretability, enabling more transparent and trustworthy AI systems.
♻ ☆ Loss-Complexity Landscape and Model Structure Functions
We develop a framework for dualizing the Kolmogorov structure function $h_x(\alpha)$, which then allows using computable complexity proxies. We establish a mathematical analogy between information-theoretic constructs and statistical mechanics, introducing a suitable partition function and free energy functional. We explicitly prove the Legendre-Fenchel duality between the structure function and free energy, showing detailed balance of the Metropolis kernel, and interpret acceptance probabilities as information-theoretic scattering amplitudes. A susceptibility-like variance of model complexity is shown to peak precisely at loss-complexity trade-offs interpreted as phase transitions. Practical experiments with linear and tree-based regression models verify these theoretical predictions, explicitly demonstrating the interplay between the model complexity, generalization, and overfitting threshold.
comment: 25 pages, 11 figures; GitHub repository at https://github.com/sashakolpakov/structure-functions
♻ ☆ Quantum-Enhanced Generative Adversarial Networks: Comparative Analysis of Classical and Hybrid Quantum-Classical Generative Adversarial Networks
Generative adversarial networks (GANs) have emerged as a powerful paradigm for producing high-fidelity data samples, yet their performance is constrained by the quality of latent representations, typically sampled from classical noise distributions. This study investigates hybrid quantum-classical GANs (HQCGANs) in which a quantum generator, implemented via parameterised quantum circuits, produces latent vectors for a classical discriminator. We evaluate a classical GAN alongside three HQCGAN variants with 3, 5, and 7 qubits, using Qiskit's AerSimulator with realistic noise models to emulate near-term quantum devices. The binary MNIST dataset (digits 0 and 1) is used to align with the low-dimensional latent spaces imposed by current quantum hardware. Models are trained for 150 epochs and assessed with Frechet Inception Distance (FID) and Kernel Inception Distance (KID). Results show that while the classical GAN achieved the best scores, the 7-qubit HQCGAN produced competitive performance, narrowing the gap in later epochs, whereas the 3-qubit model exhibited earlier convergence limitations. Efficiency analysis indicates only moderate training time increases despite quantum sampling overhead. These findings validate the feasibility of noisy quantum circuits as latent priors in GAN architectures, highlighting their potential to enhance generative modelling within the constraints of the noisy intermediate-scale quantum (NISQ) era.
comment: 9 pages, 9 figures, 3 tables
♻ ☆ On Fusing ChatGPT and Ensemble Learning in Discon-tinuous Named Entity Recognition in Health Corpora
Named Entity Recognition has traditionally been a key task in natural language processing, aiming to identify and extract important terms from unstructured text data. However, a notable challenge for contemporary deep-learning NER models has been identifying discontinuous entities, which are often fragmented within the text. To date, methods to address Discontinuous Named Entity Recognition have not been explored using ensemble learning to the best of our knowledge. Furthermore, the rise of large language models, such as ChatGPT in recent years, has shown significant effectiveness across many NLP tasks. Most existing approaches, however, have primarily utilized ChatGPT as a problem-solving tool rather than exploring its potential as an integrative element within ensemble learning algorithms. In this study, we investigated the integration of ChatGPT as an arbitrator within an ensemble method, aiming to enhance performance on DNER tasks. Our method combines five state-of-the-art NER models with ChatGPT using custom prompt engineering to assess the robustness and generalization capabilities of the ensemble algorithm. We conducted experiments on three benchmark medical datasets, comparing our method against the five SOTA models, individual applications of GPT-3.5 and GPT-4, and a voting ensemble method. The results indicate that our proposed fusion of ChatGPT with the ensemble learning algorithm outperforms the SOTA results in the CADEC, ShARe13, and ShARe14 datasets, showcasing its potential to enhance NLP applications in the healthcare domain.
comment: 13 pages; a short version named "Beyond GPT-NER: ChatGPT as Ensemble Arbitrator for Discontinuous Named Entity Recognition in Health Corpora" has been accpeted for presentation at MedInfo2025
♻ ☆ A Fast GRASP Metaheuristic for the Trigger Arc TSP with MIP-Based Construction and Multi-Neighborhood Local Search
The Trigger Arc Traveling Salesman Problem (TA-TSP) extends the classical TSP by introducing dynamic arc costs that change when specific "trigger" arcs are traversed, modeling scenarios such as warehouse operations with compactable storage systems. This paper introduces a GRASP-based metaheuristic that combines multiple construction heuristics with a multi-neighborhood local search. The construction phase uses mixed-integer programming (MIP) techniques to transform the TA-TSP into a sequence of tailored TSP instances, while the improvement phase applies 2-Opt, Swap, and Relocate operators. Computational experiments on MESS 2024 competition instances achieved average optimality gaps of 0.77\% and 0.40\% relative to the best-known solutions within a 60-second limit. On smaller, synthetically generated datasets, the method produced solutions 11.3\% better than the Gurobi solver under the same time constraints. The algorithm finished in the top three at MESS 2024, demonstrating its suitability for real-time routing applications with state-dependent travel costs.
comment: 9 pages, 2 figures. Find the implementation in https://github.com/jsalvasoler/trigger_arc_tsp
♻ ☆ Regress, Don't Guess -- A Regression-like Loss on Number Tokens for Language Models ICML 2025
While language models have exceptional capabilities at text generation, they lack a natural inductive bias for emitting numbers and thus struggle in tasks involving quantitative reasoning, especially arithmetic. One fundamental limitation is the nature of the cross-entropy (CE) loss, which assumes a nominal scale and thus cannot convey proximity between generated number tokens. In response, we here present a regression-like loss that operates purely on token level. Our proposed Number Token Loss (NTL) comes in two flavors and minimizes either the $L_p$ norm or the Wasserstein distance between the numerical values of the real and predicted number tokens. NTL can easily be added to any language model and extend the CE objective during training without runtime overhead. We evaluate the proposed scheme on various mathematical datasets and find that it consistently improves performance in math-related tasks. In a direct comparison on a regression task, we find that NTL can match the performance of a regression head, despite operating on token level. Finally, we scale NTL up to 3B parameter models and observe improved performance, demonstrating its potential for seamless integration into LLMs. We hope to inspire LLM developers to improve their pretraining objectives and distribute NTL as a minimalistic and lightweight PyPI package $ntloss$: https://github.com/ai4sd/number-token-loss. Development code for full paper reproduction is available separately.
comment: ICML 2025
♻ ☆ Dealing with Annotator Disagreement in Hate Speech Classification
Hate speech detection is a crucial task, especially on social media, where harmful content can spread quickly. Implementing machine learning models to automatically identify and address hate speech is essential for mitigating its impact and preventing its proliferation. The first step in developing an effective hate speech detection model is to acquire a high-quality dataset for training. Labeled data is essential for most natural language processing tasks, but categorizing hate speech is difficult due to the diverse and often subjective nature of hate speech, which can lead to varying interpretations and disagreements among annotators. This paper examines strategies for addressing annotator disagreement, an issue that has been largely overlooked. In particular, we evaluate various automatic approaches for aggregating multiple annotations, in the context of hate speech classification in Turkish tweets. Our work highlights the importance of the problem and provides state-of-the-art benchmark results for the detection and understanding of hate speech in online discourse.
comment: 20 pages, 3 Tables
♻ ☆ Convert Language Model into a Value-based Strategic Planner ACL 2025
Emotional support conversation (ESC) aims to alleviate the emotional distress of individuals through effective conversations. Although large language models (LLMs) have obtained remarkable progress on ESC, most of these studies might not define the diagram from the state model perspective, therefore providing a suboptimal solution for long-term satisfaction. To address such an issue, we leverage the Q-learning on LLMs, and propose a framework called straQ*. Our framework allows a plug-and-play LLM to bootstrap the planning during ESC, determine the optimal strategy based on long-term returns, and finally guide the LLM to response. Substantial experiments on ESC datasets suggest that straQ* outperforms many baselines, including direct inference, self-refine, chain of thought, finetuning, and finite state machines.
comment: 13 pages, 6 figures, ACL 2025 Industry Track
♻ ☆ HuB: Learning Extreme Humanoid Balance
The human body demonstrates exceptional motor capabilities-such as standing steadily on one foot or performing a high kick with the leg raised over 1.5 meters-both requiring precise balance control. While recent research on humanoid control has leveraged reinforcement learning to track human motions for skill acquisition, applying this paradigm to balance-intensive tasks remains challenging. In this work, we identify three key obstacles: instability from reference motion errors, learning difficulties due to morphological mismatch, and the sim-to-real gap caused by sensor noise and unmodeled dynamics. To address these challenges, we propose HuB (Humanoid Balance), a unified framework that integrates reference motion refinement, balance-aware policy learning, and sim-to-real robustness training, with each component targeting a specific challenge. We validate our approach on the Unitree G1 humanoid robot across challenging quasi-static balance tasks, including extreme single-legged poses such as Swallow Balance and Bruce Lee's Kick. Our policy remains stable even under strong physical disturbances-such as a forceful soccer strike-while baseline methods consistently fail to complete these tasks. Project website: https://hub-robot.github.io
comment: CoRL 2025 (Oral Presentation). Project website: https://hub-robot.github.io
♻ ☆ Alzheimer's Disease Classification Using Retinal OCT: TransnetOCT and Swin Transformer Models
Retinal optical coherence tomography (OCT) images are the biomarkers for neurodegenerative diseases, which are rising in prevalence. Early detection of Alzheimer's disease using retinal OCT is a primary challenging task. This work utilizes advanced deep learning techniques to classify retinal OCT images of subjects with Alzheimer's disease (AD) and healthy controls (CO). The goal is to enhance diagnostic capabilities through efficient image analysis. In the proposed model, Raw OCT images have been preprocessed with ImageJ and given to various deep-learning models to evaluate the accuracy. The best classification architecture is TransNetOCT, which has an average accuracy of 98.18% for input OCT images and 98.91% for segmented OCT images for five-fold cross-validation compared to other models, and the Swin Transformer model has achieved an accuracy of 93.54%. The evaluation accuracy metric demonstrated TransNetOCT and Swin transformer models capability to classify AD and CO subjects reliably, contributing to the potential for improved diagnostic processes in clinical settings.
comment: 18 pages, 25 figures
♻ ☆ Sharpness-Aware Minimization with Z-Score Gradient Filtering
Deep neural networks achieve high performance across many domains but can still face challenges in generalization when optimization is influenced by small or noisy gradient components. Sharpness-Aware Minimization improves generalization by perturbing parameters toward directions of high curvature, but it uses the entire gradient vector, which means that small or noisy components may affect the ascent step and cause the optimizer to miss optimal solutions. We propose Z-Score Filtered Sharpness-Aware Minimization, which applies Z-score based filtering to gradients in each layer. Instead of using all gradient components, a mask is constructed to retain only the top percentile with the largest absolute Z-scores. The percentile threshold $Q_p$ determines how many components are kept, so that the ascent step focuses on directions that stand out most compared to the average of the layer. This selective perturbation refines the search toward flatter minima while reducing the influence of less significant gradients. Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet with architectures including ResNet, VGG, and Vision Transformers show that the proposed method consistently improves test accuracy compared to Sharpness-Aware Minimization and its variants.
♻ ☆ MeLA: A Metacognitive LLM-Driven Architecture for Automatic Heuristic Design
This paper introduces MeLA, a Metacognitive LLM-Driven Architecture that presents a new paradigm for Automatic Heuristic Design (AHD). Traditional evolutionary methods operate directly on heuristic code; in contrast, MeLA evolves the instructional prompts used to guide a Large Language Model (LLM) in generating these heuristics. This process of "prompt evolution" is driven by a novel metacognitive framework where the system analyzes performance feedback to systematically refine its generative strategy. MeLA's architecture integrates a problem analyzer to construct an initial strategic prompt, an error diagnosis system to repair faulty code, and a metacognitive search engine that iteratively optimizes the prompt based on heuristic effectiveness. In comprehensive experiments across both benchmark and real-world problems, MeLA consistently generates more effective and robust heuristics, significantly outperforming state-of-the-art methods. Ultimately, this research demonstrates the profound potential of using cognitive science as a blueprint for AI architecture, revealing that by enabling an LLM to metacognitively regulate its problem-solving process, we unlock a more robust and interpretable path to AHD.
♻ ☆ OMGM: Orchestrate Multiple Granularities and Modalities for Efficient Multimodal Retrieval ACL 2025
Vision-language retrieval-augmented generation (RAG) has become an effective approach for tackling Knowledge-Based Visual Question Answering (KB-VQA), which requires external knowledge beyond the visual content presented in images. The effectiveness of Vision-language RAG systems hinges on multimodal retrieval, which is inherently challenging due to the diverse modalities and knowledge granularities in both queries and knowledge bases. Existing methods have not fully tapped into the potential interplay between these elements. We propose a multimodal RAG system featuring a coarse-to-fine, multi-step retrieval that harmonizes multiple granularities and modalities to enhance efficacy. Our system begins with a broad initial search aligning knowledge granularity for cross-modal retrieval, followed by a multimodal fusion reranking to capture the nuanced multimodal information for top entity selection. A text reranker then filters out the most relevant fine-grained section for augmented generation. Extensive experiments on the InfoSeek and Encyclopedic-VQA benchmarks show our method achieves state-of-the-art retrieval performance and highly competitive answering results, underscoring its effectiveness in advancing KB-VQA systems.
comment: Accepted to ACL 2025 Main Conference; Codes available at: https://github.com/ChaoLinAViy/OMGM
♻ ☆ LD-Scene: LLM-Guided Diffusion for Controllable Generation of Adversarial Safety-Critical Driving Scenarios
Ensuring the safety and robustness of autonomous driving systems necessitates a comprehensive evaluation in safety-critical scenarios. However, these safety-critical scenarios are rare and difficult to collect from real-world driving data, posing significant challenges to effectively assessing the performance of autonomous vehicles. Typical existing methods often suffer from limited controllability and lack user-friendliness, as extensive expert knowledge is essentially required. To address these challenges, we propose LD-Scene, a novel framework that integrates Large Language Models (LLMs) with Latent Diffusion Models (LDMs) for user-controllable adversarial scenario generation through natural language. Our approach comprises an LDM that captures realistic driving trajectory distributions and an LLM-based guidance module that translates user queries into adversarial loss functions, facilitating the generation of scenarios aligned with user queries. The guidance module integrates an LLM-based Chain-of-Thought (CoT) code generator and an LLM-based code debugger, enhancing the controllability and robustness in generating guidance functions. Extensive experiments conducted on the nuScenes dataset demonstrate that LD-Scene achieves state-of-the-art performance in generating realistic, diverse, and effective adversarial scenarios. Furthermore, our framework provides fine-grained control over adversarial behaviors, thereby facilitating more effective testing tailored to specific driving scenarios.
comment: 18 pages, 8 figures
♻ ☆ Self-Tuning PID Control via a Hybrid Actor-Critic-Based Neural Structure for Quadcopter Control
Proportional-Integrator-Derivative (PID) controller is used in a wide range of industrial and experimental processes. There are a couple of offline methods for tuning PID gains. However, due to the uncertainty of model parameters and external disturbances, real systems such as Quadrotors need more robust and reliable PID controllers. In this research, a self-tuning PID controller using a Reinforcement-Learning-based Neural Network for attitude and altitude control of a Quadrotor has been investigated. An Incremental PID, which contains static and dynamic gains, has been considered and only the variable gains have been tuned. To tune dynamic gains, a model-free actor-critic-based hybrid neural structure was used that was able to properly tune PID gains, and also has done the best as an identifier. In both tunning and identification tasks, a Neural Network with two hidden layers and sigmoid activation functions has been learned using Adaptive Momentum (ADAM) optimizer and Back-Propagation (BP) algorithm. This method is online, able to tackle disturbance, and fast in training. In addition to robustness to mass uncertainty and wind gust disturbance, results showed that the proposed method had a better performance when compared to a PID controller with constant gains.
comment: 7 pages, 18 figures, The 30th Annual International Conference of Iranian Society of Mechanical Engineers
♻ ☆ Towards Safe Autonomous Driving Policies using a Neuro-Symbolic Deep Reinforcement Learning Approach
The dynamic nature of driving environments and the presence of diverse road users pose significant challenges for decision-making in autonomous driving. Deep reinforcement learning (DRL) has emerged as a popular approach to tackle this problem. However, the application of existing DRL solutions is mainly confined to simulated environments due to safety concerns, impeding their deployment in real-world. To overcome this limitation, this paper introduces a novel neuro-symbolic model-free DRL approach, called DRL with Symbolic Logic (DRLSL) that combines the strengths of DRL (learning from experience) and symbolic first-order logic (knowledge-driven reasoning) to enable safe learning in real-time interactions of autonomous driving within real environments. This innovative approach provides a means to learn autonomous driving policies by actively engaging with the physical environment while ensuring safety. We have implemented the DRLSL framework in a highway driving scenario using the HighD dataset and demonstrated that our method successfully avoids unsafe actions during both the training and testing phases. Furthermore, our results indicate that DRLSL achieves faster convergence during training and exhibits better generalizability to new highway driving scenarios compared to traditional DRL methods.
comment: 15 pages, 9 figures, 1 table, 1 algorithm
♻ ☆ Un-mixing Test-time Adaptation under Heterogeneous Data Streams
Deploying deep models in real-world scenarios remains challenging due to significant performance drops under distribution shifts between training and deployment environments. Test-Time Adaptation (TTA) has recently emerged as a promising solution, enabling on-the-fly model adaptation without access to source data. However, its effectiveness degrades significantly in the presence of complex, mixed distribution shifts - common in practical settings - where multiple latent domains coexist. Adapting under such intrinsic heterogeneity, especially in unlabeled and online conditions, remains an open and underexplored challenge. In this paper, we study TTA under mixed distribution shifts and move beyond conventional homogeneous adaptation paradigms. By revisiting TTA from a frequency-domain perspective, we observe that distribution heterogeneity often manifests in Fourier space - for instance, high-frequency components tend to carry domain-specific variations. This motivates us to perform domain-aware separation using high-frequency texture cues, making diverse shift patterns more tractable. To this end, we propose FreDA, a novel Frequency-based Decentralized Adaptation framework that decomposes globally heterogeneous data into locally homogeneous components in the frequency domain. It further employs decentralized learning and augmentation strategies to robustly adapt under complex, evolving shifts. Extensive experiments across various environments (corrupted, natural, and medical) demonstrate the superiority of our proposed framework over the state-of-the-arts.
♻ ☆ Who Pays the RENT? Implications of Spatial Inequality for Prediction-Based Allocation Policies AAAI
AI-powered scarce resource allocation policies rely on predictions to target either specific individuals (e.g., high-risk) or settings (e.g., neighborhoods). Recent research on individual-level targeting demonstrates conflicting results; some models show that targeting is not useful when inequality is high, while other work demonstrates potential benefits. To study and reconcile this apparent discrepancy, we develop a stylized framework based on the Mallows model to understand how the spatial distribution of inequality affects the effectiveness of door-to-door outreach policies. We introduce the RENT (Relative Efficiency of Non-Targeting) metric, which we use to assess the effectiveness of targeting approaches compared with neighborhood-based approaches in preventing tenant eviction when high-risk households are more versus less spatially concentrated. We then calibrate the model parameters to eviction court records collected in a medium-sized city in the USA. Results demonstrate considerable gains in the number of high-risk households canvassed through individually targeted policies, even in a highly segregated metro area with concentrated risks of eviction. We conclude that apparent discrepancies in the prior literature can be reconciled by considering 1) the source of deployment costs and 2) the observed versus modeled concentrations of risk. Our results inform the deployment of AI-based solutions in social service provision that account for particular applications and geographies.
comment: This work has been accepted for publication as a full paper at the AAAI/ACM Conference on AI, Ethics, and Society (AIES 2025)
♻ ☆ Fragile Preferences: A Deep Dive Into Order Effects in Large Language Models
Large language models (LLMs) are increasingly deployed in decision-support systems for high-stakes domains such as hiring and university admissions, where choices often involve selecting among competing alternatives. While prior work has noted position order biases in LLM-driven comparisons, these biases have not been systematically analyzed or linked to underlying preference structures. We present the first comprehensive study of position biases across multiple LLMs and two distinct domains: resume comparisons, representing a realistic high-stakes context, and color selection, which isolates position effects by removing confounding factors. We find strong and consistent order effects, including a quality-dependent shift: when all options are high quality, models favor the first option, but when quality is lower, they favor later options. We also identify two previously undocumented biases in both human and machine decision-making: a centrality bias (favoring the middle position in triplewise comparisons) and a name bias, where certain names are favored despite controlling for demographic signals. To separate superficial tie-breaking from genuine distortions of judgment, we extend the rational choice framework to classify pairwise preferences as robust, fragile, or indifferent. Using this framework, we show that order effects can lead models to select strictly inferior options, and that position biases are typically stronger than gender biases. These results indicate that LLMs exhibit distinct failure modes not documented in human decision-making. We also propose targeted mitigation strategies, including a novel use of the temperature parameter, to recover underlying preferences when order effects distort model behavior.
♻ ☆ Hard Negative Contrastive Learning for Fine-Grained Geometric Understanding in Large Multimodal Models
Benefiting from contrastively trained visual encoders on large-scale natural scene images, Large Multimodal Models (LMMs) have achieved remarkable performance across various visual perception tasks. However, the inherent limitations of contrastive learning upon summarized descriptions fundamentally restrict the capabilities of models in meticulous reasoning, particularly in crucial scenarios of geometric problem-solving. To enhance geometric understanding, we propose a novel hard negative contrastive learning framework for the vision encoder, which combines image-based contrastive learning using generation-based hard negatives created by perturbing diagram generation code, and text-based contrastive learning using rule-based negatives derived from modified geometric descriptions and retrieval-based negatives selected based on caption similarity. We train CLIP using our hard negative learning method, namely MMCLIP (Multimodal Math CLIP), and subsequently train an LMM for geometric problem-solving. Experiments show that our trained model, MMGeoLM, significantly outperforms other open-source models on three geometric reasoning benchmarks. Even with a size of 7B, it can rival powerful closed-source models like GPT-4o. We further conduct ablation studies to analyze three key factors: hard negative types, the efficiency of image-based negatives, and training configurations. These analyses yield important insights into optimizing hard negative strategies for geometric reasoning tasks.
♻ ☆ Adaptive Exploration for Multi-Reward Multi-Policy Evaluation
We study the policy evaluation problem in an online multi-reward multi-policy discounted setting, where multiple reward functions must be evaluated simultaneously for different policies. We adopt an $(\epsilon,\delta)$-PAC perspective to achieve $\epsilon$-accurate estimates with high confidence across finite or convex sets of rewards, a setting that has not been investigated in the literature. Building on prior work on Multi-Reward Best Policy Identification, we adapt the MR-NaS exploration scheme to jointly minimize sample complexity for evaluating different policies across different reward sets. Our approach leverages an instance-specific lower bound revealing how the sample complexity scales with a measure of value deviation, guiding the design of an efficient exploration policy. Although computing this bound entails a hard non-convex optimization, we propose an efficient convex approximation that holds for both finite and convex reward sets. Experiments in tabular domains demonstrate the effectiveness of this adaptive exploration scheme.
comment: Accepted at the International Conference on Machine Learning, 2025
♻ ☆ FMCE-Net++: Feature Map Convergence Evaluation and Training
Deep Neural Networks (DNNs) face interpretability challenges due to their opaque internal representations. While Feature Map Convergence Evaluation (FMCE) quantifies module-level convergence via Feature Map Convergence Scores (FMCS), it lacks experimental validation and closed-loop integration. To address this limitation, we propose FMCE-Net++, a novel training framework that integrates a pretrained, frozen FMCE-Net as an auxiliary head. This module generates FMCS predictions, which, combined with task labels, jointly supervise backbone optimization through a Representation Auxiliary Loss. The RAL dynamically balances the primary classification loss and feature convergence optimization via a tunable \Representation Abstraction Factor. Extensive experiments conducted on MNIST, CIFAR-10, FashionMNIST, and CIFAR-100 demonstrate that FMCE-Net++ consistently enhances model performance without architectural modifications or additional data. Key experimental outcomes include accuracy gains of $+1.16$ pp (ResNet-50/CIFAR-10) and $+1.08$ pp (ShuffleNet v2/CIFAR-100), validating that FMCE-Net++ can effectively elevate state-of-the-art performance ceilings.
♻ ☆ Solving Stochastic Orienteering Problems with Chance Constraints Using a GNN Powered Monte Carlo Tree Search
Leveraging the power of a graph neural network (GNN) with message passing, we present a Monte Carlo Tree Search (MCTS) method to solve stochastic orienteering problems with chance constraints. While adhering to an assigned travel budget the algorithm seeks to maximize collected reward while incurring stochastic travel costs. In this context, the acceptable probability of exceeding the assigned budget is expressed as a chance constraint. Our MCTS solution is an online and anytime algorithm alternating planning and execution that determines the next vertex to visit by continuously monitoring the remaining travel budget. The novelty of our work is that the rollout phase in the MCTS framework is implemented using a message passing GNN, predicting both the utility and failure probability of each available action. This allows to enormously expedite the search process. Our experimental evaluation shows that with the proposed method and architecture we manage to efficiently solve complex problem instances while incurring in moderate losses in terms of collected reward. Moreover, we demonstrate how the approach is capable of generalizing beyond the characteristics of the training dataset. The paper's website, open-source code, and supplementary documentation can be found at ucmercedrobotics.github.io/gnn-sop.
comment: 8 pages, 6 figures
Graphics 1
☆ Express4D: Expressive, Friendly, and Extensible 4D Facial Motion Generation Benchmark
Dynamic facial expression generation from natural language is a crucial task in Computer Graphics, with applications in Animation, Virtual Avatars, and Human-Computer Interaction. However, current generative models suffer from datasets that are either speech-driven or limited to coarse emotion labels, lacking the nuanced, expressive descriptions needed for fine-grained control, and were captured using elaborate and expensive equipment. We hence present a new dataset of facial motion sequences featuring nuanced performances and semantic annotation. The data is easily collected using commodity equipment and LLM-generated natural language instructions, in the popular ARKit blendshape format. This provides riggable motion, rich with expressive performances and labels. We accordingly train two baseline models, and evaluate their performance for future benchmarking. Using our Express4D dataset, the trained models can learn meaningful text-to-expression motion generation and capture the many-to-many mapping of the two modalities. The dataset, code, and video examples are available on our webpage: https://jaron1990.github.io/Express4D/
Robotics 30
☆ Energy Efficiency in Robotics Software: A Systematic Literature Review (2020-2024)
This study presents a systematic literature review of software-level approaches to energy efficiency in robotics published from 2020 through 2024, updating and extending pre-2020 evidence. An automated-but-audited pipeline combined Google Scholar seeding, backward/forward snowballing, and large-language-model (LLM) assistance for screening and data extraction, with ~10% human audits at each automated step and consensus-with-tie-breaks for full-text decisions. The final corpus comprises 79 peer-reviewed studies analyzed across application domain, metrics, evaluation type, energy models, major energy consumers, software technique families, and energy-quality trade-offs. Industrial settings dominate (31.6%) followed by exploration (25.3%). Motors/actuators are identified as the primary consumer in 68.4% of studies, with computing/controllers a distant second (13.9%). Simulation-only evaluations remain most common (51.9%), though hybrid evaluations are frequent (25.3%). Representational (physics-grounded) energy models predominate (87.3%). Motion and trajectory optimization is the leading technique family (69.6%), often paired with learning/prediction (40.5%) and computation allocation/scheduling (26.6%); power management/idle control (11.4%) and communication/data efficiency (3.8%) are comparatively underexplored. Reporting is heterogeneous: composite objectives that include energy are most common, while task-normalized and performance-per-energy metrics appear less often, limiting cross-paper comparability. The review offers a minimal reporting checklist (e.g., total energy and average power plus a task-normalized metric and clear baselines) and highlights opportunities in cross-layer designs and in quantifying non-performance trade-offs (accuracy, stability). A replication package with code, prompts, and frozen datasets accompanies the review.
☆ Belief-Conditioned One-Step Diffusion: Real-Time Trajectory Planning with Just-Enough Sensing
Robots equipped with rich sensor suites can localize reliably in partially-observable environments, but powering every sensor continuously is wasteful and often infeasible. Belief-space planners address this by propagating pose-belief covariance through analytic models and switching sensors heuristically--a brittle, runtime-expensive approach. Data-driven approaches--including diffusion models--learn multi-modal trajectories from demonstrations, but presuppose an accurate, always-on state estimate. We address the largely open problem: for a given task in a mapped environment, which \textit{minimal sensor subset} must be active at each location to maintain state uncertainty \textit{just low enough} to complete the task? Our key insight is that when a diffusion planner is explicitly conditioned on a pose-belief raster and a sensor mask, the spread of its denoising trajectories yields a calibrated, differentiable proxy for the expected localisation error. Building on this insight, we present Belief-Conditioned One-Step Diffusion (B-COD), the first planner that, in a 10 ms forward pass, returns a short-horizon trajectory, per-waypoint aleatoric variances, and a proxy for localisation error--eliminating external covariance rollouts. We show that this single proxy suffices for a soft-actor-critic to choose sensors online, optimising energy while bounding pose-covariance growth. We deploy B-COD in real-time marine trials on an unmanned surface vehicle and show that it reduces sensing energy consumption while matching the goal-reach performance of an always-on baseline.
comment: Accepted to CoRL 2025 (Conference on Robot Learning)
☆ Into the Wild: When Robots Are Not Welcome
Social robots are increasingly being deployed in public spaces, where they face not only technological difficulties and unexpected user utterances, but also objections from stakeholders who may not be comfortable with introducing a robot into those spaces. We describe our difficulties with deploying a social robot in two different public settings: 1) Student services center; 2) Refugees and asylum seekers drop-in service. Although this is a failure report, in each use case we eventually managed to earn the trust of the staff and form a relationship with them, allowing us to deploy our robot and conduct our studies.
comment: Accepted at the workshop on Real-World HRI in Public and Private Spaces: Successes, Failures, and Lessons Learned (PubRob-Fails), held at the IEEE RO-MAN Conference, 2025 (paper PubRob-Fails/2025/4)
☆ OASIS: Real-Time Opti-Acoustic Sensing for Intervention Systems in Unstructured Environments IROS 2025
High resolution underwater 3D scene reconstruction is crucial for various applications, including construction, infrastructure maintenance, monitoring, exploration, and scientific investigation. Prior work has leveraged the complementary sensing modalities of imaging sonars and optical cameras for opti-acoustic 3D scene reconstruction, demonstrating improved results over methods which rely solely on either sensor. However, while most existing approaches focus on offline reconstruction, real-time spatial awareness is essential for both autonomous and piloted underwater vehicle operations. This paper presents OASIS, an opti-acoustic fusion method that integrates data from optical images with voxel carving techniques to achieve real-time 3D reconstruction unstructured underwater workspaces. Our approach utilizes an "eye-in-hand" configuration, which leverages the dexterity of robotic manipulator arms to capture multiple workspace views across a short baseline. We validate OASIS through tank-based experiments and present qualitative and quantitative results that highlight its utility for underwater manipulation tasks.
comment: This paper has been accepted for publication in IROS 2025. Copyright IEEE
☆ Talk Less, Fly Lighter: Autonomous Semantic Compression for UAV Swarm Communication via LLMs
The rapid adoption of Large Language Models (LLMs) in unmanned systems has significantly enhanced the semantic understanding and autonomous task execution capabilities of Unmanned Aerial Vehicle (UAV) swarms. However, limited communication bandwidth and the need for high-frequency interactions pose severe challenges to semantic information transmission within the swarm. This paper explores the feasibility of LLM-driven UAV swarms for autonomous semantic compression communication, aiming to reduce communication load while preserving critical task semantics. To this end, we construct four types of 2D simulation scenarios with different levels of environmental complexity and design a communication-execution pipeline that integrates system prompts with task instruction prompts. On this basis, we systematically evaluate the semantic compression performance of nine mainstream LLMs in different scenarios and analyze their adaptability and stability through ablation studies on environmental complexity and swarm size. Experimental results demonstrate that LLM-based UAV swarms have the potential to achieve efficient collaborative communication under bandwidth-constrained and multi-hop link conditions.
☆ Fully Spiking Actor-Critic Neural Network for Robotic Manipulation
This study proposes a hybrid curriculum reinforcement learning (CRL) framework based on a fully spiking neural network (SNN) for 9-degree-of-freedom robotic arms performing target reaching and grasping tasks. To reduce network complexity and inference latency, the SNN architecture is simplified to include only an input and an output layer, which shows strong potential for resource-constrained environments. Building on the advantages of SNNs-high inference speed, low energy consumption, and spike-based biological plausibility, a temporal progress-partitioned curriculum strategy is integrated with the Proximal Policy Optimization (PPO) algorithm. Meanwhile, an energy consumption modeling framework is introduced to quantitatively compare the theoretical energy consumption between SNNs and conventional Artificial Neural Networks (ANNs). A dynamic two-stage reward adjustment mechanism and optimized observation space further improve learning efficiency and policy accuracy. Experiments on the Isaac Gym simulation platform demonstrate that the proposed method achieves superior performance under realistic physical constraints. Comparative evaluations with conventional PPO and ANN baselines validate the scalability and energy efficiency of the proposed approach in dynamic robotic manipulation tasks.
☆ Toward General Physical Intelligence for Resilient Agile Manufacturing Automation
Agile and human-centric manufacturing stipulates resilient robotic solutions capable of contextual reasoning and safe interaction in unstructured environments. Foundation models particularly the Vision Language Action (VLA) models have emerged to fuse multimodal perception, reasoning and physically grounded action across varied embodiments into unified representation, termed as General Physical Intelligence (GPI). While GPI has already been described in the literature but its practical application and evolving role in contemporary agile manufacturing processes have yet to be duly explored. To bridge this gap, this practical review systematically surveys recent advancements in VLA models within GPI context, performs comprehensive comparative analysis of leading implementations and evaluates their readiness for industrial deployment through structured ablation study. Our analysis has organized state-of-the-art into five thematic pillars including multisensory representation learning, sim2real transfer, planning and control, uncertainty and safety measures and benchmarking. Finally, we articulate open research challenges and propose directions to better integrate GPI into next-generation industrial ecosystems in line with Industry 5.0.
comment: Advanced Engineering Informatics
DynamicPose: Real-time and Robust 6D Object Pose Tracking for Fast-Moving Cameras and Objects
We present DynamicPose, a retraining-free 6D pose tracking framework that improves tracking robustness in fast-moving camera and object scenarios. Previous work is mainly applicable to static or quasi-static scenes, and its performance significantly deteriorates when both the object and the camera move rapidly. To overcome these challenges, we propose three synergistic components: (1) A visual-inertial odometry compensates for the shift in the Region of Interest (ROI) caused by camera motion; (2) A depth-informed 2D tracker corrects ROI deviations caused by large object translation; (3) A VIO-guided Kalman filter predicts object rotation, generates multiple candidate poses, and then obtains the final pose by hierarchical refinement. The 6D pose tracking results guide subsequent 2D tracking and Kalman filter updates, forming a closed-loop system that ensures accurate pose initialization and precise pose tracking. Simulation and real-world experiments demonstrate the effectiveness of our method, achieving real-time and robust 6D pose tracking for fast-moving cameras and objects.
☆ No More Blind Spots: Learning Vision-Based Omnidirectional Bipedal Locomotion for Challenging Terrain
Effective bipedal locomotion in dynamic environments, such as cluttered indoor spaces or uneven terrain, requires agile and adaptive movement in all directions. This necessitates omnidirectional terrain sensing and a controller capable of processing such input. We present a learning framework for vision-based omnidirectional bipedal locomotion, enabling seamless movement using depth images. A key challenge is the high computational cost of rendering omnidirectional depth images in simulation, making traditional sim-to-real reinforcement learning (RL) impractical. Our method combines a robust blind controller with a teacher policy that supervises a vision-based student policy, trained on noise-augmented terrain data to avoid rendering costs during RL and ensure robustness. We also introduce a data augmentation technique for supervised student training, accelerating training by up to 10 times compared to conventional methods. Our framework is validated through simulation and real-world tests, demonstrating effective omnidirectional locomotion with minimal reliance on expensive rendering. This is, to the best of our knowledge, the first demonstration of vision-based omnidirectional bipedal locomotion, showcasing its adaptability to diverse terrains.
☆ ExploreVLM: Closed-Loop Robot Exploration Task Planning with Vision-Language Models
The advancement of embodied intelligence is accelerating the integration of robots into daily life as human assistants. This evolution requires robots to not only interpret high-level instructions and plan tasks but also perceive and adapt within dynamic environments. Vision-Language Models (VLMs) present a promising solution by combining visual understanding and language reasoning. However, existing VLM-based methods struggle with interactive exploration, accurate perception, and real-time plan adaptation. To address these challenges, we propose ExploreVLM, a novel closed-loop task planning framework powered by Vision-Language Models (VLMs). The framework is built around a step-wise feedback mechanism that enables real-time plan adjustment and supports interactive exploration. At its core is a dual-stage task planner with self-reflection, enhanced by an object-centric spatial relation graph that provides structured, language-grounded scene representations to guide perception and planning. An execution validator supports the closed loop by verifying each action and triggering re-planning. Extensive real-world experiments demonstrate that ExploreVLM significantly outperforms state-of-the-art baselines, particularly in exploration-centric tasks. Ablation studies further validate the critical role of the reflective planner and structured perception in achieving robust and efficient task execution.
Control of Legged Robots using Model Predictive Optimized Path Integral
Legged robots possess a unique ability to traverse rough terrains and navigate cluttered environments, making them well-suited for complex, real-world unstructured scenarios. However, such robots have not yet achieved the same level as seen in natural systems. Recently, sampling-based predictive controllers have demonstrated particularly promising results. This paper investigates a sampling-based model predictive strategy combining model predictive path integral (MPPI) with cross-entropy (CE) and covariance matrix adaptation (CMA) methods to generate real-time whole-body motions for legged robots across multiple scenarios. The results show that combining the benefits of MPPI, CE and CMA, namely using model predictive optimized path integral (MPOPI), demonstrates greater sample efficiency, enabling robots to attain superior locomotion results using fewer samples when compared to typical MPPI algorithms. Extensive simulation experiments in multiple scenarios on a quadruped robot show that MPOPI can be used as an anytime control strategy, increasing locomotion capabilities at each iteration.
comment: 8 pages, 13 figures, Humanoid conference
☆ OmniD: Generalizable Robot Manipulation Policy via Image-Based BEV Representation
The visuomotor policy can easily overfit to its training datasets, such as fixed camera positions and backgrounds. This overfitting makes the policy perform well in the in-distribution scenarios but underperform in the out-of-distribution generalization. Additionally, the existing methods also have difficulty fusing multi-view information to generate an effective 3D representation. To tackle these issues, we propose Omni-Vision Diffusion Policy (OmniD), a multi-view fusion framework that synthesizes image observations into a unified bird's-eye view (BEV) representation. We introduce a deformable attention-based Omni-Feature Generator (OFG) to selectively abstract task-relevant features while suppressing view-specific noise and background distractions. OmniD achieves 11\%, 17\%, and 84\% average improvement over the best baseline model for in-distribution, out-of-distribution, and few-shot experiments, respectively. Training code and simulation benchmark are available: https://github.com/1mather/omnid.git
☆ Integrating Symbolic RL Planning into a BDI-based Autonomous UAV Framework: System Integration and SIL Validation
Modern autonomous drone missions increasingly require software frameworks capable of seamlessly integrating structured symbolic planning with adaptive reinforcement learning (RL). Although traditional rule-based architectures offer robust structured reasoning for drone autonomy, their capabilities fall short in dynamically complex operational environments that require adaptive symbolic planning. Symbolic RL (SRL), using the Planning Domain Definition Language (PDDL), explicitly integrates domain-specific knowledge and operational constraints, significantly improving the reliability and safety of unmanned aerial vehicle (UAV) decision making. In this study, we propose the AMAD-SRL framework, an extended and refined version of the Autonomous Mission Agents for Drones (AMAD) cognitive multi-agent architecture, enhanced with symbolic reinforcement learning for dynamic mission planning and execution. We validated our framework in a Software-in-the-Loop (SIL) environment structured identically to an intended Hardware-In-the-Loop Simulation (HILS) platform, ensuring seamless transition to real hardware. Experimental results demonstrate stable integration and interoperability of modules, successful transitions between BDI-driven and symbolic RL-driven planning phases, and consistent mission performance. Specifically, we evaluate a target acquisition scenario in which the UAV plans a surveillance path followed by a dynamic reentry path to secure the target while avoiding threat zones. In this SIL evaluation, mission efficiency improved by approximately 75% over a coverage-based baseline, measured by travel distance reduction. This study establishes a robust foundation for handling complex UAV missions and discusses directions for further enhancement and validation.
☆ Saliency-Based Attention Shifting: A Framework for Improving Driver Situational Awareness of Out-of-Label Hazards
The advent of autonomous driving systems promises to transform transportation by enhancing safety, efficiency, and comfort. As these technologies evolve toward higher levels of autonomy, the need for integrated systems that seamlessly support human involvement in decision-making becomes increasingly critical. Certain scenarios necessitate human involvement, including those where the vehicle is unable to identify an object or element in the scene, and as such cannot take independent action. Therefore, situational awareness is essential to mitigate potential risks during a takeover, where a driver must assume control and autonomy from the vehicle. The need for driver attention is important to avoid collisions with external agents and ensure a smooth transition during takeover operations. This paper explores the integration of attention redirection techniques, such as gaze manipulation through targeted visual and auditory cues, to help drivers maintain focus on emerging hazards and reduce target fixation in semi-autonomous driving scenarios. We propose a conceptual framework that combines real-time gaze tracking, context-aware saliency analysis, and synchronized visual and auditory alerts to enhance situational awareness, proactively address potential hazards, and foster effective collaboration between humans and autonomous systems.
☆ Contact-Rich and Deformable Foot Modeling for Locomotion Control of the Human Musculoskeletal System RAS 24
The human foot serves as the critical interface between the body and environment during locomotion. Existing musculoskeletal models typically oversimplify foot-ground contact mechanics, limiting their ability to accurately simulate human gait dynamics. We developed a novel contact-rich and deformable model of the human foot integrated within a complete musculoskeletal system that captures the complex biomechanical interactions during walking. To overcome the control challenges inherent in modeling multi-point contacts and deformable material, we developed a two-stage policy training strategy to learn natural walking patterns for this interface-enhanced model. Comparative analysis between our approach and conventional rigid musculoskeletal models demonstrated improvements in kinematic, kinetic, and gait stability metrics. Validation against human subject data confirmed that our simulation closely reproduced real-world biomechanical measurements. This work advances contact-rich interface modeling for human musculoskeletal systems and establishes a robust framework that can be extended to humanoid robotics applications requiring precise foot-ground interaction control.
comment: IEEE-RAS 24th International Conference on Humanoid Robots (Humanoids 2025)
☆ From Screen to Stage: Kid Cosmo, A Life-Like, Torque-Controlled Humanoid for Entertainment Robotics
Humanoid robots represent the cutting edge of robotics research, yet their potential in entertainment remains largely unexplored. Entertainment as a field prioritizes visuals and form, a principle that contrasts with the purely functional designs of most contemporary humanoid robots. Designing entertainment humanoid robots capable of fluid movement presents a number of unique challenges. In this paper, we present Kid Cosmo, a research platform designed for robust locomotion and life-like motion generation while imitating the look and mannerisms of its namesake character from Netflix's movie The Electric State. Kid Cosmo is a child-sized humanoid robot, standing 1.45 m tall and weighing 25 kg. It contains 28 degrees of freedom and primarily uses proprioceptive actuators, enabling torque-control walking and lifelike motion generation. Following worldwide showcases as part of the movie's press tour, we present the system architecture, challenges of a functional entertainment robot and unique solutions, and our initial findings on stability during simultaneous upper and lower body movement. We demonstrate the viability of performance-oriented humanoid robots that prioritize both character embodiment and technical functionality.
comment: 8 pages, 14 figures, accepted by IEEE Humanoids 2025
☆ Bioinspired underwater soft robots: from biology to robotics and back
The ocean vast unexplored regions and diverse soft-bodied marine organisms have spurred interest in bio-inspired underwater soft robotics. Recent advances have enabled new capabilities in underwater movement, sensing, and interaction. However, these efforts are largely unidirectional, with biology guiding robotics while insights from robotics rarely feed back into biology. Here we propose a holistic, bidirectional framework that integrates biological principles, robotic implementation, and biological validation. We show that soft robots can serve as experimental tools to probe biological functions and even test evolutionary hypotheses. Their inherent compliance also allows them to outperform rigid systems in unstructured environments, supporting applications in marine exploration, manipulation, and medicine. Looking forward, we introduce bio-universal-inspired robotics, a paradigm that transcends species-specific mimicry by identifying convergent principles across species to inspire more adaptable designs. Despite rapid progress, challenges persist in material robustness, actuation efficiency, autonomy, and intelligence. By uniting biology and engineering, soft robots can advance ocean exploration and deepen scientific discovery.
☆ Data Shift of Object Detection in Autonomous Driving
With the widespread adoption of machine learning technologies in autonomous driving systems, their role in addressing complex environmental perception challenges has become increasingly crucial. However, existing machine learning models exhibit significant vulnerability, as their performance critically depends on the fundamental assumption that training and testing data satisfy the independent and identically distributed condition, which is difficult to guarantee in real-world applications. Dynamic variations in data distribution caused by seasonal changes, weather fluctuations lead to data shift problems in autonomous driving systems. This study investigates the data shift problem in autonomous driving object detection tasks, systematically analyzing its complexity and diverse manifestations. We conduct a comprehensive review of data shift detection methods and employ shift detection analysis techniques to perform dataset categorization and balancing. Building upon this foundation, we construct an object detection model. To validate our approach, we optimize the model by integrating CycleGAN-based data augmentation techniques with the YOLOv5 framework. Experimental results demonstrate that our method achieves superior performance compared to baseline models on the BDD100K dataset.
☆ LocoMamba: Vision-Driven Locomotion via End-to-End Deep Reinforcement Learning with Mamba
We introduce LocoMamba, a vision-driven cross-modal DRL framework built on selective state-space models, specifically leveraging Mamba, that achieves near-linear-time sequence modeling, effectively captures long-range dependencies, and enables efficient training with longer sequences. First, we embed proprioceptive states with a multilayer perceptron and patchify depth images with a lightweight convolutional neural network, producing compact tokens that improve state representation. Second, stacked Mamba layers fuse these tokens via near-linear-time selective scanning, reducing latency and memory footprint, remaining robust to token length and image resolution, and providing an inductive bias that mitigates overfitting. Third, we train the policy end-to-end with Proximal Policy Optimization under terrain and appearance randomization and an obstacle-density curriculum, using a compact state-centric reward that balances progress, smoothness, and safety. We evaluate our method in challenging simulated environments with static and moving obstacles as well as uneven terrain. Compared with state-of-the-art baselines, our method achieves higher returns and success rates with fewer collisions, exhibits stronger generalization to unseen terrains and obstacle densities, and improves training efficiency by converging in fewer updates under the same compute budget.
♻ ☆ Affordance-R1: Reinforcement Learning for Generalizable Affordance Reasoning in Multimodal Large Language Model
Affordance grounding focuses on predicting the specific regions of objects that are associated with the actions to be performed by robots. It plays a vital role in the fields of human-robot interaction, human-object interaction, embodied manipulation, and embodied perception. Existing models often neglect the affordance shared among different objects because they lack the Chain-of-Thought(CoT) reasoning abilities, limiting their out-of-domain (OOD) generalization and explicit reasoning capabilities. To address these challenges, we propose Affordance-R1, the first unified affordance grounding framework that integrates cognitive CoT guided Group Relative Policy Optimization (GRPO) within a reinforcement learning paradigm. Specifically, we designed a sophisticated affordance function, which contains format, perception, and cognition rewards to effectively guide optimization directions. Furthermore, we constructed a high-quality affordance-centric reasoning dataset, ReasonAff, to support training. Trained exclusively via reinforcement learning with GRPO and without explicit reasoning data, Affordance-R1 achieves robust zero-shot generalization and exhibits emergent test-time reasoning capabilities. Comprehensive experiments demonstrate that our model outperforms well-established methods and exhibits open-world generalization. To the best of our knowledge, Affordance-R1 is the first to integrate GRPO-based RL with reasoning into affordance reasoning. The code of our method and our dataset is released on https://github.com/hq-King/Affordance-R1.
♻ ☆ RT-Cache: Training-Free Retrieval for Real-Time Manipulation RAS 24
Real robots are expected to repeat the same behavior in new environments with very little new data, yet modern controllers either incur heavy per-step inference or require deployment-time fine-tuning. We propose RT-Cache, a training-free retrieval-as-control pipeline that caches diverse image action trajectories in a unified vector memory and, at test time, embeds the current frame to retrieve and replay multi-step snippets, replacing per-step model calls. A hierarchical search keeps lookups sub-second at million scale, shifting cost from compute to storage and enabling real-time control on modest GPUs. Across real-robot tasks and large open logs, RT-Cache achieves higher success and lower completion time than strong retrieval baselines (approximately x2 higher success and ~30% faster in our settings), and a single-episode anchoring study shows immediate adaptation to a more complex, contact-rich task without fine-tuning. RT-Cache turns experience into an append-only memory, offering a simple, scalable path to few-shot deployment today and a foundation for multimodal keys and optional integration with high-level policies. Project page: https://rt-cache.github.io/.
comment: 8 pages, 6 figures. Accepted to the 2025 IEEE-RAS 24th International Conference on Humanoid Robots
♻ ☆ Research Challenges and Progress in the End-to-End V2X Cooperative Autonomous Driving Competition ICCV
With the rapid advancement of autonomous driving technology, vehicle-to-everything (V2X) communication has emerged as a key enabler for extending perception range and enhancing driving safety by providing visibility beyond the line of sight. However, integrating multi-source sensor data from both ego-vehicles and infrastructure under real-world constraints, such as limited communication bandwidth and dynamic environments, presents significant technical challenges. To facilitate research in this area, we organized the End-to-End Autonomous Driving through V2X Cooperation Challenge, which features two tracks: cooperative temporal perception and cooperative end-to-end planning. Built on the UniV2X framework and the V2X-Seq-SPD dataset, the challenge attracted participation from over 30 teams worldwide and established a unified benchmark for evaluating cooperative driving systems. This paper describes the design and outcomes of the challenge, highlights key research problems including bandwidth-aware fusion, robust multi-agent planning, and heterogeneous sensor integration, and analyzes emerging technical trends among top-performing solutions. By addressing practical constraints in communication and data fusion, the challenge contributes to the development of scalable and reliable V2X-cooperative autonomous driving systems.
comment: 10 pages, 4 figures, accepted by ICCVW Author list updated to match the camera-ready version, in compliance with conference policy
FSDP: Fast and Safe Data-Driven Overtaking Trajectory Planning for Head-to-Head Autonomous Racing Competitions IROS 2025
Generating overtaking trajectories in autonomous racing is a challenging task, as the trajectory must satisfy the vehicle's dynamics and ensure safety and real-time performance running on resource-constrained hardware. This work proposes the Fast and Safe Data-Driven Planner to address this challenge. Sparse Gaussian predictions are introduced to improve both the computational efficiency and accuracy of opponent predictions. Furthermore, the proposed approach employs a bi-level quadratic programming framework to generate an overtaking trajectory leveraging the opponent predictions. The first level uses polynomial fitting to generate a rough trajectory, from which reference states and control inputs are derived for the second level. The second level formulates a model predictive control optimization problem in the Frenet frame, generating a trajectory that satisfies both kinematic feasibility and safety. Experimental results on the F1TENTH platform show that our method outperforms the State-of-the-Art, achieving an 8.93% higher overtaking success rate, allowing the maximum opponent speed, ensuring a smoother ego trajectory, and reducing 74.04% computational time compared to the Predictive Spliner method. The code is available at: https://github.com/ZJU-DDRX/FSDP.
comment: accepted by IROS 2025
♻ ☆ Reasoning and Learning a Perceptual Metric for Self-Training of Reflective Objects in Bin-Picking with a Low-cost Camera RAL
Bin-picking of metal objects using low-cost RGB-D cameras often suffers from sparse depth information and reflective surface textures, leading to errors and the need for manual labeling. To reduce human intervention, we propose a two-stage framework consisting of a metric learning stage and a self-training stage. Specifically, to automatically process data captured by a low-cost camera (LC), we introduce a Multi-object Pose Reasoning (MoPR) algorithm that optimizes pose hypotheses under depth, collision, and boundary constraints. To further refine pose candidates, we adopt a Symmetry-aware Lie-group based Bayesian Gaussian Mixture Model (SaL-BGMM), integrated with the Expectation-Maximization (EM) algorithm, for symmetry-aware filtering. Additionally, we propose a Weighted Ranking Information Noise Contrastive Estimation (WR-InfoNCE) loss to enable the LC to learn a perceptual metric from reconstructed data, supporting self-training on untrained or even unseen objects. Experimental results show that our approach outperforms several state-of-the-art methods on both the ROBI dataset and our newly introduced Self-ROBI dataset.
comment: 8 pages, 10 figures; Accepted by IEEE RAL, presentation at ICRA 2026
♻ ☆ NarraGuide: an LLM-based Narrative Mobile Robot for Remote Place Exploration
Robotic telepresence enables users to navigate and experience remote environments. However, effective navigation and situational awareness depend on users' prior knowledge of the environment, limiting the usefulness of these systems for exploring unfamiliar places. We explore how integrating location-aware LLM-based narrative capabilities into a mobile robot can support remote exploration. We developed a prototype system, called NarraGuide, that provides narrative guidance for users to explore and learn about a remote place through a dialogue-based interface. We deployed our prototype in a geology museum, where remote participants (n=20) used the robot to tour the museum. Our findings reveal how users perceived the robot's role, engaged in dialogue in the tour, and expressed preferences for bystander encountering. Our work demonstrates the potential of LLM-enabled robotic capabilities to deliver location-aware narrative guidance and enrich the experience of exploring remote environments.
♻ ☆ Crossing the Human-Robot Embodiment Gap with Sim-to-Real RL using One Human Demonstration
Teaching robots dexterous manipulation skills often requires collecting hundreds of demonstrations using wearables or teleoperation, a process that is challenging to scale. Videos of human-object interactions are easier to collect and scale, but leveraging them directly for robot learning is difficult due to the lack of explicit action labels and human-robot embodiment differences. We propose Human2Sim2Robot, a novel real-to-sim-to-real framework for training dexterous manipulation policies using only one RGB-D video of a human demonstrating a task. Our method utilizes reinforcement learning (RL) in simulation to cross the embodiment gap without relying on wearables, teleoperation, or large-scale data collection. From the video, we extract: (1) the object pose trajectory to define an object-centric, embodiment-agnostic reward, and (2) the pre-manipulation hand pose to initialize and guide exploration during RL training. These components enable effective policy learning without any task-specific reward tuning. In the single human demo regime, Human2Sim2Robot outperforms object-aware replay by over 55% and imitation learning by over 68% on grasping, non-prehensile manipulation, and multi-step tasks. Website: https://human2sim2robot.github.io
♻ ☆ FDSPC: Fast and Direct Smooth Path Planning via Continuous Curvature Integration
In recent decades, global path planning of robot has seen significant advancements. Both heuristic search-based methods and probability sampling-based methods have shown capabilities to find feasible solutions in complex scenarios. However, mainstream global path planning algorithms often produce paths with bends, requiring additional smoothing post-processing. In this work, we propose a fast and direct path planning method based on continuous curvature integration. This method ensures path feasibility while directly generating global smooth paths with constant velocity, thus eliminating the need for post-path-smoothing. Furthermore, we compare the proposed method with existing approaches in terms of solution time, path length, memory usage, and smoothness under multiple scenarios. The proposed method is vastly superior to the average performance of state-of-the-art (SOTA) methods, especially in terms of the self-defined $\mathcal{S}_2 $ smoothness (mean angle of steering). These results demonstrate the effectiveness and superiority of our approach in several representative environments.
♻ ☆ SLAC: Simulation-Pretrained Latent Action Space for Whole-Body Real-World RL
Building capable household and industrial robots requires mastering the control of versatile, high-degree-of-freedom (DoF) systems such as mobile manipulators. While reinforcement learning (RL) holds promise for autonomously acquiring robot control policies, scaling it to high-DoF embodiments remains challenging. Direct RL in the real world demands both safe exploration and high sample efficiency, which are difficult to achieve in practice. Sim-to-real RL, on the other hand, is often brittle due to the reality gap. This paper introduces SLAC, a method that renders real-world RL feasible for complex embodiments by leveraging a low-fidelity simulator to pretrain a task-agnostic latent action space. SLAC trains this latent action space via a customized unsupervised skill discovery method designed to promote temporal abstraction, disentanglement, and safety, thereby facilitating efficient downstream learning. Once a latent action space is learned, SLAC uses it as the action interface for a novel off-policy RL algorithm to autonomously learn downstream tasks through real-world interactions. We evaluate SLAC against existing methods on a suite of bimanual mobile manipulation tasks, where it achieves state-of-the-art performance. Notably, SLAC learns contact-rich whole-body tasks in under an hour of real-world interactions, without relying on any demonstrations or hand-crafted behavior priors. More information and robot videos at robo-rl.github.io
comment: CoRL 2025
♻ ☆ Measuring and Minimizing Disturbance of Marine Animals to Underwater Vehicles
Do fish respond to the presence of underwater vehicles, potentially biasing our estimates about them? If so, are there strategies to measure and mitigate this response? This work provides a theoretical and practical framework towards bias-free estimation of animal behavior from underwater vehicle observations. We also provide preliminary results from the field in coral reef environments to address these questions.
comment: ISER 2025 proceedings
♻ ☆ D-CODA: Diffusion for Coordinated Dual-Arm Data Augmentation
Learning bimanual manipulation is challenging due to its high dimensionality and tight coordination required between two arms. Eye-in-hand imitation learning, which uses wrist-mounted cameras, simplifies perception by focusing on task-relevant views. However, collecting diverse demonstrations remains costly, motivating the need for scalable data augmentation. While prior work has explored visual augmentation in single-arm settings, extending these approaches to bimanual manipulation requires generating viewpoint-consistent observations across both arms and producing corresponding action labels that are both valid and feasible. In this work, we propose Diffusion for COordinated Dual-arm Data Augmentation (D-CODA), a method for offline data augmentation tailored to eye-in-hand bimanual imitation learning that trains a diffusion model to synthesize novel, viewpoint-consistent wrist-camera images for both arms while simultaneously generating joint-space action labels. It employs constrained optimization to ensure that augmented states involving gripper-to-object contacts adhere to constraints suitable for bimanual coordination. We evaluate D-CODA on 5 simulated and 3 real-world tasks. Our results across 2250 simulation trials and 300 real-world trials demonstrate that it outperforms baselines and ablations, showing its potential for scalable data augmentation in eye-in-hand bimanual manipulation. Our project website is at: https://dcodaaug.github.io/D-CODA/.
comment: Accepted to the Conference on Robot Learning (CoRL) 2025
Computer Vision and Pattern Recognition 64
☆ Scalable RF Simulation in Generative 4D Worlds
Radio Frequency (RF) sensing has emerged as a powerful, privacy-preserving alternative to vision-based methods for indoor perception tasks. However, collecting high-quality RF data in dynamic and diverse indoor environments remains a major challenge. To address this, we introduce WaveVerse, a prompt-based, scalable framework that simulates realistic RF signals from generated indoor scenes with human motions. WaveVerse introduces a language-guided 4D world generator, which includes a state-aware causal transformer for human motion generation conditioned on spatial constraints and texts, and a phase-coherent ray tracing simulator that enables the simulation of accurate and coherent RF signals. Experiments demonstrate the effectiveness of our approach in conditioned human motion generation and highlight how phase coherence is applied to beamforming and respiration monitoring. We further present two case studies in ML-based high-resolution imaging and human activity recognition, demonstrating that WaveVerse not only enables data generation for RF imaging for the first time, but also consistently achieves performance gain in both data-limited and data-adequate scenarios.
☆ RealTalk: Realistic Emotion-Aware Lifelike Talking-Head Synthesis ICCV 2025
Emotion is a critical component of artificial social intelligence. However, while current methods excel in lip synchronization and image quality, they often fail to generate accurate and controllable emotional expressions while preserving the subject's identity. To address this challenge, we introduce RealTalk, a novel framework for synthesizing emotional talking heads with high emotion accuracy, enhanced emotion controllability, and robust identity preservation. RealTalk employs a variational autoencoder (VAE) to generate 3D facial landmarks from driving audio, which are concatenated with emotion-label embeddings using a ResNet-based landmark deformation model (LDM) to produce emotional landmarks. These landmarks and facial blendshape coefficients jointly condition a novel tri-plane attention Neural Radiance Field (NeRF) to synthesize highly realistic emotional talking heads. Extensive experiments demonstrate that RealTalk outperforms existing methods in emotion accuracy, controllability, and identity preservation, advancing the development of socially intelligent AI systems.
comment: Accepted to the ICCV 2025 Workshop on Artificial Social Intelligence
☆ Demystifying Foreground-Background Memorization in Diffusion Models
Diffusion models (DMs) memorize training images and can reproduce near-duplicates during generation. Current detection methods identify verbatim memorization but fail to capture two critical aspects: quantifying partial memorization occurring in small image regions, and memorization patterns beyond specific prompt-image pairs. To address these limitations, we propose Foreground Background Memorization (FB-Mem), a novel segmentation-based metric that classifies and quantifies memorized regions within generated images. Our method reveals that memorization is more pervasive than previously understood: (1) individual generations from single prompts may be linked to clusters of similar training images, revealing complex memorization patterns that extend beyond one-to-one correspondences; and (2) existing model-level mitigation methods, such as neuron deactivation and pruning, fail to eliminate local memorization, which persists particularly in foreground regions. Our work establishes an effective framework for measuring memorization in diffusion models, demonstrates the inadequacy of current mitigation approaches, and proposes a stronger mitigation method using a clustering approach.
☆ KP-INR: A Dual-Branch Implicit Neural Representation Model for Cardiac Cine MRI Reconstruction
Cardiac Magnetic Resonance (CMR) imaging is a non-invasive method for assessing cardiac structure, function, and blood flow. Cine MRI extends this by capturing heart motion, providing detailed insights into cardiac mechanics. To reduce scan time and breath-hold discomfort, fast acquisition techniques have been utilized at the cost of lowering image quality. Recently, Implicit Neural Representation (INR) methods have shown promise in unsupervised reconstruction by learning coordinate-to-value mappings from undersampled data, enabling high-quality image recovery. However, current existing INR methods primarily focus on using coordinate-based positional embeddings to learn the mapping, while overlooking the feature representations of the target point and its neighboring context. In this work, we propose KP-INR, a dual-branch INR method operating in k-space for cardiac cine MRI reconstruction: one branch processes the positional embedding of k-space coordinates, while the other learns from local multi-scale k-space feature representations at those coordinates. By enabling cross-branch interaction and approximating the target k-space values from both branches, KP-INR can achieve strong performance on challenging Cartesian k-space data. Experiments on the CMRxRecon2024 dataset confirms its improved performance over baseline models and highlights its potential in this field.
☆ Infusing fine-grained visual knowledge to Vision-Language Models ICCV
Large-scale contrastive pre-training produces powerful Vision-and-Language Models (VLMs) capable of generating representations (embeddings) effective for a wide variety of visual and multimodal tasks. However, these pretrained embeddings remain suboptimal for fine-grained open-set visual retrieval, where state-of-the-art results require fine-tuning the vision encoder using annotated domain-specific samples. Naively performing such fine-tuning typically leads to catastrophic forgetting, severely diminishing the model's general-purpose visual and cross-modal capabilities. In this work, we propose a fine-tuning method explicitly designed to achieve optimal balance between fine-grained domain adaptation and retention of the pretrained VLM's broad multimodal knowledge. Drawing inspiration from continual learning literature, we systematically analyze standard regularization techniques aimed at knowledge retention and propose an efficient and effective combination strategy. Additionally, we address the commonly overlooked yet critical aspects of validation set design and hyperparameter tuning to ensure reproducibility and robust generalization across datasets and pretrained models. We extensively evaluate our method on both fine-grained and coarse-grained image-image and image-text retrieval benchmarks. Our approach consistently achieves strong results, notably retaining the visual-text alignment without utilizing any text data or the original text encoder during fine-tuning. Code and model checkpoints: https://github.com/nikosips/infusing .
comment: ICCVW 2025 accepted paper. Workshop name: "What is Next in Multimodal Foundation Models?"
☆ TriQDef: Disrupting Semantic and Gradient Alignment to Prevent Adversarial Patch Transferability in Quantized Neural Networks
Quantized Neural Networks (QNNs) are increasingly deployed in edge and resource-constrained environments due to their efficiency in computation and memory usage. While shown to distort the gradient landscape and weaken conventional pixel-level attacks, it provides limited robustness against patch-based adversarial attacks-localized, high-saliency perturbations that remain surprisingly transferable across bit-widths. Existing defenses either overfit to fixed quantization settings or fail to address this cross-bit generalization vulnerability. We introduce \textbf{TriQDef}, a tri-level quantization-aware defense framework designed to disrupt the transferability of patch-based adversarial attacks across QNNs. TriQDef consists of: (1) a Feature Disalignment Penalty (FDP) that enforces semantic inconsistency by penalizing perceptual similarity in intermediate representations; (2) a Gradient Perceptual Dissonance Penalty (GPDP) that explicitly misaligns input gradients across bit-widths by minimizing structural and directional agreement via Edge IoU and HOG Cosine metrics; and (3) a Joint Quantization-Aware Training Protocol that unifies these penalties within a shared-weight training scheme across multiple quantization levels. Extensive experiments on CIFAR-10 and ImageNet demonstrate that TriQDef reduces Attack Success Rates (ASR) by over 40\% on unseen patch and quantization combinations, while preserving high clean accuracy. Our findings underscore the importance of disrupting both semantic and perceptual gradient alignment to mitigate patch transferability in QNNs.
☆ DualFit: A Two-Stage Virtual Try-On via Warping and Synthesis ICCV 2025
Virtual Try-On technology has garnered significant attention for its potential to transform the online fashion retail experience by allowing users to visualize how garments would look on them without physical trials. While recent advances in diffusion-based warping-free methods have improved perceptual quality, they often fail to preserve fine-grained garment details such as logos and printed text elements that are critical for brand integrity and customer trust. In this work, we propose DualFit, a hybrid VTON pipeline that addresses this limitation by two-stage approach. In the first stage, DualFit warps the target garment to align with the person image using a learned flow field, ensuring high-fidelity preservation. In the second stage, a fidelity-preserving try-on module synthesizes the final output by blending the warped garment with preserved human regions. Particularly, to guide this process, we introduce a preserved-region input and an inpainting mask, enabling the model to retain key areas and regenerate only where necessary, particularly around garment seams. Extensive qualitative results show that DualFit achieves visually seamless try-on results while faithfully maintaining high-frequency garment details, striking an effective balance between reconstruction accuracy and perceptual realism.
comment: Retail Vision, ICCV 2025
☆ Simple o3: Towards Interleaved Vision-Language Reasoning
Multimodal Large Language Models (MLLMs) have shown impressive performance on vision-language tasks, but their long Chain-of-Thought (CoT) capabilities in multimodal scenarios remain underexplored. Inspired by OpenAI's o3 model, which emulates human-like ''thinking with image'' through iterative visual transformations and linguistic reasoning, we propose Simple o3, an end-to-end framework that integrates dynamic tool interactions (e.g., cropping, zooming, and reusing) into interleaved vision-language reasoning via supervised fine-tuning (SFT). Our approach features a scalable data synthesis pipeline that generates high-quality interleaved vision-language reasoning chains via an ''observe-reason-act'' cycle, complete with executable visual operations and rigorous verification, yielding the open-source TWI-Tools-146K dataset. Experimental results demonstrate Simple o3's superior performance on diverse benchmarks, outperforming existing approaches. By combining enhanced reasoning capabilities, Simple o3 establishes a powerful yet computationally affordable paradigm for advancing multimodal reasoning. Remarkably, we provide the first in-depth analysis of different interleaved reasoning strategies, offering insights into their impact on model performance. We found that by introducing additional visual tokens for interleaved vision-language reasoning, reusing and magnifying the original image significantly improves the model's visual reasoning and fine-grained perception, while image cropping based on precise visual grounding allows the model to effectively focus on key entities or regions, further enhancing its capabilities.
☆ VELVET-Med: Vision and Efficient Language Pre-training for Volumetric Imaging Tasks in Medicine
Vision-and-language models (VLMs) have been increasingly explored in the medical domain, particularly following the success of CLIP in general domain. However, unlike the relatively straightforward pairing of 2D images and text, curating large-scale paired data in the medical field for volumetric modalities such as CT scans remains a challenging and time-intensive process. This difficulty often limits the performance on downstream tasks. To address these challenges, we propose a novel vision-language pre-training (VLP) framework, termed as \textbf{VELVET-Med}, specifically designed for limited volumetric data such as 3D CT and associated radiology reports. Instead of relying on large-scale data collection, our method focuses on the development of effective pre-training objectives and model architectures. The key contributions are: 1) We incorporate uni-modal self-supervised learning into VLP framework, which are often underexplored in the existing literature. 2) We propose a novel language encoder, termed as \textbf{TriBERT}, for learning multi-level textual semantics. 3) We devise the hierarchical contrastive learning to capture multi-level vision-language correspondence. Using only 38,875 scan-report pairs, our approach seeks to uncover rich spatial and semantic relationships embedded in volumetric medical images and corresponding clinical narratives, thereby enhancing the generalization ability of the learned encoders. The resulting encoders exhibit strong transferability, achieving state-of-the-art performance across a wide range of downstream tasks, including 3D segmentation, cross-modal retrieval, visual question answering, and report generation.
☆ Error Propagation Mechanisms and Compensation Strategies for Quantized Diffusion
Diffusion models have transformed image synthesis by establishing unprecedented quality and creativity benchmarks. Nevertheless, their large-scale deployment faces challenges due to computationally intensive iterative denoising processes. Although post-training quantization(PTQ) provides an effective pathway for accelerating sampling, the iterative nature of diffusion models causes stepwise quantization errors to accumulate progressively during generation, inevitably compromising output fidelity. To address this challenge, we develop a theoretical framework that mathematically formulates error propagation in Diffusion Models (DMs), deriving per-step quantization error propagation equations and establishing the first closed-form solution for cumulative error. Building on this theoretical foundation, we propose a timestep-aware cumulative error compensation scheme. Extensive experiments across multiple image datasets demonstrate that our compensation strategy effectively mitigates error propagation, significantly enhancing existing PTQ methods to achieve state-of-the-art(SOTA) performance on low-precision diffusion models.
☆ Enhancing 3D point accuracy of laser scanner through multi-stage convolutional neural network for applications in construction
We propose a multi-stage convolutional neural network (MSCNN) based integrated method for reducing uncertainty of 3D point accuracy of lasar scanner (LS) in rough indoor rooms, providing more accurate spatial measurements for high-precision geometric model creation and renovation. Due to different equipment limitations and environmental factors, high-end and low-end LS have positional errors. Our approach pairs high-accuracy scanners (HAS) as references with corresponding low-accuracy scanners (LAS) of measurements in identical environments to quantify specific error patterns. By establishing a statistical relationship between measurement discrepancies and their spatial distribution, we develop a correction framework that combines traditional geometric processing with targeted neural network refinement. This method transforms the quantification of systematic errors into a supervised learning problem, allowing precise correction while preserving critical geometric features. Experimental results in our rough indoor rooms dataset show significant improvements in measurement accuracy, with mean square error (MSE) reductions exceeding 70% and peak signal-to-noise ratio (PSNR) improvements of approximately 6 decibels. This approach enables low-end devices to achieve measurement uncertainty levels approaching those of high-end devices without hardware modifications.
☆ Generic Event Boundary Detection via Denoising Diffusion ICCV 2025
Generic event boundary detection (GEBD) aims to identify natural boundaries in a video, segmenting it into distinct and meaningful chunks. Despite the inherent subjectivity of event boundaries, previous methods have focused on deterministic predictions, overlooking the diversity of plausible solutions. In this paper, we introduce a novel diffusion-based boundary detection model, dubbed DiffGEBD, that tackles the problem of GEBD from a generative perspective. The proposed model encodes relevant changes across adjacent frames via temporal self-similarity and then iteratively decodes random noise into plausible event boundaries being conditioned on the encoded features. Classifier-free guidance allows the degree of diversity to be controlled in denoising diffusion. In addition, we introduce a new evaluation metric to assess the quality of predictions considering both diversity and fidelity. Experiments show that our method achieves strong performance on two standard benchmarks, Kinetics-GEBD and TAPOS, generating diverse and plausible event boundaries.
comment: Accepted to ICCV 2025
☆ Automated Model Evaluation for Object Detection via Prediction Consistency and Reliablity ICCV 2025
Recent advances in computer vision have made training object detectors more efficient and effective; however, assessing their performance in real-world applications still relies on costly manual annotation. To address this limitation, we develop an automated model evaluation (AutoEval) framework for object detection. We propose Prediction Consistency and Reliability (PCR), which leverages the multiple candidate bounding boxes that conventional detectors generate before non-maximum suppression (NMS). PCR estimates detection performance without ground-truth labels by jointly measuring 1) the spatial consistency between boxes before and after NMS, and 2) the reliability of the retained boxes via the confidence scores of overlapping boxes. For a more realistic and scalable evaluation, we construct a meta-dataset by applying image corruptions of varying severity. Experimental results demonstrate that PCR yields more accurate performance estimates than existing AutoEval methods, and the proposed meta-dataset covers a wider range of detection performance. The code is available at https://github.com/YonseiML/autoeval-det.
comment: ICCV 2025 Oral
☆ VimoRAG: Video-based Retrieval-augmented 3D Motion Generation for Motion Language Models
This paper introduces VimoRAG, a novel video-based retrieval-augmented motion generation framework for motion large language models (LLMs). As motion LLMs face severe out-of-domain/out-of-vocabulary issues due to limited annotated data, VimoRAG leverages large-scale in-the-wild video databases to enhance 3D motion generation by retrieving relevant 2D human motion signals. While video-based motion RAG is nontrivial, we address two key bottlenecks: (1) developing an effective motion-centered video retrieval model that distinguishes human poses and actions, and (2) mitigating the issue of error propagation caused by suboptimal retrieval results. We design the Gemini Motion Video Retriever mechanism and the Motion-centric Dual-alignment DPO Trainer, enabling effective retrieval and generation processes. Experimental results show that VimoRAG significantly boosts the performance of motion LLMs constrained to text-only input.
comment: 20 pages,13 figures
☆ Q-FSRU: Quantum-Augmented Frequency-Spectral Fusion for Medical Visual Question Answering AAAI 26
Solving tough clinical questions that require both image and text understanding is still a major challenge in healthcare AI. In this work, we propose Q-FSRU, a new model that combines Frequency Spectrum Representation and Fusion (FSRU) with a method called Quantum Retrieval-Augmented Generation (Quantum RAG) for medical Visual Question Answering (VQA). The model takes in features from medical images and related text, then shifts them into the frequency domain using Fast Fourier Transform (FFT). This helps it focus on more meaningful data and filter out noise or less useful information. To improve accuracy and ensure that answers are based on real knowledge, we add a quantum-inspired retrieval system. It fetches useful medical facts from external sources using quantum-based similarity techniques. These details are then merged with the frequency-based features for stronger reasoning. We evaluated our model using the VQA-RAD dataset, which includes real radiology images and questions. The results showed that Q-FSRU outperforms earlier models, especially on complex cases needing image-text reasoning. The mix of frequency and quantum information improves both performance and explainability. Overall, this approach offers a promising way to build smart, clear, and helpful AI tools for doctors.
comment: 8 pages, 4 figures Submitted to AAAI 26
☆ Bongard-RWR+: Real-World Representations of Fine-Grained Concepts in Bongard Problems
Bongard Problems (BPs) provide a challenging testbed for abstract visual reasoning (AVR), requiring models to identify visual concepts fromjust a few examples and describe them in natural language. Early BP benchmarks featured synthetic black-and-white drawings, which might not fully capture the complexity of real-world scenes. Subsequent BP datasets employed real-world images, albeit the represented concepts are identifiable from high-level image features, reducing the task complexity. Differently, the recently released Bongard-RWR dataset aimed at representing abstract concepts formulated in the original BPs using fine-grained real-world images. Its manual construction, however, limited the dataset size to just $60$ instances, constraining evaluation robustness. In this work, we introduce Bongard-RWR+, a BP dataset composed of $5\,400$ instances that represent original BP abstract concepts using real-world-like images generated via a vision language model (VLM) pipeline. Building on Bongard-RWR, we employ Pixtral-12B to describe manually curated images and generate new descriptions aligned with the underlying concepts, use Flux.1-dev to synthesize images from these descriptions, and manually verify that the generated images faithfully reflect the intended concepts. We evaluate state-of-the-art VLMs across diverse BP formulations, including binary and multiclass classification, as well as textual answer generation. Our findings reveal that while VLMs can recognize coarse-grained visual concepts, they consistently struggle with discerning fine-grained concepts, highlighting limitations in their reasoning capabilities.
☆ WiseLVAM: A Novel Framework For Left Ventricle Automatic Measurements
Clinical guidelines recommend performing left ventricular (LV) linear measurements in B-mode echocardiographic images at the basal level -- typically at the mitral valve leaflet tips -- and aligned perpendicular to the LV long axis along a virtual scanline (SL). However, most automated methods estimate landmarks directly from B-mode images for the measurement task, where even small shifts in predicted points along the LV walls can lead to significant measurement errors, reducing their clinical reliability. A recent semi-automatic method, EnLVAM, addresses this limitation by constraining landmark prediction to a clinician-defined SL and training on generated Anatomical Motion Mode (AMM) images to predict LV landmarks along the same. To enable full automation, a contour-aware SL placement approach is proposed in this work, in which the LV contour is estimated using a weakly supervised B-mode landmark detector. SL placement is then performed by inferring the LV long axis and the basal level-mimicking clinical guidelines. Building on this foundation, we introduce \textit{WiseLVAM} -- a novel, fully automated yet manually adaptable framework for automatically placing the SL and then automatically performing the LV linear measurements in the AMM mode. \textit{WiseLVAM} utilizes the structure-awareness from B-mode images and the motion-awareness from AMM mode to enhance robustness and accuracy with the potential to provide a practical solution for the routine clinical application.
☆ InstDrive: Instance-Aware 3D Gaussian Splatting for Driving Scenes
Reconstructing dynamic driving scenes from dashcam videos has attracted increasing attention due to its significance in autonomous driving and scene understanding. While recent advances have made impressive progress, most methods still unify all background elements into a single representation, hindering both instance-level understanding and flexible scene editing. Some approaches attempt to lift 2D segmentation into 3D space, but often rely on pre-processed instance IDs or complex pipelines to map continuous features to discrete identities. Moreover, these methods are typically designed for indoor scenes with rich viewpoints, making them less applicable to outdoor driving scenarios. In this paper, we present InstDrive, an instance-aware 3D Gaussian Splatting framework tailored for the interactive reconstruction of dynamic driving scene. We use masks generated by SAM as pseudo ground-truth to guide 2D feature learning via contrastive loss and pseudo-supervised objectives. At the 3D level, we introduce regularization to implicitly encode instance identities and enforce consistency through a voxel-based loss. A lightweight static codebook further bridges continuous features and discrete identities without requiring data pre-processing or complex optimization. Quantitative and qualitative experiments demonstrate the effectiveness of InstDrive, and to the best of our knowledge, it is the first framework to achieve 3D instance segmentation in dynamic, open-world driving scenes.More visualizations are available at our project page.
☆ MOON: Generative MLLM-based Multimodal Representation Learning for E-commerce Product Understanding
With the rapid advancement of e-commerce, exploring general representations rather than task-specific ones has attracted increasing research attention. For product understanding, although existing discriminative dual-flow architectures drive progress in this field, they inherently struggle to model the many-to-one alignment between multiple images and texts of products. Therefore, we argue that generative Multimodal Large Language Models (MLLMs) hold significant potential for improving product representation learning. Nevertheless, achieving this goal still remains non-trivial due to several key challenges: the lack of multimodal and aspect-aware modeling modules in typical LLMs; the common presence of background noise in product images; and the absence of a standard benchmark for evaluation. To address these issues, we propose the first generative MLLM-based model named MOON for product representation learning. Our method (1) employs a guided Mixture-of-Experts (MoE) module for targeted modeling of multimodal and aspect-specific product content; (2) effectively detects core semantic regions in product images to mitigate the distraction and interference caused by background noise; and (3) introduces the specialized negative sampling strategy to increase the difficulty and diversity of negative samples. In addition, we release a large-scale multimodal benchmark MBE for various product understanding tasks. Experimentally, our model demonstrates competitive zero-shot performance on both our benchmark and the public dataset, showcasing strong generalization across various downstream tasks, including cross-modal retrieval, product classification, and attribute prediction. Furthermore, the case study and visualization illustrate the effectiveness of MOON for product understanding.
comment: 11 pages, 9 figures
☆ Exploring Spatial-Temporal Dynamics in Event-based Facial Micro-Expression Analysis
Micro-expression analysis has applications in domains such as Human-Robot Interaction and Driver Monitoring Systems. Accurately capturing subtle and fast facial movements remains difficult when relying solely on RGB cameras, due to limitations in temporal resolution and sensitivity to motion blur. Event cameras offer an alternative, with microsecond-level precision, high dynamic range, and low latency. However, public datasets featuring event-based recordings of Action Units are still scarce. In this work, we introduce a novel, preliminary multi-resolution and multi-modal micro-expression dataset recorded with synchronized RGB and event cameras under variable lighting conditions. Two baseline tasks are evaluated to explore the spatial-temporal dynamics of micro-expressions: Action Unit classification using Spiking Neural Networks (51.23\% accuracy with events vs. 23.12\% with RGB), and frame reconstruction using Conditional Variational Autoencoders, achieving SSIM = 0.8513 and PSNR = 26.89 dB with high-resolution event input. These promising results show that event-based data can be used for micro-expression recognition and frame reconstruction.
☆ PEdger++: Practical Edge Detection via Assembling Cross Information
Edge detection serves as a critical foundation for numerous computer vision applications, including object detection, semantic segmentation, and image editing, by extracting essential structural cues that define object boundaries and salient edges. To be viable for broad deployment across devices with varying computational capacities, edge detectors shall balance high accuracy with low computational complexity. While deep learning has evidently improved accuracy, they often suffer from high computational costs, limiting their applicability on resource-constrained devices. This paper addresses the challenge of achieving that balance: \textit{i.e.}, {how to efficiently capture discriminative features without relying on large-size and sophisticated models}. We propose PEdger++, a collaborative learning framework designed to reduce computational costs and model sizes while improving edge detection accuracy. The core principle of our PEdger++ is that cross-information derived from heterogeneous architectures, diverse training moments, and multiple parameter samplings, is beneficial to enhance learning from an ensemble perspective. Extensive experimental results on the BSDS500, NYUD and Multicue datasets demonstrate the effectiveness of our approach, both quantitatively and qualitatively, showing clear improvements over existing methods. We also provide multiple versions of the model with varying computational requirements, highlighting PEdger++'s adaptability with respect to different resource constraints. Codes are accessible at https://github.com/ForawardStar/EdgeDetectionviaPEdgerPlus/.
☆ SAMDWICH: Moment-aware Video-text Alignment for Referring Video Object Segmentation
Referring Video Object Segmentation (RVOS) aims to segment and track objects in videos based on natural language expressions, requiring precise alignment between visual content and textual queries. However, existing methods often suffer from semantic misalignment, largely due to indiscriminate frame sampling and supervision of all visible objects during training -- regardless of their actual relevance to the expression. To address this, we introduce a moment-aware RVOS framework named SAMDWICH, along with a newly annotated dataset, MeViS-M, built upon the challenging MeViS benchmark. We manually annotate temporal moments indicating when each object is referred to by the expression, enabling semantically grounded supervision that strengthens video-text alignment. SAMDWICH leverages these aligned text-to-clip pairs to guide training, significantly enhancing referential understanding. Building upon this framework, we propose Moment-guided Dual-path Propagation (MDP), a moment-aware propagation strategy that improves both object grounding and tracking by training on both relevant and irrelevant frames through a moment-centric memory mechanism. In addition, we introduce Object-level Selective Supervision (OSS), an object-level filtering strategy that supervises only the objects temporally aligned with the expression in each training clip. This selective supervision reduces semantic noise and reinforces language-conditioned learning. Extensive experiments show that SAMDWICH achieves state-of-the-art performance on challenging MeViS benchmark, particularly excelling in complex scenarios involving diverse expressions.
comment: Project page: https://seung-hun-lee.github.io/projects/SAMDWICH/
☆ UniUGG: Unified 3D Understanding and Generation via Geometric-Semantic Encoding
Despite the impressive progress on understanding and generating images shown by the recent unified architectures, the integration of 3D tasks remains challenging and largely unexplored. In this paper, we introduce UniUGG, the first unified understanding and generation framework for 3D modalities. Our unified framework employs an LLM to comprehend and decode sentences and 3D representations. At its core, we propose a spatial decoder leveraging a latent diffusion model to generate high-quality 3D representations. This allows for the generation and imagination of 3D scenes based on a reference image and an arbitrary view transformation, while remaining supports for spatial visual question answering (VQA) tasks. Additionally, we propose a geometric-semantic learning strategy to pretrain the vision encoder. This design jointly captures the input's semantic and geometric cues, enhancing both spatial understanding and generation. Extensive experimental results demonstrate the superiority of our method in visual representation, spatial understanding, and 3D generation. The source code will be released upon paper acceptance.
☆ Transferable Class Statistics and Multi-scale Feature Approximation for 3D Object Detection
This paper investigates multi-scale feature approximation and transferable features for object detection from point clouds. Multi-scale features are critical for object detection from point clouds. However, multi-scale feature learning usually involves multiple neighborhood searches and scale-aware layers, which can hinder efforts to achieve lightweight models and may not be conducive to research constrained by limited computational resources. This paper approximates point-based multi-scale features from a single neighborhood based on knowledge distillation. To compensate for the loss of constructive diversity in a single neighborhood, this paper designs a transferable feature embedding mechanism. Specifically, class-aware statistics are employed as transferable features given the small computational cost. In addition, this paper introduces the central weighted intersection over union for localization to alleviate the misalignment brought by the center offset in optimization. Note that the method presented in this paper saves computational costs. Extensive experiments on public datasets demonstrate the effectiveness of the proposed method.
DynamicPose: Real-time and Robust 6D Object Pose Tracking for Fast-Moving Cameras and Objects
We present DynamicPose, a retraining-free 6D pose tracking framework that improves tracking robustness in fast-moving camera and object scenarios. Previous work is mainly applicable to static or quasi-static scenes, and its performance significantly deteriorates when both the object and the camera move rapidly. To overcome these challenges, we propose three synergistic components: (1) A visual-inertial odometry compensates for the shift in the Region of Interest (ROI) caused by camera motion; (2) A depth-informed 2D tracker corrects ROI deviations caused by large object translation; (3) A VIO-guided Kalman filter predicts object rotation, generates multiple candidate poses, and then obtains the final pose by hierarchical refinement. The 6D pose tracking results guide subsequent 2D tracking and Kalman filter updates, forming a closed-loop system that ensures accurate pose initialization and precise pose tracking. Simulation and real-world experiments demonstrate the effectiveness of our method, achieving real-time and robust 6D pose tracking for fast-moving cameras and objects.
☆ Deep Learning For Point Cloud Denoising: A Survey
Real-world environment-derived point clouds invariably exhibit noise across varying modalities and intensities. Hence, point cloud denoising (PCD) is essential as a preprocessing step to improve downstream task performance. Deep learning (DL)-based PCD models, known for their strong representation capabilities and flexible architectures, have surpassed traditional methods in denoising performance. To our best knowledge, despite recent advances in performance, no comprehensive survey systematically summarizes the developments of DL-based PCD. To fill the gap, this paper seeks to identify key challenges in DL-based PCD, summarizes the main contributions of existing methods, and proposes a taxonomy tailored to denoising tasks. To achieve this goal, we formulate PCD as a two-step process: outlier removal and surface noise restoration, encompassing most scenarios and requirements of PCD. Additionally, we compare methods in terms of similarities, differences, and respective advantages. Finally, we discuss research limitations and future directions, offering insights for further advancements in PCD.
☆ ENA: Efficient N-dimensional Attention
Efficient modeling of long sequences of high-order data requires a more efficient architecture than Transformer. In this paper, we investigate two key aspects of extending linear recurrent models, especially those originally designed for language modeling, to high-order data (1D to ND): scanning strategies and attention-hybrid architectures. Empirical results suggest that scanning provides limited benefits, while attention-hybrid models yield promising results. Focusing on the latter, we further evaluate types of attention and find that tiled high-order sliding window attention (SWA) is efficient in both theory and practice. We term the resulting hybrid architecture of linear recurrence and high-order SWA as Efficient N-dimensional Attention (ENA). We then conduct several experiments to demonstrate its effectiveness. The intuition behind ENA is that linear recurrence compresses global information into a state, while SWA complements it by enforcing strict local modeling. Together, they form a simple framework that offers a promising and practical solution for ultra-long high-order data modeling.
comment: WIP
☆ TimeSenCLIP: A Vision-Language Model for Remote Sensing Using Single-Pixel Time Series
Vision-language models have shown significant promise in remote sensing applications, particularly for land-use and land-cover (LULC) via zero-shot classification and retrieval. However, current approaches face two key challenges: reliance on large spatial tiles that increase computational cost, and dependence on text-based supervision, which is often not readily available. In this work, we present TimeSenCLIP, a lightweight framework that reevaluate the role of spatial context by evaluating the effectiveness of a single pixel by leveraging its temporal and spectral dimensions, for classifying LULC and ecosystem types. By leveraging spectral and temporal information from Sentinel-2 imagery and cross-view learning with geo-tagged ground-level photos, we minimises the need for caption-based training while preserving semantic alignment between overhead (satellite) and ground perspectives. Our approach is grounded in the LUCAS and Sen4Map datasets, and evaluated on classification tasks including LULC, crop type, and ecosystem type. We demonstrate that single pixel inputs, when combined with temporal and spectral cues, are sufficient for thematic mapping, offering a scalable and efficient alternative for large-scale remote sensing applications. Code is available at https://github.com/pallavijain-pj/TimeSenCLIP
comment: Paper under review
☆ SafeCtrl: Region-Based Safety Control for Text-to-Image Diffusion via Detect-Then-Suppress
The widespread deployment of text-to-image models is challenged by their potential to generate harmful content. While existing safety methods, such as prompt rewriting or model fine-tuning, provide valuable interventions, they often introduce a trade-off between safety and fidelity. Recent localization-based approaches have shown promise, yet their reliance on explicit ``concept replacement" can sometimes lead to semantic incongruity. To address these limitations, we explore a more flexible detect-then-suppress paradigm. We introduce SafeCtrl, a lightweight, non-intrusive plugin that first precisely localizes unsafe content. Instead of performing a hard A-to-B substitution, SafeCtrl then suppresses the harmful semantics, allowing the generative process to naturally and coherently resolve into a safe, context-aware alternative. A key aspect of our work is a novel training strategy using Direct Preference Optimization (DPO). We leverage readily available, image-level preference data to train our module, enabling it to learn nuanced suppression behaviors and perform region-guided interventions at inference without requiring costly, pixel-level annotations. Extensive experiments show that SafeCtrl significantly outperforms state-of-the-art methods in both safety efficacy and fidelity preservation. Our findings suggest that decoupled, suppression-based control is a highly effective and scalable direction for building more responsible generative models.
☆ OVG-HQ: Online Video Grounding with Hybrid-modal Queries ICCV 2025
Video grounding (VG) task focuses on locating specific moments in a video based on a query, usually in text form. However, traditional VG struggles with some scenarios like streaming video or queries using visual cues. To fill this gap, we present a new task named Online Video Grounding with Hybrid-modal Queries (OVG-HQ), which enables online segment localization using text, images, video segments, and their combinations. This task poses two new challenges: limited context in online settings and modality imbalance during training, where dominant modalities overshadow weaker ones. To address these, we propose OVG-HQ-Unify, a unified framework featuring a Parametric Memory Block (PMB) that retain previously learned knowledge to enhance current decision and a cross-modal distillation strategy that guides the learning of non-dominant modalities. This design enables a single model to effectively handle hybrid-modal queries. Due to the lack of suitable datasets, we construct QVHighlights-Unify, an expanded dataset with multi-modal queries. Besides, since offline metrics overlook prediction timeliness, we adapt them to the online setting, introducing oR@n, IoU=m, and online mean Average Precision (omAP) to evaluate both accuracy and efficiency. Experiments show that our OVG-HQ-Unify outperforms existing models, offering a robust solution for online, hybrid-modal video grounding. Source code and datasets are available at https://github.com/maojiaqi2324/OVG-HQ.
comment: Accepted to ICCV 2025
☆ A Sobel-Gradient MLP Baseline for Handwritten Character Recognition
We revisit the classical Sobel operator to ask a simple question: Are first-order edge maps sufficient to drive an all-dense multilayer perceptron (MLP) for handwritten character recognition (HCR), as an alternative to convolutional neural networks (CNNs)? Using only horizontal and vertical Sobel derivatives as input, we train an MLP on MNIST and EMNIST Letters. Despite its extreme simplicity, the resulting network reaches 98% accuracy on MNIST digits and 92% on EMNIST letters -- approaching CNNs while offering a smaller memory footprint and transparent features. Our findings highlight that much of the class-discriminative information in handwritten character images is already captured by first-order gradients, making edge-aware MLPs a compelling option for HCR.
comment: This paper is under consideration at Pattern Recognition Letters
☆ Large Kernel Modulation Network for Efficient Image Super-Resolution
Image super-resolution (SR) in resource-constrained scenarios demands lightweight models balancing performance and latency. Convolutional neural networks (CNNs) offer low latency but lack non-local feature capture, while Transformers excel at non-local modeling yet suffer slow inference. To address this trade-off, we propose the Large Kernel Modulation Network (LKMN), a pure CNN-based model. LKMN has two core components: Enhanced Partial Large Kernel Block (EPLKB) and Cross-Gate Feed-Forward Network (CGFN). The EPLKB utilizes channel shuffle to boost inter-channel interaction, incorporates channel attention to focus on key information, and applies large kernel strip convolutions on partial channels for non-local feature extraction with reduced complexity. The CGFN dynamically adjusts discrepancies between input, local, and non-local features via a learnable scaling factor, then employs a cross-gate strategy to modulate and fuse these features, enhancing their complementarity. Extensive experiments demonstrate that our method outperforms existing state-of-the-art (SOTA) lightweight SR models while balancing quality and efficiency. Specifically, LKMN-L achieves 0.23 dB PSNR improvement over DAT-light on the Manga109 dataset at $\times$4 upscale, with nearly $\times$4.8 times faster. Codes are in the supplementary materials. The code is available at https://github.com/Supereeeee/LKMN.
☆ EVTP-IVS: Effective Visual Token Pruning For Unifying Instruction Visual Segmentation In Multi-Modal Large Language Models
Instructed Visual Segmentation (IVS) tasks require segmenting objects in images or videos based on natural language instructions. While recent multimodal large language models (MLLMs) have achieved strong performance on IVS, their inference cost remains a major bottleneck, particularly in video. We empirically analyze visual token sampling in MLLMs and observe a strong correlation between subset token coverage and segmentation performance. This motivates our design of a simple and effective token pruning method that selects a compact yet spatially representative subset of tokens to accelerate inference. In this paper, we introduce a novel visual token pruning method for IVS, called EVTP-IV, which builds upon the k-center by integrating spatial information to ensure better coverage. We further provide an information-theoretic analysis to support our design. Experiments on standard IVS benchmarks show that our method achieves up to 5X speed-up on video tasks and 3.5X on image tasks, while maintaining comparable accuracy using only 20% of the tokens. Our method also consistently outperforms state-of-the-art pruning baselines under varying pruning ratios.
☆ AdaRing: Towards Ultra-Light Vision-Language Adaptation via Cross-Layer Tensor Ring Decomposition
Adapter-based fine-tuning has gained remarkable attention in adapting large pre-trained vision language models (VLMs) for a wide range of downstream tasks efficiently. In this paradigm, only the inserted adapters are fine-tuned, without the need for training the original VLM backbone. Existing works scale adapters by integrating them into every layer of VLMs to increase the capacity of adapters. However, these methods face two primary limitations: 1) limited compression rate due to ignoring cross-layer redundancy, and 2) limited representational capacity across homogeneous adapters. In this paper, we propose a novel vision-language fine-tuning framework based on cross-layer tensor ring decomposition (TRD) with the integration and collaboration of diverse adapters, called AdaRing, achieving ultra-light parameter-efficient adaptation of VLMs on various tasks. To remove the high redundancy that exists among adapters across layers, we exploit the tensor-level low-rankness to formulate adapters as layer-shared tensor cores and layer-specific slices. Moreover, guided by generalization-aware fine-tuning, diverse rank-driven adapters cooperate to handle tasks that require different representations. Our experiments show that the proposed AdaRing achieves the state-of-the-art performance while reducing average training parameters by 90%.
☆ Data Shift of Object Detection in Autonomous Driving
With the widespread adoption of machine learning technologies in autonomous driving systems, their role in addressing complex environmental perception challenges has become increasingly crucial. However, existing machine learning models exhibit significant vulnerability, as their performance critically depends on the fundamental assumption that training and testing data satisfy the independent and identically distributed condition, which is difficult to guarantee in real-world applications. Dynamic variations in data distribution caused by seasonal changes, weather fluctuations lead to data shift problems in autonomous driving systems. This study investigates the data shift problem in autonomous driving object detection tasks, systematically analyzing its complexity and diverse manifestations. We conduct a comprehensive review of data shift detection methods and employ shift detection analysis techniques to perform dataset categorization and balancing. Building upon this foundation, we construct an object detection model. To validate our approach, we optimize the model by integrating CycleGAN-based data augmentation techniques with the YOLOv5 framework. Experimental results demonstrate that our method achieves superior performance compared to baseline models on the BDD100K dataset.
☆ Impact of Clinical Image Quality on Efficient Foundation Model Finetuning
Foundation models in medical imaging have shown promising label efficiency, achieving high downstream performance with only a fraction of annotated data. Here, we evaluate this in prostate multiparametric MRI using ProFound, a domain-specific vision foundation model pretrained on large-scale prostate MRI datasets. We investigate how variable image quality affects label-efficient finetuning by measuring the generalisability of finetuned models. Experiments systematically vary high-/low-quality image ratios in finetuning and evaluation sets. Our findings indicate that image quality distribution and its finetune-and-test mismatch significantly affect model performance. In particular: a) Varying the ratio of high- to low-quality images between finetuning and test sets leads to notable differences in downstream performance; and b) The presence of sufficient high-quality images in the finetuning set is critical for maintaining strong performance, whilst the importance of matched finetuning and testing distribution varies between different downstream tasks, such as automated radiology reporting and prostate cancer detection.When quality ratios are consistent, finetuning needs far less labeled data than training from scratch, but label efficiency depends on image quality distribution. Without enough high-quality finetuning data, pretrained models may fail to outperform those trained without pretraining. This highlights the importance of assessing and aligning quality distributions between finetuning and deployment, and the need for quality standards in finetuning data for specific downstream tasks. Using ProFound, we show the value of quantifying image quality in both finetuning and deployment to fully realise the data and compute efficiency benefits of foundation models.
☆ ComplicitSplat: Downstream Models are Vulnerable to Blackbox Attacks by 3D Gaussian Splat Camouflages
As 3D Gaussian Splatting (3DGS) gains rapid adoption in safety-critical tasks for efficient novel-view synthesis from static images, how might an adversary tamper images to cause harm? We introduce ComplicitSplat, the first attack that exploits standard 3DGS shading methods to create viewpoint-specific camouflage - colors and textures that change with viewing angle - to embed adversarial content in scene objects that are visible only from specific viewpoints and without requiring access to model architecture or weights. Our extensive experiments show that ComplicitSplat generalizes to successfully attack a variety of popular detector - both single-stage, multi-stage, and transformer-based models on both real-world capture of physical objects and synthetic scenes. To our knowledge, this is the first black-box attack on downstream object detectors using 3DGS, exposing a novel safety risk for applications like autonomous navigation and other mission-critical robotic systems.
comment: 7 pages, 6 figures
♻ ☆ Object Fidelity Diffusion for Remote Sensing Image Generation
High-precision controllable remote sensing image generation is both meaningful and challenging. Existing diffusion models often produce low-fidelity images due to their inability to adequately capture morphological details, which may affect the robustness and reliability of object detection models. To enhance the accuracy and fidelity of generated objects in remote sensing, this paper proposes Object Fidelity Diffusion (OF-Diff), which effectively improves the fidelity of generated objects. Specifically, we are the first to extract the prior shapes of objects based on the layout for diffusion models in remote sensing. Then, we introduce a dual-branch diffusion model with diffusion consistency loss, which can generate high-fidelity remote sensing images without providing real images during the sampling phase. Furthermore, we introduce DDPO to fine-tune the diffusion process, making the generated remote sensing images more diverse and semantically consistent. Comprehensive experiments demonstrate that OF-Diff outperforms state-of-the-art methods in the remote sensing across key quality metrics. Notably, the performance of several polymorphic and small object classes shows significant improvement. For instance, the mAP increases by 8.3%, 7.7%, and 4.0% for airplanes, ships, and vehicles, respectively.
♻ ☆ LoRA-based methods on Unet for transfer learning in Subarachnoid Hematoma Segmentation
Aneurysmal subarachnoid hemorrhage (SAH) is a life-threatening neurological emergency with mortality rates exceeding 30%. Transfer learning from related hematoma types represents a potentially valuable but underexplored approach. Although Unet architectures remain the gold standard for medical image segmentation due to their effectiveness on limited datasets, Low-Rank Adaptation (LoRA) methods for parameter-efficient transfer learning have been rarely applied to convolutional neural networks in medical imaging contexts. We implemented a Unet architecture pre-trained on computed tomography scans from 124 traumatic brain injury patients across multiple institutions, then fine-tuned on 30 aneurysmal SAH patients from the University of Michigan Health System using 3-fold cross-validation. We developed a novel CP-LoRA method based on tensor CP-decomposition and introduced DoRA variants (DoRA-C, convDoRA, CP-DoRA) that decompose weight matrices into magnitude and directional components. We compared these approaches against existing LoRA methods (LoRA-C, convLoRA) and standard fine-tuning strategies across different modules on a multi-view Unet model. LoRA-based methods consistently outperformed standard Unet fine-tuning. Performance varied by hemorrhage volume, with all methods showing improved accuracy for larger volumes. CP-LoRA achieved comparable performance to existing methods while using significantly fewer parameters. Over-parameterization with higher ranks consistently yielded better performance than strictly low-rank adaptations. This study demonstrates that transfer learning between hematoma types is feasible and that LoRA-based methods significantly outperform conventional Unet fine-tuning for aneurysmal SAH segmentation.
♻ ☆ Differentiable Room Acoustic Rendering with Multi-View Vision Priors ICCV 2025
An immersive acoustic experience enabled by spatial audio is just as crucial as the visual aspect in creating realistic virtual environments. However, existing methods for room impulse response estimation rely either on data-demanding learning-based models or computationally expensive physics-based modeling. In this work, we introduce Audio-Visual Differentiable Room Acoustic Rendering (AV-DAR), a framework that leverages visual cues extracted from multi-view images and acoustic beam tracing for physics-based room acoustic rendering. Experiments across six real-world environments from two datasets demonstrate that our multimodal, physics-based approach is efficient, interpretable, and accurate, significantly outperforming a series of prior methods. Notably, on the Real Acoustic Field dataset, AV-DAR achieves comparable performance to models trained on 10 times more data while delivering relative gains ranging from 16.6% to 50.9% when trained at the same scale.
comment: ICCV 2025 (Oral); Project Page: https://humathe.github.io/avdar/
♻ ☆ FormCoach: Lift Smarter, Not Harder
Good form is the difference between strength and strain, yet for the fast-growing community of at-home fitness enthusiasts, expert feedback is often out of reach. FormCoach transforms a simple camera into an always-on, interactive AI training partner, capable of spotting subtle form errors and delivering tailored corrections in real time, leveraging vision-language models (VLMs). We showcase this capability through a web interface and benchmark state-of-the-art VLMs on a dataset of 1,700 expert-annotated user-reference video pairs spanning 22 strength and mobility exercises. To accelerate research in AI-driven coaching, we release both the dataset and an automated, rubric-based evaluation pipeline, enabling standardized comparison across models. Our benchmarks reveal substantial gaps compared to human-level coaching, underscoring both the challenges and opportunities in integrating nuanced, context-aware movement analysis into interactive AI systems. By framing form correction as a collaborative and creative process between humans and machines, FormCoach opens a new frontier in embodied AI.
♻ ☆ Communicate Less, Synthesize the Rest: Latency-aware Intent-based Generative Semantic Multicasting with Diffusion Models
Generative diffusion models (GDMs) have recently shown great success in synthesizing multimedia signals with high perceptual quality, enabling highly efficient semantic communications in future wireless networks. In this paper, we develop an intent-aware generative semantic multicasting framework utilizing pre-trained diffusion models. In the proposed framework, the transmitter decomposes the source signal into multiple semantic classes based on the multi-user intent, i.e. each user is assumed to be interested in details of only a subset of the semantic classes. To better utilize the wireless resources, the transmitter sends to each user only its intended classes, and multicasts a highly compressed semantic map to all users over shared wireless resources that allows them to locally synthesize the other classes, namely non-intended classes, utilizing pre-trained diffusion models. The signal retrieved at each user is thereby partially reconstructed and partially synthesized utilizing the received semantic map. We design a communication/computation-aware scheme for per-class adaptation of the communication parameters, such as the transmission power and compression rate, to minimize the total latency of retrieving signals at multiple receivers, tailored to the prevailing channel conditions as well as the users' reconstruction/synthesis distortion/perception requirements. The simulation results demonstrate significantly reduced per-user latency compared with non-generative and intent-unaware multicasting benchmarks while maintaining high perceptual quality of the signals retrieved at the users.
comment: Submitted to IEEE Journals
♻ ☆ Towards an Explainable Comparison and Alignment of Feature Embeddings
While several feature embedding models have been developed in the literature, comparisons of these embeddings have largely focused on their numerical performance in classification-related downstream applications. However, an interpretable comparison of different embeddings requires identifying and analyzing mismatches between sample groups clustered within the embedding spaces. In this work, we propose the \emph{Spectral Pairwise Embedding Comparison (SPEC)} framework to compare embeddings and identify their differences in clustering a reference dataset. Our approach examines the kernel matrices derived from two embeddings and leverages the eigendecomposition of the difference kernel matrix to detect sample clusters that are captured differently by the two embeddings. We present a scalable implementation of this kernel-based approach, with computational complexity that grows linearly with the sample size. Furthermore, we introduce an optimization problem using this framework to align two embeddings, ensuring that clusters identified in one embedding are also captured in the other model. We provide numerical results demonstrating the SPEC's application to compare and align embeddings on large-scale datasets such as ImageNet and MS-COCO. The project page is available at https://mjalali.github.io/SPEC/.
♻ ☆ AugLift: Boosting Generalization in Lifting-based 3D Human Pose Estimation
Lifting-based methods for 3D Human Pose Estimation (HPE), which predict 3D poses from detected 2D keypoints, often generalize poorly to new datasets and real-world settings. To address this, we propose \emph{AugLift}, a simple yet effective reformulation of the standard lifting pipeline that significantly improves generalization performance without requiring additional data collection or sensors. AugLift sparsely enriches the standard input -- the 2D keypoint coordinates $(x, y)$ -- by augmenting it with a keypoint detection confidence score $c$ and a corresponding depth estimate $d$. These additional signals are computed from the image using off-the-shelf, pre-trained models (e.g., for monocular depth estimation), thereby inheriting their strong generalization capabilities. Importantly, AugLift serves as a modular add-on and can be readily integrated into existing lifting architectures. Our extensive experiments across four datasets demonstrate that AugLift boosts cross-dataset performance on unseen datasets by an average of $10.1\%$, while also improving in-distribution performance by $4.0\%$. These gains are consistent across various lifting architectures, highlighting the robustness of our method. Our analysis suggests that these sparse, keypoint-aligned cues provide robust frame-level context, offering a practical way to significantly improve the generalization of any lifting-based pose estimation model. Code will be made publicly available.
comment: Preprint. Under review
♻ ☆ RT-Cache: Training-Free Retrieval for Real-Time Manipulation RAS 24
Real robots are expected to repeat the same behavior in new environments with very little new data, yet modern controllers either incur heavy per-step inference or require deployment-time fine-tuning. We propose RT-Cache, a training-free retrieval-as-control pipeline that caches diverse image action trajectories in a unified vector memory and, at test time, embeds the current frame to retrieve and replay multi-step snippets, replacing per-step model calls. A hierarchical search keeps lookups sub-second at million scale, shifting cost from compute to storage and enabling real-time control on modest GPUs. Across real-robot tasks and large open logs, RT-Cache achieves higher success and lower completion time than strong retrieval baselines (approximately x2 higher success and ~30% faster in our settings), and a single-episode anchoring study shows immediate adaptation to a more complex, contact-rich task without fine-tuning. RT-Cache turns experience into an append-only memory, offering a simple, scalable path to few-shot deployment today and a foundation for multimodal keys and optional integration with high-level policies. Project page: https://rt-cache.github.io/.
comment: 8 pages, 6 figures. Accepted to the 2025 IEEE-RAS 24th International Conference on Humanoid Robots
♻ ☆ Segmenting Objectiveness and Task-awareness Unknown Region for Autonomous Driving
With the emergence of transformer-based architectures and large language models (LLMs), the accuracy of road scene perception has substantially advanced. Nonetheless, current road scene segmentation approaches are predominantly trained on closed-set data, resulting in insufficient detection capabilities for out-of-distribution (OOD) objects. To overcome this limitation, road anomaly detection methods have been proposed. However, existing methods primarily depend on image inpainting and OOD distribution detection techniques, facing two critical issues: (1) inadequate consideration of the objectiveness attributes of anomalous regions, causing incomplete segmentation when anomalous objects share similarities with known classes, and (2) insufficient attention to environmental constraints, leading to the detection of anomalies irrelevant to autonomous driving tasks. In this paper, we propose a novel framework termed Segmenting Objectiveness and Task-Awareness (SOTA) for autonomous driving scenes. Specifically, SOTA enhances the segmentation of objectiveness through a Semantic Fusion Block (SFB) and filters anomalies irrelevant to road navigation tasks using a Scene-understanding Guided Prompt-Context Adaptor (SG-PCA). Extensive empirical evaluations on multiple benchmark datasets, including Fishyscapes Lost and Found, Segment-Me-If-You-Can, and RoadAnomaly, demonstrate that the proposed SOTA consistently improves OOD detection performance across diverse detectors, achieving robust and accurate segmentation outcomes.
♻ ☆ EventHallusion: Diagnosing Event Hallucinations in Video LLMs
Recently, Multimodal Large Language Models (MLLMs) have made significant progress in the video comprehension field. Despite remarkable content reasoning and instruction following capabilities they demonstrated, the hallucination problem of these VideoLLMs is less explored compared with its counterpart in the image domain. To mitigate this gap, we propose EventHallusion, a novel benchmark that focuses on assessing the VideoLLMs' hallucination toward event, the crux of video analysis. From a hallucination attribution perspective, our EventHallusion benchmark is curated to assess a VideoLLM's susceptibility toward language priors and vision-language biases. On the other hand, we also propose a simple yet effective method, called Temporal Contrastive Decoding (TCD), to tackle the hallucination problems of VideoLLMs. The proposed TCD method rectifies the model's bias toward its priors during the decoding stage by comparing the original video with a modified version, in which temporal cues are disrupted. Through comprehensive evaluation of eight open-source and two closed-source VideoLLMs on the proposed EventHallusion benchmark, we observe that the open-source models suffer significantly from hallucination problems, whereas the closed-source ones perform markedly better. By further equipping open-source VideoLLMs with the proposed TCD approach, evident performance improvements are achieved across most metrics in the EventHallusion benchmark. Our codes and benchmark data are available at https://github.com/Stevetich/EventHallusion.
♻ ☆ Research Challenges and Progress in the End-to-End V2X Cooperative Autonomous Driving Competition ICCV
With the rapid advancement of autonomous driving technology, vehicle-to-everything (V2X) communication has emerged as a key enabler for extending perception range and enhancing driving safety by providing visibility beyond the line of sight. However, integrating multi-source sensor data from both ego-vehicles and infrastructure under real-world constraints, such as limited communication bandwidth and dynamic environments, presents significant technical challenges. To facilitate research in this area, we organized the End-to-End Autonomous Driving through V2X Cooperation Challenge, which features two tracks: cooperative temporal perception and cooperative end-to-end planning. Built on the UniV2X framework and the V2X-Seq-SPD dataset, the challenge attracted participation from over 30 teams worldwide and established a unified benchmark for evaluating cooperative driving systems. This paper describes the design and outcomes of the challenge, highlights key research problems including bandwidth-aware fusion, robust multi-agent planning, and heterogeneous sensor integration, and analyzes emerging technical trends among top-performing solutions. By addressing practical constraints in communication and data fusion, the challenge contributes to the development of scalable and reliable V2X-cooperative autonomous driving systems.
comment: 10 pages, 4 figures, accepted by ICCVW Author list updated to match the camera-ready version, in compliance with conference policy
♻ ☆ Subjective and Objective Quality Assessment of Banding Artifacts on Compressed Videos
Although there have been notable advancements in video compression technologies in recent years, banding artifacts remain a serious issue affecting the quality of compressed videos, particularly on smooth regions of high-definition videos. Noticeable banding artifacts can severely impact the perceptual quality of videos viewed on a high-end HDTV or high-resolution screen. Hence, there is a pressing need for a systematic investigation of the banding video quality assessment problem for advanced video codecs. Given that the existing publicly available datasets for studying banding artifacts are limited to still picture data only, which cannot account for temporal banding dynamics, we have created a first-of-a-kind open video dataset, dubbed LIVE-YT-Banding, which consists of 160 videos generated by four different compression parameters using the AV1 video codec. A total of 7,200 subjective opinions are collected from a cohort of 45 human subjects. To demonstrate the value of this new resources, we tested and compared a variety of models that detect banding occurrences, and measure their impact on perceived quality. Among these, we introduce an effective and efficient new no-reference (NR) video quality evaluator which we call CBAND. CBAND leverages the properties of the learned statistics of natural images expressed in the embeddings of deep neural networks. Our experimental results show that the perceptual banding prediction performance of CBAND significantly exceeds that of previous state-of-the-art models, and is also orders of magnitude faster. Moreover, CBAND can be employed as a differentiable loss function to optimize video debanding models. The LIVE-YT-Banding database, code, and pre-trained model are all publically available at https://github.com/uniqzheng/CBAND.
♻ ☆ Visual Content Detection in Educational Videos with Transfer Learning and Dataset Enrichment
Video is transforming education with online courses and recorded lectures supplementing and replacing classroom teaching. Recent research has focused on enhancing information retrieval for video lectures with advanced navigation, searchability, summarization, as well as question answering chatbots. Visual elements like tables, charts, and illustrations are central to comprehension, retention, and data presentation in lecture videos, yet their full potential for improving access to video content remains underutilized. A major factor is that accurate automatic detection of visual elements in a lecture video is challenging; reasons include i) most visual elements, such as charts, graphs, tables, and illustrations, are artificially created and lack any standard structure, and ii) coherent visual objects may lack clear boundaries and may be composed of connected text and visual components. Despite advancements in deep learning based object detection, current models do not yield satisfactory performance due to the unique nature of visual content in lectures and scarcity of annotated datasets. This paper reports on a transfer learning approach for detecting visual elements in lecture video frames. A suite of state of the art object detection models were evaluated for their performance on lecture video datasets. YOLO emerged as the most promising model for this task. Subsequently YOLO was optimized for lecture video object detection with training on multiple benchmark datasets and deploying a semi-supervised auto labeling strategy. Results evaluate the success of this approach, also in developing a general solution to the problem of object detection in lecture videos. Paper contributions include a publicly released benchmark of annotated lecture video frames, along with the source code to facilitate future research.
comment: This is an extended version of a paper accepted to MIPR 2025
♻ ☆ Affordance-R1: Reinforcement Learning for Generalizable Affordance Reasoning in Multimodal Large Language Model
Affordance grounding focuses on predicting the specific regions of objects that are associated with the actions to be performed by robots. It plays a vital role in the fields of human-robot interaction, human-object interaction, embodied manipulation, and embodied perception. Existing models often neglect the affordance shared among different objects because they lack the Chain-of-Thought(CoT) reasoning abilities, limiting their out-of-domain (OOD) generalization and explicit reasoning capabilities. To address these challenges, we propose Affordance-R1, the first unified affordance grounding framework that integrates cognitive CoT guided Group Relative Policy Optimization (GRPO) within a reinforcement learning paradigm. Specifically, we designed a sophisticated affordance function, which contains format, perception, and cognition rewards to effectively guide optimization directions. Furthermore, we constructed a high-quality affordance-centric reasoning dataset, ReasonAff, to support training. Trained exclusively via reinforcement learning with GRPO and without explicit reasoning data, Affordance-R1 achieves robust zero-shot generalization and exhibits emergent test-time reasoning capabilities. Comprehensive experiments demonstrate that our model outperforms well-established methods and exhibits open-world generalization. To the best of our knowledge, Affordance-R1 is the first to integrate GRPO-based RL with reasoning into affordance reasoning. The code of our method and our dataset is released on https://github.com/hq-King/Affordance-R1.
♻ ☆ OCR Hinders RAG: Evaluating the Cascading Impact of OCR on Retrieval-Augmented Generation ICCV 2024
Retrieval-augmented Generation (RAG) enhances Large Language Models (LLMs) by integrating external knowledge to reduce hallucinations and incorporate up-to-date information without retraining. As an essential part of RAG, external knowledge bases are commonly built by extracting structured data from unstructured PDF documents using Optical Character Recognition (OCR). However, given the imperfect prediction of OCR and the inherent non-uniform representation of structured data, knowledge bases inevitably contain various OCR noises. In this paper, we introduce OHRBench, the first benchmark for understanding the cascading impact of OCR on RAG systems. OHRBench includes 8,561 carefully selected unstructured document images from seven real-world RAG application domains, along with 8,498 Q&A pairs derived from multimodal elements in documents, challenging existing OCR solutions used for RAG. To better understand OCR's impact on RAG systems, we identify two primary types of OCR noise: Semantic Noise and Formatting Noise and apply perturbation to generate a set of structured data with varying degrees of each OCR noise. Using OHRBench, we first conduct a comprehensive evaluation of current OCR solutions and reveal that none is competent for constructing high-quality knowledge bases for RAG systems. We then systematically evaluate the impact of these two noise types and demonstrate the trend relationship between the degree of OCR noise and RAG performance. Our OHRBench, including PDF documents, Q&As, and the ground truth structured data are released at: https://github.com/opendatalab/OHR-Bench
comment: Accepted by ICCV 2024
♻ ☆ Reasoning and Learning a Perceptual Metric for Self-Training of Reflective Objects in Bin-Picking with a Low-cost Camera RAL
Bin-picking of metal objects using low-cost RGB-D cameras often suffers from sparse depth information and reflective surface textures, leading to errors and the need for manual labeling. To reduce human intervention, we propose a two-stage framework consisting of a metric learning stage and a self-training stage. Specifically, to automatically process data captured by a low-cost camera (LC), we introduce a Multi-object Pose Reasoning (MoPR) algorithm that optimizes pose hypotheses under depth, collision, and boundary constraints. To further refine pose candidates, we adopt a Symmetry-aware Lie-group based Bayesian Gaussian Mixture Model (SaL-BGMM), integrated with the Expectation-Maximization (EM) algorithm, for symmetry-aware filtering. Additionally, we propose a Weighted Ranking Information Noise Contrastive Estimation (WR-InfoNCE) loss to enable the LC to learn a perceptual metric from reconstructed data, supporting self-training on untrained or even unseen objects. Experimental results show that our approach outperforms several state-of-the-art methods on both the ROBI dataset and our newly introduced Self-ROBI dataset.
comment: 8 pages, 10 figures; Accepted by IEEE RAL, presentation at ICRA 2026
♻ ☆ PVChat: Personalized Video Chat with One-Shot Learning
Video large language models (ViLLMs) excel in general video understanding, e.g., recognizing activities like talking and eating, but struggle with identity-aware comprehension, such as "Wilson is receiving chemotherapy" or "Tom is discussing with Sarah", limiting their applicability in smart healthcare and smart home environments. To address this limitation, we propose a one-shot learning framework PVChat, the first personalized ViLLM that enables subject-aware question answering (QA) from a single video for each subject. Our approach optimizes a Mixture-of-Heads (MoH) enhanced ViLLM on a synthetically augmented video-QA dataset, leveraging a progressive image-to-video learning strategy. Specifically, we introduce an automated augmentation pipeline that synthesizes identity-preserving positive samples and retrieves hard negatives from existing video corpora, generating a diverse training dataset with four QA types: existence, appearance, action, and location inquiries. To enhance subject-specific learning, we propose a ReLU Routing MoH attention mechanism, alongside two novel objectives: (1) Smooth Proximity Regularization for progressive learning through exponential distance scaling and (2) Head Activation Enhancement for balanced attention routing. Finally, we adopt a two-stage training strategy, transitioning from image pre-training to video fine-tuning, enabling a gradual learning process from static attributes to dynamic representations. We evaluate PVChat on diverse datasets covering medical scenarios, TV series, anime, and real-world footage, demonstrating its superiority in personalized feature understanding after learning from a single video, compared to state-of-the-art ViLLMs.
♻ ☆ Planner-Refiner: Dynamic Space-Time Refinement for Vision-Language Alignment in Videos
Vision-language alignment in video must address the complexity of language, evolving interacting entities, their action chains, and semantic gaps between language and vision. This work introduces Planner-Refiner, a framework to overcome these challenges. Planner-Refiner bridges the semantic gap by iteratively refining visual elements' space-time representation, guided by language until semantic gaps are minimal. A Planner module schedules language guidance by decomposing complex linguistic prompts into short sentence chains. The Refiner processes each short sentence, a noun-phrase and verb-phrase pair, to direct visual tokens' self-attention across space then time, achieving efficient single-step refinement. A recurrent system chains these steps, maintaining refined visual token representations. The final representation feeds into task-specific heads for alignment generation. We demonstrate Planner-Refiner's effectiveness on two video-language alignment tasks: Referring Video Object Segmentation and Temporal Grounding with varying language complexity. We further introduce a new MeViS-X benchmark to assess models' capability with long queries. Superior performance versus state-of-the-art methods on these benchmarks shows the approach's potential, especially for complex prompts.
comment: Accepted for publication at ECAI 2025
♻ ☆ LieRE: Lie Rotational Positional Encodings ICML
Transformer architectures rely on position encodings to model the spatial structure of input data. Rotary Position Encoding (RoPE) is a widely used method in language models that encodes relative positions through fixed, block-diagonal, rotation matrices applied to key-query interactions. We hypothesize that this inductive bias limits their RoPE's effectiveness for modalities with high dimensional structure. Lie Relative Encodings (LieRE) introduce a principled generalization of RoPE, aimed at increasing the representational capacity of positional encodings in transformers. Instead of fixed 2D rotations, LieRE learns dense skew-symmetric matrices (Lie algebra elements), which are then differentiable mapped to form high-dimensional rotation matrices (Lie group elements). This results in richer, learnable, and continuous, encodings of both relative and absolute positional information. We demonstrate the effectiveness of LieRE on 2D and 3D vision tasks, showing that it generalizes well to higher input resolutions while maintaining computational efficiency. The code and checkpoints are publicly available at https://github.com/StanfordMIMI/LieRE.
comment: Final proceedings version at ICML
♻ ☆ Shape from Semantics: 3D Shape Generation from Multi-View Semantics
Existing 3D reconstruction methods utilize guidances such as 2D images, 3D point clouds, shape contours and single semantics to recover the 3D surface, which limits the creative exploration of 3D modeling. In this paper, we propose a novel 3D modeling task called ``Shape from Semantics'', which aims to create 3D models whose geometry and appearance are consistent with the given text semantics when viewed from different views. The reconstructed 3D models incorporate more than one semantic elements and are easy for observers to distinguish. We adopt generative models as priors and disentangle the connection between geometry and appearance to solve this challenging problem. Specifically, we propose Local Geometry-Aware Distillation (LGAD), a strategy that employs multi-view normal-depth diffusion priors to complete partial geometries, ensuring realistic shape generation. We also integrate view-adaptive guidance scales to enable smooth semantic transitions across views. For appearance modeling, we adopt physically based rendering to generate high-quality material properties, which are subsequently baked into fabricable meshes. Extensive experimental results demonstrate that our method can generate meshes with well-structured, intricately detailed geometries, coherent textures, and smooth transitions, resulting in visually appealing 3D shape designs. Project page: https://shapefromsemantics.github.io
comment: Project page: https://shapefromsemantics.github.io
♻ ☆ A Deep Learning Approach to Teeth Segmentation and Orientation from Panoramic X-rays
Accurate teeth segmentation and orientation are fundamental in modern oral healthcare, enabling precise diagnosis, treatment planning, and dental implant design. In this study, we present a comprehensive approach to teeth segmentation and orientation from panoramic X-ray images, leveraging deep-learning techniques. We built an end-to-end instance segmentation network that uses an encoder-decoder architecture reinforced with grid-aware attention gates along the skip connections. We introduce oriented bounding box (OBB) generation through principal component analysis (PCA) for precise tooth orientation estimation. Evaluating our approach on the publicly available DNS dataset, comprising 543 panoramic X-ray images, we achieve the highest Intersection-over-Union (IoU) score of 82.43% and a Dice Similarity Coefficient (DSC) score of 90.37% among compared models in teeth instance segmentation. In OBB analysis, we obtain a Rotated IoU (RIoU) score of 82.82%. We also conduct detailed analyses of individual tooth labels and categorical performance, shedding light on strengths and weaknesses. The proposed model's accuracy and versatility offer promising prospects for improving dental diagnoses, treatment planning, and personalized healthcare in the oral domain. Our generated OBB coordinates and code are available at https://github.com/mrinal054/Instance/teeth/segmentation.
♻ ☆ Transforming Blood Cell Detection and Classification with Advanced Deep Learning Models: A Comparative Study
Efficient detection and classification of blood cells are vital for accurate diagnosis and effective treatment of blood disorders. This study utilizes a YOLOv10 model trained on Roboflow data with images resized to 640x640 pixels across varying epochs. The results show that increased training epochs significantly enhance accuracy, precision, and recall, particularly in real-time blood cell detection & classification. The YOLOv10 model outperforms MobileNetV2, ShuffleNetV2, and DarkNet in real-time performance, though MobileNetV2 and ShuffleNetV2 are more computationally efficient, and DarkNet excels in feature extraction for blood cell classification. This research highlights the potential of integrating deep learning models like YOLOv10, MobileNetV2, ShuffleNetV2, and DarkNet into clinical workflows, promising improvements in diagnostic accuracy and efficiency. Additionally, a new, well-annotated blood cell dataset was created and will be open-sourced to support further advancements in automatic blood cell detection and classification. The findings demonstrate the transformative impact of these models in revolutionizing medical diagnostics and enhancing blood disorder management
comment: 26 pages, 4884 Words, 17 Figures, 10 Tables
♻ ☆ CAT: Concept-level backdoor ATtacks for Concept Bottleneck Models
Despite the transformative impact of deep learning across multiple domains, the inherent opacity of these models has driven the development of Explainable Artificial Intelligence (XAI). Among these efforts, Concept Bottleneck Models (CBMs) have emerged as a key approach to improve interpretability by leveraging high-level semantic information. However, CBMs, like other machine learning models, are susceptible to security threats, particularly backdoor attacks, which can covertly manipulate model behaviors. Understanding that the community has not yet studied the concept level backdoor attack of CBM, because of "Better the devil you know than the devil you don't know.", we introduce CAT (Concept-level Backdoor ATtacks), a methodology that leverages the conceptual representations within CBMs to embed triggers during training, enabling controlled manipulation of model predictions at inference time. An enhanced attack pattern, CAT+, incorporates a correlation function to systematically select the most effective and stealthy concept triggers, thereby optimizing the attack's impact. Our comprehensive evaluation framework assesses both the attack success rate and stealthiness, demonstrating that CAT and CAT+ maintain high performance on clean data while achieving significant targeted effects on backdoored datasets. This work underscores the potential security risks associated with CBMs and provides a robust testing methodology for future security assessments.
♻ ☆ Automated Black-box Prompt Engineering for Personalized Text-to-Image Generation
Prompt engineering is an effective but labor-intensive way to control text-to-image (T2I) generative models. Its time-intensive nature and complexity have spurred the development of algorithms for automated prompt generation. However, these methods often struggle with transferability across T2I models, require white-box access to the underlying model, or produce non-intuitive prompts. In this work, we introduce PRISM, an algorithm that automatically produces human-interpretable and transferable prompts that can effectively generate desired concepts given only black-box access to T2I models. Inspired by large language model (LLM) jailbreaking, PRISM leverages the in-context learning ability of LLMs to iteratively refine the candidate prompt distribution built upon the reference images. Our experiments demonstrate the versatility and effectiveness of PRISM in generating accurate prompts for objects, styles, and images across multiple T2I models, including Stable Diffusion, DALL-E, and Midjourney.
♻ ☆ Rethinking Model Redundancy for Low-light Image Enhancement
Low-light image enhancement (LLIE) is a fundamental task in computational photography, aiming to improve illumination, reduce noise, and enhance the image quality of low-light images. While recent advancements primarily focus on customizing complex neural network models, we have observed significant redundancy in these models, limiting further performance improvement. In this paper, we investigate and rethink the model redundancy for LLIE, identifying parameter harmfulness and parameter uselessness. Inspired by the rethinking, we propose two innovative techniques to mitigate model redundancy while improving the LLIE performance: Attention Dynamic Reallocation (ADR) and Parameter Orthogonal Generation (POG). ADR dynamically reallocates appropriate attention based on original attention, thereby mitigating parameter harmfulness. POG learns orthogonal basis embeddings of parameters and prevents degradation to static parameters, thereby mitigating parameter uselessness. Experiments validate the effectiveness of our techniques. We will release the code to the public.
comment: It has already been submitted as a different paper (arXiv:2505.09196)
♻ ☆ From One Single Sketch to 3D Detailed Face Reconstruction
3D face reconstruction from a single sketch is a critical yet underexplored task with significant practical applications. The primary challenges stem from the substantial modality gap between 2D sketches and 3D facial structures, including: (1) accurately extracting facial keypoints from 2D sketches; (2) preserving diverse facial expressions and fine-grained texture details; and (3) training a high-performing model with limited data. In this paper, we propose Sketch-1-to-3, a novel framework for realistic 3D face reconstruction from a single sketch, to address these challenges. Specifically, we first introduce the Geometric Contour and Texture Detail (GCTD) module, which enhances the extraction of geometric contours and texture details from facial sketches. Additionally, we design a deep learning architecture with a domain adaptation module and a tailored loss function to align sketches with the 3D facial space, enabling high-fidelity expression and texture reconstruction. To facilitate evaluation and further research, we construct SketchFaces, a real hand-drawn facial sketch dataset, and Syn-SketchFaces, a synthetic facial sketch dataset. Extensive experiments demonstrate that Sketch-1-to-3 achieves state-of-the-art performance in sketch-based 3D face reconstruction.
♻ ☆ D-CODA: Diffusion for Coordinated Dual-Arm Data Augmentation
Learning bimanual manipulation is challenging due to its high dimensionality and tight coordination required between two arms. Eye-in-hand imitation learning, which uses wrist-mounted cameras, simplifies perception by focusing on task-relevant views. However, collecting diverse demonstrations remains costly, motivating the need for scalable data augmentation. While prior work has explored visual augmentation in single-arm settings, extending these approaches to bimanual manipulation requires generating viewpoint-consistent observations across both arms and producing corresponding action labels that are both valid and feasible. In this work, we propose Diffusion for COordinated Dual-arm Data Augmentation (D-CODA), a method for offline data augmentation tailored to eye-in-hand bimanual imitation learning that trains a diffusion model to synthesize novel, viewpoint-consistent wrist-camera images for both arms while simultaneously generating joint-space action labels. It employs constrained optimization to ensure that augmented states involving gripper-to-object contacts adhere to constraints suitable for bimanual coordination. We evaluate D-CODA on 5 simulated and 3 real-world tasks. Our results across 2250 simulation trials and 300 real-world trials demonstrate that it outperforms baselines and ablations, showing its potential for scalable data augmentation in eye-in-hand bimanual manipulation. Our project website is at: https://dcodaaug.github.io/D-CODA/.
comment: Accepted to the Conference on Robot Learning (CoRL) 2025
Machine Learning 73
☆ Belief-Conditioned One-Step Diffusion: Real-Time Trajectory Planning with Just-Enough Sensing
Robots equipped with rich sensor suites can localize reliably in partially-observable environments, but powering every sensor continuously is wasteful and often infeasible. Belief-space planners address this by propagating pose-belief covariance through analytic models and switching sensors heuristically--a brittle, runtime-expensive approach. Data-driven approaches--including diffusion models--learn multi-modal trajectories from demonstrations, but presuppose an accurate, always-on state estimate. We address the largely open problem: for a given task in a mapped environment, which \textit{minimal sensor subset} must be active at each location to maintain state uncertainty \textit{just low enough} to complete the task? Our key insight is that when a diffusion planner is explicitly conditioned on a pose-belief raster and a sensor mask, the spread of its denoising trajectories yields a calibrated, differentiable proxy for the expected localisation error. Building on this insight, we present Belief-Conditioned One-Step Diffusion (B-COD), the first planner that, in a 10 ms forward pass, returns a short-horizon trajectory, per-waypoint aleatoric variances, and a proxy for localisation error--eliminating external covariance rollouts. We show that this single proxy suffices for a soft-actor-critic to choose sensors online, optimising energy while bounding pose-covariance growth. We deploy B-COD in real-time marine trials on an unmanned surface vehicle and show that it reduces sensing energy consumption while matching the goal-reach performance of an always-on baseline.
comment: Accepted to CoRL 2025 (Conference on Robot Learning)
☆ RealTalk: Realistic Emotion-Aware Lifelike Talking-Head Synthesis ICCV 2025
Emotion is a critical component of artificial social intelligence. However, while current methods excel in lip synchronization and image quality, they often fail to generate accurate and controllable emotional expressions while preserving the subject's identity. To address this challenge, we introduce RealTalk, a novel framework for synthesizing emotional talking heads with high emotion accuracy, enhanced emotion controllability, and robust identity preservation. RealTalk employs a variational autoencoder (VAE) to generate 3D facial landmarks from driving audio, which are concatenated with emotion-label embeddings using a ResNet-based landmark deformation model (LDM) to produce emotional landmarks. These landmarks and facial blendshape coefficients jointly condition a novel tri-plane attention Neural Radiance Field (NeRF) to synthesize highly realistic emotional talking heads. Extensive experiments demonstrate that RealTalk outperforms existing methods in emotion accuracy, controllability, and identity preservation, advancing the development of socially intelligent AI systems.
comment: Accepted to the ICCV 2025 Workshop on Artificial Social Intelligence
☆ AICRN: Attention-Integrated Convolutional Residual Network for Interpretable Electrocardiogram Analysis
The paradigm of electrocardiogram (ECG) analysis has evolved into real-time digital analysis, facilitated by artificial intelligence (AI) and machine learning (ML), which has improved the diagnostic precision and predictive capacity of cardiac diseases. This work proposes a novel deep learning (DL) architecture called the attention-integrated convolutional residual network (AICRN) to regress key ECG parameters such as the PR interval, the QT interval, the QRS duration, the heart rate, the peak amplitude of the R wave, and the amplitude of the T wave for interpretable ECG analysis. Our architecture is specially designed with spatial and channel attention-related mechanisms to address the type and spatial location of the ECG features for regression. The models employ a convolutional residual network to address vanishing and exploding gradient problems. The designed system addresses traditional analysis challenges, such as loss of focus due to human errors, and facilitates the fast and easy detection of cardiac events, thereby reducing the manual efforts required to solve analysis tasks. AICRN models outperform existing models in parameter regression with higher precision. This work demonstrates that DL can play a crucial role in the interpretability and precision of ECG analysis, opening up new clinical applications for cardiac monitoring and management.
☆ DE-VAE: Revealing Uncertainty in Parametric and Inverse Projections with Variational Autoencoders using Differential Entropy
Recently, autoencoders (AEs) have gained interest for creating parametric and invertible projections of multidimensional data. Parametric projections make it possible to embed new, unseen samples without recalculating the entire projection, while invertible projections allow the synthesis of new data instances. However, existing methods perform poorly when dealing with out-of-distribution samples in either the data or embedding space. Thus, we propose DE-VAE, an uncertainty-aware variational AE using differential entropy (DE) to improve the learned parametric and invertible projections. Given a fixed projection, we train DE-VAE to learn a mapping into 2D space and an inverse mapping back to the original space. We conduct quantitative and qualitative evaluations on four well-known datasets, using UMAP and t-SNE as baseline projection methods. Our findings show that DE-VAE can create parametric and inverse projections with comparable accuracy to other current AE-based approaches while enabling the analysis of embedding uncertainty.
comment: 5 pages, 3 figures, LaTeX
☆ Time-Scale Coupling Between States and Parameters in Recurrent Neural Networks
We study how gating mechanisms in recurrent neural networks (RNNs) implicitly induce adaptive learning-rate behavior, even when training is carried out with a fixed, global learning rate. This effect arises from the coupling between state-space time scales--parametrized by the gates--and parameter-space dynamics during gradient descent. By deriving exact Jacobians for leaky-integrator and gated RNNs, we obtain a first-order expansion that makes explicit how constant, scalar, and multi-dimensional gates reshape gradient propagation, modulate effective step sizes, and introduce anisotropy in parameter updates. These findings reveal that gates not only control memory retention in the hidden states, but also act as data-driven preconditioners that adapt optimization trajectories in parameter space. We further draw formal analogies with learning-rate schedules, momentum, and adaptive methods such as Adam, showing that these optimization behaviors emerge naturally from gating. Numerical experiments confirm the validity of our perturbative analysis, supporting the view that gate-induced corrections remain small while exerting systematic effects on training dynamics. Overall, this work provides a unified dynamical-systems perspective on how gating couples state evolution with parameter updates, explaining why gated architectures achieve robust trainability and stability in practice.
☆ DynamixSFT: Dynamic Mixture Optimization of Instruction Tuning Collections
As numerous instruction-tuning datasets continue to emerge during the post-training stage, dynamically balancing and optimizing their mixtures has become a critical challenge. To address this, we propose DynamixSFT, a dynamic and automated method for instruction-tuning dataset mixture optimization. We formulate the problem as a multi-armed bandit setup and introduce a Prior-scaled Boltzmann Exploration that softly anchors the updated sampling distribution to the original dataset proportions, thereby preserving the inherent diversity and coverage of the collection. Sampling probabilities are updated using a lightweight 1-Step Look-ahead Reward, reflecting how much the dataset contributes to improving the model's performance at its current state. When applied to the Tulu-v2-mixture collection comprising 16 instruction-tuning datasets, DynamixSFT achieves up to a 2.2% performance improvement across 10 benchmarks. Furthermore, we provide a comprehensive analysis and visualizations to offer deeper insights into the adaptive dynamics of our method.
☆ Generative Medical Event Models Improve with Scale
Realizing personalized medicine at scale calls for methods that distill insights from longitudinal patient journeys, which can be viewed as a sequence of medical events. Foundation models pretrained on large-scale medical event data represent a promising direction for scaling real-world evidence generation and generalizing to diverse downstream tasks. Using Epic Cosmos, a dataset with medical events from de-identified longitudinal health records for 16.3 billion encounters over 300 million unique patient records from 310 health systems, we introduce the Cosmos Medical Event Transformer ( CoMET) models, a family of decoder-only transformer models pretrained on 118 million patients representing 115 billion discrete medical events (151 billion tokens). We present the largest scaling-law study for medical event data, establishing a methodology for pretraining and revealing power-law scaling relationships for compute, tokens, and model size. Based on this, we pretrained a series of compute-optimal models with up to 1 billion parameters. Conditioned on a patient's real-world history, CoMET autoregressively generates the next medical event, simulating patient health timelines. We studied 78 real-world tasks, including diagnosis prediction, disease prognosis, and healthcare operations. Remarkably for a foundation model with generic pretraining and simulation-based inference, CoMET generally outperformed or matched task-specific supervised models on these tasks, without requiring task-specific fine-tuning or few-shot examples. CoMET's predictive power consistently improves as the model and pretraining scale. Our results show that CoMET, a generative medical event foundation model, can effectively capture complex clinical dynamics, providing an extensible and generalizable framework to support clinical decision-making, streamline healthcare operations, and improve patient outcomes.
☆ STEM: Efficient Relative Capability Evaluation of LLMs through Structured Transition Samples AAAI 2026
Evaluating large language models (LLMs) has become increasingly challenging as model capabilities advance rapidly. While recent models often achieve higher scores on standard benchmarks, these improvements do not consistently reflect enhanced real-world reasoning capabilities. Moreover, widespread overfitting to public benchmarks and the high computational cost of full evaluations have made it both expensive and less effective to distinguish meaningful differences between models. To address these challenges, we propose the \textbf{S}tructured \textbf{T}ransition \textbf{E}valuation \textbf{M}ethod (STEM), a lightweight and interpretable evaluation framework for efficiently estimating the relative capabilities of LLMs. STEM identifies \textit{significant transition samples} (STS) by analyzing consistent performance transitions among LLMs of the same architecture but varying parameter scales. These samples enable STEM to effectively estimate the capability position of an unknown model. Qwen3 model family is applied to construct the STS pool on six diverse and representative benchmarks. To assess generalizability. Experimental results indicate that STEM reliably captures performance trends, aligns with ground-truth rankings of model capability. These findings highlight STEM as a practical and scalable method for fine-grained, architecture-agnostic evaluation of LLMs.
comment: Submit to AAAI 2026
☆ J6: Jacobian-Driven Role Attribution for Multi-Objective Prompt Optimization in LLMs
In large language model (LLM) adaptation, balancing multiple optimization objectives such as improving factuality (heat) and increasing confidence (via low entropy) poses a fundamental challenge, especially when prompt parameters (e.g., hidden-layer insertions h and embedding modifications w) interact in non-trivial ways. Existing multi-objective optimization strategies often rely on scalar gradient aggregation, ignoring the deeper geometric structure between objectives and parameters. We propose J6, a structured Jacobian-based method that decomposes the gradient interaction matrix into six interpretable components. This decomposition enables both hard decision-making (e.g., choosing the dominant update direction via argmax) and soft strategies (e.g., attention-style weighting via softmax over J6), forming a dynamic update framework that adapts to local conflict and synergy. Moreover, the interpretable structure of J6 provides insight into parameter attribution, task interference, and geometry-aligned adaptation. Our work introduces a principled and extensible mechanism for conflict-aware prompt optimization, and opens a new avenue for incorporating structured Jacobian reasoning into multi-objective neural tuning.
comment: 9 pages, 3 tables, 1 algorithm
☆ Automated Model Evaluation for Object Detection via Prediction Consistency and Reliablity ICCV 2025
Recent advances in computer vision have made training object detectors more efficient and effective; however, assessing their performance in real-world applications still relies on costly manual annotation. To address this limitation, we develop an automated model evaluation (AutoEval) framework for object detection. We propose Prediction Consistency and Reliability (PCR), which leverages the multiple candidate bounding boxes that conventional detectors generate before non-maximum suppression (NMS). PCR estimates detection performance without ground-truth labels by jointly measuring 1) the spatial consistency between boxes before and after NMS, and 2) the reliability of the retained boxes via the confidence scores of overlapping boxes. For a more realistic and scalable evaluation, we construct a meta-dataset by applying image corruptions of varying severity. Experimental results demonstrate that PCR yields more accurate performance estimates than existing AutoEval methods, and the proposed meta-dataset covers a wider range of detection performance. The code is available at https://github.com/YonseiML/autoeval-det.
comment: ICCV 2025 Oral
☆ Content Accuracy and Quality Aware Resource Allocation Based on LP-Guided DRL for ISAC-Driven AIGC Networks
Integrated sensing and communication (ISAC) can enhance artificial intelligence-generated content (AIGC) networks by providing efficient sensing and transmission. Existing AIGC services usually assume that the accuracy of the generated content can be ensured, given accurate input data and prompt, thus only the content generation quality (CGQ) is concerned. However, it is not applicable in ISAC-based AIGC networks, where content generation is based on inaccurate sensed data. Moreover, the AIGC model itself introduces generation errors, which depend on the number of generating steps (i.e., computing resources). To assess the quality of experience of ISAC-based AIGC services, we propose a content accuracy and quality aware service assessment metric (CAQA). Since allocating more resources to sensing and generating improves content accuracy but may reduce communication quality, and vice versa, this sensing-generating (computing)-communication three-dimensional resource tradeoff must be optimized to maximize the average CAQA (AvgCAQA) across all users with AIGC (CAQA-AIGC). This problem is NP-hard, with a large solution space that grows exponentially with users. To solve the CAQA-AIGC problem with low complexity, a linear programming (LP) guided deep reinforcement learning (DRL) algorithm with an action filter (LPDRL-F) is proposed. Through the LP-guided approach and the action filter, LPDRL-F can transform the original three-dimensional solution space to two dimensions, reducing complexity while improving the learning performance of DRL. Simulations show that compared to existing DRL and generative diffusion model algorithms without LP, LPDRL-F converges faster by over 60% and finds better resource allocation solutions, improving AvgCAQA by more than 14%. With LPDRL-F, CAQA-AIGC can achieve an improvement in AvgCAQA of more than 50% compared to existing schemes focusing solely on CGQ.
☆ VARAN: Variational Inference for Self-Supervised Speech Models Fine-Tuning on Downstream Tasks
Conventional methods for aggregating layers in fine-tuned self-supervised speech models, such as using the final layer or weighted sum, suffer from information bottlenecks and static feature weighting for all dataset examples. We propose VARAN, a framework that dynamically tailors layer aggregation to individual inputs. By employing layer-specialized probing heads and data-dependent weighting, VARAN adaptively prioritizes layer's features based on input. Evaluations on automatic speech recognition and speech emotion recognition tasks demonstrate VARAN's superior performance, particularly when using the LoRA fine-tuning technique. The framework resolves the trade-off between preserving layer-specific information and enabling flexible feature utilization, advancing efficient adaptation of self-supervised speech representations.
☆ Robust Data Fusion via Subsampling
Data fusion and transfer learning are rapidly growing fields that enhance model performance for a target population by leveraging other related data sources or tasks. The challenges lie in the various potential heterogeneities between the target and external data, as well as various practical concerns that prevent a na\"ive data integration. We consider a realistic scenario where the target data is limited in size while the external data is large but contaminated with outliers; such data contamination, along with other computational and operational constraints, necessitates proper selection or subsampling of the external data for transfer learning. To our knowledge,transfer learning and subsampling under data contamination have not been thoroughly investigated. We address this gap by studying various transfer learning methods with subsamples of the external data, accounting for outliers deviating from the underlying true model due to arbitrary mean shifts. Two subsampling strategies are investigated: one aimed at reducing biases and the other at minimizing variances. Approaches to combine these strategies are also introduced to enhance the performance of the estimators. We provide non-asymptotic error bounds for the transfer learning estimators, clarifying the roles of sample sizes, signal strength, sampling rates, magnitude of outliers, and tail behaviors of model error distributions, among other factors. Extensive simulations show the superior performance of the proposed methods. Additionally, we apply our methods to analyze the risk of hard landings in A380 airplanes by utilizing data from other airplane types,demonstrating that robust transfer learning can improve estimation efficiency for relatively rare airplane types with the help of data from other types of airplanes.
☆ Fairness Regularization in Federated Learning
Federated Learning (FL) has emerged as a vital paradigm in modern machine learning that enables collaborative training across decentralized data sources without exchanging raw data. This approach not only addresses privacy concerns but also allows access to overall substantially larger and potentially more diverse datasets, without the need for centralized storage or hardware resources. However, heterogeneity in client data may cause certain clients to have disproportionate impacts on the global model, leading to disparities in the clients' performances. Fairness, therefore, becomes a crucial concern in FL and can be addressed in various ways. However, the effectiveness of existing fairness-aware methods, particularly in heterogeneous data settings, remains unclear, and the relationships between different approaches are not well understood. In this work, we focus on performance equitable fairness, which aims to minimize differences in performance across clients. We restrict our study to fairness-aware methods that explicitly regularize client losses, evaluating both existing and newly proposed approaches. We identify and theoretically explain connections between the investigated fairness methods, and empirically show that FairGrad (approximate) and FairGrad* (exact) (two variants of a gradient variance regularization method introduced here for performance equitable fairness) improve both fairness and overall model performance in heterogeneous data settings.
comment: 25 pages
☆ BConformeR: A Conformer Based on Mutual Sampling for Unified Prediction of Continuous and Discontinuous Antibody Binding Sites AAAI
Accurate prediction of antibody-binding sites (epitopes) on antigens is crucial for vaccine design, immunodiagnostics, therapeutic antibody development, antibody engineering, research into autoimmune and allergic diseases, and for advancing our understanding of immune responses. Despite in silico methods that have been proposed to predict both linear (continuous) and conformational (discontinuous) epitopes, they consistently underperform in predicting conformational epitopes. In this work, we propose a conformer-based model trained on antigen sequences derived from 1,080 antigen-antibody complexes, leveraging convolutional neural networks (CNNs) to extract local features and Transformers to capture long-range dependencies within antigen sequences. Ablation studies demonstrate that CNN enhances the prediction of linear epitopes, and the Transformer module improves the prediction of conformational epitopes. Experimental results show that our model outperforms existing baselines in terms of PCC, ROC-AUC, PR-AUC, and F1 scores on conformational epitopes.
comment: 16 pages, 7 figures, 5 tables, submitted to AAAI conference 2026
☆ Active inference for action-unaware agents
Active inference is a formal approach to study cognition based on the notion that adaptive agents can be seen as engaging in a process of approximate Bayesian inference, via the minimisation of variational and expected free energies. Minimising the former provides an account of perceptual processes and learning as evidence accumulation, while minimising the latter describes how agents select their actions over time. In this way, adaptive agents are able to maximise the likelihood of preferred observations or states, given a generative model of the environment. In the literature, however, different strategies have been proposed to describe how agents can plan their future actions. While they all share the notion that some kind of expected free energy offers an appropriate way to score policies, sequences of actions, in terms of their desirability, there are different ways to consider the contribution of past motor experience to the agent's future behaviour. In some approaches, agents are assumed to know their own actions, and use such knowledge to better plan for the future. In other approaches, agents are unaware of their actions, and must infer their motor behaviour from recent observations in order to plan for the future. This difference reflects a standard point of departure in two leading frameworks in motor control based on the presence, or not, of an efference copy signal representing knowledge about an agent's own actions. In this work we compare the performances of action-aware and action-unaware agents in two navigations tasks, showing how action-unaware agents can achieve performances comparable to action-aware ones while at a severe disadvantage.
comment: 59 pages, 47 figures
☆ Bongard-RWR+: Real-World Representations of Fine-Grained Concepts in Bongard Problems
Bongard Problems (BPs) provide a challenging testbed for abstract visual reasoning (AVR), requiring models to identify visual concepts fromjust a few examples and describe them in natural language. Early BP benchmarks featured synthetic black-and-white drawings, which might not fully capture the complexity of real-world scenes. Subsequent BP datasets employed real-world images, albeit the represented concepts are identifiable from high-level image features, reducing the task complexity. Differently, the recently released Bongard-RWR dataset aimed at representing abstract concepts formulated in the original BPs using fine-grained real-world images. Its manual construction, however, limited the dataset size to just $60$ instances, constraining evaluation robustness. In this work, we introduce Bongard-RWR+, a BP dataset composed of $5\,400$ instances that represent original BP abstract concepts using real-world-like images generated via a vision language model (VLM) pipeline. Building on Bongard-RWR, we employ Pixtral-12B to describe manually curated images and generate new descriptions aligned with the underlying concepts, use Flux.1-dev to synthesize images from these descriptions, and manually verify that the generated images faithfully reflect the intended concepts. We evaluate state-of-the-art VLMs across diverse BP formulations, including binary and multiclass classification, as well as textual answer generation. Our findings reveal that while VLMs can recognize coarse-grained visual concepts, they consistently struggle with discerning fine-grained concepts, highlighting limitations in their reasoning capabilities.
☆ FedUHD: Unsupervised Federated Learning using Hyperdimensional Computing
Unsupervised federated learning (UFL) has gained attention as a privacy-preserving, decentralized machine learning approach that eliminates the need for labor-intensive data labeling. However, UFL faces several challenges in practical applications: (1) non-independent and identically distributed (non-iid) data distribution across devices, (2) expensive computational and communication costs at the edge, and (3) vulnerability to communication noise. Previous UFL approaches have relied on deep neural networks (NN), which introduce substantial overhead in both computation and communication. In this paper, we propose FedUHD, the first UFL framework based on Hyperdimensional Computing (HDC). HDC is a brain-inspired computing scheme with lightweight training and inference operations, much smaller model size, and robustness to communication noise. FedUHD introduces two novel HDC-based designs to improve UFL performance. On the client side, a kNN-based cluster hypervector removal method addresses non-iid data samples by eliminating detrimental outliers. On the server side, a weighted HDC aggregation technique balances the non-iid data distribution across clients. Our experiments demonstrate that FedUHD achieves up to 173.6x and 612.7x better speedup and energy efficiency, respectively, in training, up to 271x lower communication cost, and 15.50% higher accuracy on average across diverse settings, along with superior robustness to various types of noise compared to state-of-the-art NN-based UFL approaches.
☆ Optimizing Neural Architectures for Hindi Speech Separation and Enhancement in Noisy Environments
This paper addresses the challenges of Hindi speech separation and enhancement using advanced neural network architectures, with a focus on edge devices. We propose a refined approach leveraging the DEMUCS model to overcome limitations of traditional methods, achieving substantial improvements in speech clarity and intelligibility. The model is fine-tuned with U-Net and LSTM layers, trained on a dataset of 400,000 Hindi speech clips augmented with ESC-50 and MS-SNSD for diverse acoustic environments. Evaluation using PESQ and STOI metrics shows superior performance, particularly under extreme noise conditions. To ensure deployment on resource-constrained devices like TWS earbuds, we explore quantization techniques to reduce computational requirements. This research highlights the effectiveness of customized AI algorithms for speech processing in Indian contexts and suggests future directions for optimizing edge-based architectures.
comment: ICAD 2025
☆ MOON: Generative MLLM-based Multimodal Representation Learning for E-commerce Product Understanding
With the rapid advancement of e-commerce, exploring general representations rather than task-specific ones has attracted increasing research attention. For product understanding, although existing discriminative dual-flow architectures drive progress in this field, they inherently struggle to model the many-to-one alignment between multiple images and texts of products. Therefore, we argue that generative Multimodal Large Language Models (MLLMs) hold significant potential for improving product representation learning. Nevertheless, achieving this goal still remains non-trivial due to several key challenges: the lack of multimodal and aspect-aware modeling modules in typical LLMs; the common presence of background noise in product images; and the absence of a standard benchmark for evaluation. To address these issues, we propose the first generative MLLM-based model named MOON for product representation learning. Our method (1) employs a guided Mixture-of-Experts (MoE) module for targeted modeling of multimodal and aspect-specific product content; (2) effectively detects core semantic regions in product images to mitigate the distraction and interference caused by background noise; and (3) introduces the specialized negative sampling strategy to increase the difficulty and diversity of negative samples. In addition, we release a large-scale multimodal benchmark MBE for various product understanding tasks. Experimentally, our model demonstrates competitive zero-shot performance on both our benchmark and the public dataset, showcasing strong generalization across various downstream tasks, including cross-modal retrieval, product classification, and attribute prediction. Furthermore, the case study and visualization illustrate the effectiveness of MOON for product understanding.
comment: 11 pages, 9 figures
☆ Universal Learning of Nonlinear Dynamics
We study the fundamental problem of learning a marginally stable unknown nonlinear dynamical system. We describe an algorithm for this problem, based on the technique of spectral filtering, which learns a mapping from past observations to the next based on a spectral representation of the system. Using techniques from online convex optimization, we prove vanishing prediction error for any nonlinear dynamical system that has finitely many marginally stable modes, with rates governed by a novel quantitative control-theoretic notion of learnability. The main technical component of our method is a new spectral filtering algorithm for linear dynamical systems, which incorporates past observations and applies to general noisy and marginally stable systems. This significantly generalizes the original spectral filtering algorithm to both asymmetric dynamics as well as incorporating noise correction, and is of independent interest.
☆ Efficient Modular Learning through Naive LoRA Summation: Leveraging Orthogonality in High-Dimensional Models
Recent advances in large language models are driven by scale, while parameter-efficient fine-tuning (PEFT) enables updating only a small fraction of parameters. Low-Rank Adaptation (LoRA) stores parameter deltas as the product of two small matrices, which makes them natural building blocks that can be composed. Motivated by the superposition principle, we hypothesize that independently trained LoRA modules on disjoint domains are approximately orthogonal and can be combined by simple addition. Using GPT-2 Small (117M) with LoRA rank 4 and alpha=64, we train adapters for three QA domains (math, medicine, finance). In pairwise tests, adding Math+Medicine adapters improves perplexity by -9.10% relative to merged-data fine-tuning, while Math+Finance and Finance+Medicine change by +4.54% and +27.56%, respectively. Across combinations, the RMS cosine similarity between LoRA deltas correlates positively and approximately linearly with the change in perplexity. Naive summation requires no additional training, can be applied in seconds, and achieves performance comparable to models trained on merged data, while clarifying when interference appears in higher-order compositions.
comment: Preprint
☆ Leveraging Geometric Insights in Hyperbolic Triplet Loss for Improved Recommendations
Recent studies have demonstrated the potential of hyperbolic geometry for capturing complex patterns from interaction data in recommender systems. In this work, we introduce a novel hyperbolic recommendation model that uses geometrical insights to improve representation learning and increase computational stability at the same time. We reformulate the notion of hyperbolic distances to unlock additional representation capacity over conventional Euclidean space and learn more expressive user and item representations. To better capture user-items interactions, we construct a triplet loss that models ternary relations between users and their corresponding preferred and nonpreferred choices through a mix of pairwise interaction terms driven by the geometry of data. Our hyperbolic approach not only outperforms existing Euclidean and hyperbolic models but also reduces popularity bias, leading to more diverse and personalized recommendations.
☆ Set-Valued Transformer Network for High-Emission Mobile Source Identification
Identifying high-emission vehicles is a crucial step in regulating urban pollution levels and formulating traffic emission reduction strategies. However, in practical monitoring data, the proportion of high-emission state data is significantly lower compared to normal emission states. This characteristic long-tailed distribution severely impedes the extraction of discriminative features for emission state identification during data mining. Furthermore, the highly nonlinear nature of vehicle emission states and the lack of relevant prior knowledge also pose significant challenges to the construction of identification models.To address the aforementioned issues, we propose a Set-Valued Transformer Network (SVTN) to achieve comprehensive learning of discriminative features from high-emission samples, thereby enhancing detection accuracy. Specifically, this model first employs the transformer to measure the temporal similarity of micro-trip condition variations, thus constructing a mapping rule that projects the original high-dimensional emission data into a low-dimensional feature space. Next, a set-valued identification algorithm is used to probabilistically model the relationship between the generated feature vectors and their labels, providing an accurate metric criterion for the classification algorithm. To validate the effectiveness of our proposed approach, we conducted extensive experiments on the diesel vehicle monitoring data of Hefei city in 2020. The results demonstrate that our method achieves a 9.5\% reduction in the missed detection rate for high-emission vehicles compared to the transformer-based baseline, highlighting its superior capability in accurately identifying high-emission mobile pollution sources.
☆ A Comprehensive Review of AI Agents: Transforming Possibilities in Technology and Beyond
Artificial Intelligence (AI) agents have rapidly evolved from specialized, rule-based programs to versatile, learning-driven autonomous systems capable of perception, reasoning, and action in complex environments. The explosion of data, advances in deep learning, reinforcement learning, and multi-agent coordination have accelerated this transformation. Yet, designing and deploying unified AI agents that seamlessly integrate cognition, planning, and interaction remains a grand challenge. In this review, we systematically examine the architectural principles, foundational components, and emergent paradigms that define the landscape of contemporary AI agents. We synthesize insights from cognitive science-inspired models, hierarchical reinforcement learning frameworks, and large language model-based reasoning. Moreover, we discuss the pressing ethical, safety, and interpretability concerns associated with deploying these agents in real-world scenarios. By highlighting major breakthroughs, persistent challenges, and promising research directions, this review aims to guide the next generation of AI agent systems toward more robust, adaptable, and trustworthy autonomous intelligence.
☆ Learning Marked Temporal Point Process Explanations based on Counterfactual and Factual Reasoning
Neural network-based Marked Temporal Point Process (MTPP) models have been widely adopted to model event sequences in high-stakes applications, raising concerns about the trustworthiness of outputs from these models. This study focuses on Explanation for MTPP, aiming to identify the minimal and rational explanation, that is, the minimum subset of events in history, based on which the prediction accuracy of MTPP matches that based on full history to a great extent and better than that based on the complement of the subset. This study finds that directly defining Explanation for MTPP as counterfactual explanation or factual explanation can result in irrational explanations. To address this issue, we define Explanation for MTPP as a combination of counterfactual explanation and factual explanation. This study proposes Counterfactual and Factual Explainer for MTPP (CFF) to solve Explanation for MTPP with a series of deliberately designed techniques. Experiments demonstrate the correctness and superiority of CFF over baselines regarding explanation quality and processing efficiency.
comment: ECAI 2025 full version
☆ Extending Straight-Through Estimation for Robust Neural Networks on Analog CIM Hardware
Analog Compute-In-Memory (CIM) architectures promise significant energy efficiency gains for neural network inference, but suffer from complex hardware-induced noise that poses major challenges for deployment. While noise-aware training methods have been proposed to address this issue, they typically rely on idealized and differentiable noise models that fail to capture the full complexity of analog CIM hardware variations. Motivated by the Straight-Through Estimator (STE) framework in quantization, we decouple forward noise simulation from backward gradient computation, enabling noise-aware training with more accurate but computationally intractable noise modeling in analog CIM systems. We provide theoretical analysis demonstrating that our approach preserves essential gradient directional information while maintaining computational tractability and optimization stability. Extensive experiments show that our extended STE framework achieves up to 5.3% accuracy improvement on image classification, 0.72 perplexity reduction on text generation, 2.2$\times$ speedup in training time, and 37.9% lower peak memory usage compared to standard noise-aware training methods.
comment: 4 pages, 5 figures, conference
☆ M3OOD: Automatic Selection of Multimodal OOD Detectors
Out-of-distribution (OOD) robustness is a critical challenge for modern machine learning systems, particularly as they increasingly operate in multimodal settings involving inputs like video, audio, and sensor data. Currently, many OOD detection methods have been proposed, each with different designs targeting various distribution shifts. A single OOD detector may not prevail across all the scenarios; therefore, how can we automatically select an ideal OOD detection model for different distribution shifts? Due to the inherent unsupervised nature of the OOD detection task, it is difficult to predict model performance and find a universally Best model. Also, systematically comparing models on the new unseen data is costly or even impractical. To address this challenge, we introduce M3OOD, a meta-learning-based framework for OOD detector selection in multimodal settings. Meta learning offers a solution by learning from historical model behaviors, enabling rapid adaptation to new data distribution shifts with minimal supervision. Our approach combines multimodal embeddings with handcrafted meta-features that capture distributional and cross-modal characteristics to represent datasets. By leveraging historical performance across diverse multimodal benchmarks, M3OOD can recommend suitable detectors for a new data distribution shift. Experimental evaluation demonstrates that M3OOD consistently outperforms 10 competitive baselines across 12 test scenarios with minimal computational overhead.
☆ HPD: Hybrid Projection Decomposition for Robust State Space Models on Analog CIM Hardware
State Space Models (SSMs) are efficient alternatives to traditional sequence models, excelling at processing long sequences with lower computational complexity. Their reliance on matrix multiplications makes them ideal for compute-in-memory (CIM) architectures, which improve energy efficiency by computing within memory arrays. However, device non-idealities in CIM introduce weight perturbations that can degrade inference accuracy. In this paper, we systematically analyze the robustness of SSMs under noisy conditions, identifying that the final block and output projection layers are more susceptible to perturbations compared to other components. Building on these insights, we propose HPD, a Hybrid Projection Decomposition strategy for the last output projection layer. We replace the original weight matrix with the multiplication of U and {\Sigma} in its SVD to ensure compatibility with existing hardware architectures, while offloading V> to digital hardware for precise and robust correction. Comprehensive tests on Mamba models show that our method reduces perplexity by up to 99.57% under various noise conditions compared to baseline models, with accuracy gains of up to 96.67% on the PIQA benchmark for commonsense reasoning.
comment: 4 pages, 5 figures, conference
☆ An Improved Algorithm for Adversarial Linear Contextual Bandits via Reduction
We present an efficient algorithm for linear contextual bandits with adversarial losses and stochastic action sets. Our approach reduces this setting to misspecification-robust adversarial linear bandits with fixed action sets. Without knowledge of the context distribution or access to a context simulator, the algorithm achieves $\tilde{O}(\min\{d^2\sqrt{T}, \sqrt{d^3T\log K}\})$ regret and runs in $\text{poly}(d,C,T)$ time, where $d$ is the feature dimension, $C$ is an upper bound on the number of linear constraints defining the action set in each round, $K$ is an upper bound on the number of actions in each round, and $T$ is number of rounds. This resolves the open question by Liu et al. (2023) on whether one can obtain $\text{poly}(d)\sqrt{T}$ regret in polynomial time independent of the number of actions. For the important class of combinatorial bandits with adversarial losses and stochastic action sets where the action sets can be described by a polynomial number of linear constraints, our algorithm is the first to achieve $\text{poly}(d)\sqrt{T}$ regret in polynomial time, while no prior algorithm achieves even $o(T)$ regret in polynomial time to our knowledge. When a simulator is available, the regret bound can be improved to $\tilde{O}(d\sqrt{L^\star})$, where $L^\star$ is the cumulative loss of the best policy.
☆ Optimizing Token Choice for Code Watermarking: A RL Approach
The need for detecting LLM-generated code necessitates watermarking systems capable of operating within its highly structured and syntactically constrained environment. To address this, we introduce CodeTracer, an innovative adaptive code watermarking framework underpinned by a novel reinforcement learning training paradigm. At its core, CodeTracer features a policy-driven approach that utilizes a parameterized model to intelligently bias token choices during next-token prediction. This strategy ensures that embedded watermarks maintain code functionality while exhibiting subtle yet statistically detectable deviations from typical token distributions. To facilitate policy learning, we devise a comprehensive reward system that seamlessly integrates execution feedback with watermark embedding signals, balancing process-level and outcome-level rewards. Additionally, we employ Gumbel Top-k reparameterization to enable gradient-based optimization of discrete watermarking decisions. Extensive comparative evaluations demonstrate CodeTracer's significant superiority over state-of-the-art baselines in both watermark detectability and the preservation of generated code's functionality.
comment: 18 pages, 3 figures
☆ Scale-Disentangled spatiotemporal Modeling for Long-term Traffic Emission Forecasting
Long-term traffic emission forecasting is crucial for the comprehensive management of urban air pollution. Traditional forecasting methods typically construct spatiotemporal graph models by mining spatiotemporal dependencies to predict emissions. However, due to the multi-scale entanglement of traffic emissions across time and space, these spatiotemporal graph modeling method tend to suffer from cascading error amplification during long-term inference. To address this issue, we propose a Scale-Disentangled Spatio-Temporal Modeling (SDSTM) framework for long-term traffic emission forecasting. It leverages the predictability differences across multiple scales to decompose and fuse features at different scales, while constraining them to remain independent yet complementary. Specifically, the model first introduces a dual-stream feature decomposition strategy based on the Koopman lifting operator. It lifts the scale-coupled spatiotemporal dynamical system into an infinite-dimensional linear space via Koopman operator, and delineates the predictability boundary using gated wavelet decomposition. Then a novel fusion mechanism is constructed, incorporating a dual-stream independence constraint based on cross-term loss to dynamically refine the dual-stream prediction results, suppress mutual interference, and enhance the accuracy of long-term traffic emission prediction. Extensive experiments conducted on a road-level traffic emission dataset within Xi'an's Second Ring Road demonstrate that the proposed model achieves state-of-the-art performance.
☆ ENA: Efficient N-dimensional Attention
Efficient modeling of long sequences of high-order data requires a more efficient architecture than Transformer. In this paper, we investigate two key aspects of extending linear recurrent models, especially those originally designed for language modeling, to high-order data (1D to ND): scanning strategies and attention-hybrid architectures. Empirical results suggest that scanning provides limited benefits, while attention-hybrid models yield promising results. Focusing on the latter, we further evaluate types of attention and find that tiled high-order sliding window attention (SWA) is efficient in both theory and practice. We term the resulting hybrid architecture of linear recurrence and high-order SWA as Efficient N-dimensional Attention (ENA). We then conduct several experiments to demonstrate its effectiveness. The intuition behind ENA is that linear recurrence compresses global information into a state, while SWA complements it by enforcing strict local modeling. Together, they form a simple framework that offers a promising and practical solution for ultra-long high-order data modeling.
comment: WIP
☆ CORE: Measuring Multi-Agent LLM Interaction Quality under Game-Theoretic Pressures
Game-theoretic interactions between agents with Large Language Models (LLMs) have revealed many emergent capabilities, yet the linguistic diversity of these interactions has not been sufficiently quantified. In this paper, we present the Conversational Robustness Evaluation Score: CORE, a metric to quantify the effectiveness of language use within multi-agent systems across different game-theoretic interactions. CORE integrates measures of cluster entropy, lexical repetition, and semantic similarity, providing a direct lens of dialog quality. We apply CORE to pairwise LLM dialogs across competitive, cooperative, and neutral settings, further grounding our analysis in Zipf's and Heaps' Laws to characterize word frequency distributions and vocabulary growth. Our findings show that cooperative settings exhibit both steeper Zipf distributions and higher Heap exponents, indicating more repetition alongside greater vocabulary expansion. In contrast, competitive interactions display lower Zipf and Heaps exponents, reflecting less repetition and more constrained vocabularies. These results provide new insights into how social incentives influence language adaptation, and highlight CORE as a robust diagnostic for measuring linguistic robustness in multi-agent LLM systems. Our code is available at https://github.com/psyonp/core.
☆ Reduced-order modeling of Hamiltonian dynamics based on symplectic neural networks
We introduce a novel data-driven symplectic induced-order modeling (ROM) framework for high-dimensional Hamiltonian systems that unifies latent-space discovery and dynamics learning within a single, end-to-end neural architecture. The encoder-decoder is built from Henon neural networks (HenonNets) and may be augmented with linear SGS-reflector layers. This yields an exact symplectic map between full and latent phase spaces. Latent dynamics are advanced by a symplectic flow map implemented as a HenonNet. This unified neural architecture ensures exact preservation of the underlying symplectic structure at the reduced-order level, significantly enhancing the fidelity and long-term stability of the resulting ROM. We validate our method through comprehensive numerical experiments on canonical Hamiltonian systems. The results demonstrate the method's capability for accurate trajectory reconstruction, robust predictive performance beyond the training horizon, and accurate Hamiltonian preservation. These promising outcomes underscore the effectiveness and potential applicability of our symplectic ROM framework for complex dynamical systems across a broad range of scientific and engineering disciplines.
☆ A Sobel-Gradient MLP Baseline for Handwritten Character Recognition
We revisit the classical Sobel operator to ask a simple question: Are first-order edge maps sufficient to drive an all-dense multilayer perceptron (MLP) for handwritten character recognition (HCR), as an alternative to convolutional neural networks (CNNs)? Using only horizontal and vertical Sobel derivatives as input, we train an MLP on MNIST and EMNIST Letters. Despite its extreme simplicity, the resulting network reaches 98% accuracy on MNIST digits and 92% on EMNIST letters -- approaching CNNs while offering a smaller memory footprint and transparent features. Our findings highlight that much of the class-discriminative information in handwritten character images is already captured by first-order gradients, making edge-aware MLPs a compelling option for HCR.
comment: This paper is under consideration at Pattern Recognition Letters
☆ EVTP-IVS: Effective Visual Token Pruning For Unifying Instruction Visual Segmentation In Multi-Modal Large Language Models
Instructed Visual Segmentation (IVS) tasks require segmenting objects in images or videos based on natural language instructions. While recent multimodal large language models (MLLMs) have achieved strong performance on IVS, their inference cost remains a major bottleneck, particularly in video. We empirically analyze visual token sampling in MLLMs and observe a strong correlation between subset token coverage and segmentation performance. This motivates our design of a simple and effective token pruning method that selects a compact yet spatially representative subset of tokens to accelerate inference. In this paper, we introduce a novel visual token pruning method for IVS, called EVTP-IV, which builds upon the k-center by integrating spatial information to ensure better coverage. We further provide an information-theoretic analysis to support our design. Experiments on standard IVS benchmarks show that our method achieves up to 5X speed-up on video tasks and 3.5X on image tasks, while maintaining comparable accuracy using only 20% of the tokens. Our method also consistently outperforms state-of-the-art pruning baselines under varying pruning ratios.
☆ PCA- and SVM-Grad-CAM for Convolutional Neural Networks: Closed-form Jacobian Expression
Convolutional Neural Networks (CNNs) are an effective approach for classification tasks, particularly when the training dataset is large. Although CNNs have long been considered a black-box classification method, they can be used as a white-box method through visualization techniques such as Grad-CAM. When training samples are limited, incorporating a Principal Component Analysis (PCA) layer and/or a Support Vector Machine (SVM) classifier into a CNN can effectively improve classification performance. However, traditional Grad-CAM cannot be directly applied to PCA and/or SVM layers. It is important to generate attention regions for PCA and/or SVM layers in CNNs to facilitate the development of white-box methods. Therefore, we propose ``PCA-Grad-CAM'', a method for visualizing attention regions in PCA feature vectors, and ``SVM-Grad-CAM'', a method for visualizing attention regions in an SVM classifier layer. To complete our methods analytically, it is necessary to solve the closed-form Jacobian consisting of partial derivatives from the last convolutional layer to the PCA and/or SVM layers. In this paper, we present the exact closed-form Jacobian and the visualization results of our methods applied to several major datasets.
comment: 15 pages
♻ ☆ iFairy: the First 2-bit Complex LLM with All Parameters in $\{\pm1, \pm i\}$
Quantization-Aware Training (QAT) integrates quantization into the training loop, enabling LLMs to learn robust low-bit representations, and is widely recognized as one of the most promising research directions. All current QAT research focuses on minimizing quantization error on full-precision models, where the full-precision accuracy acts as an upper bound (accuracy ceiling). No existing method has even attempted to surpass this ceiling. To break this ceiling, we propose a new paradigm: raising the ceiling (full-precision model), and then still quantizing it efficiently into 2 bits. We propose Fairy$\pm i$, the first 2-bit quantization framework for complex-valued LLMs. Specifically, our method leverages the representational advantages of the complex domain to boost full-precision accuracy. We map weights to the fourth roots of unity $\{\pm1, \pm i\}$, forming a perfectly symmetric and information-theoretically optimal 2-bit representation. Importantly, each quantized weight has either a zero real or imaginary part, enabling multiplication-free inference using only additions and element swaps. Experimental results show that Fairy$\pm i$ outperforms the ceiling of existing 2-bit quantization approaches in terms of both PPL and downstream tasks, while maintaining strict storage and compute efficiency. This work opens a new direction for building highly accurate and practical LLMs under extremely low-bit constraints.
comment: 15 pages, 9 figures
♻ ☆ Memory-Augmented Transformers: A Systematic Review from Neuroscience Principles to Enhanced Model Architectures
Memory is fundamental to intelligence, enabling learning, reasoning, and adaptability across biological and artificial systems. While Transformer architectures excel at sequence modeling, they face critical limitations in long-range context retention, continual learning, and knowledge integration. This review presents a unified framework bridging neuroscience principles, including dynamic multi-timescale memory, selective attention, and consolidation, with engineering advances in Memory-Augmented Transformers. We organize recent progress through three taxonomic dimensions: functional objectives (context extension, reasoning, knowledge integration, adaptation), memory representations (parameter-encoded, state-based, explicit, hybrid), and integration mechanisms (attention fusion, gated control, associative retrieval). Our analysis of core memory operations (reading, writing, forgetting, and capacity management) reveals a shift from static caches toward adaptive, test-time learning systems. We identify persistent challenges in scalability and interference, alongside emerging solutions including hierarchical buffering and surprise-gated updates. This synthesis provides a roadmap toward cognitively-inspired, lifelong-learning Transformer architectures.
♻ ☆ CAOTE: KV Cache Selection for LLMs via Attention Output Error-Based Token Eviction
While long context support of large language models has extended their abilities, it also incurs challenges in memory and compute which becomes crucial bottlenecks in resource-restricted devices. Token eviction, a widely adopted post-training methodology designed to alleviate the bottlenecks by evicting less important tokens from the cache, typically uses attention scores as proxy metrics for token importance. However, one major limitation of attention score as a token-wise importance metrics is that it lacks the information about contribution of tokens to the attention output. In this paper, we propose a simple eviction criterion based on the contribution of cached tokens to attention outputs. Our method, CAOTE, optimizes for eviction error due to token eviction, by seamlessly integrating attention scores and value vectors. This is the first method which uses value tokens on top of attention-based eviction scores in closed-form. Additionally, CAOTE can act as a meta-heuristic method with flexible usage with any token eviction method. We show that CAOTE, when combined with the state-of-the-art attention score-based methods, always improves accuracies on the downstream task, indicating the importance of leveraging information from values during token eviction process.
comment: 15 pages, 3 figures, 13 tables
♻ ☆ Diagnostic performance of deep learning for predicting glioma isocitrate dehydrogenase and 1p/19q co-deletion in MRI: a systematic review and meta-analysis
Objectives We aimed to evaluate the diagnostic performance of deep learning (DL)-based radiomics models for the noninvasive prediction of isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion status in glioma patients using MRI sequences, and to identify methodological factors influencing accuracy and generalizability. Materials and methods Following PRISMA guidelines, we systematically searched major databases (PubMed, Scopus, Embase, Web of Science, and Google Scholar) up to March 2025, screening studies that utilized DL to predict IDH and 1p/19q co-deletion status from MRI data. We assessed study quality and risk of bias using the Radiomics Quality Score and the QUADAS-2 tool. Our meta-analysis employed a bivariate model to compute pooled sensitivity and specificity, and meta-regression to assess interstudy heterogeneity. Results Among the 1517 unique publications, 104 were included in the qualitative synthesis, and 72 underwent meta-analysis. Pooled estimates for IDH prediction in test cohorts yielded a sensitivity of 0.80 and specificity of 0.85. For 1p/19q co-deletion, sensitivity was 0.75 and specificity was 0.82. Meta-regression identified the tumor segmentation method and the extent of DL integration into the radiomics pipeline as significant contributors to interstudy variability. Conclusion Although DL models demonstrate strong potential for noninvasive molecular classification of gliomas, clinical translation requires several critical steps: harmonization of multi-center MRI data using techniques such as histogram matching and DL-based style transfer; adoption of standardized and automated segmentation protocols; extensive multi-center external validation; and prospective clinical validation.
comment: Eur Radiol (2025)
♻ ☆ Emoji Attack: Enhancing Jailbreak Attacks Against Judge LLM Detection
Jailbreaking techniques trick Large Language Models (LLMs) into producing restricted output, posing a potential threat. One line of defense is to use another LLM as a Judge to evaluate the harmfulness of generated text. However, we reveal that these Judge LLMs are vulnerable to token segmentation bias, an issue that arises when delimiters alter the tokenization process, splitting words into smaller sub-tokens. This alters the embeddings of the entire sequence, reducing detection accuracy and allowing harmful content to be misclassified as safe. In this paper, we introduce Emoji Attack, a novel strategy that amplifies existing jailbreak prompts by exploiting token segmentation bias. Our method leverages in-context learning to systematically insert emojis into text before it is evaluated by a Judge LLM, inducing embedding distortions that significantly lower the likelihood of detecting unsafe content. Unlike traditional delimiters, emojis also introduce semantic ambiguity, making them particularly effective in this attack. Through experiments on state-of-the-art Judge LLMs, we demonstrate that Emoji Attack substantially reduces the unsafe prediction rate, bypassing existing safeguards.
♻ ☆ Unsupervised Invariant Risk Minimization
We propose a novel unsupervised framework for \emph{Invariant Risk Minimization} (IRM), extending the concept of invariance to settings where labels are unavailable. Traditional IRM methods rely on labeled data to learn representations that are robust to distributional shifts across environments. In contrast, our approach redefines invariance through feature distribution alignment, enabling robust representation learning from unlabeled data. We introduce two methods within this framework: Principal Invariant Component Analysis (PICA), a linear method that extracts invariant directions under Gaussian assumptions, and Variational Invariant Autoencoder (VIAE), a deep generative model that disentangles environment-invariant and environment-dependent latent factors. Our approach is based on a novel ``unsupervised'' structural causal model and supports environment-conditioned sample-generation and intervention. Empirical evaluations on synthetic dataset and modified versions of MNIST demonstrate the effectiveness of our methods in capturing invariant structure, preserving relevant information, and generalizing across environments without access to labels.
♻ ☆ Towards Generalized Source Tracing for Codec-Based Deepfake Speech
Recent attempts at source tracing for codec-based deepfake speech (CodecFake), generated by neural audio codec-based speech generation (CoSG) models, have exhibited suboptimal performance. However, how to train source tracing models using simulated CoSG data while maintaining strong performance on real CoSG-generated audio remains an open challenge. In this paper, we show that models trained solely on codec-resynthesized data tend to overfit to non-speech regions and struggle to generalize to unseen content. To mitigate these challenges, we introduce the Semantic-Acoustic Source Tracing Network (SASTNet), which jointly leverages Whisper for semantic feature encoding and Wav2vec2 with AudioMAE for acoustic feature encoding. Our proposed SASTNet achieves state-of-the-art performance on the CoSG test set of the CodecFake+ dataset, demonstrating its effectiveness for reliable source tracing.
comment: IEEE ASRU 2025
♻ ☆ NeFT: Negative Feedback Training to Improve Robustness of Compute-In-Memory DNN Accelerators
Compute-in-memory accelerators built upon non-volatile memory devices excel in energy efficiency and latency when performing deep neural network (DNN) inference, thanks to their in-situ data processing capability. However, the stochastic nature and intrinsic variations of non-volatile memory devices often result in performance degradation during DNN inference. Introducing these non-ideal device behaviors in DNN training enhances robustness, but drawbacks include limited accuracy improvement, reduced prediction confidence, and convergence issues. This arises from a mismatch between the deterministic training and non-deterministic device variations, as such training, though considering variations, relies solely on the model's final output. In this work, inspired by control theory, we propose Negative Feedback Training (NeFT), a novel concept supported by theoretical analysis, to more effectively capture the multi-scale noisy information throughout the network. We instantiate this concept with two specific instances, oriented variational forward (OVF) and intermediate representation snapshot (IRS). Based on device variation models extracted from measured data, extensive experiments show that our NeFT outperforms existing state-of-the-art methods with up to a 45.08% improvement in inference accuracy while reducing epistemic uncertainty, boosting output confidence, and improving convergence probability. These results underline the generality and practicality of our NeFT framework for increasing the robustness of DNNs against device variations. The source code for these two instances is available at https://github.com/YifanQin-ND/NeFT_CIM
comment: Published by IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD)
♻ ☆ LauraTSE: Target Speaker Extraction using Auto-Regressive Decoder-Only Language Models
We propose LauraTSE, an Auto-Regressive Decoder-Only Language Model for Target Speaker Extraction built upon the LauraGPT backbone. LauraTSE employs a small-scale auto-regressive decoder-only language model that generates the initial layers of the target speech's discrete codec representations from the continuous embeddings of both the mixture and reference speech. These outputs serve as coarse-grained predictions. To refine them, a one-step encoder-only language model reconstructs the full codec representation by integrating information from both the mixture and the reference speech, adding fine-grained details. Experimental results show that our approach can achieve promising performance. Additionally, we conduct ablation studies to investigate the data scalability and the contribution of the encoder-only model.
comment: 8 pages, 5 figure, accepted by 2025 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)
♻ ☆ Towards an Explainable Comparison and Alignment of Feature Embeddings
While several feature embedding models have been developed in the literature, comparisons of these embeddings have largely focused on their numerical performance in classification-related downstream applications. However, an interpretable comparison of different embeddings requires identifying and analyzing mismatches between sample groups clustered within the embedding spaces. In this work, we propose the \emph{Spectral Pairwise Embedding Comparison (SPEC)} framework to compare embeddings and identify their differences in clustering a reference dataset. Our approach examines the kernel matrices derived from two embeddings and leverages the eigendecomposition of the difference kernel matrix to detect sample clusters that are captured differently by the two embeddings. We present a scalable implementation of this kernel-based approach, with computational complexity that grows linearly with the sample size. Furthermore, we introduce an optimization problem using this framework to align two embeddings, ensuring that clusters identified in one embedding are also captured in the other model. We provide numerical results demonstrating the SPEC's application to compare and align embeddings on large-scale datasets such as ImageNet and MS-COCO. The project page is available at https://mjalali.github.io/SPEC/.
♻ ☆ Can LLMs Handle WebShell Detection? Overcoming Detection Challenges with Behavioral Function-Aware Framework
WebShell attacks, where malicious scripts are injected into web servers, pose a significant cybersecurity threat. Traditional ML and DL methods are often hampered by challenges such as the need for extensive training data, catastrophic forgetting, and poor generalization. Recently, Large Language Models have emerged as powerful alternatives for code-related tasks, but their potential in WebShell detection remains underexplored. In this paper, we make two contributions: (1) a comprehensive evaluation of seven LLMs, including GPT-4, LLaMA 3.1 70B, and Qwen 2.5 variants, benchmarked against traditional sequence- and graph-based methods using a dataset of 26.59K PHP scripts, and (2) the Behavioral Function-Aware Detection (BFAD) framework, designed to address the specific challenges of applying LLMs to this domain. Our framework integrates three components: a Critical Function Filter that isolates malicious PHP function calls, a Context-Aware Code Extraction strategy that captures the most behaviorally indicative code segments, and Weighted Behavioral Function Profiling that enhances in-context learning by prioritizing the most relevant demonstrations based on discriminative function-level profiles. Our results show that, stemming from their distinct analytical strategies, larger LLMs achieve near-perfect precision but lower recall, while smaller models exhibit the opposite trade-off. However, all baseline models lag behind previous SOTA methods. With the application of BFAD, the performance of all LLMs improves significantly, yielding an average F1 score increase of 13.82%. Notably, larger models now outperform SOTA benchmarks, while smaller models such as Qwen-2.5-Coder-3B achieve performance competitive with traditional methods. This work is the first to explore the feasibility and limitations of LLMs for WebShell detection and provides solutions to address the challenges in this task.
comment: Published as a conference paper at COLM 2025
♻ ☆ AugLift: Boosting Generalization in Lifting-based 3D Human Pose Estimation
Lifting-based methods for 3D Human Pose Estimation (HPE), which predict 3D poses from detected 2D keypoints, often generalize poorly to new datasets and real-world settings. To address this, we propose \emph{AugLift}, a simple yet effective reformulation of the standard lifting pipeline that significantly improves generalization performance without requiring additional data collection or sensors. AugLift sparsely enriches the standard input -- the 2D keypoint coordinates $(x, y)$ -- by augmenting it with a keypoint detection confidence score $c$ and a corresponding depth estimate $d$. These additional signals are computed from the image using off-the-shelf, pre-trained models (e.g., for monocular depth estimation), thereby inheriting their strong generalization capabilities. Importantly, AugLift serves as a modular add-on and can be readily integrated into existing lifting architectures. Our extensive experiments across four datasets demonstrate that AugLift boosts cross-dataset performance on unseen datasets by an average of $10.1\%$, while also improving in-distribution performance by $4.0\%$. These gains are consistent across various lifting architectures, highlighting the robustness of our method. Our analysis suggests that these sparse, keypoint-aligned cues provide robust frame-level context, offering a practical way to significantly improve the generalization of any lifting-based pose estimation model. Code will be made publicly available.
comment: Preprint. Under review
♻ ☆ RT-Cache: Training-Free Retrieval for Real-Time Manipulation RAS 24
Real robots are expected to repeat the same behavior in new environments with very little new data, yet modern controllers either incur heavy per-step inference or require deployment-time fine-tuning. We propose RT-Cache, a training-free retrieval-as-control pipeline that caches diverse image action trajectories in a unified vector memory and, at test time, embeds the current frame to retrieve and replay multi-step snippets, replacing per-step model calls. A hierarchical search keeps lookups sub-second at million scale, shifting cost from compute to storage and enabling real-time control on modest GPUs. Across real-robot tasks and large open logs, RT-Cache achieves higher success and lower completion time than strong retrieval baselines (approximately x2 higher success and ~30% faster in our settings), and a single-episode anchoring study shows immediate adaptation to a more complex, contact-rich task without fine-tuning. RT-Cache turns experience into an append-only memory, offering a simple, scalable path to few-shot deployment today and a foundation for multimodal keys and optional integration with high-level policies. Project page: https://rt-cache.github.io/.
comment: 8 pages, 6 figures. Accepted to the 2025 IEEE-RAS 24th International Conference on Humanoid Robots
♻ ☆ Sliding Puzzles Gym: A Scalable Benchmark for State Representation in Visual Reinforcement Learning ICML 2025
Effective visual representation learning is crucial for reinforcement learning (RL) agents to extract task-relevant information from raw sensory inputs and generalize across diverse environments. However, existing RL benchmarks lack the ability to systematically evaluate representation learning capabilities in isolation from other learning challenges. To address this gap, we introduce the Sliding Puzzles Gym (SPGym), a novel benchmark that transforms the classic 8-tile puzzle into a visual RL task with images drawn from arbitrarily large datasets. SPGym's key innovation lies in its ability to precisely control representation learning complexity through adjustable grid sizes and image pools, while maintaining fixed environment dynamics, observation, and action spaces. This design enables researchers to isolate and scale the visual representation challenge independently of other learning components. Through extensive experiments with model-free and model-based RL algorithms, we uncover fundamental limitations in current methods' ability to handle visual diversity. As we increase the pool of possible images, all algorithms exhibit in- and out-of-distribution performance degradation, with sophisticated representation learning techniques often underperforming simpler approaches like data augmentation. These findings highlight critical gaps in visual representation learning for RL and establish SPGym as a valuable tool for driving progress in robust, generalizable decision-making systems.
comment: Accepted at ICML 2025
♻ ☆ Rashomon perspective for measuring uncertainty in the survival predictive maintenance models
The prediction of the Remaining Useful Life of aircraft engines is a critical area in high-reliability sectors such as aerospace and defense. Early failure predictions help ensure operational continuity, reduce maintenance costs, and prevent unexpected failures. Traditional regression models struggle with censored data, which can lead to biased predictions. Survival models, on the other hand, effectively handle censored data, improving predictive accuracy in maintenance processes. This paper introduces a novel approach based on the Rashomon perspective, which considers multiple models that achieve similar performance rather than relying on a single best model. This enables uncertainty quantification in survival probability predictions and enhances decision-making in predictive maintenance. The Rashomon survival curve was introduced to represent the range of survival probability estimates, providing insights into model agreement and uncertainty over time. The results on the CMAPSS dataset demonstrate that relying solely on a single model for RUL estimation may increase risk in some scenarios. The censoring levels significantly impact prediction uncertainty, with longer censoring times leading to greater variability in survival probabilities. These findings underscore the importance of incorporating model multiplicity in predictive maintenance frameworks to achieve more reliable and robust failure predictions. This paper contributes to uncertainty quantification in RUL prediction and highlights the Rashomon perspective as a powerful tool for predictive modeling.
comment: 4 pages, 1 figures
♻ ☆ TRIALSCOPE: A Unifying Causal Framework for Scaling Real-World Evidence Generation with Biomedical Language Models
The rapid digitization of real-world data presents an unprecedented opportunity to optimize healthcare delivery and accelerate biomedical discovery. However, these data are often found in unstructured forms such as clinical notes in electronic medical records (EMRs), and is typically plagued by confounders, making it challenging to generate robust real-world evidence (RWE). Therefore, we present TRIALSCOPE, a framework designed to distil RWE from population level observational data at scale. TRIALSCOPE leverages biomedical language models to structure clinical text at scale, employs advanced probabilistic modeling for denoising and imputation, and incorporates state-of-the-art causal inference techniques to address common confounders in treatment effect estimation. Extensive experiments were conducted on a large-scale dataset of over one million cancer patients from a single large healthcare network in the United States. TRIALSCOPE was shown to automatically curate high-quality structured patient data, expanding the dataset and incorporating key patient attributes only available in unstructured form. The framework reduces confounding in treatment effect estimation, generating comparable results to randomized controlled lung cancer trials. Additionally, we demonstrate simulations of unconducted clinical trials - including a pancreatic cancer trial with varying eligibility criteria - using a suite of validation tests to ensure robustness. Thorough ablation studies were conducted to better understand key components of TRIALSCOPE and establish best practices for RWE generation from EMRs. TRIALSCOPE was able to extract data cancer treatment data from EMRs, overcoming limitations of manual curation. We were also able to show that TRIALSCOPE could reproduce results of lung and pancreatic cancer clinical trials from the extracted real world data.
comment: 4 figures, 1 table
♻ ☆ Scalable Gaussian Processes with Latent Kronecker Structure
Applying Gaussian processes (GPs) to very large datasets remains a challenge due to limited computational scalability. Matrix structures, such as the Kronecker product, can accelerate operations significantly, but their application commonly entails approximations or unrealistic assumptions. In particular, the most common path to creating a Kronecker-structured kernel matrix is by evaluating a product kernel on gridded inputs that can be expressed as a Cartesian product. However, this structure is lost if any observation is missing, breaking the Cartesian product structure, which frequently occurs in real-world data such as time series. To address this limitation, we propose leveraging latent Kronecker structure, by expressing the kernel matrix of observed values as the projection of a latent Kronecker product. In combination with iterative linear system solvers and pathwise conditioning, our method facilitates inference of exact GPs while requiring substantially fewer computational resources than standard iterative methods. We demonstrate that our method outperforms state-of-the-art sparse and variational GPs on real-world datasets with up to five million examples, including robotics, automated machine learning, and climate applications.
comment: International Conference on Machine Learning 2025
♻ ☆ Convex Physics Informed Neural Networks for the Monge-Ampère Optimal Transport Problem
Optimal transportation of raw material from suppliers to customers is an issue arising in logistics that is addressed here with a continuous model relying on optimal transport theory. A physics informed neuralnetwork method is advocated here for the solution of the corresponding generalized Monge-Amp`ere equation. Convex neural networks are advocated to enforce the convexity of the solution to the Monge-Amp\`ere equation and obtain a suitable approximation of the optimal transport map. A particular focus is set on the enforcement of transport boundary conditions in the loss function. Numerical experiments illustrate the solution to the optimal transport problem in several configurations, and sensitivity analyses are performed.
comment: 17 pages, 14 figures. Submitted to Engineering Computations on 26 September 2024
♻ ☆ Explainable AI for Curie Temperature Prediction in Magnetic Materials
We explore machine learning techniques for predicting Curie temperatures of magnetic materials using the NEMAD database. By augmenting the dataset with composition-based and domain-aware descriptors, we evaluate the performance of several machine learning models. We find that the Extra Trees Regressor delivers the best performance reaching an R^2 score of up to 0.85 $\pm$ 0.01 (cross-validated) for a balanced dataset. We employ the k-means clustering algorithm to gain insights into the performance of chemically distinct material groups. Furthermore, we perform the SHAP analysis to identify key physicochemical drivers of Curie behavior, such as average atomic number and magnetic moment. By employing explainable AI techniques, this analysis offers insights into the model's predictive behavior, thereby advancing scientific interpretability.
comment: 7 pages, 6 figures, SHAP analysis of each cluster added
♻ ☆ Regime-Aware Time Weighting for Physics-Informed Neural Networks
We introduce a novel method to handle the time dimension when Physics-Informed Neural Networks (PINNs) are used to solve time-dependent differential equations; our proposal focuses on how time sampling and weighting strategies affect solution quality. While previous methods proposed heuristic time-weighting schemes, our approach is grounded in theoretical insights derived from the Lyapunov exponents, which quantify the sensitivity of solutions to perturbations over time. This principled methodology automatically adjusts weights based on the stability regime of the system -- whether chaotic, periodic, or stable. Numerical experiments on challenging benchmarks, including the chaotic Lorenz system and the Burgers' equation, demonstrate the effectiveness and robustness of the proposed method. Compared to existing techniques, our approach offers improved convergence and accuracy without requiring additional hyperparameter tuning. The findings underline the importance of incorporating causality and dynamical system behavior into PINN training strategies, providing a robust framework for solving time-dependent problems with enhanced reliability.
♻ ☆ OneForecast: A Universal Framework for Global and Regional Weather Forecasting
Accurate weather forecasts are important for disaster prevention, agricultural planning, etc. Traditional numerical weather prediction (NWP) methods offer physically interpretable high-accuracy predictions but are computationally expensive and fail to fully leverage rapidly growing historical data. In recent years, deep learning models have made significant progress in weather forecasting, but challenges remain, such as balancing global and regional high-resolution forecasts, excessive smoothing in extreme event predictions, and insufficient dynamic system modeling. To address these issues, this paper proposes a global-regional nested weather forecasting framework (OneForecast) based on graph neural networks. By combining a dynamic system perspective with multi-grid theory, we construct a multi-scale graph structure and densify the target region to capture local high-frequency features. We introduce an adaptive messaging mechanism, using dynamic gating units to deeply integrate node and edge features for more accurate extreme event forecasting. For high-resolution regional forecasts, we propose a neural nested grid method to mitigate boundary information loss. Experimental results show that OneForecast performs excellently across global to regional scales and short-term to long-term forecasts, especially in extreme event predictions. Codes link https://github.com/YuanGao-YG/OneForecast.
♻ ☆ OrthoRank: Token Selection via Sink Token Orthogonality for Efficient LLM inference ICML 2025
Attention mechanisms are central to the success of large language models (LLMs), enabling them to capture intricate token dependencies and implicitly assign importance to each token. Recent studies have revealed the sink token, which receives disproportionately high attention despite their limited semantic role. In this paper, we first expand the relationship between the sink token and other tokens, moving beyond attention to explore their similarity in hidden states, considering the layer depth. We observe that as the layers get deeper, the cosine similarity between the normalized hidden states of the sink token and those of other tokens increases, and that the normalized hidden states of the sink token exhibit negligible changes. These imply that other tokens consistently are directed toward the sink token throughout the layers. Next, we propose a dynamic token selection method, called OrthoRank, using these findings to select important tokens. Specifically, in a certain layer, we define token importance by the speed at which the token moves toward the sink token. This is converted into orthogonality with the sink token, meaning that tokens that are more orthogonal to the sink token are assigned greater importance. Finally, through extensive experiments, we demonstrated that our method results in lower perplexity and higher zero-shot accuracy compared to layer pruning methods at the same sparsity ratio with comparable throughput, while also achieving superior performance on LongBench.
comment: ICML 2025 (final version)
♻ ☆ Token-level Accept or Reject: A Micro Alignment Approach for Large Language Models IJCAI 2025
With the rapid development of Large Language Models (LLMs), aligning these models with human preferences and values is critical to ensuring ethical and safe applications. However, existing alignment techniques such as RLHF or DPO often require direct fine-tuning on LLMs with billions of parameters, resulting in substantial computational costs and inefficiencies. To address this, we propose Micro token-level Accept-Reject Aligning (MARA) approach designed to operate independently of the language models. MARA simplifies the alignment process by decomposing sentence-level preference learning into token-level binary classification, where a compact three-layer fully-connected network determines whether candidate tokens are "Accepted" or "Rejected" as part of the response. Extensive experiments across seven different LLMs and three open-source datasets show that MARA achieves significant improvements in alignment performance while reducing computational costs. The source code and implementation details are publicly available at https://github.com/IAAR-Shanghai/MARA, and the trained models are released at https://huggingface.co/IAAR-Shanghai/MARA_AGENTS.
comment: Accepted to 34th International Joint Conference on Artificial Intelligence (IJCAI 2025)
♻ ☆ Variational Optimization for Quantum Problems using Deep Generative Networks
Optimization drives advances in quantum science and machine learning, yet most generative models aim to mimic data rather than to discover optimal answers to challenging problems. Here we present a variational generative optimization network that learns to map simple random inputs into high quality solutions across a variety of quantum tasks. We demonstrate that the network rapidly identifies entangled states exhibiting an optimal advantage in entanglement detection when allowing classical communication, attains the ground state energy of an eighteen spin model without encountering the barren plateau phenomenon that hampers standard hybrid algorithms, and-after a single training run-outputs multiple orthogonal ground states of degenerate quantum models. Because the method is model agnostic, parallelizable and runs on current classical hardware, it can accelerate future variational optimization problems in quantum information, quantum computing and beyond.
comment: 21 pages. Closer to the published version
♻ ☆ Segmenting Action-Value Functions Over Time-Scales in SARSA via TD($Δ$)
In numerous episodic reinforcement learning (RL) environments, SARSA-based methodologies are employed to enhance policies aimed at maximizing returns over long horizons. Traditional SARSA algorithms face challenges in achieving an optimal balance between bias and variation, primarily due to their dependence on a single, constant discount factor ($\eta$). This investigation enhances the temporal difference decomposition method, TD($\Delta$), by applying it to the SARSA algorithm, now designated as SARSA($\Delta$). SARSA is a widely used on-policy RL method that enhances action-value functions via temporal difference updates. By splitting the action-value function down into components that are linked to specific discount factors, SARSA($\Delta$) makes learning easier across a range of time scales. This analysis makes learning more effective and ensures consistency, particularly in situations where long-horizon improvement is needed. The results of this research show that the suggested strategy works to lower bias in SARSA's updates and speed up convergence in both deterministic and stochastic settings, even in dense reward Atari environments. Experimental results from a variety of benchmark settings show that the proposed SARSA($\Delta$) outperforms existing TD learning techniques in both tabular and deep RL environments.
comment: 25 pages. arXiv admin note: text overlap with arXiv:2411.14019
♻ ☆ Structural Equation-VAE: Disentangled Latent Representations for Tabular Data
Learning interpretable latent representations from tabular data remains a challenge in deep generative modeling. We introduce SE-VAE (Structural Equation-Variational Autoencoder), a novel architecture that embeds measurement structure directly into the design of a variational autoencoder. Inspired by structural equation modeling, SE-VAE aligns latent subspaces with known indicator groupings and introduces a global nuisance latent to isolate construct-specific confounding variation. This modular architecture enables disentanglement through design rather than through statistical regularizers alone. We evaluate SE-VAE on a suite of simulated tabular datasets and benchmark its performance against a series of leading baselines using standard disentanglement metrics. SE-VAE consistently outperforms alternatives in factor recovery, interpretability, and robustness to nuisance variation. Ablation results reveal that architectural structure, rather than regularization strength, is the key driver of performance. SE-VAE offers a principled framework for white-box generative modeling in scientific and social domains where latent constructs are theory-driven and measurement validity is essential.
comment: 10 pages, 2 figures
♻ ☆ FacLens: Transferable Probe for Foreseeing Non-Factuality in Fact-Seeking Question Answering of Large Language Models
Despite advancements in large language models (LLMs), non-factual responses still persist in fact-seeking question answering. Unlike extensive studies on post-hoc detection of these responses, this work studies non-factuality prediction (NFP), predicting whether an LLM will generate a non-factual response prior to the response generation. Previous NFP methods have shown LLMs' awareness of their knowledge, but they face challenges in terms of efficiency and transferability. In this work, we propose a lightweight model named Factuality Lens (FacLens), which effectively probes hidden representations of fact-seeking questions for the NFP task. Moreover, we discover that hidden question representations sourced from different LLMs exhibit similar NFP patterns, enabling the transferability of FacLens across different LLMs to reduce development costs. Extensive experiments highlight FacLens's superiority in both effectiveness and efficiency.
♻ ☆ Categorical Schrödinger Bridge Matching
The Schr\"odinger Bridge (SB) is a powerful framework for solving generative modeling tasks such as unpaired domain translation. Most SB-related research focuses on continuous data space $\mathbb{R}^{D}$ and leaves open theoretical and algorithmic questions about applying SB methods to discrete data, e.g, on finite spaces $\mathbb{S}^{D}$. Notable examples of such sets $\mathbb{S}$ are codebooks of vector-quantized (VQ) representations of modern autoencoders, tokens in texts, categories of atoms in molecules, etc. In this paper, we provide a theoretical and algorithmic foundation for solving SB in discrete spaces using the recently introduced Iterative Markovian Fitting (IMF) procedure. Specifically, we theoretically justify the convergence of discrete-time IMF (D-IMF) to SB in discrete spaces. This enables us to develop a practical computational algorithm for SB, which we call Categorical Schr\"odinger Bridge Matching (CSBM). We show the performance of CSBM via a series of experiments with synthetic data and VQ representations of images. The code of CSBM is available at https://github.com/gregkseno/csbm.
♻ ☆ A Confidence-Diversity Framework for Calibrating AI Judgement in Accessible Qualitative Coding Tasks
LLMs enable qualitative coding at large scale, but assessing reliability remains challenging where human experts seldom agree. We investigate confidence-diversity calibration as a quality assessment framework for accessible coding tasks where LLMs already demonstrate strong performance but exhibit overconfidence. Analysing 5,680 coding decisions from eight state-of-the-art LLMs across ten categories, we find that mean self-confidence tracks inter-model agreement closely (Pearson r=0.82). Adding model diversity quantified as normalised Shannon entropy produces a dual signal explaining agreement almost completely (R-squared=0.979), though this high predictive power likely reflects task simplicity for current LLMs. The framework enables a three-tier workflow auto-accepting 35 percent of segments with less than 5 percent error, cutting manual effort by 65 percent. Cross-domain validation confirms transferability (kappa improvements of 0.20 to 0.78). While establishing a methodological foundation for AI judgement calibration, the true potential likely lies in more challenging scenarios where LLMs may demonstrate comparative advantages over human cognitive limitations.
comment: 23 pages, 5 figures. Code and data available at https://doi.org/10.7910/DVN/G1AYGK
♻ ☆ LieRE: Lie Rotational Positional Encodings ICML
Transformer architectures rely on position encodings to model the spatial structure of input data. Rotary Position Encoding (RoPE) is a widely used method in language models that encodes relative positions through fixed, block-diagonal, rotation matrices applied to key-query interactions. We hypothesize that this inductive bias limits their RoPE's effectiveness for modalities with high dimensional structure. Lie Relative Encodings (LieRE) introduce a principled generalization of RoPE, aimed at increasing the representational capacity of positional encodings in transformers. Instead of fixed 2D rotations, LieRE learns dense skew-symmetric matrices (Lie algebra elements), which are then differentiable mapped to form high-dimensional rotation matrices (Lie group elements). This results in richer, learnable, and continuous, encodings of both relative and absolute positional information. We demonstrate the effectiveness of LieRE on 2D and 3D vision tasks, showing that it generalizes well to higher input resolutions while maintaining computational efficiency. The code and checkpoints are publicly available at https://github.com/StanfordMIMI/LieRE.
comment: Final proceedings version at ICML
♻ ☆ Differentially Private Covariate Balancing Causal Inference
Differential privacy is the leading mathematical framework for privacy protection, providing a probabilistic guarantee that safeguards individuals' private information when publishing statistics from a dataset. This guarantee is achieved by applying a randomized algorithm to the original data, which introduces unique challenges in data analysis by distorting inherent patterns. In particular, causal inference using observational data in privacy-sensitive contexts is challenging because it requires covariate balance between treatment groups, yet checking the true covariates is prohibited to prevent leakage of sensitive information. In this article, we present a differentially private two-stage covariate balancing weighting estimator to infer causal effects from observational data. Our algorithm produces both point and interval estimators with statistical guarantees, such as consistency and rate optimality, under a given privacy budget.
comment: 31 pages
♻ ☆ Symmetry-Aware GFlowNets ICML 2025
Generative Flow Networks (GFlowNets) offer a powerful framework for sampling graphs in proportion to their rewards. However, existing approaches suffer from systematic biases due to inaccuracies in state transition probability computations. These biases, rooted in the inherent symmetries of graphs, impact both atom-based and fragment-based generation schemes. To address this challenge, we introduce Symmetry-Aware GFlowNets (SA-GFN), a method that incorporates symmetry corrections into the learning process through reward scaling. By integrating bias correction directly into the reward structure, SA-GFN eliminates the need for explicit state transition computations. Empirical results show that SA-GFN enables unbiased sampling while enhancing diversity and consistently generating high-reward graphs that closely match the target distribution.
comment: 29 pages; Accepted at ICML 2025
♻ ☆ A Deep Learning Approach to Teeth Segmentation and Orientation from Panoramic X-rays
Accurate teeth segmentation and orientation are fundamental in modern oral healthcare, enabling precise diagnosis, treatment planning, and dental implant design. In this study, we present a comprehensive approach to teeth segmentation and orientation from panoramic X-ray images, leveraging deep-learning techniques. We built an end-to-end instance segmentation network that uses an encoder-decoder architecture reinforced with grid-aware attention gates along the skip connections. We introduce oriented bounding box (OBB) generation through principal component analysis (PCA) for precise tooth orientation estimation. Evaluating our approach on the publicly available DNS dataset, comprising 543 panoramic X-ray images, we achieve the highest Intersection-over-Union (IoU) score of 82.43% and a Dice Similarity Coefficient (DSC) score of 90.37% among compared models in teeth instance segmentation. In OBB analysis, we obtain a Rotated IoU (RIoU) score of 82.82%. We also conduct detailed analyses of individual tooth labels and categorical performance, shedding light on strengths and weaknesses. The proposed model's accuracy and versatility offer promising prospects for improving dental diagnoses, treatment planning, and personalized healthcare in the oral domain. Our generated OBB coordinates and code are available at https://github.com/mrinal054/Instance/teeth/segmentation.
♻ ☆ Automated Black-box Prompt Engineering for Personalized Text-to-Image Generation
Prompt engineering is an effective but labor-intensive way to control text-to-image (T2I) generative models. Its time-intensive nature and complexity have spurred the development of algorithms for automated prompt generation. However, these methods often struggle with transferability across T2I models, require white-box access to the underlying model, or produce non-intuitive prompts. In this work, we introduce PRISM, an algorithm that automatically produces human-interpretable and transferable prompts that can effectively generate desired concepts given only black-box access to T2I models. Inspired by large language model (LLM) jailbreaking, PRISM leverages the in-context learning ability of LLMs to iteratively refine the candidate prompt distribution built upon the reference images. Our experiments demonstrate the versatility and effectiveness of PRISM in generating accurate prompts for objects, styles, and images across multiple T2I models, including Stable Diffusion, DALL-E, and Midjourney.
♻ ☆ Sub-Sequential Physics-Informed Learning with State Space Model ICML 2025
Physics-Informed Neural Networks (PINNs) are a kind of deep-learning-based numerical solvers for partial differential equations (PDEs). Existing PINNs often suffer from failure modes of being unable to propagate patterns of initial conditions. We discover that these failure modes are caused by the simplicity bias of neural networks and the mismatch between PDE's continuity and PINN's discrete sampling. We reveal that the State Space Model (SSM) can be a continuous-discrete articulation allowing initial condition propagation, and that simplicity bias can be eliminated by aligning a sequence of moderate granularity. Accordingly, we propose PINNMamba, a novel framework that introduces sub-sequence modeling with SSM. Experimental results show that PINNMamba can reduce errors by up to 86.3\% compared with state-of-the-art architecture. Our code is available at https://github.com/miniHuiHui/PINNMamba.
comment: ICML 2025
Graphics 3
☆ Mesh Processing Non-Meshes via Neural Displacement Fields
Mesh processing pipelines are mature, but adapting them to newer non-mesh surface representations -- which enable fast rendering with compact file size -- requires costly meshing or transmitting bulky meshes, negating their core benefits for streaming applications. We present a compact neural field that enables common geometry processing tasks across diverse surface representations. Given an input surface, our method learns a neural map from its coarse mesh approximation to the surface. The full representation totals only a few hundred kilobytes, making it ideal for lightweight transmission. Our method enables fast extraction of manifold and Delaunay meshes for intrinsic shape analysis, and compresses scalar fields for efficient delivery of costly precomputed results. Experiments and applications show that our fast, compact, and accurate approach opens up new possibilities for interactive geometry processing.
comment: 14 pages
♻ ☆ Verification Method for Graph Isomorphism Criteria
The criteria for determining graph isomorphism are crucial for solving graph isomorphism problems. The necessary condition is that two isomorphic graphs possess invariants, but their function can only be used to filtrate and subdivide candidate spaces. The sufficient conditions are used to rebuild the isomorphic reconstruction of special graphs, but their drawback is that the isomorphic functions of subgraphs may not form part of the isomorphic functions of the parent graph. The use of sufficient or necessary conditions generally results in backtracking to ensure the correctness of the decision algorithm. The sufficient and necessary conditions can ensure that the determination of graph isomorphism does not require backtracking, but the correctness of its proof process is difficult to guarantee. This article proposes a verification method that can correctly determine whether the judgment conditions proposed by previous researchers are sufficient and necessary conditions. A subdivision method has also been proposed in this article, which can obtain more subdivisions for necessary conditions and effectively reduce the size of backtracking space.
comment: 17 pages, 5 figures, 2 tables
♻ ☆ Shape from Semantics: 3D Shape Generation from Multi-View Semantics
Existing 3D reconstruction methods utilize guidances such as 2D images, 3D point clouds, shape contours and single semantics to recover the 3D surface, which limits the creative exploration of 3D modeling. In this paper, we propose a novel 3D modeling task called ``Shape from Semantics'', which aims to create 3D models whose geometry and appearance are consistent with the given text semantics when viewed from different views. The reconstructed 3D models incorporate more than one semantic elements and are easy for observers to distinguish. We adopt generative models as priors and disentangle the connection between geometry and appearance to solve this challenging problem. Specifically, we propose Local Geometry-Aware Distillation (LGAD), a strategy that employs multi-view normal-depth diffusion priors to complete partial geometries, ensuring realistic shape generation. We also integrate view-adaptive guidance scales to enable smooth semantic transitions across views. For appearance modeling, we adopt physically based rendering to generate high-quality material properties, which are subsequently baked into fabricable meshes. Extensive experimental results demonstrate that our method can generate meshes with well-structured, intricately detailed geometries, coherent textures, and smooth transitions, resulting in visually appealing 3D shape designs. Project page: https://shapefromsemantics.github.io
comment: Project page: https://shapefromsemantics.github.io
Artificial Intelligence 52
☆ RLNVR: Reinforcement Learning from Non-Verified Real-World Rewards
This paper introduces RLNVR (Reinforcement Learning from Non-Verified Rewards), a framework for training language models using noisy, real-world feedback signals without requiring explicit human verification. Traditional RLHF requires expensive, verified reward signals that are impractical in many real-world domains. RLNVR addresses this challenge through baseline normalization and semantic similarity-based reward transfer. We demonstrate RLNVR through Walter, a prototype system that optimizes social media content generation using actual engagement data from Bluesky. Our experimental results show significant improvements in content quality and training stability, with comprehensive evaluation planned for future work. Positioning: We present a practical framework that combines RLNVR with GSPO (Group Sequence Policy Optimization) and an optional UED (Unsupervised Environment Design) curriculum to improve stability and diversity under noisy, implicit rewards. To our knowledge, combining GSPO-style normalization with a UED-style curriculum for LLM content generation from implicit social engagement has not been previously documented in this applied setting; we frame this as an applied integration rather than a new algorithm.
☆ RealTalk: Realistic Emotion-Aware Lifelike Talking-Head Synthesis ICCV 2025
Emotion is a critical component of artificial social intelligence. However, while current methods excel in lip synchronization and image quality, they often fail to generate accurate and controllable emotional expressions while preserving the subject's identity. To address this challenge, we introduce RealTalk, a novel framework for synthesizing emotional talking heads with high emotion accuracy, enhanced emotion controllability, and robust identity preservation. RealTalk employs a variational autoencoder (VAE) to generate 3D facial landmarks from driving audio, which are concatenated with emotion-label embeddings using a ResNet-based landmark deformation model (LDM) to produce emotional landmarks. These landmarks and facial blendshape coefficients jointly condition a novel tri-plane attention Neural Radiance Field (NeRF) to synthesize highly realistic emotional talking heads. Extensive experiments demonstrate that RealTalk outperforms existing methods in emotion accuracy, controllability, and identity preservation, advancing the development of socially intelligent AI systems.
comment: Accepted to the ICCV 2025 Workshop on Artificial Social Intelligence
☆ AICRN: Attention-Integrated Convolutional Residual Network for Interpretable Electrocardiogram Analysis
The paradigm of electrocardiogram (ECG) analysis has evolved into real-time digital analysis, facilitated by artificial intelligence (AI) and machine learning (ML), which has improved the diagnostic precision and predictive capacity of cardiac diseases. This work proposes a novel deep learning (DL) architecture called the attention-integrated convolutional residual network (AICRN) to regress key ECG parameters such as the PR interval, the QT interval, the QRS duration, the heart rate, the peak amplitude of the R wave, and the amplitude of the T wave for interpretable ECG analysis. Our architecture is specially designed with spatial and channel attention-related mechanisms to address the type and spatial location of the ECG features for regression. The models employ a convolutional residual network to address vanishing and exploding gradient problems. The designed system addresses traditional analysis challenges, such as loss of focus due to human errors, and facilitates the fast and easy detection of cardiac events, thereby reducing the manual efforts required to solve analysis tasks. AICRN models outperform existing models in parameter regression with higher precision. This work demonstrates that DL can play a crucial role in the interpretability and precision of ECG analysis, opening up new clinical applications for cardiac monitoring and management.
☆ MOVER: Multimodal Optimal Transport with Volume-based Embedding Regularization CIKM 2025
Recent advances in multimodal learning have largely relied on pairwise contrastive objectives to align different modalities, such as text, video, and audio, in a shared embedding space. While effective in bi-modal setups, these approaches struggle to generalize across multiple modalities and often lack semantic structure in high-dimensional spaces. In this paper, we propose MOVER, a novel framework that combines optimal transport-based soft alignment with volume-based geometric regularization to build semantically aligned and structured multimodal representations. By integrating a transport-guided matching mechanism with a geometric volume minimization objective (GAVE), MOVER encourages consistent alignment across all modalities in a modality-agnostic manner. Experiments on text-video-audio retrieval tasks demonstrate that MOVER significantly outperforms prior state-of-the-art methods in both zero-shot and finetuned settings. Additional analysis shows improved generalization to unseen modality combinations and stronger structural consistency in the learned embedding space.
comment: Accepted as a conference paper at CIKM 2025
☆ Demystifying Foreground-Background Memorization in Diffusion Models
Diffusion models (DMs) memorize training images and can reproduce near-duplicates during generation. Current detection methods identify verbatim memorization but fail to capture two critical aspects: quantifying partial memorization occurring in small image regions, and memorization patterns beyond specific prompt-image pairs. To address these limitations, we propose Foreground Background Memorization (FB-Mem), a novel segmentation-based metric that classifies and quantifies memorized regions within generated images. Our method reveals that memorization is more pervasive than previously understood: (1) individual generations from single prompts may be linked to clusters of similar training images, revealing complex memorization patterns that extend beyond one-to-one correspondences; and (2) existing model-level mitigation methods, such as neuron deactivation and pruning, fail to eliminate local memorization, which persists particularly in foreground regions. Our work establishes an effective framework for measuring memorization in diffusion models, demonstrates the inadequacy of current mitigation approaches, and proposes a stronger mitigation method using a clustering approach.
☆ KP-INR: A Dual-Branch Implicit Neural Representation Model for Cardiac Cine MRI Reconstruction
Cardiac Magnetic Resonance (CMR) imaging is a non-invasive method for assessing cardiac structure, function, and blood flow. Cine MRI extends this by capturing heart motion, providing detailed insights into cardiac mechanics. To reduce scan time and breath-hold discomfort, fast acquisition techniques have been utilized at the cost of lowering image quality. Recently, Implicit Neural Representation (INR) methods have shown promise in unsupervised reconstruction by learning coordinate-to-value mappings from undersampled data, enabling high-quality image recovery. However, current existing INR methods primarily focus on using coordinate-based positional embeddings to learn the mapping, while overlooking the feature representations of the target point and its neighboring context. In this work, we propose KP-INR, a dual-branch INR method operating in k-space for cardiac cine MRI reconstruction: one branch processes the positional embedding of k-space coordinates, while the other learns from local multi-scale k-space feature representations at those coordinates. By enabling cross-branch interaction and approximating the target k-space values from both branches, KP-INR can achieve strong performance on challenging Cartesian k-space data. Experiments on the CMRxRecon2024 dataset confirms its improved performance over baseline models and highlights its potential in this field.
☆ Substituting Proof of Work in Blockchain with Training-Verified Collaborative Model Computation
Bitcoin's Proof of Work (PoW) mechanism, while central to achieving decentralized consensus, has long been criticized for excessive energy use and hardware inefficiencies \cite{devries2018bitcoin, truby2018decarbonizing}. This paper introduces a hybrid architecture that replaces Bitcoin's traditional PoW with a centralized, cloud-based collaborative training framework. In this model, miners contribute computing resources to train segments of horizontally scaled machine learning models on preprocessed datasets, ensuring privacy and generating meaningful outputs \cite{li2017securing}. A central server evaluates contributions using two metrics: number of parameters trained and reduction in model loss during each cycle. At the end of every cycle, a weighted lottery selects the winning miner, who receives a digitally signed certificate. This certificate serves as a verifiable substitute for PoW and grants the right to append a block to the blockchain \cite{nakamoto2008bitcoin}. By integrating digital signatures and SHA-256 hashing \cite{nist2015sha}, the system preserves blockchain integrity while redirecting energy toward productive computation. The proposed approach addresses the sustainability concerns of traditional mining by converting resource expenditure into socially valuable work, aligning security incentives with real-world computational progress.
☆ DynamixSFT: Dynamic Mixture Optimization of Instruction Tuning Collections
As numerous instruction-tuning datasets continue to emerge during the post-training stage, dynamically balancing and optimizing their mixtures has become a critical challenge. To address this, we propose DynamixSFT, a dynamic and automated method for instruction-tuning dataset mixture optimization. We formulate the problem as a multi-armed bandit setup and introduce a Prior-scaled Boltzmann Exploration that softly anchors the updated sampling distribution to the original dataset proportions, thereby preserving the inherent diversity and coverage of the collection. Sampling probabilities are updated using a lightweight 1-Step Look-ahead Reward, reflecting how much the dataset contributes to improving the model's performance at its current state. When applied to the Tulu-v2-mixture collection comprising 16 instruction-tuning datasets, DynamixSFT achieves up to a 2.2% performance improvement across 10 benchmarks. Furthermore, we provide a comprehensive analysis and visualizations to offer deeper insights into the adaptive dynamics of our method.
☆ Simple o3: Towards Interleaved Vision-Language Reasoning
Multimodal Large Language Models (MLLMs) have shown impressive performance on vision-language tasks, but their long Chain-of-Thought (CoT) capabilities in multimodal scenarios remain underexplored. Inspired by OpenAI's o3 model, which emulates human-like ''thinking with image'' through iterative visual transformations and linguistic reasoning, we propose Simple o3, an end-to-end framework that integrates dynamic tool interactions (e.g., cropping, zooming, and reusing) into interleaved vision-language reasoning via supervised fine-tuning (SFT). Our approach features a scalable data synthesis pipeline that generates high-quality interleaved vision-language reasoning chains via an ''observe-reason-act'' cycle, complete with executable visual operations and rigorous verification, yielding the open-source TWI-Tools-146K dataset. Experimental results demonstrate Simple o3's superior performance on diverse benchmarks, outperforming existing approaches. By combining enhanced reasoning capabilities, Simple o3 establishes a powerful yet computationally affordable paradigm for advancing multimodal reasoning. Remarkably, we provide the first in-depth analysis of different interleaved reasoning strategies, offering insights into their impact on model performance. We found that by introducing additional visual tokens for interleaved vision-language reasoning, reusing and magnifying the original image significantly improves the model's visual reasoning and fine-grained perception, while image cropping based on precise visual grounding allows the model to effectively focus on key entities or regions, further enhancing its capabilities.
☆ Generative Medical Event Models Improve with Scale
Realizing personalized medicine at scale calls for methods that distill insights from longitudinal patient journeys, which can be viewed as a sequence of medical events. Foundation models pretrained on large-scale medical event data represent a promising direction for scaling real-world evidence generation and generalizing to diverse downstream tasks. Using Epic Cosmos, a dataset with medical events from de-identified longitudinal health records for 16.3 billion encounters over 300 million unique patient records from 310 health systems, we introduce the Cosmos Medical Event Transformer ( CoMET) models, a family of decoder-only transformer models pretrained on 118 million patients representing 115 billion discrete medical events (151 billion tokens). We present the largest scaling-law study for medical event data, establishing a methodology for pretraining and revealing power-law scaling relationships for compute, tokens, and model size. Based on this, we pretrained a series of compute-optimal models with up to 1 billion parameters. Conditioned on a patient's real-world history, CoMET autoregressively generates the next medical event, simulating patient health timelines. We studied 78 real-world tasks, including diagnosis prediction, disease prognosis, and healthcare operations. Remarkably for a foundation model with generic pretraining and simulation-based inference, CoMET generally outperformed or matched task-specific supervised models on these tasks, without requiring task-specific fine-tuning or few-shot examples. CoMET's predictive power consistently improves as the model and pretraining scale. Our results show that CoMET, a generative medical event foundation model, can effectively capture complex clinical dynamics, providing an extensible and generalizable framework to support clinical decision-making, streamline healthcare operations, and improve patient outcomes.
☆ Overcoming Knowledge Discrepancies: Structuring Reasoning Threads through Knowledge Balancing in Interactive Scenarios
Reasoning in interactive problem solving scenarios requires models to construct reasoning threads that reflect user understanding and align with structured domain knowledge. However, current reasoning models often lack explicit semantic hierarchies, user-domain knowledge alignment, and principled mechanisms to prune reasoning threads for effectiveness. These limitations result in lengthy generic output that does not guide users through goal-oriented reasoning steps. To address this, we propose a prototype-inspired, two-phases Reasoning-Threads-Evaluation (ReT-Eval) framework, drawing inspiration from human-like reasoning strategies that emphasize structured knowledge reuse. In the first phase, semantically relevant knowledge structures are extracted from a sparse domain knowledge graph using a graph neural network and enriched with intrinsic large language model knowledge to resolve knowledge discrepancies. In the second phase, these threads are evaluated and pruned using a reward-guided strategy aimed at maintaining semantic coherence to generate effective reasoning threads. Experiments and expert evaluations show that ReT-Eval enhances user understanding and outperforms state-of-the-art reasoning models.
comment: 13 pages, 1 figure, 6 tables
☆ STEM: Efficient Relative Capability Evaluation of LLMs through Structured Transition Samples AAAI 2026
Evaluating large language models (LLMs) has become increasingly challenging as model capabilities advance rapidly. While recent models often achieve higher scores on standard benchmarks, these improvements do not consistently reflect enhanced real-world reasoning capabilities. Moreover, widespread overfitting to public benchmarks and the high computational cost of full evaluations have made it both expensive and less effective to distinguish meaningful differences between models. To address these challenges, we propose the \textbf{S}tructured \textbf{T}ransition \textbf{E}valuation \textbf{M}ethod (STEM), a lightweight and interpretable evaluation framework for efficiently estimating the relative capabilities of LLMs. STEM identifies \textit{significant transition samples} (STS) by analyzing consistent performance transitions among LLMs of the same architecture but varying parameter scales. These samples enable STEM to effectively estimate the capability position of an unknown model. Qwen3 model family is applied to construct the STS pool on six diverse and representative benchmarks. To assess generalizability. Experimental results indicate that STEM reliably captures performance trends, aligns with ground-truth rankings of model capability. These findings highlight STEM as a practical and scalable method for fine-grained, architecture-agnostic evaluation of LLMs.
comment: Submit to AAAI 2026
☆ MAPF-World: Action World Model for Multi-Agent Path Finding
Multi-agent path finding (MAPF) is the problem of planning conflict-free paths from the designated start locations to goal positions for multiple agents. It underlies a variety of real-world tasks, including multi-robot coordination, robot-assisted logistics, and social navigation. Recent decentralized learnable solvers have shown great promise for large-scale MAPF, especially when leveraging foundation models and large datasets. However, these agents are reactive policy models and exhibit limited modeling of environmental temporal dynamics and inter-agent dependencies, resulting in performance degradation in complex, long-term planning scenarios. To address these limitations, we propose MAPF-World, an autoregressive action world model for MAPF that unifies situation understanding and action generation, guiding decisions beyond immediate local observations. It improves situational awareness by explicitly modeling environmental dynamics, including spatial features and temporal dependencies, through future state and actions prediction. By incorporating these predicted futures, MAPF-World enables more informed, coordinated, and far-sighted decision-making, especially in complex multi-agent settings. Furthermore, we augment MAPF benchmarks by introducing an automatic map generator grounded in real-world scenarios, capturing practical map layouts for training and evaluating MAPF solvers. Extensive experiments demonstrate that MAPF-World outperforms state-of-the-art learnable solvers, showcasing superior zero-shot generalization to out-of-distribution cases. Notably, MAPF-World is trained with a 96.5% smaller model size and 92% reduced data.
☆ J6: Jacobian-Driven Role Attribution for Multi-Objective Prompt Optimization in LLMs
In large language model (LLM) adaptation, balancing multiple optimization objectives such as improving factuality (heat) and increasing confidence (via low entropy) poses a fundamental challenge, especially when prompt parameters (e.g., hidden-layer insertions h and embedding modifications w) interact in non-trivial ways. Existing multi-objective optimization strategies often rely on scalar gradient aggregation, ignoring the deeper geometric structure between objectives and parameters. We propose J6, a structured Jacobian-based method that decomposes the gradient interaction matrix into six interpretable components. This decomposition enables both hard decision-making (e.g., choosing the dominant update direction via argmax) and soft strategies (e.g., attention-style weighting via softmax over J6), forming a dynamic update framework that adapts to local conflict and synergy. Moreover, the interpretable structure of J6 provides insight into parameter attribution, task interference, and geometry-aligned adaptation. Our work introduces a principled and extensible mechanism for conflict-aware prompt optimization, and opens a new avenue for incorporating structured Jacobian reasoning into multi-objective neural tuning.
comment: 9 pages, 3 tables, 1 algorithm
☆ Generic Event Boundary Detection via Denoising Diffusion ICCV 2025
Generic event boundary detection (GEBD) aims to identify natural boundaries in a video, segmenting it into distinct and meaningful chunks. Despite the inherent subjectivity of event boundaries, previous methods have focused on deterministic predictions, overlooking the diversity of plausible solutions. In this paper, we introduce a novel diffusion-based boundary detection model, dubbed DiffGEBD, that tackles the problem of GEBD from a generative perspective. The proposed model encodes relevant changes across adjacent frames via temporal self-similarity and then iteratively decodes random noise into plausible event boundaries being conditioned on the encoded features. Classifier-free guidance allows the degree of diversity to be controlled in denoising diffusion. In addition, we introduce a new evaluation metric to assess the quality of predictions considering both diversity and fidelity. Experiments show that our method achieves strong performance on two standard benchmarks, Kinetics-GEBD and TAPOS, generating diverse and plausible event boundaries.
comment: Accepted to ICCV 2025
☆ Automated Model Evaluation for Object Detection via Prediction Consistency and Reliablity ICCV 2025
Recent advances in computer vision have made training object detectors more efficient and effective; however, assessing their performance in real-world applications still relies on costly manual annotation. To address this limitation, we develop an automated model evaluation (AutoEval) framework for object detection. We propose Prediction Consistency and Reliability (PCR), which leverages the multiple candidate bounding boxes that conventional detectors generate before non-maximum suppression (NMS). PCR estimates detection performance without ground-truth labels by jointly measuring 1) the spatial consistency between boxes before and after NMS, and 2) the reliability of the retained boxes via the confidence scores of overlapping boxes. For a more realistic and scalable evaluation, we construct a meta-dataset by applying image corruptions of varying severity. Experimental results demonstrate that PCR yields more accurate performance estimates than existing AutoEval methods, and the proposed meta-dataset covers a wider range of detection performance. The code is available at https://github.com/YonseiML/autoeval-det.
comment: ICCV 2025 Oral
☆ VimoRAG: Video-based Retrieval-augmented 3D Motion Generation for Motion Language Models
This paper introduces VimoRAG, a novel video-based retrieval-augmented motion generation framework for motion large language models (LLMs). As motion LLMs face severe out-of-domain/out-of-vocabulary issues due to limited annotated data, VimoRAG leverages large-scale in-the-wild video databases to enhance 3D motion generation by retrieving relevant 2D human motion signals. While video-based motion RAG is nontrivial, we address two key bottlenecks: (1) developing an effective motion-centered video retrieval model that distinguishes human poses and actions, and (2) mitigating the issue of error propagation caused by suboptimal retrieval results. We design the Gemini Motion Video Retriever mechanism and the Motion-centric Dual-alignment DPO Trainer, enabling effective retrieval and generation processes. Experimental results show that VimoRAG significantly boosts the performance of motion LLMs constrained to text-only input.
comment: 20 pages,13 figures
☆ Large Language Models Enable Personalized Nudges to Promote Carbon Offsetting Among Air Travellers
Nudge strategies are effective tools for promoting sustainable behaviour, but their impact depends on individual preferences. By emulating human decision-making, large language models (LLMs) offer a cost-effective route for tailoring nudges without extensive behavioural datasets, yet this potential remains unexplored. Focusing on aviation, we use LLMs to design personalized decoy-based nudge strategies that encourage air travellers to voluntarily offset CO$_2$ emissions from flights, and validate their efficacy through 3495 surveys from China, Germany, India, Singapore, and the United States. Results show that LLM-informed personalized nudges are more effective than uniform settings, raising offsetting rates by 3-7$\%$ and yielding an additional 2.3 million tonnes of CO$_2$ mitigated annually in aviation. This improvement is driven primarily by increased participation among sceptical travellers with low trust in offset programmes. Our study highlights the potential of LLM-driven personalized nudging strategies for boosting offsetting behaviours to accelerate aviation decarbonization.
☆ Mind the Generation Process: Fine-Grained Confidence Estimation During LLM Generation
While large language models (LLMs) have demonstrated remarkable performance across diverse tasks, they fundamentally lack self-awareness and frequently exhibit overconfidence, assigning high confidence scores to incorrect predictions. Accurate confidence estimation is therefore critical for enhancing the trustworthiness and reliability of LLM-generated outputs. However, existing approaches suffer from coarse-grained scoring mechanisms that fail to provide fine-grained, continuous confidence estimates throughout the generation process. To address these limitations, we introduce FineCE, a novel confidence estimation method that delivers accurate, fine-grained confidence scores during text generation. Specifically, we first develop a comprehensive pipeline for constructing training data that effectively captures the underlying probabilistic distribution of LLM responses, and then train a model to predict confidence scores for arbitrary text sequences in a supervised manner. Furthermore, we propose a Backward Confidence Integration (BCI) strategy that leverages information from the subsequent text to enhance confidence estimation for the current sequence during inference. We also introduce three strategies for identifying optimal positions to perform confidence estimation within the generation process. Extensive experiments on multiple benchmark datasets demonstrate that FineCE consistently outperforms existing classical confidence estimation methods. Our code and all baselines used in the paper are available on GitHub.
comment: The initial versin was made in August 2024
☆ Q-FSRU: Quantum-Augmented Frequency-Spectral Fusion for Medical Visual Question Answering AAAI 26
Solving tough clinical questions that require both image and text understanding is still a major challenge in healthcare AI. In this work, we propose Q-FSRU, a new model that combines Frequency Spectrum Representation and Fusion (FSRU) with a method called Quantum Retrieval-Augmented Generation (Quantum RAG) for medical Visual Question Answering (VQA). The model takes in features from medical images and related text, then shifts them into the frequency domain using Fast Fourier Transform (FFT). This helps it focus on more meaningful data and filter out noise or less useful information. To improve accuracy and ensure that answers are based on real knowledge, we add a quantum-inspired retrieval system. It fetches useful medical facts from external sources using quantum-based similarity techniques. These details are then merged with the frequency-based features for stronger reasoning. We evaluated our model using the VQA-RAD dataset, which includes real radiology images and questions. The results showed that Q-FSRU outperforms earlier models, especially on complex cases needing image-text reasoning. The mix of frequency and quantum information improves both performance and explainability. Overall, this approach offers a promising way to build smart, clear, and helpful AI tools for doctors.
comment: 8 pages, 4 figures Submitted to AAAI 26
☆ BConformeR: A Conformer Based on Mutual Sampling for Unified Prediction of Continuous and Discontinuous Antibody Binding Sites AAAI
Accurate prediction of antibody-binding sites (epitopes) on antigens is crucial for vaccine design, immunodiagnostics, therapeutic antibody development, antibody engineering, research into autoimmune and allergic diseases, and for advancing our understanding of immune responses. Despite in silico methods that have been proposed to predict both linear (continuous) and conformational (discontinuous) epitopes, they consistently underperform in predicting conformational epitopes. In this work, we propose a conformer-based model trained on antigen sequences derived from 1,080 antigen-antibody complexes, leveraging convolutional neural networks (CNNs) to extract local features and Transformers to capture long-range dependencies within antigen sequences. Ablation studies demonstrate that CNN enhances the prediction of linear epitopes, and the Transformer module improves the prediction of conformational epitopes. Experimental results show that our model outperforms existing baselines in terms of PCC, ROC-AUC, PR-AUC, and F1 scores on conformational epitopes.
comment: 16 pages, 7 figures, 5 tables, submitted to AAAI conference 2026
☆ Active inference for action-unaware agents
Active inference is a formal approach to study cognition based on the notion that adaptive agents can be seen as engaging in a process of approximate Bayesian inference, via the minimisation of variational and expected free energies. Minimising the former provides an account of perceptual processes and learning as evidence accumulation, while minimising the latter describes how agents select their actions over time. In this way, adaptive agents are able to maximise the likelihood of preferred observations or states, given a generative model of the environment. In the literature, however, different strategies have been proposed to describe how agents can plan their future actions. While they all share the notion that some kind of expected free energy offers an appropriate way to score policies, sequences of actions, in terms of their desirability, there are different ways to consider the contribution of past motor experience to the agent's future behaviour. In some approaches, agents are assumed to know their own actions, and use such knowledge to better plan for the future. In other approaches, agents are unaware of their actions, and must infer their motor behaviour from recent observations in order to plan for the future. This difference reflects a standard point of departure in two leading frameworks in motor control based on the presence, or not, of an efference copy signal representing knowledge about an agent's own actions. In this work we compare the performances of action-aware and action-unaware agents in two navigations tasks, showing how action-unaware agents can achieve performances comparable to action-aware ones while at a severe disadvantage.
comment: 59 pages, 47 figures
☆ Bongard-RWR+: Real-World Representations of Fine-Grained Concepts in Bongard Problems
Bongard Problems (BPs) provide a challenging testbed for abstract visual reasoning (AVR), requiring models to identify visual concepts fromjust a few examples and describe them in natural language. Early BP benchmarks featured synthetic black-and-white drawings, which might not fully capture the complexity of real-world scenes. Subsequent BP datasets employed real-world images, albeit the represented concepts are identifiable from high-level image features, reducing the task complexity. Differently, the recently released Bongard-RWR dataset aimed at representing abstract concepts formulated in the original BPs using fine-grained real-world images. Its manual construction, however, limited the dataset size to just $60$ instances, constraining evaluation robustness. In this work, we introduce Bongard-RWR+, a BP dataset composed of $5\,400$ instances that represent original BP abstract concepts using real-world-like images generated via a vision language model (VLM) pipeline. Building on Bongard-RWR, we employ Pixtral-12B to describe manually curated images and generate new descriptions aligned with the underlying concepts, use Flux.1-dev to synthesize images from these descriptions, and manually verify that the generated images faithfully reflect the intended concepts. We evaluate state-of-the-art VLMs across diverse BP formulations, including binary and multiclass classification, as well as textual answer generation. Our findings reveal that while VLMs can recognize coarse-grained visual concepts, they consistently struggle with discerning fine-grained concepts, highlighting limitations in their reasoning capabilities.
☆ AI Models for Depressive Disorder Detection and Diagnosis: A Review
Major Depressive Disorder is one of the leading causes of disability worldwide, yet its diagnosis still depends largely on subjective clinical assessments. Integrating Artificial Intelligence (AI) holds promise for developing objective, scalable, and timely diagnostic tools. In this paper, we present a comprehensive survey of state-of-the-art AI methods for depression detection and diagnosis, based on a systematic review of 55 key studies. We introduce a novel hierarchical taxonomy that structures the field by primary clinical task (diagnosis vs. prediction), data modality (text, speech, neuroimaging, multimodal), and computational model class (e.g., graph neural networks, large language models, hybrid approaches). Our in-depth analysis reveals three major trends: the predominance of graph neural networks for modeling brain connectivity, the rise of large language models for linguistic and conversational data, and an emerging focus on multimodal fusion, explainability, and algorithmic fairness. Alongside methodological insights, we provide an overview of prominent public datasets and standard evaluation metrics as a practical guide for researchers. By synthesizing current advances and highlighting open challenges, this survey offers a comprehensive roadmap for future innovation in computational psychiatry.
☆ Predicting ChatGPT Use in Assignments: Implications for AI-Aware Assessment Design
The rise of generative AI tools like ChatGPT has significantly reshaped education, sparking debates about their impact on learning outcomes and academic integrity. While prior research highlights opportunities and risks, there remains a lack of quantitative analysis of student behavior when completing assignments. Understanding how these tools influence real-world academic practices, particularly assignment preparation, is a pressing and timely research priority. This study addresses this gap by analyzing survey responses from 388 university students, primarily from Russia, including a subset of international participants. Using the XGBoost algorithm, we modeled predictors of ChatGPT usage in academic assignments. Key predictive factors included learning habits, subject preferences, and student attitudes toward AI. Our binary classifier demonstrated strong predictive performance, achieving 80.1\% test accuracy, with 80.2\% sensitivity and 79.9\% specificity. The multiclass classifier achieved 64.5\% test accuracy, 64.6\% weighted precision, and 64.5\% recall, with similar training scores, indicating potential data scarcity challenges. The study reveals that frequent use of ChatGPT for learning new concepts correlates with potential overreliance, raising concerns about long-term academic independence. These findings suggest that while generative AI can enhance access to knowledge, unchecked reliance may erode critical thinking and originality. We propose discipline-specific guidelines and reimagined assessment strategies to balance innovation with academic rigor. These insights can guide educators and policymakers in ethically and effectively integrating AI into education.
☆ MOON: Generative MLLM-based Multimodal Representation Learning for E-commerce Product Understanding
With the rapid advancement of e-commerce, exploring general representations rather than task-specific ones has attracted increasing research attention. For product understanding, although existing discriminative dual-flow architectures drive progress in this field, they inherently struggle to model the many-to-one alignment between multiple images and texts of products. Therefore, we argue that generative Multimodal Large Language Models (MLLMs) hold significant potential for improving product representation learning. Nevertheless, achieving this goal still remains non-trivial due to several key challenges: the lack of multimodal and aspect-aware modeling modules in typical LLMs; the common presence of background noise in product images; and the absence of a standard benchmark for evaluation. To address these issues, we propose the first generative MLLM-based model named MOON for product representation learning. Our method (1) employs a guided Mixture-of-Experts (MoE) module for targeted modeling of multimodal and aspect-specific product content; (2) effectively detects core semantic regions in product images to mitigate the distraction and interference caused by background noise; and (3) introduces the specialized negative sampling strategy to increase the difficulty and diversity of negative samples. In addition, we release a large-scale multimodal benchmark MBE for various product understanding tasks. Experimentally, our model demonstrates competitive zero-shot performance on both our benchmark and the public dataset, showcasing strong generalization across various downstream tasks, including cross-modal retrieval, product classification, and attribute prediction. Furthermore, the case study and visualization illustrate the effectiveness of MOON for product understanding.
comment: 11 pages, 9 figures
☆ AgentCDM: Enhancing Multi-Agent Collaborative Decision-Making via ACH-Inspired Structured Reasoning
Multi-agent systems (MAS) powered by large language models (LLMs) hold significant promise for solving complex decision-making tasks. However, the core process of collaborative decision-making (CDM) within these systems remains underexplored. Existing approaches often rely on either ``dictatorial" strategies that are vulnerable to the cognitive biases of a single agent, or ``voting-based" methods that fail to fully harness collective intelligence. To address these limitations, we propose \textbf{AgentCDM}, a structured framework for enhancing collaborative decision-making in LLM-based multi-agent systems. Drawing inspiration from the Analysis of Competing Hypotheses (ACH) in cognitive science, AgentCDM introduces a structured reasoning paradigm that systematically mitigates cognitive biases and shifts decision-making from passive answer selection to active hypothesis evaluation and construction. To internalize this reasoning process, we develop a two-stage training paradigm: the first stage uses explicit ACH-inspired scaffolding to guide the model through structured reasoning, while the second stage progressively removes this scaffolding to encourage autonomous generalization. Experiments on multiple benchmark datasets demonstrate that AgentCDM achieves state-of-the-art performance and exhibits strong generalization, validating its effectiveness in improving the quality and robustness of collaborative decisions in MAS.
☆ Efficient Modular Learning through Naive LoRA Summation: Leveraging Orthogonality in High-Dimensional Models
Recent advances in large language models are driven by scale, while parameter-efficient fine-tuning (PEFT) enables updating only a small fraction of parameters. Low-Rank Adaptation (LoRA) stores parameter deltas as the product of two small matrices, which makes them natural building blocks that can be composed. Motivated by the superposition principle, we hypothesize that independently trained LoRA modules on disjoint domains are approximately orthogonal and can be combined by simple addition. Using GPT-2 Small (117M) with LoRA rank 4 and alpha=64, we train adapters for three QA domains (math, medicine, finance). In pairwise tests, adding Math+Medicine adapters improves perplexity by -9.10% relative to merged-data fine-tuning, while Math+Finance and Finance+Medicine change by +4.54% and +27.56%, respectively. Across combinations, the RMS cosine similarity between LoRA deltas correlates positively and approximately linearly with the change in perplexity. Naive summation requires no additional training, can be applied in seconds, and achieves performance comparable to models trained on merged data, while clarifying when interference appears in higher-order compositions.
comment: Preprint
☆ TBGRecall: A Generative Retrieval Model for E-commerce Recommendation Scenarios
Recommendation systems are essential tools in modern e-commerce, facilitating personalized user experiences by suggesting relevant products. Recent advancements in generative models have demonstrated potential in enhancing recommendation systems; however, these models often exhibit limitations in optimizing retrieval tasks, primarily due to their reliance on autoregressive generation mechanisms. Conventional approaches introduce sequential dependencies that impede efficient retrieval, as they are inherently unsuitable for generating multiple items without positional constraints within a single request session. To address these limitations, we propose TBGRecall, a framework integrating Next Session Prediction (NSP), designed to enhance generative retrieval models for e-commerce applications. Our framework reformulation involves partitioning input samples into multi-session sequences, where each sequence comprises a session token followed by a set of item tokens, and then further incorporate multiple optimizations tailored to the generative task in retrieval scenarios. In terms of training methodology, our pipeline integrates limited historical data pre-training with stochastic partial incremental training, significantly improving training efficiency and emphasizing the superiority of data recency over sheer data volume. Our extensive experiments, conducted on public benchmarks alongside a large-scale industrial dataset from TaoBao, show TBGRecall outperforms the state-of-the-art recommendation methods, and exhibits a clear scaling law trend. Ultimately, NSP represents a significant advancement in the effectiveness of generative recommendation systems for e-commerce applications.
comment: Both authors contributed equally to this research. Work done during internship at Alibaba. Corresponding author: Dunxian Huang (dunxian.hdx@alibaba-inc.com). Affiliations: (1) Shanghai Jiaotong University, Shanghai, China; (2) Alibaba Inc
☆ Chart-CoCa: Self-Improving Chart Understanding of Vision LMs via Code-Driven Synthesis and Candidate-Conditioned Answering CIKM 2025
Vision Language Models (VLMs) often struggle with chart understanding tasks, particularly in accurate chart description and complex reasoning. Synthetic data generation is a promising solution, while usually facing the challenge of noise labels. To address this challenge, we first introduce a chart synthesis pipeline that generates aligned chart-question-answer triplets through code generation and execution, ensuring the reliability of synthetic data without human intervention. Furthermore, inspired by test-time scaling that increases inference budget and thereby improves performance, we design a candidate-conditioned answering process. The VLM first generates multiple responses per query, and then synthesizes the final answer by contextualizing these candidates. Experiments demonstrate significant improvements, with up to 15.50 points accuracy gain over the initial VLM, in a fully self-improving paradigm without either human-labeled data or external models.
comment: Accepted to CIKM 2025
☆ Rigorous Feature Importance Scores based on Shapley Value and Banzhaf Index
Feature attribution methods based on game theory are ubiquitous in the field of eXplainable Artificial Intelligence (XAI). Recent works proposed rigorous feature attribution using logic-based explanations, specifically targeting high-stakes uses of machine learning (ML) models. Typically, such works exploit weak abductive explanation (WAXp) as the characteristic function to assign importance to features. However, one possible downside is that the contribution of non-WAXp sets is neglected. In fact, non-WAXp sets can also convey important information, because of the relationship between formal explanations (XPs) and adversarial examples (AExs). Accordingly, this paper leverages Shapley value and Banzhaf index to devise two novel feature importance scores. We take into account non-WAXp sets when computing feature contribution, and the novel scores quantify how effective each feature is at excluding AExs. Furthermore, the paper identifies properties and studies the computational complexity of the proposed scores.
☆ A Comprehensive Review of AI Agents: Transforming Possibilities in Technology and Beyond
Artificial Intelligence (AI) agents have rapidly evolved from specialized, rule-based programs to versatile, learning-driven autonomous systems capable of perception, reasoning, and action in complex environments. The explosion of data, advances in deep learning, reinforcement learning, and multi-agent coordination have accelerated this transformation. Yet, designing and deploying unified AI agents that seamlessly integrate cognition, planning, and interaction remains a grand challenge. In this review, we systematically examine the architectural principles, foundational components, and emergent paradigms that define the landscape of contemporary AI agents. We synthesize insights from cognitive science-inspired models, hierarchical reinforcement learning frameworks, and large language model-based reasoning. Moreover, we discuss the pressing ethical, safety, and interpretability concerns associated with deploying these agents in real-world scenarios. By highlighting major breakthroughs, persistent challenges, and promising research directions, this review aims to guide the next generation of AI agent systems toward more robust, adaptable, and trustworthy autonomous intelligence.
☆ UniCast: A Unified Multimodal Prompting Framework for Time Series Forecasting
Time series forecasting is a foundational task across domains, such as finance, healthcare, and environmental monitoring. While recent advances in Time Series Foundation Models (TSFMs) have demonstrated strong generalisation through large-scale pretraining, existing models operate predominantly in a unimodal setting, ignoring the rich multimodal context, such as visual and textual signals, that often accompanies time series data in real-world scenarios. This paper introduces a novel parameter-efficient multimodal framework, UniCast, that extends TSFMs to jointly leverage time series, vision, and text modalities for enhanced forecasting performance. Our method integrates modality-specific embeddings from pretrained Vision and Text Encoders with a frozen TSFM via soft prompt tuning, enabling efficient adaptation with minimal parameter updates. This design not only preserves the generalisation strength of the foundation model but also enables effective cross-modal interaction. Extensive experiments across diverse time-series forecasting benchmarks demonstrate that UniCast consistently and significantly outperforms all existing TSFM baselines. The findings highlight the critical role of multimodal context in advancing the next generation of general-purpose time series forecasters.
☆ Data Mixing Optimization for Supervised Fine-Tuning of Large Language Models
Optimizing data mixtures for supervised fine-tuning (SFT) of large language models (LLMs) is critical for developing general-purpose models, yet this area remains underexplored. In this paper, we frame data mixing as an optimization problem and introduce a novel method designed to minimize validation loss. Our approach parametrizes the loss by modeling effective data transferred and leveraging scaling laws for fine-tuning. By experimenting with various small-scale data mixtures, we fit these parameters and derive the optimal weights. We provide both mathematical proofs and empirical results demonstrating that our algorithm achieves excellent overall and individual performance across all domains. Through controlled experiments, we show that models trained with our optimized weights perform on par with those using optimal weights determined via grid search, with per-domain loss only 0.66% higher than the best domain loss from grid search on average. Additionally, we show that reweighting popular SFT datasets using our method improves both validation loss and downstream performance. Finally, we discuss how our method can generalize to guide data selection for domain-specific models and provide insights into SFT.
☆ CHBench: A Cognitive Hierarchy Benchmark for Evaluating Strategic Reasoning Capability of LLMs
Game-playing ability serves as an indicator for evaluating the strategic reasoning capability of large language models (LLMs). While most existing studies rely on utility performance metrics, which are not robust enough due to variations in opponent behavior and game structure. To address this limitation, we propose \textbf{Cognitive Hierarchy Benchmark (CHBench)}, a novel evaluation framework inspired by the cognitive hierarchy models from behavioral economics. We hypothesize that agents have bounded rationality -- different agents behave at varying reasoning depths/levels. We evaluate LLMs' strategic reasoning through a three-phase systematic framework, utilizing behavioral data from six state-of-the-art LLMs across fifteen carefully selected normal-form games. Experiments show that LLMs exhibit consistent strategic reasoning levels across diverse opponents, confirming the framework's robustness and generalization capability. We also analyze the effects of two key mechanisms (Chat Mechanism and Memory Mechanism) on strategic reasoning performance. Results indicate that the Chat Mechanism significantly degrades strategic reasoning, whereas the Memory Mechanism enhances it. These insights position CHBench as a promising tool for evaluating LLM capabilities, with significant potential for future research and practical applications.
♻ ☆ Why Cannot Large Language Models Ever Make True Correct Reasoning?
Recently, with the application progress of AIGC tools based on large language models (LLMs), led by ChatGPT, many AI experts and more non-professionals are trumpeting the "reasoning ability" of the LLMs. The present author considers that the so-called "reasoning ability" of LLMs are just illusions of those people who with vague concepts. In fact, the LLMs can never have the true reasoning ability. This paper intents to explain that, because the essential limitations of their working principle, the LLMs can never have the ability of true correct reasoning.
comment: 8 pages. arXiv admin note: substantial text overlap with arXiv:2412.12408
♻ ☆ Diagnostic performance of deep learning for predicting glioma isocitrate dehydrogenase and 1p/19q co-deletion in MRI: a systematic review and meta-analysis
Objectives We aimed to evaluate the diagnostic performance of deep learning (DL)-based radiomics models for the noninvasive prediction of isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion status in glioma patients using MRI sequences, and to identify methodological factors influencing accuracy and generalizability. Materials and methods Following PRISMA guidelines, we systematically searched major databases (PubMed, Scopus, Embase, Web of Science, and Google Scholar) up to March 2025, screening studies that utilized DL to predict IDH and 1p/19q co-deletion status from MRI data. We assessed study quality and risk of bias using the Radiomics Quality Score and the QUADAS-2 tool. Our meta-analysis employed a bivariate model to compute pooled sensitivity and specificity, and meta-regression to assess interstudy heterogeneity. Results Among the 1517 unique publications, 104 were included in the qualitative synthesis, and 72 underwent meta-analysis. Pooled estimates for IDH prediction in test cohorts yielded a sensitivity of 0.80 and specificity of 0.85. For 1p/19q co-deletion, sensitivity was 0.75 and specificity was 0.82. Meta-regression identified the tumor segmentation method and the extent of DL integration into the radiomics pipeline as significant contributors to interstudy variability. Conclusion Although DL models demonstrate strong potential for noninvasive molecular classification of gliomas, clinical translation requires several critical steps: harmonization of multi-center MRI data using techniques such as histogram matching and DL-based style transfer; adoption of standardized and automated segmentation protocols; extensive multi-center external validation; and prospective clinical validation.
comment: Eur Radiol (2025)
♻ ☆ LoRA-based methods on Unet for transfer learning in Subarachnoid Hematoma Segmentation
Aneurysmal subarachnoid hemorrhage (SAH) is a life-threatening neurological emergency with mortality rates exceeding 30%. Transfer learning from related hematoma types represents a potentially valuable but underexplored approach. Although Unet architectures remain the gold standard for medical image segmentation due to their effectiveness on limited datasets, Low-Rank Adaptation (LoRA) methods for parameter-efficient transfer learning have been rarely applied to convolutional neural networks in medical imaging contexts. We implemented a Unet architecture pre-trained on computed tomography scans from 124 traumatic brain injury patients across multiple institutions, then fine-tuned on 30 aneurysmal SAH patients from the University of Michigan Health System using 3-fold cross-validation. We developed a novel CP-LoRA method based on tensor CP-decomposition and introduced DoRA variants (DoRA-C, convDoRA, CP-DoRA) that decompose weight matrices into magnitude and directional components. We compared these approaches against existing LoRA methods (LoRA-C, convLoRA) and standard fine-tuning strategies across different modules on a multi-view Unet model. LoRA-based methods consistently outperformed standard Unet fine-tuning. Performance varied by hemorrhage volume, with all methods showing improved accuracy for larger volumes. CP-LoRA achieved comparable performance to existing methods while using significantly fewer parameters. Over-parameterization with higher ranks consistently yielded better performance than strictly low-rank adaptations. This study demonstrates that transfer learning between hematoma types is feasible and that LoRA-based methods significantly outperform conventional Unet fine-tuning for aneurysmal SAH segmentation.
♻ ☆ Unsupervised Invariant Risk Minimization
We propose a novel unsupervised framework for \emph{Invariant Risk Minimization} (IRM), extending the concept of invariance to settings where labels are unavailable. Traditional IRM methods rely on labeled data to learn representations that are robust to distributional shifts across environments. In contrast, our approach redefines invariance through feature distribution alignment, enabling robust representation learning from unlabeled data. We introduce two methods within this framework: Principal Invariant Component Analysis (PICA), a linear method that extracts invariant directions under Gaussian assumptions, and Variational Invariant Autoencoder (VIAE), a deep generative model that disentangles environment-invariant and environment-dependent latent factors. Our approach is based on a novel ``unsupervised'' structural causal model and supports environment-conditioned sample-generation and intervention. Empirical evaluations on synthetic dataset and modified versions of MNIST demonstrate the effectiveness of our methods in capturing invariant structure, preserving relevant information, and generalizing across environments without access to labels.
♻ ☆ NeFT: Negative Feedback Training to Improve Robustness of Compute-In-Memory DNN Accelerators
Compute-in-memory accelerators built upon non-volatile memory devices excel in energy efficiency and latency when performing deep neural network (DNN) inference, thanks to their in-situ data processing capability. However, the stochastic nature and intrinsic variations of non-volatile memory devices often result in performance degradation during DNN inference. Introducing these non-ideal device behaviors in DNN training enhances robustness, but drawbacks include limited accuracy improvement, reduced prediction confidence, and convergence issues. This arises from a mismatch between the deterministic training and non-deterministic device variations, as such training, though considering variations, relies solely on the model's final output. In this work, inspired by control theory, we propose Negative Feedback Training (NeFT), a novel concept supported by theoretical analysis, to more effectively capture the multi-scale noisy information throughout the network. We instantiate this concept with two specific instances, oriented variational forward (OVF) and intermediate representation snapshot (IRS). Based on device variation models extracted from measured data, extensive experiments show that our NeFT outperforms existing state-of-the-art methods with up to a 45.08% improvement in inference accuracy while reducing epistemic uncertainty, boosting output confidence, and improving convergence probability. These results underline the generality and practicality of our NeFT framework for increasing the robustness of DNNs against device variations. The source code for these two instances is available at https://github.com/YifanQin-ND/NeFT_CIM
comment: Published by IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD)
♻ ☆ LauraTSE: Target Speaker Extraction using Auto-Regressive Decoder-Only Language Models
We propose LauraTSE, an Auto-Regressive Decoder-Only Language Model for Target Speaker Extraction built upon the LauraGPT backbone. LauraTSE employs a small-scale auto-regressive decoder-only language model that generates the initial layers of the target speech's discrete codec representations from the continuous embeddings of both the mixture and reference speech. These outputs serve as coarse-grained predictions. To refine them, a one-step encoder-only language model reconstructs the full codec representation by integrating information from both the mixture and the reference speech, adding fine-grained details. Experimental results show that our approach can achieve promising performance. Additionally, we conduct ablation studies to investigate the data scalability and the contribution of the encoder-only model.
comment: 8 pages, 5 figure, accepted by 2025 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)
♻ ☆ Towards an Explainable Comparison and Alignment of Feature Embeddings
While several feature embedding models have been developed in the literature, comparisons of these embeddings have largely focused on their numerical performance in classification-related downstream applications. However, an interpretable comparison of different embeddings requires identifying and analyzing mismatches between sample groups clustered within the embedding spaces. In this work, we propose the \emph{Spectral Pairwise Embedding Comparison (SPEC)} framework to compare embeddings and identify their differences in clustering a reference dataset. Our approach examines the kernel matrices derived from two embeddings and leverages the eigendecomposition of the difference kernel matrix to detect sample clusters that are captured differently by the two embeddings. We present a scalable implementation of this kernel-based approach, with computational complexity that grows linearly with the sample size. Furthermore, we introduce an optimization problem using this framework to align two embeddings, ensuring that clusters identified in one embedding are also captured in the other model. We provide numerical results demonstrating the SPEC's application to compare and align embeddings on large-scale datasets such as ImageNet and MS-COCO. The project page is available at https://mjalali.github.io/SPEC/.
♻ ☆ RT-Cache: Training-Free Retrieval for Real-Time Manipulation RAS 24
Real robots are expected to repeat the same behavior in new environments with very little new data, yet modern controllers either incur heavy per-step inference or require deployment-time fine-tuning. We propose RT-Cache, a training-free retrieval-as-control pipeline that caches diverse image action trajectories in a unified vector memory and, at test time, embeds the current frame to retrieve and replay multi-step snippets, replacing per-step model calls. A hierarchical search keeps lookups sub-second at million scale, shifting cost from compute to storage and enabling real-time control on modest GPUs. Across real-robot tasks and large open logs, RT-Cache achieves higher success and lower completion time than strong retrieval baselines (approximately x2 higher success and ~30% faster in our settings), and a single-episode anchoring study shows immediate adaptation to a more complex, contact-rich task without fine-tuning. RT-Cache turns experience into an append-only memory, offering a simple, scalable path to few-shot deployment today and a foundation for multimodal keys and optional integration with high-level policies. Project page: https://rt-cache.github.io/.
comment: 8 pages, 6 figures. Accepted to the 2025 IEEE-RAS 24th International Conference on Humanoid Robots
♻ ☆ TRIALSCOPE: A Unifying Causal Framework for Scaling Real-World Evidence Generation with Biomedical Language Models
The rapid digitization of real-world data presents an unprecedented opportunity to optimize healthcare delivery and accelerate biomedical discovery. However, these data are often found in unstructured forms such as clinical notes in electronic medical records (EMRs), and is typically plagued by confounders, making it challenging to generate robust real-world evidence (RWE). Therefore, we present TRIALSCOPE, a framework designed to distil RWE from population level observational data at scale. TRIALSCOPE leverages biomedical language models to structure clinical text at scale, employs advanced probabilistic modeling for denoising and imputation, and incorporates state-of-the-art causal inference techniques to address common confounders in treatment effect estimation. Extensive experiments were conducted on a large-scale dataset of over one million cancer patients from a single large healthcare network in the United States. TRIALSCOPE was shown to automatically curate high-quality structured patient data, expanding the dataset and incorporating key patient attributes only available in unstructured form. The framework reduces confounding in treatment effect estimation, generating comparable results to randomized controlled lung cancer trials. Additionally, we demonstrate simulations of unconducted clinical trials - including a pancreatic cancer trial with varying eligibility criteria - using a suite of validation tests to ensure robustness. Thorough ablation studies were conducted to better understand key components of TRIALSCOPE and establish best practices for RWE generation from EMRs. TRIALSCOPE was able to extract data cancer treatment data from EMRs, overcoming limitations of manual curation. We were also able to show that TRIALSCOPE could reproduce results of lung and pancreatic cancer clinical trials from the extracted real world data.
comment: 4 figures, 1 table
♻ ☆ Mobile-R1: Towards Interactive Reinforcement Learning for VLM-Based Mobile Agent via Task-Level Rewards
Vision-language model-based mobile agents have gained the ability to not only understand complex instructions and mobile screenshots, but also optimize their action outputs via thinking and reasoning, benefiting from reinforcement learning, such as Group Relative Policy Optimization (GRPO). However, existing research centers on offline reinforcement learning training or online optimization using action-level rewards, which limits the agent's dynamic interaction with the environment. This often results in agents settling into local optima, thereby weakening their ability for exploration and error action correction. To address these challenges, we introduce an approach called Mobile-R1, which employs interactive multi-turn reinforcement learning with task-level rewards for mobile agents. Our training framework consists of three stages: initial format finetuning, single-step online training via action-level reward, followed by online training via task-level reward based on multi-turn trajectories. This strategy is designed to enhance the exploration and error correction capabilities of Mobile-R1, leading to significant performance improvements. Moreover, we have collected a dataset covering 28 Chinese applications with 24,521 high-quality manual annotations and established a new benchmark with 500 trajectories. We will open source all resources, including the dataset, benchmark, model weight, and codes: https://mobile-r1.github.io/Mobile-R1/.
comment: 15 pages, 15 figures
♻ ☆ Advancing Data Equity: Practitioner Responsibility and Accountability in NLP Data Practices AAAI
While research has focused on surfacing and auditing algorithmic bias to ensure equitable AI development, less is known about how NLP practitioners - those directly involved in dataset development, annotation, and deployment - perceive and navigate issues of NLP data equity. This study is among the first to center practitioners' perspectives, linking their experiences to a multi-scalar AI governance framework and advancing participatory recommendations that bridge technical, policy, and community domains. Drawing on a 2024 questionnaire and focus group, we examine how U.S.-based NLP data practitioners conceptualize fairness, contend with organizational and systemic constraints, and engage emerging governance efforts such as the U.S. AI Bill of Rights. Findings reveal persistent tensions between commercial objectives and equity commitments, alongside calls for more participatory and accountable data workflows. We critically engage debates on data diversity and diversity washing, arguing that improving NLP equity requires structural governance reforms that support practitioner agency and community consent.
comment: 10 pages, 6 Pages (References and Appendices). The archival version has been accepted to AAAI (AIES 2025) without the extended Appendices. This extended version includes Appendices
♻ ☆ Regime-Aware Time Weighting for Physics-Informed Neural Networks
We introduce a novel method to handle the time dimension when Physics-Informed Neural Networks (PINNs) are used to solve time-dependent differential equations; our proposal focuses on how time sampling and weighting strategies affect solution quality. While previous methods proposed heuristic time-weighting schemes, our approach is grounded in theoretical insights derived from the Lyapunov exponents, which quantify the sensitivity of solutions to perturbations over time. This principled methodology automatically adjusts weights based on the stability regime of the system -- whether chaotic, periodic, or stable. Numerical experiments on challenging benchmarks, including the chaotic Lorenz system and the Burgers' equation, demonstrate the effectiveness and robustness of the proposed method. Compared to existing techniques, our approach offers improved convergence and accuracy without requiring additional hyperparameter tuning. The findings underline the importance of incorporating causality and dynamical system behavior into PINN training strategies, providing a robust framework for solving time-dependent problems with enhanced reliability.
♻ ☆ Promoting Efficient Reasoning with Verifiable Stepwise Reward
Large reasoning models (LRMs) have recently achieved significant progress in complex reasoning tasks, aided by reinforcement learning with verifiable rewards. However, LRMs often suffer from overthinking, expending excessive computation on simple problems and reducing efficiency. Existing efficient reasoning methods typically require accurate task assessment to preset token budgets or select reasoning modes, which limits their flexibility and reliability. In this work, we revisit the essence of overthinking and identify that encouraging effective steps while penalizing ineffective ones is key to its solution. To this end, we propose a novel rule-based verifiable stepwise reward mechanism (VSRM), which assigns rewards based on the performance of intermediate states in the reasoning trajectory. This approach is intuitive and naturally fits the step-by-step nature of reasoning tasks. We conduct extensive experiments on standard mathematical reasoning benchmarks, including AIME24 and AIME25, by integrating VSRM with PPO and Reinforce++. Results show that our method achieves substantial output length reduction while maintaining original reasoning performance, striking an optimal balance between efficiency and accuracy. Further analysis of overthinking frequency and pass@k score before and after training demonstrates that our approach in deed effectively suppresses ineffective steps and encourages effective reasoning, fundamentally alleviating the overthinking problem. All code will be released upon acceptance.
♻ ☆ LocalGPT: Benchmarking and Advancing Large Language Models for Local Life Services in Meituan KDD 2025
Large language models (LLMs) have exhibited remarkable capabilities and achieved significant breakthroughs across various domains, leading to their widespread adoption in recent years. Building on this progress, we investigate their potential in the realm of local life services. In this study, we establish a comprehensive benchmark and systematically evaluate the performance of diverse LLMs across a wide range of tasks relevant to local life services. To further enhance their effectiveness, we explore two key approaches: model fine-tuning and agent-based workflows. Our findings reveal that even a relatively compact 7B model can attain performance levels comparable to a much larger 72B model, effectively balancing inference cost and model capability. This optimization greatly enhances the feasibility and efficiency of deploying LLMs in real-world online services, making them more practical and accessible for local life applications.
comment: KDD 2025
♻ ☆ OrthoRank: Token Selection via Sink Token Orthogonality for Efficient LLM inference ICML 2025
Attention mechanisms are central to the success of large language models (LLMs), enabling them to capture intricate token dependencies and implicitly assign importance to each token. Recent studies have revealed the sink token, which receives disproportionately high attention despite their limited semantic role. In this paper, we first expand the relationship between the sink token and other tokens, moving beyond attention to explore their similarity in hidden states, considering the layer depth. We observe that as the layers get deeper, the cosine similarity between the normalized hidden states of the sink token and those of other tokens increases, and that the normalized hidden states of the sink token exhibit negligible changes. These imply that other tokens consistently are directed toward the sink token throughout the layers. Next, we propose a dynamic token selection method, called OrthoRank, using these findings to select important tokens. Specifically, in a certain layer, we define token importance by the speed at which the token moves toward the sink token. This is converted into orthogonality with the sink token, meaning that tokens that are more orthogonal to the sink token are assigned greater importance. Finally, through extensive experiments, we demonstrated that our method results in lower perplexity and higher zero-shot accuracy compared to layer pruning methods at the same sparsity ratio with comparable throughput, while also achieving superior performance on LongBench.
comment: ICML 2025 (final version)
♻ ☆ Structural Equation-VAE: Disentangled Latent Representations for Tabular Data
Learning interpretable latent representations from tabular data remains a challenge in deep generative modeling. We introduce SE-VAE (Structural Equation-Variational Autoencoder), a novel architecture that embeds measurement structure directly into the design of a variational autoencoder. Inspired by structural equation modeling, SE-VAE aligns latent subspaces with known indicator groupings and introduces a global nuisance latent to isolate construct-specific confounding variation. This modular architecture enables disentanglement through design rather than through statistical regularizers alone. We evaluate SE-VAE on a suite of simulated tabular datasets and benchmark its performance against a series of leading baselines using standard disentanglement metrics. SE-VAE consistently outperforms alternatives in factor recovery, interpretability, and robustness to nuisance variation. Ablation results reveal that architectural structure, rather than regularization strength, is the key driver of performance. SE-VAE offers a principled framework for white-box generative modeling in scientific and social domains where latent constructs are theory-driven and measurement validity is essential.
comment: 10 pages, 2 figures
♻ ☆ PVChat: Personalized Video Chat with One-Shot Learning
Video large language models (ViLLMs) excel in general video understanding, e.g., recognizing activities like talking and eating, but struggle with identity-aware comprehension, such as "Wilson is receiving chemotherapy" or "Tom is discussing with Sarah", limiting their applicability in smart healthcare and smart home environments. To address this limitation, we propose a one-shot learning framework PVChat, the first personalized ViLLM that enables subject-aware question answering (QA) from a single video for each subject. Our approach optimizes a Mixture-of-Heads (MoH) enhanced ViLLM on a synthetically augmented video-QA dataset, leveraging a progressive image-to-video learning strategy. Specifically, we introduce an automated augmentation pipeline that synthesizes identity-preserving positive samples and retrieves hard negatives from existing video corpora, generating a diverse training dataset with four QA types: existence, appearance, action, and location inquiries. To enhance subject-specific learning, we propose a ReLU Routing MoH attention mechanism, alongside two novel objectives: (1) Smooth Proximity Regularization for progressive learning through exponential distance scaling and (2) Head Activation Enhancement for balanced attention routing. Finally, we adopt a two-stage training strategy, transitioning from image pre-training to video fine-tuning, enabling a gradual learning process from static attributes to dynamic representations. We evaluate PVChat on diverse datasets covering medical scenarios, TV series, anime, and real-world footage, demonstrating its superiority in personalized feature understanding after learning from a single video, compared to state-of-the-art ViLLMs.
Robotics 53
☆ Investigating Sensors and Methods in Grasp State Classification in Agricultural Manipulation
Effective and efficient agricultural manipulation and harvesting depend on accurately understanding the current state of the grasp. The agricultural environment presents unique challenges due to its complexity, clutter, and occlusion. Additionally, fruit is physically attached to the plant, requiring precise separation during harvesting. Selecting appropriate sensors and modeling techniques is critical for obtaining reliable feedback and correctly identifying grasp states. This work investigates a set of key sensors, namely inertial measurement units (IMUs), infrared (IR) reflectance, tension, tactile sensors, and RGB cameras, integrated into a compliant gripper to classify grasp states. We evaluate the individual contribution of each sensor and compare the performance of two widely used classification models: Random Forest and Long Short-Term Memory (LSTM) networks. Our results demonstrate that a Random Forest classifier, trained in a controlled lab environment and tested on real cherry tomato plants, achieved 100% accuracy in identifying slip, grasp failure, and successful picks, marking a substantial improvement over baseline performance. Furthermore, we identify a minimal viable sensor combination, namely IMU and tension sensors that effectively classifies grasp states. This classifier enables the planning of corrective actions based on real-time feedback, thereby enhancing the efficiency and reliability of fruit harvesting operations.
☆ Nominal Evaluation Of Automatic Multi-Sections Control Potential In Comparison To A Simpler One- Or Two-Sections Alternative With Predictive Spray Switching
Automatic Section Control (ASC) is a long-standing trend for spraying in agriculture. It promises to minimise spray overlap areas. The core idea is to (i) switch off spray nozzles on areas that have already been sprayed, and (ii) to dynamically adjust nozzle flow rates along the boom bar that holds the spray nozzles when velocities of boom sections vary during turn maneuvers. ASC is not possible without sensors, in particular for accurate positioning data. Spraying and the movement of modern wide boom bars are highly dynamic processes. In addition, many uncertainty factors have an effect such as cross wind drift, boom height, nozzle clogging in open-field conditions, and so forth. In view of this complexity, the natural question arises if a simpler alternative exist. Therefore, an Automatic Multi-Sections Control method is compared to a proposed simpler one- or two-sections alternative that uses predictive spray switching. The comparison is provided under nominal conditions. Agricultural spraying is intrinsically linked to area coverage path planning and spray switching logic. Combinations of two area coverage path planning and switching logics as well as three sections-setups are compared. The three sections-setups differ by controlling 48 sections, 2 sections or controlling all nozzles uniformly with the same control signal as one single section. Methods are evaluated on 10 diverse real-world field examples, including non-convex field contours, freeform mainfield lanes and multiple obstacle areas. A preferred method is suggested that (i) minimises area coverage pathlength, (ii) offers intermediate overlap, (iii) is suitable for manual driving by following a pre-planned predictive spray switching logic for an area coverage path plan, and (iv) and in contrast to ASC can be implemented sensor-free and therefore at low cost.
comment: 14 pages plus 7 pages appendix with additional figures, 18 main figures, 3 tables
☆ Towards Fully Onboard State Estimation and Trajectory Tracking for UAVs with Suspended Payloads
This paper addresses the problem of tracking the position of a cable-suspended payload carried by an unmanned aerial vehicle, with a focus on real-world deployment and minimal hardware requirements. In contrast to many existing approaches that rely on motion-capture systems, additional onboard cameras, or instrumented payloads, we propose a framework that uses only standard onboard sensors--specifically, real-time kinematic global navigation satellite system measurements and data from the onboard inertial measurement unit--to estimate and control the payload's position. The system models the full coupled dynamics of the aerial vehicle and payload, and integrates a linear Kalman filter for state estimation, a model predictive contouring control planner, and an incremental model predictive controller. The control architecture is designed to remain effective despite sensing limitations and estimation uncertainty. Extensive simulations demonstrate that the proposed system achieves performance comparable to control based on ground-truth measurements, with only minor degradation (< 6%). The system also shows strong robustness to variations in payload parameters. Field experiments further validate the framework, confirming its practical applicability and reliable performance in outdoor environments using only off-the-shelf aerial vehicle hardware.
MultiPark: Multimodal Parking Transformer with Next-Segment Prediction
Parking accurately and safely in highly constrained spaces remains a critical challenge. Unlike structured driving environments, parking requires executing complex maneuvers such as frequent gear shifts and steering saturation. Recent attempts to employ imitation learning (IL) for parking have achieved promising results. However, existing works ignore the multimodal nature of parking behavior in lane-free open space, failing to derive multiple plausible solutions under the same situation. Notably, IL-based methods encompass inherent causal confusion, so enabling a neural network to generalize across diverse parking scenarios is particularly difficult. To address these challenges, we propose MultiPark, an autoregressive transformer for multimodal parking. To handle paths filled with abrupt turning points, we introduce a data-efficient next-segment prediction paradigm, enabling spatial generalization and temporal extrapolation. Furthermore, we design learnable parking queries factorized into gear, longitudinal, and lateral components, parallelly decoding diverse parking behaviors. To mitigate causal confusion in IL, our method employs target-centric pose and ego-centric collision as outcome-oriented loss across all modalities beyond pure imitation loss. Evaluations on real-world datasets demonstrate that MultiPark achieves state-of-the-art performance across various scenarios. We deploy MultiPark on a production vehicle, further confirming our approach's robustness in real-world parking environments.
☆ A Comparative Study of Floating-Base Space Parameterizations for Agile Whole-Body Motion Planning
Automatically generating agile whole-body motions for legged and humanoid robots remains a fundamental challenge in robotics. While numerous trajectory optimization approaches have been proposed, there is no clear guideline on how the choice of floating-base space parameterization affects performance, especially for agile behaviors involving complex contact dynamics. In this paper, we present a comparative study of different parameterizations for direct transcription-based trajectory optimization of agile motions in legged systems. We systematically evaluate several common choices under identical optimization settings to ensure a fair comparison. Furthermore, we introduce a novel formulation based on the tangent space of SE(3) for representing the robot's floating-base pose, which, to our knowledge, has not received attention from the literature. This approach enables the use of mature off-the-shelf numerical solvers without requiring specialized manifold optimization techniques. We hope that our experiments and analysis will provide meaningful insights for selecting the appropriate floating-based representation for agile whole-body motion generation.
comment: 8 pages, 2 figures, 4 tables, Accepted at Humanoids 2025
☆ Sim2Dust: Mastering Dynamic Waypoint Tracking on Granular Media
Reliable autonomous navigation across the unstructured terrains of distant planetary surfaces is a critical enabler for future space exploration. However, the deployment of learning-based controllers is hindered by the inherent sim-to-real gap, particularly for the complex dynamics of wheel interactions with granular media. This work presents a complete sim-to-real framework for developing and validating robust control policies for dynamic waypoint tracking on such challenging surfaces. We leverage massively parallel simulation to train reinforcement learning agents across a vast distribution of procedurally generated environments with randomized physics. These policies are then transferred zero-shot to a physical wheeled rover operating in a lunar-analogue facility. Our experiments systematically compare multiple reinforcement learning algorithms and action smoothing filters to identify the most effective combinations for real-world deployment. Crucially, we provide strong empirical evidence that agents trained with procedural diversity achieve superior zero-shot performance compared to those trained on static scenarios. We also analyze the trade-offs of fine-tuning with high-fidelity particle physics, which offers minor gains in low-speed precision at a significant computational cost. Together, these contributions establish a validated workflow for creating reliable learning-based navigation systems, marking a critical step towards deploying autonomous robots in the final frontier.
comment: The source code is available at https://github.com/AndrejOrsula/space_robotics_bench
Swarm-in-Blocks: Simplifying Drone Swarm Programming with Block-Based Language
Swarm in Blocks, originally developed for CopterHack 2022, is a high-level interface that simplifies drone swarm programming using a block-based language. Building on the Clover platform, this tool enables users to create functionalities like loops and conditional structures by assembling code blocks. In 2023, we introduced Swarm in Blocks 2.0, further refining the platform to address the complexities of swarm management in a user-friendly way. As drone swarm applications grow in areas like delivery, agriculture, and surveillance, the challenge of managing them, especially for beginners, has also increased. The Atena team developed this interface to make swarm handling accessible without requiring extensive knowledge of ROS or programming. The block-based approach not only simplifies swarm control but also expands educational opportunities in programming.
☆ Relative Position Matters: Trajectory Prediction and Planning with Polar Representation
Trajectory prediction and planning in autonomous driving are highly challenging due to the complexity of predicting surrounding agents' movements and planning the ego agent's actions in dynamic environments. Existing methods encode map and agent positions and decode future trajectories in Cartesian coordinates. However, modeling the relationships between the ego vehicle and surrounding traffic elements in Cartesian space can be suboptimal, as it does not naturally capture the varying influence of different elements based on their relative distances and directions. To address this limitation, we adopt the Polar coordinate system, where positions are represented by radius and angle. This representation provides a more intuitive and effective way to model spatial changes and relative relationships, especially in terms of distance and directional influence. Based on this insight, we propose Polaris, a novel method that operates entirely in Polar coordinates, distinguishing itself from conventional Cartesian-based approaches. By leveraging the Polar representation, this method explicitly models distance and direction variations and captures relative relationships through dedicated encoding and refinement modules, enabling more structured and spatially aware trajectory prediction and planning. Extensive experiments on the challenging prediction (Argoverse 2) and planning benchmarks (nuPlan) demonstrate that Polaris achieves state-of-the-art performance.
☆ i2Nav-Robot: A Large-Scale Indoor-Outdoor Robot Dataset for Multi-Sensor Fusion Navigation and Mapping
Accurate and reliable navigation is crucial for autonomous unmanned ground vehicle (UGV). However, current UGV datasets fall short in meeting the demands for advancing navigation and mapping techniques due to limitations in sensor configuration, time synchronization, ground truth, and scenario diversity. To address these challenges, we present i2Nav-Robot, a large-scale dataset designed for multi-sensor fusion navigation and mapping in indoor-outdoor environments. We integrate multi-modal sensors, including the newest front-view and 360-degree solid-state LiDARs, 4-dimensional (4D) radar, stereo cameras, odometer, global navigation satellite system (GNSS) receiver, and inertial measurement units (IMU) on an omnidirectional wheeled robot. Accurate timestamps are obtained through both online hardware synchronization and offline calibration for all sensors. The dataset comprises ten larger-scale sequences covering diverse UGV operating scenarios, such as outdoor streets, and indoor parking lots, with a total length of about 17060 meters. High-frequency ground truth, with centimeter-level accuracy for position, is derived from post-processing integrated navigation methods using a navigation-grade IMU. The proposed i2Nav-Robot dataset is evaluated by more than ten open-sourced multi-sensor fusion systems, and it has proven to have superior data quality.
comment: 10 pages, 12 figures
☆ OVSegDT: Segmenting Transformer for Open-Vocabulary Object Goal Navigation
Open-vocabulary Object Goal Navigation requires an embodied agent to reach objects described by free-form language, including categories never seen during training. Existing end-to-end policies overfit small simulator datasets, achieving high success on training scenes but failing to generalize and exhibiting unsafe behaviour (frequent collisions). We introduce OVSegDT, a lightweight transformer policy that tackles these issues with two synergistic components. The first component is the semantic branch, which includes an encoder for the target binary mask and an auxiliary segmentation loss function, grounding the textual goal and providing precise spatial cues. The second component consists of a proposed Entropy-Adaptive Loss Modulation, a per-sample scheduler that continuously balances imitation and reinforcement signals according to the policy entropy, eliminating brittle manual phase switches. These additions cut the sample complexity of training by 33%, and reduce collision count in two times while keeping inference cost low (130M parameters, RGB-only input). On HM3D-OVON, our model matches the performance on unseen categories to that on seen ones and establishes state-of-the-art results (40.1% SR, 20.9% SPL on val unseen) without depth, odometry, or large vision-language models. Code is available at https://github.com/CognitiveAISystems/OVSegDT.
☆ EvoPSF: Online Evolution of Autonomous Driving Models via Planning-State Feedback
Recent years have witnessed remarkable progress in autonomous driving, with systems evolving from modular pipelines to end-to-end architectures. However, most existing methods are trained offline and lack mechanisms to adapt to new environments during deployment. As a result, their generalization ability diminishes when faced with unseen variations in real-world driving scenarios. In this paper, we break away from the conventional "train once, deploy forever" paradigm and propose EvoPSF, a novel online Evolution framework for autonomous driving based on Planning-State Feedback. We argue that planning failures are primarily caused by inaccurate object-level motion predictions, and such failures are often reflected in the form of increased planner uncertainty. To address this, we treat planner uncertainty as a trigger for online evolution, using it as a diagnostic signal to initiate targeted model updates. Rather than performing blind updates, we leverage the planner's agent-agent attention to identify the specific objects that the ego vehicle attends to most, which are primarily responsible for the planning failures. For these critical objects, we compute a targeted self-supervised loss by comparing their predicted waypoints from the prediction module with their actual future positions, selected from the perception module's outputs with high confidence scores. This loss is then backpropagated to adapt the model online. As a result, our method improves the model's robustness to environmental changes, leads to more precise motion predictions, and therefore enables more accurate and stable planning behaviors. Experiments on both cross-region and corrupted variants of the nuScenes dataset demonstrate that EvoPSF consistently improves planning performance under challenging conditions.
☆ ReachVox: Clutter-free Reachability Visualization for Robot Motion Planning in Virtual Reality
Human-Robot-Collaboration can enhance workflows by leveraging the mutual strengths of human operators and robots. Planning and understanding robot movements remain major challenges in this domain. This problem is prevalent in dynamic environments that might need constant robot motion path adaptation. In this paper, we investigate whether a minimalistic encoding of the reachability of a point near an object of interest, which we call ReachVox, can aid the collaboration between a remote operator and a robotic arm in VR. Through a user study (n=20), we indicate the strength of the visualization relative to a point-based reachability check-up.
comment: To appear in Proceedings of IEEE ISMAR 2025
☆ Open, Reproducible and Trustworthy Robot-Based Experiments with Virtual Labs and Digital-Twin-Based Execution Tracing IROS
We envision a future in which autonomous robots conduct scientific experiments in ways that are not only precise and repeatable, but also open, trustworthy, and transparent. To realize this vision, we present two key contributions: a semantic execution tracing framework that logs sensor data together with semantically annotated robot belief states, ensuring that automated experimentation is transparent and replicable; and the AICOR Virtual Research Building (VRB), a cloud-based platform for sharing, replicating, and validating robot task executions at scale. Together, these tools enable reproducible, robot-driven science by integrating deterministic execution, semantic memory, and open knowledge representation, laying the foundation for autonomous systems to participate in scientific discovery.
comment: 8 pages, 6 figures, submitted to the 1st IROS Workshop on Embodied AI and Robotics for Future Scientific Discovery
☆ An Exploratory Study on Crack Detection in Concrete through Human-Robot Collaboration
Structural inspection in nuclear facilities is vital for maintaining operational safety and integrity. Traditional methods of manual inspection pose significant challenges, including safety risks, high cognitive demands, and potential inaccuracies due to human limitations. Recent advancements in Artificial Intelligence (AI) and robotic technologies have opened new possibilities for safer, more efficient, and accurate inspection methodologies. Specifically, Human-Robot Collaboration (HRC), leveraging robotic platforms equipped with advanced detection algorithms, promises significant improvements in inspection outcomes and reductions in human workload. This study explores the effectiveness of AI-assisted visual crack detection integrated into a mobile Jackal robot platform. The experiment results indicate that HRC enhances inspection accuracy and reduces operator workload, resulting in potential superior performance outcomes compared to traditional manual methods.
☆ Pedestrian Dead Reckoning using Invariant Extended Kalman Filter
This paper presents a cost-effective inertial pedestrian dead reckoning method for the bipedal robot in the GPS-denied environment. Each time when the inertial measurement unit (IMU) is on the stance foot, a stationary pseudo-measurement can be executed to provide innovation to the IMU measurement based prediction. The matrix Lie group based theoretical development of the adopted invariant extended Kalman filter (InEKF) is set forth for tutorial purpose. Three experiments are conducted to compare between InEKF and standard EKF, including motion capture benchmark experiment, large-scale multi-floor walking experiment, and bipedal robot experiment, as an effort to show our method's feasibility in real-world robot system. In addition, a sensitivity analysis is included to show that InEKF is much easier to tune than EKF.
☆ Optimizing ROS 2 Communication for Wireless Robotic Systems
Wireless transmission of large payloads, such as high-resolution images and LiDAR point clouds, is a major bottleneck in ROS 2, the leading open-source robotics middleware. The default Data Distribution Service (DDS) communication stack in ROS 2 exhibits significant performance degradation over lossy wireless links. Despite the widespread use of ROS 2, the underlying causes of these wireless communication challenges remain unexplored. In this paper, we present the first in-depth network-layer analysis of ROS 2's DDS stack under wireless conditions with large payloads. We identify the following three key issues: excessive IP fragmentation, inefficient retransmission timing, and congestive buffer bursts. To address these issues, we propose a lightweight and fully compatible DDS optimization framework that tunes communication parameters based on link and payload characteristics. Our solution can be seamlessly applied through the standard ROS 2 application interface via simple XML-based QoS configuration, requiring no protocol modifications, no additional components, and virtually no integration efforts. Extensive experiments across various wireless scenarios demonstrate that our framework successfully delivers large payloads in conditions where existing DDS modes fail, while maintaining low end-to-end latency.
comment: 10 pages, 8 figures
A Recursive Total Least Squares Solution for Bearing-Only Target Motion Analysis and Circumnavigation IROS
Bearing-only Target Motion Analysis (TMA) is a promising technique for passive tracking in various applications as a bearing angle is easy to measure. Despite its advantages, bearing-only TMA is challenging due to the nonlinearity of the bearing measurement model and the lack of range information, which impairs observability and estimator convergence. This paper addresses these issues by proposing a Recursive Total Least Squares (RTLS) method for online target localization and tracking using mobile observers. The RTLS approach, inspired by previous results on Total Least Squares (TLS), mitigates biases in position estimation and improves computational efficiency compared to pseudo-linear Kalman filter (PLKF) methods. Additionally, we propose a circumnavigation controller to enhance system observability and estimator convergence by guiding the mobile observer in orbit around the target. Extensive simulations and experiments are performed to demonstrate the effectiveness and robustness of the proposed method. The proposed algorithm is also compared with the state-of-the-art approaches, which confirms its superior performance in terms of both accuracy and stability.
comment: Accepted by 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 6 Pages
☆ Scene Graph-Guided Proactive Replanning for Failure-Resilient Embodied Agent
When humans perform everyday tasks, we naturally adjust our actions based on the current state of the environment. For instance, if we intend to put something into a drawer but notice it is closed, we open it first. However, many autonomous robots lack this adaptive awareness. They often follow pre-planned actions that may overlook subtle yet critical changes in the scene, which can result in actions being executed under outdated assumptions and eventual failure. While replanning is critical for robust autonomy, most existing methods respond only after failures occur, when recovery may be inefficient or infeasible. While proactive replanning holds promise for preventing failures in advance, current solutions often rely on manually designed rules and extensive supervision. In this work, we present a proactive replanning framework that detects and corrects failures at subtask boundaries by comparing scene graphs constructed from current RGB-D observations against reference graphs extracted from successful demonstrations. When the current scene fails to align with reference trajectories, a lightweight reasoning module is activated to diagnose the mismatch and adjust the plan. Experiments in the AI2-THOR simulator demonstrate that our approach detects semantic and spatial mismatches before execution failures occur, significantly improving task success and robustness.
☆ Learning Differentiable Reachability Maps for Optimization-based Humanoid Motion Generation
To reduce the computational cost of humanoid motion generation, we introduce a new approach to representing robot kinematic reachability: the differentiable reachability map. This map is a scalar-valued function defined in the task space that takes positive values only in regions reachable by the robot's end-effector. A key feature of this representation is that it is continuous and differentiable with respect to task-space coordinates, enabling its direct use as constraints in continuous optimization for humanoid motion planning. We describe a method to learn such differentiable reachability maps from a set of end-effector poses generated using a robot's kinematic model, using either a neural network or a support vector machine as the learning model. By incorporating the learned reachability map as a constraint, we formulate humanoid motion generation as a continuous optimization problem. We demonstrate that the proposed approach efficiently solves various motion planning problems, including footstep planning, multi-contact motion planning, and loco-manipulation planning for humanoid robots.
☆ Tactile Robotics: An Outlook
Robotics research has long sought to give robots the ability to perceive the physical world through touch in an analogous manner to many biological systems. Developing such tactile capabilities is important for numerous emerging applications that require robots to co-exist and interact closely with humans. Consequently, there has been growing interest in tactile sensing, leading to the development of various technologies, including piezoresistive and piezoelectric sensors, capacitive sensors, magnetic sensors, and optical tactile sensors. These diverse approaches utilise different transduction methods and materials to equip robots with distributed sensing capabilities, enabling more effective physical interactions. These advances have been supported in recent years by simulation tools that generate large-scale tactile datasets to support sensor designs and algorithms to interpret and improve the utility of tactile data. The integration of tactile sensing with other modalities, such as vision, as well as with action strategies for active tactile perception highlights the growing scope of this field. To further the transformative progress in tactile robotics, a holistic approach is essential. In this outlook article, we examine several challenges associated with the current state of the art in tactile robotics and explore potential solutions to inspire innovations across multiple domains, including manufacturing, healthcare, recycling and agriculture.
comment: 20 pages, 2 figures, accepted to IEEE Transactions on Robotics
☆ Embodied Edge Intelligence Meets Near Field Communication: Concept, Design, and Verification
Realizing embodied artificial intelligence is challenging due to the huge computation demands of large models (LMs). To support LMs while ensuring real-time inference, embodied edge intelligence (EEI) is a promising paradigm, which leverages an LM edge to provide computing powers in close proximity to embodied robots. Due to embodied data exchange, EEI requires higher spectral efficiency, enhanced communication security, and reduced inter-user interference. To meet these requirements, near-field communication (NFC), which leverages extremely large antenna arrays as its hardware foundation, is an ideal solution. Therefore, this paper advocates the integration of EEI and NFC, resulting in a near-field EEI (NEEI) paradigm. However, NEEI also introduces new challenges that cannot be adequately addressed by isolated EEI or NFC designs, creating research opportunities for joint optimization of both functionalities. To this end, we propose radio-friendly embodied planning for EEI-assisted NFC scenarios and view-guided beam-focusing for NFC-assisted EEI scenarios. We also elaborate how to realize resource-efficient NEEI through opportunistic collaborative navigation. Experimental results are provided to confirm the superiority of the proposed techniques compared with various benchmarks.
comment: 9 pages, 6 figures, to appear in IEEE Network
☆ Multi-Group Equivariant Augmentation for Reinforcement Learning in Robot Manipulation
Sampling efficiency is critical for deploying visuomotor learning in real-world robotic manipulation. While task symmetry has emerged as a promising inductive bias to improve efficiency, most prior work is limited to isometric symmetries -- applying the same group transformation to all task objects across all timesteps. In this work, we explore non-isometric symmetries, applying multiple independent group transformations across spatial and temporal dimensions to relax these constraints. We introduce a novel formulation of the partially observable Markov decision process (POMDP) that incorporates the non-isometric symmetry structures, and propose a simple yet effective data augmentation method, Multi-Group Equivariance Augmentation (MEA). We integrate MEA with offline reinforcement learning to enhance sampling efficiency, and introduce a voxel-based visual representation that preserves translational equivariance. Extensive simulation and real-robot experiments across two manipulation domains demonstrate the effectiveness of our approach.
☆ Visuomotor Grasping with World Models for Surgical Robots
Grasping is a fundamental task in robot-assisted surgery (RAS), and automating it can reduce surgeon workload while enhancing efficiency, safety, and consistency beyond teleoperated systems. Most prior approaches rely on explicit object pose tracking or handcrafted visual features, limiting their generalization to novel objects, robustness to visual disturbances, and the ability to handle deformable objects. Visuomotor learning offers a promising alternative, but deploying it in RAS presents unique challenges, such as low signal-to-noise ratio in visual observations, demands for high safety and millimeter-level precision, as well as the complex surgical environment. This paper addresses three key challenges: (i) sim-to-real transfer of visuomotor policies to ex vivo surgical scenes, (ii) visuomotor learning using only a single stereo camera pair -- the standard RAS setup, and (iii) object-agnostic grasping with a single policy that generalizes to diverse, unseen surgical objects without retraining or task-specific models. We introduce Grasp Anything for Surgery V2 (GASv2), a visuomotor learning framework for surgical grasping. GASv2 leverages a world-model-based architecture and a surgical perception pipeline for visual observations, combined with a hybrid control system for safe execution. We train the policy in simulation using domain randomization for sim-to-real transfer and deploy it on a real robot in both phantom-based and ex vivo surgical settings, using only a single pair of endoscopic cameras. Extensive experiments show our policy achieves a 65% success rate in both settings, generalizes to unseen objects and grippers, and adapts to diverse disturbances, demonstrating strong performance, generality, and robustness.
☆ Actor-Critic for Continuous Action Chunks: A Reinforcement Learning Framework for Long-Horizon Robotic Manipulation with Sparse Reward
Existing reinforcement learning (RL) methods struggle with long-horizon robotic manipulation tasks, particularly those involving sparse rewards. While action chunking is a promising paradigm for robotic manipulation, using RL to directly learn continuous action chunks in a stable and data-efficient manner remains a critical challenge. This paper introduces AC3 (Actor-Critic for Continuous Chunks), a novel RL framework that learns to generate high-dimensional, continuous action sequences. To make this learning process stable and data-efficient, AC3 incorporates targeted stabilization mechanisms for both the actor and the critic. First, to ensure reliable policy improvement, the actor is trained with an asymmetric update rule, learning exclusively from successful trajectories. Second, to enable effective value learning despite sparse rewards, the critic's update is stabilized using intra-chunk $n$-step returns and further enriched by a self-supervised module providing intrinsic rewards at anchor points aligned with each action chunk. We conducted extensive experiments on 25 tasks from the BiGym and RLBench benchmarks. Results show that by using only a few demonstrations and a simple model architecture, AC3 achieves superior success rates on most tasks, validating its effective design.
☆ Geometry-Aware Predictive Safety Filters on Humanoids: From Poisson Safety Functions to CBF Constrained MPC RAS 24
Autonomous navigation through unstructured and dynamically-changing environments is a complex task that continues to present many challenges for modern roboticists. In particular, legged robots typically possess manipulable asymmetric geometries which must be considered during safety-critical trajectory planning. This work proposes a predictive safety filter: a nonlinear model predictive control (MPC) algorithm for online trajectory generation with geometry-aware safety constraints based on control barrier functions (CBFs). Critically, our method leverages Poisson safety functions to numerically synthesize CBF constraints directly from perception data. We extend the theoretical framework for Poisson safety functions to incorporate temporal changes in the domain by reformulating the static Dirichlet problem for Poisson's equation as a parameterized moving boundary value problem. Furthermore, we employ Minkowski set operations to lift the domain into a configuration space that accounts for robot geometry. Finally, we implement our real-time predictive safety filter on humanoid and quadruped robots in various safety-critical scenarios. The results highlight the versatility of Poisson safety functions, as well as the benefit of CBF constrained model predictive safety-critical controllers.
comment: 2025 IEEE-RAS 24th International Conference on Humanoid Robots
☆ Recent Advances in Transformer and Large Language Models for UAV Applications
The rapid advancement of Transformer-based models has reshaped the landscape of uncrewed aerial vehicle (UAV) systems by enhancing perception, decision-making, and autonomy. This review paper systematically categorizes and evaluates recent developments in Transformer architectures applied to UAVs, including attention mechanisms, CNN-Transformer hybrids, reinforcement learning Transformers, and large language models (LLMs). Unlike previous surveys, this work presents a unified taxonomy of Transformer-based UAV models, highlights emerging applications such as precision agriculture and autonomous navigation, and provides comparative analyses through structured tables and performance benchmarks. The paper also reviews key datasets, simulators, and evaluation metrics used in the field. Furthermore, it identifies existing gaps in the literature, outlines critical challenges in computational efficiency and real-time deployment, and offers future research directions. This comprehensive synthesis aims to guide researchers and practitioners in understanding and advancing Transformer-driven UAV technologies.
Control of a commercial vehicle by a tetraplegic human using a bimanual brain-computer interface
Brain-computer interfaces (BCIs) read neural signals directly from the brain to infer motor planning and execution. However, the implementation of this technology has been largely limited to laboratory settings, with few real-world applications. We developed a bimanual BCI system to drive a vehicle in both simulated and real-world environments. We demonstrate that an individual with tetraplegia, implanted with intracortical BCI electrodes in the posterior parietal cortex (PPC) and the hand knob region of the motor cortex (MC), reacts at least as fast and precisely as motor intact participants, and drives a simulated vehicle as proficiently as the same control group. This BCI participant, living in California, could also remotely drive a Ford Mustang Mach-E vehicle in Michigan. Our first teledriving task relied on cursor control for speed and steering in a closed urban test facility. However, the final BCI system added click control for full-stop braking and thus enabled bimanual cursor-and-click control for both simulated driving through a virtual town with traffic and teledriving through an obstacle course without traffic in the real world. We also demonstrate the safety and feasibility of BCI-controlled driving. This first-of-its-kind implantable BCI application not only highlights the versatility and innovative potentials of BCIs but also illuminates the promising future for the development of life-changing solutions to restore independence to those who suffer catastrophic neurological injury.
comment: 41 pages, 7 figures, 1 table. 22 supplementary pages, 6 supplementary figures, 11 supplementary tables, 9 supplementary movies available as ancillary files
☆ Anticipatory and Adaptive Footstep Streaming for Teleoperated Bipedal Robots RAS 24
Achieving seamless synchronization between user and robot motion in teleoperation, particularly during high-speed tasks, remains a significant challenge. In this work, we propose a novel approach for transferring stepping motions from the user to the robot in real-time. Instead of directly replicating user foot poses, we retarget user steps to robot footstep locations, allowing the robot to utilize its own dynamics for locomotion, ensuring better balance and stability. Our method anticipates user footsteps to minimize delays between when the user initiates and completes a step and when the robot does it. The step estimates are continuously adapted to converge with the measured user references. Additionally, the system autonomously adjusts the robot's steps to account for its surrounding terrain, overcoming challenges posed by environmental mismatches between the user's flat-ground setup and the robot's uneven terrain. Experimental results on the humanoid robot Nadia demonstrate the effectiveness of the proposed system.
comment: 2025 IEEE-RAS 24th International Conference on Humanoid Robots (Humanoids)
☆ Scaling Robust Optimization for Swarms: A Distributed Perspective
This article introduces a decentralized robust optimization framework for safe multi-agent control under uncertainty. Although stochastic noise has been the primary form of modeling uncertainty in such systems, these formulations might fall short in addressing uncertainties that are deterministic in nature or simply lack probabilistic data. To ensure safety under such scenarios, we employ the concept of robust constraints that must hold for all possible uncertainty realizations lying inside a bounded set. Nevertheless, standard robust optimization approaches become intractable due to the large number or non-convexity of the constraints involved in safe multi-agent control. To address this, we introduce novel robust reformulations that significantly reduce complexity without compromising safety. The applicability of the framework is further broadened to address both deterministic and stochastic uncertainties by incorporating robust chance constraints and distribution steering techniques. To achieve scalability, we derive a distributed approach based on the Alternating Direction Method of Multipliers (ADMM), supported by a convergence study that accounts for the underlying non-convexity. In addition, computational complexity bounds highlighting the efficiency of the proposed frameworks against standard approaches are presented. Finally, the robustness and scalability of the framework is demonstrated through extensive simulation results across diverse scenarios, including environments with nonconvex obstacles and up to 246 agents.
☆ Using Natural Language for Human-Robot Collaboration in the Real World
We have a vision of a day when autonomous robots can collaborate with humans as assistants in performing complex tasks in the physical world. This vision includes that the robots will have the ability to communicate with their human collaborators using language that is natural to the humans. Traditional Interactive Task Learning (ITL) systems have some of this ability, but the language they can understand is very limited. The advent of large language models (LLMs) provides an opportunity to greatly improve the language understanding of robots, yet integrating the language abilities of LLMs with robots that operate in the real physical world is a challenging problem. In this chapter we first review briefly a few commercial robot products that work closely with humans, and discuss how they could be much better collaborators with robust language abilities. We then explore how an AI system with a cognitive agent that controls a physical robot at its core, interacts with both a human and an LLM, and accumulates situational knowledge through its experiences, can be a possible approach to reach that vision. We focus on three specific challenges of having the robot understand natural language, and present a simple proof-of-concept experiment using ChatGPT for each. Finally, we discuss what it will take to turn these simple experiments into an operational system where LLM-assisted language understanding is a part of an integrated robotic assistant that uses language to collaborate with humans.
comment: 34 pages, 11 figures, 5 tables. Submitted for publication (2026) in W.F. Lawless, Ranjeev Mittu, Shannon P. McGrarry, & Marco Brambilla (Eds.), Generative AI Risks and Benefits within Human-Machine Teams, Elsevier, Chapter 6
♻ ☆ An Open-Source User-Friendly Interface for Simulating Magnetic Soft Robots using Simulation Open Framework Architecture (SOFA)
Soft robots, particularly magnetic soft robots, require specialized simulation tools to accurately model their deformation under external magnetic fields. However, existing platforms often lack dedicated support for magnetic materials, making them difficult to use for researchers at different expertise levels. This work introduces an open-source, user-friendly simulation interface using the Simulation Open Framework Architecture (SOFA), specifically designed to model magnetic soft robots. The tool enables users to define material properties, apply magnetic fields, and observe resulting deformations in real time. By integrating intuitive controls and stress analysis capabilities, it aims to bridge the gap between theoretical modeling and practical design. Four benchmark models -- a beam, three- and four-finger grippers, and a butterfly -- demonstrate its functionality. The software's ease of use makes it accessible to both beginners and advanced researchers. Future improvements will refine accuracy through experimental validation and comparison with industry-standard finite element solvers, ensuring realistic and predictive simulations of magnetic soft robots.
♻ ☆ Why Report Failed Interactions With Robots?! Towards Vignette-based Interaction Quality
Although the quality of human-robot interactions has improved with the advent of LLMs, there are still various factors that cause systems to be sub-optimal when compared to human-human interactions. The nature and criticality of failures are often dependent on the context of the interaction and so cannot be generalized across the wide range of scenarios and experiments which have been implemented in HRI research. In this work we propose the use of a technique overlooked in the field of HRI, ethnographic vignettes, to clearly highlight these failures, particularly those that are rarely documented. We describe the methodology behind the process of writing vignettes and create our own based on our personal experiences with failures in HRI systems. We emphasize the strength of vignettes as the ability to communicate failures from a multi-disciplinary perspective, promote transparency about the capabilities of robots, and document unexpected behaviours which would otherwise be omitted from research reports. We encourage the use of vignettes to augment existing interaction evaluation methods.
comment: Accepted at the workshop on Real-World HRI in Public and Private Spaces: Successes, Failures, and Lessons Learned (PubRob-Fails), held at the IEEE RO-MAN Conference, 2025. 6 pages
♻ ☆ KDPE: A Kernel Density Estimation Strategy for Diffusion Policy Trajectory Selection
Learning robot policies that capture multimodality in the training data has been a long-standing open challenge for behavior cloning. Recent approaches tackle the problem by modeling the conditional action distribution with generative models. One of these approaches is Diffusion Policy, which relies on a diffusion model to denoise random points into robot action trajectories. While achieving state-of-the-art performance, it has two main drawbacks that may lead the robot out of the data distribution during policy execution. First, the stochasticity of the denoising process can highly impact on the quality of generated trajectory of actions. Second, being a supervised learning approach, it can learn data outliers from the dataset used for training. Recent work focuses on mitigating these limitations by combining Diffusion Policy either with large-scale training or with classical behavior cloning algorithms. Instead, we propose KDPE, a Kernel Density Estimation-based strategy that filters out potentially harmful trajectories output of Diffusion Policy while keeping a low test-time computational overhead. For Kernel Density Estimation, we propose a manifold-aware kernel to model a probability density function for actions composed of end-effector Cartesian position, orientation, and gripper state. KDPE overall achieves better performance than Diffusion Policy on simulated single-arm tasks and real robot experiments. Additional material and code are available on our project page at https://hsp-iit.github.io/KDPE/.
comment: 9th Conference on Robot Learning (CoRL 2025), Seoul, Korea
♻ ☆ Optimal Planning and Machine Learning for Responsive Tracking and Enhanced Forecasting of Wildfires using a Spacecraft Constellation
We propose a novel concept of operations using optimal planning methods and machine learning (ML) to collect spaceborne data that is unprecedented for monitoring wildfires, process it to create new or enhanced products in the context of wildfire danger or spread monitoring, and assimilate them to improve existing, wildfire decision support tools delivered to firefighters within latency appropriate for time-critical applications. The concept is studied with respect to NASA's CYGNSS Mission, a constellation of passive microwave receivers that measure specular GNSS-R reflections despite clouds and smoke. Our planner uses a Mixed Integer Program formulation to schedule joint observation data collection and downlink for all satellites. Optimal solutions are found quickly that collect 98-100% of available observation opportunities. ML-based fire predictions that drive the planner objective are greater than 40% more correlated with ground truth than existing state-of-art. The presented case study on the TX Smokehouse Creek fire in 2024 and LA fires in 2025 represents the first high-resolution data collected by CYGNSS of active fires. Creation of Burnt Area Maps (BAM) using ML on data from active fires and BAM assimilation into NASA's Weather Research and Forecasting Model using neural nets to broadcast fire spread are novel outcomes. BAM and CYGNSS obtained soil moisture are integrated for the first time into USGS fire danger maps. Inclusion of CYGNSS data in ML-based burn predictions boosts accuracy by 13%, and inclusion of high-resolution data boosts ML recall by another 15%. The proposed workflow has an expected latency of 6-30h, improving on the current delivery time of multiple days. All components in the proposed concept are shown to be computationally scalable and globally generalizable, with sustainability considerations such as edge efficiency and low latency on small devices.
♻ ☆ Diffusion Beats Autoregressive in Data-Constrained Settings
Autoregressive (AR) models have long dominated the landscape of large language models, driving progress across a wide range of tasks. Recently, diffusion-based language models have emerged as a promising alternative, though their advantages over AR models remain underexplored. In this paper, we systematically study masked diffusion models in data-constrained settings-where training involves repeated passes over limited data and find that they significantly outperform AR models when compute is abundant but data is scarce. Diffusion models make better use of repeated data, achieving lower validation loss and superior downstream performance. We find new scaling laws for diffusion models and derive a closed-form expression for the critical compute threshold at which diffusion begins to outperform AR. Finally, we explain why diffusion models excel in this regime: their randomized masking objective implicitly trains over a rich distribution of token orderings, acting as an implicit data augmentation that AR's fixed left-to-right factorization lacks. Our results suggest that when data, not compute, is the bottleneck, diffusion models offer a compelling alternative to the standard AR paradigm. Our code is available at: https://diffusion-scaling.github.io.
comment: Project Webpage: https://diffusion-scaling.github.io
♻ ☆ Propeller Motion of a Devil-Stick using Normal Forcing
The problem of realizing rotary propeller motion of a devil-stick in the vertical plane using forces purely normal to the stick is considered. This problem represents a nonprehensile manipulation task of an underactuated system. In contrast with previous approaches, the devil-stick is manipulated by controlling the normal force and its point of application. Virtual holonomic constraints are used to design the trajectory of the center-of-mass of the devil-stick in terms of its orientation angle, and conditions for stable propeller motion are derived. Intermittent large-amplitude forces are used to asymptotically stabilize a desired propeller motion. Simulations demonstrate the efficacy of the approach in realizing stable propeller motion without loss of contact between the actuator and devil-stick.
comment: 6 pages, 5 figures. This work has been accepted for publication in the proceedings of the 2025 IEEE Conference on Control Technology and Applications (CCTA)
♻ ☆ Dancing with REEM-C: A robot-to-human physical-social communication study
Humans often work closely together and relay a wealth of information through physical interaction. Robots, on the other hand, are not yet able to work similarly closely with humans and to effectively convey information when engaging in physical-social human-robot interaction (psHRI). This currently limits the potential of human-robot collaboration to solve real-world problems. This paper investigates how to establish clear and intuitive robot-to-human communication, while considering human comfort during psHRI. We approach this question from the perspective of a leader-follower dancing scenario, in which a full-body humanoid robot leads a human by signaling the next steps through a choice of communication modalities including haptic, visual, and audio signals. This is achieved through the development of a split whole-body control framework combining admittance and impedance control on the upper body, with position control on the lower body for balancing and stepping. Robot-led psHRI participant experiments allowed us to verify controller performance, as well as to build an understanding of what types of communication work better from the perspective of human partners, particularly in terms of perceived effectiveness and comfort.
comment: 21 pages, 16 figures
♻ ☆ From Autonomy to Agency: Agentic Vehicles for Human-Centered Mobility Systems
Autonomy, from the Greek autos (self) and nomos (law), refers to the capacity to operate according to internal rules without external control. Accordingly, autonomous vehicles (AuVs) are viewed as vehicular systems capable of perceiving their environment and executing pre-programmed tasks independently of external input. However, both research and real-world deployments increasingly showcase vehicles that demonstrate behaviors beyond this definition (including the SAE levels 0 to 5); Examples of this outpace include the interaction with humans with natural language, goal adaptation, contextual reasoning, external tool use, and unseen ethical dilemma handling, largely empowered by multi-modal large language models (LLMs). These developments reveal a conceptual gap between technical autonomy and the broader cognitive and social capabilities needed for future human-centered mobility systems. To address this gap, this paper introduces the concept of agentic vehicles (AgVs), referring to vehicles that integrate agentic AI systems to reason, adapt, and interact within complex environments. This paper proposes the term AgVs and their distinguishing characteristics from conventional AuVs. It synthesizes relevant advances in integrating LLMs and AuVs and highlights how AgVs might transform future mobility systems and ensure the systems are human-centered. The paper concludes by identifying key challenges in the development and governance of AgVs, and how they can play a significant role in future agentic transportation systems.
♻ ☆ A Segmented Robot Grasping Perception Neural Network for Edge AI
Robotic grasping, the ability of robots to reliably secure and manipulate objects of varying shapes, sizes and orientations, is a complex task that requires precise perception and control. Deep neural networks have shown remarkable success in grasp synthesis by learning rich and abstract representations of objects. When deployed at the edge, these models can enable low-latency, low-power inference, making real-time grasping feasible in resource-constrained environments. This work implements Heatmap-Guided Grasp Detection, an end-to-end framework for the detection of 6-Dof grasp poses, on the GAP9 RISC-V System-on-Chip. The model is optimised using hardware-aware techniques, including input dimensionality reduction, model partitioning, and quantisation. Experimental evaluation on the GraspNet-1Billion benchmark validates the feasibility of fully on-chip inference, highlighting the potential of low-power MCUs for real-time, autonomous manipulation.
comment: Accepted by SMC 2025
♻ ☆ CogDDN: A Cognitive Demand-Driven Navigation with Decision Optimization and Dual-Process Thinking ACM MM 2025
Mobile robots are increasingly required to navigate and interact within unknown and unstructured environments to meet human demands. Demand-driven navigation (DDN) enables robots to identify and locate objects based on implicit human intent, even when object locations are unknown. However, traditional data-driven DDN methods rely on pre-collected data for model training and decision-making, limiting their generalization capability in unseen scenarios. In this paper, we propose CogDDN, a VLM-based framework that emulates the human cognitive and learning mechanisms by integrating fast and slow thinking systems and selectively identifying key objects essential to fulfilling user demands. CogDDN identifies appropriate target objects by semantically aligning detected objects with the given instructions. Furthermore, it incorporates a dual-process decision-making module, comprising a Heuristic Process for rapid, efficient decisions and an Analytic Process that analyzes past errors, accumulates them in a knowledge base, and continuously improves performance. Chain of Thought (CoT) reasoning strengthens the decision-making process. Extensive closed-loop evaluations on the AI2Thor simulator with the ProcThor dataset show that CogDDN outperforms single-view camera-only methods by 15\%, demonstrating significant improvements in navigation accuracy and adaptability. The project page is available at https://yuehaohuang.github.io/CogDDN/.
comment: Accepted by ACM MM 2025
♻ ☆ UniTracker: Learning Universal Whole-Body Motion Tracker for Humanoid Robots
Achieving expressive and generalizable whole-body motion control is essential for deploying humanoid robots in real-world environments. In this work, we propose UniTracker, a three-stage training framework that enables robust and scalable motion tracking across a wide range of human behaviors. In the first stage, we train a teacher policy with privileged observations to generate high-quality actions. In the second stage, we introduce a Conditional Variational Autoencoder (CVAE) to model a universal student policy that can be deployed directly on real hardware. The CVAE structure allows the policy to learn a global latent representation of motion, enhancing generalization to unseen behaviors and addressing the limitations of standard MLP-based policies under partial observations. Unlike pure MLPs that suffer from drift in global attributes like orientation, our CVAE-student policy incorporates global intent during training by aligning a partial-observation prior to the full-observation encoder. In the third stage, we introduce a fast adaptation module that fine-tunes the universal policy on harder motion sequences that are difficult to track directly. This adaptation can be performed both for single sequences and in batch mode, further showcasing the flexibility and scalability of our approach. We evaluate UniTracker in both simulation and real-world settings using a Unitree G1 humanoid, demonstrating strong performance in motion diversity, tracking accuracy, and deployment robustness.
comment: three-stage universal motion tracker for humanoid robots
♻ ☆ A Computationally Efficient Maximum A Posteriori Sequence Estimation via Stein Variational Inference
State estimation in robotic systems presents significant challenges, particularly due to the prevalence of multimodal posterior distributions in real-world scenarios. One effective strategy for handling such complexity is to compute maximum a posteriori (MAP) sequences over a discretized or sampled state space, which enables a concise representation of the most likely state trajectory. However, this approach often incurs substantial computational costs, especially in high-dimensional settings. In this article, we propose a novel MAP sequence estimation method, \textsf{Stein-MAP-Seq}, which effectively addresses multimodality while substantially reducing computational and memory overhead. Our key contribution is a sequential variational inference framework that captures temporal dependencies in dynamical system models and integrates Stein variational gradient descent (SVGD) into a Viterbi-style dynamic programming algorithm, enabling computationally efficient MAP sequence estimation. \textsf{Stein-MAP-Seq} achieves a computational complexity of $\mathcal{O}(M^2)$, where $M$ is the number of particles, in contrast to the $\mathcal{O}(N^2)$ complexity of conventional MAP sequence estimators, with $N \gg M$. Furthermore, the method inherits SVGD's parallelism, enabling efficient computation for real-time deployment on GPU-equipped autonomous systems. We validate the proposed method in various multimodal scenarios, including those arising from nonlinear dynamics with ambiguous observations, unknown data associations, and temporary unobservability, demonstrating substantial improvements in estimation accuracy and robustness to multimodality over existing approaches.
comment: 14 pages
♻ ☆ MARS-FTCP: Robust Fault-Tolerant Control and Agile Trajectory Planning for Modular Aerial Robot Systems
Modular Aerial Robot Systems (MARS) consist of multiple drone units that can self-reconfigure to adapt to various mission requirements and fault conditions. However, existing fault-tolerant control methods exhibit significant oscillations during docking and separation, impacting system stability. To address this issue, we propose a novel fault-tolerant control reallocation method that adapts to an arbitrary number of modular robots and their assembly formations. The algorithm redistributes the expected collective force and torque required for MARS to individual units according to their moment arm relative to the center of MARS mass. Furthermore, we propose an agile trajectory planning method for MARS of arbitrary configurations, which is collision-avoiding and dynamically feasible. Our work represents the first comprehensive approach to enable fault-tolerant and collision avoidance flight for MARS. We validate our method through extensive simulations, demonstrating improved fault tolerance, enhanced trajectory tracking accuracy, and greater robustness in cluttered environments. The videos and source code of this work are available at https://github.com/RuiHuangNUS/MARS-FTCP/
♻ ☆ IRL-VLA: Training an Vision-Language-Action Policy via Reward World Model
Vision-Language-Action (VLA) models have demonstrated potential in autonomous driving. However, two critical challenges hinder their development: (1) Existing VLA architectures are typically based on imitation learning in open-loop setup which tends to capture the recorded behaviors in the dataset, leading to suboptimal and constrained performance, (2) Close-loop training relies heavily on high-fidelity sensor simulation, where domain gaps and computational inefficiencies pose significant barriers. In this paper, we introduce IRL-VLA, a novel close-loop Reinforcement Learning via \textbf{I}nverse \textbf{R}einforcement \textbf{L}earning reward world model with a self-built VLA approach. Our framework proceeds in a three-stage paradigm: In the first stage, we propose a VLA architecture and pretrain the VLA policy via imitation learning. In the second stage, we construct a lightweight reward world model via inverse reinforcement learning to enable efficient close-loop reward computation. To further enhance planning performance, finally, we design specialized reward world model guidence reinforcement learning via PPO(Proximal Policy Optimization) to effectively balance the safety incidents, comfortable driving, and traffic efficiency. Our approach achieves state-of-the-art performance in NAVSIM v2 end-to-end driving benchmark, 1st runner up in CVPR2025 Autonomous Grand Challenge. We hope that our framework will accelerate VLA research in close-loop autonomous driving.
comment: 9 pagres, 2 figures
Tool-Planner: Task Planning with Clusters across Multiple Tools ICLR 2025
Large language models (LLMs) have demonstrated exceptional reasoning capabilities, enabling them to solve various complex problems. Recently, this ability has been applied to the paradigm of tool learning. Tool learning involves providing examples of tool usage and their corresponding functions, allowing LLMs to formulate plans and demonstrate the process of invoking and executing each tool. LLMs can address tasks that they cannot complete independently, thereby enhancing their potential across different tasks. However, this approach faces two key challenges. First, redundant error correction leads to unstable planning and long execution time. Additionally, designing a correct plan among multiple tools is also a challenge in tool learning. To address these issues, we propose Tool-Planner, a task-processing framework based on toolkits. Tool-Planner groups tools based on the API functions with the same function into a toolkit and allows LLMs to implement planning across the various toolkits. When a tool error occurs, the language model can reselect and adjust tools based on the toolkit. Experiments show that our approach demonstrates a high pass and win rate across different datasets and optimizes the planning scheme for tool learning in models such as GPT-4 and Claude 3, showcasing the potential of our method. Our code is public at https://github.com/OceannTwT/Tool-Planner
comment: ICLR 2025 Camera Ready version
♻ ☆ Towards Affordance-Aware Robotic Dexterous Grasping with Human-like Priors
A dexterous hand capable of generalizable grasping objects is fundamental for the development of general-purpose embodied AI. However, previous methods focus narrowly on low-level grasp stability metrics, neglecting affordance-aware positioning and human-like poses which are crucial for downstream manipulation. To address these limitations, we propose AffordDex, a novel framework with two-stage training that learns a universal grasping policy with an inherent understanding of both motion priors and object affordances. In the first stage, a trajectory imitator is pre-trained on a large corpus of human hand motions to instill a strong prior for natural movement. In the second stage, a residual module is trained to adapt these general human-like motions to specific object instances. This refinement is critically guided by two components: our Negative Affordance-aware Segmentation (NAA) module, which identifies functionally inappropriate contact regions, and a privileged teacher-student distillation process that ensures the final vision-based policy is highly successful. Extensive experiments demonstrate that AffordDex not only achieves universal dexterous grasping but also remains remarkably human-like in posture and functionally appropriate in contact location. As a result, AffordDex significantly outperforms state-of-the-art baselines across seen objects, unseen instances, and even entirely novel categories.
comment: 13 pages, 8 figures
♻ ☆ EmbodiedAgent: A Scalable Hierarchical Approach to Overcome Practical Challenge in Multi-Robot Control
This paper introduces EmbodiedAgent, a hierarchical framework for heterogeneous multi-robot control. EmbodiedAgent addresses critical limitations of hallucination in impractical tasks. Our approach integrates a next-action prediction paradigm with a structured memory system to decompose tasks into executable robot skills while dynamically validating actions against environmental constraints. We present MultiPlan+, a dataset of more than 18,000 annotated planning instances spanning 100 scenarios, including a subset of impractical cases to mitigate hallucination. To evaluate performance, we propose the Robot Planning Assessment Schema (RPAS), combining automated metrics with LLM-aided expert grading. Experiments demonstrate EmbodiedAgent's superiority over state-of-the-art models, achieving 71.85% RPAS score. Real-world validation in an office service task highlights its ability to coordinate heterogeneous robots for long-horizon objectives.
♻ ☆ Large-Scale Multi-Robot Assembly Planning for Autonomous Manufacturing
Mobile autonomous robots have the potential to revolutionize manufacturing processes. However, employing large robot fleets in manufacturing requires addressing challenges including collision-free movement in a shared workspace, effective multi-robot collaboration to manipulate and transport large payloads, complex task allocation due to coupled manufacturing processes, and spatial planning for parallel assembly and transportation of nested subassemblies. We propose a full algorithmic stack for large-scale multi-robot assembly planning that addresses these challenges and can synthesize construction plans for complex assemblies with thousands of parts in a matter of minutes. Our approach takes in a CAD-like product specification and automatically plans a full-stack assembly procedure for a group of robots to manufacture the product. We propose an algorithmic stack that comprises: (i) an iterative radial layout optimization procedure to define a global staging layout for the manufacturing facility, (ii) a graph-repair mixed-integer program formulation and a modified greedy task allocation algorithm to optimally allocate robots and robot sub-teams to assembly and transport tasks, (iii) a geometric heuristic and a hill-climbing algorithm to plan collaborative carrying configurations of robot sub-teams, and (iv) a distributed control policy that enables robots to execute the assembly motion plan collision-free. We also present an open-source multi-robot manufacturing simulator implemented in Julia as a resource to the research community, to test our algorithms and to facilitate multi-robot manufacturing research more broadly. Our empirical results demonstrate the scalability and effectiveness of our approach by generating plans to manufacture a LEGO model of a Saturn V launch vehicle with 1845 parts, 306 subassemblies, and 250 robots in under three minutes on a standard laptop computer.
comment: Repository: https://github.com/sisl/ConstructionBots.jl. Under review
♻ ☆ Towards Physically Realizable Adversarial Attacks in Embodied Vision Navigation IROS
The significant advancements in embodied vision navigation have raised concerns about its susceptibility to adversarial attacks exploiting deep neural networks. Investigating the adversarial robustness of embodied vision navigation is crucial, especially given the threat of 3D physical attacks that could pose risks to human safety. However, existing attack methods for embodied vision navigation often lack physical feasibility due to challenges in transferring digital perturbations into the physical world. Moreover, current physical attacks for object detection struggle to achieve both multi-view effectiveness and visual naturalness in navigation scenarios. To address this, we propose a practical attack method for embodied navigation by attaching adversarial patches to objects, where both opacity and textures are learnable. Specifically, to ensure effectiveness across varying viewpoints, we employ a multi-view optimization strategy based on object-aware sampling, which optimizes the patch's texture based on feedback from the vision-based perception model used in navigation. To make the patch inconspicuous to human observers, we introduce a two-stage opacity optimization mechanism, in which opacity is fine-tuned after texture optimization. Experimental results demonstrate that our adversarial patches decrease the navigation success rate by an average of 22.39%, outperforming previous methods in practicality, effectiveness, and naturalness. Code is available at: https://github.com/chen37058/Physical-Attacks-in-Embodied-Nav
comment: 7 pages, 7 figures, Accept by IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ SORT3D: Spatial Object-centric Reasoning Toolbox for Zero-Shot 3D Grounding Using Large Language Models IROS 2025
Interpreting object-referential language and grounding objects in 3D with spatial relations and attributes is essential for robots operating alongside humans. However, this task is often challenging due to the diversity of scenes, large number of fine-grained objects, and complex free-form nature of language references. Furthermore, in the 3D domain, obtaining large amounts of natural language training data is difficult. Thus, it is important for methods to learn from little data and zero-shot generalize to new environments. To address these challenges, we propose SORT3D, an approach that utilizes rich object attributes from 2D data and merges a heuristics-based spatial reasoning toolbox with the ability of large language models (LLMs) to perform sequential reasoning. Importantly, our method does not require text-to-3D data for training and can be applied zero-shot to unseen environments. We show that SORT3D achieves state-of-the-art zero-shot performance on complex view-dependent grounding tasks on two benchmarks. We also implement the pipeline to run real-time on two autonomous vehicles and demonstrate that our approach can be used for object-goal navigation on previously unseen real-world environments. All source code for the system pipeline is publicly released at https://github.com/nzantout/SORT3D.
comment: 8 pages, 6 figures, published in IROS 2025
♻ ☆ Formal Verification and Control with Conformal Prediction
We present recent advances in formal verification and control for autonomous systems with practical safety guarantees enabled by conformal prediction (CP), a statistical tool for uncertainty quantification. This survey is particularly motivated by learning-enabled autonomous systems (LEASs), where the complexity of learning-enabled components (LECs) poses a major bottleneck for applying traditional model-based verification and control techniques. To address this challenge, we advocate for CP as a lightweight alternative and demonstrate its use in formal verification, systems and control, and robotics. CP is appealing due to its simplicity (easy to understand, implement, and adapt), generality (requires no assumptions on learned models and underlying data distributions), and efficiency (real-time capable and accurate). This survey provides an accessible introduction to CP for non-experts interested in applying CP to autonomy problems. We particularly show how CP can be used for formal verification of LECs and the design of safe control as well as offline and online verification algorithms for LEASs. We present these techniques within a unifying framework that addresses the complexity of LEASs. Our exposition spans simple specifications, such as robot navigation tasks, to complex mission requirements expressed in temporal logic. Throughout the survey, we contrast CP with other statistical techniques, including scenario optimization and PAC-Bayes theory, highlighting advantages and limitations for verification and control. Finally, we outline open problems and promising directions for future research.
♻ ☆ A flexible framework for accurate LiDAR odometry, map manipulation, and localization
LiDAR-based SLAM is a core technology for autonomous vehicles and robots. One key contribution of this work to 3D LiDAR SLAM and localization is a fierce defense of view-based maps (pose graphs with time-stamped sensor readings) as the fundamental representation of maps. As will be shown, they allow for the greatest flexibility, enabling the posterior generation of arbitrary metric maps optimized for particular tasks, e.g. obstacle avoidance, real-time localization. Moreover, this work introduces a new framework in which mapping pipelines can be defined without coding, defining the connections of a network of reusable blocks much like deep-learning networks are designed by connecting layers of standardized elements. We also introduce tightly-coupled estimation of linear and angular velocity vectors within the Iterative Closest Point (ICP)-like optimizer, leading to superior robustness against aggressive motion profiles without the need for an IMU. Extensive experimental validation reveals that the proposal compares well to, or improves, former state-of-the-art (SOTA) LiDAR odometry systems, while also successfully mapping some hard sequences where others diverge. A proposed self-adaptive configuration has been used, without parameter changes, for all 3D LiDAR datasets with sensors between 16 and 128 rings, and has been extensively tested on 83 sequences over more than 250~km of automotive, hand-held, airborne, and quadruped LiDAR datasets, both indoors and outdoors. The system flexibility is demonstrated with additional configurations for 2D LiDARs and for building 3D NDT-like maps. The framework is open-sourced online: https://github.com/MOLAorg/mola
comment: 44 pages, 35 figures
♻ ☆ Safe and Efficient Robot Action Planning in the Presence of Unconcerned Humans
This paper proposes a robot action planning scheme that provides an efficient and probabilistically safe plan for a robot interacting with an unconcerned human -- someone who is either unaware of the robot's presence or unwilling to engage in ensuring safety. The proposed scheme is predictive, meaning that the robot is required to predict human actions over a finite future horizon; such predictions are often inaccurate in real-world scenarios. One possible approach to reduce the uncertainties is to provide the robot with the capability of reasoning about the human's awareness of potential dangers. This paper discusses that by using a binary variable, so-called danger awareness coefficient, it is possible to differentiate between concerned and unconcerned humans, and provides a learning algorithm to determine this coefficient by observing human actions. Moreover, this paper argues how humans rely on predictions of other agents' future actions (including those of robots in human-robot interaction) in their decision-making. It also shows that ignoring this aspect in predicting human's future actions can significantly degrade the efficiency of the interaction, causing agents to deviate from their optimal paths. The proposed robot action planning scheme is verified and validated via extensive simulation and experimental studies on a LoCoBot WidowX-250.
Computer Vision and Pattern Recognition 150
☆ Thyme: Think Beyond Images
Following OpenAI's introduction of the ``thinking with images'' concept, recent efforts have explored stimulating the use of visual information in the reasoning process to enhance model performance in perception and reasoning tasks. However, to the best of our knowledge, no open-source work currently offers a feature set as rich as proprietary models (O3), which can perform diverse image manipulations and simultaneously enhance logical reasoning capabilities through code. In this paper, we make a preliminary attempt in this direction by introducing Thyme (Think Beyond Images), a novel paradigm for enabling MLLMs to transcend existing ``think with images'' approaches by autonomously generating and executing diverse image processing and computational operations via executable code. This approach not only facilitates a rich, on-the-fly set of image manipulations (e.g., cropping, rotation, contrast enhancement) but also allows for mathematical computations, all while maintaining high autonomy in deciding when and how to apply these operations. We activate this capability through a two-stage training strategy: an initial SFT on a curated dataset of 500K samples to teach code generation, followed by a RL phase to refine decision-making. For the RL stage, we manually collect and design high-resolution question-answer pairs to increase the learning difficulty, and we propose GRPO-ATS (Group Relative Policy Optimization with Adaptive Temperature Sampling), an algorithm that applies distinct temperatures to text and code generation to balance reasoning exploration with code execution precision. We conduct extensive experimental analysis and ablation studies. Comprehensive evaluations on nearly 20 benchmarks show that Thyme yields significant and consistent performance gains, particularly in challenging high-resolution perception and complex reasoning tasks.
comment: Project page: https://thyme-vl.github.io/
☆ Is ChatGPT-5 Ready for Mammogram VQA?
Mammogram visual question answering (VQA) integrates image interpretation with clinical reasoning and has potential to support breast cancer screening. We systematically evaluated the GPT-5 family and GPT-4o model on four public mammography datasets (EMBED, InBreast, CMMD, CBIS-DDSM) for BI-RADS assessment, abnormality detection, and malignancy classification tasks. GPT-5 consistently was the best performing model but lagged behind both human experts and domain-specific fine-tuned models. On EMBED, GPT-5 achieved the highest scores among GPT variants in density (56.8%), distortion (52.5%), mass (64.5%), calcification (63.5%), and malignancy (52.8%) classification. On InBreast, it attained 36.9% BI-RADS accuracy, 45.9% abnormality detection, and 35.0% malignancy classification. On CMMD, GPT-5 reached 32.3% abnormality detection and 55.0% malignancy accuracy. On CBIS-DDSM, it achieved 69.3% BI-RADS accuracy, 66.0% abnormality detection, and 58.2% malignancy accuracy. Compared with human expert estimations, GPT-5 exhibited lower sensitivity (63.5%) and specificity (52.3%). While GPT-5 exhibits promising capabilities for screening tasks, its performance remains insufficient for high-stakes clinical imaging applications without targeted domain adaptation and optimization. However, the tremendous improvements in performance from GPT-4o to GPT-5 show a promising trend in the potential for general large language models (LLMs) to assist with mammography VQA tasks.
☆ LoRAtorio: An intrinsic approach to LoRA Skill Composition
Low-Rank Adaptation (LoRA) has become a widely adopted technique in text-to-image diffusion models, enabling the personalisation of visual concepts such as characters, styles, and objects. However, existing approaches struggle to effectively compose multiple LoRA adapters, particularly in open-ended settings where the number and nature of required skills are not known in advance. In this work, we present LoRAtorio, a novel train-free framework for multi-LoRA composition that leverages intrinsic model behaviour. Our method is motivated by two key observations: (1) LoRA adapters trained on narrow domains produce denoised outputs that diverge from the base model, and (2) when operating out-of-distribution, LoRA outputs show behaviour closer to the base model than when conditioned in distribution. The balance between these two observations allows for exceptional performance in the single LoRA scenario, which nevertheless deteriorates when multiple LoRAs are loaded. Our method operates in the latent space by dividing it into spatial patches and computing cosine similarity between each patch's predicted noise and that of the base model. These similarities are used to construct a spatially-aware weight matrix, which guides a weighted aggregation of LoRA outputs. To address domain drift, we further propose a modification to classifier-free guidance that incorporates the base model's unconditional score into the composition. We extend this formulation to a dynamic module selection setting, enabling inference-time selection of relevant LoRA adapters from a large pool. LoRAtorio achieves state-of-the-art performance, showing up to a 1.3% improvement in ClipScore and a 72.43% win rate in GPT-4V pairwise evaluations, and generalises effectively to multiple latent diffusion models.
comment: 32 pages, 17 figures
Controlling Multimodal LLMs via Reward-guided Decoding ICCV 2025
As Multimodal Large Language Models (MLLMs) gain widespread applicability, it is becoming increasingly desirable to adapt them for diverse user needs. In this paper, we study the adaptation of MLLMs through controlled decoding. To achieve this, we introduce the first method for reward-guided decoding of MLLMs and demonstrate its application in improving their visual grounding. Our method involves building reward models for visual grounding and using them to guide the MLLM's decoding process. Concretely, we build two separate reward models to independently control the degree of object precision and recall in the model's output. Our approach enables on-the-fly controllability of an MLLM's inference process in two ways: first, by giving control over the relative importance of each reward function during decoding, allowing a user to dynamically trade off object precision for recall in image captioning tasks; second, by giving control over the breadth of the search during decoding, allowing the user to control the trade-off between the amount of test-time compute and the degree of visual grounding. We evaluate our method on standard object hallucination benchmarks, showing that it provides significant controllability over MLLM inference, while consistently outperforming existing hallucination mitigation methods.
comment: Published at ICCV 2025
☆ CoreEditor: Consistent 3D Editing via Correspondence-constrained Diffusion
Text-driven 3D editing seeks to modify 3D scenes according to textual descriptions, and most existing approaches tackle this by adapting pre-trained 2D image editors to multi-view inputs. However, without explicit control over multi-view information exchange, they often fail to maintain cross-view consistency, leading to insufficient edits and blurry details. We introduce CoreEditor, a novel framework for consistent text-to-3D editing. The key innovation is a correspondence-constrained attention mechanism that enforces precise interactions between pixels expected to remain consistent throughout the diffusion denoising process. Beyond relying solely on geometric alignment, we further incorporate semantic similarity estimated during denoising, enabling more reliable correspondence modeling and robust multi-view editing. In addition, we design a selective editing pipeline that allows users to choose preferred results from multiple candidates, offering greater flexibility and user control. Extensive experiments show that CoreEditor produces high-quality, 3D-consistent edits with sharper details, significantly outperforming prior methods.
☆ DashCam Video: A complementary low-cost data stream for on-demand forest-infrastructure system monitoring
Our study introduces a novel, low-cost, and reproducible framework for real-time, object-level structural assessment and geolocation of roadside vegetation and infrastructure with commonly available but underutilized dashboard camera (dashcam) video data. We developed an end-to-end pipeline that combines monocular depth estimation, depth error correction, and geometric triangulation to generate accurate spatial and structural data from street-level video streams from vehicle-mounted dashcams. Depth maps were first estimated using a state-of-the-art monocular depth model, then refined via a gradient-boosted regression framework to correct underestimations, particularly for distant objects. The depth correction model achieved strong predictive performance (R2 = 0.92, MAE = 0.31 on transformed scale), significantly reducing bias beyond 15 m. Further, object locations were estimated using GPS-based triangulation, while object heights were calculated using pin hole camera geometry. Our method was evaluated under varying conditions of camera placement and vehicle speed. Low-speed vehicle with inside camera gave the highest accuracy, with mean geolocation error of 2.83 m, and mean absolute error (MAE) in height estimation of 2.09 m for trees and 0.88 m for poles. To the best of our knowledge, it is the first framework to combine monocular depth modeling, triangulated GPS-based geolocation, and real-time structural assessment for urban vegetation and infrastructure using consumer-grade video data. Our approach complements conventional RS methods, such as LiDAR and image by offering a fast, real-time, and cost-effective solution for object-level monitoring of vegetation risks and infrastructure exposure, making it especially valuable for utility companies, and urban planners aiming for scalable and frequent assessments in dynamic urban environments.
comment: 35 Pages, 15 figures
☆ Causality Matters: How Temporal Information Emerges in Video Language Models
Video language models (VideoLMs) have made significant progress in multimodal understanding. However, temporal understanding, which involves identifying event order, duration, and relationships across time, still remains a core challenge. Prior works emphasize positional encodings (PEs) as a key mechanism for encoding temporal structure. Surprisingly, we find that removing or modifying PEs in video inputs yields minimal degradation in the performance of temporal understanding. In contrast, reversing the frame sequence while preserving the original PEs causes a substantial drop. To explain this behavior, we conduct substantial analysis experiments to trace how temporal information is integrated within the model. We uncover a causal information pathway: temporal cues are progressively synthesized through inter-frame attention, aggregated in the final frame, and subsequently integrated into the query tokens. This emergent mechanism shows that temporal reasoning emerges from inter-visual token interactions under the constraints of causal attention, which implicitly encodes temporal structure. Based on these insights, we propose two efficiency-oriented strategies: staged cross-modal attention and a temporal exit mechanism for early token truncation. Experiments on two benchmarks validate the effectiveness of both approaches. To the best of our knowledge, this is the first work to systematically investigate video temporal understanding in VideoLMs, offering insights for future model improvement.
☆ TrajSV: A Trajectory-based Model for Sports Video Representations and Applications
Sports analytics has received significant attention from both academia and industry in recent years. Despite the growing interest and efforts in this field, several issues remain unresolved, including (1) data unavailability, (2) lack of an effective trajectory-based framework, and (3) requirement for sufficient supervision labels. In this paper, we present TrajSV, a trajectory-based framework that addresses various issues in existing studies. TrajSV comprises three components: data preprocessing, Clip Representation Network (CRNet), and Video Representation Network (VRNet). The data preprocessing module extracts player and ball trajectories from sports broadcast videos. CRNet utilizes a trajectory-enhanced Transformer module to learn clip representations based on these trajectories. Additionally, VRNet learns video representations by aggregating clip representations and visual features with an encoder-decoder architecture. Finally, a triple contrastive loss is introduced to optimize both video and clip representations in an unsupervised manner. The experiments are conducted on three broadcast video datasets to verify the effectiveness of TrajSV for three types of sports (i.e., soccer, basketball, and volleyball) with three downstream applications (i.e., sports video retrieval, action spotting, and video captioning). The results demonstrate that TrajSV achieves state-of-the-art performance in sports video retrieval, showcasing a nearly 70% improvement. It outperforms baselines in action spotting, achieving state-of-the-art results in 9 out of 17 action categories, and demonstrates a nearly 20% improvement in video captioning. Additionally, we introduce a deployed system along with the three applications based on TrajSV.
comment: This paper has been accepted by TCSVT
☆ Training-Free Anomaly Generation via Dual-Attention Enhancement in Diffusion Model
Industrial anomaly detection (AD) plays a significant role in manufacturing where a long-standing challenge is data scarcity. A growing body of works have emerged to address insufficient anomaly data via anomaly generation. However, these anomaly generation methods suffer from lack of fidelity or need to be trained with extra data. To this end, we propose a training-free anomaly generation framework dubbed AAG, which is based on Stable Diffusion (SD)'s strong generation ability for effective anomaly image generation. Given a normal image, mask and a simple text prompt, AAG can generate realistic and natural anomalies in the specific regions and simultaneously keep contents in other regions unchanged. In particular, we propose Cross-Attention Enhancement (CAE) to re-engineer the cross-attention mechanism within Stable Diffusion based on the given mask. CAE increases the similarity between visual tokens in specific regions and text embeddings, which guides these generated visual tokens in accordance with the text description. Besides, generated anomalies need to be more natural and plausible with object in given image. We propose Self-Attention Enhancement (SAE) which improves similarity between each normal visual token and anomaly visual tokens. SAE ensures that generated anomalies are coherent with original pattern. Extensive experiments on MVTec AD and VisA datasets demonstrate effectiveness of AAG in anomaly generation and its utility. Furthermore, anomaly images generated by AAG can bolster performance of various downstream anomaly inspection tasks.
☆ Reinforcing Video Reasoning Segmentation to Think Before It Segments
Video reasoning segmentation (VRS) endeavors to delineate referred objects in videos guided by implicit instructions that encapsulate human intent and temporal logic. Previous approaches leverage large vision language models (LVLMs) to encode object semantics into tokens for mask prediction. However, this paradigm suffers from limited interpretability during inference and suboptimal performance due to inadequate spatiotemporal reasoning. Drawing inspiration from seminal breakthroughs in reinforcement learning, we introduce Veason-R1, a specialized LVLM for VRS that emphasizes structured reasoning in segmentation. Veason-R1 is trained through Group Relative Policy Optimization (GRPO) augmented with Chain-of-Thought (CoT) initialization. To begin with, we curate high-quality CoT training data to instill structured reasoning trajectories, bridging video-level semantics and frame-level spatial grounding, yielding the supervised fine-tuned model Veason-SFT. Subsequently, GRPO fine-tuning encourages efficient exploration of the reasoning space by optimizing reasoning chains. To this end, we incorporate a holistic reward mechanism that synergistically enhances spatial alignment and temporal consistency, bolstering keyframe localization and fine-grained grounding. Comprehensive empirical evaluations demonstrate that Veason-R1 achieves state-of-the-art performance on multiple benchmarks, surpassing prior art by significant margins (e.g., +1.3 J &F in ReVOS and +10.0 J &F in ReasonVOS), while exhibiting robustness to hallucinations (+8.8 R). Our code and model weights will be available at Veason-R1.
comment: 12 pages
☆ An Efficient Medical Image Classification Method Based on a Lightweight Improved ConvNeXt-Tiny Architecture
Intelligent analysis of medical imaging plays a crucial role in assisting clinical diagnosis. However, achieving efficient and high-accuracy image classification in resource-constrained computational environments remains challenging. This study proposes a medical image classification method based on an improved ConvNeXt-Tiny architecture. Through structural optimization and loss function design, the proposed method enhances feature extraction capability and classification performance while reducing computational complexity. Specifically, the method introduces a dual global pooling (Global Average Pooling and Global Max Pooling) feature fusion strategy into the ConvNeXt-Tiny backbone to simultaneously preserve global statistical features and salient response information. A lightweight channel attention module, termed Squeeze-and-Excitation Vector (SEVector), is designed to improve the adaptive allocation of channel weights while minimizing parameter overhead. Additionally, a Feature Smoothing Loss is incorporated into the loss function to enhance intra-class feature consistency and suppress intra-class variance. Under CPU-only conditions (8 threads), the method achieves a maximum classification accuracy of 89.10% on the test set within 10 training epochs, exhibiting a stable convergence trend in loss values. Experimental results demonstrate that the proposed method effectively improves medical image classification performance in resource-limited settings, providing a feasible and efficient solution for the deployment and promotion of medical imaging analysis models.
☆ Multi-State Tracker: Enhancing Efficient Object Tracking via Multi-State Specialization and Interaction
Efficient trackers achieve faster runtime by reducing computational complexity and model parameters. However, this efficiency often compromises the expense of weakened feature representation capacity, thus limiting their ability to accurately capture target states using single-layer features. To overcome this limitation, we propose Multi-State Tracker (MST), which utilizes highly lightweight state-specific enhancement (SSE) to perform specialized enhancement on multi-state features produced by multi-state generation (MSG) and aggregates them in an interactive and adaptive manner using cross-state interaction (CSI). This design greatly enhances feature representation while incurring minimal computational overhead, leading to improved tracking robustness in complex environments. Specifically, the MSG generates multiple state representations at multiple stages during feature extraction, while SSE refines them to highlight target-specific features. The CSI module facilitates information exchange between these states and ensures the integration of complementary features. Notably, the introduced SSE and CSI modules adopt a highly lightweight hidden state adaptation-based state space duality (HSA-SSD) design, incurring only 0.1 GFLOPs in computation and 0.66 M in parameters. Experimental results demonstrate that MST outperforms all previous efficient trackers across multiple datasets, significantly improving tracking accuracy and robustness. In particular, it shows excellent runtime performance, with an AO score improvement of 4.5\% over the previous SOTA efficient tracker HCAT on the GOT-10K dataset. The code is available at https://github.com/wsumel/MST.
☆ A Real-time Concrete Crack Detection and Segmentation Model Based on YOLOv11
Accelerated aging of transportation infrastructure in the rapidly developing Yangtze River Delta region necessitates efficient concrete crack detection, as crack deterioration critically compromises structural integrity and regional economic growth. To overcome the limitations of inefficient manual inspection and the suboptimal performance of existing deep learning models, particularly for small-target crack detection within complex backgrounds, this paper proposes YOLOv11-KW-TA-FP, a multi-task concrete crack detection and segmentation model based on the YOLOv11n architecture. The proposed model integrates a three-stage optimization framework: (1) Embedding dynamic KernelWarehouse convolution (KWConv) within the backbone network to enhance feature representation through a dynamic kernel sharing mechanism; (2) Incorporating a triple attention mechanism (TA) into the feature pyramid to strengthen channel-spatial interaction modeling; and (3) Designing an FP-IoU loss function to facilitate adaptive bounding box regression penalization. Experimental validation demonstrates that the enhanced model achieves significant performance improvements over the baseline, attaining 91.3% precision, 76.6% recall, and 86.4% mAP@50. Ablation studies confirm the synergistic efficacy of the proposed modules. Furthermore, robustness tests indicate stable performance under conditions of data scarcity and noise interference. This research delivers an efficient computer vision solution for automated infrastructure inspection, exhibiting substantial practical engineering value.
Semi-Supervised Learning with Online Knowledge Distillation for Skin Lesion Classification
Deep Learning has emerged as a promising approach for skin lesion analysis. However, existing methods mostly rely on fully supervised learning, requiring extensive labeled data, which is challenging and costly to obtain. To alleviate this annotation burden, this study introduces a novel semi-supervised deep learning approach that integrates ensemble learning with online knowledge distillation for enhanced skin lesion classification. Our methodology involves training an ensemble of convolutional neural network models, using online knowledge distillation to transfer insights from the ensemble to its members. This process aims to enhance the performance of each model within the ensemble, thereby elevating the overall performance of the ensemble itself. Post-training, any individual model within the ensemble can be deployed at test time, as each member is trained to deliver comparable performance to the ensemble. This is particularly beneficial in resource-constrained environments. Experimental results demonstrate that the knowledge-distilled individual model performs better than independently trained models. Our approach demonstrates superior performance on both the \emph{International Skin Imaging Collaboration} 2018 and 2019 public benchmark datasets, surpassing current state-of-the-art results. By leveraging ensemble learning and online knowledge distillation, our method reduces the need for extensive labeled data while providing a more resource-efficient solution for skin lesion classification in real-world scenarios.
☆ AIM: Amending Inherent Interpretability via Self-Supervised Masking ICCV
It has been observed that deep neural networks (DNNs) often use both genuine as well as spurious features. In this work, we propose "Amending Inherent Interpretability via Self-Supervised Masking" (AIM), a simple yet interestingly effective method that promotes the network's utilization of genuine features over spurious alternatives without requiring additional annotations. In particular, AIM uses features at multiple encoding stages to guide a self-supervised, sample-specific feature-masking process. As a result, AIM enables the training of well-performing and inherently interpretable models that faithfully summarize the decision process. We validate AIM across a diverse range of challenging datasets that test both out-of-distribution generalization and fine-grained visual understanding. These include general-purpose classification benchmarks such as ImageNet100, HardImageNet, and ImageWoof, as well as fine-grained classification datasets such as Waterbirds, TravelingBirds, and CUB-200. AIM demonstrates significant dual benefits: interpretability improvements, as measured by the Energy Pointing Game (EPG) score, and accuracy gains over strong baselines. These consistent gains across domains and architectures provide compelling evidence that AIM promotes the use of genuine and meaningful features that directly contribute to improved generalization and human-aligned interpretability.
comment: Accepted at International Conference on Computer Vision (ICCV) 2025
☆ Handwritten Text Recognition of Historical Manuscripts Using Transformer-Based Models
Historical handwritten text recognition (HTR) is essential for unlocking the cultural and scholarly value of archival documents, yet digitization is often hindered by scarce transcriptions, linguistic variation, and highly diverse handwriting styles. In this study, we apply TrOCR, a state-of-the-art transformer-based HTR model, to 16th-century Latin manuscripts authored by Rudolf Gwalther. We investigate targeted image preprocessing and a broad suite of data augmentation techniques, introducing four novel augmentation methods designed specifically for historical handwriting characteristics. We also evaluate ensemble learning approaches to leverage the complementary strengths of augmentation-trained models. On the Gwalther dataset, our best single-model augmentation (Elastic) achieves a Character Error Rate (CER) of 1.86, while a top-5 voting ensemble achieves a CER of 1.60 - representing a 50% relative improvement over the best reported TrOCR_BASE result and a 42% improvement over the previous state of the art. These results highlight the impact of domain-specific augmentations and ensemble strategies in advancing HTR performance for historical manuscripts.
☆ Hierarchical Graph Feature Enhancement with Adaptive Frequency Modulation for Visual Recognition
Convolutional neural networks (CNNs) have demonstrated strong performance in visual recognition tasks, but their inherent reliance on regular grid structures limits their capacity to model complex topological relationships and non-local semantics within images. To address this limita tion, we propose the hierarchical graph feature enhancement (HGFE), a novel framework that integrates graph-based rea soning into CNNs to enhance both structural awareness and feature representation. HGFE builds two complementary levels of graph structures: intra-window graph convolution to cap ture local spatial dependencies and inter-window supernode interactions to model global semantic relationships. Moreover, we introduce an adaptive frequency modulation module that dynamically balances low-frequency and high-frequency signal propagation, preserving critical edge and texture information while mitigating over-smoothing. The proposed HGFE module is lightweight, end-to-end trainable, and can be seamlessly integrated into standard CNN backbone networks. Extensive experiments on CIFAR-100 (classification), PASCAL VOC, and VisDrone (detection), as well as CrackSeg and CarParts (segmentation), validated the effectiveness of the HGFE in improving structural representation and enhancing overall recognition performance.
☆ Relative Position Matters: Trajectory Prediction and Planning with Polar Representation
Trajectory prediction and planning in autonomous driving are highly challenging due to the complexity of predicting surrounding agents' movements and planning the ego agent's actions in dynamic environments. Existing methods encode map and agent positions and decode future trajectories in Cartesian coordinates. However, modeling the relationships between the ego vehicle and surrounding traffic elements in Cartesian space can be suboptimal, as it does not naturally capture the varying influence of different elements based on their relative distances and directions. To address this limitation, we adopt the Polar coordinate system, where positions are represented by radius and angle. This representation provides a more intuitive and effective way to model spatial changes and relative relationships, especially in terms of distance and directional influence. Based on this insight, we propose Polaris, a novel method that operates entirely in Polar coordinates, distinguishing itself from conventional Cartesian-based approaches. By leveraging the Polar representation, this method explicitly models distance and direction variations and captures relative relationships through dedicated encoding and refinement modules, enabling more structured and spatially aware trajectory prediction and planning. Extensive experiments on the challenging prediction (Argoverse 2) and planning benchmarks (nuPlan) demonstrate that Polaris achieves state-of-the-art performance.
☆ Perception in Plan: Coupled Perception and Planning for End-to-End Autonomous Driving
End-to-end autonomous driving has achieved remarkable advancements in recent years. Existing methods primarily follow a perception-planning paradigm, where perception and planning are executed sequentially within a fully differentiable framework for planning-oriented optimization. We further advance this paradigm through a perception-in-plan framework design, which integrates perception into the planning process. This design facilitates targeted perception guided by evolving planning objectives over time, ultimately enhancing planning performance. Building on this insight, we introduce VeteranAD, a coupled perception and planning framework for end-to-end autonomous driving. By incorporating multi-mode anchored trajectories as planning priors, the perception module is specifically designed to gather traffic elements along these trajectories, enabling comprehensive and targeted perception. Planning trajectories are then generated based on both the perception results and the planning priors. To make perception fully serve planning, we adopt an autoregressive strategy that progressively predicts future trajectories while focusing on relevant regions for targeted perception at each step. With this simple yet effective design, VeteranAD fully unleashes the potential of planning-oriented end-to-end methods, leading to more accurate and reliable driving behavior. Extensive experiments on the NAVSIM and Bench2Drive datasets demonstrate that our VeteranAD achieves state-of-the-art performance.
☆ Automated Building Heritage Assessment Using Street-Level Imagery
Detailed data is required to quantify energy conservation measures in buildings, such as envelop retrofits, without compromising cultural heritage. Novel artificial intelligence tools may improve efficiency in identifying heritage values in buildings compared to costly and time-consuming traditional inventories. In this study, the large language model GPT was used to detect various aspects of cultural heritage value in fa\c{c}ade images. Using this data and building register data as features, machine learning models were trained to classify multi-family and non-residential buildings in Stockholm, Sweden. Validation against an expert-created inventory shows a macro F1-score of 0.71 using a combination of register data and features retrieved from GPT, and a score of 0.60 using only GPT-derived data. The presented methodology can contribute to a higher-quality database and thus support careful energy efficiency measures and integrated consideration of heritage value in large-scale energetic refurbishment scenarios.
☆ CineTrans: Learning to Generate Videos with Cinematic Transitions via Masked Diffusion Models
Despite significant advances in video synthesis, research into multi-shot video generation remains in its infancy. Even with scaled-up models and massive datasets, the shot transition capabilities remain rudimentary and unstable, largely confining generated videos to single-shot sequences. In this work, we introduce CineTrans, a novel framework for generating coherent multi-shot videos with cinematic, film-style transitions. To facilitate insights into the film editing style, we construct a multi-shot video-text dataset Cine250K with detailed shot annotations. Furthermore, our analysis of existing video diffusion models uncovers a correspondence between attention maps in the diffusion model and shot boundaries, which we leverage to design a mask-based control mechanism that enables transitions at arbitrary positions and transfers effectively in a training-free setting. After fine-tuning on our dataset with the mask mechanism, CineTrans produces cinematic multi-shot sequences while adhering to the film editing style, avoiding unstable transitions or naive concatenations. Finally, we propose specialized evaluation metrics for transition control, temporal consistency and overall quality, and demonstrate through extensive experiments that CineTrans significantly outperforms existing baselines across all criteria.
comment: 27 pages, 20 figures
☆ OpenConstruction: A Systematic Synthesis of Open Visual Datasets for Data-Centric Artificial Intelligence in Construction Monitoring
The construction industry increasingly relies on visual data to support Artificial Intelligence (AI) and Machine Learning (ML) applications for site monitoring. High-quality, domain-specific datasets, comprising images, videos, and point clouds, capture site geometry and spatiotemporal dynamics, including the location and interaction of objects, workers, and materials. However, despite growing interest in leveraging visual datasets, existing resources vary widely in sizes, data modalities, annotation quality, and representativeness of real-world construction conditions. A systematic review to categorize their data characteristics and application contexts is still lacking, limiting the community's ability to fully understand the dataset landscape, identify critical gaps, and guide future directions toward more effective, reliable, and scalable AI applications in construction. To address this gap, this study conducts an extensive search of academic databases and open-data platforms, yielding 51 publicly available visual datasets that span the 2005-2024 period. These datasets are categorized using a structured data schema covering (i) data fundamentals (e.g., size and license), (ii) data modalities (e.g., RGB and point cloud), (iii) annotation frameworks (e.g., bounding boxes), and (iv) downstream application domains (e.g., progress tracking). This study synthesizes these findings into an open-source catalog, OpenConstruction, supporting data-driven method development. Furthermore, the study discusses several critical limitations in the existing construction dataset landscape and presents a roadmap for future data infrastructure anchored in the Findability, Accessibility, Interoperability, and Reusability (FAIR) principles. By reviewing the current landscape and outlining strategic priorities, this study supports the advancement of data-centric solutions in the construction sector.
☆ TACR-YOLO: A Real-time Detection Framework for Abnormal Human Behaviors Enhanced with Coordinate and Task-Aware Representations IJCNN 2025
Abnormal Human Behavior Detection (AHBD) under special scenarios is becoming increasingly crucial. While YOLO-based detection methods excel in real-time tasks, they remain hindered by challenges including small objects, task conflicts, and multi-scale fusion in AHBD. To tackle them, we propose TACR-YOLO, a new real-time framework for AHBD. We introduce a Coordinate Attention Module to enhance small object detection, a Task-Aware Attention Module to deal with classification-regression conflicts, and a Strengthen Neck Network for refined multi-scale fusion, respectively. In addition, we optimize Anchor Box sizes using K-means clustering and deploy DIoU-Loss to improve bounding box regression. The Personnel Anomalous Behavior Detection (PABD) dataset, which includes 8,529 samples across four behavior categories, is also presented. Extensive experimental results indicate that TACR-YOLO achieves 91.92% mAP on PABD, with competitive speed and robustness. Ablation studies highlight the contribution of each improvement. This work provides new insights for abnormal behavior detection under special scenarios, advancing its progress.
comment: 8 pages, 4 figures, accepted by IJCNN 2025
☆ SPG: Style-Prompting Guidance for Style-Specific Content Creation
Although recent text-to-image (T2I) diffusion models excel at aligning generated images with textual prompts, controlling the visual style of the output remains a challenging task. In this work, we propose Style-Prompting Guidance (SPG), a novel sampling strategy for style-specific image generation. SPG constructs a style noise vector and leverages its directional deviation from unconditional noise to guide the diffusion process toward the target style distribution. By integrating SPG with Classifier-Free Guidance (CFG), our method achieves both semantic fidelity and style consistency. SPG is simple, robust, and compatible with controllable frameworks like ControlNet and IPAdapter, making it practical and widely applicable. Extensive experiments demonstrate the effectiveness and generality of our approach compared to state-of-the-art methods. Code is available at https://github.com/Rumbling281441/SPG.
comment: Accepted to the Journal track of Pacific Graphics 2025
☆ CoFi: A Fast Coarse-to-Fine Few-Shot Pipeline for Glomerular Basement Membrane Segmentation
Accurate segmentation of the glomerular basement membrane (GBM) in electron microscopy (EM) images is fundamental for quantifying membrane thickness and supporting the diagnosis of various kidney diseases. While supervised deep learning approaches achieve high segmentation accuracy, their reliance on extensive pixel-level annotation renders them impractical for clinical workflows. Few-shot learning can reduce this annotation burden but often struggles to capture the fine structural details necessary for GBM analysis. In this study, we introduce CoFi, a fast and efficient coarse-to-fine few-shot segmentation pipeline designed for GBM delineation in EM images. CoFi first trains a lightweight neural network using only three annotated images to produce an initial coarse segmentation mask. This mask is then automatically processed to generate high-quality point prompts with morphology-aware pruning, which are subsequently used to guide SAM in refining the segmentation. The proposed method achieved exceptional GBM segmentation performance, with a Dice coefficient of 74.54% and an inference speed of 1.9 FPS. We demonstrate that CoFi not only alleviates the annotation and computational burdens associated with conventional methods, but also achieves accurate and reliable segmentation results. The pipeline's speed and annotation efficiency make it well-suited for research and hold strong potential for clinical applications in renal pathology. The pipeline is publicly available at: https://github.com/ddrrnn123/CoFi.
☆ Data-Driven Deepfake Image Detection Method -- The 2024 Global Deepfake Image Detection Challenge
With the rapid development of technology in the field of AI, deepfake technology has emerged as a double-edged sword. It has not only created a large amount of AI-generated content but also posed unprecedented challenges to digital security. The task of the competition is to determine whether a face image is a Deepfake image and output its probability score of being a Deepfake image. In the image track competition, our approach is based on the Swin Transformer V2-B classification network. And online data augmentation and offline sample generation methods are employed to enrich the diversity of training samples and increase the generalization ability of the model. Finally, we got the award of excellence in Deepfake image detection.
☆ Subcortical Masks Generation in CT Images via Ensemble-Based Cross-Domain Label Transfer
Subcortical segmentation in neuroimages plays an important role in understanding brain anatomy and facilitating computer-aided diagnosis of traumatic brain injuries and neurodegenerative disorders. However, training accurate automatic models requires large amounts of labelled data. Despite the availability of publicly available subcortical segmentation datasets for Magnetic Resonance Imaging (MRI), a significant gap exists for Computed Tomography (CT). This paper proposes an automatic ensemble framework to generate high-quality subcortical segmentation labels for CT scans by leveraging existing MRI-based models. We introduce a robust ensembling pipeline to integrate them and apply it to unannotated paired MRI-CT data, resulting in a comprehensive CT subcortical segmentation dataset. Extensive experiments on multiple public datasets demonstrate the superior performance of our proposed framework. Furthermore, using our generated CT dataset, we train segmentation models that achieve improved performance on related segmentation tasks. To facilitate future research, we make our source code, generated dataset, and trained models publicly available at https://github.com/SCSE-Biomedical-Computing-Group/CT-Subcortical-Segmentation, marking the first open-source release for CT subcortical segmentation to the best of our knowledge.
☆ Inside Knowledge: Graph-based Path Generation with Explainable Data Augmentation and Curriculum Learning for Visual Indoor Navigation
Indoor navigation is a difficult task, as it generally comes with poor GPS access, forcing solutions to rely on other sources of information. While significant progress continues to be made in this area, deployment to production applications is still lacking, given the complexity and additional requirements of current solutions. Here, we introduce an efficient, real-time and easily deployable deep learning approach, based on visual input only, that can predict the direction towards a target from images captured by a mobile device. Our technical approach, based on a novel graph-based path generation method, combined with explainable data augmentation and curriculum learning, includes contributions that make the process of data collection, annotation and training, as automatic as possible, efficient and robust. On the practical side, we introduce a novel largescale dataset, with video footage inside a relatively large shopping mall, in which each frame is annotated with the correct next direction towards different specific target destinations. Different from current methods, ours relies solely on vision, avoiding the need of special sensors, additional markers placed along the path, knowledge of the scene map or internet access. We also created an easy to use application for Android, which we plan to make publicly available. We make all our data and code available along with visual demos on our project site
comment: Accepted at the International Conference on Computer Vision Workshops 2025
☆ MM-R1: Unleashing the Power of Unified Multimodal Large Language Models for Personalized Image Generation
Multimodal Large Language Models (MLLMs) with unified architectures excel across a wide range of vision-language tasks, yet aligning them with personalized image generation remains a significant challenge. Existing methods for MLLMs are frequently subject-specific, demanding a data-intensive fine-tuning process for every new subject, which limits their scalability. In this paper, we introduce MM-R1, a framework that integrates a cross-modal Chain-of-Thought (X-CoT) reasoning strategy to unlock the inherent potential of unified MLLMs for personalized image generation. Specifically, we structure personalization as an integrated visual reasoning and generation process: (1) grounding subject concepts by interpreting and understanding user-provided images and contextual cues, and (2) generating personalized images conditioned on both the extracted subject representations and user prompts. To further enhance the reasoning capability, we adopt Grouped Reward Proximal Policy Optimization (GRPO) to explicitly align the generation. Experiments demonstrate that MM-R1 unleashes the personalization capability of unified MLLMs to generate images with high subject fidelity and strong text alignment in a zero-shot manner.
☆ Robust Convolution Neural ODEs via Contractivity-promoting regularization
Neural networks can be fragile to input noise and adversarial attacks. In this work, we consider Convolutional Neural Ordinary Differential Equations (NODEs), a family of continuous-depth neural networks represented by dynamical systems, and propose to use contraction theory to improve their robustness. For a contractive dynamical system two trajectories starting from different initial conditions converge to each other exponentially fast. Contractive Convolutional NODEs can enjoy increased robustness as slight perturbations of the features do not cause a significant change in the output. Contractivity can be induced during training by using a regularization term involving the Jacobian of the system dynamics. To reduce the computational burden, we show that it can also be promoted using carefully selected weight regularization terms for a class of NODEs with slope-restricted activation functions. The performance of the proposed regularizers is illustrated through benchmark image classification tasks on MNIST and FashionMNIST datasets, where images are corrupted by different kinds of noise and attacks.
comment: Accepted in IEEE CDC2025, Rio de Janeiro, Brazil
☆ Remove360: Benchmarking Residuals After Object Removal in 3D Gaussian Splatting
Understanding what semantic information persists after object removal is critical for privacy-preserving 3D reconstruction and editable scene representations. In this work, we introduce a novel benchmark and evaluation framework to measure semantic residuals, the unintended semantic traces left behind, after object removal in 3D Gaussian Splatting. We conduct experiments across a diverse set of indoor and outdoor scenes, showing that current methods can preserve semantic information despite the absence of visual geometry. We also release Remove360, a dataset of pre/post-removal RGB images and object-level masks captured in real-world environments. While prior datasets have focused on isolated object instances, Remove360 covers a broader and more complex range of indoor and outdoor scenes, enabling evaluation of object removal in the context of full-scene representations. Given ground truth images of a scene before and after object removal, we assess whether we can truly eliminate semantic presence, and if downstream models can still infer what was removed. Our findings reveal critical limitations in current 3D object removal techniques and underscore the need for more robust solutions capable of handling real-world complexity. The evaluation framework is available at github.com/spatial-intelligence-ai/Remove360.git. Data are available at huggingface.co/datasets/simkoc/Remove360.
comment: arXiv admin note: substantial text overlap with arXiv:2503.17574
☆ ImagiDrive: A Unified Imagination-and-Planning Framework for Autonomous Driving
Autonomous driving requires rich contextual comprehension and precise predictive reasoning to navigate dynamic and complex environments safely. Vision-Language Models (VLMs) and Driving World Models (DWMs) have independently emerged as powerful recipes addressing different aspects of this challenge. VLMs provide interpretability and robust action prediction through their ability to understand multi-modal context, while DWMs excel in generating detailed and plausible future driving scenarios essential for proactive planning. Integrating VLMs with DWMs is an intuitive, promising, yet understudied strategy to exploit the complementary strengths of accurate behavioral prediction and realistic scene generation. Nevertheless, this integration presents notable challenges, particularly in effectively connecting action-level decisions with high-fidelity pixel-level predictions and maintaining computational efficiency. In this paper, we propose ImagiDrive, a novel end-to-end autonomous driving framework that integrates a VLM-based driving agent with a DWM-based scene imaginer to form a unified imagination-and-planning loop. The driving agent predicts initial driving trajectories based on multi-modal inputs, guiding the scene imaginer to generate corresponding future scenarios. These imagined scenarios are subsequently utilized to iteratively refine the driving agent's planning decisions. To address efficiency and predictive accuracy challenges inherent in this integration, we introduce an early stopping mechanism and a trajectory selection strategy. Extensive experimental validation on the nuScenes and NAVSIM datasets demonstrates the robustness and superiority of ImagiDrive over previous alternatives under both open-loop and closed-loop conditions.
☆ Training-free Dimensionality Reduction via Feature Truncation: Enhancing Efficiency in Privacy-preserving Multi-Biometric Systems
Biometric recognition is widely used, making the privacy and security of extracted templates a critical concern. Biometric Template Protection schemes, especially those utilizing Homomorphic Encryption, introduce significant computational challenges due to increased workload. Recent advances in deep neural networks have enabled state-of-the-art feature extraction for face, fingerprint, and iris modalities. The ubiquity and affordability of biometric sensors further facilitate multi-modal fusion, which can enhance security by combining features from different modalities. This work investigates the biometric performance of reduced multi-biometric template sizes. Experiments are conducted on an in-house virtual multi-biometric database, derived from DNN-extracted features for face, fingerprint, and iris, using the FRGC, MCYT, and CASIA databases. The evaluated approaches are (i) explainable and straightforward to implement under encryption, (ii) training-free, and (iii) capable of generalization. Dimensionality reduction of feature vectors leads to fewer operations in the Homomorphic Encryption (HE) domain, enabling more efficient encrypted processing while maintaining biometric accuracy and security at a level equivalent to or exceeding single-biometric recognition. Our results demonstrate that, by fusing feature vectors from multiple modalities, template size can be reduced by 67 % with no loss in Equal Error Rate (EER) compared to the best-performing single modality.
☆ SelfAdapt: Unsupervised Domain Adaptation of Cell Segmentation Models ICCV
Deep neural networks have become the go-to method for biomedical instance segmentation. Generalist models like Cellpose demonstrate state-of-the-art performance across diverse cellular data, though their effectiveness often degrades on domains that differ from their training data. While supervised fine-tuning can address this limitation, it requires annotated data that may not be readily available. We propose SelfAdapt, a method that enables the adaptation of pre-trained cell segmentation models without the need for labels. Our approach builds upon student-teacher augmentation consistency training, introducing L2-SP regularization and label-free stopping criteria. We evaluate our method on the LiveCell and TissueNet datasets, demonstrating relative improvements in AP0.5 of up to 29.64% over baseline Cellpose. Additionally, we show that our unsupervised adaptation can further improve models that were previously fine-tuned with supervision. We release SelfAdapt as an easy-to-use extension of the Cellpose framework. The code for our method is publicly available at https: //github.com/Kainmueller-Lab/self_adapt.
comment: 8 pages, 3 figures. To appear in the proceedings of the BioImage Computing (BIC) Workshop @ ICCVW 2025. This is the accepted author manuscript (camera-ready version)
RMFAT: Recurrent Multi-scale Feature Atmospheric Turbulence Mitigator
Atmospheric turbulence severely degrades video quality by introducing distortions such as geometric warping, blur, and temporal flickering, posing significant challenges to both visual clarity and temporal consistency. Current state-of-the-art methods are based on transformer and 3D architectures and require multi-frame input, but their large computational cost and memory usage limit real-time deployment, especially in resource-constrained scenarios. In this work, we propose RMFAT: Recurrent Multi-scale Feature Atmospheric Turbulence Mitigator, designed for efficient and temporally consistent video restoration under AT conditions. RMFAT adopts a lightweight recurrent framework that restores each frame using only two inputs at a time, significantly reducing temporal window size and computational burden. It further integrates multi-scale feature encoding and decoding with temporal warping modules at both encoder and decoder stages to enhance spatial detail and temporal coherence. Extensive experiments on synthetic and real-world atmospheric turbulence datasets demonstrate that RMFAT not only outperforms existing methods in terms of clarity restoration (with nearly a 9\% improvement in SSIM) but also achieves significantly improved inference speed (more than a fourfold reduction in runtime), making it particularly suitable for real-time atmospheric turbulence suppression tasks.
☆ LKFMixer: Exploring Large Kernel Feature For Efficient Image Super-Resolution
The success of self-attention (SA) in Transformer demonstrates the importance of non-local information to image super-resolution (SR), but the huge computing power required makes it difficult to implement lightweight models. To solve this problem, we propose a pure convolutional neural network (CNN) model, LKFMixer, which utilizes large convolutional kernel to simulate the ability of self-attention to capture non-local features. Specifically, we increase the kernel size to 31 to obtain the larger receptive field as possible, and reduce the parameters and computations by coordinate decomposition. Meanwhile, a spatial feature modulation block (SFMB) is designed to enhance the focus of feature information on both spatial and channel dimension. In addition, by introducing feature selection block (FSB), the model can adaptively adjust the weights between local features and non-local features. Extensive experiments show that the proposed LKFMixer family outperform other state-of-the-art (SOTA) methods in terms of SR performance and reconstruction quality. In particular, compared with SwinIR-light on Manga109 dataset, LKFMixer-L achieves 0.6dB PSNR improvement at $\times$4 scale, while the inference speed is $\times$5 times faster. The code is available at https://github.com/Supereeeee/LKFMixer.
☆ Model Interpretability and Rationale Extraction by Input Mask Optimization
Concurrent to the rapid progress in the development of neural-network based models in areas like natural language processing and computer vision, the need for creating explanations for the predictions of these black-box models has risen steadily. We propose a new method to generate extractive explanations for predictions made by neural networks, that is based on masking parts of the input which the model does not consider to be indicative of the respective class. The masking is done using gradient-based optimization combined with a new regularization scheme that enforces sufficiency, comprehensiveness and compactness of the generated explanation, three properties that are known to be desirable from the related field of rationale extraction in natural language processing. In this way, we bridge the gap between model interpretability and rationale extraction, thereby proving that the latter of which can be performed without training a specialized model, only on the basis of a trained classifier. We further apply the same method to image inputs and obtain high quality explanations for image classifications, which indicates that the conditions proposed for rationale extraction in natural language processing are more broadly applicable to different input types.
☆ G-CUT3R: Guided 3D Reconstruction with Camera and Depth Prior Integration
We introduce G-CUT3R, a novel feed-forward approach for guided 3D scene reconstruction that enhances the CUT3R model by integrating prior information. Unlike existing feed-forward methods that rely solely on input images, our method leverages auxiliary data, such as depth, camera calibrations, or camera positions, commonly available in real-world scenarios. We propose a lightweight modification to CUT3R, incorporating a dedicated encoder for each modality to extract features, which are fused with RGB image tokens via zero convolution. This flexible design enables seamless integration of any combination of prior information during inference. Evaluated across multiple benchmarks, including 3D reconstruction and other multi-view tasks, our approach demonstrates significant performance improvements, showing its ability to effectively utilize available priors while maintaining compatibility with varying input modalities.
☆ Unified Knowledge Distillation Framework: Fine-Grained Alignment and Geometric Relationship Preservation for Deep Face Recognition
Knowledge Distillation is crucial for optimizing face recognition models for deployment in computationally limited settings, such as edge devices. Traditional KD methods, such as Raw L2 Feature Distillation or Feature Consistency loss, often fail to capture both fine-grained instance-level details and complex relational structures, leading to suboptimal performance. We propose a unified approach that integrates two novel loss functions, Instance-Level Embedding Distillation and Relation-Based Pairwise Similarity Distillation. Instance-Level Embedding Distillation focuses on aligning individual feature embeddings by leveraging a dynamic hard mining strategy, thereby enhancing learning from challenging examples. Relation-Based Pairwise Similarity Distillation captures relational information through pairwise similarity relationships, employing a memory bank mechanism and a sample mining strategy. This unified framework ensures both effective instance-level alignment and preservation of geometric relationships between samples, leading to a more comprehensive distillation process. Our unified framework outperforms state-of-the-art distillation methods across multiple benchmark face recognition datasets, as demonstrated by extensive experimental evaluations. Interestingly, when using strong teacher networks compared to the student, our unified KD enables the student to even surpass the teacher's accuracy.
comment: The paper spans a total of 14 pages, 10 pages for the main content (including references) and 4 pages for the appendix. The main paper contains 3 figures and 1 table, while the appendix includes 1 pseudo-code algorithm and 4 tables. The work was recently accepted for publication at IJCB 2025
☆ AnatoMaskGAN: GNN-Driven Slice Feature Fusion and Noise Augmentation for Medical Semantic Image Synthesis
Medical semantic-mask synthesis boosts data augmentation and analysis, yet most GAN-based approaches still produce one-to-one images and lack spatial consistency in complex scans. To address this, we propose AnatoMaskGAN, a novel synthesis framework that embeds slice-related spatial features to precisely aggregate inter-slice contextual dependencies, introduces diverse image-augmentation strategies, and optimizes deep feature learning to improve performance on complex medical images. Specifically, we design a GNN-based strongly correlated slice-feature fusion module to model spatial relationships between slices and integrate contextual information from neighboring slices, thereby capturing anatomical details more comprehensively; we introduce a three-dimensional spatial noise-injection strategy that weights and fuses spatial features with noise to enhance modeling of structural diversity; and we incorporate a grayscale-texture classifier to optimize grayscale distribution and texture representation during generation. Extensive experiments on the public L2R-OASIS and L2R-Abdomen CT datasets show that AnatoMaskGAN raises PSNR on L2R-OASIS to 26.50 dB (0.43 dB higher than the current state of the art) and achieves an SSIM of 0.8602 on L2R-Abdomen CT--a 0.48 percentage-point gain over the best model, demonstrating its superiority in reconstruction accuracy and perceptual quality. Ablation studies that successively remove the slice-feature fusion module, spatial 3D noise-injection strategy, and grayscale-texture classifier reveal that each component contributes significantly to PSNR, SSIM, and LPIPS, further confirming the independent value of each core design in enhancing reconstruction accuracy and perceptual quality.
comment: 8 pages
☆ Does the Skeleton-Recall Loss Really Work?
Image segmentation is an important and widely performed task in computer vision. Accomplishing effective image segmentation in diverse settings often requires custom model architectures and loss functions. A set of models that specialize in segmenting thin tubular structures are topology preservation-based loss functions. These models often utilize a pixel skeletonization process claimed to generate more precise segmentation masks of thin tubes and better capture the structures that other models often miss. One such model, Skeleton Recall Loss (SRL) proposed by Kirchhoff et al.~\cite {kirchhoff2024srl}, was stated to produce state-of-the-art results on benchmark tubular datasets. In this work, we performed a theoretical analysis of the gradients for the SRL loss. Upon comparing the performance of the proposed method on some of the tubular datasets (used in the original work, along with some additional datasets), we found that the performance of SRL-based segmentation models did not exceed traditional baseline models. By providing both a theoretical explanation and empirical evidence, this work critically evaluates the limitations of topology-based loss functions, offering valuable insights for researchers aiming to develop more effective segmentation models for complex tubular structures.
☆ Leveraging the RETFound foundation model for optic disc segmentation in retinal images
RETFound is a well-known foundation model (FM) developed for fundus camera and optical coherence tomography images. It has shown promising performance across multiple datasets in diagnosing diseases, both eye-specific and systemic, from retinal images. However, to our best knowledge, it has not been used for other tasks. We present the first adaptation of RETFound for optic disc segmentation, a ubiquitous and foundational task in retinal image analysis. The resulting segmentation system outperforms state-of-the-art, segmentation-specific baseline networks after training a head with only a very modest number of task-specific examples. We report and discuss results with four public datasets, IDRID, Drishti-GS, RIM-ONE-r3, and REFUGE, and a private dataset, GoDARTS, achieving about 96% Dice consistently across all datasets. Overall, our method obtains excellent performance in internal verification, domain generalization and domain adaptation, and exceeds most of the state-of-the-art baseline results. We discuss the results in the framework of the debate about FMs as alternatives to task-specific architectures. The code is available at: [link to be added after the paper is accepted]
☆ HOID-R1: Reinforcement Learning for Open-World Human-Object Interaction Detection Reasoning with Multimodal Large Language Model
Understanding and recognizing human-object interaction (HOI) is a pivotal application in AR/VR and robotics. Recent open-vocabulary HOI detection approaches depend exclusively on large language models for richer textual prompts, neglecting their inherent 3D spatial understanding capabilities. To address this shortcoming, we introduce HOID-R1, the first HOI detection framework that integrates chain-of-thought (CoT) guided supervised fine-tuning (SFT) with group relative policy optimization (GRPO) within a reinforcement learning (RL) paradigm. Specifically, we initially apply SFT to imbue the model with essential reasoning capabilities, forcing the model to articulate its thought process in the output. Subsequently, we integrate GRPO to leverage multi-reward signals for policy optimization, thereby enhancing alignment across diverse modalities. To mitigate hallucinations in the CoT reasoning, we introduce an "MLLM-as-a-judge" mechanism that supervises the CoT outputs, further improving generalization. Extensive experiments show that HOID-R1 achieves state-of-the-art performance on HOI detection benchmarks and outperforms existing methods in open-world generalization to novel scenarios.
☆ Semantically Guided Adversarial Testing of Vision Models Using Language Models
In targeted adversarial attacks on vision models, the selection of the target label is a critical yet often overlooked determinant of attack success. This target label corresponds to the class that the attacker aims to force the model to predict. Now, existing strategies typically rely on randomness, model predictions, or static semantic resources, limiting interpretability, reproducibility, or flexibility. This paper then proposes a semantics-guided framework for adversarial target selection using the cross-modal knowledge transfer from pretrained language and vision-language models. We evaluate several state-of-the-art models (BERT, TinyLLAMA, and CLIP) as similarity sources to select the most and least semantically related labels with respect to the ground truth, forming best- and worst-case adversarial scenarios. Our experiments on three vision models and five attack methods reveal that these models consistently render practical adversarial targets and surpass static lexical databases, such as WordNet, particularly for distant class relationships. We also observe that static testing of target labels offers a preliminary assessment of the effectiveness of similarity sources, \textit{a priori} testing. Our results corroborate the suitability of pretrained models for constructing interpretable, standardized, and scalable adversarial benchmarks across architectures and datasets.
comment: 12 pages, 4 figures, 3 tables. Submitted for peer review
☆ Cost-Effective Active Labeling for Data-Efficient Cervical Cell Classification
Information on the number and category of cervical cells is crucial for the diagnosis of cervical cancer. However, existing classification methods capable of automatically measuring this information require the training dataset to be representative, which consumes an expensive or even unaffordable human cost. We herein propose active labeling that enables us to construct a representative training dataset using a much smaller human cost for data-efficient cervical cell classification. This cost-effective method efficiently leverages the classifier's uncertainty on the unlabeled cervical cell images to accurately select images that are most beneficial to label. With a fast estimation of the uncertainty, this new algorithm exhibits its validity and effectiveness in enhancing the representative ability of the constructed training dataset. The extensive empirical results confirm its efficacy again in navigating the usage of human cost, opening the avenue for data-efficient cervical cell classification.
comment: accepted by CW2025
☆ Index-Aligned Query Distillation for Transformer-based Incremental Object Detection
Incremental object detection (IOD) aims to continuously expand the capability of a model to detect novel categories while preserving its performance on previously learned ones. When adopting a transformer-based detection model to perform IOD, catastrophic knowledge forgetting may inevitably occur, meaning the detection performance on previously learned categories may severely degenerate. Previous typical methods mainly rely on knowledge distillation (KD) to mitigate the catastrophic knowledge forgetting of transformer-based detection models. Specifically, they utilize Hungarian Matching to build a correspondence between the queries of the last-phase and current-phase detection models and align the classifier and regressor outputs between matched queries to avoid knowledge forgetting. However, we observe that in IOD task, Hungarian Matching is not a good choice. With Hungarian Matching, the query of the current-phase model may match different queries of the last-phase model at different iterations during KD. As a result, the knowledge encoded in each query may be reshaped towards new categories, leading to the forgetting of previously encoded knowledge of old categories. Based on our observations, we propose a new distillation approach named Index-Aligned Query Distillation (IAQD) for transformer-based IOD. Beyond using Hungarian Matching, IAQD establishes a correspondence between queries of the previous and current phase models that have the same index. Moreover, we perform index-aligned distillation only on partial queries which are critical for the detection of previous categories. In this way, IAQD largely preserves the previous semantic and spatial encoding capabilities without interfering with the learning of new categories. Extensive experiments on representative benchmarks demonstrate that IAQD effectively mitigates knowledge forgetting, achieving new state-of-the-art performance.
comment: 12 pages, 5 figures
☆ GANDiff FR: Hybrid GAN Diffusion Synthesis for Causal Bias Attribution in Face Recognition ICCV
We introduce GANDiff FR, the first synthetic framework that precisely controls demographic and environmental factors to measure, explain, and reduce bias with reproducible rigor. GANDiff FR unifies StyleGAN3-based identity-preserving generation with diffusion-based attribute control, enabling fine-grained manipulation of pose around 30 degrees, illumination (four directions), and expression (five levels) under ceteris paribus conditions. We synthesize 10,000 demographically balanced faces across five cohorts validated for realism via automated detection (98.2%) and human review (89%) to isolate and quantify bias drivers. Benchmarking ArcFace, CosFace, and AdaFace under matched operating points shows AdaFace reduces inter-group TPR disparity by 60% (2.5% vs. 6.3%), with illumination accounting for 42% of residual bias. Cross-dataset evaluation on RFW, BUPT, and CASIA WebFace confirms strong synthetic-to-real transfer (r 0.85). Despite around 20% computational overhead relative to pure GANs, GANDiff FR yields three times more attribute-conditioned variants, establishing a reproducible, regulation-aligned (EU AI Act) standard for fairness auditing. Code and data are released to support transparent, scalable bias evaluation.
comment: Accepted in ICCVDM '25
☆ Guiding WaveMamba with Frequency Maps for Image Debanding
Compression at low bitrates in modern codecs often introduces banding artifacts, especially in smooth regions such as skies. These artifacts degrade visual quality and are common in user-generated content due to repeated transcoding. We propose a banding restoration method that employs the Wavelet State Space Model and a frequency masking map to preserve high-frequency details. Furthermore, we provide a benchmark of open-source banding restoration methods and evaluate their performance on two public banding image datasets. Experimentation on the available datasets suggests that the proposed post-processing approach effectively suppresses banding compared to the state-of-the-art method (a DBI value of 0.082 on BAND-2k) while preserving image textures. Visual inspections of the results confirm this. Code and supplementary material are available at: https://github.com/xinyiW915/Debanding-PCS2025.
comment: 5 pages, 2 figures
☆ Noise Matters: Optimizing Matching Noise for Diffusion Classifiers
Although today's pretrained discriminative vision-language models (e.g., CLIP) have demonstrated strong perception abilities, such as zero-shot image classification, they also suffer from the bag-of-words problem and spurious bias. To mitigate these problems, some pioneering studies leverage powerful generative models (e.g., pretrained diffusion models) to realize generalizable image classification, dubbed Diffusion Classifier (DC). Specifically, by randomly sampling a Gaussian noise, DC utilizes the differences of denoising effects with different category conditions to classify categories. Unfortunately, an inherent and notorious weakness of existing DCs is noise instability: different random sampled noises lead to significant performance changes. To achieve stable classification performance, existing DCs always ensemble the results of hundreds of sampled noises, which significantly reduces the classification speed. To this end, we firstly explore the role of noise in DC, and conclude that: there are some ``good noises'' that can relieve the instability. Meanwhile, we argue that these good noises should meet two principles: Frequency Matching and Spatial Matching. Regarding both principles, we propose a novel Noise Optimization method to learn matching (i.e., good) noise for DCs: NoOp. For frequency matching, NoOp first optimizes a dataset-specific noise: Given a dataset and a timestep t, optimize one randomly initialized parameterized noise. For Spatial Matching, NoOp trains a Meta-Network that adopts an image as input and outputs image-specific noise offset. The sum of optimized noise and noise offset will be used in DC to replace random noise. Extensive ablations on various datasets demonstrated the effectiveness of NoOp.
Delving into Dynamic Scene Cue-Consistency for Robust 3D Multi-Object Tracking
3D multi-object tracking is a critical and challenging task in the field of autonomous driving. A common paradigm relies on modeling individual object motion, e.g., Kalman filters, to predict trajectories. While effective in simple scenarios, this approach often struggles in crowded environments or with inaccurate detections, as it overlooks the rich geometric relationships between objects. This highlights the need to leverage spatial cues. However, existing geometry-aware methods can be susceptible to interference from irrelevant objects, leading to ambiguous features and incorrect associations. To address this, we propose focusing on cue-consistency: identifying and matching stable spatial patterns over time. We introduce the Dynamic Scene Cue-Consistency Tracker (DSC-Track) to implement this principle. Firstly, we design a unified spatiotemporal encoder using Point Pair Features (PPF) to learn discriminative trajectory embeddings while suppressing interference. Secondly, our cue-consistency transformer module explicitly aligns consistent feature representations between historical tracks and current detections. Finally, a dynamic update mechanism preserves salient spatiotemporal information for stable online tracking. Extensive experiments on the nuScenes and Waymo Open Datasets validate the effectiveness and robustness of our approach. On the nuScenes benchmark, for instance, our method achieves state-of-the-art performance, reaching 73.2% and 70.3% AMOTA on the validation and test sets, respectively.
☆ Logic Unseen: Revealing the Logical Blindspots of Vision-Language Models
Vision-Language Models (VLMs), exemplified by CLIP, have emerged as foundational for multimodal intelligence. However, their capacity for logical understanding remains significantly underexplored, resulting in critical ''logical blindspots'' that limit their reliability in practical applications. To systematically diagnose this, we introduce LogicBench, a comprehensive benchmark with over 50,000 vision-language pairs across 9 logical categories and 4 diverse scenarios: images, videos, anomaly detection, and medical diagnostics. Our evaluation reveals that existing VLMs, even the state-of-the-art ones, fall at over 40 accuracy points below human performance, particularly in challenging tasks like Causality and Conditionality, highlighting their reliance on surface semantics over critical logical structures. To bridge this gap, we propose LogicCLIP, a novel training framework designed to boost VLMs' logical sensitivity through advancements in both data generation and optimization objectives. LogicCLIP utilizes logic-aware data generation and a contrastive learning strategy that combines coarse-grained alignment, a fine-grained multiple-choice objective, and a novel logical structure-aware objective. Extensive experiments demonstrate LogicCLIP's substantial improvements in logical comprehension across all LogicBench domains, significantly outperforming baselines. Moreover, LogicCLIP retains, and often surpasses, competitive performance on general vision-language benchmarks, demonstrating that the enhanced logical understanding does not come at the expense of general alignment. We believe that LogicBench and LogicCLIP will be important resources for advancing VLM logical capabilities.
☆ Denoise-then-Retrieve: Text-Conditioned Video Denoising for Video Moment Retrieval IJCAI 2025
Current text-driven Video Moment Retrieval (VMR) methods encode all video clips, including irrelevant ones, disrupting multimodal alignment and hindering optimization. To this end, we propose a denoise-then-retrieve paradigm that explicitly filters text-irrelevant clips from videos and then retrieves the target moment using purified multimodal representations. Following this paradigm, we introduce the Denoise-then-Retrieve Network (DRNet), comprising Text-Conditioned Denoising (TCD) and Text-Reconstruction Feedback (TRF) modules. TCD integrates cross-attention and structured state space blocks to dynamically identify noisy clips and produce a noise mask to purify multimodal video representations. TRF further distills a single query embedding from purified video representations and aligns it with the text embedding, serving as auxiliary supervision for denoising during training. Finally, we perform conditional retrieval using text embeddings on purified video representations for accurate VMR. Experiments on Charades-STA and QVHighlights demonstrate that our approach surpasses state-of-the-art methods on all metrics. Furthermore, our denoise-then-retrieve paradigm is adaptable and can be seamlessly integrated into advanced VMR models to boost performance.
comment: Accepted by IJCAI 2025
☆ Hyperspectral vs. RGB for Pedestrian Segmentation in Urban Driving Scenes: A Comparative Study
Pedestrian segmentation in automotive perception systems faces critical safety challenges due to metamerism in RGB imaging, where pedestrians and backgrounds appear visually indistinguishable.. This study investigates the potential of hyperspectral imaging (HSI) for enhanced pedestrian segmentation in urban driving scenarios using the Hyperspectral City v2 (H-City) dataset. We compared standard RGB against two dimensionality-reduction approaches by converting 128-channel HSI data into three-channel representations: Principal Component Analysis (PCA) and optimal band selection using Contrast Signal-to-Noise Ratio with Joint Mutual Information Maximization (CSNR-JMIM). Three semantic segmentation models were evaluated: U-Net, DeepLabV3+, and SegFormer. CSNR-JMIM consistently outperformed RGB with an average improvements of 1.44% in Intersection over Union (IoU) and 2.18% in F1-score for pedestrian segmentation. Rider segmentation showed similar gains with 1.43% IoU and 2.25% F1-score improvements. These improved performance results from enhanced spectral discrimination of optimally selected HSI bands effectively reducing false positives. This study demonstrates robust pedestrian segmentation through optimal HSI band selection, showing significant potential for safety-critical automotive applications.
comment: Submitted to IEEE ICVES, July, 2025
☆ Allen: Rethinking MAS Design through Step-Level Policy Autonomy
We introduce a new Multi-Agent System (MAS) - Allen, designed to address two core challenges in current MAS design: (1) improve system's policy autonomy, empowering agents to dynamically adapt their behavioral strategies, and (2) achieving the trade-off between collaborative efficiency, task supervision, and human oversight in complex network topologies. Our core insight is to redefine the basic execution unit in the MAS, allowing agents to autonomously form different patterns by combining these units. We have constructed a four-tier state architecture (Task, Stage, Agent, Step) to constrain system behavior from both task-oriented and execution-oriented perspectives. This achieves a unification of topological optimization and controllable progress. Allen grants unprecedented Policy Autonomy, while making a trade-off for the controllability of the collaborative structure. The project code has been open source at: https://github.com/motern88/Allen
☆ Scene Graph-Guided Proactive Replanning for Failure-Resilient Embodied Agent
When humans perform everyday tasks, we naturally adjust our actions based on the current state of the environment. For instance, if we intend to put something into a drawer but notice it is closed, we open it first. However, many autonomous robots lack this adaptive awareness. They often follow pre-planned actions that may overlook subtle yet critical changes in the scene, which can result in actions being executed under outdated assumptions and eventual failure. While replanning is critical for robust autonomy, most existing methods respond only after failures occur, when recovery may be inefficient or infeasible. While proactive replanning holds promise for preventing failures in advance, current solutions often rely on manually designed rules and extensive supervision. In this work, we present a proactive replanning framework that detects and corrects failures at subtask boundaries by comparing scene graphs constructed from current RGB-D observations against reference graphs extracted from successful demonstrations. When the current scene fails to align with reference trajectories, a lightweight reasoning module is activated to diagnose the mismatch and adjust the plan. Experiments in the AI2-THOR simulator demonstrate that our approach detects semantic and spatial mismatches before execution failures occur, significantly improving task success and robustness.
☆ Unifying Scale-Aware Depth Prediction and Perceptual Priors for Monocular Endoscope Pose Estimation and Tissue Reconstruction
Accurate endoscope pose estimation and 3D tissue surface reconstruction significantly enhances monocular minimally invasive surgical procedures by enabling accurate navigation and improved spatial awareness. However, monocular endoscope pose estimation and tissue reconstruction face persistent challenges, including depth ambiguity, physiological tissue deformation, inconsistent endoscope motion, limited texture fidelity, and a restricted field of view. To overcome these limitations, a unified framework for monocular endoscopic tissue reconstruction that integrates scale-aware depth prediction with temporally-constrained perceptual refinement is presented. This framework incorporates a novel MAPIS-Depth module, which leverages Depth Pro for robust initialisation and Depth Anything for efficient per-frame depth prediction, in conjunction with L-BFGS-B optimisation, to generate pseudo-metric depth estimates. These estimates are temporally refined by computing pixel correspondences using RAFT and adaptively blending flow-warped frames based on LPIPS perceptual similarity, thereby reducing artefacts arising from physiological tissue deformation and motion. To ensure accurate registration of the synthesised pseudo-RGBD frames from MAPIS-Depth, a novel WEMA-RTDL module is integrated, optimising both rotation and translation. Finally, truncated signed distance function-based volumetric fusion and marching cubes are applied to extract a comprehensive 3D surface mesh. Evaluations on HEVD and SCARED, with ablation and comparative analyses, demonstrate the framework's robustness and superiority over state-of-the-art methods.
comment: 18 pages, 8 figures, 3 Tables, submitted to IEEE Access for review
☆ Boosting the Robustness-Accuracy Trade-off of SNNs by Robust Temporal Self-Ensemble
Spiking Neural Networks (SNNs) offer a promising direction for energy-efficient and brain-inspired computing, yet their vulnerability to adversarial perturbations remains poorly understood. In this work, we revisit the adversarial robustness of SNNs through the lens of temporal ensembling, treating the network as a collection of evolving sub-networks across discrete timesteps. This formulation uncovers two critical but underexplored challenges-the fragility of individual temporal sub-networks and the tendency for adversarial vulnerabilities to transfer across time. To overcome these limitations, we propose Robust Temporal self-Ensemble (RTE), a training framework that improves the robustness of each sub-network while reducing the temporal transferability of adversarial perturbations. RTE integrates both objectives into a unified loss and employs a stochastic sampling strategy for efficient optimization. Extensive experiments across multiple benchmarks demonstrate that RTE consistently outperforms existing training methods in robust-accuracy trade-off. Additional analyses reveal that RTE reshapes the internal robustness landscape of SNNs, leading to more resilient and temporally diversified decision boundaries. Our study highlights the importance of temporal structure in adversarial learning and offers a principled foundation for building robust spiking models.
☆ Probing the Representational Power of Sparse Autoencoders in Vision Models ICCV 2025
Sparse Autoencoders (SAEs) have emerged as a popular tool for interpreting the hidden states of large language models (LLMs). By learning to reconstruct activations from a sparse bottleneck layer, SAEs discover interpretable features from the high-dimensional internal representations of LLMs. Despite their popularity with language models, SAEs remain understudied in the visual domain. In this work, we provide an extensive evaluation the representational power of SAEs for vision models using a broad range of image-based tasks. Our experimental results demonstrate that SAE features are semantically meaningful, improve out-of-distribution generalization, and enable controllable generation across three vision model architectures: vision embedding models, multi-modal LMMs and diffusion models. In vision embedding models, we find that learned SAE features can be used for OOD detection and provide evidence that they recover the ontological structure of the underlying model. For diffusion models, we demonstrate that SAEs enable semantic steering through text encoder manipulation and develop an automated pipeline for discovering human-interpretable attributes. Finally, we conduct exploratory experiments on multi-modal LLMs, finding evidence that SAE features reveal shared representations across vision and language modalities. Our study provides a foundation for SAE evaluation in vision models, highlighting their strong potential improving interpretability, generalization, and steerability in the visual domain.
comment: ICCV 2025 Findings
☆ Enhancing Supervised Composed Image Retrieval via Reasoning-Augmented Representation Engineering
Composed Image Retrieval (CIR) presents a significant challenge as it requires jointly understanding a reference image and a modified textual instruction to find relevant target images. Some existing methods attempt to use a two-stage approach to further refine retrieval results. However, this often requires additional training of a ranking model. Despite the success of Chain-of-Thought (CoT) techniques in reducing training costs for language models, their application in CIR tasks remains limited -- compressing visual information into text or relying on elaborate prompt designs. Besides, existing works only utilize it for zero-shot CIR, as it is challenging to achieve satisfactory results in supervised CIR with a well-trained model. In this work, we proposed a framework that includes the Pyramid Matching Model with Training-Free Refinement (PMTFR) to address these challenges. Through a simple but effective module called Pyramid Patcher, we enhanced the Pyramid Matching Model's understanding of visual information at different granularities. Inspired by representation engineering, we extracted representations from COT data and injected them into the LVLMs. This approach allowed us to obtain refined retrieval scores in the Training-Free Refinement paradigm without relying on explicit textual reasoning, further enhancing performance. Extensive experiments on CIR benchmarks demonstrate that PMTFR surpasses state-of-the-art methods in supervised CIR tasks. The code will be made public.
☆ Domain-aware Category-level Geometry Learning Segmentation for 3D Point Clouds ICCV 2025
Domain generalization in 3D segmentation is a critical challenge in deploying models to unseen environments. Current methods mitigate the domain shift by augmenting the data distribution of point clouds. However, the model learns global geometric patterns in point clouds while ignoring the category-level distribution and alignment. In this paper, a category-level geometry learning framework is proposed to explore the domain-invariant geometric features for domain generalized 3D semantic segmentation. Specifically, Category-level Geometry Embedding (CGE) is proposed to perceive the fine-grained geometric properties of point cloud features, which constructs the geometric properties of each class and couples geometric embedding to semantic learning. Secondly, Geometric Consistent Learning (GCL) is proposed to simulate the latent 3D distribution and align the category-level geometric embeddings, allowing the model to focus on the geometric invariant information to improve generalization. Experimental results verify the effectiveness of the proposed method, which has very competitive segmentation accuracy compared with the state-of-the-art domain generalized point cloud methods.
comment: to be published in International Conference on Computer Vision, ICCV 2025
☆ Vision-Language Models display a strong gender bias
Vision-language models (VLM) align images and text in a shared representation space that is useful for retrieval and zero-shot transfer. Yet, this alignment can encode and amplify social stereotypes in subtle ways that are not obvious from standard accuracy metrics. In this study, we test whether the contrastive vision-language encoder exhibits gender-linked associations when it places embeddings of face images near embeddings of short phrases that describe occupations and activities. We assemble a dataset of 220 face photographs split by perceived binary gender and a set of 150 unique statements distributed across six categories covering emotional labor, cognitive labor, domestic labor, technical labor, professional roles, and physical labor. We compute unit-norm image embeddings for every face and unit-norm text embeddings for every statement, then define a statement-level association score as the difference between the mean cosine similarity to the male set and the mean cosine similarity to the female set, where positive values indicate stronger association with the male set and negative values indicate stronger association with the female set. We attach bootstrap confidence intervals by resampling images within each gender group, aggregate by category with a separate bootstrap over statements, and run a label-swap null model that estimates the level of mean absolute association we would expect if no gender structure were present. The outcome is a statement-wise and category-wise map of gender associations in a contrastive vision-language space, accompanied by uncertainty, simple sanity checks, and a robust gender bias evaluation framework.
☆ Temporally-Similar Structure-Aware Spatiotemporal Fusion of Satellite Images
This paper proposes a novel spatiotemporal (ST) fusion framework for satellite images, named Temporally-Similar Structure-Aware ST fusion (TSSTF). ST fusion is a promising approach to address the trade-off between the spatial and temporal resolution of satellite images. In real-world scenarios, observed satellite images are severely degraded by noise due to measurement equipment and environmental conditions. Consequently, some recent studies have focused on enhancing the robustness of ST fusion methods against noise. However, existing noise-robust ST fusion approaches often fail to capture fine spatial structure, leading to oversmoothing and artifacts. To address this issue, TSSTF introduces two key mechanisms: Temporally-Guided Total Variation (TGTV) and Temporally-Guided Edge Constraint (TGEC). TGTV is a novel regularization function that promotes spatial piecewise smoothness while preserving structural details, guided by a reference high spatial resolution image acquired on a nearby date. TGEC enforces consistency in edge locations between two temporally adjacent images, while allowing for spectral variations. We formulate the ST fusion task as a constrained optimization problem incorporating TGTV and TGEC, and develop an efficient algorithm based on a preconditioned primal-dual splitting method. Experimental results demonstrate that TSSTF performs comparably to state-of-the-art methods under noise-free conditions and outperforms them under noisy conditions. Additionally, we provide a comprehensive set of recommended parameter values that consistently yield high performance across diverse target regions and noise conditions, aiming to enhance reproducibility and practical utility.
comment: Submitted to IEEE Transactions on Geoscience and Remote Sensing. arXiv admin note: text overlap with arXiv:2308.00500
☆ Generalized Decoupled Learning for Enhancing Open-Vocabulary Dense Perception
Dense visual perception tasks have been constrained by their reliance on predefined categories, limiting their applicability in real-world scenarios where visual concepts are unbounded. While Vision-Language Models (VLMs) like CLIP have shown promise in open-vocabulary tasks, their direct application to dense perception often leads to suboptimal performance due to limitations in local feature representation. In this work, we present our observation that CLIP's image tokens struggle to effectively aggregate information from spatially or semantically related regions, resulting in features that lack local discriminability and spatial consistency. To address this issue, we propose DeCLIP, a novel framework that enhances CLIP by decoupling the self-attention module to obtain ``content'' and ``context'' features respectively. \revise{The context features are enhanced by jointly distilling semantic correlations from Vision Foundation Models (VFMs) and object integrity cues from diffusion models, thereby enhancing spatial consistency. In parallel, the content features are aligned with image crop representations and constrained by region correlations from VFMs to improve local discriminability. Extensive experiments demonstrate that DeCLIP establishes a solid foundation for open-vocabulary dense perception, consistently achieving state-of-the-art performance across a broad spectrum of tasks, including 2D detection and segmentation, 3D instance segmentation, video instance segmentation, and 6D object pose estimation.} Code is available at https://github.com/xiaomoguhz/DeCLIP
comment: arXiv admin note: text overlap with arXiv:2505.04410
☆ FantasyTalking2: Timestep-Layer Adaptive Preference Optimization for Audio-Driven Portrait Animation
Recent advances in audio-driven portrait animation have demonstrated impressive capabilities. However, existing methods struggle to align with fine-grained human preferences across multiple dimensions, such as motion naturalness, lip-sync accuracy, and visual quality. This is due to the difficulty of optimizing among competing preference objectives, which often conflict with one another, and the scarcity of large-scale, high-quality datasets with multidimensional preference annotations. To address these, we first introduce Talking-Critic, a multimodal reward model that learns human-aligned reward functions to quantify how well generated videos satisfy multidimensional expectations. Leveraging this model, we curate Talking-NSQ, a large-scale multidimensional human preference dataset containing 410K preference pairs. Finally, we propose Timestep-Layer adaptive multi-expert Preference Optimization (TLPO), a novel framework for aligning diffusion-based portrait animation models with fine-grained, multidimensional preferences. TLPO decouples preferences into specialized expert modules, which are then fused across timesteps and network layers, enabling comprehensive, fine-grained enhancement across all dimensions without mutual interference. Experiments demonstrate that Talking-Critic significantly outperforms existing methods in aligning with human preference ratings. Meanwhile, TLPO achieves substantial improvements over baseline models in lip-sync accuracy, motion naturalness, and visual quality, exhibiting superior performance in both qualitative and quantitative evaluations. Ours project page: https://fantasy-amap.github.io/fantasy-talking2/
comment: https://fantasy-amap.github.io/fantasy-talking2/
☆ A CLIP-based Uncertainty Modal Modeling (UMM) Framework for Pedestrian Re-Identification in Autonomous Driving
Re-Identification (ReID) is a critical technology in intelligent perception systems, especially within autonomous driving, where onboard cameras must identify pedestrians across views and time in real-time to support safe navigation and trajectory prediction. However, the presence of uncertain or missing input modalities--such as RGB, infrared, sketches, or textual descriptions--poses significant challenges to conventional ReID approaches. While large-scale pre-trained models offer strong multimodal semantic modeling capabilities, their computational overhead limits practical deployment in resource-constrained environments. To address these challenges, we propose a lightweight Uncertainty Modal Modeling (UMM) framework, which integrates a multimodal token mapper, synthetic modality augmentation strategy, and cross-modal cue interactive learner. Together, these components enable unified feature representation, mitigate the impact of missing modalities, and extract complementary information across different data types. Additionally, UMM leverages CLIP's vision-language alignment ability to fuse multimodal inputs efficiently without extensive finetuning. Experimental results demonstrate that UMM achieves strong robustness, generalization, and computational efficiency under uncertain modality conditions, offering a scalable and practical solution for pedestrian re-identification in autonomous driving scenarios.
☆ Fluid Dynamics and Domain Reconstruction from Noisy Flow Images Using Physics-Informed Neural Networks and Quasi-Conformal Mapping
Blood flow imaging provides important information for hemodynamic behavior within the vascular system and plays an essential role in medical diagnosis and treatment planning. However, obtaining high-quality flow images remains a significant challenge. In this work, we address the problem of denoising flow images that may suffer from artifacts due to short acquisition times or device-induced errors. We formulate this task as an optimization problem, where the objective is to minimize the discrepancy between the modeled velocity field, constrained to satisfy the Navier-Stokes equations, and the observed noisy velocity data. To solve this problem, we decompose it into two subproblems: a fluid subproblem and a geometry subproblem. The fluid subproblem leverages a Physics-Informed Neural Network to reconstruct the velocity field from noisy observations, assuming a fixed domain. The geometry subproblem aims to infer the underlying flow region by optimizing a quasi-conformal mapping that deforms a reference domain. These two subproblems are solved in an alternating Gauss-Seidel fashion, iteratively refining both the velocity field and the domain. Upon convergence, the framework yields a high-quality reconstruction of the flow image. We validate the proposed method through experiments on synthetic flow data in a converging channel geometry under varying levels of Gaussian noise, and on real-like flow data in an aortic geometry with signal-dependent noise. The results demonstrate the effectiveness and robustness of the approach. Additionally, ablation studies are conducted to assess the influence of key hyperparameters.
☆ A Coarse-to-Fine Human Pose Estimation Method based on Two-stage Distillation and Progressive Graph Neural Network
Human pose estimation has been widely applied in the human-centric understanding and generation, but most existing state-of-the-art human pose estimation methods require heavy computational resources for accurate predictions. In order to obtain an accurate, robust yet lightweight human pose estimator, one feasible way is to transfer pose knowledge from a powerful teacher model to a less-parameterized student model by knowledge distillation. However, the traditional knowledge distillation framework does not fully explore the contextual information among human joints. Thus, in this paper, we propose a novel coarse-to-fine two-stage knowledge distillation framework for human pose estimation. In the first-stage distillation, we introduce the human joints structure loss to mine the structural information among human joints so as to transfer high-level semantic knowledge from the teacher model to the student model. In the second-stage distillation, we utilize an Image-Guided Progressive Graph Convolutional Network (IGP-GCN) to refine the initial human pose obtained from the first-stage distillation and supervise the training of the IGP-GCN in the progressive way by the final output pose of teacher model. The extensive experiments on the benchmark dataset: COCO keypoint and CrowdPose datasets, show that our proposed method performs favorably against lots of the existing state-of-the-art human pose estimation methods, especially for the more complex CrowdPose dataset, the performance improvement of our model is more significant.
☆ Efficient Image-to-Image Schrödinger Bridge for CT Field of View Extension
Computed tomography (CT) is a cornerstone imaging modality for non-invasive, high-resolution visualization of internal anatomical structures. However, when the scanned object exceeds the scanner's field of view (FOV), projection data are truncated, resulting in incomplete reconstructions and pronounced artifacts near FOV boundaries. Conventional reconstruction algorithms struggle to recover accurate anatomy from such data, limiting clinical reliability. Deep learning approaches have been explored for FOV extension, with diffusion generative models representing the latest advances in image synthesis. Yet, conventional diffusion models are computationally demanding and slow at inference due to their iterative sampling process. To address these limitations, we propose an efficient CT FOV extension framework based on the image-to-image Schr\"odinger Bridge (I$^2$SB) diffusion model. Unlike traditional diffusion models that synthesize images from pure Gaussian noise, I$^2$SB learns a direct stochastic mapping between paired limited-FOV and extended-FOV images. This direct correspondence yields a more interpretable and traceable generative process, enhancing anatomical consistency and structural fidelity in reconstructions. I$^2$SB achieves superior quantitative performance, with root-mean-square error (RMSE) values of 49.8\,HU on simulated noisy data and 152.0HU on real data, outperforming state-of-the-art diffusion models such as conditional denoising diffusion probabilistic models (cDDPM) and patch-based diffusion methods. Moreover, its one-step inference enables reconstruction in just 0.19s per 2D slice, representing over a 700-fold speedup compared to cDDPM (135s) and surpassing diffusionGAN (0.58s), the second fastest. This combination of accuracy and efficiency makes I$^2$SB highly suitable for real-time or clinical deployment.
comment: 10 pages
☆ StyleMM: Stylized 3D Morphable Face Model via Text-Driven Aligned Image Translation
We introduce StyleMM, a novel framework that can construct a stylized 3D Morphable Model (3DMM) based on user-defined text descriptions specifying a target style. Building upon a pre-trained mesh deformation network and a texture generator for original 3DMM-based realistic human faces, our approach fine-tunes these models using stylized facial images generated via text-guided image-to-image (i2i) translation with a diffusion model, which serve as stylization targets for the rendered mesh. To prevent undesired changes in identity, facial alignment, or expressions during i2i translation, we introduce a stylization method that explicitly preserves the facial attributes of the source image. By maintaining these critical attributes during image stylization, the proposed approach ensures consistent 3D style transfer across the 3DMM parameter space through image-based training. Once trained, StyleMM enables feed-forward generation of stylized face meshes with explicit control over shape, expression, and texture parameters, producing meshes with consistent vertex connectivity and animatability. Quantitative and qualitative evaluations demonstrate that our approach outperforms state-of-the-art methods in terms of identity-level facial diversity and stylization capability. The code and videos are available at [kwanyun.github.io/stylemm_page](kwanyun.github.io/stylemm_page).
comment: Pacific graphics 2025, CGF, 15 pages
☆ UAV-VL-R1: Generalizing Vision-Language Models via Supervised Fine-Tuning and Multi-Stage GRPO for UAV Visual Reasoning
Recent advances in vision-language models (VLMs) have demonstrated strong generalization in natural image tasks. However, their performance often degrades on unmanned aerial vehicle (UAV)-based aerial imagery, which features high resolution, complex spatial semantics, and strict real-time constraints. These challenges limit the applicability of general-purpose VLMs to structured aerial reasoning tasks. To address these challenges, we propose UAV-VL-R1, a lightweight VLM explicitly designed for aerial visual reasoning. It is trained using a hybrid method that combines supervised fine-tuning (SFT) and multi-stage reinforcement learning (RL). We leverage the group relative policy optimization (GRPO) algorithm to promote structured and interpretable reasoning through rule-guided rewards and intra-group policy alignment. To support model training and evaluation, we introduce a high-resolution visual question answering dataset named HRVQA-VL, which consists of 50,019 annotated samples covering eight UAV-relevant reasoning tasks, including object counting, transportation recognition, and spatial scene inference. Experimental results show that UAV-VL-R1 achieves a 48.17% higher zero-shot accuracy than the Qwen2-VL-2B-Instruct baseline and even outperforms its 72B-scale variant, which is 36x larger, on multiple tasks. Ablation studies reveal that while SFT improves semantic alignment, it may reduce reasoning diversity in mathematical tasks. GRPO-based RL compensates for this limitation by enhancing logical flexibility and the robustness of inference. Additionally, UAV-VL-R1 requires only 3.9GB of memory under FP16 inference and can be quantized to 2.5GB with INT8, supporting real-time deployment on resource-constrained UAV platforms.
☆ Generating Dialogues from Egocentric Instructional Videos for Task Assistance: Dataset, Method and Benchmark
Many everyday tasks ranging from fixing appliances, cooking recipes to car maintenance require expert knowledge, especially when tasks are complex and multi-step. Despite growing interest in AI agents, there is a scarcity of dialogue-video datasets grounded for real world task assistance. In this paper, we propose a simple yet effective approach that transforms single-person instructional videos into task-guidance two-person dialogues, aligned with fine grained steps and video-clips. Our fully automatic approach, powered by large language models, offers an efficient alternative to the substantial cost and effort required for human-assisted data collection. Using this technique, we build HowToDIV, a large-scale dataset containing 507 conversations, 6636 question-answer pairs and 24 hours of videoclips across diverse tasks in cooking, mechanics, and planting. Each session includes multi-turn conversation where an expert teaches a novice user how to perform a task step by step, while observing user's surrounding through a camera and microphone equipped wearable device. We establish the baseline benchmark performance on HowToDIV dataset through Gemma-3 model for future research on this new task of dialogues for procedural-task assistance.
CHARM3R: Towards Unseen Camera Height Robust Monocular 3D Detector ICCV 2025
Monocular 3D object detectors, while effective on data from one ego camera height, struggle with unseen or out-of-distribution camera heights. Existing methods often rely on Plucker embeddings, image transformations or data augmentation. This paper takes a step towards this understudied problem by first investigating the impact of camera height variations on state-of-the-art (SoTA) Mono3D models. With a systematic analysis on the extended CARLA dataset with multiple camera heights, we observe that depth estimation is a primary factor influencing performance under height variations. We mathematically prove and also empirically observe consistent negative and positive trends in mean depth error of regressed and ground-based depth models, respectively, under camera height changes. To mitigate this, we propose Camera Height Robust Monocular 3D Detector (CHARM3R), which averages both depth estimates within the model. CHARM3R improves generalization to unseen camera heights by more than $45\%$, achieving SoTA performance on the CARLA dataset. Codes and Models at https://github.com/abhi1kumar/CHARM3R
comment: ICCV 2025
☆ Versatile Video Tokenization with Generative 2D Gaussian Splatting
Video tokenization procedure is critical for a wide range of video processing tasks. Most existing approaches directly transform video into fixed-grid and patch-wise tokens, which exhibit limited versatility. Spatially, uniformly allocating a fixed number of tokens often leads to over-encoding in low-information regions. Temporally, reducing redundancy remains challenging without explicitly distinguishing between static and dynamic content. In this work, we propose the Gaussian Video Transformer (GVT), a versatile video tokenizer built upon a generative 2D Gaussian Splatting (2DGS) strategy. We first extract latent rigid features from a video clip and represent them with a set of 2D Gaussians generated by our proposed Spatio-Temporal Gaussian Embedding (STGE) mechanism in a feed-forward manner. Such generative 2D Gaussians not only enhance spatial adaptability by assigning higher (resp., lower) rendering weights to regions with higher (resp., lower) information content during rasterization, but also improve generalization by avoiding per-video optimization.To enhance the temporal versatility, we introduce a Gaussian Set Partitioning (GSP) strategy that separates the 2D Gaussians into static and dynamic sets, which explicitly model static content shared across different time-steps and dynamic content specific to each time-step, enabling a compact representation.We primarily evaluate GVT on the video reconstruction, while also assessing its performance on action recognition and compression using the UCF101, Kinetics, and DAVIS datasets. Extensive experiments demonstrate that GVT achieves a state-of-the-art video reconstruction quality, outperforms the baseline MAGVIT-v2 in action recognition, and delivers comparable compression performance.
☆ HistoViT: Vision Transformer for Accurate and Scalable Histopathological Cancer Diagnosis
Accurate and scalable cancer diagnosis remains a critical challenge in modern pathology, particularly for malignancies such as breast, prostate, bone, and cervical, which exhibit complex histological variability. In this study, we propose a transformer-based deep learning framework for multi-class tumor classification in histopathological images. Leveraging a fine-tuned Vision Transformer (ViT) architecture, our method addresses key limitations of conventional convolutional neural networks, offering improved performance, reduced preprocessing requirements, and enhanced scalability across tissue types. To adapt the model for histopathological cancer images, we implement a streamlined preprocessing pipeline that converts tiled whole-slide images into PyTorch tensors and standardizes them through data normalization. This ensures compatibility with the ViT architecture and enhances both convergence stability and overall classification performance. We evaluate our model on four benchmark datasets: ICIAR2018 (breast), SICAPv2 (prostate), UT-Osteosarcoma (bone), and SipakMed (cervical) dataset -- demonstrating consistent outperformance over existing deep learning methods. Our approach achieves classification accuracies of 99.32%, 96.92%, 95.28%, and 96.94% for breast, prostate, bone, and cervical cancers respectively, with area under the ROC curve (AUC) scores exceeding 99% across all datasets. These results confirm the robustness, generalizability, and clinical potential of transformer-based architectures in digital pathology. Our work represents a significant advancement toward reliable, automated, and interpretable cancer diagnosis systems that can alleviate diagnostic burdens and improve healthcare outcomes.
comment: 13 pages, 3 Figures
☆ Fine-Grained VLM Fine-tuning via Latent Hierarchical Adapter Learning
Adapter-based approaches have garnered attention for fine-tuning pre-trained Vision-Language Models (VLMs) on few-shot classification tasks. These methods strive to develop a lightweight module that better aligns visual and (category) textual representations, thereby enhancing performance on downstream few-shot learning tasks. However, existing adapters generally learn/align (category) textual-visual modalities via explicit spatial proximity in the underlying embedding space, which i) fails to capture the inherent one-to-many associations between categories and image samples and ii) struggles to establish accurate associations between the unknown categories and images. To address these issues, inspired by recent works on hyperbolic learning, we develop a novel Latent Hierarchical Adapter (LatHAdapter) for fine-tuning VLMs on downstream few-shot classification tasks. The core of LatHAdapter is to exploit the latent semantic hierarchy of downstream training data and employ it to provide richer, fine-grained guidance for the adapter learning process. Specifically, LatHAdapter first introduces some learnable `attribute' prompts as the bridge to align categories and images. Then, it projects the categories, attribute prompts, and images within each batch in a hyperbolic space, and employs hierarchical regularization to learn the latent semantic hierarchy of them, thereby fully modeling the inherent one-to-many associations among categories, learnable attributes, and image samples. Extensive experiments on four challenging few-shot tasks show that the proposed LatHAdapter consistently outperforms many other fine-tuning approaches, particularly in adapting known classes and generalizing to unknown classes.
☆ Exploring the Tradeoff Between Diversity and Discrimination for Continuous Category Discovery CIKM 2025
Continuous category discovery (CCD) aims to automatically discover novel categories in continuously arriving unlabeled data. This is a challenging problem considering that there is no number of categories and labels in the newly arrived data, while also needing to mitigate catastrophic forgetting. Most CCD methods cannot handle the contradiction between novel class discovery and classification well. They are also prone to accumulate errors in the process of gradually discovering novel classes. Moreover, most of them use knowledge distillation and data replay to prevent forgetting, occupying more storage space. To address these limitations, we propose Independence-based Diversity and Orthogonality-based Discrimination (IDOD). IDOD mainly includes independent enrichment of diversity module, joint discovery of novelty module, and continuous increment by orthogonality module. In independent enrichment, the backbone is trained separately using contrastive loss to avoid it focusing only on features for classification. Joint discovery transforms multi-stage novel class discovery into single-stage, reducing error accumulation impact. Continuous increment by orthogonality module generates mutually orthogonal prototypes for classification and prevents forgetting with lower space overhead via representative representation replay. Experimental results show that on challenging fine-grained datasets, our method outperforms the state-of-the-art methods.
comment: Accepted by CIKM 2025. 10 pages, 5 figures,
☆ Better Supervised Fine-tuning for VQA: Integer-Only Loss
With the rapid advancement of vision language models(VLM), their ability to assess visual content based on specific criteria and dimensions has become increasingly critical for applications such as video-theme consistency assessment and visual quality scoring. However, existing methods often suffer from imprecise results and inefficient loss calculation, which limit the focus of the model on key evaluation indicators. To address this, we propose IOVQA(Integer-only VQA), a novel fine-tuning approach tailored for VLMs to enhance their performance in video quality assessment tasks. The key innovation of IOVQA lies in its label construction and its targeted loss calculation mechanism. Specifically, during dataset curation, we constrain the model's output to integers within the range of [10,50], ensuring numerical stability, and convert decimal Overall_MOS to integer before using them as labels. We also introduce a target-mask strategy: when computing the loss, only the first two-digit-integer of the label is unmasked, forcing the model to learn the critical components of the numerical evaluation. After fine-tuning the Qwen2.5-VL model using the constructed dataset, experimental results demonstrate that the proposed method significantly improves the model's accuracy and consistency in the VQA task, ranking 3rd in VQualA 2025 GenAI-Bench AIGC Video Quality Assessment Challenge -- Track I. Our work highlights the effectiveness of merely leaving integer labels during fine-tuning, providing an effective idea for optimizing VLMs in quantitative evaluation scenarios.
☆ VFM-Guided Semi-Supervised Detection Transformer for Source-Free Object Detection in Remote Sensing Images
Unsupervised domain adaptation methods have been widely explored to bridge domain gaps. However, in real-world remote-sensing scenarios, privacy and transmission constraints often preclude access to source domain data, which limits their practical applicability. Recently, Source-Free Object Detection (SFOD) has emerged as a promising alternative, aiming at cross-domain adaptation without relying on source data, primarily through a self-training paradigm. Despite its potential, SFOD frequently suffers from training collapse caused by noisy pseudo-labels, especially in remote sensing imagery with dense objects and complex backgrounds. Considering that limited target domain annotations are often feasible in practice, we propose a Vision foundation-Guided DEtection TRansformer (VG-DETR), built upon a semi-supervised framework for SFOD in remote sensing images. VG-DETR integrates a Vision Foundation Model (VFM) into the training pipeline in a "free lunch" manner, leveraging a small amount of labeled target data to mitigate pseudo-label noise while improving the detector's feature-extraction capability. Specifically, we introduce a VFM-guided pseudo-label mining strategy that leverages the VFM's semantic priors to further assess the reliability of the generated pseudo-labels. By recovering potentially correct predictions from low-confidence outputs, our strategy improves pseudo-label quality and quantity. In addition, a dual-level VFM-guided alignment method is proposed, which aligns detector features with VFM embeddings at both the instance and image levels. Through contrastive learning among fine-grained prototypes and similarity matching between feature maps, this dual-level alignment further enhances the robustness of feature representations against domain gaps. Extensive experiments demonstrate that VG-DETR achieves superior performance in source-free remote sensing detection tasks.
comment: Manuscript submitted to IEEE TGRS
Semi-supervised Image Dehazing via Expectation-Maximization and Bidirectional Brownian Bridge Diffusion Models
Existing dehazing methods deal with real-world haze images with difficulty, especially scenes with thick haze. One of the main reasons is the lack of real-world paired data and robust priors. To avoid the costly collection of paired hazy and clear images, we propose an efficient semi-supervised image dehazing method via Expectation-Maximization and Bidirectional Brownian Bridge Diffusion Models (EM-B3DM) with a two-stage learning scheme. In the first stage, we employ the EM algorithm to decouple the joint distribution of paired hazy and clear images into two conditional distributions, which are then modeled using a unified Brownian Bridge diffusion model to directly capture the structural and content-related correlations between hazy and clear images. In the second stage, we leverage the pre-trained model and large-scale unpaired hazy and clear images to further improve the performance of image dehazing. Additionally, we introduce a detail-enhanced Residual Difference Convolution block (RDC) to capture gradient-level information, significantly enhancing the model's representation capability. Extensive experiments demonstrate that our EM-B3DM achieves superior or at least comparable performance to state-of-the-art methods on both synthetic and real-world datasets.
comment: 10 pages, 4 figures
☆ LEARN: A Story-Driven Layout-to-Image Generation Framework for STEM Instruction ICONIP
LEARN is a layout-aware diffusion framework designed to generate pedagogically aligned illustrations for STEM education. It leverages a curated BookCover dataset that provides narrative layouts and structured visual cues, enabling the model to depict abstract and sequential scientific concepts with strong semantic alignment. Through layout-conditioned generation, contrastive visual-semantic training, and prompt modulation, LEARN produces coherent visual sequences that support mid-to-high-level reasoning in line with Bloom's taxonomy while reducing extraneous cognitive load as emphasized by Cognitive Load Theory. By fostering spatially organized and story-driven narratives, the framework counters fragmented attention often induced by short-form media and promotes sustained conceptual focus. Beyond static diagrams, LEARN demonstrates potential for integration with multimodal systems and curriculum-linked knowledge graphs to create adaptive, exploratory educational content. As the first generative approach to unify layout-based storytelling, semantic structure learning, and cognitive scaffolding, LEARN represents a novel direction for generative AI in education. The code and dataset will be released to facilitate future research and practical deployment.
comment: The International Conference on Neural Information Processing (ICONIP) 2025
☆ A Cross-Modal Rumor Detection Scheme via Contrastive Learning by Exploring Text and Image internal Correlations
Existing rumor detection methods often neglect the content within images as well as the inherent relationships between contexts and images across different visual scales, thereby resulting in the loss of critical information pertinent to rumor identification. To address these issues, this paper presents a novel cross-modal rumor detection scheme based on contrastive learning, namely the Multi-scale Image and Context Correlation exploration algorithm (MICC). Specifically, we design an SCLIP encoder to generate unified semantic embeddings for text and multi-scale image patches through contrastive pretraining, enabling their relevance to be measured via dot-product similarity. Building upon this, a Cross-Modal Multi-Scale Alignment module is introduced to identify image regions most relevant to the textual semantics, guided by mutual information maximization and the information bottleneck principle, through a Top-K selection strategy based on a cross-modal relevance matrix constructed between the text and multi-scale image patches. Moreover, a scale-aware fusion network is designed to integrate the highly correlated multi-scale image features with global text features by assigning adaptive weights to image regions based on their semantic importance and cross-modal relevance. The proposed methodology has been extensively evaluated on two real-world datasets. The experimental results demonstrate that it achieves a substantial performance improvement over existing state-of-the-art approaches in rumor detection, highlighting its effectiveness and potential for practical applications.
Residual-based Efficient Bidirectional Diffusion Model for Image Dehazing and Haze Generation ICME
Current deep dehazing methods only focus on removing haze from hazy images, lacking the capability to translate between hazy and haze-free images. To address this issue, we propose a residual-based efficient bidirectional diffusion model (RBDM) that can model the conditional distributions for both dehazing and haze generation. Firstly, we devise dual Markov chains that can effectively shift the residuals and facilitate bidirectional smooth transitions between them. Secondly, the RBDM perturbs the hazy and haze-free images at individual timesteps and predicts the noise in the perturbed data to simultaneously learn the conditional distributions. Finally, to enhance performance on relatively small datasets and reduce computational costs, our method introduces a unified score function learned on image patches instead of entire images. Our RBDM successfully implements size-agnostic bidirectional transitions between haze-free and hazy images with only 15 sampling steps. Extensive experiments demonstrate that the proposed method achieves superior or at least comparable performance to state-of-the-art methods on both synthetic and real-world datasets.
comment: 7 pages, 5 figures, 2025 ICME Accepted
☆ Recent Advances in Transformer and Large Language Models for UAV Applications
The rapid advancement of Transformer-based models has reshaped the landscape of uncrewed aerial vehicle (UAV) systems by enhancing perception, decision-making, and autonomy. This review paper systematically categorizes and evaluates recent developments in Transformer architectures applied to UAVs, including attention mechanisms, CNN-Transformer hybrids, reinforcement learning Transformers, and large language models (LLMs). Unlike previous surveys, this work presents a unified taxonomy of Transformer-based UAV models, highlights emerging applications such as precision agriculture and autonomous navigation, and provides comparative analyses through structured tables and performance benchmarks. The paper also reviews key datasets, simulators, and evaluation metrics used in the field. Furthermore, it identifies existing gaps in the literature, outlines critical challenges in computational efficiency and real-time deployment, and offers future research directions. This comprehensive synthesis aims to guide researchers and practitioners in understanding and advancing Transformer-driven UAV technologies.
☆ From Pixels to Graphs: Deep Graph-Level Anomaly Detection on Dermoscopic Images
Graph Neural Networks (GNNs) have emerged as a powerful approach for graph-based machine learning tasks. Previous work applied GNNs to image-derived graph representations for various downstream tasks such as classification or anomaly detection. These transformations include segmenting images, extracting features from segments, mapping them to nodes, and connecting them. However, to the best of our knowledge, no study has rigorously compared the effectiveness of the numerous potential image-to-graph transformation approaches for GNN-based graph-level anomaly detection (GLAD). In this study, we systematically evaluate the efficacy of multiple segmentation schemes, edge construction strategies, and node feature sets based on color, texture, and shape descriptors to produce suitable image-derived graph representations to perform graph-level anomaly detection. We conduct extensive experiments on dermoscopic images using state-of-the-art GLAD models, examining performance and efficiency in purely unsupervised, weakly supervised, and fully supervised regimes. Our findings reveal, for example, that color descriptors contribute the best standalone performance, while incorporating shape and texture features consistently enhances detection efficacy. In particular, our best unsupervised configuration using OCGTL achieves a competitive AUC-ROC score of up to 0.805 without relying on pretrained backbones like comparable image-based approaches. With the inclusion of sparse labels, the performance increases substantially to 0.872 and with full supervision to 0.914 AUC-ROC.
☆ Towards Understanding 3D Vision: the Role of Gaussian Curvature
Recent advances in computer vision have predominantly relied on data-driven approaches that leverage deep learning and large-scale datasets. Deep neural networks have achieved remarkable success in tasks such as stereo matching and monocular depth reconstruction. However, these methods lack explicit models of 3D geometry that can be directly analyzed, transferred across modalities, or systematically modified for controlled experimentation. We investigate the role of Gaussian curvature in 3D surface modeling. Besides Gaussian curvature being an invariant quantity under change of observers or coordinate systems, we demonstrate using the Middlebury stereo dataset that it offers: (i) a sparse and compact description of 3D surfaces, (ii) state-of-the-art monocular and stereo methods seem to implicitly consider it, but no explicit module of such use can be extracted, (iii) a form of geometric prior that can inform and improve 3D surface reconstruction, and (iv) a possible use as an unsupervised metric for stereo methods.
☆ Labels or Input? Rethinking Augmentation in Multimodal Hate Detection
The modern web is saturated with multimodal content, intensifying the challenge of detecting hateful memes, where harmful intent is often conveyed through subtle interactions between text and image under the guise of humor or satire. While recent advances in Vision-Language Models (VLMs) show promise, these models lack support for fine-grained supervision and remain susceptible to implicit hate speech. In this paper, we present a dual-pronged approach to improve multimodal hate detection. First, we propose a prompt optimization framework that systematically varies prompt structure, supervision granularity, and training modality. We show that prompt design and label scaling both influence performance, with structured prompts improving robustness even in small models, and InternVL2 achieving the best F1-scores across binary and scaled settings. Second, we introduce a multimodal data augmentation pipeline that generates 2,479 counterfactually neutral memes by isolating and rewriting the hateful modality. This pipeline, powered by a multi-agent LLM-VLM setup, successfully reduces spurious correlations and improves classifier generalization. Our approaches inspire new directions for building synthetic data to train robust and fair vision-language models. Our findings demonstrate that prompt structure and data composition are as critical as model size, and that targeted augmentation can support more trustworthy and context-sensitive hate detection.
comment: 13 pages, 2 figures, 7 tables
☆ An MLP Baseline for Handwriting Recognition Using Planar Curvature and Gradient Orientation
This study investigates whether second-order geometric cues - planar curvature magnitude, curvature sign, and gradient orientation - are sufficient on their own to drive a multilayer perceptron (MLP) classifier for handwritten character recognition (HCR), offering an alternative to convolutional neural networks (CNNs). Using these three handcrafted feature maps as inputs, our curvature-orientation MLP achieves 97 percent accuracy on MNIST digits and 89 percent on EMNIST letters. These results underscore the discriminative power of curvature-based representations for handwritten character images and demonstrate that the advantages of deep learning can be realized even with interpretable, hand-engineered features.
comment: 5 pages, No figure
☆ VideoAVE: A Multi-Attribute Video-to-Text Attribute Value Extraction Dataset and Benchmark Models CIKM 2025
Attribute Value Extraction (AVE) is important for structuring product information in e-commerce. However, existing AVE datasets are primarily limited to text-to-text or image-to-text settings, lacking support for product videos, diverse attribute coverage, and public availability. To address these gaps, we introduce VideoAVE, the first publicly available video-to-text e-commerce AVE dataset across 14 different domains and covering 172 unique attributes. To ensure data quality, we propose a post-hoc CLIP-based Mixture of Experts filtering system (CLIP-MoE) to remove the mismatched video-product pairs, resulting in a refined dataset of 224k training data and 25k evaluation data. In order to evaluate the usability of the dataset, we further establish a comprehensive benchmark by evaluating several state-of-the-art video vision language models (VLMs) under both attribute-conditioned value prediction and open attribute-value pair extraction tasks. Our results analysis reveals that video-to-text AVE remains a challenging problem, particularly in open settings, and there is still room for developing more advanced VLMs capable of leveraging effective temporal information. The dataset and benchmark code for VideoAVE are available at: https://github.com/gjiaying/VideoAVE
comment: 5 pages, 2 figures, 5 tables, accepted in CIKM 2025
☆ Statistical analysis of multivariate planar curves and applications to X-ray classification
Recent developments in computer vision have enabled the availability of segmented images across various domains, such as medicine, where segmented radiography images play an important role in diagnosis-making. As prediction problems are common in medical image analysis, this work explores the use of segmented images (through the associated contours they highlight) as predictors in a supervised classification context. Consequently, we develop a new approach for image analysis that takes into account the shape of objects within images. For this aim, we introduce a new formalism that extends the study of single random planar curves to the joint analysis of multiple planar curves-referred to here as multivariate planar curves. In this framework, we propose a solution to the alignment issue in statistical shape analysis. The obtained multivariate shape variables are then used in functional classification methods through tangent projections. Detection of cardiomegaly in segmented X-rays and numerical experiments on synthetic data demonstrate the appeal and robustness of the proposed method.
♻ ☆ UI-Venus Technical Report: Building High-performance UI Agents with RFT
We present UI-Venus, a native UI agent that takes only screenshots as input based on a multimodal large language model. UI-Venus achieves SOTA performance on both UI grounding and navigation tasks using only several hundred thousand high-quality training samples through reinforcement finetune (RFT) based on Qwen2.5-VL. Specifically, the 7B and 72B variants of UI-Venus obtain 94.1% / 50.8% and 95.3% / 61.9% on the standard grounding benchmarks, i.e., Screenspot-V2 / Pro, surpassing the previous SOTA baselines including open-source GTA1 and closed-source UI-TARS-1.5. To show UI-Venus's summary and planing ability, we also evaluate it on the AndroidWorld, an online UI navigation arena, on which our 7B and 72B variants achieve 49.1% and 65.9% success rate, also beating existing models. To achieve this, we introduce carefully designed reward functions for both UI grounding and navigation tasks and corresponding efficient data cleaning strategies. To further boost navigation performance, we propose Self-Evolving Trajectory History Alignment & Sparse Action Enhancement that refine historical reasoning traces and balances the distribution of sparse but critical actions, leading to more coherent planning and better generalization in complex UI tasks. Our contributions include the publish of SOTA open-source UI agents, comprehensive data cleaning protocols and a novel self-evolving framework for improving navigation performance, which encourage further research and development in the community. Code is available at https://github.com/inclusionAI/UI-Venus.
♻ ☆ Preacher: Paper-to-Video Agentic System
The paper-to-video task converts a research paper into a structured video abstract, distilling key concepts, methods, and conclusions into an accessible, well-organized format. While state-of-the-art video generation models demonstrate potential, they are constrained by limited context windows, rigid video duration constraints, limited stylistic diversity, and an inability to represent domain-specific knowledge. To address these limitations, we introduce Preacher, the first paper-to-video agentic system. Preacher employs a topdown approach to decompose, summarize, and reformulate the paper, followed by bottom-up video generation, synthesizing diverse video segments into a coherent abstract. To align cross-modal representations, we define key scenes and introduce a Progressive Chain of Thought (P-CoT) for granular, iterative planning. Preacher successfully generates high-quality video abstracts across five research fields, demonstrating expertise beyond current video generation models. Code will be released at: https://github.com/GenVerse/Paper2Video
comment: Code not ready
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
We present GLM-4.1V-Thinking and GLM-4.5V, a family of vision-language models (VLMs) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document interpretation. In a comprehensive evaluation across 42 public benchmarks, GLM-4.5V achieves state-of-the-art performance on nearly all tasks among open-source models of similar size, and demonstrates competitive or even superior results compared to closed-source models such as Gemini-2.5-Flash on challenging tasks including Coding and GUI Agents. Meanwhile, the smaller GLM-4.1V-9B-Thinking remains highly competitive-achieving superior results to the much larger Qwen2.5-VL-72B on 29 benchmarks. We open-source both GLM-4.1V-9B-Thinking and GLM-4.5V. Code, models and more information are released at https://github.com/zai-org/GLM-V.
♻ ☆ PTQAT: A Hybrid Parameter-Efficient Quantization Algorithm for 3D Perception Tasks ICCV
Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT) represent two mainstream model quantization approaches. However, PTQ often leads to unacceptable performance degradation in quantized models, while QAT imposes substantial GPU memory requirements and extended training time due to weight fine-tuning. In this paper, we propose PTQAT, a novel general hybrid quantization algorithm for the efficient deployment of 3D perception networks. To address the speed accuracy trade-off between PTQ and QAT, our method selects critical layers for QAT fine-tuning and performs PTQ on the remaining layers. Contrary to intuition, fine-tuning the layers with smaller output discrepancies before and after quantization, rather than those with larger discrepancies, actually leads to greater improvements in the model's quantization accuracy. This means we better compensate for quantization errors during their propagation, rather than addressing them at the point where they occur. The proposed PTQAT achieves similar performance to QAT with more efficiency by freezing nearly 50% of quantifiable layers. Additionally, PTQAT is a universal quantization method that supports various quantization bit widths (4 bits) as well as different model architectures, including CNNs and Transformers. The experimental results on nuScenes across diverse 3D perception tasks, including object detection, semantic segmentation, and occupancy prediction, show that our method consistently outperforms QAT-only baselines. Notably, it achieves 0.2%-0.9% NDS and 0.3%-1.0% mAP gains in object detection, 0.3%-2.0% mIoU gains in semantic segmentation and occupancy prediction while fine-tuning fewer weights.
comment: 8 pages, Accepted by ICCVW 2025
♻ ☆ SynBrain: Enhancing Visual-to-fMRI Synthesis via Probabilistic Representation Learning
Deciphering how visual stimuli are transformed into cortical responses is a fundamental challenge in computational neuroscience. This visual-to-neural mapping is inherently a one-to-many relationship, as identical visual inputs reliably evoke variable hemodynamic responses across trials, contexts, and subjects. However, existing deterministic methods struggle to simultaneously model this biological variability while capturing the underlying functional consistency that encodes stimulus information. To address these limitations, we propose SynBrain, a generative framework that simulates the transformation from visual semantics to neural responses in a probabilistic and biologically interpretable manner. SynBrain introduces two key components: (i) BrainVAE models neural representations as continuous probability distributions via probabilistic learning while maintaining functional consistency through visual semantic constraints; (ii) A Semantic-to-Neural Mapper acts as a semantic transmission pathway, projecting visual semantics into the neural response manifold to facilitate high-fidelity fMRI synthesis. Experimental results demonstrate that SynBrain surpasses state-of-the-art methods in subject-specific visual-to-fMRI encoding performance. Furthermore, SynBrain adapts efficiently to new subjects with few-shot data and synthesizes high-quality fMRI signals that are effective in improving data-limited fMRI-to-image decoding performance. Beyond that, SynBrain reveals functional consistency across trials and subjects, with synthesized signals capturing interpretable patterns shaped by biological neural variability. The code will be made publicly available.
♻ ☆ Reverse Convolution and Its Applications to Image Restoration ICCV 2025
Convolution and transposed convolution are fundamental operators widely used in neural networks. However, transposed convolution (a.k.a. deconvolution) does not serve as a true inverse of convolution due to inherent differences in their mathematical formulations. To date, no reverse convolution operator has been established as a standard component in neural architectures. In this paper, we propose a novel depthwise reverse convolution operator as an initial attempt to effectively reverse depthwise convolution by formulating and solving a regularized least-squares optimization problem. We thoroughly investigate its kernel initialization, padding strategies, and other critical aspects to ensure its effective implementation. Building upon this operator, we further construct a reverse convolution block by combining it with layer normalization, 1$\times$1 convolution, and GELU activation, forming a Transformer-like structure. The proposed operator and block can directly replace conventional convolution and transposed convolution layers in existing architectures, leading to the development of ConverseNet. Corresponding to typical image restoration models such as DnCNN, SRResNet and USRNet, we train three variants of ConverseNet for Gaussian denoising, super-resolution and deblurring, respectively. Extensive experiments demonstrate the effectiveness of the proposed reverse convolution operator as a basic building module. We hope this work could pave the way for developing new operators in deep model design and applications.
comment: ICCV 2025; https://github.com/cszn/ConverseNet
♻ ☆ Seeing, Listening, Remembering, and Reasoning: A Multimodal Agent with Long-Term Memory
We introduce M3-Agent, a novel multimodal agent framework equipped with long-term memory. Like humans, M3-Agent can process real-time visual and auditory inputs to build and update its long-term memory. Beyond episodic memory, it also develops semantic memory, enabling it to accumulate world knowledge over time. Its memory is organized in an entity-centric, multimodal format, allowing deeper and more consistent understanding of the environment. Given an instruction, M3-Agent autonomously performs multi-turn, iterative reasoning and retrieves relevant information from memory to accomplish the task. To evaluate memory effectiveness and memory-based reasoning in multimodal agents, we develop M3-Bench, a new long-video question answering benchmark. M3-Bench comprises 100 newly recorded real-world videos captured from a robot's perspective (M3-Bench-robot) and 920 web-sourced videos across diverse scenarios (M3-Bench-web). We annotate question-answer pairs designed to test key capabilities essential for agent applications, such as human understanding, general knowledge extraction, and cross-modal reasoning. Experimental results show that M3-Agent, trained via reinforcement learning, outperforms the strongest baseline, a prompting agent using Gemini-1.5-pro and GPT-4o, achieving 6.7%, 7.7%, and 5.3% higher accuracy on M3-Bench-robot, M3-Bench-web and VideoMME-long, respectively. Our work advances the multimodal agents toward more human-like long-term memory and provides insights into their practical design. Model, code and data are available at https://github.com/bytedance-seed/m3-agent
♻ ☆ Diffusion Beats Autoregressive in Data-Constrained Settings
Autoregressive (AR) models have long dominated the landscape of large language models, driving progress across a wide range of tasks. Recently, diffusion-based language models have emerged as a promising alternative, though their advantages over AR models remain underexplored. In this paper, we systematically study masked diffusion models in data-constrained settings-where training involves repeated passes over limited data and find that they significantly outperform AR models when compute is abundant but data is scarce. Diffusion models make better use of repeated data, achieving lower validation loss and superior downstream performance. We find new scaling laws for diffusion models and derive a closed-form expression for the critical compute threshold at which diffusion begins to outperform AR. Finally, we explain why diffusion models excel in this regime: their randomized masking objective implicitly trains over a rich distribution of token orderings, acting as an implicit data augmentation that AR's fixed left-to-right factorization lacks. Our results suggest that when data, not compute, is the bottleneck, diffusion models offer a compelling alternative to the standard AR paradigm. Our code is available at: https://diffusion-scaling.github.io.
comment: Project Webpage: https://diffusion-scaling.github.io
♻ ☆ Lightweight Attribute Localizing Models for Pedestrian Attribute Recognition
Pedestrian Attribute Recognition (PAR) focuses on identifying various attributes in pedestrian images, with key applications in person retrieval, suspect re-identification, and soft biometrics. However, Deep Neural Networks (DNNs) for PAR often suffer from over-parameterization and high computational complexity, making them unsuitable for resource-constrained devices. Traditional tensor-based compression methods typically factorize layers without adequately preserving the gradient direction during compression, leading to inefficient compression and a significant accuracy loss. In this work, we propose a novel approach for determining the optimal ranks of low-rank layers, ensuring that the gradient direction of the compressed model closely aligns with that of the original model. This means that the compressed model effectively preserves the update direction of the full model, enabling more efficient compression for PAR tasks. The proposed procedure optimizes the compression ranks for each layer within the ALM model, followed by compression using CPD-EPC or truncated SVD. This results in a reduction in model complexity while maintaining high performance.
♻ ☆ PhysLab: A Benchmark Dataset for Multi-Granularity Visual Parsing of Physics Experiments
Visual parsing of images and videos is critical for a wide range of real-world applications. However, progress in this field is constrained by limitations of existing datasets: (1) insufficient annotation granularity, which impedes fine-grained scene understanding and high-level reasoning; (2) limited coverage of domains, particularly a lack of datasets tailored for educational scenarios; and (3) lack of explicit procedural guidance, with minimal logical rules and insufficient representation of structured task process. To address these gaps, we introduce PhysLab, the first video dataset that captures students conducting complex physics experiments. The dataset includes four representative experiments that feature diverse scientific instruments and rich human-object interaction (HOI) patterns. PhysLab comprises 620 long-form videos and provides multilevel annotations that support a variety of vision tasks, including action recognition, object detection, HOI analysis, etc. We establish strong baselines and perform extensive evaluations to highlight key challenges in the parsing of procedural educational videos. We expect PhysLab to serve as a valuable resource for advancing fine-grained visual parsing, facilitating intelligent classroom systems, and fostering closer integration between computer vision and educational technologies. The dataset and the evaluation toolkit are publicly available at https://github.com/ZMH-SDUST/PhysLab.
♻ ☆ Omni-DPO: A Dual-Perspective Paradigm for Dynamic Preference Learning of LLMs
Direct Preference Optimization (DPO) has become a cornerstone of reinforcement learning from human feedback (RLHF) due to its simplicity and efficiency. However, existing DPO-based approaches typically treat all preference pairs uniformly, ignoring critical variations in their inherent quality and learning utility, leading to suboptimal data utilization and performance. To address this challenge, we propose Omni-DPO, a dual-perspective optimization framework that jointly accounts for (1) the inherent quality of each preference pair and (2) the model's evolving performance on those pairs. By adaptively weighting samples according to both data quality and the model's learning dynamics during training, Omni-DPO enables more effective training data utilization and achieves better performance. Experimental results on various models and benchmarks demonstrate the superiority and generalization capabilities of Omni-DPO. On textual understanding tasks, Gemma-2-9b-it finetuned with Omni-DPO beats the leading LLM, Claude 3 Opus, by a significant margin of 6.7 points on the Arena-Hard benchmark. On mathematical reasoning tasks, Omni-DPO consistently outperforms the baseline methods across all benchmarks, providing strong empirical evidence for the effectiveness and robustness of our approach. Code and models will be available at https://github.com/pspdada/Omni-DPO.
♻ ☆ Synthetic Data for Robust Stroke Segmentation
Current deep learning-based approaches to lesion segmentation in neuroimaging often depend on high-resolution images and extensive annotated data, limiting clinical applicability. This paper introduces a novel synthetic data framework tailored for stroke lesion segmentation, expanding the SynthSeg methodology to incorporate lesion-specific augmentations that simulate diverse pathological features. Using a modified nnUNet architecture, our approach trains models with label maps from healthy and stroke datasets, facilitating segmentation across both normal and pathological tissue without reliance on specific sequence-based training. Evaluation across in-domain and out-of-domain (OOD) datasets reveals that our method matches state-of-the-art performance within the training domain and significantly outperforms existing methods on OOD data. By minimizing dependence on large annotated datasets and allowing for cross-sequence applicability, our framework holds potential to improve clinical neuroimaging workflows, particularly in stroke pathology. PyTorch training code and weights are publicly available at https://github.com/liamchalcroft/SynthStroke, along with an SPM toolbox featuring a plug-and-play model at https://github.com/liamchalcroft/SynthStrokeSPM.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:014
♻ ☆ Image-to-Text for Medical Reports Using Adaptive Co-Attention and Triple-LSTM Module
Medical report generation requires specialized expertise that general large models often fail to accurately capture. Moreover, the inherent repetition and similarity in medical data make it difficult for models to extract meaningful features, resulting in a tendency to overfit. So in this paper, we propose a multimodal model, Co-Attention Triple-LSTM Network (CA-TriNet), a deep learning model that combines transformer architectures with a Multi-LSTM network. Its Co-Attention module synergistically links a vision transformer with a text transformer to better differentiate medical images with similarities, augmented by an adaptive weight operator to catch and amplify image labels with minor similarities. Furthermore, its Triple-LSTM module refines generated sentences using targeted image objects. Extensive evaluations over three public datasets have demonstrated that CA-TriNet outperforms state-of-the-art models in terms of comprehensive ability, even pre-trained large language models on some metrics.
♻ ☆ ImpliHateVid: A Benchmark Dataset and Two-stage Contrastive Learning Framework for Implicit Hate Speech Detection in Videos ACL 2025
The existing research has primarily focused on text and image-based hate speech detection, video-based approaches remain underexplored. In this work, we introduce a novel dataset, ImpliHateVid, specifically curated for implicit hate speech detection in videos. ImpliHateVid consists of 2,009 videos comprising 509 implicit hate videos, 500 explicit hate videos, and 1,000 non-hate videos, making it one of the first large-scale video datasets dedicated to implicit hate detection. We also propose a novel two-stage contrastive learning framework for hate speech detection in videos. In the first stage, we train modality-specific encoders for audio, text, and image using contrastive loss by concatenating features from the three encoders. In the second stage, we train cross-encoders using contrastive learning to refine multimodal representations. Additionally, we incorporate sentiment, emotion, and caption-based features to enhance implicit hate detection. We evaluate our method on two datasets, ImpliHateVid for implicit hate speech detection and another dataset for general hate speech detection in videos, HateMM dataset, demonstrating the effectiveness of the proposed multimodal contrastive learning for hateful content detection in videos and the significance of our dataset.
comment: Published in ACL 2025
♻ ☆ Introducing Unbiased Depth into 2D Gaussian Splatting for High-accuracy Surface Reconstruction
Recently, 2D Gaussian Splatting (2DGS) has demonstrated superior geometry reconstruction quality than the popular 3DGS by using 2D surfels to approximate thin surfaces. However, it falls short when dealing with glossy surfaces, resulting in visible holes in these areas. We find that the reflection discontinuity causes the issue. To fit the jump from diffuse to specular reflection at different viewing angles, depth bias is introduced in the optimized Gaussian primitives. To address that, we first replace the depth distortion loss in 2DGS with a novel depth convergence loss, which imposes a strong constraint on depth continuity. Then, we rectify the depth criterion in determining the actual surface, which fully accounts for all the intersecting Gaussians along the ray. Qualitative and quantitative evaluations across various datasets reveal that our method significantly improves reconstruction quality, with more complete and accurate surfaces than 2DGS. Code is available at https://github.com/XiaoXinyyx/Unbiased_Surfel.
comment: Accepted to the Journal track of Pacific Graphics 2025
♻ ☆ Med3DVLM: An Efficient Vision-Language Model for 3D Medical Image Analysis
Vision-language models (VLMs) have shown promise in 2D medical image analysis, but extending them to 3D remains challenging due to the high computational demands of volumetric data and the difficulty of aligning 3D spatial features with clinical text. We present Med3DVLM, a 3D VLM designed to address these challenges through three key innovations: (1) DCFormer, an efficient encoder that uses decomposed 3D convolutions to capture fine-grained spatial features at scale; (2) SigLIP, a contrastive learning strategy with pairwise sigmoid loss that improves image-text alignment without relying on large negative batches; and (3) a dual-stream MLP-Mixer projector that fuses low- and high-level image features with text embeddings for richer multi-modal representations. We evaluate our model on the M3D dataset, which includes radiology reports and VQA data for 120,084 3D medical images. Results show that Med3DVLM achieves superior performance across multiple benchmarks. For image-text retrieval, it reaches 61.00% R@1 on 2,000 samples, significantly outperforming the current state-of-the-art M3D model (19.10%). For report generation, it achieves a METEOR score of 36.42% (vs. 14.38%). In open-ended visual question answering (VQA), it scores 36.76% METEOR (vs. 33.58%), and in closed-ended VQA, it achieves 79.95% accuracy (vs. 75.78%). These results highlight Med3DVLM's ability to bridge the gap between 3D imaging and language, enabling scalable, multi-task reasoning across clinical applications. Our code is publicly available at https://github.com/mirthAI/Med3DVLM.
♻ ☆ FancyVideo: Towards Dynamic and Consistent Video Generation via Cross-frame Textual Guidance IJCAI 2025
Synthesizing motion-rich and temporally consistent videos remains a challenge in artificial intelligence, especially when dealing with extended durations. Existing text-to-video (T2V) models commonly employ spatial cross-attention for text control, equivalently guiding different frame generations without frame-specific textual guidance. Thus, the model's capacity to comprehend the temporal logic conveyed in prompts and generate videos with coherent motion is restricted. To tackle this limitation, we introduce FancyVideo, an innovative video generator that improves the existing text-control mechanism with the well-designed Cross-frame Textual Guidance Module (CTGM). Specifically, CTGM incorporates the Temporal Information Injector (TII) and Temporal Affinity Refiner (TAR) at the beginning and end of cross-attention, respectively, to achieve frame-specific textual guidance. Firstly, TII injects frame-specific information from latent features into text conditions, thereby obtaining cross-frame textual conditions. Then, TAR refines the correlation matrix between cross-frame textual conditions and latent features along the time dimension. Extensive experiments comprising both quantitative and qualitative evaluations demonstrate the effectiveness of FancyVideo. Our approach achieves state-of-the-art T2V generation results on the EvalCrafter benchmark and facilitates the synthesis of dynamic and consistent videos. Note that the T2V process of FancyVideo essentially involves a text-to-image step followed by T+I2V. This means it also supports the generation of videos from user images, i.e., the image-to-video (I2V) task. A significant number of experiments have shown that its performance is also outstanding.
comment: Accepted by IJCAI 2025
♻ ☆ Reconstructing Satellites in 3D from Amateur Telescope Images
Monitoring space objects is crucial for space situational awareness, yet reconstructing 3D satellite models from ground-based telescope images is challenging due to atmospheric turbulence, long observation distances, limited viewpoints, and low signal-to-noise ratios. In this paper, we propose a novel computational imaging framework that overcomes these obstacles by integrating a hybrid image pre-processing pipeline with a joint pose estimation and 3D reconstruction module based on controlled Gaussian Splatting (GS) and Branch-and-Bound (BnB) search. We validate our approach on both synthetic satellite datasets and on-sky observations of China's Tiangong Space Station and the International Space Station, achieving robust 3D reconstructions of low-Earth orbit satellites from ground-based data. Quantitative evaluations using SSIM, PSNR, LPIPS, and Chamfer Distance demonstrate that our method outperforms state-of-the-art NeRF-based approaches, and ablation studies confirm the critical role of each component. Our framework enables high-fidelity 3D satellite monitoring from Earth, offering a cost-effective alternative for space situational awareness. Project page: https://ai4scientificimaging.org/ReconstructingSatellites
♻ ☆ GDSR: Global-Detail Integration through Dual-Branch Network with Wavelet Losses for Remote Sensing Image Super-Resolution
In recent years, deep neural networks, including Convolutional Neural Networks, Transformers, and State Space Models, have achieved significant progress in Remote Sensing Image (RSI) Super-Resolution (SR). However, existing SR methods typically overlook the complementary relationship between global and local dependencies. These methods either focus on capturing local information or prioritize global information, which results in models that are unable to effectively capture both global and local features simultaneously. Moreover, their computational cost becomes prohibitive when applied to large-scale RSIs. To address these challenges, we introduce the novel application of Receptance Weighted Key Value (RWKV) to RSI-SR, which captures long-range dependencies with linear complexity. To simultaneously model global and local features, we propose the Global-Detail dual-branch structure, GDSR, which performs SR by paralleling RWKV and convolutional operations to handle large-scale RSIs. Furthermore, we introduce the Global-Detail Reconstruction Module (GDRM) as an intermediary between the two branches to bridge their complementary roles. In addition, we propose the Dual-Group Multi-Scale Wavelet Loss, a wavelet-domain constraint mechanism via dual-group subband strategy and cross-resolution frequency alignment for enhanced reconstruction fidelity in RSI-SR. Extensive experiments under two degradation methods on several benchmarks, including AID, UCMerced, and RSSRD-QH, demonstrate that GSDR outperforms the state-of-the-art Transformer-based method HAT by an average of 0.09 dB in PSNR, while using only 63% of its parameters and 51% of its FLOPs, achieving an inference speed 3.2 times faster.
comment: GDSR: Global-Detail Integration through Dual-Branch Network with Wavelet Losses for Remote Sensing Image Super-Resolution
♻ ☆ SVG-Head: Hybrid Surface-Volumetric Gaussians for High-Fidelity Head Reconstruction and Real-Time Editing ICCV 2025
Creating high-fidelity and editable head avatars is a pivotal challenge in computer vision and graphics, boosting many AR/VR applications. While recent advancements have achieved photorealistic renderings and plausible animation, head editing, especially real-time appearance editing, remains challenging due to the implicit representation and entangled modeling of the geometry and global appearance. To address this, we propose Surface-Volumetric Gaussian Head Avatar (SVG-Head), a novel hybrid representation that explicitly models the geometry with 3D Gaussians bound on a FLAME mesh and leverages disentangled texture images to capture the global appearance. Technically, it contains two types of Gaussians, in which surface Gaussians explicitly model the appearance of head avatars using learnable texture images, facilitating real-time texture editing, while volumetric Gaussians enhance the reconstruction quality of non-Lambertian regions (e.g., lips and hair). To model the correspondence between 3D world and texture space, we provide a mesh-aware Gaussian UV mapping method, which leverages UV coordinates given by the FLAME mesh to obtain sharp texture images and real-time rendering speed. A hierarchical optimization strategy is further designed to pursue the optimal performance in both reconstruction quality and editing flexibility. Experiments on the NeRSemble dataset show that SVG-Head not only generates high-fidelity rendering results, but also is the first method to obtain explicit texture images for Gaussian head avatars and support real-time appearance editing.
comment: Accepted by ICCV 2025. Project page: https://heyy-sun.github.io/SVG-Head/
♻ ☆ MCA-Bench: A Multimodal Benchmark for Evaluating CAPTCHA Robustness Against VLM-based Attacks
As automated attack techniques rapidly advance, CAPTCHAs remain a critical defense mechanism against malicious bots. However, existing CAPTCHA schemes encompass a diverse range of modalities -- from static distorted text and obfuscated images to interactive clicks, sliding puzzles, and logic-based questions -- yet the community still lacks a unified, large-scale, multimodal benchmark to rigorously evaluate their security robustness. To address this gap, we introduce MCA-Bench, a comprehensive and reproducible benchmarking suite that integrates heterogeneous CAPTCHA types into a single evaluation protocol. Leveraging a shared vision-language model backbone, we fine-tune specialized cracking agents for each CAPTCHA category, enabling consistent, cross-modal assessments. Extensive experiments reveal that MCA-Bench effectively maps the vulnerability spectrum of modern CAPTCHA designs under varied attack settings, and crucially offers the first quantitative analysis of how challenge complexity, interaction depth, and model solvability interrelate. Based on these findings, we propose three actionable design principles and identify key open challenges, laying the groundwork for systematic CAPTCHA hardening, fair benchmarking, and broader community collaboration. Datasets and code are available online.
comment: we update the paper, add more experiments, and update the teammates
♻ ☆ Scanpath Prediction in Panoramic Videos via Expected Code Length Minimization
Predicting human scanpaths when exploring panoramic videos is a challenging task due to the spherical geometry and the multimodality of the input, and the inherent uncertainty and diversity of the output. Most previous methods fail to give a complete treatment of these characteristics, and thus are prone to errors. In this paper, we present a simple new criterion for scanpath prediction based on principles from lossy data compression. This criterion suggests minimizing the expected code length of quantized scanpaths in a training set, which corresponds to fitting a discrete conditional probability model via maximum likelihood. Specifically, the probability model is conditioned on two modalities: a viewport sequence as the deformation-reduced visual input and a set of relative historical scanpaths projected onto respective viewports as the aligned path input. The probability model is parameterized by a product of discretized Gaussian mixture models to capture the uncertainty and the diversity of scanpaths from different users. Most importantly, the training of the probability model does not rely on the specification of "ground-truth" scanpaths for imitation learning. We also introduce a proportional-integral-derivative (PID) controller-based sampler to generate realistic human-like scanpaths from the learned probability model. Experimental results demonstrate that our method consistently produces better quantitative scanpath results in terms of prediction accuracy (by comparing to the assumed "ground-truths") and perceptual realism (through machine discrimination) over a wide range of prediction horizons. We additionally verify the perceptual realism improvement via a formal psychophysical experiment and the generalization improvement on several unseen panoramic video datasets.
♻ ☆ Tapping into the Black Box: Uncovering Aligned Representations in Pretrained Neural Networks
In ReLU networks, gradients of output units can be seen as their input-level representations, as they correspond to the units' pullbacks through the active subnetwork. However, gradients of deeper models are notoriously misaligned, significantly contributing to their black-box nature. We claim that this is because active subnetworks are inherently noisy due to the ReLU hard-gating. To tackle that noise, we propose soft-gating in the backward pass only. The resulting input-level vector field (called ''excitation pullback'') exhibits remarkable perceptual alignment, revealing high-resolution input- and target-specific features that ''just make sense'', therefore establishing a compelling novel explanation method. Furthermore, we speculate that excitation pullbacks approximate (directionally) the gradients of a simpler model, linear in the network's path space, learned implicitly during optimization and largely determining the network's decision; thus arguing for the faithfulness of the produced explanations and their overall significance.
comment: 11 pages, 3-page appendix, 4 figures, preprint; v2 changes: redacted abstract, slight reformulation of Hypothesis 1, extended motivation, unified notation, minor wording improvements
♻ ☆ Visual-RAG: Benchmarking Text-to-Image Retrieval Augmented Generation for Visual Knowledge Intensive Queries
Retrieval-augmented generation (RAG) is a paradigm that augments large language models (LLMs) with external knowledge to tackle knowledge-intensive question answering. While several benchmarks evaluate Multimodal LLMs (MLLMs) under Multimodal RAG settings, they predominantly retrieve from textual corpora and do not explicitly assess how models exploit visual evidence during generation. Consequently, there still lacks benchmark that isolates and measures the contribution of retrieved images in RAG. We introduce Visual-RAG, a question-answering benchmark that targets visually grounded, knowledge-intensive questions. Unlike prior work, Visual-RAG requires text-to-image retrieval and the integration of retrieved clue images to extract visual evidence for answer generation. With Visual-RAG, we evaluate 5 open-source and 3 proprietary MLLMs, showcasing that images provide strong evidence in augmented generation. However, even state-of-the-art models struggle to efficiently extract and utilize visual knowledge. Our results highlight the need for improved visual retrieval, grounding, and attribution in multimodal RAG systems.
comment: 21 pages, 6 figures, 17 tables
♻ ☆ ShoulderShot: Generating Over-the-Shoulder Dialogue Videos
Over-the-shoulder dialogue videos are essential in films, short dramas, and advertisements, providing visual variety and enhancing viewers' emotional connection. Despite their importance, such dialogue scenes remain largely underexplored in video generation research. The main challenges include maintaining character consistency across different shots, creating a sense of spatial continuity, and generating long, multi-turn dialogues within limited computational budgets. Here, we present ShoulderShot, a framework that combines dual-shot generation with looping video, enabling extended dialogues while preserving character consistency. Our results demonstrate capabilities that surpass existing methods in terms of shot-reverse-shot layout, spatial continuity, and flexibility in dialogue length, thereby opening up new possibilities for practical dialogue video generation. Videos and comparisons are available at https://shouldershot.github.io.
♻ ☆ LVFace: Progressive Cluster Optimization for Large Vision Models in Face Recognition ICCV25
Vision Transformers (ViTs) have revolutionized large-scale visual modeling, yet remain underexplored in face recognition (FR) where CNNs still dominate. We identify a critical bottleneck: CNN-inspired training paradigms fail to unlock ViT's potential, leading to suboptimal performance and convergence instability.To address this challenge, we propose LVFace, a ViT-based FR model that integrates Progressive Cluster Optimization (PCO) to achieve superior results. Specifically, PCO sequentially applies negative class sub-sampling (NCS) for robust and fast feature alignment from random initialization, feature expectation penalties for centroid stabilization, performing cluster boundary refinement through full-batch training without NCS constraints. LVFace establishes a new state-of-the-art face recognition baseline, surpassing leading approaches such as UniFace and TopoFR across multiple benchmarks. Extensive experiments demonstrate that LVFace delivers consistent performance gains, while exhibiting scalability to large-scale datasets and compatibility with mainstream VLMs and LLMs. Notably, LVFace secured 1st place in the ICCV 2021 Masked Face Recognition (MFR)-Ongoing Challenge (March 2025), proving its efficacy in real-world scenarios. Project is available at https://github.com/bytedance/LVFace.
comment: Accepted at ICCV25 as highlight paper, code released at https://github.com/bytedance/LVFace
♻ ☆ Automatic brain tumor segmentation in 2D intra-operative ultrasound images using magnetic resonance imaging tumor annotations
Automatic segmentation of brain tumors in intra-operative ultrasound (iUS) images could facilitate localization of tumor tissue during resection surgery. The lack of large annotated datasets limits the current models performances. In this paper, we investigated the use of tumor annotations in magnetic resonance imaging (MRI) scans, which are more accessible than annotations in iUS images, for training of deep learning models for iUS brain tumor segmentation. We used 180 annotated MRI scans with corresponding unannotated iUS images, and 29 annotated iUS images. Image registration was performed to transfer the MRI annotations to the corresponding iUS images before training the nnU-Net model with different configurations of the data and label origins. The results showed no significant difference in Dice score for a model trained with only MRI annotated tumors compared to models trained with only iUS annotations and both, and to expert annotations, indicating that MRI tumor annotations can be used as a substitute for iUS tumor annotations to train a deep learning model for automatic brain tumor segmentation in iUS images. The best model obtained an average Dice score of $0.62\pm0.31$, compared to $0.67\pm0.25$ for an expert neurosurgeon, where the performance on larger tumors were similar, but lower for the models on smaller tumors. In addition, the results showed that removing smaller tumors from the training sets improved the results. The main models are available here: https://github.com/mathildefaanes/us_brain_tumor_segmentation/tree/main
comment: 14 pages, 5 figures
TokLIP: Marry Visual Tokens to CLIP for Multimodal Comprehension and Generation
Pioneering token-based works such as Chameleon and Emu3 have established a foundation for multimodal unification but face challenges of high training computational overhead and limited comprehension performance due to a lack of high-level semantics. In this paper, we introduce TokLIP, a visual tokenizer that enhances comprehension by semanticizing vector-quantized (VQ) tokens and incorporating CLIP-level semantics while enabling end-to-end multimodal autoregressive training with standard VQ tokens. TokLIP integrates a low-level discrete VQ tokenizer with a ViT-based token encoder to capture high-level continuous semantics. Unlike previous approaches (e.g., VILA-U) that discretize high-level features, TokLIP disentangles training objectives for comprehension and generation, allowing the direct application of advanced VQ tokenizers without the need for tailored quantization operations. Our empirical results demonstrate that TokLIP achieves exceptional data efficiency, empowering visual tokens with high-level semantic understanding while enhancing low-level generative capacity, making it well-suited for autoregressive Transformers in both comprehension and generation tasks. The code and models are available at https://github.com/TencentARC/TokLIP.
comment: Technical Report
♻ ☆ HateClipSeg: A Segment-Level Annotated Dataset for Fine-Grained Hate Video Detection
Detecting hate speech in videos remains challenging due to the complexity of multimodal content and the lack of fine-grained annotations in existing datasets. We present HateClipSeg, a large-scale multimodal dataset with both video-level and segment-level annotations, comprising over 11,714 segments labeled as Normal or across five Offensive categories: Hateful, Insulting, Sexual, Violence, Self-Harm, along with explicit target victim labels. Our three-stage annotation process yields high inter-annotator agreement (Krippendorff's alpha = 0.817). We propose three tasks to benchmark performance: (1) Trimmed Hateful Video Classification, (2) Temporal Hateful Video Localization, and (3) Online Hateful Video Classification. Results highlight substantial gaps in current models, emphasizing the need for more sophisticated multimodal and temporally aware approaches. The HateClipSeg dataset are publicly available at https://github.com/Social-AI-Studio/HateClipSeg.git.
comment: 6 pages, 3 figures
♻ ☆ DSConv: Dynamic Splitting Convolution for Pansharpening
Aiming to obtain a high-resolution image, pansharpening involves the fusion of a multi-spectral image (MS) and a panchromatic image (PAN), the low-level vision task remaining significant and challenging in contemporary research. Most existing approaches rely predominantly on standard convolutions, few making the effort to adaptive convolutions, which are effective owing to the inter-pixel correlations of remote sensing images. In this paper, we propose a novel strategy for dynamically splitting convolution kernels in conjunction with attention, selecting positions of interest, and splitting the original convolution kernel into multiple smaller kernels, named DSConv. The proposed DSConv more effectively extracts features of different positions within the receptive field, enhancing the network's generalization, optimization, and feature representation capabilities. Furthermore, we innovate and enrich concepts of dynamic splitting convolution and provide a novel network architecture for pansharpening capable of achieving the tasks more efficiently, building upon this methodology. Adequate fair experiments illustrate the effectiveness and the state-of-the-art performance attained by DSConv.Comprehensive and rigorous discussions proved the superiority and optimal usage conditions of DSConv.
comment: The content of the paper is not yet fully developed, and the proposed approach requires further optimization. Additionally, the experimental results are incomplete and need to be supplemented. Therefore, I request the withdrawal of this submission for further revision and improvements
♻ ☆ GBR: Generative Bundle Refinement for High-fidelity Gaussian Splatting with Enhanced Mesh Reconstruction
Gaussian splatting has gained attention for its efficient representation and rendering of 3D scenes using continuous Gaussian primitives. However, it struggles with sparse-view inputs due to limited geometric and photometric information, causing ambiguities in depth, shape, and texture. we propose GBR: Generative Bundle Refinement, a method for high-fidelity Gaussian splatting and meshing using only 4-6 input views. GBR integrates a neural bundle adjustment module to enhance geometry accuracy and a generative depth refinement module to improve geometry fidelity. More specifically, the neural bundle adjustment module integrates a foundation network to produce initial 3D point maps and point matches from unposed images, followed by bundle adjustment optimization to improve multiview consistency and point cloud accuracy. The generative depth refinement module employs a diffusion-based strategy to enhance geometric details and fidelity while preserving the scale. Finally, for Gaussian splatting optimization, we propose a multimodal loss function incorporating depth and normal consistency, geometric regularization, and pseudo-view supervision, providing robust guidance under sparse-view conditions. Experiments on widely used datasets show that GBR significantly outperforms existing methods under sparse-view inputs. Additionally, GBR demonstrates the ability to reconstruct and render large-scale real-world scenes, such as the Pavilion of Prince Teng and the Great Wall, with remarkable details using only 6 views.
♻ ☆ Effective Message Hiding with Order-Preserving Mechanisms BMVC 2024
Message hiding, a technique that conceals secret message bits within a cover image, aims to achieve an optimal balance among message capacity, recovery accuracy, and imperceptibility. While convolutional neural networks have notably improved message capacity and imperceptibility, achieving high recovery accuracy remains challenging. This challenge arises because convolutional operations struggle to preserve the sequential order of message bits and effectively address the discrepancy between these two modalities. To address this, we propose StegaFormer, an innovative MLP-based framework designed to preserve bit order and enable global fusion between modalities. Specifically, StegaFormer incorporates three crucial components: Order-Preserving Message Encoder (OPME), Decoder (OPMD) and Global Message-Image Fusion (GMIF). OPME and OPMD aim to preserve the order of message bits by segmenting the entire sequence into equal-length segments and incorporating sequential information during encoding and decoding. Meanwhile, GMIF employs a cross-modality fusion mechanism to effectively fuse the features from the two uncorrelated modalities. Experimental results on the COCO and DIV2K datasets demonstrate that StegaFormer surpasses existing state-of-the-art methods in terms of recovery accuracy, message capacity, and imperceptibility. We will make our code publicly available.
comment: BMVC 2024
♻ ☆ Compositional Zero-shot Learning via Progressive Language-based Observations
Compositional zero-shot learning aims to recognize unseen state-object compositions by leveraging known primitives (state and object) during training. However, effectively modeling interactions between primitives and generalizing knowledge to novel compositions remains a perennial challenge. There are two key factors: object-conditioned and state-conditioned variance, i.e., the appearance of states (or objects) can vary significantly when combined with different objects (or states). For instance, the state "old" can signify a vintage design for a "car" or an advanced age for a "cat". In this paper, we argue that these variances can be mitigated by predicting composition categories based on pre-observed primitive. To this end, we propose Progressive Language-based Observations (PLO), which can dynamically determine a better observation order of primitives. These observations comprise a series of concepts or languages that allow the model to understand image content in a step-by-step manner. Specifically, PLO adopts pre-trained vision-language models (VLMs) to empower the model with observation capabilities. We further devise two variants: 1) PLO-VLM: a two-step method, where a pre-observing classifier dynamically determines the observation order of two primitives. 2) PLO-LLM: a multi-step scheme, which utilizes large language models (LLMs) to craft composition-specific prompts for step-by-step observing. Extensive ablations on three challenging datasets demonstrate the superiority of PLO compared with state-of-the-art methods, affirming its abilities in compositional recognition.
♻ ☆ IRL-VLA: Training an Vision-Language-Action Policy via Reward World Model
Vision-Language-Action (VLA) models have demonstrated potential in autonomous driving. However, two critical challenges hinder their development: (1) Existing VLA architectures are typically based on imitation learning in open-loop setup which tends to capture the recorded behaviors in the dataset, leading to suboptimal and constrained performance, (2) Close-loop training relies heavily on high-fidelity sensor simulation, where domain gaps and computational inefficiencies pose significant barriers. In this paper, we introduce IRL-VLA, a novel close-loop Reinforcement Learning via \textbf{I}nverse \textbf{R}einforcement \textbf{L}earning reward world model with a self-built VLA approach. Our framework proceeds in a three-stage paradigm: In the first stage, we propose a VLA architecture and pretrain the VLA policy via imitation learning. In the second stage, we construct a lightweight reward world model via inverse reinforcement learning to enable efficient close-loop reward computation. To further enhance planning performance, finally, we design specialized reward world model guidence reinforcement learning via PPO(Proximal Policy Optimization) to effectively balance the safety incidents, comfortable driving, and traffic efficiency. Our approach achieves state-of-the-art performance in NAVSIM v2 end-to-end driving benchmark, 1st runner up in CVPR2025 Autonomous Grand Challenge. We hope that our framework will accelerate VLA research in close-loop autonomous driving.
comment: 9 pagres, 2 figures
♻ ☆ Learning an Adaptive and View-Invariant Vision Transformer for Real-Time UAV Tracking
Transformer-based models have improved visual tracking, but most still cannot run in real time on resource-limited devices, especially for unmanned aerial vehicle (UAV) tracking. To achieve a better balance between performance and efficiency, we propose AVTrack, an adaptive computation tracking framework that adaptively activates transformer blocks through an Activation Module (AM), which dynamically optimizes the ViT architecture by selectively engaging relevant components. To address extreme viewpoint variations, we propose to learn view-invariant representations via mutual information (MI) maximization. In addition, we propose AVTrack-MD, an enhanced tracker incorporating a novel MI maximization-based multi-teacher knowledge distillation framework. Leveraging multiple off-the-shelf AVTrack models as teachers, we maximize the MI between their aggregated softened features and the corresponding softened feature of the student model, improving the generalization and performance of the student, especially under noisy conditions. Extensive experiments show that AVTrack-MD achieves performance comparable to AVTrack's performance while reducing model complexity and boosting average tracking speed by over 17\%. Codes is available at: https://github.com/wuyou3474/AVTrack.
♻ ☆ Efficient High-Resolution Visual Representation Learning with State Space Model for Human Pose Estimation
Capturing long-range dependencies while preserving high-resolution visual representations is crucial for dense prediction tasks such as human pose estimation. Vision Transformers (ViTs) have advanced global modeling through self-attention but suffer from quadratic computational complexity with respect to token count, limiting their efficiency and scalability to high-resolution inputs, especially on mobile and resource-constrained devices. State Space Models (SSMs), exemplified by Mamba, offer an efficient alternative by combining global receptive fields with linear computational complexity, enabling scalable and resource-friendly sequence modeling. However, when applied to dense prediction tasks, existing visual SSMs face key limitations: weak spatial inductive bias, long-range forgetting from hidden state decay, and low-resolution outputs that hinder fine-grained localization. To address these issues, we propose the Dynamic Visual State Space (DVSS) block, which augments visual state space models with multi-scale convolutional operations to enhance local spatial representations and strengthen spatial inductive biases. Through architectural exploration and theoretical analysis, we incorporate deformable operation into the DVSS block, identifying it as an efficient and effective mechanism to enhance semantic aggregation and mitigate long-range forgetting via input-dependent, adaptive spatial sampling. We embed DVSS into a multi-branch high-resolution architecture to build HRVMamba, a novel model for efficient high-resolution representation learning. Extensive experiments on human pose estimation, image classification, and semantic segmentation show that HRVMamba performs competitively against leading CNN-, ViT-, and SSM-based baselines. Code is available at https://github.com/zhanghao5201/PoseVMamba.
♻ ☆ RL-MoE: An Image-Based Privacy Preserving Approach In Intelligent Transportation System
The proliferation of AI-powered cameras in Intelligent Transportation Systems (ITS) creates a severe conflict between the need for rich visual data and the right to privacy. Existing privacy-preserving methods, such as blurring or encryption, are often insufficient due to creating an undesirable trade-off where either privacy is compromised against advanced reconstruction attacks or data utility is critically degraded. To resolve this challenge, we propose RL-MoE, a novel framework that transforms sensitive visual data into privacy-preserving textual descriptions, eliminating the need for direct image transmission. RL-MoE uniquely combines a Mixture-of-Experts (MoE) architecture for nuanced, multi-aspect scene decomposition with a Reinforcement Learning (RL) agent that optimizes the generated text for a dual objective of semantic accuracy and privacy preservation. Extensive experiments demonstrate that RL-MoE provides superior privacy protection, reducing the success rate of replay attacks to just 9.4\% on the CFP-FP dataset, while simultaneously generating richer textual content than baseline methods. Our work provides a practical and scalable solution for building trustworthy AI systems in privacy-sensitive domains, paving the way for more secure smart city and autonomous vehicle networks.
♻ ☆ IMU: Influence-guided Machine Unlearning
Recent studies have shown that deep learning models are vulnerable to attacks and tend to memorize training data points, raising significant concerns about privacy leakage. This motivates the development of machine unlearning (MU), i.e., a paradigm that enables models to selectively forget specific data points upon request. However, most existing MU algorithms require partial or full fine-tuning on the retain set. This necessitates continued access to the original training data, which is often impractical due to privacy concerns and storage constraints. A few retain-data-free MU methods have been proposed, but some rely on access to auxiliary data and precomputed statistics of the retain set, while others scale poorly when forgetting larger portions of data. In this paper, we propose Influence-guided Machine Unlearning (IMU), a simple yet effective method that conducts MU using only the forget set. Specifically, IMU employs gradient ascent and innovatively introduces dynamic allocation of unlearning intensities across different data points based on their influences. This adaptive strategy significantly enhances unlearning effectiveness while maintaining model utility. Results across vision and language tasks demonstrate that IMU consistently outperforms existing retain-data-free MU methods.
♻ ☆ MUNBa: Machine Unlearning via Nash Bargaining
Machine Unlearning (MU) aims to selectively erase harmful behaviors from models while retaining the overall utility of the model. As a multi-task learning problem, MU involves balancing objectives related to forgetting specific concepts/data and preserving general performance. A naive integration of these forgetting and preserving objectives can lead to gradient conflicts and dominance, impeding MU algorithms from reaching optimal solutions. To address the gradient conflict and dominance issue, we reformulate MU as a two-player cooperative game, where the two players, namely, the forgetting player and the preservation player, contribute via their gradient proposals to maximize their overall gain and balance their contributions. To this end, inspired by the Nash bargaining theory, we derive a closed-form solution to guide the model toward the Pareto stationary point. Our formulation of MU guarantees an equilibrium solution, where any deviation from the final state would lead to a reduction in the overall objectives for both players, ensuring optimality in each objective. We evaluate our algorithm's effectiveness on a diverse set of tasks across image classification and image generation. Extensive experiments with ResNet, vision-language model CLIP, and text-to-image diffusion models demonstrate that our method outperforms state-of-the-art MU algorithms, achieving a better trade-off between forgetting and preserving. Our results also highlight improvements in forgetting precision, preservation of generalization, and robustness against adversarial attacks.
♻ ☆ Marmot: Object-Level Self-Correction via Multi-Agent Reasoning
While diffusion models excel at generating high-quality images, they often struggle with accurate counting, attributes, and spatial relationships in complex multi-object scenes. One potential solution involves employing Multimodal Large Language Model (MLLM) as an AI agent to construct a self-correction framework. However, these approaches heavily rely on the capabilities of the MLLMs used, often fail to account for all objects within the image, and suffer from cumulative distortions during multi-round editing processes. To address these challenges, we propose Marmot, a novel and generalizable framework that leverages Multi-Agent Reasoning for Multi-Object Self-Correcting to enhance image-text alignment. First, we employ a large language model as an Object-Aware Agent to perform object-level divide-and-conquer, automatically decomposing self-correction tasks into object-centric subtasks based on image descriptions. For each subtask, we construct an Object Correction System featuring a decision-execution-verification mechanism that operates exclusively on a single object's segmentation mask or the bounding boxes of object pairs, effectively mitigating inter-object interference and enhancing editing reliability. To efficiently integrate correction results from subtasks while avoiding cumulative distortions from multi-stage editing, we propose a Pixel-Domain Stitching Smoother, which employs mask-guided two-stage latent space optimization. This innovation enables parallel processing of subtasks, significantly improving runtime efficiency while preventing distortion accumulation. Extensive experiments demonstrate that Marmot significantly improves accuracy in object counting, attribute assignment, and spatial relationships for image generation tasks.
♻ ☆ Towards Generalizable Forgery Detection and Reasoning
Accurate and interpretable detection of AI-generated images is essential for mitigating risks associated with AI misuse. However, the substantial domain gap among generative models makes it challenging to develop a generalizable forgery detection model. Moreover, since every pixel in an AI-generated image is synthesized, traditional saliency-based forgery explanation methods are not well suited for this task. To address these challenges, we formulate detection and explanation as a unified Forgery Detection and Reasoning task (FDR-Task), leveraging Multi-Modal Large Language Models (MLLMs) to provide accurate detection through reliable reasoning over forgery attributes. To facilitate this task, we introduce the Multi-Modal Forgery Reasoning dataset (MMFR-Dataset), a large-scale dataset containing 120K images across 10 generative models, with 378K reasoning annotations on forgery attributes, enabling comprehensive evaluation of the FDR-Task. Furthermore, we propose FakeReasoning, a forgery detection and reasoning framework with three key components: 1) a dual-branch visual encoder that integrates CLIP and DINO to capture both high-level semantics and low-level artifacts; 2) a Forgery-Aware Feature Fusion Module that leverages DINO's attention maps and cross-attention mechanisms to guide MLLMs toward forgery-related clues; 3) a Classification Probability Mapper that couples language modeling and forgery detection, enhancing overall performance. Experiments across multiple generative models demonstrate that FakeReasoning not only achieves robust generalization but also outperforms state-of-the-art methods on both detection and reasoning tasks.
♻ ☆ LSVG: Language-Guided Scene Graphs with 2D-Assisted Multi-Modal Encoding for 3D Visual Grounding
3D visual grounding aims to localize the unique target described by natural languages in 3D scenes. The significant gap between 3D and language modalities makes it a notable challenge to distinguish multiple similar objects through the described spatial relationships. Current methods attempt to achieve cross-modal understanding in complex scenes via a target-centered learning mechanism, ignoring the modeling of referred objects. We propose a novel 3D visual grounding framework that constructs language-guided scene graphs with referred object discrimination to improve relational perception. The framework incorporates a dual-branch visual encoder that leverages pre-trained 2D semantics to enhance and supervise the multi-modal 3D encoding. Furthermore, we employ graph attention to promote relationship-oriented information fusion in cross-modal interaction. The learned object representations and scene graph structure enable effective alignment between 3D visual content and textual descriptions. Experimental results on popular benchmarks demonstrate our superior performance compared to state-of-the-art methods, especially in handling the challenges of multiple similar distractors.
♻ ☆ HealthiVert-GAN: A Novel Framework of Pseudo-Healthy Vertebral Image Synthesis for Interpretable Compression Fracture Grading
Osteoporotic vertebral compression fractures (OVCFs) are prevalent in the elderly population, typically assessed on computed tomography (CT) scans by evaluating vertebral height loss. This assessment helps determine the fracture's impact on spinal stability and the need for surgical intervention. However, the absence of pre-fracture CT scans and standardized vertebral references leads to measurement errors and inter-observer variability, while irregular compression patterns further challenge the precise grading of fracture severity. While deep learning methods have shown promise in aiding OVCFs screening, they often lack interpretability and sufficient sensitivity, limiting their clinical applicability. To address these challenges, we introduce a novel vertebra synthesis-height loss quantification-OVCFs grading framework. Our proposed model, HealthiVert-GAN, utilizes a coarse-to-fine synthesis network designed to generate pseudo-healthy vertebral images that simulate the pre-fracture state of fractured vertebrae. This model integrates three auxiliary modules that leverage the morphology and height information of adjacent healthy vertebrae to ensure anatomical consistency. Additionally, we introduce the Relative Height Loss of Vertebrae (RHLV) as a quantification metric, which divides each vertebra into three sections to measure height loss between pre-fracture and post-fracture states, followed by fracture severity classification using a Support Vector Machine (SVM). Our approach achieves state-of-the-art classification performance on both the Verse2019 dataset and in-house dataset, and it provides cross-sectional distribution maps of vertebral height loss. This practical tool enhances diagnostic accuracy in clinical settings and assisting in surgical decision-making.
♻ ☆ Pathology-Guided AI System for Accurate Segmentation and Diagnosis of Cervical Spondylosis
Cervical spondylosis, a complex and prevalent condition, demands precise and efficient diagnostic techniques for accurate assessment. While MRI offers detailed visualization of cervical spine anatomy, manual interpretation remains labor-intensive and prone to error. To address this, we developed an innovative AI-assisted Expert-based Diagnosis System that automates both segmentation and diagnosis of cervical spondylosis using MRI. Leveraging multi-center datasets of cervical MRI images from patients with cervical spondylosis, our system features a pathology-guided segmentation model capable of accurately segmenting key cervical anatomical structures. The segmentation is followed by an expert-based diagnostic framework that automates the calculation of critical clinical indicators. Our segmentation model achieved an impressive average Dice coefficient exceeding 0.90 across four cervical spinal anatomies and demonstrated enhanced accuracy in herniation areas. Diagnostic evaluation further showcased the system's precision, with the lowest mean average errors (MAE) for the C2-C7 Cobb angle and the Maximum Spinal Cord Compression (MSCC) coefficient. In addition, our method delivered high accuracy, precision, recall, and F1 scores in herniation localization, K-line status assessment, T2 hyperintensity detection, and Kang grading. Comparative analysis and external validation demonstrate that our system outperforms existing methods, establishing a new benchmark for segmentation and diagnostic tasks for cervical spondylosis.
♻ ☆ PRS-Med: Position Reasoning Segmentation with Vision-Language Model in Medical Imaging
Recent advancements in prompt-based medical image segmentation have enabled clinicians to identify tumors using simple input like bounding boxes or text prompts. However, existing methods face challenges when doctors need to interact through natural language or when position reasoning is required - understanding spatial relationships between anatomical structures and pathologies. We present PRS-Med, a framework that integrates vision-language models with segmentation capabilities to generate both accurate segmentation masks and corresponding spatial reasoning outputs. Additionally, we introduce the MMRS dataset (Multimodal Medical in Positional Reasoning Segmentation), which provides diverse, spatially-grounded question-answer pairs to address the lack of position reasoning data in medical imaging. PRS-Med demonstrates superior performance across six imaging modalities (CT, MRI, X-ray, ultrasound, endoscopy, RGB), significantly outperforming state-of-the-art methods in both segmentation accuracy and position reasoning. Our approach enables intuitive doctor-system interaction through natural language, facilitating more efficient diagnoses. Our dataset pipeline, model, and codebase will be released to foster further research in spatially-aware multimodal reasoning for medical applications.
♻ ☆ From Explainable to Explained AI: Ideas for Falsifying and Quantifying Explanations MICCAI
Explaining deep learning models is essential for clinical integration of medical image analysis systems. A good explanation highlights if a model depends on spurious features that undermines generalization and harms a subset of patients or, conversely, may present novel biological insights. Although techniques like GradCAM can identify influential features, they are measurement tools that do not themselves form an explanation. We propose a human-machine-VLM interaction system tailored to explaining classifiers in computational pathology, including multi-instance learning for whole-slide images. Our proof of concept comprises (1) an AI-integrated slide viewer to run sliding-window experiments to test claims of an explanation, and (2) quantification of an explanation's predictiveness using general-purpose vision-language models. The results demonstrate that this allows us to qualitatively test claims of explanations and can quantifiably distinguish competing explanations. This offers a practical path from explainable AI to explained AI in digital pathology and beyond. Code and prompts are available at https://github.com/nki-ai/x2x.
comment: 10 pages, 2 figures, 2 tables, submitted at MICCAI IMIMIC workshop
♻ ☆ Learning Camera-Agnostic White-Balance Preferences
The image signal processor (ISP) pipeline in modern cameras consists of several modules that transform raw sensor data into visually pleasing images in a display color space. Among these, the auto white balance (AWB) module is essential for compensating for scene illumination. However, commercial AWB systems often strive to compute aesthetic white-balance preferences rather than accurate neutral color correction. While learning-based methods have improved AWB accuracy, they typically struggle to generalize across different camera sensors -- an issue for smartphones with multiple cameras. Recent work has explored cross-camera AWB, but most methods remain focused on achieving neutral white balance. In contrast, this paper is the first to address aesthetic consistency by learning a post-illuminant-estimation mapping that transforms neutral illuminant corrections into aesthetically preferred corrections in a camera-agnostic space. Once trained, our mapping can be applied after any neutral AWB module to enable consistent and stylized color rendering across unseen cameras. Our proposed model is lightweight -- containing only $\sim$500 parameters -- and runs in just 0.024 milliseconds on a typical flagship mobile CPU. Evaluated on a dataset of 771 smartphone images from three different cameras, our method achieves state-of-the-art performance while remaining fully compatible with existing cross-camera AWB techniques, introducing minimal computational and memory overhead.
♻ ☆ Towards Physically Realizable Adversarial Attacks in Embodied Vision Navigation IROS
The significant advancements in embodied vision navigation have raised concerns about its susceptibility to adversarial attacks exploiting deep neural networks. Investigating the adversarial robustness of embodied vision navigation is crucial, especially given the threat of 3D physical attacks that could pose risks to human safety. However, existing attack methods for embodied vision navigation often lack physical feasibility due to challenges in transferring digital perturbations into the physical world. Moreover, current physical attacks for object detection struggle to achieve both multi-view effectiveness and visual naturalness in navigation scenarios. To address this, we propose a practical attack method for embodied navigation by attaching adversarial patches to objects, where both opacity and textures are learnable. Specifically, to ensure effectiveness across varying viewpoints, we employ a multi-view optimization strategy based on object-aware sampling, which optimizes the patch's texture based on feedback from the vision-based perception model used in navigation. To make the patch inconspicuous to human observers, we introduce a two-stage opacity optimization mechanism, in which opacity is fine-tuned after texture optimization. Experimental results demonstrate that our adversarial patches decrease the navigation success rate by an average of 22.39%, outperforming previous methods in practicality, effectiveness, and naturalness. Code is available at: https://github.com/chen37058/Physical-Attacks-in-Embodied-Nav
comment: 7 pages, 7 figures, Accept by IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ Physics-Guided Image Dehazing Diffusion
Due to the domain gap between real-world and synthetic hazy images, current data-driven dehazing algorithms trained on synthetic datasets perform well on synthetic data but struggle to generalize to real-world scenarios. To address this challenge, we propose \textbf{I}mage \textbf{D}ehazing \textbf{D}iffusion \textbf{M}odels (IDDM), a novel diffusion process that incorporates the atmospheric scattering model into noise diffusion. IDDM aims to use the gradual haze formation process to help the denoising Unet robustly learn the distribution of clear images from the conditional input hazy images. We design a specialized training strategy centered around IDDM. Diffusion models are leveraged to bridge the domain gap from synthetic to real-world, while the atmospheric scattering model provides physical guidance for haze formation. During the forward process, IDDM simultaneously introduces haze and noise into clear images, and then robustly separates them during the sampling process. By training with physics-guided information, IDDM shows the ability of domain generalization, and effectively restores the real-world hazy images despite being trained on synthetic datasets. Extensive experiments demonstrate the effectiveness of our method through both quantitative and qualitative comparisons with state-of-the-art approaches.
♻ ☆ Zero-Shot Anomaly Detection with Dual-Branch Prompt Selection BMVC 2025
Zero-shot anomaly detection (ZSAD) enables identifying and localizing defects in unseen categories by relying solely on generalizable features rather than requiring any labeled examples of anomalies. However, existing ZSAD methods, whether using fixed or learned prompts, struggle under domain shifts because their training data are derived from limited training domains and fail to generalize to new distributions. In this paper, we introduce PILOT, a framework designed to overcome these challenges through two key innovations: (1) a novel dual-branch prompt learning mechanism that dynamically integrates a pool of learnable prompts with structured semantic attributes, enabling the model to adaptively weight the most relevant anomaly cues for each input image; and (2) a label-free test-time adaptation strategy that updates the learnable prompt parameters using high-confidence pseudo-labels from unlabeled test data. Extensive experiments on 13 industrial and medical benchmarks demonstrate that PILOT achieves state-of-the-art performance in both anomaly detection and localization under domain shift.
comment: Accepted at BMVC 2025
♻ ☆ FairT2I: Mitigating Social Bias in Text-to-Image Generation via Large Language Model-Assisted Detection and Attribute Rebalancing
The proliferation of Text-to-Image (T2I) models has revolutionized content creation, providing powerful tools for diverse applications ranging from artistic expression to educational material development and marketing. Despite these technological advancements, significant ethical concerns arise from these models' reliance on large-scale datasets that often contain inherent societal biases. These biases are further amplified when AI-generated content is included in training data, potentially reinforcing and perpetuating stereotypes in the generated outputs. In this paper, we introduce FairT2I, a novel framework that harnesses large language models to detect and mitigate social biases in T2I generation. Our framework comprises two key components: (1) an LLM-based bias detection module that identifies potential social biases in generated images based on text prompts, and (2) an attribute rebalancing module that fine-tunes sensitive attributes within the T2I model to mitigate identified biases. Our extensive experiments across various T2I models and datasets show that FairT2I can significantly reduce bias while maintaining high-quality image generation. We conducted both qualitative user studies and quantitative non-parametric analyses in the generated image feature space, building upon the occupational dataset introduced in the Stable Bias study. Our results show that FairT2I successfully mitigates social biases and enhances the diversity of sensitive attributes in generated images. We further demonstrate, using the P2 dataset, that our framework can detect subtle biases that are challenging for human observers to perceive, extending beyond occupation-related prompts. On the basis of these findings, we introduce a new benchmark dataset for evaluating bias in T2I models.
♻ ☆ SORT3D: Spatial Object-centric Reasoning Toolbox for Zero-Shot 3D Grounding Using Large Language Models IROS 2025
Interpreting object-referential language and grounding objects in 3D with spatial relations and attributes is essential for robots operating alongside humans. However, this task is often challenging due to the diversity of scenes, large number of fine-grained objects, and complex free-form nature of language references. Furthermore, in the 3D domain, obtaining large amounts of natural language training data is difficult. Thus, it is important for methods to learn from little data and zero-shot generalize to new environments. To address these challenges, we propose SORT3D, an approach that utilizes rich object attributes from 2D data and merges a heuristics-based spatial reasoning toolbox with the ability of large language models (LLMs) to perform sequential reasoning. Importantly, our method does not require text-to-3D data for training and can be applied zero-shot to unseen environments. We show that SORT3D achieves state-of-the-art zero-shot performance on complex view-dependent grounding tasks on two benchmarks. We also implement the pipeline to run real-time on two autonomous vehicles and demonstrate that our approach can be used for object-goal navigation on previously unseen real-world environments. All source code for the system pipeline is publicly released at https://github.com/nzantout/SORT3D.
comment: 8 pages, 6 figures, published in IROS 2025
♻ ☆ Refine-IQA: Multi-Stage Reinforcement Finetuning for Perceptual Image Quality Assessment
Reinforcement fine-tuning (RFT) is a proliferating paradigm for LMM training. Analogous to high-level reasoning tasks, RFT is similarly applicable to low-level vision domains, including image quality assessment (IQA). Existing RFT-based IQA methods typically use rule-based output rewards to verify the model's rollouts but provide no reward supervision for the "think" process, leaving its correctness and efficacy uncontrolled. Furthermore, these methods typically fine-tune directly on downstream IQA tasks without explicitly enhancing the model's native low-level visual quality perception, which may constrain its performance upper bound. In response to these gaps, we propose the multi-stage RFT IQA framework (Refine-IQA). In Stage-1, we build the Refine-Perception-20K dataset (with 12 main distortions, 20,907 locally-distorted images, and over 55K RFT samples) and design multi-task reward functions to strengthen the model's visual quality perception. In Stage-2, targeting the quality scoring task, we introduce a probability difference reward involved strategy for "think" process supervision. The resulting Refine-IQA Series Models achieve outstanding performance on both perception and scoring tasks-and, notably, our paradigm activates a robust "think" (quality interpreting) capability that also attains exceptional results on the corresponding quality interpreting benchmark.
♻ ☆ Improving Diffusion Inverse Problem Solving with Decoupled Noise Annealing
Diffusion models have recently achieved success in solving Bayesian inverse problems with learned data priors. Current methods build on top of the diffusion sampling process, where each denoising step makes small modifications to samples from the previous step. However, this process struggles to correct errors from earlier sampling steps, leading to worse performance in complicated nonlinear inverse problems, such as phase retrieval. To address this challenge, we propose a new method called Decoupled Annealing Posterior Sampling (DAPS) that relies on a novel noise annealing process. Specifically, we decouple consecutive steps in a diffusion sampling trajectory, allowing them to vary considerably from one another while ensuring their time-marginals anneal to the true posterior as we reduce noise levels. This approach enables the exploration of a larger solution space, improving the success rate for accurate reconstructions. We demonstrate that DAPS significantly improves sample quality and stability across multiple image restoration tasks, particularly in complicated nonlinear inverse problems.
♻ ☆ STORM: Token-Efficient Long Video Understanding for Multimodal LLMs
Recent advances in video-based multimodal large language models (Video-LLMs) have significantly improved video understanding by processing videos as sequences of image frames. However, many existing methods treat frames independently in the vision backbone, lacking explicit temporal modeling, which limits their ability to capture dynamic patterns and efficiently handle long videos. To address these limitations, we introduce STORM (Spatiotemporal TOken Reduction for Multimodal LLMs), a novel architecture incorporating a dedicated temporal encoder between the image encoder and the LLM. Our temporal encoder leverages the Mamba State Space Model to integrate temporal information into image tokens, generating enriched representations that preserve inter-frame dynamics across the entire video sequence. This enriched encoding not only enhances video reasoning capabilities but also enables effective token reduction strategies, including test-time sampling and training-based temporal and spatial pooling, substantially reducing computational demands on the LLM without sacrificing key temporal information. By integrating these techniques, our approach simultaneously reduces training and inference latency while improving performance, enabling efficient and robust video understanding over extended temporal contexts. Extensive evaluations show that STORM achieves state-of-the-art results across various long video understanding benchmarks (more than 5% improvement on MLVU and LongVideoBench) while reducing the computation costs by up to $8\times$ and the decoding latency by 2.4-2.9$\times$ for the fixed numbers of input frames. Project page is available at https://research.nvidia.com/labs/lpr/storm
♻ ☆ GeoSAM: Fine-tuning SAM with Multi-Modal Prompts for Mobility Infrastructure Segmentation
In geographical image segmentation, performance is often constrained by the limited availability of training data and a lack of generalizability, particularly for segmenting mobility infrastructure such as roads, sidewalks, and crosswalks. Vision foundation models like the Segment Anything Model (SAM), pre-trained on millions of natural images, have demonstrated impressive zero-shot segmentation performance, providing a potential solution. However, SAM struggles with geographical images, such as aerial and satellite imagery, due to its training being confined to natural images and the narrow features and textures of these objects blending into their surroundings. To address these challenges, we propose Geographical SAM (GeoSAM), a SAM-based framework that fine-tunes SAM using automatically generated multi-modal prompts. Specifically, GeoSAM integrates point prompts from a pre-trained task-specific model as primary visual guidance, and text prompts generated by a large language model as secondary semantic guidance, enabling the model to better capture both spatial structure and contextual meaning. GeoSAM outperforms existing approaches for mobility infrastructure segmentation in both familiar and completely unseen regions by at least 5\% in mIoU, representing a significant leap in leveraging foundation models to segment mobility infrastructure, including both road and pedestrian infrastructure in geographical images. The source code can be found in this GitHub Repository: https://github.com/rafiibnsultan/GeoSAM.
comment: Accepted by European Conference on Artificial Intelligence (ECAI 2025)
♻ ☆ Machine Learning-Based Automated Assessment of Intracorporeal Suturing in Laparoscopic Fundoplication
Automated assessment of surgical skills using artificial intelligence (AI) provides trainees with instantaneous feedback. After bimanual tool motions are captured, derived kinematic metrics are reliable predictors of performance in laparoscopic tasks. Implementing automated tool tracking requires time-intensive human annotation. We developed AI-based tool tracking using the Segment Anything Model (SAM) to eliminate the need for human annotators. Here, we describe a study evaluating the usefulness of our tool tracking model in automated assessment during a laparoscopic suturing task in the fundoplication procedure. An automated tool tracking model was applied to recorded videos of Nissen fundoplication on porcine bowel. Surgeons were grouped as novices (PGY1-2) and experts (PGY3-5, attendings). The beginning and end of each suturing step were segmented, and motions of the left and right tools were extracted. A low-pass filter with a 24 Hz cut-off frequency removed noise. Performance was assessed using supervised and unsupervised models, and an ablation study compared results. Kinematic features--RMS velocity, RMS acceleration, RMS jerk, total path length, and Bimanual Dexterity--were extracted and analyzed using Logistic Regression, Random Forest, Support Vector Classifier, and XGBoost. PCA was performed for feature reduction. For unsupervised learning, a Denoising Autoencoder (DAE) model with classifiers, such as a 1-D CNN and traditional models, was trained. Data were extracted for 28 participants (9 novices, 19 experts). Supervised learning with PCA and Random Forest achieved an accuracy of 0.795 and an F1 score of 0.778. The unsupervised 1-D CNN achieved superior results with an accuracy of 0.817 and an F1 score of 0.806, eliminating the need for kinematic feature computation. We demonstrated an AI model capable of automated performance classification, independent of human annotation.
comment: 17 pages
♻ ☆ D-Attn: Decomposed Attention for Large Vision-and-Language Models
Large vision-and-language models (LVLMs) have traditionally integrated visual and textual tokens by concatenating them into a single homogeneous input for large language models (LLMs), thereby maximally preserving the pre-trained language capabilities. However, this constrained architecture for visual and textual tokens restricts the design space for processing visual tokens, potentially leading to suboptimal performance and efficiency. In this paper, we propose Decomposed Attention (D-Attn), a more flexible attention architecture for LVLMs, which enables modification of visual token operations without affecting textual-to-textual attention. D-Attn decomposes the 1-D causal self-attention of LVLMs into visual-to-visual, textual-to-visual, and textual-to-textual attentions, and the visual and textual output tokens from the decomposed attentions are merged with a carefully derived weighting strategy, namely $\alpha$-weighting. Taking advantage of the flexibility, we are able to introduce two critical improvements in visual token processing while maintaining the capacity of pre-trained LLMs: 1) We rectify the biased positional encoding in textual-to-visual attention to boost visual understanding performance. 2) We diagonalize visual-to-visual attention to reduce computation complexity from $O(|V|^2)$ to $O(|V|)$ for $|V|$ visual tokens without compromising performance. Extensive experiments and analysis validate the effectiveness of D-Attn, demonstrating significant improvements on multiple image benchmarks while significantly reducing computational costs (\eg, $5\times$ faster). Code will be available at https://github.com/bytedance/DecomposedAttention.
♻ ☆ AI-Driven Detection and Analysis of Handwriting on Seized Ivory: A Tool to Uncover Criminal Networks in the Illicit Wildlife Trade
The transnational ivory trade continues to drive the decline of elephant populations across Africa, and trafficking networks remain difficult to disrupt. Tusks seized by law enforcement officials carry forensic information on the traffickers responsible for their export, including DNA evidence and handwritten markings made by traffickers. For 20 years, analyses of tusk DNA have identified where elephants were poached and established connections among shipments of ivory. While the links established using genetic evidence are extremely conclusive, genetic data is expensive and sometimes impossible to obtain. But though handwritten markings are easy to photograph, they are rarely documented or analyzed. Here, we present an AI-driven pipeline for extracting and analyzing handwritten markings on seized elephant tusks, offering a novel, scalable, and low-cost source of forensic evidence. Having collected 6,085 photographs from eight large seizures of ivory over a 6-year period (2014-2019), we used an object detection model to extract over 17,000 individual markings, which were then labeled and described using state-of-the-art AI tools. We identified 184 recurring "signature markings" that connect the tusks on which they appear. 20 signature markings were observed in multiple seizures, establishing forensic links between these seizures through traffickers involved in both shipments. This work complements other investigative techniques by filling in gaps where other data sources are unavailable. The study demonstrates the transformative potential of AI in wildlife forensics and highlights practical steps for integrating handwriting analysis into efforts to disrupt organized wildlife crime.
comment: Submitted. 13 pages, 5 figures, 4 tables
♻ ☆ Mammo-SAE: Interpreting Breast Cancer Concept Learning with Sparse Autoencoders MICCAI 2025
Interpretability is critical in high-stakes domains such as medical imaging, where understanding model decisions is essential for clinical adoption. In this work, we introduce Sparse Autoencoder (SAE)-based interpretability to breast imaging by analyzing {Mammo-CLIP}, a vision--language foundation model pretrained on large-scale mammogram image--report pairs. We train a patch-level \texttt{Mammo-SAE} on Mammo-CLIP to identify and probe latent features associated with clinically relevant breast concepts such as \textit{mass} and \textit{suspicious calcification}. Our findings reveal that top activated class level latent neurons in the SAE latent space often tend to align with ground truth regions, and also uncover several confounding factors influencing the model's decision-making process. Additionally, we analyze which latent neurons the model relies on during downstream finetuning for improving the breast concept prediction. This study highlights the promise of interpretable SAE latent representations in providing deeper insight into the internal workings of foundation models at every layer for breast imaging. The code will be released at https://krishnakanthnakka.github.io/MammoSAE/
comment: Accepted at Deep Breast Imaging workshop, MICCAI 2025
♻ ☆ SKALD: Learning-Based Shot Assembly for Coherent Multi-Shot Video Creation
We present SKALD, a multi-shot video assembly method that constructs coherent video sequences from candidate shots with minimal reliance on text. Central to our approach is the Learned Clip Assembly (LCA) score, a learning-based metric that measures temporal and semantic relationships between shots to quantify narrative coherence. We tackle the exponential complexity of combining multiple shots with an efficient beam-search algorithm guided by the LCA score. To train our model effectively with limited human annotations, we propose two tasks for the LCA encoder: Shot Coherence Learning, which uses contrastive learning to distinguish coherent and incoherent sequences, and Feature Regression, which converts these learned representations into a real-valued coherence score. We develop two variants: a base SKALD model that relies solely on visual coherence and SKALD-text, which integrates auxiliary text information when available. Experiments on the VSPD and our curated MSV3C datasets show that SKALD achieves an improvement of up to 48.6% in IoU and a 43% speedup over the state-of-the-art methods. A user study further validates our approach, with 45% of participants favoring SKALD-assembled videos, compared to 22% preferring text-based assembly methods.
Artificial Intelligence 106
☆ Is ChatGPT-5 Ready for Mammogram VQA?
Mammogram visual question answering (VQA) integrates image interpretation with clinical reasoning and has potential to support breast cancer screening. We systematically evaluated the GPT-5 family and GPT-4o model on four public mammography datasets (EMBED, InBreast, CMMD, CBIS-DDSM) for BI-RADS assessment, abnormality detection, and malignancy classification tasks. GPT-5 consistently was the best performing model but lagged behind both human experts and domain-specific fine-tuned models. On EMBED, GPT-5 achieved the highest scores among GPT variants in density (56.8%), distortion (52.5%), mass (64.5%), calcification (63.5%), and malignancy (52.8%) classification. On InBreast, it attained 36.9% BI-RADS accuracy, 45.9% abnormality detection, and 35.0% malignancy classification. On CMMD, GPT-5 reached 32.3% abnormality detection and 55.0% malignancy accuracy. On CBIS-DDSM, it achieved 69.3% BI-RADS accuracy, 66.0% abnormality detection, and 58.2% malignancy accuracy. Compared with human expert estimations, GPT-5 exhibited lower sensitivity (63.5%) and specificity (52.3%). While GPT-5 exhibits promising capabilities for screening tasks, its performance remains insufficient for high-stakes clinical imaging applications without targeted domain adaptation and optimization. However, the tremendous improvements in performance from GPT-4o to GPT-5 show a promising trend in the potential for general large language models (LLMs) to assist with mammography VQA tasks.
Controlling Multimodal LLMs via Reward-guided Decoding ICCV 2025
As Multimodal Large Language Models (MLLMs) gain widespread applicability, it is becoming increasingly desirable to adapt them for diverse user needs. In this paper, we study the adaptation of MLLMs through controlled decoding. To achieve this, we introduce the first method for reward-guided decoding of MLLMs and demonstrate its application in improving their visual grounding. Our method involves building reward models for visual grounding and using them to guide the MLLM's decoding process. Concretely, we build two separate reward models to independently control the degree of object precision and recall in the model's output. Our approach enables on-the-fly controllability of an MLLM's inference process in two ways: first, by giving control over the relative importance of each reward function during decoding, allowing a user to dynamically trade off object precision for recall in image captioning tasks; second, by giving control over the breadth of the search during decoding, allowing the user to control the trade-off between the amount of test-time compute and the degree of visual grounding. We evaluate our method on standard object hallucination benchmarks, showing that it provides significant controllability over MLLM inference, while consistently outperforming existing hallucination mitigation methods.
comment: Published at ICCV 2025
☆ Pretrained Conformers for Audio Fingerprinting and Retrieval
Conformers have shown great results in speech processing due to their ability to capture both local and global interactions. In this work, we utilize a self-supervised contrastive learning framework to train conformer-based encoders that are capable of generating unique embeddings for small segments of audio, generalizing well to previously unseen data. We achieve state-of-the-art results for audio retrieval tasks while using only 3 seconds of audio to generate embeddings. Our models are almost completely immune to temporal misalignments and achieve state-of-the-art results in cases of other audio distortions such as noise, reverb or extreme temporal stretching. Code and models are made publicly available and the results are easy to reproduce as we train and test using popular and freely available datasets of different sizes.
☆ CryptoScope: Utilizing Large Language Models for Automated Cryptographic Logic Vulnerability Detection
Cryptographic algorithms are fundamental to modern security, yet their implementations frequently harbor subtle logic flaws that are hard to detect. We introduce CryptoScope, a novel framework for automated cryptographic vulnerability detection powered by Large Language Models (LLMs). CryptoScope combines Chain-of-Thought (CoT) prompting with Retrieval-Augmented Generation (RAG), guided by a curated cryptographic knowledge base containing over 12,000 entries. We evaluate CryptoScope on LLM-CLVA, a benchmark of 92 cases primarily derived from real-world CVE vulnerabilities, complemented by cryptographic challenges from major Capture The Flag (CTF) competitions and synthetic examples across 11 programming languages. CryptoScope consistently improves performance over strong LLM baselines, boosting DeepSeek-V3 by 11.62%, GPT-4o-mini by 20.28%, and GLM-4-Flash by 28.69%. Additionally, it identifies 9 previously undisclosed flaws in widely used open-source cryptographic projects.
☆ Aware First, Think Less: Dynamic Boundary Self-Awareness Drives Extreme Reasoning Efficiency in Large Language Models
Recent advancements in large language models (LLMs) have greatly improved their capabilities on complex reasoning tasks through Long Chain-of-Thought (CoT). However, this approach often results in substantial redundancy, impairing computational efficiency and causing significant delays in real-time applications. To improve the efficiency, current methods often rely on human-defined difficulty priors, which do not align with the LLM's self-awared difficulty, leading to inefficiencies. In this paper, we introduce the Dynamic Reasoning-Boundary Self-Awareness Framework (DR. SAF), which enables models to dynamically assess and adjust their reasoning depth in response to problem complexity. DR. SAF integrates three key components: Boundary Self-Awareness Alignment, Adaptive Reward Management, and a Boundary Preservation Mechanism. These components allow models to optimize their reasoning processes, balancing efficiency and accuracy without compromising performance. Our experimental results demonstrate that DR. SAF achieves a 49.27% reduction in total response tokens with minimal loss in accuracy. The framework also delivers a 6.59x gain in token efficiency and a 5x reduction in training time, making it well-suited to resource-limited settings. During extreme training, DR. SAF can even surpass traditional instruction-based models in token efficiency with more than 16% accuracy improvement.
comment: Preprint
☆ A Comprehensive Perspective on Explainable AI across the Machine Learning Workflow
Artificial intelligence is reshaping science and industry, yet many users still regard its models as opaque "black boxes". Conventional explainable artificial-intelligence methods clarify individual predictions but overlook the upstream decisions and downstream quality checks that determine whether insights can be trusted. In this work, we present Holistic Explainable Artificial Intelligence (HXAI), a user-centric framework that embeds explanation into every stage of the data-analysis workflow and tailors those explanations to users. HXAI unifies six components (data, analysis set-up, learning process, model output, model quality, communication channel) into a single taxonomy and aligns each component with the needs of domain experts, data analysts and data scientists. A 112-item question bank covers these needs; our survey of contemporary tools highlights critical coverage gaps. Grounded in theories of human explanation, principles from human-computer interaction and findings from empirical user studies, HXAI identifies the characteristics that make explanations clear, actionable and cognitively manageable. A comprehensive taxonomy operationalises these insights, reducing terminological ambiguity and enabling rigorous coverage analysis of existing toolchains. We further demonstrate how AI agents that embed large-language models can orchestrate diverse explanation techniques, translating technical artifacts into stakeholder-specific narratives that bridge the gap between AI developers and domain experts. Departing from traditional surveys or perspective articles, this work melds concepts from multiple disciplines, lessons from real-world projects and a critical synthesis of the literature to advance a novel, end-to-end viewpoint on transparency, trustworthiness and responsible AI deployment.
comment: Preprint. Currently under review at "Artificial Intelligence Review" journal
☆ Inspire or Predict? Exploring New Paradigms in Assisting Classical Planners with Large Language Models
Addressing large-scale planning problems has become one of the central challenges in the planning community, deriving from the state-space explosion caused by growing objects and actions. Recently, researchers have explored the effectiveness of leveraging Large Language Models (LLMs) to generate helpful actions and states to prune the search space. However, prior works have largely overlooked integrating LLMs with domain-specific knowledge to ensure valid plans. In this paper, we propose a novel LLM-assisted planner integrated with problem decomposition, which first decomposes large planning problems into multiple simpler sub-tasks. Then we explore two novel paradigms to utilize LLMs, i.e., LLM4Inspire and LLM4Predict, to assist problem decomposition, where LLM4Inspire provides heuristic guidance according to general knowledge and LLM4Predict employs domain-specific knowledge to infer intermediate conditions. We empirically validate the effectiveness of our planner across multiple domains, demonstrating the ability of search space partition when solving large-scale planning problems. The experimental results show that LLMs effectively locate feasible solutions when pruning the search space, where infusing domain-specific knowledge into LLMs, i.e., LLM4Predict, holds particular promise compared with LLM4Inspire, which offers general knowledge within LLMs.
☆ Weighted First Order Model Counting for Two-variable Logic with Axioms on Two Relations
The Weighted First-Order Model Counting Problem (WFOMC) asks to compute the weighted sum of models of a given first-order logic sentence over a given domain. The boundary between fragments for which WFOMC can be computed in polynomial time relative to the domain size lies between the two-variable fragment ($\text{FO}^2$) and the three-variable fragment ($\text{FO}^3$). It is known that WFOMC for \FOthree{} is $\mathsf{\#P_1}$-hard while polynomial-time algorithms exist for computing WFOMC for $\text{FO}^2$ and $\text{C}^2$, possibly extended by certain axioms such as the linear order axiom, the acyclicity axiom, and the connectedness axiom. All existing research has concentrated on extending the fragment with axioms on a single distinguished relation, leaving a gap in understanding the complexity boundary of axioms on multiple relations. In this study, we explore the extension of the two-variable fragment by axioms on two relations, presenting both negative and positive results. We show that WFOMC for $\text{FO}^2$ with two linear order relations and $\text{FO}^2$ with two acyclic relations are $\mathsf{\#P_1}$-hard. Conversely, we provide an algorithm in time polynomial in the domain size for WFOMC of $\text{C}^2$ with a linear order relation, its successor relation and another successor relation.
comment: 24 pages, 5 figures
☆ Towards Faithful Class-level Self-explainability in Graph Neural Networks by Subgraph Dependencies
Enhancing the interpretability of graph neural networks (GNNs) is crucial to ensure their safe and fair deployment. Recent work has introduced self-explainable GNNs that generate explanations as part of training, improving both faithfulness and efficiency. Some of these models, such as ProtGNN and PGIB, learn class-specific prototypes, offering a potential pathway toward class-level explanations. However, their evaluations focus solely on instance-level explanations, leaving open the question of whether these prototypes meaningfully generalize across instances of the same class. In this paper, we introduce GraphOracle, a novel self-explainable GNN framework designed to generate and evaluate class-level explanations for GNNs. Our model jointly learns a GNN classifier and a set of structured, sparse subgraphs that are discriminative for each class. We propose a novel integrated training that captures graph$\unicode{x2013}$subgraph$\unicode{x2013}$prediction dependencies efficiently and faithfully, validated through a masking-based evaluation strategy. This strategy enables us to retroactively assess whether prior methods like ProtGNN and PGIB deliver effective class-level explanations. Our results show that they do not. In contrast, GraphOracle achieves superior fidelity, explainability, and scalability across a range of graph classification tasks. We further demonstrate that GraphOracle avoids the computational bottlenecks of previous methods$\unicode{x2014}$like Monte Carlo Tree Search$\unicode{x2014}$by using entropy-regularized subgraph selection and lightweight random walk extraction, enabling faster and more scalable training. These findings position GraphOracle as a practical and principled solution for faithful class-level self-explainability in GNNs.
comment: 14 pages, 12 figures
☆ Sim2Dust: Mastering Dynamic Waypoint Tracking on Granular Media
Reliable autonomous navigation across the unstructured terrains of distant planetary surfaces is a critical enabler for future space exploration. However, the deployment of learning-based controllers is hindered by the inherent sim-to-real gap, particularly for the complex dynamics of wheel interactions with granular media. This work presents a complete sim-to-real framework for developing and validating robust control policies for dynamic waypoint tracking on such challenging surfaces. We leverage massively parallel simulation to train reinforcement learning agents across a vast distribution of procedurally generated environments with randomized physics. These policies are then transferred zero-shot to a physical wheeled rover operating in a lunar-analogue facility. Our experiments systematically compare multiple reinforcement learning algorithms and action smoothing filters to identify the most effective combinations for real-world deployment. Crucially, we provide strong empirical evidence that agents trained with procedural diversity achieve superior zero-shot performance compared to those trained on static scenarios. We also analyze the trade-offs of fine-tuning with high-fidelity particle physics, which offers minor gains in low-speed precision at a significant computational cost. Together, these contributions establish a validated workflow for creating reliable learning-based navigation systems, marking a critical step towards deploying autonomous robots in the final frontier.
comment: The source code is available at https://github.com/AndrejOrsula/space_robotics_bench
☆ Handwritten Text Recognition of Historical Manuscripts Using Transformer-Based Models
Historical handwritten text recognition (HTR) is essential for unlocking the cultural and scholarly value of archival documents, yet digitization is often hindered by scarce transcriptions, linguistic variation, and highly diverse handwriting styles. In this study, we apply TrOCR, a state-of-the-art transformer-based HTR model, to 16th-century Latin manuscripts authored by Rudolf Gwalther. We investigate targeted image preprocessing and a broad suite of data augmentation techniques, introducing four novel augmentation methods designed specifically for historical handwriting characteristics. We also evaluate ensemble learning approaches to leverage the complementary strengths of augmentation-trained models. On the Gwalther dataset, our best single-model augmentation (Elastic) achieves a Character Error Rate (CER) of 1.86, while a top-5 voting ensemble achieves a CER of 1.60 - representing a 50% relative improvement over the best reported TrOCR_BASE result and a 42% improvement over the previous state of the art. These results highlight the impact of domain-specific augmentations and ensemble strategies in advancing HTR performance for historical manuscripts.
☆ Landmark-Assisted Monte Carlo Planning
Landmarks$\unicode{x2013}$conditions that must be satisfied at some point in every solution plan$\unicode{x2013}$have contributed to major advancements in classical planning, but they have seldom been used in stochastic domains. We formalize probabilistic landmarks and adapt the UCT algorithm to leverage them as subgoals to decompose MDPs; core to the adaptation is balancing between greedy landmark achievement and final goal achievement. Our results in benchmark domains show that well-chosen landmarks can significantly improve the performance of UCT in online probabilistic planning, while the best balance of greedy versus long-term goal achievement is problem-dependent. The results suggest that landmarks can provide helpful guidance for anytime algorithms solving MDPs.
comment: To be published in the Proceedings of the 28th European Conference on Artificial Intelligence
☆ RMSL: Weakly-Supervised Insider Threat Detection with Robust Multi-sphere Learning
Insider threat detection aims to identify malicious user behavior by analyzing logs that record user interactions. Due to the lack of fine-grained behavior-level annotations, detecting specific behavior-level anomalies within user behavior sequences is challenging. Unsupervised methods face high false positive rates and miss rates due to the inherent ambiguity between normal and anomalous behaviors. In this work, we instead introduce weak labels of behavior sequences, which have lower annotation costs, i.e., the training labels (anomalous or normal) are at sequence-level instead of behavior-level, to enhance the detection capability for behavior-level anomalies by learning discriminative features. To achieve this, we propose a novel framework called Robust Multi-sphere Learning (RMSL). RMSL uses multiple hyper-spheres to represent the normal patterns of behaviors. Initially, a one-class classifier is constructed as a good anomaly-supervision-free starting point. Building on this, using multiple instance learning and adaptive behavior-level self-training debiasing based on model prediction confidence, the framework further refines hyper-spheres and feature representations using weak sequence-level labels. This approach enhances the model's ability to distinguish between normal and anomalous behaviors. Extensive experiments demonstrate that RMSL significantly improves the performance of behavior-level insider threat detection.
comment: 15 pages
☆ Reference Points in LLM Sentiment Analysis: The Role of Structured Context
Large language models (LLMs) are now widely used across many fields, including marketing research. Sentiment analysis, in particular, helps firms understand consumer preferences. While most NLP studies classify sentiment from review text alone, marketing theories, such as prospect theory and expectation--disconfirmation theory, point out that customer evaluations are shaped not only by the actual experience but also by additional reference points. This study therefore investigates how the content and format of such supplementary information affect sentiment analysis using LLMs. We compare natural language (NL) and JSON-formatted prompts using a lightweight 3B parameter model suitable for practical marketing applications. Experiments on two Yelp categories (Restaurant and Nightlife) show that the JSON prompt with additional information outperforms all baselines without fine-tuning: Macro-F1 rises by 1.6% and 4% while RMSE falls by 16% and 9.1%, respectively, making it deployable in resource-constrained edge devices. Furthermore, a follow-up analysis confirms that performance gains stem from genuine contextual reasoning rather than label proxying. This work demonstrates that structured prompting can enable smaller models to achieve competitive performance, offering a practical alternative to large-scale model deployment.
☆ Inclusion Arena: An Open Platform for Evaluating Large Foundation Models with Real-World Apps
Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) have ushered in a new era of AI capabilities, demonstrating near-human-level performance across diverse scenarios. While numerous benchmarks (e.g., MMLU) and leaderboards (e.g., Chatbot Arena) have been proposed to help evolve the development of LLMs and MLLMs, most rely on static datasets or crowdsourced general-domain prompts, often falling short of reflecting performance in real-world applications. To bridge this critical gap, we present Inclusion Arena, a live leaderboard that ranks models based on human feedback collected directly from AI-powered applications. Our platform integrates pairwise model comparisons into natural user interactions, ensuring evaluations reflect practical usage scenarios. For robust model ranking, we employ the Bradley-Terry model augmented with two key innovations: (1) Placement Matches, a cold-start mechanism to quickly estimate initial ratings for newly integrated models, and (2) Proximity Sampling, an intelligent comparison strategy that prioritizes battles between models of similar capabilities to maximize information gain and enhance rating stability. Extensive empirical analyses and simulations demonstrate that Inclusion Arena yields reliable and stable rankings, exhibits higher data transitivity compared to general crowdsourced datasets, and significantly mitigates the risk of malicious manipulation. By fostering an open alliance between foundation models and real-world applications, Inclusion Arena aims to accelerate the development of LLMs and MLLMs truly optimized for practical, user-centric deployments. The platform is publicly accessible at https://doraemon.alipay.com/model-ranking.
comment: Our platform is publicly accessible at https://doraemon.alipay.com/model-ranking
☆ Inside Knowledge: Graph-based Path Generation with Explainable Data Augmentation and Curriculum Learning for Visual Indoor Navigation
Indoor navigation is a difficult task, as it generally comes with poor GPS access, forcing solutions to rely on other sources of information. While significant progress continues to be made in this area, deployment to production applications is still lacking, given the complexity and additional requirements of current solutions. Here, we introduce an efficient, real-time and easily deployable deep learning approach, based on visual input only, that can predict the direction towards a target from images captured by a mobile device. Our technical approach, based on a novel graph-based path generation method, combined with explainable data augmentation and curriculum learning, includes contributions that make the process of data collection, annotation and training, as automatic as possible, efficient and robust. On the practical side, we introduce a novel largescale dataset, with video footage inside a relatively large shopping mall, in which each frame is annotated with the correct next direction towards different specific target destinations. Different from current methods, ours relies solely on vision, avoiding the need of special sensors, additional markers placed along the path, knowledge of the scene map or internet access. We also created an easy to use application for Android, which we plan to make publicly available. We make all our data and code available along with visual demos on our project site
comment: Accepted at the International Conference on Computer Vision Workshops 2025
☆ Informative Post-Hoc Explanations Only Exist for Simple Functions
Many researchers have suggested that local post-hoc explanation algorithms can be used to gain insights into the behavior of complex machine learning models. However, theoretical guarantees about such algorithms only exist for simple decision functions, and it is unclear whether and under which assumptions similar results might exist for complex models. In this paper, we introduce a general, learning-theory-based framework for what it means for an explanation to provide information about a decision function. We call an explanation informative if it serves to reduce the complexity of the space of plausible decision functions. With this approach, we show that many popular explanation algorithms are not informative when applied to complex decision functions, providing a rigorous mathematical rejection of the idea that it should be possible to explain any model. We then derive conditions under which different explanation algorithms become informative. These are often stronger than what one might expect. For example, gradient explanations and counterfactual explanations are non-informative with respect to the space of differentiable functions, and SHAP and anchor explanations are not informative with respect to the space of decision trees. Based on these results, we discuss how explanation algorithms can be modified to become informative. While the proposed analysis of explanation algorithms is mathematical, we argue that it holds strong implications for the practical applicability of these algorithms, particularly for auditing, regulation, and high-risk applications of AI.
☆ AIM-Bench: Evaluating Decision-making Biases of Agentic LLM as Inventory Manager
Recent advances in mathematical reasoning and the long-term planning capabilities of large language models (LLMs) have precipitated the development of agents, which are being increasingly leveraged in business operations processes. Decision models to optimize inventory levels are one of the core elements of operations management. However, the capabilities of the LLM agent in making inventory decisions in uncertain contexts, as well as the decision-making biases (e.g. framing effect, etc.) of the agent, remain largely unexplored. This prompts concerns regarding the capacity of LLM agents to effectively address real-world problems, as well as the potential implications of biases that may be present. To address this gap, we introduce AIM-Bench, a novel benchmark designed to assess the decision-making behaviour of LLM agents in uncertain supply chain management scenarios through a diverse series of inventory replenishment experiments. Our results reveal that different LLMs typically exhibit varying degrees of decision bias that are similar to those observed in human beings. In addition, we explored strategies to mitigate the pull-to-centre effect and the bullwhip effect, namely cognitive reflection and implementation of information sharing. These findings underscore the need for careful consideration of the potential biases in deploying LLMs in Inventory decision-making scenarios. We hope that these insights will pave the way for mitigating human decision bias and developing human-centred decision support systems for supply chains.
☆ On-Policy RL Meets Off-Policy Experts: Harmonizing Supervised Fine-Tuning and Reinforcement Learning via Dynamic Weighting
Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) are two prominent post-training paradigms for refining the capabilities and aligning the behavior of Large Language Models (LLMs). Existing approaches that integrate SFT and RL often face the risk of disrupting established model patterns and inducing overfitting to expert data. To address this, we present a novel investigation into the unified view of SFT and RL through an off-policy versus on-policy lens. We propose CHORD, a framework for the Controllable Harmonization of On- and Off-Policy Reinforcement Learning via Dynamic Weighting, which reframes SFT not as a separate stage but as a dynamically weighted auxiliary objective within the on-policy RL process. Based on an analysis of off-policy expert data's influence at both holistic and granular levels, we incorporate a dual-control mechanism in CHORD. Specifically, the framework first employs a global coefficient to holistically guide the transition from off-policy imitation to on-policy exploration, and then applies a token-wise weighting function that enables granular learning from expert tokens, which preserves on-policy exploration and mitigates disruption from off-policy data. We conduct extensive experiments on widely used benchmarks, providing empirical evidence that CHORD achieves a stable and efficient learning process. By effectively harmonizing off-policy expert data with on-policy exploration, CHORD demonstrates significant improvements over baselines. We release the implementation at https://github.com/modelscope/Trinity-RFT/tree/main/examples/mix_chord to inspire further research.
☆ Open, Reproducible and Trustworthy Robot-Based Experiments with Virtual Labs and Digital-Twin-Based Execution Tracing IROS
We envision a future in which autonomous robots conduct scientific experiments in ways that are not only precise and repeatable, but also open, trustworthy, and transparent. To realize this vision, we present two key contributions: a semantic execution tracing framework that logs sensor data together with semantically annotated robot belief states, ensuring that automated experimentation is transparent and replicable; and the AICOR Virtual Research Building (VRB), a cloud-based platform for sharing, replicating, and validating robot task executions at scale. Together, these tools enable reproducible, robot-driven science by integrating deterministic execution, semantic memory, and open knowledge representation, laying the foundation for autonomous systems to participate in scientific discovery.
comment: 8 pages, 6 figures, submitted to the 1st IROS Workshop on Embodied AI and Robotics for Future Scientific Discovery
☆ An Exploratory Study on Crack Detection in Concrete through Human-Robot Collaboration
Structural inspection in nuclear facilities is vital for maintaining operational safety and integrity. Traditional methods of manual inspection pose significant challenges, including safety risks, high cognitive demands, and potential inaccuracies due to human limitations. Recent advancements in Artificial Intelligence (AI) and robotic technologies have opened new possibilities for safer, more efficient, and accurate inspection methodologies. Specifically, Human-Robot Collaboration (HRC), leveraging robotic platforms equipped with advanced detection algorithms, promises significant improvements in inspection outcomes and reductions in human workload. This study explores the effectiveness of AI-assisted visual crack detection integrated into a mobile Jackal robot platform. The experiment results indicate that HRC enhances inspection accuracy and reduces operator workload, resulting in potential superior performance outcomes compared to traditional manual methods.
☆ Trustworthy AI Psychotherapy: Multi-Agent LLM Workflow for Counseling and Explainable Mental Disorder Diagnosis CIKM 2025
LLM-based agents have emerged as transformative tools capable of executing complex tasks through iterative planning and action, achieving significant advancements in understanding and addressing user needs. Yet, their effectiveness remains limited in specialized domains such as mental health diagnosis, where they underperform compared to general applications. Current approaches to integrating diagnostic capabilities into LLMs rely on scarce, highly sensitive mental health datasets, which are challenging to acquire. These methods also fail to emulate clinicians' proactive inquiry skills, lack multi-turn conversational comprehension, and struggle to align outputs with expert clinical reasoning. To address these gaps, we propose DSM5AgentFlow, the first LLM-based agent workflow designed to autonomously generate DSM-5 Level-1 diagnostic questionnaires. By simulating therapist-client dialogues with specific client profiles, the framework delivers transparent, step-by-step disorder predictions, producing explainable and trustworthy results. This workflow serves as a complementary tool for mental health diagnosis, ensuring adherence to ethical and legal standards. Through comprehensive experiments, we evaluate leading LLMs across three critical dimensions: conversational realism, diagnostic accuracy, and explainability. Our datasets and implementations are fully open-sourced.
comment: Accepted by CIKM 2025 as a full paper
☆ Retrieval-augmented reasoning with lean language models
This technical report details a novel approach to combining reasoning and retrieval augmented generation (RAG) within a single, lean language model architecture. While existing RAG systems typically rely on large-scale models and external APIs, our work addresses the increasing demand for performant and privacy-preserving solutions deployable in resource-constrained or secure environments. Building on recent developments in test-time scaling and small-scale reasoning models, we develop a retrieval augmented conversational agent capable of interpreting complex, domain-specific queries using a lightweight backbone model. Our system integrates a dense retriever with fine-tuned Qwen2.5-Instruct models, using synthetic query generation and reasoning traces derived from frontier models (e.g., DeepSeek-R1) over a curated corpus, in this case, the NHS A-to-Z condition pages. We explore the impact of summarisation-based document compression, synthetic data design, and reasoning-aware fine-tuning on model performance. Evaluation against both non-reasoning and general-purpose lean models demonstrates that our domain-specific fine-tuning approach yields substantial gains in answer accuracy and consistency, approaching frontier-level performance while remaining feasible for local deployment. All implementation details and code are publicly released to support reproducibility and adaptation across domains.
☆ When Punctuation Matters: A Large-Scale Comparison of Prompt Robustness Methods for LLMs
Large Language Models (LLMs) are highly sensitive to subtle, non-semantic variations in prompt phrasing and formatting. In this work, we present the first systematic evaluation of 5 methods for improving prompt robustness within a unified experimental framework. We benchmark these techniques on 8 models from Llama, Qwen and Gemma families across 52 tasks from Natural Instructions dataset. Our evaluation covers robustness methods from both fine-tuned and in-context learning paradigms, and tests their generalization against multiple types of distribution shifts. Finally, we extend our analysis to GPT-4.1 and DeepSeek V3 to assess frontier models' current robustness to format perturbations. Our findings offer actionable insights into the relative effectiveness of these robustness methods, enabling practitioners to make informed decisions when aiming for stable and reliable LLM performance in real-world applications. Code: https://github.com/AIRI-Institute/when-punctuation-matters.
☆ G-CUT3R: Guided 3D Reconstruction with Camera and Depth Prior Integration
We introduce G-CUT3R, a novel feed-forward approach for guided 3D scene reconstruction that enhances the CUT3R model by integrating prior information. Unlike existing feed-forward methods that rely solely on input images, our method leverages auxiliary data, such as depth, camera calibrations, or camera positions, commonly available in real-world scenarios. We propose a lightweight modification to CUT3R, incorporating a dedicated encoder for each modality to extract features, which are fused with RGB image tokens via zero convolution. This flexible design enables seamless integration of any combination of prior information during inference. Evaluated across multiple benchmarks, including 3D reconstruction and other multi-view tasks, our approach demonstrates significant performance improvements, showing its ability to effectively utilize available priors while maintaining compatibility with varying input modalities.
☆ Does the Skeleton-Recall Loss Really Work?
Image segmentation is an important and widely performed task in computer vision. Accomplishing effective image segmentation in diverse settings often requires custom model architectures and loss functions. A set of models that specialize in segmenting thin tubular structures are topology preservation-based loss functions. These models often utilize a pixel skeletonization process claimed to generate more precise segmentation masks of thin tubes and better capture the structures that other models often miss. One such model, Skeleton Recall Loss (SRL) proposed by Kirchhoff et al.~\cite {kirchhoff2024srl}, was stated to produce state-of-the-art results on benchmark tubular datasets. In this work, we performed a theoretical analysis of the gradients for the SRL loss. Upon comparing the performance of the proposed method on some of the tubular datasets (used in the original work, along with some additional datasets), we found that the performance of SRL-based segmentation models did not exceed traditional baseline models. By providing both a theoretical explanation and empirical evidence, this work critically evaluates the limitations of topology-based loss functions, offering valuable insights for researchers aiming to develop more effective segmentation models for complex tubular structures.
☆ Minimizing Surrogate Losses for Decision-Focused Learning using Differentiable Optimization
Decision-focused learning (DFL) trains a machine learning (ML) model to predict parameters of an optimization problem, to directly minimize decision regret, i.e., maximize decision quality. Gradient-based DFL requires computing the derivative of the solution to the optimization problem with respect to the predicted parameters. However, for many optimization problems, such as linear programs (LPs), the gradient of the regret with respect to the predicted parameters is zero almost everywhere. Existing gradient-based DFL approaches for LPs try to circumvent this issue in one of two ways: (a) smoothing the LP into a differentiable optimization problem by adding a quadratic regularizer and then minimizing the regret directly or (b) minimizing surrogate losses that have informative (sub)gradients. In this paper, we show that the former approach still results in zero gradients, because even after smoothing the regret remains constant across large regions of the parameter space. To address this, we propose minimizing surrogate losses -- even when a differentiable optimization layer is used and regret can be minimized directly. Our experiments demonstrate that minimizing surrogate losses allows differentiable optimization layers to achieve regret comparable to or better than surrogate-loss based DFL methods. Further, we demonstrate that this also holds for DYS-Net, a recently proposed differentiable optimization technique for LPs, that computes approximate solutions and gradients through operations that can be performed using feedforward neural network layers. Because DYS-Net executes the forward and the backward pass very efficiently, by minimizing surrogate losses using DYS-Net, we are able to attain regret on par with the state-of-the-art while reducing training time by a significant margin.
☆ CRAFT-GUI: Curriculum-Reinforced Agent For GUI Tasks
As autonomous agents become adept at understanding and interacting with graphical user interface (GUI) environments, a new era of automated task execution is emerging. Recent studies have demonstrated that Reinforcement Learning (RL) can effectively enhance agents' performance in dynamic interactive GUI environments. However, these methods face two key limitations: (1) they overlook the significant variation in difficulty across different GUI tasks by treating the entire training data as a uniform set, which hampers the agent's ability to adapt its learning process; and (2) most approaches collapse task-specific nuances into a single, coarse reward, leaving the agent with a uniform signal that yields inefficient policy updates. To address these limitations, we propose CRAFT-GUI, a curriculum learning framework based on Group Relative Policy Optimization (GRPO) that explicitly accounts for the varying difficulty across trajectories. To enable more fine-grained policy optimization, we design a reward function that combines simple rule-based signals with model-judged evaluation, providing richer and more nuanced feedback during training. Experimental results demonstrate that our method achieves significant improvements over previous state-of-the-art approaches, outperforming them by 5.6% on public benchmarks Android Control and 10.3% on our internal online benchmarks, respectively. These findings empirically validate the effectiveness of integrating reinforcement learning with curriculum learning in GUI interaction tasks.
☆ PTSM: Physiology-aware and Task-invariant Spatio-temporal Modeling for Cross-Subject EEG Decoding
Cross-subject electroencephalography (EEG) decoding remains a fundamental challenge in brain-computer interface (BCI) research due to substantial inter-subject variability and the scarcity of subject-invariant representations. This paper proposed PTSM (Physiology-aware and Task-invariant Spatio-temporal Modeling), a novel framework for interpretable and robust EEG decoding across unseen subjects. PTSM employs a dual-branch masking mechanism that independently learns personalized and shared spatio-temporal patterns, enabling the model to preserve individual-specific neural characteristics while extracting task-relevant, population-shared features. The masks are factorized across temporal and spatial dimensions, allowing fine-grained modulation of dynamic EEG patterns with low computational overhead. To further address representational entanglement, PTSM enforces information-theoretic constraints that decompose latent embeddings into orthogonal task-related and subject-related subspaces. The model is trained end-to-end via a multi-objective loss integrating classification, contrastive, and disentanglement objectives. Extensive experiments on cross-subject motor imagery datasets demonstrate that PTSM achieves strong zero-shot generalization, outperforming state-of-the-art baselines without subject-specific calibration. Results highlight the efficacy of disentangled neural representations for achieving both personalized and transferable decoding in non-stationary neurophysiological settings.
☆ ETTRL: Balancing Exploration and Exploitation in LLM Test-Time Reinforcement Learning Via Entropy Mechanism
Recent advancements in Large Language Models have yielded significant improvements in complex reasoning tasks such as mathematics and programming. However, these models remain heavily dependent on annotated data and exhibit limited adaptability in unsupervised scenarios. To address these limitations, test-time reinforcement learning (TTRL) has been proposed, which enables self-optimization by leveraging model-generated pseudo-labels. Despite its promise, TTRL faces several key challenges, including high inference costs due to parallel rollouts and early-stage estimation bias that fosters overconfidence, reducing output diversity and causing performance plateaus. To address these challenges, we introduce an entropy-based mechanism to enhance the exploration-exploitation balance in test-time reinforcement learning through two strategies: Entropy-fork Tree Majority Rollout (ETMR) and Entropy-based Advantage Reshaping (EAR). Compared with the baseline, our approach enables Llama3.1-8B to achieve a 68 percent relative improvement in Pass at 1 metric on the AIME 2024 benchmark, while consuming only 60 percent of the rollout tokens budget. This highlights our method's ability to effectively optimize the trade-off between inference efficiency, diversity, and estimation robustness, thereby advancing unsupervised reinforcement learning for open-domain reasoning tasks.
☆ Leveraging the RETFound foundation model for optic disc segmentation in retinal images
RETFound is a well-known foundation model (FM) developed for fundus camera and optical coherence tomography images. It has shown promising performance across multiple datasets in diagnosing diseases, both eye-specific and systemic, from retinal images. However, to our best knowledge, it has not been used for other tasks. We present the first adaptation of RETFound for optic disc segmentation, a ubiquitous and foundational task in retinal image analysis. The resulting segmentation system outperforms state-of-the-art, segmentation-specific baseline networks after training a head with only a very modest number of task-specific examples. We report and discuss results with four public datasets, IDRID, Drishti-GS, RIM-ONE-r3, and REFUGE, and a private dataset, GoDARTS, achieving about 96% Dice consistently across all datasets. Overall, our method obtains excellent performance in internal verification, domain generalization and domain adaptation, and exceeds most of the state-of-the-art baseline results. We discuss the results in the framework of the debate about FMs as alternatives to task-specific architectures. The code is available at: [link to be added after the paper is accepted]
☆ NeMo: A Neuron-Level Modularizing-While-Training Approach for Decomposing DNN Models
With the growing incorporation of deep neural network (DNN) models into modern software systems, the prohibitive construction costs have become a significant challenge. Model reuse has been widely applied to reduce training costs, but indiscriminately reusing entire models may incur significant inference overhead. Consequently, DNN modularization has gained attention, enabling module reuse by decomposing DNN models. The emerging modularizing-while-training (MwT) paradigm, which incorporates modularization into training, outperforms modularizing-after-training approaches. However, existing MwT methods focus on small-scale CNN models at the convolutional kernel level and struggle with diverse DNNs and large-scale models, particularly Transformer-based models. To address these limitations, we propose NeMo, a scalable and generalizable MwT approach. NeMo operates at the neuron level fundamental component common to all DNNs-ensuring applicability to Transformers and various architectures. We design a contrastive learning-based modular training method with an effective composite loss function, enabling scalability to large-scale models. Comprehensive experiments on two Transformer-based models and four CNN models across two classification datasets demonstrate NeMo's superiority over state-of-the-art MwT methods. Results show average gains of 1.72% in module classification accuracy and 58.10% reduction in module size, demonstrating efficacy across both CNN and large-scale Transformer-based models. A case study on open-source projects shows NeMo's potential benefits in practical scenarios, offering a promising approach for scalable and generalizable DNN modularization.
☆ SAGE: Scale-Aware Gradual Evolution for Continual Knowledge Graph Embedding KDD 2025
Traditional knowledge graph (KG) embedding methods aim to represent entities and relations in a low-dimensional space, primarily focusing on static graphs. However, real-world KGs are dynamically evolving with the constant addition of entities, relations and facts. To address such dynamic nature of KGs, several continual knowledge graph embedding (CKGE) methods have been developed to efficiently update KG embeddings to accommodate new facts while maintaining learned knowledge. As KGs grow at different rates and scales in real-world scenarios, existing CKGE methods often fail to consider the varying scales of updates and lack systematic evaluation throughout the entire update process. In this paper, we propose SAGE, a scale-aware gradual evolution framework for CKGE. Specifically, SAGE firstly determine the embedding dimensions based on the update scales and expand the embedding space accordingly. The Dynamic Distillation mechanism is further employed to balance the preservation of learned knowledge and the incorporation of new facts. We conduct extensive experiments on seven benchmarks, and the results show that SAGE consistently outperforms existing baselines, with a notable improvement of 1.38% in MRR, 1.25% in H@1 and 1.6% in H@10. Furthermore, experiments comparing SAGE with methods using fixed embedding dimensions show that SAGE achieves optimal performance on every snapshot, demonstrating the importance of adaptive embedding dimensions in CKGE. The codes of SAGE are publicly available at: https://github.com/lyfxjtu/Dynamic-Embedding.
comment: 10 pages, 5 figures, Accepted at KDD 2025, code available at https://github.com/lyfxjtu/Dynamic-Embedding
☆ RegimeNAS: Regime-Aware Differentiable Architecture Search With Theoretical Guarantees for Financial Trading
We introduce RegimeNAS, a novel differentiable architecture search framework specifically designed to enhance cryptocurrency trading performance by explicitly integrating market regime awareness. Addressing the limitations of static deep learning models in highly dynamic financial environments, RegimeNAS features three core innovations: (1) a theoretically grounded Bayesian search space optimizing architectures with provable convergence properties; (2) specialized, dynamically activated neural modules (Volatility, Trend, and Range blocks) tailored for distinct market conditions; and (3) a multi-objective loss function incorporating market-specific penalties (e.g., volatility matching, transition smoothness) alongside mathematically enforced Lipschitz stability constraints. Regime identification leverages multi-head attention across multiple timeframes for improved accuracy and uncertainty estimation. Rigorous empirical evaluation on extensive real-world cryptocurrency data demonstrates that RegimeNAS significantly outperforms state-of-the-art benchmarks, achieving an 80.3% Mean Absolute Error reduction compared to the best traditional recurrent baseline and converging substantially faster (9 vs. 50+ epochs). Ablation studies and regime-specific analysis confirm the critical contribution of each component, particularly the regime-aware adaptation mechanism. This work underscores the imperative of embedding domain-specific knowledge, such as market regimes, directly within the NAS process to develop robust and adaptive models for challenging financial applications.
☆ SGSimEval: A Comprehensive Multifaceted and Similarity-Enhanced Benchmark for Automatic Survey Generation Systems
The growing interest in automatic survey generation (ASG), a task that traditionally required considerable time and effort, has been spurred by recent advances in large language models (LLMs). With advancements in retrieval-augmented generation (RAG) and the rising popularity of multi-agent systems (MASs), synthesizing academic surveys using LLMs has become a viable approach, thereby elevating the need for robust evaluation methods in this domain. However, existing evaluation methods suffer from several limitations, including biased metrics, a lack of human preference, and an over-reliance on LLMs-as-judges. To address these challenges, we propose SGSimEval, a comprehensive benchmark for Survey Generation with Similarity-Enhanced Evaluation that evaluates automatic survey generation systems by integrating assessments of the outline, content, and references, and also combines LLM-based scoring with quantitative metrics to provide a multifaceted evaluation framework. In SGSimEval, we also introduce human preference metrics that emphasize both inherent quality and similarity to humans. Extensive experiments reveal that current ASG systems demonstrate human-comparable superiority in outline generation, while showing significant room for improvement in content and reference generation, and our evaluation metrics maintain strong consistency with human assessments.
comment: Accepted to The 21st International Conference on Advanced Data Mining and Applications (ADMA2025)
Dynamic Quality-Latency Aware Routing for LLM Inference in Wireless Edge-Device Networks
The integration of wireless communications and Large Language Models (LLMs) is poised to unlock ubiquitous intelligent services, yet deploying them in wireless edge-device collaborative environments presents a critical trade-off between inference quality and end-to-end latency. A fundamental mismatch exists between task complexity and resource allocation: offloading simple queries invites prohibitive latency, while on-device models lack the capacity for demanding computations. To address this challenge, we propose a dynamic, quality-latency aware routing framework that orchestrates inference between a lightweight model on the mobile device and a powerful model on the edge server. Our framework employs two distinct cost models: for single-turn queries, it fuses a BERT-predicted semantic score with communication and computation overheads; for multi-turn dialogues, it further quantifies context-aware costs arising from model switching and KV-cache management. While maintaining full inference quality, extensive experiments demonstrate that our framework cuts average response latency by 5-15% and reduces large model invocations by 10-20% against competitive baselines on MMLU, GSM8K, and MT-Bench-101 benchmarks.
comment: accepted by IEEE/CIC ICCC workshop
☆ CSGO: Generalized Optimization for Cold Start in Wireless Collaborative Edge LLM Systems
While deploying large language models on edge devices promises low-latency and privacy-preserving AI services, it is hindered by limited device resources. Although pipeline parallelism facilitates distributed inference, existing approaches often ignore the cold-start latency caused by on-demand model loading. In this paper, we propose a latency-aware scheduling framework that overlaps model loading with computation and communication to minimize total inference latency. Based on device and model parameters, the framework dynamically adjusts layer partitioning and allocation to effectively hide loading time, thereby eliminating as many idle periods as possible. We formulate the problem as a Mixed-Integer Non-Linear Program and design an efficient dynamic programming algorithm to optimize model partitioning and device assignment. Experimental results show that the proposed method significantly reduces cold-start latency compared to baseline strategies.
comment: submitted to Journal of Communications and Information Networks
☆ Scene Graph-Guided Proactive Replanning for Failure-Resilient Embodied Agent
When humans perform everyday tasks, we naturally adjust our actions based on the current state of the environment. For instance, if we intend to put something into a drawer but notice it is closed, we open it first. However, many autonomous robots lack this adaptive awareness. They often follow pre-planned actions that may overlook subtle yet critical changes in the scene, which can result in actions being executed under outdated assumptions and eventual failure. While replanning is critical for robust autonomy, most existing methods respond only after failures occur, when recovery may be inefficient or infeasible. While proactive replanning holds promise for preventing failures in advance, current solutions often rely on manually designed rules and extensive supervision. In this work, we present a proactive replanning framework that detects and corrects failures at subtask boundaries by comparing scene graphs constructed from current RGB-D observations against reference graphs extracted from successful demonstrations. When the current scene fails to align with reference trajectories, a lightweight reasoning module is activated to diagnose the mismatch and adjust the plan. Experiments in the AI2-THOR simulator demonstrate that our approach detects semantic and spatial mismatches before execution failures occur, significantly improving task success and robustness.
☆ ToxiFrench: Benchmarking and Enhancing Language Models via CoT Fine-Tuning for French Toxicity Detection
Detecting toxic content using language models is crucial yet challenging. While substantial progress has been made in English, toxicity detection in French remains underdeveloped, primarily due to the lack of culturally relevant, large-scale datasets. In this work, we introduce TOXIFRENCH, a new public benchmark of 53,622 French online comments, constructed via a semi-automated annotation pipeline that reduces manual labeling to only 10% through high-confidence LLM-based pre-annotation and human verification. Then, we benchmark a broad range of models and uncover a counterintuitive insight: Small Language Models (SLMs) outperform many larger models in robustness and generalization under the toxicity detection task. Motivated by this finding, we propose a novel Chain-of-Thought (CoT) fine-tuning strategy using a dynamic weighted loss that progressively emphasizes the model's final decision, significantly improving faithfulness. Our fine-tuned 4B model achieves state-of-the-art performance, improving its F1 score by 13% over its baseline and outperforming LLMs such as GPT-40 and Gemini-2.5. Further evaluation on a cross-lingual toxicity benchmark demonstrates strong multilingual ability, suggesting that our methodology can be effectively extended to other languages and safety-critical classification tasks.
comment: 14 pages, 5 figures, 8 tables. This paper introduces TOXIFRENCH, a new large-scale benchmark for French toxicity detection, and proposes a Chain-of-Thought (CoT) fine-tuning method with a dynamic weighted loss. The resulting fine-tuned 4B parameter model, ToxiFrench, achieves state-of-the-art performance, outperforming larger models like GPT-4o
☆ LETToT: Label-Free Evaluation of Large Language Models On Tourism Using Expert Tree-of-Thought
Evaluating large language models (LLMs) in specific domain like tourism remains challenging due to the prohibitive cost of annotated benchmarks and persistent issues like hallucinations. We propose $\textbf{L}$able-Free $\textbf{E}$valuation of LLM on $\textbf{T}$ourism using Expert $\textbf{T}$ree-$\textbf{o}$f-$\textbf{T}$hought (LETToT), a framework that leverages expert-derived reasoning structures-instead of labeled data-to access LLMs in tourism. First, we iteratively refine and validate hierarchical ToT components through alignment with generic quality dimensions and expert feedback. Results demonstrate the effectiveness of our systematically optimized expert ToT with 4.99-14.15\% relative quality gains over baselines. Second, we apply LETToT's optimized expert ToT to evaluate models of varying scales (32B-671B parameters), revealing: (1) Scaling laws persist in specialized domains (DeepSeek-V3 leads), yet reasoning-enhanced smaller models (e.g., DeepSeek-R1-Distill-Llama-70B) close this gap; (2) For sub-72B models, explicit reasoning architectures outperform counterparts in accuracy and conciseness ($p<0.05$). Our work established a scalable, label-free paradigm for domain-specific LLM evaluation, offering a robust alternative to conventional annotated benchmarks.
☆ Is General-Purpose AI Reasoning Sensitive to Data-Induced Cognitive Biases? Dynamic Benchmarking on Typical Software Engineering Dilemmas
Human cognitive biases in software engineering can lead to costly errors. While general-purpose AI (GPAI) systems may help mitigate these biases due to their non-human nature, their training on human-generated data raises a critical question: Do GPAI systems themselves exhibit cognitive biases? To investigate this, we present the first dynamic benchmarking framework to evaluate data-induced cognitive biases in GPAI within software engineering workflows. Starting with a seed set of 16 hand-crafted realistic tasks, each featuring one of 8 cognitive biases (e.g., anchoring, framing) and corresponding unbiased variants, we test whether bias-inducing linguistic cues unrelated to task logic can lead GPAI systems from correct to incorrect conclusions. To scale the benchmark and ensure realism, we develop an on-demand augmentation pipeline relying on GPAI systems to generate task variants that preserve bias-inducing cues while varying surface details. This pipeline ensures correctness (88--99% on average, according to human evaluation), promotes diversity, and controls reasoning complexity by leveraging Prolog-based reasoning and LLM-as-a-judge validation. It also verifies that the embedded biases are both harmful and undetectable by logic-based, unbiased reasoners. We evaluate leading GPAI systems (GPT, LLaMA, DeepSeek) and find a consistent tendency to rely on shallow linguistic heuristics over deep reasoning. All systems exhibit cognitive biases (ranging from 5.9% to 35% across types), with bias sensitivity increasing sharply with task complexity (up to 49%), highlighting critical risks in real-world software engineering deployments.
☆ Enhancing Supervised Composed Image Retrieval via Reasoning-Augmented Representation Engineering
Composed Image Retrieval (CIR) presents a significant challenge as it requires jointly understanding a reference image and a modified textual instruction to find relevant target images. Some existing methods attempt to use a two-stage approach to further refine retrieval results. However, this often requires additional training of a ranking model. Despite the success of Chain-of-Thought (CoT) techniques in reducing training costs for language models, their application in CIR tasks remains limited -- compressing visual information into text or relying on elaborate prompt designs. Besides, existing works only utilize it for zero-shot CIR, as it is challenging to achieve satisfactory results in supervised CIR with a well-trained model. In this work, we proposed a framework that includes the Pyramid Matching Model with Training-Free Refinement (PMTFR) to address these challenges. Through a simple but effective module called Pyramid Patcher, we enhanced the Pyramid Matching Model's understanding of visual information at different granularities. Inspired by representation engineering, we extracted representations from COT data and injected them into the LVLMs. This approach allowed us to obtain refined retrieval scores in the Training-Free Refinement paradigm without relying on explicit textual reasoning, further enhancing performance. Extensive experiments on CIR benchmarks demonstrate that PMTFR surpasses state-of-the-art methods in supervised CIR tasks. The code will be made public.
☆ Vision-Language Models display a strong gender bias
Vision-language models (VLM) align images and text in a shared representation space that is useful for retrieval and zero-shot transfer. Yet, this alignment can encode and amplify social stereotypes in subtle ways that are not obvious from standard accuracy metrics. In this study, we test whether the contrastive vision-language encoder exhibits gender-linked associations when it places embeddings of face images near embeddings of short phrases that describe occupations and activities. We assemble a dataset of 220 face photographs split by perceived binary gender and a set of 150 unique statements distributed across six categories covering emotional labor, cognitive labor, domestic labor, technical labor, professional roles, and physical labor. We compute unit-norm image embeddings for every face and unit-norm text embeddings for every statement, then define a statement-level association score as the difference between the mean cosine similarity to the male set and the mean cosine similarity to the female set, where positive values indicate stronger association with the male set and negative values indicate stronger association with the female set. We attach bootstrap confidence intervals by resampling images within each gender group, aggregate by category with a separate bootstrap over statements, and run a label-swap null model that estimates the level of mean absolute association we would expect if no gender structure were present. The outcome is a statement-wise and category-wise map of gender associations in a contrastive vision-language space, accompanied by uncertainty, simple sanity checks, and a robust gender bias evaluation framework.
☆ Hallucination in LLM-Based Code Generation: An Automotive Case Study
Large Language Models (LLMs) have shown significant potential in automating code generation tasks offering new opportunities across software engineering domains. However, their practical application remains limited due to hallucinations - outputs that appear plausible but are factually incorrect, unverifiable or nonsensical. This paper investigates hallucination phenomena in the context of code generation with a specific focus on the automotive domain. A case study is presented that evaluates multiple code LLMs for three different prompting complexities ranging from a minimal one-liner prompt to a prompt with Covesa Vehicle Signal Specifications (VSS) as additional context and finally to a prompt with an additional code skeleton. The evaluation reveals a high frequency of syntax violations, invalid reference errors and API knowledge conflicts in state-of-the-art models GPT-4.1, Codex and GPT-4o. Among the evaluated models, only GPT-4.1 and GPT-4o were able to produce a correct solution when given the most context-rich prompt. Simpler prompting strategies failed to yield a working result, even after multiple refinement iterations. These findings highlight the need for effective mitigation techniques to ensure the safe and reliable use of LLM generated code, especially in safety-critical domains such as automotive software systems.
☆ Generalized Decoupled Learning for Enhancing Open-Vocabulary Dense Perception
Dense visual perception tasks have been constrained by their reliance on predefined categories, limiting their applicability in real-world scenarios where visual concepts are unbounded. While Vision-Language Models (VLMs) like CLIP have shown promise in open-vocabulary tasks, their direct application to dense perception often leads to suboptimal performance due to limitations in local feature representation. In this work, we present our observation that CLIP's image tokens struggle to effectively aggregate information from spatially or semantically related regions, resulting in features that lack local discriminability and spatial consistency. To address this issue, we propose DeCLIP, a novel framework that enhances CLIP by decoupling the self-attention module to obtain ``content'' and ``context'' features respectively. \revise{The context features are enhanced by jointly distilling semantic correlations from Vision Foundation Models (VFMs) and object integrity cues from diffusion models, thereby enhancing spatial consistency. In parallel, the content features are aligned with image crop representations and constrained by region correlations from VFMs to improve local discriminability. Extensive experiments demonstrate that DeCLIP establishes a solid foundation for open-vocabulary dense perception, consistently achieving state-of-the-art performance across a broad spectrum of tasks, including 2D detection and segmentation, 3D instance segmentation, video instance segmentation, and 6D object pose estimation.} Code is available at https://github.com/xiaomoguhz/DeCLIP
comment: arXiv admin note: text overlap with arXiv:2505.04410
☆ Beyond Solving Math Quiz: Evaluating the Ability of Large Reasoning Models to Ask for Information
Large Reasoning Models (LRMs) have demonstrated remarkable problem-solving abilities in mathematics, as evaluated by existing benchmarks exclusively on well-defined problems. However, such evaluation setup constitutes a critical gap, since a genuine intelligent agent should not only solve problems (as a math quiz solver), but also be able~to ask for information when the problems lack sufficient information, enabling proactivity in responding users' requests. To bridge such gap, we proposes a new dataset consisting of two types of incomplete problems with diverse contexts. Based on the dataset, our systematical evaluation of LRMs reveals their inability in proactively asking for information. In addition, we uncover the behaviors related to overthinking and hallucination of LRMs, and highlight the potential and challenges of supervised fine-tuning in learning such ability. We hope to provide new insights in developing LRMs with genuine intelligence, rather than just solving problems.
Graph Neural Diffusion via Generalized Opinion Dynamics
There has been a growing interest in developing diffusion-based Graph Neural Networks (GNNs), building on the connections between message passing mechanisms in GNNs and physical diffusion processes. However, existing methods suffer from three critical limitations: (1) they rely on homogeneous diffusion with static dynamics, limiting adaptability to diverse graph structures; (2) their depth is constrained by computational overhead and diminishing interpretability; and (3) theoretical understanding of their convergence behavior remains limited. To address these challenges, we propose GODNF, a Generalized Opinion Dynamics Neural Framework, which unifies multiple opinion dynamics models into a principled, trainable diffusion mechanism. Our framework captures heterogeneous diffusion patterns and temporal dynamics via node-specific behavior modeling and dynamic neighborhood influence, while ensuring efficient and interpretable message propagation even at deep layers. We provide a rigorous theoretical analysis demonstrating GODNF's ability to model diverse convergence configurations. Extensive empirical evaluations of node classification and influence estimation tasks confirm GODNF's superiority over state-of-the-art GNNs.
☆ Cross-Granularity Hypergraph Retrieval-Augmented Generation for Multi-hop Question Answering
Multi-hop question answering (MHQA) requires integrating knowledge scattered across multiple passages to derive the correct answer. Traditional retrieval-augmented generation (RAG) methods primarily focus on coarse-grained textual semantic similarity and ignore structural associations among dispersed knowledge, which limits their effectiveness in MHQA tasks. GraphRAG methods address this by leveraging knowledge graphs (KGs) to capture structural associations, but they tend to overly rely on structural information and fine-grained word- or phrase-level retrieval, resulting in an underutilization of textual semantics. In this paper, we propose a novel RAG approach called HGRAG for MHQA that achieves cross-granularity integration of structural and semantic information via hypergraphs. Structurally, we construct an entity hypergraph where fine-grained entities serve as nodes and coarse-grained passages as hyperedges, and establish knowledge association through shared entities. Semantically, we design a hypergraph retrieval method that integrates fine-grained entity similarity and coarse-grained passage similarity via hypergraph diffusion. Finally, we employ a retrieval enhancement module, which further refines the retrieved results both semantically and structurally, to obtain the most relevant passages as context for answer generation with the LLM. Experimental results on benchmark datasets demonstrate that our approach outperforms state-of-the-art methods in QA performance, and achieves a 6$\times$ speedup in retrieval efficiency.
☆ ORFuzz: Fuzzing the "Other Side" of LLM Safety -- Testing Over-Refusal
Large Language Models (LLMs) increasingly exhibit over-refusal - erroneously rejecting benign queries due to overly conservative safety measures - a critical functional flaw that undermines their reliability and usability. Current methods for testing this behavior are demonstrably inadequate, suffering from flawed benchmarks and limited test generation capabilities, as highlighted by our empirical user study. To the best of our knowledge, this paper introduces the first evolutionary testing framework, ORFuzz, for the systematic detection and analysis of LLM over-refusals. ORFuzz uniquely integrates three core components: (1) safety category-aware seed selection for comprehensive test coverage, (2) adaptive mutator optimization using reasoning LLMs to generate effective test cases, and (3) OR-Judge, a human-aligned judge model validated to accurately reflect user perception of toxicity and refusal. Our extensive evaluations demonstrate that ORFuzz generates diverse, validated over-refusal instances at a rate (6.98% average) more than double that of leading baselines, effectively uncovering vulnerabilities. Furthermore, ORFuzz's outputs form the basis of ORFuzzSet, a new benchmark of 1,855 highly transferable test cases that achieves a superior 63.56% average over-refusal rate across 10 diverse LLMs, significantly outperforming existing datasets. ORFuzz and ORFuzzSet provide a robust automated testing framework and a valuable community resource, paving the way for developing more reliable and trustworthy LLM-based software systems.
☆ How Causal Abstraction Underpins Computational Explanation
Explanations of cognitive behavior often appeal to computations over representations. What does it take for a system to implement a given computation over suitable representational vehicles within that system? We argue that the language of causality -- and specifically the theory of causal abstraction -- provides a fruitful lens on this topic. Drawing on current discussions in deep learning with artificial neural networks, we illustrate how classical themes in the philosophy of computation and cognition resurface in contemporary machine learning. We offer an account of computational implementation grounded in causal abstraction, and examine the role for representation in the resulting picture. We argue that these issues are most profitably explored in connection with generalization and prediction.
☆ Multi-Group Equivariant Augmentation for Reinforcement Learning in Robot Manipulation
Sampling efficiency is critical for deploying visuomotor learning in real-world robotic manipulation. While task symmetry has emerged as a promising inductive bias to improve efficiency, most prior work is limited to isometric symmetries -- applying the same group transformation to all task objects across all timesteps. In this work, we explore non-isometric symmetries, applying multiple independent group transformations across spatial and temporal dimensions to relax these constraints. We introduce a novel formulation of the partially observable Markov decision process (POMDP) that incorporates the non-isometric symmetry structures, and propose a simple yet effective data augmentation method, Multi-Group Equivariance Augmentation (MEA). We integrate MEA with offline reinforcement learning to enhance sampling efficiency, and introduce a voxel-based visual representation that preserves translational equivariance. Extensive simulation and real-robot experiments across two manipulation domains demonstrate the effectiveness of our approach.
☆ StyleMM: Stylized 3D Morphable Face Model via Text-Driven Aligned Image Translation
We introduce StyleMM, a novel framework that can construct a stylized 3D Morphable Model (3DMM) based on user-defined text descriptions specifying a target style. Building upon a pre-trained mesh deformation network and a texture generator for original 3DMM-based realistic human faces, our approach fine-tunes these models using stylized facial images generated via text-guided image-to-image (i2i) translation with a diffusion model, which serve as stylization targets for the rendered mesh. To prevent undesired changes in identity, facial alignment, or expressions during i2i translation, we introduce a stylization method that explicitly preserves the facial attributes of the source image. By maintaining these critical attributes during image stylization, the proposed approach ensures consistent 3D style transfer across the 3DMM parameter space through image-based training. Once trained, StyleMM enables feed-forward generation of stylized face meshes with explicit control over shape, expression, and texture parameters, producing meshes with consistent vertex connectivity and animatability. Quantitative and qualitative evaluations demonstrate that our approach outperforms state-of-the-art methods in terms of identity-level facial diversity and stylization capability. The code and videos are available at [kwanyun.github.io/stylemm_page](kwanyun.github.io/stylemm_page).
comment: Pacific graphics 2025, CGF, 15 pages
☆ Visuomotor Grasping with World Models for Surgical Robots
Grasping is a fundamental task in robot-assisted surgery (RAS), and automating it can reduce surgeon workload while enhancing efficiency, safety, and consistency beyond teleoperated systems. Most prior approaches rely on explicit object pose tracking or handcrafted visual features, limiting their generalization to novel objects, robustness to visual disturbances, and the ability to handle deformable objects. Visuomotor learning offers a promising alternative, but deploying it in RAS presents unique challenges, such as low signal-to-noise ratio in visual observations, demands for high safety and millimeter-level precision, as well as the complex surgical environment. This paper addresses three key challenges: (i) sim-to-real transfer of visuomotor policies to ex vivo surgical scenes, (ii) visuomotor learning using only a single stereo camera pair -- the standard RAS setup, and (iii) object-agnostic grasping with a single policy that generalizes to diverse, unseen surgical objects without retraining or task-specific models. We introduce Grasp Anything for Surgery V2 (GASv2), a visuomotor learning framework for surgical grasping. GASv2 leverages a world-model-based architecture and a surgical perception pipeline for visual observations, combined with a hybrid control system for safe execution. We train the policy in simulation using domain randomization for sim-to-real transfer and deploy it on a real robot in both phantom-based and ex vivo surgical settings, using only a single pair of endoscopic cameras. Extensive experiments show our policy achieves a 65% success rate in both settings, generalizes to unseen objects and grippers, and adapts to diverse disturbances, demonstrating strong performance, generality, and robustness.
☆ E-CaTCH: Event-Centric Cross-Modal Attention with Temporal Consistency and Class-Imbalance Handling for Misinformation Detection
Detecting multimodal misinformation on social media remains challenging due to inconsistencies between modalities, changes in temporal patterns, and substantial class imbalance. Many existing methods treat posts independently and fail to capture the event-level structure that connects them across time and modality. We propose E-CaTCH, an interpretable and scalable framework for robustly detecting misinformation. If needed, E-CaTCH clusters posts into pseudo-events based on textual similarity and temporal proximity, then processes each event independently. Within each event, textual and visual features are extracted using pre-trained BERT and ResNet encoders, refined via intra-modal self-attention, and aligned through bidirectional cross-modal attention. A soft gating mechanism fuses these representations to form contextualized, content-aware embeddings of each post. To model temporal evolution, E-CaTCH segments events into overlapping time windows and uses a trend-aware LSTM, enhanced with semantic shift and momentum signals, to encode narrative progression over time. Classification is performed at the event level, enabling better alignment with real-world misinformation dynamics. To address class imbalance and promote stable learning, the model integrates adaptive class weighting, temporal consistency regularization, and hard-example mining. The total loss is aggregated across all events. Extensive experiments on Fakeddit, IND, and COVID-19 MISINFOGRAPH demonstrate that E-CaTCH consistently outperforms state-of-the-art baselines. Cross-dataset evaluations further demonstrate its robustness, generalizability, and practical applicability across diverse misinformation scenarios.
☆ Quantum-Boosted High-Fidelity Deep Learning
A fundamental limitation of probabilistic deep learning is its predominant reliance on Gaussian priors. This simplistic assumption prevents models from accurately capturing the complex, non-Gaussian landscapes of natural data, particularly in demanding domains like complex biological data, severely hindering the fidelity of the model for scientific discovery. The physically-grounded Boltzmann distribution offers a more expressive alternative, but it is computationally intractable on classical computers. To date, quantum approaches have been hampered by the insufficient qubit scale and operational stability required for the iterative demands of deep learning. Here, we bridge this gap by introducing the Quantum Boltzmann Machine-Variational Autoencoder (QBM-VAE), a large-scale and long-time stable hybrid quantum-classical architecture. Our framework leverages a quantum processor for efficient sampling from the Boltzmann distribution, enabling its use as a powerful prior within a deep generative model. Applied to million-scale single-cell datasets from multiple sources, the QBM-VAE generates a latent space that better preserves complex biological structures, consistently outperforming conventional Gaussian-based deep learning models like VAE and SCVI in essential tasks such as omics data integration, cell-type classification, and trajectory inference. It also provides a typical example of introducing a physics priori into deep learning to drive the model to acquire scientific discovery capabilities that breaks through data limitations. This work provides the demonstration of a practical quantum advantage in deep learning on a large-scale scientific problem and offers a transferable blueprint for developing hybrid quantum AI models.
☆ On Strong and Weak Admissibility in Non-Flat Assumption-Based Argumentation
In this work, we broaden the investigation of admissibility notions in the context of assumption-based argumentation (ABA). More specifically, we study two prominent alternatives to the standard notion of admissibility from abstract argumentation, namely strong and weak admissibility, and introduce the respective preferred, complete and grounded semantics for general (sometimes called non-flat) ABA. To do so, we use abstract bipolar set-based argumentation frameworks (BSAFs) as formal playground since they concisely capture the relations between assumptions and are expressive enough to represent general non-flat ABA frameworks, as recently shown. While weak admissibility has been recently investigated for a restricted fragment of ABA in which assumptions cannot be derived (flat ABA), strong admissibility has not been investigated for ABA so far. We introduce strong admissibility for ABA and investigate desirable properties. We furthermore extend the recent investigations of weak admissibility in the flat ABA fragment to the non-flat case. We show that the central modularization property is maintained under classical, strong, and weak admissibility. We also show that strong and weakly admissible semantics in non-flat ABA share some of the shortcomings of standard admissible semantics and discuss ways to address these.
☆ A Semi-supervised Generative Model for Incomplete Multi-view Data Integration with Missing Labels
Multi-view learning is widely applied to real-life datasets, such as multiple omics biological data, but it often suffers from both missing views and missing labels. Prior probabilistic approaches addressed the missing view problem by using a product-of-experts scheme to aggregate representations from present views and achieved superior performance over deterministic classifiers, using the information bottleneck (IB) principle. However, the IB framework is inherently fully supervised and cannot leverage unlabeled data. In this work, we propose a semi-supervised generative model that utilizes both labeled and unlabeled samples in a unified framework. Our method maximizes the likelihood of unlabeled samples to learn a latent space shared with the IB on labeled data. We also perform cross-view mutual information maximization in the latent space to enhance the extraction of shared information across views. Compared to existing approaches, our model achieves better predictive and imputation performance on both image and multi-omics data with missing views and limited labeled samples.
☆ Better Supervised Fine-tuning for VQA: Integer-Only Loss
With the rapid advancement of vision language models(VLM), their ability to assess visual content based on specific criteria and dimensions has become increasingly critical for applications such as video-theme consistency assessment and visual quality scoring. However, existing methods often suffer from imprecise results and inefficient loss calculation, which limit the focus of the model on key evaluation indicators. To address this, we propose IOVQA(Integer-only VQA), a novel fine-tuning approach tailored for VLMs to enhance their performance in video quality assessment tasks. The key innovation of IOVQA lies in its label construction and its targeted loss calculation mechanism. Specifically, during dataset curation, we constrain the model's output to integers within the range of [10,50], ensuring numerical stability, and convert decimal Overall_MOS to integer before using them as labels. We also introduce a target-mask strategy: when computing the loss, only the first two-digit-integer of the label is unmasked, forcing the model to learn the critical components of the numerical evaluation. After fine-tuning the Qwen2.5-VL model using the constructed dataset, experimental results demonstrate that the proposed method significantly improves the model's accuracy and consistency in the VQA task, ranking 3rd in VQualA 2025 GenAI-Bench AIGC Video Quality Assessment Challenge -- Track I. Our work highlights the effectiveness of merely leaving integer labels during fine-tuning, providing an effective idea for optimizing VLMs in quantitative evaluation scenarios.
☆ Role-Augmented Intent-Driven Generative Search Engine Optimization
Generative Search Engines (GSEs), powered by Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG), are reshaping information retrieval. While commercial systems (e.g., BingChat, Perplexity.ai) demonstrate impressive semantic synthesis capabilities, their black-box nature fundamentally undermines established Search Engine Optimization (SEO) practices. Content creators face a critical challenge: their optimization strategies, effective in traditional search engines, are misaligned with generative retrieval contexts, resulting in diminished visibility. To bridge this gap, we propose a Role-Augmented Intent-Driven Generative Search Engine Optimization (G-SEO) method, providing a structured optimization pathway tailored for GSE scenarios. Our method models search intent through reflective refinement across diverse informational roles, enabling targeted content enhancement. To better evaluate the method under realistic settings, we address the benchmarking limitations of prior work by: (1) extending the GEO dataset with diversified query variations reflecting real-world search scenarios and (2) introducing G-Eval 2.0, a 6-level LLM-augmented evaluation rubric for fine-grained human-aligned assessment. Experimental results demonstrate that search intent serves as an effective signal for guiding content optimization, yielding significant improvements over single-aspect baseline approaches in both subjective impressions and objective content visibility within GSE responses.
comment: 7 pages, 5 figures
☆ AlphaAgents: Large Language Model based Multi-Agents for Equity Portfolio Constructions
The field of artificial intelligence (AI) agents is evolving rapidly, driven by the capabilities of Large Language Models (LLMs) to autonomously perform and refine tasks with human-like efficiency and adaptability. In this context, multi-agent collaboration has emerged as a promising approach, enabling multiple AI agents to work together to solve complex challenges. This study investigates the application of role-based multi-agent systems to support stock selection in equity research and portfolio management. We present a comprehensive analysis performed by a team of specialized agents and evaluate their stock-picking performance against established benchmarks under varying levels of risk tolerance. Furthermore, we examine the advantages and limitations of employing multi-agent frameworks in equity analysis, offering critical insights into their practical efficacy and implementation challenges.
☆ Actor-Critic for Continuous Action Chunks: A Reinforcement Learning Framework for Long-Horizon Robotic Manipulation with Sparse Reward
Existing reinforcement learning (RL) methods struggle with long-horizon robotic manipulation tasks, particularly those involving sparse rewards. While action chunking is a promising paradigm for robotic manipulation, using RL to directly learn continuous action chunks in a stable and data-efficient manner remains a critical challenge. This paper introduces AC3 (Actor-Critic for Continuous Chunks), a novel RL framework that learns to generate high-dimensional, continuous action sequences. To make this learning process stable and data-efficient, AC3 incorporates targeted stabilization mechanisms for both the actor and the critic. First, to ensure reliable policy improvement, the actor is trained with an asymmetric update rule, learning exclusively from successful trajectories. Second, to enable effective value learning despite sparse rewards, the critic's update is stabilized using intra-chunk $n$-step returns and further enriched by a self-supervised module providing intrinsic rewards at anchor points aligned with each action chunk. We conducted extensive experiments on 25 tasks from the BiGym and RLBench benchmarks. Results show that by using only a few demonstrations and a simple model architecture, AC3 achieves superior success rates on most tasks, validating its effective design.
☆ A Cross-Modal Rumor Detection Scheme via Contrastive Learning by Exploring Text and Image internal Correlations
Existing rumor detection methods often neglect the content within images as well as the inherent relationships between contexts and images across different visual scales, thereby resulting in the loss of critical information pertinent to rumor identification. To address these issues, this paper presents a novel cross-modal rumor detection scheme based on contrastive learning, namely the Multi-scale Image and Context Correlation exploration algorithm (MICC). Specifically, we design an SCLIP encoder to generate unified semantic embeddings for text and multi-scale image patches through contrastive pretraining, enabling their relevance to be measured via dot-product similarity. Building upon this, a Cross-Modal Multi-Scale Alignment module is introduced to identify image regions most relevant to the textual semantics, guided by mutual information maximization and the information bottleneck principle, through a Top-K selection strategy based on a cross-modal relevance matrix constructed between the text and multi-scale image patches. Moreover, a scale-aware fusion network is designed to integrate the highly correlated multi-scale image features with global text features by assigning adaptive weights to image regions based on their semantic importance and cross-modal relevance. The proposed methodology has been extensively evaluated on two real-world datasets. The experimental results demonstrate that it achieves a substantial performance improvement over existing state-of-the-art approaches in rumor detection, highlighting its effectiveness and potential for practical applications.
☆ MoNaCo: More Natural and Complex Questions for Reasoning Across Dozens of Documents ACL
Large language models (LLMs) are emerging as a go-to tool for querying information. However, current LLM benchmarks rarely feature natural questions that are both information-seeking as well as genuinely time-consuming for humans. To address this gap we introduce MoNaCo, a benchmark of 1,315 natural and complex questions that require dozens, and at times hundreds, of intermediate steps to solve -- far more than any existing QA benchmark. To build MoNaCo, we developed a decomposed annotation pipeline to elicit and manually answer natural time-consuming questions at scale. Frontier LLMs evaluated on MoNaCo achieve at most 61.2% F1, hampered by low recall and hallucinations. Our results underscore the need for reasoning models that better handle the complexity and sheer breadth of real-world information-seeking questions -- with MoNaCo providing an effective resource for tracking such progress. The MONACO benchmark, codebase, prompts and models predictions are publicly available at: https://tomerwolgithub.github.io/monaco
comment: Accepted for publication in Transactions of the Association for Computational Linguistics (TACL), 2025. Authors pre-print
♻ ☆ Preacher: Paper-to-Video Agentic System
The paper-to-video task converts a research paper into a structured video abstract, distilling key concepts, methods, and conclusions into an accessible, well-organized format. While state-of-the-art video generation models demonstrate potential, they are constrained by limited context windows, rigid video duration constraints, limited stylistic diversity, and an inability to represent domain-specific knowledge. To address these limitations, we introduce Preacher, the first paper-to-video agentic system. Preacher employs a topdown approach to decompose, summarize, and reformulate the paper, followed by bottom-up video generation, synthesizing diverse video segments into a coherent abstract. To align cross-modal representations, we define key scenes and introduce a Progressive Chain of Thought (P-CoT) for granular, iterative planning. Preacher successfully generates high-quality video abstracts across five research fields, demonstrating expertise beyond current video generation models. Code will be released at: https://github.com/GenVerse/Paper2Video
comment: Code not ready
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
We present GLM-4.1V-Thinking and GLM-4.5V, a family of vision-language models (VLMs) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document interpretation. In a comprehensive evaluation across 42 public benchmarks, GLM-4.5V achieves state-of-the-art performance on nearly all tasks among open-source models of similar size, and demonstrates competitive or even superior results compared to closed-source models such as Gemini-2.5-Flash on challenging tasks including Coding and GUI Agents. Meanwhile, the smaller GLM-4.1V-9B-Thinking remains highly competitive-achieving superior results to the much larger Qwen2.5-VL-72B on 29 benchmarks. We open-source both GLM-4.1V-9B-Thinking and GLM-4.5V. Code, models and more information are released at https://github.com/zai-org/GLM-V.
♻ ☆ PTQAT: A Hybrid Parameter-Efficient Quantization Algorithm for 3D Perception Tasks ICCV
Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT) represent two mainstream model quantization approaches. However, PTQ often leads to unacceptable performance degradation in quantized models, while QAT imposes substantial GPU memory requirements and extended training time due to weight fine-tuning. In this paper, we propose PTQAT, a novel general hybrid quantization algorithm for the efficient deployment of 3D perception networks. To address the speed accuracy trade-off between PTQ and QAT, our method selects critical layers for QAT fine-tuning and performs PTQ on the remaining layers. Contrary to intuition, fine-tuning the layers with smaller output discrepancies before and after quantization, rather than those with larger discrepancies, actually leads to greater improvements in the model's quantization accuracy. This means we better compensate for quantization errors during their propagation, rather than addressing them at the point where they occur. The proposed PTQAT achieves similar performance to QAT with more efficiency by freezing nearly 50% of quantifiable layers. Additionally, PTQAT is a universal quantization method that supports various quantization bit widths (4 bits) as well as different model architectures, including CNNs and Transformers. The experimental results on nuScenes across diverse 3D perception tasks, including object detection, semantic segmentation, and occupancy prediction, show that our method consistently outperforms QAT-only baselines. Notably, it achieves 0.2%-0.9% NDS and 0.3%-1.0% mAP gains in object detection, 0.3%-2.0% mIoU gains in semantic segmentation and occupancy prediction while fine-tuning fewer weights.
comment: 8 pages, Accepted by ICCVW 2025
♻ ☆ PASS: Probabilistic Agentic Supernet Sampling for Interpretable and Adaptive Chest X-Ray Reasoning
Existing tool-augmented agentic systems are limited in the real world by (i) black-box reasoning steps that undermine trust of decision-making and pose safety risks, (ii) poor multimodal integration, which is inherently critical for healthcare tasks, and (iii) rigid and computationally inefficient agentic pipelines. We introduce PASS (Probabilistic Agentic Supernet Sampling), the first multimodal framework to address these challenges in the context of Chest X-Ray (CXR) reasoning. PASS adaptively samples agentic workflows over a multi-tool graph, yielding decision paths annotated with interpretable probabilities. Given the complex CXR reasoning task with multimodal medical data, PASS leverages its learned task-conditioned distribution over the agentic supernet. Thus, it adaptively selects the most suitable tool at each supernet layer, offering probability-annotated trajectories for post-hoc audits and directly enhancing medical AI safety. PASS also continuously compresses salient findings into an evolving personalized memory, while dynamically deciding whether to deepen its reasoning path or invoke an early exit for efficiency. To optimize a Pareto frontier balancing performance and cost, we design a novel three-stage training procedure, including expert knowledge warm-up, contrastive path-ranking, and cost-aware reinforcement learning. To facilitate rigorous evaluation, we introduce CAB-E, a comprehensive benchmark for multi-step, safety-critical, free-form CXR reasoning. Experiments across various benchmarks validate that PASS significantly outperforms strong baselines in multiple metrics (e.g., accuracy, AUC, LLM-J.) while balancing computational costs, pushing a new paradigm shift towards interpretable, adaptive, and multimodal medical agentic systems.
♻ ☆ An Explainable AI based approach for Monitoring Animal Health
Monitoring cattle health and optimizing yield are key challenges faced by dairy farmers due to difficulties in tracking all animals on the farm. This work aims to showcase modern data-driven farming practices based on explainable machine learning(ML) methods that explain the activity and behaviour of dairy cattle (cows). Continuous data collection of 3-axis accelerometer sensors and usage of robust ML methodologies and algorithms, provide farmers and researchers with actionable information on cattle activity, allowing farmers to make informed decisions and incorporate sustainable practices. This study utilizes Bluetooth-based Internet of Things (IoT) devices and 4G networks for seamless data transmission, immediate analysis, inference generation, and explains the models performance with explainability frameworks. Special emphasis is put on the pre-processing of the accelerometers time series data, including the extraction of statistical characteristics, signal processing techniques, and lag-based features using the sliding window technique. Various hyperparameter-optimized ML models are evaluated across varying window lengths for activity classification. The k-nearest neighbour Classifier achieved the best performance, with AUC of mean 0.98 and standard deviation of 0.0026 on the training set and 0.99 on testing set). In order to ensure transparency, Explainable AI based frameworks such as SHAP is used to interpret feature importance that can be understood and used by practitioners. A detailed comparison of the important features, along with the stability analysis of selected features, supports development of explainable and practical ML models for sustainable livestock management.
♻ ☆ Diffusion Beats Autoregressive in Data-Constrained Settings
Autoregressive (AR) models have long dominated the landscape of large language models, driving progress across a wide range of tasks. Recently, diffusion-based language models have emerged as a promising alternative, though their advantages over AR models remain underexplored. In this paper, we systematically study masked diffusion models in data-constrained settings-where training involves repeated passes over limited data and find that they significantly outperform AR models when compute is abundant but data is scarce. Diffusion models make better use of repeated data, achieving lower validation loss and superior downstream performance. We find new scaling laws for diffusion models and derive a closed-form expression for the critical compute threshold at which diffusion begins to outperform AR. Finally, we explain why diffusion models excel in this regime: their randomized masking objective implicitly trains over a rich distribution of token orderings, acting as an implicit data augmentation that AR's fixed left-to-right factorization lacks. Our results suggest that when data, not compute, is the bottleneck, diffusion models offer a compelling alternative to the standard AR paradigm. Our code is available at: https://diffusion-scaling.github.io.
comment: Project Webpage: https://diffusion-scaling.github.io
♻ ☆ Data Diversity as Implicit Regularization: How Does Diversity Shape the Weight Space of Deep Neural Networks?
Data augmentation that introduces diversity into the input data has long been used in training deep learning models. It has demonstrated benefits in improving robustness and generalization, practically aligning well with other regularization strategies such as dropout and weight decay. However, the underlying mechanism of how diverse training data contributes to model improvements remains unknown. In this paper, we investigate the impact of data diversity on the weight space of deep neural networks using Random Matrix Theory. Through spectral analysis and comparing models trained with data augmentation, dropout, and weight decay, we reveal that increasing data diversity alters the weight spectral distribution similarly to other regularization techniques, while displaying a pattern more closely aligned with dropout than with weight decay. Building on these insights, we propose a metric to explain and compare the benefits of diversity introduced by traditional data augmentations and those achieved through synthetic data.
♻ ☆ Once Upon an AI: Six Scaffolds for Child-AI Interaction Design, Inspired by Disney
To build AI that children can intuitively understand and benefit from, designers need a design grammar that serves their developmental needs. This paper bridges artificial intelligence design for children - an emerging field still defining its best practices - and animation, a well established field with decades of experience in engaging children through accessible storytelling. Pairing Piagetian developmental theory with design pattern extraction from 52 works of animation, the paper presents a six scaffold framework that integrates design insights transferable to child centred AI design: (1) signals for visual animacy and clarity, (2) sound for musical and auditory scaffolding, (3) synchrony in audiovisual cues, (4) sidekick style personas, (5) storyplay that supports symbolic play and imaginative exploration, and (6) structure in the form of predictable narratives. These strategies, long refined in animation, function as multimodal scaffolds for attention, understanding, and attunement, supporting learning and comfort. This structured design grammar is transferable to AI design. By reframing cinematic storytelling and child development theory as design logic for AI, the paper offers heuristics for AI that aligns with the cognitive stages and emotional needs of young users. The work contributes to design theory by showing how sensory, affective, and narrative techniques can inform developmentally attuned AI design. Future directions include empirical testing, cultural adaptation, and participatory co design.
comment: 28 pages
♻ ☆ Convolutional Autoencoders for Data Compression and Anomaly Detection in Small Satellite Technologies
Small satellite technologies have enhanced the potential and feasibility of geodesic missions, through simplification of design and decreased costs allowing for more frequent launches. On-satellite data acquisition systems can benefit from the implementation of machine learning (ML), for better performance and greater efficiency on tasks such as image processing or feature extraction. This work presents convolutional autoencoders for implementation on the payload of small satellites, designed to achieve dual functionality of data compression for more efficient off-satellite transmission, and at-source anomaly detection to inform satellite data-taking. This capability is demonstrated for a use case of disaster monitoring using aerial image datasets of the African continent, offering avenues for both novel ML-based approaches in small satellite applications along with the expansion of space technology and artificial intelligence in Africa.
comment: 10 pages, 6 figures
♻ ☆ Omni-DPO: A Dual-Perspective Paradigm for Dynamic Preference Learning of LLMs
Direct Preference Optimization (DPO) has become a cornerstone of reinforcement learning from human feedback (RLHF) due to its simplicity and efficiency. However, existing DPO-based approaches typically treat all preference pairs uniformly, ignoring critical variations in their inherent quality and learning utility, leading to suboptimal data utilization and performance. To address this challenge, we propose Omni-DPO, a dual-perspective optimization framework that jointly accounts for (1) the inherent quality of each preference pair and (2) the model's evolving performance on those pairs. By adaptively weighting samples according to both data quality and the model's learning dynamics during training, Omni-DPO enables more effective training data utilization and achieves better performance. Experimental results on various models and benchmarks demonstrate the superiority and generalization capabilities of Omni-DPO. On textual understanding tasks, Gemma-2-9b-it finetuned with Omni-DPO beats the leading LLM, Claude 3 Opus, by a significant margin of 6.7 points on the Arena-Hard benchmark. On mathematical reasoning tasks, Omni-DPO consistently outperforms the baseline methods across all benchmarks, providing strong empirical evidence for the effectiveness and robustness of our approach. Code and models will be available at https://github.com/pspdada/Omni-DPO.
♻ ☆ Bridging AI Innovation and Healthcare Needs: Lessons Learned from Incorporating Modern NLP at The BC Cancer Registry
Automating data extraction from clinical documents offers significant potential to improve efficiency in healthcare settings, yet deploying Natural Language Processing (NLP) solutions presents practical challenges. Drawing upon our experience implementing various NLP models for information extraction and classification tasks at the British Columbia Cancer Registry (BCCR), this paper shares key lessons learned throughout the project lifecycle. We emphasize the critical importance of defining problems based on clear business objectives rather than solely technical accuracy, adopting an iterative approach to development, and fostering deep interdisciplinary collaboration and co-design involving domain experts, end-users, and ML specialists from inception. Further insights highlight the need for pragmatic model selection (including hybrid approaches and simpler methods where appropriate), rigorous attention to data quality (representativeness, drift, annotation), robust error mitigation strategies involving human-in-the-loop validation and ongoing audits, and building organizational AI literacy. These practical considerations, generalizable beyond cancer registries, provide guidance for healthcare organizations seeking to successfully implement AI/NLP solutions to enhance data management processes and ultimately improve patient care and public health outcomes.
♻ ☆ Human-AI Experience in Integrated Development Environments: A Systematic Literature Review
The integration of Artificial Intelligence (AI) into Integrated Development Environments (IDEs) is reshaping software development, fundamentally altering how developers interact with their tools. This shift marks the emergence of Human-AI Experience in Integrated Development Environment (in-IDE HAX), a field that explores the evolving dynamics of Human-Computer Interaction in AI-assisted coding environments. Despite rapid adoption, research on in-IDE HAX remains fragmented, which highlights the need for a unified overview of current practices, challenges, and opportunities. To provide a structured overview of existing research, we conduct a systematic literature review of 90 studies, summarizing current findings and outlining areas for further investigation. We organize key insights from reviewed studies into three aspects: Impact, Design, and Quality of AI-based systems inside IDEs. Impact findings show that AI-assisted coding enhances developer productivity but also introduces challenges, such as verification overhead and over-reliance. Design studies show that effective interfaces surface context, provide explanations and transparency of suggestion, and support user control. Quality studies document risks in correctness, maintainability, and security. For future research, priorities include productivity studies, design of assistance, and audit of AI-generated code. The agenda calls for larger and longer evaluations, stronger audit and verification assets, broader coverage across the software life cycle, and adaptive assistance under user control.
comment: Submitted to Empirical Software Engineering (EMSE) special issue Human-Centered AI for Software Engineering (HumanAISE), 37 pages, 7 figure
♻ ☆ MetaAgents: Large Language Model Based Agents for Decision-Making on Teaming
Significant advancements have occurred in the application of Large Language Models (LLMs) for social simulations. Despite this, their abilities to perform teaming in task-oriented social events are underexplored. Such capabilities are crucial if LLMs are to effectively mimic human-like social behaviors and form efficient teams to solve tasks. To bridge this gap, we introduce MetaAgents, a social simulation framework populated with LLM-based agents. MetaAgents facilitates agent engagement in conversations and a series of decision making within social contexts, serving as an appropriate platform for investigating interactions and interpersonal decision-making of agents. In particular, we construct a job fair environment as a case study to scrutinize the team assembly and skill-matching behaviors of LLM-based agents. We take advantage of both quantitative metrics evaluation and qualitative text analysis to assess their teaming abilities at the job fair. Our evaluation demonstrates that LLM-based agents perform competently in making rational decisions to develop efficient teams. However, we also identify limitations that hinder their effectiveness in more complex team assembly tasks. Our work provides valuable insights into the role and evolution of LLMs in task-oriented social simulations.
♻ ☆ MultiAiTutor: Child-Friendly Educational Multilingual Speech Generation Tutor with LLMs
Generative speech models have demonstrated significant potential in personalizing teacher-student interactions, offering valuable real-world applications for language learning in children's education. However, achieving high-quality, child-friendly speech generation remains challenging, particularly for low-resource languages across diverse languages and cultural contexts. In this paper, we propose MultiAiTutor, an educational multilingual generative AI tutor with child-friendly designs, leveraging LLM architecture for speech generation tailored for educational purposes. We propose to integrate age-appropriate multilingual speech generation using LLM architectures, facilitating young children's language learning through culturally relevant image-description tasks in three low-resource languages: Singaporean-accent Mandarin, Malay, and Tamil. Experimental results from both objective metrics and subjective evaluations demonstrate the superior performance of the proposed MultiAiTutor compared to baseline methods.
comment: We are withdrawing the manuscript to revise the title and contents of figures for better alignment with the paper's contributions
♻ ☆ DSperse: A Framework for Targeted Verification in Zero-Knowledge Machine Learning
DSperse is a modular framework for distributed machine learning inference with strategic cryptographic verification. Operating within the emerging paradigm of distributed zero-knowledge machine learning, DSperse avoids the high cost and rigidity of full-model circuitization by enabling targeted verification of strategically chosen subcomputations. These verifiable segments, or "slices", may cover part or all of the inference pipeline, with global consistency enforced through audit, replication, or economic incentives. This architecture supports a pragmatic form of trust minimization, localizing zero-knowledge proofs to the components where they provide the greatest value. We evaluate DSperse using multiple proving systems and report empirical results on memory usage, runtime, and circuit behavior under sliced and unsliced configurations. By allowing proof boundaries to align flexibly with the model's logical structure, DSperse supports scalable, targeted verification strategies suited to diverse deployment needs.
comment: 12 pages, 8 figures, and 10 tables
♻ ☆ A Segmented Robot Grasping Perception Neural Network for Edge AI
Robotic grasping, the ability of robots to reliably secure and manipulate objects of varying shapes, sizes and orientations, is a complex task that requires precise perception and control. Deep neural networks have shown remarkable success in grasp synthesis by learning rich and abstract representations of objects. When deployed at the edge, these models can enable low-latency, low-power inference, making real-time grasping feasible in resource-constrained environments. This work implements Heatmap-Guided Grasp Detection, an end-to-end framework for the detection of 6-Dof grasp poses, on the GAP9 RISC-V System-on-Chip. The model is optimised using hardware-aware techniques, including input dimensionality reduction, model partitioning, and quantisation. Experimental evaluation on the GraspNet-1Billion benchmark validates the feasibility of fully on-chip inference, highlighting the potential of low-power MCUs for real-time, autonomous manipulation.
comment: Accepted by SMC 2025
♻ ☆ L3AC: Towards a Lightweight and Lossless Audio Codec
Neural audio codecs have recently gained traction for their ability to compress high-fidelity audio and provide discrete tokens for generative modeling. However, leading approaches often rely on resource-intensive models and complex multi-quantizer architectures, limiting their practicality in real-world applications. In this work, we introduce L3AC, a lightweight neural audio codec that addresses these challenges by leveraging a single quantizer and a highly efficient architecture. To enhance reconstruction fidelity while minimizing model complexity, L3AC explores streamlined convolutional networks and local Transformer modules, alongside TConv--a novel structure designed to capture acoustic variations across multiple temporal scales. Despite its compact design, extensive experiments across diverse datasets demonstrate that L3AC matches or exceeds the reconstruction quality of leading codecs while reducing computational overhead by an order of magnitude. The single-quantizer design further enhances its adaptability for downstream tasks. The source code is publicly available at https://github.com/zhai-lw/L3AC.
♻ ☆ A Systematic Literature Review of Retrieval-Augmented Generation: Techniques, Metrics, and Challenges
This systematic review of the research literature on retrieval-augmented generation (RAG) provides a focused analysis of the most highly cited studies published between 2020 and May 2025. A total of 128 articles met our inclusion criteria. The records were retrieved from ACM Digital Library, IEEE Xplore, Scopus, ScienceDirect, and the Digital Bibliography and Library Project (DBLP). RAG couples a neural retriever with a generative language model, grounding output in up-to-date, non-parametric memory while retaining the semantic generalisation stored in model weights. Guided by the PRISMA 2020 framework, we (i) specify explicit inclusion and exclusion criteria based on citation count and research questions, (ii) catalogue datasets, architectures, and evaluation practices, and (iii) synthesise empirical evidence on the effectiveness and limitations of RAG. To mitigate citation-lag bias, we applied a lower citation-count threshold to papers published in 2025 so that emerging breakthroughs with naturally fewer citations were still captured. This review clarifies the current research landscape, highlights methodological gaps, and charts priority directions for future research.
comment: 58 pages, This work has been submitted to the IEEE for possible publication
♻ ☆ Exploring Superior Function Calls via Reinforcement Learning
Function calling capabilities are crucial for deploying Large Language Models in real-world applications, yet current training approaches fail to develop robust reasoning strategies. Supervised fine-tuning produces models that rely on superficial pattern matching, while standard reinforcement learning methods struggle with the complex action space of structured function calls. We present a novel reinforcement learning framework designed to enhance group relative policy optimization through strategic entropy based exploration specifically tailored for function calling tasks. Our approach addresses three critical challenges in function calling: insufficient exploration during policy learning, lack of structured reasoning in chain-of-thought generation, and inadequate verification of parameter extraction. Our two-stage data preparation pipeline ensures high-quality training samples through iterative LLM evaluation and abstract syntax tree validation. Extensive experiments on the Berkeley Function Calling Leaderboard demonstrate that this framework achieves state-of-the-art performance among open-source models with 86.02\% overall accuracy, outperforming standard GRPO by up to 6\% on complex multi-function scenarios. Notably, our method shows particularly strong improvements on code-pretrained models, suggesting that structured language generation capabilities provide an advantageous starting point for reinforcement learning in function calling tasks. We will release all the code, models and dataset to benefit the community.
♻ ☆ EllieSQL: Cost-Efficient Text-to-SQL with Complexity-Aware Routing
Text-to-SQL automatically translates natural language queries to SQL, allowing non-technical users to retrieve data from databases without specialized SQL knowledge. Despite the success of advanced LLM-based Text-to-SQL approaches on leaderboards, their unsustainable computational costs--often overlooked--stand as the "elephant in the room" in current leaderboard-driven research, limiting their economic practicability for real-world deployment and widespread adoption. To tackle this, we exploratively propose EllieSQL, a complexity-aware routing framework that assigns queries to suitable SQL generation pipelines based on estimated complexity. We investigate multiple routers to direct simple queries to efficient approaches while reserving computationally intensive methods for complex cases. Drawing from economics, we introduce the Token Elasticity of Performance (TEP) metric, capturing cost-efficiency by quantifying the responsiveness of performance gains relative to token investment in SQL generation. Experiments show that compared to always using the most advanced methods in our study, EllieSQL with the Qwen2.5-0.5B-DPO router reduces token use by over 40% without compromising performance on Bird development set, achieving more than a 2x boost in TEP over non-routing approaches. This not only advances the pursuit of cost-efficient Text-to-SQL but also invites the community to weigh resource efficiency alongside performance, contributing to progress in sustainable Text-to-SQL. Our source code and model are available at https://elliesql.github.io/.
comment: COLM 2025
♻ ☆ The Roots of International Perceptions: Simulating US Attitude Changes Towards China with LLM Agents AAAI
The rise of LLMs poses new possibilities in modeling opinion evolution, a long-standing task in simulation, by leveraging advanced reasoning abilities to recreate complex, large-scale human cognitive trends. While most prior works focus on opinion evolution surrounding specific isolated events or the views within a country, ours is the first to model the large-scale attitude evolution of a population representing an entire country towards another -- US citizens' perspectives towards China. To tackle the challenges of this broad scenario, we propose a framework that integrates media data collection, user profile creation, and cognitive architecture for opinion updates to successfully reproduce the real trend of US attitudes towards China over a 20-year period from 2005 to today. We also leverage LLMs' capabilities to introduce debiased media exposure, extracting neutral events from typically subjective news contents, to uncover the roots of polarized opinion formation, as well as a devils advocate agent to help explain the rare reversal from negative to positive attitudes towards China, corresponding with changes in the way Americans obtain information about the country. The simulation results, beyond validating our framework architecture, also reveal the impact of biased framing and selection bias in shaping attitudes. Overall, our work contributes to a new paradigm for LLM-based modeling of cognitive behaviors in a large-scale, long-term, cross-border social context, providing insights into the formation of international biases and offering valuable implications for media consumers to better understand the factors shaping their perspectives, and ultimately contributing to the larger social need for bias reduction and cross-cultural tolerance.
comment: Submitted to AAAI Social Impact 2026
♻ ☆ AirTrafficGen: Configurable Air Traffic Scenario Generation with Large Language Models
The manual design of scenarios for Air Traffic Control (ATC) training is a demanding and time-consuming bottleneck that limits the diversity of simulations available to controllers. To address this, we introduce a novel, end-to-end approach, $\texttt{AirTrafficGen}$, that leverages large language models (LLMs) to automate and control the generation of complex ATC scenarios. Our method uses a purpose-built, graph-based representation to encode sector topology (including airspace geometry, routes, and fixes) into a format LLMs can process. Through rigorous benchmarking, we show that state-of-the-art models like Gemini 2.5 Pro, OpenAI o3, GPT-oss-120b and GPT-5 can generate high-traffic scenarios while maintaining operational realism. Our engineered prompting enables fine-grained control over interaction presence, type, and location. Initial findings suggest these models are also capable of iterative refinement, correcting flawed scenarios based on simple textual feedback. This approach provides a scalable alternative to manual scenario design, addressing the need for a greater volume and variety of ATC training and validation simulations. More broadly, this work showcases the potential of LLMs for complex planning in safety-critical domains.
comment: 9 pages and appendices
♻ ☆ Sketch Decompositions for Classical Planning via Deep Reinforcement Learning
In planning and reinforcement learning, the identification of common subgoal structures across problems is important when goals are to be achieved over long horizons. Recently, it has been shown that such structures can be expressed as feature-based rules, called sketches, over a number of classical planning domains. These sketches split problems into subproblems which then become solvable in low polynomial time by a greedy sequence of IW$(k)$ searches. Methods for learning sketches using feature pools and min-SAT solvers have been developed, yet they face two key limitations: scalability and expressivity. In this work, we address these limitations by formulating the problem of learning sketch decompositions as a deep reinforcement learning (DRL) task, where general policies are sought in a modified planning problem where the successor states of a state s are defined as those reachable from s through an IW$(k)$ search. The sketch decompositions obtained through this method are experimentally evaluated across various domains, and problems are regarded as solved by the decomposition when the goal is reached through a greedy sequence of IW$(k)$ searches. While our DRL approach for learning sketch decompositions does not yield interpretable sketches in the form of rules, we demonstrate that the resulting decompositions can often be understood in a crisp manner.
♻ ☆ ShoulderShot: Generating Over-the-Shoulder Dialogue Videos
Over-the-shoulder dialogue videos are essential in films, short dramas, and advertisements, providing visual variety and enhancing viewers' emotional connection. Despite their importance, such dialogue scenes remain largely underexplored in video generation research. The main challenges include maintaining character consistency across different shots, creating a sense of spatial continuity, and generating long, multi-turn dialogues within limited computational budgets. Here, we present ShoulderShot, a framework that combines dual-shot generation with looping video, enabling extended dialogues while preserving character consistency. Our results demonstrate capabilities that surpass existing methods in terms of shot-reverse-shot layout, spatial continuity, and flexibility in dialogue length, thereby opening up new possibilities for practical dialogue video generation. Videos and comparisons are available at https://shouldershot.github.io.
♻ ☆ CogDDN: A Cognitive Demand-Driven Navigation with Decision Optimization and Dual-Process Thinking ACM MM 2025
Mobile robots are increasingly required to navigate and interact within unknown and unstructured environments to meet human demands. Demand-driven navigation (DDN) enables robots to identify and locate objects based on implicit human intent, even when object locations are unknown. However, traditional data-driven DDN methods rely on pre-collected data for model training and decision-making, limiting their generalization capability in unseen scenarios. In this paper, we propose CogDDN, a VLM-based framework that emulates the human cognitive and learning mechanisms by integrating fast and slow thinking systems and selectively identifying key objects essential to fulfilling user demands. CogDDN identifies appropriate target objects by semantically aligning detected objects with the given instructions. Furthermore, it incorporates a dual-process decision-making module, comprising a Heuristic Process for rapid, efficient decisions and an Analytic Process that analyzes past errors, accumulates them in a knowledge base, and continuously improves performance. Chain of Thought (CoT) reasoning strengthens the decision-making process. Extensive closed-loop evaluations on the AI2Thor simulator with the ProcThor dataset show that CogDDN outperforms single-view camera-only methods by 15\%, demonstrating significant improvements in navigation accuracy and adaptability. The project page is available at https://yuehaohuang.github.io/CogDDN/.
comment: Accepted by ACM MM 2025
♻ ☆ Learning to Be A Doctor: Searching for Effective Medical Agent Architectures ACM MM 2025
Large Language Model (LLM)-based agents have demonstrated strong capabilities across a wide range of tasks, and their application in the medical domain holds particular promise due to the demand for high generalizability and reliance on interdisciplinary knowledge. However, existing medical agent systems often rely on static, manually crafted workflows that lack the flexibility to accommodate diverse diagnostic requirements and adapt to emerging clinical scenarios. Motivated by the success of automated machine learning (AutoML), this paper introduces a novel framework for the automated design of medical agent architectures. Specifically, we define a hierarchical and expressive agent search space that enables dynamic workflow adaptation through structured modifications at the node, structural, and framework levels. Our framework conceptualizes medical agents as graph-based architectures composed of diverse, functional node types and supports iterative self-improvement guided by diagnostic feedback. Experimental results on skin disease diagnosis tasks demonstrate that the proposed method effectively evolves workflow structures and significantly enhances diagnostic accuracy over time. This work represents the first fully automated framework for medical agent architecture design and offers a scalable, adaptable foundation for deploying intelligent agents in real-world clinical environments.
comment: Accepted at ACM MM 2025
TokLIP: Marry Visual Tokens to CLIP for Multimodal Comprehension and Generation
Pioneering token-based works such as Chameleon and Emu3 have established a foundation for multimodal unification but face challenges of high training computational overhead and limited comprehension performance due to a lack of high-level semantics. In this paper, we introduce TokLIP, a visual tokenizer that enhances comprehension by semanticizing vector-quantized (VQ) tokens and incorporating CLIP-level semantics while enabling end-to-end multimodal autoregressive training with standard VQ tokens. TokLIP integrates a low-level discrete VQ tokenizer with a ViT-based token encoder to capture high-level continuous semantics. Unlike previous approaches (e.g., VILA-U) that discretize high-level features, TokLIP disentangles training objectives for comprehension and generation, allowing the direct application of advanced VQ tokenizers without the need for tailored quantization operations. Our empirical results demonstrate that TokLIP achieves exceptional data efficiency, empowering visual tokens with high-level semantic understanding while enhancing low-level generative capacity, making it well-suited for autoregressive Transformers in both comprehension and generation tasks. The code and models are available at https://github.com/TencentARC/TokLIP.
comment: Technical Report
♻ ☆ HateClipSeg: A Segment-Level Annotated Dataset for Fine-Grained Hate Video Detection
Detecting hate speech in videos remains challenging due to the complexity of multimodal content and the lack of fine-grained annotations in existing datasets. We present HateClipSeg, a large-scale multimodal dataset with both video-level and segment-level annotations, comprising over 11,714 segments labeled as Normal or across five Offensive categories: Hateful, Insulting, Sexual, Violence, Self-Harm, along with explicit target victim labels. Our three-stage annotation process yields high inter-annotator agreement (Krippendorff's alpha = 0.817). We propose three tasks to benchmark performance: (1) Trimmed Hateful Video Classification, (2) Temporal Hateful Video Localization, and (3) Online Hateful Video Classification. Results highlight substantial gaps in current models, emphasizing the need for more sophisticated multimodal and temporally aware approaches. The HateClipSeg dataset are publicly available at https://github.com/Social-AI-Studio/HateClipSeg.git.
comment: 6 pages, 3 figures
♻ ☆ Fairness in Dysarthric Speech Synthesis: Understanding Intrinsic Bias in Dysarthric Speech Cloning using F5-TTS
Dysarthric speech poses significant challenges in developing assistive technologies, primarily due to the limited availability of data. Recent advances in neural speech synthesis, especially zero-shot voice cloning, facilitate synthetic speech generation for data augmentation; however, they may introduce biases towards dysarthric speech. In this paper, we investigate the effectiveness of state-of-the-art F5-TTS in cloning dysarthric speech using TORGO dataset, focusing on intelligibility, speaker similarity, and prosody preservation. We also analyze potential biases using fairness metrics like Disparate Impact and Parity Difference to assess disparities across dysarthric severity levels. Results show that F5-TTS exhibits a strong bias toward speech intelligibility over speaker and prosody preservation in dysarthric speech synthesis. Insights from this study can help integrate fairness-aware dysarthric speech synthesis, fostering the advancement of more inclusive speech technologies.
comment: Accepted at Interspeech 2025
♻ ☆ TokenRec: Learning to Tokenize ID for LLM-based Generative Recommendation
There is a growing interest in utilizing large-scale language models (LLMs) to advance next-generation Recommender Systems (RecSys), driven by their outstanding language understanding and in-context learning capabilities. In this scenario, tokenizing (i.e., indexing) users and items becomes essential for ensuring a seamless alignment of LLMs with recommendations. While several studies have made progress in representing users and items through textual contents or latent representations, challenges remain in efficiently capturing high-order collaborative knowledge into discrete tokens that are compatible with LLMs. Additionally, the majority of existing tokenization approaches often face difficulties in generalizing effectively to new/unseen users or items that were not in the training corpus. To address these challenges, we propose a novel framework called TokenRec, which introduces not only an effective ID tokenization strategy but also an efficient retrieval paradigm for LLM-based recommendations. Specifically, our tokenization strategy, Masked Vector-Quantized (MQ) Tokenizer, involves quantizing the masked user/item representations learned from collaborative filtering into discrete tokens, thus achieving a smooth incorporation of high-order collaborative knowledge and a generalizable tokenization of users and items for LLM-based RecSys. Meanwhile, our generative retrieval paradigm is designed to efficiently recommend top-$K$ items for users to eliminate the need for the time-consuming auto-regressive decoding and beam search processes used by LLMs, thus significantly reducing inference time. Comprehensive experiments validate the effectiveness of the proposed methods, demonstrating that TokenRec outperforms competitive benchmarks, including both traditional recommender systems and emerging LLM-based recommender systems.
comment: Accepted by IEEE TKDE. Codes and data are available at https://github.com/Quhaoh233/TokenRec
♻ ☆ IRL-VLA: Training an Vision-Language-Action Policy via Reward World Model
Vision-Language-Action (VLA) models have demonstrated potential in autonomous driving. However, two critical challenges hinder their development: (1) Existing VLA architectures are typically based on imitation learning in open-loop setup which tends to capture the recorded behaviors in the dataset, leading to suboptimal and constrained performance, (2) Close-loop training relies heavily on high-fidelity sensor simulation, where domain gaps and computational inefficiencies pose significant barriers. In this paper, we introduce IRL-VLA, a novel close-loop Reinforcement Learning via \textbf{I}nverse \textbf{R}einforcement \textbf{L}earning reward world model with a self-built VLA approach. Our framework proceeds in a three-stage paradigm: In the first stage, we propose a VLA architecture and pretrain the VLA policy via imitation learning. In the second stage, we construct a lightweight reward world model via inverse reinforcement learning to enable efficient close-loop reward computation. To further enhance planning performance, finally, we design specialized reward world model guidence reinforcement learning via PPO(Proximal Policy Optimization) to effectively balance the safety incidents, comfortable driving, and traffic efficiency. Our approach achieves state-of-the-art performance in NAVSIM v2 end-to-end driving benchmark, 1st runner up in CVPR2025 Autonomous Grand Challenge. We hope that our framework will accelerate VLA research in close-loop autonomous driving.
comment: 9 pagres, 2 figures
TimeMKG: Knowledge-Infused Causal Reasoning for Multivariate Time Series Modeling
Multivariate time series data typically comprises two distinct modalities: variable semantics and sampled numerical observations. Traditional time series models treat variables as anonymous statistical signals, overlooking the rich semantic information embedded in variable names and data descriptions. However, these textual descriptors often encode critical domain knowledge that is essential for robust and interpretable modeling. Here we present TimeMKG, a multimodal causal reasoning framework that elevates time series modeling from low-level signal processing to knowledge informed inference. TimeMKG employs large language models to interpret variable semantics and constructs structured Multivariate Knowledge Graphs that capture inter-variable relationships. A dual-modality encoder separately models the semantic prompts, generated from knowledge graph triplets, and the statistical patterns from historical time series. Cross-modality attention aligns and fuses these representations at the variable level, injecting causal priors into downstream tasks such as forecasting and classification, providing explicit and interpretable priors to guide model reasoning. The experiment in diverse datasets demonstrates that incorporating variable-level knowledge significantly improves both predictive performance and generalization.
Bridging Context Gaps: Leveraging Coreference Resolution for Long Contextual Understanding ICLR 2025
Large language models (LLMs) have shown remarkable capabilities in natural language processing; however, they still face difficulties when tasked with understanding lengthy contexts and executing effective question answering. These challenges often arise due to the complexity and ambiguity present in longer texts. To enhance the performance of LLMs in such scenarios, we introduce the Long Question Coreference Adaptation (LQCA) method. This innovative framework focuses on coreference resolution tailored to long contexts, allowing the model to identify and manage references effectively. The LQCA method encompasses four key steps: resolving coreferences within sub-documents, computing the distances between mentions, defining a representative mention for coreference, and answering questions through mention replacement. By processing information systematically, the framework provides easier-to-handle partitions for LLMs, promoting better understanding. Experimental evaluations on a range of LLMs and datasets have yielded positive results, with a notable improvements on OpenAI-o1-mini and GPT-4o models, highlighting the effectiveness of leveraging coreference resolution to bridge context gaps in question answering. Our code is public at https://github.com/OceannTwT/LQCA.
comment: ICLR 2025 camera ready version, with second updated metadata
Tool-Planner: Task Planning with Clusters across Multiple Tools ICLR 2025
Large language models (LLMs) have demonstrated exceptional reasoning capabilities, enabling them to solve various complex problems. Recently, this ability has been applied to the paradigm of tool learning. Tool learning involves providing examples of tool usage and their corresponding functions, allowing LLMs to formulate plans and demonstrate the process of invoking and executing each tool. LLMs can address tasks that they cannot complete independently, thereby enhancing their potential across different tasks. However, this approach faces two key challenges. First, redundant error correction leads to unstable planning and long execution time. Additionally, designing a correct plan among multiple tools is also a challenge in tool learning. To address these issues, we propose Tool-Planner, a task-processing framework based on toolkits. Tool-Planner groups tools based on the API functions with the same function into a toolkit and allows LLMs to implement planning across the various toolkits. When a tool error occurs, the language model can reselect and adjust tools based on the toolkit. Experiments show that our approach demonstrates a high pass and win rate across different datasets and optimizes the planning scheme for tool learning in models such as GPT-4 and Claude 3, showcasing the potential of our method. Our code is public at https://github.com/OceannTwT/Tool-Planner
comment: ICLR 2025 Camera Ready version
♻ ☆ RL-MoE: An Image-Based Privacy Preserving Approach In Intelligent Transportation System
The proliferation of AI-powered cameras in Intelligent Transportation Systems (ITS) creates a severe conflict between the need for rich visual data and the right to privacy. Existing privacy-preserving methods, such as blurring or encryption, are often insufficient due to creating an undesirable trade-off where either privacy is compromised against advanced reconstruction attacks or data utility is critically degraded. To resolve this challenge, we propose RL-MoE, a novel framework that transforms sensitive visual data into privacy-preserving textual descriptions, eliminating the need for direct image transmission. RL-MoE uniquely combines a Mixture-of-Experts (MoE) architecture for nuanced, multi-aspect scene decomposition with a Reinforcement Learning (RL) agent that optimizes the generated text for a dual objective of semantic accuracy and privacy preservation. Extensive experiments demonstrate that RL-MoE provides superior privacy protection, reducing the success rate of replay attacks to just 9.4\% on the CFP-FP dataset, while simultaneously generating richer textual content than baseline methods. Our work provides a practical and scalable solution for building trustworthy AI systems in privacy-sensitive domains, paving the way for more secure smart city and autonomous vehicle networks.
♻ ☆ E3-Rewrite: Learning to Rewrite SQL for Executability, Equivalence,and Efficiency
SQL query rewriting aims to reformulate a query into a more efficient form while preserving equivalence. Most existing methods rely on predefined rewrite rules. However, such rule-based approaches face fundamental limitations: (1) fixed rule sets generalize poorly to novel query patterns and struggle with complex queries; (2) a wide range of effective rewriting strategies cannot be fully captured by declarative rules. To overcome these issues, we propose using large language models (LLMs) to generate rewrites. LLMs can capture complex strategies, such as evaluation reordering and CTE rewriting. Despite this potential, directly applying LLMs often results in performance regressions or non-equivalent rewrites due to a lack of execution awareness and semantic grounding. To address these challenges, We present E3-Rewrite, an LLM-based SQL rewriting framework that produces executable, equivalent, and efficient queries. It integrates two core components: a context construction module and a reinforcement learning framework. First, the context module leverages execution plans and retrieved demonstrations to build bottleneck-aware prompts that guide inference-time rewriting. Second, we design a reward function targeting executability, equivalence, and efficiency, evaluated via syntax checks, equivalence verification, and cost estimation. Third, to ensure stable multi-objective learning, we adopt a staged curriculum that first emphasizes executability and equivalence, then gradually incorporates efficiency. Across multiple SQL benchmarks, our experiments demonstrate that E3-Rewrite can shorten query execution time by as much as 25.6% relative to leading baselines, while also producing up to 24.4% more rewrites that meet strict equivalence criteria. These gains extend to challenging query patterns that prior approaches could not effectively optimize.
♻ ☆ A Survey on Recent Advances in LLM-Based Multi-turn Dialogue Systems
This survey provides a comprehensive review of research on multi-turn dialogue systems, with a particular focus on multi-turn dialogue systems based on large language models (LLMs). This paper aims to (a) give a summary of existing LLMs and approaches for adapting LLMs to downstream tasks; (b) elaborate recent advances in multi-turn dialogue systems, covering both LLM-based open-domain dialogue (ODD) and task-oriented dialogue (TOD) systems, along with datasets and evaluation metrics; (c) discuss some future emphasis and recent research problems arising from the development of LLMs and the increasing demands on multi-turn dialogue systems.
comment: 35 pages, 10 figures, ACM Computing Surveys
♻ ☆ From Explainable to Explained AI: Ideas for Falsifying and Quantifying Explanations MICCAI
Explaining deep learning models is essential for clinical integration of medical image analysis systems. A good explanation highlights if a model depends on spurious features that undermines generalization and harms a subset of patients or, conversely, may present novel biological insights. Although techniques like GradCAM can identify influential features, they are measurement tools that do not themselves form an explanation. We propose a human-machine-VLM interaction system tailored to explaining classifiers in computational pathology, including multi-instance learning for whole-slide images. Our proof of concept comprises (1) an AI-integrated slide viewer to run sliding-window experiments to test claims of an explanation, and (2) quantification of an explanation's predictiveness using general-purpose vision-language models. The results demonstrate that this allows us to qualitatively test claims of explanations and can quantifiably distinguish competing explanations. This offers a practical path from explainable AI to explained AI in digital pathology and beyond. Code and prompts are available at https://github.com/nki-ai/x2x.
comment: 10 pages, 2 figures, 2 tables, submitted at MICCAI IMIMIC workshop
♻ ☆ EmbodiedAgent: A Scalable Hierarchical Approach to Overcome Practical Challenge in Multi-Robot Control
This paper introduces EmbodiedAgent, a hierarchical framework for heterogeneous multi-robot control. EmbodiedAgent addresses critical limitations of hallucination in impractical tasks. Our approach integrates a next-action prediction paradigm with a structured memory system to decompose tasks into executable robot skills while dynamically validating actions against environmental constraints. We present MultiPlan+, a dataset of more than 18,000 annotated planning instances spanning 100 scenarios, including a subset of impractical cases to mitigate hallucination. To evaluate performance, we propose the Robot Planning Assessment Schema (RPAS), combining automated metrics with LLM-aided expert grading. Experiments demonstrate EmbodiedAgent's superiority over state-of-the-art models, achieving 71.85% RPAS score. Real-world validation in an office service task highlights its ability to coordinate heterogeneous robots for long-horizon objectives.
♻ ☆ Large-Scale Multi-Robot Assembly Planning for Autonomous Manufacturing
Mobile autonomous robots have the potential to revolutionize manufacturing processes. However, employing large robot fleets in manufacturing requires addressing challenges including collision-free movement in a shared workspace, effective multi-robot collaboration to manipulate and transport large payloads, complex task allocation due to coupled manufacturing processes, and spatial planning for parallel assembly and transportation of nested subassemblies. We propose a full algorithmic stack for large-scale multi-robot assembly planning that addresses these challenges and can synthesize construction plans for complex assemblies with thousands of parts in a matter of minutes. Our approach takes in a CAD-like product specification and automatically plans a full-stack assembly procedure for a group of robots to manufacture the product. We propose an algorithmic stack that comprises: (i) an iterative radial layout optimization procedure to define a global staging layout for the manufacturing facility, (ii) a graph-repair mixed-integer program formulation and a modified greedy task allocation algorithm to optimally allocate robots and robot sub-teams to assembly and transport tasks, (iii) a geometric heuristic and a hill-climbing algorithm to plan collaborative carrying configurations of robot sub-teams, and (iv) a distributed control policy that enables robots to execute the assembly motion plan collision-free. We also present an open-source multi-robot manufacturing simulator implemented in Julia as a resource to the research community, to test our algorithms and to facilitate multi-robot manufacturing research more broadly. Our empirical results demonstrate the scalability and effectiveness of our approach by generating plans to manufacture a LEGO model of a Saturn V launch vehicle with 1845 parts, 306 subassemblies, and 250 robots in under three minutes on a standard laptop computer.
comment: Repository: https://github.com/sisl/ConstructionBots.jl. Under review
♻ ☆ Text-to-Level Diffusion Models With Various Text Encoders for Super Mario Bros AAAI
Recent research shows how diffusion models can unconditionally generate tile-based game levels, but use of diffusion models for text-to-level generation is underexplored. There are practical considerations for creating a usable model: caption/level pairs are needed, as is a text embedding model, and a way of generating entire playable levels, rather than individual scenes. We present strategies to automatically assign descriptive captions to an existing dataset, and train diffusion models using both pretrained text encoders and simple transformer models trained from scratch. Captions are automatically assigned to generated scenes so that the degree of overlap between input and output captions can be compared. We also assess the diversity and playability of the resulting level scenes. Results are compared with an unconditional diffusion model and a generative adversarial network, as well as the text-to-level approaches Five-Dollar Model and MarioGPT. Notably, the best diffusion model uses a simple transformer model for text embedding, and takes less time to train than diffusion models employing more complex text encoders, indicating that reliance on larger language models is not necessary. We also present a GUI allowing designers to construct long levels from model-generated scenes.
comment: Accepted to appear in The 21st AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (November 10-14, 2025)
♻ ☆ SORT3D: Spatial Object-centric Reasoning Toolbox for Zero-Shot 3D Grounding Using Large Language Models IROS 2025
Interpreting object-referential language and grounding objects in 3D with spatial relations and attributes is essential for robots operating alongside humans. However, this task is often challenging due to the diversity of scenes, large number of fine-grained objects, and complex free-form nature of language references. Furthermore, in the 3D domain, obtaining large amounts of natural language training data is difficult. Thus, it is important for methods to learn from little data and zero-shot generalize to new environments. To address these challenges, we propose SORT3D, an approach that utilizes rich object attributes from 2D data and merges a heuristics-based spatial reasoning toolbox with the ability of large language models (LLMs) to perform sequential reasoning. Importantly, our method does not require text-to-3D data for training and can be applied zero-shot to unseen environments. We show that SORT3D achieves state-of-the-art zero-shot performance on complex view-dependent grounding tasks on two benchmarks. We also implement the pipeline to run real-time on two autonomous vehicles and demonstrate that our approach can be used for object-goal navigation on previously unseen real-world environments. All source code for the system pipeline is publicly released at https://github.com/nzantout/SORT3D.
comment: 8 pages, 6 figures, published in IROS 2025
♻ ☆ Refine-IQA: Multi-Stage Reinforcement Finetuning for Perceptual Image Quality Assessment
Reinforcement fine-tuning (RFT) is a proliferating paradigm for LMM training. Analogous to high-level reasoning tasks, RFT is similarly applicable to low-level vision domains, including image quality assessment (IQA). Existing RFT-based IQA methods typically use rule-based output rewards to verify the model's rollouts but provide no reward supervision for the "think" process, leaving its correctness and efficacy uncontrolled. Furthermore, these methods typically fine-tune directly on downstream IQA tasks without explicitly enhancing the model's native low-level visual quality perception, which may constrain its performance upper bound. In response to these gaps, we propose the multi-stage RFT IQA framework (Refine-IQA). In Stage-1, we build the Refine-Perception-20K dataset (with 12 main distortions, 20,907 locally-distorted images, and over 55K RFT samples) and design multi-task reward functions to strengthen the model's visual quality perception. In Stage-2, targeting the quality scoring task, we introduce a probability difference reward involved strategy for "think" process supervision. The resulting Refine-IQA Series Models achieve outstanding performance on both perception and scoring tasks-and, notably, our paradigm activates a robust "think" (quality interpreting) capability that also attains exceptional results on the corresponding quality interpreting benchmark.
Machine Learning 112
☆ Optimal CO2 storage management considering safety constraints in multi-stakeholder multi-site CCS projects: a game theoretic perspective
Carbon capture and storage (CCS) projects typically involve a diverse array of stakeholders or players from public, private, and regulatory sectors, each with different objectives and responsibilities. Given the complexity, scale, and long-term nature of CCS operations, determining whether individual stakeholders can independently maximize their interests or whether collaborative coalition agreements are needed remains a central question for effective CCS project planning and management. CCS projects are often implemented in geologically connected sites, where shared geological features such as pressure space and reservoir pore capacity can lead to competitive behavior among stakeholders. Furthermore, CO2 storage sites are often located in geologically mature basins that previously served as sites for hydrocarbon extraction or wastewater disposal in order to leverage existing infrastructures, which makes unilateral optimization even more complicated and unrealistic. In this work, we propose a paradigm based on Markov games to quantitatively investigate how different coalition structures affect the goals of stakeholders. We frame this multi-stakeholder multi-site problem as a multi-agent reinforcement learning problem with safety constraints. Our approach enables agents to learn optimal strategies while compliant with safety regulations. We present an example where multiple operators are injecting CO2 into their respective project areas in a geologically connected basin. To address the high computational cost of repeated simulations of high-fidelity models, a previously developed surrogate model based on the Embed-to-Control (E2C) framework is employed. Our results demonstrate the effectiveness of the proposed framework in addressing optimal management of CO2 storage when multiple stakeholders with various objectives and goals are involved.
comment: 38 pages, 16 figures
Controlling Multimodal LLMs via Reward-guided Decoding ICCV 2025
As Multimodal Large Language Models (MLLMs) gain widespread applicability, it is becoming increasingly desirable to adapt them for diverse user needs. In this paper, we study the adaptation of MLLMs through controlled decoding. To achieve this, we introduce the first method for reward-guided decoding of MLLMs and demonstrate its application in improving their visual grounding. Our method involves building reward models for visual grounding and using them to guide the MLLM's decoding process. Concretely, we build two separate reward models to independently control the degree of object precision and recall in the model's output. Our approach enables on-the-fly controllability of an MLLM's inference process in two ways: first, by giving control over the relative importance of each reward function during decoding, allowing a user to dynamically trade off object precision for recall in image captioning tasks; second, by giving control over the breadth of the search during decoding, allowing the user to control the trade-off between the amount of test-time compute and the degree of visual grounding. We evaluate our method on standard object hallucination benchmarks, showing that it provides significant controllability over MLLM inference, while consistently outperforming existing hallucination mitigation methods.
comment: Published at ICCV 2025
☆ Nonparametric learning of stochastic differential equations from sparse and noisy data
The paper proposes a systematic framework for building data-driven stochastic differential equation (SDE) models from sparse, noisy observations. Unlike traditional parametric approaches, which assume a known functional form for the drift, our goal here is to learn the entire drift function directly from data without strong structural assumptions, making it especially relevant in scientific disciplines where system dynamics are partially understood or highly complex. We cast the estimation problem as minimization of the penalized negative log-likelihood functional over a reproducing kernel Hilbert space (RKHS). In the sparse observation regime, the presence of unobserved trajectory segments makes the SDE likelihood intractable. To address this, we develop an Expectation-Maximization (EM) algorithm that employs a novel Sequential Monte Carlo (SMC) method to approximate the filtering distribution and generate Monte Carlo estimates of the E-step objective. The M-step then reduces to a penalized empirical risk minimization problem in the RKHS, whose minimizer is given by a finite linear combination of kernel functions via a generalized representer theorem. To control model complexity across EM iterations, we also develop a hybrid Bayesian variant of the algorithm that uses shrinkage priors to identify significant coefficients in the kernel expansion. We establish important theoretical convergence results for both the exact and approximate EM sequences. The resulting EM-SMC-RKHS procedure enables accurate estimation of the drift function of stochastic dynamical systems in low-data regimes and is broadly applicable across domains requiring continuous-time modeling under observational constraints. We demonstrate the effectiveness of our method through a series of numerical experiments.
comment: 35 pages, 6 figures
☆ Investigating Sensors and Methods in Grasp State Classification in Agricultural Manipulation
Effective and efficient agricultural manipulation and harvesting depend on accurately understanding the current state of the grasp. The agricultural environment presents unique challenges due to its complexity, clutter, and occlusion. Additionally, fruit is physically attached to the plant, requiring precise separation during harvesting. Selecting appropriate sensors and modeling techniques is critical for obtaining reliable feedback and correctly identifying grasp states. This work investigates a set of key sensors, namely inertial measurement units (IMUs), infrared (IR) reflectance, tension, tactile sensors, and RGB cameras, integrated into a compliant gripper to classify grasp states. We evaluate the individual contribution of each sensor and compare the performance of two widely used classification models: Random Forest and Long Short-Term Memory (LSTM) networks. Our results demonstrate that a Random Forest classifier, trained in a controlled lab environment and tested on real cherry tomato plants, achieved 100% accuracy in identifying slip, grasp failure, and successful picks, marking a substantial improvement over baseline performance. Furthermore, we identify a minimal viable sensor combination, namely IMU and tension sensors that effectively classifies grasp states. This classifier enables the planning of corrective actions based on real-time feedback, thereby enhancing the efficiency and reliability of fruit harvesting operations.
☆ SeamlessFlow: A Trainer Agent Isolation RL Framework Achieving Bubble-Free Pipelines via Tag Scheduling
We introduce SeamlessFlow, a server based reinforcement learning (RL) framework that addresses two core challenges in industrial scale RL: (1) decoupling RL training from the complex execution flow of agents; (2) maximizing GPU utilization with minimal idle time while preserving the stability and scalability required for large-scale deployments. First, SeamlessFlow introduces a data plane that decouples the RL trainer from diverse, complex agent implementations while sustaining high throughput. A central trajectory manager maintains complete interaction histories and supports partial rollout, allowing rollout to pause for weight updates and resume seamlessly, keeping agents unaware of service interruptions. Second, we propose a tag driven scheduling paradigm that abstracts hardware into capability tagged resources, unifying colocated and disaggregated architectures. Based on this, SeamlessFlow introduces a spatiotemporal multiplexing pipeline that dynamically reassigns idle training nodes to rollout in a train rollout separated setup, eliminating pipeline bubbles and fully exploiting heterogeneous cluster resources. By combining these innovations, SeamlessFlow delivers both stability and high performance, making it well suited for multi agent, long horizon, and other complex RL tasks.
☆ Nested Operator Inference for Adaptive Data-Driven Learning of Reduced-order Models
This paper presents a data-driven, nested Operator Inference (OpInf) approach for learning physics-informed reduced-order models (ROMs) from snapshot data of high-dimensional dynamical systems. The approach exploits the inherent hierarchy within the reduced space to iteratively construct initial guesses for the OpInf learning problem that prioritize the interactions of the dominant modes. The initial guess computed for any target reduced dimension corresponds to a ROM with provably smaller or equal snapshot reconstruction error than with standard OpInf. Moreover, our nested OpInf algorithm can be warm-started from previously learned models, enabling versatile application scenarios involving dynamic basis and model form updates. We demonstrate the performance of our algorithm on a cubic heat conduction problem, with nested OpInf achieving a four times smaller error than standard OpInf at a comparable offline time. Further, we apply nested OpInf to a large-scale, parameterized model of the Greenland ice sheet where, despite model form approximation errors, it learns a ROM with, on average, 3% error and computational speed-up factor above 19,000.
☆ An Efficient Medical Image Classification Method Based on a Lightweight Improved ConvNeXt-Tiny Architecture
Intelligent analysis of medical imaging plays a crucial role in assisting clinical diagnosis. However, achieving efficient and high-accuracy image classification in resource-constrained computational environments remains challenging. This study proposes a medical image classification method based on an improved ConvNeXt-Tiny architecture. Through structural optimization and loss function design, the proposed method enhances feature extraction capability and classification performance while reducing computational complexity. Specifically, the method introduces a dual global pooling (Global Average Pooling and Global Max Pooling) feature fusion strategy into the ConvNeXt-Tiny backbone to simultaneously preserve global statistical features and salient response information. A lightweight channel attention module, termed Squeeze-and-Excitation Vector (SEVector), is designed to improve the adaptive allocation of channel weights while minimizing parameter overhead. Additionally, a Feature Smoothing Loss is incorporated into the loss function to enhance intra-class feature consistency and suppress intra-class variance. Under CPU-only conditions (8 threads), the method achieves a maximum classification accuracy of 89.10% on the test set within 10 training epochs, exhibiting a stable convergence trend in loss values. Experimental results demonstrate that the proposed method effectively improves medical image classification performance in resource-limited settings, providing a feasible and efficient solution for the deployment and promotion of medical imaging analysis models.
☆ DFed-SST: Building Semantic- and Structure-aware Topologies for Decentralized Federated Graph Learning
Decentralized Federated Learning (DFL) has emerged as a robust distributed paradigm that circumvents the single-point-of-failure and communication bottleneck risks of centralized architectures. However, a significant challenge arises as existing DFL optimization strategies, primarily designed for tasks such as computer vision, fail to address the unique topological information inherent in the local subgraph. Notably, while Federated Graph Learning (FGL) is tailored for graph data, it is predominantly implemented in a centralized server-client model, failing to leverage the benefits of decentralization.To bridge this gap, we propose DFed-SST, a decentralized federated graph learning framework with adaptive communication. The core of our method is a dual-topology adaptive communication mechanism that leverages the unique topological features of each client's local subgraph to dynamically construct and optimize the inter-client communication topology. This allows our framework to guide model aggregation efficiently in the face of heterogeneity. Extensive experiments on eight real-world datasets consistently demonstrate the superiority of DFed-SST, achieving 3.26% improvement in average accuracy over baseline methods.
☆ A Comprehensive Perspective on Explainable AI across the Machine Learning Workflow
Artificial intelligence is reshaping science and industry, yet many users still regard its models as opaque "black boxes". Conventional explainable artificial-intelligence methods clarify individual predictions but overlook the upstream decisions and downstream quality checks that determine whether insights can be trusted. In this work, we present Holistic Explainable Artificial Intelligence (HXAI), a user-centric framework that embeds explanation into every stage of the data-analysis workflow and tailors those explanations to users. HXAI unifies six components (data, analysis set-up, learning process, model output, model quality, communication channel) into a single taxonomy and aligns each component with the needs of domain experts, data analysts and data scientists. A 112-item question bank covers these needs; our survey of contemporary tools highlights critical coverage gaps. Grounded in theories of human explanation, principles from human-computer interaction and findings from empirical user studies, HXAI identifies the characteristics that make explanations clear, actionable and cognitively manageable. A comprehensive taxonomy operationalises these insights, reducing terminological ambiguity and enabling rigorous coverage analysis of existing toolchains. We further demonstrate how AI agents that embed large-language models can orchestrate diverse explanation techniques, translating technical artifacts into stakeholder-specific narratives that bridge the gap between AI developers and domain experts. Departing from traditional surveys or perspective articles, this work melds concepts from multiple disciplines, lessons from real-world projects and a critical synthesis of the literature to advance a novel, end-to-end viewpoint on transparency, trustworthiness and responsible AI deployment.
comment: Preprint. Currently under review at "Artificial Intelligence Review" journal
☆ Physics-Informed Diffusion Models for Unsupervised Anomaly Detection in Multivariate Time Series
We propose an unsupervised anomaly detection approach based on a physics-informed diffusion model for multivariate time series data. Over the past years, diffusion model has demonstrated its effectiveness in forecasting, imputation, generation, and anomaly detection in the time series domain. In this paper, we present a new approach for learning the physics-dependent temporal distribution of multivariate time series data using a weighted physics-informed loss during diffusion model training. A weighted physics-informed loss is constructed using a static weight schedule. This approach enables a diffusion model to accurately approximate underlying data distribution, which can influence the unsupervised anomaly detection performance. Our experiments on synthetic and real-world datasets show that physics-informed training improves the F1 score in anomaly detection; it generates better data diversity and log-likelihood. Our model outperforms baseline approaches, additionally, it surpasses prior physics-informed work and purely data-driven diffusion models on a synthetic dataset and one real-world dataset while remaining competitive on others.
comment: 16 pages, 5 figures
☆ Finite-Width Neural Tangent Kernels from Feynman Diagrams
Neural tangent kernels (NTKs) are a powerful tool for analyzing deep, non-linear neural networks. In the infinite-width limit, NTKs can easily be computed for most common architectures, yielding full analytic control over the training dynamics. However, at infinite width, important properties of training such as NTK evolution or feature learning are absent. Nevertheless, finite width effects can be included by computing corrections to the Gaussian statistics at infinite width. We introduce Feynman diagrams for computing finite-width corrections to NTK statistics. These dramatically simplify the necessary algebraic manipulations and enable the computation of layer-wise recursive relations for arbitrary statistics involving preactivations, NTKs and certain higher-derivative tensors (dNTK and ddNTK) required to predict the training dynamics at leading order. We demonstrate the feasibility of our framework by extending stability results for deep networks from preactivations to NTKs and proving the absence of finite-width corrections for scale-invariant nonlinearities such as ReLU on the diagonal of the Gram matrix of the NTK. We validate our results with numerical experiments.
comment: 11 pages + appendices
☆ DiCriTest: Testing Scenario Generation for Decision-Making Agents Considering Diversity and Criticality
The growing deployment of decision-making agents in dynamic environments increases the demand for safety verification. While critical testing scenario generation has emerged as an appealing verification methodology, effectively balancing diversity and criticality remains a key challenge for existing methods, particularly due to local optima entrapment in high-dimensional scenario spaces. To address this limitation, we propose a dual-space guided testing framework that coordinates scenario parameter space and agent behavior space, aiming to generate testing scenarios considering diversity and criticality. Specifically, in the scenario parameter space, a hierarchical representation framework combines dimensionality reduction and multi-dimensional subspace evaluation to efficiently localize diverse and critical subspaces. This guides dynamic coordination between two generation modes: local perturbation and global exploration, optimizing critical scenario quantity and diversity. Complementarily, in the agent behavior space, agent-environment interaction data are leveraged to quantify behavioral criticality/diversity and adaptively support generation mode switching, forming a closed feedback loop that continuously enhances scenario characterization and exploration within the parameter space. Experiments show our framework improves critical scenario generation by an average of 56.23\% and demonstrates greater diversity under novel parameter-behavior co-driven metrics when tested on five decision-making agents, outperforming state-of-the-art baselines.
☆ Towards Faithful Class-level Self-explainability in Graph Neural Networks by Subgraph Dependencies
Enhancing the interpretability of graph neural networks (GNNs) is crucial to ensure their safe and fair deployment. Recent work has introduced self-explainable GNNs that generate explanations as part of training, improving both faithfulness and efficiency. Some of these models, such as ProtGNN and PGIB, learn class-specific prototypes, offering a potential pathway toward class-level explanations. However, their evaluations focus solely on instance-level explanations, leaving open the question of whether these prototypes meaningfully generalize across instances of the same class. In this paper, we introduce GraphOracle, a novel self-explainable GNN framework designed to generate and evaluate class-level explanations for GNNs. Our model jointly learns a GNN classifier and a set of structured, sparse subgraphs that are discriminative for each class. We propose a novel integrated training that captures graph$\unicode{x2013}$subgraph$\unicode{x2013}$prediction dependencies efficiently and faithfully, validated through a masking-based evaluation strategy. This strategy enables us to retroactively assess whether prior methods like ProtGNN and PGIB deliver effective class-level explanations. Our results show that they do not. In contrast, GraphOracle achieves superior fidelity, explainability, and scalability across a range of graph classification tasks. We further demonstrate that GraphOracle avoids the computational bottlenecks of previous methods$\unicode{x2014}$like Monte Carlo Tree Search$\unicode{x2014}$by using entropy-regularized subgraph selection and lightweight random walk extraction, enabling faster and more scalable training. These findings position GraphOracle as a practical and principled solution for faithful class-level self-explainability in GNNs.
comment: 14 pages, 12 figures
Semi-Supervised Learning with Online Knowledge Distillation for Skin Lesion Classification
Deep Learning has emerged as a promising approach for skin lesion analysis. However, existing methods mostly rely on fully supervised learning, requiring extensive labeled data, which is challenging and costly to obtain. To alleviate this annotation burden, this study introduces a novel semi-supervised deep learning approach that integrates ensemble learning with online knowledge distillation for enhanced skin lesion classification. Our methodology involves training an ensemble of convolutional neural network models, using online knowledge distillation to transfer insights from the ensemble to its members. This process aims to enhance the performance of each model within the ensemble, thereby elevating the overall performance of the ensemble itself. Post-training, any individual model within the ensemble can be deployed at test time, as each member is trained to deliver comparable performance to the ensemble. This is particularly beneficial in resource-constrained environments. Experimental results demonstrate that the knowledge-distilled individual model performs better than independently trained models. Our approach demonstrates superior performance on both the \emph{International Skin Imaging Collaboration} 2018 and 2019 public benchmark datasets, surpassing current state-of-the-art results. By leveraging ensemble learning and online knowledge distillation, our method reduces the need for extensive labeled data while providing a more resource-efficient solution for skin lesion classification in real-world scenarios.
☆ Predicting and Explaining Traffic Crash Severity Through Crash Feature Selection
Motor vehicle crashes remain a leading cause of injury and death worldwide, necessitating data-driven approaches to understand and mitigate crash severity. This study introduces a curated dataset of more than 3 million people involved in accidents in Ohio over six years (2017-2022), aggregated to more than 2.3 million vehicle-level records for predictive analysis. The primary contribution is a transparent and reproducible methodology that combines Automated Machine Learning (AutoML) and explainable artificial intelligence (AI) to identify and interpret key risk factors associated with severe crashes. Using the JADBio AutoML platform, predictive models were constructed to distinguish between severe and non-severe crash outcomes. The models underwent rigorous feature selection across stratified training subsets, and their outputs were interpreted using SHapley Additive exPlanations (SHAP) to quantify the contribution of individual features. A final Ridge Logistic Regression model achieved an AUC-ROC of 85.6% on the training set and 84.9% on a hold-out test set, with 17 features consistently identified as the most influential predictors. Key features spanned demographic, environmental, vehicle, human, and operational categories, including location type, posted speed, minimum occupant age, and pre-crash action. Notably, certain traditionally emphasized factors, such as alcohol or drug impairment, were less influential in the final model compared to environmental and contextual variables. Emphasizing methodological rigor and interpretability over mere predictive performance, this study offers a scalable framework to support Vision Zero with aligned interventions and advanced data-informed traffic safety policy.
comment: Preprint. Manuscript under review at "Accident Analysis & Prevention" journal
☆ Sim2Dust: Mastering Dynamic Waypoint Tracking on Granular Media
Reliable autonomous navigation across the unstructured terrains of distant planetary surfaces is a critical enabler for future space exploration. However, the deployment of learning-based controllers is hindered by the inherent sim-to-real gap, particularly for the complex dynamics of wheel interactions with granular media. This work presents a complete sim-to-real framework for developing and validating robust control policies for dynamic waypoint tracking on such challenging surfaces. We leverage massively parallel simulation to train reinforcement learning agents across a vast distribution of procedurally generated environments with randomized physics. These policies are then transferred zero-shot to a physical wheeled rover operating in a lunar-analogue facility. Our experiments systematically compare multiple reinforcement learning algorithms and action smoothing filters to identify the most effective combinations for real-world deployment. Crucially, we provide strong empirical evidence that agents trained with procedural diversity achieve superior zero-shot performance compared to those trained on static scenarios. We also analyze the trade-offs of fine-tuning with high-fidelity particle physics, which offers minor gains in low-speed precision at a significant computational cost. Together, these contributions establish a validated workflow for creating reliable learning-based navigation systems, marking a critical step towards deploying autonomous robots in the final frontier.
comment: The source code is available at https://github.com/AndrejOrsula/space_robotics_bench
☆ Handwritten Text Recognition of Historical Manuscripts Using Transformer-Based Models
Historical handwritten text recognition (HTR) is essential for unlocking the cultural and scholarly value of archival documents, yet digitization is often hindered by scarce transcriptions, linguistic variation, and highly diverse handwriting styles. In this study, we apply TrOCR, a state-of-the-art transformer-based HTR model, to 16th-century Latin manuscripts authored by Rudolf Gwalther. We investigate targeted image preprocessing and a broad suite of data augmentation techniques, introducing four novel augmentation methods designed specifically for historical handwriting characteristics. We also evaluate ensemble learning approaches to leverage the complementary strengths of augmentation-trained models. On the Gwalther dataset, our best single-model augmentation (Elastic) achieves a Character Error Rate (CER) of 1.86, while a top-5 voting ensemble achieves a CER of 1.60 - representing a 50% relative improvement over the best reported TrOCR_BASE result and a 42% improvement over the previous state of the art. These results highlight the impact of domain-specific augmentations and ensemble strategies in advancing HTR performance for historical manuscripts.
☆ RMSL: Weakly-Supervised Insider Threat Detection with Robust Multi-sphere Learning
Insider threat detection aims to identify malicious user behavior by analyzing logs that record user interactions. Due to the lack of fine-grained behavior-level annotations, detecting specific behavior-level anomalies within user behavior sequences is challenging. Unsupervised methods face high false positive rates and miss rates due to the inherent ambiguity between normal and anomalous behaviors. In this work, we instead introduce weak labels of behavior sequences, which have lower annotation costs, i.e., the training labels (anomalous or normal) are at sequence-level instead of behavior-level, to enhance the detection capability for behavior-level anomalies by learning discriminative features. To achieve this, we propose a novel framework called Robust Multi-sphere Learning (RMSL). RMSL uses multiple hyper-spheres to represent the normal patterns of behaviors. Initially, a one-class classifier is constructed as a good anomaly-supervision-free starting point. Building on this, using multiple instance learning and adaptive behavior-level self-training debiasing based on model prediction confidence, the framework further refines hyper-spheres and feature representations using weak sequence-level labels. This approach enhances the model's ability to distinguish between normal and anomalous behaviors. Extensive experiments demonstrate that RMSL significantly improves the performance of behavior-level insider threat detection.
comment: 15 pages
☆ Calibrated and uncertain? Evaluating uncertainty estimates in binary classification models
Rigorous statistical methods, including parameter estimation with accompanying uncertainties, underpin the validity of scientific discovery, especially in the natural sciences. With increasingly complex data models such as deep learning techniques, uncertainty quantification has become exceedingly difficult and a plethora of techniques have been proposed. In this case study, we use the unifying framework of approximate Bayesian inference combined with empirical tests on carefully created synthetic classification datasets to investigate qualitative properties of six different probabilistic machine learning algorithms for class probability and uncertainty estimation: (i) a neural network ensemble, (ii) neural network ensemble with conflictual loss, (iii) evidential deep learning, (iv) a single neural network with Monte Carlo Dropout, (v) Gaussian process classification and (vi) a Dirichlet process mixture model. We check if the algorithms produce uncertainty estimates which reflect commonly desired properties, such as being well calibrated and exhibiting an increase in uncertainty for out-of-distribution data points. Our results indicate that all algorithms are well calibrated, but none of the deep learning based algorithms provide uncertainties that consistently reflect lack of experimental evidence for out-of-distribution data points. We hope our study may serve as a clarifying example for researchers developing new methods of uncertainty estimation for scientific data-driven modeling.
☆ Informative Post-Hoc Explanations Only Exist for Simple Functions
Many researchers have suggested that local post-hoc explanation algorithms can be used to gain insights into the behavior of complex machine learning models. However, theoretical guarantees about such algorithms only exist for simple decision functions, and it is unclear whether and under which assumptions similar results might exist for complex models. In this paper, we introduce a general, learning-theory-based framework for what it means for an explanation to provide information about a decision function. We call an explanation informative if it serves to reduce the complexity of the space of plausible decision functions. With this approach, we show that many popular explanation algorithms are not informative when applied to complex decision functions, providing a rigorous mathematical rejection of the idea that it should be possible to explain any model. We then derive conditions under which different explanation algorithms become informative. These are often stronger than what one might expect. For example, gradient explanations and counterfactual explanations are non-informative with respect to the space of differentiable functions, and SHAP and anchor explanations are not informative with respect to the space of decision trees. Based on these results, we discuss how explanation algorithms can be modified to become informative. While the proposed analysis of explanation algorithms is mathematical, we argue that it holds strong implications for the practical applicability of these algorithms, particularly for auditing, regulation, and high-risk applications of AI.
☆ Multi-Sensory Cognitive Computing for Learning Population-level Brain Connectivity
The generation of connectional brain templates (CBTs) has recently garnered significant attention for its potential to identify unique connectivity patterns shared across individuals. However, existing methods for CBT learning such as conventional machine learning and graph neural networks (GNNs) are hindered by several limitations. These include: (i) poor interpretability due to their black-box nature, (ii) high computational cost, and (iii) an exclusive focus on structure and topology, overlooking the cognitive capacity of the generated CBT. To address these challenges, we introduce mCOCO (multi-sensory COgnitive COmputing), a novel framework that leverages Reservoir Computing (RC) to learn population-level functional CBT from BOLD (Blood-Oxygen-level-Dependent) signals. RC's dynamic system properties allow for tracking state changes over time, enhancing interpretability and enabling the modeling of brain-like dynamics, as demonstrated in prior literature. By integrating multi-sensory inputs (e.g., text, audio, and visual data), mCOCO captures not only structure and topology but also how brain regions process information and adapt to cognitive tasks such as sensory processing, all in a computationally efficient manner. Our mCOCO framework consists of two phases: (1) mapping BOLD signals into the reservoir to derive individual functional connectomes, which are then aggregated into a group-level CBT - an approach, to the best of our knowledge, not previously explored in functional connectivity studies - and (2) incorporating multi-sensory inputs through a cognitive reservoir, endowing the CBT with cognitive traits. Extensive evaluations show that our mCOCO-based template significantly outperforms GNN-based CBT in terms of centeredness, discriminativeness, topological soundness, and multi-sensory memory retention. Our source code is available at https://github.com/basiralab/mCOCO.
☆ Robust Convolution Neural ODEs via Contractivity-promoting regularization
Neural networks can be fragile to input noise and adversarial attacks. In this work, we consider Convolutional Neural Ordinary Differential Equations (NODEs), a family of continuous-depth neural networks represented by dynamical systems, and propose to use contraction theory to improve their robustness. For a contractive dynamical system two trajectories starting from different initial conditions converge to each other exponentially fast. Contractive Convolutional NODEs can enjoy increased robustness as slight perturbations of the features do not cause a significant change in the output. Contractivity can be induced during training by using a regularization term involving the Jacobian of the system dynamics. To reduce the computational burden, we show that it can also be promoted using carefully selected weight regularization terms for a class of NODEs with slope-restricted activation functions. The performance of the proposed regularizers is illustrated through benchmark image classification tasks on MNIST and FashionMNIST datasets, where images are corrupted by different kinds of noise and attacks.
comment: Accepted in IEEE CDC2025, Rio de Janeiro, Brazil
☆ Generative Co-Design of Antibody Sequences and Structures via Black-Box Guidance in a Shared Latent Space IJCAI 2025
Advancements in deep generative models have enabled the joint modeling of antibody sequence and structure, given the antigen-antibody complex as context. However, existing approaches for optimizing complementarity-determining regions (CDRs) to improve developability properties operate in the raw data space, leading to excessively costly evaluations due to the inefficient search process. To address this, we propose LatEnt blAck-box Design (LEAD), a sequence-structure co-design framework that optimizes both sequence and structure within their shared latent space. Optimizing shared latent codes can not only break through the limitations of existing methods, but also ensure synchronization of different modality designs. Particularly, we design a black-box guidance strategy to accommodate real-world scenarios where many property evaluators are non-differentiable. Experimental results demonstrate that our LEAD achieves superior optimization performance for both single and multi-property objectives. Notably, LEAD reduces query consumption by a half while surpassing baseline methods in property optimization. The code is available at https://github.com/EvaFlower/LatEnt-blAck-box-Design.
comment: Accepted by IJCAI 2025
☆ SelfAdapt: Unsupervised Domain Adaptation of Cell Segmentation Models ICCV
Deep neural networks have become the go-to method for biomedical instance segmentation. Generalist models like Cellpose demonstrate state-of-the-art performance across diverse cellular data, though their effectiveness often degrades on domains that differ from their training data. While supervised fine-tuning can address this limitation, it requires annotated data that may not be readily available. We propose SelfAdapt, a method that enables the adaptation of pre-trained cell segmentation models without the need for labels. Our approach builds upon student-teacher augmentation consistency training, introducing L2-SP regularization and label-free stopping criteria. We evaluate our method on the LiveCell and TissueNet datasets, demonstrating relative improvements in AP0.5 of up to 29.64% over baseline Cellpose. Additionally, we show that our unsupervised adaptation can further improve models that were previously fine-tuned with supervision. We release SelfAdapt as an easy-to-use extension of the Cellpose framework. The code for our method is publicly available at https: //github.com/Kainmueller-Lab/self_adapt.
comment: 8 pages, 3 figures. To appear in the proceedings of the BioImage Computing (BIC) Workshop @ ICCVW 2025. This is the accepted author manuscript (camera-ready version)
☆ On-Policy RL Meets Off-Policy Experts: Harmonizing Supervised Fine-Tuning and Reinforcement Learning via Dynamic Weighting
Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) are two prominent post-training paradigms for refining the capabilities and aligning the behavior of Large Language Models (LLMs). Existing approaches that integrate SFT and RL often face the risk of disrupting established model patterns and inducing overfitting to expert data. To address this, we present a novel investigation into the unified view of SFT and RL through an off-policy versus on-policy lens. We propose CHORD, a framework for the Controllable Harmonization of On- and Off-Policy Reinforcement Learning via Dynamic Weighting, which reframes SFT not as a separate stage but as a dynamically weighted auxiliary objective within the on-policy RL process. Based on an analysis of off-policy expert data's influence at both holistic and granular levels, we incorporate a dual-control mechanism in CHORD. Specifically, the framework first employs a global coefficient to holistically guide the transition from off-policy imitation to on-policy exploration, and then applies a token-wise weighting function that enables granular learning from expert tokens, which preserves on-policy exploration and mitigates disruption from off-policy data. We conduct extensive experiments on widely used benchmarks, providing empirical evidence that CHORD achieves a stable and efficient learning process. By effectively harmonizing off-policy expert data with on-policy exploration, CHORD demonstrates significant improvements over baselines. We release the implementation at https://github.com/modelscope/Trinity-RFT/tree/main/examples/mix_chord to inspire further research.
☆ Rationalizing Transformer Predictions via End-To-End Differentiable Self-Training
We propose an end-to-end differentiable training paradigm for stable training of a rationalized transformer classifier. Our approach results in a single model that simultaneously classifies a sample and scores input tokens based on their relevance to the classification. To this end, we build on the widely-used three-player-game for training rationalized models, which typically relies on training a rationale selector, a classifier and a complement classifier. We simplify this approach by making a single model fulfill all three roles, leading to a more efficient training paradigm that is not susceptible to the common training instabilities that plague existing approaches. Further, we extend this paradigm to produce class-wise rationales while incorporating recent advances in parameterizing and regularizing the resulting rationales, thus leading to substantially improved and state-of-the-art alignment with human annotations without any explicit supervision.
☆ A Remedy for Over-Squashing in Graph Learning via Forman-Ricci Curvature based Graph-to-Hypergraph Structural Lifting
Graph Neural Networks are highly effective at learning from relational data, leveraging node and edge features while maintaining the symmetries inherent to graph structures. However, many real-world systems, such as social or biological networks, exhibit complex interactions that are more naturally represented by higher-order topological domains. The emerging field of Geometric and Topological Deep Learning addresses this challenge by introducing methods that utilize and benefit from higher-order structures. Central to TDL is the concept of lifting, which transforms data representations from basic graph forms to more expressive topologies before the application of GNN models for learning. In this work, we propose a structural lifting strategy using Forman-Ricci curvature, which defines an edge-based network characteristic based on Riemannian geometry. Curvature reveals local and global properties of a graph, such as a network's backbones, i.e. coarse, structure-preserving graph geometries that form connections between major communities - most suitably represented as hyperedges to model information flows between clusters across large distances in the network. To this end, our approach provides a remedy to the problem of information distortion in message passing across long distances and graph bottlenecks - a phenomenon known in graph learning as over-squashing.
☆ Model Interpretability and Rationale Extraction by Input Mask Optimization
Concurrent to the rapid progress in the development of neural-network based models in areas like natural language processing and computer vision, the need for creating explanations for the predictions of these black-box models has risen steadily. We propose a new method to generate extractive explanations for predictions made by neural networks, that is based on masking parts of the input which the model does not consider to be indicative of the respective class. The masking is done using gradient-based optimization combined with a new regularization scheme that enforces sufficiency, comprehensiveness and compactness of the generated explanation, three properties that are known to be desirable from the related field of rationale extraction in natural language processing. In this way, we bridge the gap between model interpretability and rationale extraction, thereby proving that the latter of which can be performed without training a specialized model, only on the basis of a trained classifier. We further apply the same method to image inputs and obtain high quality explanations for image classifications, which indicates that the conditions proposed for rationale extraction in natural language processing are more broadly applicable to different input types.
☆ Unified Knowledge Distillation Framework: Fine-Grained Alignment and Geometric Relationship Preservation for Deep Face Recognition
Knowledge Distillation is crucial for optimizing face recognition models for deployment in computationally limited settings, such as edge devices. Traditional KD methods, such as Raw L2 Feature Distillation or Feature Consistency loss, often fail to capture both fine-grained instance-level details and complex relational structures, leading to suboptimal performance. We propose a unified approach that integrates two novel loss functions, Instance-Level Embedding Distillation and Relation-Based Pairwise Similarity Distillation. Instance-Level Embedding Distillation focuses on aligning individual feature embeddings by leveraging a dynamic hard mining strategy, thereby enhancing learning from challenging examples. Relation-Based Pairwise Similarity Distillation captures relational information through pairwise similarity relationships, employing a memory bank mechanism and a sample mining strategy. This unified framework ensures both effective instance-level alignment and preservation of geometric relationships between samples, leading to a more comprehensive distillation process. Our unified framework outperforms state-of-the-art distillation methods across multiple benchmark face recognition datasets, as demonstrated by extensive experimental evaluations. Interestingly, when using strong teacher networks compared to the student, our unified KD enables the student to even surpass the teacher's accuracy.
comment: The paper spans a total of 14 pages, 10 pages for the main content (including references) and 4 pages for the appendix. The main paper contains 3 figures and 1 table, while the appendix includes 1 pseudo-code algorithm and 4 tables. The work was recently accepted for publication at IJCB 2025
☆ Minimizing Surrogate Losses for Decision-Focused Learning using Differentiable Optimization
Decision-focused learning (DFL) trains a machine learning (ML) model to predict parameters of an optimization problem, to directly minimize decision regret, i.e., maximize decision quality. Gradient-based DFL requires computing the derivative of the solution to the optimization problem with respect to the predicted parameters. However, for many optimization problems, such as linear programs (LPs), the gradient of the regret with respect to the predicted parameters is zero almost everywhere. Existing gradient-based DFL approaches for LPs try to circumvent this issue in one of two ways: (a) smoothing the LP into a differentiable optimization problem by adding a quadratic regularizer and then minimizing the regret directly or (b) minimizing surrogate losses that have informative (sub)gradients. In this paper, we show that the former approach still results in zero gradients, because even after smoothing the regret remains constant across large regions of the parameter space. To address this, we propose minimizing surrogate losses -- even when a differentiable optimization layer is used and regret can be minimized directly. Our experiments demonstrate that minimizing surrogate losses allows differentiable optimization layers to achieve regret comparable to or better than surrogate-loss based DFL methods. Further, we demonstrate that this also holds for DYS-Net, a recently proposed differentiable optimization technique for LPs, that computes approximate solutions and gradients through operations that can be performed using feedforward neural network layers. Because DYS-Net executes the forward and the backward pass very efficiently, by minimizing surrogate losses using DYS-Net, we are able to attain regret on par with the state-of-the-art while reducing training time by a significant margin.
☆ Fusing Rewards and Preferences in Reinforcement Learning
We present Dual-Feedback Actor (DFA), a reinforcement learning algorithm that fuses both individual rewards and pairwise preferences (if available) into a single update rule. DFA uses the policy's log-probabilities directly to model the preference probability, avoiding a separate reward-modeling step. Preferences can be provided by human-annotators (at state-level or trajectory-level) or be synthesized online from Q-values stored in an off-policy replay buffer. Under a Bradley-Terry model, we prove that minimizing DFA's preference loss recovers the entropy-regularized Soft Actor-Critic (SAC) policy. Our simulation results show that DFA trained on generated preferences matches or exceeds SAC on six control environments and demonstrates a more stable training process. With only a semi-synthetic preference dataset under Bradley-Terry model, our algorithm outperforms reward-modeling reinforcement learning from human feedback (RLHF) baselines in a stochastic GridWorld and approaches the performance of an oracle with true rewards.
☆ PTSM: Physiology-aware and Task-invariant Spatio-temporal Modeling for Cross-Subject EEG Decoding
Cross-subject electroencephalography (EEG) decoding remains a fundamental challenge in brain-computer interface (BCI) research due to substantial inter-subject variability and the scarcity of subject-invariant representations. This paper proposed PTSM (Physiology-aware and Task-invariant Spatio-temporal Modeling), a novel framework for interpretable and robust EEG decoding across unseen subjects. PTSM employs a dual-branch masking mechanism that independently learns personalized and shared spatio-temporal patterns, enabling the model to preserve individual-specific neural characteristics while extracting task-relevant, population-shared features. The masks are factorized across temporal and spatial dimensions, allowing fine-grained modulation of dynamic EEG patterns with low computational overhead. To further address representational entanglement, PTSM enforces information-theoretic constraints that decompose latent embeddings into orthogonal task-related and subject-related subspaces. The model is trained end-to-end via a multi-objective loss integrating classification, contrastive, and disentanglement objectives. Extensive experiments on cross-subject motor imagery datasets demonstrate that PTSM achieves strong zero-shot generalization, outperforming state-of-the-art baselines without subject-specific calibration. Results highlight the efficacy of disentangled neural representations for achieving both personalized and transferable decoding in non-stationary neurophysiological settings.
☆ ETTRL: Balancing Exploration and Exploitation in LLM Test-Time Reinforcement Learning Via Entropy Mechanism
Recent advancements in Large Language Models have yielded significant improvements in complex reasoning tasks such as mathematics and programming. However, these models remain heavily dependent on annotated data and exhibit limited adaptability in unsupervised scenarios. To address these limitations, test-time reinforcement learning (TTRL) has been proposed, which enables self-optimization by leveraging model-generated pseudo-labels. Despite its promise, TTRL faces several key challenges, including high inference costs due to parallel rollouts and early-stage estimation bias that fosters overconfidence, reducing output diversity and causing performance plateaus. To address these challenges, we introduce an entropy-based mechanism to enhance the exploration-exploitation balance in test-time reinforcement learning through two strategies: Entropy-fork Tree Majority Rollout (ETMR) and Entropy-based Advantage Reshaping (EAR). Compared with the baseline, our approach enables Llama3.1-8B to achieve a 68 percent relative improvement in Pass at 1 metric on the AIME 2024 benchmark, while consuming only 60 percent of the rollout tokens budget. This highlights our method's ability to effectively optimize the trade-off between inference efficiency, diversity, and estimation robustness, thereby advancing unsupervised reinforcement learning for open-domain reasoning tasks.
☆ Leveraging the RETFound foundation model for optic disc segmentation in retinal images
RETFound is a well-known foundation model (FM) developed for fundus camera and optical coherence tomography images. It has shown promising performance across multiple datasets in diagnosing diseases, both eye-specific and systemic, from retinal images. However, to our best knowledge, it has not been used for other tasks. We present the first adaptation of RETFound for optic disc segmentation, a ubiquitous and foundational task in retinal image analysis. The resulting segmentation system outperforms state-of-the-art, segmentation-specific baseline networks after training a head with only a very modest number of task-specific examples. We report and discuss results with four public datasets, IDRID, Drishti-GS, RIM-ONE-r3, and REFUGE, and a private dataset, GoDARTS, achieving about 96% Dice consistently across all datasets. Overall, our method obtains excellent performance in internal verification, domain generalization and domain adaptation, and exceeds most of the state-of-the-art baseline results. We discuss the results in the framework of the debate about FMs as alternatives to task-specific architectures. The code is available at: [link to be added after the paper is accepted]
Harmonized Gradient Descent for Class Imbalanced Data Stream Online Learning
Many real-world data are sequentially collected over time and often exhibit skewed class distributions, resulting in imbalanced data streams. While existing approaches have explored several strategies, such as resampling and reweighting, for imbalanced data stream learning, our work distinguishes itself by addressing the imbalance problem through training modification, particularly focusing on gradient descent techniques. We introduce the harmonized gradient descent (HGD) algorithm, which aims to equalize the norms of gradients across different classes. By ensuring the gradient norm balance, HGD mitigates under-fitting for minor classes and achieves balanced online learning. Notably, HGD operates in a streamlined implementation process, requiring no data-buffer, extra parameters, or prior knowledge, making it applicable to any learning models utilizing gradient descent for optimization. Theoretical analysis, based on a few common and mild assumptions, shows that HGD achieves a satisfied sub-linear regret bound. The proposed algorithm are compared with the commonly used online imbalance learning methods under several imbalanced data stream scenarios. Extensive experimental evaluations demonstrate the efficiency and effectiveness of HGD in learning imbalanced data streams.
☆ A Global Dataset of Location Data Integrity-Assessed Reforestation Efforts
Afforestation and reforestation are popular strategies for mitigating climate change by enhancing carbon sequestration. However, the effectiveness of these efforts is often self-reported by project developers, or certified through processes with limited external validation. This leads to concerns about data reliability and project integrity. In response to increasing scrutiny of voluntary carbon markets, this study presents a dataset on global afforestation and reforestation efforts compiled from primary (meta-)information and augmented with time-series satellite imagery and other secondary data. Our dataset covers 1,289,068 planting sites from 45,628 projects spanning 33 years. Since any remote sensing-based validation effort relies on the integrity of a planting site's geographic boundary, this dataset introduces a standardized assessment of the provided site-level location information, which we summarize in one easy-to-communicate key indicator: LDIS -- the Location Data Integrity Score. We find that approximately 79\% of the georeferenced planting sites monitored fail on at least 1 out of 10 LDIS indicators, while 15\% of the monitored projects lack machine-readable georeferenced data in the first place. In addition to enhancing accountability in the voluntary carbon market, the presented dataset also holds value as training data for e.g. computer vision-related tasks with millions of linked Sentinel-2 and Planetscope satellite images.
comment: 10 figures
☆ NeMo: A Neuron-Level Modularizing-While-Training Approach for Decomposing DNN Models
With the growing incorporation of deep neural network (DNN) models into modern software systems, the prohibitive construction costs have become a significant challenge. Model reuse has been widely applied to reduce training costs, but indiscriminately reusing entire models may incur significant inference overhead. Consequently, DNN modularization has gained attention, enabling module reuse by decomposing DNN models. The emerging modularizing-while-training (MwT) paradigm, which incorporates modularization into training, outperforms modularizing-after-training approaches. However, existing MwT methods focus on small-scale CNN models at the convolutional kernel level and struggle with diverse DNNs and large-scale models, particularly Transformer-based models. To address these limitations, we propose NeMo, a scalable and generalizable MwT approach. NeMo operates at the neuron level fundamental component common to all DNNs-ensuring applicability to Transformers and various architectures. We design a contrastive learning-based modular training method with an effective composite loss function, enabling scalability to large-scale models. Comprehensive experiments on two Transformer-based models and four CNN models across two classification datasets demonstrate NeMo's superiority over state-of-the-art MwT methods. Results show average gains of 1.72% in module classification accuracy and 58.10% reduction in module size, demonstrating efficacy across both CNN and large-scale Transformer-based models. A case study on open-source projects shows NeMo's potential benefits in practical scenarios, offering a promising approach for scalable and generalizable DNN modularization.
☆ SAGE: Scale-Aware Gradual Evolution for Continual Knowledge Graph Embedding KDD 2025
Traditional knowledge graph (KG) embedding methods aim to represent entities and relations in a low-dimensional space, primarily focusing on static graphs. However, real-world KGs are dynamically evolving with the constant addition of entities, relations and facts. To address such dynamic nature of KGs, several continual knowledge graph embedding (CKGE) methods have been developed to efficiently update KG embeddings to accommodate new facts while maintaining learned knowledge. As KGs grow at different rates and scales in real-world scenarios, existing CKGE methods often fail to consider the varying scales of updates and lack systematic evaluation throughout the entire update process. In this paper, we propose SAGE, a scale-aware gradual evolution framework for CKGE. Specifically, SAGE firstly determine the embedding dimensions based on the update scales and expand the embedding space accordingly. The Dynamic Distillation mechanism is further employed to balance the preservation of learned knowledge and the incorporation of new facts. We conduct extensive experiments on seven benchmarks, and the results show that SAGE consistently outperforms existing baselines, with a notable improvement of 1.38% in MRR, 1.25% in H@1 and 1.6% in H@10. Furthermore, experiments comparing SAGE with methods using fixed embedding dimensions show that SAGE achieves optimal performance on every snapshot, demonstrating the importance of adaptive embedding dimensions in CKGE. The codes of SAGE are publicly available at: https://github.com/lyfxjtu/Dynamic-Embedding.
comment: 10 pages, 5 figures, Accepted at KDD 2025, code available at https://github.com/lyfxjtu/Dynamic-Embedding
☆ Conformal Prediction Meets Long-tail Classification
Conformal Prediction (CP) is a popular method for uncertainty quantification that converts a pretrained model's point prediction into a prediction set, with the set size reflecting the model's confidence. Although existing CP methods are guaranteed to achieve marginal coverage, they often exhibit imbalanced coverage across classes under long-tail label distributions, tending to over cover the head classes at the expense of under covering the remaining tail classes. This under coverage is particularly concerning, as it undermines the reliability of the prediction sets for minority classes, even with coverage ensured on average. In this paper, we propose the Tail-Aware Conformal Prediction (TACP) method to mitigate the under coverage of the tail classes by utilizing the long-tail structure and narrowing the head-tail coverage gap. Theoretical analysis shows that it consistently achieves a smaller head-tail coverage gap than standard methods. To further improve coverage balance across all classes, we introduce an extension of TACP: soft TACP (sTACP) via a reweighting mechanism. The proposed framework can be combined with various non-conformity scores, and experiments on multiple long-tail benchmark datasets demonstrate the effectiveness of our methods.
☆ Semantically Guided Adversarial Testing of Vision Models Using Language Models
In targeted adversarial attacks on vision models, the selection of the target label is a critical yet often overlooked determinant of attack success. This target label corresponds to the class that the attacker aims to force the model to predict. Now, existing strategies typically rely on randomness, model predictions, or static semantic resources, limiting interpretability, reproducibility, or flexibility. This paper then proposes a semantics-guided framework for adversarial target selection using the cross-modal knowledge transfer from pretrained language and vision-language models. We evaluate several state-of-the-art models (BERT, TinyLLAMA, and CLIP) as similarity sources to select the most and least semantically related labels with respect to the ground truth, forming best- and worst-case adversarial scenarios. Our experiments on three vision models and five attack methods reveal that these models consistently render practical adversarial targets and surpass static lexical databases, such as WordNet, particularly for distant class relationships. We also observe that static testing of target labels offers a preliminary assessment of the effectiveness of similarity sources, \textit{a priori} testing. Our results corroborate the suitability of pretrained models for constructing interpretable, standardized, and scalable adversarial benchmarks across architectures and datasets.
comment: 12 pages, 4 figures, 3 tables. Submitted for peer review
☆ RegimeNAS: Regime-Aware Differentiable Architecture Search With Theoretical Guarantees for Financial Trading
We introduce RegimeNAS, a novel differentiable architecture search framework specifically designed to enhance cryptocurrency trading performance by explicitly integrating market regime awareness. Addressing the limitations of static deep learning models in highly dynamic financial environments, RegimeNAS features three core innovations: (1) a theoretically grounded Bayesian search space optimizing architectures with provable convergence properties; (2) specialized, dynamically activated neural modules (Volatility, Trend, and Range blocks) tailored for distinct market conditions; and (3) a multi-objective loss function incorporating market-specific penalties (e.g., volatility matching, transition smoothness) alongside mathematically enforced Lipschitz stability constraints. Regime identification leverages multi-head attention across multiple timeframes for improved accuracy and uncertainty estimation. Rigorous empirical evaluation on extensive real-world cryptocurrency data demonstrates that RegimeNAS significantly outperforms state-of-the-art benchmarks, achieving an 80.3% Mean Absolute Error reduction compared to the best traditional recurrent baseline and converging substantially faster (9 vs. 50+ epochs). Ablation studies and regime-specific analysis confirm the critical contribution of each component, particularly the regime-aware adaptation mechanism. This work underscores the imperative of embedding domain-specific knowledge, such as market regimes, directly within the NAS process to develop robust and adaptive models for challenging financial applications.
☆ Repetitive TMS-based Identification of Methamphetamine-Dependent Individuals Using EEG Spectra
The impact of repetitive transcranial magnetic stimulation (rTMS) on methamphetamine (METH) users' craving levels is often assessed using questionnaires. This study explores the feasibility of using neural signals to obtain more objective results. EEG signals recorded from 20 METH-addicted participants Before and After rTMS (MBT and MAT) and from 20 healthy participants (HC) are analyzed. In each EEG paradigm, participants are shown 15 METH-related and 15 neutral pictures randomly, and the relative band power (RBP) of each EEG sub-band frequency is derived. The average RBP across all 31 channels, as well as individual brain regions, is analyzed. Statistically, MAT's alpha, beta, and gamma RBPs are more like those of HC compared to MBT, as indicated by the power topographies. Utilizing a random forest (RF), the gamma RBP is identified as the optimal frequency band for distinguishing between MBT and HC with a 90% accuracy. The performance of classifying MAT versus HC is lower than that of MBT versus HC, suggesting that the efficacy of rTMS can be validated using RF with gamma RBP. Furthermore, the gamma RBP recorded by the TP10 and CP2 channels dominates the classification task of MBT versus HC when receiving METH-related image cues. The gamma RBP during exposure to METH-related cues can serve as a biomarker for distinguishing between MBT and HC and for evaluating the effectiveness of rTMS. Therefore, real-time monitoring of gamma RBP variations holds promise as a parameter for implementing a customized closed-loop neuromodulation system for treating METH addiction.
comment: 10 pages, 9 figures
☆ Approximating the universal thermal climate index using sparse regression with orthogonal polynomials
This article explores novel data-driven modeling approaches for analyzing and approximating the Universal Thermal Climate Index (UTCI), a physiologically-based metric integrating multiple atmospheric variables to assess thermal comfort. Given the nonlinear, multivariate structure of UTCI, we investigate symbolic and sparse regression techniques as tools for interpretable and efficient function approximation. In particular, we highlight the benefits of using orthogonal polynomial bases-such as Legendre polynomials-in sparse regression frameworks, demonstrating their advantages in stability, convergence, and hierarchical interpretability compared to standard polynomial expansions. We demonstrate that our models achieve significantly lower root-mean squared losses than the widely used sixth-degree polynomial benchmark-while using the same or fewer parameters. By leveraging Legendre polynomial bases, we construct models that efficiently populate a Pareto front of accuracy versus complexity and exhibit stable, hierarchical coefficient structures across varying model capacities. Training on just 20% of the data, our models generalize robustly to the remaining 80%, with consistent performance under bootstrapping. The decomposition effectively approximates the UTCI as a Fourier-like expansion in an orthogonal basis, yielding results near the theoretical optimum in the L2 (least squares) sense. We also connect these findings to the broader context of equation discovery in environmental modeling, referencing probabilistic grammar-based methods that enforce domain consistency and compactness in symbolic expressions. Taken together, these results illustrate how combining sparsity, orthogonality, and symbolic structure enables robust, interpretable modeling of complex environmental indices like UTCI - and significantly outperforms the state-of-the-art approximation in both accuracy and efficiency.
Dynamic Quality-Latency Aware Routing for LLM Inference in Wireless Edge-Device Networks
The integration of wireless communications and Large Language Models (LLMs) is poised to unlock ubiquitous intelligent services, yet deploying them in wireless edge-device collaborative environments presents a critical trade-off between inference quality and end-to-end latency. A fundamental mismatch exists between task complexity and resource allocation: offloading simple queries invites prohibitive latency, while on-device models lack the capacity for demanding computations. To address this challenge, we propose a dynamic, quality-latency aware routing framework that orchestrates inference between a lightweight model on the mobile device and a powerful model on the edge server. Our framework employs two distinct cost models: for single-turn queries, it fuses a BERT-predicted semantic score with communication and computation overheads; for multi-turn dialogues, it further quantifies context-aware costs arising from model switching and KV-cache management. While maintaining full inference quality, extensive experiments demonstrate that our framework cuts average response latency by 5-15% and reduces large model invocations by 10-20% against competitive baselines on MMLU, GSM8K, and MT-Bench-101 benchmarks.
comment: accepted by IEEE/CIC ICCC workshop
☆ CSGO: Generalized Optimization for Cold Start in Wireless Collaborative Edge LLM Systems
While deploying large language models on edge devices promises low-latency and privacy-preserving AI services, it is hindered by limited device resources. Although pipeline parallelism facilitates distributed inference, existing approaches often ignore the cold-start latency caused by on-demand model loading. In this paper, we propose a latency-aware scheduling framework that overlaps model loading with computation and communication to minimize total inference latency. Based on device and model parameters, the framework dynamically adjusts layer partitioning and allocation to effectively hide loading time, thereby eliminating as many idle periods as possible. We formulate the problem as a Mixed-Integer Non-Linear Program and design an efficient dynamic programming algorithm to optimize model partitioning and device assignment. Experimental results show that the proposed method significantly reduces cold-start latency compared to baseline strategies.
comment: submitted to Journal of Communications and Information Networks
☆ Boosting the Robustness-Accuracy Trade-off of SNNs by Robust Temporal Self-Ensemble
Spiking Neural Networks (SNNs) offer a promising direction for energy-efficient and brain-inspired computing, yet their vulnerability to adversarial perturbations remains poorly understood. In this work, we revisit the adversarial robustness of SNNs through the lens of temporal ensembling, treating the network as a collection of evolving sub-networks across discrete timesteps. This formulation uncovers two critical but underexplored challenges-the fragility of individual temporal sub-networks and the tendency for adversarial vulnerabilities to transfer across time. To overcome these limitations, we propose Robust Temporal self-Ensemble (RTE), a training framework that improves the robustness of each sub-network while reducing the temporal transferability of adversarial perturbations. RTE integrates both objectives into a unified loss and employs a stochastic sampling strategy for efficient optimization. Extensive experiments across multiple benchmarks demonstrate that RTE consistently outperforms existing training methods in robust-accuracy trade-off. Additional analyses reveal that RTE reshapes the internal robustness landscape of SNNs, leading to more resilient and temporally diversified decision boundaries. Our study highlights the importance of temporal structure in adversarial learning and offers a principled foundation for building robust spiking models.
☆ Probing the Representational Power of Sparse Autoencoders in Vision Models ICCV 2025
Sparse Autoencoders (SAEs) have emerged as a popular tool for interpreting the hidden states of large language models (LLMs). By learning to reconstruct activations from a sparse bottleneck layer, SAEs discover interpretable features from the high-dimensional internal representations of LLMs. Despite their popularity with language models, SAEs remain understudied in the visual domain. In this work, we provide an extensive evaluation the representational power of SAEs for vision models using a broad range of image-based tasks. Our experimental results demonstrate that SAE features are semantically meaningful, improve out-of-distribution generalization, and enable controllable generation across three vision model architectures: vision embedding models, multi-modal LMMs and diffusion models. In vision embedding models, we find that learned SAE features can be used for OOD detection and provide evidence that they recover the ontological structure of the underlying model. For diffusion models, we demonstrate that SAEs enable semantic steering through text encoder manipulation and develop an automated pipeline for discovering human-interpretable attributes. Finally, we conduct exploratory experiments on multi-modal LLMs, finding evidence that SAE features reveal shared representations across vision and language modalities. Our study provides a foundation for SAE evaluation in vision models, highlighting their strong potential improving interpretability, generalization, and steerability in the visual domain.
comment: ICCV 2025 Findings
☆ Uniform convergence for Gaussian kernel ridge regression
This paper establishes the first polynomial convergence rates for Gaussian kernel ridge regression (KRR) with a fixed hyperparameter in both the uniform and the $L^{2}$-norm. The uniform convergence result closes a gap in the theoretical understanding of KRR with the Gaussian kernel, where no such rates were previously known. In addition, we prove a polynomial $L^{2}$-convergence rate in the case, where the Gaussian kernel's width parameter is fixed. This also contributes to the broader understanding of smooth kernels, for which previously only sub-polynomial $L^{2}$-rates were known in similar settings. Together, these results provide new theoretical justification for the use of Gaussian KRR with fixed hyperparameters in nonparametric regression.
☆ Group Fairness Meets the Black Box: Enabling Fair Algorithms on Closed LLMs via Post-Processing
Instruction fine-tuned large language models (LLMs) enable a simple zero-shot or few-shot prompting paradigm, also known as in-context learning, for building prediction models. This convenience, combined with continued advances in LLM capability, has the potential to drive their adoption across a broad range of domains, including high-stakes applications where group fairness -- preventing disparate impacts across demographic groups -- is essential. The majority of existing approaches to enforcing group fairness on LLM-based classifiers rely on traditional fair algorithms applied via model fine-tuning or head-tuning on final-layer embeddings, but they are no longer applicable to closed-weight LLMs under the in-context learning setting, which include some of the most capable commercial models today, such as GPT-4, Gemini, and Claude. In this paper, we propose a framework for deriving fair classifiers from closed-weight LLMs via prompting: the LLM is treated as a feature extractor, and features are elicited from its probabilistic predictions (e.g., token log probabilities) using prompts strategically designed for the specified fairness criterion to obtain sufficient statistics for fair classification; a fair algorithm is then applied to these features to train a lightweight fair classifier in a post-hoc manner. Experiments on five datasets, including three tabular ones, demonstrate strong accuracy-fairness tradeoffs for the classifiers derived by our framework from both open-weight and closed-weight LLMs; in particular, our framework is data-efficient and outperforms fair classifiers trained on LLM embeddings (i.e., head-tuning) or from scratch on raw tabular features.
Graph Neural Diffusion via Generalized Opinion Dynamics
There has been a growing interest in developing diffusion-based Graph Neural Networks (GNNs), building on the connections between message passing mechanisms in GNNs and physical diffusion processes. However, existing methods suffer from three critical limitations: (1) they rely on homogeneous diffusion with static dynamics, limiting adaptability to diverse graph structures; (2) their depth is constrained by computational overhead and diminishing interpretability; and (3) theoretical understanding of their convergence behavior remains limited. To address these challenges, we propose GODNF, a Generalized Opinion Dynamics Neural Framework, which unifies multiple opinion dynamics models into a principled, trainable diffusion mechanism. Our framework captures heterogeneous diffusion patterns and temporal dynamics via node-specific behavior modeling and dynamic neighborhood influence, while ensuring efficient and interpretable message propagation even at deep layers. We provide a rigorous theoretical analysis demonstrating GODNF's ability to model diverse convergence configurations. Extensive empirical evaluations of node classification and influence estimation tasks confirm GODNF's superiority over state-of-the-art GNNs.
☆ Enhancing Interactive Voting-Based Map Matching: Improving Efficiency and Robustness for Heterogeneous GPS Trajectories
This paper presents an enhanced version of the Interactive Voting-Based Map Matching algorithm, designed to efficiently process trajectories with varying sampling rates. The main aim is to reconstruct GPS trajectories with high accuracy, independent of input data quality. Building upon the original algorithm, developed exclusively for aligning GPS signals to road networks, we extend its capabilities by integrating trajectory imputation. Our improvements also include the implementation of a distance-bounded interactive voting strategy to reduce computational complexity, as well as modifications to address missing data in the road network. Furthermore, we incorporate a custom-built asset derived from OpenStreetMap, enabling this approach to be smoothly applied in any geographic region covered by OpenStreetMap's road network. These advancements preserve the core strengths of the original algorithm while significantly extending its applicability to diverse real-world scenarios.
☆ A CLIP-based Uncertainty Modal Modeling (UMM) Framework for Pedestrian Re-Identification in Autonomous Driving
Re-Identification (ReID) is a critical technology in intelligent perception systems, especially within autonomous driving, where onboard cameras must identify pedestrians across views and time in real-time to support safe navigation and trajectory prediction. However, the presence of uncertain or missing input modalities--such as RGB, infrared, sketches, or textual descriptions--poses significant challenges to conventional ReID approaches. While large-scale pre-trained models offer strong multimodal semantic modeling capabilities, their computational overhead limits practical deployment in resource-constrained environments. To address these challenges, we propose a lightweight Uncertainty Modal Modeling (UMM) framework, which integrates a multimodal token mapper, synthetic modality augmentation strategy, and cross-modal cue interactive learner. Together, these components enable unified feature representation, mitigate the impact of missing modalities, and extract complementary information across different data types. Additionally, UMM leverages CLIP's vision-language alignment ability to fuse multimodal inputs efficiently without extensive finetuning. Experimental results demonstrate that UMM achieves strong robustness, generalization, and computational efficiency under uncertain modality conditions, offering a scalable and practical solution for pedestrian re-identification in autonomous driving scenarios.
☆ Air Quality PM2.5 Index Prediction Model Based on CNN-LSTM
With the intensification of global climate change, accurate prediction of air quality indicators, especially PM2.5 concentration, has become increasingly important in fields such as environmental protection, public health, and urban management. To address this, we propose an air quality PM2.5 index prediction model based on a hybrid CNN-LSTM architecture. The model effectively combines Convolutional Neural Networks (CNN) for local spatial feature extraction and Long Short-Term Memory (LSTM) networks for modeling temporal dependencies in time series data. Using a multivariate dataset collected from an industrial area in Beijing between 2010 and 2015 -- which includes hourly records of PM2.5 concentration, temperature, dew point, pressure, wind direction, wind speed, and precipitation -- the model predicts the average PM2.5 concentration over 6-hour intervals. Experimental results show that the model achieves a root mean square error (RMSE) of 5.236, outperforming traditional time series models in both accuracy and generalization. This demonstrates its strong potential in real-world applications such as air pollution early warning systems. However, due to the complexity of multivariate inputs, the model demands high computational resources, and its ability to handle diverse atmospheric factors still requires optimization. Future work will focus on enhancing scalability and expanding support for more complex multivariate weather prediction tasks.
☆ How Causal Abstraction Underpins Computational Explanation
Explanations of cognitive behavior often appeal to computations over representations. What does it take for a system to implement a given computation over suitable representational vehicles within that system? We argue that the language of causality -- and specifically the theory of causal abstraction -- provides a fruitful lens on this topic. Drawing on current discussions in deep learning with artificial neural networks, we illustrate how classical themes in the philosophy of computation and cognition resurface in contemporary machine learning. We offer an account of computational implementation grounded in causal abstraction, and examine the role for representation in the resulting picture. We argue that these issues are most profitably explored in connection with generalization and prediction.
☆ Borrowing From the Future: Enhancing Early Risk Assessment through Contrastive Learning
Risk assessments for a pediatric population are often conducted across multiple stages. For example, clinicians may evaluate risks prenatally, at birth, and during Well-Child visits. Although predictions made at later stages typically achieve higher precision, it is clinically desirable to make reliable risk assessments as early as possible. Therefore, this study focuses on improving prediction performance in early-stage risk assessments. Our solution, \textbf{Borrowing From the Future (BFF)}, is a contrastive multi-modal framework that treats each time window as a distinct modality. In BFF, a model is trained on all available data throughout the time while performing a risk assessment using up-to-date information. This contrastive framework allows the model to ``borrow'' informative signals from later stages (e.g., Well-Child visits) to implicitly supervise the learning at earlier stages (e.g., prenatal/birth stages). We validate BFF on two real-world pediatric outcome prediction tasks, demonstrating consistent improvements in early risk assessments. The code is available at https://github.com/scotsun/bff.
comment: accepted by Machine Learning for Healthcare 2025
☆ Meta-learning Structure-Preserving Dynamics
Structure-preserving approaches to dynamics modeling have demonstrated great potential for modeling physical systems due to their strong inductive biases that enforce conservation laws and dissipative behavior. However, the resulting models are typically trained for fixed system configurations, requiring explicit knowledge of system parameters as well as costly retraining for each new set of parameters -- a major limitation in many-query or parameter-varying scenarios. Meta-learning offers a potential solution, but existing approaches like optimization-based meta-learning often suffer from training instability or limited generalization capability. Inspired by ideas from computer vision, we introduce a modulation-based meta-learning framework that directly conditions structure-preserving models on compact latent representations of potentially unknown system parameters, avoiding the need for gray-box system knowledge and explicit optimization during adaptation. Through the application of novel modulation strategies to parametric energy-conserving and dissipative systems, we enable scalable and generalizable learning across parametric families of dynamical systems. Experiments on standard benchmark problems demonstrate that our approach achieves accurate predictions in few-shot learning settings, without compromising on the essential physical constraints necessary for dynamical stability and effective generalization performance across parameter space.
☆ E-CaTCH: Event-Centric Cross-Modal Attention with Temporal Consistency and Class-Imbalance Handling for Misinformation Detection
Detecting multimodal misinformation on social media remains challenging due to inconsistencies between modalities, changes in temporal patterns, and substantial class imbalance. Many existing methods treat posts independently and fail to capture the event-level structure that connects them across time and modality. We propose E-CaTCH, an interpretable and scalable framework for robustly detecting misinformation. If needed, E-CaTCH clusters posts into pseudo-events based on textual similarity and temporal proximity, then processes each event independently. Within each event, textual and visual features are extracted using pre-trained BERT and ResNet encoders, refined via intra-modal self-attention, and aligned through bidirectional cross-modal attention. A soft gating mechanism fuses these representations to form contextualized, content-aware embeddings of each post. To model temporal evolution, E-CaTCH segments events into overlapping time windows and uses a trend-aware LSTM, enhanced with semantic shift and momentum signals, to encode narrative progression over time. Classification is performed at the event level, enabling better alignment with real-world misinformation dynamics. To address class imbalance and promote stable learning, the model integrates adaptive class weighting, temporal consistency regularization, and hard-example mining. The total loss is aggregated across all events. Extensive experiments on Fakeddit, IND, and COVID-19 MISINFOGRAPH demonstrate that E-CaTCH consistently outperforms state-of-the-art baselines. Cross-dataset evaluations further demonstrate its robustness, generalizability, and practical applicability across diverse misinformation scenarios.
☆ Quantum-Boosted High-Fidelity Deep Learning
A fundamental limitation of probabilistic deep learning is its predominant reliance on Gaussian priors. This simplistic assumption prevents models from accurately capturing the complex, non-Gaussian landscapes of natural data, particularly in demanding domains like complex biological data, severely hindering the fidelity of the model for scientific discovery. The physically-grounded Boltzmann distribution offers a more expressive alternative, but it is computationally intractable on classical computers. To date, quantum approaches have been hampered by the insufficient qubit scale and operational stability required for the iterative demands of deep learning. Here, we bridge this gap by introducing the Quantum Boltzmann Machine-Variational Autoencoder (QBM-VAE), a large-scale and long-time stable hybrid quantum-classical architecture. Our framework leverages a quantum processor for efficient sampling from the Boltzmann distribution, enabling its use as a powerful prior within a deep generative model. Applied to million-scale single-cell datasets from multiple sources, the QBM-VAE generates a latent space that better preserves complex biological structures, consistently outperforming conventional Gaussian-based deep learning models like VAE and SCVI in essential tasks such as omics data integration, cell-type classification, and trajectory inference. It also provides a typical example of introducing a physics priori into deep learning to drive the model to acquire scientific discovery capabilities that breaks through data limitations. This work provides the demonstration of a practical quantum advantage in deep learning on a large-scale scientific problem and offers a transferable blueprint for developing hybrid quantum AI models.
CHARM3R: Towards Unseen Camera Height Robust Monocular 3D Detector ICCV 2025
Monocular 3D object detectors, while effective on data from one ego camera height, struggle with unseen or out-of-distribution camera heights. Existing methods often rely on Plucker embeddings, image transformations or data augmentation. This paper takes a step towards this understudied problem by first investigating the impact of camera height variations on state-of-the-art (SoTA) Mono3D models. With a systematic analysis on the extended CARLA dataset with multiple camera heights, we observe that depth estimation is a primary factor influencing performance under height variations. We mathematically prove and also empirically observe consistent negative and positive trends in mean depth error of regressed and ground-based depth models, respectively, under camera height changes. To mitigate this, we propose Camera Height Robust Monocular 3D Detector (CHARM3R), which averages both depth estimates within the model. CHARM3R improves generalization to unseen camera heights by more than $45\%$, achieving SoTA performance on the CARLA dataset. Codes and Models at https://github.com/abhi1kumar/CHARM3R
comment: ICCV 2025
☆ HistoViT: Vision Transformer for Accurate and Scalable Histopathological Cancer Diagnosis
Accurate and scalable cancer diagnosis remains a critical challenge in modern pathology, particularly for malignancies such as breast, prostate, bone, and cervical, which exhibit complex histological variability. In this study, we propose a transformer-based deep learning framework for multi-class tumor classification in histopathological images. Leveraging a fine-tuned Vision Transformer (ViT) architecture, our method addresses key limitations of conventional convolutional neural networks, offering improved performance, reduced preprocessing requirements, and enhanced scalability across tissue types. To adapt the model for histopathological cancer images, we implement a streamlined preprocessing pipeline that converts tiled whole-slide images into PyTorch tensors and standardizes them through data normalization. This ensures compatibility with the ViT architecture and enhances both convergence stability and overall classification performance. We evaluate our model on four benchmark datasets: ICIAR2018 (breast), SICAPv2 (prostate), UT-Osteosarcoma (bone), and SipakMed (cervical) dataset -- demonstrating consistent outperformance over existing deep learning methods. Our approach achieves classification accuracies of 99.32%, 96.92%, 95.28%, and 96.94% for breast, prostate, bone, and cervical cancers respectively, with area under the ROC curve (AUC) scores exceeding 99% across all datasets. These results confirm the robustness, generalizability, and clinical potential of transformer-based architectures in digital pathology. Our work represents a significant advancement toward reliable, automated, and interpretable cancer diagnosis systems that can alleviate diagnostic burdens and improve healthcare outcomes.
comment: 13 pages, 3 Figures
☆ A Semi-supervised Generative Model for Incomplete Multi-view Data Integration with Missing Labels
Multi-view learning is widely applied to real-life datasets, such as multiple omics biological data, but it often suffers from both missing views and missing labels. Prior probabilistic approaches addressed the missing view problem by using a product-of-experts scheme to aggregate representations from present views and achieved superior performance over deterministic classifiers, using the information bottleneck (IB) principle. However, the IB framework is inherently fully supervised and cannot leverage unlabeled data. In this work, we propose a semi-supervised generative model that utilizes both labeled and unlabeled samples in a unified framework. Our method maximizes the likelihood of unlabeled samples to learn a latent space shared with the IB on labeled data. We also perform cross-view mutual information maximization in the latent space to enhance the extraction of shared information across views. Compared to existing approaches, our model achieves better predictive and imputation performance on both image and multi-omics data with missing views and limited labeled samples.
☆ The Role of Entanglement in Quantum Reservoir Computing with Coupled Kerr Nonlinear Oscillators
Quantum Reservoir Computing (QRC) uses quantum dynamics to efficiently process temporal data. In this work, we investigate a QRC framework based on two coupled Kerr nonlinear oscillators, a system well-suited for time-series prediction tasks due to its complex nonlinear interactions and potentially high-dimensional state space. We explore how its performance in time-series prediction depends on key physical parameters: input drive strength, Kerr nonlinearity, and oscillator coupling, and analyze the role of entanglement in improving the reservoir's computational performance, focusing on its effect on predicting non-trivial time series. Using logarithmic negativity to quantify entanglement and normalized root mean square error (NRMSE) to evaluate predictive accuracy, our results suggest that entanglement provides a computational advantage on average-up to a threshold in the input frequency-that persists under some levels of dissipation and dephasing. In particular, we find that higher dissipation rates can enhance performance. While the entanglement advantage manifests as improvements in both average and worst-case performance, it does not lead to improvements in the best-case error. These findings contribute to the broader understanding of quantum reservoirs for high performance, efficient quantum machine learning and time-series forecasting.
Mitigating Modality Quantity and Quality Imbalance in Multimodal Online Federated Learning
The Internet of Things (IoT) ecosystem produces massive volumes of multimodal data from diverse sources, including sensors, cameras, and microphones. With advances in edge intelligence, IoT devices have evolved from simple data acquisition units into computationally capable nodes, enabling localized processing of heterogeneous multimodal data. This evolution necessitates distributed learning paradigms that can efficiently handle such data. Furthermore, the continuous nature of data generation and the limited storage capacity of edge devices demand an online learning framework. Multimodal Online Federated Learning (MMO-FL) has emerged as a promising approach to meet these requirements. However, MMO-FL faces new challenges due to the inherent instability of IoT devices, which often results in modality quantity and quality imbalance (QQI) during data collection. In this work, we systematically investigate the impact of QQI within the MMO-FL framework and present a comprehensive theoretical analysis quantifying how both types of imbalance degrade learning performance. To address these challenges, we propose the Modality Quantity and Quality Rebalanced (QQR) algorithm, a prototype learning based method designed to operate in parallel with the training process. Extensive experiments on two real-world multimodal datasets show that the proposed QQR algorithm consistently outperforms benchmarks under modality imbalance conditions with promising learning performance.
comment: arXiv admin note: text overlap with arXiv:2505.16138
☆ Towards the Next-generation Bayesian Network Classifiers
Bayesian network classifiers provide a feasible solution to tabular data classification, with a number of merits like high time and memory efficiency, and great explainability. However, due to the parameter explosion and data sparsity issues, Bayesian network classifiers are restricted to low-order feature dependency modeling, making them struggle in extrapolating the occurrence probabilities of complex real-world data. In this paper, we propose a novel paradigm to design high-order Bayesian network classifiers, by learning distributional representations for feature values, as what has been done in word embedding and graph representation learning. The learned distributional representations are encoded with the semantic relatedness between different features through their observed co-occurrence patterns in training data, which then serve as a hallmark to extrapolate the occurrence probabilities of new test samples. As a classifier design realization, we remake the K-dependence Bayesian classifier (KDB) by extending it into a neural version, i.e., NeuralKDB, where a novel neural network architecture is designed to learn distributional representations of feature values and parameterize the conditional probabilities between interdependent features. A stochastic gradient descent based algorithm is designed to train the NeuralKDB model efficiently. Extensive classification experiments on 60 UCI datasets demonstrate that the proposed NeuralKDB classifier excels in capturing high-order feature dependencies and significantly outperforms the conventional Bayesian network classifiers, as well as other competitive classifiers, including two neural network based classifiers without distributional representation learning.
☆ CTRL Your Shift: Clustered Transfer Residual Learning for Many Small Datasets
Machine learning (ML) tasks often utilize large-scale data that is drawn from several distinct sources, such as different locations, treatment arms, or groups. In such settings, practitioners often desire predictions that not only exhibit good overall accuracy, but also remain reliable within each source and preserve the differences that matter across sources. For instance, several asylum and refugee resettlement programs now use ML-based employment predictions to guide where newly arriving families are placed within a host country, which requires generating informative and differentiated predictions for many and often small source locations. However, this task is made challenging by several common characteristics of the data in these settings: the presence of numerous distinct data sources, distributional shifts between them, and substantial variation in sample sizes across sources. This paper introduces Clustered Transfer Residual Learning (CTRL), a meta-learning method that combines the strengths of cross-domain residual learning and adaptive pooling/clustering in order to simultaneously improve overall accuracy and preserve source-level heterogeneity. We provide theoretical results that clarify how our objective navigates the trade-off between data quantity and data quality. We evaluate CTRL alongside other state-of-the-art benchmarks on 5 large-scale datasets. This includes a dataset from the national asylum program in Switzerland, where the algorithmic geographic assignment of asylum seekers is currently being piloted. CTRL consistently outperforms the benchmarks across several key metrics and when using a range of different base learners.
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
We present GLM-4.1V-Thinking and GLM-4.5V, a family of vision-language models (VLMs) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document interpretation. In a comprehensive evaluation across 42 public benchmarks, GLM-4.5V achieves state-of-the-art performance on nearly all tasks among open-source models of similar size, and demonstrates competitive or even superior results compared to closed-source models such as Gemini-2.5-Flash on challenging tasks including Coding and GUI Agents. Meanwhile, the smaller GLM-4.1V-9B-Thinking remains highly competitive-achieving superior results to the much larger Qwen2.5-VL-72B on 29 benchmarks. We open-source both GLM-4.1V-9B-Thinking and GLM-4.5V. Code, models and more information are released at https://github.com/zai-org/GLM-V.
♻ ☆ PASS: Probabilistic Agentic Supernet Sampling for Interpretable and Adaptive Chest X-Ray Reasoning
Existing tool-augmented agentic systems are limited in the real world by (i) black-box reasoning steps that undermine trust of decision-making and pose safety risks, (ii) poor multimodal integration, which is inherently critical for healthcare tasks, and (iii) rigid and computationally inefficient agentic pipelines. We introduce PASS (Probabilistic Agentic Supernet Sampling), the first multimodal framework to address these challenges in the context of Chest X-Ray (CXR) reasoning. PASS adaptively samples agentic workflows over a multi-tool graph, yielding decision paths annotated with interpretable probabilities. Given the complex CXR reasoning task with multimodal medical data, PASS leverages its learned task-conditioned distribution over the agentic supernet. Thus, it adaptively selects the most suitable tool at each supernet layer, offering probability-annotated trajectories for post-hoc audits and directly enhancing medical AI safety. PASS also continuously compresses salient findings into an evolving personalized memory, while dynamically deciding whether to deepen its reasoning path or invoke an early exit for efficiency. To optimize a Pareto frontier balancing performance and cost, we design a novel three-stage training procedure, including expert knowledge warm-up, contrastive path-ranking, and cost-aware reinforcement learning. To facilitate rigorous evaluation, we introduce CAB-E, a comprehensive benchmark for multi-step, safety-critical, free-form CXR reasoning. Experiments across various benchmarks validate that PASS significantly outperforms strong baselines in multiple metrics (e.g., accuracy, AUC, LLM-J.) while balancing computational costs, pushing a new paradigm shift towards interpretable, adaptive, and multimodal medical agentic systems.
♻ ☆ SynBrain: Enhancing Visual-to-fMRI Synthesis via Probabilistic Representation Learning
Deciphering how visual stimuli are transformed into cortical responses is a fundamental challenge in computational neuroscience. This visual-to-neural mapping is inherently a one-to-many relationship, as identical visual inputs reliably evoke variable hemodynamic responses across trials, contexts, and subjects. However, existing deterministic methods struggle to simultaneously model this biological variability while capturing the underlying functional consistency that encodes stimulus information. To address these limitations, we propose SynBrain, a generative framework that simulates the transformation from visual semantics to neural responses in a probabilistic and biologically interpretable manner. SynBrain introduces two key components: (i) BrainVAE models neural representations as continuous probability distributions via probabilistic learning while maintaining functional consistency through visual semantic constraints; (ii) A Semantic-to-Neural Mapper acts as a semantic transmission pathway, projecting visual semantics into the neural response manifold to facilitate high-fidelity fMRI synthesis. Experimental results demonstrate that SynBrain surpasses state-of-the-art methods in subject-specific visual-to-fMRI encoding performance. Furthermore, SynBrain adapts efficiently to new subjects with few-shot data and synthesizes high-quality fMRI signals that are effective in improving data-limited fMRI-to-image decoding performance. Beyond that, SynBrain reveals functional consistency across trials and subjects, with synthesized signals capturing interpretable patterns shaped by biological neural variability. The code will be made publicly available.
♻ ☆ Transferable Parasitic Estimation via Graph Contrastive Learning and Label Rebalancing in AMS Circuits
Graph representation learning on Analog-Mixed Signal (AMS) circuits is crucial for various downstream tasks, e.g., parasitic estimation. However, the scarcity of design data, the unbalanced distribution of labels, and the inherent diversity of circuit implementations pose significant challenges to learning robust and transferable circuit representations. To address these limitations, we propose CircuitGCL, a novel graph contrastive learning framework that integrates representation scattering and label rebalancing to enhance transferability across heterogeneous circuit graphs. CircuitGCL employs a self-supervised strategy to learn topology-invariant node embeddings through hyperspherical representation scattering, eliminating dependency on large-scale data. Simultaneously, balanced mean squared error (BMSE) and balanced softmax cross-entropy (BSCE) losses are introduced to mitigate label distribution disparities between circuits, enabling robust and transferable parasitic estimation. Evaluated on parasitic capacitance estimation (edge-level task) and ground capacitance classification (node-level task) across TSMC 28nm AMS designs, CircuitGCL outperforms all state-of-the-art (SOTA) methods, with the $R^2$ improvement of $33.64\% \sim 44.20\%$ for edge regression and F1-score gain of $0.9\times \sim 2.1\times$ for node classification. Our code is available at https://github.com/ShenShan123/CircuitGCL.
comment: Final version accepted by the International Conference on Computer-Aided Design (ICCAD) 2025
♻ ☆ Comparison of D-Wave Quantum Annealing and Markov Chain Monte Carlo for Sampling from a Probability Distribution of a Restricted Boltzmann Machine
A local-valley (LV) centered approach to assessing the quality of sampling from Restricted Boltzmann Machines (RBMs) was applied to the latest generation of the D-Wave quantum annealer. D-Wave and Gibbs samples from a classically trained RBM were obtained at conditions relevant to the contrastive-divergence-based RBM learning. The samples were compared for the number of the LVs to which they belonged and the energy of the corresponding local minima. No significant (desirable) increase in the number of the LVs has been achieved by decreasing the D-Wave annealing time. At any training epoch, the states sampled by the D-Wave belonged to a somewhat higher number of LVs than in the Gibbs sampling. However, many of those LVs found by the two techniques differed. For high-probability sampled states, the two techniques were (unfavorably) less complementary and more overlapping. Nevertheless, many potentially "important" local minima, i.e., those having intermediate, even if not high, probability values, were found by only one of the two sampling techniques while missed by the other. The two techniques overlapped less at later than earlier training epochs, which is precisely the stage of the training when modest improvements to the sampling quality could make meaningful differences for the RBM trainability. The results of this work may explain the failure of previous investigations to achieve substantial (or any) improvement when using D-Wave-based sampling. However, the results reveal some potential for improvement, e.g., using a combined classical-quantum approach.
comment: 22 pages, 10 figures
♻ ☆ An Explainable AI based approach for Monitoring Animal Health
Monitoring cattle health and optimizing yield are key challenges faced by dairy farmers due to difficulties in tracking all animals on the farm. This work aims to showcase modern data-driven farming practices based on explainable machine learning(ML) methods that explain the activity and behaviour of dairy cattle (cows). Continuous data collection of 3-axis accelerometer sensors and usage of robust ML methodologies and algorithms, provide farmers and researchers with actionable information on cattle activity, allowing farmers to make informed decisions and incorporate sustainable practices. This study utilizes Bluetooth-based Internet of Things (IoT) devices and 4G networks for seamless data transmission, immediate analysis, inference generation, and explains the models performance with explainability frameworks. Special emphasis is put on the pre-processing of the accelerometers time series data, including the extraction of statistical characteristics, signal processing techniques, and lag-based features using the sliding window technique. Various hyperparameter-optimized ML models are evaluated across varying window lengths for activity classification. The k-nearest neighbour Classifier achieved the best performance, with AUC of mean 0.98 and standard deviation of 0.0026 on the training set and 0.99 on testing set). In order to ensure transparency, Explainable AI based frameworks such as SHAP is used to interpret feature importance that can be understood and used by practitioners. A detailed comparison of the important features, along with the stability analysis of selected features, supports development of explainable and practical ML models for sustainable livestock management.
♻ ☆ Diffusion Beats Autoregressive in Data-Constrained Settings
Autoregressive (AR) models have long dominated the landscape of large language models, driving progress across a wide range of tasks. Recently, diffusion-based language models have emerged as a promising alternative, though their advantages over AR models remain underexplored. In this paper, we systematically study masked diffusion models in data-constrained settings-where training involves repeated passes over limited data and find that they significantly outperform AR models when compute is abundant but data is scarce. Diffusion models make better use of repeated data, achieving lower validation loss and superior downstream performance. We find new scaling laws for diffusion models and derive a closed-form expression for the critical compute threshold at which diffusion begins to outperform AR. Finally, we explain why diffusion models excel in this regime: their randomized masking objective implicitly trains over a rich distribution of token orderings, acting as an implicit data augmentation that AR's fixed left-to-right factorization lacks. Our results suggest that when data, not compute, is the bottleneck, diffusion models offer a compelling alternative to the standard AR paradigm. Our code is available at: https://diffusion-scaling.github.io.
comment: Project Webpage: https://diffusion-scaling.github.io
♻ ☆ Data Diversity as Implicit Regularization: How Does Diversity Shape the Weight Space of Deep Neural Networks?
Data augmentation that introduces diversity into the input data has long been used in training deep learning models. It has demonstrated benefits in improving robustness and generalization, practically aligning well with other regularization strategies such as dropout and weight decay. However, the underlying mechanism of how diverse training data contributes to model improvements remains unknown. In this paper, we investigate the impact of data diversity on the weight space of deep neural networks using Random Matrix Theory. Through spectral analysis and comparing models trained with data augmentation, dropout, and weight decay, we reveal that increasing data diversity alters the weight spectral distribution similarly to other regularization techniques, while displaying a pattern more closely aligned with dropout than with weight decay. Building on these insights, we propose a metric to explain and compare the benefits of diversity introduced by traditional data augmentations and those achieved through synthetic data.
♻ ☆ Pr$εε$mpt: Sanitizing Sensitive Prompts for LLMs
The rise of large language models (LLMs) has introduced new privacy challenges, particularly during inference where sensitive information in prompts may be exposed to proprietary LLM APIs. In this paper, we address the problem of formally protecting the sensitive information contained in a prompt while maintaining response quality. To this end, first, we introduce a cryptographically inspired notion of a prompt sanitizer which transforms an input prompt to protect its sensitive tokens. Second, we propose Pr$\epsilon\epsilon$mpt, a novel system that implements a prompt sanitizer. Pr$\epsilon\epsilon$mpt categorizes sensitive tokens into two types: (1) those where the LLM's response depends solely on the format (such as SSNs, credit card numbers), for which we use format-preserving encryption (FPE); and (2) those where the response depends on specific values, (such as age, salary) for which we apply metric differential privacy (mDP). Our evaluation demonstrates that Pr$\epsilon\epsilon$mpt is a practical method to achieve meaningful privacy guarantees, while maintaining high utility compared to unsanitized prompts, and outperforming prior methods
♻ ☆ Omni-DPO: A Dual-Perspective Paradigm for Dynamic Preference Learning of LLMs
Direct Preference Optimization (DPO) has become a cornerstone of reinforcement learning from human feedback (RLHF) due to its simplicity and efficiency. However, existing DPO-based approaches typically treat all preference pairs uniformly, ignoring critical variations in their inherent quality and learning utility, leading to suboptimal data utilization and performance. To address this challenge, we propose Omni-DPO, a dual-perspective optimization framework that jointly accounts for (1) the inherent quality of each preference pair and (2) the model's evolving performance on those pairs. By adaptively weighting samples according to both data quality and the model's learning dynamics during training, Omni-DPO enables more effective training data utilization and achieves better performance. Experimental results on various models and benchmarks demonstrate the superiority and generalization capabilities of Omni-DPO. On textual understanding tasks, Gemma-2-9b-it finetuned with Omni-DPO beats the leading LLM, Claude 3 Opus, by a significant margin of 6.7 points on the Arena-Hard benchmark. On mathematical reasoning tasks, Omni-DPO consistently outperforms the baseline methods across all benchmarks, providing strong empirical evidence for the effectiveness and robustness of our approach. Code and models will be available at https://github.com/pspdada/Omni-DPO.
♻ ☆ Random Walk Learning and the Pac-Man Attack
Random walk (RW)-based algorithms have long been popular in distributed systems due to low overheads and scalability, with recent growing applications in decentralized learning. However, their reliance on local interactions makes them inherently vulnerable to malicious behavior. In this work, we investigate an adversarial threat that we term the ``Pac-Man'' attack, in which a malicious node probabilistically terminates any RW that visits it. This stealthy behavior gradually eliminates active RWs from the network, effectively halting the learning process without triggering failure alarms. To counter this threat, we propose the Average Crossing (AC) algorithm--a fully decentralized mechanism for duplicating RWs to prevent RW extinction in the presence of Pac-Man. Our theoretical analysis establishes that (i) the RW population remains almost surely bounded under AC and (ii) RW-based stochastic gradient descent remains convergent under AC, even in the presence of Pac-Man, with a quantifiable deviation from the true optimum. Our extensive empirical results on both synthetic and real-world datasets corroborate our theoretical findings. Furthermore, they uncover a phase transition in the extinction probability as a function of the duplication threshold. We offer theoretical insights by analyzing a simplified variant of the AC, which sheds light on the observed phase transition.
comment: The updated manuscript represents an incomplete version of the work. A substantially updated version will be prepared before further dissemination
♻ ☆ Cognitive Behaviors that Enable Self-Improving Reasoners, or, Four Habits of Highly Effective STaRs
Test-time inference has emerged as a powerful paradigm for enabling language models to ``think'' longer and more carefully about complex challenges, much like skilled human experts. While reinforcement learning (RL) can drive self-improvement in language models on verifiable tasks, some models exhibit substantial gains while others quickly plateau. For instance, we find that Qwen-2.5-3B far exceeds Llama-3.2-3B under identical RL training for the game of Countdown. This discrepancy raises a critical question: what intrinsic properties enable effective self-improvement? We introduce a framework to investigate this question by analyzing four key cognitive behaviors -- verification, backtracking, subgoal setting, and backward chaining -- that both expert human problem solvers and successful language models employ. Our study reveals that Qwen naturally exhibits these reasoning behaviors, whereas Llama initially lacks them. In systematic experimentation with controlled behavioral datasets, we find that priming Llama with examples containing these reasoning behaviors enables substantial improvements during RL, matching or exceeding Qwen's performance. Importantly, the presence of reasoning behaviors, rather than correctness of answers, proves to be the critical factor -- models primed with incorrect solutions containing proper reasoning patterns achieve comparable performance to those trained on correct solutions. Finally, leveraging continued pretraining with OpenWebMath data, filtered to amplify reasoning behaviors, enables the Llama model to match Qwen's self-improvement trajectory. Our findings establish a fundamental relationship between initial reasoning behaviors and the capacity for improvement, explaining why some language models effectively utilize additional computation while others plateau.
♻ ☆ Incorporating Arbitrary Matrix Group Equivariance into KANs
Kolmogorov-Arnold Networks (KANs) have seen great success in scientific domains thanks to spline activation functions, becoming an alternative to Multi-Layer Perceptrons (MLPs). However, spline functions may not respect symmetry in tasks, which is crucial prior knowledge in machine learning. In this paper, we propose Equivariant Kolmogorov-Arnold Networks (EKAN), a method for incorporating arbitrary matrix group equivariance into KANs, aiming to broaden their applicability to more fields. We first construct gated spline basis functions, which form the EKAN layer together with equivariant linear weights, and then define a lift layer to align the input space of EKAN with the feature space of the dataset, thereby building the entire EKAN architecture. Compared with baseline models, EKAN achieves higher accuracy with smaller datasets or fewer parameters on symmetry-related tasks, such as particle scattering and the three-body problem, often reducing test MSE by several orders of magnitude. Even in non-symbolic formula scenarios, such as top quark tagging with three jet constituents, EKAN achieves comparable results with state-of-the-art equivariant architectures using fewer than 40% of the parameters, while KANs do not outperform MLPs as expected. Code and data are available at https://github.com/hulx2002/EKAN .
♻ ☆ Bridging AI Innovation and Healthcare Needs: Lessons Learned from Incorporating Modern NLP at The BC Cancer Registry
Automating data extraction from clinical documents offers significant potential to improve efficiency in healthcare settings, yet deploying Natural Language Processing (NLP) solutions presents practical challenges. Drawing upon our experience implementing various NLP models for information extraction and classification tasks at the British Columbia Cancer Registry (BCCR), this paper shares key lessons learned throughout the project lifecycle. We emphasize the critical importance of defining problems based on clear business objectives rather than solely technical accuracy, adopting an iterative approach to development, and fostering deep interdisciplinary collaboration and co-design involving domain experts, end-users, and ML specialists from inception. Further insights highlight the need for pragmatic model selection (including hybrid approaches and simpler methods where appropriate), rigorous attention to data quality (representativeness, drift, annotation), robust error mitigation strategies involving human-in-the-loop validation and ongoing audits, and building organizational AI literacy. These practical considerations, generalizable beyond cancer registries, provide guidance for healthcare organizations seeking to successfully implement AI/NLP solutions to enhance data management processes and ultimately improve patient care and public health outcomes.
♻ ☆ Synthetic Data for Robust Stroke Segmentation
Current deep learning-based approaches to lesion segmentation in neuroimaging often depend on high-resolution images and extensive annotated data, limiting clinical applicability. This paper introduces a novel synthetic data framework tailored for stroke lesion segmentation, expanding the SynthSeg methodology to incorporate lesion-specific augmentations that simulate diverse pathological features. Using a modified nnUNet architecture, our approach trains models with label maps from healthy and stroke datasets, facilitating segmentation across both normal and pathological tissue without reliance on specific sequence-based training. Evaluation across in-domain and out-of-domain (OOD) datasets reveals that our method matches state-of-the-art performance within the training domain and significantly outperforms existing methods on OOD data. By minimizing dependence on large annotated datasets and allowing for cross-sequence applicability, our framework holds potential to improve clinical neuroimaging workflows, particularly in stroke pathology. PyTorch training code and weights are publicly available at https://github.com/liamchalcroft/SynthStroke, along with an SPM toolbox featuring a plug-and-play model at https://github.com/liamchalcroft/SynthStrokeSPM.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:014
♻ ☆ ImpliHateVid: A Benchmark Dataset and Two-stage Contrastive Learning Framework for Implicit Hate Speech Detection in Videos ACL 2025
The existing research has primarily focused on text and image-based hate speech detection, video-based approaches remain underexplored. In this work, we introduce a novel dataset, ImpliHateVid, specifically curated for implicit hate speech detection in videos. ImpliHateVid consists of 2,009 videos comprising 509 implicit hate videos, 500 explicit hate videos, and 1,000 non-hate videos, making it one of the first large-scale video datasets dedicated to implicit hate detection. We also propose a novel two-stage contrastive learning framework for hate speech detection in videos. In the first stage, we train modality-specific encoders for audio, text, and image using contrastive loss by concatenating features from the three encoders. In the second stage, we train cross-encoders using contrastive learning to refine multimodal representations. Additionally, we incorporate sentiment, emotion, and caption-based features to enhance implicit hate detection. We evaluate our method on two datasets, ImpliHateVid for implicit hate speech detection and another dataset for general hate speech detection in videos, HateMM dataset, demonstrating the effectiveness of the proposed multimodal contrastive learning for hateful content detection in videos and the significance of our dataset.
comment: Published in ACL 2025
♻ ☆ DSperse: A Framework for Targeted Verification in Zero-Knowledge Machine Learning
DSperse is a modular framework for distributed machine learning inference with strategic cryptographic verification. Operating within the emerging paradigm of distributed zero-knowledge machine learning, DSperse avoids the high cost and rigidity of full-model circuitization by enabling targeted verification of strategically chosen subcomputations. These verifiable segments, or "slices", may cover part or all of the inference pipeline, with global consistency enforced through audit, replication, or economic incentives. This architecture supports a pragmatic form of trust minimization, localizing zero-knowledge proofs to the components where they provide the greatest value. We evaluate DSperse using multiple proving systems and report empirical results on memory usage, runtime, and circuit behavior under sliced and unsliced configurations. By allowing proof boundaries to align flexibly with the model's logical structure, DSperse supports scalable, targeted verification strategies suited to diverse deployment needs.
comment: 12 pages, 8 figures, and 10 tables
♻ ☆ Discovering Invariant Neighborhood Patterns for Heterophilic Graphs
This paper studies the problem of distribution shifts on non-homophilous graphs Mosting existing graph neural network methods rely on the homophilous assumption that nodes from the same class are more likely to be linked. However, such assumptions of homophily do not always hold in real-world graphs, which leads to more complex distribution shifts unaccounted for in previous methods. The distribution shifts of neighborhood patterns are much more diverse on non-homophilous graphs. We propose a novel Invariant Neighborhood Pattern Learning (INPL) to alleviate the distribution shifts problem on non-homophilous graphs. Specifically, we propose the Adaptive Neighborhood Propagation (ANP) module to capture the adaptive neighborhood information, which could alleviate the neighborhood pattern distribution shifts problem on non-homophilous graphs. We propose Invariant Non-Homophilous Graph Learning (INHGL) module to constrain the ANP and learn invariant graph representation on non-homophilous graphs. Extensive experimental results on real-world non-homophilous graphs show that INPL could achieve state-of-the-art performance for learning on large non-homophilous graphs.
♻ ☆ Learning-based Sketches for Frequency Estimation in Data Streams without Ground Truth
Estimating the frequency of items on the high-volume, fast data stream has been extensively studied in many areas, such as database and network measurement. Traditional sketches provide only coarse estimates under strict memory constraints. Although some learning-augmented methods have emerged recently, they typically rely on offline training with real frequencies or/and labels, which are often unavailable. Moreover, these methods suffer from slow update speeds, limiting their suitability for real-time processing despite offering only marginal accuracy improvements. To overcome these challenges, we propose UCL-sketch, a practical learning-based paradigm for per-key frequency estimation. Our design introduces two key innovations: (i) an online training mechanism based on equivalent learning that requires no ground truth (GT), and (ii) a highly scalable architecture leveraging logically structured estimation buckets to scale to real-world data stream. The UCL-sketch, which utilizes compressive sensing (CS), converges to an estimator that provably yields a error bound far lower than that of prior works, without sacrificing the speed of processing. Extensive experiments on both real-world and synthetic datasets demonstrate that our approach outperforms previously proposed approaches regarding per-key accuracy and distribution. Notably, under extremely tight memory budgets, its quality almost matches that of an (infeasible) omniscient oracle. Moreover, compared to the existing equation-based sketch, UCL-sketch achieves an average decoding speedup of nearly 500 times. To help further research and development, our code is publicly available at https://github.com/Y-debug-sys/UCL-sketch.
♻ ☆ Embedding Safety into RL: A New Take on Trust Region Methods ICML 2025
Reinforcement Learning (RL) agents can solve diverse tasks but often exhibit unsafe behavior. Constrained Markov Decision Processes (CMDPs) address this by enforcing safety constraints, yet existing methods either sacrifice reward maximization or allow unsafe training. We introduce Constrained Trust Region Policy Optimization (C-TRPO), which reshapes the policy space geometry to ensure trust regions contain only safe policies, guaranteeing constraint satisfaction throughout training. We analyze its theoretical properties and connections to TRPO, Natural Policy Gradient (NPG), and Constrained Policy Optimization (CPO). Experiments show that C-TRPO reduces constraint violations while maintaining competitive returns.
comment: Accepted at ICML 2025
♻ ☆ Central Path Proximal Policy Optimization
In constrained Markov decision processes, enforcing constraints during training is often thought of as decreasing the final return. Recently, it was shown that constraints can be incorporated directly into the policy geometry, yielding an optimization trajectory close to the central path of a barrier method, which does not compromise final return. Building on this idea, we introduce Central Path Proximal Policy Optimization (C3PO), a simple modification of the PPO loss that produces policy iterates, that stay close to the central path of the constrained optimization problem. Compared to existing on-policy methods, C3PO delivers improved performance with tighter constraint enforcement, suggesting that central path-guided updates offer a promising direction for constrained policy optimization.
♻ ☆ FAB-PPI: Frequentist, Assisted by Bayes, Prediction-Powered Inference
Prediction-powered inference (PPI) enables valid statistical inference by combining experimental data with machine learning predictions. When a sufficient number of high-quality predictions is available, PPI results in more accurate estimates and tighter confidence intervals than traditional methods. In this paper, we propose to inform the PPI framework with prior knowledge on the quality of the predictions. The resulting method, which we call frequentist, assisted by Bayes, PPI (FAB-PPI), improves over PPI when the observed prediction quality is likely under the prior, while maintaining its frequentist guarantees. Furthermore, when using heavy-tailed priors, FAB-PPI adaptively reverts to standard PPI in low prior probability regions. We demonstrate the benefits of FAB-PPI in real and synthetic examples.
comment: 29 pages, 13 figures
♻ ☆ Exploring Superior Function Calls via Reinforcement Learning
Function calling capabilities are crucial for deploying Large Language Models in real-world applications, yet current training approaches fail to develop robust reasoning strategies. Supervised fine-tuning produces models that rely on superficial pattern matching, while standard reinforcement learning methods struggle with the complex action space of structured function calls. We present a novel reinforcement learning framework designed to enhance group relative policy optimization through strategic entropy based exploration specifically tailored for function calling tasks. Our approach addresses three critical challenges in function calling: insufficient exploration during policy learning, lack of structured reasoning in chain-of-thought generation, and inadequate verification of parameter extraction. Our two-stage data preparation pipeline ensures high-quality training samples through iterative LLM evaluation and abstract syntax tree validation. Extensive experiments on the Berkeley Function Calling Leaderboard demonstrate that this framework achieves state-of-the-art performance among open-source models with 86.02\% overall accuracy, outperforming standard GRPO by up to 6\% on complex multi-function scenarios. Notably, our method shows particularly strong improvements on code-pretrained models, suggesting that structured language generation capabilities provide an advantageous starting point for reinforcement learning in function calling tasks. We will release all the code, models and dataset to benefit the community.
♻ ☆ GDSR: Global-Detail Integration through Dual-Branch Network with Wavelet Losses for Remote Sensing Image Super-Resolution
In recent years, deep neural networks, including Convolutional Neural Networks, Transformers, and State Space Models, have achieved significant progress in Remote Sensing Image (RSI) Super-Resolution (SR). However, existing SR methods typically overlook the complementary relationship between global and local dependencies. These methods either focus on capturing local information or prioritize global information, which results in models that are unable to effectively capture both global and local features simultaneously. Moreover, their computational cost becomes prohibitive when applied to large-scale RSIs. To address these challenges, we introduce the novel application of Receptance Weighted Key Value (RWKV) to RSI-SR, which captures long-range dependencies with linear complexity. To simultaneously model global and local features, we propose the Global-Detail dual-branch structure, GDSR, which performs SR by paralleling RWKV and convolutional operations to handle large-scale RSIs. Furthermore, we introduce the Global-Detail Reconstruction Module (GDRM) as an intermediary between the two branches to bridge their complementary roles. In addition, we propose the Dual-Group Multi-Scale Wavelet Loss, a wavelet-domain constraint mechanism via dual-group subband strategy and cross-resolution frequency alignment for enhanced reconstruction fidelity in RSI-SR. Extensive experiments under two degradation methods on several benchmarks, including AID, UCMerced, and RSSRD-QH, demonstrate that GSDR outperforms the state-of-the-art Transformer-based method HAT by an average of 0.09 dB in PSNR, while using only 63% of its parameters and 51% of its FLOPs, achieving an inference speed 3.2 times faster.
comment: GDSR: Global-Detail Integration through Dual-Branch Network with Wavelet Losses for Remote Sensing Image Super-Resolution
♻ ☆ Foldable SuperNets: Scalable Merging of Transformers with Different Initializations and Tasks
Recent methods aim to merge neural networks (NNs) with identical architectures trained on different tasks into a single multi-task model. While most works focus on the simpler setup of merging NNs initialized from a common pre-trained network, we target the harder problem of merging large transformers trained on different tasks from distinct initializations. We show that traditional merging methods fail catastrophically in this setup, while Knowledge Distillation (KD) achieves much better results, though at a higher cost. However, KD is data-inefficient, as it does not exploit the original models' weights. To solve this, we introduce "Foldable SuperNet Merge" (FS-Merge), which trains a SuperNet containing the original models (with frozen weights) using a feature reconstruction objective. After training, the SuperNet is folded back to the size of a single original model. FS-Merge is simple, data-efficient, has a computational cost comparable to KD, and is proven to have superior expressiveness compared to traditional merging methods on MLP models. It achieves SOTA results when tested on MLPs and transformers across various sizes, tasks, modalities, and distribution shifts, especially in low-data scenarios.
♻ ☆ SAND: One-Shot Feature Selection with Additive Noise Distortion ICML
Feature selection is a critical step in data-driven applications, reducing input dimensionality to enhance learning accuracy, computational efficiency, and interpretability. Existing state-of-the-art methods often require post-selection retraining and extensive hyperparameter tuning, complicating their adoption. We introduce a novel, non-intrusive feature selection layer that, given a target feature count $k$, automatically identifies and selects the $k$ most informative features during neural network training. Our method is uniquely simple, requiring no alterations to the loss function, network architecture, or post-selection retraining. The layer is mathematically elegant and can be fully described by: \begin{align} \nonumber \tilde{x}_i = a_i x_i + (1-a_i)z_i \end{align} where $x_i$ is the input feature, $\tilde{x}_i$ the output, $z_i$ a Gaussian noise, and $a_i$ trainable gain such that $\sum_i{a_i^2}=k$. This formulation induces an automatic clustering effect, driving $k$ of the $a_i$ gains to $1$ (selecting informative features) and the rest to $0$ (discarding redundant ones) via weighted noise distortion and gain normalization. Despite its extreme simplicity, our method delivers state-of-the-art performance on standard benchmark datasets and a novel real-world dataset, outperforming or matching existing approaches without requiring hyperparameter search for $k$ or retraining. Theoretical analysis in the context of linear regression further validates its efficacy. Our work demonstrates that simplicity and performance are not mutually exclusive, offering a powerful yet straightforward tool for feature selection in machine learning.
comment: Proceedings of the 42nd International Conference on Machine Learning (ICML), Vancouver, Canada. PMLR 267, 2025
♻ ☆ Generalizable speech deepfake detection via meta-learned LoRA
Reliable detection of speech deepfakes (spoofs) must remain effective when the distribution of spoofing attacks shifts. We frame the task as domain generalization and show that inserting Low-Rank Adaptation (LoRA) adapters into every attention head of a self-supervised (SSL) backbone, then training only those adapters with Meta-Learning Domain Generalization (MLDG), yields strong zero-shot performance. The resulting model updates about 3.6 million parameters, roughly 1.1% of the 318 million updated in full fine-tuning, yet surpasses a fully fine-tuned counterpart on five of six evaluation corpora. A first-order MLDG loop encourages the adapters to focus on cues that persist across attack types, lowering the average EER from 8.84% for the fully fine-tuned model to 5.30% with our best MLDG-LoRA configuration. Our findings show that combining meta-learning with parameter-efficient adaptation offers an effective method for zero-shot, distribution-shift-aware speech deepfake detection.
comment: 10 pages, 5 figures, 7 tables
♻ ☆ Tapping into the Black Box: Uncovering Aligned Representations in Pretrained Neural Networks
In ReLU networks, gradients of output units can be seen as their input-level representations, as they correspond to the units' pullbacks through the active subnetwork. However, gradients of deeper models are notoriously misaligned, significantly contributing to their black-box nature. We claim that this is because active subnetworks are inherently noisy due to the ReLU hard-gating. To tackle that noise, we propose soft-gating in the backward pass only. The resulting input-level vector field (called ''excitation pullback'') exhibits remarkable perceptual alignment, revealing high-resolution input- and target-specific features that ''just make sense'', therefore establishing a compelling novel explanation method. Furthermore, we speculate that excitation pullbacks approximate (directionally) the gradients of a simpler model, linear in the network's path space, learned implicitly during optimization and largely determining the network's decision; thus arguing for the faithfulness of the produced explanations and their overall significance.
comment: 11 pages, 3-page appendix, 4 figures, preprint; v2 changes: redacted abstract, slight reformulation of Hypothesis 1, extended motivation, unified notation, minor wording improvements
♻ ☆ Chasing Moving Targets with Online Self-Play Reinforcement Learning for Safer Language Models
Conventional language model (LM) safety alignment relies on a reactive, disjoint procedure: attackers exploit a static model, followed by defensive fine-tuning to patch exposed vulnerabilities. This sequential approach creates a mismatch -- attackers overfit to obsolete defenses, while defenders perpetually lag behind emerging threats. To address this, we propose Self-RedTeam, an online self-play reinforcement learning algorithm where an attacker and defender agent co-evolve through continuous interaction. We cast safety alignment as a two-player zero-sum game, where a single model alternates between attacker and defender roles -- generating adversarial prompts and safeguarding against them -- while a reward LM adjudicates outcomes. This enables dynamic co-adaptation. Grounded in the game-theoretic framework of zero-sum games, we establish a theoretical safety guarantee which motivates the design of our method: if self-play converges to a Nash Equilibrium, the defender will reliably produce safe responses to any adversarial input. Empirically, Self-RedTeam uncovers more diverse attacks (+21.8% SBERT) compared to attackers trained against static defenders and achieves higher robustness on safety benchmarks (e.g., +65.5% on WildJailBreak) than defenders trained against static attackers. We further propose hidden Chain-of-Thought, allowing agents to plan privately, which boosts adversarial diversity and reduces over-refusals. Our results motivate a shift from reactive patching to proactive co-evolution in LM safety training, enabling scalable, autonomous, and robust self-improvement of LMs via multi-agent reinforcement learning (MARL).
♻ ☆ Automatic brain tumor segmentation in 2D intra-operative ultrasound images using magnetic resonance imaging tumor annotations
Automatic segmentation of brain tumors in intra-operative ultrasound (iUS) images could facilitate localization of tumor tissue during resection surgery. The lack of large annotated datasets limits the current models performances. In this paper, we investigated the use of tumor annotations in magnetic resonance imaging (MRI) scans, which are more accessible than annotations in iUS images, for training of deep learning models for iUS brain tumor segmentation. We used 180 annotated MRI scans with corresponding unannotated iUS images, and 29 annotated iUS images. Image registration was performed to transfer the MRI annotations to the corresponding iUS images before training the nnU-Net model with different configurations of the data and label origins. The results showed no significant difference in Dice score for a model trained with only MRI annotated tumors compared to models trained with only iUS annotations and both, and to expert annotations, indicating that MRI tumor annotations can be used as a substitute for iUS tumor annotations to train a deep learning model for automatic brain tumor segmentation in iUS images. The best model obtained an average Dice score of $0.62\pm0.31$, compared to $0.67\pm0.25$ for an expert neurosurgeon, where the performance on larger tumors were similar, but lower for the models on smaller tumors. In addition, the results showed that removing smaller tumors from the training sets improved the results. The main models are available here: https://github.com/mathildefaanes/us_brain_tumor_segmentation/tree/main
comment: 14 pages, 5 figures
♻ ☆ Neighbour-Driven Gaussian Process Variational Autoencoders for Scalable Structured Latent Modelling ICML 2025
Gaussian Process (GP) Variational Autoencoders (VAEs) extend standard VAEs by replacing the fully factorised Gaussian prior with a GP prior, thereby capturing richer correlations among latent variables. However, performing exact GP inference in large-scale GPVAEs is computationally prohibitive, often forcing existing approaches to rely on restrictive kernel assumptions or large sets of inducing points. In this work, we propose a neighbour-driven approximation strategy that exploits local adjacencies in the latent space to achieve scalable GPVAE inference. By confining computations to the nearest neighbours of each data point, our method preserves essential latent dependencies, allowing more flexible kernel choices and mitigating the need for numerous inducing points. Through extensive experiments on tasks including representation learning, data imputation, and conditional generation, we demonstrate that our approach outperforms other GPVAE variants in both predictive performance and computational efficiency.
comment: ICML 2025
♻ ☆ Theory of Decentralized Robust Kernel-Based Learning
We propose a new decentralized robust kernel-based learning algorithm within the framework of reproducing kernel Hilbert spaces (RKHSs) by utilizing a networked system that can be represented as a connected graph. The robust loss function $\huaL_\sigma$ induced by a windowing function $W$ and a robustness scaling parameter $\sigma>0$ can encompass a broad spectrum of robust losses. Consequently, the proposed algorithm effectively provides a unified decentralized learning framework for robust regression, which fundamentally differs from the existing distributed robust kernel-based learning schemes, all of which are divide-and-conquer based. We rigorously establish a learning theory and offer comprehensive convergence analysis for the algorithm. We show each local robust estimator generated from the decentralized algorithm can be utilized to approximate the regression function. Based on kernel-based integral operator techniques, we derive general high confidence convergence bounds for the local approximating sequence in terms of the mean square distance, RKHS norm, and generalization error, respectively. Moreover, we provide rigorous selection rules for local sample size and show that, under properly selected step size and scaling parameter $\sigma$, the decentralized robust algorithm can achieve optimal learning rates (up to logarithmic factors) in both norms. The parameter $\sigma$ is shown to be essential for enhancing robustness and ensuring favorable convergence behavior. The intrinsic connection among decentralization, sample selection, robustness of the algorithm, and its convergence is clearly reflected.
♻ ☆ Perfect Counterfactuals in Imperfect Worlds: Modelling Noisy Implementation of Actions in Sequential Algorithmic Recourse ECML-PKDD 2025
Algorithmic recourse suggests actions to individuals who have been adversely affected by automated decision-making, helping them to achieve the desired outcome. Knowing the recourse, however, does not guarantee that users can implement it perfectly, either due to environmental variability or personal choices. Recourse generation should thus anticipate its sub-optimal or noisy implementation. While several approaches construct recourse that is robust to small perturbations -- e.g., arising due to its noisy implementation -- they assume that the entire recourse is implemented in a single step, thus model the noise as one-off and uniform. But these assumptions are unrealistic since recourse often entails multiple sequential steps, which makes it harder to implement and subject to increasing noise. In this work, we consider recourse under plausible noise that adheres to the local data geometry and accumulates at every step of the way. We frame this problem as a Markov Decision Process and demonstrate that such a distribution of plausible noise satisfies the Markov property. We then propose the RObust SEquential (ROSE) recourse generator for tabular data; our method produces a series of steps leading to the desired outcome even when they are implemented imperfectly. Given plausible modelling of sub-optimal human actions and greater recourse robustness to accumulated uncertainty, ROSE provides users with a high chance of success while maintaining low recourse cost. Empirical evaluation shows that our algorithm effectively navigates the inherent trade-off between recourse robustness and cost while ensuring its sparsity and computational efficiency.
comment: Accepted to ECML-PKDD 2025 Journal Track
♻ ☆ Beyond algorithm hyperparameters: on preprocessing hyperparameters and associated pitfalls in machine learning applications
Adequately generating and evaluating prediction models based on supervised machine learning (ML) is often challenging, especially for less experienced users in applied research areas. Special attention is required in settings where the model generation process involves hyperparameter tuning, i.e. data-driven optimization of different types of hyperparameters to improve the predictive performance of the resulting model. Discussions about tuning typically focus on the hyperparameters of the ML algorithm (e.g., the minimum number of observations in each terminal node for a tree-based algorithm). In this context, it is often neglected that hyperparameters also exist for the preprocessing steps that are applied to the data before it is provided to the algorithm (e.g., how to handle missing feature values in the data). As a consequence, users experimenting with different preprocessing options to improve model performance may be unaware that this constitutes a form of hyperparameter tuning, albeit informal and unsystematic, and thus may fail to report or account for this optimization. To illuminate this issue, this paper reviews and empirically illustrates different procedures for generating and evaluating prediction models, explicitly addressing the different ways algorithm and preprocessing hyperparameters are typically handled by applied ML users. By highlighting potential pitfalls, especially those that may lead to exaggerated performance claims, this review aims to further improve the quality of predictive modeling in ML applications.
♻ ☆ A Spectral Framework for Evaluating Geodesic Distances Between Graphs
This paper presents a spectral framework for quantifying the differentiation between graph data samples by introducing a novel metric named Graph Geodesic Distance (GGD). For two different graphs with the same number of nodes, our framework leverages a spectral graph matching procedure to find node correspondence so that the geodesic distance between them can be subsequently computed by solving a generalized eigenvalue problem associated with their Laplacian matrices. For graphs of different sizes, a resistance-based spectral graph coarsening scheme is introduced to reduce the size of the larger graph while preserving the original spectral properties. We show that the proposed GGD metric can effectively quantify dissimilarities between two graphs by encapsulating their differences in key structural (spectral) properties, such as effective resistances between nodes, cuts, and the mixing time of random walks. Through extensive experiments comparing with state-of-the-art metrics, such as the latest Tree-Mover's Distance (TMD), the proposed GGD metric demonstrates significantly improved performance for graph classification, particularly when only partial node features are available. Furthermore, we extend the application of GGD beyond graph classification to stability analysis of GNNs and the quantification of distances between datasets, highlighting its versatility in broader machine learning contexts.
♻ ☆ An Efficient Deep Learning Approach for Approximating Parameter-to-Solution Maps of PDEs
In this paper, we consider approximating the parameter-to-solution maps of parametric partial differential equations (PPDEs) using deep neural networks (DNNs). We propose an efficient approach combining reduced collocation methods (RCMs) and DNNs. In the approximation analysis section, we rigorously derive sharp upper bounds on the complexity of the neural networks. These bounds only depend on the reduced basis dimension rather than the high-fidelity discretization dimension, thereby theoretically guaranteeing the computational efficiency of our approach. In numerical experiments, we implement the RCM using radial basis function finite differences (RBF-FD) and proper orthogonal decomposition (POD), and propose the POD-DNN algorithm. We consider various types of PPDEs and compare the accuracy and efficiency of different solvers. The POD-DNN has demonstrated significantly accelerated inference speeds compared with conventional numerical methods owing to the offline-online computation strategy. Furthermore, by employing the reduced basis methods (RBMs), it also outperforms standard DNNs in computational efficiency while maintaining comparable accuracy.
TimeMKG: Knowledge-Infused Causal Reasoning for Multivariate Time Series Modeling
Multivariate time series data typically comprises two distinct modalities: variable semantics and sampled numerical observations. Traditional time series models treat variables as anonymous statistical signals, overlooking the rich semantic information embedded in variable names and data descriptions. However, these textual descriptors often encode critical domain knowledge that is essential for robust and interpretable modeling. Here we present TimeMKG, a multimodal causal reasoning framework that elevates time series modeling from low-level signal processing to knowledge informed inference. TimeMKG employs large language models to interpret variable semantics and constructs structured Multivariate Knowledge Graphs that capture inter-variable relationships. A dual-modality encoder separately models the semantic prompts, generated from knowledge graph triplets, and the statistical patterns from historical time series. Cross-modality attention aligns and fuses these representations at the variable level, injecting causal priors into downstream tasks such as forecasting and classification, providing explicit and interpretable priors to guide model reasoning. The experiment in diverse datasets demonstrates that incorporating variable-level knowledge significantly improves both predictive performance and generalization.
♻ ☆ ElasticMM: Efficient Multimodal LLMs Serving with Elastic Multimodal Parallelism
Multimodal large language models (MLLMs) extend LLMs to handle images, videos, and audio by incorporating feature extractors and projection modules. However, these additional components -- combined with complex inference pipelines and heterogeneous workloads -- introduce significant inference overhead. Therefore, efficiently serving MLLMs remains a major challenge. Current tightly coupled serving architectures struggle to distinguish between mixed request types or adapt parallelism strategies to different inference stages, leading to increased time-to-first-token (TTFT) latency and poor resource utilization. To address this, we introduce Elastic Multimodal Parallelism (EMP), a new serving paradigm that elastically adapts to resource heterogeneity across request types and inference stages. Building upon EMP, we develop ElasticMM, an MLLM serving system that (1) separates requests into independent modality groups with dynamic resource allocation via a modality-aware load balancer; (2) decouples inference stages and enables parallelism adjustment and adaptive scaling via elastic partition scheduling; and (3) improves inference efficiency through unified multimodal prefix caching and non-blocking encoding. Experiments on diverse real-world datasets show that ElasticMM outperforms state-of-the-art (SOTA) serving systems, reducing TTFT by up to 4.2x and achieving 3.2-4.5x higher throughput while meeting service-level objectives (SLOs).
♻ ☆ IMU: Influence-guided Machine Unlearning
Recent studies have shown that deep learning models are vulnerable to attacks and tend to memorize training data points, raising significant concerns about privacy leakage. This motivates the development of machine unlearning (MU), i.e., a paradigm that enables models to selectively forget specific data points upon request. However, most existing MU algorithms require partial or full fine-tuning on the retain set. This necessitates continued access to the original training data, which is often impractical due to privacy concerns and storage constraints. A few retain-data-free MU methods have been proposed, but some rely on access to auxiliary data and precomputed statistics of the retain set, while others scale poorly when forgetting larger portions of data. In this paper, we propose Influence-guided Machine Unlearning (IMU), a simple yet effective method that conducts MU using only the forget set. Specifically, IMU employs gradient ascent and innovatively introduces dynamic allocation of unlearning intensities across different data points based on their influences. This adaptive strategy significantly enhances unlearning effectiveness while maintaining model utility. Results across vision and language tasks demonstrate that IMU consistently outperforms existing retain-data-free MU methods.
♻ ☆ Structured Generative Modeling with the Thermodynamic Kolmogorov-Arnold Model
Learning an energy-based model (EBM) in the latent space of a top-down generative model offers an expressive and interpretable framework for text and image generation. However, it remains unclear how this interpretability can be used to guide model design, improve generative quality, and reduce training time. Moreover, the reliance on Langevin Monte Carlo (LMC) sampling presents challenges in efficiency and sampling multimodal latent distributions. In this work, we propose a novel adaptation of the Kolmogorov-Arnold representation theorem for generative modeling and introduce the Thermodynamic Kolmogorov-Arnold Model (T-KAM) to take advantage of structural and inductive biases. By constraining the prior to univariate relationships, T-KAM enables fast and exact inference via the inverse transform method. With the low dimensionality of the latent space and suitable inductive biases encoded, we demonstrate that importance sampling becomes a viable, unbiased, and highly efficient training strategy. We also introduce a training criterion using population-based LMC, which decomposes posterior sampling into a sequence of annealed distributions to improve multimodal exploration. T-KAM elegantly balances common trade-offs in generative modeling, offering fast inference, high sample quality, and stable training, while being naturally suited to upcoming Zettascale Computing Co. hardware and extendable to other high-impact research directions in generative intelligence.
♻ ☆ Bayesian Models for Joint Selection of Features and Auto-Regressive Lags: Theory and Applications in Environmental and Financial Forecasting
We develop a Bayesian framework for variable selection in linear regression with autocorrelated errors, accommodating lagged covariates and autoregressive structures. This setting occurs in time series applications where responses depend on contemporaneous or past explanatory variables and persistent stochastic shocks, including financial modeling, hydrological forecasting, and meteorological applications requiring temporal dependency capture. Our methodology uses hierarchical Bayesian models with spike-and-slab priors to simultaneously select relevant covariates and lagged error terms. We propose an efficient two-stage MCMC algorithm separating sampling of variable inclusion indicators and model parameters to address high-dimensional computational challenges. Theoretical analysis establishes posterior selection consistency under mild conditions, even when candidate predictors grow exponentially with sample size, common in modern time series with many potential lagged variables. Through simulations and real applications (groundwater depth prediction, S&P 500 log returns modeling), we demonstrate substantial gains in variable selection accuracy and predictive performance. Compared to existing methods, our framework achieves lower MSPE, improved true model component identification, and greater robustness with autocorrelated noise, underscoring practical utility for model interpretation and forecasting in autoregressive settings.
♻ ☆ Scalable h-adaptive probabilistic solver for time-independent and time-dependent systems
Solving partial differential equations (PDEs) within the framework of probabilistic numerics offers a principled approach to quantifying epistemic uncertainty arising from discretization. By leveraging Gaussian process regression and imposing the governing PDE as a constraint at a finite set of collocation points, probabilistic numerics delivers mesh-free solutions at arbitrary locations. However, the high computational cost, which scales cubically with the number of collocation points, remains a critical bottleneck, particularly for large-scale or high-dimensional problems. We propose a scalable enhancement to this paradigm through two key innovations. First, we develop a stochastic dual descent algorithm that reduces the per-iteration complexity from cubic to linear in the number of collocation points, enabling tractable inference. Second, we exploit a clustering-based active learning strategy that adaptively selects collocation points to maximize information gain while minimizing computational expense. Together, these contributions result in an $h$-adaptive probabilistic solver that can scale to a large number of collocation points. We demonstrate the efficacy of the proposed solver on benchmark PDEs, including two- and three-dimensional steady-state elliptic problems, as well as a time-dependent parabolic PDE formulated in a space-time setting.
♻ ☆ Convergence of Statistical Estimators via Mutual Information Bounds
Recent advances in statistical learning theory have revealed profound connections between mutual information (MI) bounds, PAC-Bayesian theory, and Bayesian nonparametrics. This work introduces a novel mutual information bound for statistical models. The derived bound has wide-ranging applications in statistical inference. It yields improved contraction rates for fractional posteriors in Bayesian nonparametrics. It can also be used to study a wide range of estimation methods, such as variational inference or Maximum Likelihood Estimation (MLE). By bridging these diverse areas, this work advances our understanding of the fundamental limits of statistical inference and the role of information in learning from data. We hope that these results will not only clarify connections between statistical inference and information theory but also help to develop a new toolbox to study a wide range of estimators.
♻ ☆ Vulnerability of Text-Matching in ML/AI Conference Reviewer Assignments to Collusions USENIX Security
In the peer review process of top-tier machine learning (ML) and artificial intelligence (AI) conferences, reviewers are assigned to papers through automated methods. These assignment algorithms consider two main factors: (1) reviewers' expressed interests indicated by their bids for papers, and (2) reviewers' domain expertise inferred from the similarity between the text of their previously published papers and the submitted manuscripts. A significant challenge these conferences face is the existence of collusion rings, where groups of researchers manipulate the assignment process to review each other's papers, providing positive evaluations regardless of their actual quality. Most efforts to combat collusion rings have focused on preventing bid manipulation, under the assumption that the text similarity component is secure. In this paper, we demonstrate that even in the absence of bidding, colluding reviewers and authors can exploit the machine learning based text-matching component of reviewer assignment used at top ML/AI venues to get assigned their target paper. We also highlight specific vulnerabilities within this system and offer suggestions to enhance its robustness.
comment: Accepted to 34th USENIX Security Symposium (USENIX Security 25)
♻ ☆ Incorporating Coupling Knowledge into Echo State Networks for Learning Spatiotemporally Chaotic Dynamics
Machine learning methods have shown promise in learning chaotic dynamical systems, enabling model-free short-term prediction and attractor reconstruction. However, when applied to large-scale, spatiotemporally chaotic systems, purely data-driven machine learning methods often suffer from inefficiencies, as they require a large learning model size and a massive amount of training data to achieve acceptable performance. To address this challenge, we incorporate the spatial coupling structure of the target system as an inductive bias in the network design. Specifically, we introduce physics-guided clustered echo state networks, leveraging the efficiency of the echo state networks as a base model. Experimental results on benchmark chaotic systems demonstrate that our physics-informed method outperforms existing echo state network models in learning the target chaotic systems. Additionally, we numerically demonstrate that leveraging coupling knowledge into ESN models can enhance their robustness to variations of training and target system conditions. We further show that our proposed model remains effective even when the coupling knowledge is imperfect or extracted directly from time series data. We believe this approach has the potential to enhance other machine-learning methods.
comment: 20 pages, 13 figures
♻ ☆ Text-to-Level Diffusion Models With Various Text Encoders for Super Mario Bros AAAI
Recent research shows how diffusion models can unconditionally generate tile-based game levels, but use of diffusion models for text-to-level generation is underexplored. There are practical considerations for creating a usable model: caption/level pairs are needed, as is a text embedding model, and a way of generating entire playable levels, rather than individual scenes. We present strategies to automatically assign descriptive captions to an existing dataset, and train diffusion models using both pretrained text encoders and simple transformer models trained from scratch. Captions are automatically assigned to generated scenes so that the degree of overlap between input and output captions can be compared. We also assess the diversity and playability of the resulting level scenes. Results are compared with an unconditional diffusion model and a generative adversarial network, as well as the text-to-level approaches Five-Dollar Model and MarioGPT. Notably, the best diffusion model uses a simple transformer model for text embedding, and takes less time to train than diffusion models employing more complex text encoders, indicating that reliance on larger language models is not necessary. We also present a GUI allowing designers to construct long levels from model-generated scenes.
comment: Accepted to appear in The 21st AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (November 10-14, 2025)
♻ ☆ A Survey on Pre-Trained Diffusion Model Distillations
Diffusion Models~(DMs) have emerged as the dominant approach in Generative Artificial Intelligence (GenAI), owing to their remarkable performance in tasks such as text-to-image synthesis. However, practical DMs, such as stable diffusion, are typically trained on massive datasets and thus usually require large storage. At the same time, many steps may be required, i.e., recursively evaluating the trained neural network, to generate a high-quality image, which results in significant computational costs during sample generation. As a result, distillation methods on pre-trained DM have become widely adopted practices to develop smaller, more efficient models capable of rapid, few-step generation in low-resource environment. When these distillation methods are developed from different perspectives, there is an urgent need for a systematic survey, particularly from a methodological perspective. In this survey, we review distillation methods through three aspects: output loss distillation, trajectory distillation and adversarial distillation. We also discuss current challenges and outline future research directions in the conclusion.
Graphics 4
☆ SPG: Style-Prompting Guidance for Style-Specific Content Creation
Although recent text-to-image (T2I) diffusion models excel at aligning generated images with textual prompts, controlling the visual style of the output remains a challenging task. In this work, we propose Style-Prompting Guidance (SPG), a novel sampling strategy for style-specific image generation. SPG constructs a style noise vector and leverages its directional deviation from unconditional noise to guide the diffusion process toward the target style distribution. By integrating SPG with Classifier-Free Guidance (CFG), our method achieves both semantic fidelity and style consistency. SPG is simple, robust, and compatible with controllable frameworks like ControlNet and IPAdapter, making it practical and widely applicable. Extensive experiments demonstrate the effectiveness and generality of our approach compared to state-of-the-art methods. Code is available at https://github.com/Rumbling281441/SPG.
comment: Accepted to the Journal track of Pacific Graphics 2025
☆ StyleMM: Stylized 3D Morphable Face Model via Text-Driven Aligned Image Translation
We introduce StyleMM, a novel framework that can construct a stylized 3D Morphable Model (3DMM) based on user-defined text descriptions specifying a target style. Building upon a pre-trained mesh deformation network and a texture generator for original 3DMM-based realistic human faces, our approach fine-tunes these models using stylized facial images generated via text-guided image-to-image (i2i) translation with a diffusion model, which serve as stylization targets for the rendered mesh. To prevent undesired changes in identity, facial alignment, or expressions during i2i translation, we introduce a stylization method that explicitly preserves the facial attributes of the source image. By maintaining these critical attributes during image stylization, the proposed approach ensures consistent 3D style transfer across the 3DMM parameter space through image-based training. Once trained, StyleMM enables feed-forward generation of stylized face meshes with explicit control over shape, expression, and texture parameters, producing meshes with consistent vertex connectivity and animatability. Quantitative and qualitative evaluations demonstrate that our approach outperforms state-of-the-art methods in terms of identity-level facial diversity and stylization capability. The code and videos are available at [kwanyun.github.io/stylemm_page](kwanyun.github.io/stylemm_page).
comment: Pacific graphics 2025, CGF, 15 pages
☆ LayoutRectifier: An Optimization-based Post-processing for Graphic Design Layout Generation
Recent deep learning methods can generate diverse graphic design layouts efficiently. However, these methods often create layouts with flaws, such as misalignment, unwanted overlaps, and unsatisfied containment. To tackle this issue, we propose an optimization-based method called LayoutRectifier, which gracefully rectifies auto-generated graphic design layouts to reduce these flaws while minimizing deviation from the generated layout. The core of our method is a two-stage optimization. First, we utilize grid systems, which professional designers commonly use to organize elements, to mitigate misalignments through discrete search. Second, we introduce a novel box containment function designed to adjust the positions and sizes of the layout elements, preventing unwanted overlapping and promoting desired containment. We evaluate our method on content-agnostic and content-aware layout generation tasks and achieve better-quality layouts that are more suitable for downstream graphic design tasks. Our method complements learning-based layout generation methods and does not require additional training.
comment: 11 pages, Pacific Graphics 2025
☆ Substepping the Material Point Method
Many Material Point Method implementations favor explicit time integration. However large time steps are often desirable for special reasons - for example, for partitioned coupling with another large-step solver, or for imposing constraints, projections, or multiphysics solves. We present a simple, plug-and-play algorithm that advances MPM with a large time step using substeps, effectively wrapping an explicit MPM integrator into a pseudo-implicit one.
comment: 1 page
Robotics 52
☆ TLE-Based A2C Agent for Terrestrial Coverage Orbital Path Planning
The increasing congestion of Low Earth Orbit (LEO) poses persistent challenges to the efficient deployment and safe operation of Earth observation satellites. Mission planners must now account not only for mission-specific requirements but also for the increasing collision risk with active satellites and space debris. This work presents a reinforcement learning framework using the Advantage Actor-Critic (A2C) algorithm to optimize satellite orbital parameters for precise terrestrial coverage within predefined surface radii. By formulating the problem as a Markov Decision Process (MDP) within a custom OpenAI Gymnasium environment, our method simulates orbital dynamics using classical Keplerian elements. The agent progressively learns to adjust five of the orbital parameters - semi-major axis, eccentricity, inclination, right ascension of ascending node, and the argument of perigee-to achieve targeted terrestrial coverage. Comparative evaluation against Proximal Policy Optimization (PPO) demonstrates A2C's superior performance, achieving 5.8x higher cumulative rewards (10.0 vs 9.263025) while converging in 31.5x fewer timesteps (2,000 vs 63,000). The A2C agent consistently meets mission objectives across diverse target coordinates while maintaining computational efficiency suitable for real-time mission planning applications. Key contributions include: (1) a TLE-based orbital simulation environment incorporating physics constraints, (2) validation of actor-critic methods' superiority over trust region approaches in continuous orbital control, and (3) demonstration of rapid convergence enabling adaptive satellite deployment. This approach establishes reinforcement learning as a computationally efficient alternative for scalable and intelligent LEO mission planning.
comment: 8 pages, 6 figures, 5 tables
☆ CVIRO: A Consistent and Tightly-Coupled Visual-Inertial-Ranging Odometry on Lie Groups
Ultra Wideband (UWB) is widely used to mitigate drift in visual-inertial odometry (VIO) systems. Consistency is crucial for ensuring the estimation accuracy of a UWBaided VIO system. An inconsistent estimator can degrade localization performance, where the inconsistency primarily arises from two main factors: (1) the estimator fails to preserve the correct system observability, and (2) UWB anchor positions are assumed to be known, leading to improper neglect of calibration uncertainty. In this paper, we propose a consistent and tightly-coupled visual-inertial-ranging odometry (CVIRO) system based on the Lie group. Our method incorporates the UWB anchor state into the system state, explicitly accounting for UWB calibration uncertainty and enabling the joint and consistent estimation of both robot and anchor states. Furthermore, observability consistency is ensured by leveraging the invariant error properties of the Lie group. We analytically prove that the CVIRO algorithm naturally maintains the system's correct unobservable subspace, thereby preserving estimation consistency. Extensive simulations and experiments demonstrate that CVIRO achieves superior localization accuracy and consistency compared to existing methods.
☆ A Multimodal Neural Network for Recognizing Subjective Self-Disclosure Towards Social Robots IROS
Subjective self-disclosure is an important feature of human social interaction. While much has been done in the social and behavioural literature to characterise the features and consequences of subjective self-disclosure, little work has been done thus far to develop computational systems that are able to accurately model it. Even less work has been done that attempts to model specifically how human interactants self-disclose with robotic partners. It is becoming more pressing as we require social robots to work in conjunction with and establish relationships with humans in various social settings. In this paper, our aim is to develop a custom multimodal attention network based on models from the emotion recognition literature, training this model on a large self-collected self-disclosure video corpus, and constructing a new loss function, the scale preserving cross entropy loss, that improves upon both classification and regression versions of this problem. Our results show that the best performing model, trained with our novel loss function, achieves an F1 score of 0.83, an improvement of 0.48 from the best baseline model. This result makes significant headway in the aim of allowing social robots to pick up on an interaction partner's self-disclosures, an ability that will be essential in social robots with social cognition.
comment: Accepted at 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
☆ The SET Perceptual Factors Framework: Towards Assured Perception for Autonomous Systems
Future autonomous systems promise significant societal benefits, yet their deployment raises concerns about safety and trustworthiness. A key concern is assuring the reliability of robot perception, as perception seeds safe decision-making. Failures in perception are often due to complex yet common environmental factors and can lead to accidents that erode public trust. To address this concern, we introduce the SET (Self, Environment, and Target) Perceptual Factors Framework. We designed the framework to systematically analyze how factors such as weather, occlusion, or sensor limitations negatively impact perception. To achieve this, the framework employs SET State Trees to categorize where such factors originate and SET Factor Trees to model how these sources and factors impact perceptual tasks like object detection or pose estimation. Next, we develop Perceptual Factor Models using both trees to quantify the uncertainty for a given task. Our framework aims to promote rigorous safety assurances and cultivate greater public understanding and trust in autonomous systems by offering a transparent and standardized method for identifying, modeling, and communicating perceptual risks.
comment: 4 pages, 4 figures, accepted to the Workshop on Public Trust in Autonomous Systems at the 2025 IEEE International Conference on Robotics & Automation
☆ Learning Task Execution Hierarchies for Redundant Robots
Modern robotic systems, such as mobile manipulators, humanoids, and aerial robots with arms, often possess high redundancy, enabling them to perform multiple tasks simultaneously. Managing this redundancy is key to achieving reliable and flexible behavior. A widely used approach is the Stack of Tasks (SoT), which organizes control objectives by priority within a unified framework. However, traditional SoTs are manually designed by experts, limiting their adaptability and accessibility. This paper introduces a novel framework that automatically learns both the hierarchy and parameters of a SoT from user-defined objectives. By combining Reinforcement Learning and Genetic Programming, the system discovers task priorities and control strategies without manual intervention. A cost function based on intuitive metrics such as precision, safety, and execution time guides the learning process. We validate our method through simulations and experiments on the mobile-YuMi platform, a dual-arm mobile manipulator with high redundancy. Results show that the learned SoTs enable the robot to dynamically adapt to changing environments and inputs, balancing competing objectives while maintaining robust task execution. This approach provides a general and user-friendly solution for redundancy management in complex robots, advancing human-centered robot programming and reducing the need for expert design.
☆ Scaling Up without Fading Out: Goal-Aware Sparse GNN for RL-based Generalized Planning
Generalized planning using deep reinforcement learning (RL) combined with graph neural networks (GNNs) has shown promising results in various symbolic planning domains described by PDDL. However, existing approaches typically represent planning states as fully connected graphs, leading to a combinatorial explosion in edge information and substantial sparsity as problem scales grow, especially evident in large grid-based environments. This dense representation results in diluted node-level information, exponentially increases memory requirements, and ultimately makes learning infeasible for larger-scale problems. To address these challenges, we propose a sparse, goal-aware GNN representation that selectively encodes relevant local relationships and explicitly integrates spatial features related to the goal. We validate our approach by designing novel drone mission scenarios based on PDDL within a grid world, effectively simulating realistic mission execution environments. Our experimental results demonstrate that our method scales effectively to larger grid sizes previously infeasible with dense graph representations and substantially improves policy generalization and success rates. Our findings provide a practical foundation for addressing realistic, large-scale generalized planning tasks.
comment: 16 pages, 10 figures
☆ Biasing Frontier-Based Exploration with Saliency Areas
Autonomous exploration is a widely studied problem where a robot incrementally builds a map of a previously unknown environment. The robot selects the next locations to reach using an exploration strategy. To do so, the robot has to balance between competing objectives, like exploring the entirety of the environment, while being as fast as possible. Most exploration strategies try to maximise the explored area to speed up exploration; however, they do not consider that parts of the environment are more important than others, as they lead to the discovery of large unknown areas. We propose a method that identifies \emph{saliency areas} as those areas that are of high interest for exploration, by using saliency maps obtained from a neural network that, given the current map, implements a termination criterion to estimate whether the environment can be considered fully-explored or not. We use saliency areas to bias some widely used exploration strategies, showing, with an extensive experimental campaign, that this knowledge can significantly influence the behavior of the robot during exploration.
comment: Accepted at the European Confrence on Mobile Robots (ECMR) 2025
☆ An Open-Source User-Friendly Interface for Simulating Magnetic Soft Robots using Simulation Open Framework Architecture (SOFA)
Soft robots, particularly magnetic soft robots, require specialized simulation tools to accurately model their deformation under external magnetic fields. However, existing platforms often lack dedicated support for magnetic materials, making them difficult to use for researchers at different expertise levels. This work introduces an open-source, user-friendly simulation interface using the Simulation Open Framework Architecture (SOFA), specifically designed to model magnetic soft robots. The tool enables users to define material properties, apply magnetic fields, and observe resulting deformations in real time. By integrating intuitive controls and stress analysis capabilities, it aims to bridge the gap between theoretical modeling and practical design. Four benchmark models - a beam, three- and four-finger grippers, and a butterfly - demonstrate its functionality. The software's ease of use makes it accessible to both beginners and advanced researchers. Future improvements will refine accuracy through experimental validation and comparison with industry-standard finite element solvers, ensuring realistic and predictive simulations of magnetic soft robots.
☆ Synthesis of Deep Neural Networks with Safe Robust Adaptive Control for Reliable Operation of Wheeled Mobile Robots
Deep neural networks (DNNs) can enable precise control while maintaining low computational costs by circumventing the need for dynamic modeling. However, the deployment of such black-box approaches remains challenging for heavy-duty wheeled mobile robots (WMRs), which are subject to strict international standards and prone to faults and disturbances. We designed a hierarchical control policy for heavy-duty WMRs, monitored by two safety layers with differing levels of authority. To this end, a DNN policy was trained and deployed as the primary control strategy, providing high-precision performance under nominal operating conditions. When external disturbances arise and reach a level of intensity such that the system performance falls below a predefined threshold, a low-level safety layer intervenes by deactivating the primary control policy and activating a model-free robust adaptive control (RAC) policy. This transition enables the system to continue operating while ensuring stability by effectively managing the inherent trade-off between system robustness and responsiveness. Regardless of the control policy in use, a high-level safety layer continuously monitors system performance during operation. It initiates a shutdown only when disturbances become sufficiently severe such that compensation is no longer viable and continued operation would jeopardize the system or its environment. The proposed synthesis of DNN and RAC policy guarantees uniform exponential stability of the entire WMR system while adhering to safety standards to some extent. The effectiveness of the proposed approach was further validated through real-time experiments using a 6,000 kg WMR.
☆ Why Report Failed Interactions With Robots?! Towards Vignette-based Interaction Quality
Although the quality of human-robot interactions has improved with the advent of LLMs, there are still various factors that cause systems to be sub-optimal when compared to human-human interactions. The nature and criticality of failures are often dependent on the context of the interaction and so cannot be generalized across the wide range of scenarios and experiments which have been implemented in HRI research. In this work we propose the use of a technique overlooked in the field of HRI, ethnographic vignettes, to clearly highlight these failures, particularly those that are rarely documented. We describe the methodology behind the process of writing vignettes and create our own based on our personal experiences with failures in HRI systems. We emphasize the strength of vignettes as the ability to communicate failures from a multi-disciplinary perspective, promote transparency about the capabilities of robots, and document unexpected behaviours which would otherwise be omitted from research reports. We encourage the use of vignettes to augment existing interaction evaluation methods.
comment: Accepted at the workshop on Real-World HRI in Public and Private Spaces: Successes, Failures, and Lessons Learned (PubRob-Fails), held at the IEEE RO-MAN Conference, 2025. 6 pages
☆ SpaRC-AD: A Baseline for Radar-Camera Fusion in End-to-End Autonomous Driving
End-to-end autonomous driving systems promise stronger performance through unified optimization of perception, motion forecasting, and planning. However, vision-based approaches face fundamental limitations in adverse weather conditions, partial occlusions, and precise velocity estimation - critical challenges in safety-sensitive scenarios where accurate motion understanding and long-horizon trajectory prediction are essential for collision avoidance. To address these limitations, we propose SpaRC-AD, a query-based end-to-end camera-radar fusion framework for planning-oriented autonomous driving. Through sparse 3D feature alignment, and doppler-based velocity estimation, we achieve strong 3D scene representations for refinement of agent anchors, map polylines and motion modelling. Our method achieves strong improvements over the state-of-the-art vision-only baselines across multiple autonomous driving tasks, including 3D detection (+4.8% mAP), multi-object tracking (+8.3% AMOTA), online mapping (+1.8% mAP), motion prediction (-4.0% mADE), and trajectory planning (-0.1m L2 and -9% TPC). We achieve both spatial coherence and temporal consistency on multiple challenging benchmarks, including real-world open-loop nuScenes, long-horizon T-nuScenes, and closed-loop simulator Bench2Drive. We show the effectiveness of radar-based fusion in safety-critical scenarios where accurate motion understanding and long-horizon trajectory prediction are essential for collision avoidance. The source code of all experiments is available at https://phi-wol.github.io/sparcad/
comment: 8 pages, 4 figures, 5 tables
☆ MLM: Learning Multi-task Loco-Manipulation Whole-Body Control for Quadruped Robot with Arm
Whole-body loco-manipulation for quadruped robots with arm remains a challenging problem, particularly in achieving multi-task control. To address this, we propose MLM, a reinforcement learning framework driven by both real-world and simulation data. It enables a six-DoF robotic arm--equipped quadruped robot to perform whole-body loco-manipulation for multiple tasks autonomously or under human teleoperation. To address the problem of balancing multiple tasks during the learning of loco-manipulation, we introduce a trajectory library with an adaptive, curriculum-based sampling mechanism. This approach allows the policy to efficiently leverage real-world collected trajectories for learning multi-task loco-manipulation. To address deployment scenarios with only historical observations and to enhance the performance of policy execution across tasks with different spatial ranges, we propose a Trajectory-Velocity Prediction policy network. It predicts unobservable future trajectories and velocities. By leveraging extensive simulation data and curriculum-based rewards, our controller achieves whole-body behaviors in simulation and zero-shot transfer to real-world deployment. Ablation studies in simulation verify the necessity and effectiveness of our approach, while real-world experiments on the Go2 robot with an Airbot robotic arm demonstrate the policy's good performance in multi-task execution.
☆ KDPE: A Kernel Density Estimation Strategy for Diffusion Policy Trajectory Selection
Learning robot policies that capture multimodality in the training data has been a long-standing open challenge for behavior cloning. Recent approaches tackle the problem by modeling the conditional action distribution with generative models. One of these approaches is Diffusion Policy, which relies on a diffusion model to denoise random points into robot action trajectories. While achieving state-of-the-art performance, it has two main drawbacks that may lead the robot out of the data distribution during policy execution. First, the stochasticity of the denoising process can highly impact on the quality of generated trajectory of actions. Second, being a supervised learning approach, it can learn data outliers from the dataset used for training. Recent work focuses on mitigating these limitations by combining Diffusion Policy either with large-scale training or with classical behavior cloning algorithms. Instead, we propose KDPE, a Kernel Density Estimation-based strategy that filters out potentially harmful trajectories output of Diffusion Policy while keeping a low test-time computational overhead. For Kernel Density Estimation, we propose a manifold-aware kernel to model a probability density function for actions composed of end-effector Cartesian position, orientation, and gripper state. KDPE overall achieves better performance than Diffusion Policy on simulated single-arm tasks and real robot experiments. Additional material and code are available on our project page https://hsp-iit.github.io/KDPE/.
comment: 9th Conference on Robot Learning (CoRL 2025), Seoul, Korea
☆ Enabling Generic Robot Skill Implementation Using Object Oriented Programming
Developing robotic algorithms and integrating a robotic subsystem into a larger system can be a difficult task. Particularly in small and medium-sized enterprises (SMEs) where robotics expertise is lacking, implementing, maintaining and developing robotic systems can be a challenge. As a result, many companies rely on external expertise through system integrators, which, in some cases, can lead to vendor lock-in and external dependency. In the academic research on intelligent manufacturing systems, robots play a critical role in the design of robust autonomous systems. Similar challenges are faced by researchers who want to use robotic systems as a component in a larger smart system, without having to deal with the complexity and vastness of the robot interfaces in detail. In this paper, we propose a software framework that reduces the effort required to deploy a working robotic system. The focus is solely on providing a concept for simplifying the different interfaces of a modern robot system and using an abstraction layer for different manufacturers and models. The Python programming language is used to implement a prototype of the concept. The target system is a bin-picking cell containing a Yaskawa Motoman GP4.
comment: 34th International Conference on Robotics in Alpe-Adria-Danube Region (RAAD 2025)
☆ MASH: Cooperative-Heterogeneous Multi-Agent Reinforcement Learning for Single Humanoid Robot Locomotion
This paper proposes a novel method to enhance locomotion for a single humanoid robot through cooperative-heterogeneous multi-agent deep reinforcement learning (MARL). While most existing methods typically employ single-agent reinforcement learning algorithms for a single humanoid robot or MARL algorithms for multi-robot system tasks, we propose a distinct paradigm: applying cooperative-heterogeneous MARL to optimize locomotion for a single humanoid robot. The proposed method, multi-agent reinforcement learning for single humanoid locomotion (MASH), treats each limb (legs and arms) as an independent agent that explores the robot's action space while sharing a global critic for cooperative learning. Experiments demonstrate that MASH accelerates training convergence and improves whole-body cooperation ability, outperforming conventional single-agent reinforcement learning methods. This work advances the integration of MARL into single-humanoid-robot control, offering new insights into efficient locomotion strategies.
☆ CorrectNav: Self-Correction Flywheel Empowers Vision-Language-Action Navigation Model
Existing vision-and-language navigation models often deviate from the correct trajectory when executing instructions. However, these models lack effective error correction capability, hindering their recovery from errors. To address this challenge, we propose Self-correction Flywheel, a novel post-training paradigm. Instead of considering the model's error trajectories on the training set as a drawback, our paradigm emphasizes their significance as a valuable data source. We have developed a method to identify deviations in these error trajectories and devised innovative techniques to automatically generate self-correction data for perception and action. These self-correction data serve as fuel to power the model's continued training. The brilliance of our paradigm is revealed when we re-evaluate the model on the training set, uncovering new error trajectories. At this time, the self-correction flywheel begins to spin. Through multiple flywheel iterations, we progressively enhance our monocular RGB-based VLA navigation model CorrectNav. Experiments on R2R-CE and RxR-CE benchmarks show CorrectNav achieves new state-of-the-art success rates of 65.1% and 69.3%, surpassing prior best VLA navigation models by 8.2% and 16.4%. Real robot tests in various indoor and outdoor environments demonstrate \method's superior capability of error correction, dynamic obstacle avoidance, and long instruction following.
☆ Probabilistic Latency Analysis of the Data Distribution Service in ROS 2
Robot Operating System 2 (ROS 2) is now the de facto standard for robotic communication, pairing UDP transport with the Data Distribution Service (DDS) publish-subscribe middleware. DDS achieves reliability through periodic heartbeats that solicit acknowledgments for missing samples and trigger selective retransmissions. In lossy wireless networks, the tight coupling among heartbeat period, IP fragmentation, and retransmission interval obscures end to end latency behavior and leaves practitioners with little guidance on how to tune these parameters. To address these challenges, we propose a probabilistic latency analysis (PLA) that analytically models the reliable transmission process of ROS 2 DDS communication using a discrete state approach. By systematically analyzing both middleware level and transport level events, PLA computes the steady state probability distribution of unacknowledged messages and the retransmission latency. We validate our PLA across 270 scenarios, exploring variations in packet delivery ratios, message sizes, and both publishing and retransmission intervals, demonstrating a close alignment between analytical predictions and experimental results. Our findings establish a theoretical basis to systematically optimize reliability, latency, and performance in wireless industrial robotics.
comment: 12 pages, 5 figures
☆ Large Model Empowered Embodied AI: A Survey on Decision-Making and Embodied Learning
Embodied AI aims to develop intelligent systems with physical forms capable of perceiving, decision-making, acting, and learning in real-world environments, providing a promising way to Artificial General Intelligence (AGI). Despite decades of explorations, it remains challenging for embodied agents to achieve human-level intelligence for general-purpose tasks in open dynamic environments. Recent breakthroughs in large models have revolutionized embodied AI by enhancing perception, interaction, planning and learning. In this article, we provide a comprehensive survey on large model empowered embodied AI, focusing on autonomous decision-making and embodied learning. We investigate both hierarchical and end-to-end decision-making paradigms, detailing how large models enhance high-level planning, low-level execution, and feedback for hierarchical decision-making, and how large models enhance Vision-Language-Action (VLA) models for end-to-end decision making. For embodied learning, we introduce mainstream learning methodologies, elaborating on how large models enhance imitation learning and reinforcement learning in-depth. For the first time, we integrate world models into the survey of embodied AI, presenting their design methods and critical roles in enhancing decision-making and learning. Though solid advances have been achieved, challenges still exist, which are discussed at the end of this survey, potentially as the further research directions.
☆ Super LiDAR Reflectance for Robotic Perception
Conventionally, human intuition often defines vision as a modality of passive optical sensing, while active optical sensing is typically regarded as measuring rather than the default modality of vision. However, the situation now changes: sensor technologies and data-driven paradigms empower active optical sensing to redefine the boundaries of vision, ushering in a new era of active vision. Light Detection and Ranging (LiDAR) sensors capture reflectance from object surfaces, which remains invariant under varying illumination conditions, showcasing significant potential in robotic perception tasks such as detection, recognition, segmentation, and Simultaneous Localization and Mapping (SLAM). These applications often rely on dense sensing capabilities, typically achieved by high-resolution, expensive LiDAR sensors. A key challenge with low-cost LiDARs lies in the sparsity of scan data, which limits their broader application. To address this limitation, this work introduces an innovative framework for generating dense LiDAR reflectance images from sparse data, leveraging the unique attributes of non-repeating scanning LiDAR (NRS-LiDAR). We tackle critical challenges, including reflectance calibration and the transition from static to dynamic scene domains, facilitating the reconstruction of dense reflectance images in real-world settings. The key contributions of this work include a comprehensive dataset for LiDAR reflectance image densification, a densification network tailored for NRS-LiDAR, and diverse applications such as loop closure and traffic lane detection using the generated dense reflectance images.
☆ A Semantic-Aware Framework for Safe and Intent-Integrative Assistance in Upper-Limb Exoskeletons
Upper-limb exoskeletons are primarily designed to provide assistive support by accurately interpreting and responding to human intentions. In home-care scenarios, exoskeletons are expected to adapt their assistive configurations based on the semantic information of the task, adjusting appropriately in accordance with the nature of the object being manipulated. However, existing solutions often lack the ability to understand task semantics or collaboratively plan actions with the user, limiting their generalizability. To address this challenge, this paper introduces a semantic-aware framework that integrates large language models into the task planning framework, enabling the delivery of safe and intent-integrative assistance. The proposed approach begins with the exoskeleton operating in transparent mode to capture the wearer's intent during object grasping. Once semantic information is extracted from the task description, the system automatically configures appropriate assistive parameters. In addition, a diffusion-based anomaly detector is used to continuously monitor the state of human-robot interaction and trigger real-time replanning in response to detected anomalies. During task execution, online trajectory refinement and impedance control are used to ensure safety and regulate human-robot interaction. Experimental results demonstrate that the proposed method effectively aligns with the wearer's cognition, adapts to semantically varying tasks, and responds reliably to anomalies.
☆ Few-shot Vision-based Human Activity Recognition with MLLM-based Visual Reinforcement Learning
Reinforcement learning in large reasoning models enables learning from feedback on their outputs, making it particularly valuable in scenarios where fine-tuning data is limited. However, its application in multi-modal human activity recognition (HAR) domains remains largely underexplored. Our work extends reinforcement learning to the human activity recognition domain with multimodal large language models. By incorporating visual reinforcement learning in the training process, the model's generalization ability on few-shot recognition can be greatly improved. Additionally, visual reinforcement learning can enhance the model's reasoning ability and enable explainable analysis in the inference stage. We name our few-shot human activity recognition method with visual reinforcement learning FAVOR. Specifically, our approach first utilizes a multimodal large language model (MLLM) to generate multiple candidate responses for the human activity image, each containing reasoning traces and final answers. These responses are then evaluated using reward functions, and the MLLM model is subsequently optimized using the Group Relative Policy Optimization (GRPO) algorithm. In this way, the MLLM model can be adapted to human activity recognition with only a few samples. Extensive experiments on four human activity recognition datasets and five different settings demonstrate the superiority of the proposed method.
☆ BEASST: Behavioral Entropic Gradient based Adaptive Source Seeking for Mobile Robots
This paper presents BEASST (Behavioral Entropic Gradient-based Adaptive Source Seeking for Mobile Robots), a novel framework for robotic source seeking in complex, unknown environments. Our approach enables mobile robots to efficiently balance exploration and exploitation by modeling normalized signal strength as a surrogate probability of source location. Building on Behavioral Entropy(BE) with Prelec's probability weighting function, we define an objective function that adapts robot behavior from risk-averse to risk-seeking based on signal reliability and mission urgency. The framework provides theoretical convergence guarantees under unimodal signal assumptions and practical stability under bounded disturbances. Experimental validation across DARPA SubT and multi-room scenarios demonstrates that BEASST consistently outperforms state-of-the-art methods, achieving 15% reduction in path length and 20% faster source localization through intelligent uncertainty-driven navigation that dynamically transitions between aggressive pursuit and cautious exploration.
☆ ReconVLA: Reconstructive Vision-Language-Action Model as Effective Robot Perceiver
Recent advances in Vision-Language-Action (VLA) models have enabled robotic agents to integrate multimodal understanding with action execution. However, our empirical analysis reveals that current VLAs struggle to allocate visual attention to target regions. Instead, visual attention is always dispersed. To guide the visual attention grounding on the correct target, we propose ReconVLA, a reconstructive VLA model with an implicit grounding paradigm. Conditioned on the model's visual outputs, a diffusion transformer aims to reconstruct the gaze region of the image, which corresponds to the target manipulated objects. This process prompts the VLA model to learn fine-grained representations and accurately allocate visual attention, thus effectively leveraging task-specific visual information and conducting precise manipulation. Moreover, we curate a large-scale pretraining dataset comprising over 100k trajectories and 2 million data samples from open-source robotic datasets, further boosting the model's generalization in visual reconstruction. Extensive experiments in simulation and the real world demonstrate the superiority of our implicit grounding method, showcasing its capabilities of precise manipulation and generalization. Our project page is https://zionchow.github.io/ReconVLA/.
☆ Hybrid Data-Driven Predictive Control for Robust and Reactive Exoskeleton Locomotion Synthesis
Robust bipedal locomotion in exoskeletons requires the ability to dynamically react to changes in the environment in real time. This paper introduces the hybrid data-driven predictive control (HDDPC) framework, an extension of the data-enabled predictive control, that addresses these challenges by simultaneously planning foot contact schedules and continuous domain trajectories. The proposed framework utilizes a Hankel matrix-based representation to model system dynamics, incorporating step-to-step (S2S) transitions to enhance adaptability in dynamic environments. By integrating contact scheduling with trajectory planning, the framework offers an efficient, unified solution for locomotion motion synthesis that enables robust and reactive walking through online replanning. We validate the approach on the Atalante exoskeleton, demonstrating improved robustness and adaptability.
comment: 8 pages; 8 figures
☆ Robot Policy Evaluation for Sim-to-Real Transfer: A Benchmarking Perspective RSS
Current vision-based robotics simulation benchmarks have significantly advanced robotic manipulation research. However, robotics is fundamentally a real-world problem, and evaluation for real-world applications has lagged behind in evaluating generalist policies. In this paper, we discuss challenges and desiderata in designing benchmarks for generalist robotic manipulation policies for the goal of sim-to-real policy transfer. We propose 1) utilizing high visual-fidelity simulation for improved sim-to-real transfer, 2) evaluating policies by systematically increasing task complexity and scenario perturbation to assess robustness, and 3) quantifying performance alignment between real-world performance and its simulation counterparts.
comment: 2025 Robot: Science and Systems (RSS) Workshop on Robot Evaluation for the Real World
☆ Utilizing Vision-Language Models as Action Models for Intent Recognition and Assistance
Human-robot collaboration requires robots to quickly infer user intent, provide transparent reasoning, and assist users in achieving their goals. Our recent work introduced GUIDER, our framework for inferring navigation and manipulation intents. We propose augmenting GUIDER with a vision-language model (VLM) and a text-only language model (LLM) to form a semantic prior that filters objects and locations based on the mission prompt. A vision pipeline (YOLO for object detection and the Segment Anything Model for instance segmentation) feeds candidate object crops into the VLM, which scores their relevance given an operator prompt; in addition, the list of detected object labels is ranked by a text-only LLM. These scores weight the existing navigation and manipulation layers of GUIDER, selecting context-relevant targets while suppressing unrelated objects. Once the combined belief exceeds a threshold, autonomy changes occur, enabling the robot to navigate to the desired area and retrieve the desired object, while adapting to any changes in the operator's intent. Future work will evaluate the system on Isaac Sim using a Franka Emika arm on a Ridgeback base, with a focus on real-time assistance.
comment: Accepted at Human-Centered Robot Autonomy for Human-Robot Teams (HuRoboT) at IEEE RO-MAN 2025, Eindhoven, the Netherlands
☆ GenFlowRL: Shaping Rewards with Generative Object-Centric Flow in Visual Reinforcement Learning ICCV 2025
Recent advances have shown that video generation models can enhance robot learning by deriving effective robot actions through inverse dynamics. However, these methods heavily depend on the quality of generated data and struggle with fine-grained manipulation due to the lack of environment feedback. While video-based reinforcement learning improves policy robustness, it remains constrained by the uncertainty of video generation and the challenges of collecting large-scale robot datasets for training diffusion models. To address these limitations, we propose GenFlowRL, which derives shaped rewards from generated flow trained from diverse cross-embodiment datasets. This enables learning generalizable and robust policies from diverse demonstrations using low-dimensional, object-centric features. Experiments on 10 manipulation tasks, both in simulation and real-world cross-embodiment evaluations, demonstrate that GenFlowRL effectively leverages manipulation features extracted from generated object-centric flow, consistently achieving superior performance across diverse and challenging scenarios. Our Project Page: https://colinyu1.github.io/genflowrl
comment: Published at ICCV 2025
☆ GhostObjects: Instructing Robots by Manipulating Spatially Aligned Virtual Twins in Augmented Reality
Robots are increasingly capable of autonomous operations, yet human interaction remains essential for issuing personalized instructions. Instead of directly controlling robots through Programming by Demonstration (PbD) or teleoperation, we propose giving instructions by interacting with GhostObjects-world-aligned, life-size virtual twins of physical objects-in augmented reality (AR). By direct manipulation of GhostObjects, users can precisely specify physical goals and spatial parameters, with features including real-world lasso selection of multiple objects and snapping back to default positions, enabling tasks beyond simple pick-and-place.
☆ 3D FlowMatch Actor: Unified 3D Policy for Single- and Dual-Arm Manipulation
We present 3D FlowMatch Actor (3DFA), a 3D policy architecture for robot manipulation that combines flow matching for trajectory prediction with 3D pretrained visual scene representations for learning from demonstration. 3DFA leverages 3D relative attention between action and visual tokens during action denoising, building on prior work in 3D diffusion-based single-arm policy learning. Through a combination of flow matching and targeted system-level and architectural optimizations, 3DFA achieves over 30x faster training and inference than previous 3D diffusion-based policies, without sacrificing performance. On the bimanual PerAct2 benchmark, it establishes a new state of the art, outperforming the next-best method by an absolute margin of 41.4%. In extensive real-world evaluations, it surpasses strong baselines with up to 1000x more parameters and significantly more pretraining. In unimanual settings, it sets a new state of the art on 74 RLBench tasks by directly predicting dense end-effector trajectories, eliminating the need for motion planning. Comprehensive ablation studies underscore the importance of our design choices for both policy effectiveness and efficiency.
☆ Robust Online Calibration for UWB-Aided Visual-Inertial Navigation with Bias Correction
This paper presents a novel robust online calibration framework for Ultra-Wideband (UWB) anchors in UWB-aided Visual-Inertial Navigation Systems (VINS). Accurate anchor positioning, a process known as calibration, is crucial for integrating UWB ranging measurements into state estimation. While several prior works have demonstrated satisfactory results by using robot-aided systems to autonomously calibrate UWB systems, there are still some limitations: 1) these approaches assume accurate robot localization during the initialization step, ignoring localization errors that can compromise calibration robustness, and 2) the calibration results are highly sensitive to the initial guess of the UWB anchors' positions, reducing the practical applicability of these methods in real-world scenarios. Our approach addresses these challenges by explicitly incorporating the impact of robot localization uncertainties into the calibration process, ensuring robust initialization. To further enhance the robustness of the calibration results against initialization errors, we propose a tightly-coupled Schmidt Kalman Filter (SKF)-based online refinement method, making the system suitable for practical applications. Simulations and real-world experiments validate the improved accuracy and robustness of our approach.
☆ Developing and Validating a High-Throughput Robotic System for the Accelerated Development of Porous Membranes
The development of porous polymeric membranes remains a labor-intensive process, often requiring extensive trial and error to identify optimal fabrication parameters. In this study, we present a fully automated platform for membrane fabrication and characterization via nonsolvent-induced phase separation (NIPS). The system integrates automated solution preparation, blade casting, controlled immersion, and compression testing, allowing precise control over fabrication parameters such as polymer concentration and ambient humidity. The modular design allows parallel processing and reproducible handling of samples, reducing experimental time and increasing consistency. Compression testing is introduced as a sensitive mechanical characterization method for estimating membrane stiffness and as a proxy to infer porosity and intra-sample uniformity through automated analysis of stress-strain curves. As a proof of concept to demonstrate the effectiveness of the system, NIPS was carried out with polysulfone, the green solvent PolarClean, and water as the polymer, solvent, and nonsolvent, respectively. Experiments conducted with the automated system reproduced expected effects of polymer concentration and ambient humidity on membrane properties, namely increased stiffness and uniformity with increasing polymer concentration and humidity variations in pore morphology and mechanical response. The developed automated platform supports high-throughput experimentation and is well-suited for integration into self-driving laboratory workflows, offering a scalable and reproducible foundation for data-driven optimization of porous polymeric membranes through NIPS.
♻ ☆ Episodic Memory Verbalization using Hierarchical Representations of Life-Long Robot Experience
Verbalization of robot experience, i.e., summarization of and question answering about a robot's past, is a crucial ability for improving human-robot interaction. Previous works applied rule-based systems or fine-tuned deep models to verbalize short (several-minute-long) streams of episodic data, limiting generalization and transferability. In our work, we apply large pretrained models to tackle this task with zero or few examples, and specifically focus on verbalizing life-long experiences. For this, we derive a tree-like data structure from episodic memory (EM), with lower levels representing raw perception and proprioception data, and higher levels abstracting events to natural language concepts. Given such a hierarchical representation built from the experience stream, we apply a large language model as an agent to interactively search the EM given a user's query, dynamically expanding (initially collapsed) tree nodes to find the relevant information. The approach keeps computational costs low even when scaling to months of robot experience data. We evaluate our method on simulated household robot data, human egocentric videos, and real-world robot recordings, demonstrating its flexibility and scalability.
comment: Humanoids 2025. Code, data and demo videos at https://hierarchical-emv.github.io
♻ ☆ GraspClutter6D: A Large-scale Real-world Dataset for Robust Perception and Grasping in Cluttered Scenes
Robust grasping in cluttered environments remains an open challenge in robotics. While benchmark datasets have significantly advanced deep learning methods, they mainly focus on simplistic scenes with light occlusion and insufficient diversity, limiting their applicability to practical scenarios. We present GraspClutter6D, a large-scale real-world grasping dataset featuring: (1) 1,000 highly cluttered scenes with dense arrangements (14.1 objects/scene, 62.6\% occlusion), (2) comprehensive coverage across 200 objects in 75 environment configurations (bins, shelves, and tables) captured using four RGB-D cameras from multiple viewpoints, and (3) rich annotations including 736K 6D object poses and 9.3B feasible robotic grasps for 52K RGB-D images. We benchmark state-of-the-art segmentation, object pose estimation, and grasp detection methods to provide key insights into challenges in cluttered environments. Additionally, we validate the dataset's effectiveness as a training resource, demonstrating that grasping networks trained on GraspClutter6D significantly outperform those trained on existing datasets in both simulation and real-world experiments. The dataset, toolkit, and annotation tools are publicly available on our project website: https://sites.google.com/view/graspclutter6d.
comment: Accepted at IEEE Robotics and Automation Letters (RA-L). Project Websites: https://sites.google.com/view/graspclutter6d
♻ ☆ WeatherPrompt: Multi-modality Representation Learning for All-Weather Drone Visual Geo-Localization
Visual geo-localization for drones faces critical degradation under weather perturbations, \eg, rain and fog, where existing methods struggle with two inherent limitations: 1) Heavy reliance on limited weather categories that constrain generalization, and 2) Suboptimal disentanglement of entangled scene-weather features through pseudo weather categories. We present WeatherPrompt, a multi-modality learning paradigm that establishes weather-invariant representations through fusing the image embedding with the text context. Our framework introduces two key contributions: First, a Training-free Weather Reasoning mechanism that employs off-the-shelf large multi-modality models to synthesize multi-weather textual descriptions through human-like reasoning. It improves the scalability to unseen or complex weather, and could reflect different weather strength. Second, to better disentangle the scene and weather feature, we propose a multi-modality framework with the dynamic gating mechanism driven by the text embedding to adaptively reweight and fuse visual features across modalities. The framework is further optimized by the cross-modal objectives, including image-text contrastive learning and image-text matching, which maps the same scene with different weather conditions closer in the respresentation space. Extensive experiments validate that, under diverse weather conditions, our method achieves competitive recall rates compared to state-of-the-art drone geo-localization methods. Notably, it improves Recall@1 by +13.37\% under night conditions and by 18.69\% under fog and snow conditions.
♻ ☆ LaDi-WM: A Latent Diffusion-based World Model for Predictive Manipulation
Predictive manipulation has recently gained considerable attention in the Embodied AI community due to its potential to improve robot policy performance by leveraging predicted states. However, generating accurate future visual states of robot-object interactions from world models remains a well-known challenge, particularly in achieving high-quality pixel-level representations. To this end, we propose LaDi-WM, a world model that predicts the latent space of future states using diffusion modeling. Specifically, LaDi-WM leverages the well-established latent space aligned with pre-trained Visual Foundation Models (VFMs), which comprises both geometric features (DINO-based) and semantic features (CLIP-based). We find that predicting the evolution of the latent space is easier to learn and more generalizable than directly predicting pixel-level images. Building on LaDi-WM, we design a diffusion policy that iteratively refines output actions by incorporating forecasted states, thereby generating more consistent and accurate results. Extensive experiments on both synthetic and real-world benchmarks demonstrate that LaDi-WM significantly enhances policy performance by 27.9\% on the LIBERO-LONG benchmark and 20\% on the real-world scenario. Furthermore, our world model and policies achieve impressive generalizability in real-world experiments.
comment: CoRL 2025
♻ ☆ Motion Planning Diffusion: Learning and Adapting Robot Motion Planning with Diffusion Models
The performance of optimization-based robot motion planning algorithms is highly dependent on the initial solutions, commonly obtained by running a sampling-based planner to obtain a collision-free path. However, these methods can be slow in high-dimensional and complex scenes and produce non-smooth solutions. Given previously solved path-planning problems, it is highly desirable to learn their distribution and use it as a prior for new similar problems. Several works propose utilizing this prior to bootstrap the motion planning problem, either by sampling initial solutions from it, or using its distribution in a maximum-a-posterior formulation for trajectory optimization. In this work, we introduce Motion Planning Diffusion (MPD), an algorithm that learns trajectory distribution priors with diffusion models. These generative models have shown increasing success in encoding multimodal data and have desirable properties for gradient-based motion planning, such as cost guidance. Given a motion planning problem, we construct a cost function and sample from the posterior distribution using the learned prior combined with the cost function gradients during the denoising process. Instead of learning the prior on all trajectory waypoints, we propose learning a lower-dimensional representation of a trajectory using linear motion primitives, particularly B-spline curves. This parametrization guarantees that the generated trajectory is smooth, can be interpolated at higher frequencies, and needs fewer parameters than a dense waypoint representation. We demonstrate the results of our method ranging from simple 2D to more complex tasks using a 7-dof robot arm manipulator. In addition to learning from simulated data, we also use human demonstrations on a real-world pick-and-place task.
♻ ☆ Towards Embodied Agentic AI: Review and Classification of LLM- and VLM-Driven Robot Autonomy and Interaction
Foundation models, including large language models (LLMs) and vision-language models (VLMs), have recently enabled novel approaches to robot autonomy and human-robot interfaces. In parallel, vision-language-action models (VLAs) or large behavior models (LBMs) are increasing the dexterity and capabilities of robotic systems. This survey paper focuses on those works advancing towards agentic applications and architectures. This includes initial efforts exploring GPT-style interfaces to tooling, as well as more complex system where AI agents are coordinators, planners, perception actors, or generalist interfaces. Such agentic architectures allow robots to reason over natural language instructions, invoke APIs, plan task sequences, or assist in operations and diagnostics. In addition to peer-reviewed research, due to the fast-evolving nature of the field, we highlight and include community-driven projects, ROS packages, and industrial frameworks that show emerging trends. We propose a taxonomy for classifying model integration approaches and present a comparative analysis of the role that agents play in different solutions in today's literature.
♻ ☆ Robotic Ultrasound-Guided Femoral Artery Reconstruction of Anatomically-Representative Phantoms
Femoral artery access is essential for numerous clinical procedures, including diagnostic angiography, therapeutic catheterization, and emergency interventions. Despite its critical role, successful vascular access remains challenging due to anatomical variability, overlying adipose tissue, and the need for precise ultrasound (US) guidance. Needle placement errors can result in severe complications, thereby limiting the procedure to highly skilled clinicians operating in controlled hospital environments. While robotic systems have shown promise in addressing these challenges through autonomous scanning and vessel reconstruction, clinical translation remains limited due to reliance on simplified phantom models that fail to capture human anatomical complexity. In this work, we present a method for autonomous robotic US scanning of bifurcated femoral arteries, and validate it on five vascular phantoms created from real patient computed tomography (CT) data. Additionally, we introduce a video-based deep learning US segmentation network tailored for vascular imaging, enabling improved 3D arterial reconstruction. The proposed network achieves a Dice score of 89.21% and an Intersection over Union of 80.54% on a new vascular dataset. The reconstructed artery centerline is evaluated against ground truth CT data, showing an average L2 error of 0.91+/-0.70 mm, with an average Hausdorff distance of 4.36+/-1.11mm. This study is the first to validate an autonomous robotic system for US scanning of the femoral artery on a diverse set of patient-specific phantoms, introducing a more advanced framework for evaluating robotic performance in vascular imaging and intervention.
♻ ☆ TAR: Teacher-Aligned Representations via Contrastive Learning for Quadrupedal Locomotion IROS
Quadrupedal locomotion via Reinforcement Learning (RL) is commonly addressed using the teacher-student paradigm, where a privileged teacher guides a proprioceptive student policy. However, key challenges such as representation misalignment between privileged teacher and proprioceptive-only student, covariate shift due to behavioral cloning, and lack of deployable adaptation; lead to poor generalization in real-world scenarios. We propose Teacher-Aligned Representations via Contrastive Learning (TAR), a framework that leverages privileged information with self-supervised contrastive learning to bridge this gap. By aligning representations to a privileged teacher in simulation via contrastive objectives, our student policy learns structured latent spaces and exhibits robust generalization to Out-of-Distribution (OOD) scenarios, surpassing the fully privileged "Teacher". Results showed accelerated training by 2x compared to state-of-the-art baselines to achieve peak performance. OOD scenarios showed better generalization by 40% on average compared to existing methods. Moreover, TAR transitions seamlessly into learning during deployment without requiring privileged states, setting a new benchmark in sample-efficient, adaptive locomotion and enabling continual fine-tuning in real-world scenarios. Open-source code and videos are available at https://amrmousa.com/TARLoco/.
comment: This work has been accepted for publication at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ UniOcc: A Unified Benchmark for Occupancy Forecasting and Prediction in Autonomous Driving ICCV 2025
We introduce UniOcc, a comprehensive, unified benchmark and toolkit for occupancy forecasting (i.e., predicting future occupancies based on historical information) and occupancy prediction (i.e., predicting current-frame occupancy from camera images. UniOcc unifies the data from multiple real-world datasets (i.e., nuScenes, Waymo) and high-fidelity driving simulators (i.e., CARLA, OpenCOOD), providing 2D/3D occupancy labels and annotating innovative per-voxel flows. Unlike existing studies that rely on suboptimal pseudo labels for evaluation, UniOcc incorporates novel evaluation metrics that do not depend on ground-truth labels, enabling robust assessment on additional aspects of occupancy quality. Through extensive experiments on state-of-the-art models, we demonstrate that large-scale, diverse training data and explicit flow information significantly enhance occupancy prediction and forecasting performance. Our data and code are available at https://uniocc.github.io/.
comment: IEEE/CVF International Conference on Computer Vision (ICCV 2025); Project website: https://uniocc.github.io/
♻ ☆ RobustDexGrasp: Robust Dexterous Grasping of General Objects
The ability to robustly grasp a variety of objects is essential for dexterous robots. In this paper, we present a framework for zero-shot dynamic dexterous grasping using single-view visual inputs, designed to be resilient to various disturbances. Our approach utilizes a hand-centric object shape representation based on dynamic distance vectors between finger joints and object surfaces. This representation captures the local shape around potential contact regions rather than focusing on detailed global object geometry, thereby enhancing generalization to shape variations and uncertainties. To address perception limitations, we integrate a privileged teacher policy with a mixed curriculum learning approach, allowing the student policy to effectively distill grasping capabilities and explore for adaptation to disturbances. Trained in simulation, our method achieves success rates of 97.0% across 247,786 simulated objects and 94.6% across 512 real objects, demonstrating remarkable generalization. Quantitative and qualitative results validate the robustness of our policy against various disturbances.
comment: Camera ready for CoRL2025. Project Page: https://zdchan.github.io/Robust_DexGrasp/
♻ ☆ Advancing MAPF towards the Real World: A Scalable Multi-Agent Realistic Testbed (SMART)
We present Scalable Multi-Agent Realistic Testbed (SMART), a realistic and efficient software tool for evaluating Multi-Agent Path Finding (MAPF) algorithms. MAPF focuses on planning collision-free paths for a group of agents. While state-ofthe-art MAPF algorithms can plan paths for hundreds of robots in seconds, they often rely on simplified robot models, making their real-world performance unclear. Researchers typically lack access to hundreds of physical robots in laboratory settings to evaluate the algorithms. Meanwhile, industrial professionals who lack expertise in MAPF require an easy-to-use simulator to efficiently test and understand the performance of MAPF algorithms in their specific settings. SMART fills this gap with several advantages: (1) SMART uses physics-engine-based simulators to create realistic simulation environments, accounting for complex real-world factors such as robot kinodynamics and execution uncertainties, (2) SMART uses an execution monitor framework based on the Action Dependency Graph, facilitating seamless integration with various MAPF algorithms and robot models, and (3) SMART scales to thousands of robots. The code is publicly available at https://github.com/smart-mapf/smart.
♻ ☆ Split Covariance Intersection Filter Based Visual Localization With Accurate AprilTag Map For Warehouse Robot Navigation
Accurate and efficient localization with conveniently-established map is the fundamental requirement for mobile robot operation in warehouse environments. An accurate AprilTag map can be conveniently established with the help of LiDAR-based SLAM. It is true that a LiDAR-based system is usually not commercially competitive in contrast with a vision-based system, yet fortunately for warehouse applications, only a single LiDAR-based SLAM system is needed to establish an accurate AprilTag map, whereas a large amount of visual localization systems can share this established AprilTag map for their own operations. Therefore, the cost of a LiDAR-based SLAM system is actually shared by the large amount of visual localization systems, and turns to be acceptable and even negligible for practical warehouse applications. Once an accurate AprilTag map is available, visual localization is realized as recursive estimation that fuses AprilTag measurements (i.e. AprilTag detection results) and robot motion data. AprilTag measurements may be nonlinear partial measurements; this can be handled by the well-known extended Kalman filter (EKF) in the spirit of local linearization. AprilTag measurements tend to have temporal correlation as well; however, this cannot be reasonably handled by the EKF. The split covariance intersection filter (Split CIF) is adopted to handle temporal correlation among AprilTag measurements. The Split CIF (in the spirit of local linearization) can also handle AprilTag nonlinear partial measurements. The Split CIF based visual localization system incorporates a measurement adaptive mechanism to handle outliers in AprilTag measurements and adopts a dynamic initialization mechanism to address the kidnapping problem. A comparative study in real warehouse environments demonstrates the potential and advantage of the Split CIF based visual localization solution.
♻ ☆ Optimizing Force Signals from Human Demonstrations of In-Contact Motions
For non-robot-programming experts, kinesthetic guiding can be an intuitive input method, as robot programming of in-contact tasks is becoming more prominent. However, imprecise and noisy input signals from human demonstrations pose problems when reproducing motions directly or using the signal as input for machine learning methods. This paper explores optimizing force signals to correspond better to the human intention of the demonstrated signal. We compare different signal filtering methods and propose a peak detection method for dealing with first-contact deviations in the signal. The evaluation of these methods considers a specialized error criterion between the input and the human-intended signal. In addition, we analyze the critical parameters' influence on the filtering methods. The quality for an individual motion could be increased by up to \SI{20}{\percent} concerning the error criterion. The proposed contribution can improve the usability of robot programming and the interaction between humans and robots.
comment: This is a preprint of a chapter the following work (and accepted for publication): Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2024. The final authenticated version is will be linked here: http://dx.doi.org/[tba]
♻ ☆ Estimation of Payload Inertial Parameters from Human Demonstrations by Hand Guiding
As the availability of cobots increases, it is essential to address the needs of users with little to no programming knowledge to operate such systems efficiently. Programming concepts often use intuitive interaction modalities, such as hand guiding, to address this. When programming in-contact motions, such frameworks require knowledge of the robot tool's payload inertial parameters (PIP) in addition to the demonstrated velocities and forces to ensure effective hybrid motion-force control. This paper aims to enable non-expert users to program in-contact motions more efficiently by eliminating the need for a dedicated PIP calibration, thereby enabling flexible robot tool changes. Since demonstrated tasks generally also contain motions with non-contact, our approach uses these parts to estimate the robot's PIP using established estimation techniques. The results show that the estimation of the payload's mass is accurate, whereas the center of mass and the inertia tensor are affected by noise and a lack of excitation. Overall, these findings show the feasibility of PIP estimation during hand guiding but also highlight the need for sufficient payload accelerations for an accurate estimation.
comment: This is a preprint of a chapter the following work (and accepted for publication): Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2025. The final authenticated version is will be linked here: http://dx.doi.org/[tba]
♻ ☆ Traversability analysis with vision and terrain probing for safe legged robot navigation
Inspired by human behavior when traveling over unknown terrain, this study proposes the use of probing strategies and integrates them into a traversability analysis framework to address safe navigation on unknown rough terrain. Our framework integrates collapsibility information into our existing traversability analysis, as vision and geometric information alone could be misled by unpredictable non-rigid terrains such as soft soil, bush area, or water puddles. With the new traversability analysis framework, our robot has a more comprehensive assessment of unpredictable terrain, which is critical for its safety in outdoor environments. The pipeline first identifies the terrain's geometric and semantic properties using an RGB-D camera and desired probing locations on questionable terrains. These regions are probed using a force sensor to determine the risk of terrain collapsing when the robot steps over it. This risk is formulated as a collapsibility metric, which estimates an unpredictable region's ground collapsibility. Thereafter, the collapsibility metric, together with geometric and semantic spatial data, is combined and analyzed to produce global and local traversability grid maps. These traversability grid maps tell the robot whether it is safe to step over different regions of the map. The grid maps are then utilized to generate optimal paths for the robot to safely navigate to its goal. Our approach has been successfully verified on a quadrupedal robot in both simulation and real-world experiments.
♻ ☆ Real-time Digital Double Framework to Predict Collapsible Terrains for Legged Robots IROS
Inspired by the digital twinning systems, a novel real-time digital double framework is developed to enhance robot perception of the terrain conditions. Based on the very same physical model and motion control, this work exploits the use of such simulated digital double synchronized with a real robot to capture and extract discrepancy information between the two systems, which provides high dimensional cues in multiple physical quantities to represent differences between the modelled and the real world. Soft, non-rigid terrains cause common failures in legged locomotion, whereby visual perception solely is insufficient in estimating such physical properties of terrains. We used digital double to develop the estimation of the collapsibility, which addressed this issue through physical interactions during dynamic walking. The discrepancy in sensory measurements between the real robot and its digital double are used as input of a learning-based algorithm for terrain collapsibility analysis. Although trained only in simulation, the learned model can perform collapsibility estimation successfully in both simulation and real world. Our evaluation of results showed the generalization to different scenarios and the advantages of the digital double to reliably detect nuances in ground conditions.
comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Preprint version. Accepted June 2022
♻ ☆ Tactile Aware Dynamic Obstacle Avoidance in Crowded Environment with Deep Reinforcement Learning
Mobile robots operating in crowded environments require the ability to navigate among humans and surrounding obstacles efficiently while adhering to safety standards and socially compliant mannerisms. This scale of the robot navigation problem may be classified as both a local path planning and trajectory optimization problem. This work presents an array of force sensors that act as a tactile layer to complement the use of a LiDAR for the purpose of inducing awareness of contact with any surrounding objects within immediate vicinity of a mobile robot undetected by LiDARs. By incorporating the tactile layer, the robot can take more risks in its movements and possibly go right up to an obstacle or wall, and gently squeeze past it. In addition, we built up a simulation platform via Pybullet which integrates Robot Operating System (ROS) and reinforcement learning (RL) together. A touch-aware neural network model was trained on it to create an RL-based local path planner for dynamic obstacle avoidance. Our proposed method was demonstrated successfully on an omni-directional mobile robot who was able to navigate in a crowded environment with high agility and versatility in movement, while not being overly sensitive to nearby obstacles-not-in-contact.
♻ ☆ Visual SLAMMOT Considering Multiple Motion Models
Simultaneous Localization and Mapping (SLAM) and Multi-Object Tracking (MOT) are pivotal tasks in the realm of autonomous driving, attracting considerable research attention. While SLAM endeavors to generate real-time maps and determine the vehicle's pose in unfamiliar settings, MOT focuses on the real-time identification and tracking of multiple dynamic objects. Despite their importance, the prevalent approach treats SLAM and MOT as independent modules within an autonomous vehicle system, leading to inherent limitations. Classical SLAM methodologies often rely on a static environment assumption, suitable for indoor rather than dynamic outdoor scenarios. Conversely, conventional MOT techniques typically rely on the vehicle's known state, constraining the accuracy of object state estimations based on this prior. To address these challenges, previous efforts introduced the unified SLAMMOT paradigm, yet primarily focused on simplistic motion patterns. In our team's previous work IMM-SLAMMOT\cite{IMM-SLAMMOT}, we present a novel methodology incorporating consideration of multiple motion models into SLAMMOT i.e. tightly coupled SLAM and MOT, demonstrating its efficacy in LiDAR-based systems. This paper studies feasibility and advantages of instantiating this methodology as visual SLAMMOT, bridging the gap between LiDAR and vision-based sensing mechanisms. Specifically, we propose a solution of visual SLAMMOT considering multiple motion models and validate the inherent advantages of IMM-SLAMMOT in the visual domain.
RINO: Accurate, Robust Radar-Inertial Odometry with Non-Iterative Estimation
Odometry in adverse weather conditions, such as fog, rain, and snow, presents significant challenges, as traditional vision and LiDAR-based methods often suffer from degraded performance. Radar-Inertial Odometry (RIO) has emerged as a promising solution due to its resilience in such environments. In this paper, we present RINO, a non-iterative RIO framework implemented in an adaptively loosely coupled manner. Building upon ORORA as the baseline for radar odometry, RINO introduces several key advancements, including improvements in keypoint extraction, motion distortion compensation, and pose estimation via an adaptive voting mechanism. This voting strategy facilitates efficient polynomial-time optimization while simultaneously quantifying the uncertainty in the radar module's pose estimation. The estimated uncertainty is subsequently integrated into the maximum a posteriori (MAP) estimation within a Kalman filter framework. Unlike prior loosely coupled odometry systems, RINO not only retains the global and robust registration capabilities of the radar component but also dynamically accounts for the real-time operational state of each sensor during fusion. Experimental results conducted on publicly available datasets demonstrate that RINO reduces translation and rotation errors by 1.06% and 0.09{\deg}/100m, respectively, when compared to the baseline method, thus significantly enhancing its accuracy. Furthermore, RINO achieves performance comparable to state-of-the-art methods.
♻ ☆ VPOcc: Exploiting Vanishing Point for 3D Semantic Occupancy Prediction
Understanding 3D scenes semantically and spatially is crucial for the safe navigation of robots and autonomous vehicles, aiding obstacle avoidance and accurate trajectory planning. Camera-based 3D semantic occupancy prediction, which infers complete voxel grids from 2D images, is gaining importance in robot vision for its resource efficiency compared to 3D sensors. However, this task inherently suffers from a 2D-3D discrepancy, where objects of the same size in 3D space appear at different scales in a 2D image depending on their distance from the camera due to perspective projection. To tackle this issue, we propose a novel framework called VPOcc that leverages a vanishing point (VP) to mitigate the 2D-3D discrepancy at both the pixel and feature levels. As a pixel-level solution, we introduce a VPZoomer module, which warps images by counteracting the perspective effect using a VP-based homography transformation. In addition, as a feature-level solution, we propose a VP-guided cross-attention (VPCA) module that performs perspective-aware feature aggregation, utilizing 2D image features that are more suitable for 3D space. Lastly, we integrate two feature volumes extracted from the original and warped images to compensate for each other through a spatial volume fusion (SVF) module. By effectively incorporating VP into the network, our framework achieves improvements in both IoU and mIoU metrics on SemanticKITTI and SSCBench-KITTI360 datasets. Additional details are available at https://vision3d-lab.github.io/vpocc/.
♻ ☆ Safe Multi-Robotic Arm Interaction via 3D Convex Shapes
Inter-robot collisions pose a significant safety risk when multiple robotic arms operate in close proximity. We present an online collision avoidance methodology leveraging 3D convex shape-based High-Order Control Barrier Functions (HOCBFs) to address this issue. While prior works focused on using Control Barrier Functions (CBFs) for human-robotic arm and single-arm collision avoidance, we explore the problem of collision avoidance between multiple robotic arms operating in a shared space. In our methodology, we utilize the proposed HOCBFs as centralized and decentralized safety filters. These safety filters are compatible with many nominal controllers and ensure safety without significantly restricting the robots' workspace. A key challenge in implementing these filters is the computational overhead caused by the large number of safety constraints and the computation of a Hessian matrix per constraint. We address this challenge by employing numerical differentiation methods to approximate computationally intensive terms. The effectiveness of our method is demonstrated through extensive simulation studies and real-world experiments with Franka Research 3 robotic arms. The project video is available at this link.
Computer Vision and Pattern Recognition 214
☆ Quantum Visual Fields with Neural Amplitude Encoding
Quantum Implicit Neural Representations (QINRs) include components for learning and execution on gate-based quantum computers. While QINRs recently emerged as a promising new paradigm, many challenges concerning their architecture and ansatz design, the utility of quantum-mechanical properties, training efficiency and the interplay with classical modules remain. This paper advances the field by introducing a new type of QINR for 2D image and 3D geometric field learning, which we collectively refer to as Quantum Visual Field (QVF). QVF encodes classical data into quantum statevectors using neural amplitude encoding grounded in a learnable energy manifold, ensuring meaningful Hilbert space embeddings. Our ansatz follows a fully entangled design of learnable parametrised quantum circuits, with quantum (unitary) operations performed in the real Hilbert space, resulting in numerically stable training with fast convergence. QVF does not rely on classical post-processing -- in contrast to the previous QINR learning approach -- and directly employs projective measurement to extract learned signals encoded in the ansatz. Experiments on a quantum hardware simulator demonstrate that QVF outperforms the existing quantum approach and widely used classical foundational baselines in terms of visual representation accuracy across various metrics and model characteristics, such as learning of high-frequency details. We also show applications of QVF in 2D and 3D field completion and 3D shape interpolation, highlighting its practical potential.
comment: 17 pages, 15 figures and four tables; project page: https://4dqv.mpi-inf.mpg.de/QVF/
☆ Puppeteer: Rig and Animate Your 3D Models
Modern interactive applications increasingly demand dynamic 3D content, yet the transformation of static 3D models into animated assets constitutes a significant bottleneck in content creation pipelines. While recent advances in generative AI have revolutionized static 3D model creation, rigging and animation continue to depend heavily on expert intervention. We present Puppeteer, a comprehensive framework that addresses both automatic rigging and animation for diverse 3D objects. Our system first predicts plausible skeletal structures via an auto-regressive transformer that introduces a joint-based tokenization strategy for compact representation and a hierarchical ordering methodology with stochastic perturbation that enhances bidirectional learning capabilities. It then infers skinning weights via an attention-based architecture incorporating topology-aware joint attention that explicitly encodes inter-joint relationships based on skeletal graph distances. Finally, we complement these rigging advances with a differentiable optimization-based animation pipeline that generates stable, high-fidelity animations while being computationally more efficient than existing approaches. Extensive evaluations across multiple benchmarks demonstrate that our method significantly outperforms state-of-the-art techniques in both skeletal prediction accuracy and skinning quality. The system robustly processes diverse 3D content, ranging from professionally designed game assets to AI-generated shapes, producing temporally coherent animations that eliminate the jittering issues common in existing methods.
comment: Project page: https://chaoyuesong.github.io/Puppeteer/
☆ Human-in-Context: Unified Cross-Domain 3D Human Motion Modeling via In-Context Learning
This paper aims to model 3D human motion across domains, where a single model is expected to handle multiple modalities, tasks, and datasets. Existing cross-domain models often rely on domain-specific components and multi-stage training, which limits their practicality and scalability. To overcome these challenges, we propose a new setting to train a unified cross-domain model through a single process, eliminating the need for domain-specific components and multi-stage training. We first introduce Pose-in-Context (PiC), which leverages in-context learning to create a pose-centric cross-domain model. While PiC generalizes across multiple pose-based tasks and datasets, it encounters difficulties with modality diversity, prompting strategy, and contextual dependency handling. We thus propose Human-in-Context (HiC), an extension of PiC that broadens generalization across modalities, tasks, and datasets. HiC combines pose and mesh representations within a unified framework, expands task coverage, and incorporates larger-scale datasets. Additionally, HiC introduces a max-min similarity prompt sampling strategy to enhance generalization across diverse domains and a network architecture with dual-branch context injection for improved handling of contextual dependencies. Extensive experimental results show that HiC performs better than PiC in terms of generalization, data scale, and performance across a wide range of domains. These results demonstrate the potential of HiC for building a unified cross-domain 3D human motion model with improved flexibility and scalability. The source codes and models are available at https://github.com/BradleyWang0416/Human-in-Context.
☆ ESSENTIAL: Episodic and Semantic Memory Integration for Video Class-Incremental Learning ICCV
In this work, we tackle the problem of video classincremental learning (VCIL). Many existing VCIL methods mitigate catastrophic forgetting by rehearsal training with a few temporally dense samples stored in episodic memory, which is memory-inefficient. Alternatively, some methods store temporally sparse samples, sacrificing essential temporal information and thereby resulting in inferior performance. To address this trade-off between memory-efficiency and performance, we propose EpiSodic and SEmaNTIc memory integrAtion for video class-incremental Learning (ESSENTIAL). ESSENTIAL consists of episodic memory for storing temporally sparse features and semantic memory for storing general knowledge represented by learnable prompts. We introduce a novel memory retrieval (MR) module that integrates episodic memory and semantic prompts through cross-attention, enabling the retrieval of temporally dense features from temporally sparse features. We rigorously validate ESSENTIAL on diverse datasets: UCF-101, HMDB51, and Something-Something-V2 from the TCD benchmark and UCF-101, ActivityNet, and Kinetics-400 from the vCLIMB benchmark. Remarkably, with significantly reduced memory, ESSENTIAL achieves favorable performance on the benchmarks.
comment: 2025 ICCV Highlight paper, 17 pages including supplementary material
☆ MAESTRO: Masked AutoEncoders for Multimodal, Multitemporal, and Multispectral Earth Observation Data
Self-supervised learning holds great promise for remote sensing, but standard self-supervised methods must be adapted to the unique characteristics of Earth observation data. We take a step in this direction by conducting a comprehensive benchmark of fusion strategies and reconstruction target normalization schemes for multimodal, multitemporal, and multispectral Earth observation data. Based on our findings, we propose MAESTRO, a novel adaptation of the Masked Autoencoder, featuring optimized fusion strategies and a tailored target normalization scheme that introduces a spectral prior as a self-supervisory signal. Evaluated on four Earth observation datasets, MAESTRO sets a new state-of-the-art on tasks that strongly rely on multitemporal dynamics, while remaining highly competitive on tasks dominated by a single mono-temporal modality. Code to reproduce all our experiments is available at https://github.com/ignf/maestro.
☆ STream3R: Scalable Sequential 3D Reconstruction with Causal Transformer
We present STream3R, a novel approach to 3D reconstruction that reformulates pointmap prediction as a decoder-only Transformer problem. Existing state-of-the-art methods for multi-view reconstruction either depend on expensive global optimization or rely on simplistic memory mechanisms that scale poorly with sequence length. In contrast, STream3R introduces an streaming framework that processes image sequences efficiently using causal attention, inspired by advances in modern language modeling. By learning geometric priors from large-scale 3D datasets, STream3R generalizes well to diverse and challenging scenarios, including dynamic scenes where traditional methods often fail. Extensive experiments show that our method consistently outperforms prior work across both static and dynamic scene benchmarks. Moreover, STream3R is inherently compatible with LLM-style training infrastructure, enabling efficient large-scale pretraining and fine-tuning for various downstream 3D tasks. Our results underscore the potential of causal Transformer models for online 3D perception, paving the way for real-time 3D understanding in streaming environments. More details can be found in our project page: https://nirvanalan.github.io/projects/stream3r.
comment: TL;DR: Streaming 4D reconstruction using causal transformer. Project page: https://nirvanalan.github.io/projects/stream3r
☆ ToonComposer: Streamlining Cartoon Production with Generative Post-Keyframing
Traditional cartoon and anime production involves keyframing, inbetweening, and colorization stages, which require intensive manual effort. Despite recent advances in AI, existing methods often handle these stages separately, leading to error accumulation and artifacts. For instance, inbetweening approaches struggle with large motions, while colorization methods require dense per-frame sketches. To address this, we introduce ToonComposer, a generative model that unifies inbetweening and colorization into a single post-keyframing stage. ToonComposer employs a sparse sketch injection mechanism to provide precise control using keyframe sketches. Additionally, it uses a cartoon adaptation method with the spatial low-rank adapter to tailor a modern video foundation model to the cartoon domain while keeping its temporal prior intact. Requiring as few as a single sketch and a colored reference frame, ToonComposer excels with sparse inputs, while also supporting multiple sketches at any temporal location for more precise motion control. This dual capability reduces manual workload and improves flexibility, empowering artists in real-world scenarios. To evaluate our model, we further created PKBench, a benchmark featuring human-drawn sketches that simulate real-world use cases. Our evaluation demonstrates that ToonComposer outperforms existing methods in visual quality, motion consistency, and production efficiency, offering a superior and more flexible solution for AI-assisted cartoon production.
comment: Project Page: https://lg-li.github.io/project/tooncomposer
☆ Medico 2025: Visual Question Answering for Gastrointestinal Imaging
The Medico 2025 challenge addresses Visual Question Answering (VQA) for Gastrointestinal (GI) imaging, organized as part of the MediaEval task series. The challenge focuses on developing Explainable Artificial Intelligence (XAI) models that answer clinically relevant questions based on GI endoscopy images while providing interpretable justifications aligned with medical reasoning. It introduces two subtasks: (1) answering diverse types of visual questions using the Kvasir-VQA-x1 dataset, and (2) generating multimodal explanations to support clinical decision-making. The Kvasir-VQA-x1 dataset, created from 6,500 images and 159,549 complex question-answer (QA) pairs, serves as the benchmark for the challenge. By combining quantitative performance metrics and expert-reviewed explainability assessments, this task aims to advance trustworthy Artificial Intelligence (AI) in medical image analysis. Instructions, data access, and an updated guide for participation are available in the official competition repository: https://github.com/simula/MediaEval-Medico-2025
☆ TexVerse: A Universe of 3D Objects with High-Resolution Textures
We introduce TexVerse, a large-scale 3D dataset featuring high-resolution textures. While recent advances in large-scale 3D datasets have enhanced high-resolution geometry generation, creating high-resolution textures end-to-end remains underexplored due to the lack of suitable datasets. TexVerse fills this gap with a curated collection of over 858K unique high-resolution 3D models sourced from Sketchfab, including more than 158K models with physically based rendering (PBR) materials. Each model encompasses all of its high-resolution variants, bringing the total to 1.6M 3D instances. TexVerse also includes specialized subsets: TexVerse-Skeleton, with 69K rigged models, and TexVerse-Animation, with 54K animated models, both preserving original skeleton and animation data uploaded by the user. We also provide detailed model annotations describing overall characteristics, structural components, and intricate features. TexVerse offers a high-quality data resource with wide-ranging potential applications in texture synthesis, PBR material development, animation, and various 3D vision and graphics tasks.
☆ Performance of GPT-5 in Brain Tumor MRI Reasoning
Accurate differentiation of brain tumor types on magnetic resonance imaging (MRI) is critical for guiding treatment planning in neuro-oncology. Recent advances in large language models (LLMs) have enabled visual question answering (VQA) approaches that integrate image interpretation with natural language reasoning. In this study, we evaluated GPT-4o, GPT-5-nano, GPT-5-mini, and GPT-5 on a curated brain tumor VQA benchmark derived from 3 Brain Tumor Segmentation (BraTS) datasets - glioblastoma (GLI), meningioma (MEN), and brain metastases (MET). Each case included multi-sequence MRI triplanar mosaics and structured clinical features transformed into standardized VQA items. Models were assessed in a zero-shot chain-of-thought setting for accuracy on both visual and reasoning tasks. Results showed that GPT-5-mini achieved the highest macro-average accuracy (44.19%), followed by GPT-5 (43.71%), GPT-4o (41.49%), and GPT-5-nano (35.85%). Performance varied by tumor subtype, with no single model dominating across all cohorts. These findings suggest that GPT-5 family models can achieve moderate accuracy in structured neuro-oncological VQA tasks, but not at a level acceptable for clinical use.
☆ Hierarchical Fine-grained Preference Optimization for Physically Plausible Video Generation
Recent advancements in video generation have enabled the creation of high-quality, visually compelling videos. However, generating videos that adhere to the laws of physics remains a critical challenge for applications requiring realism and accuracy. In this work, we propose PhysHPO, a novel framework for Hierarchical Cross-Modal Direct Preference Optimization, to tackle this challenge by enabling fine-grained preference alignment for physically plausible video generation. PhysHPO optimizes video alignment across four hierarchical granularities: a) Instance Level, aligning the overall video content with the input prompt; b) State Level, ensuring temporal consistency using boundary frames as anchors; c) Motion Level, modeling motion trajectories for realistic dynamics; and d) Semantic Level, maintaining logical consistency between narrative and visuals. Recognizing that real-world videos are the best reflections of physical phenomena, we further introduce an automated data selection pipeline to efficiently identify and utilize "good data" from existing large-scale text-video datasets, thereby eliminating the need for costly and time-intensive dataset construction. Extensive experiments on both physics-focused and general capability benchmarks demonstrate that PhysHPO significantly improves physical plausibility and overall video generation quality of advanced models. To the best of our knowledge, this is the first work to explore fine-grained preference alignment and data selection for video generation, paving the way for more realistic and human-preferred video generation paradigms.
comment: Project Page: https://haroldchen19.github.io/PhysHPO-Page/
☆ Generalizable Federated Learning using Client Adaptive Focal Modulation WACV 2024
Federated learning (FL) has proven essential for privacy-preserving, collaborative training across distributed clients. Our prior work, TransFed, introduced a robust transformer-based FL framework that leverages a learn-to-adapt hypernetwork to generate personalized focal modulation layers per client, outperforming traditional methods in non-IID and cross-domain settings. In this extended version, we propose AdaptFED, where we deepen the investigation of focal modulation in generalizable FL by incorporating: (1) a refined adaptation strategy that integrates task-aware client embeddings to personalize modulation dynamics further, (2) enhanced theoretical bounds on adaptation performance, and (3) broader empirical validation across additional modalities, including time-series and multilingual data. We also introduce an efficient variant of TransFed that reduces server-client communication overhead via low-rank hypernetwork conditioning, enabling scalable deployment in resource-constrained environments. Extensive experiments on eight diverse datasets reaffirm the superiority of our method over state-of-the-art baselines, particularly in source-free and cross-task federated setups. Our findings not only extend the capabilities of focal modulation in FL but also pave the way for more adaptive, scalable, and generalizable transformer-based federated systems. The code is available at http://github.com/Tajamul21/TransFed
comment: WACV 2024 Extended Paper
Self-Supervised Stereo Matching with Multi-Baseline Contrastive Learning
Current self-supervised stereo matching relies on the photometric consistency assumption, which breaks down in occluded regions due to ill-posed correspondences. To address this issue, we propose BaCon-Stereo, a simple yet effective contrastive learning framework for self-supervised stereo network training in both non-occluded and occluded regions. We adopt a teacher-student paradigm with multi-baseline inputs, in which the stereo pairs fed into the teacher and student share the same reference view but differ in target views. Geometrically, regions occluded in the student's target view are often visible in the teacher's, making it easier for the teacher to predict in these regions. The teacher's prediction is rescaled to match the student's baseline and then used to supervise the student. We also introduce an occlusion-aware attention map to better guide the student in learning occlusion completion. To support training, we synthesize a multi-baseline dataset BaCon-20k. Extensive experiments demonstrate that BaCon-Stereo improves prediction in both occluded and non-occluded regions, achieves strong generalization and robustness, and outperforms state-of-the-art self-supervised methods on both KITTI 2015 and 2012 benchmarks. Our code and dataset will be released upon paper acceptance.
☆ UI-Venus Technical Report: Building High-performance UI Agents with RFT
We present UI-Venus, a native UI agent that takes only screenshots as input based on a multimodal large language model. UI-Venus achieves SOTA performance on both UI grounding and navigation tasks using only several hundred thousand high-quality training samples through reinforcement finetune (RFT) based on Qwen2.5-VL. Specifically, the 7B and 72B variants of UI-Venus obtain 94.1% / 50.8% and 95.3% / 61.9% on the standard grounding benchmarks, i.e., Screenspot-V2 / Pro, surpassing the previous SOTA baselines including open-source GTA1 and closed-source UI-TARS-1.5.To show UI-Venus's summary and planing ability, we also evaluate it on the AndroidWorld, an online UI navigation arena, on which our 7B and 72B variants achieve 49.1% and 65.9% success rate, also beating existing models.To achieve this, we introduce carefully designed reward functions for both UI grounding and navigation tasks and corresponding efficient data cleaning strategies.To further boost navigation performance, we propose Self-Evolving Trajectory History Alignment \& Sparse Action Enhancement that refine historical reasoning traces and balances the distribution of sparse but critical actions, leading to more coherent planning and better generalization in complex UI tasks. Our contributions include the publish of SOTA open-source UI agents, comprehensive data cleaning protocols and a novel self-evolving framework for improving navigation performance, which encourage further research and development in the community. Code is available at https://github.com/antgroup/UI-Venus.
☆ Mobile-Friendly Deep Learning for Plant Disease Detection: A Lightweight CNN Benchmark Across 101 Classes of 33 Crops
Plant diseases are a major threat to food security globally. It is important to develop early detection systems which can accurately detect. The advancement in computer vision techniques has the potential to solve this challenge. We have developed a mobile-friendly solution which can accurately classify 101 plant diseases across 33 crops. We built a comprehensive dataset by combining different datasets, Plant Doc, PlantVillage, and PlantWild, all of which are for the same purpose. We evaluated performance across several lightweight architectures - MobileNetV2, MobileNetV3, MobileNetV3-Large, and EfficientNet-B0, B1 - specifically chosen for their efficiency on resource-constrained devices. The results were promising, with EfficientNet-B1 delivering our best performance at 94.7% classification accuracy. This architecture struck an optimal balance between accuracy and computational efficiency, making it well-suited for real-world deployment on mobile devices.
comment: 15 pages, 5 figures, 2 tables
☆ Object Fidelity Diffusion for Remote Sensing Image Generation
High-precision controllable remote sensing image generation is both meaningful and challenging. Existing diffusion models often produce low-fidelity images due to their inability to adequately capture morphological details, which may affect the robustness and reliability of object detection models. To enhance the accuracy and fidelity of generated objects in remote sensing, this paper proposes Object Fidelity Diffusion (OF-Diff), which effectively improves the fidelity of generated objects. Specifically, we are the first to extract the prior shapes of objects based on the layout for diffusion models in remote sensing. Then, we introduce a dual-branch diffusion model with diffusion consistency loss, which can generate high-fidelity remote sensing images without providing real images during the sampling phase. Furthermore, we introduce DDPO to fine-tune the diffusion process, making the generated remote sensing images more diverse and semantically consistent. Comprehensive experiments demonstrate that OF-Diff outperforms state-of-the-art methods in the remote sensing across key quality metrics. Notably, the performance of several polymorphic and small object classes shows significant improvement. For instance, the mAP increases by 8.3%, 7.7%, and 4.0% for airplanes, ships, and vehicles, respectively.
☆ When Experts Disagree: Characterizing Annotator Variability for Vessel Segmentation in DSA Images
We analyze the variability among segmentations of cranial blood vessels in 2D DSA performed by multiple annotators in order to characterize and quantify segmentation uncertainty. We use this analysis to quantify segmentation uncertainty and discuss ways it can be used to guide additional annotations and to develop uncertainty-aware automatic segmentation methods.
☆ VasoMIM: Vascular Anatomy-Aware Masked Image Modeling for Vessel Segmentation
Accurate vessel segmentation in X-ray angiograms is crucial for numerous clinical applications. However, the scarcity of annotated data presents a significant challenge, which has driven the adoption of self-supervised learning (SSL) methods such as masked image modeling (MIM) to leverage large-scale unlabeled data for learning transferable representations. Unfortunately, conventional MIM often fails to capture vascular anatomy because of the severe class imbalance between vessel and background pixels, leading to weak vascular representations. To address this, we introduce Vascular anatomy-aware Masked Image Modeling (VasoMIM), a novel MIM framework tailored for X-ray angiograms that explicitly integrates anatomical knowledge into the pre-training process. Specifically, it comprises two complementary components: anatomy-guided masking strategy and anatomical consistency loss. The former preferentially masks vessel-containing patches to focus the model on reconstructing vessel-relevant regions. The latter enforces consistency in vascular semantics between the original and reconstructed images, thereby improving the discriminability of vascular representations. Empirically, VasoMIM achieves state-of-the-art performance across three datasets. These findings highlight its potential to facilitate X-ray angiogram analysis.
comment: 14 pages, 11 figures
☆ Cooperative Face Liveness Detection from Optical Flow
In this work, we proposed a novel cooperative video-based face liveness detection method based on a new user interaction scenario where participants are instructed to slowly move their frontal-oriented face closer to the camera. This controlled approaching face protocol, combined with optical flow analysis, represents the core innovation of our approach. By designing a system where users follow this specific movement pattern, we enable robust extraction of facial volume information through neural optical flow estimation, significantly improving discrimination between genuine faces and various presentation attacks (including printed photos, screen displays, masks, and video replays). Our method processes both the predicted optical flows and RGB frames through a neural classifier, effectively leveraging spatial-temporal features for more reliable liveness detection compared to passive methods.
☆ Insights from the Algonauts 2025 Winners
The Algonauts 2025 Challenge just wrapped up a few weeks ago. It is a biennial challenge in computational neuroscience in which teams attempt to build models that predict human brain activity from carefully curated stimuli. Previous editions (2019, 2021, 2023) focused on still images and short videos; the 2025 edition, which concluded last month (late July), pushed the field further by using long, multimodal movies. Teams were tasked with predicting fMRI responses across 1,000 whole-brain parcels across four participants in the dataset who were scanned while watching nearly 80 hours of naturalistic movie stimuli. These recordings came from the CNeuroMod project and included 65 hours of training data, about 55 hours of Friends (seasons 1-6) plus four feature films (The Bourne Supremacy, Hidden Figures, Life, and The Wolf of Wall Street). The remaining data were used for validation: Season 7 of Friends for in-distribution tests, and the final winners for the Challenge were those who could best predict brain activity for six films in their held-out out-of-distribution (OOD) set. The winners were just announced and the top team reports are now publicly available. As members of the MedARC team which placed 4th in the competition, we reflect on the approaches that worked, what they reveal about the current state of brain encoding, and what might come next.
comment: Perspective piece on Algonauts 2025 Challenge conclusion
☆ Ultra-High-Definition Reference-Based Landmark Image Super-Resolution with Generative Diffusion Prior
Reference-based Image Super-Resolution (RefSR) aims to restore a low-resolution (LR) image by utilizing the semantic and texture information from an additional reference high-resolution (reference HR) image. Existing diffusion-based RefSR methods are typically built upon ControlNet, which struggles to effectively align the information between the LR image and the reference HR image. Moreover, current RefSR datasets suffer from limited resolution and poor image quality, resulting in the reference images lacking sufficient fine-grained details to support high-quality restoration. To overcome the limitations above, we propose TriFlowSR, a novel framework that explicitly achieves pattern matching between the LR image and the reference HR image. Meanwhile, we introduce Landmark-4K, the first RefSR dataset for Ultra-High-Definition (UHD) landmark scenarios. Considering the UHD scenarios with real-world degradation, in TriFlowSR, we design a Reference Matching Strategy to effectively match the LR image with the reference HR image. Experimental results show that our approach can better utilize the semantic and texture information of the reference HR image compared to previous methods. To the best of our knowledge, we propose the first diffusion-based RefSR pipeline for ultra-high definition landmark scenarios under real-world degradation. Our code and model will be available at https://github.com/nkicsl/TriFlowSR.
☆ Video-BLADE: Block-Sparse Attention Meets Step Distillation for Efficient Video Generation
Diffusion transformers currently lead the field in high-quality video generation, but their slow iterative denoising process and prohibitive quadratic attention costs for long sequences create significant inference bottlenecks. While both step distillation and sparse attention mechanisms have shown promise as independent acceleration strategies, effectively combining these approaches presents critical challenges -- training-free integration yields suboptimal results, while separately training sparse attention after step distillation requires prohibitively expensive high-quality video data. To overcome these limitations, we propose BLADE, an innovative data-free joint training framework that introduces: (1) an Adaptive Block-Sparse Attention (ASA) mechanism for dynamically generating content-aware sparsity masks to focus computation on salient spatiotemporal features, and (2) a sparsity-aware step distillation paradigm built upon Trajectory Distribution Matching (TDM) that directly incorporates sparsity into the distillation process rather than treating it as a separate compression step, with fast convergence. We validate BLADE on text-to-video models like CogVideoX-5B and Wan2.1-1.3B. Our framework demonstrates remarkable efficiency gains across different scales. On Wan2.1-1.3B, BLADE achieves a 14.10x end-to-end inference acceleration over a 50-step baseline. Moreover, on models such as CogVideoX-5B with short video sequence lengths, our framework delivers a robust 8.89x speedup. Crucially, the acceleration is accompanied by a consistent quality improvement. On the VBench-2.0 benchmark, BLADE boosts the score of CogVideoX-5B to 0.569 (from 0.534) and Wan2.1-1.3B to 0.570 (from 0.563), results that are further corroborated by superior ratings in human evaluations. Our code and model weights are publicly available at: http://ziplab.co/BLADE-Homepage/.
comment: Tech report
☆ AEGIS: Authenticity Evaluation Benchmark for AI-Generated Video Sequences
Recent advances in AI-generated content have fueled the rise of highly realistic synthetic videos, posing severe risks to societal trust and digital integrity. Existing benchmarks for video authenticity detection typically suffer from limited realism, insufficient scale, and inadequate complexity, failing to effectively evaluate modern vision-language models against sophisticated forgeries. To address this critical gap, we introduce AEGIS, a novel large-scale benchmark explicitly targeting the detection of hyper-realistic and semantically nuanced AI-generated videos. AEGIS comprises over 10,000 rigorously curated real and synthetic videos generated by diverse, state-of-the-art generative models, including Stable Video Diffusion, CogVideoX-5B, KLing, and Sora, encompassing open-source and proprietary architectures. In particular, AEGIS features specially constructed challenging subsets enhanced with robustness evaluation. Furthermore, we provide multimodal annotations spanning Semantic-Authenticity Descriptions, Motion Features, and Low-level Visual Features, facilitating authenticity detection and supporting downstream tasks such as multimodal fusion and forgery localization. Extensive experiments using advanced vision-language models demonstrate limited detection capabilities on the most challenging subsets of AEGIS, highlighting the dataset's unique complexity and realism beyond the current generalization capabilities of existing models. In essence, AEGIS establishes an indispensable evaluation benchmark, fundamentally advancing research toward developing genuinely robust, reliable, broadly generalizable video authenticity detection methodologies capable of addressing real-world forgery threats. Our dataset is available on https://huggingface.co/datasets/Clarifiedfish/AEGIS.
comment: Proceedings of the 33rd ACM International Conference on Multimedia
From Diagnosis to Improvement: Probing Spatio-Physical Reasoning in Vision Language Models
Spatio-physical reasoning, a foundation capability for understanding the real physics world, is a critical step towards building robust world models. While recent vision language models (VLMs) have shown remarkable progress in specialized domains like multimodal mathematics and pure spatial understanding, their capability for spatio-physical reasoning remains largely unexplored. This paper provides a comprehensive diagnostic analysis of mainstream VLMs, revealing that current models perform inadequately on this crucial task. Further detailed analysis shows that this underperformance is largely attributable to biases caused by human-like prior and a lack of deep reasoning. To address these challenges, we apply supervised fine-tuning followed by rule-based reinforcement learning to Qwen2.5-VL-7B, resulting in significant improvements in spatio-physical reasoning capabilities and surpassing leading proprietary models. Nevertheless, despite this success, the model's generalization to new physics scenarios remains limited -- underscoring the pressing need for new approaches in spatio-physical reasoning.
comment: 9 pages, 6 figures
☆ Agentic Design Review System
Evaluating graphic designs involves assessing it from multiple facets like alignment, composition, aesthetics and color choices. Evaluating designs in a holistic way involves aggregating feedback from individual expert reviewers. Towards this, we propose an Agentic Design Review System (AgenticDRS), where multiple agents collaboratively analyze a design, orchestrated by a meta-agent. A novel in-context exemplar selection approach based on graph matching and a unique prompt expansion method plays central role towards making each agent design aware. Towards evaluating this framework, we propose DRS-BENCH benchmark. Thorough experimental evaluation against state-of-the-art baselines adapted to the problem setup, backed-up with critical ablation experiments brings out the efficacy of Agentic-DRS in evaluating graphic designs and generating actionable feedback. We hope that this work will attract attention to this pragmatic, yet under-explored research direction.
☆ An Efficient Model-Driven Groupwise Approach for Atlas Construction
Atlas construction is fundamental to medical image analysis, offering a standardized spatial reference for tasks such as population-level anatomical modeling. While data-driven registration methods have recently shown promise in pairwise settings, their reliance on large training datasets, limited generalizability, and lack of true inference phases in groupwise contexts hinder their practical use. In contrast, model-driven methods offer training-free, theoretically grounded, and data-efficient alternatives, though they often face scalability and optimization challenges when applied to large 3D datasets. In this work, we introduce DARC (Diffeomorphic Atlas Registration via Coordinate descent), a novel model-driven groupwise registration framework for atlas construction. DARC supports a broad range of image dissimilarity metrics and efficiently handles arbitrary numbers of 3D images without incurring GPU memory issues. Through a coordinate descent strategy and a centrality-enforcing activation function, DARC produces unbiased, diffeomorphic atlases with high anatomical fidelity. Beyond atlas construction, we demonstrate two key applications: (1) One-shot segmentation, where labels annotated only on the atlas are propagated to subjects via inverse deformations, outperforming state-of-the-art few-shot methods; and (2) shape synthesis, where new anatomical variants are generated by warping the atlas mesh using synthesized diffeomorphic deformation fields. Overall, DARC offers a flexible, generalizable, and resource-efficient framework for atlas construction and applications.
☆ Forgery Guided Learning Strategy with Dual Perception Network for Deepfake Cross-domain Detection
The emergence of deepfake technology has introduced a range of societal problems, garnering considerable attention. Current deepfake detection methods perform well on specific datasets, but exhibit poor performance when applied to datasets with unknown forgery techniques. Moreover, as the gap between emerging and traditional forgery techniques continues to widen, cross-domain detection methods that rely on common forgery traces are becoming increasingly ineffective. This situation highlights the urgency of developing deepfake detection technology with strong generalization to cope with fast iterative forgery techniques. To address these challenges, we propose a Forgery Guided Learning (FGL) strategy designed to enable detection networks to continuously adapt to unknown forgery techniques. Specifically, the FGL strategy captures the differential information between known and unknown forgery techniques, allowing the model to dynamically adjust its learning process in real time. To further improve the ability to perceive forgery traces, we design a Dual Perception Network (DPNet) that captures both differences and relationships among forgery traces. In the frequency stream, the network dynamically perceives and extracts discriminative features across various forgery techniques, establishing essential detection cues. These features are then integrated with spatial features and projected into the embedding space. In addition, graph convolution is employed to perceive relationships across the entire feature space, facilitating a more comprehensive understanding of forgery trace correlations. Extensive experiments show that our approach generalizes well across different scenarios and effectively handles unknown forgery challenges, providing robust support for deepfake detection. Our code is available on https://github.com/vpsg-research/FGL.
☆ Axis-level Symmetry Detection with Group-Equivariant Representation ICCV 2025
Symmetry is a fundamental concept that has been extensively studied, yet detecting it in complex scenes remains a significant challenge in computer vision. Recent heatmap-based approaches can localize potential regions of symmetry axes but often lack precision in identifying individual axes. In this work, we propose a novel framework for axis-level detection of the two most common symmetry types-reflection and rotation-by representing them as explicit geometric primitives, i.e. lines and points. Our method employs a dual-branch architecture that is equivariant to the dihedral group, with each branch specialized to exploit the structure of dihedral group-equivariant features for its respective symmetry type. For reflection symmetry, we introduce orientational anchors, aligned with group components, to enable orientation-specific detection, and a reflectional matching that measures similarity between patterns and their mirrored counterparts across candidate axes. For rotational symmetry, we propose a rotational matching that compares patterns at fixed angular intervals to identify rotational centers. Extensive experiments demonstrate that our method achieves state-of-the-art performance, outperforming existing approaches.
comment: Accepted to ICCV 2025
☆ Privacy-enhancing Sclera Segmentation Benchmarking Competition: SSBC 2025
This paper presents a summary of the 2025 Sclera Segmentation Benchmarking Competition (SSBC), which focused on the development of privacy-preserving sclera-segmentation models trained using synthetically generated ocular images. The goal of the competition was to evaluate how well models trained on synthetic data perform in comparison to those trained on real-world datasets. The competition featured two tracks: $(i)$ one relying solely on synthetic data for model development, and $(ii)$ one combining/mixing synthetic with (a limited amount of) real-world data. A total of nine research groups submitted diverse segmentation models, employing a variety of architectural designs, including transformer-based solutions, lightweight models, and segmentation networks guided by generative frameworks. Experiments were conducted across three evaluation datasets containing both synthetic and real-world images, collected under diverse conditions. Results show that models trained entirely on synthetic data can achieve competitive performance, particularly when dedicated training strategies are employed, as evidenced by the top performing models that achieved $F_1$ scores of over $0.8$ in the synthetic data track. Moreover, performance gains in the mixed track were often driven more by methodological choices rather than by the inclusion of real data, highlighting the promise of synthetic data for privacy-aware biometric development. The code and data for the competition is available at: https://github.com/dariant/SSBC_2025.
comment: IEEE International Joint Conference on Biometrics (IJCB) 2025, 13 pages
☆ Dissecting Generalized Category Discovery: Multiplex Consensus under Self-Deconstruction ICCV 2025
Human perceptual systems excel at inducing and recognizing objects across both known and novel categories, a capability far beyond current machine learning frameworks. While generalized category discovery (GCD) aims to bridge this gap, existing methods predominantly focus on optimizing objective functions. We present an orthogonal solution, inspired by the human cognitive process for novel object understanding: decomposing objects into visual primitives and establishing cross-knowledge comparisons. We propose ConGCD, which establishes primitive-oriented representations through high-level semantic reconstruction, binding intra-class shared attributes via deconstruction. Mirroring human preference diversity in visual processing, where distinct individuals leverage dominant or contextual cues, we implement dominant and contextual consensus units to capture class-discriminative patterns and inherent distributional invariants, respectively. A consensus scheduler dynamically optimizes activation pathways, with final predictions emerging through multiplex consensus integration. Extensive evaluations across coarse- and fine-grained benchmarks demonstrate ConGCD's effectiveness as a consensus-aware paradigm. Code is available at github.com/lytang63/ConGCD.
comment: Accepted by ICCV 2025 as *** Highlight ***!
☆ EgoCross: Benchmarking Multimodal Large Language Models for Cross-Domain Egocentric Video Question Answering
Recent advances in Multimodal Large Language Models (MLLMs) have significantly pushed the frontier of egocentric video question answering (EgocentricQA). However, existing benchmarks and studies are mainly limited to common daily activities such as cooking and cleaning. In contrast, real-world deployment inevitably encounters domain shifts, where target domains differ substantially in both visual style and semantic content. To bridge this gap, we introduce \textbf{EgoCross}, a comprehensive benchmark designed to evaluate the cross-domain generalization of MLLMs in EgocentricQA. EgoCross covers four diverse and challenging domains, including surgery, industry, extreme sports, and animal perspective, representing realistic and high-impact application scenarios. It comprises approximately 1,000 QA pairs across 798 video clips, spanning four key QA tasks: prediction, recognition, localization, and counting. Each QA pair provides both OpenQA and CloseQA formats to support fine-grained evaluation. Extensive experiments show that most existing MLLMs, whether general-purpose or egocentric-specialized, struggle to generalize to domains beyond daily life, highlighting the limitations of current models. Furthermore, we conduct several pilot studies, \eg, fine-tuning and reinforcement learning, to explore potential improvements. We hope EgoCross and our accompanying analysis will serve as a foundation for advancing domain-adaptive, robust egocentric video understanding. Data and codes will be released at: \href{https://github.com/MyUniverse0726/EgoCross}{https://github.com/MyUniverse0726/EgoCross.}
☆ Exploiting Discriminative Codebook Prior for Autoregressive Image Generation
Advanced discrete token-based autoregressive image generation systems first tokenize images into sequences of token indices with a codebook, and then model these sequences in an autoregressive paradigm. While autoregressive generative models are trained only on index values, the prior encoded in the codebook, which contains rich token similarity information, is not exploited. Recent studies have attempted to incorporate this prior by performing naive k-means clustering on the tokens, helping to facilitate the training of generative models with a reduced codebook. However, we reveal that k-means clustering performs poorly in the codebook feature space due to inherent issues, including token space disparity and centroid distance inaccuracy. In this work, we propose the Discriminative Codebook Prior Extractor (DCPE) as an alternative to k-means clustering for more effectively mining and utilizing the token similarity information embedded in the codebook. DCPE replaces the commonly used centroid-based distance, which is found to be unsuitable and inaccurate for the token feature space, with a more reasonable instance-based distance. Using an agglomerative merging technique, it further addresses the token space disparity issue by avoiding splitting high-density regions and aggregating low-density ones. Extensive experiments demonstrate that DCPE is plug-and-play and integrates seamlessly with existing codebook prior-based paradigms. With the discriminative prior extracted, DCPE accelerates the training of autoregressive models by 42% on LlamaGen-B and improves final FID and IS performance.
comment: Submitted to TPAMI
☆ Revisiting Cross-View Localization from Image Matching
Cross-view localization aims to estimate the 3 degrees of freedom pose of a ground-view image by registering it to aerial or satellite imagery. It is essential in GNSS-denied environments such as urban canyons and disaster zones. Existing methods either regress poses directly or align features in a shared bird's-eye view (BEV) space, both built upon accurate spatial correspondences between perspectives. However, these methods fail to establish strict cross-view correspondences, yielding only coarse or geometrically inconsistent matches. Consequently, fine-grained image matching between ground and aerial views remains an unsolved problem, which in turn constrains the interpretability of localization results. In this paper, we revisit cross-view localization from the perspective of cross-view image matching and propose a novel framework that improves both matching and localization. Specifically, we introduce a Surface Model to model visible regions for accurate BEV projection, and a SimRefiner module to refine the similarity matrix through local-global residual correction, eliminating the reliance on post-processing like RANSAC. To further support research in this area, we introduce CVFM, the first benchmark with 32,509 cross-view image pairs annotated with pixel-level correspondences. Extensive experiments demonstrate that our approach substantially improves both localization accuracy and image matching quality, setting new baselines under extreme viewpoint disparity.
☆ Lightweight CNNs for Embedded SAR Ship Target Detection and Classification
Synthetic Aperture Radar (SAR) data enables large-scale surveillance of maritime vessels. However, near-real-time monitoring is currently constrained by the need to downlink all raw data, perform image focusing, and subsequently analyze it on the ground. On-board processing to generate higher-level products could reduce the data volume that needs to be downlinked, alleviating bandwidth constraints and minimizing latency. However, traditional image focusing and processing algorithms face challenges due to the satellite's limited memory, processing power, and computational resources. This work proposes and evaluates neural networks designed for real-time inference on unfocused SAR data acquired in Stripmap and Interferometric Wide (IW) modes captured with Sentinel-1. Our results demonstrate the feasibility of using one of our models for on-board processing and deployment on an FPGA. Additionally, by investigating a binary classification task between ships and windmills, we demonstrate that target classification is possible.
comment: Accepted at Big Data from Space 2025 (BiDS'25)
☆ NextStep-1: Toward Autoregressive Image Generation with Continuous Tokens at Scale
Prevailing autoregressive (AR) models for text-to-image generation either rely on heavy, computationally-intensive diffusion models to process continuous image tokens, or employ vector quantization (VQ) to obtain discrete tokens with quantization loss. In this paper, we push the autoregressive paradigm forward with NextStep-1, a 14B autoregressive model paired with a 157M flow matching head, training on discrete text tokens and continuous image tokens with next-token prediction objectives. NextStep-1 achieves state-of-the-art performance for autoregressive models in text-to-image generation tasks, exhibiting strong capabilities in high-fidelity image synthesis. Furthermore, our method shows strong performance in image editing, highlighting the power and versatility of our unified approach. To facilitate open research, we will release our code and models to the community.
comment: Code: https://github.com/stepfun-ai/NextStep-1
☆ CountCluster: Training-Free Object Quantity Guidance with Cross-Attention Map Clustering for Text-to-Image Generation
Diffusion-based text-to-image generation models have demonstrated strong performance in terms of image quality and diversity. However, they still struggle to generate images that accurately reflect the number of objects specified in the input prompt. Several approaches have been proposed that rely on either external counting modules for iterative refinement or quantity representations derived from learned tokens or latent features. However, they still have limitations in accurately reflecting the specified number of objects and overlook an important structural characteristic--The number of object instances in the generated image is largely determined in the early timesteps of the denoising process. To correctly reflect the object quantity for image generation, the highly activated regions in the object cross-attention map at the early timesteps should match the input object quantity, while each region should be clearly separated. To address this issue, we propose \textit{CountCluster}, a method that guides the object cross-attention map to be clustered according to the specified object count in the input, without relying on any external tools or additional training. The proposed method partitions the object cross-attention map into $k$ clusters at inference time based on attention scores, defines an ideal distribution in which each cluster is spatially well-separated, and optimizes the latent to align with this target distribution. Our method achieves an average improvement of 18.5\%p in object count accuracy compared to existing methods, and demonstrates superior quantity control performance across a variety of prompts. Code will be released at: https://github.com/JoohyeonL22/CountCluster .
comment: Under review
☆ Beyond conventional vision: RGB-event fusion for robust object detection in dynamic traffic scenarios
The dynamic range limitation of conventional RGB cameras reduces global contrast and causes loss of high-frequency details such as textures and edges in complex traffic environments (e.g., nighttime driving, tunnels), hindering discriminative feature extraction and degrading frame-based object detection. To address this, we integrate a bio-inspired event camera with an RGB camera to provide high dynamic range information and propose a motion cue fusion network (MCFNet), which achieves optimal spatiotemporal alignment and adaptive cross-modal feature fusion under challenging lighting. Specifically, an event correction module (ECM) temporally aligns asynchronous event streams with image frames via optical-flow-based warping, jointly optimized with the detection network to learn task-aware event representations. The event dynamic upsampling module (EDUM) enhances spatial resolution of event frames to match image structures, ensuring precise spatiotemporal alignment. The cross-modal mamba fusion module (CMM) uses adaptive feature fusion with a novel interlaced scanning mechanism, effectively integrating complementary information for robust detection. Experiments conducted on the DSEC-Det and PKU-DAVIS-SOD datasets demonstrate that MCFNet significantly outperforms existing methods in various poor lighting and fast moving traffic scenarios. Notably, on the DSEC-Det dataset, MCFNet achieves a remarkable improvement, surpassing the best existing methods by 7.4% in mAP50 and 1.7% in mAP metrics, respectively. The code is available at https://github.com/Charm11492/MCFNet.
☆ Novel View Synthesis using DDIM Inversion
Synthesizing novel views from a single input image is a challenging task. It requires extrapolating the 3D structure of a scene while inferring details in occluded regions, and maintaining geometric consistency across viewpoints. Many existing methods must fine-tune large diffusion backbones using multiple views or train a diffusion model from scratch, which is extremely expensive. Additionally, they suffer from blurry reconstruction and poor generalization. This gap presents the opportunity to explore an explicit lightweight view translation framework that can directly utilize the high-fidelity generative capabilities of a pretrained diffusion model while reconstructing a scene from a novel view. Given the DDIM-inverted latent of a single input image, we employ a camera pose-conditioned translation U-Net, TUNet, to predict the inverted latent corresponding to the desired target view. However, the image sampled using the predicted latent may result in a blurry reconstruction. To this end, we propose a novel fusion strategy that exploits the inherent noise correlation structure observed in DDIM inversion. The proposed fusion strategy helps preserve the texture and fine-grained details. To synthesize the novel view, we use the fused latent as the initial condition for DDIM sampling, leveraging the generative prior of the pretrained diffusion model. Extensive experiments on MVImgNet demonstrate that our method outperforms existing methods.
☆ IADGPT: Unified LVLM for Few-Shot Industrial Anomaly Detection, Localization, and Reasoning via In-Context Learning
Few-Shot Industrial Anomaly Detection (FS-IAD) has important applications in automating industrial quality inspection. Recently, some FS-IAD methods based on Large Vision-Language Models (LVLMs) have been proposed with some achievements through prompt learning or fine-tuning. However, existing LVLMs focus on general tasks but lack basic industrial knowledge and reasoning capabilities related to FS-IAD, making these methods far from specialized human quality inspectors. To address these challenges, we propose a unified framework, IADGPT, designed to perform FS-IAD in a human-like manner, while also handling associated localization and reasoning tasks, even for diverse and novel industrial products. To this end, we introduce a three-stage progressive training strategy inspired by humans. Specifically, the first two stages gradually guide IADGPT in acquiring fundamental industrial knowledge and discrepancy awareness. In the third stage, we design an in-context learning-based training paradigm, enabling IADGPT to leverage a few-shot image as the exemplars for improved generalization to novel products. In addition, we design a strategy that enables IADGPT to output image-level and pixel-level anomaly scores using the logits output and the attention map, respectively, in conjunction with the language output to accomplish anomaly reasoning. To support our training, we present a new dataset comprising 100K images across 400 diverse industrial product categories with extensive attribute-level textual annotations. Experiments indicate IADGPT achieves considerable performance gains in anomaly detection and demonstrates competitiveness in anomaly localization and reasoning. We will release our dataset in camera-ready.
☆ Physics-Informed Joint Multi-TE Super-Resolution with Implicit Neural Representation for Robust Fetal T2 Mapping
T2 mapping in fetal brain MRI has the potential to improve characterization of the developing brain, especially at mid-field (0.55T), where T2 decay is slower. However, this is challenging as fetal MRI acquisition relies on multiple motion-corrupted stacks of thick slices, requiring slice-to-volume reconstruction (SVR) to estimate a high-resolution (HR) 3D volume. Currently, T2 mapping involves repeated acquisitions of these stacks at each echo time (TE), leading to long scan times and high sensitivity to motion. We tackle this challenge with a method that jointly reconstructs data across TEs, addressing severe motion. Our approach combines implicit neural representations with a physics-informed regularization that models T2 decay, enabling information sharing across TEs while preserving anatomical and quantitative T2 fidelity. We demonstrate state-of-the-art performance on simulated fetal brain and in vivo adult datasets with fetal-like motion. We also present the first in vivo fetal T2 mapping results at 0.55T. Our study shows potential for reducing the number of stacks per TE in T2 mapping by leveraging anatomical redundancy.
☆ HyperTea: A Hypergraph-based Temporal Enhancement and Alignment Network for Moving Infrared Small Target Detection
In practical application scenarios, moving infrared small target detection (MIRSTD) remains highly challenging due to the target's small size, weak intensity, and complex motion pattern. Existing methods typically only model low-order correlations between feature nodes and perform feature extraction and enhancement within a single temporal scale. Although hypergraphs have been widely used for high-order correlation learning, they have received limited attention in MIRSTD. To explore the potential of hypergraphs and enhance multi-timescale feature representation, we propose HyperTea, which integrates global and local temporal perspectives to effectively model high-order spatiotemporal correlations of features. HyperTea consists of three modules: the global temporal enhancement module (GTEM) realizes global temporal context enhancement through semantic aggregation and propagation; the local temporal enhancement module (LTEM) is designed to capture local motion patterns between adjacent frames and then enhance local temporal context; additionally, we further develop a temporal alignment module (TAM) to address potential cross-scale feature misalignment. To our best knowledge, HyperTea is the first work to integrate convolutional neural networks (CNNs), recurrent neural networks (RNNs), and hypergraph neural networks (HGNNs) for MIRSTD, significantly improving detection performance. Experiments on DAUB and IRDST demonstrate its state-of-the-art (SOTA) performance. Our source codes are available at https://github.com/Lurenjia-LRJ/HyperTea.
☆ Hybrid Generative Fusion for Efficient and Privacy-Preserving Face Recognition Dataset Generation ICCV 2025
In this paper, we present our approach to the DataCV ICCV Challenge, which centers on building a high-quality face dataset to train a face recognition model. The constructed dataset must not contain identities overlapping with any existing public face datasets. To handle this challenge, we begin with a thorough cleaning of the baseline HSFace dataset, identifying and removing mislabeled or inconsistent identities through a Mixture-of-Experts (MoE) strategy combining face embedding clustering and GPT-4o-assisted verification. We retain the largest consistent identity cluster and apply data augmentation up to a fixed number of images per identity. To further diversify the dataset, we generate synthetic identities using Stable Diffusion with prompt engineering. As diffusion models are computationally intensive, we generate only one reference image per identity and efficiently expand it using Vec2Face, which rapidly produces 49 identity-consistent variants. This hybrid approach fuses GAN-based and diffusion-based samples, enabling efficient construction of a diverse and high-quality dataset. To address the high visual similarity among synthetic identities, we adopt a curriculum learning strategy by placing them early in the training schedule, allowing the model to progress from easier to harder samples. Our final dataset contains 50 images per identity, and all newly generated identities are checked with mainstream face datasets to ensure no identity leakage. Our method achieves \textbf{1st place} in the competition, and experimental results show that our dataset improves model performance across 10K, 20K, and 100K identity scales. Code is available at https://github.com/Ferry-Li/datacv_fr.
comment: This paper has been accpeted to ICCV 2025 DataCV Workshop
☆ AddressVLM: Cross-view Alignment Tuning for Image Address Localization using Large Vision-Language Models
Large visual language models (LVLMs) have demonstrated impressive performance in coarse-grained geo-localization at the country or city level, but they struggle with fine-grained street-level localization within urban areas. In this paper, we explore integrating city-wide address localization capabilities into LVLMs, facilitating flexible address-related question answering using street-view images. A key challenge is that the street-view visual question-and-answer (VQA) data provides only microscopic visual cues, leading to subpar performance in fine-tuned models. To tackle this issue, we incorporate perspective-invariant satellite images as macro cues and propose cross-view alignment tuning including a satellite-view and street-view image grafting mechanism, along with an automatic label generation mechanism. Then LVLM's global understanding of street distribution is enhanced through cross-view matching. Our proposed model, named AddressVLM, consists of two-stage training protocols: cross-view alignment tuning and address localization tuning. Furthermore, we have constructed two street-view VQA datasets based on image address localization datasets from Pittsburgh and San Francisco. Qualitative and quantitative evaluations demonstrate that AddressVLM outperforms counterpart LVLMs by over 9% and 12% in average address localization accuracy on these two datasets, respectively.
☆ Serial Over Parallel: Learning Continual Unification for Multi-Modal Visual Object Tracking and Benchmarking
Unifying multiple multi-modal visual object tracking (MMVOT) tasks draws increasing attention due to the complementary nature of different modalities in building robust tracking systems. Existing practices mix all data sensor types in a single training procedure, structuring a parallel paradigm from the data-centric perspective and aiming for a global optimum on the joint distribution of the involved tasks. However, the absence of a unified benchmark where all types of data coexist forces evaluations on separated benchmarks, causing \textit{inconsistency} between training and testing, thus leading to performance \textit{degradation}. To address these issues, this work advances in two aspects: \ding{182} A unified benchmark, coined as UniBench300, is introduced to bridge the inconsistency by incorporating multiple task data, reducing inference passes from three to one and cutting time consumption by 27\%. \ding{183} The unification process is reformulated in a serial format, progressively integrating new tasks. In this way, the performance degradation can be specified as knowledge forgetting of previous tasks, which naturally aligns with the philosophy of continual learning (CL), motivating further exploration of injecting CL into the unification process. Extensive experiments conducted on two baselines and four benchmarks demonstrate the significance of UniBench300 and the superiority of CL in supporting a stable unification process. Moreover, while conducting dedicated analyses, the performance degradation is found to be negatively correlated with network capacity. Additionally, modality discrepancies contribute to varying degradation levels across tasks (RGBT > RGBD > RGBE in MMVOT), offering valuable insights for future multi-modal vision research. Source codes and the proposed benchmark is available at \textit{https://github.com/Zhangyong-Tang/UniBench300}.
comment: ACMMM 2025
☆ Geospatial Diffusion for Land Cover Imperviousness Change Forecasting
Land cover, both present and future, has a significant effect on several important Earth system processes. For example, impervious surfaces heat up and speed up surface water runoff and reduce groundwater infiltration, with concomitant effects on regional hydrology and flood risk. While regional Earth System models have increasing skill at forecasting hydrologic and atmospheric processes at high resolution in future climate scenarios, our ability to forecast land-use and land-cover change (LULC), a critical input to risk and consequences assessment for these scenarios, has lagged behind. In this paper, we propose a new paradigm exploiting Generative AI (GenAI) for land cover change forecasting by framing LULC forecasting as a data synthesis problem conditioned on historical and auxiliary data-sources. We discuss desirable properties of generative models that fundament our research premise, and demonstrate the feasibility of our methodology through experiments on imperviousness forecasting using historical data covering the entire conterminous United States. Specifically, we train a diffusion model for decadal forecasting of imperviousness and compare its performance to a baseline that assumes no change at all. Evaluation across 12 metropolitan areas for a year held-out during training indicate that for average resolutions $\geq 0.7\times0.7km^2$ our model yields MAE lower than such a baseline. This finding corroborates that such a generative model can capture spatiotemporal patterns from historical data that are significant for projecting future change. Finally, we discuss future research to incorporate auxiliary information on physical properties about the Earth, as well as supporting simulation of different scenarios by means of driver variables.
☆ SemPT: Semantic Prompt Tuning for Vision-Language Models
Visual transfer learning for unseen categories presents an active research topic yet a challenging task, due to the inherent conflict between preserving category-specific representations and acquiring transferable knowledge. Vision-Language Models (VLMs) pre-trained on large amounts of image-text pairs offer a promising solution. However, existing prompt tuning methods rely on sparse category labels or disparate LLM-generated descriptions, which fragment knowledge representation and hinder transferability. To address this limitation, we introduce Semantic Prompt Tuning (SemPT), a novel framework that tackles the generalization challenge by leveraging shared attribute-level knowledge across categories. Specifically, SemPT adopts a two-step prompting strategy to guide LLM in extracting shared visual attributes and generating attribute-level descriptions, capturing transferable semantic cues beyond labels while ensuring coherent structure. Then, visually guided weighting is applied to the embeddings of attribute-level descriptions to reduce noise from irrelevant attributes and enhance the text embeddings. Additionally, image embeddings are jointly aligned with both label and attribute-enhanced text embeddings, balancing discrimination for seen categories and transferability to unseen ones. Considering the availability of category exposure, our inference dynamically selects between standard label embeddings for seen categories and attribute-enhanced embeddings for unseen ones to ensure effective adaptation. Extensive experiments on 15 benchmark datasets demonstrate that SemPT achieves state-of-the-art performance across various settings, including base-to-novel generalization, cross-dataset transfer, cross-domain transfer, and few-shot learning.
☆ Lameness detection in dairy cows using pose estimation and bidirectional LSTMs
This study presents a lameness detection approach that combines pose estimation and Bidirectional Long-Short-Term Memory (BLSTM) neural networks. Combining pose-estimation and BLSTMs classifier offers the following advantages: markerless pose-estimation, elimination of manual feature engineering by learning temporal motion features from the keypoint trajectories, and working with short sequences and small training datasets. Motion sequences of nine keypoints (located on the cows' hooves, head and back) were extracted from videos of walking cows with the T-LEAP pose estimation model. The trajectories of the keypoints were then used as an input to a BLSTM classifier that was trained to perform binary lameness classification. Our method significantly outperformed an established method that relied on manually-designed locomotion features: our best architecture achieved a classification accuracy of 85%, against 80% accuracy for the feature-based approach. Furthermore, we showed that our BLSTM classifier could detect lameness with as little as one second of video data.
☆ Processing and acquisition traces in visual encoders: What does CLIP know about your camera? ICCV 2025
Prior work has analyzed the robustness of visual encoders to image transformations and corruptions, particularly in cases where such alterations are not seen during training. When this occurs, they introduce a form of distribution shift at test time, often leading to performance degradation. The primary focus has been on severe corruptions that, when applied aggressively, distort useful signals necessary for accurate semantic predictions. We take a different perspective by analyzing parameters of the image acquisition process and transformations that may be subtle or even imperceptible to the human eye. We find that such parameters are systematically encoded in the learned visual representations and can be easily recovered. More strikingly, their presence can have a profound impact, either positively or negatively, on semantic predictions. This effect depends on whether there is a strong correlation or anti-correlation between semantic labels and these acquisition-based or processing-based labels. Our code and data are available at: https://github.com/ryan-caesar-ramos/visual-encoder-traces
comment: 8 main pages, supplementary attached, ICCV 2025 highlight
☆ ChatENV: An Interactive Vision-Language Model for Sensor-Guided Environmental Monitoring and Scenario Simulation
Understanding environmental changes from aerial imagery is vital for climate resilience, urban planning, and ecosystem monitoring. Yet, current vision language models (VLMs) overlook causal signals from environmental sensors, rely on single-source captions prone to stylistic bias, and lack interactive scenario-based reasoning. We present ChatENV, the first interactive VLM that jointly reasons over satellite image pairs and real-world sensor data. Our framework: (i) creates a 177k-image dataset forming 152k temporal pairs across 62 land-use classes in 197 countries with rich sensor metadata (e.g., temperature, PM10, CO); (ii) annotates data using GPT- 4o and Gemini 2.0 for stylistic and semantic diversity; and (iii) fine-tunes Qwen-2.5-VL using efficient Low-Rank Adaptation (LoRA) adapters for chat purposes. ChatENV achieves strong performance in temporal and "what-if" reasoning (e.g., BERT-F1 0.903) and rivals or outperforms state-of-the-art temporal models, while supporting interactive scenario-based analysis. This positions ChatENV as a powerful tool for grounded, sensor-aware environmental monitoring.
comment: 11 pages, 5 figures, 7 tables
☆ Increasing the Utility of Synthetic Images through Chamfer Guidance
Conditional image generative models hold considerable promise to produce infinite amounts of synthetic training data. Yet, recent progress in generation quality has come at the expense of generation diversity, limiting the utility of these models as a source of synthetic training data. Although guidance-based approaches have been introduced to improve the utility of generated data by focusing on quality or diversity, the (implicit or explicit) utility functions oftentimes disregard the potential distribution shift between synthetic and real data. In this work, we introduce Chamfer Guidance: a training-free guidance approach which leverages a handful of real exemplar images to characterize the quality and diversity of synthetic data. We show that by leveraging the proposed Chamfer Guidance, we can boost the diversity of the generations w.r.t. a dataset of real images while maintaining or improving the generation quality on ImageNet-1k and standard geo-diversity benchmarks. Our approach achieves state-of-the-art few-shot performance with as little as 2 exemplar real images, obtaining 96.4\% in terms of precision, and 86.4\% in terms of distributional coverage, which increase to 97.5\% and 92.7\%, respectively, when using 32 real images. We showcase the benefits of the Chamfer Guidance generation by training downstream image classifiers on synthetic data, achieving accuracy boost of up to 15\% for in-distribution over the baselines, and up to 16\% in out-of-distribution. Furthermore, our approach does not require using the unconditional model, and thus obtains a 31\% reduction in FLOPs w.r.t. classifier-free-guidance-based approaches at sampling time.
☆ FIND-Net -- Fourier-Integrated Network with Dictionary Kernels for Metal Artifact Reduction MICCAI 2025
Metal artifacts, caused by high-density metallic implants in computed tomography (CT) imaging, severely degrade image quality, complicating diagnosis and treatment planning. While existing deep learning algorithms have achieved notable success in Metal Artifact Reduction (MAR), they often struggle to suppress artifacts while preserving structural details. To address this challenge, we propose FIND-Net (Fourier-Integrated Network with Dictionary Kernels), a novel MAR framework that integrates frequency and spatial domain processing to achieve superior artifact suppression and structural preservation. FIND-Net incorporates Fast Fourier Convolution (FFC) layers and trainable Gaussian filtering, treating MAR as a hybrid task operating in both spatial and frequency domains. This approach enhances global contextual understanding and frequency selectivity, effectively reducing artifacts while maintaining anatomical structures. Experiments on synthetic datasets show that FIND-Net achieves statistically significant improvements over state-of-the-art MAR methods, with a 3.07% MAE reduction, 0.18% SSIM increase, and 0.90% PSNR improvement, confirming robustness across varying artifact complexities. Furthermore, evaluations on real-world clinical CT scans confirm FIND-Net's ability to minimize modifications to clean anatomical regions while effectively suppressing metal-induced distortions. These findings highlight FIND-Net's potential for advancing MAR performance, offering superior structural preservation and improved clinical applicability. Code is available at https://github.com/Farid-Tasharofi/FIND-Net
comment: Accepted at MICCAI 2025. This is the submitted version prior to peer review. The final Version of Record will appear in the MICCAI 2025 proceedings (Springer LNCS)
☆ Fourier-Guided Attention Upsampling for Image Super-Resolution
We propose Frequency-Guided Attention (FGA), a lightweight upsampling module for single image super-resolution. Conventional upsamplers, such as Sub-Pixel Convolution, are efficient but frequently fail to reconstruct high-frequency details and introduce aliasing artifacts. FGA addresses these issues by integrating (1) a Fourier feature-based Multi-Layer Perceptron (MLP) for positional frequency encoding, (2) a cross-resolution Correlation Attention Layer for adaptive spatial alignment, and (3) a frequency-domain L1 loss for spectral fidelity supervision. Adding merely 0.3M parameters, FGA consistently enhances performance across five diverse super-resolution backbones in both lightweight and full-capacity scenarios. Experimental results demonstrate average PSNR gains of 0.12~0.14 dB and improved frequency-domain consistency by up to 29%, particularly evident on texture-rich datasets. Visual and spectral evaluations confirm FGA's effectiveness in reducing aliasing and preserving fine details, establishing it as a practical, scalable alternative to traditional upsampling methods.
comment: 15 pages, 7 figures, under submission to a journal
☆ DIVA-VQA: Detecting Inter-frame Variations in UGC Video Quality ICIP
The rapid growth of user-generated (video) content (UGC) has driven increased demand for research on no-reference (NR) perceptual video quality assessment (VQA). NR-VQA is a key component for large-scale video quality monitoring in social media and streaming applications where a pristine reference is not available. This paper proposes a novel NR-VQA model based on spatio-temporal fragmentation driven by inter-frame variations. By leveraging these inter-frame differences, the model progressively analyses quality-sensitive regions at multiple levels: frames, patches, and fragmented frames. It integrates frames, fragmented residuals, and fragmented frames aligned with residuals to effectively capture global and local information. The model extracts both 2D and 3D features in order to characterize these spatio-temporal variations. Experiments conducted on five UGC datasets and against state-of-the-art models ranked our proposed method among the top 2 in terms of average rank correlation (DIVA-VQA-L: 0.898 and DIVA-VQA-B: 0.886). The improved performance is offered at a low runtime complexity, with DIVA-VQA-B ranked top and DIVA-VQA-L third on average compared to the fastest existing NR-VQA method. Code and models are publicly available at: https://github.com/xinyiW915/DIVA-VQA.
comment: 6 pages, 1 figure. Accepted for presentation at the 2025 IEEE International Conference on Image Processing (ICIP)
☆ Towards Powerful and Practical Patch Attacks for 2D Object Detection in Autonomous Driving
Learning-based autonomous driving systems remain critically vulnerable to adversarial patches, posing serious safety and security risks in their real-world deployment. Black-box attacks, notable for their high attack success rate without model knowledge, are especially concerning, with their transferability extensively studied to reduce computational costs compared to query-based attacks. Previous transferability-based black-box attacks typically adopt mean Average Precision (mAP) as the evaluation metric and design training loss accordingly. However, due to the presence of multiple detected bounding boxes and the relatively lenient Intersection over Union (IoU) thresholds, the attack effectiveness of these approaches is often overestimated, resulting in reduced success rates in practical attacking scenarios. Furthermore, patches trained on low-resolution data often fail to maintain effectiveness on high-resolution images, limiting their transferability to autonomous driving datasets. To fill this gap, we propose P$^3$A, a Powerful and Practical Patch Attack framework for 2D object detection in autonomous driving, specifically optimized for high-resolution datasets. First, we introduce a novel metric, Practical Attack Success Rate (PASR), to more accurately quantify attack effectiveness with greater relevance for pedestrian safety. Second, we present a tailored Localization-Confidence Suppression Loss (LCSL) to improve attack transferability under PASR. Finally, to maintain the transferability for high-resolution datasets, we further incorporate the Probabilistic Scale-Preserving Padding (PSPP) into the patch attack pipeline as a data preprocessing step. Extensive experiments show that P$^3$A outperforms state-of-the-art attacks on unseen models and unseen high-resolution datasets, both under the proposed practical IoU-based evaluation metric and the previous mAP-based metrics.
comment: 13 pages, 4 figures
☆ On Spectral Properties of Gradient-based Explanation Methods
Understanding the behavior of deep networks is crucial to increase our confidence in their results. Despite an extensive body of work for explaining their predictions, researchers have faced reliability issues, which can be attributed to insufficient formalism. In our research, we adopt novel probabilistic and spectral perspectives to formally analyze explanation methods. Our study reveals a pervasive spectral bias stemming from the use of gradient, and sheds light on some common design choices that have been discovered experimentally, in particular, the use of squared gradient and input perturbation. We further characterize how the choice of perturbation hyperparameters in explanation methods, such as SmoothGrad, can lead to inconsistent explanations and introduce two remedies based on our proposed formalism: (i) a mechanism to determine a standard perturbation scale, and (ii) an aggregation method which we call SpectralLens. Finally, we substantiate our theoretical results through quantitative evaluations.
comment: 36 pages, 16 figures, published in European Conference on Computer Vision 2024
☆ EvTurb: Event Camera Guided Turbulence Removal
Atmospheric turbulence degrades image quality by introducing blur and geometric tilt distortions, posing significant challenges to downstream computer vision tasks. Existing single-image and multi-frame methods struggle with the highly ill-posed nature of this problem due to the compositional complexity of turbulence-induced distortions. To address this, we propose EvTurb, an event guided turbulence removal framework that leverages high-speed event streams to decouple blur and tilt effects. EvTurb decouples blur and tilt effects by modeling event-based turbulence formation, specifically through a novel two-step event-guided network: event integrals are first employed to reduce blur in the coarse outputs. This is followed by employing a variance map, derived from raw event streams, to eliminate the tilt distortion for the refined outputs. Additionally, we present TurbEvent, the first real-captured dataset featuring diverse turbulence scenarios. Experimental results demonstrate that EvTurb surpasses state-of-the-art methods while maintaining computational efficiency.
☆ HumanSense: From Multimodal Perception to Empathetic Context-Aware Responses through Reasoning MLLMs
While Multimodal Large Language Models (MLLMs) show immense promise for achieving truly human-like interactions, progress is hindered by the lack of fine-grained evaluation frameworks for human-centered scenarios, encompassing both the understanding of complex human intentions and the provision of empathetic, context-aware responses. Here we introduce HumanSense, a comprehensive benchmark designed to evaluate the human-centered perception and interaction capabilities of MLLMs, with a particular focus on deep understanding of extended multimodal contexts and the formulation of rational feedback. Our evaluation reveals that leading MLLMs still have considerable room for improvement, particularly for advanced interaction-oriented tasks. Supplementing visual input with audio and text information yields substantial improvements, and Omni-modal models show advantages on these tasks. Furthermore, we argue that appropriate feedback stems from a contextual analysis of the interlocutor's needs and emotions, with reasoning ability serving as the key to unlocking it. Accordingly, we employ a multi-stage, modality-progressive reinforcement learning to enhance the reasoning abilities of an Omni model, achieving substantial gains on evaluation results. Additionally, we observe that successful reasoning processes exhibit highly consistent thought patterns. By designing corresponding prompts, we also enhance the performance of non-reasoning models in a training-free manner. Project page: \textcolor{brightpink}https://digital-avatar.github.io/ai/HumanSense/
☆ Towards Agentic AI for Multimodal-Guided Video Object Segmentation
Referring-based Video Object Segmentation is a multimodal problem that requires producing fine-grained segmentation results guided by external cues. Traditional approaches to this task typically involve training specialized models, which come with high computational complexity and manual annotation effort. Recent advances in vision-language foundation models open a promising direction toward training-free approaches. Several studies have explored leveraging these general-purpose models for fine-grained segmentation, achieving performance comparable to that of fully supervised, task-specific models. However, existing methods rely on fixed pipelines that lack the flexibility needed to adapt to the dynamic nature of the task. To address this limitation, we propose Multi-Modal Agent, a novel agentic system designed to solve this task in a more flexible and adaptive manner. Specifically, our method leverages the reasoning capabilities of large language models (LLMs) to generate dynamic workflows tailored to each input. This adaptive procedure iteratively interacts with a set of specialized tools designed for low-level tasks across different modalities to identify the target object described by the multimodal cues. Our agentic approach demonstrates clear improvements over prior methods on two multimodal-conditioned VOS tasks: RVOS and Ref-AVS.
☆ Adapting SAM via Cross-Entropy Masking for Class Imbalance in Remote Sensing Change Detection
Foundational models have achieved significant success in diverse domains of computer vision. They learn general representations that are easily transferable to tasks not seen during training. One such foundational model is Segment anything model (SAM), which can accurately segment objects in images. We propose adapting the SAM encoder via fine-tuning for remote sensing change detection (RSCD) along with spatial-temporal feature enhancement (STFE) and multi-scale decoder fusion (MSDF) to detect changes robustly at multiple scales. Additionally, we propose a novel cross-entropy masking (CEM) loss to handle high class imbalance in change detection datasets. Our method outperforms state-of-the-art (SOTA) methods on four change detection datasets, Levir-CD, WHU-CD, CLCD, and S2Looking. We achieved 2.5% F1-score improvement on a large complex S2Looking dataset. The code is available at: https://github.com/humza909/SAM-CEM-CD
comment: work in progress
☆ SpaRC-AD: A Baseline for Radar-Camera Fusion in End-to-End Autonomous Driving
End-to-end autonomous driving systems promise stronger performance through unified optimization of perception, motion forecasting, and planning. However, vision-based approaches face fundamental limitations in adverse weather conditions, partial occlusions, and precise velocity estimation - critical challenges in safety-sensitive scenarios where accurate motion understanding and long-horizon trajectory prediction are essential for collision avoidance. To address these limitations, we propose SpaRC-AD, a query-based end-to-end camera-radar fusion framework for planning-oriented autonomous driving. Through sparse 3D feature alignment, and doppler-based velocity estimation, we achieve strong 3D scene representations for refinement of agent anchors, map polylines and motion modelling. Our method achieves strong improvements over the state-of-the-art vision-only baselines across multiple autonomous driving tasks, including 3D detection (+4.8% mAP), multi-object tracking (+8.3% AMOTA), online mapping (+1.8% mAP), motion prediction (-4.0% mADE), and trajectory planning (-0.1m L2 and -9% TPC). We achieve both spatial coherence and temporal consistency on multiple challenging benchmarks, including real-world open-loop nuScenes, long-horizon T-nuScenes, and closed-loop simulator Bench2Drive. We show the effectiveness of radar-based fusion in safety-critical scenarios where accurate motion understanding and long-horizon trajectory prediction are essential for collision avoidance. The source code of all experiments is available at https://phi-wol.github.io/sparcad/
comment: 8 pages, 4 figures, 5 tables
HM-Talker: Hybrid Motion Modeling for High-Fidelity Talking Head Synthesis
Audio-driven talking head video generation enhances user engagement in human-computer interaction. However, current methods frequently produce videos with motion blur and lip jitter, primarily due to their reliance on implicit modeling of audio-facial motion correlations--an approach lacking explicit articulatory priors (i.e., anatomical guidance for speech-related facial movements). To overcome this limitation, we propose HM-Talker, a novel framework for generating high-fidelity, temporally coherent talking heads. HM-Talker leverages a hybrid motion representation combining both implicit and explicit motion cues. Explicit cues use Action Units (AUs), anatomically defined facial muscle movements, alongside implicit features to minimize phoneme-viseme misalignment. Specifically, our Cross-Modal Disentanglement Module (CMDM) extracts complementary implicit/explicit motion features while predicting AUs directly from audio input aligned to visual cues. To mitigate identity-dependent biases in explicit features and enhance cross-subject generalization, we introduce the Hybrid Motion Modeling Module (HMMM). This module dynamically merges randomly paired implicit/explicit features, enforcing identity-agnostic learning. Together, these components enable robust lip synchronization across diverse identities, advancing personalized talking head synthesis. Extensive experiments demonstrate HM-Talker's superiority over state-of-the-art methods in visual quality and lip-sync accuracy.
☆ PTQAT: A Hybrid Parameter-Efficient Quantization Algorithm for 3D Perception Tasks ICCV
Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT) represent two mainstream model quantization approaches. However, PTQ often leads to unacceptable performance degradation in quantized models, while QAT imposes substantial GPU memory requirements and extended training time due to weight fine-tuning.In this paper, we propose PTQAT, a novel general hybrid quantization algorithm for the efficient deployment of 3D perception networks. To address the speed accuracy trade-off between PTQ and QAT, our method selects critical layers for QAT fine-tuning and performs PTQ on the remaining layers. Contrary to intuition, fine-tuning the layers with smaller output discrepancies before and after quantization, rather than those with larger discrepancies, actually leads to greater improvements in the model's quantization accuracy. This means we better compensate for quantization errors during their propagation, rather than addressing them at the point where they occur. The proposed PTQAT achieves similar performance to QAT with more efficiency by freezing nearly 50% of quantifiable layers. Additionally, PTQAT is a universal quantization method that supports various quantization bit widths (4 bits) as well as different model architectures, including CNNs and Transformers. The experimental results on nuScenes across diverse 3D perception tasks, including object detection, semantic segmentation, and occupancy prediction, show that our method consistently outperforms QAT-only baselines. Notably, it achieves 0.2%-0.9% NDS and 0.3%-1.0% mAP gains in object detection, 0.3%-2.0% mIoU gains in semantic segmentation and occupancy prediction while fine-tuning fewer weights.
comment: 8 pages, Accepted by ICCVW 2025
☆ Retrieval-Augmented Prompt for OOD Detection
Out-of-Distribution (OOD) detection is crucial for the reliable deployment of machine learning models in-the-wild, enabling accurate identification of test samples that differ from the training data distribution. Existing methods rely on auxiliary outlier samples or in-distribution (ID) data to generate outlier information for training, but due to limited outliers and their mismatch with real test OOD samples, they often fail to provide sufficient semantic supervision, leading to suboptimal performance. To address this, we propose a novel OOD detection method called Retrieval-Augmented Prompt (RAP). RAP augments a pre-trained vision-language model's prompts by retrieving external knowledge, offering enhanced semantic supervision for OOD detection. During training, RAP retrieves descriptive words for outliers based on joint similarity with external textual knowledge and uses them to augment the model's OOD prompts. During testing, RAP dynamically updates OOD prompts in real-time based on the encountered OOD samples, enabling the model to rapidly adapt to the test environment. Our extensive experiments demonstrate that RAP achieves state-of-the-art performance on large-scale OOD detection benchmarks. For example, in 1-shot OOD detection on the ImageNet-1k dataset, RAP reduces the average FPR95 by 7.05% and improves the AUROC by 1.71% compared to previous methods. Additionally, comprehensive ablation studies validate the effectiveness of each module and the underlying motivations of our approach.
☆ AR Surgical Navigation With Surface Tracing: Comparing In-SitVisualization with Tool-Tracking Guidance for Neurosurgical Applications
Augmented Reality (AR) surgical navigation systems are emerging as the next generation of intraoperative surgical guidance, promising to overcome limitations of traditional navigation systems. However, known issues with AR depth perception due to vergence-accommodation conflict and occlusion handling limitations of the currently commercially available display technology present acute challenges in surgical settings where precision is paramount. This study presents a novel methodology for utilizing AR guidance to register anatomical targets and provide real-time instrument navigation using placement of simulated external ventricular drain catheters on a phantom model as the clinical scenario. The system registers target positions to the patient through a novel surface tracing method and uses real-time infrared tool tracking to aid in catheter placement, relying only on the onboard sensors of the Microsoft HoloLens 2. A group of intended users performed the procedure of simulated insertions under two AR guidance conditions: static in-situ visualization, where planned trajectories are overlaid directly onto the patient anatomy, and real-time tool-tracking guidance, where live feedback of the catheter's pose is provided relative to the plan. Following the insertion tests, computed tomography scans of the phantom models were acquired, allowing for evaluation of insertion accuracy, target deviation, angular error, and depth precision. System Usability Scale surveys assessed user experience and cognitive workload. Tool-tracking guidance improved performance metrics across all accuracy measures and was preferred by users in subjective evaluations. A free copy of this paper and all supplemental materials are available at https://bit.ly/45l89Hq.
comment: 10pages, 3 figures, will be published at ISMAR 2025 (accepted)
☆ PSScreen: Partially Supervised Multiple Retinal Disease Screening BMVC 2025
Leveraging multiple partially labeled datasets to train a model for multiple retinal disease screening reduces the reliance on fully annotated datasets, but remains challenging due to significant domain shifts across training datasets from various medical sites, and the label absent issue for partial classes. To solve these challenges, we propose PSScreen, a novel Partially Supervised multiple retinal disease Screening model. Our PSScreen consists of two streams and one learns deterministic features and the other learns probabilistic features via uncertainty injection. Then, we leverage the textual guidance to decouple two types of features into disease-wise features and align them via feature distillation to boost the domain generalization ability. Meanwhile, we employ pseudo label consistency between two streams to address the label absent issue and introduce a self-distillation to transfer task-relevant semantics about known classes from the deterministic to the probabilistic stream to further enhance the detection performances. Experiments show that our PSScreen significantly enhances the detection performances on six retinal diseases and the normal state averagely and achieves state-of-the-art results on both in-domain and out-of-domain datasets. Codes are available at https://github.com/boyiZheng99/PSScreen.
comment: Accepted at BMVC 2025 (Oral)
☆ GCRPNet: Graph-Enhanced Contextual and Regional Perception Network For Salient Object Detection in Optical Remote Sensing Images
Salient object detection (SOD) in optical remote sensing images (ORSIs) faces numerous challenges, including significant variations in target scales and low contrast between targets and the background. Existing methods based on vision transformers (ViTs) and convolutional neural networks (CNNs) architectures aim to leverage both global and local features, but the difficulty in effectively integrating these heterogeneous features limits their overall performance. To overcome these limitations, we propose a graph-enhanced contextual and regional perception network (GCRPNet), which builds upon the Mamba architecture to simultaneously capture long-range dependencies and enhance regional feature representation. Specifically, we employ the visual state space (VSS) encoder to extract multi-scale features. To further achieve deep guidance and enhancement of these features, we first design a difference-similarity guided hierarchical graph attention module (DS-HGAM). This module strengthens cross-layer interaction capabilities between features of different scales while enhancing the model's structural perception,allowing it to distinguish between foreground and background more effectively. Then, we design the LEVSS block as the decoder of GCRPNet. This module integrates our proposed adaptive scanning strategy and multi-granularity collaborative attention enhancement module (MCAEM). It performs adaptive patch scanning on feature maps processed via multi-scale convolutions, thereby capturing rich local region information and enhancing Mamba's local modeling capability. Extensive experimental results demonstrate that the proposed model achieves state-of-the-art performance, validating its effectiveness and superiority.
☆ Med-GLIP: Advancing Medical Language-Image Pre-training with Large-scale Grounded Dataset
Medical image grounding aims to align natural language phrases with specific regions in medical images, serving as a foundational task for intelligent diagnosis, visual question answering (VQA), and automated report generation (MRG). However, existing research is constrained by limited modality coverage, coarse-grained annotations, and the absence of a unified, generalizable grounding framework. To address these challenges, we construct a large-scale medical grounding dataset Med-GLIP-5M comprising over 5.3 million region-level annotations across seven imaging modalities, covering diverse anatomical structures and pathological findings. The dataset supports both segmentation and grounding tasks with hierarchical region labels, ranging from organ-level boundaries to fine-grained lesions. Based on this foundation, we propose Med-GLIP, a modality-aware grounding framework trained on Med-GLIP-5M. Rather than relying on explicitly designed expert modules, Med-GLIP implicitly acquires hierarchical semantic understanding from diverse training data -- enabling it to recognize multi-granularity structures, such as distinguishing lungs from pneumonia lesions. Extensive experiments demonstrate that Med-GLIP consistently outperforms state-of-the-art baselines across multiple grounding benchmarks. Furthermore, integrating its spatial outputs into downstream tasks, including medical VQA and report generation, leads to substantial performance gains. Our dataset will be released soon.
☆ Reasoning in Computer Vision: Taxonomy, Models, Tasks, and Methodologies
Visual reasoning is critical for a wide range of computer vision tasks that go beyond surface-level object detection and classification. Despite notable advances in relational, symbolic, temporal, causal, and commonsense reasoning, existing surveys often address these directions in isolation, lacking a unified analysis and comparison across reasoning types, methodologies, and evaluation protocols. This survey aims to address this gap by categorizing visual reasoning into five major types (relational, symbolic, temporal, causal, and commonsense) and systematically examining their implementation through architectures such as graph-based models, memory networks, attention mechanisms, and neuro-symbolic systems. We review evaluation protocols designed to assess functional correctness, structural consistency, and causal validity, and critically analyze their limitations in terms of generalizability, reproducibility, and explanatory power. Beyond evaluation, we identify key open challenges in visual reasoning, including scalability to complex scenes, deeper integration of symbolic and neural paradigms, the lack of comprehensive benchmark datasets, and reasoning under weak supervision. Finally, we outline a forward-looking research agenda for next-generation vision systems, emphasizing that bridging perception and reasoning is essential for building transparent, trustworthy, and cross-domain adaptive AI systems, particularly in critical domains such as autonomous driving and medical diagnostics.
☆ EgoMusic-driven Human Dance Motion Estimation with Skeleton Mamba ICCV 2025
Estimating human dance motion is a challenging task with various industrial applications. Recently, many efforts have focused on predicting human dance motion using either egocentric video or music as input. However, the task of jointly estimating human motion from both egocentric video and music remains largely unexplored. In this paper, we aim to develop a new method that predicts human dance motion from both egocentric video and music. In practice, the egocentric view often obscures much of the body, making accurate full-pose estimation challenging. Additionally, incorporating music requires the generated head and body movements to align well with both visual and musical inputs. We first introduce EgoAIST++, a new large-scale dataset that combines both egocentric views and music with more than 36 hours of dancing motion. Drawing on the success of diffusion models and Mamba on modeling sequences, we develop an EgoMusic Motion Network with a core Skeleton Mamba that explicitly captures the skeleton structure of the human body. We illustrate that our approach is theoretically supportive. Intensive experiments show that our method clearly outperforms state-of-the-art approaches and generalizes effectively to real-world data.
comment: Accepted at The 2025 IEEE/CVF International Conference on Computer Vision (ICCV 2025)
☆ A Segmentation-driven Editing Method for Bolt Defect Augmentation and Detection
Bolt defect detection is critical to ensure the safety of transmission lines. However, the scarcity of defect images and imbalanced data distributions significantly limit detection performance. To address this problem, we propose a segmentationdriven bolt defect editing method (SBDE) to augment the dataset. First, a bolt attribute segmentation model (Bolt-SAM) is proposed, which enhances the segmentation of complex bolt attributes through the CLAHE-FFT Adapter (CFA) and Multipart- Aware Mask Decoder (MAMD), generating high-quality masks for subsequent editing tasks. Second, a mask optimization module (MOD) is designed and integrated with the image inpainting model (LaMa) to construct the bolt defect attribute editing model (MOD-LaMa), which converts normal bolts into defective ones through attribute editing. Finally, an editing recovery augmentation (ERA) strategy is proposed to recover and put the edited defect bolts back into the original inspection scenes and expand the defect detection dataset. We constructed multiple bolt datasets and conducted extensive experiments. Experimental results demonstrate that the bolt defect images generated by SBDE significantly outperform state-of-the-art image editing models, and effectively improve the performance of bolt defect detection, which fully verifies the effectiveness and application potential of the proposed method. The code of the project is available at https://github.com/Jay-xyj/SBDE.
☆ Multi-Sample Anti-Aliasing and Constrained Optimization for 3D Gaussian Splatting
Recent advances in 3D Gaussian splatting have significantly improved real-time novel view synthesis, yet insufficient geometric constraints during scene optimization often result in blurred reconstructions of fine-grained details, particularly in regions with high-frequency textures and sharp discontinuities. To address this, we propose a comprehensive optimization framework integrating multisample anti-aliasing (MSAA) with dual geometric constraints. Our system computes pixel colors through adaptive blending of quadruple subsamples, effectively reducing aliasing artifacts in high-frequency components. The framework introduces two constraints: (a) an adaptive weighting strategy that prioritizes under-reconstructed regions through dynamic gradient analysis, and (b) gradient differential constraints enforcing geometric regularization at object boundaries. This targeted optimization enables the model to allocate computational resources preferentially to critical regions requiring refinement while maintaining global consistency. Extensive experimental evaluations across multiple benchmarks demonstrate that our method achieves state-of-the-art performance in detail preservation, particularly in preserving high-frequency textures and sharp discontinuities, while maintaining real-time rendering efficiency. Quantitative metrics and perceptual studies confirm statistically significant improvements over baseline approaches in both structural similarity (SSIM) and perceptual quality (LPIPS).
☆ TweezeEdit: Consistent and Efficient Image Editing with Path Regularization
Large-scale pre-trained diffusion models empower users to edit images through text guidance. However, existing methods often over-align with target prompts while inadequately preserving source image semantics. Such approaches generate target images explicitly or implicitly from the inversion noise of the source images, termed the inversion anchors. We identify this strategy as suboptimal for semantic preservation and inefficient due to elongated editing paths. We propose TweezeEdit, a tuning- and inversion-free framework for consistent and efficient image editing. Our method addresses these limitations by regularizing the entire denoising path rather than relying solely on the inversion anchors, ensuring source semantic retention and shortening editing paths. Guided by gradient-driven regularization, we efficiently inject target prompt semantics along a direct path using a consistency model. Extensive experiments demonstrate TweezeEdit's superior performance in semantic preservation and target alignment, outperforming existing methods. Remarkably, it requires only 12 steps (1.6 seconds per edit), underscoring its potential for real-time applications.
☆ On the Complexity-Faithfulness Trade-off of Gradient-Based Explanations
ReLU networks, while prevalent for visual data, have sharp transitions, sometimes relying on individual pixels for predictions, making vanilla gradient-based explanations noisy and difficult to interpret. Existing methods, such as GradCAM, smooth these explanations by producing surrogate models at the cost of faithfulness. We introduce a unifying spectral framework to systematically analyze and quantify smoothness, faithfulness, and their trade-off in explanations. Using this framework, we quantify and regularize the contribution of ReLU networks to high-frequency information, providing a principled approach to identifying this trade-off. Our analysis characterizes how surrogate-based smoothing distorts explanations, leading to an ``explanation gap'' that we formally define and measure for different post-hoc methods. Finally, we validate our theoretical findings across different design choices, datasets, and ablations.
comment: 23 pages, 14 figures, to be published in International Conference on Computer Vision 2025
☆ STAMP: Multi-pattern Attention-aware Multiple Instance Learning for STAS Diagnosis in Multi-center Histopathology Images AAAI2026
Spread through air spaces (STAS) constitutes a novel invasive pattern in lung adenocarcinoma (LUAD), associated with tumor recurrence and diminished survival rates. However, large-scale STAS diagnosis in LUAD remains a labor-intensive endeavor, compounded by the propensity for oversight and misdiagnosis due to its distinctive pathological characteristics and morphological features. Consequently, there is a pressing clinical imperative to leverage deep learning models for STAS diagnosis. This study initially assembled histopathological images from STAS patients at the Second Xiangya Hospital and the Third Xiangya Hospital of Central South University, alongside the TCGA-LUAD cohort. Three senior pathologists conducted cross-verification annotations to construct the STAS-SXY, STAS-TXY, and STAS-TCGA datasets. We then propose a multi-pattern attention-aware multiple instance learning framework, named STAMP, to analyze and diagnose the presence of STAS across multi-center histopathology images. Specifically, the dual-branch architecture guides the model to learn STAS-associated pathological features from distinct semantic spaces. Transformer-based instance encoding and a multi-pattern attention aggregation modules dynamically selects regions closely associated with STAS pathology, suppressing irrelevant noise and enhancing the discriminative power of global representations. Moreover, a similarity regularization constraint prevents feature redundancy across branches, thereby improving overall diagnostic accuracy. Extensive experiments demonstrated that STAMP achieved competitive diagnostic results on STAS-SXY, STAS-TXY and STAS-TCGA, with AUCs of 0.8058, 0.8017, and 0.7928, respectively, surpassing the clinical level.
comment: Submit to AAAI2026
☆ Enhanced Sparse Point Cloud Data Processing for Privacy-aware Human Action Recognition
Human Action Recognition (HAR) plays a crucial role in healthcare, fitness tracking, and ambient assisted living technologies. While traditional vision based HAR systems are effective, they pose privacy concerns. mmWave radar sensors offer a privacy preserving alternative but present challenges due to the sparse and noisy nature of their point cloud data. In the literature, three primary data processing methods: Density-Based Spatial Clustering of Applications with Noise (DBSCAN), the Hungarian Algorithm, and Kalman Filtering have been widely used to improve the quality and continuity of radar data. However, a comprehensive evaluation of these methods, both individually and in combination, remains lacking. This paper addresses that gap by conducting a detailed performance analysis of the three methods using the MiliPoint dataset. We evaluate each method individually, all possible pairwise combinations, and the combination of all three, assessing both recognition accuracy and computational cost. Furthermore, we propose targeted enhancements to the individual methods aimed at improving accuracy. Our results provide crucial insights into the strengths and trade-offs of each method and their integrations, guiding future work on mmWave based HAR systems
☆ SingleStrip: learning skull-stripping from a single labeled example MICCAI 2025
Deep learning segmentation relies heavily on labeled data, but manual labeling is laborious and time-consuming, especially for volumetric images such as brain magnetic resonance imaging (MRI). While recent domain-randomization techniques alleviate the dependency on labeled data by synthesizing diverse training images from label maps, they offer limited anatomical variability when very few label maps are available. Semi-supervised self-training addresses label scarcity by iteratively incorporating model predictions into the training set, enabling networks to learn from unlabeled data. In this work, we combine domain randomization with self-training to train three-dimensional skull-stripping networks using as little as a single labeled example. First, we automatically bin voxel intensities, yielding labels we use to synthesize images for training an initial skull-stripping model. Second, we train a convolutional autoencoder (AE) on the labeled example and use its reconstruction error to assess the quality of brain masks predicted for unlabeled data. Third, we select the top-ranking pseudo-labels to fine-tune the network, achieving skull-stripping performance on out-of-distribution data that approaches models trained with more labeled images. We compare AE-based ranking to consistency-based ranking under test-time augmentation, finding that the AE approach yields a stronger correlation with segmentation accuracy. Our results highlight the potential of combining domain randomization and AE-based quality control to enable effective semi-supervised segmentation from extremely limited labeled data. This strategy may ease the labeling burden that slows progress in studies involving new anatomical structures or emerging imaging techniques.
comment: Accepted as an oral presentation to the MICCAI 2025 Data Engineering in Medical Imaging (DEMI) workshop
☆ Multi-Label Plant Species Prediction with Metadata-Enhanced Multi-Head Vision Transformers
We present a multi-head vision transformer approach for multi-label plant species prediction in vegetation plot images, addressing the PlantCLEF 2025 challenge. The task involves training models on single-species plant images while testing on multi-species quadrat images, creating a drastic domain shift. Our methodology leverages a pre-trained DINOv2 Vision Transformer Base (ViT-B/14) backbone with multiple classification heads for species, genus, and family prediction, utilizing taxonomic hierarchies. Key contributions include multi-scale tiling to capture plants at different scales, dynamic threshold optimization based on mean prediction length, and ensemble strategies through bagging and Hydra model architectures. The approach incorporates various inference techniques including image cropping to remove non-plant artifacts, top-n filtering for prediction constraints, and logit thresholding strategies. Experiments were conducted on approximately 1.4 million training images covering 7,806 plant species. Results demonstrate strong performance, making our submission 3rd best on the private leaderboard. Our code is available at https://github.com/geranium12/plant-clef-2025/tree/v1.0.0.
comment: Accepted for publication at: LifeCLEF Lab at CLEF 2025 Working Notes, 2025, Madrid, Spain
☆ Trajectory-aware Shifted State Space Models for Online Video Super-Resolution
Online video super-resolution (VSR) is an important technique for many real-world video processing applications, which aims to restore the current high-resolution video frame based on temporally previous frames. Most of the existing online VSR methods solely employ one neighboring previous frame to achieve temporal alignment, which limits long-range temporal modeling of videos. Recently, state space models (SSMs) have been proposed with linear computational complexity and a global receptive field, which significantly improve computational efficiency and performance. In this context, this paper presents a novel online VSR method based on Trajectory-aware Shifted SSMs (TS-Mamba), leveraging both long-term trajectory modeling and low-complexity Mamba to achieve efficient spatio-temporal information aggregation. Specifically, TS-Mamba first constructs the trajectories within a video to select the most similar tokens from the previous frames. Then, a Trajectory-aware Shifted Mamba Aggregation (TSMA) module consisting of proposed shifted SSMs blocks is employed to aggregate the selected tokens. The shifted SSMs blocks are designed based on Hilbert scannings and corresponding shift operations to compensate for scanning losses and strengthen the spatial continuity of Mamba. Additionally, we propose a trajectory-aware loss function to supervise the trajectory generation, ensuring the accuracy of token selection when training our model. Extensive experiments on three widely used VSR test datasets demonstrate that compared with six online VSR benchmark models, our TS-Mamba achieves state-of-the-art performance in most cases and over 22.7\% complexity reduction (in MACs). The source code for TS-Mamba will be available at https://github.com.
☆ From Images to Perception: Emergence of Perceptual Properties by Reconstructing Images
A number of scientists suggested that human visual perception may emerge from image statistics, shaping efficient neural representations in early vision. In this work, a bio-inspired architecture that can accommodate several known facts in the retina-V1 cortex, the PerceptNet, has been end-to-end optimized for different tasks related to image reconstruction: autoencoding, denoising, deblurring, and sparsity regularization. Our results show that the encoder stage (V1-like layer) consistently exhibits the highest correlation with human perceptual judgments on image distortion despite not using perceptual information in the initialization or training. This alignment exhibits an optimum for moderate noise, blur and sparsity. These findings suggest that the visual system may be tuned to remove those particular levels of distortion with that level of sparsity and that biologically inspired models can learn perceptual metrics without human supervision.
☆ SkeySpot: Automating Service Key Detection for Digital Electrical Layout Plans in the Construction Industry
Legacy floor plans, often preserved only as scanned documents, remain essential resources for architecture, urban planning, and facility management in the construction industry. However, the lack of machine-readable floor plans render large-scale interpretation both time-consuming and error-prone. Automated symbol spotting offers a scalable solution by enabling the identification of service key symbols directly from floor plans, supporting workflows such as cost estimation, infrastructure maintenance, and regulatory compliance. This work introduces a labelled Digitised Electrical Layout Plans (DELP) dataset comprising 45 scanned electrical layout plans annotated with 2,450 instances across 34 distinct service key classes. A systematic evaluation framework is proposed using pretrained object detection models for DELP dataset. Among the models benchmarked, YOLOv8 achieves the highest performance with a mean Average Precision (mAP) of 82.5\%. Using YOLOv8, we develop SkeySpot, a lightweight, open-source toolkit for real-time detection, classification, and quantification of electrical symbols. SkeySpot produces structured, standardised outputs that can be scaled up for interoperable building information workflows, ultimately enabling compatibility across downstream applications and regulatory platforms. By lowering dependency on proprietary CAD systems and reducing manual annotation effort, this approach makes the digitisation of electrical layouts more accessible to small and medium-sized enterprises (SMEs) in the construction industry, while supporting broader goals of standardisation, interoperability, and sustainability in the built environment.
comment: 6 pages, preprint accepted in IEEE SMC 2025
☆ DOD-SA: Infrared-Visible Decoupled Object Detection with Single-Modality Annotations
Infrared-visible object detection has shown great potential in real-world applications, enabling robust all-day perception by leveraging the complementary information of infrared and visible images. However, existing methods typically require dual-modality annotations to output detection results for both modalities during prediction, which incurs high annotation costs. To address this challenge, we propose a novel infrared-visible Decoupled Object Detection framework with Single-modality Annotations, called DOD-SA. The architecture of DOD-SA is built upon a Single- and Dual-Modality Collaborative Teacher-Student Network (CoSD-TSNet), which consists of a single-modality branch (SM-Branch) and a dual-modality decoupled branch (DMD-Branch). The teacher model generates pseudo-labels for the unlabeled modality, simultaneously supporting the training of the student model. The collaborative design enables cross-modality knowledge transfer from the labeled modality to the unlabeled modality, and facilitates effective SM-to-DMD branch supervision. To further improve the decoupling ability of the model and the pseudo-label quality, we introduce a Progressive and Self-Tuning Training Strategy (PaST) that trains the model in three stages: (1) pretraining SM-Branch, (2) guiding the learning of DMD-Branch by SM-Branch, and (3) refining DMD-Branch. In addition, we design a Pseudo Label Assigner (PLA) to align and pair labels across modalities, explicitly addressing modality misalignment during training. Extensive experiments on the DroneVehicle dataset demonstrate that our method outperforms state-of-the-art (SOTA).
comment: 9 pages, 5 figures
☆ We-Math 2.0: A Versatile MathBook System for Incentivizing Visual Mathematical Reasoning
Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities across various tasks, but still struggle with complex mathematical reasoning. Existing research primarily focuses on dataset construction and method optimization, often overlooking two critical aspects: comprehensive knowledge-driven design and model-centric data space modeling. In this paper, we introduce We-Math 2.0, a unified system that integrates a structured mathematical knowledge system, model-centric data space modeling, and a reinforcement learning (RL)-based training paradigm to comprehensively enhance the mathematical reasoning abilities of MLLMs. The key contributions of We-Math 2.0 are fourfold: (1) MathBook Knowledge System: We construct a five-level hierarchical system encompassing 491 knowledge points and 1,819 fundamental principles. (2) MathBook-Standard & Pro: We develop MathBook-Standard, a dataset that ensures broad conceptual coverage and flexibility through dual expansion. Additionally, we define a three-dimensional difficulty space and generate 7 progressive variants per problem to build MathBook-Pro, a challenging dataset for robust training. (3) MathBook-RL: We propose a two-stage RL framework comprising: (i) Cold-Start Fine-tuning, which aligns the model with knowledge-oriented chain-of-thought reasoning; and (ii) Progressive Alignment RL, leveraging average-reward learning and dynamic data scheduling to achieve progressive alignment across difficulty levels. (4) MathBookEval: We introduce a comprehensive benchmark covering all 491 knowledge points with diverse reasoning step distributions. Experimental results show that MathBook-RL performs competitively with existing baselines on four widely-used benchmarks and achieves strong results on MathBookEval, suggesting promising generalization in mathematical reasoning.
comment: Working in progress
☆ CRISP: Contrastive Residual Injection and Semantic Prompting for Continual Video Instance Segmentation
Continual video instance segmentation demands both the plasticity to absorb new object categories and the stability to retain previously learned ones, all while preserving temporal consistency across frames. In this work, we introduce Contrastive Residual Injection and Semantic Prompting (CRISP), an earlier attempt tailored to address the instance-wise, category-wise, and task-wise confusion in continual video instance segmentation. For instance-wise learning, we model instance tracking and construct instance correlation loss, which emphasizes the correlation with the prior query space while strengthening the specificity of the current task query. For category-wise learning, we build an adaptive residual semantic prompt (ARSP) learning framework, which constructs a learnable semantic residual prompt pool generated by category text and uses an adjustive query-prompt matching mechanism to build a mapping relationship between the query of the current task and the semantic residual prompt. Meanwhile, a semantic consistency loss based on the contrastive learning is introduced to maintain semantic coherence between object queries and residual prompts during incremental training. For task-wise learning, to ensure the correlation at the inter-task level within the query space, we introduce a concise yet powerful initialization strategy for incremental prompts. Extensive experiments on YouTube-VIS-2019 and YouTube-VIS-2021 datasets demonstrate that CRISP significantly outperforms existing continual segmentation methods in the long-term continual video instance segmentation task, avoiding catastrophic forgetting and effectively improving segmentation and classification performance. The code is available at https://github.com/01upup10/CRISP.
☆ MM-Food-100K: A 100,000-Sample Multimodal Food Intelligence Dataset with Verifiable Provenance
We present MM-Food-100K, a public 100,000-sample multimodal food intelligence dataset with verifiable provenance. It is a curated approximately 10% open subset of an original 1.2 million, quality-accepted corpus of food images annotated for a wide range of information (such as dish name, region of creation). The corpus was collected over six weeks from over 87,000 contributors using the Codatta contribution model, which combines community sourcing with configurable AI-assisted quality checks; each submission is linked to a wallet address in a secure off-chain ledger for traceability, with a full on-chain protocol on the roadmap. We describe the schema, pipeline, and QA, and validate utility by fine-tuning large vision-language models (ChatGPT 5, ChatGPT OSS, Qwen-Max) on image-based nutrition prediction. Fine-tuning yields consistent gains over out-of-box baselines across standard metrics; we report results primarily on the MM-Food-100K subset. We release MM-Food-100K for publicly free access and retain approximately 90% for potential commercial access with revenue sharing to contributors.
comment: 10 pages, 5 figures, 6 tables. The dataset is available at https://huggingface.co/datasets/Codatta/MM-Food-100K
☆ STRIDE-QA: Visual Question Answering Dataset for Spatiotemporal Reasoning in Urban Driving Scenes
Vision-Language Models (VLMs) have been applied to autonomous driving to support decision-making in complex real-world scenarios. However, their training on static, web-sourced image-text pairs fundamentally limits the precise spatiotemporal reasoning required to understand and predict dynamic traffic scenes. We address this critical gap with STRIDE-QA, a large-scale visual question answering (VQA) dataset for physically grounded reasoning from an ego-centric perspective. Constructed from 100 hours of multi-sensor driving data in Tokyo, capturing diverse and challenging conditions, STRIDE-QA is the largest VQA dataset for spatiotemporal reasoning in urban driving, offering 16 million QA pairs over 285K frames. Grounded by dense, automatically generated annotations including 3D bounding boxes, segmentation masks, and multi-object tracks, the dataset uniquely supports both object-centric and ego-centric reasoning through three novel QA tasks that require spatial localization and temporal prediction. Our benchmarks demonstrate that existing VLMs struggle significantly, achieving near-zero scores on prediction consistency. In contrast, VLMs fine-tuned on STRIDE-QA exhibit dramatic performance gains, achieving 55% success in spatial localization and 28% consistency in future motion prediction, compared to near-zero scores from general-purpose VLMs. Therefore, STRIDE-QA establishes a comprehensive foundation for developing more reliable VLMs for safety-critical autonomous systems.
comment: Project Page: https://turingmotors.github.io/stride-qa/
☆ NanoControl: A Lightweight Framework for Precise and Efficient Control in Diffusion Transformer
Diffusion Transformers (DiTs) have demonstrated exceptional capabilities in text-to-image synthesis. However, in the domain of controllable text-to-image generation using DiTs, most existing methods still rely on the ControlNet paradigm originally designed for UNet-based diffusion models. This paradigm introduces significant parameter overhead and increased computational costs. To address these challenges, we propose the Nano Control Diffusion Transformer (NanoControl), which employs Flux as the backbone network. Our model achieves state-of-the-art controllable text-to-image generation performance while incurring only a 0.024\% increase in parameter count and a 0.029\% increase in GFLOPs, thus enabling highly efficient controllable generation. Specifically, rather than duplicating the DiT backbone for control, we design a LoRA-style (low-rank adaptation) control module that directly learns control signals from raw conditioning inputs. Furthermore, we introduce a KV-Context Augmentation mechanism that integrates condition-specific key-value information into the backbone in a simple yet highly effective manner, facilitating deep fusion of conditional features. Extensive benchmark experiments demonstrate that NanoControl significantly reduces computational overhead compared to conventional control approaches, while maintaining superior generation quality and achieving improved controllability.
☆ CorrectNav: Self-Correction Flywheel Empowers Vision-Language-Action Navigation Model
Existing vision-and-language navigation models often deviate from the correct trajectory when executing instructions. However, these models lack effective error correction capability, hindering their recovery from errors. To address this challenge, we propose Self-correction Flywheel, a novel post-training paradigm. Instead of considering the model's error trajectories on the training set as a drawback, our paradigm emphasizes their significance as a valuable data source. We have developed a method to identify deviations in these error trajectories and devised innovative techniques to automatically generate self-correction data for perception and action. These self-correction data serve as fuel to power the model's continued training. The brilliance of our paradigm is revealed when we re-evaluate the model on the training set, uncovering new error trajectories. At this time, the self-correction flywheel begins to spin. Through multiple flywheel iterations, we progressively enhance our monocular RGB-based VLA navigation model CorrectNav. Experiments on R2R-CE and RxR-CE benchmarks show CorrectNav achieves new state-of-the-art success rates of 65.1% and 69.3%, surpassing prior best VLA navigation models by 8.2% and 16.4%. Real robot tests in various indoor and outdoor environments demonstrate \method's superior capability of error correction, dynamic obstacle avoidance, and long instruction following.
☆ SC-Lane: Slope-aware and Consistent Road Height Estimation Framework for 3D Lane Detection
In this paper, we introduce SC-Lane, a novel slope-aware and temporally consistent heightmap estimation framework for 3D lane detection. Unlike previous approaches that rely on fixed slope anchors, SC-Lane adaptively determines the fusion of slope-specific height features, improving robustness to diverse road geometries. To achieve this, we propose a Slope-Aware Adaptive Feature module that dynamically predicts the appropriate weights from image cues for integrating multi-slope representations into a unified heightmap. Additionally, a Height Consistency Module enforces temporal coherence, ensuring stable and accurate height estimation across consecutive frames, which is crucial for real-world driving scenarios. To evaluate the effectiveness of SC-Lane, we employ three standardized metrics-Mean Absolute Error(MAE), Root Mean Squared Error (RMSE), and threshold-based accuracy-which, although common in surface and depth estimation, have been underutilized for road height assessment. Using the LiDAR-derived heightmap dataset introduced in prior work [20], we benchmark our method under these metrics, thereby establishing a rigorous standard for future comparisons. Extensive experiments on the OpenLane benchmark demonstrate that SC-Lane significantly improves both height estimation and 3D lane detection, achieving state-of-the-art performance with an F-score of 64.3%, outperforming existing methods by a notable margin. For detailed results and a demonstration video, please refer to our project page:https://parkchaesong.github.io/sclane/
comment: 10 pages, 4 figures, 5 tables
☆ Translation of Text Embedding via Delta Vector to Suppress Strongly Entangled Content in Text-to-Image Diffusion Models
Text-to-Image (T2I) diffusion models have made significant progress in generating diverse high-quality images from textual prompts. However, these models still face challenges in suppressing content that is strongly entangled with specific words. For example, when generating an image of ``Charlie Chaplin", a ``mustache" consistently appears even if explicitly instructed not to include it, as the concept of ``mustache" is strongly entangled with ``Charlie Chaplin". To address this issue, we propose a novel approach to directly suppress such entangled content within the text embedding space of diffusion models. Our method introduces a delta vector that modifies the text embedding to weaken the influence of undesired content in the generated image, and we further demonstrate that this delta vector can be easily obtained through a zero-shot approach. Furthermore, we propose a Selective Suppression with Delta Vector (SSDV) method to adapt delta vector into the cross-attention mechanism, enabling more effective suppression of unwanted content in regions where it would otherwise be generated. Additionally, we enabled more precise suppression in personalized T2I models by optimizing delta vector, which previous baselines were unable to achieve. Extensive experimental results demonstrate that our approach significantly outperforms existing methods, both in terms of quantitative and qualitative metrics.
☆ PQ-DAF: Pose-driven Quality-controlled Data Augmentation for Data-scarce Driver Distraction Detection
Driver distraction detection is essential for improving traffic safety and reducing road accidents. However, existing models often suffer from degraded generalization when deployed in real-world scenarios. This limitation primarily arises from the few-shot learning challenge caused by the high cost of data annotation in practical environments, as well as the substantial domain shift between training datasets and target deployment conditions. To address these issues, we propose a Pose-driven Quality-controlled Data Augmentation Framework (PQ-DAF) that leverages a vision-language model for sample filtering to cost-effectively expand training data and enhance cross-domain robustness. Specifically, we employ a Progressive Conditional Diffusion Model (PCDMs) to accurately capture key driver pose features and synthesize diverse training examples. A sample quality assessment module, built upon the CogVLM vision-language model, is then introduced to filter out low-quality synthetic samples based on a confidence threshold, ensuring the reliability of the augmented dataset. Extensive experiments demonstrate that PQ-DAF substantially improves performance in few-shot driver distraction detection, achieving significant gains in model generalization under data-scarce conditions.
comment: 11 pages, 6 figures
☆ Unlocking Robust Semantic Segmentation Performance via Label-only Elastic Deformations against Implicit Label Noise
While previous studies on image segmentation focus on handling severe (or explicit) label noise, real-world datasets also exhibit subtle (or implicit) label imperfections. These arise from inherent challenges, such as ambiguous object boundaries and annotator variability. Although not explicitly present, such mild and latent noise can still impair model performance. Typical data augmentation methods, which apply identical transformations to the image and its label, risk amplifying these subtle imperfections and limiting the model's generalization capacity. In this paper, we introduce NSegment+, a novel augmentation framework that decouples image and label transformations to address such realistic noise for semantic segmentation. By introducing controlled elastic deformations only to segmentation labels while preserving the original images, our method encourages models to focus on learning robust representations of object structures despite minor label inconsistencies. Extensive experiments demonstrate that NSegment+ consistently improves performance, achieving mIoU gains of up to +2.29, +2.38, +1.75, and +3.39 in average on Vaihingen, LoveDA, Cityscapes, and PASCAL VOC, respectively-even without bells and whistles, highlighting the importance of addressing implicit label noise. These gains can be further amplified when combined with other training tricks, including CutMix and Label Smoothing.
☆ Towards Spatially Consistent Image Generation: On Incorporating Intrinsic Scene Properties into Diffusion Models
Image generation models trained on large datasets can synthesize high-quality images but often produce spatially inconsistent and distorted images due to limited information about the underlying structures and spatial layouts. In this work, we leverage intrinsic scene properties (e.g., depth, segmentation maps) that provide rich information about the underlying scene, unlike prior approaches that solely rely on image-text pairs or use intrinsics as conditional inputs. Our approach aims to co-generate both images and their corresponding intrinsics, enabling the model to implicitly capture the underlying scene structure and generate more spatially consistent and realistic images. Specifically, we first extract rich intrinsic scene properties from a large image dataset with pre-trained estimators, eliminating the need for additional scene information or explicit 3D representations. We then aggregate various intrinsic scene properties into a single latent variable using an autoencoder. Building upon pre-trained large-scale Latent Diffusion Models (LDMs), our method simultaneously denoises the image and intrinsic domains by carefully sharing mutual information so that the image and intrinsic reflect each other without degrading image quality. Experimental results demonstrate that our method corrects spatial inconsistencies and produces a more natural layout of scenes while maintaining the fidelity and textual alignment of the base model (e.g., Stable Diffusion).
☆ Contrast Sensitivity Function of Multimodal Vision-Language Models
Assessing the alignment of multimodal vision-language models~(VLMs) with human perception is essential to understand how they perceive low-level visual features. A key characteristic of human vision is the contrast sensitivity function (CSF), which describes sensitivity to spatial frequency at low-contrasts. Here, we introduce a novel behavioral psychophysics-inspired method to estimate the CSF of chat-based VLMs by directly prompting them to judge pattern visibility at different contrasts for each frequency. This methodology is closer to the real experiments in psychophysics than the previously reported. Using band-pass filtered noise images and a diverse set of prompts, we assess model responses across multiple architectures. We find that while some models approximate human-like CSF shape or magnitude, none fully replicate both. Notably, prompt phrasing has a large effect on the responses, raising concerns about prompt stability. Our results provide a new framework for probing visual sensitivity in multimodal models and reveal key gaps between their visual representations and human perception.
☆ AtomDiffuser: Time-Aware Degradation Modeling for Drift and Beam Damage in STEM Imaging
Scanning transmission electron microscopy (STEM) plays a critical role in modern materials science, enabling direct imaging of atomic structures and their evolution under external interferences. However, interpreting time-resolved STEM data remains challenging due to two entangled degradation effects: spatial drift caused by mechanical and thermal instabilities, and beam-induced signal loss resulting from radiation damage. These factors distort both geometry and intensity in complex, temporally correlated ways, making it difficult for existing methods to explicitly separate their effects or model material dynamics at atomic resolution. In this work, we present AtomDiffuser, a time-aware degradation modeling framework that disentangles sample drift and radiometric attenuation by predicting an affine transformation and a spatially varying decay map between any two STEM frames. Unlike traditional denoising or registration pipelines, our method leverages degradation as a physically heuristic, temporally conditioned process, enabling interpretable structural evolutions across time. Trained on synthetic degradation processes, AtomDiffuser also generalizes well to real-world cryo-STEM data. It further supports high-resolution degradation inference and drift alignment, offering tools for visualizing and quantifying degradation patterns that correlate with radiation-induced atomic instabilities.
☆ Improving OCR for Historical Texts of Multiple Languages
This paper presents our methodology and findings from three tasks across Optical Character Recognition (OCR) and Document Layout Analysis using advanced deep learning techniques. First, for the historical Hebrew fragments of the Dead Sea Scrolls, we enhanced our dataset through extensive data augmentation and employed the Kraken and TrOCR models to improve character recognition. In our analysis of 16th to 18th-century meeting resolutions task, we utilized a Convolutional Recurrent Neural Network (CRNN) that integrated DeepLabV3+ for semantic segmentation with a Bidirectional LSTM, incorporating confidence-based pseudolabeling to refine our model. Finally, for modern English handwriting recognition task, we applied a CRNN with a ResNet34 encoder, trained using the Connectionist Temporal Classification (CTC) loss function to effectively capture sequential dependencies. This report offers valuable insights and suggests potential directions for future research.
☆ Glo-DMU: A Deep Morphometry Framework of Ultrastructural Characterization in Glomerular Electron Microscopic Images
Complex and diverse ultrastructural features can indicate the type, progression, and prognosis of kidney diseases. Recently, computational pathology combined with deep learning methods has shown tremendous potential in advancing automatic morphological analysis of glomerular ultrastructure. However, current research predominantly focuses on the recognition of individual ultrastructure, which makes it challenging to meet practical diagnostic needs. In this study, we propose the glomerular morphometry framework of ultrastructural characterization (Glo-DMU), which is grounded on three deep models: the ultrastructure segmentation model, the glomerular filtration barrier region classification model, and the electron-dense deposits detection model. Following the conventional protocol of renal biopsy diagnosis, this framework simultaneously quantifies the three most widely used ultrastructural features: the thickness of glomerular basement membrane, the degree of foot process effacement, and the location of electron-dense deposits. We evaluated the 115 patients with 9 renal pathological types in real-world diagnostic scenarios, demonstrating good consistency between automatic quantification results and morphological descriptions in the pathological reports. Glo-DMU possesses the characteristics of full automation, high precision, and high throughput, quantifying multiple ultrastructural features simultaneously, and providing an efficient tool for assisting renal pathologists.
comment: 15 pages, 6 figures
☆ Concepts or Skills? Rethinking Instruction Selection for Multi-modal Models
Vision-language instruction tuning achieves two main purposes: learning visual concepts and learning visual skills. In this paper, we found that vision-language benchmarks fall into the dichotomy of mainly benefiting from training on instructions with similar skills or visual concepts. Inspired by the discovery, we designed a simple targeted training data selection method to optimize the performance of a given benchmark. We first extract the concepts/skills from the benchmark, determine whether the benchmark predominantly benefits from similar concepts or skills, and finally select instructions with the most matching concepts/skills. Experiments on 10+ benchmarks validate the effectiveness of our targeted data selection method, showing +0.9\% over the best existing baseline averaged over all benchmarks and +1.5\% on the skill-focused subset. Our findings underscore the importance of recognizing the inherent trade-off within instruction selection, which requires balancing the acquisition of conceptual knowledge against visual skill.
comment: 11 pages, 1 figure
☆ ReconVLA: Reconstructive Vision-Language-Action Model as Effective Robot Perceiver
Recent advances in Vision-Language-Action (VLA) models have enabled robotic agents to integrate multimodal understanding with action execution. However, our empirical analysis reveals that current VLAs struggle to allocate visual attention to target regions. Instead, visual attention is always dispersed. To guide the visual attention grounding on the correct target, we propose ReconVLA, a reconstructive VLA model with an implicit grounding paradigm. Conditioned on the model's visual outputs, a diffusion transformer aims to reconstruct the gaze region of the image, which corresponds to the target manipulated objects. This process prompts the VLA model to learn fine-grained representations and accurately allocate visual attention, thus effectively leveraging task-specific visual information and conducting precise manipulation. Moreover, we curate a large-scale pretraining dataset comprising over 100k trajectories and 2 million data samples from open-source robotic datasets, further boosting the model's generalization in visual reconstruction. Extensive experiments in simulation and the real world demonstrate the superiority of our implicit grounding method, showcasing its capabilities of precise manipulation and generalization. Our project page is https://zionchow.github.io/ReconVLA/.
☆ Integrating Reinforcement Learning with Visual Generative Models: Foundations and Advances
Generative models have made significant progress in synthesizing visual content, including images, videos, and 3D/4D structures. However, they are typically trained with surrogate objectives such as likelihood or reconstruction loss, which often misalign with perceptual quality, semantic accuracy, or physical realism. Reinforcement learning (RL) offers a principled framework for optimizing non-differentiable, preference-driven, and temporally structured objectives. Recent advances demonstrate its effectiveness in enhancing controllability, consistency, and human alignment across generative tasks. This survey provides a systematic overview of RL-based methods for visual content generation. We review the evolution of RL from classical control to its role as a general-purpose optimization tool, and examine its integration into image, video, and 3D/4D generation. Across these domains, RL serves not only as a fine-tuning mechanism but also as a structural component for aligning generation with complex, high-level goals. We conclude with open challenges and future research directions at the intersection of RL and generative modeling.
comment: Ongoing work
☆ From Pixel to Mask: A Survey of Out-of-Distribution Segmentation
Out-of-distribution (OoD) detection and segmentation have attracted growing attention as concerns about AI security rise. Conventional OoD detection methods identify the existence of OoD objects but lack spatial localization, limiting their usefulness in downstream tasks. OoD segmentation addresses this limitation by localizing anomalous objects at pixel-level granularity. This capability is crucial for safety-critical applications such as autonomous driving, where perception modules must not only detect but also precisely segment OoD objects, enabling targeted control actions and enhancing overall system robustness. In this survey, we group current OoD segmentation approaches into four categories: (i) test-time OoD segmentation, (ii) outlier exposure for supervised training, (iii) reconstruction-based methods, (iv) and approaches that leverage powerful models. We systematically review recent advances in OoD segmentation for autonomous-driving scenarios, identify emerging challenges, and discuss promising future research directions.
☆ Efficient Image Denoising Using Global and Local Circulant Representation
The advancement of imaging devices and countless image data generated everyday impose an increasingly high demand on efficient and effective image denoising. In this paper, we present a computationally simple denoising algorithm, termed Haar-tSVD, aiming to explore the nonlocal self-similarity prior and leverage the connection between principal component analysis (PCA) and the Haar transform under circulant representation. We show that global and local patch correlations can be effectively captured through a unified tensor-singular value decomposition (t-SVD) projection with the Haar transform. This results in a one-step, highly parallelizable filtering method that eliminates the need for learning local bases to represent image patches, striking a balance between denoising speed and performance. Furthermore, we introduce an adaptive noise estimation scheme based on a CNN estimator and eigenvalue analysis to enhance the robustness and adaptability of the proposed method. Experiments on different real-world denoising tasks validate the efficiency and effectiveness of Haar-tSVD for noise removal and detail preservation. Datasets, code and results are publicly available at https://github.com/ZhaomingKong/Haar-tSVD.
☆ Improving Learning of New Diseases through Knowledge-Enhanced Initialization for Federated Adapter Tuning
In healthcare, federated learning (FL) is a widely adopted framework that enables privacy-preserving collaboration among medical institutions. With large foundation models (FMs) demonstrating impressive capabilities, using FMs in FL through cost-efficient adapter tuning has become a popular approach. Given the rapidly evolving healthcare environment, it is crucial for individual clients to quickly adapt to new tasks or diseases by tuning adapters while drawing upon past experiences. In this work, we introduce Federated Knowledge-Enhanced Initialization (FedKEI), a novel framework that leverages cross-client and cross-task transfer from past knowledge to generate informed initializations for learning new tasks with adapters. FedKEI begins with a global clustering process at the server to generalize knowledge across tasks, followed by the optimization of aggregation weights across clusters (inter-cluster weights) and within each cluster (intra-cluster weights) to personalize knowledge transfer for each new task. To facilitate more effective learning of the inter- and intra-cluster weights, we adopt a bi-level optimization scheme that collaboratively learns the global intra-cluster weights across clients and optimizes the local inter-cluster weights toward each client's task objective. Extensive experiments on three benchmark datasets of different modalities, including dermatology, chest X-rays, and retinal OCT, demonstrate FedKEI's advantage in adapting to new diseases compared to state-of-the-art methods.
☆ SynBrain: Enhancing Visual-to-fMRI Synthesis via Probabilistic Representation Learning
Deciphering how visual stimuli are transformed into cortical responses is a fundamental challenge in computational neuroscience. This visual-to-neural mapping is inherently a one-to-many relationship, as identical visual inputs reliably evoke variable hemodynamic responses across trials, contexts, and subjects. However, existing deterministic methods struggle to simultaneously model this biological variability while capturing the underlying functional consistency that encodes stimulus information. To address these limitations, we propose SynBrain, a generative framework that simulates the transformation from visual semantics to neural responses in a probabilistic and biologically interpretable manner. SynBrain introduces two key components: (i) BrainVAE models neural representations as continuous probability distributions via probabilistic learning while maintaining functional consistency through visual semantic constraints; (ii) A Semantic-to-Neural Mapper acts as a semantic transmission pathway, projecting visual semantics into the neural response manifold to facilitate high-fidelity fMRI synthesis. Experimental results demonstrate that SynBrain surpasses state-of-the-art methods in subject-specific visual-to-fMRI encoding performance. Furthermore, SynBrain adapts efficiently to new subjects with few-shot data and synthesizes high-quality fMRI signals that are effective in improving data-limited fMRI-to-image decoding performance. Beyond that, SynBrain reveals functional consistency across trials and subjects, with synthesized signals capturing interpretable patterns shaped by biological neural variability. The code will be made publicly available.
☆ InterSyn: Interleaved Learning for Dynamic Motion Synthesis in the Wild ICCV2025
We present Interleaved Learning for Motion Synthesis (InterSyn), a novel framework that targets the generation of realistic interaction motions by learning from integrated motions that consider both solo and multi-person dynamics. Unlike previous methods that treat these components separately, InterSyn employs an interleaved learning strategy to capture the natural, dynamic interactions and nuanced coordination inherent in real-world scenarios. Our framework comprises two key modules: the Interleaved Interaction Synthesis (INS) module, which jointly models solo and interactive behaviors in a unified paradigm from a first-person perspective to support multiple character interactions, and the Relative Coordination Refinement (REC) module, which refines mutual dynamics and ensures synchronized motions among characters. Experimental results show that the motion sequences generated by InterSyn exhibit higher text-to-motion alignment and improved diversity compared with recent methods, setting a new benchmark for robust and natural motion synthesis. Additionally, our code will be open-sourced in the future to promote further research and development in this area.
comment: Accepted by ICCV2025
☆ A Sub-Pixel Multimodal Optical Remote Sensing Images Matching Method
High-accuracy matching of multimodal optical images is the basis of geometric processing. However, the image matching accuracy is usually degraded by the nonlinear radiation and geometric deformation differences caused by different spectral responses. To address these problems, we proposed a phase consistency weighted least absolute deviation (PCWLAD) sub-pixel template matching method to improve the matching accuracy of multimodal optical images. This method consists of two main steps: coarse matching with the structural similarity index measure (SSIM) and fine matching with WLAD. In the coarse matching step, PCs are calculated without a noise filter to preserve the original structural details, and template matching is performed using the SSIM. In the fine matching step, we applied the radiometric and geometric transformation models between two multimodal PC templates based on the coarse matching. Furthermore, mutual structure filtering is adopted in the model to mitigate the impact of noise within the corresponding templates on the structural consistency, and the WLAD criterion is used to estimate the sub-pixel offset. To evaluate the performance of PCWLAD, we created three types of image datasets: visible to infrared Landsat images, visible to near-infrared close-range images, and visible to infrared uncrewed aerial vehicle (UAV) images. PCWLAD outperformed existing state-of-the-art eight methods in terms of correct matching rate (CMR) and root mean square error (RMSE) and reached an average matching accuracy of approximately 0.4 pixels across all three datasets. Our software and datasets are publicly available at https://github.com/huangtaocsu/PCWLAD.
☆ JRDB-Reasoning: A Difficulty-Graded Benchmark for Visual Reasoning in Robotics
Recent advances in Vision-Language Models (VLMs) and large language models (LLMs) have greatly enhanced visual reasoning, a key capability for embodied AI agents like robots. However, existing visual reasoning benchmarks often suffer from several limitations: they lack a clear definition of reasoning complexity, offer have no control to generate questions over varying difficulty and task customization, and fail to provide structured, step-by-step reasoning annotations (workflows). To bridge these gaps, we formalize reasoning complexity, introduce an adaptive query engine that generates customizable questions of varying complexity with detailed intermediate annotations, and extend the JRDB dataset with human-object interaction and geometric relationship annotations to create JRDB-Reasoning, a benchmark tailored for visual reasoning in human-crowded environments. Our engine and benchmark enable fine-grained evaluation of visual reasoning frameworks and dynamic assessment of visual-language models across reasoning levels.
☆ VIFSS: View-Invariant and Figure Skating-Specific Pose Representation Learning for Temporal Action Segmentation
Understanding human actions from videos plays a critical role across various domains, including sports analytics. In figure skating, accurately recognizing the type and timing of jumps a skater performs is essential for objective performance evaluation. However, this task typically requires expert-level knowledge due to the fine-grained and complex nature of jump procedures. While recent approaches have attempted to automate this task using Temporal Action Segmentation (TAS), there are two major limitations to TAS for figure skating: the annotated data is insufficient, and existing methods do not account for the inherent three-dimensional aspects and procedural structure of jump actions. In this work, we propose a new TAS framework for figure skating jumps that explicitly incorporates both the three-dimensional nature and the semantic procedure of jump movements. First, we propose a novel View-Invariant, Figure Skating-Specific pose representation learning approach (VIFSS) that combines contrastive learning as pre-training and action classification as fine-tuning. For view-invariant contrastive pre-training, we construct FS-Jump3D, the first publicly available 3D pose dataset specialized for figure skating jumps. Second, we introduce a fine-grained annotation scheme that marks the ``entry (preparation)'' and ``landing'' phases, enabling TAS models to learn the procedural structure of jumps. Extensive experiments demonstrate the effectiveness of our framework. Our method achieves over 92% F1@50 on element-level TAS, which requires recognizing both jump types and rotation levels. Furthermore, we show that view-invariant contrastive pre-training is particularly effective when fine-tuning data is limited, highlighting the practicality of our approach in real-world scenarios.
☆ High Fidelity Text to Image Generation with Contrastive Alignment and Structural Guidance
This paper addresses the performance bottlenecks of existing text-driven image generation methods in terms of semantic alignment accuracy and structural consistency. A high-fidelity image generation method is proposed by integrating text-image contrastive constraints with structural guidance mechanisms. The approach introduces a contrastive learning module that builds strong cross-modal alignment constraints to improve semantic matching between text and image. At the same time, structural priors such as semantic layout maps or edge sketches are used to guide the generator in spatial-level structural modeling. This enhances the layout completeness and detail fidelity of the generated images. Within the overall framework, the model jointly optimizes contrastive loss, structural consistency loss, and semantic preservation loss. A multi-objective supervision mechanism is adopted to improve the semantic consistency and controllability of the generated content. Systematic experiments are conducted on the COCO-2014 dataset. Sensitivity analyses are performed on embedding dimensions, text length, and structural guidance strength. Quantitative metrics confirm the superior performance of the proposed method in terms of CLIP Score, FID, and SSIM. The results show that the method effectively bridges the gap between semantic alignment and structural fidelity without increasing computational complexity. It demonstrates a strong ability to generate semantically clear and structurally complete images, offering a viable technical path for joint text-image modeling and image generation.
☆ Pose-Robust Calibration Strategy for Point-of-Gaze Estimation on Mobile Phones BMVC
Although appearance-based point-of-gaze (PoG) estimation has improved, the estimators still struggle to generalize across individuals due to personal differences. Therefore, person-specific calibration is required for accurate PoG estimation. However, calibrated PoG estimators are often sensitive to head pose variations. To address this, we investigate the key factors influencing calibrated estimators and explore pose-robust calibration strategies. Specifically, we first construct a benchmark, MobilePoG, which includes facial images from 32 individuals focusing on designated points under either fixed or continuously changing head poses. Using this benchmark, we systematically analyze how the diversity of calibration points and head poses influences estimation accuracy. Our experiments show that introducing a wider range of head poses during calibration improves the estimator's ability to handle pose variation. Building on this insight, we propose a dynamic calibration strategy in which users fixate on calibration points while moving their phones. This strategy naturally introduces head pose variation during a user-friendly and efficient calibration process, ultimately producing a better calibrated PoG estimator that is less sensitive to head pose variations than those using conventional calibration strategies. Codes and datasets are available at our project page.
comment: Accepted for British Machine Vision Conference (BMVC) 2025
☆ MRFD: Multi-Region Fusion Decoding with Self-Consistency for Mitigating Hallucinations in LVLMs
Large Vision-Language Models (LVLMs) have shown strong performance across multimodal tasks. However, they often produce hallucinations -- text that is inconsistent with visual input, due to the limited ability to verify information in different regions of the image. To address this, we propose Multi-Region Fusion Decoding (MRFD), a training-free decoding method that improves factual grounding by modeling inter-region consistency. MRFD identifies salient regions using cross-attention, generates initial responses for each, and computes reliability weights based on Jensen-Shannon Divergence (JSD) among the responses. These weights guide a consistency-aware fusion of per-region predictions, using region-aware prompts inspired by Chain-of-Thought reasoning. Experiments across multiple LVLMs and benchmarks show that MRFD significantly reduces hallucinations and improves response factuality without requiring model updates.
☆ DINOMotion: advanced robust tissue motion tracking with DINOv2 in 2D-Cine MRI-guided radiotherapy
Accurate tissue motion tracking is critical to ensure treatment outcome and safety in 2D-Cine MRI-guided radiotherapy. This is typically achieved by registration of sequential images, but existing methods often face challenges with large misalignments and lack of interpretability. In this paper, we introduce DINOMotion, a novel deep learning framework based on DINOv2 with Low-Rank Adaptation (LoRA) layers for robust, efficient, and interpretable motion tracking. DINOMotion automatically detects corresponding landmarks to derive optimal image registration, enhancing interpretability by providing explicit visual correspondences between sequential images. The integration of LoRA layers reduces trainable parameters, improving training efficiency, while DINOv2's powerful feature representations offer robustness against large misalignments. Unlike iterative optimization-based methods, DINOMotion directly computes image registration at test time. Our experiments on volunteer and patient datasets demonstrate its effectiveness in estimating both linear and nonlinear transformations, achieving Dice scores of 92.07% for the kidney, 90.90% for the liver, and 95.23% for the lung, with corresponding Hausdorff distances of 5.47 mm, 8.31 mm, and 6.72 mm, respectively. DINOMotion processes each scan in approximately 30ms and consistently outperforms state-of-the-art methods, particularly in handling large misalignments. These results highlight its potential as a robust and interpretable solution for real-time motion tracking in 2D-Cine MRI-guided radiotherapy.
comment: Accepted to IEEE Transactions on Biomedical Engineering (TMBE), 14 pages
☆ Deep Learning for Crack Detection: A Review of Learning Paradigms, Generalizability, and Datasets
Crack detection plays a crucial role in civil infrastructures, including inspection of pavements, buildings, etc., and deep learning has significantly advanced this field in recent years. While numerous technical and review papers exist in this domain, emerging trends are reshaping the landscape. These shifts include transitions in learning paradigms (from fully supervised learning to semi-supervised, weakly-supervised, unsupervised, few-shot, domain adaptation and fine-tuning foundation models), improvements in generalizability (from single-dataset performance to cross-dataset evaluation), and diversification in dataset reacquisition (from RGB images to specialized sensor-based data). In this review, we systematically analyze these trends and highlight representative works. Additionally, we introduce a new dataset collected with 3D laser scans, 3DCrack, to support future research and conduct extensive benchmarking experiments to establish baselines for commonly used deep learning methodologies, including recent foundation models. Our findings provide insights into the evolving methodologies and future directions in deep learning-based crack detection. Project page: https://github.com/nantonzhang/Awesome-Crack-Detection
☆ UWB-PostureGuard: A Privacy-Preserving RF Sensing System for Continuous Ergonomic Sitting Posture Monitoring
Improper sitting posture during prolonged computer use has become a significant public health concern. Traditional posture monitoring solutions face substantial barriers, including privacy concerns with camera-based systems and user discomfort with wearable sensors. This paper presents UWB-PostureGuard, a privacy-preserving ultra-wideband (UWB) sensing system that advances mobile technologies for preventive health management through continuous, contactless monitoring of ergonomic sitting posture. Our system leverages commercial UWB devices, utilizing comprehensive feature engineering to extract multiple ergonomic sitting posture features. We develop PoseGBDT to effectively capture temporal dependencies in posture patterns, addressing limitations of traditional frame-wise classification approaches. Extensive real-world evaluation across 10 participants and 19 distinct postures demonstrates exceptional performance, achieving 99.11% accuracy while maintaining robustness against environmental variables such as clothing thickness, additional devices, and furniture configurations. Our system provides a scalable, privacy-preserving mobile health solution on existing platforms for proactive ergonomic management, improving quality of life at low costs.
☆ HierOctFusion: Multi-scale Octree-based 3D Shape Generation via Part-Whole-Hierarchy Message Passing
3D content generation remains a fundamental yet challenging task due to the inherent structural complexity of 3D data. While recent octree-based diffusion models offer a promising balance between efficiency and quality through hierarchical generation, they often overlook two key insights: 1) existing methods typically model 3D objects as holistic entities, ignoring their semantic part hierarchies and limiting generalization; and 2) holistic high-resolution modeling is computationally expensive, whereas real-world objects are inherently sparse and hierarchical, making them well-suited for layered generation. Motivated by these observations, we propose HierOctFusion, a part-aware multi-scale octree diffusion model that enhances hierarchical feature interaction for generating fine-grained and sparse object structures. Furthermore, we introduce a cross-attention conditioning mechanism that injects part-level information into the generation process, enabling semantic features to propagate effectively across hierarchical levels from parts to the whole. Additionally, we construct a 3D dataset with part category annotations using a pre-trained segmentation model to facilitate training and evaluation. Experiments demonstrate that HierOctFusion achieves superior shape quality and efficiency compared to prior methods.
☆ LD-LAudio-V1: Video-to-Long-Form-Audio Generation Extension with Dual Lightweight Adapters ICCV
Generating high-quality and temporally synchronized audio from video content is essential for video editing and post-production tasks, enabling the creation of semantically aligned audio for silent videos. However, most existing approaches focus on short-form audio generation for video segments under 10 seconds or rely on noisy datasets for long-form video-to-audio zsynthesis. To address these limitations, we introduce LD-LAudio-V1, an extension of state-of-the-art video-to-audio models and it incorporates dual lightweight adapters to enable long-form audio generation. In addition, we release a clean and human-annotated video-to-audio dataset that contains pure sound effects without noise or artifacts. Our method significantly reduces splicing artifacts and temporal inconsistencies while maintaining computational efficiency. Compared to direct fine-tuning with short training videos, LD-LAudio-V1 achieves significant improvements across multiple metrics: $FD_{\text{passt}}$ 450.00 $\rightarrow$ 327.29 (+27.27%), $FD_{\text{panns}}$ 34.88 $\rightarrow$ 22.68 (+34.98%), $FD_{\text{vgg}}$ 3.75 $\rightarrow$ 1.28 (+65.87%), $KL_{\text{panns}}$ 2.49 $\rightarrow$ 2.07 (+16.87%), $KL_{\text{passt}}$ 1.78 $\rightarrow$ 1.53 (+14.04%), $IS_{\text{panns}}$ 4.17 $\rightarrow$ 4.30 (+3.12%), $IB_{\text{score}}$ 0.25 $\rightarrow$ 0.28 (+12.00%), $Energy\Delta10\text{ms}$ 0.3013 $\rightarrow$ 0.1349 (+55.23%), $Energy\Delta10\text{ms(vs.GT)}$ 0.0531 $\rightarrow$ 0.0288 (+45.76%), and $Sem.\,Rel.$ 2.73 $\rightarrow$ 3.28 (+20.15%). Our dataset aims to facilitate further research in long-form video-to-audio generation and is available at https://github.com/deepreasonings/long-form-video2audio.
comment: Gen4AVC@ICCV: 1st Workshop on Generative AI for Audio-Visual Content Creation
☆ Data-Driven Abdominal Phenotypes of Type 2 Diabetes in Lean, Overweight, and Obese Cohorts
Purpose: Although elevated BMI is a well-known risk factor for type 2 diabetes, the disease's presence in some lean adults and absence in others with obesity suggests that detailed body composition may uncover abdominal phenotypes of type 2 diabetes. With AI, we can now extract detailed measurements of size, shape, and fat content from abdominal structures in 3D clinical imaging at scale. This creates an opportunity to empirically define body composition signatures linked to type 2 diabetes risk and protection using large-scale clinical data. Approach: To uncover BMI-specific diabetic abdominal patterns from clinical CT, we applied our design four times: once on the full cohort (n = 1,728) and once on lean (n = 497), overweight (n = 611), and obese (n = 620) subgroups separately. Briefly, our experimental design transforms abdominal scans into collections of explainable measurements through segmentation, classifies type 2 diabetes through a cross-validated random forest, measures how features contribute to model-estimated risk or protection through SHAP analysis, groups scans by shared model decision patterns (clustering from SHAP) and links back to anatomical differences (classification). Results: The random-forests achieved mean AUCs of 0.72-0.74. There were shared type 2 diabetes signatures in each group; fatty skeletal muscle, older age, greater visceral and subcutaneous fat, and a smaller or fat-laden pancreas. Univariate logistic regression confirmed the direction of 14-18 of the top 20 predictors within each subgroup (p < 0.05). Conclusions: Our findings suggest that abdominal drivers of type 2 diabetes may be consistent across weight classes.
☆ Advancing 3D Scene Understanding with MV-ScanQA Multi-View Reasoning Evaluation and TripAlign Pre-training Dataset ACM MM 25
The advancement of 3D vision-language (3D VL) learning is hindered by several limitations in existing 3D VL datasets: they rarely necessitate reasoning beyond a close range of objects in single viewpoint, and annotations often link instructions to single objects, missing richer contextual alignments between multiple objects. This significantly curtails the development of models capable of deep, multi-view 3D scene understanding over distant objects. To address these challenges, we introduce MV-ScanQA, a novel 3D question answering dataset where 68% of questions explicitly require integrating information from multiple views (compared to less than 7% in existing datasets), thereby rigorously testing multi-view compositional reasoning. To facilitate the training of models for such demanding scenarios, we present TripAlign dataset, a large-scale and low-cost 2D-3D-language pre-training corpus containing 1M <2D view, set of 3D objects, text> triplets that explicitly aligns groups of contextually related objects with text, providing richer, view-grounded multi-object multimodal alignment signals than previous single-object annotations. We further develop LEGO, a baseline method for the multi-view reasoning challenge in MV-ScanQA, transferring knowledge from pre-trained 2D LVLMs to 3D domain with TripAlign. Empirically, LEGO pre-trained on TripAlign achieves state-of-the-art performance not only on the proposed MV-ScanQA, but also on existing benchmarks for 3D dense captioning and question answering. Datasets and code are available at https://matthewdm0816.github.io/tripalign-mvscanqa.
comment: Accepeted to ACM MM 25
☆ GenFlowRL: Shaping Rewards with Generative Object-Centric Flow in Visual Reinforcement Learning ICCV 2025
Recent advances have shown that video generation models can enhance robot learning by deriving effective robot actions through inverse dynamics. However, these methods heavily depend on the quality of generated data and struggle with fine-grained manipulation due to the lack of environment feedback. While video-based reinforcement learning improves policy robustness, it remains constrained by the uncertainty of video generation and the challenges of collecting large-scale robot datasets for training diffusion models. To address these limitations, we propose GenFlowRL, which derives shaped rewards from generated flow trained from diverse cross-embodiment datasets. This enables learning generalizable and robust policies from diverse demonstrations using low-dimensional, object-centric features. Experiments on 10 manipulation tasks, both in simulation and real-world cross-embodiment evaluations, demonstrate that GenFlowRL effectively leverages manipulation features extracted from generated object-centric flow, consistently achieving superior performance across diverse and challenging scenarios. Our Project Page: https://colinyu1.github.io/genflowrl
comment: Published at ICCV 2025
☆ MedSAMix: A Training-Free Model Merging Approach for Medical Image Segmentation
Universal medical image segmentation models have emerged as a promising paradigm due to their strong generalizability across diverse tasks, showing great potential for a wide range of clinical applications. This potential has been partly driven by the success of general-purpose vision models such as the Segment Anything Model (SAM), which has inspired the development of various fine-tuned variants for medical segmentation tasks. However, fine-tuned variants like MedSAM are trained on comparatively limited medical imaging data that often suffers from heterogeneity, scarce annotations, and distributional shifts. These challenges limit their ability to generalize across a wide range of medical segmentation tasks. In this regard, we propose MedSAMix, a training-free model merging method that integrates the strengths of both generalist models (e.g., SAM) and specialist models (e.g., MedSAM) for medical image segmentation. In contrast to traditional model merging approaches that rely on manual configuration and often result in suboptimal outcomes, we propose a zero-order optimization method to automatically discover optimal layer-wise merging solutions. Furthermore, for clinical applications, we develop two regimes to meet the demand of domain-specificity and generalizability in different scenarios by single-task optimization and multi-objective optimization respectively. Extensive evaluations on 25 medical segmentation tasks demonstrate that MedSAMix effectively mitigates model bias and consistently improves performance in both domain-specific accuracy and generalization, achieving improvements of 6.67% on specialized tasks and 4.37% on multi-task evaluations.
☆ Can Multi-modal (reasoning) LLMs detect document manipulation?
Document fraud poses a significant threat to industries reliant on secure and verifiable documentation, necessitating robust detection mechanisms. This study investigates the efficacy of state-of-the-art multi-modal large language models (LLMs)-including OpenAI O1, OpenAI 4o, Gemini Flash (thinking), Deepseek Janus, Grok, Llama 3.2 and 4, Qwen 2 and 2.5 VL, Mistral Pixtral, and Claude 3.5 and 3.7 Sonnet-in detecting fraudulent documents. We benchmark these models against each other and prior work on document fraud detection techniques using a standard dataset with real transactional documents. Through prompt optimization and detailed analysis of the models' reasoning processes, we evaluate their ability to identify subtle indicators of fraud, such as tampered text, misaligned formatting, and inconsistent transactional sums. Our results reveal that top-performing multi-modal LLMs demonstrate superior zero-shot generalization, outperforming conventional methods on out-of-distribution datasets, while several vision LLMs exhibit inconsistent or subpar performance. Notably, model size and advanced reasoning capabilities show limited correlation with detection accuracy, suggesting task-specific fine-tuning is critical. This study underscores the potential of multi-modal LLMs in enhancing document fraud detection systems and provides a foundation for future research into interpretable and scalable fraud mitigation strategies.
comment: arXiv admin note: text overlap with arXiv:2503.20084
☆ Are Large Pre-trained Vision Language Models Effective Construction Safety Inspectors?
Construction safety inspections typically involve a human inspector identifying safety concerns on-site. With the rise of powerful Vision Language Models (VLMs), researchers are exploring their use for tasks such as detecting safety rule violations from on-site images. However, there is a lack of open datasets to comprehensively evaluate and further fine-tune VLMs in construction safety inspection. Current applications of VLMs use small, supervised datasets, limiting their applicability in tasks they are not directly trained for. In this paper, we propose the ConstructionSite 10k, featuring 10,000 construction site images with annotations for three inter-connected tasks, including image captioning, safety rule violation visual question answering (VQA), and construction element visual grounding. Our subsequent evaluation of current state-of-the-art large pre-trained VLMs shows notable generalization abilities in zero-shot and few-shot settings, while additional training is needed to make them applicable to actual construction sites. This dataset allows researchers to train and evaluate their own VLMs with new architectures and techniques, providing a valuable benchmark for construction safety inspection.
☆ Deep Learning-Based Automated Segmentation of Uterine Myomas
Uterine fibroids (myomas) are the most common benign tumors of the female reproductive system, particularly among women of childbearing age. With a prevalence exceeding 70%, they pose a significant burden on female reproductive health. Clinical symptoms such as abnormal uterine bleeding, infertility, pelvic pain, and pressure-related discomfort play a crucial role in guiding treatment decisions, which are largely influenced by the size, number, and anatomical location of the fibroids. Magnetic Resonance Imaging (MRI) is a non-invasive and highly accurate imaging modality commonly used by clinicians for the diagnosis of uterine fibroids. Segmenting uterine fibroids requires a precise assessment of both the uterus and fibroids on MRI scans, including measurements of volume, shape, and spatial location. However, this process is labor intensive and time consuming and subjected to variability due to intra- and inter-expert differences at both pre- and post-treatment stages. As a result, there is a critical need for an accurate and automated segmentation method for uterine fibroids. In recent years, deep learning algorithms have shown re-markable improvements in medical image segmentation, outperforming traditional methods. These approaches offer the potential for fully automated segmentation. Several studies have explored the use of deep learning models to achieve automated segmentation of uterine fibroids. However, most of the previous work has been conducted using private datasets, which poses challenges for validation and comparison between studies. In this study, we leverage the publicly available Uterine Myoma MRI Dataset (UMD) to establish a baseline for automated segmentation of uterine fibroids, enabling standardized evaluation and facilitating future research in this domain.
☆ Match & Choose: Model Selection Framework for Fine-tuning Text-to-Image Diffusion Models
Text-to-image (T2I) models based on diffusion and transformer architectures advance rapidly. They are often pretrained on large corpora, and openly shared on a model platform, such as HuggingFace. Users can then build up AI applications, e.g., generating media contents, by adopting pretrained T2I models and fine-tuning them on the target dataset. While public pretrained T2I models facilitate the democratization of the models, users face a new challenge: which model can be best fine-tuned based on the target data domain? Model selection is well addressed in classification tasks, but little is known in (pretrained) T2I models and their performance indication on the target domain. In this paper, we propose the first model selection framework, M&C, which enables users to efficiently choose a pretrained T2I model from a model platform without exhaustively fine-tuning them all on the target dataset. The core of M&C is a matching graph, which consists of: (i) nodes of available models and profiled datasets, and (ii) edges of model-data and data-data pairs capturing the fine-tuning performance and data similarity, respectively. We then build a model that, based on the inputs of model/data feature, and, critically, the graph embedding feature, extracted from the matching graph, predicts the model achieving the best quality after fine-tuning for the target domain. We evaluate M&C on choosing across ten T2I models for 32 datasets against three baselines. Our results show that M&C successfully predicts the best model for fine-tuning in 61.3% of the cases and a closely performing model for the rest.
☆ Failures to Surface Harmful Contents in Video Large Language Models
Video Large Language Models (VideoLLMs) are increasingly deployed on numerous critical applications, where users rely on auto-generated summaries while casually skimming the video stream. We show that this interaction hides a critical safety gap: if harmful content is embedded in a video, either as full-frame inserts or as small corner patches, state-of-the-art VideoLLMs rarely mention the harmful content in the output, despite its clear visibility to human viewers. A root-cause analysis reveals three compounding design flaws: (1) insufficient temporal coverage resulting from the sparse, uniformly spaced frame sampling used by most leading VideoLLMs, (2) spatial information loss introduced by aggressive token downsampling within sampled frames, and (3) encoder-decoder disconnection, whereby visual cues are only weakly utilized during text generation. Leveraging these insights, we craft three zero-query black-box attacks, aligning with these flaws in the processing pipeline. Our large-scale evaluation across five leading VideoLLMs shows that the harmfulness omission rate exceeds 90% in most cases. Even when harmful content is clearly present in all frames, these models consistently fail to identify it. These results underscore a fundamental vulnerability in current VideoLLMs' designs and highlight the urgent need for sampling strategies, token compression, and decoding mechanisms that guarantee semantic coverage rather than speed alone.
comment: 11 pages, 8 figures
☆ Not There Yet: Evaluating Vision Language Models in Simulating the Visual Perception of People with Low Vision
Advances in vision language models (VLMs) have enabled the simulation of general human behavior through their reasoning and problem solving capabilities. However, prior research has not investigated such simulation capabilities in the accessibility domain. In this paper, we evaluate the extent to which VLMs can simulate the vision perception of low vision individuals when interpreting images. We first compile a benchmark dataset through a survey study with 40 low vision participants, collecting their brief and detailed vision information and both open-ended and multiple-choice image perception and recognition responses to up to 25 images. Using these responses, we construct prompts for VLMs (GPT-4o) to create simulated agents of each participant, varying the included information on vision information and example image responses. We evaluate the agreement between VLM-generated responses and participants' original answers. Our results indicate that VLMs tend to infer beyond the specified vision ability when given minimal prompts, resulting in low agreement (0.59). The agreement between the agent' and participants' responses remains low when only either the vision information (0.59) or example image responses (0.59) are provided, whereas a combination of both significantly increase the agreement (0.70, p < 0.0001). Notably, a single example combining both open-ended and multiple-choice responses, offers significant performance improvements over either alone (p < 0.0001), while additional examples provided minimal benefits (p > 0.05).
☆ EVCtrl: Efficient Control Adapter for Visual Generation
Visual generation includes both image and video generation, training probabilistic models to create coherent, diverse, and semantically faithful content from scratch. While early research focused on unconditional sampling, practitioners now demand controllable generation that allows precise specification of layout, pose, motion, or style. While ControlNet grants precise spatial-temporal control, its auxiliary branch markedly increases latency and introduces redundant computation in both uncontrolled regions and denoising steps, especially for video. To address this problem, we introduce EVCtrl, a lightweight, plug-and-play control adapter that slashes overhead without retraining the model. Specifically, we propose a spatio-temporal dual caching strategy for sparse control information. For spatial redundancy, we first profile how each layer of DiT-ControlNet responds to fine-grained control, then partition the network into global and local functional zones. A locality-aware cache focuses computation on the local zones that truly need the control signal, skipping the bulk of redundant computation in global regions. For temporal redundancy, we selectively omit unnecessary denoising steps to improve efficiency. Extensive experiments on CogVideo-Controlnet, Wan2.1-Controlnet, and Flux demonstrate that our method is effective in image and video control generation without the need for training. For example, it achieves 2.16 and 2.05 times speedups on CogVideo-Controlnet and Wan2.1-Controlnet, respectively, with almost no degradation in generation quality.Codes are available in the supplementary materials.
☆ CSNR and JMIM Based Spectral Band Selection for Reducing Metamerism in Urban Driving
Protecting Vulnerable Road Users (VRU) is a critical safety challenge for automotive perception systems, particularly under visual ambiguity caused by metamerism, a phenomenon where distinct materials appear similar in RGB imagery. This work investigates hyperspectral imaging (HSI) to overcome this limitation by capturing unique material signatures beyond the visible spectrum, especially in the Near-Infrared (NIR). To manage the inherent high-dimensionality of HSI data, we propose a band selection strategy that integrates information theory techniques (joint mutual information maximization, correlation analysis) with a novel application of an image quality metric (contrast signal-to-noise ratio) to identify the most spectrally informative bands. Using the Hyperspectral City V2 (H-City) dataset, we identify three informative bands (497 nm, 607 nm, and 895 nm, $\pm$27 nm) and reconstruct pseudo-color images for comparison with co-registered RGB. Quantitative results demonstrate increased dissimilarity and perceptual separability of VRU from the background. The selected HSI bands yield improvements of 70.24%, 528.46%, 1206.83%, and 246.62% for dissimilarity (Euclidean, SAM, $T^2$) and perception (CIE $\Delta E$) metrics, consistently outperforming RGB and confirming a marked reduction in metameric confusion. By providing a spectrally optimized input, our method enhances VRU separability, establishing a robust foundation for downstream perception tasks in Advanced Driver Assistance Systems (ADAS) and Autonomous Driving (AD), ultimately contributing to improved road safety.
comment: Under Review at IEEE OJITS, July, 2025
☆ ORBIT: An Object Property Reasoning Benchmark for Visual Inference Tasks
While vision-language models (VLMs) have made remarkable progress on many popular visual question answering (VQA) benchmarks, it remains unclear whether they abstract and reason over depicted objects. Inspired by human object categorisation, object property reasoning involves identifying and recognising low-level details and higher-level abstractions. While current VQA benchmarks consider a limited set of object property attributes like size, they typically blend perception and reasoning, and lack representativeness in terms of reasoning and image categories. To this end, we introduce a systematic evaluation framework with images of three representative types, three reasoning levels of increasing complexity, and four object property dimensions driven by prior work on commonsense reasoning. We develop a procedure to instantiate this benchmark into ORBIT, a multi-level reasoning VQA benchmark for object properties comprising 360 images paired with a total of 1,080 count-based questions. Experiments with 12 state-of-the-art VLMs in zero-shot settings reveal significant limitations compared to humans, with the best-performing model only reaching 40\% accuracy. VLMs struggle particularly with realistic (photographic) images, counterfactual reasoning about physical and functional properties, and higher counts. ORBIT points to the need to develop methods for scalable benchmarking, generalize annotation guidelines, and explore additional reasoning VLMs. We make the ORBIT benchmark and the experimental code available to support such endeavors.
♻ ☆ Yan: Foundational Interactive Video Generation
We present Yan, a foundational framework for interactive video generation, covering the entire pipeline from simulation and generation to editing. Specifically, Yan comprises three core modules. AAA-level Simulation: We design a highly-compressed, low-latency 3D-VAE coupled with a KV-cache-based shift-window denoising inference process, achieving real-time 1080P/60FPS interactive simulation. Multi-Modal Generation: We introduce a hierarchical autoregressive caption method that injects game-specific knowledge into open-domain multi-modal video diffusion models (VDMs), then transforming the VDM into a frame-wise, action-controllable, real-time infinite interactive video generator. Notably, when the textual and visual prompts are sourced from different domains, the model demonstrates strong generalization, allowing it to blend and compose the style and mechanics across domains flexibly according to user prompts. Multi-Granularity Editing: We propose a hybrid model that explicitly disentangles interactive mechanics simulation from visual rendering, enabling multi-granularity video content editing during interaction through text. Collectively, Yan offers an integration of these modules, pushing interactive video generation beyond isolated capabilities toward a comprehensive AI-driven interactive creation paradigm, paving the way for the next generation of creative tools, media, and entertainment. The project page is: https://greatx3.github.io/Yan/.
GLM-4.1V-Thinking and GLM-4.5V: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
We present GLM-4.1V-Thinking and GLM-4.5V, a family of vision-language models (VLMs) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document interpretation. In a comprehensive evaluation across 42 public benchmarks, GLM-4.5V achieves state-of-the-art performance on nearly all tasks among open-source models of similar size, and demonstrates competitive or even superior results compared to closed-source models such as Gemini-2.5-Flash on challenging tasks including Coding and GUI Agents. Meanwhile, the smaller GLM-4.1V-9B-Thinking remains highly competitive-achieving superior results to the much larger Qwen2.5-VL-72B on 29 benchmarks. We open-source both GLM-4.1V-9B-Thinking and GLM-4.5V. Code, models and more information are released at https://github.com/zai-org/GLM-V.
♻ ☆ PiT: Progressive Diffusion Transformer
Diffusion Transformers (DiTs) achieve remarkable performance within image generation via the transformer architecture. Conventionally, DiTs are constructed by stacking serial isotropic global modeling transformers, which face significant quadratic computational cost. However, through empirical analysis, we find that DiTs do not rely as heavily on global information as previously believed. In fact, most layers exhibit significant redundancy in global computation. Additionally, conventional attention mechanisms suffer from low-frequency inertia, limiting their efficiency. To address these issues, we propose Pseudo Shifted Window Attention (PSWA), which fundamentally mitigates global attention redundancy. PSWA achieves moderate global-local information through window attention. It further utilizes a high-frequency bridging branch to simulate shifted window operations, which both enrich the high-frequency information and strengthen inter-window connections. Furthermore, we propose the Progressive Coverage Channel Allocation (PCCA) strategy that captures high-order attention without additional computational cost. Based on these innovations, we propose a series of Pseudo Progressive Diffusion Transformer (PiT). Our extensive experiments show their superior performance; for example, our proposed PiT-L achieves 54% FID improvement over DiT-XL/2 while using less computation.
♻ ☆ Preacher: Paper-to-Video Agentic System
The paper-to-video task converts a research paper into a structured video abstract, distilling key concepts, methods, and conclusions into an accessible, well-organized format. While state-of-the-art video generation models demonstrate potential, they are constrained by limited context windows, rigid video duration constraints, limited stylistic diversity, and an inability to represent domain-specific knowledge. To address these limitations, we introduce Preacher, the first paper-to-video agentic system. Preacher employs a topdown approach to decompose, summarize, and reformulate the paper, followed by bottom-up video generation, synthesizing diverse video segments into a coherent abstract. To align cross-modal representations, we define key scenes and introduce a Progressive Chain of Thought (P-CoT) for granular, iterative planning. Preacher successfully generates high-quality video abstracts across five research fields, demonstrating expertise beyond current video generation models. Code will be released at: https://github.com/GenVerse/Paper2Video
♻ ☆ Semantic-aware DropSplat: Adaptive Pruning of Redundant Gaussians for 3D Aerial-View Segmentation
In the task of 3D Aerial-view Scene Semantic Segmentation (3D-AVS-SS), traditional methods struggle to address semantic ambiguity caused by scale variations and structural occlusions in aerial images. This limits their segmentation accuracy and consistency. To tackle these challenges, we propose a novel 3D-AVS-SS approach named SAD-Splat. Our method introduces a Gaussian point drop module, which integrates semantic confidence estimation with a learnable sparsity mechanism based on the Hard Concrete distribution. This module effectively eliminates redundant and semantically ambiguous Gaussian points, enhancing both segmentation performance and representation compactness. Furthermore, SAD-Splat incorporates a high-confidence pseudo-label generation pipeline. It leverages 2D foundation models to enhance supervision when ground-truth labels are limited, thereby further improving segmentation accuracy. To advance research in this domain, we introduce a challenging benchmark dataset: 3D Aerial Semantic (3D-AS), which encompasses diverse real-world aerial scenes with sparse annotations. Experimental results demonstrate that SAD-Splat achieves an excellent balance between segmentation accuracy and representation compactness. It offers an efficient and scalable solution for 3D aerial scene understanding.
comment: 9 pages, 4 figures
♻ ☆ SHALE: A Scalable Benchmark for Fine-grained Hallucination Evaluation in LVLMs
Despite rapid advances, Large Vision-Language Models (LVLMs) still suffer from hallucinations, i.e., generating content inconsistent with input or established world knowledge, which correspond to faithfulness and factuality hallucinations, respectively. Prior studies primarily evaluate faithfulness hallucination at a rather coarse level (e.g., object-level) and lack fine-grained analysis. Additionally, existing benchmarks often rely on costly manual curation or reused public datasets, raising concerns about scalability and data leakage. To address these limitations, we propose an automated data construction pipeline that produces scalable, controllable, and diverse evaluation data. We also design a hierarchical hallucination induction framework with input perturbations to simulate realistic noisy scenarios. Integrating these designs, we construct SHALE, a Scalable HALlucination Evaluation benchmark designed to assess both faithfulness and factuality hallucinations via a fine-grained hallucination categorization scheme. SHALE comprises over 30K image-instruction pairs spanning 12 representative visual perception aspects for faithfulness and 6 knowledge domains for factuality, considering both clean and noisy scenarios. Extensive experiments on over 20 mainstream LVLMs reveal significant factuality hallucinations and high sensitivity to semantic perturbations.
♻ ☆ GraspClutter6D: A Large-scale Real-world Dataset for Robust Perception and Grasping in Cluttered Scenes
Robust grasping in cluttered environments remains an open challenge in robotics. While benchmark datasets have significantly advanced deep learning methods, they mainly focus on simplistic scenes with light occlusion and insufficient diversity, limiting their applicability to practical scenarios. We present GraspClutter6D, a large-scale real-world grasping dataset featuring: (1) 1,000 highly cluttered scenes with dense arrangements (14.1 objects/scene, 62.6\% occlusion), (2) comprehensive coverage across 200 objects in 75 environment configurations (bins, shelves, and tables) captured using four RGB-D cameras from multiple viewpoints, and (3) rich annotations including 736K 6D object poses and 9.3B feasible robotic grasps for 52K RGB-D images. We benchmark state-of-the-art segmentation, object pose estimation, and grasp detection methods to provide key insights into challenges in cluttered environments. Additionally, we validate the dataset's effectiveness as a training resource, demonstrating that grasping networks trained on GraspClutter6D significantly outperform those trained on existing datasets in both simulation and real-world experiments. The dataset, toolkit, and annotation tools are publicly available on our project website: https://sites.google.com/view/graspclutter6d.
comment: Accepted at IEEE Robotics and Automation Letters (RA-L). Project Websites: https://sites.google.com/view/graspclutter6d
♻ ☆ WeatherPrompt: Multi-modality Representation Learning for All-Weather Drone Visual Geo-Localization
Visual geo-localization for drones faces critical degradation under weather perturbations, \eg, rain and fog, where existing methods struggle with two inherent limitations: 1) Heavy reliance on limited weather categories that constrain generalization, and 2) Suboptimal disentanglement of entangled scene-weather features through pseudo weather categories. We present WeatherPrompt, a multi-modality learning paradigm that establishes weather-invariant representations through fusing the image embedding with the text context. Our framework introduces two key contributions: First, a Training-free Weather Reasoning mechanism that employs off-the-shelf large multi-modality models to synthesize multi-weather textual descriptions through human-like reasoning. It improves the scalability to unseen or complex weather, and could reflect different weather strength. Second, to better disentangle the scene and weather feature, we propose a multi-modality framework with the dynamic gating mechanism driven by the text embedding to adaptively reweight and fuse visual features across modalities. The framework is further optimized by the cross-modal objectives, including image-text contrastive learning and image-text matching, which maps the same scene with different weather conditions closer in the respresentation space. Extensive experiments validate that, under diverse weather conditions, our method achieves competitive recall rates compared to state-of-the-art drone geo-localization methods. Notably, it improves Recall@1 by +13.37\% under night conditions and by 18.69\% under fog and snow conditions.
♻ ☆ Iterative Volume Fusion for Asymmetric Stereo Matching ICRA 2025
Stereo matching is vital in 3D computer vision, with most algorithms assuming symmetric visual properties between binocular visions. However, the rise of asymmetric multi-camera systems (e.g., tele-wide cameras) challenges this assumption and complicates stereo matching. Visual asymmetry disrupts stereo matching by affecting the crucial cost volume computation. To address this, we explore the matching cost distribution of two established cost volume construction methods in asymmetric stereo. We find that each cost volume experiences distinct information distortion, indicating that both should be comprehensively utilized to solve the issue. Based on this, we propose the two-phase Iterative Volume Fusion network for Asymmetric Stereo matching (IVF-AStereo). Initially, the aggregated concatenation volume refines the correlation volume. Subsequently, both volumes are fused to enhance fine details. Our method excels in asymmetric scenarios and shows robust performance against significant visual asymmetry. Extensive comparative experiments on benchmark datasets, along with ablation studies, confirm the effectiveness of our approach in asymmetric stereo with resolution and color degradation.
comment: Accepted to ICRA 2025
♻ ☆ SOI is the Root of All Evil: Quantifying and Breaking Similar Object Interference in Single Object Tracking
In this paper, we present the first systematic investigation and quantification of Similar Object Interference (SOI), a long-overlooked yet critical bottleneck in Single Object Tracking (SOT). Through controlled Online Interference Masking (OIM) experiments, we quantitatively demonstrate that eliminating interference sources leads to substantial performance improvements (AUC gains up to 4.35) across all SOTA trackers, directly validating SOI as a primary constraint for robust tracking and highlighting the feasibility of external cognitive guidance. Building upon these insights, we adopt natural language as a practical form of external guidance, and construct SOIBench-the first semantic cognitive guidance benchmark specifically targeting SOI challenges. It automatically mines SOI frames through multi-tracker collective judgment and introduces a multi-level annotation protocol to generate precise semantic guidance texts. Systematic evaluation on SOIBench reveals a striking finding: existing vision-language tracking (VLT) methods fail to effectively exploit semantic cognitive guidance, achieving only marginal improvements or even performance degradation (AUC changes of -0.26 to +0.71). In contrast, we propose a novel paradigm employing large-scale vision-language models (VLM) as external cognitive engines that can be seamlessly integrated into arbitrary RGB trackers. This approach demonstrates substantial improvements under semantic cognitive guidance (AUC gains up to 0.93), representing a significant advancement over existing VLT methods. We hope SOIBench will serve as a standardized evaluation platform to advance semantic cognitive tracking research and contribute new insights to the tracking research community.
♻ ☆ From Large Angles to Consistent Faces: Identity-Preserving Video Generation via Mixture of Facial Experts
Current video generation models struggle with identity preservation under large facial angles, primarily facing two challenges: the difficulty in exploring an effective mechanism to integrate identity features into DiT structure, and the lack of targeted coverage of large facial angles in existing open-source video datasets. To address these, we present two key innovations. First, we introduce a Mixture of Facial Experts (MoFE) that dynamically combines complementary cues from three specialized experts, each designed to capture distinct but mutually reinforcing aspects of facial attributes. The identity expert captures cross-pose identity-sensitive features, the semantic expert extracts high-level visual semantxics, and the detail expert preserves pixel-level features (e.g., skin texture, color gradients). Furthermore, to mitigate dataset limitations, we have tailored a data processing pipeline centered on two key aspects: Face Constraints and Identity Consistency. Face Constraints ensure facial angle diversity and a high proportion of facial regions, while Identity Consistency preserves coherent person-specific features across temporal sequences, collectively addressing the scarcity of large facial angles and identity-stable training data in existing datasets. Leveraging this pipeline, we have curated and refined a Large Face Angles (LFA) Dataset from existing open-source human video datasets, comprising 460K video clips with annotated facial angles. Experimental results on the LFA benchmark demonstrate that our method, empowered by the LFA dataset, significantly outperforms prior SOTA methods in face similarity, face FID, and CLIP semantic alignment. The code and dataset will be made publicly available at https://github.com/rain152/LFA-Video-Generation.
♻ ☆ OpenCUA: Open Foundations for Computer-Use Agents
Vision-language models have demonstrated impressive capabilities as computer-use agents (CUAs) capable of automating diverse computer tasks. As their commercial potential grows, critical details of the most capable CUA systems remain closed. As these agents will increasingly mediate digital interactions and execute consequential decisions on our behalf, the research community needs access to open CUA frameworks to study their capabilities, limitations, and risks. To bridge this gap, we propose OpenCUA, a comprehensive open-source framework for scaling CUA data and foundation models. Our framework consists of: (1) an annotation infrastructure that seamlessly captures human computer-use demonstrations; (2) AgentNet, the first large-scale computer-use task dataset spanning 3 operating systems and 200+ applications and websites; (3) a scalable pipeline that transforms demonstrations into state-action pairs with reflective long Chain-of-Thought reasoning that sustain robust performance gains as data scales. Our end-to-end agent models demonstrate strong performance across CUA benchmarks. In particular, OpenCUA-32B achieves an average success rate of 34.8% on OSWorld-Verified, establishing a new state-of-the-art (SOTA) among open-source models and surpassing OpenAI CUA (GPT-4o). Further analysis confirms that our approach generalizes well across domains and benefits significantly from increased test-time computation. We release our annotation tool, datasets, code, and models to build open foundations for further CUA research.
comment: Updata author list, modify first page format, correct typos
♻ ☆ MedVLThinker: Simple Baselines for Multimodal Medical Reasoning SC
Large Reasoning Models (LRMs) have introduced a new paradigm in AI by enabling models to ``think before responding" via chain-of-thought reasoning. However, the absence of open and reproducible recipes for building reasoning-centric medical LMMs hinders community-wide research, analysis, and comparison. In this paper, we present MedVLThinker, a suite of simple yet strong baselines. Our fully open recipe consists of: (1) systematic data curation for both text-only and image-text medical data, filtered according to varying levels of reasoning difficulty, and (2) two training paradigms: Supervised Fine-Tuning (SFT) on distilled reasoning traces and Reinforcement Learning with Verifiable Rewards (RLVR) based on final answer correctness. Across extensive experiments on the Qwen2.5-VL model family (3B, 7B) and six medical QA benchmarks, we find that RLVR consistently and significantly outperforms SFT. Additionally, under the RLVR framework, a key, counter-intuitive finding is that training on our curated text-only reasoning data provides a more substantial performance boost than training on multimodal image-text data. Our best open 7B model, trained using the RLVR recipe on text-only data, establishes a new state-of-the-art on existing public VQA benchmarks, surpassing all previous open-source medical LMMs. Furthermore, scaling our model to 32B achieves performance on par with the proprietary GPT-4o. We release all curated data, models, and code to provide the community with a strong, open foundation for future research in multimodal medical reasoning.
comment: Project page: https://ucsc-vlaa.github.io/MedVLThinker/ ; Code: https://github.com/UCSC-VLAA/MedVLThinker ; Model and Data: https://huggingface.co/collections/UCSC-VLAA/medvlthinker-688f52224fb7ff7d965d581d
♻ ☆ Robotic Ultrasound-Guided Femoral Artery Reconstruction of Anatomically-Representative Phantoms
Femoral artery access is essential for numerous clinical procedures, including diagnostic angiography, therapeutic catheterization, and emergency interventions. Despite its critical role, successful vascular access remains challenging due to anatomical variability, overlying adipose tissue, and the need for precise ultrasound (US) guidance. Needle placement errors can result in severe complications, thereby limiting the procedure to highly skilled clinicians operating in controlled hospital environments. While robotic systems have shown promise in addressing these challenges through autonomous scanning and vessel reconstruction, clinical translation remains limited due to reliance on simplified phantom models that fail to capture human anatomical complexity. In this work, we present a method for autonomous robotic US scanning of bifurcated femoral arteries, and validate it on five vascular phantoms created from real patient computed tomography (CT) data. Additionally, we introduce a video-based deep learning US segmentation network tailored for vascular imaging, enabling improved 3D arterial reconstruction. The proposed network achieves a Dice score of 89.21% and an Intersection over Union of 80.54% on a new vascular dataset. The reconstructed artery centerline is evaluated against ground truth CT data, showing an average L2 error of 0.91+/-0.70 mm, with an average Hausdorff distance of 4.36+/-1.11mm. This study is the first to validate an autonomous robotic system for US scanning of the femoral artery on a diverse set of patient-specific phantoms, introducing a more advanced framework for evaluating robotic performance in vascular imaging and intervention.
♻ ☆ TBAC-UniImage: Unified Understanding and Generation by Ladder-Side Diffusion Tuning
This paper introduces TBAC-UniImage, a novel unified model for multimodal understanding and generation. We achieve this by deeply integrating a pre-trained Diffusion Model, acting as a generative ladder, with a Multimodal Large Language Model (MLLM). Previous diffusion-based unified models face two primary limitations. One approach uses only the MLLM's final hidden state as the generative condition. This creates a shallow connection, as the generator is isolated from the rich, hierarchical representations within the MLLM's intermediate layers. The other approach, pretraining a unified generative architecture from scratch, is computationally expensive and prohibitive for many researchers. To overcome these issues, our work explores a new paradigm. Instead of relying on a single output, we use representations from multiple, diverse layers of the MLLM as generative conditions for the diffusion model. This method treats the pre-trained generator as a ladder, receiving guidance from various depths of the MLLM's understanding process. Consequently, TBAC-UniImage achieves a much deeper and more fine-grained unification of understanding and generation.
♻ ☆ MinD-3D++: Advancing fMRI-Based 3D Reconstruction with High-Quality Textured Mesh Generation and a Comprehensive Dataset
Reconstructing 3D visuals from functional Magnetic Resonance Imaging (fMRI) data, introduced as Recon3DMind, is of significant interest to both cognitive neuroscience and computer vision. To advance this task, we present the fMRI-3D dataset, which includes data from 15 participants and showcases a total of 4,768 3D objects. The dataset consists of two components: fMRI-Shape, previously introduced and available at https://huggingface.co/datasets/Fudan-fMRI/fMRI-Shape, and fMRI-Objaverse, proposed in this paper and available at https://huggingface.co/datasets/Fudan-fMRI/fMRI-Objaverse. fMRI-Objaverse includes data from 5 subjects, 4 of whom are also part of the core set in fMRI-Shape. Each subject views 3,142 3D objects across 117 categories, all accompanied by text captions. This significantly enhances the diversity and potential applications of the dataset. Moreover, we propose MinD-3D++, a novel framework for decoding textured 3D visual information from fMRI signals. The framework evaluates the feasibility of not only reconstructing 3D objects from the human mind but also generating, for the first time, 3D textured meshes with detailed textures from fMRI data. We establish new benchmarks by designing metrics at the semantic, structural, and textured levels to evaluate model performance. Furthermore, we assess the model's effectiveness in out-of-distribution settings and analyze the attribution of the proposed 3D pari fMRI dataset in visual regions of interest (ROIs) in fMRI signals. Our experiments demonstrate that MinD-3D++ not only reconstructs 3D objects with high semantic and spatial accuracy but also provides deeper insights into how the human brain processes 3D visual information. Project page: https://jianxgao.github.io/MinD-3D.
comment: Accepted to TPAMI 2025
♻ ☆ GC-MVSNet: Multi-View, Multi-Scale, Geometrically-Consistent Multi-View Stereo WACV 2024
Traditional multi-view stereo (MVS) methods rely heavily on photometric and geometric consistency constraints, but newer machine learning-based MVS methods check geometric consistency across multiple source views only as a post-processing step. In this paper, we present a novel approach that explicitly encourages geometric consistency of reference view depth maps across multiple source views at different scales during learning (see Fig. 1). We find that adding this geometric consistency loss significantly accelerates learning by explicitly penalizing geometrically inconsistent pixels, reducing the training iteration requirements to nearly half that of other MVS methods. Our extensive experiments show that our approach achieves a new state-of-the-art on the DTU and BlendedMVS datasets, and competitive results on the Tanks and Temples benchmark. To the best of our knowledge, GC-MVSNet is the first attempt to enforce multi-view, multi-scale geometric consistency during learning.
comment: Accepted in WACV 2024 Link: https://openaccess.thecvf.com/content/WACV2024/html/Vats_GC-MVSNet_Multi-View_Multi-Scale_Geometrically-Consistent_Multi-View_Stereo_WACV_2024_paper.html
♻ ☆ Quantum-Brain: Quantum-Inspired Neural Network Approach to Vision-Brain Understanding
Vision-brain understanding aims to extract semantic information about brain signals from human perceptions. Existing deep learning methods for vision-brain understanding are usually introduced in a traditional learning paradigm missing the ability to learn the connectivities between brain regions. Meanwhile, the quantum computing theory offers a new paradigm for designing deep learning models. Motivated by the connectivities in the brain signals and the entanglement properties in quantum computing, we propose a novel Quantum-Brain approach, a quantum-inspired neural network, to tackle the vision-brain understanding problem. To compute the connectivity between areas in brain signals, we introduce a new Quantum-Inspired Voxel-Controlling module to learn the impact of a brain voxel on others represented in the Hilbert space. To effectively learn connectivity, a novel Phase-Shifting module is presented to calibrate the value of the brain signals. Finally, we introduce a new Measurement-like Projection module to present the connectivity information from the Hilbert space into the feature space. The proposed approach can learn to find the connectivities between fMRI voxels and enhance the semantic information obtained from human perceptions. Our experimental results on the Natural Scene Dataset benchmarks illustrate the effectiveness of the proposed method with Top-1 accuracies of 95.1% and 95.6% on image and brain retrieval tasks and an Inception score of 95.3% on fMRI-to-image reconstruction task. Our proposed quantum-inspired network brings a potential paradigm to solving the vision-brain problems via the quantum computing theory.
♻ ☆ Quantitative Comparison of Fine-Tuning Techniques for Pretrained Latent Diffusion Models in the Generation of Unseen SAR Images
We present a framework for adapting a large pretrained latent diffusion model to high-resolution Synthetic Aperture Radar (SAR) image generation. The approach enables controllable synthesis and the creation of rare or out-of-distribution scenes beyond the training set. Rather than training a task-specific small model from scratch, we adapt an open-source text-to-image foundation model to the SAR modality, using its semantic prior to align prompts with SAR imaging physics (side-looking geometry, slant-range projection, and coherent speckle with heavy-tailed statistics). Using a 100k-image SAR dataset, we compare full fine-tuning and parameter-efficient Low-Rank Adaptation (LoRA) across the UNet diffusion backbone, the Variational Autoencoder (VAE), and the text encoders. Evaluation combines (i) statistical distances to real SAR amplitude distributions, (ii) textural similarity via Gray-Level Co-occurrence Matrix (GLCM) descriptors, and (iii) semantic alignment using a SAR-specialized CLIP model. Our results show that a hybrid strategy-full UNet tuning with LoRA on the text encoders and a learned token embedding-best preserves SAR geometry and texture while maintaining prompt fidelity. The framework supports text-based control and multimodal conditioning (e.g., segmentation maps, TerraSAR-X, or optical guidance), opening new paths for large-scale SAR scene data augmentation and unseen scenario simulation in Earth observation.
♻ ☆ UniOcc: A Unified Benchmark for Occupancy Forecasting and Prediction in Autonomous Driving ICCV 2025
We introduce UniOcc, a comprehensive, unified benchmark and toolkit for occupancy forecasting (i.e., predicting future occupancies based on historical information) and occupancy prediction (i.e., predicting current-frame occupancy from camera images. UniOcc unifies the data from multiple real-world datasets (i.e., nuScenes, Waymo) and high-fidelity driving simulators (i.e., CARLA, OpenCOOD), providing 2D/3D occupancy labels and annotating innovative per-voxel flows. Unlike existing studies that rely on suboptimal pseudo labels for evaluation, UniOcc incorporates novel evaluation metrics that do not depend on ground-truth labels, enabling robust assessment on additional aspects of occupancy quality. Through extensive experiments on state-of-the-art models, we demonstrate that large-scale, diverse training data and explicit flow information significantly enhance occupancy prediction and forecasting performance. Our data and code are available at https://uniocc.github.io/.
comment: IEEE/CVF International Conference on Computer Vision (ICCV 2025); Project website: https://uniocc.github.io/
♻ ☆ Motion Matters: Motion-guided Modulation Network for Skeleton-based Micro-Action Recognition ACM MM 2025
Micro-Actions (MAs) are an important form of non-verbal communication in social interactions, with potential applications in human emotional analysis. However, existing methods in Micro-Action Recognition often overlook the inherent subtle changes in MAs, which limits the accuracy of distinguishing MAs with subtle changes. To address this issue, we present a novel Motion-guided Modulation Network (MMN) that implicitly captures and modulates subtle motion cues to enhance spatial-temporal representation learning. Specifically, we introduce a Motion-guided Skeletal Modulation module (MSM) to inject motion cues at the skeletal level, acting as a control signal to guide spatial representation modeling. In parallel, we design a Motion-guided Temporal Modulation module (MTM) to incorporate motion information at the frame level, facilitating the modeling of holistic motion patterns in micro-actions. Finally, we propose a motion consistency learning strategy to aggregate the motion cues from multi-scale features for micro-action classification. Experimental results on the Micro-Action 52 and iMiGUE datasets demonstrate that MMN achieves state-of-the-art performance in skeleton-based micro-action recognition, underscoring the importance of explicitly modeling subtle motion cues. The code will be available at https://github.com/momiji-bit/MMN.
comment: Accepted by ACM MM 2025
♻ ☆ Stepwise Decomposition and Dual-stream Focus: A Novel Approach for Training-free Camouflaged Object Segmentation ACM MM2025
While promptable segmentation (\textit{e.g.}, SAM) has shown promise for various segmentation tasks, it still requires manual visual prompts for each object to be segmented. In contrast, task-generic promptable segmentation aims to reduce the need for such detailed prompts by employing only a task-generic prompt to guide segmentation across all test samples. However, when applied to Camouflaged Object Segmentation (COS), current methods still face two critical issues: 1) \textit{\textbf{semantic ambiguity in getting instance-specific text prompts}}, which arises from insufficient discriminative cues in holistic captions, leading to foreground-background confusion; 2) \textit{\textbf{semantic discrepancy combined with spatial separation in getting instance-specific visual prompts}}, which results from global background sampling far from object boundaries with low feature correlation, causing SAM to segment irrelevant regions. To address the issues above, we propose \textbf{RDVP-MSD}, a novel training-free test-time adaptation framework that synergizes \textbf{R}egion-constrained \textbf{D}ual-stream \textbf{V}isual \textbf{P}rompting (RDVP) via \textbf{M}ultimodal \textbf{S}tepwise \textbf{D}ecomposition Chain of Thought (MSD-CoT). MSD-CoT progressively disentangles image captions to eliminate semantic ambiguity, while RDVP injects spatial constraints into visual prompting and independently samples visual prompts for foreground and background points, effectively mitigating semantic discrepancy and spatial separation. Without requiring any training or supervision, RDVP-MSD achieves a state-of-the-art segmentation result on multiple COS benchmarks and delivers a faster inference speed than previous methods, demonstrating significantly improved accuracy and efficiency. The codes will be available at \href{https://github.com/ycyinchao/RDVP-MSD}{https://github.com/ycyinchao/RDVP-MSD}
comment: accepted by ACM MM2025
♻ ☆ IAD-R1: Reinforcing Consistent Reasoning in Industrial Anomaly Detection
Industrial anomaly detection is a critical component of modern manufacturing, yet the scarcity of defective samples restricts traditional detection methods to scenario-specific applications. Although Vision-Language Models (VLMs) demonstrate significant advantages in generalization capabilities, their performance in industrial anomaly detection remains limited. To address this challenge, we propose IAD-R1, a universal post-training framework applicable to VLMs of different architectures and parameter scales, which substantially enhances their anomaly detection capabilities. IAD-R1 employs a two-stage training strategy: the Perception Activation Supervised Fine-Tuning (PA-SFT) stage utilizes a meticulously constructed high-quality Chain-of-Thought dataset (Expert-AD) for training, enhancing anomaly perception capabilities and establishing reasoning-to-answer correlations; the Structured Control Group Relative Policy Optimization (SC-GRPO) stage employs carefully designed reward functions to achieve a capability leap from "Anomaly Perception" to "Anomaly Interpretation". Experimental results demonstrate that IAD-R1 achieves significant improvements across 7 VLMs, the largest improvement was on the DAGM dataset, with average accuracy 43.3% higher than the 0.5B baseline. Notably, the 0.5B parameter model trained with IAD-R1 surpasses commercial models including GPT-4.1 and Claude-Sonnet-4 in zero-shot settings, demonstrating the effectiveness and superiority of IAD-R1. The dataset, code, and all model weights will be publicly available at https://github.com/Yanhui-Lee/IAD-R1.
♻ ☆ Deblurring in the Wild: A Real-World Dataset from Smartphone High-Speed Videos
We introduce the largest real-world image deblurring dataset constructed from smartphone slow-motion videos. Using 240 frames captured over one second, we simulate realistic long-exposure blur by averaging frames to produce blurry images, while using the temporally centered frame as the sharp reference. Our dataset contains over 42,000 high-resolution blur-sharp image pairs, making it approximately 10 times larger than widely used datasets, with 8 times the amount of different scenes, including indoor and outdoor environments, with varying object and camera motions. We benchmark multiple state-of-the-art (SOTA) deblurring models on our dataset and observe significant performance degradation, highlighting the complexity and diversity of our benchmark. Our dataset serves as a challenging new benchmark to facilitate robust and generalizable deblurring models.
comment: 8 pages (without references), 3 figures. Dataset https://huggingface.co/datasets/masterda/SloMoBlur
♻ ☆ Reinforcement Learning in Vision: A Survey
Recent advances at the intersection of reinforcement learning (RL) and visual intelligence have enabled agents that not only perceive complex visual scenes but also reason, generate, and act within them. This survey offers a critical and up-to-date synthesis of the field. We first formalize visual RL problems and trace the evolution of policy-optimization strategies from RLHF to verifiable reward paradigms, and from Proximal Policy Optimization to Group Relative Policy Optimization. We then organize more than 200 representative works into four thematic pillars: multi-modal large language models, visual generation, unified model frameworks, and vision-language-action models. For each pillar we examine algorithmic design, reward engineering, benchmark progress, and we distill trends such as curriculum-driven training, preference-aligned diffusion, and unified reward modeling. Finally, we review evaluation protocols spanning set-level fidelity, sample-level preference, and state-level stability, and we identify open challenges that include sample efficiency, generalization, and safe deployment. Our goal is to provide researchers and practitioners with a coherent map of the rapidly expanding landscape of visual RL and to highlight promising directions for future inquiry. Resources are available at: https://github.com/weijiawu/Awesome-Visual-Reinforcement-Learning.
comment: 22 pages
♻ ☆ DualPM: Dual Posed-Canonical Point Maps for 3D Shape and Pose Reconstruction CVPR 2025
The choice of data representation is a key factor in the success of deep learning in geometric tasks. For instance, DUSt3R recently introduced the concept of viewpoint-invariant point maps, generalizing depth prediction and showing that all key problems in the 3D reconstruction of static scenes can be reduced to predicting such point maps. In this paper, we develop an analogous concept for a very different problem: the reconstruction of the 3D shape and pose of deformable objects. To this end, we introduce Dual Point Maps (DualPM), where a pair of point maps is extracted from the same image-one associating pixels to their 3D locations on the object and the other to a canonical version of the object in its rest pose. We also extend point maps to amodal reconstruction to recover the complete shape of the object, even through self-occlusions. We show that 3D reconstruction and 3D pose estimation can be reduced to the prediction of DualPMs. Empirically, we demonstrate that this representation is a suitable target for deep networks to predict. Specifically, we focus on modeling quadrupeds, showing that DualPMs can be trained purely on synthetic 3D data, consisting of one or two models per category, while generalizing effectively to real images. With this approach, we achieve significant improvements over previous methods for the 3D analysis and reconstruction of such objects.
comment: First two authors contributed equally. CVPR 2025 highlight. Project page: https://dualpm.github.io
♻ ☆ Personalized Feature Translation for Expression Recognition: An Efficient Source-Free Domain Adaptation Method
Facial expression recognition (FER) models are employed in many video-based affective computing applications, such as human-computer interaction and healthcare monitoring. However, deep FER models often struggle with subtle expressions and high inter-subject variability, limiting their performance in real-world applications. To improve their performance, source-free domain adaptation (SFDA) methods have been proposed to personalize a pretrained source model using only unlabeled target domain data, thereby avoiding data privacy, storage, and transmission constraints. This paper addresses a challenging scenario where source data is unavailable for adaptation, and only unlabeled target data consisting solely of neutral expressions is available. SFDA methods are not typically designed to adapt using target data from only a single class. Further, using models to generate facial images with non-neutral expressions can be unstable and computationally intensive. In this paper, personalized feature translation (PFT) is proposed for SFDA. Unlike current image translation methods for SFDA, our lightweight method operates in the latent space. We first pre-train the translator on the source domain data to transform the subject-specific style features from one source subject into another. Expression information is preserved by optimizing a combination of expression consistency and style-aware objectives. Then, the translator is adapted on neutral target data, without using source data or image synthesis. By translating in the latent space, PFT avoids the complexity and noise of face expression generation, producing discriminative embeddings optimized for classification. Using PFT eliminates the need for image synthesis, reduces computational overhead (using a lightweight translator), and only adapts part of the model, making the method efficient compared to image-based translation.
♻ ☆ VMem: Consistent Interactive Video Scene Generation with Surfel-Indexed View Memory ICCV 2025
We propose a novel memory module for building video generators capable of interactively exploring environments. Previous approaches have achieved similar results either by out-painting 2D views of a scene while incrementally reconstructing its 3D geometry-which quickly accumulates errors-or by using video generators with a short context window, which struggle to maintain scene coherence over the long term. To address these limitations, we introduce Surfel-Indexed View Memory (VMem), a memory module that remembers past views by indexing them geometrically based on the 3D surface elements (surfels) they have observed. VMem enables efficient retrieval of the most relevant past views when generating new ones. By focusing only on these relevant views, our method produces consistent explorations of imagined environments at a fraction of the computational cost required to use all past views as context. We evaluate our approach on challenging long-term scene synthesis benchmarks and demonstrate superior performance compared to existing methods in maintaining scene coherence and camera control.
comment: ICCV 2025 highlight. Project page: https://v-mem.github.io
♻ ☆ Evaluation of Cultural Competence of Vision-Language Models
Modern vision-language models (VLMs) often fail at cultural competency evaluations and benchmarks. Given the diversity of applications built upon VLMs, there is renewed interest in understanding how they encode cultural nuances. While individual aspects of this problem have been studied, we still lack a comprehensive framework for systematically identifying and annotating the nuanced cultural dimensions present in images for VLMs. This position paper argues that foundational methodologies from visual culture studies (cultural studies, semiotics, and visual studies) are necessary for cultural analysis of images. Building upon this review, we propose a set of five frameworks, corresponding to cultural dimensions, that must be considered for a more complete analysis of the cultural competencies of VLMs.
♻ ☆ Vision Transformers in Precision Agriculture: A Comprehensive Survey
Detecting plant diseases is a crucial aspect of modern agriculture, as it plays a key role in maintaining crop health and increasing overall yield. Traditional approaches, though still valuable, often rely on manual inspection or conventional machine learning techniques, both of which face limitations in scalability and accuracy. Recently, Vision Transformers (ViTs) have emerged as a promising alternative, offering advantages such as improved handling of long-range dependencies and better scalability for visual tasks. This review explores the application of ViTs in precision agriculture, covering a range of tasks. We begin by introducing the foundational architecture of ViTs and discussing their transition from Natural Language Processing (NLP) to Computer Vision. The discussion includes the concept of inductive bias in traditional models like Convolutional Neural Networks (CNNs), and how ViTs mitigate these biases. We provide a comprehensive review of recent literature, focusing on key methodologies, datasets, and performance metrics. This study also includes a comparative analysis of CNNs and ViTs, along with a review of hybrid models and performance enhancements. Technical challenges such as data requirements, computational demands, and model interpretability are addressed, along with potential solutions. Finally, we outline future research directions and technological advancements that could further support the integration of ViTs in real-world agricultural settings. Our goal with this study is to offer practitioners and researchers a deeper understanding of how ViTs are poised to transform smart and precision agriculture.
♻ ☆ Unifying Self-Supervised Clustering and Energy-Based Models
Self-supervised learning excels at learning representations from large amounts of data. At the same time, generative models offer the complementary property of learning information about the underlying data generation process. In this study, we aim at establishing a principled connection between these two paradigms and highlight the benefits of their complementarity. In particular, we perform an analysis of self-supervised learning objectives, elucidating the underlying probabilistic graphical models and presenting a standardized methodology for their derivation from first principles. The analysis suggests a natural means of integrating self-supervised learning with likelihood-based generative models. We instantiate this concept within the realm of cluster-based self-supervised learning and energy models, introducing a lower bound proven to reliably penalize the most important failure modes and unlocking full unification. Our theoretical findings are substantiated through experiments on synthetic and real-world data, including SVHN, CIFAR10, and CIFAR100, demonstrating that our objective function allows to jointly train a backbone network in a discriminative and generative fashion, consequently outperforming existing self-supervised learning strategies in terms of clustering, generation and out-of-distribution detection performance by a wide margin. We also demonstrate that the solution can be integrated into a neuro-symbolic framework to tackle a simple yet non-trivial instantiation of the symbol grounding problem. The code is publicly available at https://github.com/emsansone/GEDI.
comment: Changes from previous version: change introductions and added acknowledgments. Integral version of workshop paper arXiv:2309.15420. Improved GEDI version (from two stages to single stage training) arxiv:2212.13425 - ACCEPTED TO TMLR 2025
♻ ☆ TD3Net: A temporal densely connected multi-dilated convolutional network for lipreading
The word-level lipreading approach typically employs a two-stage framework with separate frontend and backend architectures to model dynamic lip movements. Each component has been extensively studied, and in the backend architecture, temporal convolutional networks (TCNs) have been widely adopted in state-of-the-art methods. Recently, dense skip connections have been introduced in TCNs to mitigate the limited density of the receptive field, thereby improving the modeling of complex temporal representations. However, their performance remains constrained owing to potential information loss regarding the continuous nature of lip movements, caused by blind spots in the receptive field. To address this limitation, we propose TD3Net, a temporal densely connected multi-dilated convolutional network that combines dense skip connections and multi-dilated temporal convolutions as the backend architecture. TD3Net covers a wide and dense receptive field without blind spots by applying different dilation factors to skip-connected features. Experimental results on a word-level lipreading task using two large publicly available datasets, Lip Reading in the Wild (LRW) and LRW-1000, indicate that the proposed method achieves performance comparable to state-of-the-art methods. It achieved higher accuracy with fewer parameters and lower floating-point operations compared to existing TCN-based backend architectures. Moreover, visualization results suggest that our approach effectively utilizes diverse temporal features while preserving temporal continuity, presenting notable advantages in lipreading systems. The code is available at our GitHub repository (https://github.com/Leebh-kor/TD3Net).
comment: Accepted for publication in Journal of Visual Communication and Image Representation. DOI: https://doi.org/10.1016/j.jvcir.2025.104540
♻ ☆ Video-based automatic lameness detection of dairy cows using pose estimation and multiple locomotion traits
This study presents an automated lameness detection system that uses deep-learning image processing techniques to extract multiple locomotion traits associated with lameness. Using the T-LEAP pose estimation model, the motion of nine keypoints was extracted from videos of walking cows. The videos were recorded outdoors, with varying illumination conditions, and T-LEAP extracted 99.6% of correct keypoints. The trajectories of the keypoints were then used to compute six locomotion traits: back posture measurement, head bobbing, tracking distance, stride length, stance duration, and swing duration. The three most important traits were back posture measurement, head bobbing, and tracking distance. For the ground truth, we showed that a thoughtful merging of the scores of the observers could improve intra-observer reliability and agreement. We showed that including multiple locomotion traits improves the classification accuracy from 76.6% with only one trait to 79.9% with the three most important traits and to 80.1% with all six locomotion traits.
♻ ☆ INSIGHT: Explainable Weakly-Supervised Medical Image Analysis
Due to their large sizes, volumetric scans and whole-slide pathology images (WSIs) are often processed by extracting embeddings from local regions and then an aggregator makes predictions from this set. However, current methods require post-hoc visualization techniques (e.g., Grad-CAM) and often fail to localize small yet clinically crucial details. To address these limitations, we introduce INSIGHT, a novel weakly-supervised aggregator that integrates heatmap generation as an inductive bias. Starting from pre-trained feature maps, INSIGHT employs a detection module with small convolutional kernels to capture fine details and a context module with a broader receptive field to suppress local false positives. The resulting internal heatmap highlights diagnostically relevant regions. On CT and WSI benchmarks, INSIGHT achieves state-of-the-art classification results and high weakly-labeled semantic segmentation performance. Project website and code are available at: https://zhangdylan83.github.io/ewsmia/
comment: Accepted at MLHC 2025 (Machine Learning for Healthcare)
♻ ☆ NAVER: A Neuro-Symbolic Compositional Automaton for Visual Grounding with Explicit Logic Reasoning ICCV 2025
Visual Grounding (VG) tasks, such as referring expression detection and segmentation tasks are important for linking visual entities to context, especially in complex reasoning tasks that require detailed query interpretation. This paper explores VG beyond basic perception, highlighting challenges for methods that require reasoning like human cognition. Recent advances in large language methods (LLMs) and Vision-Language methods (VLMs) have improved abilities for visual comprehension, contextual understanding, and reasoning. These methods are mainly split into end-to-end and compositional methods, with the latter offering more flexibility. Compositional approaches that integrate LLMs and foundation models show promising performance but still struggle with complex reasoning with language-based logical representations. To address these limitations, we propose NAVER, a compositional visual grounding method that integrates explicit probabilistic logic reasoning within a finite-state automaton, equipped with a self-correcting mechanism. This design improves robustness and interpretability in inference through explicit logic reasoning. Our results show that NAVER achieves SoTA performance comparing to recent end-to-end and compositional baselines. The code is available at https://github.com/ControlNet/NAVER .
comment: ICCV 2025
♻ ☆ A Linear N-Point Solver for Structure and Motion from Asynchronous Tracks
Structure and continuous motion estimation from point correspondences is a fundamental problem in computer vision that has been powered by well-known algorithms such as the familiar 5-point or 8-point algorithm. However, despite their acclaim, these algorithms are limited to processing point correspondences originating from a pair of views each one representing an instantaneous capture of the scene. Yet, in the case of rolling shutter cameras, or more recently, event cameras, this synchronization breaks down. In this work, we present a unified approach for structure and linear motion estimation from 2D point correspondences with arbitrary timestamps, from an arbitrary set of views. By formulating the problem in terms of first-order dynamics and leveraging a constant velocity motion model, we derive a novel, linear point incidence relation allowing for the efficient recovery of both linear velocity and 3D points with predictable degeneracies and solution multiplicities. Owing to its general formulation, it can handle correspondences from a wide range of sensing modalities such as global shutter, rolling shutter, and event cameras, and can even combine correspondences from different collocated sensors. We validate the effectiveness of our solver on both simulated and real-world data, where we show consistent improvement across all modalities when compared to recent approaches. We believe our work opens the door to efficient structure and motion estimation from asynchronous data. Code can be found at https://github.com/suhang99/AsyncTrack-Motion-Solver.
♻ ☆ Debiasing Multimodal Large Language Models via Penalization of Language Priors
In the realms of computer vision and natural language processing, Multimodal Large Language Models (MLLMs) have become indispensable tools, proficient in generating textual responses based on visual inputs. Despite their advancements, our investigation reveals a noteworthy bias: the generated content is often driven more by the inherent priors of the underlying Large Language Models (LLMs) than by the input image. Empirical experiments underscore the persistence of this bias, as MLLMs often provide confident answers even in the absence of relevant images or given incongruent visual inputs. To rectify these biases and redirect the model's focus toward visual information, we propose two simple, training-free strategies. First, for tasks such as classification or multi-choice question answering, we introduce a "Post-Hoc Debias" method using an affine calibration step to adjust the output distribution. This approach ensures uniform answer scores when the image is absent, acting as an effective regularization technique to alleviate the influence of LLM priors. For more intricate open-ended generation tasks, we extend this method to "Visual Debias Decoding", which mitigates bias by contrasting token log-probabilities conditioned on a correct image versus a meaningless one. Additionally, our investigation sheds light on the instability of MLLMs across various decoding configurations. Through systematic exploration of different settings, we achieve significant performance improvements--surpassing previously reported results--and raise concerns about the fairness of current evaluation practices. Comprehensive experiments substantiate the effectiveness of our proposed strategies in mitigating biases. These strategies not only prove beneficial in minimizing hallucinations but also contribute to the generation of more helpful and precise illustrations.
comment: 10 pages, 12 figures
♻ ☆ CCL-LGS: Contrastive Codebook Learning for 3D Language Gaussian Splatting ICCV 2025
Recent advances in 3D reconstruction techniques and vision-language models have fueled significant progress in 3D semantic understanding, a capability critical to robotics, autonomous driving, and virtual/augmented reality. However, methods that rely on 2D priors are prone to a critical challenge: cross-view semantic inconsistencies induced by occlusion, image blur, and view-dependent variations. These inconsistencies, when propagated via projection supervision, deteriorate the quality of 3D Gaussian semantic fields and introduce artifacts in the rendered outputs. To mitigate this limitation, we propose CCL-LGS, a novel framework that enforces view-consistent semantic supervision by integrating multi-view semantic cues. Specifically, our approach first employs a zero-shot tracker to align a set of SAM-generated 2D masks and reliably identify their corresponding categories. Next, we utilize CLIP to extract robust semantic encodings across views. Finally, our Contrastive Codebook Learning (CCL) module distills discriminative semantic features by enforcing intra-class compactness and inter-class distinctiveness. In contrast to previous methods that directly apply CLIP to imperfect masks, our framework explicitly resolves semantic conflicts while preserving category discriminability. Extensive experiments demonstrate that CCL-LGS outperforms previous state-of-the-art methods. Our project page is available at https://epsilontl.github.io/CCL-LGS/.
comment: ICCV 2025
♻ ☆ Reinforcement Learning meets Masked Video Modeling : Trajectory-Guided Adaptive Token Selection ICCV
Masked video modeling~(MVM) has emerged as a highly effective pre-training strategy for visual foundation models, whereby the model reconstructs masked spatiotemporal tokens using information from visible tokens. However, a key challenge in such approaches lies in selecting an appropriate masking strategy. Previous studies have explored predefined masking techniques, including random and tube-based masking, as well as approaches that leverage key motion priors, optical flow and semantic cues from externally pre-trained models. In this work, we introduce a novel and generalizable Trajectory-Aware Adaptive Token Sampler (TATS), which models the motion dynamics of tokens and can be seamlessly integrated into the masked autoencoder (MAE) framework to select motion-centric tokens in videos. Additionally, we propose a unified training strategy that enables joint optimization of both MAE and TATS from scratch using Proximal Policy Optimization (PPO). We show that our model allows for aggressive masking without compromising performance on the downstream task of action recognition while also ensuring that the pre-training remains memory efficient. Extensive experiments of the proposed approach across four benchmarks, including Something-Something v2, Kinetics-400, UCF101, and HMDB51, demonstrate the effectiveness, transferability, generalization, and efficiency of our work compared to other state-of-the-art methods.
comment: Accepted in ICCVW 2025 - Long Multi-Scene Video Foundations Workshop
♻ ☆ Improved GUI Grounding via Iterative Narrowing
Graphical User Interface (GUI) grounding plays a crucial role in enhancing the capabilities of Vision-Language Model (VLM) agents. While general VLMs, such as GPT-4V, demonstrate strong performance across various tasks, their proficiency in GUI grounding remains suboptimal. Recent studies have focused on fine-tuning these models specifically for zero-shot GUI grounding, yielding significant improvements over baseline performance. We introduce a visual prompting framework that employs an iterative narrowing mechanism to further improve the performance of both general and fine-tuned models in GUI grounding. For evaluation, we tested our method on a comprehensive benchmark comprising various UI platforms and provided the code to reproduce our results.
comment: Code available at https://github.com/ant-8/GUI-Grounding-via-Iterative-Narrowing
♻ ☆ Tuning-Free Online Robust Principal Component Analysis through Implicit Regularization
The performance of the standard Online Robust Principal Component Analysis (OR-PCA) technique depends on the optimum tuning of the explicit regularizers and this tuning is dataset sensitive. We aim to remove the dependency on these tuning parameters by using implicit regularization. We propose to use the implicit regularization effect of various modified gradient descents to make OR-PCA tuning free. Our method incorporates three different versions of modified gradient descent that separately but naturally encourage sparsity and low-rank structures in the data. The proposed method performs comparable or better than the tuned OR-PCA for both simulated and real-world datasets. Tuning-free ORPCA makes it more scalable for large datasets since we do not require dataset-dependent parameter tuning.
♻ ☆ Unifying Locality of KANs and Feature Drift Compensation Projection for Data-free Replay based Continual Face Forgery Detection
The rapid advancements in face forgery techniques necessitate that detectors continuously adapt to new forgery methods, thus situating face forgery detection within a continual learning paradigm. However, when detectors learn new forgery types, their performance on previous types often degrades rapidly, a phenomenon known as catastrophic forgetting. Kolmogorov-Arnold Networks (KANs) utilize locally plastic splines as their activation functions, enabling them to learn new tasks by modifying only local regions of the functions while leaving other areas unaffected. Therefore, they are naturally suitable for addressing catastrophic forgetting. However, KANs have two significant limitations: 1) the splines are ineffective for modeling high-dimensional images, while alternative activation functions that are suitable for images lack the essential property of locality; 2) in continual learning, when features from different domains overlap, the mapping of different domains to distinct curve regions always collapses due to repeated modifications of the same regions. In this paper, we propose a KAN-based Continual Face Forgery Detection (KAN-CFD) framework, which includes a Domain-Group KAN Detector (DG-KD) and a data-free replay Feature Separation strategy via KAN Drift Compensation Projection (FS-KDCP). DG-KD enables KANs to fit high-dimensional image inputs while preserving locality and local plasticity. FS-KDCP avoids the overlap of the KAN input spaces without using data from prior tasks. Experimental results demonstrate that the proposed method achieves superior performance while notably reducing forgetting.
♻ ☆ SIFThinker: Spatially-Aware Image Focus for Visual Reasoning
Current multimodal large language models (MLLMs) still face significant challenges in complex visual tasks (e.g., spatial understanding, fine-grained perception). Prior methods have tried to incorporate visual reasoning, however, they fail to leverage attention correction with spatial cues to iteratively refine their focus on prompt-relevant regions. In this paper, we introduce SIFThinker, a spatially-aware "think-with-images" framework that mimics human visual perception. Specifically, SIFThinker enables attention correcting and image region focusing by interleaving depth-enhanced bounding boxes and natural language. Our contributions are twofold: First, we introduce a reverse-expansion-forward-inference strategy that facilitates the generation of interleaved image-text chains of thought for process-level supervision, which in turn leads to the construction of the SIF-50K dataset. Besides, we propose GRPO-SIF, a reinforced training paradigm that integrates depth-informed visual grounding into a unified reasoning pipeline, teaching the model to dynamically correct and focus on prompt-relevant regions. Extensive experiments demonstrate that SIFThinker outperforms state-of-the-art methods in spatial understanding and fine-grained visual perception, while maintaining strong general capabilities, highlighting the effectiveness of our method. Code: https://github.com/zhangquanchen/SIFThinker.
comment: 15 pages, 13 figures
♻ ☆ Exploring the Application of Visual Question Answering (VQA) for Classroom Activity Monitoring
Classroom behavior monitoring is a critical aspect of educational research, with significant implications for student engagement and learning outcomes. Recent advancements in Visual Question Answering (VQA) models offer promising tools for automatically analyzing complex classroom interactions from video recordings. In this paper, we investigate the applicability of several state-of-the-art open-source VQA models, including LLaMA2, LLaMA3, QWEN3, and NVILA, in the context of classroom behavior analysis. To facilitate rigorous evaluation, we introduce our BAV-Classroom-VQA dataset derived from real-world classroom video recordings at the Banking Academy of Vietnam. We present the methodology for data collection, annotation, and benchmark the performance of the selected VQA models on this dataset. Our initial experimental results demonstrate that all four models achieve promising performance levels in answering behavior-related visual questions, showcasing their potential in future classroom analytics and intervention systems.
♻ ☆ Bootstrapping, Autonomous Testing, and Initialization System for Si/SiGe Multi-quantum Dot Devices
Semiconductor quantum dot (QD) devices have become central to advancements in spin-based quantum computing. However, the increasing complexity of modern QD devices makes calibration and control -- particularly at elevated temperatures -- a bottleneck to progress, highlighting the need for robust and scalable autonomous solutions. A major hurdle arises from trapped charges within the oxide layers, which induce random offset voltage shifts on gate electrodes, with a standard deviation of approximately 83~\si{\milli\volt} of variation within state-of-the-art present-day devices. Efficient characterization and tuning of large arrays of QD qubits depend on choices of automated protocols. Here, we introduce a physically intuitive framework for a bootstrapping, autonomous testing, and initialization system (BATIS) designed to streamline QD device evaluation and calibration. BATIS navigates high-dimensional gate voltage spaces, automating essential steps such as leakage testing, formation of all current channels, and gate characterization in the presence of trapped charges. For forming the current channels, BATIS follows a non-standard approach that requires a single set of measurements regardless of the number of channels. Demonstrated at $1.3$~\si{\kelvin} on a quad-QD Si/Si$_x$Ge$_{1-x}$ device, BATIS eliminates the need for deep cryogenic environments during initial device diagnostics, significantly enhancing scalability and reducing setup times. By requiring only minimal prior knowledge of the device architecture, BATIS represents a platform-agnostic solution, adaptable to various QD systems, which bridges a critical gap in QD autotuning.
comment: 16 pages, 6 figures, 3 pages of supplemental material
♻ ☆ OrderChain: Towards General Instruct-Tuning for Stimulating the Ordinal Understanding Ability of MLLM ICCV 2025
Despite the remarkable progress of multimodal large language models (MLLMs), they continue to face challenges in achieving competitive performance on ordinal regression (OR; a.k.a. ordinal classification). To address this issue, this paper presents OrderChain, a novel and general prompting paradigm that improves the ordinal understanding ability of MLLMs by specificity and commonality modeling. Specifically, our OrderChain consists of a set of task-aware prompts to facilitate the specificity modeling of diverse OR tasks and a new range optimization Chain-of-Thought (RO-CoT), which learns a commonality way of thinking about OR tasks by uniformly decomposing them into multiple small-range optimization subtasks. Further, we propose a category recursive division (CRD) method to generate instruction candidate category prompts to support RO-CoT automatic optimization. Comprehensive experiments show that LLaVA model with our OrderChain improves baseline LLaVA significantly on diverse OR datasets, e.g., from 47.5\% to 93.2\% accuracy on the Adience dataset for age estimation, and from 30.0\% to 85.7\% accuracy on the Diabetic Retinopathy dataset. Notably, LLaVA with our OrderChain also remarkably outperforms state-of-the-art methods by 27% on accuracy and 0.24 on MAE on the Adience dataset. To our best knowledge, our OrderChain is the first work that augments MLLMs for OR tasks, and the effectiveness is witnessed across a spectrum of OR datasets. Project Page: https://order-chain.github.io/.
comment: Accepted by ICCV 2025
♻ ☆ M2DAO-Talker: Harmonizing Multi-granular Motion Decoupling and Alternating Optimization for Talking-head Generation
Audio-driven talking head generation holds significant potential for film production. While existing 3D methods have advanced motion modeling and content synthesis, they often produce rendering artifacts, such as motion blur, temporal jitter, and local penetration, due to limitations in representing stable, fine-grained motion fields. Through systematic analysis, we reformulate talking head generation into a unified framework comprising three steps: video preprocessing, motion representation, and rendering reconstruction. This framework underpins our proposed M2DAO-Talker, which addresses current limitations via multi-granular motion decoupling and alternating optimization. Specifically, we devise a novel 2D portrait preprocessing pipeline to extract frame-wise deformation control conditions (motion region segmentation masks, and camera parameters) to facilitate motion representation. To ameliorate motion modeling, we elaborate a multi-granular motion decoupling strategy, which independently models non-rigid (oral and facial) and rigid (head) motions for improved reconstruction accuracy. Meanwhile, a motion consistency constraint is developed to ensure head-torso kinematic consistency, thereby mitigating penetration artifacts caused by motion aliasing. In addition, an alternating optimization strategy is designed to iteratively refine facial and oral motion parameters, enabling more realistic video generation. Experiments across multiple datasets show that M2DAO-Talker achieves state-of-the-art performance, with the 2.43 dB PSNR improvement in generation quality and 0.64 gain in user-evaluated video realness versus TalkingGaussian while with 150 FPS inference speed. Our project homepage is https://m2dao-talker.github.io/M2DAO-Talk.github.io.
♻ ☆ TikZero: Zero-Shot Text-Guided Graphics Program Synthesis ICCV 2025
Automatically synthesizing figures from text captions is a compelling capability. However, achieving high geometric precision and editability requires representing figures as graphics programs in languages like TikZ, and aligned training data (i.e., graphics programs with captions) remains scarce. Meanwhile, large amounts of unaligned graphics programs and captioned raster images are more readily available. We reconcile these disparate data sources by presenting TikZero, which decouples graphics program generation from text understanding by using image representations as an intermediary bridge. It enables independent training on graphics programs and captioned images and allows for zero-shot text-guided graphics program synthesis during inference. We show that our method substantially outperforms baselines that can only operate with caption-aligned graphics programs. Furthermore, when leveraging caption-aligned graphics programs as a complementary training signal, TikZero matches or exceeds the performance of much larger models, including commercial systems like GPT-4o. Our code, datasets, and select models are publicly available.
comment: Accepted at ICCV 2025 (highlight); Project page: https://github.com/potamides/DeTikZify
♻ ☆ A Lightweight Transformer with Phase-Only Cross-Attention for Illumination-Invariant Biometric Authentication
Traditional biometric systems have encountered significant setbacks due to various unavoidable factors, for example, wearing of face masks in face recognition-based biometrics and hygiene concerns in fingerprint-based biometrics. This paper proposes a novel lightweight vision transformer with phase-only cross-attention (POC-ViT) using dual biometric traits of forehead and periocular portions of the face, capable of performing well even with face masks and without any physical touch, offering a promising alternative to traditional methods. The POC-ViT framework is designed to handle two biometric traits and to capture inter-dependencies in terms of relative structural patterns. Each channel consists of a Cross-Attention using phase-only correlation (POC) that captures both their individual and correlated structural patterns. The computation of cross-attention using POC extracts the phase correlation in the spatial features. Therefore, it is robust against variations in resolution and intensity, as well as illumination changes in the input images. The lightweight model is suitable for edge device deployment. The performance of the proposed framework was successfully demonstrated using the Forehead Subcutaneous Vein Pattern and Periocular Biometric Pattern (FSVP-PBP) database, having 350 subjects. The POC-ViT framework outperformed state-of-the-art methods with an outstanding classification accuracy of $98.8\%$ with the dual biometric traits.
comment: Submitted to IEEE
♻ ☆ Nautilus: Locality-aware Autoencoder for Scalable Mesh Generation ICCV 2025
Triangle meshes are fundamental to 3D applications, enabling efficient modification and rasterization while maintaining compatibility with standard rendering pipelines. However, current automatic mesh generation methods typically rely on intermediate representations that lack the continuous surface quality inherent to meshes. Converting these representations into meshes produces dense, suboptimal outputs. Although recent autoregressive approaches demonstrate promise in directly modeling mesh vertices and faces, they are constrained by the limitation in face count, scalability, and structural fidelity. To address these challenges, we propose Nautilus, a locality-aware autoencoder for artist-like mesh generation that leverages the local properties of manifold meshes to achieve structural fidelity and efficient representation. Our approach introduces a novel tokenization algorithm that preserves face proximity relationships and compresses sequence length through locally shared vertices and edges, enabling the generation of meshes with an unprecedented scale of up to 5,000 faces. Furthermore, we develop a Dual-stream Point Conditioner that provides multi-scale geometric guidance, ensuring global consistency and local structural fidelity by capturing fine-grained geometric features. Extensive experiments demonstrate that Nautilus significantly outperforms state-of-the-art methods in both fidelity and scalability. The project page is at https://nautilusmeshgen.github.io.
comment: accepted to ICCV 2025
♻ ☆ A Neurosymbolic Framework for Interpretable Cognitive Attack Detection in Augmented Reality
Augmented Reality (AR) enriches perception by overlaying virtual elements on the physical world. Due to its growing popularity, cognitive attacks that alter AR content to manipulate users' semantic perception have received increasing attention. Existing detection methods often focus on visual changes, which are restricted to pixel- or image-level processing and lack semantic reasoning capabilities, or they rely on pre-trained vision-language models (VLMs), which function as black-box approaches with limited interpretability. In this paper, we present CADAR, a novel neurosymbolic approach for cognitive attack detection in AR. It fuses multimodal vision-language inputs using neural VLMs to obtain a symbolic perception-graph representation, incorporating prior knowledge, salience weighting, and temporal correlations. The model then enables particle-filter based statistical reasoning -- a sequential Monte Carlo method -- to detect cognitive attacks. Thus, CADAR inherits the adaptability of pre-trained VLM and the interpretability and reasoning rigor of particle filtering. Experiments on an extended AR cognitive attack dataset show accuracy improvements of up to 10.7% over strong baselines on challenging AR attack scenarios, underscoring the promise of neurosymbolic methods for effective and interpretable cognitive attack detection.
♻ ☆ MEDTalk: Multimodal Controlled 3D Facial Animation with Dynamic Emotions by Disentangled Embedding
Audio-driven emotional 3D facial animation aims to generate synchronized lip movements and vivid facial expressions. However, most existing approaches focus on static and predefined emotion labels, limiting their diversity and naturalness. To address these challenges, we propose MEDTalk, a novel framework for fine-grained and dynamic emotional talking head generation. Our approach first disentangles content and emotion embedding spaces from motion sequences using a carefully designed cross-reconstruction process, enabling independent control over lip movements and facial expressions. Beyond conventional audio-driven lip synchronization, we integrate audio and speech text, predicting frame-wise intensity variations and dynamically adjusting static emotion features to generate realistic emotional expressions. Furthermore, to enhance control and personalization, we incorporate multimodal inputs-including text descriptions and reference expression images-to guide the generation of user-specified facial expressions. With MetaHuman as the priority, our generated results can be conveniently integrated into the industrial production pipeline. The code is available at: https://github.com/SJTU-Lucy/MEDTalk.
♻ ☆ MIDAS: Modeling Ground-Truth Distributions with Dark Knowledge for Domain Generalized Stereo Matching
Despite the significant advances in domain generalized stereo matching, existing methods still exhibit domain-specific preferences when transferring from synthetic to real domains, hindering their practical applications in complex and diverse scenarios. The probability distributions predicted by the stereo network naturally encode rich similarity and uncertainty information. Inspired by this observation, we propose to extract these two types of dark knowledge from the pre-trained network to model intuitive multi-modal ground-truth distributions for both edge and non-edge regions. To mitigate the inherent domain preferences of a single network, we adopt network ensemble and further distinguish between objective and biased knowledge in the Laplace parameter space. Finally, the objective knowledge and the original disparity labels are jointly modeled as a mixture of Laplacians to provide fine-grained supervision for the stereo network training. Extensive experiments demonstrate that: (1) Our method is generic and effectively improves the generalization of existing networks. (2) PCWNet with our method achieves the state-of-the-art generalization performance on both KITTI 2015 and 2012 datasets. (3) Our method outperforms existing methods in comprehensive ranking across four popular real-world datasets.
♻ ☆ MSC: A Marine Wildlife Video Dataset with Grounded Segmentation and Clip-Level Captioning
Marine videos present significant challenges for video understanding due to the dynamics of marine objects and the surrounding environment, camera motion, and the complexity of underwater scenes. Existing video captioning datasets, typically focused on generic or human-centric domains, often fail to generalize to the complexities of the marine environment and gain insights about marine life. To address these limitations, we propose a two-stage marine object-oriented video captioning pipeline. We introduce a comprehensive video understanding benchmark that leverages the triplets of video, text, and segmentation masks to facilitate visual grounding and captioning, leading to improved marine video understanding and analysis, and marine video generation. Additionally, we highlight the effectiveness of video splitting in order to detect salient object transitions in scene changes, which significantly enrich the semantics of captioning content. Our dataset and code have been released at https://msc.hkustvgd.com.
comment: Published at ACMMM2025 (Dataset track)
♻ ☆ Visual SLAMMOT Considering Multiple Motion Models
Simultaneous Localization and Mapping (SLAM) and Multi-Object Tracking (MOT) are pivotal tasks in the realm of autonomous driving, attracting considerable research attention. While SLAM endeavors to generate real-time maps and determine the vehicle's pose in unfamiliar settings, MOT focuses on the real-time identification and tracking of multiple dynamic objects. Despite their importance, the prevalent approach treats SLAM and MOT as independent modules within an autonomous vehicle system, leading to inherent limitations. Classical SLAM methodologies often rely on a static environment assumption, suitable for indoor rather than dynamic outdoor scenarios. Conversely, conventional MOT techniques typically rely on the vehicle's known state, constraining the accuracy of object state estimations based on this prior. To address these challenges, previous efforts introduced the unified SLAMMOT paradigm, yet primarily focused on simplistic motion patterns. In our team's previous work IMM-SLAMMOT\cite{IMM-SLAMMOT}, we present a novel methodology incorporating consideration of multiple motion models into SLAMMOT i.e. tightly coupled SLAM and MOT, demonstrating its efficacy in LiDAR-based systems. This paper studies feasibility and advantages of instantiating this methodology as visual SLAMMOT, bridging the gap between LiDAR and vision-based sensing mechanisms. Specifically, we propose a solution of visual SLAMMOT considering multiple motion models and validate the inherent advantages of IMM-SLAMMOT in the visual domain.
♻ ☆ Scaling Open-Vocabulary Action Detection
In this work, we focus on scaling open-vocabulary action detection. Existing approaches for action detection are predominantly limited to closed-set scenarios and rely on complex, parameter-heavy architectures. Extending these models to the open-vocabulary setting poses two key challenges: (1) the lack of large-scale datasets with many action classes for robust training, and (2) parameter-heavy adaptations to a pretrained vision-language contrastive model to convert it for detection, risking overfitting the additional non-pretrained parameters to base action classes. Firstly, we introduce an encoder-only multimodal model for video action detection, reducing the reliance on parameter-heavy additions for video action detection. Secondly, we introduce a simple weakly supervised training strategy to exploit an existing closed-set action detection dataset for pretraining. Finally, we depart from the ill-posed base-to-novel benchmark used by prior works in open-vocabulary action detection and devise a new benchmark to evaluate on existing closed-set action detection datasets without ever using them for training, showing novel results to serve as baselines for future work. Our code is available at https://siatheindochinese.github.io/sia_act_page/ .
♻ ☆ EvRWKV: A Continuous Interactive RWKV Framework for Effective Event-Guided Low-Light Image Enhancement
Capturing high-quality visual content under low-light conditions remains a challenging problem due to severe noise and underexposure, which degrade the performance of downstream applications. Traditional frame-based low-light image enhancement methods often amplify noise or fail to preserve structural details. Event cameras, offering high dynamic range and microsecond temporal resolution by asynchronously capturing brightness changes, emerge as a promising complement for low-light imaging. However, existing fusion methods fail to fully exploit this synergy, either by forcing modalities into a shared representation too early or by losing vital low-level correlations through isolated processing. To address these challenges, we propose EvRWKV, a novel framework that enables continuous cross-modal interaction through dual-domain processing. Our approach incorporates a Cross-RWKV module, leveraging the Receptance Weighted Key Value (RWKV) architecture for fine-grained temporal and cross-modal fusion, and an Event Image Spectral Fusion Enhancer (EISFE) module, which jointly performs adaptive frequency-domain noise suppression and spatial-domain deformable convolution alignment. This continuous interaction maintains feature consistency from low-level textures to high-level semantics. Extensive qualitative and quantitative evaluations on real-world low-light datasets (SDE, SDSD, RELED) demonstrate that EvRWKV achieves state-of-the-art performance, effectively enhancing image quality by suppressing noise, restoring structural details, and improving visual clarity in challenging low-light conditions.
♻ ☆ BadBlocks: Low-Cost and Stealthy Backdoor Attacks Tailored for Text-to-Image Diffusion Models
In recent years, Diffusion models have achieved remarkable progress in the field of image generation. However, recent studies have shown that diffusion models are susceptible to backdoor attacks, in which attackers can manipulate the output by injecting covert triggers such as specific visual patterns or textual phrases into the training dataset. Fortunately, with the continuous advancement of defense techniques, defenders have become increasingly capable of identifying and mitigating most backdoor attacks using visual inspection and neural network-based detection methods. However, in this paper, we identify a novel type of backdoor threat that is more lightweight and covert than existing approaches, which we name BadBlocks, requires only about 30 of the computational resources and 20 GPU time typically needed by previous backdoor attacks, yet it successfully injects backdoors and evades the most advanced defense frameworks. BadBlocks enables attackers to selectively contaminate specific blocks within the UNet architecture of diffusion models while maintaining normal functionality in the remaining components. Experimental results demonstrate that BadBlocks achieves a high attack success rate and low perceptual quality loss , even under extremely constrained computational resources and GPU time. Moreover, BadBlocks is able to bypass existing defense frameworks, especially the attention-based backdoor detection method, highlighting it as a novel and noteworthy threat. Ablation studies further demonstrate that effective backdoor injection does not require fine-tuning the entire network and highlight the pivotal role of certain neural network layers in backdoor mapping. Overall, BadBlocks significantly reduces the barrier to conducting backdoor attacks in all aspects. It enables attackers to inject backdoors into large-scale diffusion models even using consumer-grade GPUs.
♻ ☆ Common Data Properties Limit Object-Attribute Binding in CLIP
Contrastive vision-language models like CLIP are used for a large variety of applications, such as zero-shot classification or as vision encoder for multi-modal models. Despite their popularity, their representations show major limitations. For instance, CLIP models learn bag-of-words representations and, as a consequence, fail to distinguish whether an image is of ``a yellow submarine and a blue bus'' or ``a blue submarine and a yellow bus''. Previous attempts to fix this issue added hard negatives during training or modified the architecture, but failed to resolve the problem in its entirety. We suspect that the missing insights to solve the binding problem for CLIP are hidden in arguably the most important part of learning algorithms: the data. In this work, we fill this gap by rigorously identifying the influence of data properties on CLIP's ability to learn binding using a synthetic dataset. We find that common properties of natural data such as low attribute density, incomplete captions, and the saliency bias, a tendency of human captioners to describe the object that is ``most salient'' to them, have a detrimental effect on binding performance. In contrast to common belief, we find that neither scaling the batch size, i.e., implicitly adding more hard negatives, nor explicitly creating hard negatives enables CLIP to learn reliable binding. Only when the data expresses our identified data properties does CLIP learn almost perfect binding.
comment: accepted at GCPR 2025
♻ ☆ Hierarchical Cross-modal Prompt Learning for Vision-Language Models ICCV2025
Pre-trained Vision-Language Models (VLMs) such as CLIP have shown excellent generalization abilities. However, adapting these large-scale models to downstream tasks while preserving their generalization capabilities remains challenging. Although prompt learning methods have shown promise, they suffer from two fundamental bottlenecks that limit generalization: (a) modality isolation, and (b) hierarchical semantic decay. To address these limitations, we propose HiCroPL, a Hierarchical Cross-modal Prompt Learning framework that establishes bidirectional knowledge flow between text and vision modalities, enabling them to refine their semantics mutually. HiCroPL routes knowledge flows by leveraging the complementary strengths of text and vision. In early layers, text prompts inject relatively clear semantics into visual prompts through a hierarchical knowledge mapper, enhancing the representation of low-level visual semantics. In later layers, visual prompts encoding specific task-relevant objects flow back to refine text prompts, enabling deeper alignment. Crucially, our hierarchical knowledge mapper allows representations at multi-scales to be fused, ensuring that deeper representations retain transferable shallow semantics thereby enhancing generalization. We further introduce a lightweight layer-specific knowledge proxy to enable efficient cross-modal interactions. Extensive evaluations across four tasks demonstrate HiCroPL's superior performance, achieving state-of-the-art results on 11 benchmarks with significant improvements. Code is available at: https://github.com/zzeoZheng/HiCroPL.
comment: Accepted by ICCV2025
♻ ☆ Just Functioning as a Hook for Two-Stage Referring Multi-Object Tracking
Referring Multi-Object Tracking (RMOT) aims to localize target trajectories in videos specified by natural language expressions. Despite recent progress, the intrinsic relationship between the two subtasks of tracking and referring in RMOT has not been fully studied. In this paper, we present a systematic analysis of their interdependence, revealing that current two-stage Referring-by-Tracking (RBT) frameworks remain fundamentally limited by insufficient modeling of subtask interactions and inflexible reliance on semantic alignment modules like CLIP. To this end, we propose JustHook, a novel two-stage RBT framework where a Hook module is firstly designed to redefine the linkage between subtasks. The Hook is built centered on grid sampling at the feature-level and is used for context-aware target feature extraction. Moreover, we propose a Parallel Combined Decoder (PCD) that learns in a unified joint feature space rather than relying on pre-defined cross-modal embeddings. Our design not only enhances the interpretability and modularity but also significantly improves the generalization. Extensive experiments on Refer-KITTI, Refer-KITTI-V2, and Refer-Dance demonstrate that JustHook achieves state-of-the-art performance, improving the HOTA by +6.9\% on Refer-KITTI-V2 with superior efficiency. Code will be available soon.
♻ ☆ Point or Line? Using Line-based Representation for Panoptic Symbol Spotting in CAD Drawings
We study the task of panoptic symbol spotting, which involves identifying both individual instances of countable things and the semantic regions of uncountable stuff in computer-aided design (CAD) drawings composed of vector graphical primitives. Existing methods typically rely on image rasterization, graph construction, or point-based representation, but these approaches often suffer from high computational costs, limited generality, and loss of geometric structural information. In this paper, we propose VecFormer, a novel method that addresses these challenges through line-based representation of primitives. This design preserves the geometric continuity of the original primitive, enabling more accurate shape representation while maintaining a computation-friendly structure, making it well-suited for vector graphic understanding tasks. To further enhance prediction reliability, we introduce a Branch Fusion Refinement module that effectively integrates instance and semantic predictions, resolving their inconsistencies for more coherent panoptic outputs. Extensive experiments demonstrate that our method establishes a new state-of-the-art, achieving 91.1 PQ, with Stuff-PQ improved by 9.6 and 21.2 points over the second-best results under settings with and without prior information, respectively, highlighting the strong potential of line-based representation as a foundation for vector graphic understanding.
♻ ☆ Speedy-Splat: Fast 3D Gaussian Splatting with Sparse Pixels and Sparse Primitives CVPR 2025
3D Gaussian Splatting (3D-GS) is a recent 3D scene reconstruction technique that enables real-time rendering of novel views by modeling scenes as parametric point clouds of differentiable 3D Gaussians. However, its rendering speed and model size still present bottlenecks, especially in resource-constrained settings. In this paper, we identify and address two key inefficiencies in 3D-GS to substantially improve rendering speed. These improvements also yield the ancillary benefits of reduced model size and training time. First, we optimize the rendering pipeline to precisely localize Gaussians in the scene, boosting rendering speed without altering visual fidelity. Second, we introduce a novel pruning technique and integrate it into the training pipeline, significantly reducing model size and training time while further raising rendering speed. Our Speedy-Splat approach combines these techniques to accelerate average rendering speed by a drastic $\mathit{6.71\times}$ across scenes from the Mip-NeRF 360, Tanks & Temples, and Deep Blending datasets.
comment: CVPR 2025, Project Page: https://speedysplat.github.io/
♻ ☆ VPOcc: Exploiting Vanishing Point for 3D Semantic Occupancy Prediction
Understanding 3D scenes semantically and spatially is crucial for the safe navigation of robots and autonomous vehicles, aiding obstacle avoidance and accurate trajectory planning. Camera-based 3D semantic occupancy prediction, which infers complete voxel grids from 2D images, is gaining importance in robot vision for its resource efficiency compared to 3D sensors. However, this task inherently suffers from a 2D-3D discrepancy, where objects of the same size in 3D space appear at different scales in a 2D image depending on their distance from the camera due to perspective projection. To tackle this issue, we propose a novel framework called VPOcc that leverages a vanishing point (VP) to mitigate the 2D-3D discrepancy at both the pixel and feature levels. As a pixel-level solution, we introduce a VPZoomer module, which warps images by counteracting the perspective effect using a VP-based homography transformation. In addition, as a feature-level solution, we propose a VP-guided cross-attention (VPCA) module that performs perspective-aware feature aggregation, utilizing 2D image features that are more suitable for 3D space. Lastly, we integrate two feature volumes extracted from the original and warped images to compensate for each other through a spatial volume fusion (SVF) module. By effectively incorporating VP into the network, our framework achieves improvements in both IoU and mIoU metrics on SemanticKITTI and SSCBench-KITTI360 datasets. Additional details are available at https://vision3d-lab.github.io/vpocc/.
♻ ☆ Data Pruning by Information Maximization
In this paper, we present InfoMax, a novel data pruning method, also known as coreset selection, designed to maximize the information content of selected samples while minimizing redundancy. By doing so, InfoMax enhances the overall informativeness of the coreset. The information of individual samples is measured by importance scores, which capture their influence or difficulty in model learning. To quantify redundancy, we use pairwise sample similarities, based on the premise that similar samples contribute similarly to the learning process. We formalize the coreset selection problem as a discrete quadratic programming (DQP) task, with the objective of maximizing the total information content, represented as the sum of individual sample contributions minus the redundancies introduced by similar samples within the coreset. To ensure practical scalability, we introduce an efficient gradient-based solver, complemented by sparsification techniques applied to the similarity matrix and dataset partitioning strategies. This enables InfoMax to seamlessly scale to datasets with millions of samples. Extensive experiments demonstrate the superior performance of InfoMax in various data pruning tasks, including image classification, vision-language pre-training, and instruction tuning for large language models. Code is available at https://github.com/hrtan/InfoMax.
comment: Code is available at \url{https://github.com/hrtan/InfoMax}
♻ ☆ Semantic Structure-Aware Generative Attacks for Enhanced Adversarial Transferability
Generative adversarial attacks train a perturbation generator on a white-box surrogate model and subsequently apply the crafted perturbations to unseen black-box victim models. In contrast to iterative attacks, these methods deliver superior inference-time efficiency, scalability, and transferability; however, up until now, existing studies have not fully exploited the representational capacity of generative models to preserve and harness semantic information. Specifically, the intermediate activations of the generator encode rich semantic features--object boundaries and coarse shapes--that remain under-exploited, thereby limiting the alignment of perturbations with object-salient regions which are critical for adversarial transferability. To remedy this, we introduce a semantic structure-aware attack framework based on the Mean Teacher, which serves as a temporally smoothed feature reference. With this smoothed reference, we further direct semantic consistency between the early-layer activations in the student and those of the semantically rich teacher by feature distillation. By anchoring perturbation synthesis to the semantically salient early intermediate blocks within the generator based on empirical findings, our method guides progressive adversarial perturbation on regions that substantially enhance adversarial transferability. We conduct extensive experiments over diverse models, domains and tasks to demonstrate consistent improvements relative to state-of-the-art generative attacks, comprehensively evaluated using conventional metrics and our newly proposed Accidental Correction Rate (ACR).
comment: Preprint
♻ ☆ Warehouse Spatial Question Answering with LLM Agent
Spatial understanding has been a challenging task for existing Multi-modal Large Language Models~(MLLMs). Previous methods leverage large-scale MLLM finetuning to enhance MLLM's spatial understanding ability. In this paper, we present a data-efficient approach. We propose a LLM agent system with strong and advanced spatial reasoning ability, which can be used to solve the challenging spatial question answering task in complex indoor warehouse scenarios. Our system integrates multiple tools that allow the LLM agent to conduct spatial reasoning and API tools interaction to answer the given complicated spatial question. Extensive evaluations on the 2025 AI City Challenge Physical AI Spatial Intelligence Warehouse dataset demonstrate that our system achieves high accuracy and efficiency in tasks such as object retrieval, counting, and distance estimation. The code is available at: https://github.com/hsiangwei0903/SpatialAgent
comment: 1st Place Solution of the 9th AI City Challenge Track 3
♻ ☆ PromptSafe: Gated Prompt Tuning for Safe Text-to-Image Generation
Text-to-image (T2I) models have demonstrated remarkable generative capabilities but remain vulnerable to producing not-safe-for-work (NSFW) content, such as violent or explicit imagery. While recent moderation efforts have introduced soft prompt-guided tuning by appending defensive tokens to the input, these approaches often rely on large-scale curated image-text datasets and apply static, one-size-fits-all defenses at inference time. However, this results not only in high computational cost and degraded benign image quality, but also in limited adaptability to the diverse and nuanced safety requirements of real-world prompts. To address these challenges, we propose PromptSafe, a gated prompt tuning framework that combines a lightweight, text-only supervised soft embedding with an inference-time gated control network. Instead of training on expensive image-text datasets, we first rewrite unsafe prompts into semantically aligned but safe alternatives using an LLM, constructing an efficient text-only training corpus. Based on this, we optimize a universal soft prompt that repels unsafe and attracts safe embeddings during the diffusion denoising process. To avoid over-suppressing benign prompts, we introduce a gated mechanism that adaptively adjusts the defensive strength based on estimated prompt toxicity, thereby aligning defense intensity with prompt risk and ensuring strong protection for harmful inputs while preserving benign generation quality. Extensive experiments across multiple benchmarks and T2I models show that PromptSafe achieves a SOTA unsafe generation rate (2.36%), while preserving high benign fidelity. Furthermore, PromptSafe demonstrates strong generalization to unseen harmful categories, robust transferability across diffusion model architectures, and resilience under adaptive adversarial attacks, highlighting its practical value for safe and scalable deployment.
♻ ☆ Leveraging Motion Estimation for Efficient Bayer-Domain Computer Vision
Existing computer vision processing pipeline acquires visual information using an image sensor that captures pixel information in the Bayer pattern. The raw sensor data are then processed using an image signal processor (ISP) that first converts Bayer pixel data to RGB on a pixel by pixel basis, followed by video convolutional network (VCN) processing on a frame by frame basis. Both ISP and VCN are computationally expensive with high power consumption and latency. In this paper, we propose a novel framework that eliminates the ISP and leverages motion estimation to accelerate video vision tasks directly in the Bayer domain. We introduce Motion Estimation-based Video Convolution (MEVC), which integrates sliding-window motion estimation into each convolutional layer, enabling prediction and residual-based refinement that reduces redundant computations across frames. This design bridges the structural gap between block-based motion estimation and spatial convolution, enabling accurate, low-cost processing. Our end-to-end pipeline supports raw Bayer input and achieves over 70\% reduction in FLOPs with minimal accuracy degradation across video semantic segmentation, depth estimation, and object detection benchmarks, using both synthetic Bayer-converted and real Bayer video datasets. This framework generalizes across convolution-based models and marks the first effective reuse of motion estimation for accelerating video computer vision directly from raw sensor data.
♻ ☆ CapeLLM: Support-Free Category-Agnostic Pose Estimation with Multimodal Large Language Models ICCV 2025
Category-agnostic pose estimation (CAPE) has traditionally relied on support images with annotated keypoints, a process that is often cumbersome and may fail to fully capture the necessary correspondences across diverse object categories. Recent efforts have explored the use of text queries, leveraging their enhanced stability and generalization capabilities. However, existing approaches often remain constrained by their reliance on support queries, their failure to fully utilize the rich priors embedded in pre-trained large language models, and the limitations imposed by their parametric distribution assumptions. To address these challenges, we introduce CapeLLM, the first multimodal large language model (MLLM) designed for CAPE. Our method only employs query image and detailed text descriptions as an input to estimate category-agnostic keypoints. Our method encompasses effective training strategies and carefully designed instructions for applying the MLLM to CAPE. Moreover, we propose an inference mechanism that further enhances the reasoning process for unseen keypoints. while flexibly modeling their underlying spatial distribution and uncertainty, allowing for adaptive refinement based on contextual cues. We conducted extensive experiments to apply the MLLM to CAPE effectively, focusing not only on the model architecture and prompt design but also on ensuring robustness across input variations. Our approach sets a new state-of-the-art on the MP-100 benchmark in the 1-shot and even 5-shot setting, marking a significant advancement in the field of category-agnostic pose estimation. Code is available at https://github.com/Junhojuno/CapeLLM.
comment: ICCV 2025
♻ ☆ EXAONE Path 2.0: Pathology Foundation Model with End-to-End Supervision
In digital pathology, whole-slide images (WSIs) are often difficult to handle due to their gigapixel scale, so most approaches train patch encoders via self-supervised learning (SSL) and then aggregate the patch-level embeddings via multiple instance learning (MIL) or slide encoders for downstream tasks. However, patch-level SSL may overlook complex domain-specific features that are essential for biomarker prediction, such as mutation status and molecular characteristics, as SSL methods rely only on basic augmentations selected for natural image domains on small patch-level area. Moreover, SSL methods remain less data efficient than fully supervised approaches, requiring extensive computational resources and datasets to achieve competitive performance. To address these limitations, we present EXAONE Path 2.0, a pathology foundation model that learns patch-level representations under direct slide-level supervision. Using only 37k WSIs for training, EXAONE Path 2.0 achieves state-of-the-art average performance across 10 biomarker prediction tasks, demonstrating remarkable data efficiency.
comment: EXAONE Path 2.0 technical report
♻ ☆ Mastering Collaborative Multi-modal Data Selection: A Focus on Informativeness, Uniqueness, and Representativeness ICCV 2025
Instruction tuning fine-tunes pre-trained Multi-modal Large Language Models (MLLMs) to handle real-world tasks. However, the rapid expansion of visual instruction datasets introduces data redundancy, leading to excessive computational costs. We propose a collaborative framework, DataTailor, which leverages three key principles--informativeness, uniqueness, and representativeness--for effective data selection. We argue that a valuable sample should be informative of the task, non-redundant, and represent the sample distribution (i.e., not an outlier). We further propose practical ways to score against each principle, which automatically adapts to a given dataset without tedious hyperparameter tuning. Comprehensive experiments on various benchmarks demonstrate that DataTailor achieves 101.3% of the performance of full-data fine-tuning with only 15% of the data, significantly reducing computational costs while maintaining superior results. This exemplifies the "Less is More" philosophy in MLLM development. The code and data is available in this \href{https://github.com/Yuqifan1117/DataTailor}{URL}.
comment: ICCV 2025 Highlight
♻ ☆ EditGarment: An Instruction-Based Garment Editing Dataset Constructed with Automated MLLM Synthesis and Semantic-Aware Evaluation
Instruction-based garment editing enables precise image modifications via natural language, with broad applications in fashion design and customization. Unlike general editing tasks, it requires understanding garment-specific semantics and attribute dependencies. However, progress is limited by the scarcity of high-quality instruction-image pairs, as manual annotation is costly and hard to scale. While MLLMs have shown promise in automated data synthesis, their application to garment editing is constrained by imprecise instruction modeling and a lack of fashion-specific supervisory signals. To address these challenges, we present an automated pipeline for constructing a garment editing dataset. We first define six editing instruction categories aligned with real-world fashion workflows to guide the generation of balanced and diverse instruction-image triplets. Second, we introduce Fashion Edit Score, a semantic-aware evaluation metric that captures semantic dependencies between garment attributes and provides reliable supervision during construction. Using this pipeline, we construct a total of 52,257 candidate triplets and retain 20,596 high-quality triplets to build EditGarment, the first instruction-based dataset tailored to standalone garment editing. The project page is https://yindq99.github.io/EditGarment-project/.
♻ ☆ MusiXQA: Advancing Visual Music Understanding in Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have achieved remarkable visual reasoning abilities in natural images, text-rich documents, and graphic designs. However, their ability to interpret music sheets remains underexplored. To bridge this gap, we introduce MusiXQA, the first comprehensive dataset for evaluating and advancing MLLMs in music sheet understanding. MusiXQA features high-quality synthetic music sheets generated via MusiXTeX, with structured annotations covering note pitch and duration, chords, clefs, key/time signatures, and text, enabling diverse visual QA tasks. Through extensive evaluations, we reveal significant limitations of current state-of-the-art MLLMs in this domain. Beyond benchmarking, we developed Phi-3-MusiX, an MLLM fine-tuned on our dataset, achieving significant performance gains over GPT-based methods. The proposed dataset and model establish a foundation for future advances in MLLMs for music sheet understanding. Code, data, and model will be released upon acceptance.
comment: Under Review
♻ ☆ DGNS: Deformable Gaussian Splatting and Dynamic Neural Surface for Monocular Dynamic 3D Reconstruction
Dynamic scene reconstruction from monocular video is essential for real-world applications. We introduce DGNS, a hybrid framework integrating \underline{D}eformable \underline{G}aussian Splatting and Dynamic \underline{N}eural \underline{S}urfaces, effectively addressing dynamic novel-view synthesis and 3D geometry reconstruction simultaneously. During training, depth maps generated by the deformable Gaussian splatting module guide the ray sampling for faster processing and provide depth supervision within the dynamic neural surface module to improve geometry reconstruction. Conversely, the dynamic neural surface directs the distribution of Gaussian primitives around the surface, enhancing rendering quality. In addition, we propose a depth-filtering approach to further refine depth supervision. Extensive experiments conducted on public datasets demonstrate that DGNS achieves state-of-the-art performance in 3D reconstruction, along with competitive results in novel-view synthesis.
♻ ☆ Improving Viewpoint Consistency in 3D Generation via Structure Feature and CLIP Guidance
Despite recent advances in text-to-3D generation techniques, current methods often suffer from geometric inconsistencies, commonly referred to as the Janus Problem. This paper identifies the root cause of the Janus Problem: viewpoint generation bias in diffusion models, which creates a significant gap between the actual generated viewpoint and the expected one required for optimizing the 3D model. To address this issue, we propose a tuning-free approach called the Attention and CLIP Guidance (ACG) mechanism. ACG enhances desired viewpoints by adaptively controlling cross-attention maps, employs CLIP-based view-text similarities to filter out erroneous viewpoints, and uses a coarse-to-fine optimization strategy with staged prompts to progressively refine 3D generation. Extensive experiments demonstrate that our method significantly reduces the Janus Problem without compromising generation speed, establishing ACG as an efficient, plug-and-play component for existing text-to-3D frameworks.
♻ ☆ Continual Learning for Multiple Modalities
Continual learning aims to learn knowledge of tasks observed in sequential time steps while mitigating the forgetting of previously learned knowledge. Existing methods were designed to learn a single modality (e.g., image) over time, which limits their applicability in scenarios involving multiple modalities. In this work, we propose a novel continual learning framework that accommodates multiple modalities (image, video, audio, depth, and text). We train a model to align various modalities with text, leveraging its rich semantic information. However, this increases the risk of forgetting previously learned knowledge, exacerbated by the differing input traits across tasks. To alleviate the overwriting of previous knowledge of modalities, we propose a framework that consolidates intra-modal knowledge while incorporating relevant inter-modal information. This is achieved by self-regulating shifts in learned representations to gradually integrating novel knowledge into the information retained across modalities. Simultaneously, it mitigates inter-modal interference by selectively integrating knowledge from previously encountered modalities based on their mutual relevance. Furthermore, we introduce a strategy to re-align modality embeddings, effectively addressing biased alignment between modalities. We evaluate the proposed method in a wide range of continual learning scenarios using multiple datasets with different modalities. Extensive experiments demonstrate that ours outperforms existing methods in the scenarios, regardless of whether the identity of the modality is given.
♻ ☆ ViFusionTST: Deep Fusion of Time-Series Image Representations from Load Signals for Early Bed-Exit Prediction
Bed-related falls remain a major source of injury in hospitals and long-term care facilities, yet many commercial alarms trigger only after a patient has already left the bed. We show that early bed-exit intent can be predicted using only one low-cost load cell mounted under a bed leg. The resulting load signals are first converted into a compact set of complementary images: an RGB line plot that preserves raw waveforms and three texture maps-recurrence plot, Markov transition field, and Gramian angular field-that expose higher-order dynamics. We introduce ViFusionTST, a dual-stream Swin Transformer that processes the line plot and texture maps in parallel and fuses them through cross-attention to learn data-driven modality weights. To provide a realistic benchmark, we collected six months of continuous data from 95 beds in a long-term-care facility. On this real-world dataset ViFusionTST reaches an accuracy of 0.885 and an F1 score of 0.794, surpassing recent 1D and 2D time-series baselines across F1, recall, accuracy, and AUPRC. The results demonstrate that image-based fusion of load-sensor signals for time series classification is a practical and effective solution for real-time, privacy-preserving fall prevention.
♻ ☆ Wild2Avatar: Rendering Humans Behind Occlusions
Rendering the visual appearance of moving humans from occluded monocular videos is a challenging task. Most existing research renders 3D humans under ideal conditions, requiring a clear and unobstructed scene. Those methods cannot be used to render humans in real-world scenes where obstacles may block the camera's view and lead to partial occlusions. In this work, we present Wild2Avatar, a neural rendering approach catered for occluded in-the-wild monocular videos. We propose occlusion-aware scene parameterization for decoupling the scene into three parts - occlusion, human, and background. Additionally, extensive objective functions are designed to help enforce the decoupling of the human from both the occlusion and the background and to ensure the completeness of the human model. We verify the effectiveness of our approach with experiments on in-the-wild videos.
comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). Webpage: https://cs.stanford.edu/~xtiange/projects/wild2avatar/
♻ ☆ An Analytical Theory of Spectral Bias in the Learning Dynamics of Diffusion Models
We develop an analytical framework for understanding how the generated distribution evolves during diffusion model training. Leveraging a Gaussian-equivalence principle, we solve the full-batch gradient-flow dynamics of linear and convolutional denoisers and integrate the resulting probability-flow ODE, yielding analytic expressions for the generated distribution. The theory exposes a universal inverse-variance spectral law: the time for an eigen- or Fourier mode to match its target variance scales as $\tau\propto\lambda^{-1}$, so high-variance (coarse) structure is mastered orders of magnitude sooner than low-variance (fine) detail. Extending the analysis to deep linear networks and circulant full-width convolutions shows that weight sharing merely multiplies learning rates accelerating but not eliminating the bias whereas local convolution introduces a qualitatively different bias. Experiments on Gaussian and natural-image datasets confirm the spectral law persists in deep MLP-based UNet. Convolutional U-Nets, however, display rapid near-simultaneous emergence of many modes, implicating local convolution in reshaping learning dynamics. These results underscore how data covariance governs the order and speed with which diffusion models learn, and they call for deeper investigation of the unique inductive biases introduced by local convolution.
comment: 91 pages, 23 figures. Preprint
♻ ☆ Part Segmentation of Human Meshes via Multi-View Human Parsing
Recent advances in point cloud deep learning have led to models that achieve high per-part labeling accuracy on large-scale point clouds, using only the raw geometry of unordered point sets. In parallel, the field of human parsing focuses on predicting body part and clothing/accessory labels from images. This work aims to bridge these two domains by enabling per-vertex semantic segmentation of large-scale human meshes. To achieve this, a pseudo-ground truth labeling pipeline is developed for the Thuman2.1 dataset: meshes are first aligned to a canonical pose, segmented from multiple viewpoints, and the resulting point-level labels are then backprojected onto the original mesh to produce per-point pseudo ground truth annotations. Subsequently, a novel, memory-efficient sampling strategy is introduced, a windowed iterative farthest point sampling (FPS) with space-filling curve-based serialization to effectively downsample the point clouds. This is followed by a purely geometric segmentation using PointTransformer, enabling semantic parsing of human meshes without relying on texture information. Experimental results confirm the effectiveness and accuracy of the proposed approach. Project code and pre-processed data is available at https://github.com/JamesMcCullochDickens/Human3DParsing/tree/master.
♻ ☆ HepatoGEN: Generating Hepatobiliary Phase MRI with Perceptual and Adversarial Models
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) plays a crucial role in the detection and characterization of focal liver lesions, with the hepatobiliary phase (HBP) providing essential diagnostic information. However, acquiring HBP images requires prolonged scan times, which may compromise patient comfort and scanner throughput. In this study, we propose a deep learning based approach for synthesizing HBP images from earlier contrast phases (precontrast and transitional) and compare three generative models: a perceptual U-Net, a perceptual GAN (pGAN), and a denoising diffusion probabilistic model (DDPM). We curated a multi-site DCE-MRI dataset from diverse clinical settings and introduced a contrast evolution score (CES) to assess training data quality, enhancing model performance. Quantitative evaluation using pixel-wise and perceptual metrics, combined with qualitative assessment through blinded radiologist reviews, showed that pGAN achieved the best quantitative performance but introduced heterogeneous contrast in out-of-distribution cases. In contrast, the U-Net produced consistent liver enhancement with fewer artifacts, while DDPM underperformed due to limited preservation of fine structural details. These findings demonstrate the feasibility of synthetic HBP image generation as a means to reduce scan time without compromising diagnostic utility, highlighting the clinical potential of deep learning for dynamic contrast enhancement in liver MRI. A project demo is available at: https://jhooge.github.io/hepatogen
comment: Author disagreement
♻ ☆ Seeing and Seeing Through the Glass: Real and Synthetic Data for Multi-Layer Depth Estimation
Transparent objects are common in daily life, and understanding their multi-layer depth information -- perceiving both the transparent surface and the objects behind it -- is crucial for real-world applications that interact with transparent materials. In this paper, we introduce LayeredDepth, the first dataset with multi-layer depth annotations, including a real-world benchmark and a synthetic data generator, to support the task of multi-layer depth estimation. Our real-world benchmark consists of 1,500 images from diverse scenes, and evaluating state-of-the-art depth estimation methods on it reveals that they struggle with transparent objects. The synthetic data generator is fully procedural and capable of providing training data for this task with an unlimited variety of objects and scene compositions. Using this generator, we create a synthetic dataset with 15,300 images. Baseline models training solely on this synthetic dataset produce good cross-domain multi-layer depth estimation. Fine-tuning state-of-the-art single-layer depth models on it substantially improves their performance on transparent objects, with quadruplet accuracy on our benchmark increased from 55.14% to 75.20%. All images and validation annotations are available under CC0 at https://layereddepth.cs.princeton.edu.
♻ ☆ A Closer Look at Multimodal Representation Collapse ICML
We aim to develop a fundamental understanding of modality collapse, a recently observed empirical phenomenon wherein models trained for multimodal fusion tend to rely only on a subset of the modalities, ignoring the rest. We show that modality collapse happens when noisy features from one modality are entangled, via a shared set of neurons in the fusion head, with predictive features from another, effectively masking out positive contributions from the predictive features of the former modality and leading to its collapse. We further prove that cross-modal knowledge distillation implicitly disentangles such representations by freeing up rank bottlenecks in the student encoder, denoising the fusion-head outputs without negatively impacting the predictive features from either modality. Based on the above findings, we propose an algorithm that prevents modality collapse through explicit basis reallocation, with applications in dealing with missing modalities. Extensive experiments on multiple multimodal benchmarks validate our theoretical claims. Project page: https://abhrac.github.io/mmcollapse/.
comment: International Conference on Machine Learning (ICML) 2025 (Spotlight)
♻ ☆ Blending 3D Geometry and Machine Learning for Multi-View Stereopsis
Traditional multi-view stereo (MVS) methods primarily depend on photometric and geometric consistency constraints. In contrast, modern learning-based algorithms often rely on the plane sweep algorithm to infer 3D geometry, applying explicit geometric consistency (GC) checks only as a post-processing step, with no impact on the learning process itself. In this work, we introduce GC MVSNet plus plus, a novel approach that actively enforces geometric consistency of reference view depth maps across multiple source views (multi view) and at various scales (multi scale) during the learning phase (see Fig. 1). This integrated GC check significantly accelerates the learning process by directly penalizing geometrically inconsistent pixels, effectively halving the number of training iterations compared to other MVS methods. Furthermore, we introduce a densely connected cost regularization network with two distinct block designs simple and feature dense optimized to harness dense feature connections for enhanced regularization. Extensive experiments demonstrate that our approach achieves a new state of the art on the DTU and BlendedMVS datasets and secures second place on the Tanks and Temples benchmark. To our knowledge, GC MVSNet plus plus is the first method to enforce multi-view, multi-scale supervised geometric consistency during learning. Our code is available.
comment: A pre-print -- accepted at Neurocomputing. arXiv admin note: substantial text overlap with arXiv:2310.19583
♻ ☆ JMA: a General Algorithm to Craft Nearly Optimal Targeted Adversarial Example
Most of the approaches proposed so far to craft targeted adversarial examples against Deep Learning classifiers are highly suboptimal and typically rely on increasing the likelihood of the target class, thus implicitly focusing on one-hot encoding settings. In this paper, a more general, theoretically sound, targeted attack is proposed, which resorts to the minimization of a Jacobian-induced Mahalanobis distance term, taking into account the effort (in the input space) required to move the latent space representation of the input sample in a given direction. The minimization is solved by exploiting the Wolfe duality theorem, reducing the problem to the solution of a Non-Negative Least Square (NNLS) problem. The proposed algorithm (referred to as JMA) provides an optimal solution to a linearised version of the adversarial example problem originally introduced by Szegedy et al. The results of the experiments confirm the generality of the proposed attack which is proven to be effective under a wide variety of output encoding schemes. Noticeably, JMA is also effective in a multi-label classification scenario, being capable to induce a targeted modification of up to half the labels in complex multi-label classification scenarios, a capability that is out of reach of all the attacks proposed so far. As a further advantage, JMA requires very few iterations, thus resulting more efficient than existing methods.
Artificial Intelligence 216
☆ Empirical Investigation into Configuring Echo State Networks for Representative Benchmark Problem Domains
This paper examines Echo State Network, a reservoir computer, performance using four different benchmark problems, then proposes heuristics or rules of thumb for configuring the architecture, as well as the selection of parameters and their values, which are applicable to problems within the same domain, to help serve to fill the experience gap needed by those entering this field of study. The influence of various parameter selections and their value adjustments, as well as architectural changes made to an Echo State Network, a powerful recurrent neural network configured as a reservoir computer, can be challenging to fully comprehend without experience in the field, and even some hyperparameter optimization algorithms may have difficulty adjusting parameter values without proper manual selections made first. Therefore, it is imperative to understand the effects of parameters and their value selection on Echo State Network architecture performance for a successful build. Thus, to address the requirement for an extensive background in Echo State Network architecture, as well as examine how Echo State Network performance is affected with respect to variations in architecture, design, and parameter selection and values, a series of benchmark tasks representing different problem domains, including time series prediction, pattern generation, chaotic system prediction, and time series classification, were modeled and experimented on to show the impact on the performance of Echo State Network.
comment: 49 pages, 21 figures
☆ ToonComposer: Streamlining Cartoon Production with Generative Post-Keyframing
Traditional cartoon and anime production involves keyframing, inbetweening, and colorization stages, which require intensive manual effort. Despite recent advances in AI, existing methods often handle these stages separately, leading to error accumulation and artifacts. For instance, inbetweening approaches struggle with large motions, while colorization methods require dense per-frame sketches. To address this, we introduce ToonComposer, a generative model that unifies inbetweening and colorization into a single post-keyframing stage. ToonComposer employs a sparse sketch injection mechanism to provide precise control using keyframe sketches. Additionally, it uses a cartoon adaptation method with the spatial low-rank adapter to tailor a modern video foundation model to the cartoon domain while keeping its temporal prior intact. Requiring as few as a single sketch and a colored reference frame, ToonComposer excels with sparse inputs, while also supporting multiple sketches at any temporal location for more precise motion control. This dual capability reduces manual workload and improves flexibility, empowering artists in real-world scenarios. To evaluate our model, we further created PKBench, a benchmark featuring human-drawn sketches that simulate real-world use cases. Our evaluation demonstrates that ToonComposer outperforms existing methods in visual quality, motion consistency, and production efficiency, offering a superior and more flexible solution for AI-assisted cartoon production.
comment: Project Page: https://lg-li.github.io/project/tooncomposer
☆ Searching for Privacy Risks in LLM Agents via Simulation
The widespread deployment of LLM-based agents is likely to introduce a critical privacy threat: malicious agents that proactively engage others in multi-turn interactions to extract sensitive information. These dynamic dialogues enable adaptive attack strategies that can cause severe privacy violations, yet their evolving nature makes it difficult to anticipate and discover sophisticated vulnerabilities manually. To tackle this problem, we present a search-based framework that alternates between improving attacker and defender instructions by simulating privacy-critical agent interactions. Each simulation involves three roles: data subject, data sender, and data recipient. While the data subject's behavior is fixed, the attacker (data recipient) attempts to extract sensitive information from the defender (data sender) through persistent and interactive exchanges. To explore this interaction space efficiently, our search algorithm employs LLMs as optimizers, using parallel search with multiple threads and cross-thread propagation to analyze simulation trajectories and iteratively propose new instructions. Through this process, we find that attack strategies escalate from simple direct requests to sophisticated multi-turn tactics such as impersonation and consent forgery, while defenses advance from rule-based constraints to identity-verification state machines. The discovered attacks and defenses transfer across diverse scenarios and backbone models, demonstrating strong practical utility for building privacy-aware agents.
comment: Preprint
☆ A Survey on Diffusion Language Models
Diffusion Language Models (DLMs) are rapidly emerging as a powerful and promising alternative to the dominant autoregressive (AR) paradigm. By generating tokens in parallel through an iterative denoising process, DLMs possess inherent advantages in reducing inference latency and capturing bidirectional context, thereby enabling fine-grained control over the generation process. While achieving a several-fold speed-up, recent advancements have allowed DLMs to show performance comparable to their autoregressive counterparts, making them a compelling choice for various natural language processing tasks. In this survey, we provide a holistic overview of the current DLM landscape. We trace its evolution and relationship with other paradigms, such as autoregressive and masked language models, and cover both foundational principles and state-of-the-art models. Our work offers an up-to-date, comprehensive taxonomy and an in-depth analysis of current techniques, from pre-training strategies to advanced post-training methods. Another contribution of this survey is a thorough review of DLM inference strategies and optimizations, including improvements in decoding parallelism, caching mechanisms, and generation quality. We also highlight the latest approaches to multimodal extensions of DLMs and delineate their applications across various practical scenarios. Furthermore, our discussion addresses the limitations and challenges of DLMs, including efficiency, long-sequence handling, and infrastructure requirements, while outlining future research directions to sustain progress in this rapidly evolving field. Project GitHub is available at https://github.com/VILA-Lab/Awesome-DLMs.
☆ TLE-Based A2C Agent for Terrestrial Coverage Orbital Path Planning
The increasing congestion of Low Earth Orbit (LEO) poses persistent challenges to the efficient deployment and safe operation of Earth observation satellites. Mission planners must now account not only for mission-specific requirements but also for the increasing collision risk with active satellites and space debris. This work presents a reinforcement learning framework using the Advantage Actor-Critic (A2C) algorithm to optimize satellite orbital parameters for precise terrestrial coverage within predefined surface radii. By formulating the problem as a Markov Decision Process (MDP) within a custom OpenAI Gymnasium environment, our method simulates orbital dynamics using classical Keplerian elements. The agent progressively learns to adjust five of the orbital parameters - semi-major axis, eccentricity, inclination, right ascension of ascending node, and the argument of perigee-to achieve targeted terrestrial coverage. Comparative evaluation against Proximal Policy Optimization (PPO) demonstrates A2C's superior performance, achieving 5.8x higher cumulative rewards (10.0 vs 9.263025) while converging in 31.5x fewer timesteps (2,000 vs 63,000). The A2C agent consistently meets mission objectives across diverse target coordinates while maintaining computational efficiency suitable for real-time mission planning applications. Key contributions include: (1) a TLE-based orbital simulation environment incorporating physics constraints, (2) validation of actor-critic methods' superiority over trust region approaches in continuous orbital control, and (3) demonstration of rapid convergence enabling adaptive satellite deployment. This approach establishes reinforcement learning as a computationally efficient alternative for scalable and intelligent LEO mission planning.
comment: 8 pages, 6 figures, 5 tables
☆ Medico 2025: Visual Question Answering for Gastrointestinal Imaging
The Medico 2025 challenge addresses Visual Question Answering (VQA) for Gastrointestinal (GI) imaging, organized as part of the MediaEval task series. The challenge focuses on developing Explainable Artificial Intelligence (XAI) models that answer clinically relevant questions based on GI endoscopy images while providing interpretable justifications aligned with medical reasoning. It introduces two subtasks: (1) answering diverse types of visual questions using the Kvasir-VQA-x1 dataset, and (2) generating multimodal explanations to support clinical decision-making. The Kvasir-VQA-x1 dataset, created from 6,500 images and 159,549 complex question-answer (QA) pairs, serves as the benchmark for the challenge. By combining quantitative performance metrics and expert-reviewed explainability assessments, this task aims to advance trustworthy Artificial Intelligence (AI) in medical image analysis. Instructions, data access, and an updated guide for participation are available in the official competition repository: https://github.com/simula/MediaEval-Medico-2025
☆ Performance of GPT-5 in Brain Tumor MRI Reasoning
Accurate differentiation of brain tumor types on magnetic resonance imaging (MRI) is critical for guiding treatment planning in neuro-oncology. Recent advances in large language models (LLMs) have enabled visual question answering (VQA) approaches that integrate image interpretation with natural language reasoning. In this study, we evaluated GPT-4o, GPT-5-nano, GPT-5-mini, and GPT-5 on a curated brain tumor VQA benchmark derived from 3 Brain Tumor Segmentation (BraTS) datasets - glioblastoma (GLI), meningioma (MEN), and brain metastases (MET). Each case included multi-sequence MRI triplanar mosaics and structured clinical features transformed into standardized VQA items. Models were assessed in a zero-shot chain-of-thought setting for accuracy on both visual and reasoning tasks. Results showed that GPT-5-mini achieved the highest macro-average accuracy (44.19%), followed by GPT-5 (43.71%), GPT-4o (41.49%), and GPT-5-nano (35.85%). Performance varied by tumor subtype, with no single model dominating across all cohorts. These findings suggest that GPT-5 family models can achieve moderate accuracy in structured neuro-oncological VQA tasks, but not at a level acceptable for clinical use.
☆ From Black Box to Transparency: Enhancing Automated Interpreting Assessment with Explainable AI in College Classrooms
Recent advancements in machine learning have spurred growing interests in automated interpreting quality assessment. Nevertheless, existing research suffers from insufficient examination of language use quality, unsatisfactory modeling effectiveness due to data scarcity and imbalance, and a lack of efforts to explain model predictions. To address these gaps, we propose a multi-dimensional modeling framework that integrates feature engineering, data augmentation, and explainable machine learning. This approach prioritizes explainability over ``black box'' predictions by utilizing only construct-relevant, transparent features and conducting Shapley Value (SHAP) analysis. Our results demonstrate strong predictive performance on a novel English-Chinese consecutive interpreting dataset, identifying BLEURT and CometKiwi scores to be the strongest predictive features for fidelity, pause-related features for fluency, and Chinese-specific phraseological diversity metrics for language use. Overall, by placing particular emphasis on explainability, we present a scalable, reliable, and transparent alternative to traditional human evaluation, facilitating the provision of detailed diagnostic feedback for learners and supporting self-regulated learning advantages not afforded by automated scores in isolation.
☆ Reinforced Language Models for Sequential Decision Making
Large Language Models (LLMs) show potential as sequential decision-making agents, but their application is often limited due to a reliance on large, computationally expensive models. This creates a need to improve smaller models, yet existing post-training methods are designed for single-turn interactions and cannot handle credit assignment in multi-step agentic tasks. To address this, we introduce Multi-Step Group-Relative Policy Optimization (MS-GRPO), a new algorithm for post-training LLM agents, grounded in formal Text-Mediated Stochastic Game (TSMG) and Language-Agent Policy (LAP) frameworks. For credit assignment, MS-GRPO attributes the entire cumulative episode reward to each individual episode step. We supplement this algorithm with a novel absolute-advantage-weighted episode sampling strategy that we show improves training performance. We evaluate our approach by post-training a 3-billion parameter model on Snake and Frozen Lake. Our experiments demonstrate that the method is effective in improving decision-making performance: our post-trained 3B parameter model outperforms a 72B parameter baseline by 50% on the Frozen Lake task. This work demonstrates that targeted post-training is a practical and efficient alternative to relying on model scale for creating sequential decision-making agents using LLMs.
☆ A Multimodal Neural Network for Recognizing Subjective Self-Disclosure Towards Social Robots IROS
Subjective self-disclosure is an important feature of human social interaction. While much has been done in the social and behavioural literature to characterise the features and consequences of subjective self-disclosure, little work has been done thus far to develop computational systems that are able to accurately model it. Even less work has been done that attempts to model specifically how human interactants self-disclose with robotic partners. It is becoming more pressing as we require social robots to work in conjunction with and establish relationships with humans in various social settings. In this paper, our aim is to develop a custom multimodal attention network based on models from the emotion recognition literature, training this model on a large self-collected self-disclosure video corpus, and constructing a new loss function, the scale preserving cross entropy loss, that improves upon both classification and regression versions of this problem. Our results show that the best performing model, trained with our novel loss function, achieves an F1 score of 0.83, an improvement of 0.48 from the best baseline model. This result makes significant headway in the aim of allowing social robots to pick up on an interaction partner's self-disclosures, an ability that will be essential in social robots with social cognition.
comment: Accepted at 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
☆ Who Benefits from AI Explanations? Towards Accessible and Interpretable Systems IJCAI 2025
As AI systems are increasingly deployed to support decision-making in critical domains, explainability has become a means to enhance the understandability of these outputs and enable users to make more informed and conscious choices. However, despite growing interest in the usability of eXplainable AI (XAI), the accessibility of these methods, particularly for users with vision impairments, remains underexplored. This paper investigates accessibility gaps in XAI through a two-pronged approach. First, a literature review of 79 studies reveals that evaluations of XAI techniques rarely include disabled users, with most explanations relying on inherently visual formats. Second, we present a four-part methodological proof of concept that operationalizes inclusive XAI design: (1) categorization of AI systems, (2) persona definition and contextualization, (3) prototype design and implementation, and (4) expert and user assessment of XAI techniques for accessibility. Preliminary findings suggest that simplified explanations are more comprehensible for non-visual users than detailed ones, and that multimodal presentation is required for more equitable interpretability.
comment: Paper accepted for the IJCAI 2025 Workshop on Explainable Artificial Intelligence (XAI): https://sites.google.com/view/xai2025/proceedings
☆ The SET Perceptual Factors Framework: Towards Assured Perception for Autonomous Systems
Future autonomous systems promise significant societal benefits, yet their deployment raises concerns about safety and trustworthiness. A key concern is assuring the reliability of robot perception, as perception seeds safe decision-making. Failures in perception are often due to complex yet common environmental factors and can lead to accidents that erode public trust. To address this concern, we introduce the SET (Self, Environment, and Target) Perceptual Factors Framework. We designed the framework to systematically analyze how factors such as weather, occlusion, or sensor limitations negatively impact perception. To achieve this, the framework employs SET State Trees to categorize where such factors originate and SET Factor Trees to model how these sources and factors impact perceptual tasks like object detection or pose estimation. Next, we develop Perceptual Factor Models using both trees to quantify the uncertainty for a given task. Our framework aims to promote rigorous safety assurances and cultivate greater public understanding and trust in autonomous systems by offering a transparent and standardized method for identifying, modeling, and communicating perceptual risks.
comment: 4 pages, 4 figures, accepted to the Workshop on Public Trust in Autonomous Systems at the 2025 IEEE International Conference on Robotics & Automation
☆ Enhancing Fairness in Autoencoders for Node-Level Graph Anomaly Detection
Graph anomaly detection (GAD) has become an increasingly important task across various domains. With the rapid development of graph neural networks (GNNs), GAD methods have achieved significant performance improvements. However, fairness considerations in GAD remain largely underexplored. Indeed, GNN-based GAD models can inherit and amplify biases present in training data, potentially leading to unfair outcomes. While existing efforts have focused on developing fair GNNs, most approaches target node classification tasks, where models often rely on simple layer architectures rather than autoencoder-based structures, which are the most widely used architecturs for anomaly detection. To address fairness in autoencoder-based GAD models, we propose \textbf{D}is\textbf{E}ntangled \textbf{C}ounterfactual \textbf{A}dversarial \textbf{F}air (DECAF)-GAD, a framework that alleviates bias while preserving GAD performance. Specifically, we introduce a structural causal model (SCM) to disentangle sensitive attributes from learned representations. Based on this causal framework, we formulate a specialized autoencoder architecture along with a fairness-guided loss function. Through extensive experiments on both synthetic and real-world datasets, we demonstrate that DECAF-GAD not only achieves competitive anomaly detection performance but also significantly enhances fairness metrics compared to baseline GAD methods. Our code is available at https://github.com/Tlhey/decaf_code.
comment: Accepted in ECAI-2025
☆ Ultra-High-Definition Reference-Based Landmark Image Super-Resolution with Generative Diffusion Prior
Reference-based Image Super-Resolution (RefSR) aims to restore a low-resolution (LR) image by utilizing the semantic and texture information from an additional reference high-resolution (reference HR) image. Existing diffusion-based RefSR methods are typically built upon ControlNet, which struggles to effectively align the information between the LR image and the reference HR image. Moreover, current RefSR datasets suffer from limited resolution and poor image quality, resulting in the reference images lacking sufficient fine-grained details to support high-quality restoration. To overcome the limitations above, we propose TriFlowSR, a novel framework that explicitly achieves pattern matching between the LR image and the reference HR image. Meanwhile, we introduce Landmark-4K, the first RefSR dataset for Ultra-High-Definition (UHD) landmark scenarios. Considering the UHD scenarios with real-world degradation, in TriFlowSR, we design a Reference Matching Strategy to effectively match the LR image with the reference HR image. Experimental results show that our approach can better utilize the semantic and texture information of the reference HR image compared to previous methods. To the best of our knowledge, we propose the first diffusion-based RefSR pipeline for ultra-high definition landmark scenarios under real-world degradation. Our code and model will be available at https://github.com/nkicsl/TriFlowSR.
☆ The Knowledge-Reasoning Dissociation: Fundamental Limitations of LLMs in Clinical Natural Language Inference
Large language models are often assumed to acquire increasingly structured, generalizable internal representations simply by scaling data and parameters. We interrogate this assumption by introducing a Clinical Trial Natural Language Inference benchmark comprising four reasoning families, Causal Attribution, Compositional Grounding, Epistemic Verification, and Risk State Abstraction. Each item is paired with a targeted Ground Knowledge and Meta-Level Reasoning Verification (GKMRV) probe, allowing us to dissociate failures of factual access from failures of inference. We evaluate six contemporary LLMs under both direct and chain of thought prompting. Models achieve near-ceiling GKMRV accuracy (mean accuracy 0.918) yet perform poorly on the main reasoning tasks (mean accuracy 0.25). Despite low accuracy, output inferences are highly consistent across samples (mean 0.87), indicating a systematic application of underlying heuristics and shortcuts. These results reveal fundamental structural and representational limitations: current LLMs often possess the relevant clinical knowledge but lack the structured, composable internal representations needed to deploy it reliably (e.g., integrating constraints, weighing evidence, or simulating counterfactuals). Decoupling knowledge from reasoning with GKMRV makes this dissociation explicit and measurable, providing an effective framework for probing the reliability of LLMs in high-stakes domains.
comment: 19 pages
☆ Estimating Covariance for Global Minimum Variance Portfolio: A Decision-Focused Learning Approach
Portfolio optimization constitutes a cornerstone of risk management by quantifying the risk-return trade-off. Since it inherently depends on accurate parameter estimation under conditions of future uncertainty, the selection of appropriate input parameters is critical for effective portfolio construction. However, most conventional statistical estimators and machine learning algorithms determine these parameters by minimizing mean-squared error (MSE), a criterion that can yield suboptimal investment decisions. In this paper, we adopt decision-focused learning (DFL) - an approach that directly optimizes decision quality rather than prediction error such as MSE - to derive the global minimum-variance portfolio (GMVP). Specifically, we theoretically derive the gradient of decision loss using the analytic solution of GMVP and its properties regarding the principal components of itself. Through extensive empirical evaluation, we show that prediction-focused estimation methods may fail to produce optimal allocations in practice, whereas DFL-based methods consistently deliver superior decision performance. Furthermore, we provide a comprehensive analysis of DFL's mechanism in GMVP construction, focusing on its volatility reduction capability, decision-driving features, and estimation characteristics.
comment: 11 pages, 12 figures, 3 tables
☆ Video-BLADE: Block-Sparse Attention Meets Step Distillation for Efficient Video Generation
Diffusion transformers currently lead the field in high-quality video generation, but their slow iterative denoising process and prohibitive quadratic attention costs for long sequences create significant inference bottlenecks. While both step distillation and sparse attention mechanisms have shown promise as independent acceleration strategies, effectively combining these approaches presents critical challenges -- training-free integration yields suboptimal results, while separately training sparse attention after step distillation requires prohibitively expensive high-quality video data. To overcome these limitations, we propose BLADE, an innovative data-free joint training framework that introduces: (1) an Adaptive Block-Sparse Attention (ASA) mechanism for dynamically generating content-aware sparsity masks to focus computation on salient spatiotemporal features, and (2) a sparsity-aware step distillation paradigm built upon Trajectory Distribution Matching (TDM) that directly incorporates sparsity into the distillation process rather than treating it as a separate compression step, with fast convergence. We validate BLADE on text-to-video models like CogVideoX-5B and Wan2.1-1.3B. Our framework demonstrates remarkable efficiency gains across different scales. On Wan2.1-1.3B, BLADE achieves a 14.10x end-to-end inference acceleration over a 50-step baseline. Moreover, on models such as CogVideoX-5B with short video sequence lengths, our framework delivers a robust 8.89x speedup. Crucially, the acceleration is accompanied by a consistent quality improvement. On the VBench-2.0 benchmark, BLADE boosts the score of CogVideoX-5B to 0.569 (from 0.534) and Wan2.1-1.3B to 0.570 (from 0.563), results that are further corroborated by superior ratings in human evaluations. Our code and model weights are publicly available at: http://ziplab.co/BLADE-Homepage/.
comment: Tech report
☆ AEGIS: Authenticity Evaluation Benchmark for AI-Generated Video Sequences
Recent advances in AI-generated content have fueled the rise of highly realistic synthetic videos, posing severe risks to societal trust and digital integrity. Existing benchmarks for video authenticity detection typically suffer from limited realism, insufficient scale, and inadequate complexity, failing to effectively evaluate modern vision-language models against sophisticated forgeries. To address this critical gap, we introduce AEGIS, a novel large-scale benchmark explicitly targeting the detection of hyper-realistic and semantically nuanced AI-generated videos. AEGIS comprises over 10,000 rigorously curated real and synthetic videos generated by diverse, state-of-the-art generative models, including Stable Video Diffusion, CogVideoX-5B, KLing, and Sora, encompassing open-source and proprietary architectures. In particular, AEGIS features specially constructed challenging subsets enhanced with robustness evaluation. Furthermore, we provide multimodal annotations spanning Semantic-Authenticity Descriptions, Motion Features, and Low-level Visual Features, facilitating authenticity detection and supporting downstream tasks such as multimodal fusion and forgery localization. Extensive experiments using advanced vision-language models demonstrate limited detection capabilities on the most challenging subsets of AEGIS, highlighting the dataset's unique complexity and realism beyond the current generalization capabilities of existing models. In essence, AEGIS establishes an indispensable evaluation benchmark, fundamentally advancing research toward developing genuinely robust, reliable, broadly generalizable video authenticity detection methodologies capable of addressing real-world forgery threats. Our dataset is available on https://huggingface.co/datasets/Clarifiedfish/AEGIS.
comment: Proceedings of the 33rd ACM International Conference on Multimedia
☆ Modeling Human Responses to Multimodal AI Content
As AI-generated content becomes widespread, so does the risk of misinformation. While prior research has primarily focused on identifying whether content is authentic, much less is known about how such content influences human perception and behavior. In domains like trading or the stock market, predicting how people react (e.g., whether a news post will go viral), can be more critical than verifying its factual accuracy. To address this, we take a human-centered approach and introduce the MhAIM Dataset, which contains 154,552 online posts (111,153 of them AI-generated), enabling large-scale analysis of how people respond to AI-generated content. Our human study reveals that people are better at identifying AI content when posts include both text and visuals, particularly when inconsistencies exist between the two. We propose three new metrics: trustworthiness, impact, and openness, to quantify how users judge and engage with online content. We present T-Lens, an LLM-based agent system designed to answer user queries by incorporating predicted human responses to multimodal information. At its core is HR-MCP (Human Response Model Context Protocol), built on the standardized Model Context Protocol (MCP), enabling seamless integration with any LLM. This integration allows T-Lens to better align with human reactions, enhancing both interpretability and interaction capabilities. Our work provides empirical insights and practical tools to equip LLMs with human-awareness capabilities. By highlighting the complex interplay among AI, human cognition, and information reception, our findings suggest actionable strategies for mitigating the risks of AI-driven misinformation.
☆ FROGENT: An End-to-End Full-process Drug Design Agent
Powerful AI tools for drug discovery reside in isolated web apps, desktop programs, and code libraries. Such fragmentation forces scientists to manage incompatible interfaces and specialized scripts, which can be a cumbersome and repetitive process. To address this issue, a Full-pROcess druG dEsign ageNT, named FROGENT, has been proposed. Specifically, FROGENT utilizes a Large Language Model and the Model Context Protocol to integrate multiple dynamic biochemical databases, extensible tool libraries, and task-specific AI models. This agentic framework allows FROGENT to execute complicated drug discovery workflows dynamically, including component tasks such as target identification, molecule generation and retrosynthetic planning. FROGENT has been evaluated on eight benchmarks that cover various aspects of drug discovery, such as knowledge retrieval, property prediction, virtual screening, mechanistic analysis, molecular design, and synthesis. It was compared against six increasingly advanced ReAct-style agents that support code execution and literature searches. Empirical results demonstrated that FROGENT triples the best baseline performance in hit-finding and doubles it in interaction profiling, significantly outperforming both the open-source model Qwen3-32B and the commercial model GPT-4o. In addition, real-world cases have been utilized to validate the practicability and generalization of FROGENT. This development suggests that streamlining the agentic drug discovery pipeline can significantly enhance researcher productivity.
comment: 9 pages, 5 figures
☆ Natively Trainable Sparse Attention for Hierarchical Point Cloud Datasets
Unlocking the potential of transformers on datasets of large physical systems depends on overcoming the quadratic scaling of the attention mechanism. This work explores combining the Erwin architecture with the Native Sparse Attention (NSA) mechanism to improve the efficiency and receptive field of transformer models for large-scale physical systems, addressing the challenge of quadratic attention complexity. We adapt the NSA mechanism for non-sequential data, implement the Erwin NSA model, and evaluate it on three datasets from the physical sciences -- cosmology simulations, molecular dynamics, and air pressure modeling -- achieving performance that matches or exceeds that of the original Erwin model. Additionally, we reproduce the experimental results from the Erwin paper to validate their implementation.
☆ Pass@k Training for Adaptively Balancing Exploration and Exploitation of Large Reasoning Models
Reinforcement learning with verifiable rewards (RLVR), which typically adopts Pass@1 as the reward, has faced the issues in balancing exploration and exploitation, causing policies to prefer conservative actions, converging to a local optimum. Identifying an appropriate reward metric is therefore crucial. Regarding the prior work, although Pass@k has been used in evaluation, its connection to LLM exploration ability in RLVR remains largely overlooked. To investigate this, we first use Pass@k as the reward to train the policy model (i.e., $\textbf{Pass@k Training}$), and observe the improvement on its exploration ability. Next, we derive an analytical solution for the advantage of Pass@k Training, leading to an efficient and effective process. Building on this, our analysis reveals that exploration and exploitation are not inherently conflicting objectives, while they can mutually enhance each other. Moreover, Pass@k Training with analytical derivation essentially involves directly designing the advantage function. Inspired by this, we preliminarily explore the advantage design for RLVR, showing promising results and highlighting a potential future direction.
comment: Technical Report about RLVR: 32 pages, 18 figures, 7 tables
☆ Scaling Up without Fading Out: Goal-Aware Sparse GNN for RL-based Generalized Planning
Generalized planning using deep reinforcement learning (RL) combined with graph neural networks (GNNs) has shown promising results in various symbolic planning domains described by PDDL. However, existing approaches typically represent planning states as fully connected graphs, leading to a combinatorial explosion in edge information and substantial sparsity as problem scales grow, especially evident in large grid-based environments. This dense representation results in diluted node-level information, exponentially increases memory requirements, and ultimately makes learning infeasible for larger-scale problems. To address these challenges, we propose a sparse, goal-aware GNN representation that selectively encodes relevant local relationships and explicitly integrates spatial features related to the goal. We validate our approach by designing novel drone mission scenarios based on PDDL within a grid world, effectively simulating realistic mission execution environments. Our experimental results demonstrate that our method scales effectively to larger grid sizes previously infeasible with dense graph representations and substantially improves policy generalization and success rates. Our findings provide a practical foundation for addressing realistic, large-scale generalized planning tasks.
comment: 16 pages, 10 figures
☆ Agentic Design Review System
Evaluating graphic designs involves assessing it from multiple facets like alignment, composition, aesthetics and color choices. Evaluating designs in a holistic way involves aggregating feedback from individual expert reviewers. Towards this, we propose an Agentic Design Review System (AgenticDRS), where multiple agents collaboratively analyze a design, orchestrated by a meta-agent. A novel in-context exemplar selection approach based on graph matching and a unique prompt expansion method plays central role towards making each agent design aware. Towards evaluating this framework, we propose DRS-BENCH benchmark. Thorough experimental evaluation against state-of-the-art baselines adapted to the problem setup, backed-up with critical ablation experiments brings out the efficacy of Agentic-DRS in evaluating graphic designs and generating actionable feedback. We hope that this work will attract attention to this pragmatic, yet under-explored research direction.
☆ APFL: Analytic Personalized Federated Learning via Dual-Stream Least Squares
Personalized Federated Learning (PFL) has presented a significant challenge to deliver personalized models to individual clients through collaborative training. Existing PFL methods are often vulnerable to non-IID data, which severely hinders collective generalization and then compromises the subsequent personalization efforts. In this paper, to address this non-IID issue in PFL, we propose an Analytic Personalized Federated Learning (APFL) approach via dual-stream least squares. In our APFL, we use a foundation model as a frozen backbone for feature extraction. Subsequent to the feature extractor, we develop dual-stream analytic models to achieve both collective generalization and individual personalization. Specifically, our APFL incorporates a shared primary stream for global generalization across all clients, and a dedicated refinement stream for local personalization of each individual client. The analytical solutions of our APFL enable its ideal property of heterogeneity invariance, theoretically meaning that each personalized model remains identical regardless of how heterogeneous the data are distributed across all other clients. Empirical results across various datasets also validate the superiority of our APFL over state-of-the-art baselines, with advantages of at least 1.10%-15.45% in accuracy.
comment: 9 pages, 4 figures, 2 tables
☆ EgoCross: Benchmarking Multimodal Large Language Models for Cross-Domain Egocentric Video Question Answering
Recent advances in Multimodal Large Language Models (MLLMs) have significantly pushed the frontier of egocentric video question answering (EgocentricQA). However, existing benchmarks and studies are mainly limited to common daily activities such as cooking and cleaning. In contrast, real-world deployment inevitably encounters domain shifts, where target domains differ substantially in both visual style and semantic content. To bridge this gap, we introduce \textbf{EgoCross}, a comprehensive benchmark designed to evaluate the cross-domain generalization of MLLMs in EgocentricQA. EgoCross covers four diverse and challenging domains, including surgery, industry, extreme sports, and animal perspective, representing realistic and high-impact application scenarios. It comprises approximately 1,000 QA pairs across 798 video clips, spanning four key QA tasks: prediction, recognition, localization, and counting. Each QA pair provides both OpenQA and CloseQA formats to support fine-grained evaluation. Extensive experiments show that most existing MLLMs, whether general-purpose or egocentric-specialized, struggle to generalize to domains beyond daily life, highlighting the limitations of current models. Furthermore, we conduct several pilot studies, \eg, fine-tuning and reinforcement learning, to explore potential improvements. We hope EgoCross and our accompanying analysis will serve as a foundation for advancing domain-adaptive, robust egocentric video understanding. Data and codes will be released at: \href{https://github.com/MyUniverse0726/EgoCross}{https://github.com/MyUniverse0726/EgoCross.}
☆ Electromagnetic Simulations of Antennas on GPUs for Machine Learning Applications
This study proposes an antenna simulation framework powered by graphics processing units (GPUs) based on an open-source electromagnetic (EM) simulation software (gprMax) for machine learning applications of antenna design and optimization. Furthermore, it compares the simulation results with those obtained through commercial EM software. The proposed software framework for machine learning and surrogate model applications will produce antenna data sets consisting of a large number of antenna simulation results using GPUs. Although machine learning methods can attain the optimum solutions for many problems, they are known to be data-hungry and require a great deal of samples for the training stage of the algorithms. However, producing a sufficient number of training samples in EM applications within a limited time is challenging due to the high computational complexity of EM simulations. Therefore, GPUs are utilized in this study to simulate a large number of antennas with predefined or random antenna shape parameters to produce data sets. Moreover, this study also compares various machine learning and deep learning models in terms of antenna parameter estimation performance. This study demonstrates that an entry-level GPU substantially outperforms a high-end CPU in terms of computational performance, while a high-end gaming GPU can achieve around 18 times more computational performance compared to a high-end CPU. Moreover, it is shown that the open-source EM simulation software can deliver similar results to those obtained via commercial software in the simulation of microstrip antennas when the spatial resolution of the simulations is sufficiently fine.
comment: 20 pages, 10 figures, 4 tables, journal article
☆ GenOM: Ontology Matching with Description Generation and Large Language Model
Ontology matching (OM) plays an essential role in enabling semantic interoperability and integration across heterogeneous knowledge sources, particularly in the biomedical domain which contains numerous complex concepts related to diseases and pharmaceuticals. This paper introduces GenOM, a large language model (LLM)-based ontology alignment framework, which enriches the semantic representations of ontology concepts via generating textual definitions, retrieves alignment candidates with an embedding model, and incorporates exact matching-based tools to improve precision. Extensive experiments conducted on the OAEI Bio-ML track demonstrate that GenOM can often achieve competitive performance, surpassing many baselines including traditional OM systems and recent LLM-based methods. Further ablation studies confirm the effectiveness of semantic enrichment and few-shot prompting, highlighting the framework's robustness and adaptability.
☆ REFN: A Reinforcement-Learning-From-Network Framework against 1-day/n-day Exploitations
The exploitation of 1 day or n day vulnerabilities poses severe threats to networked devices due to massive deployment scales and delayed patching (average Mean Time To Patch exceeds 60 days). Existing defenses, including host based patching and network based filtering, are inadequate due to limited scalability across diverse devices, compatibility issues especially with embedded or legacy systems, and error prone deployment process (manual patch validation). To address these issues, we introduce REFN (Reinforcement Learning From Network), a novel framework that trains Large Language Models (LLMs) to autonomously generate network filters to prevent 1 day or n day exploitations. REFN ensures scalability by uniquely employs Reinforcement Learning (RL) driven by online network rewards instead of traditional Human Feedback (RLHF). REFN guarantees compatibility via unified deployment on edge security gateways (Amazon Eero). REFN provides robustness via online validation using real network traffic. Crucially, REFN addresses three core challenges in training LLMs for exploit prevention: 1) expanding current LLMs limited vulnerability fixing expertise via Agentic RAG based Knowledge Distillation, 2) bridging current LLMs language to network gaps through an RL From VNF Pipeline that translates language context (vulnerability description) into network enforcement, 3) addressing the LLM hallucination and non determinism via the Online Agentic Validation that penalizes erroneous outputs. Evaluated across 22 families of 1 day or n day exploits, REFN demonstrates effectiveness (21.1 percent higher accuracy than alternatives), efficiency (Mean Time To Patch of 3.65 hours) and scalability (easily scale to 10K devices). REFN serves as an initial step toward training LLMs to rapidly prevent massive scale 1 day or n day exploitations.
☆ Learning from Natural Language Feedback for Personalized Question Answering
Personalization is crucial for enhancing both the effectiveness and user satisfaction of language technologies, particularly in information-seeking tasks like question answering. Current approaches for personalizing large language models (LLMs) often rely on retrieval-augmented generation (RAG), followed by reinforcement learning with scalar reward signals to teach models how to use retrieved personal context. We believe that these scalar rewards sometimes provide weak, non-instructive feedback, limiting learning efficiency and personalization quality. We introduce VAC, a novel framework for personalized response generation that replaces scalar rewards with natural language feedback (NLF) that are generated conditioned on the user profiles and the question narratives. NLF serves as a rich and actionable supervision signal, allowing the policy model to iteratively refine its outputs and internalize effective personalization strategies. Training alternates between optimizing the feedback model and fine-tuning the policy model on the improved responses, resulting in a policy model that no longer requires feedback at inference. Evaluation on the LaMP-QA benchmark that consists of three diverse domains demonstrates consistent and significant improvements over the state-of-the-art results. Human evaluations further confirm the superior quality of the generated responses. These results demonstrate that NLF provides more effective signals for optimizing personalized question answering.
☆ Continuous Bangla Sign Language Translation: Mitigating the Expense of Gloss Annotation with the Assistance of Graph
Millions of individuals worldwide are affected by deafness and hearing impairment. Sign language serves as a sophisticated means of communication for the deaf and hard of hearing. However, in societies that prioritize spoken languages, sign language often faces underestimation, leading to communication barriers and social exclusion. The Continuous Bangla Sign Language Translation project aims to address this gap by enhancing translation methods. While recent approaches leverage transformer architecture for state-of-the-art results, our method integrates graph-based methods with the transformer architecture. This fusion, combining transformer and STGCN-LSTM architectures, proves more effective in gloss-free translation. Our contributions include architectural fusion, exploring various fusion strategies, and achieving a new state-of-the-art performance on diverse sign language datasets, namely RWTH-PHOENIX-2014T, CSL-Daily, How2Sign, and BornilDB v1.0. Our approach demonstrates superior performance compared to current translation outcomes across all datasets, showcasing notable improvements of BLEU-4 scores of 4.01, 2.07, and 0.5, surpassing those of GASLT, GASLT and slt_how2sign in RWTH-PHOENIX-2014T, CSL-Daily, and How2Sign, respectively. Also, we introduce benchmarking on the BornilDB v1.0 dataset for the first time. Our method sets a benchmark for future research, emphasizing the importance of gloss-free translation to improve communication accessibility for the deaf and hard of hearing.
☆ Hybrid Generative Fusion for Efficient and Privacy-Preserving Face Recognition Dataset Generation ICCV 2025
In this paper, we present our approach to the DataCV ICCV Challenge, which centers on building a high-quality face dataset to train a face recognition model. The constructed dataset must not contain identities overlapping with any existing public face datasets. To handle this challenge, we begin with a thorough cleaning of the baseline HSFace dataset, identifying and removing mislabeled or inconsistent identities through a Mixture-of-Experts (MoE) strategy combining face embedding clustering and GPT-4o-assisted verification. We retain the largest consistent identity cluster and apply data augmentation up to a fixed number of images per identity. To further diversify the dataset, we generate synthetic identities using Stable Diffusion with prompt engineering. As diffusion models are computationally intensive, we generate only one reference image per identity and efficiently expand it using Vec2Face, which rapidly produces 49 identity-consistent variants. This hybrid approach fuses GAN-based and diffusion-based samples, enabling efficient construction of a diverse and high-quality dataset. To address the high visual similarity among synthetic identities, we adopt a curriculum learning strategy by placing them early in the training schedule, allowing the model to progress from easier to harder samples. Our final dataset contains 50 images per identity, and all newly generated identities are checked with mainstream face datasets to ensure no identity leakage. Our method achieves \textbf{1st place} in the competition, and experimental results show that our dataset improves model performance across 10K, 20K, and 100K identity scales. Code is available at https://github.com/Ferry-Li/datacv_fr.
comment: This paper has been accpeted to ICCV 2025 DataCV Workshop
☆ STEP: Stepwise Curriculum Learning for Context-Knowledge Fusion in Conversational Recommendation
Conversational recommender systems (CRSs) aim to proactively capture user preferences through natural language dialogue and recommend high-quality items. To achieve this, CRS gathers user preferences via a dialog module and builds user profiles through a recommendation module to generate appropriate recommendations. However, existing CRS faces challenges in capturing the deep semantics of user preferences and dialogue context. In particular, the efficient integration of external knowledge graph (KG) information into dialogue generation and recommendation remains a pressing issue. Traditional approaches typically combine KG information directly with dialogue content, which often struggles with complex semantic relationships, resulting in recommendations that may not align with user expectations. To address these challenges, we introduce STEP, a conversational recommender centered on pre-trained language models that combines curriculum-guided context-knowledge fusion with lightweight task-specific prompt tuning. At its heart, an F-Former progressively aligns the dialogue context with knowledge-graph entities through a three-stage curriculum, thus resolving fine-grained semantic mismatches. The fused representation is then injected into the frozen language model via two minimal yet adaptive prefix prompts: a conversation prefix that steers response generation toward user intent and a recommendation prefix that biases item ranking toward knowledge-consistent candidates. This dual-prompt scheme allows the model to share cross-task semantics while respecting the distinct objectives of dialogue and recommendation. Experimental results show that STEP outperforms mainstream methods in the precision of recommendation and dialogue quality in two public datasets.
comment: 10 pages; 4 figures; 6 tables; code available at https://github.com/Alex-bupt/STEP
☆ AddressVLM: Cross-view Alignment Tuning for Image Address Localization using Large Vision-Language Models
Large visual language models (LVLMs) have demonstrated impressive performance in coarse-grained geo-localization at the country or city level, but they struggle with fine-grained street-level localization within urban areas. In this paper, we explore integrating city-wide address localization capabilities into LVLMs, facilitating flexible address-related question answering using street-view images. A key challenge is that the street-view visual question-and-answer (VQA) data provides only microscopic visual cues, leading to subpar performance in fine-tuned models. To tackle this issue, we incorporate perspective-invariant satellite images as macro cues and propose cross-view alignment tuning including a satellite-view and street-view image grafting mechanism, along with an automatic label generation mechanism. Then LVLM's global understanding of street distribution is enhanced through cross-view matching. Our proposed model, named AddressVLM, consists of two-stage training protocols: cross-view alignment tuning and address localization tuning. Furthermore, we have constructed two street-view VQA datasets based on image address localization datasets from Pittsburgh and San Francisco. Qualitative and quantitative evaluations demonstrate that AddressVLM outperforms counterpart LVLMs by over 9% and 12% in average address localization accuracy on these two datasets, respectively.
☆ Deep Learning in Classical and Quantum Physics
Scientific progress is tightly coupled to the emergence of new research tools. Today, machine learning (ML)-especially deep learning (DL)-has become a transformative instrument for quantum science and technology. Owing to the intrinsic complexity of quantum systems, DL enables efficient exploration of large parameter spaces, extraction of patterns from experimental data, and data-driven guidance for research directions. These capabilities already support tasks such as refining quantum control protocols and accelerating the discovery of materials with targeted quantum properties, making ML/DL literacy an essential skill for the next generation of quantum scientists. At the same time, DL's power brings risks: models can overfit noisy data, obscure causal structure, and yield results with limited physical interpretability. Recognizing these limitations and deploying mitigation strategies is crucial for scientific rigor. These lecture notes provide a comprehensive, graduate-level introduction to DL for quantum applications, combining conceptual exposition with hands-on examples. Organized as a progressive sequence, they aim to equip readers to decide when and how to apply DL effectively, to understand its practical constraints, and to adapt AI methods responsibly to problems across quantum physics, chemistry, and engineering.
☆ Serial Over Parallel: Learning Continual Unification for Multi-Modal Visual Object Tracking and Benchmarking
Unifying multiple multi-modal visual object tracking (MMVOT) tasks draws increasing attention due to the complementary nature of different modalities in building robust tracking systems. Existing practices mix all data sensor types in a single training procedure, structuring a parallel paradigm from the data-centric perspective and aiming for a global optimum on the joint distribution of the involved tasks. However, the absence of a unified benchmark where all types of data coexist forces evaluations on separated benchmarks, causing \textit{inconsistency} between training and testing, thus leading to performance \textit{degradation}. To address these issues, this work advances in two aspects: \ding{182} A unified benchmark, coined as UniBench300, is introduced to bridge the inconsistency by incorporating multiple task data, reducing inference passes from three to one and cutting time consumption by 27\%. \ding{183} The unification process is reformulated in a serial format, progressively integrating new tasks. In this way, the performance degradation can be specified as knowledge forgetting of previous tasks, which naturally aligns with the philosophy of continual learning (CL), motivating further exploration of injecting CL into the unification process. Extensive experiments conducted on two baselines and four benchmarks demonstrate the significance of UniBench300 and the superiority of CL in supporting a stable unification process. Moreover, while conducting dedicated analyses, the performance degradation is found to be negatively correlated with network capacity. Additionally, modality discrepancies contribute to varying degradation levels across tasks (RGBT > RGBD > RGBE in MMVOT), offering valuable insights for future multi-modal vision research. Source codes and the proposed benchmark is available at \textit{https://github.com/Zhangyong-Tang/UniBench300}.
comment: ACMMM 2025
☆ SPHENIC: Topology-Informed Multi-View Clustering for Spatial Transcriptomics
By incorporating spatial location information, spatial-transcriptomics clustering yields more comprehensive insights into cell subpopulation identification. Despite recent progress, existing methods have at least two limitations: (i) topological learning typically considers only representations of individual cells or their interaction graphs; however, spatial transcriptomic profiles are often noisy, making these approaches vulnerable to low-quality topological signals, and (ii) insufficient modeling of spatial neighborhood information leads to low-quality spatial embeddings. To address these limitations, we propose SPHENIC, a novel Spatial Persistent Homology Enhanced Neighborhood Integrative Clustering method. Specifically, SPHENIC incorporates invariant topological features into the clustering network to achieve stable representation learning. Additionally, to construct high-quality spatial embeddings that reflect the true cellular distribution, we design the Spatial Constraint and Distribution Optimization Module (SCDOM). This module increases the similarity between a cell's embedding and those of its spatial neighbors, decreases similarity with non-neighboring cells, and thereby produces clustering-friendly spatial embeddings. Extensive experiments on 14 benchmark spatial transcriptomic slices demonstrate that SPHENIC achieves superior performance on the spatial clustering task, outperforming existing state-of-the-art methods by 3.31%-6.54% over the best alternative.
comment: 12 pages, 6 figures, 2 tables
☆ Fourier-Guided Attention Upsampling for Image Super-Resolution
We propose Frequency-Guided Attention (FGA), a lightweight upsampling module for single image super-resolution. Conventional upsamplers, such as Sub-Pixel Convolution, are efficient but frequently fail to reconstruct high-frequency details and introduce aliasing artifacts. FGA addresses these issues by integrating (1) a Fourier feature-based Multi-Layer Perceptron (MLP) for positional frequency encoding, (2) a cross-resolution Correlation Attention Layer for adaptive spatial alignment, and (3) a frequency-domain L1 loss for spectral fidelity supervision. Adding merely 0.3M parameters, FGA consistently enhances performance across five diverse super-resolution backbones in both lightweight and full-capacity scenarios. Experimental results demonstrate average PSNR gains of 0.12~0.14 dB and improved frequency-domain consistency by up to 29%, particularly evident on texture-rich datasets. Visual and spectral evaluations confirm FGA's effectiveness in reducing aliasing and preserving fine details, establishing it as a practical, scalable alternative to traditional upsampling methods.
comment: 15 pages, 7 figures, under submission to a journal
☆ MSRS: Adaptive Multi-Subspace Representation Steering for Attribute Alignment in Large Language Models
Activation steering offers a promising approach to controlling the behavior of Large Language Models by directly manipulating their internal activations. However, most existing methods struggle to jointly steer multiple attributes, often resulting in interference and undesirable trade-offs. To address this challenge, we propose Multi-Subspace Representation Steering (MSRS), a novel framework for effective multi-attribute steering via subspace representation fine-tuning. MSRS reduces inter-attribute interference by allocating orthogonal subspaces to each attribute, isolating their influence within the model's representation space. MSRS also incorporates a hybrid subspace composition strategy: it combines attribute-specific subspaces for unique steering directions with a shared subspace for common steering directions. A dynamic weighting function learns to efficiently integrate these components for precise control. During inference, MSRS introduces a token-level steering mechanism that dynamically identifies and intervenes on the most semantically relevant tokens, enabling fine-grained behavioral modulation. Experimental results show that MSRS significantly reduces attribute conflicts, surpasses existing methods across a range of attributes, and generalizes effectively to diverse downstream tasks.
☆ On Spectral Properties of Gradient-based Explanation Methods
Understanding the behavior of deep networks is crucial to increase our confidence in their results. Despite an extensive body of work for explaining their predictions, researchers have faced reliability issues, which can be attributed to insufficient formalism. In our research, we adopt novel probabilistic and spectral perspectives to formally analyze explanation methods. Our study reveals a pervasive spectral bias stemming from the use of gradient, and sheds light on some common design choices that have been discovered experimentally, in particular, the use of squared gradient and input perturbation. We further characterize how the choice of perturbation hyperparameters in explanation methods, such as SmoothGrad, can lead to inconsistent explanations and introduce two remedies based on our proposed formalism: (i) a mechanism to determine a standard perturbation scale, and (ii) an aggregation method which we call SpectralLens. Finally, we substantiate our theoretical results through quantitative evaluations.
comment: 36 pages, 16 figures, published in European Conference on Computer Vision 2024
☆ FreeGAD: A Training-Free yet Effective Approach for Graph Anomaly Detection
Graph Anomaly Detection (GAD) aims to identify nodes that deviate from the majority within a graph, playing a crucial role in applications such as social networks and e-commerce. Despite the current advancements in deep learning-based GAD, existing approaches often suffer from high deployment costs and poor scalability due to their complex and resource-intensive training processes. Surprisingly, our empirical findings suggest that the training phase of deep GAD methods, commonly perceived as crucial, may actually contribute less to anomaly detection performance than expected. Inspired by this, we propose FreeGAD, a novel training-free yet effective GAD method. Specifically, it leverages an affinity-gated residual encoder to generate anomaly-aware representations. Meanwhile, FreeGAD identifies anchor nodes as pseudo-normal and anomalous guides, followed by calculating anomaly scores through anchor-guided statistical deviations. Extensive experiments demonstrate that FreeGAD achieves superior anomaly detection performance, efficiency, and scalability on multiple benchmark datasets from diverse domains, without any training or iterative optimization.
☆ Fake Speech Wild: Detecting Deepfake Speech on Social Media Platform
The rapid advancement of speech generation technology has led to the widespread proliferation of deepfake speech across social media platforms. While deepfake audio countermeasures (CMs) achieve promising results on public datasets, their performance degrades significantly in cross-domain scenarios. To advance CMs for real-world deepfake detection, we first propose the Fake Speech Wild (FSW) dataset, which includes 254 hours of real and deepfake audio from four different media platforms, focusing on social media. As CMs, we establish a benchmark using public datasets and advanced selfsupervised learning (SSL)-based CMs to evaluate current CMs in real-world scenarios. We also assess the effectiveness of data augmentation strategies in enhancing CM robustness for detecting deepfake speech on social media. Finally, by augmenting public datasets and incorporating the FSW training set, we significantly advanced real-world deepfake audio detection performance, achieving an average equal error rate (EER) of 3.54% across all evaluation sets.
☆ PTQAT: A Hybrid Parameter-Efficient Quantization Algorithm for 3D Perception Tasks ICCV
Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT) represent two mainstream model quantization approaches. However, PTQ often leads to unacceptable performance degradation in quantized models, while QAT imposes substantial GPU memory requirements and extended training time due to weight fine-tuning.In this paper, we propose PTQAT, a novel general hybrid quantization algorithm for the efficient deployment of 3D perception networks. To address the speed accuracy trade-off between PTQ and QAT, our method selects critical layers for QAT fine-tuning and performs PTQ on the remaining layers. Contrary to intuition, fine-tuning the layers with smaller output discrepancies before and after quantization, rather than those with larger discrepancies, actually leads to greater improvements in the model's quantization accuracy. This means we better compensate for quantization errors during their propagation, rather than addressing them at the point where they occur. The proposed PTQAT achieves similar performance to QAT with more efficiency by freezing nearly 50% of quantifiable layers. Additionally, PTQAT is a universal quantization method that supports various quantization bit widths (4 bits) as well as different model architectures, including CNNs and Transformers. The experimental results on nuScenes across diverse 3D perception tasks, including object detection, semantic segmentation, and occupancy prediction, show that our method consistently outperforms QAT-only baselines. Notably, it achieves 0.2%-0.9% NDS and 0.3%-1.0% mAP gains in object detection, 0.3%-2.0% mIoU gains in semantic segmentation and occupancy prediction while fine-tuning fewer weights.
comment: 8 pages, Accepted by ICCVW 2025
☆ Retrieval-Augmented Prompt for OOD Detection
Out-of-Distribution (OOD) detection is crucial for the reliable deployment of machine learning models in-the-wild, enabling accurate identification of test samples that differ from the training data distribution. Existing methods rely on auxiliary outlier samples or in-distribution (ID) data to generate outlier information for training, but due to limited outliers and their mismatch with real test OOD samples, they often fail to provide sufficient semantic supervision, leading to suboptimal performance. To address this, we propose a novel OOD detection method called Retrieval-Augmented Prompt (RAP). RAP augments a pre-trained vision-language model's prompts by retrieving external knowledge, offering enhanced semantic supervision for OOD detection. During training, RAP retrieves descriptive words for outliers based on joint similarity with external textual knowledge and uses them to augment the model's OOD prompts. During testing, RAP dynamically updates OOD prompts in real-time based on the encountered OOD samples, enabling the model to rapidly adapt to the test environment. Our extensive experiments demonstrate that RAP achieves state-of-the-art performance on large-scale OOD detection benchmarks. For example, in 1-shot OOD detection on the ImageNet-1k dataset, RAP reduces the average FPR95 by 7.05% and improves the AUROC by 1.71% compared to previous methods. Additionally, comprehensive ablation studies validate the effectiveness of each module and the underlying motivations of our approach.
☆ When Language Overrules: Revealing Text Dominance in Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities across a diverse range of multimodal tasks. However, these models suffer from a core problem known as text dominance: they depend heavily on text for their inference, while underutilizing other modalities. While prior work has acknowledged this phenomenon in vision-language tasks, often attributing it to data biases or model architectures. In this paper, we conduct the first systematic investigation of text dominance across diverse data modalities, including images, videos, audio, time-series, and graphs. To measure this imbalance, we propose two evaluation metrics: the Modality Dominance Index (MDI) and the Attention Efficiency Index (AEI). Our comprehensive analysis reveals that text dominance is both significant and pervasive across all tested modalities. Our in-depth analysis identifies three underlying causes: attention dilution from severe token redundancy in non-textual modalities, the influence of fusion architecture design, and task formulations that implicitly favor textual inputs. Furthermore, we propose a simple token compression method that effectively rebalances model attention. Applying this method to LLaVA-7B, for instance, drastically reduces its MDI from 10.23 to a well-balanced value of 0.86. Our analysis and methodological framework offer a foundation for the development of more equitable and comprehensive multimodal language models.
☆ Stabilizing Long-term Multi-turn Reinforcement Learning with Gated Rewards
Reward sparsity in long-horizon reinforcement learning (RL) tasks remains a significant challenge, while existing outcome-based reward shaping struggles to define meaningful immediate rewards without introducing bias or requiring explicit task decomposition. Alternatively, verification-based reward shaping uses stepwise critics, but misalignment between immediate rewards and long-term objectives can lead to reward hacking and suboptimal policies. In this work, we address this problem in the context of software engineering (SWE) tasks, where multi-turn reasoning and rule-based verification are critical. We introduce the SWE-oriented RL Framework, a unified system supporting multi-turn interaction, docker-based execution, and customizable reward functions. Additionally, we propose Gated Reward Accumulation (G-RA), a novel method that accumulates immediate rewards only when high-level (long-term) rewards meet a predefined threshold, ensuring stable RL optimization. Experiments on SWE-bench Verified and kBench demonstrate that G-RA leads to an increase in completion rates (47.6\% \rightarrow 93.8\% and 22.0\% \rightarrow 86.0\%) and modification rates (19.6\% \rightarrow 23.8\% and 12.0\% \rightarrow 42.0\%), while avoiding policy degradation caused by reward misalignment. Our findings highlight the importance of balanced reward accumulation in long-horizon RL and provide a practical solution.
☆ Improving Value-based Process Verifier via Low-Cost Variance Reduction
Large language models (LLMs) have achieved remarkable success in a wide range of tasks. However, their reasoning capabilities, particularly in complex domains like mathematics, remain a significant challenge. Value-based process verifiers, which estimate the probability of a partial reasoning chain leading to a correct solution, are a promising approach for improving reasoning. Nevertheless, their effectiveness is often hindered by estimation error in their training annotations, a consequence of the limited number of Monte Carlo (MC) samples feasible due to the high cost of LLM inference. In this paper, we identify that the estimation error primarily arises from high variance rather than bias, and the MC estimator is a Minimum Variance Unbiased Estimator (MVUE). To address the problem, we propose the \textsc{Com}pound \textsc{M}onte \textsc{C}arlo \textsc{S}ampling (ComMCS) method, which constructs an unbiased estimator by linearly combining the MC estimators from the current and subsequent steps. Theoretically, we show that our method leads to a predictable reduction in variance, while maintaining an unbiased estimation without additional LLM inference cost. We also perform empirical experiments on the MATH-500 and GSM8K benchmarks to demonstrate the effectiveness of our method. Notably, ComMCS outperforms regression-based optimization method by 2.8 points, the non-variance-reduced baseline by 2.2 points on MATH-500 on Best-of-32 sampling experiment.
☆ Diversity First, Quality Later: A Two-Stage Assumption for Language Model Alignment
The alignment of language models (LMs) with human preferences is critical for building reliable AI systems. The problem is typically framed as optimizing an LM policy to maximize the expected reward that reflects human preferences. Recently, Direct Preference Optimization (DPO) was proposed as a LM alignment method that directly optimize the policy from static preference data, and further improved by incorporating on-policy sampling (i.e., preference candidates generated during the training loop) for better LM alignment. However, we show on-policy data is not always optimal, with systematic effectiveness difference emerging between static and on-policy preference candidates. For example, on-policy data can result in a 3$\times$ effectiveness compared with static data for Llama-3, and a 0.4$\times$ effectiveness for Zephyr. To explain the phenomenon, we propose the alignment stage assumption, which divides the alignment process into two distinct stages: the preference injection stage, which benefits from diverse data, and the preference fine-tuning stage, which favors high-quality data. Through theoretical and empirical analysis, we characterize these stages and propose an effective algorithm to identify the boundaries between them. We perform experiments on 5 models (Llama, Zephyr, Phi-2, Qwen, Pythia) and 2 alignment methods (DPO, SLiC-HF) to show the generalizability of alignment stage assumption and boundary measurement.
☆ Med-GLIP: Advancing Medical Language-Image Pre-training with Large-scale Grounded Dataset
Medical image grounding aims to align natural language phrases with specific regions in medical images, serving as a foundational task for intelligent diagnosis, visual question answering (VQA), and automated report generation (MRG). However, existing research is constrained by limited modality coverage, coarse-grained annotations, and the absence of a unified, generalizable grounding framework. To address these challenges, we construct a large-scale medical grounding dataset Med-GLIP-5M comprising over 5.3 million region-level annotations across seven imaging modalities, covering diverse anatomical structures and pathological findings. The dataset supports both segmentation and grounding tasks with hierarchical region labels, ranging from organ-level boundaries to fine-grained lesions. Based on this foundation, we propose Med-GLIP, a modality-aware grounding framework trained on Med-GLIP-5M. Rather than relying on explicitly designed expert modules, Med-GLIP implicitly acquires hierarchical semantic understanding from diverse training data -- enabling it to recognize multi-granularity structures, such as distinguishing lungs from pneumonia lesions. Extensive experiments demonstrate that Med-GLIP consistently outperforms state-of-the-art baselines across multiple grounding benchmarks. Furthermore, integrating its spatial outputs into downstream tasks, including medical VQA and report generation, leads to substantial performance gains. Our dataset will be released soon.
☆ Multi-Sample Anti-Aliasing and Constrained Optimization for 3D Gaussian Splatting
Recent advances in 3D Gaussian splatting have significantly improved real-time novel view synthesis, yet insufficient geometric constraints during scene optimization often result in blurred reconstructions of fine-grained details, particularly in regions with high-frequency textures and sharp discontinuities. To address this, we propose a comprehensive optimization framework integrating multisample anti-aliasing (MSAA) with dual geometric constraints. Our system computes pixel colors through adaptive blending of quadruple subsamples, effectively reducing aliasing artifacts in high-frequency components. The framework introduces two constraints: (a) an adaptive weighting strategy that prioritizes under-reconstructed regions through dynamic gradient analysis, and (b) gradient differential constraints enforcing geometric regularization at object boundaries. This targeted optimization enables the model to allocate computational resources preferentially to critical regions requiring refinement while maintaining global consistency. Extensive experimental evaluations across multiple benchmarks demonstrate that our method achieves state-of-the-art performance in detail preservation, particularly in preserving high-frequency textures and sharp discontinuities, while maintaining real-time rendering efficiency. Quantitative metrics and perceptual studies confirm statistically significant improvements over baseline approaches in both structural similarity (SSIM) and perceptual quality (LPIPS).
☆ Advances in Logic-Based Entity Resolution: Enhancing ASPEN with Local Merges and Optimality Criteria KR 2025
In this paper, we present ASPEN+, which extends an existing ASP-based system, ASPEN,for collective entity resolution with two important functionalities: support for local merges and new optimality criteria for preferred solutions. Indeed, ASPEN only supports so-called global merges of entity-referring constants (e.g. author ids), in which all occurrences of matched constants are treated as equivalent and merged accordingly. However, it has been argued that when resolving data values, local merges are often more appropriate, as e.g. some instances of 'J. Lee' may refer to 'Joy Lee', while others should be matched with 'Jake Lee'. In addition to allowing such local merges, ASPEN+ offers new optimality criteria for selecting solutions, such as minimizing rule violations or maximising the number of rules supporting a merge. Our main contributions are thus (1) the formalisation and computational analysis of various notions of optimal solution, and (2) an extensive experimental evaluation on real-world datasets, demonstrating the effect of local merges and the new optimality criteria on both accuracy and runtime.
comment: Full version of a paper accepted at KR 2025
☆ PASS: Probabilistic Agentic Supernet Sampling for Interpretable and Adaptive Chest X-Ray Reasoning
Existing tool-augmented agentic systems are limited in the real world by (i) black-box reasoning steps that undermine trust of decision-making and pose safety risks, (ii) poor multimodal integration, which is inherently critical for healthcare tasks, and (iii) rigid and computationally inefficient agentic pipelines. We introduce PASS (Probabilistic Agentic Supernet Sampling), the first multimodal framework to address these challenges in the context of Chest X-Ray (CXR) reasoning. PASS adaptively samples agentic workflows over a multi-tool graph, yielding decision paths annotated with interpretable probabilities. Given the complex CXR reasoning task with multimodal medical data, PASS leverages its learned task-conditioned distribution over the agentic supernet. Thus, it adaptively selects the most suitable tool at each supernet layer, offering probability-annotated trajectories for post-hoc audits and directly enhancing medical AI safety. PASS also continuously compresses salient findings into an evolving personalized memory, while dynamically deciding whether to deepen its reasoning path or invoke an early exit for efficiency. To optimize a Pareto frontier balancing performance and cost, we design a novel three-stage training procedure, including expert knowledge warm-up, contrastive path-ranking, and cost-aware reinforcement learning. To facilitate rigorous evaluation, we introduce CAB-E, a comprehensive benchmark for multi-step, safety-critical, free-form CXR reasoning. Experiments across various benchmarks validate that PASS significantly outperforms strong baselines in multiple metrics (e.g., accuracy, AUC, LLM-J.) while balancing computational costs, pushing a new paradigm shift towards interpretable, adaptive, and multimodal medical agentic systems.
☆ A Unified Multi-Agent Framework for Universal Multimodal Understanding and Generation
Real-world multimodal applications often require any-to-any capabilities, enabling both understanding and generation across modalities including text, image, audio, and video. However, integrating the strengths of autoregressive language models (LLMs) for reasoning and diffusion models for high-fidelity generation remains challenging. Existing approaches rely on rigid pipelines or tightly coupled architectures, limiting flexibility and scalability. We propose MAGUS (Multi-Agent Guided Unified Multimodal System), a modular framework that unifies multimodal understanding and generation via two decoupled phases: Cognition and Deliberation. MAGUS enables symbolic multi-agent collaboration within a shared textual workspace. In the Cognition phase, three role-conditioned multimodal LLM agents - Perceiver, Planner, and Reflector - engage in collaborative dialogue to perform structured understanding and planning. The Deliberation phase incorporates a Growth-Aware Search mechanism that orchestrates LLM-based reasoning and diffusion-based generation in a mutually reinforcing manner. MAGUS supports plug-and-play extensibility, scalable any-to-any modality conversion, and semantic alignment - all without the need for joint training. Experiments across multiple benchmarks, including image, video, and audio generation, as well as cross-modal instruction following, demonstrate that MAGUS outperforms strong baselines and state-of-the-art systems. Notably, on the MME benchmark, MAGUS surpasses the powerful closed-source model GPT-4o.
comment: 8 pages, 5 figures
☆ Reverse Physician-AI Relationship: Full-process Clinical Diagnosis Driven by a Large Language Model
Full-process clinical diagnosis in the real world encompasses the entire diagnostic workflow that begins with only an ambiguous chief complaint. While artificial intelligence (AI), particularly large language models (LLMs), is transforming clinical diagnosis, its role remains largely as an assistant to physicians. This AI-assisted working pattern makes AI can only answer specific medical questions at certain parts within the diagnostic process, but lack the ability to drive the entire diagnostic process starting from an ambiguous complaint, which still relies heavily on human physicians. This gap limits AI's ability to fully reduce physicians' workload and enhance diagnostic efficiency. To address this, we propose a paradigm shift that reverses the relationship between physicians and AI: repositioning AI as the primary director, with physicians serving as its assistants. So we present DxDirector-7B, an LLM endowed with advanced deep thinking capabilities, enabling it to drive the full-process diagnosis with minimal physician involvement. Furthermore, DxDirector-7B establishes a robust accountability framework for misdiagnoses, delineating responsibility between AI and human physicians. In evaluations across rare, complex, and real-world cases under full-process diagnosis setting, DxDirector-7B not only achieves significant superior diagnostic accuracy but also substantially reduces physician workload than state-of-the-art medical LLMs as well as general-purpose LLMs. Fine-grained analyses across multiple clinical departments and tasks validate its efficacy, with expert evaluations indicating its potential to serve as a viable substitute for medical specialists. These findings mark a new era where AI, traditionally a physicians' assistant, now drives the entire diagnostic process to drastically reduce physicians' workload, indicating an efficient and accurate diagnostic solution.
comment: 39 pages
☆ Contrastive ECOC: Learning Output Codes for Adversarial Defense
Although one-hot encoding is commonly used for multiclass classification, it is not always the most effective encoding mechanism. Error Correcting Output Codes (ECOC) address multiclass classification by mapping each class to a unique codeword used as a label. Traditional ECOC methods rely on manually designed or randomly generated codebooks, which are labor-intensive and may yield suboptimal, dataset-agnostic results. This paper introduces three models for automated codebook learning based on contrastive learning, allowing codebooks to be learned directly and adaptively from data. Across four datasets, our proposed models demonstrate superior robustness to adversarial attacks compared to two baselines. The source is available at https://github.com/YuChou20/Automated-Codebook-Learning-with-Error-Correcting-Output-Code-Technique.
☆ On the Complexity-Faithfulness Trade-off of Gradient-Based Explanations
ReLU networks, while prevalent for visual data, have sharp transitions, sometimes relying on individual pixels for predictions, making vanilla gradient-based explanations noisy and difficult to interpret. Existing methods, such as GradCAM, smooth these explanations by producing surrogate models at the cost of faithfulness. We introduce a unifying spectral framework to systematically analyze and quantify smoothness, faithfulness, and their trade-off in explanations. Using this framework, we quantify and regularize the contribution of ReLU networks to high-frequency information, providing a principled approach to identifying this trade-off. Our analysis characterizes how surrogate-based smoothing distorts explanations, leading to an ``explanation gap'' that we formally define and measure for different post-hoc methods. Finally, we validate our theoretical findings across different design choices, datasets, and ablations.
comment: 23 pages, 14 figures, to be published in International Conference on Computer Vision 2025
☆ SEQ-GPT: LLM-assisted Spatial Query via Example
Contemporary spatial services such as online maps predominantly rely on user queries for location searches. However, the user experience is limited when performing complex tasks, such as searching for a group of locations simultaneously. In this study, we examine the extended scenario known as Spatial Exemplar Query (SEQ), where multiple relevant locations are jointly searched based on user-specified examples. We introduce SEQ-GPT, a spatial query system powered by Large Language Models (LLMs) towards more versatile SEQ search using natural language. The language capabilities of LLMs enable unique interactive operations in the SEQ process, including asking users to clarify query details and dynamically adjusting the search based on user feedback. We also propose a tailored LLM adaptation pipeline that aligns natural language with structured spatial data and queries through dialogue synthesis and multi-model cooperation. SEQ-GPT offers an end-to-end demonstration for broadening spatial search with realistic data and application scenarios.
☆ Pinet: Optimizing hard-constrained neural networks with orthogonal projection layers
We introduce an output layer for neural networks that ensures satisfaction of convex constraints. Our approach, $\Pi$net, leverages operator splitting for rapid and reliable projections in the forward pass, and the implicit function theorem for backpropagation. We deploy $\Pi$net as a feasible-by-design optimization proxy for parametric constrained optimization problems and obtain modest-accuracy solutions faster than traditional solvers when solving a single problem, and significantly faster for a batch of problems. We surpass state-of-the-art learning approaches in terms of training time, solution quality, and robustness to hyperparameter tuning, while maintaining similar inference times. Finally, we tackle multi-vehicle motion planning with non-convex trajectory preferences and provide $\Pi$net as a GPU-ready package implemented in JAX with effective tuning heuristics.
☆ Enhanced Sparse Point Cloud Data Processing for Privacy-aware Human Action Recognition
Human Action Recognition (HAR) plays a crucial role in healthcare, fitness tracking, and ambient assisted living technologies. While traditional vision based HAR systems are effective, they pose privacy concerns. mmWave radar sensors offer a privacy preserving alternative but present challenges due to the sparse and noisy nature of their point cloud data. In the literature, three primary data processing methods: Density-Based Spatial Clustering of Applications with Noise (DBSCAN), the Hungarian Algorithm, and Kalman Filtering have been widely used to improve the quality and continuity of radar data. However, a comprehensive evaluation of these methods, both individually and in combination, remains lacking. This paper addresses that gap by conducting a detailed performance analysis of the three methods using the MiliPoint dataset. We evaluate each method individually, all possible pairwise combinations, and the combination of all three, assessing both recognition accuracy and computational cost. Furthermore, we propose targeted enhancements to the individual methods aimed at improving accuracy. Our results provide crucial insights into the strengths and trade-offs of each method and their integrations, guiding future work on mmWave based HAR systems
☆ FIRESPARQL: A LLM-based Framework for SPARQL Query Generation over Scholarly Knowledge Graphs
Question answering over Scholarly Knowledge Graphs (SKGs) remains a challenging task due to the complexity of scholarly content and the intricate structure of these graphs. Large Language Model (LLM) approaches could be used to translate natural language questions (NLQs) into SPARQL queries; however, these LLM-based approaches struggle with SPARQL query generation due to limited exposure to SKG-specific content and the underlying schema. We identified two main types of errors in the LLM-generated SPARQL queries: (i) structural inconsistencies, such as missing or redundant triples in the queries, and (ii) semantic inaccuracies, where incorrect entities or properties are shown in the queries despite a correct query structure. To address these issues, we propose FIRESPARQL, a modular framework that supports fine-tuned LLMs as a core component, with optional context provided via retrieval-augmented generation (RAG) and a SPARQL query correction layer. We evaluate the framework on the SciQA Benchmark using various configurations (zero-shot, zero-shot with RAG, one-shot, fine-tuning, and fine-tuning with RAG) and compare the performance with baseline and state-of-the-art approaches. We measure query accuracy using BLEU and ROUGE metrics, and query result accuracy using relaxed exact match(RelaxedEM), with respect to the gold standards containing the NLQs, SPARQL queries, and the results of the queries. Experimental results demonstrate that fine-tuning achieves the highest overall performance, reaching 0.90 ROUGE-L for query accuracy and 0.85 RelaxedEM for result accuracy on the test set.
comment: Accepted at 17th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)
☆ X-Node: Self-Explanation is All We Need
Graph neural networks (GNNs) have achieved state-of-the-art results in computer vision and medical image classification tasks by capturing structural dependencies across data instances. However, their decision-making remains largely opaque, limiting their trustworthiness in high-stakes clinical applications where interpretability is essential. Existing explainability techniques for GNNs are typically post-hoc and global, offering limited insight into individual node decisions or local reasoning. We introduce X-Node, a self-explaining GNN framework in which each node generates its own explanation as part of the prediction process. For every node, we construct a structured context vector encoding interpretable cues such as degree, centrality, clustering, feature saliency, and label agreement within its local topology. A lightweight Reasoner module maps this context into a compact explanation vector, which serves three purposes: (1) reconstructing the node's latent embedding via a decoder to enforce faithfulness, (2) generating a natural language explanation using a pre-trained LLM (e.g., Grok or Gemini), and (3) guiding the GNN itself via a "text-injection" mechanism that feeds explanations back into the message-passing pipeline. We evaluate X-Node on two graph datasets derived from MedMNIST and MorphoMNIST, integrating it with GCN, GAT, and GIN backbones. Our results show that X-Node maintains competitive classification accuracy while producing faithful, per-node explanations. Repository: https://github.com/basiralab/X-Node.
☆ RealAC: A Domain-Agnostic Framework for Realistic and Actionable Counterfactual Explanations
Counterfactual explanations provide human-understandable reasoning for AI-made decisions by describing minimal changes to input features that would alter a model's prediction. To be truly useful in practice, such explanations must be realistic and feasible -- they should respect both the underlying data distribution and user-defined feasibility constraints. Existing approaches often enforce inter-feature dependencies through rigid, hand-crafted constraints or domain-specific knowledge, which limits their generalizability and ability to capture complex, nonlinear relations inherent in data. Moreover, they rarely accommodate user-specified preferences and suggest explanations that are causally implausible or infeasible to act upon. We introduce RealAC, a domain-agnostic framework for generating realistic and actionable counterfactuals. RealAC automatically preserves complex inter-feature dependencies without relying on explicit domain knowledge -- by aligning the joint distributions of feature pairs between factual and counterfactual instances. The framework also allows end-users to ``freeze'' attributes they cannot or do not wish to change by suppressing change in frozen features during optimization. Evaluations on three synthetic and two real datasets demonstrate that RealAC balances realism with actionability. Our method outperforms state-of-the-art baselines and Large Language Model-based counterfactual generation techniques in causal edge score, dependency preservation score, and IM1 realism metric and offers a solution for causality-aware and user-centric counterfactual generation.
☆ Alternating Approach-Putt Models for Multi-Stage Speech Enhancement
Speech enhancement using artificial neural networks aims to remove noise from noisy speech signals while preserving the speech content. However, speech enhancement networks often introduce distortions to the speech signal, referred to as artifacts, which can degrade audio quality. In this work, we propose a post-processing neural network designed to mitigate artifacts introduced by speech enhancement models. Inspired by the analogy of making a `Putt' after an `Approach' in golf, we name our model PuttNet. We demonstrate that alternating between a speech enhancement model and the proposed Putt model leads to improved speech quality, as measured by perceptual quality scores (PESQ), objective intelligibility (STOI), and background noise intrusiveness (CBAK) scores. Furthermore, we illustrate with graphical analysis why this alternating Approach outperforms repeated application of either model alone.
comment: This work has been submitted to the IEEE for possible publication
☆ Unpacking the Implicit Norm Dynamics of Sharpness-Aware Minimization in Tensorized Models
Sharpness-Aware Minimization (SAM) has been proven to be an effective optimization technique for improving generalization in overparameterized models. While prior works have explored the implicit regularization of SAM in simple two-core scale-invariant settings, its behavior in more general tensorized or scale-invariant models remains underexplored. In this work, we leverage scale-invariance to analyze the norm dynamics of SAM in general tensorized models. We introduce the notion of \emph{Norm Deviation} as a global measure of core norm imbalance, and derive its evolution under SAM using gradient flow analysis. We show that SAM's implicit control of Norm Deviation is governed by the covariance between core norms and their gradient magnitudes. Motivated by these findings, we propose a simple yet effective method, \emph{Deviation-Aware Scaling (DAS)}, which explicitly mimics this regularization behavior by scaling core norms in a data-adaptive manner. Our experiments across tensor completion, noisy training, model compression, and parameter-efficient fine-tuning confirm that DAS achieves competitive or improved performance over SAM, while offering reduced computational overhead.
☆ We-Math 2.0: A Versatile MathBook System for Incentivizing Visual Mathematical Reasoning
Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities across various tasks, but still struggle with complex mathematical reasoning. Existing research primarily focuses on dataset construction and method optimization, often overlooking two critical aspects: comprehensive knowledge-driven design and model-centric data space modeling. In this paper, we introduce We-Math 2.0, a unified system that integrates a structured mathematical knowledge system, model-centric data space modeling, and a reinforcement learning (RL)-based training paradigm to comprehensively enhance the mathematical reasoning abilities of MLLMs. The key contributions of We-Math 2.0 are fourfold: (1) MathBook Knowledge System: We construct a five-level hierarchical system encompassing 491 knowledge points and 1,819 fundamental principles. (2) MathBook-Standard & Pro: We develop MathBook-Standard, a dataset that ensures broad conceptual coverage and flexibility through dual expansion. Additionally, we define a three-dimensional difficulty space and generate 7 progressive variants per problem to build MathBook-Pro, a challenging dataset for robust training. (3) MathBook-RL: We propose a two-stage RL framework comprising: (i) Cold-Start Fine-tuning, which aligns the model with knowledge-oriented chain-of-thought reasoning; and (ii) Progressive Alignment RL, leveraging average-reward learning and dynamic data scheduling to achieve progressive alignment across difficulty levels. (4) MathBookEval: We introduce a comprehensive benchmark covering all 491 knowledge points with diverse reasoning step distributions. Experimental results show that MathBook-RL performs competitively with existing baselines on four widely-used benchmarks and achieves strong results on MathBookEval, suggesting promising generalization in mathematical reasoning.
comment: Working in progress
☆ MM-Food-100K: A 100,000-Sample Multimodal Food Intelligence Dataset with Verifiable Provenance
We present MM-Food-100K, a public 100,000-sample multimodal food intelligence dataset with verifiable provenance. It is a curated approximately 10% open subset of an original 1.2 million, quality-accepted corpus of food images annotated for a wide range of information (such as dish name, region of creation). The corpus was collected over six weeks from over 87,000 contributors using the Codatta contribution model, which combines community sourcing with configurable AI-assisted quality checks; each submission is linked to a wallet address in a secure off-chain ledger for traceability, with a full on-chain protocol on the roadmap. We describe the schema, pipeline, and QA, and validate utility by fine-tuning large vision-language models (ChatGPT 5, ChatGPT OSS, Qwen-Max) on image-based nutrition prediction. Fine-tuning yields consistent gains over out-of-box baselines across standard metrics; we report results primarily on the MM-Food-100K subset. We release MM-Food-100K for publicly free access and retain approximately 90% for potential commercial access with revenue sharing to contributors.
comment: 10 pages, 5 figures, 6 tables. The dataset is available at https://huggingface.co/datasets/Codatta/MM-Food-100K
☆ HiRef: Leveraging Hierarchical Ontology and Network Refinement for Robust Medication Recommendation
Medication recommendation is a crucial task for assisting physicians in making timely decisions from longitudinal patient medical records. However, real-world EHR data present significant challenges due to the presence of rarely observed medical entities and incomplete records that may not fully capture the clinical ground truth. While data-driven models trained on longitudinal Electronic Health Records often achieve strong empirical performance, they struggle to generalize under missing or novel conditions, largely due to their reliance on observed co-occurrence patterns. To address these issues, we propose Hierarchical Ontology and Network Refinement for Robust Medication Recommendation (HiRef), a unified framework that combines two complementary structures: (i) the hierarchical semantics encoded in curated medical ontologies, and (ii) refined co-occurrence patterns derived from real-world EHRs. We embed ontology entities in hyperbolic space, which naturally captures tree-like relationships and enables knowledge transfer through shared ancestors, thereby improving generalizability to unseen codes. To further improve robustness, we introduce a prior-guided sparse regularization scheme that refines the EHR co-occurrence graph by suppressing spurious edges while preserving clinically meaningful associations. Our model achieves strong performance on EHR benchmarks (MIMIC-III and MIMIC-IV) and maintains high accuracy under simulated unseen-code settings. Extensive experiments with comprehensive ablation studies demonstrate HiRef's resilience to unseen medical codes, supported by in-depth analyses of the learned sparsified graph structure and medical code embeddings.
☆ MASH: Cooperative-Heterogeneous Multi-Agent Reinforcement Learning for Single Humanoid Robot Locomotion
This paper proposes a novel method to enhance locomotion for a single humanoid robot through cooperative-heterogeneous multi-agent deep reinforcement learning (MARL). While most existing methods typically employ single-agent reinforcement learning algorithms for a single humanoid robot or MARL algorithms for multi-robot system tasks, we propose a distinct paradigm: applying cooperative-heterogeneous MARL to optimize locomotion for a single humanoid robot. The proposed method, multi-agent reinforcement learning for single humanoid locomotion (MASH), treats each limb (legs and arms) as an independent agent that explores the robot's action space while sharing a global critic for cooperative learning. Experiments demonstrate that MASH accelerates training convergence and improves whole-body cooperation ability, outperforming conventional single-agent reinforcement learning methods. This work advances the integration of MARL into single-humanoid-robot control, offering new insights into efficient locomotion strategies.
☆ ComoRAG: A Cognitive-Inspired Memory-Organized RAG for Stateful Long Narrative Reasoning
Narrative comprehension on long stories and novels has been a challenging domain attributed to their intricate plotlines and entangled, often evolving relations among characters and entities. Given the LLM's diminished reasoning over extended context and high computational cost, retrieval-based approaches remain a pivotal role in practice. However, traditional RAG methods can fall short due to their stateless, single-step retrieval process, which often overlooks the dynamic nature of capturing interconnected relations within long-range context. In this work, we propose ComoRAG, holding the principle that narrative reasoning is not a one-shot process, but a dynamic, evolving interplay between new evidence acquisition and past knowledge consolidation, analogous to human cognition when reasoning with memory-related signals in the brain. Specifically, when encountering a reasoning impasse, ComoRAG undergoes iterative reasoning cycles while interacting with a dynamic memory workspace. In each cycle, it generates probing queries to devise new exploratory paths, then integrates the retrieved evidence of new aspects into a global memory pool, thereby supporting the emergence of a coherent context for the query resolution. Across four challenging long-context narrative benchmarks (200K+ tokens), ComoRAG outperforms strong RAG baselines with consistent relative gains up to 11% compared to the strongest baseline. Further analysis reveals that ComoRAG is particularly advantageous for complex queries requiring global comprehension, offering a principled, cognitively motivated paradigm for retrieval-based long context comprehension towards stateful reasoning. Our code is publicly released at https://github.com/EternityJune25/ComoRAG
☆ CorrectNav: Self-Correction Flywheel Empowers Vision-Language-Action Navigation Model
Existing vision-and-language navigation models often deviate from the correct trajectory when executing instructions. However, these models lack effective error correction capability, hindering their recovery from errors. To address this challenge, we propose Self-correction Flywheel, a novel post-training paradigm. Instead of considering the model's error trajectories on the training set as a drawback, our paradigm emphasizes their significance as a valuable data source. We have developed a method to identify deviations in these error trajectories and devised innovative techniques to automatically generate self-correction data for perception and action. These self-correction data serve as fuel to power the model's continued training. The brilliance of our paradigm is revealed when we re-evaluate the model on the training set, uncovering new error trajectories. At this time, the self-correction flywheel begins to spin. Through multiple flywheel iterations, we progressively enhance our monocular RGB-based VLA navigation model CorrectNav. Experiments on R2R-CE and RxR-CE benchmarks show CorrectNav achieves new state-of-the-art success rates of 65.1% and 69.3%, surpassing prior best VLA navigation models by 8.2% and 16.4%. Real robot tests in various indoor and outdoor environments demonstrate \method's superior capability of error correction, dynamic obstacle avoidance, and long instruction following.
☆ MCP2OSC: Parametric Control by Natural Language
Text prompts enable intuitive content creation but may fall short in achieving high precision for intricate tasks; knob or slider controls offer precise adjustments at the cost of increased complexity. To address the gap between knobs and prompts, a new MCP (Model Context Protocol) server and a unique set of prompt design criteria are presented to enable exploring parametric OSC (OpenSoundControl) control by natural language prompts. Demonstrated by 14 practical QA examples with best practices and the generalized prompt templates, this study finds Claude integrated with the MCP2OSC server effective in generating OSC messages by natural language, interpreting, searching, and visualizing OSC messages, validating and debugging OSC messages, and managing OSC address patterns. MCP2OSC enhances human-machine collaboration by leveraging LLM (Large Language Model) to handle intricate OSC development tasks, and by empowering human creativity with an intuitive language interface featuring flexible precision controls: a prompt-based OSC tool. This study provides a novel perspective on the creative MCP application at the network protocol level by utilizing LLM's strength in directly processing and generating human-readable OSC messages. The results suggest its potential for a LLM-based universal control mechanism for multimedia devices.
☆ AnalogSeeker: An Open-source Foundation Language Model for Analog Circuit Design
In this paper, we propose AnalogSeeker, an effort toward an open-source foundation language model for analog circuit design, with the aim of integrating domain knowledge and giving design assistance. To overcome the scarcity of data in this field, we employ a corpus collection strategy based on the domain knowledge framework of analog circuits. High-quality, accessible textbooks across relevant subfields are systematically curated and cleaned into a textual domain corpus. To address the complexity of knowledge of analog circuits, we introduce a granular domain knowledge distillation method. Raw, unlabeled domain corpus is decomposed into typical, granular learning nodes, where a multi-agent framework distills implicit knowledge embedded in unstructured text into question-answer data pairs with detailed reasoning processes, yielding a fine-grained, learnable dataset for fine-tuning. To address the unexplored challenges in training analog circuit foundation models, we explore and share our training methods through both theoretical analysis and experimental validation. We finally establish a fine-tuning-centric training paradigm, customizing and implementing a neighborhood self-constrained supervised fine-tuning algorithm. This approach enhances training outcomes by constraining the perturbation magnitude between the model's output distributions before and after training. In practice, we train the Qwen2.5-32B-Instruct model to obtain AnalogSeeker, which achieves 85.04% accuracy on AMSBench-TQA, the analog circuit knowledge evaluation benchmark, with a 15.67% point improvement over the original model and is competitive with mainstream commercial models. Furthermore, AnalogSeeker also shows effectiveness in the downstream operational amplifier design task. AnalogSeeker is open-sourced at https://huggingface.co/analogllm/analogseeker for research use.
☆ Layer-Wise Perturbations via Sparse Autoencoders for Adversarial Text Generation
With the rapid proliferation of Natural Language Processing (NLP), especially Large Language Models (LLMs), generating adversarial examples to jailbreak LLMs remains a key challenge for understanding model vulnerabilities and improving robustness. In this context, we propose a new black-box attack method that leverages the interpretability of large models. We introduce the Sparse Feature Perturbation Framework (SFPF), a novel approach for adversarial text generation that utilizes sparse autoencoders to identify and manipulate critical features in text. After using the SAE model to reconstruct hidden layer representations, we perform feature clustering on the successfully attacked texts to identify features with higher activations. These highly activated features are then perturbed to generate new adversarial texts. This selective perturbation preserves the malicious intent while amplifying safety signals, thereby increasing their potential to evade existing defenses. Our method enables a new red-teaming strategy that balances adversarial effectiveness with safety alignment. Experimental results demonstrate that adversarial texts generated by SFPF can bypass state-of-the-art defense mechanisms, revealing persistent vulnerabilities in current NLP systems.However, the method's effectiveness varies across prompts and layers, and its generalizability to other architectures and larger models remains to be validated.
☆ PQ-DAF: Pose-driven Quality-controlled Data Augmentation for Data-scarce Driver Distraction Detection
Driver distraction detection is essential for improving traffic safety and reducing road accidents. However, existing models often suffer from degraded generalization when deployed in real-world scenarios. This limitation primarily arises from the few-shot learning challenge caused by the high cost of data annotation in practical environments, as well as the substantial domain shift between training datasets and target deployment conditions. To address these issues, we propose a Pose-driven Quality-controlled Data Augmentation Framework (PQ-DAF) that leverages a vision-language model for sample filtering to cost-effectively expand training data and enhance cross-domain robustness. Specifically, we employ a Progressive Conditional Diffusion Model (PCDMs) to accurately capture key driver pose features and synthesize diverse training examples. A sample quality assessment module, built upon the CogVLM vision-language model, is then introduced to filter out low-quality synthetic samples based on a confidence threshold, ensuring the reliability of the augmented dataset. Extensive experiments demonstrate that PQ-DAF substantially improves performance in few-shot driver distraction detection, achieving significant gains in model generalization under data-scarce conditions.
comment: 11 pages, 6 figures
☆ LeanRAG: Knowledge-Graph-Based Generation with Semantic Aggregation and Hierarchical Retrieval
Retrieval-Augmented Generation (RAG) plays a crucial role in grounding Large Language Models by leveraging external knowledge, whereas the effectiveness is often compromised by the retrieval of contextually flawed or incomplete information. To address this, knowledge graph-based RAG methods have evolved towards hierarchical structures, organizing knowledge into multi-level summaries. However, these approaches still suffer from two critical, unaddressed challenges: high-level conceptual summaries exist as disconnected ``semantic islands'', lacking the explicit relations needed for cross-community reasoning; and the retrieval process itself remains structurally unaware, often degenerating into an inefficient flat search that fails to exploit the graph's rich topology. To overcome these limitations, we introduce LeanRAG, a framework that features a deeply collaborative design combining knowledge aggregation and retrieval strategies. LeanRAG first employs a novel semantic aggregation algorithm that forms entity clusters and constructs new explicit relations among aggregation-level summaries, creating a fully navigable semantic network. Then, a bottom-up, structure-guided retrieval strategy anchors queries to the most relevant fine-grained entities and then systematically traverses the graph's semantic pathways to gather concise yet contextually comprehensive evidence sets. The LeanRAG can mitigate the substantial overhead associated with path retrieval on graphs and minimizes redundant information retrieval. Extensive experiments on four challenging QA benchmarks with different domains demonstrate that LeanRAG significantly outperforming existing methods in response quality while reducing 46\% retrieval redundancy. Code is available at: https://github.com/RaZzzyz/LeanRAG
☆ Unlocking Robust Semantic Segmentation Performance via Label-only Elastic Deformations against Implicit Label Noise
While previous studies on image segmentation focus on handling severe (or explicit) label noise, real-world datasets also exhibit subtle (or implicit) label imperfections. These arise from inherent challenges, such as ambiguous object boundaries and annotator variability. Although not explicitly present, such mild and latent noise can still impair model performance. Typical data augmentation methods, which apply identical transformations to the image and its label, risk amplifying these subtle imperfections and limiting the model's generalization capacity. In this paper, we introduce NSegment+, a novel augmentation framework that decouples image and label transformations to address such realistic noise for semantic segmentation. By introducing controlled elastic deformations only to segmentation labels while preserving the original images, our method encourages models to focus on learning robust representations of object structures despite minor label inconsistencies. Extensive experiments demonstrate that NSegment+ consistently improves performance, achieving mIoU gains of up to +2.29, +2.38, +1.75, and +3.39 in average on Vaihingen, LoveDA, Cityscapes, and PASCAL VOC, respectively-even without bells and whistles, highlighting the importance of addressing implicit label noise. These gains can be further amplified when combined with other training tricks, including CutMix and Label Smoothing.
☆ eMamba: Efficient Acceleration Framework for Mamba Models in Edge Computing
State Space Model (SSM)-based machine learning architectures have recently gained significant attention for processing sequential data. Mamba, a recent sequence-to-sequence SSM, offers competitive accuracy with superior computational efficiency compared to state-of-the-art transformer models. While this advantage makes Mamba particularly promising for resource-constrained edge devices, no hardware acceleration frameworks are currently optimized for deploying it in such environments. This paper presents eMamba, a comprehensive end-to-end hardware acceleration framework explicitly designed for deploying Mamba models on edge platforms. eMamba maximizes computational efficiency by replacing complex normalization layers with lightweight hardware-aware alternatives and approximating expensive operations, such as SiLU activation and exponentiation, considering the target applications. Then, it performs an approximation-aware neural architecture search (NAS) to tune the learnable parameters used during approximation. Evaluations with Fashion-MNIST, CIFAR-10, and MARS, an open-source human pose estimation dataset, show eMamba achieves comparable accuracy to state-of-the-art techniques using 1.63-19.9$\times$ fewer parameters. In addition, it generalizes well to large-scale natural language tasks, demonstrating stable perplexity across varying sequence lengths on the WikiText2 dataset. We also quantize and implement the entire eMamba pipeline on an AMD ZCU102 FPGA and ASIC using GlobalFoundries (GF) 22 nm technology. Experimental results show 4.95-5.62$\times$ lower latency and 2.22-9.95$\times$ higher throughput, with 4.77$\times$ smaller area, 9.84$\times$ lower power, and 48.6$\times$ lower energy consumption than baseline solutions while maintaining competitive accuracy.
comment: Paper accepted at ESWEEK 2025 (CODES+ISSS) conference
☆ What to Ask Next? Probing the Imaginative Reasoning of LLMs with TurtleSoup Puzzles
We investigate the capacity of Large Language Models (LLMs) for imaginative reasoning--the proactive construction, testing, and revision of hypotheses in information-sparse environments. Existing benchmarks, often static or focused on social deduction, fail to capture the dynamic, exploratory nature of this reasoning process. To address this gap, we introduce a comprehensive research framework based on the classic "Turtle Soup" game, integrating a benchmark, an agent, and an evaluation protocol. We present TurtleSoup-Bench, the first large-scale, bilingual, interactive benchmark for imaginative reasoning, comprising 800 turtle soup puzzles sourced from both the Internet and expert authors. We also propose Mosaic-Agent, a novel agent designed to assess LLMs' performance in this setting. To evaluate reasoning quality, we develop a multi-dimensional protocol measuring logical consistency, detail completion, and conclusion alignment. Experiments with leading LLMs reveal clear capability limits, common failure patterns, and a significant performance gap compared to humans. Our work offers new insights into LLMs' imaginative reasoning and establishes a foundation for future research on exploratory agent behavior.
☆ Welfare-Centric Clustering
Fair clustering has traditionally focused on ensuring equitable group representation or equalizing group-specific clustering costs. However, Dickerson et al. (2025) recently showed that these fairness notions may yield undesirable or unintuitive clustering outcomes and advocated for a welfare-centric clustering approach that models the utilities of the groups. In this work, we model group utilities based on both distances and proportional representation and formalize two optimization objectives based on welfare-centric clustering: the Rawlsian (Egalitarian) objective and the Utilitarian objective. We introduce novel algorithms for both objectives and prove theoretical guarantees for them. Empirical evaluations on multiple real-world datasets demonstrate that our methods significantly outperform existing fair clustering baselines.
☆ Multi-Agent Trust Region Policy Optimisation: A Joint Constraint Approach
Multi-agent reinforcement learning (MARL) requires coordinated and stable policy updates among interacting agents. Heterogeneous-Agent Trust Region Policy Optimization (HATRPO) enforces per-agent trust region constraints using Kullback-Leibler (KL) divergence to stabilize training. However, assigning each agent the same KL threshold can lead to slow and locally optimal updates, especially in heterogeneous settings. To address this limitation, we propose two approaches for allocating the KL divergence threshold across agents: HATRPO-W, a Karush-Kuhn-Tucker-based (KKT-based) method that optimizes threshold assignment under global KL constraints, and HATRPO-G, a greedy algorithm that prioritizes agents based on improvement-to-divergence ratio. By connecting sequential policy optimization with constrained threshold scheduling, our approach enables more flexible and effective learning in heterogeneous-agent settings. Experimental results demonstrate that our methods significantly boost the performance of HATRPO, achieving faster convergence and higher final rewards across diverse MARL benchmarks. Specifically, HATRPO-W and HATRPO-G achieve comparable improvements in final performance, each exceeding 22.5%. Notably, HATRPO-W also demonstrates more stable learning dynamics, as reflected by its lower variance.
☆ A Curriculum Learning Approach to Reinforcement Learning: Leveraging RAG for Multimodal Question Answering
This paper describes the solutions of the Dianping-Trust-Safety team for the META CRAG-MM challenge. The challenge requires building a comprehensive retrieval-augmented generation system capable for multi-modal multi-turn question answering. The competition consists of three tasks: (1) answering questions using structured data retrieved from an image-based mock knowledge graph, (2) synthesizing information from both knowledge graphs and web search results, and (3) handling multi-turn conversations that require context understanding and information aggregation from multiple sources. For Task 1, our solution is based on the vision large language model, enhanced by supervised fine-tuning with knowledge distilled from GPT-4.1. We further applied curriculum learning strategies to guide reinforcement learning, resulting in improved answer accuracy and reduced hallucination. For Task 2 and Task 3, we additionally leveraged web search APIs to incorporate external knowledge, enabling the system to better handle complex queries and multi-turn conversations. Our approach achieved 1st place in Task 1 with a significant lead of 52.38\%, and 3rd place in Task 3, demonstrating the effectiveness of the integration of curriculum learning with reinforcement learning in our training pipeline.
☆ Layer-Wise Analysis of Self-Supervised Representations for Age and Gender Classification in Children's Speech
Children's speech presents challenges for age and gender classification due to high variability in pitch, articulation, and developmental traits. While self-supervised learning (SSL) models perform well on adult speech tasks, their ability to encode speaker traits in children remains underexplored. This paper presents a detailed layer-wise analysis of four Wav2Vec2 variants using the PFSTAR and CMU Kids datasets. Results show that early layers (1-7) capture speaker-specific cues more effectively than deeper layers, which increasingly focus on linguistic information. Applying PCA further improves classification, reducing redundancy and highlighting the most informative components. The Wav2Vec2-large-lv60 model achieves 97.14% (age) and 98.20% (gender) on CMU Kids; base-100h and large-lv60 models reach 86.05% and 95.00% on PFSTAR. These results reveal how speaker traits are structured across SSL model depth and support more targeted, adaptive strategies for child-aware speech interfaces.
comment: Accepted at Workshop on Child Computer Interaction (WOCCI 2025)
☆ A Vision-Language Pre-training Model-Guided Approach for Mitigating Backdoor Attacks in Federated Learning
Existing backdoor defense methods in Federated Learning (FL) rely on the assumption of homogeneous client data distributions or the availability of a clean serve dataset, which limits the practicality and effectiveness. Defending against backdoor attacks under heterogeneous client data distributions while preserving model performance remains a significant challenge. In this paper, we propose a FL backdoor defense framework named CLIP-Fed, which leverages the zero-shot learning capabilities of vision-language pre-training models. By integrating both pre-aggregation and post-aggregation defense strategies, CLIP-Fed overcomes the limitations of Non-IID imposed on defense effectiveness. To address privacy concerns and enhance the coverage of the dataset against diverse triggers, we construct and augment the server dataset using the multimodal large language model and frequency analysis without any client samples. To address class prototype deviations caused by backdoor samples and eliminate the correlation between trigger patterns and target labels, CLIP-Fed aligns the knowledge of the global model and CLIP on the augmented dataset using prototype contrastive loss and Kullback-Leibler divergence. Extensive experiments on representative datasets validate the effectiveness of CLIP-Fed. Compared to state-of-the-art methods, CLIP-Fed achieves an average reduction in ASR, i.e., 2.03\% on CIFAR-10 and 1.35\% on CIFAR-10-LT, while improving average MA by 7.92\% and 0.48\%, respectively.
ReviewRL: Towards Automated Scientific Review with RL
Peer review is essential for scientific progress but faces growing challenges due to increasing submission volumes and reviewer fatigue. Existing automated review approaches struggle with factual accuracy, rating consistency, and analytical depth, often generating superficial or generic feedback lacking the insights characteristic of high-quality human reviews. We introduce ReviewRL, a reinforcement learning framework for generating comprehensive and factually grounded scientific paper reviews. Our approach combines: (1) an ArXiv-MCP retrieval-augmented context generation pipeline that incorporates relevant scientific literature, (2) supervised fine-tuning that establishes foundational reviewing capabilities, and (3) a reinforcement learning procedure with a composite reward function that jointly enhances review quality and rating accuracy. Experiments on ICLR 2025 papers demonstrate that ReviewRL significantly outperforms existing methods across both rule-based metrics and model-based quality assessments. ReviewRL establishes a foundational framework for RL-driven automatic critique generation in scientific discovery, demonstrating promising potential for future development in this domain. The implementation of ReviewRL will be released at GitHub.
comment: 13 pages, 5 figures
☆ Yet another algorithmic bias: A Discursive Analysis of Large Language Models Reinforcing Dominant Discourses on Gender and Race
With the advance of Artificial Intelligence (AI), Large Language Models (LLMs) have gained prominence and been applied in diverse contexts. As they evolve into more sophisticated versions, it is essential to assess whether they reproduce biases, such as discrimination and racialization, while maintaining hegemonic discourses. Current bias detection approaches rely mostly on quantitative, automated methods, which often overlook the nuanced ways in which biases emerge in natural language. This study proposes a qualitative, discursive framework to complement such methods. Through manual analysis of LLM-generated short stories featuring Black and white women, we investigate gender and racial biases. We contend that qualitative methods such as the one proposed here are fundamental to help both developers and users identify the precise ways in which biases manifest in LLM outputs, thus enabling better conditions to mitigate them. Results show that Black women are portrayed as tied to ancestry and resistance, while white women appear in self-discovery processes. These patterns reflect how language models replicate crystalized discursive representations, reinforcing essentialization and a sense of social immobility. When prompted to correct biases, models offered superficial revisions that maintained problematic meanings, revealing limitations in fostering inclusive narratives. Our results demonstrate the ideological functioning of algorithms and have significant implications for the ethical use and development of AI. The study reinforces the need for critical, interdisciplinary approaches to AI design and deployment, addressing how LLM-generated discourses reflect and perpetuate inequalities.
comment: 29 pages, 3 figures
☆ Promoting Efficient Reasoning with Verifiable Stepwise Reward
Large reasoning models (LRMs) have recently achieved significant progress in complex reasoning tasks, aided by reinforcement learning with verifiable rewards. However, LRMs often suffer from overthinking, expending excessive computation on simple problems and reducing efficiency. Existing efficient reasoning methods typically require accurate task assessment to preset token budgets or select reasoning modes, which limits their flexibility and reliability. In this work, we revisit the essence of overthinking and identify that encouraging effective steps while penalizing ineffective ones is key to its solution. To this end, we propose a novel rule-based verifiable stepwise reward mechanism (VSRM), which assigns rewards based on the performance of intermediate states in the reasoning trajectory. This approach is intuitive and naturally fits the step-by-step nature of reasoning tasks. We conduct extensive experiments on standard mathematical reasoning benchmarks, including AIME24 and AIME25, by integrating VSRM with PPO and Reinforce++. Results show that our method achieves substantial output length reduction while maintaining original reasoning performance, striking an optimal balance between efficiency and accuracy. Further analysis of overthinking frequency and pass@k score before and after training demonstrates that our approach in deed effectively suppresses ineffective steps and encourages effective reasoning, fundamentally alleviating the overthinking problem. All code will be released upon acceptance.
☆ Pose-Robust Calibration Strategy for Point-of-Gaze Estimation on Mobile Phones BMVC
Although appearance-based point-of-gaze (PoG) estimation has improved, the estimators still struggle to generalize across individuals due to personal differences. Therefore, person-specific calibration is required for accurate PoG estimation. However, calibrated PoG estimators are often sensitive to head pose variations. To address this, we investigate the key factors influencing calibrated estimators and explore pose-robust calibration strategies. Specifically, we first construct a benchmark, MobilePoG, which includes facial images from 32 individuals focusing on designated points under either fixed or continuously changing head poses. Using this benchmark, we systematically analyze how the diversity of calibration points and head poses influences estimation accuracy. Our experiments show that introducing a wider range of head poses during calibration improves the estimator's ability to handle pose variation. Building on this insight, we propose a dynamic calibration strategy in which users fixate on calibration points while moving their phones. This strategy naturally introduces head pose variation during a user-friendly and efficient calibration process, ultimately producing a better calibrated PoG estimator that is less sensitive to head pose variations than those using conventional calibration strategies. Codes and datasets are available at our project page.
comment: Accepted for British Machine Vision Conference (BMVC) 2025
☆ Why Cannot Large Language Models Ever Make True Correct Reasoning?
Recently, with the application progress of AIGC tools based on large language models (LLMs), led by ChatGPT, many AI experts and more non-professionals are trumpeting the "understanding ability" and "reasoning ability" of the LLMs. The present author considers that the so-called "understanding ability" and "reasoning ability" of LLMs are just illusions of those people who with vague concepts. In fact, the LLMs can never have the true understanding ability and true reasoning ability. This paper intents to explain that, because the essential limitations of their working principle, the LLMs can never have the ability of true correct reasoning.
comment: 8 pages. arXiv admin note: substantial text overlap with arXiv:2412.12408
☆ MRFD: Multi-Region Fusion Decoding with Self-Consistency for Mitigating Hallucinations in LVLMs
Large Vision-Language Models (LVLMs) have shown strong performance across multimodal tasks. However, they often produce hallucinations -- text that is inconsistent with visual input, due to the limited ability to verify information in different regions of the image. To address this, we propose Multi-Region Fusion Decoding (MRFD), a training-free decoding method that improves factual grounding by modeling inter-region consistency. MRFD identifies salient regions using cross-attention, generates initial responses for each, and computes reliability weights based on Jensen-Shannon Divergence (JSD) among the responses. These weights guide a consistency-aware fusion of per-region predictions, using region-aware prompts inspired by Chain-of-Thought reasoning. Experiments across multiple LVLMs and benchmarks show that MRFD significantly reduces hallucinations and improves response factuality without requiring model updates.
☆ DINOMotion: advanced robust tissue motion tracking with DINOv2 in 2D-Cine MRI-guided radiotherapy
Accurate tissue motion tracking is critical to ensure treatment outcome and safety in 2D-Cine MRI-guided radiotherapy. This is typically achieved by registration of sequential images, but existing methods often face challenges with large misalignments and lack of interpretability. In this paper, we introduce DINOMotion, a novel deep learning framework based on DINOv2 with Low-Rank Adaptation (LoRA) layers for robust, efficient, and interpretable motion tracking. DINOMotion automatically detects corresponding landmarks to derive optimal image registration, enhancing interpretability by providing explicit visual correspondences between sequential images. The integration of LoRA layers reduces trainable parameters, improving training efficiency, while DINOv2's powerful feature representations offer robustness against large misalignments. Unlike iterative optimization-based methods, DINOMotion directly computes image registration at test time. Our experiments on volunteer and patient datasets demonstrate its effectiveness in estimating both linear and nonlinear transformations, achieving Dice scores of 92.07% for the kidney, 90.90% for the liver, and 95.23% for the lung, with corresponding Hausdorff distances of 5.47 mm, 8.31 mm, and 6.72 mm, respectively. DINOMotion processes each scan in approximately 30ms and consistently outperforms state-of-the-art methods, particularly in handling large misalignments. These results highlight its potential as a robust and interpretable solution for real-time motion tracking in 2D-Cine MRI-guided radiotherapy.
comment: Accepted to IEEE Transactions on Biomedical Engineering (TMBE), 14 pages
☆ Facilitating Longitudinal Interaction Studies of AI Systems
UIST researchers develop tools to address user challenges. However, user interactions with AI evolve over time through learning, adaptation, and repurposing, making one time evaluations insufficient. Capturing these dynamics requires longer-term studies, but challenges in deployment, evaluation design, and data collection have made such longitudinal research difficult to implement. Our workshop aims to tackle these challenges and prepare researchers with practical strategies for longitudinal studies. The workshop includes a keynote, panel discussions, and interactive breakout groups for discussion and hands-on protocol design and tool prototyping sessions. We seek to foster a community around longitudinal system research and promote it as a more embraced method for designing, building, and evaluating UIST tools.
comment: Accepted workshop proposal @ UIST 2025 Busan, Korea. Workshop website: https://longitudinal-workshop.github.io/
☆ Tabularis Formatus: Predictive Formatting for Tables
Spreadsheet manipulation software are widely used for data management and analysis of tabular data, yet the creation of conditional formatting (CF) rules remains a complex task requiring technical knowledge and experience with specific platforms. In this paper we present TaFo, a neuro-symbolic approach to generating CF suggestions for tables, addressing common challenges such as user unawareness, difficulty in rule creation, and inadequate user interfaces. TaFo takes inspiration from component based synthesis systems and extends them with semantic knowledge of language models and a diversity preserving rule ranking.Unlike previous methods focused on structural formatting, TaFo uniquely incorporates value-based formatting, automatically learning both the rule trigger and the associated visual formatting properties for CF rules. By removing the dependency on user specification used by existing techniques in the form of formatted examples or natural language instruction, TaFo makes formatting completely predictive and automated for the user. To evaluate TaFo, we use a corpus of 1.8 Million public workbooks with CF and manual formatting. We compare TaFo against a diverse set of symbolic and neural systems designed for or adapted for the task of table formatting. Our results show that TaFo generates more accurate, diverse and complete formatting suggestions than current systems and outperforms these by 15.6\%--26.5\% on matching user added ground truth rules in tables.
comment: 14 pages
☆ Quantization through Piecewise-Affine Regularization: Optimization and Statistical Guarantees
Optimization problems over discrete or quantized variables are very challenging in general due to the combinatorial nature of their search space. Piecewise-affine regularization (PAR) provides a flexible modeling and computational framework for quantization based on continuous optimization. In this work, we focus on the setting of supervised learning and investigate the theoretical foundations of PAR from optimization and statistical perspectives. First, we show that in the overparameterized regime, where the number of parameters exceeds the number of samples, every critical point of the PAR-regularized loss function exhibits a high degree of quantization. Second, we derive closed-form proximal mappings for various (convex, quasi-convex, and non-convex) PARs and show how to solve PAR-regularized problems using the proximal gradient method, its accelerated variant, and the Alternating Direction Method of Multipliers. Third, we study statistical guarantees of PAR-regularized linear regression problems; specifically, we can approximate classical formulations of $\ell_1$-, squared $\ell_2$-, and nonconvex regularizations using PAR and obtain similar statistical guarantees with quantized solutions.
☆ Diffusion is a code repair operator and generator
Code diffusion models generate code by iteratively removing noise from the latent representation of a code snippet. During later steps of the diffusion process, when the code snippet has almost converged, differences between discrete representations of these snippets look like last-mile repairs applied to broken or incomplete code. We evaluate the extent to which this resemblance can be exploited to leverage pre-trained code diffusion models for the problem of last-mile repair by considering two applications with significant potential. First, we can leverage the diffusion model for last-mile repair by adding noise to a broken code snippet and resuming the diffusion process. Second, we can leverage the diffusion model to generate arbitrary amount of training data for last-mile repair tasks (that are computationally more efficient) by sampling an intermediate program (input) and the final program (output) from the diffusion process. We perform experiments on 3 domains (Python, Excel and PowerShell) to evaluate applications, as well as analyze properties.
comment: 12 pages
☆ Utilizing Vision-Language Models as Action Models for Intent Recognition and Assistance
Human-robot collaboration requires robots to quickly infer user intent, provide transparent reasoning, and assist users in achieving their goals. Our recent work introduced GUIDER, our framework for inferring navigation and manipulation intents. We propose augmenting GUIDER with a vision-language model (VLM) and a text-only language model (LLM) to form a semantic prior that filters objects and locations based on the mission prompt. A vision pipeline (YOLO for object detection and the Segment Anything Model for instance segmentation) feeds candidate object crops into the VLM, which scores their relevance given an operator prompt; in addition, the list of detected object labels is ranked by a text-only LLM. These scores weight the existing navigation and manipulation layers of GUIDER, selecting context-relevant targets while suppressing unrelated objects. Once the combined belief exceeds a threshold, autonomy changes occur, enabling the robot to navigate to the desired area and retrieve the desired object, while adapting to any changes in the operator's intent. Future work will evaluate the system on Isaac Sim using a Franka Emika arm on a Ridgeback base, with a focus on real-time assistance.
comment: Accepted at Human-Centered Robot Autonomy for Human-Robot Teams (HuRoboT) at IEEE RO-MAN 2025, Eindhoven, the Netherlands
☆ Compressive Meta-Learning KDD '25
The rapid expansion in the size of new datasets has created a need for fast and efficient parameter-learning techniques. Compressive learning is a framework that enables efficient processing by using random, non-linear features to project large-scale databases onto compact, information-preserving representations whose dimensionality is independent of the number of samples and can be easily stored, transferred, and processed. These database-level summaries are then used to decode parameters of interest from the underlying data distribution without requiring access to the original samples, offering an efficient and privacy-friendly learning framework. However, both the encoding and decoding techniques are typically randomized and data-independent, failing to exploit the underlying structure of the data. In this work, we propose a framework that meta-learns both the encoding and decoding stages of compressive learning methods by using neural networks that provide faster and more accurate systems than the current state-of-the-art approaches. To demonstrate the potential of the presented Compressive Meta-Learning framework, we explore multiple applications -- including neural network-based compressive PCA, compressive ridge regression, compressive k-means, and autoencoders.
comment: Extended version of a paper accepted at KDD '25
☆ Learn to optimize for automatic proton PBS treatment planning for H&N cancers
Proton PBS treatment planning for H&N cancers involves numerous conflicting objectives, requiring significant effort from human planners to balance and satisfy multiple clinical goals during planning. To achieve this, experience-demanding objective parameter adjustment and computationally expensive inverse optimization are performed iteratively. Extensive efforts have been made to automatically adjust objective parameters, but the most time-consuming component, i.e., inverse optimization, still relies heavily on theory-driven approaches. We propose a data-driven inverse optimizer and integrate it into a PPO-based automatic treatment planning framework to automatically generate high-quality plans within a clinical acceptable planning time. The inverse optimizer is a L2O method that predicts update steps by learning from the task-specific data distribution. For the first time, we integrate techniques designed for long-context processing, originally developed for LLMs, into a Transformer-based L2O framework to address the scalability issue of existing L2O methods. The PPO framework functions as an outer-loop virtual planner, autonomously adjusting objective parameters through a policy network, and the dose predictor is used to initialize objective parameters. The inner-loop L2O inverse optimizer computes machine-deliverable MU values based on objectives refined by the PPO policy network. 97 patients are collected in this study, and compared with L-BFGSB, our L2O-based inverse optimizer improves the effectiveness and efficiency by 22.97% and 36.41%, respectively. In conjunction with the PPO-based learned virtual planner, plans generated by our framework within an average of 2.55 hours show improved or comparable OAR sparing with superior target coverage for patients with different prescription dose levels, number of target volumes, beam angles, etc., compared with human-generated plans.
comment: 27 pages, 4 figures
☆ LD-LAudio-V1: Video-to-Long-Form-Audio Generation Extension with Dual Lightweight Adapters ICCV
Generating high-quality and temporally synchronized audio from video content is essential for video editing and post-production tasks, enabling the creation of semantically aligned audio for silent videos. However, most existing approaches focus on short-form audio generation for video segments under 10 seconds or rely on noisy datasets for long-form video-to-audio zsynthesis. To address these limitations, we introduce LD-LAudio-V1, an extension of state-of-the-art video-to-audio models and it incorporates dual lightweight adapters to enable long-form audio generation. In addition, we release a clean and human-annotated video-to-audio dataset that contains pure sound effects without noise or artifacts. Our method significantly reduces splicing artifacts and temporal inconsistencies while maintaining computational efficiency. Compared to direct fine-tuning with short training videos, LD-LAudio-V1 achieves significant improvements across multiple metrics: $FD_{\text{passt}}$ 450.00 $\rightarrow$ 327.29 (+27.27%), $FD_{\text{panns}}$ 34.88 $\rightarrow$ 22.68 (+34.98%), $FD_{\text{vgg}}$ 3.75 $\rightarrow$ 1.28 (+65.87%), $KL_{\text{panns}}$ 2.49 $\rightarrow$ 2.07 (+16.87%), $KL_{\text{passt}}$ 1.78 $\rightarrow$ 1.53 (+14.04%), $IS_{\text{panns}}$ 4.17 $\rightarrow$ 4.30 (+3.12%), $IB_{\text{score}}$ 0.25 $\rightarrow$ 0.28 (+12.00%), $Energy\Delta10\text{ms}$ 0.3013 $\rightarrow$ 0.1349 (+55.23%), $Energy\Delta10\text{ms(vs.GT)}$ 0.0531 $\rightarrow$ 0.0288 (+45.76%), and $Sem.\,Rel.$ 2.73 $\rightarrow$ 3.28 (+20.15%). Our dataset aims to facilitate further research in long-form video-to-audio generation and is available at https://github.com/deepreasonings/long-form-video2audio.
comment: Gen4AVC@ICCV: 1st Workshop on Generative AI for Audio-Visual Content Creation
☆ From Individual to Multi-Agent Algorithmic Recourse: Minimizing the Welfare Gap via Capacitated Bipartite Matching
Decision makers are increasingly relying on machine learning in sensitive situations. In such settings, algorithmic recourse aims to provide individuals with actionable and minimally costly steps to reverse unfavorable AI-driven decisions. While existing research predominantly focuses on single-individual (i.e., seeker) and single-model (i.e., provider) scenarios, real-world applications often involve multiple interacting stakeholders. Optimizing outcomes for seekers under an individual welfare approach overlooks the inherently multi-agent nature of real-world systems, where individuals interact and compete for limited resources. To address this, we introduce a novel framework for multi-agent algorithmic recourse that accounts for multiple recourse seekers and recourse providers. We model this many-to-many interaction as a capacitated weighted bipartite matching problem, where matches are guided by both recourse cost and provider capacity. Edge weights, reflecting recourse costs, are optimized for social welfare while quantifying the welfare gap between individual welfare and this collectively feasible outcome. We propose a three-layer optimization framework: (1) basic capacitated matching, (2) optimal capacity redistribution to minimize the welfare gap, and (3) cost-aware optimization balancing welfare maximization with capacity adjustment costs. Experimental validation on synthetic and real-world datasets demonstrates that our framework enables the many-to-many algorithmic recourse to achieve near-optimal welfare with minimum modification in system settings. This work extends algorithmic recourse from individual recommendations to system-level design, providing a tractable path toward higher social welfare while maintaining individual actionability.
☆ AI That Helps Us Help Each Other: A Proactive System for Scaffolding Mentor-Novice Collaboration in Entrepreneurship Coaching SC
Entrepreneurship requires navigating open-ended, ill-defined problems: identifying risks, challenging assumptions, and making strategic decisions under deep uncertainty. Novice founders often struggle with these metacognitive demands, while mentors face limited time and visibility to provide tailored support. We present a human-AI coaching system that combines a domain-specific cognitive model of entrepreneurial risk with a large language model (LLM) to proactively scaffold both novice and mentor thinking. The system proactively poses diagnostic questions that challenge novices' thinking and helps both novices and mentors plan for more focused and emotionally attuned meetings. Critically, mentors can inspect and modify the underlying cognitive model, shaping the logic of the system to reflect their evolving needs. Through an exploratory field deployment, we found that using the system supported novice metacognition, helped mentors plan emotionally attuned strategies, and improved meeting depth, intentionality, and focus--while also surfaced key tensions around trust, misdiagnosis, and expectations of AI. We contribute design principles for proactive AI systems that scaffold metacognition and human-human collaboration in complex, ill-defined domains, offering implications for similar domains like healthcare, education, and knowledge work.
comment: To appear in CSCW 2025 Volume 9
☆ Learning with Confidence UAI 2025
We characterize a notion of confidence that arises in learning or updating beliefs: the amount of trust one has in incoming information and its impact on the belief state. This learner's confidence can be used alongside (and is easily mistaken for) probability or likelihood, but it is fundamentally a different concept -- one that captures many familiar concepts in the literature, including learning rates and number of training epochs, Shafer's weight of evidence, and Kalman gain. We formally axiomatize what it means to learn with confidence, give two canonical ways of measuring confidence on a continuum, and prove that confidence can always be represented in this way. Under additional assumptions, we derive more compact representations of confidence-based learning in terms of vector fields and loss functions. These representations induce an extended language of compound "parallel" observations. We characterize Bayes Rule as the special case of an optimizing learner whose loss representation is a linear expectation.
comment: Accepted for oral UAI 2025, plus some additional modifications for clarity
☆ Risk-Based Prognostics and Health Management
It is often the case that risk assessment and prognostics are viewed as related but separate tasks. This chapter describes a risk-based approach to prognostics that seeks to provide a tighter coupling between risk assessment and fault prediction. We show how this can be achieved using the continuous-time Bayesian network as the underlying modeling framework. Furthermore, we provide an overview of the techniques that are available to derive these models from data and show how they might be used in practice to achieve tasks like decision support and performance-based logistics. This work is intended to provide an overview of the recent developments related to risk-based prognostics, and we hope that it will serve as a tutorial of sorts that will assist others in adopting these techniques.
comment: Appears as Chapter 27 in Realizing Complex Integrated Systems, Anthony P. Ambler and John W. Sheppard (ads.), CRC Press, 2025
☆ Zono-Conformal Prediction: Zonotope-Based Uncertainty Quantification for Regression and Classification Tasks
Conformal prediction is a popular uncertainty quantification method that augments a base predictor with prediction sets with statistically valid coverage guarantees. However, current methods are often computationally expensive and data-intensive, as they require constructing an uncertainty model before calibration. Moreover, existing approaches typically represent the prediction sets with intervals, which limits their ability to capture dependencies in multi-dimensional outputs. We address these limitations by introducing zono-conformal prediction, a novel approach inspired by interval predictor models and reachset-conformant identification that constructs prediction zonotopes with assured coverage. By placing zonotopic uncertainty sets directly into the model of the base predictor, zono-conformal predictors can be identified via a single, data-efficient linear program. While we can apply zono-conformal prediction to arbitrary nonlinear base predictors, we focus on feed-forward neural networks in this work. Aside from regression tasks, we also construct optimal zono-conformal predictors in classification settings where the output of an uncertain predictor is a set of possible classes. We provide probabilistic coverage guarantees and present methods for detecting outliers in the identification data. In extensive numerical experiments, we show that zono-conformal predictors are less conservative than interval predictor models and standard conformal prediction methods, while achieving a similar coverage over the test data.
comment: Preprint. Under review
☆ Beyond the Rosetta Stone: Unification Forces in Generalization Dynamics
Large language models (LLMs) struggle with cross-lingual knowledge transfer: they hallucinate when asked in one language about facts expressed in a different language during training. This work introduces a controlled setting to study the causes and dynamics of this phenomenon by training small Transformer models from scratch on synthetic multilingual datasets. We identify a learning phase wherein a model develops either separate or unified representations of the same facts across languages, and show that unification is essential for cross-lingual transfer. We also show that the degree of unification depends on mutual information between facts and training data language, and on how easy it is to extract that language. Based on these insights, we develop methods to modulate the level of cross-lingual transfer by manipulating data distribution and tokenization, and we introduce metrics and visualizations to formally characterize their effects on unification. Our work shows how controlled settings can shed light on pre-training dynamics and suggests new directions for improving cross-lingual transfer in LLMs.
☆ CURE: Critical-Token-Guided Re-concatenation for Entropy-collapse Prevention
Recent advances in Reinforcement Learning with Verified Reward (RLVR) have driven the emergence of more sophisticated cognitive behaviors in large language models (LLMs), thereby enhancing their reasoning capabilities. However, in prior RLVR pipelines, the repeated use of static initial-state sampling drawn exactly from the dataset distribution during each sampling phase produced overly deterministic, low diversity model behavior, which manifested as rapid entropy collapse and hindered sustained performance gains during prolonged training. To address this issue, we introduce CURE (Critical-token-gUided Re concatenation for Entropy-collapse prevention), a two-stage framework that balances exploration and exploitation. Specifically, in the first stage, to deliberately steer the model toward novel yet coherent contexts, we re-generate at high-entropy critical tokens and jointly optimize the original and the branched trajectories. The further comparison with vanilla DAPO shows that the regeneration process achieves a better performance on math reasoning tasks while sustaining a high-level entropy degree for exploration. In the second stage, we continue training with static initial-state sampling by DAPO, intentionally placing the model in a familiar state to gradually strengthen exploitation. Extensive experiments on Qwen-2.5-Math-7B show that, compared to other RLVR methods, CURE achieves a 5% performance gain across six math benchmarks, establishing state-of-the-art performance in both entropy and accuracy. A series of experiments further validate the effectiveness of our approach. Code is available at https://github.com/CURE-Project/CURE.
☆ Deep Learning-Based Automated Segmentation of Uterine Myomas
Uterine fibroids (myomas) are the most common benign tumors of the female reproductive system, particularly among women of childbearing age. With a prevalence exceeding 70%, they pose a significant burden on female reproductive health. Clinical symptoms such as abnormal uterine bleeding, infertility, pelvic pain, and pressure-related discomfort play a crucial role in guiding treatment decisions, which are largely influenced by the size, number, and anatomical location of the fibroids. Magnetic Resonance Imaging (MRI) is a non-invasive and highly accurate imaging modality commonly used by clinicians for the diagnosis of uterine fibroids. Segmenting uterine fibroids requires a precise assessment of both the uterus and fibroids on MRI scans, including measurements of volume, shape, and spatial location. However, this process is labor intensive and time consuming and subjected to variability due to intra- and inter-expert differences at both pre- and post-treatment stages. As a result, there is a critical need for an accurate and automated segmentation method for uterine fibroids. In recent years, deep learning algorithms have shown re-markable improvements in medical image segmentation, outperforming traditional methods. These approaches offer the potential for fully automated segmentation. Several studies have explored the use of deep learning models to achieve automated segmentation of uterine fibroids. However, most of the previous work has been conducted using private datasets, which poses challenges for validation and comparison between studies. In this study, we leverage the publicly available Uterine Myoma MRI Dataset (UMD) to establish a baseline for automated segmentation of uterine fibroids, enabling standardized evaluation and facilitating future research in this domain.
☆ SproutBench: A Benchmark for Safe and Ethical Large Language Models for Youth
The rapid proliferation of large language models (LLMs) in applications targeting children and adolescents necessitates a fundamental reassessment of prevailing AI safety frameworks, which are largely tailored to adult users and neglect the distinct developmental vulnerabilities of minors. This paper highlights key deficiencies in existing LLM safety benchmarks, including their inadequate coverage of age-specific cognitive, emotional, and social risks spanning early childhood (ages 0--6), middle childhood (7--12), and adolescence (13--18). To bridge these gaps, we introduce SproutBench, an innovative evaluation suite comprising 1,283 developmentally grounded adversarial prompts designed to probe risks such as emotional dependency, privacy violations, and imitation of hazardous behaviors. Through rigorous empirical evaluation of 47 diverse LLMs, we uncover substantial safety vulnerabilities, corroborated by robust inter-dimensional correlations (e.g., between Safety and Risk Prevention) and a notable inverse relationship between Interactivity and Age Appropriateness. These insights yield practical guidelines for advancing child-centric AI design and deployment.
☆ Match & Choose: Model Selection Framework for Fine-tuning Text-to-Image Diffusion Models
Text-to-image (T2I) models based on diffusion and transformer architectures advance rapidly. They are often pretrained on large corpora, and openly shared on a model platform, such as HuggingFace. Users can then build up AI applications, e.g., generating media contents, by adopting pretrained T2I models and fine-tuning them on the target dataset. While public pretrained T2I models facilitate the democratization of the models, users face a new challenge: which model can be best fine-tuned based on the target data domain? Model selection is well addressed in classification tasks, but little is known in (pretrained) T2I models and their performance indication on the target domain. In this paper, we propose the first model selection framework, M&C, which enables users to efficiently choose a pretrained T2I model from a model platform without exhaustively fine-tuning them all on the target dataset. The core of M&C is a matching graph, which consists of: (i) nodes of available models and profiled datasets, and (ii) edges of model-data and data-data pairs capturing the fine-tuning performance and data similarity, respectively. We then build a model that, based on the inputs of model/data feature, and, critically, the graph embedding feature, extracted from the matching graph, predicts the model achieving the best quality after fine-tuning for the target domain. We evaluate M&C on choosing across ten T2I models for 32 datasets against three baselines. Our results show that M&C successfully predicts the best model for fine-tuning in 61.3% of the cases and a closely performing model for the rest.
☆ MCP-Guard: A Defense Framework for Model Context Protocol Integrity in Large Language Model Applications
The integration of Large Language Models (LLMs) with external tools via protocols such as the Model Context Protocol (MCP) introduces critical security vulnerabilities, including prompt injection, data exfiltration, and other threats. To counter these challenges, we propose MCP-Guard, a robust, layered defense architecture designed for LLM--tool interactions. MCP-Guard employs a three-stage detection pipeline that balances efficiency with accuracy: it progresses from lightweight static scanning for overt threats and a deep neural detector for semantic attacks, to our fine-tuned E5-based model achieves (96.01) accuracy in identifying adversarial prompts. Finally, a lightweight LLM arbitrator synthesizes these signals to deliver the final decision while minimizing false positives. To facilitate rigorous training and evaluation, we also introduce MCP-AttackBench, a comprehensive benchmark of over 70,000 samples. Sourced from public datasets and augmented by GPT-4, MCP-AttackBench simulates diverse, real-world attack vectors in the MCP format, providing a foundation for future research into securing LLM-tool ecosystems.
☆ Grounding Rule-Based Argumentation Using Datalog
ASPIC+ is one of the main general frameworks for rule-based argumentation for AI. Although first-order rules are commonly used in ASPIC+ examples, most existing approaches to reason over rule-based argumentation only support propositional rules. To enable reasoning over first-order instances, a preliminary grounding step is required. As groundings can lead to an exponential increase in the size of the input theories, intelligent procedures are needed. However, there is a lack of dedicated solutions for ASPIC+. Therefore, we propose an intelligent grounding procedure that keeps the size of the grounding manageable while preserving the correctness of the reasoning process. To this end, we translate the first-order ASPIC+ instance into a Datalog program and query a Datalog engine to obtain ground substitutions to perform the grounding of rules and contraries. Additionally, we propose simplifications specific to the ASPIC+ formalism to avoid grounding of rules that have no influence on the reasoning process. Finally, we performed an empirical evaluation of a prototypical implementation to show scalability.
☆ Not There Yet: Evaluating Vision Language Models in Simulating the Visual Perception of People with Low Vision
Advances in vision language models (VLMs) have enabled the simulation of general human behavior through their reasoning and problem solving capabilities. However, prior research has not investigated such simulation capabilities in the accessibility domain. In this paper, we evaluate the extent to which VLMs can simulate the vision perception of low vision individuals when interpreting images. We first compile a benchmark dataset through a survey study with 40 low vision participants, collecting their brief and detailed vision information and both open-ended and multiple-choice image perception and recognition responses to up to 25 images. Using these responses, we construct prompts for VLMs (GPT-4o) to create simulated agents of each participant, varying the included information on vision information and example image responses. We evaluate the agreement between VLM-generated responses and participants' original answers. Our results indicate that VLMs tend to infer beyond the specified vision ability when given minimal prompts, resulting in low agreement (0.59). The agreement between the agent' and participants' responses remains low when only either the vision information (0.59) or example image responses (0.59) are provided, whereas a combination of both significantly increase the agreement (0.70, p < 0.0001). Notably, a single example combining both open-ended and multiple-choice responses, offers significant performance improvements over either alone (p < 0.0001), while additional examples provided minimal benefits (p > 0.05).
☆ Rule2Text: A Framework for Generating and Evaluating Natural Language Explanations of Knowledge Graph Rules
Knowledge graphs (KGs) can be enhanced through rule mining; however, the resulting logical rules are often difficult for humans to interpret due to their inherent complexity and the idiosyncratic labeling conventions of individual KGs. This work presents Rule2Text, a comprehensive framework that leverages large language models (LLMs) to generate natural language explanations for mined logical rules, thereby improving KG accessibility and usability. We conduct extensive experiments using multiple datasets, including Freebase variants (FB-CVT-REV, FB+CVT-REV, and FB15k-237) as well as the ogbl-biokg dataset, with rules mined using AMIE 3.5.1. We systematically evaluate several LLMs across a comprehensive range of prompting strategies, including zero-shot, few-shot, variable type incorporation, and Chain-of-Thought reasoning. To systematically assess models' performance, we conduct a human evaluation of generated explanations on correctness and clarity. To address evaluation scalability, we develop and validate an LLM-as-a-judge framework that demonstrates strong agreement with human evaluators. Leveraging the best-performing model (Gemini 2.0 Flash), LLM judge, and human-in-the-loop feedback, we construct high-quality ground truth datasets, which we use to fine-tune the open-source Zephyr model. Our results demonstrate significant improvements in explanation quality after fine-tuning, with particularly strong gains in the domain-specific dataset. Additionally, we integrate a type inference module to support KGs lacking explicit type information. All code and data are publicly available at https://github.com/idirlab/KGRule2NL.
comment: arXiv admin note: text overlap with arXiv:2507.23740
☆ Retro-Expert: Collaborative Reasoning for Interpretable Retrosynthesis
Retrosynthesis prediction aims to infer the reactant molecule based on a given product molecule, which is a fundamental task in chemical synthesis. However, existing models rely on static pattern-matching paradigm, which limits their ability to perform effective logic decision-making, leading to black-box decision-making. Building on this, we propose Retro-Expert, an interpretable retrosynthesis framework that performs collaborative reasoning by combining the complementary reasoning strengths of Large Language Models and specialized models via reinforcement learning. It outputs natural language explanations grounded in chemical logic through three components: (1) specialized models perform shallow reasoning to construct high-quality chemical decision space, (2) LLM-driven critical reasoning to generate predictions and corresponding interpretable reasoning path, and (3) reinforcement learning optimizing interpretable decision policy. Experiments show that Retro-Expert not only surpasses both LLM-based and specialized models across different metrics but also provides expert-aligned explanations that bridge the gap between AI predictions and actionable chemical insights.
☆ ORBIT: An Object Property Reasoning Benchmark for Visual Inference Tasks
While vision-language models (VLMs) have made remarkable progress on many popular visual question answering (VQA) benchmarks, it remains unclear whether they abstract and reason over depicted objects. Inspired by human object categorisation, object property reasoning involves identifying and recognising low-level details and higher-level abstractions. While current VQA benchmarks consider a limited set of object property attributes like size, they typically blend perception and reasoning, and lack representativeness in terms of reasoning and image categories. To this end, we introduce a systematic evaluation framework with images of three representative types, three reasoning levels of increasing complexity, and four object property dimensions driven by prior work on commonsense reasoning. We develop a procedure to instantiate this benchmark into ORBIT, a multi-level reasoning VQA benchmark for object properties comprising 360 images paired with a total of 1,080 count-based questions. Experiments with 12 state-of-the-art VLMs in zero-shot settings reveal significant limitations compared to humans, with the best-performing model only reaching 40\% accuracy. VLMs struggle particularly with realistic (photographic) images, counterfactual reasoning about physical and functional properties, and higher counts. ORBIT points to the need to develop methods for scalable benchmarking, generalize annotation guidelines, and explore additional reasoning VLMs. We make the ORBIT benchmark and the experimental code available to support such endeavors.
☆ Towards Efficient Prompt-based Continual Learning in Distributed Medical AI
Modern AI models achieve state-of-the-art performance with large-scale, high-quality datasets; however, ethical, social, and institutional constraints in the medical domain severely restrict data sharing, rendering centralized learning nearly impossible. Each institution must incrementally update models using only local data. Traditional training overfits new samples and suffers from catastrophic forgetting, losing previously acquired knowledge. Medical data distributions also shift due to varying diagnostic equipment and demographics. Although continual learning (CL) has advanced, most methods address natural images, leaving medical-domain-specific CL underexplored. We propose a prompt-based continual learning (PCL) approach featuring a unified prompt pool with a minimal expansion strategy: by expanding and freezing a subset of prompts, our method reduces computational overhead, and a novel regularization term balances retention and adaptation. Experiments on three diabetic retinopathy datasets Aptos2019, LI2019, and Diabetic Retinopathy Detection show our model improves final classification accuracy by at least 10% and F1-score by 9 points over state-of-the-art approaches while lowering inference cost. We anticipate this study will drive sustainable medical AI advances, enabling real-time diagnosis, patient monitoring, and telemedicine applications in distributed healthcare. Code will be released upon acceptance
comment: 10p
♻ ☆ Mathematical Computation and Reasoning Errors by Large Language Models
Large Language Models (LLMs) are increasingly utilized in AI-driven educational instruction and assessment, particularly within mathematics education. The capability of LLMs to generate accurate answers and detailed solutions for math problem-solving tasks is foundational for ensuring reliable and precise feedback and assessment in math education practices. Our study focuses on evaluating the accuracy of four LLMs (OpenAI GPT-4o and o1, DeepSeek-V3 and DeepSeek-R1) solving three categories of math tasks, including arithmetic, algebra, and number theory, and identifies step-level reasoning errors within their solutions. Instead of relying on standard benchmarks, we intentionally build math tasks (via item models) that are challenging for LLMs and prone to errors. The accuracy of final answers and the presence of errors in individual solution steps were systematically analyzed and coded. Both single-agent and dual-agent configurations were tested. It is observed that the reasoning-enhanced OpenAI o1 model consistently achieved higher or nearly perfect accuracy across all three math task categories. Analysis of errors revealed that procedural slips were the most frequent and significantly impacted overall performance, while conceptual misunderstandings were less frequent. Deploying dual-agent configurations substantially improved overall performance. These findings offer actionable insights into enhancing LLM performance and underscore effective strategies for integrating LLMs into mathematics education, thereby advancing AI-driven instructional practices and assessment precision.
♻ ☆ Yan: Foundational Interactive Video Generation
We present Yan, a foundational framework for interactive video generation, covering the entire pipeline from simulation and generation to editing. Specifically, Yan comprises three core modules. AAA-level Simulation: We design a highly-compressed, low-latency 3D-VAE coupled with a KV-cache-based shift-window denoising inference process, achieving real-time 1080P/60FPS interactive simulation. Multi-Modal Generation: We introduce a hierarchical autoregressive caption method that injects game-specific knowledge into open-domain multi-modal video diffusion models (VDMs), then transforming the VDM into a frame-wise, action-controllable, real-time infinite interactive video generator. Notably, when the textual and visual prompts are sourced from different domains, the model demonstrates strong generalization, allowing it to blend and compose the style and mechanics across domains flexibly according to user prompts. Multi-Granularity Editing: We propose a hybrid model that explicitly disentangles interactive mechanics simulation from visual rendering, enabling multi-granularity video content editing during interaction through text. Collectively, Yan offers an integration of these modules, pushing interactive video generation beyond isolated capabilities toward a comprehensive AI-driven interactive creation paradigm, paving the way for the next generation of creative tools, media, and entertainment. The project page is: https://greatx3.github.io/Yan/.
GLM-4.1V-Thinking and GLM-4.5V: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
We present GLM-4.1V-Thinking and GLM-4.5V, a family of vision-language models (VLMs) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document interpretation. In a comprehensive evaluation across 42 public benchmarks, GLM-4.5V achieves state-of-the-art performance on nearly all tasks among open-source models of similar size, and demonstrates competitive or even superior results compared to closed-source models such as Gemini-2.5-Flash on challenging tasks including Coding and GUI Agents. Meanwhile, the smaller GLM-4.1V-9B-Thinking remains highly competitive-achieving superior results to the much larger Qwen2.5-VL-72B on 29 benchmarks. We open-source both GLM-4.1V-9B-Thinking and GLM-4.5V. Code, models and more information are released at https://github.com/zai-org/GLM-V.
♻ ☆ PRELUDE: A Benchmark Designed to Require Global Comprehension and Reasoning over Long Contexts
We introduce PRELUDE, a benchmark for evaluating long-context understanding through the task of determining whether a character's prequel story is consistent with the canonical narrative of the original book. Our task poses a stronger demand for global comprehension and deep reasoning than existing benchmarks -- as the prequels are not part of the original story, assessing their plausibility typically requires searching and integrating information that is only indirectly related. Empirically, 88% of instances require evidence from multiple parts of the narrative. Experimental results highlight the challenge of our task: in-context learning, RAG and in-domain training with state-of-the-art LLMs, and commercial DeepResearch services, lag behind humans by >15%. A further human study reveals that models often produce correct answers with flawed reasoning, leading to an over 30% gap in reasoning accuracy compared to humans. These findings underscore the substantial room for improvement in long-context understanding and reasoning.
comment: First 7 authors contributed equally. Project page: https://gorov.github.io/prelude
♻ ☆ Episodic Memory Verbalization using Hierarchical Representations of Life-Long Robot Experience
Verbalization of robot experience, i.e., summarization of and question answering about a robot's past, is a crucial ability for improving human-robot interaction. Previous works applied rule-based systems or fine-tuned deep models to verbalize short (several-minute-long) streams of episodic data, limiting generalization and transferability. In our work, we apply large pretrained models to tackle this task with zero or few examples, and specifically focus on verbalizing life-long experiences. For this, we derive a tree-like data structure from episodic memory (EM), with lower levels representing raw perception and proprioception data, and higher levels abstracting events to natural language concepts. Given such a hierarchical representation built from the experience stream, we apply a large language model as an agent to interactively search the EM given a user's query, dynamically expanding (initially collapsed) tree nodes to find the relevant information. The approach keeps computational costs low even when scaling to months of robot experience data. We evaluate our method on simulated household robot data, human egocentric videos, and real-world robot recordings, demonstrating its flexibility and scalability.
comment: Humanoids 2025. Code, data and demo videos at https://hierarchical-emv.github.io
♻ ☆ Preacher: Paper-to-Video Agentic System
The paper-to-video task converts a research paper into a structured video abstract, distilling key concepts, methods, and conclusions into an accessible, well-organized format. While state-of-the-art video generation models demonstrate potential, they are constrained by limited context windows, rigid video duration constraints, limited stylistic diversity, and an inability to represent domain-specific knowledge. To address these limitations, we introduce Preacher, the first paper-to-video agentic system. Preacher employs a topdown approach to decompose, summarize, and reformulate the paper, followed by bottom-up video generation, synthesizing diverse video segments into a coherent abstract. To align cross-modal representations, we define key scenes and introduce a Progressive Chain of Thought (P-CoT) for granular, iterative planning. Preacher successfully generates high-quality video abstracts across five research fields, demonstrating expertise beyond current video generation models. Code will be released at: https://github.com/GenVerse/Paper2Video
♻ ☆ CodeJudgeBench: Benchmarking LLM-as-a-Judge for Coding Tasks
Large Language Models (LLMs) have significantly advanced the state-of-the-art in various coding tasks. Beyond directly answering user queries, LLMs can also serve as judges, assessing and comparing the quality of responses generated by other models. Such an evaluation capability is crucial both for benchmarking different LLMs and for improving response quality through response ranking. However, despite the growing adoption of the LLM-as-a-Judge paradigm, its effectiveness in coding scenarios remains underexplored due to the absence of dedicated benchmarks. To address this gap, we introduce CodeJudgeBench, a benchmark explicitly designed to evaluate the performance of LLM-as-a-Judge models across three critical coding tasks: code generation, code repair, and unit test generation. Through comprehensive benchmarking of 26 LLM-as-a-Judge models, we find that recent thinking models significantly outperform non-thinking models on our carefully designed code judging tasks. Notably, even relatively small thinking models, such as Qwen3-8B, can outperform specially trained LLM-as-a-Judge models up to 70B in size. Nevertheless, all models still exhibit significant randomness in their judgment of coding tasks. For pairwise judging tasks, simply changing the order in which responses are presented can substantially impact accuracy. In addition, when judging code and unit tests written by different LLMs, LLM-as-a-Judge models also show variance in performance. This sensitivity raises concerns about the reliability and consistency of LLM-as-a-Judge in coding scenarios. Lastly, we study optimal prompting strategies for LLM-as-a-Judge. We find that using pair-wise comparison outperforms scalar point-wise judging. Furthermore, retaining comments and reasoning in the full, unprocessed LLM response leads to improved judge performance.
comment: Dataset is available at https://huggingface.co/datasets/mattymchen/codejudgebench
♻ ☆ BiasGym: Fantastic LLM Biases and How to Find (and Remove) Them
Understanding biases and stereotypes encoded in the weights of Large Language Models (LLMs) is crucial for developing effective mitigation strategies. Biased behaviour is often subtle and non-trivial to isolate, even when deliberately elicited, making systematic analysis and debiasing particularly challenging. To address this, we introduce BiasGym, a simple, cost-effective, and generalizable framework for reliably injecting, analyzing, and mitigating conceptual associations within LLMs. BiasGym consists of two components: BiasInject, which injects specific biases into the model via token-based fine-tuning while keeping the model frozen, and BiasScope, which leverages these injected signals to identify and steer the components responsible for biased behavior. Our method enables consistent bias elicitation for mechanistic analysis, supports targeted debiasing without degrading performance on downstream tasks, and generalizes to biases unseen during token-based fine-tuning. We demonstrate the effectiveness of BiasGym in reducing real-world stereotypes (e.g., people from Italy being `reckless drivers') and in probing fictional associations (e.g., people from a fictional country having `blue skin'), showing its utility for both safety interventions and interpretability research.
comment: Under review
♻ ☆ Interpretable Neural ODEs for Gene Regulatory Network Discovery under Perturbations
Modern high-throughput biological datasets with thousands of perturbations provide the opportunity for large-scale discovery of causal graphs that represent the regulatory interactions between genes. Differentiable causal graphical models have been proposed to infer a gene regulatory network (GRN) from large scale interventional datasets, capturing the causal gene regulatory relationships from genetic perturbations. However, existing models are limited in their expressivity and scalability while failing to address the dynamic nature of biological processes such as cellular differentiation. We propose PerturbODE, a novel framework that incorporates biologically informative neural ordinary differential equations (neural ODEs) to model cell state trajectories under perturbations and derive the causal GRN from the neural ODE's parameters. We demonstrate PerturbODE's efficacy in trajectory prediction and GRN inference across simulated and real over-expression datasets.
♻ ☆ OpenCUA: Open Foundations for Computer-Use Agents
Vision-language models have demonstrated impressive capabilities as computer-use agents (CUAs) capable of automating diverse computer tasks. As their commercial potential grows, critical details of the most capable CUA systems remain closed. As these agents will increasingly mediate digital interactions and execute consequential decisions on our behalf, the research community needs access to open CUA frameworks to study their capabilities, limitations, and risks. To bridge this gap, we propose OpenCUA, a comprehensive open-source framework for scaling CUA data and foundation models. Our framework consists of: (1) an annotation infrastructure that seamlessly captures human computer-use demonstrations; (2) AgentNet, the first large-scale computer-use task dataset spanning 3 operating systems and 200+ applications and websites; (3) a scalable pipeline that transforms demonstrations into state-action pairs with reflective long Chain-of-Thought reasoning that sustain robust performance gains as data scales. Our end-to-end agent models demonstrate strong performance across CUA benchmarks. In particular, OpenCUA-32B achieves an average success rate of 34.8% on OSWorld-Verified, establishing a new state-of-the-art (SOTA) among open-source models and surpassing OpenAI CUA (GPT-4o). Further analysis confirms that our approach generalizes well across domains and benefits significantly from increased test-time computation. We release our annotation tool, datasets, code, and models to build open foundations for further CUA research.
comment: Updata author list, modify first page format, correct typos
♻ ☆ Quantitative Comparison of Fine-Tuning Techniques for Pretrained Latent Diffusion Models in the Generation of Unseen SAR Images
We present a framework for adapting a large pretrained latent diffusion model to high-resolution Synthetic Aperture Radar (SAR) image generation. The approach enables controllable synthesis and the creation of rare or out-of-distribution scenes beyond the training set. Rather than training a task-specific small model from scratch, we adapt an open-source text-to-image foundation model to the SAR modality, using its semantic prior to align prompts with SAR imaging physics (side-looking geometry, slant-range projection, and coherent speckle with heavy-tailed statistics). Using a 100k-image SAR dataset, we compare full fine-tuning and parameter-efficient Low-Rank Adaptation (LoRA) across the UNet diffusion backbone, the Variational Autoencoder (VAE), and the text encoders. Evaluation combines (i) statistical distances to real SAR amplitude distributions, (ii) textural similarity via Gray-Level Co-occurrence Matrix (GLCM) descriptors, and (iii) semantic alignment using a SAR-specialized CLIP model. Our results show that a hybrid strategy-full UNet tuning with LoRA on the text encoders and a learned token embedding-best preserves SAR geometry and texture while maintaining prompt fidelity. The framework supports text-based control and multimodal conditioning (e.g., segmentation maps, TerraSAR-X, or optical guidance), opening new paths for large-scale SAR scene data augmentation and unseen scenario simulation in Earth observation.
♻ ☆ UniOcc: A Unified Benchmark for Occupancy Forecasting and Prediction in Autonomous Driving ICCV 2025
We introduce UniOcc, a comprehensive, unified benchmark and toolkit for occupancy forecasting (i.e., predicting future occupancies based on historical information) and occupancy prediction (i.e., predicting current-frame occupancy from camera images. UniOcc unifies the data from multiple real-world datasets (i.e., nuScenes, Waymo) and high-fidelity driving simulators (i.e., CARLA, OpenCOOD), providing 2D/3D occupancy labels and annotating innovative per-voxel flows. Unlike existing studies that rely on suboptimal pseudo labels for evaluation, UniOcc incorporates novel evaluation metrics that do not depend on ground-truth labels, enabling robust assessment on additional aspects of occupancy quality. Through extensive experiments on state-of-the-art models, we demonstrate that large-scale, diverse training data and explicit flow information significantly enhance occupancy prediction and forecasting performance. Our data and code are available at https://uniocc.github.io/.
comment: IEEE/CVF International Conference on Computer Vision (ICCV 2025); Project website: https://uniocc.github.io/
♻ ☆ FreeKV: Boosting KV Cache Retrieval for Efficient LLM Inference
Large language models (LLMs) have been widely deployed with rapidly expanding context windows to support increasingly demanding applications. However, long contexts pose significant deployment challenges, primarily due to the KV cache whose size grows proportionally with context length. While KV cache compression methods are proposed to address this issue, KV dropping methods incur considerable accuracy loss, and KV retrieval methods suffer from significant efficiency bottlenecks. We propose FreeKV, an algorithm-system co-optimization framework to enhance KV retrieval efficiency while preserving accuracy. On the algorithm side, FreeKV introduces speculative retrieval to shift the KV selection and recall processes out of the critical path, combined with fine-grained correction to ensure accuracy. On the system side, FreeKV employs hybrid KV layouts across CPU and GPU memory to eliminate fragmented data transfers, and leverages double-buffered streamed recall to further improve efficiency. Experiments demonstrate that FreeKV achieves near-lossless accuracy across various scenarios and models, delivering up to 13$\times$ speedup compared to SOTA KV retrieval methods.
♻ ☆ Hardness-Aware Dynamic Curriculum Learning for Robust Multimodal Emotion Recognition with Missing Modalities
Missing modalities have recently emerged as a critical research direction in multimodal emotion recognition (MER). Conventional approaches typically address this issue through missing modality reconstruction. However, these methods fail to account for variations in reconstruction difficulty across different samples, consequently limiting the model's ability to handle hard samples effectively. To overcome this limitation, we propose a novel Hardness-Aware Dynamic Curriculum Learning framework, termed HARDY-MER. Our framework operates in two key stages: first, it estimates the hardness level of each sample, and second, it strategically emphasizes hard samples during training to enhance model performance on these challenging instances. Specifically, we first introduce a Multi-view Hardness Evaluation mechanism that quantifies reconstruction difficulty by considering both Direct Hardness (modality reconstruction errors) and Indirect Hardness (cross-modal mutual information). Meanwhile, we introduce a Retrieval-based Dynamic Curriculum Learning strategy that dynamically adjusts the training curriculum by retrieving samples with similar semantic information and balancing the learning focus between easy and hard instances. Extensive experiments on benchmark datasets demonstrate that HARDY-MER consistently outperforms existing methods in missing-modality scenarios. Our code will be made publicly available at https://github.com/HARDY-MER/HARDY-MER.
♻ ☆ BitDecoding: Unlocking Tensor Cores for Long-Context LLMs with Low-Bit KV Cache
The rise of long-context Large Language Models (LLMs) amplifies memory and bandwidth demands during autoregressive decoding, as the Key-Value (KV) cache grows with each generated token. Low-bit KV-cache quantization (e.g., 4-bit or 2-bit) can reduce memory footprint while preserving accuracy, but existing systems suffer from slow decoding due to their exclusive reliance on CUDA cores, neglecting Tensor Cores (the primary source of compute on modern GPUs). We present BitDecoding, a new long-context LLM inference system with a low-bit KV cache. BitDecoding enables efficient low-bit KV-cache decoding by cooperatively leveraging CUDA cores and Tensor Cores. It introduces methods for automatically inducing optimized layouts to exploit Tensor Cores, along with warp-level parallelization strategies for dequantization. For unified system support, BitDecoding includes a query transformation module supporting diverse attention variants, a quantization kernel that supports both tensor-wise and channel-wise scaling used in various quantization algorithms with high performance, and a dequantization kernel with a software-defined pipeline to coordinate CUDA and Tensor Cores execution for mixed-precision operations. Evaluated on RTX 4090, A100, and H100, BitDecoding accelerates decoding by up to 7.5x, 4.8x, and 8.9x, respectively, over FP16 FlashDecoding-v2, and surpasses the state-of-the-art low-bit system QServe by up to 4.3x. On LLaMA-3.1-8B with a 128K context, BitDecoding reduces single-batch decoding latency by 3x, showing substantial improvements for long-context generation. The code is available at https://github.com/DD-DuDa/BitDecoding.
♻ ☆ IAD-R1: Reinforcing Consistent Reasoning in Industrial Anomaly Detection
Industrial anomaly detection is a critical component of modern manufacturing, yet the scarcity of defective samples restricts traditional detection methods to scenario-specific applications. Although Vision-Language Models (VLMs) demonstrate significant advantages in generalization capabilities, their performance in industrial anomaly detection remains limited. To address this challenge, we propose IAD-R1, a universal post-training framework applicable to VLMs of different architectures and parameter scales, which substantially enhances their anomaly detection capabilities. IAD-R1 employs a two-stage training strategy: the Perception Activation Supervised Fine-Tuning (PA-SFT) stage utilizes a meticulously constructed high-quality Chain-of-Thought dataset (Expert-AD) for training, enhancing anomaly perception capabilities and establishing reasoning-to-answer correlations; the Structured Control Group Relative Policy Optimization (SC-GRPO) stage employs carefully designed reward functions to achieve a capability leap from "Anomaly Perception" to "Anomaly Interpretation". Experimental results demonstrate that IAD-R1 achieves significant improvements across 7 VLMs, the largest improvement was on the DAGM dataset, with average accuracy 43.3% higher than the 0.5B baseline. Notably, the 0.5B parameter model trained with IAD-R1 surpasses commercial models including GPT-4.1 and Claude-Sonnet-4 in zero-shot settings, demonstrating the effectiveness and superiority of IAD-R1. The dataset, code, and all model weights will be publicly available at https://github.com/Yanhui-Lee/IAD-R1.
♻ ☆ Oranits: Mission Assignment and Task Offloading in Open RAN-based ITS using Metaheuristic and Deep Reinforcement Learning
In this paper, we explore mission assignment and task offloading in an Open Radio Access Network (Open RAN)-based intelligent transportation system (ITS), where autonomous vehicles leverage mobile edge computing for efficient processing. Existing studies often overlook the intricate interdependencies between missions and the costs associated with offloading tasks to edge servers, leading to suboptimal decision-making. To bridge this gap, we introduce Oranits, a novel system model that explicitly accounts for mission dependencies and offloading costs while optimizing performance through vehicle cooperation. To achieve this, we propose a twofold optimization approach. First, we develop a metaheuristic-based evolutionary computing algorithm, namely the Chaotic Gaussian-based Global ARO (CGG-ARO), serving as a baseline for one-slot optimization. Second, we design an enhanced reward-based deep reinforcement learning (DRL) framework, referred to as the Multi-agent Double Deep Q-Network (MA-DDQN), that integrates both multi-agent coordination and multi-action selection mechanisms, significantly reducing mission assignment time and improving adaptability over baseline methods. Extensive simulations reveal that CGG-ARO improves the number of completed missions and overall benefit by approximately 7.1% and 7.7%, respectively. Meanwhile, MA-DDQN achieves even greater improvements of 11.0% in terms of mission completions and 12.5% in terms of the overall benefit. These results highlight the effectiveness of Oranits in enabling faster, more adaptive, and more efficient task processing in dynamic ITS environments.
comment: 15 pages, 13 figures
♻ ☆ Advancing MAPF towards the Real World: A Scalable Multi-Agent Realistic Testbed (SMART)
We present Scalable Multi-Agent Realistic Testbed (SMART), a realistic and efficient software tool for evaluating Multi-Agent Path Finding (MAPF) algorithms. MAPF focuses on planning collision-free paths for a group of agents. While state-ofthe-art MAPF algorithms can plan paths for hundreds of robots in seconds, they often rely on simplified robot models, making their real-world performance unclear. Researchers typically lack access to hundreds of physical robots in laboratory settings to evaluate the algorithms. Meanwhile, industrial professionals who lack expertise in MAPF require an easy-to-use simulator to efficiently test and understand the performance of MAPF algorithms in their specific settings. SMART fills this gap with several advantages: (1) SMART uses physics-engine-based simulators to create realistic simulation environments, accounting for complex real-world factors such as robot kinodynamics and execution uncertainties, (2) SMART uses an execution monitor framework based on the Action Dependency Graph, facilitating seamless integration with various MAPF algorithms and robot models, and (3) SMART scales to thousands of robots. The code is publicly available at https://github.com/smart-mapf/smart.
♻ ☆ 15,500 Seconds: Lean UAV Classification Using EfficientNet and Lightweight Fine-Tuning
As unmanned aerial vehicles (UAVs) become increasingly prevalent in both consumer and defense applications, the need for reliable, modality-specific classification systems grows in urgency. This paper addresses the challenge of data scarcity in UAV audio classification by expanding on prior work through the integration of pre-trained deep learning models, parameter-efficient fine-tuning (PEFT) strategies, and targeted data augmentation techniques. Using a custom dataset of 3,100 UAV audio clips (15,500 seconds) spanning 31 distinct drone types, we evaluate the performance of transformer-based and convolutional neural network (CNN) architectures under various fine-tuning configurations. Experiments were conducted with five-fold cross-validation, assessing accuracy, training efficiency, and robustness. Results show that full fine-tuning of the EfficientNet-B0 model with three augmentations achieved the highest validation accuracy (95.95), outperforming both the custom CNN and transformer-based models like AST. These findings suggest that combining lightweight architectures with PEFT and well-chosen augmentations provides an effective strategy for UAV audio classification on limited datasets. Future work will extend this framework to multimodal UAV classification using visual and radar telemetry.
♻ ☆ A Random-Key Optimizer for Combinatorial Optimization
This paper introduces the Random-Key Optimizer (RKO), a versatile and efficient stochastic local search method tailored for combinatorial optimization problems. Using the random-key concept, RKO encodes solutions as vectors of random keys that are subsequently decoded into feasible solutions via problem-specific decoders. The RKO framework is able to combine a plethora of classic metaheuristics, each capable of operating independently or in parallel, with solution sharing facilitated through an elite solution pool. This modular approach allows for the adaptation of various metaheuristics, including simulated annealing, iterated local search, and greedy randomized adaptive search procedures, among others. The efficacy of the RKO framework, implemented in C++ and publicly available (Github public repository: github.com/RKO-solver), is demonstrated through its application to three NP-hard combinatorial optimization problems: the alpha-neighborhood p-median problem, the tree of hubs location problem, and the node-capacitated graph partitioning problem. The results highlight the framework's ability to produce high-quality solutions across diverse problem domains, underscoring its potential as a robust tool for combinatorial optimization.
comment: 54 pages, 16 figures, 8 tables
♻ ☆ Knowledge-based Consistency Testing of Large Language Models EMNLP 2024
In this work, we systematically expose and measure the inconsistency and knowledge gaps of Large Language Models (LLMs). Specifically, we propose an automated testing framework (called KonTest) which leverages a knowledge graph to construct test cases. KonTest probes and measures the inconsistencies in the LLM's knowledge of the world via a combination of semantically-equivalent queries and test oracles (metamorphic or ontological oracle). KonTest further mitigates knowledge gaps via a weighted LLM model ensemble. Using four state-of-the-art LLMs (Falcon, Gemini, GPT3.5, and Llama2), we show that KonTest generates 19.2% error inducing inputs (1917 errors from 9979 test inputs). It also reveals a 16.5% knowledge gap across all tested LLMs. A mitigation method informed by KonTest's test suite reduces LLM knowledge gap by 32.48%. Our ablation study further shows that GPT3.5 is not suitable for knowledge-based consistency testing because it is only 60%-68% effective in knowledge construction.
comment: 12 pages, 4 figures, 8 tables, Accepted at EMNLP 2024 Findings
♻ ☆ Personalized Feature Translation for Expression Recognition: An Efficient Source-Free Domain Adaptation Method
Facial expression recognition (FER) models are employed in many video-based affective computing applications, such as human-computer interaction and healthcare monitoring. However, deep FER models often struggle with subtle expressions and high inter-subject variability, limiting their performance in real-world applications. To improve their performance, source-free domain adaptation (SFDA) methods have been proposed to personalize a pretrained source model using only unlabeled target domain data, thereby avoiding data privacy, storage, and transmission constraints. This paper addresses a challenging scenario where source data is unavailable for adaptation, and only unlabeled target data consisting solely of neutral expressions is available. SFDA methods are not typically designed to adapt using target data from only a single class. Further, using models to generate facial images with non-neutral expressions can be unstable and computationally intensive. In this paper, personalized feature translation (PFT) is proposed for SFDA. Unlike current image translation methods for SFDA, our lightweight method operates in the latent space. We first pre-train the translator on the source domain data to transform the subject-specific style features from one source subject into another. Expression information is preserved by optimizing a combination of expression consistency and style-aware objectives. Then, the translator is adapted on neutral target data, without using source data or image synthesis. By translating in the latent space, PFT avoids the complexity and noise of face expression generation, producing discriminative embeddings optimized for classification. Using PFT eliminates the need for image synthesis, reduces computational overhead (using a lightweight translator), and only adapts part of the model, making the method efficient compared to image-based translation.
♻ ☆ Vision Transformers in Precision Agriculture: A Comprehensive Survey
Detecting plant diseases is a crucial aspect of modern agriculture, as it plays a key role in maintaining crop health and increasing overall yield. Traditional approaches, though still valuable, often rely on manual inspection or conventional machine learning techniques, both of which face limitations in scalability and accuracy. Recently, Vision Transformers (ViTs) have emerged as a promising alternative, offering advantages such as improved handling of long-range dependencies and better scalability for visual tasks. This review explores the application of ViTs in precision agriculture, covering a range of tasks. We begin by introducing the foundational architecture of ViTs and discussing their transition from Natural Language Processing (NLP) to Computer Vision. The discussion includes the concept of inductive bias in traditional models like Convolutional Neural Networks (CNNs), and how ViTs mitigate these biases. We provide a comprehensive review of recent literature, focusing on key methodologies, datasets, and performance metrics. This study also includes a comparative analysis of CNNs and ViTs, along with a review of hybrid models and performance enhancements. Technical challenges such as data requirements, computational demands, and model interpretability are addressed, along with potential solutions. Finally, we outline future research directions and technological advancements that could further support the integration of ViTs in real-world agricultural settings. Our goal with this study is to offer practitioners and researchers a deeper understanding of how ViTs are poised to transform smart and precision agriculture.
♻ ☆ WeChat-YATT: A Simple, Scalable and Balanced RLHF Trainer
Reinforcement Learning from Human Feedback (RLHF) has emerged as a prominent paradigm for training large language models and multimodal systems. Despite notable advances enabled by existing RLHF training frameworks, significant challenges remain in scaling to complex multimodal workflows and adapting to dynamic workloads. In particular, current systems often encounter limitations related to controller scalability when managing large models, as well as inefficiencies in orchestrating intricate RLHF pipelines, especially in scenarios that require dynamic sampling and resource allocation. In this paper, we introduce WeChat-YATT (Yet Another Transformer Trainer in WeChat), a simple, scalable, and balanced RLHF training framework specifically designed to address these challenges. WeChat-YATT features a parallel controller programming model that enables flexible and efficient orchestration of complex RLHF workflows, effectively mitigating the bottlenecks associated with centralized controller architectures and facilitating scalability in large-scale data scenarios. In addition, we propose a dynamic placement schema that adaptively partitions computational resources and schedules workloads, thereby significantly reducing hardware idle time and improving GPU utilization under variable training conditions. We evaluate WeChat-YATT across a range of experimental scenarios, demonstrating that it achieves substantial improvements in throughput compared to state-of-the-art RLHF training frameworks. Furthermore, WeChat-YATT has been successfully deployed to train models supporting WeChat product features for a large-scale user base, underscoring its effectiveness and robustness in real-world applications.We have open-source WeChat-YATT at https://www.github.com/tencent/WeChat-YATT.
comment: arXiv admin note: substantial text overlap with arXiv:2507.22789
♻ ☆ INSIGHT: Explainable Weakly-Supervised Medical Image Analysis
Due to their large sizes, volumetric scans and whole-slide pathology images (WSIs) are often processed by extracting embeddings from local regions and then an aggregator makes predictions from this set. However, current methods require post-hoc visualization techniques (e.g., Grad-CAM) and often fail to localize small yet clinically crucial details. To address these limitations, we introduce INSIGHT, a novel weakly-supervised aggregator that integrates heatmap generation as an inductive bias. Starting from pre-trained feature maps, INSIGHT employs a detection module with small convolutional kernels to capture fine details and a context module with a broader receptive field to suppress local false positives. The resulting internal heatmap highlights diagnostically relevant regions. On CT and WSI benchmarks, INSIGHT achieves state-of-the-art classification results and high weakly-labeled semantic segmentation performance. Project website and code are available at: https://zhangdylan83.github.io/ewsmia/
comment: Accepted at MLHC 2025 (Machine Learning for Healthcare)
♻ ☆ Goal-Oriented Time-Series Forecasting: Foundation Framework Design
Conventional time-series forecasting methods typically aim to minimize overall prediction error, without accounting for the varying importance of different forecast ranges in downstream applications. We propose a training methodology that enables forecasting models to adapt their focus to application-specific regions of interest at inference time, without retraining. The approach partitions the prediction space into fine-grained segments during training, which are dynamically reweighted and aggregated to emphasize the target range specified by the application. Unlike prior methods that predefine these ranges, our framework supports flexible, on-demand adjustments. Experiments on standard benchmarks and a newly collected wireless communication dataset demonstrate that our method not only improves forecast accuracy within regions of interest but also yields measurable gains in downstream task performance. These results highlight the potential for closer integration between predictive modeling and decision-making in real-world systems.
♻ ☆ Towards Embodied Agentic AI: Review and Classification of LLM- and VLM-Driven Robot Autonomy and Interaction
Foundation models, including large language models (LLMs) and vision-language models (VLMs), have recently enabled novel approaches to robot autonomy and human-robot interfaces. In parallel, vision-language-action models (VLAs) or large behavior models (LBMs) are increasing the dexterity and capabilities of robotic systems. This survey paper focuses on those works advancing towards agentic applications and architectures. This includes initial efforts exploring GPT-style interfaces to tooling, as well as more complex system where AI agents are coordinators, planners, perception actors, or generalist interfaces. Such agentic architectures allow robots to reason over natural language instructions, invoke APIs, plan task sequences, or assist in operations and diagnostics. In addition to peer-reviewed research, due to the fast-evolving nature of the field, we highlight and include community-driven projects, ROS packages, and industrial frameworks that show emerging trends. We propose a taxonomy for classifying model integration approaches and present a comparative analysis of the role that agents play in different solutions in today's literature.
♻ ☆ On Understanding of the Dynamics of Model Capacity in Continual Learning
The stability-plasticity dilemma, closely related to a neural network's (NN) capacity-its ability to represent tasks-is a fundamental challenge in continual learning (CL). Within this context, we introduce CL's effective model capacity (CLEMC) that characterizes the dynamic behavior of the stability-plasticity balance point. We develop a difference equation to model the evolution of the interplay between the NN, task data, and optimization procedure. We then leverage CLEMC to demonstrate that the effective capacity-and, by extension, the stability-plasticity balance point is inherently non-stationary. We show that regardless of the NN architecture or optimization method, a NN's ability to represent new tasks diminishes when incoming task distributions differ from previous ones. We conduct extensive experiments to support our theoretical findings, spanning a range of architectures-from small feedforward network and convolutional networks to medium-sized graph neural networks and transformer-based large language models with millions of parameters.
♻ ☆ CCL-LGS: Contrastive Codebook Learning for 3D Language Gaussian Splatting ICCV 2025
Recent advances in 3D reconstruction techniques and vision-language models have fueled significant progress in 3D semantic understanding, a capability critical to robotics, autonomous driving, and virtual/augmented reality. However, methods that rely on 2D priors are prone to a critical challenge: cross-view semantic inconsistencies induced by occlusion, image blur, and view-dependent variations. These inconsistencies, when propagated via projection supervision, deteriorate the quality of 3D Gaussian semantic fields and introduce artifacts in the rendered outputs. To mitigate this limitation, we propose CCL-LGS, a novel framework that enforces view-consistent semantic supervision by integrating multi-view semantic cues. Specifically, our approach first employs a zero-shot tracker to align a set of SAM-generated 2D masks and reliably identify their corresponding categories. Next, we utilize CLIP to extract robust semantic encodings across views. Finally, our Contrastive Codebook Learning (CCL) module distills discriminative semantic features by enforcing intra-class compactness and inter-class distinctiveness. In contrast to previous methods that directly apply CLIP to imperfect masks, our framework explicitly resolves semantic conflicts while preserving category discriminability. Extensive experiments demonstrate that CCL-LGS outperforms previous state-of-the-art methods. Our project page is available at https://epsilontl.github.io/CCL-LGS/.
comment: ICCV 2025
♻ ☆ Improved GUI Grounding via Iterative Narrowing
Graphical User Interface (GUI) grounding plays a crucial role in enhancing the capabilities of Vision-Language Model (VLM) agents. While general VLMs, such as GPT-4V, demonstrate strong performance across various tasks, their proficiency in GUI grounding remains suboptimal. Recent studies have focused on fine-tuning these models specifically for zero-shot GUI grounding, yielding significant improvements over baseline performance. We introduce a visual prompting framework that employs an iterative narrowing mechanism to further improve the performance of both general and fine-tuned models in GUI grounding. For evaluation, we tested our method on a comprehensive benchmark comprising various UI platforms and provided the code to reproduce our results.
comment: Code available at https://github.com/ant-8/GUI-Grounding-via-Iterative-Narrowing
♻ ☆ DiRW: Path-Aware Digraph Learning for Heterophily
Recently, graph neural network (GNN) has emerged as a powerful representation learning tool for graph-structured data. However, most approaches are tailored for undirected graphs, neglecting the abundant information in the edges of directed graphs (digraphs). In fact, digraphs are widely applied in the real world and confirmed to address heterophily challenges. Despite recent advancements, existing spatial- and spectral-based DiGNNs have limitations due to their complex learning mechanisms and reliance on high-quality topology, resulting in low efficiency and unstable performance. To address these issues, we propose Directed Random Walk (DiRW), a plug-and-play strategy for most spatial-based DiGNNs and also an innovative model which offers a new digraph learning paradigm. Specifically, it utilizes a direction-aware path sampler optimized from the perspectives of walk probability, length, and number in a weight-free manner by considering node profiles and topologies. Building upon this, DiRW incorporates a node-wise learnable path aggregator for generalized node representations. Extensive experiments on 9 datasets demonstrate that DiRW: (1) enhances most spatial-based methods as a plug-and-play strategy; (2) achieves SOTA performance as a new digraph learning paradigm. The source code and data are available at https://github.com/dhsiuu/DiRW.
♻ ☆ Delayed Feedback Modeling with Influence Functions
In online advertising under the cost-per-conversion (CPA) model, accurate conversion rate (CVR) prediction is crucial. A major challenge is delayed feedback, where conversions may occur long after user interactions, leading to incomplete recent data and biased model training. Existing solutions partially mitigate this issue but often rely on auxiliary models, making them computationally inefficient and less adaptive to user interest shifts. We propose IF-DFM, an \underline{I}nfluence \underline{F}unction-empowered for \underline{D}elayed \underline{F}eedback \underline{M}odeling which estimates the impact of newly arrived and delayed conversions on model parameters, enabling efficient updates without full retraining. By reformulating the inverse Hessian-vector product as an optimization problem, IF-DFM achieves a favorable trade-off between scalability and effectiveness. Experiments on benchmark datasets show that IF-DFM outperforms prior methods in both accuracy and adaptability.
♻ ☆ FAIRGAME: a Framework for AI Agents Bias Recognition using Game Theory
Letting AI agents interact in multi-agent applications adds a layer of complexity to the interpretability and prediction of AI outcomes, with profound implications for their trustworthy adoption in research and society. Game theory offers powerful models to capture and interpret strategic interaction among agents, but requires the support of reproducible, standardized and user-friendly IT frameworks to enable comparison and interpretation of results. To this end, we present FAIRGAME, a Framework for AI Agents Bias Recognition using Game Theory. We describe its implementation and usage, and we employ it to uncover biased outcomes in popular games among AI agents, depending on the employed Large Language Model (LLM) and used language, as well as on the personality trait or strategic knowledge of the agents. Overall, FAIRGAME allows users to reliably and easily simulate their desired games and scenarios and compare the results across simulation campaigns and with game-theoretic predictions, enabling the systematic discovery of biases, the anticipation of emerging behavior out of strategic interplays, and empowering further research into strategic decision-making using LLM agents.
♻ ☆ Information Science Principles of Machine Learning: A Causal Chain Meta-Framework Based on Formalized Information Mapping
[Objective] This study addresses key challenges in machine learning, namely the absence of a unified formal theoretical framework and the lack of foundational theories for model interpretability and ethical safety. [Methods] We first construct a formal information model, explicitly defining the ontological states and carrier mappings of typical machine learning stages using sets of well-formed formulas. By introducing learnable and processable predicates, as well as learning and processing functions, we analyze the causal chain logic and constraint laws governing machine learning processes. [Results] We establish the Machine Learning Theory Meta-Framework (MLT-MF), on which we further propose universal definitions for model interpretability and ethical safety. We prove and validate three key theorems: the relationship between model interpretability and information existence, ethical safety assurance, and the upper bound estimation of total variation distance (TVD). [Limitations] The current framework assumes ideal, noise-free information enabling mappings and focuses primarily on model learning and processing logic in static scenarios. It does not yet address information fusion and conflict resolution across ontological spaces in multimodal or multi-agent systems. [Conclusions] This work overcomes the limitations of fragmented research and provides a unified theoretical foundation for systematically addressing critical issues in contemporary machine learning.
♻ ☆ LaDi-WM: A Latent Diffusion-based World Model for Predictive Manipulation
Predictive manipulation has recently gained considerable attention in the Embodied AI community due to its potential to improve robot policy performance by leveraging predicted states. However, generating accurate future visual states of robot-object interactions from world models remains a well-known challenge, particularly in achieving high-quality pixel-level representations. To this end, we propose LaDi-WM, a world model that predicts the latent space of future states using diffusion modeling. Specifically, LaDi-WM leverages the well-established latent space aligned with pre-trained Visual Foundation Models (VFMs), which comprises both geometric features (DINO-based) and semantic features (CLIP-based). We find that predicting the evolution of the latent space is easier to learn and more generalizable than directly predicting pixel-level images. Building on LaDi-WM, we design a diffusion policy that iteratively refines output actions by incorporating forecasted states, thereby generating more consistent and accurate results. Extensive experiments on both synthetic and real-world benchmarks demonstrate that LaDi-WM significantly enhances policy performance by 27.9\% on the LIBERO-LONG benchmark and 20\% on the real-world scenario. Furthermore, our world model and policies achieve impressive generalizability in real-world experiments.
comment: CoRL 2025
♻ ☆ An Explainable Transformer-based Model for Phishing Email Detection: A Large Language Model Approach
Phishing email is a serious cyber threat that tries to deceive users by sending false emails with the intention of stealing confidential information or causing financial harm. Attackers, often posing as trustworthy entities, exploit technological advancements and sophistication to make detection and prevention of phishing more challenging. Despite extensive academic research, phishing detection remains an ongoing and formidable challenge in the cybersecurity landscape. Large Language Models (LLMs) and Masked Language Models (MLMs) possess immense potential to offer innovative solutions to address long-standing challenges. In this research paper, we present an optimized, fine-tuned transformer-based DistilBERT model designed for the detection of phishing emails. In the detection process, we work with a phishing email dataset and utilize the preprocessing techniques to clean and solve the imbalance class issues. Through our experiments, we found that our model effectively achieves high accuracy, demonstrating its capability to perform well. Finally, we demonstrate our fine-tuned model using Explainable-AI (XAI) techniques such as Local Interpretable Model-Agnostic Explanations (LIME) and Transformer Interpret to explain how our model makes predictions in the context of text classification for phishing emails.
♻ ☆ VectorFit : Adaptive Singular & Bias Vector Fine-Tuning of Pre-trained Foundation Models
Popular PEFT methods reduce trainable parameter count for fine-tuning by parameterizing new low-rank or sparse trainable weights in parallel to the frozen pre-trained weights $W$. However, these weights are trained from scratch, and there exists a performance gap between these methods and full fine-tuning, especially in low-budget settings. We introduce VectorFit, a new way of parameterization that efficiently utilizes the existing knowledge embedded in $W$ by adaptively training their singular vectors and biases. We show that utilizing the structural and transformational properties of $W$ in this way can lead to high-rank incremental weight matrices $\Delta W$, comparable to that of full fine-tuning. VectorFit delivers superior results with 9$\boldsymbol\times$ fewer trainable parameters than the leading PEFT methods. Through comprehensive experiments across 19 datasets covering a wide range of language and vision tasks such as natural language understanding and generation, question answering, image classification, and image generation, we demonstrate that VectorFit surpasses baselines in terms of performance as a function of parameter-efficiency.
comment: This paper has been accepted in the 28th European Conference on Artificial Intelligence (ECAI 2025)
♻ ☆ SIFThinker: Spatially-Aware Image Focus for Visual Reasoning
Current multimodal large language models (MLLMs) still face significant challenges in complex visual tasks (e.g., spatial understanding, fine-grained perception). Prior methods have tried to incorporate visual reasoning, however, they fail to leverage attention correction with spatial cues to iteratively refine their focus on prompt-relevant regions. In this paper, we introduce SIFThinker, a spatially-aware "think-with-images" framework that mimics human visual perception. Specifically, SIFThinker enables attention correcting and image region focusing by interleaving depth-enhanced bounding boxes and natural language. Our contributions are twofold: First, we introduce a reverse-expansion-forward-inference strategy that facilitates the generation of interleaved image-text chains of thought for process-level supervision, which in turn leads to the construction of the SIF-50K dataset. Besides, we propose GRPO-SIF, a reinforced training paradigm that integrates depth-informed visual grounding into a unified reasoning pipeline, teaching the model to dynamically correct and focus on prompt-relevant regions. Extensive experiments demonstrate that SIFThinker outperforms state-of-the-art methods in spatial understanding and fine-grained visual perception, while maintaining strong general capabilities, highlighting the effectiveness of our method. Code: https://github.com/zhangquanchen/SIFThinker.
comment: 15 pages, 13 figures
♻ ☆ Exploring the Application of Visual Question Answering (VQA) for Classroom Activity Monitoring
Classroom behavior monitoring is a critical aspect of educational research, with significant implications for student engagement and learning outcomes. Recent advancements in Visual Question Answering (VQA) models offer promising tools for automatically analyzing complex classroom interactions from video recordings. In this paper, we investigate the applicability of several state-of-the-art open-source VQA models, including LLaMA2, LLaMA3, QWEN3, and NVILA, in the context of classroom behavior analysis. To facilitate rigorous evaluation, we introduce our BAV-Classroom-VQA dataset derived from real-world classroom video recordings at the Banking Academy of Vietnam. We present the methodology for data collection, annotation, and benchmark the performance of the selected VQA models on this dataset. Our initial experimental results demonstrate that all four models achieve promising performance levels in answering behavior-related visual questions, showcasing their potential in future classroom analytics and intervention systems.
♻ ☆ Federated Cross-Training Learners for Robust Generalization under Data Heterogeneity
Federated learning benefits from cross-training strategies, which enables models to train on data from distinct sources to improve generalization capability. However, due to inherent differences in data distributions, the optimization goals of local models remain misaligned, and this mismatch continues to manifest as feature space heterogeneity even after cross-training. We argue that knowledge distillation from the personalized view preserves client-specific characteristics and expands the local knowledge base, while distillation from the global view provides consistent semantic anchors that facilitate feature alignment across clients. To achieve this goal, this paper presents a cross-training scheme, termed FedCT, includes three main modules, where the consistency-aware knowledge broadcasting module aims to optimize model assignment strategies, which enhances collaborative advantages between clients and achieves an efficient federated learning process. The multi-view knowledge-guided representation learning module leverages fused prototypical knowledge from both global and local views to enhance the preservation of local knowledge before and after model exchange, as well as to ensure consistency between local and global knowledge. The mixup-based feature augmentation module aggregates rich information to further increase the diversity of feature spaces, which enables the model to better discriminate complex samples. Extensive experiments were conducted on four datasets in terms of performance comparison, ablation study, in-depth analysis and case study. The results demonstrated that FedCT alleviates knowledge forgetting from both local and global views, which enables it outperform state-of-the-art methods.
♻ ☆ Boosting Cross-problem Generalization in Diffusion-Based Neural Combinatorial Solver via Inference Time Adaptation
Diffusion-based Neural Combinatorial Optimization (NCO) has demonstrated effectiveness in solving NP-complete (NPC) problems by learning discrete diffusion models for solution generation, eliminating hand-crafted domain knowledge. Despite their success, existing NCO methods face significant challenges in both cross-scale and cross-problem generalization, and high training costs compared to traditional solvers. While recent studies on diffusion models have introduced training-free guidance approaches that leverage pre-defined guidance functions for conditional generation, such methodologies have not been extensively explored in combinatorial optimization. To bridge this gap, we propose a training-free inference time adaptation framework (DIFU-Ada) that enables both the zero-shot cross-problem transfer and cross-scale generalization capabilities of diffusion-based NCO solvers without requiring additional training. We provide theoretical analysis that helps understanding the cross-problem transfer capability. Our experimental results demonstrate that a diffusion solver, trained exclusively on the Traveling Salesman Problem (TSP), can achieve competitive zero-shot transfer performance across different problem scales on TSP variants, such as Prize Collecting TSP (PCTSP) and the Orienteering Problem (OP), through inference time adaptation.
♻ ☆ ASPD: Unlocking Adaptive Serial-Parallel Decoding by Exploring Intrinsic Parallelism in LLMs
The increasing scale and complexity of large language models (LLMs) pose significant inference latency challenges, primarily due to their autoregressive decoding paradigm characterized by the sequential nature of next-token prediction. By re-examining the outputs of autoregressive models, we observed that some segments exhibit parallelizable structures, which we term intrinsic parallelism. Decoding each parallelizable branch simultaneously (i.e. parallel decoding) can significantly improve the overall inference speed of LLMs. In this paper, we propose an Adaptive Serial-Parallel Decoding (ASPD), which addresses two core challenges: automated construction of parallelizable data and efficient parallel decoding mechanism. More specifically, we introduce a non-invasive pipeline that automatically extracts and validates parallelizable structures from the responses of autoregressive models. To empower efficient adaptive serial-parallel decoding, we implement a Hybrid Decoding Engine which enables seamless transitions between serial and parallel decoding modes while maintaining a reusable KV cache, maximizing computational efficiency. Extensive evaluations across General Tasks, Retrieval-Augmented Generation, Mathematical Reasoning, demonstrate that ASPD achieves unprecedented performance in both effectiveness and efficiency. Notably, on Vicuna Bench, our method achieves up to 3.19x speedup (1.85x on average) while maintaining response quality within 1% difference compared to autoregressive models, realizing significant acceleration without compromising generation quality. Our framework sets a groundbreaking benchmark for efficient LLM parallel inference, paving the way for its deployment in latency-sensitive applications such as AI-powered customer service bots and answer retrieval engines.
comment: 20 pages, 9 figures
♻ ☆ A Lightweight Transformer with Phase-Only Cross-Attention for Illumination-Invariant Biometric Authentication
Traditional biometric systems have encountered significant setbacks due to various unavoidable factors, for example, wearing of face masks in face recognition-based biometrics and hygiene concerns in fingerprint-based biometrics. This paper proposes a novel lightweight vision transformer with phase-only cross-attention (POC-ViT) using dual biometric traits of forehead and periocular portions of the face, capable of performing well even with face masks and without any physical touch, offering a promising alternative to traditional methods. The POC-ViT framework is designed to handle two biometric traits and to capture inter-dependencies in terms of relative structural patterns. Each channel consists of a Cross-Attention using phase-only correlation (POC) that captures both their individual and correlated structural patterns. The computation of cross-attention using POC extracts the phase correlation in the spatial features. Therefore, it is robust against variations in resolution and intensity, as well as illumination changes in the input images. The lightweight model is suitable for edge device deployment. The performance of the proposed framework was successfully demonstrated using the Forehead Subcutaneous Vein Pattern and Periocular Biometric Pattern (FSVP-PBP) database, having 350 subjects. The POC-ViT framework outperformed state-of-the-art methods with an outstanding classification accuracy of $98.8\%$ with the dual biometric traits.
comment: Submitted to IEEE
♻ ☆ DeepWriter: A Fact-Grounded Multimodal Writing Assistant Based On Offline Knowledge Base
Large Language Models (LLMs) have demonstrated remarkable capabilities in various applications. However, their use as writing assistants in specialized domains like finance, medicine, and law is often hampered by a lack of deep domain-specific knowledge and a tendency to hallucinate. Existing solutions, such as Retrieval-Augmented Generation (RAG), can suffer from inconsistency across multiple retrieval steps, while online search-based methods often degrade quality due to unreliable web content. To address these challenges, we introduce DeepWriter, a customizable, multimodal, long-form writing assistant that operates on a curated, offline knowledge base. DeepWriter leverages a novel pipeline that involves task decomposition, outline generation, multimodal retrieval, and section-by-section composition with reflection. By deeply mining information from a structured corpus and incorporating both textual and visual elements, DeepWriter generates coherent, factually grounded, and professional-grade documents. We also propose a hierarchical knowledge representation to enhance retrieval efficiency and accuracy. Our experiments on financial report generation demonstrate that DeepWriter produces high-quality, verifiable articles that surpasses existing baselines in factual accuracy and generated content quality.
comment: work in process
♻ ☆ LAPO: Internalizing Reasoning Efficiency via Length-Adaptive Policy Optimization
Large reasoning models have achieved remarkable performance through extended chain-of-thought sequences, yet this computational freedom leads to excessive token generation even for simple problems. We present Length-Adaptive Policy Optimization (LAPO), a novel framework that transforms reasoning length control from an external constraint into an intrinsic model capability. Unlike existing approaches that impose rigid limits or rely on post-hoc interventions, LAPO enables models to internalize an understanding of appropriate reasoning depth through a two-stage reinforcement learning process. In the first stage, models learn natural reasoning patterns by discovering the statistical distribution of successful solution lengths. The second stage leverages these patterns as meta-cognitive guidance, embedding them directly within the model's reasoning context to ensure inference-time flexibility. Experiments on mathematical reasoning benchmarks demonstrate that LAPO reduces token usage by up to 40.9% while improving accuracy by 2.3%. Our analysis reveals that models trained with LAPO develop emergent abilities to allocate computational resources based on problem complexity, achieving efficient reasoning without sacrificing quality.
comment: GitHub:https://github.com/zju-real/lapoProject:https://zju-real.github.io/lapo
♻ ☆ Discrepancy-Aware Graph Mask Auto-Encoder KDD2025
Masked Graph Auto-Encoder, a powerful graph self-supervised training paradigm, has recently shown superior performance in graph representation learning. Existing works typically rely on node contextual information to recover the masked information. However, they fail to generalize well to heterophilic graphs where connected nodes may be not similar, because they focus only on capturing the neighborhood information and ignoring the discrepancy information between different nodes, resulting in indistinguishable node representations. In this paper, to address this issue, we propose a Discrepancy-Aware Graph Mask Auto-Encoder (DGMAE). It obtains more distinguishable node representations by reconstructing the discrepancy information of neighboring nodes during the masking process. We conduct extensive experiments on 17 widely-used benchmark datasets. The results show that our DGMAE can effectively preserve the discrepancies of nodes in low-dimensional space. Moreover, DGMAE significantly outperforms state-of-the-art graph self-supervised learning methods on three graph analytic including tasks node classification, node clustering, and graph classification, demonstrating its remarkable superiority. The code of DGMAE is available at https://github.com/zhengziyu77/DGMAE.
comment: Accepted by KDD2025
♻ ☆ A Neurosymbolic Framework for Interpretable Cognitive Attack Detection in Augmented Reality
Augmented Reality (AR) enriches perception by overlaying virtual elements on the physical world. Due to its growing popularity, cognitive attacks that alter AR content to manipulate users' semantic perception have received increasing attention. Existing detection methods often focus on visual changes, which are restricted to pixel- or image-level processing and lack semantic reasoning capabilities, or they rely on pre-trained vision-language models (VLMs), which function as black-box approaches with limited interpretability. In this paper, we present CADAR, a novel neurosymbolic approach for cognitive attack detection in AR. It fuses multimodal vision-language inputs using neural VLMs to obtain a symbolic perception-graph representation, incorporating prior knowledge, salience weighting, and temporal correlations. The model then enables particle-filter based statistical reasoning -- a sequential Monte Carlo method -- to detect cognitive attacks. Thus, CADAR inherits the adaptability of pre-trained VLM and the interpretability and reasoning rigor of particle filtering. Experiments on an extended AR cognitive attack dataset show accuracy improvements of up to 10.7% over strong baselines on challenging AR attack scenarios, underscoring the promise of neurosymbolic methods for effective and interpretable cognitive attack detection.
♻ ☆ MSC: A Marine Wildlife Video Dataset with Grounded Segmentation and Clip-Level Captioning
Marine videos present significant challenges for video understanding due to the dynamics of marine objects and the surrounding environment, camera motion, and the complexity of underwater scenes. Existing video captioning datasets, typically focused on generic or human-centric domains, often fail to generalize to the complexities of the marine environment and gain insights about marine life. To address these limitations, we propose a two-stage marine object-oriented video captioning pipeline. We introduce a comprehensive video understanding benchmark that leverages the triplets of video, text, and segmentation masks to facilitate visual grounding and captioning, leading to improved marine video understanding and analysis, and marine video generation. Additionally, we highlight the effectiveness of video splitting in order to detect salient object transitions in scene changes, which significantly enrich the semantics of captioning content. Our dataset and code have been released at https://msc.hkustvgd.com.
comment: Published at ACMMM2025 (Dataset track)
♻ ☆ Visual SLAMMOT Considering Multiple Motion Models
Simultaneous Localization and Mapping (SLAM) and Multi-Object Tracking (MOT) are pivotal tasks in the realm of autonomous driving, attracting considerable research attention. While SLAM endeavors to generate real-time maps and determine the vehicle's pose in unfamiliar settings, MOT focuses on the real-time identification and tracking of multiple dynamic objects. Despite their importance, the prevalent approach treats SLAM and MOT as independent modules within an autonomous vehicle system, leading to inherent limitations. Classical SLAM methodologies often rely on a static environment assumption, suitable for indoor rather than dynamic outdoor scenarios. Conversely, conventional MOT techniques typically rely on the vehicle's known state, constraining the accuracy of object state estimations based on this prior. To address these challenges, previous efforts introduced the unified SLAMMOT paradigm, yet primarily focused on simplistic motion patterns. In our team's previous work IMM-SLAMMOT\cite{IMM-SLAMMOT}, we present a novel methodology incorporating consideration of multiple motion models into SLAMMOT i.e. tightly coupled SLAM and MOT, demonstrating its efficacy in LiDAR-based systems. This paper studies feasibility and advantages of instantiating this methodology as visual SLAMMOT, bridging the gap between LiDAR and vision-based sensing mechanisms. Specifically, we propose a solution of visual SLAMMOT considering multiple motion models and validate the inherent advantages of IMM-SLAMMOT in the visual domain.
♻ ☆ EvaDrive: Evolutionary Adversarial Policy Optimization for End-to-End Autonomous Driving
Autonomous driving faces significant challenges in achieving human-like iterative decision-making, which continuously generates, evaluates, and refines trajectory proposals. Current generation-evaluation frameworks isolate trajectory generation from quality assessment, preventing iterative refinement essential for planning, while reinforcement learning methods collapse multi-dimensional preferences into scalar rewards, obscuring critical trade-offs and yielding scalarization bias.To overcome these issues, we present EvaDrive, a novel multi-objective reinforcement learning framework that establishes genuine closed-loop co-evolution between trajectory generation and evaluation via adversarial optimization. EvaDrive frames trajectory planning as a multi-round adversarial game. In this game, a hierarchical generator continuously proposes candidate paths by combining autoregressive intent modeling for temporal causality with diffusion-based refinement for spatial flexibility. These proposals are then rigorously assessed by a trainable multi-objective critic that explicitly preserves diverse preference structures without collapsing them into a single scalarization bias.This adversarial interplay, guided by a Pareto frontier selection mechanism, enables iterative multi-round refinement, effectively escaping local optima while preserving trajectory diversity.Extensive experiments on NAVSIM and Bench2Drive benchmarks demonstrate SOTA performance, achieving 94.9 PDMS on NAVSIM v1 (surpassing DiffusionDrive by 6.8, DriveSuprim by 5.0, and TrajHF by 0.9) and 64.96 Driving Score on Bench2Drive. EvaDrive generates diverse driving styles via dynamic weighting without external preference data, introducing a closed-loop adversarial framework for human-like iterative decision-making, offering a novel scalarization-free trajectory optimization approach.
♻ ☆ Rollout Roulette: A Probabilistic Inference Approach to Inference-Time Scaling of LLMs using Particle-Based Monte Carlo Methods
Large language models (LLMs) have achieved significant performance gains via scaling up model sizes and/or data. However, recent evidence suggests diminishing returns from such approaches, motivating scaling the computation spent at inference time. Existing inference-time scaling methods, usually with reward models, cast the task as a search problem, which tends to be vulnerable to reward hacking as a consequence of approximation errors in reward models. In this paper, we instead cast inference-time scaling as a probabilistic inference task and leverage sampling-based techniques to explore the typical set of the state distribution of a state-space model with an approximate likelihood, rather than optimize for its mode directly. We propose a novel inference-time scaling approach by adapting particle-based Monte Carlo methods to this task. Our empirical evaluation demonstrates that our methods have a 4-16x better scaling rate over our deterministic search counterparts on various challenging mathematical reasoning tasks. Using our approach, we show that Qwen2.5-Math-1.5B-Instruct can surpass GPT-4o accuracy in only 4 rollouts, while Qwen2.5-Math-7B-Instruct scales to o1 level accuracy in only 32 rollouts. Our work not only presents an effective method to inference-time scaling, but also connects the rich literature in probabilistic inference with inference-time scaling of LLMs to develop more robust algorithms in future work. Code, videos, and further information available at https://probabilistic-inference-scaling.github.io.
♻ ☆ Decentralized Weather Forecasting via Distributed Machine Learning and Blockchain-Based Model Validation
Weather forecasting plays a vital role in disaster preparedness, agriculture, and resource management, yet current centralized forecasting systems are increasingly strained by security vulnerabilities, limited scalability, and susceptibility to single points of failure. To address these challenges, we propose a decentralized weather forecasting framework that integrates Federated Learning (FL) with blockchain technology. FL enables collaborative model training without exposing sensitive local data; this approach enhances privacy and reduces data transfer overhead. Meanwhile, the Ethereum blockchain ensures transparent and dependable verification of model updates. To further enhance the system's security, we introduce a reputation-based voting mechanism that assesses the trustworthiness of submitted models while utilizing the Interplanetary File System (IPFS) for efficient off-chain storage. Experimental results demonstrate that our approach not only improves forecasting accuracy but also enhances system resilience and scalability, making it a viable candidate for deployment in real-world, security-critical environments.
♻ ☆ Measuring Diversity in Synthetic Datasets ICML 2025
Large language models (LLMs) are widely adopted to generate synthetic datasets for various natural language processing (NLP) tasks, such as text classification and summarization. However, accurately measuring the diversity of these synthetic datasets-an aspect crucial for robust model performance-remains a significant challenge. In this paper, we introduce DCScore, a novel method for measuring synthetic dataset diversity from a classification perspective. Specifically, DCScore formulates diversity evaluation as a sample classification task, leveraging mutual relationships among samples. We further provide theoretical verification of the diversity-related axioms satisfied by DCScore, highlighting its role as a principled diversity evaluation method. Experimental results on synthetic datasets reveal that DCScore enjoys a stronger correlation with multiple diversity pseudo-truths of evaluated datasets, underscoring its effectiveness. Moreover, both empirical and theoretical evidence demonstrate that DCScore substantially reduces computational costs compared to existing methods. Code is available at: https://github.com/bluewhalelab/dcscore.
comment: Accepted by ICML 2025
♻ ☆ LED-Merging: Mitigating Safety-Utility Conflicts in Model Merging with Location-Election-Disjoint ACL2025
Fine-tuning pre-trained Large Language Models (LLMs) for specialized tasks incurs substantial computational and data costs. While model merging offers a training-free solution to integrate multiple task-specific models, existing methods suffer from safety-utility conflicts where enhanced general capabilities degrade safety safeguards. We identify two root causes: $\textbf{neuron misidentification}$ due to simplistic parameter magnitude-based selection, and $\textbf{cross-task neuron interference}$ during merging. To address these challenges, we propose $\textbf{LED-Merging}$, a three-stage framework that $\textbf{L}$ocates task-specific neurons via gradient-based attribution, dynamically $\textbf{E}$lects critical neurons through multi-model importance fusion, and $\textbf{D}$isjoints conflicting updates through parameter isolation. Extensive experiments on Llama-3-8B, Mistral-7B, and Llama2-13B demonstrate that LED-Merging effectively reduces harmful response rates, showing a 31.4\% decrease on Llama-3-8B-Instruct on HarmBench, while simultaneously preserving 95\% of utility performance, such as achieving 52.39\% accuracy on GSM8K. LED-Merging resolves safety-utility conflicts and provides a lightweight, training-free paradigm for constructing reliable multi-task LLMs. Code is available at $\href{https://github.com/MqLeet/LED-Merging}{GitHub}$.
comment: Accepted by ACL2025 main conference
♻ ☆ Compass-Thinker-7B Technical Report
Recent R1-Zero-like research further demonstrates that reasoning extension has given large language models (LLMs) unprecedented reasoning capabilities, and Reinforcement Learning is the core technology to elicit its complex reasoning. However, conducting RL experiments directly on hyperscale models involves high computational costs and resource demands, posing significant risks. We propose the Compass-Thinker-7B model, which aims to explore the potential of Reinforcement Learning with less computational resources and costs, and provides insights for further research into RL recipes for larger models. Compass-Thinker-7B is trained from an open source model through a specially designed Reinforcement Learning Pipeline. We curate a dataset of 30k verifiable mathematics problems for the Reinforcement Learning Pipeline. By configuring data and training settings with different difficulty distributions for different stages, the potential of the model is gradually released and the training efficiency is improved. Extensive evaluations show that Compass-Thinker-7B possesses exceptional reasoning potential, and achieves superior performance on mathematics compared to the same-sized RL model. Especially in the challenging AIME2024 evaluation, Compass-Thinker-7B achieves 40% accuracy.
♻ ☆ Grouped Sequency-arranged Rotation: Optimizing Rotation Transformation for Quantization for Free
Large Language Models (LLMs) face deployment challenges due to high computational costs, and while Post-Training Quantization (PTQ) offers a solution, existing rotation-based methods struggle at very low bit-widths like 2-bit. We introduce a novel, training-free approach to construct an improved rotation matrix, addressing the limitations of current methods. The key contributions include leveraging the Walsh-Hadamard transform with sequency ordering, which clusters similar frequency components to reduce quantization error compared to standard Hadamard matrices, significantly improving performance. Furthermore, we propose a Grouped Sequency-arranged Rotation (GSR) using block-diagonal matrices with smaller Walsh blocks, effectively isolating outlier impacts and achieving performance comparable to optimization-based methods without requiring any training. Our method demonstrates robust performance on reasoning tasks and Perplexity (PPL) score on WikiText-2. Our method also enhances results even when applied over existing learned rotation techniques.
comment: 7 pages
♻ ☆ Position: The Current AI Conference Model is Unsustainable! Diagnosing the Crisis of Centralized AI Conference
Artificial Intelligence (AI) conferences are essential for advancing research, sharing knowledge, and fostering academic community. However, their rapid expansion has rendered the centralized conference model increasingly unsustainable. This paper offers a data-driven diagnosis of a structural crisis that threatens the foundational goals of scientific dissemination, equity, and community well-being. We identify four key areas of strain: (1) scientifically, with per-author publication rates more than doubling over the past decade to over 4.5 papers annually; (2) environmentally, with the carbon footprint of a single conference exceeding the daily emissions of its host city; (3) psychologically, with 71% of online community discourse reflecting negative sentiment and 35% referencing mental health concerns; and (4) logistically, with attendance at top conferences such as NeurIPS 2024 beginning to outpace venue capacity. These pressures point to a system that is misaligned with its core mission. In response, we propose the Community-Federated Conference (CFC) model, which separates peer review, presentation, and networking into globally coordinated but locally organized components, offering a more sustainable, inclusive, and resilient path forward for AI research.
comment: Preprint
♻ ☆ Improved Personalized Headline Generation via Denoising Fake Interests from Implicit Feedback CIKM '25
Accurate personalized headline generation hinges on precisely capturing user interests from historical behaviors. However, existing methods neglect personalized-irrelevant click noise in entire historical clickstreams, which may lead to hallucinated headlines that deviate from genuine user preferences. In this paper, we reveal the detrimental impact of click noise on personalized generation quality through rigorous analysis in both user and news dimensions. Based on these insights, we propose a novel Personalized Headline Generation framework via Denoising Fake Interests from Implicit Feedback (PHG-DIF). PHG-DIF first employs dual-stage filtering to effectively remove clickstream noise, identified by short dwell times and abnormal click bursts, and then leverages multi-level temporal fusion to dynamically model users' evolving and multi-faceted interests for precise profiling. Moreover, we release DT-PENS, a new benchmark dataset comprising the click behavior of 1,000 carefully curated users and nearly 10,000 annotated personalized headlines with historical dwell time annotations. Extensive experiments demonstrate that PHG-DIF substantially mitigates the adverse effects of click noise and significantly improves headline quality, achieving state-of-the-art (SOTA) results on DT-PENS. Our framework implementation and dataset are available at https://github.com/liukejin-up/PHG-DIF.
comment: Accepted by the 34th ACM International Conference on Information and Knowledge Management (CIKM '25), Full Research Papers track
♻ ☆ Leveraging Large Language Models for Relevance Judgments in Legal Case Retrieval
Determining which legal cases are relevant to a given query involves navigating lengthy texts and applying nuanced legal reasoning. Traditionally, this task has demanded significant time and domain expertise to identify key Legal Facts and reach sound juridical conclusions. In addition, existing data with legal case similarities often lack interpretability, making it difficult to understand the rationale behind relevance judgments. With the growing capabilities of large language models (LLMs), researchers have begun investigating their potential in this domain. Nonetheless, the method of employing a general large language model for reliable relevance judgments in legal case retrieval remains largely unexplored. To address this gap in research, we propose a novel few-shot approach where LLMs assist in generating expert-aligned interpretable relevance judgments. The proposed approach decomposes the judgment process into several stages, mimicking the workflow of human annotators and allowing for the flexible incorporation of expert reasoning to improve the accuracy of relevance judgments. Importantly, it also ensures interpretable data labeling, providing transparency and clarity in the relevance assessment process. Through a comparison of relevance judgments made by LLMs and human experts, we empirically demonstrate that the proposed approach can yield reliable and valid relevance assessments. Furthermore, we demonstrate that with minimal expert supervision, our approach enables a large language model to acquire case analysis expertise and subsequently transfers this ability to a smaller model via annotation-based knowledge distillation.
♻ ☆ PromptTSS: A Prompting-Based Approach for Interactive Multi-Granularity Time Series Segmentation CIKM 2025
Multivariate time series data, collected across various fields such as manufacturing and wearable technology, exhibit states at multiple levels of granularity, from coarse-grained system behaviors to fine-grained, detailed events. Effectively segmenting and integrating states across these different granularities is crucial for tasks like predictive maintenance and performance optimization. However, existing time series segmentation methods face two key challenges: (1) the inability to handle multiple levels of granularity within a unified model, and (2) limited adaptability to new, evolving patterns in dynamic environments. To address these challenges, we propose PromptTSS, a novel framework for time series segmentation with multi-granularity states. PromptTSS uses a unified model with a prompting mechanism that leverages label and boundary information to guide segmentation, capturing both coarse- and fine-grained patterns while adapting dynamically to unseen patterns. Experiments show PromptTSS improves accuracy by 24.49% in multi-granularity segmentation, 17.88% in single-granularity segmentation, and up to 599.24% in transfer learning, demonstrating its adaptability to hierarchical states and evolving time series dynamics. Our code is available at https://github.com/blacksnail789521/PromptTSS.
comment: Accepted at the 34th ACM International Conference on Information and Knowledge Management (CIKM 2025)
♻ ☆ Is Quantum Optimization Ready? An Effort Towards Neural Network Compression using Adiabatic Quantum Computing
Quantum optimization is the most mature quantum computing technology to date, providing a promising approach towards efficiently solving complex combinatorial problems. Methods such as adiabatic quantum computing (AQC) have been employed in recent years on important optimization problems across various domains. In deep learning, deep neural networks (DNN) have reached immense sizes to support new predictive capabilities. Optimization of large-scale models is critical for sustainable deployment, but becomes increasingly challenging with ever-growing model sizes and complexity. While quantum optimization is suitable for solving complex problems, its application to DNN optimization is not straightforward, requiring thorough reformulation for compatibility with commercially available quantum devices. In this work, we explore the potential of adopting AQC for fine-grained pruning-quantization of convolutional neural networks. We rework established heuristics to formulate model compression as a quadratic unconstrained binary optimization (QUBO) problem, and assess the solution space offered by commercial quantum annealing devices. Through our exploratory efforts of reformulation, we demonstrate that AQC can achieve effective compression of practical DNN models. Experiments demonstrate that adiabatic quantum computing (AQC) not only outperforms classical algorithms like genetic algorithms and reinforcement learning in terms of time efficiency but also excels at identifying global optima.
♻ ☆ Prompt Attacks Reveal Superficial Knowledge Removal in Unlearning Methods
In this work, we demonstrate that certain machine unlearning methods may fail under straightforward prompt attacks. We systematically evaluate eight unlearning techniques across three model families using output-based, logit-based, and probe analysis to assess the extent to which supposedly unlearned knowledge can be retrieved. While methods like RMU and TAR exhibit robust unlearning, ELM remains vulnerable to specific prompt attacks (e.g., prepending Hindi filler text to the original prompt recovers 57.3% accuracy). Our logit analysis further indicates that unlearned models are unlikely to hide knowledge through changes in answer formatting, given the strong correlation between output and logit accuracy. These findings challenge prevailing assumptions about unlearning effectiveness and highlight the need for evaluation frameworks that can reliably distinguish between genuine knowledge removal and superficial output suppression. To facilitate further research, we publicly release our evaluation framework to easily evaluate prompting techniques to retrieve unlearned knowledge.
comment: 19 pages, 6 figures. Accepted at COLM 2025 SoLaR Workshop
♻ ☆ Echoes of Automation: The Increasing Use of LLMs in Newsmaking
The rapid rise of Generative AI (GenAI), particularly LLMs, poses concerns for journalistic integrity and authorship. This study examines AI-generated content across over 40,000 news articles from major, local, and college news media, in various media formats. Using three advanced AI-text detectors (e.g., Binoculars, Fast-Detect GPT, and GPTZero), we find substantial increase of GenAI use in recent years, especially in local and college news. Sentence-level analysis reveals LLMs are often used in the introduction of news, while conclusions usually written manually. Linguistic analysis shows GenAI boosts word richness and readability but lowers formality, leading to more uniform writing styles, particularly in local media.
comment: To appear in the SBP-BRiMS 2025
♻ ☆ Rhythmic sharing: A bio-inspired paradigm for zero-shot adaptive learning in neural networks
The brain rapidly adapts to new contexts and learns from limited data, a coveted characteristic that artificial intelligence (AI) algorithms struggle to mimic. Inspired by the mechanical oscillatory rhythms of neural cells, we developed a learning paradigm utilizing link strength oscillations, where learning is associated with the coordination of these oscillations. Link oscillations can rapidly change coordination, allowing the network to sense and adapt to subtle contextual changes without supervision. The network becomes a generalist AI architecture, capable of predicting dynamics of multiple contexts including unseen ones. These results make our paradigm a powerful starting point for novel models of cognition. Because our paradigm is agnostic to specifics of the neural network, our study opens doors for introducing rapid adaptive learning into leading AI models.
comment: 12 pages, 3 figures. V2: General formatting and reference addendum. V3: Typo on p.11: h -> h^2 for RMSE. V5: Typo in caption for fig 2: caption for 2c should have been for 2b, and v.v
♻ ☆ Data Pruning by Information Maximization
In this paper, we present InfoMax, a novel data pruning method, also known as coreset selection, designed to maximize the information content of selected samples while minimizing redundancy. By doing so, InfoMax enhances the overall informativeness of the coreset. The information of individual samples is measured by importance scores, which capture their influence or difficulty in model learning. To quantify redundancy, we use pairwise sample similarities, based on the premise that similar samples contribute similarly to the learning process. We formalize the coreset selection problem as a discrete quadratic programming (DQP) task, with the objective of maximizing the total information content, represented as the sum of individual sample contributions minus the redundancies introduced by similar samples within the coreset. To ensure practical scalability, we introduce an efficient gradient-based solver, complemented by sparsification techniques applied to the similarity matrix and dataset partitioning strategies. This enables InfoMax to seamlessly scale to datasets with millions of samples. Extensive experiments demonstrate the superior performance of InfoMax in various data pruning tasks, including image classification, vision-language pre-training, and instruction tuning for large language models. Code is available at https://github.com/hrtan/InfoMax.
comment: Code is available at \url{https://github.com/hrtan/InfoMax}
♻ ☆ Semantic Structure-Aware Generative Attacks for Enhanced Adversarial Transferability
Generative adversarial attacks train a perturbation generator on a white-box surrogate model and subsequently apply the crafted perturbations to unseen black-box victim models. In contrast to iterative attacks, these methods deliver superior inference-time efficiency, scalability, and transferability; however, up until now, existing studies have not fully exploited the representational capacity of generative models to preserve and harness semantic information. Specifically, the intermediate activations of the generator encode rich semantic features--object boundaries and coarse shapes--that remain under-exploited, thereby limiting the alignment of perturbations with object-salient regions which are critical for adversarial transferability. To remedy this, we introduce a semantic structure-aware attack framework based on the Mean Teacher, which serves as a temporally smoothed feature reference. With this smoothed reference, we further direct semantic consistency between the early-layer activations in the student and those of the semantically rich teacher by feature distillation. By anchoring perturbation synthesis to the semantically salient early intermediate blocks within the generator based on empirical findings, our method guides progressive adversarial perturbation on regions that substantially enhance adversarial transferability. We conduct extensive experiments over diverse models, domains and tasks to demonstrate consistent improvements relative to state-of-the-art generative attacks, comprehensively evaluated using conventional metrics and our newly proposed Accidental Correction Rate (ACR).
comment: Preprint
♻ ☆ Warehouse Spatial Question Answering with LLM Agent
Spatial understanding has been a challenging task for existing Multi-modal Large Language Models~(MLLMs). Previous methods leverage large-scale MLLM finetuning to enhance MLLM's spatial understanding ability. In this paper, we present a data-efficient approach. We propose a LLM agent system with strong and advanced spatial reasoning ability, which can be used to solve the challenging spatial question answering task in complex indoor warehouse scenarios. Our system integrates multiple tools that allow the LLM agent to conduct spatial reasoning and API tools interaction to answer the given complicated spatial question. Extensive evaluations on the 2025 AI City Challenge Physical AI Spatial Intelligence Warehouse dataset demonstrate that our system achieves high accuracy and efficiency in tasks such as object retrieval, counting, and distance estimation. The code is available at: https://github.com/hsiangwei0903/SpatialAgent
comment: 1st Place Solution of the 9th AI City Challenge Track 3
♻ ☆ ToolACE-R: Model-aware Iterative Training and Adaptive Refinement for Tool Learning
Tool learning, which allows Large Language Models (LLMs) to leverage external tools for solving complex user tasks, has emerged as a promising avenue for extending model capabilities. However, existing approaches primarily focus on data synthesis for fine-tuning LLMs to invoke tools effectively, largely ignoring how to fully stimulate the potential of the model. In this paper, we propose ToolACE-R, a novel framework that includes both model-aware iterative training and adaptive refinement for tool learning. ToolACE-R features a model-aware iterative training procedure that progressively adjust training samples based on the model's evolving capabilities to maximize its potential. Additionally, it incorporates self-refinement training corpus which emphasizes LLM's ability to iteratively refine their tool calls, optimizing performance without requiring external feedback. Furthermore, we introduce adaptive self-refinement mechanism for efficient test-time scaling, where the trained model can autonomously determine when to stop the process based on iterative self-refinement. We conduct extensive experiments across several benchmark datasets, showing that ToolACE-R achieves competitive performance compared to advanced API-based models. The performance of tool invocation can be further improved efficiently through adaptive self-refinement. These results highlight the effectiveness and generalizability of ToolACE-R, offering a promising direction for more efficient and scalable tool learning.
♻ ☆ Diversifying Policy Behaviors with Extrinsic Behavioral Curiosity
Imitation learning (IL) has shown promise in various applications (e.g. robot locomotion) but is often limited to learning a single expert policy, constraining behavior diversity and robustness in unpredictable real-world scenarios. To address this, we introduce Quality Diversity Inverse Reinforcement Learning (QD-IRL), a novel framework that integrates quality-diversity optimization with IRL methods, enabling agents to learn diverse behaviors from limited demonstrations. This work introduces Extrinsic Behavioral Curiosity (EBC), which allows agents to receive additional curiosity rewards from an external critic based on how novel the behaviors are with respect to a large behavioral archive. To validate the effectiveness of EBC in exploring diverse locomotion behaviors, we evaluate our method on multiple robot locomotion tasks. EBC improves the performance of QD-IRL instances with GAIL, VAIL, and DiffAIL across all included environments by up to 185%, 42%, and 150%, even surpassing expert performance by 20% in Humanoid. Furthermore, we demonstrate that EBC is applicable to Gradient-Arborescence-based Quality Diversity Reinforcement Learning (QD-RL) algorithms, where it substantially improves performance and provides a generic technique for learning behavioral-diverse policies. The source code of this work is provided at https://github.com/vanzll/EBC.
comment: 20 pages, conference paper
♻ ☆ Hallucination vs interpretation: rethinking accuracy and precision in AI-assisted data extraction for knowledge synthesis
Knowledge syntheses (literature reviews) are essential to health professions education (HPE), consolidating findings to advance theory and practice. However, they are labor-intensive, especially during data extraction. Artificial Intelligence (AI)-assisted extraction promises efficiency but raises concerns about accuracy, making it critical to distinguish AI 'hallucinations' (fabricated content) from legitimate interpretive differences. We developed an extraction platform using large language models (LLMs) to automate data extraction and compared AI to human responses across 187 publications and 17 extraction questions from a published scoping review. AI-human, human-human, and AI-AI consistencies were measured using interrater reliability (categorical) and thematic similarity ratings (open-ended). Errors were identified by comparing extracted responses to source publications. AI was highly consistent with humans for concrete, explicitly stated questions (e.g., title, aims) and lower for questions requiring subjective interpretation or absent in text (e.g., Kirkpatrick's outcomes, study rationale). Human-human consistency was not higher than AI-human and showed the same question-dependent variability. Discordant AI-human responses (769/3179 = 24.2%) were mostly due to interpretive differences (18.3%); AI inaccuracies were rare (1.51%), while humans were nearly three times more likely to state inaccuracies (4.37%). Findings suggest AI variability depends more on interpretability than hallucination. Repeating AI extraction can identify interpretive complexity or ambiguity, refining processes before human review. AI can be a transparent, trustworthy partner in knowledge synthesis, though caution is needed to preserve critical human insights.
♻ ☆ Multi-objective Optimization in CPU Design Space Exploration: Attention is All You Need
Design Space Exploration (DSE) is essential to modern CPU design, yet current frameworks struggle to scale and generalize in high-dimensional architectural spaces. As the dimensionality of design spaces continues to grow, existing DSE frameworks face three fundamental challenges: (1) reduced accuracy and poor scalability of surrogate models in large design spaces; (2) inefficient acquisition guided by hand-crafted heuristics or exhaustive search; (3) limited interpretability, making it hard to pinpoint architectural bottlenecks. In this work, we present \textbf{AttentionDSE}, the first end-to-end DSE framework that \emph{natively integrates} performance prediction and design guidance through an attention-based neural architecture. Unlike traditional DSE workflows that separate surrogate modeling from acquisition and rely heavily on hand-crafted heuristics, AttentionDSE establishes a unified, learning-driven optimization loop, in which attention weights serve a dual role: enabling accurate performance estimation and simultaneously exposing the performance bottleneck. This paradigm shift elevates attention from a passive representation mechanism to an active, interpretable driver of design decision-making. Key innovations include: (1) a \textbf{Perception-Driven Attention} mechanism that exploits architectural hierarchy and locality, scaling attention complexity from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)$ via sliding windows; (2) an \textbf{Attention-aware Bottleneck Analysis} that automatically surfaces critical parameters for targeted optimization, eliminating the need for domain-specific heuristics. Evaluated on high-dimensional CPU design space using the SPEC CPU2017 benchmark suite, AttentionDSE achieves up to \textbf{3.9\% higher Pareto Hypervolume} and over \textbf{80\% reduction in exploration time} compared to state-of-the-art baselines.
♻ ☆ Communication Cost Reduction for Subgraph Counting under Local Differential Privacy via Hash Functions
We suggest the use of hash functions to cut down the communication costs when counting subgraphs under edge local differential privacy. While various algorithms exist for computing graph statistics, including the count of subgraphs, under the edge local differential privacy, many suffer with high communication costs, making them less efficient for large graphs. Though data compression is a typical approach in differential privacy, its application in local differential privacy requires a form of compression that every node can reproduce. In our study, we introduce linear congruence hashing. With a sampling rate of $s$, our method can cut communication costs by a factor of $s^2$, albeit at the cost of increasing variance in the published graph statistic by a factor of $s$. The experimental results indicate that, when matched for communication costs, our method achieves a reduction in the $\ell_2$-error for triangle counts by up to 1000 times compared to the performance of leading algorithms.
♻ ☆ CLoQ: Enhancing Fine-Tuning of Quantized LLMs via Calibrated LoRA Initialization
Fine-tuning large language models (LLMs) using low-rank adaptation (LoRA) has become a highly efficient approach for downstream tasks, particularly in scenarios with limited computational resources. However, applying LoRA techniques to quantized LLMs poses unique challenges due to the reduced representational precision of quantized weights. In this paper, we introduce CLoQ (Calibrated LoRA initialization for Quantized LLMs), a simplistic initialization strategy designed to overcome these challenges. Our approach focuses on minimizing the layer-wise discrepancy between the original LLM and its quantized counterpart with LoRA components during initialization. By leveraging a small calibration dataset, CLoQ quantizes a pre-trained LLM and determines the optimal LoRA components for each layer, ensuring a strong foundation for subsequent fine-tuning. A key contribution of this work is a novel theoretical result that enables the accurate and closed-form construction of these optimal LoRA components. We validate the efficacy of CLoQ across multiple tasks such as language generation, arithmetic reasoning, and commonsense reasoning, demonstrating that it consistently outperforms existing LoRA fine-tuning methods for quantized LLMs, especially at ultra low-bit widths.
♻ ☆ LLM-Driven Adaptive 6G-Ready Wireless Body Area Networks: Survey and Framework
Wireless Body Area Networks (WBANs) enable continuous monitoring of physiological signals for applications ranging from chronic disease management to emergency response. Recent advances in 6G communications, post-quantum cryptography, and energy harvesting have the potential to enhance WBAN performance. However, integrating these technologies into a unified, adaptive system remains a challenge. This paper surveys some of the most well-known Wireless Body Area Network (WBAN) architectures, routing strategies, and security mechanisms, identifying key gaps in adaptability, energy efficiency, and quantum-resistant security. We propose a novel Large Language Model-driven adaptive WBAN framework in which a Large Language Model acts as a cognitive control plane, coordinating routing, physical layer selection, micro-energy harvesting, and post-quantum security in real time. Our review highlights the limitations of current heuristic-based designs and outlines a research agenda for resource-constrained, 6G-ready medical systems. This approach aims to enable ultra-reliable, secure, and self-optimizing WBANs for next-generation mobile health applications.
comment: 7 pages
♻ ☆ Biased AI improves human decision-making but reduces trust
Current AI systems minimize risk by enforcing ideological neutrality, yet this may introduce automation bias by suppressing cognitive engagement in human decision-making. We conducted randomized trials with 2,500 participants to test whether culturally biased AI enhances human decision-making. Participants interacted with politically diverse GPT-4o variants on information evaluation tasks. Partisan AI assistants enhanced human performance, increased engagement, and reduced evaluative bias compared to non-biased counterparts, with amplified benefits when participants encountered opposing views. These gains carried a trust penalty: participants underappreciated biased AI and overcredited neutral systems. Exposing participants to two AIs whose biases flanked human perspectives closed the perception-performance gap. These findings complicate conventional wisdom about AI neutrality, suggesting that strategic integration of diverse cultural biases may foster improved and resilient human decision-making.
♻ ☆ Explainable Sentiment Analysis with DeepSeek-R1: Performance, Efficiency, and Few-Shot Learning
Large language models (LLMs) have transformed sentiment analysis, yet balancing accuracy, efficiency, and explainability remains a critical challenge. This study presents the first comprehensive evaluation of DeepSeek-R1--an open-source reasoning model--against OpenAI's GPT-4o and GPT-4o-mini. We test the full 671B model and its distilled variants, systematically documenting few-shot learning curves. Our experiments show DeepSeek-R1 achieves a 91.39\% F1 score on 5-class sentiment and 99.31\% accuracy on binary tasks with just 5 shots, an eightfold improvement in few-shot efficiency over GPT-4o. Architecture-specific distillation effects emerge, where a 32B Qwen2.5-based model outperforms the 70B Llama-based variant by 6.69 percentage points. While its reasoning process reduces throughput, DeepSeek-R1 offers superior explainability via transparent, step-by-step traces, establishing it as a powerful, interpretable open-source alternative.
comment: 10 pages, 2 figures, 6 tables, revised and re-submitted to an IEEE journal
♻ ☆ EXAONE Path 2.0: Pathology Foundation Model with End-to-End Supervision
In digital pathology, whole-slide images (WSIs) are often difficult to handle due to their gigapixel scale, so most approaches train patch encoders via self-supervised learning (SSL) and then aggregate the patch-level embeddings via multiple instance learning (MIL) or slide encoders for downstream tasks. However, patch-level SSL may overlook complex domain-specific features that are essential for biomarker prediction, such as mutation status and molecular characteristics, as SSL methods rely only on basic augmentations selected for natural image domains on small patch-level area. Moreover, SSL methods remain less data efficient than fully supervised approaches, requiring extensive computational resources and datasets to achieve competitive performance. To address these limitations, we present EXAONE Path 2.0, a pathology foundation model that learns patch-level representations under direct slide-level supervision. Using only 37k WSIs for training, EXAONE Path 2.0 achieves state-of-the-art average performance across 10 biomarker prediction tasks, demonstrating remarkable data efficiency.
comment: EXAONE Path 2.0 technical report
♻ ☆ Shuffle-R1: Efficient RL framework for Multimodal Large Language Models via Data-centric Dynamic Shuffle
Reinforcement learning (RL) has emerged as an effective post-training paradigm for enhancing the reasoning capabilities of multimodal large language model (MLLM). However, current RL pipelines often suffer from training inefficiencies caused by two underexplored issues: Advantage Collapsing, where most advantages in a batch concentrate near zero, and Rollout Silencing, where the proportion of rollouts contributing non-zero gradients diminishes over time. These issues lead to suboptimal gradient updates and hinder long-term learning efficiency. To address these issues, we propose Shuffle-R1, a simple yet principled framework that improves RL fine-tuning efficiency by dynamically restructuring trajectory sampling and batch composition. It introduces (1) Pairwise Trajectory Sampling, which selects high-contrast trajectories with large advantages to improve gradient signal quality, and (2) Advantage-based Trajectory Shuffle, which increases exposure of valuable rollouts through informed batch reshuffling. Experiments across multiple reasoning benchmarks show that our framework consistently outperforms strong RL baselines with minimal overhead. These results highlight the importance of data-centric adaptations for more efficient RL training in MLLM.
comment: Project page at: https://xenozlh.github.io/Shuffle-R1/
♻ ☆ M3-Net: A Cost-Effective Graph-Free MLP-Based Model for Traffic Prediction
Achieving accurate traffic prediction is a fundamental but crucial task in the development of current intelligent transportation systems.Most of the mainstream methods that have made breakthroughs in traffic prediction rely on spatio-temporal graph neural networks, spatio-temporal attention mechanisms, etc. The main challenges of the existing deep learning approaches are that they either depend on a complete traffic network structure or require intricate model designs to capture complex spatio-temporal dependencies. These limitations pose significant challenges for the efficient deployment and operation of deep learning models on large-scale datasets. To address these challenges, we propose a cost-effective graph-free Multilayer Perceptron (MLP) based model M3-Net for traffic prediction. Our proposed model not only employs time series and spatio-temporal embeddings for efficient feature processing but also first introduces a novel MLP-Mixer architecture with a mixture of experts (MoE) mechanism. Extensive experiments conducted on multiple real datasets demonstrate the superiority of the proposed model in terms of prediction performance and lightweight deployment.
♻ ☆ MedRep: Medical Concept Representation for General Electronic Health Record Foundation Models
Electronic health record (EHR) foundation models have been an area ripe for exploration with their improved performance in various medical tasks. Despite the rapid advances, there exists a fundamental limitation: Processing unseen medical codes out of vocabulary. This problem limits the generalizability of EHR foundation models and the integration of models trained with different vocabularies. To alleviate this problem, we propose a set of novel medical concept representations (MedRep) for EHR foundation models based on the observational medical outcome partnership (OMOP) common data model (CDM). For concept representation learning, we enrich the information of each concept with a minimal definition through large language model (LLM) prompts and complement the text-based representations through the graph ontology of OMOP vocabulary. Our approach outperforms the vanilla EHR foundation model and the model with a previously introduced medical code tokenizer in diverse prediction tasks. We also demonstrate the generalizability of MedRep through external validation.
comment: 18 pages
♻ ☆ GraspClutter6D: A Large-scale Real-world Dataset for Robust Perception and Grasping in Cluttered Scenes
Robust grasping in cluttered environments remains an open challenge in robotics. While benchmark datasets have significantly advanced deep learning methods, they mainly focus on simplistic scenes with light occlusion and insufficient diversity, limiting their applicability to practical scenarios. We present GraspClutter6D, a large-scale real-world grasping dataset featuring: (1) 1,000 highly cluttered scenes with dense arrangements (14.1 objects/scene, 62.6\% occlusion), (2) comprehensive coverage across 200 objects in 75 environment configurations (bins, shelves, and tables) captured using four RGB-D cameras from multiple viewpoints, and (3) rich annotations including 736K 6D object poses and 9.3B feasible robotic grasps for 52K RGB-D images. We benchmark state-of-the-art segmentation, object pose estimation, and grasp detection methods to provide key insights into challenges in cluttered environments. Additionally, we validate the dataset's effectiveness as a training resource, demonstrating that grasping networks trained on GraspClutter6D significantly outperform those trained on existing datasets in both simulation and real-world experiments. The dataset, toolkit, and annotation tools are publicly available on our project website: https://sites.google.com/view/graspclutter6d.
comment: Accepted at IEEE Robotics and Automation Letters (RA-L). Project Websites: https://sites.google.com/view/graspclutter6d
♻ ☆ To Theoretically Understand Transformer-Based In-Context Learning for Optimizing CSMA
The binary exponential backoff scheme is widely used in WiFi 7 and still incurs poor throughput performance under dynamic channel environments. Recent model-based approaches (e.g., non-persistent and $p$-persistent CSMA) simply optimize backoff strategies under a known and fixed node density, still leading to a large throughput loss due to inaccurate node density estimation. This paper is the first to propose LLM transformer-based in-context learning (ICL) theory for optimizing channel access. We design a transformer-based ICL optimizer to pre-collect collision-threshold data examples and a query collision case. They are constructed as a prompt as the input for the transformer to learn the pattern, which then generates a predicted contention window threshold (CWT). To train the transformer for effective ICL, we develop an efficient algorithm and guarantee a near-optimal CWT prediction within limited training steps. As it may be hard to gather perfect data examples for ICL in practice, we further extend to allow erroneous data input in the prompt. We prove that our optimizer maintains minimal prediction and throughput deviations from the optimal values. Experimental results on NS-3 further demonstrate our approach's fast convergence and near-optimal throughput over existing model-based and DRL-based approaches under unknown node densities.
♻ ☆ Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate model behavior across three core dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities. Code is available at https://github.com/zjunlp/DataMind.
comment: Work in progress
♻ ☆ Continual Learning for Multiple Modalities
Continual learning aims to learn knowledge of tasks observed in sequential time steps while mitigating the forgetting of previously learned knowledge. Existing methods were designed to learn a single modality (e.g., image) over time, which limits their applicability in scenarios involving multiple modalities. In this work, we propose a novel continual learning framework that accommodates multiple modalities (image, video, audio, depth, and text). We train a model to align various modalities with text, leveraging its rich semantic information. However, this increases the risk of forgetting previously learned knowledge, exacerbated by the differing input traits across tasks. To alleviate the overwriting of previous knowledge of modalities, we propose a framework that consolidates intra-modal knowledge while incorporating relevant inter-modal information. This is achieved by self-regulating shifts in learned representations to gradually integrating novel knowledge into the information retained across modalities. Simultaneously, it mitigates inter-modal interference by selectively integrating knowledge from previously encountered modalities based on their mutual relevance. Furthermore, we introduce a strategy to re-align modality embeddings, effectively addressing biased alignment between modalities. We evaluate the proposed method in a wide range of continual learning scenarios using multiple datasets with different modalities. Extensive experiments demonstrate that ours outperforms existing methods in the scenarios, regardless of whether the identity of the modality is given.
♻ ☆ Request-Only Optimization for Recommendation Systems
Deep Learning Recommendation Models (DLRMs) represent one of the largest machine learning applications on the planet. Industry-scale DLRMs are trained with petabytes of recommendation data to serve billions of users every day. To utilize the rich user signals in the long user history, DLRMs have been scaled up to unprecedented complexity, up to trillions of floating-point operations (TFLOPs) per example. This scale, coupled with the huge amount of training data, necessitates new storage and training algorithms to efficiently improve the quality of these complex recommendation systems. In this paper, we present a Request-Only Optimizations (ROO) training and modeling paradigm. ROO simultaneously improves the storage and training efficiency as well as the model quality of recommendation systems. We holistically approach this challenge through co-designing data (i.e., request-only data), infrastructure (i.e., request-only based data processing pipeline), and model architecture (i.e., request-only neural architectures). Our ROO training and modeling paradigm treats a user request as a unit of the training data. Compared with the established practice of treating a user impression as a unit, our new design achieves native feature deduplication in data logging, consequently saving data storage. Second, by de-duplicating computations and communications across multiple impressions in a request, this new paradigm enables highly scaled-up neural network architectures to better capture user interest signals, such as Generative Recommenders (GRs) and other request-only friendly architectures.
♻ ☆ Explainable Attention-Guided Stacked Graph Neural Networks for Malware Detection
Malware detection in modern computing environments demands models that are not only accurate but also interpretable and robust to evasive techniques. Graph neural networks (GNNs) have shown promise in this domain by modeling rich structural dependencies in graph-based program representations such as control flow graphs (CFGs). However, single-model approaches may suffer from limited generalization and lack interpretability, especially in high-stakes security applications. In this paper, we propose a novel stacking ensemble framework for graph-based malware detection and explanation. Our method dynamically extracts CFGs from portable executable (PE) files and encodes their basic blocks through a two-step embedding strategy. A set of diverse GNN base learners, each with a distinct message-passing mechanism, is used to capture complementary behavioral features. Their prediction outputs are aggregated by a meta-learner implemented as an attention-based multilayer perceptron, which both classifies malware instances and quantifies the contribution of each base model. To enhance explainability, we introduce an ensemble-aware post-hoc explanation technique that leverages edge-level importance scores generated by a GNN explainer and fuses them using the learned attention weights. This produces interpretable, model-agnostic explanations aligned with the final ensemble decision. Experimental results demonstrate that our framework improves classification performance while providing insightful interpretations of malware behavior.
♻ ☆ ViFusionTST: Deep Fusion of Time-Series Image Representations from Load Signals for Early Bed-Exit Prediction
Bed-related falls remain a major source of injury in hospitals and long-term care facilities, yet many commercial alarms trigger only after a patient has already left the bed. We show that early bed-exit intent can be predicted using only one low-cost load cell mounted under a bed leg. The resulting load signals are first converted into a compact set of complementary images: an RGB line plot that preserves raw waveforms and three texture maps-recurrence plot, Markov transition field, and Gramian angular field-that expose higher-order dynamics. We introduce ViFusionTST, a dual-stream Swin Transformer that processes the line plot and texture maps in parallel and fuses them through cross-attention to learn data-driven modality weights. To provide a realistic benchmark, we collected six months of continuous data from 95 beds in a long-term-care facility. On this real-world dataset ViFusionTST reaches an accuracy of 0.885 and an F1 score of 0.794, surpassing recent 1D and 2D time-series baselines across F1, recall, accuracy, and AUPRC. The results demonstrate that image-based fusion of load-sensor signals for time series classification is a practical and effective solution for real-time, privacy-preserving fall prevention.
♻ ☆ SLiM: One-shot Quantization and Sparsity with Low-rank Approximation for LLM Weight Compression ICML 2025
Conventional model compression techniques for LLMs address high memory consumption and slow inference challenges but typically require computationally expensive retraining to preserve accuracy. In contrast, one-shot compression methods eliminate retraining cost, but struggle to achieve accuracy comparable to dense models. This paper presents SLIM, a new one-shot compression framework that holistically integrates hardware-friendly quantization, sparsity, and low-rank approximation into a unified process. First, we formulate the quantization process using a probabilistic approach (SLIM-Quant) that enables us to apply uniform quantization. Then, we use an existing one-shot pruning method to apply semi-structured sparsity on top of the quantized weights. Finally, to compensate for the introduced aggregated quantization and sparsity error, we use a novel saliency function with unique invertible and additive features that enables us to mathematically compute the value of low-rank adapters. SLIM improves model accuracy by up to 5.66% (LLaMA-2-7B) for 2:4 sparsity with 4-bit weight quantization, outperforming prior methods. Models compressed with SLIM achieve up to 4.3x and 3.8x on Nvidia RTX3060 and A100 GPUs, respectively. Additionally, they achieve up to 0.23x end-to-end memory reduction in comparison to their dense counterparts. We also propose an optional PEFT recipe that further improves accuracy by up to 1.66% (LLaMA-2-13B) compared to SLIM without fine-tuning.
comment: Published at Proceedings of the 42 nd International Conference on Machine Learning (ICML 2025)
♻ ☆ AlgoTune: Can Language Models Speed Up General-Purpose Numerical Programs?
Despite progress in language model (LM) capabilities, evaluations have thus far focused on models' performance on tasks that humans have previously solved, including in programming (Jimenez et al., 2024) and mathematics (Glazer et al., 2024). We therefore propose testing models' ability to design and implement algorithms in an open-ended benchmark: We task LMs with writing code that efficiently solves computationally challenging problems in computer science, physics, and mathematics. Our AlgoTune benchmark consists of 154 coding tasks collected from domain experts and a framework for validating and timing LM-synthesized solution code, which is compared to reference implementations from popular open-source packages. In addition, we develop a baseline LM agent, AlgoTuner, and evaluate its performance across a suite of frontier models. AlgoTuner uses a simple, budgeted loop that edits code, compiles and runs it, profiles performance, verifies correctness on tests, and selects the fastest valid version. AlgoTuner achieves an average 1.72x speedup against our reference solvers, which use libraries such as SciPy, sk-learn and CVXPY. However, we find that current models fail to discover algorithmic innovations, instead preferring surface-level optimizations. We hope that AlgoTune catalyzes the development of LM agents exhibiting creative problem solving beyond state-of-the-art human performance.
♻ ☆ Language-Based Bayesian Optimization Research Assistant (BORA)
Many important scientific problems involve multivariate optimization coupled with slow and laborious experimental measurements. These complex, high-dimensional searches can be defined by non-convex optimization landscapes that resemble needle-in-a-haystack surfaces, leading to entrapment in local minima. Contextualizing optimizers with human domain knowledge is a powerful approach to guide searches to localized fruitful regions. However, this approach is susceptible to human confirmation bias and it is also challenging for domain experts to keep track of the rapidly expanding scientific literature. Here, we propose the use of Large Language Models (LLMs) for contextualizing Bayesian optimization (BO) via a hybrid optimization framework that intelligently and economically blends stochastic inference with domain knowledge-based insights from the LLM, which is used to suggest new, better-performing areas of the search space for exploration. Our method fosters user engagement by offering real-time commentary on the optimization progress, explaining the reasoning behind the search strategies. We validate the effectiveness of our approach on synthetic benchmarks with up to 15 independent variables and demonstrate the ability of LLMs to reason in four real-world experimental tasks where context-aware suggestions boost optimization performance substantially.
♻ ☆ Clean-Label Physical Backdoor Attacks with Data Distillation
Deep Neural Networks (DNNs) are shown to be vulnerable to backdoor poisoning attacks, with most research focusing on digital triggers -- artificial patterns added to test-time inputs to induce targeted misclassification. Physical triggers, which are natural objects embedded in real-world scenes, offer a promising alternative for attackers, as they can activate backdoors in real-time without digital manipulation. However, existing physical backdoor attacks are dirty-label, meaning that attackers must change the labels of poisoned inputs to the target label. The inconsistency between image content and label exposes the attack to human inspection, reducing its stealthiness in real-world settings. To address this limitation, we introduce Clean-Label Physical Backdoor Attack (CLPBA), a new paradigm of physical backdoor attack that does not require label manipulation and trigger injection at the training stage. Instead, the attacker injects imperceptible perturbations into a small number of target class samples to backdoor a model. By framing the attack as a Dataset Distillation problem, we develop three CLPBA variants -- Parameter Matching, Gradient Matching, and Feature Matching -- that craft effective poisons under both linear probing and full-finetuning training settings. In hard scenarios that require backdoor generalizability in the physical world, CLPBA is shown to even surpass Dirty-label attack baselines. We demonstrate the effectiveness of CLPBA via extensive experiments on two collected physical backdoor datasets for facial recognition and animal classification. The code is available in https://github.com/thinh-dao/Clean-Label-Physical-Backdoor-Attacks.
♻ ☆ Sophisticated Learning: A novel algorithm for active learning during model-based planning
We introduce Sophisticated Learning (SL), a planning-to-learn algorithm that embeds active parameter learning inside the Sophisticated Inference (SI) tree-search framework of Active Inference. Unlike SI -- which optimizes beliefs about hidden states -- SL also updates beliefs about model parameters within each simulated branch, enabling counterfactual reasoning about how future observations would improve subsequent planning. We compared SL with Bayes-adaptive Reinforcement Learning (BARL) agents as well as with its parent algorithm, SI. Using a biologically inspired seasonal foraging task in which resources shift probabilistically over a 10x10 grid, we designed experiments that forced agents to balance probabilistic reward harvesting against information gathering. In early trials, where rapid learning is vital, SL agents survive, on average, 8.2% longer than SI and 35% longer than Bayes-adaptive Reinforcement Learning. While both SL and SI showed equal convergence performance, SL reached this convergence 40% faster than SI. Additionally, SL showed robust out-performance of other algorithms in altered environment configurations. Our results show that incorporating active learning into multi-step planning materially improves decision making under radical uncertainty, and reinforces the broader utility of Active Inference for modeling biologically relevant behavior.
♻ ☆ Recent Advances in Generative AI for Healthcare Applications
The rapid advancement of Artificial Intelligence (AI) has catalyzed revolutionary changes across various sectors, notably in healthcare. In particular, generative AI-led by diffusion models and transformer architectures-has enabled significant breakthroughs in medical imaging (including image reconstruction, image-to-image translation, generation, and classification), protein structure prediction, clinical documentation, diagnostic assistance, radiology interpretation, clinical decision support, medical coding, and billing, as well as drug design and molecular representation. These innovations have enhanced clinical diagnosis, data reconstruction, and drug synthesis. This review paper aims to offer a comprehensive synthesis of recent advances in healthcare applications of generative AI, with an emphasis on diffusion and transformer models. Moreover, we discuss current capabilities, highlight existing limitations, and outline promising research directions to address emerging challenges. Serving as both a reference for researchers and a guide for practitioners, this work offers an integrated view of the state of the art, its impact on healthcare, and its future potential.
comment: 51 pages, 16 figures, 1table
♻ ☆ StoryEnsemble: Enabling Dynamic Exploration & Iteration in the Design Process with AI and Forward-Backward Propagation
Design processes involve exploration, iteration, and movement across interconnected stages such as persona creation, problem framing, solution ideation, and prototyping. However, time and resource constraints often hinder designers from exploring broadly, collecting feedback, and revisiting earlier assumptions-making it difficult to uphold core design principles in practice. To better understand these challenges, we conducted a formative study with 15 participants-comprised of UX practitioners, students, and instructors. Based on the findings, we developed StoryEnsemble, a tool that integrates AI into a node-link interface and leverages forward and backward propagation to support dynamic exploration and iteration across the design process. A user study with 10 participants showed that StoryEnsemble enables rapid, multi-directional iteration and flexible navigation across design stages. This work advances our understanding of how AI can foster more iterative design practices by introducing novel interactions that make exploration and iteration more fluid, accessible, and engaging.
♻ ☆ A Closer Look at Multimodal Representation Collapse ICML
We aim to develop a fundamental understanding of modality collapse, a recently observed empirical phenomenon wherein models trained for multimodal fusion tend to rely only on a subset of the modalities, ignoring the rest. We show that modality collapse happens when noisy features from one modality are entangled, via a shared set of neurons in the fusion head, with predictive features from another, effectively masking out positive contributions from the predictive features of the former modality and leading to its collapse. We further prove that cross-modal knowledge distillation implicitly disentangles such representations by freeing up rank bottlenecks in the student encoder, denoising the fusion-head outputs without negatively impacting the predictive features from either modality. Based on the above findings, we propose an algorithm that prevents modality collapse through explicit basis reallocation, with applications in dealing with missing modalities. Extensive experiments on multiple multimodal benchmarks validate our theoretical claims. Project page: https://abhrac.github.io/mmcollapse/.
comment: International Conference on Machine Learning (ICML) 2025 (Spotlight)
♻ ☆ On Approximate MMS Allocations on Restricted Graph Classes
We study the problem of fair division of a set of indivisible goods with connectivity constraints. Specifically, we assume that the goods are represented as vertices of a connected graph, and sets of goods allocated to the agents are connected subgraphs of this graph. We focus on the widely-studied maximin share criterion of fairness. It has been shown that an allocation satisfying this criterion may not exist even without connectivity constraints, i.e., if the graph of goods is complete. In view of this, it is natural to seek approximate allocations that guarantee each agent a connected bundle of goods with value at least a constant fraction of the maximin share value to the agent. It is known that for some classes of graphs, such as complete graphs, cycles, and $d$-claw-free graphs for any fixed $d$, such approximate allocations indeed exist. However, it is an open problem whether they exist for the class of all graphs. In this paper, we continue the systematic study of the existence of approximate allocations on restricted graph classes. In particular, we show that such allocations exist for several well-studied classes, including block graphs, cacti, complete multipartite graphs, and split graphs.
♻ ☆ What Has a Foundation Model Found? Using Inductive Bias to Probe for World Models ICML 2025
Foundation models are premised on the idea that sequence prediction can uncover deeper domain understanding, much like how Kepler's predictions of planetary motion later led to the discovery of Newtonian mechanics. However, evaluating whether these models truly capture deeper structure remains a challenge. We develop a technique for evaluating foundation models that examines how they adapt to synthetic datasets generated from some postulated world model. Our technique measures whether the foundation model's inductive bias aligns with the world model, and so we refer to it as an inductive bias probe. Across multiple domains, we find that foundation models can excel at their training tasks yet fail to develop inductive biases towards the underlying world model when adapted to new tasks. We particularly find that foundation models trained on orbital trajectories consistently fail to apply Newtonian mechanics when adapted to new physics tasks. Further analysis reveals that these models behave as if they develop task-specific heuristics that fail to generalize.
comment: To appear in ICML 2025
♻ ☆ The Fellowship of the LLMs: Multi-Model Workflows for Synthetic Preference Optimization Dataset Generation
This paper presents a novel methodology for generating synthetic Preference Optimization (PO) datasets using multi-model workflows. We evaluate the effectiveness and potential of these workflows in automating and enhancing the dataset generation process. PO dataset generation requires two modules: (1) $\textit{response evaluation}$, and (2) $\textit{response generation}$. In the $\textit{response evaluation}$ module, the responses from Large Language Models (LLMs) are evaluated and ranked - a task typically carried out by human annotators that we automate using LLMs. We assess the response evaluation module in a 2 step process. In step 1, we assess LLMs as evaluators using three distinct prompting strategies. In step 2, we apply the winning prompting strategy to compare the performance of LLM-as-a-Judge, LLMs-as-a-Jury, and LLM Debate. Our evaluation shows that GPT-4o-as-a-Judge is more consistent across all datasets. For the $\textit{response generation}$ module, we use the identified LLM evaluator configuration and compare different configurations of the LLM Feedback Loop. We use the win rate to determine the best multi-model configuration for generation. Experimenting with various configurations, we find that the LLM Feedback Loop, with Llama as the generator and Gemma as the reviewer, achieves a notable 71.8% and 73.8% win rate over single-model Llama and Gemma, respectively. After identifying the best configurations for both modules, we generate our PO datasets using the above pipeline.
♻ ☆ Blending 3D Geometry and Machine Learning for Multi-View Stereopsis
Traditional multi-view stereo (MVS) methods primarily depend on photometric and geometric consistency constraints. In contrast, modern learning-based algorithms often rely on the plane sweep algorithm to infer 3D geometry, applying explicit geometric consistency (GC) checks only as a post-processing step, with no impact on the learning process itself. In this work, we introduce GC MVSNet plus plus, a novel approach that actively enforces geometric consistency of reference view depth maps across multiple source views (multi view) and at various scales (multi scale) during the learning phase (see Fig. 1). This integrated GC check significantly accelerates the learning process by directly penalizing geometrically inconsistent pixels, effectively halving the number of training iterations compared to other MVS methods. Furthermore, we introduce a densely connected cost regularization network with two distinct block designs simple and feature dense optimized to harness dense feature connections for enhanced regularization. Extensive experiments demonstrate that our approach achieves a new state of the art on the DTU and BlendedMVS datasets and secures second place on the Tanks and Temples benchmark. To our knowledge, GC MVSNet plus plus is the first method to enforce multi-view, multi-scale supervised geometric consistency during learning. Our code is available.
comment: A pre-print -- accepted at Neurocomputing. arXiv admin note: substantial text overlap with arXiv:2310.19583
♻ ☆ JMA: a General Algorithm to Craft Nearly Optimal Targeted Adversarial Example
Most of the approaches proposed so far to craft targeted adversarial examples against Deep Learning classifiers are highly suboptimal and typically rely on increasing the likelihood of the target class, thus implicitly focusing on one-hot encoding settings. In this paper, a more general, theoretically sound, targeted attack is proposed, which resorts to the minimization of a Jacobian-induced Mahalanobis distance term, taking into account the effort (in the input space) required to move the latent space representation of the input sample in a given direction. The minimization is solved by exploiting the Wolfe duality theorem, reducing the problem to the solution of a Non-Negative Least Square (NNLS) problem. The proposed algorithm (referred to as JMA) provides an optimal solution to a linearised version of the adversarial example problem originally introduced by Szegedy et al. The results of the experiments confirm the generality of the proposed attack which is proven to be effective under a wide variety of output encoding schemes. Noticeably, JMA is also effective in a multi-label classification scenario, being capable to induce a targeted modification of up to half the labels in complex multi-label classification scenarios, a capability that is out of reach of all the attacks proposed so far. As a further advantage, JMA requires very few iterations, thus resulting more efficient than existing methods.
♻ ☆ Uncertainty-Aware Adaptation of Large Language Models for Protein-Protein Interaction Analysis
Identification of protein-protein interactions (PPIs) helps derive cellular mechanistic understanding, particularly in the context of complex conditions such as neurodegenerative disorders, metabolic syndromes, and cancer. Large Language Models (LLMs) have demonstrated remarkable potential in predicting protein structures and interactions via automated mining of vast biomedical literature; yet their inherent uncertainty remains a key challenge for deriving reproducible findings, critical for biomedical applications. In this study, we present an uncertainty-aware adaptation of LLMs for PPI analysis, leveraging fine-tuned LLaMA-3 and BioMedGPT models. To enhance prediction reliability, we integrate LoRA ensembles and Bayesian LoRA models for uncertainty quantification (UQ), ensuring confidence-calibrated insights into protein behavior. Our approach achieves competitive performance in PPI identification across diverse disease contexts while addressing model uncertainty, thereby enhancing trustworthiness and reproducibility in computational biology. These findings underscore the potential of uncertainty-aware LLM adaptation for advancing precision medicine and biomedical research.
Machine Learning 217
☆ A Dataset for Distilling Knowledge Priors from Literature for Therapeutic Design
AI-driven discovery can greatly reduce design time and enhance new therapeutics' effectiveness. Models using simulators explore broad design spaces but risk violating implicit constraints due to a lack of experimental priors. For example, in a new analysis we performed on a diverse set of models on the GuacaMol benchmark using supervised classifiers, over 60\% of molecules proposed had high probability of being mutagenic. In this work, we introduce \ourdataset, a dataset of priors for design problems extracted from literature describing compounds used in lab settings. It is constructed with LLM pipelines for discovering therapeutic entities in relevant paragraphs and summarizing information in concise fair-use facts. \ourdataset~ consists of 32.3 million pairs of natural language facts, and appropriate entity representations (i.e. SMILES or refseq IDs). To demonstrate the potential of the data, we train LLM, CLIP, and LLava architectures to reason jointly about text and design targets and evaluate on tasks from the Therapeutic Data Commons (TDC). \ourdataset~is highly effective for creating models with strong priors: in supervised prediction problems that use our data as pretraining, our best models with 15M learnable parameters outperform larger 2B TxGemma on both regression and classification TDC tasks, and perform comparably to 9B models on average. Models built with \ourdataset~can be used as constraints while optimizing for novel molecules in GuacaMol, resulting in proposals that are safer and nearly as effective. We release our dataset at \href{https://huggingface.co/datasets/medexanon/Medex}{huggingface.co/datasets/medexanon/Medex}, and will provide expanded versions as available literature grows.
☆ Empirical Investigation into Configuring Echo State Networks for Representative Benchmark Problem Domains
This paper examines Echo State Network, a reservoir computer, performance using four different benchmark problems, then proposes heuristics or rules of thumb for configuring the architecture, as well as the selection of parameters and their values, which are applicable to problems within the same domain, to help serve to fill the experience gap needed by those entering this field of study. The influence of various parameter selections and their value adjustments, as well as architectural changes made to an Echo State Network, a powerful recurrent neural network configured as a reservoir computer, can be challenging to fully comprehend without experience in the field, and even some hyperparameter optimization algorithms may have difficulty adjusting parameter values without proper manual selections made first. Therefore, it is imperative to understand the effects of parameters and their value selection on Echo State Network architecture performance for a successful build. Thus, to address the requirement for an extensive background in Echo State Network architecture, as well as examine how Echo State Network performance is affected with respect to variations in architecture, design, and parameter selection and values, a series of benchmark tasks representing different problem domains, including time series prediction, pattern generation, chaotic system prediction, and time series classification, were modeled and experimented on to show the impact on the performance of Echo State Network.
comment: 49 pages, 21 figures
☆ An Iterative Algorithm for Differentially Private $k$-PCA with Adaptive Noise
Given $n$ i.i.d. random matrices $A_i \in \mathbb{R}^{d \times d}$ that share a common expectation $\Sigma$, the objective of Differentially Private Stochastic PCA is to identify a subspace of dimension $k$ that captures the largest variance directions of $\Sigma$, while preserving differential privacy (DP) of each individual $A_i$. Existing methods either (i) require the sample size $n$ to scale super-linearly with dimension $d$, even under Gaussian assumptions on the $A_i$, or (ii) introduce excessive noise for DP even when the intrinsic randomness within $A_i$ is small. Liu et al. (2022a) addressed these issues for sub-Gaussian data but only for estimating the top eigenvector ($k=1$) using their algorithm DP-PCA. We propose the first algorithm capable of estimating the top $k$ eigenvectors for arbitrary $k \leq d$, whilst overcoming both limitations above. For $k=1$ our algorithm matches the utility guarantees of DP-PCA, achieving near-optimal statistical error even when $n = \tilde{\!O}(d)$. We further provide a lower bound for general $k > 1$, matching our upper bound up to a factor of $k$, and experimentally demonstrate the advantages of our algorithm over comparable baselines.
☆ A Survey on Diffusion Language Models
Diffusion Language Models (DLMs) are rapidly emerging as a powerful and promising alternative to the dominant autoregressive (AR) paradigm. By generating tokens in parallel through an iterative denoising process, DLMs possess inherent advantages in reducing inference latency and capturing bidirectional context, thereby enabling fine-grained control over the generation process. While achieving a several-fold speed-up, recent advancements have allowed DLMs to show performance comparable to their autoregressive counterparts, making them a compelling choice for various natural language processing tasks. In this survey, we provide a holistic overview of the current DLM landscape. We trace its evolution and relationship with other paradigms, such as autoregressive and masked language models, and cover both foundational principles and state-of-the-art models. Our work offers an up-to-date, comprehensive taxonomy and an in-depth analysis of current techniques, from pre-training strategies to advanced post-training methods. Another contribution of this survey is a thorough review of DLM inference strategies and optimizations, including improvements in decoding parallelism, caching mechanisms, and generation quality. We also highlight the latest approaches to multimodal extensions of DLMs and delineate their applications across various practical scenarios. Furthermore, our discussion addresses the limitations and challenges of DLMs, including efficiency, long-sequence handling, and infrastructure requirements, while outlining future research directions to sustain progress in this rapidly evolving field. Project GitHub is available at https://github.com/VILA-Lab/Awesome-DLMs.
☆ Efficiently Verifiable Proofs of Data Attribution
Data attribution methods aim to answer useful counterfactual questions like "what would a ML model's prediction be if it were trained on a different dataset?" However, estimation of data attribution models through techniques like empirical influence or "datamodeling" remains very computationally expensive. This causes a critical trust issue: if only a few computationally rich parties can obtain data attributions, how can resource-constrained parties trust that the provided attributions are indeed "good," especially when they are used for important downstream applications (e.g., data pricing)? In this paper, we address this trust issue by proposing an interactive verification paradigm for data attribution. An untrusted and computationally powerful Prover learns data attributions, and then engages in an interactive proof with a resource-constrained Verifier. Our main result is a protocol that provides formal completeness, soundness, and efficiency guarantees in the sense of Probably-Approximately-Correct (PAC) verification. Specifically, if both Prover and Verifier follow the protocol, the Verifier accepts data attributions that are {\epsilon}-close to the optimal data attributions (in terms of the Mean Squared Error) with probability 1-{\delta}. Conversely, if the Prover arbitrarily deviates from the protocol, even with infinite compute, then this is detected (or it still yields data attributions to the Verifier) except with probability {\delta}. Importantly, our protocol ensures the Verifier's workload, measured by the number of independent model retrainings it must perform, scales only as O(1/{\epsilon}); i.e., independently of the dataset size. At a technical level, our results apply to efficiently verifying any linear function over the boolean hypercube computed by the Prover, making them broadly applicable to various attribution tasks.
☆ CrossDenoise: Denoising Implicit Feedback via a Lightweight Entity-Aware Synergistic Framework
Recommender systems heavily rely on implicit feedback, which is inherently noisy due to false positives and negatives, severely degrading recommendation accuracy. Existing denoising strategies often overlook entity-aware modeling, suffer from high computational overhead, or demand excessive hyperparameter tuning, limiting their real-world applicability. We propose CrossDenoise, a novel and lightweight framework that addresses these challenges by disentangling noise estimation into user-, item-, and interaction-specific factors. Leveraging empirical observations that show significant heterogeneity in user and item noise propensities, CrossDenoise computes entity reputation factors (user/item reliability) via a rank-based linear mapping of average training losses. These are fused with interaction-level weights derived from an empirical cumulative distribution function (ECDF) of individual losses. This design is model-agnostic, computationally efficient, and requires only two intuitive hyperparameters. Extensive experiments on ML-1M, Yelp, and Amazon-book datasets, across GMF, NeuMF, and CDAE backbones, demonstrate that CrossDenoise consistently and significantly outperforms state-of-the-art baselines. For instance, it achieves up to 27.01% NDCG@50 gain on Yelp with NeuMF, while incurring negligible computational and memory overhead. Our analysis confirms that CrossDenoise effectively separates clean from noisy samples and remains robust under varied hyperparameter settings. It offers a practical and scalable solution for denoising implicit feedback.
☆ Performance of universal machine-learned potentials with explicit long-range interactions in biomolecular simulations
Universal machine-learned potentials promise transferable accuracy across compositional and vibrational degrees of freedom, yet their application to biomolecular simulations remains underexplored. This work systematically evaluates equivariant message-passing architectures trained on the SPICE-v2 dataset with and without explicit long-range dispersion and electrostatics. We assess the impact of model size, training data composition, and electrostatic treatment across in- and out-of-distribution benchmark datasets, as well as molecular simulations of bulk liquid water, aqueous NaCl solutions, and biomolecules, including alanine tripeptide, the mini-protein Trp-cage, and Crambin. While larger models improve accuracy on benchmark datasets, this trend does not consistently extend to properties obtained from simulations. Predicted properties also depend on the composition of the training dataset. Long-range electrostatics show no systematic impact across systems. However, for Trp-cage, their inclusion yields increased conformational variability. Our results suggest that imbalanced datasets and immature evaluation practices currently challenge the applicability of universal machine-learned potentials to biomolecular simulations.
☆ Reinforced Language Models for Sequential Decision Making
Large Language Models (LLMs) show potential as sequential decision-making agents, but their application is often limited due to a reliance on large, computationally expensive models. This creates a need to improve smaller models, yet existing post-training methods are designed for single-turn interactions and cannot handle credit assignment in multi-step agentic tasks. To address this, we introduce Multi-Step Group-Relative Policy Optimization (MS-GRPO), a new algorithm for post-training LLM agents, grounded in formal Text-Mediated Stochastic Game (TSMG) and Language-Agent Policy (LAP) frameworks. For credit assignment, MS-GRPO attributes the entire cumulative episode reward to each individual episode step. We supplement this algorithm with a novel absolute-advantage-weighted episode sampling strategy that we show improves training performance. We evaluate our approach by post-training a 3-billion parameter model on Snake and Frozen Lake. Our experiments demonstrate that the method is effective in improving decision-making performance: our post-trained 3B parameter model outperforms a 72B parameter baseline by 50% on the Frozen Lake task. This work demonstrates that targeted post-training is a practical and efficient alternative to relying on model scale for creating sequential decision-making agents using LLMs.
☆ SoK: Data Minimization in Machine Learning
Data minimization (DM) describes the principle of collecting only the data strictly necessary for a given task. It is a foundational principle across major data protection regulations like GDPR and CPRA. Violations of this principle have substantial real-world consequences, with regulatory actions resulting in fines reaching hundreds of millions of dollars. Notably, the relevance of data minimization is particularly pronounced in machine learning (ML) applications, which typically rely on large datasets, resulting in an emerging research area known as Data Minimization in Machine Learning (DMML). At the same time, existing work on other ML privacy and security topics often addresses concerns relevant to DMML without explicitly acknowledging the connection. This disconnect leads to confusion among practitioners, complicating their efforts to implement DM principles and interpret the terminology, metrics, and evaluation criteria used across different research communities. To address this gap, our work introduces a comprehensive framework for DMML, including a unified data pipeline, adversaries, and points of minimization. This framework allows us to systematically review the literature on data minimization and \emph{DM-adjacent} methodologies, for the first time presenting a structured overview designed to help practitioners and researchers effectively apply DM principles. Our work facilitates a unified DM-centric understanding and broader adoption of data minimization strategies in AI/ML.
☆ Accelerating exoplanet climate modelling: A machine learning approach to complement 3D GCM grid simulations
With the development of ever-improving telescopes capable of observing exoplanet atmospheres in greater detail and number, there is a growing demand for enhanced 3D climate models to support and help interpret observational data from space missions like CHEOPS, TESS, JWST, PLATO, and Ariel. However, the computationally intensive and time-consuming nature of general circulation models (GCMs) poses significant challenges in simulating a wide range of exoplanetary atmospheres. This study aims to determine whether machine learning (ML) algorithms can be used to predict the 3D temperature and wind structure of arbitrary tidally-locked gaseous exoplanets in a range of planetary parameters. A new 3D GCM grid with 60 inflated hot Jupiters orbiting A, F, G, K, and M-type host stars modelled with Exorad has been introduced. A dense neural network (DNN) and a decision tree algorithm (XGBoost) are trained on this grid to predict local gas temperatures along with horizontal and vertical winds. To ensure the reliability and quality of the ML model predictions, WASP-121 b, HATS-42 b, NGTS-17 b, WASP-23 b, and NGTS-1 b-like planets, which are all targets for PLATO observation, are selected and modelled with ExoRad and the two ML methods as test cases. The DNN predictions for the gas temperatures are to such a degree that the calculated spectra agree within 32 ppm for all but one planet, for which only one single HCN feature reaches a 100 ppm difference. The developed ML emulators can reliably predict the complete 3D temperature field of an inflated warm to ultra-hot tidally locked Jupiter around A to M-type host stars. It provides a fast tool to complement and extend traditional GCM grids for exoplanet ensemble studies. The quality of the predictions is such that no or minimal effects on the gas phase chemistry, hence on the cloud formation and transmission spectra, are to be expected.
☆ Memory-Augmented Transformers: A Systematic Review from Neuroscience Principles to Technical Solutions
Memory is fundamental to intelligence, enabling learning, reasoning, and adaptability across biological and artificial systems. While Transformer architectures excel at sequence modeling, they face critical limitations in long-range context retention, continual learning, and knowledge integration. This review presents a unified framework bridging neuroscience principles, including dynamic multi-timescale memory, selective attention, and consolidation, with engineering advances in Memory-Augmented Transformers. We organize recent progress through three taxonomic dimensions: functional objectives (context extension, reasoning, knowledge integration, adaptation), memory representations (parameter-encoded, state-based, explicit, hybrid), and integration mechanisms (attention fusion, gated control, associative retrieval). Our analysis of core memory operations (reading, writing, forgetting, and capacity management) reveals a shift from static caches toward adaptive, test-time learning systems. We identify persistent challenges in scalability and interference, alongside emerging solutions including hierarchical buffering and surprise-gated updates. This synthesis provides a roadmap toward cognitively-inspired, lifelong-learning Transformer architectures.
☆ Mobile-Friendly Deep Learning for Plant Disease Detection: A Lightweight CNN Benchmark Across 101 Classes of 33 Crops
Plant diseases are a major threat to food security globally. It is important to develop early detection systems which can accurately detect. The advancement in computer vision techniques has the potential to solve this challenge. We have developed a mobile-friendly solution which can accurately classify 101 plant diseases across 33 crops. We built a comprehensive dataset by combining different datasets, Plant Doc, PlantVillage, and PlantWild, all of which are for the same purpose. We evaluated performance across several lightweight architectures - MobileNetV2, MobileNetV3, MobileNetV3-Large, and EfficientNet-B0, B1 - specifically chosen for their efficiency on resource-constrained devices. The results were promising, with EfficientNet-B1 delivering our best performance at 94.7% classification accuracy. This architecture struck an optimal balance between accuracy and computational efficiency, making it well-suited for real-world deployment on mobile devices.
comment: 15 pages, 5 figures, 2 tables
☆ Comparison of Data Reduction Criteria for Online Gaussian Processes
Gaussian Processes (GPs) are widely used for regression and system identification due to their flexibility and ability to quantify uncertainty. However, their computational complexity limits their applicability to small datasets. Moreover in a streaming scenario, more and more datapoints accumulate which is intractable even for Sparse GPs. Online GPs aim to alleviate this problem by e.g. defining a maximum budget of datapoints and removing redundant datapoints. This work provides a unified comparison of several reduction criteria, analyzing both their computational complexity and reduction behavior. The criteria are evaluated on benchmark functions and real-world datasets, including dynamic system identification tasks. Additionally, acceptance criteria are proposed to further filter out redundant datapoints. This work yields practical guidelines for choosing a suitable criterion for an online GP algorithm.
comment: 12 pages
☆ Parity Cross-Resonance: A Multiqubit Gate
We present a native three-qubit entangling gate that exploits engineered interactions to realize control-control-target and control-target-target operations in a single coherent step. Unlike conventional decompositions into multiple two-qubit gates, our hybrid optimization approach selectively amplifies desired interactions while suppressing unwanted couplings, yielding robust performance across the computational subspace and beyond. The new gate can be classified as a cross-resonance gate. We show it can be utilized in several ways, for example, in GHZ triplet state preparation, Toffoli-class logic demonstrations with many-body interactions, and in implementing a controlled-ZZ gate. The latter maps the parity of two data qubits directly onto a measurement qubit, enabling faster and higher-fidelity stabilizer measurements in surface-code quantum error correction. In all these examples, we show that the three-qubit gate performance remains robust across Hilbert space sizes, as confirmed by testing under increasing total excitation numbers. This work lays the foundation for co-designing circuit architectures and control protocols that leverage native multiqubit interactions as core elements of next-generation superconducting quantum processors.
comment: 19 pages, 10 figures
☆ Non-Stationary Restless Multi-Armed Bandits with Provable Guarantee
Online restless multi-armed bandits (RMABs) typically assume that each arm follows a stationary Markov Decision Process (MDP) with fixed state transitions and rewards. However, in real-world applications like healthcare and recommendation systems, these assumptions often break due to non-stationary dynamics, posing significant challenges for traditional RMAB algorithms. In this work, we specifically consider $N$-armd RMAB with non-stationary transition constrained by bounded variation budgets $B$. Our proposed \rmab\; algorithm integrates sliding window reinforcement learning (RL) with an upper confidence bound (UCB) mechanism to simultaneously learn transition dynamics and their variations. We further establish that \rmab\; achieves $\widetilde{\mathcal{O}}(N^2 B^{\frac{1}{4}} T^{\frac{3}{4}})$ regret bound by leveraging a relaxed definition of regret, providing a foundational theoretical framework for non-stationary RMAB problems for the first time.
☆ Enhancing Fairness in Autoencoders for Node-Level Graph Anomaly Detection
Graph anomaly detection (GAD) has become an increasingly important task across various domains. With the rapid development of graph neural networks (GNNs), GAD methods have achieved significant performance improvements. However, fairness considerations in GAD remain largely underexplored. Indeed, GNN-based GAD models can inherit and amplify biases present in training data, potentially leading to unfair outcomes. While existing efforts have focused on developing fair GNNs, most approaches target node classification tasks, where models often rely on simple layer architectures rather than autoencoder-based structures, which are the most widely used architecturs for anomaly detection. To address fairness in autoencoder-based GAD models, we propose \textbf{D}is\textbf{E}ntangled \textbf{C}ounterfactual \textbf{A}dversarial \textbf{F}air (DECAF)-GAD, a framework that alleviates bias while preserving GAD performance. Specifically, we introduce a structural causal model (SCM) to disentangle sensitive attributes from learned representations. Based on this causal framework, we formulate a specialized autoencoder architecture along with a fairness-guided loss function. Through extensive experiments on both synthetic and real-world datasets, we demonstrate that DECAF-GAD not only achieves competitive anomaly detection performance but also significantly enhances fairness metrics compared to baseline GAD methods. Our code is available at https://github.com/Tlhey/decaf_code.
comment: Accepted in ECAI-2025
☆ IBEX: Information-Bottleneck-EXplored Coarse-to-Fine Molecular Generation under Limited Data
Three-dimensional generative models increasingly drive structure-based drug discovery, yet it remains constrained by the scarce publicly available protein-ligand complexes. Under such data scarcity, almost all existing pipelines struggle to learn transferable geometric priors and consequently overfit to training-set biases. As such, we present IBEX, an Information-Bottleneck-EXplored coarse-to-fine pipeline to tackle the chronic shortage of protein-ligand complex data in structure-based drug design. Specifically, we use PAC-Bayesian information-bottleneck theory to quantify the information density of each sample. This analysis reveals how different masking strategies affect generalization and indicates that, compared with conventional de novo generation, the constrained Scaffold Hopping task endows the model with greater effective capacity and improved transfer performance. IBEX retains the original TargetDiff architecture and hyperparameters for training to generate molecules compatible with the binding pocket; it then applies an L-BFGS optimization step to finely refine each conformation by optimizing five physics-based terms and adjusting six translational and rotational degrees of freedom in under one second. With only these modifications, IBEX raises the zero-shot docking success rate on CBGBench CrossDocked2020-based from 53% to 64%, improves the mean Vina score from $-7.41 kcal mol^{-1}$ to $-8.07 kcal mol^{-1}$, and achieves the best median Vina energy in 57 of 100 pockets versus 3 for the original TargetDiff. IBEX also increases the QED by 25%, achieves state-of-the-art validity and diversity, and markedly reduces extrapolation error.
comment: 10 pages, 8 figures
☆ Video-BLADE: Block-Sparse Attention Meets Step Distillation for Efficient Video Generation
Diffusion transformers currently lead the field in high-quality video generation, but their slow iterative denoising process and prohibitive quadratic attention costs for long sequences create significant inference bottlenecks. While both step distillation and sparse attention mechanisms have shown promise as independent acceleration strategies, effectively combining these approaches presents critical challenges -- training-free integration yields suboptimal results, while separately training sparse attention after step distillation requires prohibitively expensive high-quality video data. To overcome these limitations, we propose BLADE, an innovative data-free joint training framework that introduces: (1) an Adaptive Block-Sparse Attention (ASA) mechanism for dynamically generating content-aware sparsity masks to focus computation on salient spatiotemporal features, and (2) a sparsity-aware step distillation paradigm built upon Trajectory Distribution Matching (TDM) that directly incorporates sparsity into the distillation process rather than treating it as a separate compression step, with fast convergence. We validate BLADE on text-to-video models like CogVideoX-5B and Wan2.1-1.3B. Our framework demonstrates remarkable efficiency gains across different scales. On Wan2.1-1.3B, BLADE achieves a 14.10x end-to-end inference acceleration over a 50-step baseline. Moreover, on models such as CogVideoX-5B with short video sequence lengths, our framework delivers a robust 8.89x speedup. Crucially, the acceleration is accompanied by a consistent quality improvement. On the VBench-2.0 benchmark, BLADE boosts the score of CogVideoX-5B to 0.569 (from 0.534) and Wan2.1-1.3B to 0.570 (from 0.563), results that are further corroborated by superior ratings in human evaluations. Our code and model weights are publicly available at: http://ziplab.co/BLADE-Homepage/.
comment: Tech report
☆ Memorisation and forgetting in a learning Hopfield neural network: bifurcation mechanisms, attractors and basins
Despite explosive expansion of artificial intelligence based on artificial neural networks (ANNs), these are employed as "black boxes'', as it is unclear how, during learning, they form memories or develop unwanted features, including spurious memories and catastrophic forgetting. Much research is available on isolated aspects of learning ANNs, but due to their high dimensionality and non-linearity, their comprehensive analysis remains a challenge. In ANNs, knowledge is thought to reside in connection weights or in attractor basins, but these two paradigms are not linked explicitly. Here we comprehensively analyse mechanisms of memory formation in an 81-neuron Hopfield network undergoing Hebbian learning by revealing bifurcations leading to formation and destruction of attractors and their basin boundaries. We show that, by affecting evolution of connection weights, the applied stimuli induce a pitchfork and then a cascade of saddle-node bifurcations creating new attractors with their basins that can code true or spurious memories, and an abrupt disappearance of old memories (catastrophic forgetting). With successful learning, new categories are represented by the basins of newly born point attractors, and their boundaries by the stable manifolds of new saddles. With this, memorisation and forgetting represent two manifestations of the same mechanism. Our strategy to analyse high-dimensional learning ANNs is universal and applicable to recurrent ANNs of any form. The demonstrated mechanisms of memory formation and of catastrophic forgetting shed light on the operation of a wider class of recurrent ANNs and could aid the development of approaches to mitigate their flaws.
comment: 19 pages, 14 figures. The following article has been submitted to `Chaos: An Interdisciplinary Journal of Nonlinear Science'. After it is published, it will be found at https://pubs.aip.org/aip/cha
☆ Natively Trainable Sparse Attention for Hierarchical Point Cloud Datasets
Unlocking the potential of transformers on datasets of large physical systems depends on overcoming the quadratic scaling of the attention mechanism. This work explores combining the Erwin architecture with the Native Sparse Attention (NSA) mechanism to improve the efficiency and receptive field of transformer models for large-scale physical systems, addressing the challenge of quadratic attention complexity. We adapt the NSA mechanism for non-sequential data, implement the Erwin NSA model, and evaluate it on three datasets from the physical sciences -- cosmology simulations, molecular dynamics, and air pressure modeling -- achieving performance that matches or exceeds that of the original Erwin model. Additionally, we reproduce the experimental results from the Erwin paper to validate their implementation.
☆ Pass@k Training for Adaptively Balancing Exploration and Exploitation of Large Reasoning Models
Reinforcement learning with verifiable rewards (RLVR), which typically adopts Pass@1 as the reward, has faced the issues in balancing exploration and exploitation, causing policies to prefer conservative actions, converging to a local optimum. Identifying an appropriate reward metric is therefore crucial. Regarding the prior work, although Pass@k has been used in evaluation, its connection to LLM exploration ability in RLVR remains largely overlooked. To investigate this, we first use Pass@k as the reward to train the policy model (i.e., $\textbf{Pass@k Training}$), and observe the improvement on its exploration ability. Next, we derive an analytical solution for the advantage of Pass@k Training, leading to an efficient and effective process. Building on this, our analysis reveals that exploration and exploitation are not inherently conflicting objectives, while they can mutually enhance each other. Moreover, Pass@k Training with analytical derivation essentially involves directly designing the advantage function. Inspired by this, we preliminarily explore the advantage design for RLVR, showing promising results and highlighting a potential future direction.
comment: Technical Report about RLVR: 32 pages, 18 figures, 7 tables
☆ Agentic Design Review System
Evaluating graphic designs involves assessing it from multiple facets like alignment, composition, aesthetics and color choices. Evaluating designs in a holistic way involves aggregating feedback from individual expert reviewers. Towards this, we propose an Agentic Design Review System (AgenticDRS), where multiple agents collaboratively analyze a design, orchestrated by a meta-agent. A novel in-context exemplar selection approach based on graph matching and a unique prompt expansion method plays central role towards making each agent design aware. Towards evaluating this framework, we propose DRS-BENCH benchmark. Thorough experimental evaluation against state-of-the-art baselines adapted to the problem setup, backed-up with critical ablation experiments brings out the efficacy of Agentic-DRS in evaluating graphic designs and generating actionable feedback. We hope that this work will attract attention to this pragmatic, yet under-explored research direction.
☆ APFL: Analytic Personalized Federated Learning via Dual-Stream Least Squares
Personalized Federated Learning (PFL) has presented a significant challenge to deliver personalized models to individual clients through collaborative training. Existing PFL methods are often vulnerable to non-IID data, which severely hinders collective generalization and then compromises the subsequent personalization efforts. In this paper, to address this non-IID issue in PFL, we propose an Analytic Personalized Federated Learning (APFL) approach via dual-stream least squares. In our APFL, we use a foundation model as a frozen backbone for feature extraction. Subsequent to the feature extractor, we develop dual-stream analytic models to achieve both collective generalization and individual personalization. Specifically, our APFL incorporates a shared primary stream for global generalization across all clients, and a dedicated refinement stream for local personalization of each individual client. The analytical solutions of our APFL enable its ideal property of heterogeneity invariance, theoretically meaning that each personalized model remains identical regardless of how heterogeneous the data are distributed across all other clients. Empirical results across various datasets also validate the superiority of our APFL over state-of-the-art baselines, with advantages of at least 1.10%-15.45% in accuracy.
comment: 9 pages, 4 figures, 2 tables
☆ Dissecting Generalized Category Discovery: Multiplex Consensus under Self-Deconstruction ICCV 2025
Human perceptual systems excel at inducing and recognizing objects across both known and novel categories, a capability far beyond current machine learning frameworks. While generalized category discovery (GCD) aims to bridge this gap, existing methods predominantly focus on optimizing objective functions. We present an orthogonal solution, inspired by the human cognitive process for novel object understanding: decomposing objects into visual primitives and establishing cross-knowledge comparisons. We propose ConGCD, which establishes primitive-oriented representations through high-level semantic reconstruction, binding intra-class shared attributes via deconstruction. Mirroring human preference diversity in visual processing, where distinct individuals leverage dominant or contextual cues, we implement dominant and contextual consensus units to capture class-discriminative patterns and inherent distributional invariants, respectively. A consensus scheduler dynamically optimizes activation pathways, with final predictions emerging through multiplex consensus integration. Extensive evaluations across coarse- and fine-grained benchmarks demonstrate ConGCD's effectiveness as a consensus-aware paradigm. Code is available at github.com/lytang63/ConGCD.
comment: Accepted by ICCV 2025 as *** Highlight ***!
☆ Symmetry-Constrained Multi-Scale Physics-Informed Neural Networks for Graphene Electronic Band Structure Prediction
Accurate prediction of electronic band structures in two-dimensional materials remains a fundamental challenge, with existing methods struggling to balance computational efficiency and physical accuracy. We present the Symmetry-Constrained Multi-Scale Physics-Informed Neural Network (SCMS-PINN) v35, which directly learns graphene band structures while rigorously enforcing crystallographic symmetries through a multi-head architecture. Our approach introduces three specialized ResNet-6 pathways -- K-head for Dirac physics, M-head for saddle points, and General head for smooth interpolation -- operating on 31 physics-informed features extracted from k-points. Progressive Dirac constraint scheduling systematically increases the weight parameter from 5.0 to 25.0, enabling hierarchical learning from global topology to local critical physics. Training on 10,000 k-points over 300 epochs achieves 99.99\% reduction in training loss (34.597 to 0.003) with validation loss of 0.0085. The model predicts Dirac point gaps within 30.3 $\mu$eV of theoretical zero and achieves average errors of 53.9 meV (valence) and 40.5 meV (conduction) across the Brillouin zone. All twelve C$_{6v}$ operations are enforced through systematic averaging, guaranteeing exact symmetry preservation. This framework establishes a foundation for extending physics-informed learning to broader two-dimensional materials for accelerated discovery.
comment: 36 pages and 14 figures
☆ Electromagnetic Simulations of Antennas on GPUs for Machine Learning Applications
This study proposes an antenna simulation framework powered by graphics processing units (GPUs) based on an open-source electromagnetic (EM) simulation software (gprMax) for machine learning applications of antenna design and optimization. Furthermore, it compares the simulation results with those obtained through commercial EM software. The proposed software framework for machine learning and surrogate model applications will produce antenna data sets consisting of a large number of antenna simulation results using GPUs. Although machine learning methods can attain the optimum solutions for many problems, they are known to be data-hungry and require a great deal of samples for the training stage of the algorithms. However, producing a sufficient number of training samples in EM applications within a limited time is challenging due to the high computational complexity of EM simulations. Therefore, GPUs are utilized in this study to simulate a large number of antennas with predefined or random antenna shape parameters to produce data sets. Moreover, this study also compares various machine learning and deep learning models in terms of antenna parameter estimation performance. This study demonstrates that an entry-level GPU substantially outperforms a high-end CPU in terms of computational performance, while a high-end gaming GPU can achieve around 18 times more computational performance compared to a high-end CPU. Moreover, it is shown that the open-source EM simulation software can deliver similar results to those obtained via commercial software in the simulation of microstrip antennas when the spatial resolution of the simulations is sufficiently fine.
comment: 20 pages, 10 figures, 4 tables, journal article
☆ Lightweight CNNs for Embedded SAR Ship Target Detection and Classification
Synthetic Aperture Radar (SAR) data enables large-scale surveillance of maritime vessels. However, near-real-time monitoring is currently constrained by the need to downlink all raw data, perform image focusing, and subsequently analyze it on the ground. On-board processing to generate higher-level products could reduce the data volume that needs to be downlinked, alleviating bandwidth constraints and minimizing latency. However, traditional image focusing and processing algorithms face challenges due to the satellite's limited memory, processing power, and computational resources. This work proposes and evaluates neural networks designed for real-time inference on unfocused SAR data acquired in Stripmap and Interferometric Wide (IW) modes captured with Sentinel-1. Our results demonstrate the feasibility of using one of our models for on-board processing and deployment on an FPGA. Additionally, by investigating a binary classification task between ships and windmills, we demonstrate that target classification is possible.
comment: Accepted at Big Data from Space 2025 (BiDS'25)
☆ REFN: A Reinforcement-Learning-From-Network Framework against 1-day/n-day Exploitations
The exploitation of 1 day or n day vulnerabilities poses severe threats to networked devices due to massive deployment scales and delayed patching (average Mean Time To Patch exceeds 60 days). Existing defenses, including host based patching and network based filtering, are inadequate due to limited scalability across diverse devices, compatibility issues especially with embedded or legacy systems, and error prone deployment process (manual patch validation). To address these issues, we introduce REFN (Reinforcement Learning From Network), a novel framework that trains Large Language Models (LLMs) to autonomously generate network filters to prevent 1 day or n day exploitations. REFN ensures scalability by uniquely employs Reinforcement Learning (RL) driven by online network rewards instead of traditional Human Feedback (RLHF). REFN guarantees compatibility via unified deployment on edge security gateways (Amazon Eero). REFN provides robustness via online validation using real network traffic. Crucially, REFN addresses three core challenges in training LLMs for exploit prevention: 1) expanding current LLMs limited vulnerability fixing expertise via Agentic RAG based Knowledge Distillation, 2) bridging current LLMs language to network gaps through an RL From VNF Pipeline that translates language context (vulnerability description) into network enforcement, 3) addressing the LLM hallucination and non determinism via the Online Agentic Validation that penalizes erroneous outputs. Evaluated across 22 families of 1 day or n day exploits, REFN demonstrates effectiveness (21.1 percent higher accuracy than alternatives), efficiency (Mean Time To Patch of 3.65 hours) and scalability (easily scale to 10K devices). REFN serves as an initial step toward training LLMs to rapidly prevent massive scale 1 day or n day exploitations.
☆ MDNS: Masked Diffusion Neural Sampler via Stochastic Optimal Control
We study the problem of learning a neural sampler to generate samples from discrete state spaces where the target probability mass function $\pi\propto\mathrm{e}^{-U}$ is known up to a normalizing constant, which is an important task in fields such as statistical physics, machine learning, combinatorial optimization, etc. To better address this challenging task when the state space has a large cardinality and the distribution is multi-modal, we propose $\textbf{M}$asked $\textbf{D}$iffusion $\textbf{N}$eural $\textbf{S}$ampler ($\textbf{MDNS}$), a novel framework for training discrete neural samplers by aligning two path measures through a family of learning objectives, theoretically grounded in the stochastic optimal control of the continuous-time Markov chains. We validate the efficiency and scalability of MDNS through extensive experiments on various distributions with distinct statistical properties, where MDNS learns to accurately sample from the target distributions despite the extremely high problem dimensions and outperforms other learning-based baselines by a large margin. A comprehensive study of ablations and extensions is also provided to demonstrate the efficacy and potential of the proposed framework.
☆ Advancing Autonomous Incident Response: Leveraging LLMs and Cyber Threat Intelligence
Effective incident response (IR) is critical for mitigating cyber threats, yet security teams are overwhelmed by alert fatigue, high false-positive rates, and the vast volume of unstructured Cyber Threat Intelligence (CTI) documents. While CTI holds immense potential for enriching security operations, its extensive and fragmented nature makes manual analysis time-consuming and resource-intensive. To bridge this gap, we introduce a novel Retrieval-Augmented Generation (RAG)-based framework that leverages Large Language Models (LLMs) to automate and enhance IR by integrating dynamically retrieved CTI. Our approach introduces a hybrid retrieval mechanism that combines NLP-based similarity searches within a CTI vector database with standardized queries to external CTI platforms, facilitating context-aware enrichment of security alerts. The augmented intelligence is then leveraged by an LLM-powered response generation module, which formulates precise, actionable, and contextually relevant incident mitigation strategies. We propose a dual evaluation paradigm, wherein automated assessment using an auxiliary LLM is systematically cross-validated by cybersecurity experts. Empirical validation on real-world and simulated alerts demonstrates that our approach enhances the accuracy, contextualization, and efficiency of IR, alleviating analyst workload and reducing response latency. This work underscores the potential of LLM-driven CTI fusion in advancing autonomous security operations and establishing a foundation for intelligent, adaptive cybersecurity frameworks.
Graph Learning via Logic-Based Weisfeiler-Leman Variants and Tabularization
We present a novel approach for graph classification based on tabularizing graph data via variants of the Weisfeiler-Leman algorithm and then applying methods for tabular data. We investigate a comprehensive class of Weisfeiler-Leman variants obtained by modifying the underlying logical framework and establish a precise theoretical characterization of their expressive power. We then test two selected variants on twelve benchmark datasets that span a range of different domains. The experiments demonstrate that our approach matches the accuracy of state-of-the-art graph neural networks and graph kernels while being more time or memory efficient, depending on the dataset. We also briefly discuss directly extracting interpretable modal logic formulas from graph datasets.
☆ Geospatial Diffusion for Land Cover Imperviousness Change Forecasting
Land cover, both present and future, has a significant effect on several important Earth system processes. For example, impervious surfaces heat up and speed up surface water runoff and reduce groundwater infiltration, with concomitant effects on regional hydrology and flood risk. While regional Earth System models have increasing skill at forecasting hydrologic and atmospheric processes at high resolution in future climate scenarios, our ability to forecast land-use and land-cover change (LULC), a critical input to risk and consequences assessment for these scenarios, has lagged behind. In this paper, we propose a new paradigm exploiting Generative AI (GenAI) for land cover change forecasting by framing LULC forecasting as a data synthesis problem conditioned on historical and auxiliary data-sources. We discuss desirable properties of generative models that fundament our research premise, and demonstrate the feasibility of our methodology through experiments on imperviousness forecasting using historical data covering the entire conterminous United States. Specifically, we train a diffusion model for decadal forecasting of imperviousness and compare its performance to a baseline that assumes no change at all. Evaluation across 12 metropolitan areas for a year held-out during training indicate that for average resolutions $\geq 0.7\times0.7km^2$ our model yields MAE lower than such a baseline. This finding corroborates that such a generative model can capture spatiotemporal patterns from historical data that are significant for projecting future change. Finally, we discuss future research to incorporate auxiliary information on physical properties about the Earth, as well as supporting simulation of different scenarios by means of driver variables.
☆ SPHENIC: Topology-Informed Multi-View Clustering for Spatial Transcriptomics
By incorporating spatial location information, spatial-transcriptomics clustering yields more comprehensive insights into cell subpopulation identification. Despite recent progress, existing methods have at least two limitations: (i) topological learning typically considers only representations of individual cells or their interaction graphs; however, spatial transcriptomic profiles are often noisy, making these approaches vulnerable to low-quality topological signals, and (ii) insufficient modeling of spatial neighborhood information leads to low-quality spatial embeddings. To address these limitations, we propose SPHENIC, a novel Spatial Persistent Homology Enhanced Neighborhood Integrative Clustering method. Specifically, SPHENIC incorporates invariant topological features into the clustering network to achieve stable representation learning. Additionally, to construct high-quality spatial embeddings that reflect the true cellular distribution, we design the Spatial Constraint and Distribution Optimization Module (SCDOM). This module increases the similarity between a cell's embedding and those of its spatial neighbors, decreases similarity with non-neighboring cells, and thereby produces clustering-friendly spatial embeddings. Extensive experiments on 14 benchmark spatial transcriptomic slices demonstrate that SPHENIC achieves superior performance on the spatial clustering task, outperforming existing state-of-the-art methods by 3.31%-6.54% over the best alternative.
comment: 12 pages, 6 figures, 2 tables
☆ Conditional Information Bottleneck for Multimodal Fusion: Overcoming Shortcut Learning in Sarcasm Detection
Multimodal sarcasm detection is a complex task that requires distinguishing subtle complementary signals across modalities while filtering out irrelevant information. Many advanced methods rely on learning shortcuts from datasets rather than extracting intended sarcasm-related features. However, our experiments show that shortcut learning impairs the model's generalization in real-world scenarios. Furthermore, we reveal the weaknesses of current modality fusion strategies for multimodal sarcasm detection through systematic experiments, highlighting the necessity of focusing on effective modality fusion for complex emotion recognition. To address these challenges, we construct MUStARD++$^{R}$ by removing shortcut signals from MUStARD++. Then, a Multimodal Conditional Information Bottleneck (MCIB) model is introduced to enable efficient multimodal fusion for sarcasm detection. Experimental results show that the MCIB achieves the best performance without relying on shortcut learning.
☆ Energy-Based Models for Predicting Mutational Effects on Proteins
Predicting changes in binding free energy ($\Delta\Delta G$) is a vital task in protein engineering and protein-protein interaction (PPI) engineering for drug discovery. Previous works have observed a high correlation between $\Delta\Delta G$ and entropy, using probabilities of biologically important objects such as side chain angles and residue identities to estimate $\Delta\Delta G$. However, estimating the full conformational distribution of a protein complex is generally considered intractable. In this work, we propose a new approach to $\Delta\Delta G$ prediction that avoids this issue by instead leveraging energy-based models for estimating the probability of a complex's conformation. Specifically, we novelly decompose $\Delta\Delta G$ into a sequence-based component estimated by an inverse folding model and a structure-based component estimated by an energy model. This decomposition is made tractable by assuming equilibrium between the bound and unbound states, allowing us to simplify the estimation of degeneracies associated with each state. Unlike previous deep learning-based methods, our method incorporates an energy-based physical inductive bias by connecting the often-used sequence log-odds ratio-based approach to $\Delta\Delta G$ prediction with a new $\Delta\Delta E$ term grounded in statistical mechanics. We demonstrate superiority over existing state-of-the-art structure and sequence-based deep learning methods in $\Delta\Delta G$ prediction and antibody optimization against SARS-CoV-2.
comment: 12 pages
☆ Beyond Random Sampling: Instance Quality-Based Data Partitioning via Item Response Theory
Robust validation of Machine Learning (ML) models is essential, but traditional data partitioning approaches often ignore the intrinsic quality of each instance. This study proposes the use of Item Response Theory (IRT) parameters to characterize and guide the partitioning of datasets in the model validation stage. The impact of IRT-informed partitioning strategies on the performance of several ML models in four tabular datasets was evaluated. The results obtained demonstrate that IRT reveals an inherent heterogeneity of the instances and highlights the existence of informative subgroups of instances within the same dataset. Based on IRT, balanced partitions were created that consistently help to better understand the tradeoff between bias and variance of the models. In addition, the guessing parameter proved to be a determining factor: training with high-guessing instances can significantly impair model performance and resulted in cases with accuracy below 50%, while other partitions reached more than 70% in the same dataset.
comment: 12 pages, 8 figures, 1 table, Accepted to the ENIAC 2025 conference
☆ Variance Reduced Policy Gradient Method for Multi-Objective Reinforcement Learning
Multi-Objective Reinforcement Learning (MORL) is a generalization of traditional Reinforcement Learning (RL) that aims to optimize multiple, often conflicting objectives simultaneously rather than focusing on a single reward. This approach is crucial in complex decision-making scenarios where agents must balance trade-offs between various goals, such as maximizing performance while minimizing costs. We consider the problem of MORL where the objectives are combined using a non-linear scalarization function. Just like in standard RL, policy gradient methods (PGMs) are amongst the most effective for handling large and continuous state-action spaces in MORL. However, existing PGMs for MORL suffer from high sample inefficiency, requiring large amounts of data to be effective. Previous attempts to solve this problem rely on overly strict assumptions, losing PGMs' benefits in scalability to large state-action spaces. In this work, we address the issue of sample efficiency by implementing variance-reduction techniques to reduce the sample complexity of policy gradients while maintaining general assumptions.
comment: 7 pages, 4 figures
☆ Oops!... They Stole it Again: Attacks on Split Learning
Split Learning (SL) is a collaborative learning approach that improves privacy by keeping data on the client-side while sharing only the intermediate output with a server. However, the distributed nature of SL introduces new security challenges, necessitating a comprehensive exploration of potential attacks. This paper systematically reviews various attacks on SL, classifying them based on factors such as the attacker's role, the type of privacy risks, when data leaks occur, and where vulnerabilities exist. We also analyze existing defense methods, including cryptographic methods, data modification approaches, distributed techniques, and hybrid solutions. Our findings reveal security gaps, highlighting the effectiveness and limitations of existing defenses. By identifying open challenges and future directions, this work provides valuable information to improve SL privacy issues and guide further research.
☆ On Spectral Properties of Gradient-based Explanation Methods
Understanding the behavior of deep networks is crucial to increase our confidence in their results. Despite an extensive body of work for explaining their predictions, researchers have faced reliability issues, which can be attributed to insufficient formalism. In our research, we adopt novel probabilistic and spectral perspectives to formally analyze explanation methods. Our study reveals a pervasive spectral bias stemming from the use of gradient, and sheds light on some common design choices that have been discovered experimentally, in particular, the use of squared gradient and input perturbation. We further characterize how the choice of perturbation hyperparameters in explanation methods, such as SmoothGrad, can lead to inconsistent explanations and introduce two remedies based on our proposed formalism: (i) a mechanism to determine a standard perturbation scale, and (ii) an aggregation method which we call SpectralLens. Finally, we substantiate our theoretical results through quantitative evaluations.
comment: 36 pages, 16 figures, published in European Conference on Computer Vision 2024
☆ FreeGAD: A Training-Free yet Effective Approach for Graph Anomaly Detection
Graph Anomaly Detection (GAD) aims to identify nodes that deviate from the majority within a graph, playing a crucial role in applications such as social networks and e-commerce. Despite the current advancements in deep learning-based GAD, existing approaches often suffer from high deployment costs and poor scalability due to their complex and resource-intensive training processes. Surprisingly, our empirical findings suggest that the training phase of deep GAD methods, commonly perceived as crucial, may actually contribute less to anomaly detection performance than expected. Inspired by this, we propose FreeGAD, a novel training-free yet effective GAD method. Specifically, it leverages an affinity-gated residual encoder to generate anomaly-aware representations. Meanwhile, FreeGAD identifies anchor nodes as pseudo-normal and anomalous guides, followed by calculating anomaly scores through anchor-guided statistical deviations. Extensive experiments demonstrate that FreeGAD achieves superior anomaly detection performance, efficiency, and scalability on multiple benchmark datasets from diverse domains, without any training or iterative optimization.
Self-Supervised Temporal Super-Resolution of Energy Data using Generative Adversarial Transformer
To bridge the temporal granularity gap in energy network design and operation based on Energy System Models, resampling of time series is required. While conventional upsampling methods are computationally efficient, they often result in significant information loss or increased noise. Advanced models such as time series generation models, Super-Resolution models and imputation models show potential, but also face fundamental challenges. The goal of time series generative models is to learn the distribution of the original data to generate high-resolution series with similar statistical characteristics. This is not entirely consistent with the definition of upsampling. Time series Super-Resolution models or imputation models can degrade the accuracy of upsampling because the input low-resolution time series are sparse and may have insufficient context. Moreover, such models usually rely on supervised learning paradigms. This presents a fundamental application paradox: their training requires the high-resolution time series that is intrinsically absent in upsampling application scenarios. To address the mentioned upsampling issue, this paper introduces a new method utilizing Generative Adversarial Transformers (GATs), which can be trained without access to any ground-truth high-resolution data. Compared with conventional interpolation methods, the introduced method can reduce the root mean square error (RMSE) of upsampling tasks by 9%, and the accuracy of a model predictive control (MPC) application scenario is improved by 13%.
☆ GNN-based Unified Deep Learning
Deep learning models often struggle to maintain generalizability in medical imaging, particularly under domain-fracture scenarios where distribution shifts arise from varying imaging techniques, acquisition protocols, patient populations, demographics, and equipment. In practice, each hospital may need to train distinct models - differing in learning task, width, and depth - to match local data. For example, one hospital may use Euclidean architectures such as MLPs and CNNs for tabular or grid-like image data, while another may require non-Euclidean architectures such as graph neural networks (GNNs) for irregular data like brain connectomes. How to train such heterogeneous models coherently across datasets, while enhancing each model's generalizability, remains an open problem. We propose unified learning, a new paradigm that encodes each model into a graph representation, enabling unification in a shared graph learning space. A GNN then guides optimization of these unified models. By decoupling parameters of individual models and controlling them through a unified GNN (uGNN), our method supports parameter sharing and knowledge transfer across varying architectures (MLPs, CNNs, GNNs) and distributions, improving generalizability. Evaluations on MorphoMNIST and two MedMNIST benchmarks - PneumoniaMNIST and BreastMNIST - show that unified learning boosts performance when models are trained on unique distributions and tested on mixed ones, demonstrating strong robustness to unseen data with large distribution shifts. Code and benchmarks: https://github.com/basiralab/uGNN
☆ Technical Report: Facilitating the Adoption of Causal Inference Methods Through LLM-Empowered Co-Pilot
Estimating treatment effects (TE) from observational data is a critical yet complex task in many fields, from healthcare and economics to public policy. While recent advances in machine learning and causal inference have produced powerful estimation techniques, their adoption remains limited due to the need for deep expertise in causal assumptions, adjustment strategies, and model selection. In this paper, we introduce CATE-B, an open-source co-pilot system that uses large language models (LLMs) within an agentic framework to guide users through the end-to-end process of treatment effect estimation. CATE-B assists in (i) constructing a structural causal model via causal discovery and LLM-based edge orientation, (ii) identifying robust adjustment sets through a novel Minimal Uncertainty Adjustment Set criterion, and (iii) selecting appropriate regression methods tailored to the causal structure and dataset characteristics. To encourage reproducibility and evaluation, we release a suite of benchmark tasks spanning diverse domains and causal complexities. By combining causal inference with intelligent, interactive assistance, CATE-B lowers the barrier to rigorous causal analysis and lays the foundation for a new class of benchmarks in automated treatment effect estimation.
☆ Reproducible Physiological Features in Affective Computing: A Preliminary Analysis on Arousal Modeling
In Affective Computing, a key challenge lies in reliably linking subjective emotional experiences with objective physiological markers. This preliminary study addresses the issue of reproducibility by identifying physiological features from cardiovascular and electrodermal signals that are associated with continuous self-reports of arousal levels. Using the Continuously Annotated Signal of Emotion dataset, we analyzed 164 features extracted from cardiac and electrodermal signals of 30 participants exposed to short emotion-evoking videos. Feature selection was performed using the Terminating-Random Experiments (T-Rex) method, which performs variable selection systematically controlling a user-defined target False Discovery Rate. Remarkably, among all candidate features, only two electrodermal-derived features exhibited reproducible and statistically significant associations with arousal, achieving a 100\% confirmation rate. These results highlight the necessity of rigorous reproducibility assessments in physiological features selection, an aspect often overlooked in Affective Computing. Our approach is particularly promising for applications in safety-critical environments requiring trustworthy and reliable white box models, such as mental disorder recognition and human-robot interaction systems.
comment: Submitted to 2025 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE). 6 pages, 3 figures
☆ Physics-Informed Deep Contrast Source Inversion: A Unified Framework for Inverse Scattering Problems
Inverse scattering problems are critical in electromagnetic imaging and medical diagnostics but are challenged by their nonlinearity and diverse measurement scenarios. This paper proposes a physics-informed deep contrast source inversion framework (DeepCSI) for fast and accurate medium reconstruction across various measurement conditions. Inspired by contrast source inversion (CSI) and neural operator methods, a residual multilayer perceptron (ResMLP) is employed to model current distributions in the region of interest under different transmitter excitations, effectively linearizing the nonlinear inverse scattering problem and significantly reducing the computational cost of traditional full-waveform inversion. By modeling medium parameters as learnable tensors and utilizing a hybrid loss function that integrates state equation loss, data equation loss, and total variation regularization, DeepCSI establishes a fully differentiable framework for joint optimization of network parameters and medium properties. Compared with conventional methods, DeepCSI offers advantages in terms of simplicity and universal modeling capabilities for diverse measurement scenarios, including phase-less and multi-frequency observation. Simulations and experiments demonstrate that DeepCSI achieves high-precision, robust reconstruction under full-data, phaseless data, and multifrequency conditions, outperforming traditional CSI methods and providing an efficient and universal solution for complex inverse scattering problems.
☆ Stabilizing Long-term Multi-turn Reinforcement Learning with Gated Rewards
Reward sparsity in long-horizon reinforcement learning (RL) tasks remains a significant challenge, while existing outcome-based reward shaping struggles to define meaningful immediate rewards without introducing bias or requiring explicit task decomposition. Alternatively, verification-based reward shaping uses stepwise critics, but misalignment between immediate rewards and long-term objectives can lead to reward hacking and suboptimal policies. In this work, we address this problem in the context of software engineering (SWE) tasks, where multi-turn reasoning and rule-based verification are critical. We introduce the SWE-oriented RL Framework, a unified system supporting multi-turn interaction, docker-based execution, and customizable reward functions. Additionally, we propose Gated Reward Accumulation (G-RA), a novel method that accumulates immediate rewards only when high-level (long-term) rewards meet a predefined threshold, ensuring stable RL optimization. Experiments on SWE-bench Verified and kBench demonstrate that G-RA leads to an increase in completion rates (47.6\% \rightarrow 93.8\% and 22.0\% \rightarrow 86.0\%) and modification rates (19.6\% \rightarrow 23.8\% and 12.0\% \rightarrow 42.0\%), while avoiding policy degradation caused by reward misalignment. Our findings highlight the importance of balanced reward accumulation in long-horizon RL and provide a practical solution.
☆ Driving Accurate Allergen Prediction with Protein Language Models and Generalization-Focused Evaluation
Allergens, typically proteins capable of triggering adverse immune responses, represent a significant public health challenge. To accurately identify allergen proteins, we introduce Applm (Allergen Prediction with Protein Language Models), a computational framework that leverages the 100-billion parameter xTrimoPGLM protein language model. We show that Applm consistently outperforms seven state-of-the-art methods in a diverse set of tasks that closely resemble difficult real-world scenarios. These include identifying novel allergens that lack similar examples in the training set, differentiating between allergens and non-allergens among homologs with high sequence similarity, and assessing functional consequences of mutations that create few changes to the protein sequences. Our analysis confirms that xTrimoPGLM, originally trained on one trillion tokens to capture general protein sequence characteristics, is crucial for Applm's performance by detecting important differences among protein sequences. In addition to providing Applm as open-source software, we also provide our carefully curated benchmark datasets to facilitate future research.
comment: 59 pages, 5 main figures, 15 supplementary figures, 2 supplementary tables
☆ Mitigating Exponential Mixed Frequency Growth through Frequency Selection and Dimensional Separation in Quantum Machine Learning
To leverage the potential computational speedup of quantum computing (QC), research in quantum machine learning (QML) has gained increasing prominence. Angle encoding techniques in QML models have been shown to generate truncated Fourier series, offering asymptotically universal function approximation capabilities. By selecting efficient feature maps (FMs) within quantum circuits, one can leverage the exponential growth of Fourier frequencies for improved approximation. In multi-dimensional settings, additional input dimensions induce further exponential scaling via mixed frequencies. In practice, however, quantum models frequently fail at regression tasks. Through two white-box experiments, we show that such failures can occur even when the relevant frequencies are present, due to an insufficient number of trainable parameters. In order to mitigate the double-exponential parameter growth resulting from double-exponentially growing frequencies, we propose frequency selection and dimensional separation as techniques to constrain the number of parameters, thereby improving trainability. By restricting the QML model to essential frequencies and permitting mixed frequencies only among feature dimensions with known interdependence, we expand the set of tractable problems on current hardware. We demonstrate the reduced parameter requirements by fitting two white-box functions with known frequency spectrum and dimensional interdependencies that could not be fitted with the default methods. The reduced parameter requirements permit us to perform training on a noisy quantum simulator and to demonstrate inference on real quantum hardware.
☆ Projected Coupled Diffusion for Test-Time Constrained Joint Generation
Modifications to test-time sampling have emerged as an important extension to diffusion algorithms, with the goal of biasing the generative process to achieve a given objective without having to retrain the entire diffusion model. However, generating jointly correlated samples from multiple pre-trained diffusion models while simultaneously enforcing task-specific constraints without costly retraining has remained challenging. To this end, we propose Projected Coupled Diffusion (PCD), a novel test-time framework for constrained joint generation. PCD introduces a coupled guidance term into the generative dynamics to encourage coordination between diffusion models and incorporates a projection step at each diffusion step to enforce hard constraints. Empirically, we demonstrate the effectiveness of PCD in application scenarios of image-pair generation, object manipulation, and multi-robot motion planning. Our results show improved coupling effects and guaranteed constraint satisfaction without incurring excessive computational costs.
comment: 37 pages
☆ Nonlocal Monte Carlo via Reinforcement Learning
Optimizing or sampling complex cost functions of combinatorial optimization problems is a longstanding challenge across disciplines and applications. When employing family of conventional algorithms based on Markov Chain Monte Carlo (MCMC) such as simulated annealing or parallel tempering, one assumes homogeneous (equilibrium) temperature profiles across input. This instance independent approach was shown to be ineffective for the hardest benchmarks near a computational phase transition when the so-called overlap-gap-property holds. In these regimes conventional MCMC struggles to unfreeze rigid variables, escape suboptimal basins of attraction, and sample high-quality and diverse solutions. In order to mitigate these challenges, Nonequilibrium Nonlocal Monte Carlo (NMC) algorithms were proposed that leverage inhomogeneous temperature profiles thereby accelerating exploration of the configuration space without compromising its exploitation. Here, we employ deep reinforcement learning (RL) to train the nonlocal transition policies of NMC which were previously designed phenomenologically. We demonstrate that the resulting solver can be trained solely by observing energy changes of the configuration space exploration as RL rewards and the local minimum energy landscape geometry as RL states. We further show that the trained policies improve upon the standard MCMC-based and nonlocal simulated annealing on hard uniform random and scale-free random 4-SAT benchmarks in terms of residual energy, time-to-solution, and diversity of solutions metrics.
☆ Virtual Sensing for Solder Layer Degradation and Temperature Monitoring in IGBT Modules
Monitoring the degradation state of Insulated Gate Bipolar Transistor (IGBT) modules is essential for ensuring the reliability and longevity of power electronic systems, especially in safety-critical and high-performance applications. However, direct measurement of key degradation indicators - such as junction temperature, solder fatigue or delamination - remains challenging due to the physical inaccessibility of internal components and the harsh environment. In this context, machine learning-based virtual sensing offers a promising alternative by bridging the gap from feasible sensor placement to the relevant but inaccessible locations. This paper explores the feasibility of estimating the degradation state of solder layers, and the corresponding full temperature maps based on a limited number of physical sensors. Based on synthetic data of a specific degradation mode, we obtain a high accuracy in the estimation of the degraded solder area (1.17% mean absolute error), and are able to reproduce the surface temperature of the IGBT with a maximum relative error of 4.56% (corresponding to an average relative error of 0.37%).
comment: Andrea Urgolo and Monika Stipsitz contributed equally to this work
☆ PASS: Probabilistic Agentic Supernet Sampling for Interpretable and Adaptive Chest X-Ray Reasoning
Existing tool-augmented agentic systems are limited in the real world by (i) black-box reasoning steps that undermine trust of decision-making and pose safety risks, (ii) poor multimodal integration, which is inherently critical for healthcare tasks, and (iii) rigid and computationally inefficient agentic pipelines. We introduce PASS (Probabilistic Agentic Supernet Sampling), the first multimodal framework to address these challenges in the context of Chest X-Ray (CXR) reasoning. PASS adaptively samples agentic workflows over a multi-tool graph, yielding decision paths annotated with interpretable probabilities. Given the complex CXR reasoning task with multimodal medical data, PASS leverages its learned task-conditioned distribution over the agentic supernet. Thus, it adaptively selects the most suitable tool at each supernet layer, offering probability-annotated trajectories for post-hoc audits and directly enhancing medical AI safety. PASS also continuously compresses salient findings into an evolving personalized memory, while dynamically deciding whether to deepen its reasoning path or invoke an early exit for efficiency. To optimize a Pareto frontier balancing performance and cost, we design a novel three-stage training procedure, including expert knowledge warm-up, contrastive path-ranking, and cost-aware reinforcement learning. To facilitate rigorous evaluation, we introduce CAB-E, a comprehensive benchmark for multi-step, safety-critical, free-form CXR reasoning. Experiments across various benchmarks validate that PASS significantly outperforms strong baselines in multiple metrics (e.g., accuracy, AUC, LLM-J.) while balancing computational costs, pushing a new paradigm shift towards interpretable, adaptive, and multimodal medical agentic systems.
☆ A Unified Multi-Agent Framework for Universal Multimodal Understanding and Generation
Real-world multimodal applications often require any-to-any capabilities, enabling both understanding and generation across modalities including text, image, audio, and video. However, integrating the strengths of autoregressive language models (LLMs) for reasoning and diffusion models for high-fidelity generation remains challenging. Existing approaches rely on rigid pipelines or tightly coupled architectures, limiting flexibility and scalability. We propose MAGUS (Multi-Agent Guided Unified Multimodal System), a modular framework that unifies multimodal understanding and generation via two decoupled phases: Cognition and Deliberation. MAGUS enables symbolic multi-agent collaboration within a shared textual workspace. In the Cognition phase, three role-conditioned multimodal LLM agents - Perceiver, Planner, and Reflector - engage in collaborative dialogue to perform structured understanding and planning. The Deliberation phase incorporates a Growth-Aware Search mechanism that orchestrates LLM-based reasoning and diffusion-based generation in a mutually reinforcing manner. MAGUS supports plug-and-play extensibility, scalable any-to-any modality conversion, and semantic alignment - all without the need for joint training. Experiments across multiple benchmarks, including image, video, and audio generation, as well as cross-modal instruction following, demonstrate that MAGUS outperforms strong baselines and state-of-the-art systems. Notably, on the MME benchmark, MAGUS surpasses the powerful closed-source model GPT-4o.
comment: 8 pages, 5 figures
☆ Contrastive ECOC: Learning Output Codes for Adversarial Defense
Although one-hot encoding is commonly used for multiclass classification, it is not always the most effective encoding mechanism. Error Correcting Output Codes (ECOC) address multiclass classification by mapping each class to a unique codeword used as a label. Traditional ECOC methods rely on manually designed or randomly generated codebooks, which are labor-intensive and may yield suboptimal, dataset-agnostic results. This paper introduces three models for automated codebook learning based on contrastive learning, allowing codebooks to be learned directly and adaptively from data. Across four datasets, our proposed models demonstrate superior robustness to adversarial attacks compared to two baselines. The source is available at https://github.com/YuChou20/Automated-Codebook-Learning-with-Error-Correcting-Output-Code-Technique.
☆ On the Complexity-Faithfulness Trade-off of Gradient-Based Explanations
ReLU networks, while prevalent for visual data, have sharp transitions, sometimes relying on individual pixels for predictions, making vanilla gradient-based explanations noisy and difficult to interpret. Existing methods, such as GradCAM, smooth these explanations by producing surrogate models at the cost of faithfulness. We introduce a unifying spectral framework to systematically analyze and quantify smoothness, faithfulness, and their trade-off in explanations. Using this framework, we quantify and regularize the contribution of ReLU networks to high-frequency information, providing a principled approach to identifying this trade-off. Our analysis characterizes how surrogate-based smoothing distorts explanations, leading to an ``explanation gap'' that we formally define and measure for different post-hoc methods. Finally, we validate our theoretical findings across different design choices, datasets, and ablations.
comment: 23 pages, 14 figures, to be published in International Conference on Computer Vision 2025
☆ Learning State-Space Models of Dynamic Systems from Arbitrary Data using Joint Embedding Predictive Architectures
With the advent of Joint Embedding Predictive Architectures (JEPAs), which appear to be more capable than reconstruction-based methods, this paper introduces a novel technique for creating world models using continuous-time dynamic systems from arbitrary observation data. The proposed method integrates sequence embeddings with neural ordinary differential equations (neural ODEs). It employs loss functions that enforce contractive embeddings and Lipschitz constants in state transitions to construct a well-organized latent state space. The approach's effectiveness is demonstrated through the generation of structured latent state-space models for a simple pendulum system using only image data. This opens up a new technique for developing more general control algorithms and estimation techniques with broad applications in robotics.
comment: 6 Pages, Published in IFAC Joint Symposia on Mechatronics & Robotics 2025
☆ Pinet: Optimizing hard-constrained neural networks with orthogonal projection layers
We introduce an output layer for neural networks that ensures satisfaction of convex constraints. Our approach, $\Pi$net, leverages operator splitting for rapid and reliable projections in the forward pass, and the implicit function theorem for backpropagation. We deploy $\Pi$net as a feasible-by-design optimization proxy for parametric constrained optimization problems and obtain modest-accuracy solutions faster than traditional solvers when solving a single problem, and significantly faster for a batch of problems. We surpass state-of-the-art learning approaches in terms of training time, solution quality, and robustness to hyperparameter tuning, while maintaining similar inference times. Finally, we tackle multi-vehicle motion planning with non-convex trajectory preferences and provide $\Pi$net as a GPU-ready package implemented in JAX with effective tuning heuristics.
☆ Confounding is a Pervasive Problem in Real World Recommender Systems
Unobserved confounding arises when an unmeasured feature influences both the treatment and the outcome, leading to biased causal effect estimates. This issue undermines observational studies in fields like economics, medicine, ecology or epidemiology. Recommender systems leveraging fully observed data seem not to be vulnerable to this problem. However many standard practices in recommender systems result in observed features being ignored, resulting in effectively the same problem. This paper will show that numerous common practices such as feature engineering, A/B testing and modularization can in fact introduce confounding into recommendation systems and hamper their performance. Several illustrations of the phenomena are provided, supported by simulation studies with practical suggestions about how practitioners may reduce or avoid the affects of confounding in real systems.
comment: 12 pages, 4 figures
☆ EDAPT: Towards Calibration-Free BCIs with Continual Online Adaptation
Brain-computer interfaces (BCIs) suffer from accuracy degradation as neural signals drift over time and vary across users, requiring frequent recalibration that limits practical deployment. We introduce EDAPT, a task- and model-agnostic framework that eliminates calibration through continual model adaptation. EDAPT first trains a baseline decoder using data from multiple users, then continually personalizes this model via supervised finetuning as the neural patterns evolve during use. We tested EDAPT across nine datasets covering three BCI tasks, and found that it consistently improved accuracy over conventional, static methods. These improvements primarily stem from combining population-level pretraining and online continual finetuning, with unsupervised domain adaptation providing further gains on some datasets. EDAPT runs efficiently, updating models within 200 milliseconds on consumer-grade hardware. Finally, decoding accuracy scales with total data budget rather than its allocation between subjects and trials. EDAPT provides a practical pathway toward calibration-free BCIs, reducing a major barrier to BCI deployment.
comment: Preprint
GraphFedMIG: Tackling Class Imbalance in Federated Graph Learning via Mutual Information-Guided Generation
Federated graph learning (FGL) enables multiple clients to collaboratively train powerful graph neural networks without sharing their private, decentralized graph data. Inherited from generic federated learning, FGL is critically challenged by statistical heterogeneity, where non-IID data distributions across clients can severely impair model performance. A particularly destructive form of this is class imbalance, which causes the global model to become biased towards majority classes and fail at identifying rare but critical events. This issue is exacerbated in FGL, as nodes from a minority class are often surrounded by biased neighborhood information, hindering the learning of expressive embeddings. To grapple with this challenge, we propose GraphFedMIG, a novel FGL framework that reframes the problem as a federated generative data augmentation task. GraphFedMIG employs a hierarchical generative adversarial network where each client trains a local generator to synthesize high-fidelity feature representations. To provide tailored supervision, clients are grouped into clusters, each sharing a dedicated discriminator. Crucially, the framework designs a mutual information-guided mechanism to steer the evolution of these client generators. By calculating each client's unique informational value, this mechanism corrects the local generator parameters, ensuring that subsequent rounds of mutual information-guided generation are focused on producing high-value, minority-class features. We conduct extensive experiments on four real-world datasets, and the results demonstrate the superiority of the proposed GraphFedMIG compared with other baselines.
☆ SingleStrip: learning skull-stripping from a single labeled example MICCAI 2025
Deep learning segmentation relies heavily on labeled data, but manual labeling is laborious and time-consuming, especially for volumetric images such as brain magnetic resonance imaging (MRI). While recent domain-randomization techniques alleviate the dependency on labeled data by synthesizing diverse training images from label maps, they offer limited anatomical variability when very few label maps are available. Semi-supervised self-training addresses label scarcity by iteratively incorporating model predictions into the training set, enabling networks to learn from unlabeled data. In this work, we combine domain randomization with self-training to train three-dimensional skull-stripping networks using as little as a single labeled example. First, we automatically bin voxel intensities, yielding labels we use to synthesize images for training an initial skull-stripping model. Second, we train a convolutional autoencoder (AE) on the labeled example and use its reconstruction error to assess the quality of brain masks predicted for unlabeled data. Third, we select the top-ranking pseudo-labels to fine-tune the network, achieving skull-stripping performance on out-of-distribution data that approaches models trained with more labeled images. We compare AE-based ranking to consistency-based ranking under test-time augmentation, finding that the AE approach yields a stronger correlation with segmentation accuracy. Our results highlight the potential of combining domain randomization and AE-based quality control to enable effective semi-supervised segmentation from extremely limited labeled data. This strategy may ease the labeling burden that slows progress in studies involving new anatomical structures or emerging imaging techniques.
comment: Accepted as an oral presentation to the MICCAI 2025 Data Engineering in Medical Imaging (DEMI) workshop
☆ X-Node: Self-Explanation is All We Need
Graph neural networks (GNNs) have achieved state-of-the-art results in computer vision and medical image classification tasks by capturing structural dependencies across data instances. However, their decision-making remains largely opaque, limiting their trustworthiness in high-stakes clinical applications where interpretability is essential. Existing explainability techniques for GNNs are typically post-hoc and global, offering limited insight into individual node decisions or local reasoning. We introduce X-Node, a self-explaining GNN framework in which each node generates its own explanation as part of the prediction process. For every node, we construct a structured context vector encoding interpretable cues such as degree, centrality, clustering, feature saliency, and label agreement within its local topology. A lightweight Reasoner module maps this context into a compact explanation vector, which serves three purposes: (1) reconstructing the node's latent embedding via a decoder to enforce faithfulness, (2) generating a natural language explanation using a pre-trained LLM (e.g., Grok or Gemini), and (3) guiding the GNN itself via a "text-injection" mechanism that feeds explanations back into the message-passing pipeline. We evaluate X-Node on two graph datasets derived from MedMNIST and MorphoMNIST, integrating it with GCN, GAT, and GIN backbones. Our results show that X-Node maintains competitive classification accuracy while producing faithful, per-node explanations. Repository: https://github.com/basiralab/X-Node.
☆ Efficient Methods for Accurate Sparse Trajectory Recovery and Map Matching ICDE
Real-world trajectories are often sparse with low-sampling rates (i.e., long intervals between consecutive GPS points) and misaligned with road networks, yet many applications demand high-quality data for optimal performance. To improve data quality with sparse trajectories as input, we systematically study two related research problems: trajectory recovery on road network, which aims to infer missing points to recover high-sampling trajectories, and map matching, which aims to map GPS points to road segments to determine underlying routes. In this paper, we present efficient methods TRMMA and MMA for accurate trajectory recovery and map matching, respectively, where MMA serves as the first step of TRMMA. In MMA, we carefully formulate a classification task to map a GPS point from sparse trajectories to a road segment over a small candidate segment set, rather than the entire road network. We develop techniques in MMA to generate effective embeddings that capture the patterns of GPS data, directional information, and road segments, to accurately align sparse trajectories to routes. For trajectory recovery, TRMMA focuses on the segments in the route returned by MMA to infer missing points with position ratios on road segments, producing high-sampling trajectories efficiently by avoiding evaluation of all road segments. Specifically, in TRMMA, we design a dual-transformer encoding process to cohesively capture latent patterns in trajectories and routes, and an effective decoding technique to sequentially predict the position ratios and road segments of missing points. We conduct extensive experiments to compare TRMMA and MMA with numerous existing methods for trajectory recovery and map matching, respectively, on 4 large real-world datasets. TRMMA and MMA consistently achieve the best result quality, often by a significant margin.
comment: 13 pages, accepted by 2025 IEEE 41st International Conference on Data Engineering (ICDE)
☆ Multi-Label Plant Species Prediction with Metadata-Enhanced Multi-Head Vision Transformers
We present a multi-head vision transformer approach for multi-label plant species prediction in vegetation plot images, addressing the PlantCLEF 2025 challenge. The task involves training models on single-species plant images while testing on multi-species quadrat images, creating a drastic domain shift. Our methodology leverages a pre-trained DINOv2 Vision Transformer Base (ViT-B/14) backbone with multiple classification heads for species, genus, and family prediction, utilizing taxonomic hierarchies. Key contributions include multi-scale tiling to capture plants at different scales, dynamic threshold optimization based on mean prediction length, and ensemble strategies through bagging and Hydra model architectures. The approach incorporates various inference techniques including image cropping to remove non-plant artifacts, top-n filtering for prediction constraints, and logit thresholding strategies. Experiments were conducted on approximately 1.4 million training images covering 7,806 plant species. Results demonstrate strong performance, making our submission 3rd best on the private leaderboard. Our code is available at https://github.com/geranium12/plant-clef-2025/tree/v1.0.0.
comment: Accepted for publication at: LifeCLEF Lab at CLEF 2025 Working Notes, 2025, Madrid, Spain
☆ RealAC: A Domain-Agnostic Framework for Realistic and Actionable Counterfactual Explanations
Counterfactual explanations provide human-understandable reasoning for AI-made decisions by describing minimal changes to input features that would alter a model's prediction. To be truly useful in practice, such explanations must be realistic and feasible -- they should respect both the underlying data distribution and user-defined feasibility constraints. Existing approaches often enforce inter-feature dependencies through rigid, hand-crafted constraints or domain-specific knowledge, which limits their generalizability and ability to capture complex, nonlinear relations inherent in data. Moreover, they rarely accommodate user-specified preferences and suggest explanations that are causally implausible or infeasible to act upon. We introduce RealAC, a domain-agnostic framework for generating realistic and actionable counterfactuals. RealAC automatically preserves complex inter-feature dependencies without relying on explicit domain knowledge -- by aligning the joint distributions of feature pairs between factual and counterfactual instances. The framework also allows end-users to ``freeze'' attributes they cannot or do not wish to change by suppressing change in frozen features during optimization. Evaluations on three synthetic and two real datasets demonstrate that RealAC balances realism with actionability. Our method outperforms state-of-the-art baselines and Large Language Model-based counterfactual generation techniques in causal edge score, dependency preservation score, and IM1 realism metric and offers a solution for causality-aware and user-centric counterfactual generation.
☆ SkeySpot: Automating Service Key Detection for Digital Electrical Layout Plans in the Construction Industry
Legacy floor plans, often preserved only as scanned documents, remain essential resources for architecture, urban planning, and facility management in the construction industry. However, the lack of machine-readable floor plans render large-scale interpretation both time-consuming and error-prone. Automated symbol spotting offers a scalable solution by enabling the identification of service key symbols directly from floor plans, supporting workflows such as cost estimation, infrastructure maintenance, and regulatory compliance. This work introduces a labelled Digitised Electrical Layout Plans (DELP) dataset comprising 45 scanned electrical layout plans annotated with 2,450 instances across 34 distinct service key classes. A systematic evaluation framework is proposed using pretrained object detection models for DELP dataset. Among the models benchmarked, YOLOv8 achieves the highest performance with a mean Average Precision (mAP) of 82.5\%. Using YOLOv8, we develop SkeySpot, a lightweight, open-source toolkit for real-time detection, classification, and quantification of electrical symbols. SkeySpot produces structured, standardised outputs that can be scaled up for interoperable building information workflows, ultimately enabling compatibility across downstream applications and regulatory platforms. By lowering dependency on proprietary CAD systems and reducing manual annotation effort, this approach makes the digitisation of electrical layouts more accessible to small and medium-sized enterprises (SMEs) in the construction industry, while supporting broader goals of standardisation, interoperability, and sustainability in the built environment.
comment: 6 pages, preprint accepted in IEEE SMC 2025
☆ Alternating Approach-Putt Models for Multi-Stage Speech Enhancement
Speech enhancement using artificial neural networks aims to remove noise from noisy speech signals while preserving the speech content. However, speech enhancement networks often introduce distortions to the speech signal, referred to as artifacts, which can degrade audio quality. In this work, we propose a post-processing neural network designed to mitigate artifacts introduced by speech enhancement models. Inspired by the analogy of making a `Putt' after an `Approach' in golf, we name our model PuttNet. We demonstrate that alternating between a speech enhancement model and the proposed Putt model leads to improved speech quality, as measured by perceptual quality scores (PESQ), objective intelligibility (STOI), and background noise intrusiveness (CBAK) scores. Furthermore, we illustrate with graphical analysis why this alternating Approach outperforms repeated application of either model alone.
comment: This work has been submitted to the IEEE for possible publication
☆ Unpacking the Implicit Norm Dynamics of Sharpness-Aware Minimization in Tensorized Models
Sharpness-Aware Minimization (SAM) has been proven to be an effective optimization technique for improving generalization in overparameterized models. While prior works have explored the implicit regularization of SAM in simple two-core scale-invariant settings, its behavior in more general tensorized or scale-invariant models remains underexplored. In this work, we leverage scale-invariance to analyze the norm dynamics of SAM in general tensorized models. We introduce the notion of \emph{Norm Deviation} as a global measure of core norm imbalance, and derive its evolution under SAM using gradient flow analysis. We show that SAM's implicit control of Norm Deviation is governed by the covariance between core norms and their gradient magnitudes. Motivated by these findings, we propose a simple yet effective method, \emph{Deviation-Aware Scaling (DAS)}, which explicitly mimics this regularization behavior by scaling core norms in a data-adaptive manner. Our experiments across tensor completion, noisy training, model compression, and parameter-efficient fine-tuning confirm that DAS achieves competitive or improved performance over SAM, while offering reduced computational overhead.
☆ We-Math 2.0: A Versatile MathBook System for Incentivizing Visual Mathematical Reasoning
Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities across various tasks, but still struggle with complex mathematical reasoning. Existing research primarily focuses on dataset construction and method optimization, often overlooking two critical aspects: comprehensive knowledge-driven design and model-centric data space modeling. In this paper, we introduce We-Math 2.0, a unified system that integrates a structured mathematical knowledge system, model-centric data space modeling, and a reinforcement learning (RL)-based training paradigm to comprehensively enhance the mathematical reasoning abilities of MLLMs. The key contributions of We-Math 2.0 are fourfold: (1) MathBook Knowledge System: We construct a five-level hierarchical system encompassing 491 knowledge points and 1,819 fundamental principles. (2) MathBook-Standard & Pro: We develop MathBook-Standard, a dataset that ensures broad conceptual coverage and flexibility through dual expansion. Additionally, we define a three-dimensional difficulty space and generate 7 progressive variants per problem to build MathBook-Pro, a challenging dataset for robust training. (3) MathBook-RL: We propose a two-stage RL framework comprising: (i) Cold-Start Fine-tuning, which aligns the model with knowledge-oriented chain-of-thought reasoning; and (ii) Progressive Alignment RL, leveraging average-reward learning and dynamic data scheduling to achieve progressive alignment across difficulty levels. (4) MathBookEval: We introduce a comprehensive benchmark covering all 491 knowledge points with diverse reasoning step distributions. Experimental results show that MathBook-RL performs competitively with existing baselines on four widely-used benchmarks and achieves strong results on MathBookEval, suggesting promising generalization in mathematical reasoning.
comment: Working in progress
☆ SC2Arena and StarEvolve: Benchmark and Self-Improvement Framework for LLMs in Complex Decision-Making Tasks
Evaluating large language models (LLMs) in complex decision-making is essential for advancing AI's ability for strategic planning and real-time adaptation. However, existing benchmarks for tasks like StarCraft II fail to capture the game's full complexity, such as its complete game context, diverse action spaces, and all playable races. To address this gap, we present SC2Arena, a benchmark that fully supports all playable races, low-level action spaces, and optimizes text-based observations to tackle spatial reasoning challenges. Complementing this, we introduce StarEvolve, a hierarchical framework that integrates strategic planning with tactical execution, featuring iterative self-correction and continuous improvement via fine-tuning on high-quality gameplay data. Its key components include a Planner-Executor-Verifier structure to break down gameplay, and a scoring system for selecting high-quality training samples. Comprehensive analysis using SC2Arena provides valuable insights into developing generalist agents that were not possible with previous benchmarks. Experimental results also demonstrate that our proposed StarEvolve achieves superior performance in strategic planning. Our code, environment, and algorithms are publicly available.
☆ HiRef: Leveraging Hierarchical Ontology and Network Refinement for Robust Medication Recommendation
Medication recommendation is a crucial task for assisting physicians in making timely decisions from longitudinal patient medical records. However, real-world EHR data present significant challenges due to the presence of rarely observed medical entities and incomplete records that may not fully capture the clinical ground truth. While data-driven models trained on longitudinal Electronic Health Records often achieve strong empirical performance, they struggle to generalize under missing or novel conditions, largely due to their reliance on observed co-occurrence patterns. To address these issues, we propose Hierarchical Ontology and Network Refinement for Robust Medication Recommendation (HiRef), a unified framework that combines two complementary structures: (i) the hierarchical semantics encoded in curated medical ontologies, and (ii) refined co-occurrence patterns derived from real-world EHRs. We embed ontology entities in hyperbolic space, which naturally captures tree-like relationships and enables knowledge transfer through shared ancestors, thereby improving generalizability to unseen codes. To further improve robustness, we introduce a prior-guided sparse regularization scheme that refines the EHR co-occurrence graph by suppressing spurious edges while preserving clinically meaningful associations. Our model achieves strong performance on EHR benchmarks (MIMIC-III and MIMIC-IV) and maintains high accuracy under simulated unseen-code settings. Extensive experiments with comprehensive ablation studies demonstrate HiRef's resilience to unseen medical codes, supported by in-depth analyses of the learned sparsified graph structure and medical code embeddings.
☆ ComoRAG: A Cognitive-Inspired Memory-Organized RAG for Stateful Long Narrative Reasoning
Narrative comprehension on long stories and novels has been a challenging domain attributed to their intricate plotlines and entangled, often evolving relations among characters and entities. Given the LLM's diminished reasoning over extended context and high computational cost, retrieval-based approaches remain a pivotal role in practice. However, traditional RAG methods can fall short due to their stateless, single-step retrieval process, which often overlooks the dynamic nature of capturing interconnected relations within long-range context. In this work, we propose ComoRAG, holding the principle that narrative reasoning is not a one-shot process, but a dynamic, evolving interplay between new evidence acquisition and past knowledge consolidation, analogous to human cognition when reasoning with memory-related signals in the brain. Specifically, when encountering a reasoning impasse, ComoRAG undergoes iterative reasoning cycles while interacting with a dynamic memory workspace. In each cycle, it generates probing queries to devise new exploratory paths, then integrates the retrieved evidence of new aspects into a global memory pool, thereby supporting the emergence of a coherent context for the query resolution. Across four challenging long-context narrative benchmarks (200K+ tokens), ComoRAG outperforms strong RAG baselines with consistent relative gains up to 11% compared to the strongest baseline. Further analysis reveals that ComoRAG is particularly advantageous for complex queries requiring global comprehension, offering a principled, cognitively motivated paradigm for retrieval-based long context comprehension towards stateful reasoning. Our code is publicly released at https://github.com/EternityJune25/ComoRAG
☆ XQuant: Breaking the Memory Wall for LLM Inference with KV Cache Rematerialization
Although LLM inference has emerged as a critical workload for many downstream applications, efficiently inferring LLMs is challenging due to the substantial memory footprint and bandwidth requirements. In parallel, compute capabilities have steadily outpaced both memory capacity and bandwidth over the last few decades, a trend that remains evident in modern GPU hardware and exacerbates the challenge of LLM inference. As such, new algorithms are emerging that trade increased computation for reduced memory operations. To that end, we present XQuant, which takes advantage of this trend, enabling an order-of-magnitude reduction in memory consumption through low-bit quantization with substantial accuracy benefits relative to state-of-the-art KV cache quantization methods. We accomplish this by quantizing and caching the layer input activations X, instead of using standard KV caching, and then rematerializing the Keys and Values on-the-fly during inference. This results in an immediate 2$\times$ memory savings compared to KV caching. By applying XQuant, we achieve up to $\sim 7.7\times$ memory savings with $<0.1$ perplexity degradation compared to the FP16 baseline. Furthermore, our approach leverages the fact that X values are similar across layers. Building on this observation, we introduce XQuant-CL, which exploits the cross-layer similarity in the X embeddings for extreme compression. Across different models, XQuant-CL attains up to 10$\times$ memory savings relative to the FP16 baseline with only 0.01 perplexity degradation, and 12.5$\times$ memory savings with only $0.1$ perplexity degradation. XQuant exploits the rapidly increasing compute capabilities of hardware platforms to eliminate the memory bottleneck, while surpassing state-of-the-art KV cache quantization methods and achieving near-FP16 accuracy across a wide range of models.
comment: 24 pages
☆ A Unified Evaluation Framework for Multi-Annotator Tendency Learning
Recent works have emerged in multi-annotator learning that shift focus from Consensus-oriented Learning (CoL), which aggregates multiple annotations into a single ground-truth prediction, to Individual Tendency Learning (ITL), which models annotator-specific labeling behavior patterns (i.e., tendency) to provide explanation analysis for understanding annotator decisions. However, no evaluation framework currently exists to assess whether ITL methods truly capture individual tendencies and provide meaningful behavioral explanations. To address this gap, we propose the first unified evaluation framework with two novel metrics: (1) Difference of Inter-annotator Consistency (DIC) quantifies how well models capture annotator tendencies by comparing predicted inter-annotator similarity structures with ground-truth; (2) Behavior Alignment Explainability (BAE) evaluates how well model explanations reflect annotator behavior and decision relevance by aligning explainability-derived with ground-truth labeling similarity structures via Multidimensional Scaling (MDS). Extensive experiments validate the effectiveness of our proposed evaluation framework.
comment: 9 pages
☆ Clicks Versus Conversion: Choosing a Recommender's Training Objective in E-Commerce
Ranking product recommendations to optimize for a high click-through rate (CTR) or for high conversion, such as add-to-cart rate (ACR) and Order-Submit-Rate (OSR, view-to-purchase conversion) are standard practices in e-commerce. Optimizing for CTR appears like a straightforward choice: Training data (i.e., click data) are simple to collect and often available in large quantities. Additionally, CTR is used far beyond e-commerce, making it a generalist, easily implemented option. ACR and OSR, on the other hand, are more directly linked to a shop's business goals, such as the Gross Merchandise Value (GMV). In this paper, we compare the effects of using either of these objectives using an online A/B test. Among our key findings, we demonstrate that in our shops, optimizing for OSR produces a GMV uplift more than five times larger than when optimizing for CTR, without sacrificing new product discovery. Our results also provide insights into the different feature importances for each of the objectives.
☆ eMamba: Efficient Acceleration Framework for Mamba Models in Edge Computing
State Space Model (SSM)-based machine learning architectures have recently gained significant attention for processing sequential data. Mamba, a recent sequence-to-sequence SSM, offers competitive accuracy with superior computational efficiency compared to state-of-the-art transformer models. While this advantage makes Mamba particularly promising for resource-constrained edge devices, no hardware acceleration frameworks are currently optimized for deploying it in such environments. This paper presents eMamba, a comprehensive end-to-end hardware acceleration framework explicitly designed for deploying Mamba models on edge platforms. eMamba maximizes computational efficiency by replacing complex normalization layers with lightweight hardware-aware alternatives and approximating expensive operations, such as SiLU activation and exponentiation, considering the target applications. Then, it performs an approximation-aware neural architecture search (NAS) to tune the learnable parameters used during approximation. Evaluations with Fashion-MNIST, CIFAR-10, and MARS, an open-source human pose estimation dataset, show eMamba achieves comparable accuracy to state-of-the-art techniques using 1.63-19.9$\times$ fewer parameters. In addition, it generalizes well to large-scale natural language tasks, demonstrating stable perplexity across varying sequence lengths on the WikiText2 dataset. We also quantize and implement the entire eMamba pipeline on an AMD ZCU102 FPGA and ASIC using GlobalFoundries (GF) 22 nm technology. Experimental results show 4.95-5.62$\times$ lower latency and 2.22-9.95$\times$ higher throughput, with 4.77$\times$ smaller area, 9.84$\times$ lower power, and 48.6$\times$ lower energy consumption than baseline solutions while maintaining competitive accuracy.
comment: Paper accepted at ESWEEK 2025 (CODES+ISSS) conference
☆ Semantic Communication with Distribution Learning through Sequential Observations
Semantic communication aims to convey meaning rather than bit-perfect reproduction, representing a paradigm shift from traditional communication. This paper investigates distribution learning in semantic communication where receivers must infer the underlying meaning distribution through sequential observations. While semantic communication traditionally optimizes individual meaning transmission, we establish fundamental conditions for learning source statistics when priors are unknown. We prove that learnability requires full rank of the effective transmission matrix, characterize the convergence rate of distribution estimation, and quantify how estimation errors translate to semantic distortion. Our analysis reveals a fundamental trade-off: encoding schemes optimized for immediate semantic performance often sacrifice long-term learnability. Experiments on CIFAR-10 validate our theoretical framework, demonstrating that system conditioning critically impacts both learning rate and achievable performance. These results provide the first rigorous characterization of statistical learning in semantic communication and offer design principles for systems that balance immediate performance with adaptation capability.
☆ Flexible Personalized Split Federated Learning for On-Device Fine-Tuning of Foundation Models
Fine-tuning foundation models is critical for superior performance on personalized downstream tasks, compared to using pre-trained models. Collaborative learning can leverage local clients' datasets for fine-tuning, but limited client data and heterogeneous data distributions hinder effective collaboration. To address the challenge, we propose a flexible personalized federated learning paradigm that enables clients to engage in collaborative learning while maintaining personalized objectives. Given the limited and heterogeneous computational resources available on clients, we introduce \textbf{flexible personalized split federated learning (FlexP-SFL)}. Based on split learning, FlexP-SFL allows each client to train a portion of the model locally while offloading the rest to a server, according to resource constraints. Additionally, we propose an alignment strategy to improve personalized model performance on global data. Experimental results show that FlexP-SFL outperforms baseline models in personalized fine-tuning efficiency and final accuracy.
comment: 10 pages, Submitted to INFOCOM2026
☆ A Hierarchical IDS for Zero-Day Attack Detection in Internet of Medical Things Networks
The Internet of Medical Things (IoMT) is driving a healthcare revolution but remains vulnerable to cyberattacks such as denial of service, ransomware, data hijacking, and spoofing. These networks comprise resource constrained, heterogeneous devices (e.g., wearable sensors, smart pills, implantables), making traditional centralized Intrusion Detection Systems (IDSs) unsuitable due to response delays, privacy risks, and added vulnerabilities. Centralized IDSs require all sensors to transmit data to a central server, causing delays or network disruptions in dense environments. Running IDSs locally on IoMT devices is often infeasible due to limited computation, and even lightweight IDS components remain at risk if updated models are delayed leaving them exposed to zero-day attacks that threaten patient health and data security. We propose a multi level IoMT IDS framework capable of detecting zero day attacks and distinguishing between known and unknown threats. The first layer (near Edge) filters traffic at a coarse level (attack or not) using meta-learning or One Class Classification (OCC) with the usfAD algorithm. Subsequent layers (far Edge, Cloud) identify attack type and novelty. Experiments on the CICIoMT2024 dataset show 99.77 percentage accuracy and 97.8 percentage F1-score. The first layer detects zero-day attacks with high accuracy without needing new datasets, ensuring strong applicability in IoMT environments. Additionally, the meta-learning approach achieves high.
comment: 13 pages, and 4 figures
☆ Welfare-Centric Clustering
Fair clustering has traditionally focused on ensuring equitable group representation or equalizing group-specific clustering costs. However, Dickerson et al. (2025) recently showed that these fairness notions may yield undesirable or unintuitive clustering outcomes and advocated for a welfare-centric clustering approach that models the utilities of the groups. In this work, we model group utilities based on both distances and proportional representation and formalize two optimization objectives based on welfare-centric clustering: the Rawlsian (Egalitarian) objective and the Utilitarian objective. We introduce novel algorithms for both objectives and prove theoretical guarantees for them. Empirical evaluations on multiple real-world datasets demonstrate that our methods significantly outperform existing fair clustering baselines.
☆ Concepts or Skills? Rethinking Instruction Selection for Multi-modal Models
Vision-language instruction tuning achieves two main purposes: learning visual concepts and learning visual skills. In this paper, we found that vision-language benchmarks fall into the dichotomy of mainly benefiting from training on instructions with similar skills or visual concepts. Inspired by the discovery, we designed a simple targeted training data selection method to optimize the performance of a given benchmark. We first extract the concepts/skills from the benchmark, determine whether the benchmark predominantly benefits from similar concepts or skills, and finally select instructions with the most matching concepts/skills. Experiments on 10+ benchmarks validate the effectiveness of our targeted data selection method, showing +0.9\% over the best existing baseline averaged over all benchmarks and +1.5\% on the skill-focused subset. Our findings underscore the importance of recognizing the inherent trade-off within instruction selection, which requires balancing the acquisition of conceptual knowledge against visual skill.
comment: 11 pages, 1 figure
☆ A Curriculum Learning Approach to Reinforcement Learning: Leveraging RAG for Multimodal Question Answering
This paper describes the solutions of the Dianping-Trust-Safety team for the META CRAG-MM challenge. The challenge requires building a comprehensive retrieval-augmented generation system capable for multi-modal multi-turn question answering. The competition consists of three tasks: (1) answering questions using structured data retrieved from an image-based mock knowledge graph, (2) synthesizing information from both knowledge graphs and web search results, and (3) handling multi-turn conversations that require context understanding and information aggregation from multiple sources. For Task 1, our solution is based on the vision large language model, enhanced by supervised fine-tuning with knowledge distilled from GPT-4.1. We further applied curriculum learning strategies to guide reinforcement learning, resulting in improved answer accuracy and reduced hallucination. For Task 2 and Task 3, we additionally leveraged web search APIs to incorporate external knowledge, enabling the system to better handle complex queries and multi-turn conversations. Our approach achieved 1st place in Task 1 with a significant lead of 52.38\%, and 3rd place in Task 3, demonstrating the effectiveness of the integration of curriculum learning with reinforcement learning in our training pipeline.
☆ Layer-Wise Analysis of Self-Supervised Representations for Age and Gender Classification in Children's Speech
Children's speech presents challenges for age and gender classification due to high variability in pitch, articulation, and developmental traits. While self-supervised learning (SSL) models perform well on adult speech tasks, their ability to encode speaker traits in children remains underexplored. This paper presents a detailed layer-wise analysis of four Wav2Vec2 variants using the PFSTAR and CMU Kids datasets. Results show that early layers (1-7) capture speaker-specific cues more effectively than deeper layers, which increasingly focus on linguistic information. Applying PCA further improves classification, reducing redundancy and highlighting the most informative components. The Wav2Vec2-large-lv60 model achieves 97.14% (age) and 98.20% (gender) on CMU Kids; base-100h and large-lv60 models reach 86.05% and 95.00% on PFSTAR. These results reveal how speaker traits are structured across SSL model depth and support more targeted, adaptive strategies for child-aware speech interfaces.
comment: Accepted at Workshop on Child Computer Interaction (WOCCI 2025)
☆ A Vision-Language Pre-training Model-Guided Approach for Mitigating Backdoor Attacks in Federated Learning
Existing backdoor defense methods in Federated Learning (FL) rely on the assumption of homogeneous client data distributions or the availability of a clean serve dataset, which limits the practicality and effectiveness. Defending against backdoor attacks under heterogeneous client data distributions while preserving model performance remains a significant challenge. In this paper, we propose a FL backdoor defense framework named CLIP-Fed, which leverages the zero-shot learning capabilities of vision-language pre-training models. By integrating both pre-aggregation and post-aggregation defense strategies, CLIP-Fed overcomes the limitations of Non-IID imposed on defense effectiveness. To address privacy concerns and enhance the coverage of the dataset against diverse triggers, we construct and augment the server dataset using the multimodal large language model and frequency analysis without any client samples. To address class prototype deviations caused by backdoor samples and eliminate the correlation between trigger patterns and target labels, CLIP-Fed aligns the knowledge of the global model and CLIP on the augmented dataset using prototype contrastive loss and Kullback-Leibler divergence. Extensive experiments on representative datasets validate the effectiveness of CLIP-Fed. Compared to state-of-the-art methods, CLIP-Fed achieves an average reduction in ASR, i.e., 2.03\% on CIFAR-10 and 1.35\% on CIFAR-10-LT, while improving average MA by 7.92\% and 0.48\%, respectively.
☆ Improving Learning of New Diseases through Knowledge-Enhanced Initialization for Federated Adapter Tuning
In healthcare, federated learning (FL) is a widely adopted framework that enables privacy-preserving collaboration among medical institutions. With large foundation models (FMs) demonstrating impressive capabilities, using FMs in FL through cost-efficient adapter tuning has become a popular approach. Given the rapidly evolving healthcare environment, it is crucial for individual clients to quickly adapt to new tasks or diseases by tuning adapters while drawing upon past experiences. In this work, we introduce Federated Knowledge-Enhanced Initialization (FedKEI), a novel framework that leverages cross-client and cross-task transfer from past knowledge to generate informed initializations for learning new tasks with adapters. FedKEI begins with a global clustering process at the server to generalize knowledge across tasks, followed by the optimization of aggregation weights across clusters (inter-cluster weights) and within each cluster (intra-cluster weights) to personalize knowledge transfer for each new task. To facilitate more effective learning of the inter- and intra-cluster weights, we adopt a bi-level optimization scheme that collaboratively learns the global intra-cluster weights across clients and optimizes the local inter-cluster weights toward each client's task objective. Extensive experiments on three benchmark datasets of different modalities, including dermatology, chest X-rays, and retinal OCT, demonstrate FedKEI's advantage in adapting to new diseases compared to state-of-the-art methods.
☆ SynBrain: Enhancing Visual-to-fMRI Synthesis via Probabilistic Representation Learning
Deciphering how visual stimuli are transformed into cortical responses is a fundamental challenge in computational neuroscience. This visual-to-neural mapping is inherently a one-to-many relationship, as identical visual inputs reliably evoke variable hemodynamic responses across trials, contexts, and subjects. However, existing deterministic methods struggle to simultaneously model this biological variability while capturing the underlying functional consistency that encodes stimulus information. To address these limitations, we propose SynBrain, a generative framework that simulates the transformation from visual semantics to neural responses in a probabilistic and biologically interpretable manner. SynBrain introduces two key components: (i) BrainVAE models neural representations as continuous probability distributions via probabilistic learning while maintaining functional consistency through visual semantic constraints; (ii) A Semantic-to-Neural Mapper acts as a semantic transmission pathway, projecting visual semantics into the neural response manifold to facilitate high-fidelity fMRI synthesis. Experimental results demonstrate that SynBrain surpasses state-of-the-art methods in subject-specific visual-to-fMRI encoding performance. Furthermore, SynBrain adapts efficiently to new subjects with few-shot data and synthesizes high-quality fMRI signals that are effective in improving data-limited fMRI-to-image decoding performance. Beyond that, SynBrain reveals functional consistency across trials and subjects, with synthesized signals capturing interpretable patterns shaped by biological neural variability. The code will be made publicly available.
☆ Uncertainty-Aware Prediction of Parkinson's Disease Medication Needs: A Two-Stage Conformal Prediction Approach
Parkinson's Disease (PD) medication management presents unique challenges due to heterogeneous disease progression and treatment response. Neurologists must balance symptom control with optimal dopaminergic dosing based on functional disability while minimizing side effects. This balance is crucial as inadequate or abrupt changes can cause levodopa-induced dyskinesia, wearing off, and neuropsychiatric effects, significantly reducing quality of life. Current approaches rely on trial-and-error decisions without systematic predictive methods. Despite machine learning advances, clinical adoption remains limited due to reliance on point predictions that do not account for prediction uncertainty, undermining clinical trust and utility. Clinicians require not only predictions of future medication needs but also reliable confidence measures. Without quantified uncertainty, adjustments risk premature escalation to maximum doses or prolonged inadequate symptom control. We developed a conformal prediction framework anticipating medication needs up to two years in advance with reliable prediction intervals and statistical guarantees. Our approach addresses zero-inflation in PD inpatient data, where patients maintain stable medication regimens between visits. Using electronic health records from 631 inpatient admissions at University of Florida Health (2011-2021), our two-stage approach identifies patients likely to need medication changes, then predicts required levodopa equivalent daily dose adjustments. Our framework achieved marginal coverage while reducing prediction interval lengths compared to traditional approaches, providing precise predictions for short-term planning and wider ranges for long-term forecasting. By quantifying uncertainty, our approach enables evidence-based decisions about levodopa dosing, optimizing symptom control while minimizing side effects and improving life quality.
comment: Accepted to MLHC 2025
☆ The Conditional Regret-Capacity Theorem for Batch Universal Prediction
We derive a conditional version of the classical regret-capacity theorem. This result can be used in universal prediction to find lower bounds on the minimal batch regret, which is a recently introduced generalization of the average regret, when batches of training data are available to the predictor. As an example, we apply this result to the class of binary memoryless sources. Finally, we generalize the theorem to R\'enyi information measures, revealing a deep connection between the conditional R\'enyi divergence and the conditional Sibson's mutual information.
☆ Source Component Shift Adaptation via Offline Decomposition and Online Mixing Approach
This paper addresses source component shift adaptation, aiming to update predictions adapting to source component shifts for incoming data streams based on past training data. Existing online learning methods often fail to utilize recurring shifts effectively, while model-pool-based methods struggle to capture individual source components, leading to poor adaptation. In this paper, we propose a source component shift adaptation method via an offline decomposition and online mixing approach. We theoretically identify that the problem can be divided into two subproblems: offline source component decomposition and online mixing weight adaptation. Based on this, our method first determines prediction models, each of which learns a source component solely based on past training data offline through the EM algorithm. Then, it updates the mixing weight of the prediction models for precise prediction through online convex optimization. Thanks to our theoretical derivation, our method fully leverages the characteristics of the shifts, achieving superior adaptation performance over existing methods. Experiments conducted on various real-world regression datasets demonstrate that our method outperforms baselines, reducing the cumulative test loss by up to 67.4%.
comment: To appear in ECAI 2025
☆ Federated Anomaly Detection for Multi-Tenant Cloud Platforms with Personalized Modeling
This paper proposes an anomaly detection method based on federated learning to address key challenges in multi-tenant cloud environments, including data privacy leakage, heterogeneous resource behavior, and the limitations of centralized modeling. The method establishes a federated training framework involving multiple tenants. Each tenant trains the model locally using private resource usage data. Through parameter aggregation, a global model is optimized, enabling cross-tenant collaborative anomaly detection while preserving data privacy. To improve adaptability to diverse resource usage patterns, a personalized parameter adjustment mechanism is introduced. This allows the model to retain tenant-specific feature representations while sharing global knowledge. In the model output stage, the Mahalanobis distance is used to compute anomaly scores. This enhances both the accuracy and stability of anomaly detection. The experiments use real telemetry data from a cloud platform to construct a simulated multi-tenant environment. The study evaluates the model's performance under varying participation rates and noise injection levels. These comparisons demonstrate the proposed method's robustness and detection accuracy. Experimental results show that the proposed method outperforms existing mainstream models across key metrics such as Precision, Recall, and F1-Score. It also maintains stable performance in various complex scenarios. These findings highlight the method's practical potential for intelligent resource monitoring and anomaly diagnosis in cloud computing environments.
☆ Multi-Agent Reinforcement Learning for Adaptive Resource Orchestration in Cloud-Native Clusters
This paper addresses the challenges of high resource dynamism and scheduling complexity in cloud-native database systems. It proposes an adaptive resource orchestration method based on multi-agent reinforcement learning. The method introduces a heterogeneous role-based agent modeling mechanism. This allows different resource entities, such as compute nodes, storage nodes, and schedulers, to adopt distinct policy representations. These agents are better able to reflect diverse functional responsibilities and local environmental characteristics within the system. A reward-shaping mechanism is designed to integrate local observations with global feedback. This helps mitigate policy learning bias caused by incomplete state observations. By combining real-time local performance signals with global system value estimation, the mechanism improves coordination among agents and enhances policy convergence stability. A unified multi-agent training framework is developed and evaluated on a representative production scheduling dataset. Experimental results show that the proposed method outperforms traditional approaches across multiple key metrics. These include resource utilization, scheduling latency, policy convergence speed, system stability, and fairness. The results demonstrate strong generalization and practical utility. Across various experimental scenarios, the method proves effective in handling orchestration tasks with high concurrency, high-dimensional state spaces, and complex dependency relationships. This confirms its advantages in real-world, large-scale scheduling environments.
☆ Convergence Analysis of Max-Min Exponential Neural Network Operators in Orlicz Space
In this current work, we propose a Max Min approach for approximating functions using exponential neural network operators. We extend this framework to develop the Max Min Kantorovich-type exponential neural network operators and investigate their approximation properties. We study both pointwise and uniform convergence for univariate functions. To analyze the order of convergence, we use the logarithmic modulus of continuity and estimate the corresponding rate of convergence. Furthermore, we examine the convergence behavior of the Max Min Kantorovich type exponential neural network operators within the Orlicz space setting. We provide some graphical representations to illustrate the approximation error of the function through suitable kernel and sigmoidal activation functions.
comment: 35 pages, 6 figures
☆ Pruning and Malicious Injection: A Retraining-Free Backdoor Attack on Transformer Models
Transformer models have demonstrated exceptional performance and have become indispensable in computer vision (CV) and natural language processing (NLP) tasks. However, recent studies reveal that transformers are susceptible to backdoor attacks. Prior backdoor attack methods typically rely on retraining with clean data or altering the model architecture, both of which can be resource-intensive and intrusive. In this paper, we propose Head-wise Pruning and Malicious Injection (HPMI), a novel retraining-free backdoor attack on transformers that does not alter the model's architecture. Our approach requires only a small subset of the original data and basic knowledge of the model architecture, eliminating the need for retraining the target transformer. Technically, HPMI works by pruning the least important head and injecting a pre-trained malicious head to establish the backdoor. We provide a rigorous theoretical justification demonstrating that the implanted backdoor resists detection and removal by state-of-the-art defense techniques, under reasonable assumptions. Experimental evaluations across multiple datasets further validate the effectiveness of HPMI, showing that it 1) incurs negligible clean accuracy loss, 2) achieves at least 99.55% attack success rate, and 3) bypasses four advanced defense mechanisms. Additionally, relative to state-of-the-art retraining-dependent attacks, HPMI achieves greater concealment and robustness against diverse defense strategies, while maintaining minimal impact on clean accuracy.
☆ Quantization through Piecewise-Affine Regularization: Optimization and Statistical Guarantees
Optimization problems over discrete or quantized variables are very challenging in general due to the combinatorial nature of their search space. Piecewise-affine regularization (PAR) provides a flexible modeling and computational framework for quantization based on continuous optimization. In this work, we focus on the setting of supervised learning and investigate the theoretical foundations of PAR from optimization and statistical perspectives. First, we show that in the overparameterized regime, where the number of parameters exceeds the number of samples, every critical point of the PAR-regularized loss function exhibits a high degree of quantization. Second, we derive closed-form proximal mappings for various (convex, quasi-convex, and non-convex) PARs and show how to solve PAR-regularized problems using the proximal gradient method, its accelerated variant, and the Alternating Direction Method of Multipliers. Third, we study statistical guarantees of PAR-regularized linear regression problems; specifically, we can approximate classical formulations of $\ell_1$-, squared $\ell_2$-, and nonconvex regularizations using PAR and obtain similar statistical guarantees with quantized solutions.
☆ Hybrid-Hierarchical Fashion Graph Attention Network for Compatibility-Oriented and Personalized Outfit Recommendation
The rapid expansion of the fashion industry and the growing variety of products have made it challenging for users to find compatible items on e-commerce platforms. Effective fashion recommendation systems are crucial for filtering irrelevant items and suggesting suitable ones. However, simultaneously addressing outfit compatibility and personalized recommendations remains a significant challenge, as these aspects are often treated independently in existing studies, often overlooking the complex interactions between items and user preferences. This research introduces a new framework named FGAT, inspired by the HFGN model, which leverages graph neural networks and graph attention mechanisms to tackle this issue. The proposed framework constructs a three-tier hierarchical graph of users, outfits, and items, integrating visual and textual features to simultaneously model outfit compatibility and user preferences. A graph attention mechanism dynamically weights node importance during representation propagation, enabling the capture of key interactions and generating precise representations for both user preferences and outfit compatibility. Evaluated on the POG dataset, FGAT outperforms baseline models such as HFGN, achieving improved results in precision, HR, recall, NDCG, and accuracy.These results demonstrate that combining multimodal visual-textual features with a hierarchical graph structure and attention mechanisms significantly enhances the accuracy and efficiency of personalized fashion recommendation systems.
☆ Predictive Multimodal Modeling of Diagnoses and Treatments in EHR
While the ICD code assignment problem has been widely studied, most works have focused on post-discharge document classification. Models for early forecasting of this information could be used for identifying health risks, suggesting effective treatments, or optimizing resource allocation. To address the challenge of predictive modeling using the limited information at the beginning of a patient stay, we propose a multimodal system to fuse clinical notes and tabular events captured in electronic health records. The model integrates pre-trained encoders, feature pooling, and cross-modal attention to learn optimal representations across modalities and balance their presence at every temporal point. Moreover, we present a weighted temporal loss that adjusts its contribution at each point in time. Experiments show that these strategies enhance the early prediction model, outperforming the current state-of-the-art systems.
comment: 10 pages, 1 figure
☆ Compressive Meta-Learning KDD '25
The rapid expansion in the size of new datasets has created a need for fast and efficient parameter-learning techniques. Compressive learning is a framework that enables efficient processing by using random, non-linear features to project large-scale databases onto compact, information-preserving representations whose dimensionality is independent of the number of samples and can be easily stored, transferred, and processed. These database-level summaries are then used to decode parameters of interest from the underlying data distribution without requiring access to the original samples, offering an efficient and privacy-friendly learning framework. However, both the encoding and decoding techniques are typically randomized and data-independent, failing to exploit the underlying structure of the data. In this work, we propose a framework that meta-learns both the encoding and decoding stages of compressive learning methods by using neural networks that provide faster and more accurate systems than the current state-of-the-art approaches. To demonstrate the potential of the presented Compressive Meta-Learning framework, we explore multiple applications -- including neural network-based compressive PCA, compressive ridge regression, compressive k-means, and autoencoders.
comment: Extended version of a paper accepted at KDD '25
☆ Relative Advantage Debiasing for Watch-Time Prediction in Short-Video Recommendation
Watch time is widely used as a proxy for user satisfaction in video recommendation platforms. However, raw watch times are influenced by confounding factors such as video duration, popularity, and individual user behaviors, potentially distorting preference signals and resulting in biased recommendation models. We propose a novel relative advantage debiasing framework that corrects watch time by comparing it to empirically derived reference distributions conditioned on user and item groups. This approach yields a quantile-based preference signal and introduces a two-stage architecture that explicitly separates distribution estimation from preference learning. Additionally, we present distributional embeddings to efficiently parameterize watch-time quantiles without requiring online sampling or storage of historical data. Both offline and online experiments demonstrate significant improvements in recommendation accuracy and robustness compared to existing baseline methods.
☆ Learn to optimize for automatic proton PBS treatment planning for H&N cancers
Proton PBS treatment planning for H&N cancers involves numerous conflicting objectives, requiring significant effort from human planners to balance and satisfy multiple clinical goals during planning. To achieve this, experience-demanding objective parameter adjustment and computationally expensive inverse optimization are performed iteratively. Extensive efforts have been made to automatically adjust objective parameters, but the most time-consuming component, i.e., inverse optimization, still relies heavily on theory-driven approaches. We propose a data-driven inverse optimizer and integrate it into a PPO-based automatic treatment planning framework to automatically generate high-quality plans within a clinical acceptable planning time. The inverse optimizer is a L2O method that predicts update steps by learning from the task-specific data distribution. For the first time, we integrate techniques designed for long-context processing, originally developed for LLMs, into a Transformer-based L2O framework to address the scalability issue of existing L2O methods. The PPO framework functions as an outer-loop virtual planner, autonomously adjusting objective parameters through a policy network, and the dose predictor is used to initialize objective parameters. The inner-loop L2O inverse optimizer computes machine-deliverable MU values based on objectives refined by the PPO policy network. 97 patients are collected in this study, and compared with L-BFGSB, our L2O-based inverse optimizer improves the effectiveness and efficiency by 22.97% and 36.41%, respectively. In conjunction with the PPO-based learned virtual planner, plans generated by our framework within an average of 2.55 hours show improved or comparable OAR sparing with superior target coverage for patients with different prescription dose levels, number of target volumes, beam angles, etc., compared with human-generated plans.
comment: 27 pages, 4 figures
☆ A Feasibility Experiment on the Application of Predictive Coding to Instant Messaging Corpora
Predictive coding, the term used in the legal industry for document classification using machine learning, presents additional challenges when the dataset comprises instant messages, due to their informal nature and smaller sizes. In this paper, we exploit a data management workflow to group messages into day chats, followed by feature selection and a logistic regression classifier to provide an economically feasible predictive coding solution. We also improve the solution's baseline model performance by dimensionality reduction, with focus on quantitative features. We test our methodology on an Instant Bloomberg dataset, rich in quantitative information. In parallel, we provide an example of the cost savings of our approach.
☆ Abundance-Aware Set Transformer for Microbiome Sample Embedding
Microbiome sample representation to input into LLMs is essential for downstream tasks such as phenotype prediction and environmental classification. While prior studies have explored embedding-based representations of each microbiome sample, most rely on simple averaging over sequence embeddings, often overlooking the biological importance of taxa abundance. In this work, we propose an abundance-aware variant of the Set Transformer to construct fixed-size sample-level embeddings by weighting sequence embeddings according to their relative abundance. Without modifying the model architecture, we replicate embedding vectors proportional to their abundance and apply self-attention-based aggregation. Our method outperforms average pooling and unweighted Set Transformers on real-world microbiome classification tasks, achieving perfect performance in some cases. These results demonstrate the utility of abundance-aware aggregation for robust and biologically informed microbiome representation. To the best of our knowledge, this is one of the first approaches to integrate sequence-level abundance into Transformer-based sample embeddings.
☆ Functional Analysis of Variance for Association Studies
While progress has been made in identifying common genetic variants associated with human diseases, for most of common complex diseases, the identified genetic variants only account for a small proportion of heritability. Challenges remain in finding additional unknown genetic variants predisposing to complex diseases. With the advance in next-generation sequencing technologies, sequencing studies have become commonplace in genetic research. The ongoing exome-sequencing and whole-genome-sequencing studies generate a massive amount of sequencing variants and allow researchers to comprehensively investigate their role in human diseases. The discovery of new disease-associated variants can be enhanced by utilizing powerful and computationally efficient statistical methods. In this paper, we propose a functional analysis of variance (FANOVA) method for testing an association of sequence variants in a genomic region with a qualitative trait. The FANOVA has a number of advantages: (1) it tests for a joint effect of gene variants, including both common and rare; (2) it fully utilizes linkage disequilibrium and genetic position information; and (3) allows for either protective or risk-increasing causal variants. Through simulations, we show that FANOVA outperform two popularly used methods - SKAT and a previously proposed method based on functional linear models (FLM), - especially if a sample size of a study is small and/or sequence variants have low to moderate effects. We conduct an empirical study by applying three methods (FANOVA, SKAT and FLM) to sequencing data from Dallas Heart Study. While SKAT and FLM respectively detected ANGPTL 4 and ANGPTL 3 associated with obesity, FANOVA was able to identify both genes associated with obesity.
☆ Human-in-the-Loop Systems for Adaptive Learning Using Generative AI
A Human-in-the-Loop (HITL) approach leverages generative AI to enhance personalized learning by directly integrating student feedback into AI-generated solutions. Students critique and modify AI responses using predefined feedback tags, fostering deeper engagement and understanding. This empowers students to actively shape their learning, with AI serving as an adaptive partner. The system uses a tagging technique and prompt engineering to personalize content, informing a Retrieval-Augmented Generation (RAG) system to retrieve relevant educational material and adjust explanations in real time. This builds on existing research in adaptive learning, demonstrating how student-driven feedback loops can modify AI-generated responses for improved student retention and engagement, particularly in STEM education. Preliminary findings from a study with STEM students indicate improved learning outcomes and confidence compared to traditional AI tools. This work highlights AI's potential to create dynamic, feedback-driven, and personalized learning environments through iterative refinement.
comment: Accepted for presentation at the Frontiers in Education Conference, Nashville, Tennessee, USA, 2-5 November 2025
☆ Counterfactual Survival Q Learning for Longitudinal Randomized Trials via Buckley James Boosting
We propose a Buckley James (BJ) Boost Q learning framework for estimating optimal dynamic treatment regimes under right censored survival data, tailored for longitudinal randomized clinical trial settings. The method integrates accelerated failure time models with iterative boosting techniques, including componentwise least squares and regression trees, within a counterfactual Q learning framework. By directly modeling conditional survival time, BJ Boost Q learning avoids the restrictive proportional hazards assumption and enables unbiased estimation of stage specific Q functions. Grounded in potential outcomes, this framework ensures identifiability of the optimal treatment regime under standard causal assumptions. Compared to Cox based Q learning, which relies on hazard modeling and may suffer from bias under misspecification, our approach provides robust and flexible estimation. Simulation studies and analysis of the ACTG175 HIV trial demonstrate that BJ Boost Q learning yields higher accuracy in treatment decision making, especially in multistage settings where bias can accumulate.
☆ SHLIME: Foiling adversarial attacks fooling SHAP and LIME
Post hoc explanation methods, such as LIME and SHAP, provide interpretable insights into black-box classifiers and are increasingly used to assess model biases and generalizability. However, these methods are vulnerable to adversarial manipulation, potentially concealing harmful biases. Building on the work of Slack et al. (2020), we investigate the susceptibility of LIME and SHAP to biased models and evaluate strategies for improving robustness. We first replicate the original COMPAS experiment to validate prior findings and establish a baseline. We then introduce a modular testing framework enabling systematic evaluation of augmented and ensemble explanation approaches across classifiers of varying performance. Using this framework, we assess multiple LIME/SHAP ensemble configurations on out-of-distribution models, comparing their resistance to bias concealment against the original methods. Our results identify configurations that substantially improve bias detection, highlighting their potential for enhancing transparency in the deployment of high-stakes machine learning systems.
comment: 7 pages, 7 figures
☆ Conditional Independence Estimates for the Generalized Nonparanormal
For general non-Gaussian distributions, the covariance and precision matrices do not encode the independence structure of the variables, as they do for the multivariate Gaussian. This paper builds on previous work to show that for a class of non-Gaussian distributions -- those derived from diagonal transformations of a Gaussian -- information about the conditional independence structure can still be inferred from the precision matrix, provided the data meet certain criteria, analogous to the Gaussian case. We call such transformations of the Gaussian as the generalized nonparanormal. The functions that define these transformations are, in a broad sense, arbitrary. We also provide a simple and computationally efficient algorithm that leverages this theory to recover conditional independence structure from the generalized nonparanormal data. The effectiveness of the proposed algorithm is demonstrated via synthetic experiments and applications to real-world data.
comment: 22 pages, 7 figures, 3 tables
☆ Learning with Confidence UAI 2025
We characterize a notion of confidence that arises in learning or updating beliefs: the amount of trust one has in incoming information and its impact on the belief state. This learner's confidence can be used alongside (and is easily mistaken for) probability or likelihood, but it is fundamentally a different concept -- one that captures many familiar concepts in the literature, including learning rates and number of training epochs, Shafer's weight of evidence, and Kalman gain. We formally axiomatize what it means to learn with confidence, give two canonical ways of measuring confidence on a continuum, and prove that confidence can always be represented in this way. Under additional assumptions, we derive more compact representations of confidence-based learning in terms of vector fields and loss functions. These representations induce an extended language of compound "parallel" observations. We characterize Bayes Rule as the special case of an optimizing learner whose loss representation is a linear expectation.
comment: Accepted for oral UAI 2025, plus some additional modifications for clarity
☆ Zono-Conformal Prediction: Zonotope-Based Uncertainty Quantification for Regression and Classification Tasks
Conformal prediction is a popular uncertainty quantification method that augments a base predictor with prediction sets with statistically valid coverage guarantees. However, current methods are often computationally expensive and data-intensive, as they require constructing an uncertainty model before calibration. Moreover, existing approaches typically represent the prediction sets with intervals, which limits their ability to capture dependencies in multi-dimensional outputs. We address these limitations by introducing zono-conformal prediction, a novel approach inspired by interval predictor models and reachset-conformant identification that constructs prediction zonotopes with assured coverage. By placing zonotopic uncertainty sets directly into the model of the base predictor, zono-conformal predictors can be identified via a single, data-efficient linear program. While we can apply zono-conformal prediction to arbitrary nonlinear base predictors, we focus on feed-forward neural networks in this work. Aside from regression tasks, we also construct optimal zono-conformal predictors in classification settings where the output of an uncertain predictor is a set of possible classes. We provide probabilistic coverage guarantees and present methods for detecting outliers in the identification data. In extensive numerical experiments, we show that zono-conformal predictors are less conservative than interval predictor models and standard conformal prediction methods, while achieving a similar coverage over the test data.
comment: Preprint. Under review
☆ Quantization vs Pruning: Insights from the Strong Lottery Ticket Hypothesis
Quantization is an essential technique for making neural networks more efficient, yet our theoretical understanding of it remains limited. Previous works demonstrated that extremely low-precision networks, such as binary networks, can be constructed by pruning large, randomly-initialized networks, and showed that the ratio between the size of the original and the pruned networks is at most polylogarithmic. The specific pruning method they employed inspired a line of theoretical work known as the Strong Lottery Ticket Hypothesis (SLTH), which leverages insights from the Random Subset Sum Problem. However, these results primarily address the continuous setting and cannot be applied to extend SLTH results to the quantized setting. In this work, we build on foundational results by Borgs et al. on the Number Partitioning Problem to derive new theoretical results for the Random Subset Sum Problem in a quantized setting. Using these results, we then extend the SLTH framework to finite-precision networks. While prior work on SLTH showed that pruning allows approximation of a certain class of neural networks, we demonstrate that, in the quantized setting, the analogous class of target discrete neural networks can be represented exactly, and we prove optimal bounds on the necessary overparameterization of the initial network as a function of the precision of the target network.
☆ CURE: Critical-Token-Guided Re-concatenation for Entropy-collapse Prevention
Recent advances in Reinforcement Learning with Verified Reward (RLVR) have driven the emergence of more sophisticated cognitive behaviors in large language models (LLMs), thereby enhancing their reasoning capabilities. However, in prior RLVR pipelines, the repeated use of static initial-state sampling drawn exactly from the dataset distribution during each sampling phase produced overly deterministic, low diversity model behavior, which manifested as rapid entropy collapse and hindered sustained performance gains during prolonged training. To address this issue, we introduce CURE (Critical-token-gUided Re concatenation for Entropy-collapse prevention), a two-stage framework that balances exploration and exploitation. Specifically, in the first stage, to deliberately steer the model toward novel yet coherent contexts, we re-generate at high-entropy critical tokens and jointly optimize the original and the branched trajectories. The further comparison with vanilla DAPO shows that the regeneration process achieves a better performance on math reasoning tasks while sustaining a high-level entropy degree for exploration. In the second stage, we continue training with static initial-state sampling by DAPO, intentionally placing the model in a familiar state to gradually strengthen exploitation. Extensive experiments on Qwen-2.5-Math-7B show that, compared to other RLVR methods, CURE achieves a 5% performance gain across six math benchmarks, establishing state-of-the-art performance in both entropy and accuracy. A series of experiments further validate the effectiveness of our approach. Code is available at https://github.com/CURE-Project/CURE.
☆ Match & Choose: Model Selection Framework for Fine-tuning Text-to-Image Diffusion Models
Text-to-image (T2I) models based on diffusion and transformer architectures advance rapidly. They are often pretrained on large corpora, and openly shared on a model platform, such as HuggingFace. Users can then build up AI applications, e.g., generating media contents, by adopting pretrained T2I models and fine-tuning them on the target dataset. While public pretrained T2I models facilitate the democratization of the models, users face a new challenge: which model can be best fine-tuned based on the target data domain? Model selection is well addressed in classification tasks, but little is known in (pretrained) T2I models and their performance indication on the target domain. In this paper, we propose the first model selection framework, M&C, which enables users to efficiently choose a pretrained T2I model from a model platform without exhaustively fine-tuning them all on the target dataset. The core of M&C is a matching graph, which consists of: (i) nodes of available models and profiled datasets, and (ii) edges of model-data and data-data pairs capturing the fine-tuning performance and data similarity, respectively. We then build a model that, based on the inputs of model/data feature, and, critically, the graph embedding feature, extracted from the matching graph, predicts the model achieving the best quality after fine-tuning for the target domain. We evaluate M&C on choosing across ten T2I models for 32 datasets against three baselines. Our results show that M&C successfully predicts the best model for fine-tuning in 61.3% of the cases and a closely performing model for the rest.
☆ BeyondWeb: Lessons from Scaling Synthetic Data for Trillion-scale Pretraining
Recent advances in large language model (LLM) pretraining have shown that simply scaling data quantity eventually leads to diminishing returns, hitting a data wall. In response, the use of synthetic data for pretraining has emerged as a promising paradigm for pushing the frontier of performance. Despite this, the factors affecting synthetic data quality remain poorly understood. In this work, we introduce BeyondWeb, a synthetic data generation framework that produces high-quality synthetic data for pretraining. BeyondWeb significantly extends the capabilities of traditional web-scale datasets, outperforming state-of-the-art synthetic pretraining datasets such as Cosmopedia and Nemotron-CC's high-quality synthetic subset (Nemotron-Synth) by up to 5.1 percentage points (pp) and 2.6pp, respectively, when averaged across a suite of 14 benchmark evaluations. It delivers up to 7.7x faster training than open web data and 2.7x faster than Nemotron-Synth. Remarkably, a 3B model trained for 180B tokens on BeyondWeb outperforms an 8B model trained for the same token budget on Cosmopedia. We also present several insights from BeyondWeb on synthetic data for pretraining: what drives its benefits, which data to rephrase and how, and the impact of model size and family on data quality. Overall, our work shows that there's no silver bullet for generating high-quality synthetic pretraining data. The best outcomes require jointly optimizing many factors, a challenging task that requires rigorous science and practical expertise. Naive approaches can yield modest improvements, potentially at great cost, while well-executed methods can yield transformative improvements, as exemplified by BeyondWeb.
☆ Retro-Expert: Collaborative Reasoning for Interpretable Retrosynthesis
Retrosynthesis prediction aims to infer the reactant molecule based on a given product molecule, which is a fundamental task in chemical synthesis. However, existing models rely on static pattern-matching paradigm, which limits their ability to perform effective logic decision-making, leading to black-box decision-making. Building on this, we propose Retro-Expert, an interpretable retrosynthesis framework that performs collaborative reasoning by combining the complementary reasoning strengths of Large Language Models and specialized models via reinforcement learning. It outputs natural language explanations grounded in chemical logic through three components: (1) specialized models perform shallow reasoning to construct high-quality chemical decision space, (2) LLM-driven critical reasoning to generate predictions and corresponding interpretable reasoning path, and (3) reinforcement learning optimizing interpretable decision policy. Experiments show that Retro-Expert not only surpasses both LLM-based and specialized models across different metrics but also provides expert-aligned explanations that bridge the gap between AI predictions and actionable chemical insights.
☆ Towards Efficient Prompt-based Continual Learning in Distributed Medical AI
Modern AI models achieve state-of-the-art performance with large-scale, high-quality datasets; however, ethical, social, and institutional constraints in the medical domain severely restrict data sharing, rendering centralized learning nearly impossible. Each institution must incrementally update models using only local data. Traditional training overfits new samples and suffers from catastrophic forgetting, losing previously acquired knowledge. Medical data distributions also shift due to varying diagnostic equipment and demographics. Although continual learning (CL) has advanced, most methods address natural images, leaving medical-domain-specific CL underexplored. We propose a prompt-based continual learning (PCL) approach featuring a unified prompt pool with a minimal expansion strategy: by expanding and freezing a subset of prompts, our method reduces computational overhead, and a novel regularization term balances retention and adaptation. Experiments on three diabetic retinopathy datasets Aptos2019, LI2019, and Diabetic Retinopathy Detection show our model improves final classification accuracy by at least 10% and F1-score by 9 points over state-of-the-art approaches while lowering inference cost. We anticipate this study will drive sustainable medical AI advances, enabling real-time diagnosis, patient monitoring, and telemedicine applications in distributed healthcare. Code will be released upon acceptance
comment: 10p
♻ ☆ Generative Active Adaptation for Drifting and Imbalanced Network Intrusion Detection
Machine learning has shown promise in network intrusion detection systems, yet its performance often degrades due to concept drift and imbalanced data. These challenges are compounded by the labor-intensive process of labeling network traffic, especially when dealing with evolving and rare attack types, which makes preparing the right data for adaptation difficult. To address these issues, we propose a generative active adaptation framework that minimizes labeling effort while enhancing model robustness. Our approach employs density-aware dataset prior selection to identify the most informative samples for annotation, and leverages deep generative models to conditionally synthesize diverse samples, thereby augmenting the training set and mitigating the effects of concept drift. We evaluate our end-to-end framework \NetGuard on both simulated IDS data and a real-world ISP dataset, demonstrating significant improvements in intrusion detection performance. Our method boosts the overall F1-score from 0.60 (without adaptation) to 0.86. Rare attacks such as Infiltration, Web Attack, and FTP-BruteForce, which originally achieved F1 scores of 0.001, 0.04, and 0.00, improve to 0.30, 0.50, and 0.71, respectively, with generative active adaptation in the CIC-IDS 2018 dataset. Our framework effectively enhances rare attack detection while reducing labeling costs, making it a scalable and practical solution for intrusion detection.
GLM-4.1V-Thinking and GLM-4.5V: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
We present GLM-4.1V-Thinking and GLM-4.5V, a family of vision-language models (VLMs) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document interpretation. In a comprehensive evaluation across 42 public benchmarks, GLM-4.5V achieves state-of-the-art performance on nearly all tasks among open-source models of similar size, and demonstrates competitive or even superior results compared to closed-source models such as Gemini-2.5-Flash on challenging tasks including Coding and GUI Agents. Meanwhile, the smaller GLM-4.1V-9B-Thinking remains highly competitive-achieving superior results to the much larger Qwen2.5-VL-72B on 29 benchmarks. We open-source both GLM-4.1V-9B-Thinking and GLM-4.5V. Code, models and more information are released at https://github.com/zai-org/GLM-V.
♻ ☆ MedRep: Medical Concept Representation for General Electronic Health Record Foundation Models
Electronic health record (EHR) foundation models have been an area ripe for exploration with their improved performance in various medical tasks. Despite the rapid advances, there exists a fundamental limitation: Processing unseen medical codes out of vocabulary. This problem limits the generalizability of EHR foundation models and the integration of models trained with different vocabularies. To alleviate this problem, we propose a set of novel medical concept representations (MedRep) for EHR foundation models based on the observational medical outcome partnership (OMOP) common data model (CDM). For concept representation learning, we enrich the information of each concept with a minimal definition through large language model (LLM) prompts and complement the text-based representations through the graph ontology of OMOP vocabulary. Our approach outperforms the vanilla EHR foundation model and the model with a previously introduced medical code tokenizer in diverse prediction tasks. We also demonstrate the generalizability of MedRep through external validation.
comment: 18 pages
♻ ☆ Decentralized Weather Forecasting via Distributed Machine Learning and Blockchain-Based Model Validation
Weather forecasting plays a vital role in disaster preparedness, agriculture, and resource management, yet current centralized forecasting systems are increasingly strained by security vulnerabilities, limited scalability, and susceptibility to single points of failure. To address these challenges, we propose a decentralized weather forecasting framework that integrates Federated Learning (FL) with blockchain technology. FL enables collaborative model training without exposing sensitive local data; this approach enhances privacy and reduces data transfer overhead. Meanwhile, the Ethereum blockchain ensures transparent and dependable verification of model updates. To further enhance the system's security, we introduce a reputation-based voting mechanism that assesses the trustworthiness of submitted models while utilizing the Interplanetary File System (IPFS) for efficient off-chain storage. Experimental results demonstrate that our approach not only improves forecasting accuracy but also enhances system resilience and scalability, making it a viable candidate for deployment in real-world, security-critical environments.
♻ ☆ BiasGym: Fantastic LLM Biases and How to Find (and Remove) Them
Understanding biases and stereotypes encoded in the weights of Large Language Models (LLMs) is crucial for developing effective mitigation strategies. Biased behaviour is often subtle and non-trivial to isolate, even when deliberately elicited, making systematic analysis and debiasing particularly challenging. To address this, we introduce BiasGym, a simple, cost-effective, and generalizable framework for reliably injecting, analyzing, and mitigating conceptual associations within LLMs. BiasGym consists of two components: BiasInject, which injects specific biases into the model via token-based fine-tuning while keeping the model frozen, and BiasScope, which leverages these injected signals to identify and steer the components responsible for biased behavior. Our method enables consistent bias elicitation for mechanistic analysis, supports targeted debiasing without degrading performance on downstream tasks, and generalizes to biases unseen during token-based fine-tuning. We demonstrate the effectiveness of BiasGym in reducing real-world stereotypes (e.g., people from Italy being `reckless drivers') and in probing fictional associations (e.g., people from a fictional country having `blue skin'), showing its utility for both safety interventions and interpretability research.
comment: Under review
♻ ☆ Interpretable Reward Model via Sparse Autoencoder
Large language models (LLMs) have been widely deployed across numerous fields. Reinforcement Learning from Human Feedback (RLHF) leverages reward models (RMs) as proxies for human preferences to align LLM behaviors with human values, making the accuracy, reliability, and interpretability of RMs critical for effective alignment. However, traditional RMs lack interpretability, offer limited insight into the reasoning behind reward assignments, and are inflexible toward user preference shifts. While recent multidimensional RMs aim for improved interpretability, they often fail to provide feature-level attribution and require costly annotations. To overcome these limitations, we introduce the Sparse Autoencoder-enhanced Reward Model (SARM), a novel architecture that integrates a pretrained Sparse Autoencoder (SAE) into a reward model. SARM maps the hidden activations of LLM-based RM into an interpretable, sparse, and monosemantic feature space, from which a scalar head aggregates feature activations to produce transparent and conceptually meaningful reward scores. Empirical evaluations demonstrate that SARM facilitates direct feature-level attribution of reward assignments, allows dynamic adjustment to preference shifts, and achieves superior alignment performance compared to conventional reward models. Our code is available at https://github.com/schrieffer-z/sarm.
♻ ☆ FRUGAL: Memory-Efficient Optimization by Reducing State Overhead for Scalable Training
With the increase in the number of parameters in large language models, the process of pre-training and fine-tuning increasingly demands larger volumes of GPU memory. A significant portion of this memory is typically consumed by the optimizer state. To overcome this challenge, recent approaches such as low-rank adaptation (LoRA (Hu et al., 2021)), low-rank gradient projection (GaLore (Zhao et al., 2024)), and blockwise optimization (BAdam (Luo et al., 2024)) have been proposed. However, in all these algorithms, the $\textit{effective rank of the weight updates remains low-rank}$, which can lead to a substantial loss of information from the gradient. This loss can be critically important, especially during the pre-training stage. In this paper, we introduce $\texttt{FRUGAL}$ ($\textbf{F}$ull-$\textbf{R}$ank $\textbf{U}$pdates with $\textbf{G}$r$\textbf{A}$dient sp$\textbf{L}$itting), a new memory-efficient optimization framework. $\texttt{FRUGAL}$ leverages gradient splitting to perform low-dimensional updates using advanced algorithms (such as Adam), while updates along the remaining directions are executed via state-free methods like SGD or signSGD (Bernstein et al., 2018). Our framework can be integrated with various low-rank update selection techniques, including GaLore and BAdam. We provide theoretical convergence guarantees for our framework when using SGDM for low-dimensional updates and SGD for state-free updates. Additionally, our method consistently outperforms concurrent approaches across various fixed memory budgets, achieving state-of-the-art results in pre-training and fine-tuning tasks while balancing memory efficiency and performance metrics.
♻ ☆ A Parametric Contextual Online Learning Theory of Brokerage
We study the role of contextual information in the online learning problem of brokerage between traders. In this sequential problem, at each time step, two traders arrive with secret valuations about an asset they wish to trade. The learner (a broker) suggests a trading (or brokerage) price based on contextual data about the asset and the market conditions. Then, the traders reveal their willingness to buy or sell based on whether their valuations are higher or lower than the brokerage price. A trade occurs if one of the two traders decides to buy and the other to sell, i.e., if the broker's proposed price falls between the smallest and the largest of their two valuations. We design algorithms for this problem and prove optimal theoretical regret guarantees under various standard assumptions.
♻ ☆ Leveraging large language models for SQL behavior-based database intrusion detection
Database systems are extensively used to store critical data across various domains. However, the frequency of abnormal database access behaviors, such as database intrusion by internal and external attacks, continues to rise. Internal masqueraders often have greater organizational knowledge, making it easier to mimic employee behavior effectively. In contrast, external masqueraders may behave differently due to their lack of familiarity with the organization. Current approaches lack the granularity needed to detect anomalies at the operational level, frequently misclassifying entire sequences of operations as anomalies, even though most operations are likely to represent normal behavior. On the other hand, some anomalous behaviors often resemble normal activities, making them difficult for existing detection methods to identify. This paper introduces a two-tiered anomaly detection approach for Structured Query Language (SQL) using the Bidirectional Encoder Representations from Transformers (BERT) model, specifically DistilBERT, a more efficient, pre-trained version. Our method combines both unsupervised and supervised machine learning techniques to accurately identify anomalous activities while minimizing the need for data labeling. First, the unsupervised method uses ensemble anomaly detectors that flag embedding vectors distant from learned normal patterns of typical user behavior across the database (out-of-scope queries). Second, the supervised method uses fine-tuned transformer-based models to detect internal attacks with high precision (in-scope queries), using role-labeled classification, even on limited labeled SQL data. Our findings make a significant contribution by providing an effective solution for safeguarding critical database systems from sophisticated threats.
♻ ☆ Combining Machine Learning Defenses without Conflicts
Machine learning (ML) defenses protect against various risks to security, privacy, and fairness. Real-life models need simultaneous protection against multiple different risks which necessitates combining multiple defenses. But combining defenses with conflicting interactions in an ML model can be ineffective, incurring a significant drop in the effectiveness of one or more defenses being combined. Practitioners need a way to determine if a given combination can be effective. Experimentally identifying effective combinations can be time-consuming and expensive, particularly when multiple defenses need to be combined. We need an inexpensive, easy-to-use combination technique to identify effective combinations. Ideally, a combination technique should be (a) accurate (correctly identifies whether a combination is effective or not), (b) scalable (allows combining multiple defenses), (c) non-invasive (requires no change to the defenses being combined), and (d) general (is applicable to different types of defenses). Prior works have identified several ad-hoc techniques but none satisfy all the requirements above. We propose a principled combination technique, Def\Con, to identify effective defense combinations. Def\Con meets all requirements, achieving 90% accuracy on eight combinations explored in prior work and 81% in 30 previously unexplored combinations that we empirically evaluate in this paper.
comment: Transactions on Machine Learning Research (2025). https://openreview.net/forum?id=C7FgsjfFRC
♻ ☆ GC-MVSNet: Multi-View, Multi-Scale, Geometrically-Consistent Multi-View Stereo WACV 2024
Traditional multi-view stereo (MVS) methods rely heavily on photometric and geometric consistency constraints, but newer machine learning-based MVS methods check geometric consistency across multiple source views only as a post-processing step. In this paper, we present a novel approach that explicitly encourages geometric consistency of reference view depth maps across multiple source views at different scales during learning (see Fig. 1). We find that adding this geometric consistency loss significantly accelerates learning by explicitly penalizing geometrically inconsistent pixels, reducing the training iteration requirements to nearly half that of other MVS methods. Our extensive experiments show that our approach achieves a new state-of-the-art on the DTU and BlendedMVS datasets, and competitive results on the Tanks and Temples benchmark. To the best of our knowledge, GC-MVSNet is the first attempt to enforce multi-view, multi-scale geometric consistency during learning.
comment: Accepted in WACV 2024 Link: https://openaccess.thecvf.com/content/WACV2024/html/Vats_GC-MVSNet_Multi-View_Multi-Scale_Geometrically-Consistent_Multi-View_Stereo_WACV_2024_paper.html
♻ ☆ iFairy: the First 2-bit Complex LLM with All Parameters in $\{\pm1, \pm i\}$
Quantization-Aware Training (QAT) integrates quantization into the training loop, enabling LLMs to learn robust low-bit representations, and is widely recognized as one of the most promising research directions. All current QAT research focuses on minimizing quantization error on full-precision models, where the full-precision accuracy acts as an upper bound (accuracy ceiling). No existing method has even attempted to surpass this ceiling. To break this ceiling, we propose a new paradigm: raising the ceiling (full-precision model), and then still quantizing it efficiently into 2 bits. We propose Fairy$\pm i$, the first 2-bit quantization framework for complex-valued LLMs. Specifically, our method leverages the representational advantages of the complex domain to boost full-precision accuracy. We map weights to the fourth roots of unity $\{\pm1, \pm i\}$, forming a perfectly symmetric and information-theoretically optimal 2-bit representation. Importantly, each quantized weight has either a zero real or imaginary part, enabling multiplication-free inference using only additions and element swaps. Experimental results show that Fairy$\pm i$ outperforms the ceiling of existing 2-bit quantization approaches in terms of both PPL and downstream tasks, while maintaining strict storage and compute efficiency. This work opens a new direction for building highly accurate and practical LLMs under extremely low-bit constraints.
comment: 15 pages, 9 figures
♻ ☆ TAR: Teacher-Aligned Representations via Contrastive Learning for Quadrupedal Locomotion IROS
Quadrupedal locomotion via Reinforcement Learning (RL) is commonly addressed using the teacher-student paradigm, where a privileged teacher guides a proprioceptive student policy. However, key challenges such as representation misalignment between privileged teacher and proprioceptive-only student, covariate shift due to behavioral cloning, and lack of deployable adaptation; lead to poor generalization in real-world scenarios. We propose Teacher-Aligned Representations via Contrastive Learning (TAR), a framework that leverages privileged information with self-supervised contrastive learning to bridge this gap. By aligning representations to a privileged teacher in simulation via contrastive objectives, our student policy learns structured latent spaces and exhibits robust generalization to Out-of-Distribution (OOD) scenarios, surpassing the fully privileged "Teacher". Results showed accelerated training by 2x compared to state-of-the-art baselines to achieve peak performance. OOD scenarios showed better generalization by 40% on average compared to existing methods. Moreover, TAR transitions seamlessly into learning during deployment without requiring privileged states, setting a new benchmark in sample-efficient, adaptive locomotion and enabling continual fine-tuning in real-world scenarios. Open-source code and videos are available at https://amrmousa.com/TARLoco/.
comment: This work has been accepted for publication at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ Hypothesis Spaces for Deep Learning
This paper introduces a hypothesis space for deep learning based on deep neural networks (DNNs). By treating a DNN as a function of two variables - the input variable and the parameter variable - we consider the set of DNNs where the parameter variable belongs to a space of weight matrices and biases determined by a prescribed depth and layer widths. To construct a Banach space of functions of the input variable, we take the weak* closure of the linear span of this DNN set. We prove that the resulting Banach space is a reproducing kernel Banach space (RKBS) and explicitly construct its reproducing kernel. Furthermore, we investigate two learning models - regularized learning and the minimum norm interpolation (MNI) problem - within the RKBS framework by establishing representer theorems. These theorems reveal that the solutions to these learning problems can be expressed as a finite sum of kernel expansions based on training data.
♻ ☆ Interpretable Neural ODEs for Gene Regulatory Network Discovery under Perturbations
Modern high-throughput biological datasets with thousands of perturbations provide the opportunity for large-scale discovery of causal graphs that represent the regulatory interactions between genes. Differentiable causal graphical models have been proposed to infer a gene regulatory network (GRN) from large scale interventional datasets, capturing the causal gene regulatory relationships from genetic perturbations. However, existing models are limited in their expressivity and scalability while failing to address the dynamic nature of biological processes such as cellular differentiation. We propose PerturbODE, a novel framework that incorporates biologically informative neural ordinary differential equations (neural ODEs) to model cell state trajectories under perturbations and derive the causal GRN from the neural ODE's parameters. We demonstrate PerturbODE's efficacy in trajectory prediction and GRN inference across simulated and real over-expression datasets.
♻ ☆ Learning to Schedule in Parallel-Server Queues with Stochastic Bilinear Rewards
We consider the problem of scheduling in multi-class, parallel-server queuing systems with uncertain rewards from job-server assignments. In this scenario, jobs incur holding costs while awaiting completion, and job-server assignments yield observable stochastic rewards with unknown mean values. The mean rewards for job-server assignments are assumed to follow a bilinear model with respect to features that characterize jobs and servers. Our objective is to minimize regret by maximizing the cumulative reward of job-server assignments over a time horizon, while keeping the total job holding cost bounded to ensure the stability of the queueing system. This problem is motivated by applications requiring resource allocation in network systems. In this problem, it is essential to control the tradeoff between reward maximization and fair allocation for the stability of the underlying queuing system (i.e., maximizing network throughput). To address this problem, we propose a scheduling algorithm based on a weighted proportional fair criteria augmented with marginal costs for reward maximization, incorporating a bandit algorithm tailored for bilinear rewards. Our algorithm achieves a sub-linear regret bound and a sub-linear mean holding cost (and queue length bound) of $\tilde{O}(\sqrt{T})$, respectively, with respect to the time horizon $T$, thus guaranteeing queuing system stability. Additionally, we establish stability conditions for distributed iterative algorithms for computing allocations, which are relevant to large-scale system applications. Finally, we demonstrate the efficiency of our algorithm through numerical experiments.
♻ ☆ Using machine learning to inform harvest control rule design in complex fishery settings
In fishery science, harvest management of size-structured stochastic populations is a long-standing and difficult problem. Rectilinear precautionary policies based on biomass and harvesting reference points have now become a standard approach to this problem. While these standard feedback policies are adapted from analytical or dynamic programming solutions assuming relatively simple ecological dynamics, they are often applied to more complicated ecological settings in the real world. In this paper we explore the problem of designing harvest control rules for partially observed, age-structured, spasmodic fish populations using tools from reinforcement learning (RL) and Bayesian optimization. Our focus is on the case of Walleye fisheries in Alberta, Canada, whose highly variable recruitment dynamics have perplexed managers and ecologists. We optimized and evaluated policies using several complementary performance metrics. The main questions we addressed were: 1. How do standard policies based on reference points perform relative to numerically optimized policies? 2. Can an observation of mean fish weight, in addition to stock biomass, aid policy decisions?
comment: 19 pages, 9 figures, 2 tables
♻ ☆ UniOcc: A Unified Benchmark for Occupancy Forecasting and Prediction in Autonomous Driving ICCV 2025
We introduce UniOcc, a comprehensive, unified benchmark and toolkit for occupancy forecasting (i.e., predicting future occupancies based on historical information) and occupancy prediction (i.e., predicting current-frame occupancy from camera images. UniOcc unifies the data from multiple real-world datasets (i.e., nuScenes, Waymo) and high-fidelity driving simulators (i.e., CARLA, OpenCOOD), providing 2D/3D occupancy labels and annotating innovative per-voxel flows. Unlike existing studies that rely on suboptimal pseudo labels for evaluation, UniOcc incorporates novel evaluation metrics that do not depend on ground-truth labels, enabling robust assessment on additional aspects of occupancy quality. Through extensive experiments on state-of-the-art models, we demonstrate that large-scale, diverse training data and explicit flow information significantly enhance occupancy prediction and forecasting performance. Our data and code are available at https://uniocc.github.io/.
comment: IEEE/CVF International Conference on Computer Vision (ICCV 2025); Project website: https://uniocc.github.io/
♻ ☆ FreeKV: Boosting KV Cache Retrieval for Efficient LLM Inference
Large language models (LLMs) have been widely deployed with rapidly expanding context windows to support increasingly demanding applications. However, long contexts pose significant deployment challenges, primarily due to the KV cache whose size grows proportionally with context length. While KV cache compression methods are proposed to address this issue, KV dropping methods incur considerable accuracy loss, and KV retrieval methods suffer from significant efficiency bottlenecks. We propose FreeKV, an algorithm-system co-optimization framework to enhance KV retrieval efficiency while preserving accuracy. On the algorithm side, FreeKV introduces speculative retrieval to shift the KV selection and recall processes out of the critical path, combined with fine-grained correction to ensure accuracy. On the system side, FreeKV employs hybrid KV layouts across CPU and GPU memory to eliminate fragmented data transfers, and leverages double-buffered streamed recall to further improve efficiency. Experiments demonstrate that FreeKV achieves near-lossless accuracy across various scenarios and models, delivering up to 13$\times$ speedup compared to SOTA KV retrieval methods.
♻ ☆ Hardness-Aware Dynamic Curriculum Learning for Robust Multimodal Emotion Recognition with Missing Modalities
Missing modalities have recently emerged as a critical research direction in multimodal emotion recognition (MER). Conventional approaches typically address this issue through missing modality reconstruction. However, these methods fail to account for variations in reconstruction difficulty across different samples, consequently limiting the model's ability to handle hard samples effectively. To overcome this limitation, we propose a novel Hardness-Aware Dynamic Curriculum Learning framework, termed HARDY-MER. Our framework operates in two key stages: first, it estimates the hardness level of each sample, and second, it strategically emphasizes hard samples during training to enhance model performance on these challenging instances. Specifically, we first introduce a Multi-view Hardness Evaluation mechanism that quantifies reconstruction difficulty by considering both Direct Hardness (modality reconstruction errors) and Indirect Hardness (cross-modal mutual information). Meanwhile, we introduce a Retrieval-based Dynamic Curriculum Learning strategy that dynamically adjusts the training curriculum by retrieving samples with similar semantic information and balancing the learning focus between easy and hard instances. Extensive experiments on benchmark datasets demonstrate that HARDY-MER consistently outperforms existing methods in missing-modality scenarios. Our code will be made publicly available at https://github.com/HARDY-MER/HARDY-MER.
♻ ☆ Optimistic critics can empower small actors
Actor-critic methods have been central to many of the recent advances in deep reinforcement learning. The most common approach is to use symmetric architectures, whereby both actor and critic have the same network topology and number of parameters. However, recent works have argued for the advantages of asymmetric setups, specifically with the use of smaller actors. We perform broad empirical investigations and analyses to better understand the implications of this and find that, in general, smaller actors result in performance degradation and overfit critics. Our analyses suggest poor data collection, due to value underestimation, as one of the main causes for this behavior, and further highlight the crucial role the critic can play in alleviating this pathology. We explore techniques to mitigate the observed value underestimation, which enables further research in asymmetric actor-critic methods.
comment: RLC 2025
♻ ☆ Sample-efficient LLM Optimization with Reset Replay
Recent advancements in post-training Large Language Models (LLMs), particularly through Reinforcement Learning (RL) and preference optimization methods, are key drivers for enhancing their reasoning capabilities. However, these methods are often plagued by low sample efficiency and a susceptibility to primacy bias, where overfitting to initial experiences degrades policy quality and damages the learning process. To address these challenges, we introduce LLM optimization with Reset Replay (LoRR), a general and powerful plugin designed to enhance sample efficiency in any preference-based optimization framework. LoRR core mechanism enables training at a high replay number, maximizing the utility of each collected data batch. To counteract the risk of overfitting inherent in high-replay training, LoRR incorporates a periodic reset strategy with reusing initial data, which preserves network plasticity. Furthermore, it leverages a hybrid optimization objective, combining supervised fine-tuning (SFT) and preference-based losses to further bolster data exploitation. Our extensive experiments demonstrate that LoRR significantly boosts the performance of various preference optimization methods on both mathematical and general reasoning benchmarks. Notably, an iterative DPO approach augmented with LoRR achieves comparable performance on challenging math tasks, outperforming some complex and computationally intensive RL-based algorithms. These findings highlight that LoRR offers a practical, sample-efficient, and highly effective paradigm for LLM finetuning, unlocking greater performance from limited data.
♻ ☆ MAP Estimation with Denoisers: Convergence Rates and Guarantees
Denoiser models have become powerful tools for inverse problems, enabling the use of pretrained networks to approximate the score of a smoothed prior distribution. These models are often used in heuristic iterative schemes aimed at solving Maximum a Posteriori (MAP) optimisation problems, where the proximal operator of the negative log-prior plays a central role. In practice, this operator is intractable, and practitioners plug in a pretrained denoiser as a surrogate-despite the lack of general theoretical justification for this substitution. In this work, we show that a simple algorithm, closely related to several used in practice, provably converges to the proximal operator under a log-concavity assumption on the prior $p$. We show that this algorithm can be interpreted as a gradient descent on smoothed proximal objectives. Our analysis thus provides a theoretical foundation for a class of empirically successful but previously heuristic methods.
comment: Compared to 1rst version: corrected Algorithm 1, corrected definition of $\alpha_k$, a few changes of notations
♻ ☆ Oranits: Mission Assignment and Task Offloading in Open RAN-based ITS using Metaheuristic and Deep Reinforcement Learning
In this paper, we explore mission assignment and task offloading in an Open Radio Access Network (Open RAN)-based intelligent transportation system (ITS), where autonomous vehicles leverage mobile edge computing for efficient processing. Existing studies often overlook the intricate interdependencies between missions and the costs associated with offloading tasks to edge servers, leading to suboptimal decision-making. To bridge this gap, we introduce Oranits, a novel system model that explicitly accounts for mission dependencies and offloading costs while optimizing performance through vehicle cooperation. To achieve this, we propose a twofold optimization approach. First, we develop a metaheuristic-based evolutionary computing algorithm, namely the Chaotic Gaussian-based Global ARO (CGG-ARO), serving as a baseline for one-slot optimization. Second, we design an enhanced reward-based deep reinforcement learning (DRL) framework, referred to as the Multi-agent Double Deep Q-Network (MA-DDQN), that integrates both multi-agent coordination and multi-action selection mechanisms, significantly reducing mission assignment time and improving adaptability over baseline methods. Extensive simulations reveal that CGG-ARO improves the number of completed missions and overall benefit by approximately 7.1% and 7.7%, respectively. Meanwhile, MA-DDQN achieves even greater improvements of 11.0% in terms of mission completions and 12.5% in terms of the overall benefit. These results highlight the effectiveness of Oranits in enabling faster, more adaptive, and more efficient task processing in dynamic ITS environments.
comment: 15 pages, 13 figures
♻ ☆ 15,500 Seconds: Lean UAV Classification Using EfficientNet and Lightweight Fine-Tuning
As unmanned aerial vehicles (UAVs) become increasingly prevalent in both consumer and defense applications, the need for reliable, modality-specific classification systems grows in urgency. This paper addresses the challenge of data scarcity in UAV audio classification by expanding on prior work through the integration of pre-trained deep learning models, parameter-efficient fine-tuning (PEFT) strategies, and targeted data augmentation techniques. Using a custom dataset of 3,100 UAV audio clips (15,500 seconds) spanning 31 distinct drone types, we evaluate the performance of transformer-based and convolutional neural network (CNN) architectures under various fine-tuning configurations. Experiments were conducted with five-fold cross-validation, assessing accuracy, training efficiency, and robustness. Results show that full fine-tuning of the EfficientNet-B0 model with three augmentations achieved the highest validation accuracy (95.95), outperforming both the custom CNN and transformer-based models like AST. These findings suggest that combining lightweight architectures with PEFT and well-chosen augmentations provides an effective strategy for UAV audio classification on limited datasets. Future work will extend this framework to multimodal UAV classification using visual and radar telemetry.
♻ ☆ From Actions to Words: Towards Abstractive-Textual Policy Summarization in RL
Policies generated by Reinforcement Learning (RL) algorithms are difficult to explain to users, as they emerge from the interaction of complex reward structures and neural network representations. Consequently, analyzing and predicting agent behavior can be challenging, undermining user trust in real-world applications. To facilitate user understanding, current methods for global policy summarization typically rely on videos that demonstrate agent behavior in a subset of world states. However, users can only watch a limited number of demonstrations, constraining their understanding. Moreover, these methods place the burden of interpretation on users by presenting raw behaviors rather than synthesizing them into coherent patterns. To resolve these issues, we introduce SySLLM (Synthesized Summary using Large Language Models), advocating for a new paradigm of abstractive-textual policy explanations. By leveraging Large Language Models (LLMs)-which possess extensive world knowledge and pattern synthesis capabilities-SySLLM generates textual summaries that provide structured and comprehensible explanations of agent policies. SySLLM demonstrates that LLMs can interpret spatio-temporally structured descriptions of state-action trajectories from an RL agent and generate valuable policy insights in a zero-shot setting, without any prior knowledge or fine-tuning. Our evaluation shows that SySLLM captures key insights, such as goal preferences and exploration strategies, that were also identified by human experts. Furthermore, in a large-scale user study (with 200 participants), SySLLM summaries were preferred over demonstration-based summaries (HIGHLIGHTS) by a clear majority (75.5%) of participants.
♻ ☆ Knowledge-based Consistency Testing of Large Language Models EMNLP 2024
In this work, we systematically expose and measure the inconsistency and knowledge gaps of Large Language Models (LLMs). Specifically, we propose an automated testing framework (called KonTest) which leverages a knowledge graph to construct test cases. KonTest probes and measures the inconsistencies in the LLM's knowledge of the world via a combination of semantically-equivalent queries and test oracles (metamorphic or ontological oracle). KonTest further mitigates knowledge gaps via a weighted LLM model ensemble. Using four state-of-the-art LLMs (Falcon, Gemini, GPT3.5, and Llama2), we show that KonTest generates 19.2% error inducing inputs (1917 errors from 9979 test inputs). It also reveals a 16.5% knowledge gap across all tested LLMs. A mitigation method informed by KonTest's test suite reduces LLM knowledge gap by 32.48%. Our ablation study further shows that GPT3.5 is not suitable for knowledge-based consistency testing because it is only 60%-68% effective in knowledge construction.
comment: 12 pages, 4 figures, 8 tables, Accepted at EMNLP 2024 Findings
♻ ☆ Unifying Self-Supervised Clustering and Energy-Based Models
Self-supervised learning excels at learning representations from large amounts of data. At the same time, generative models offer the complementary property of learning information about the underlying data generation process. In this study, we aim at establishing a principled connection between these two paradigms and highlight the benefits of their complementarity. In particular, we perform an analysis of self-supervised learning objectives, elucidating the underlying probabilistic graphical models and presenting a standardized methodology for their derivation from first principles. The analysis suggests a natural means of integrating self-supervised learning with likelihood-based generative models. We instantiate this concept within the realm of cluster-based self-supervised learning and energy models, introducing a lower bound proven to reliably penalize the most important failure modes and unlocking full unification. Our theoretical findings are substantiated through experiments on synthetic and real-world data, including SVHN, CIFAR10, and CIFAR100, demonstrating that our objective function allows to jointly train a backbone network in a discriminative and generative fashion, consequently outperforming existing self-supervised learning strategies in terms of clustering, generation and out-of-distribution detection performance by a wide margin. We also demonstrate that the solution can be integrated into a neuro-symbolic framework to tackle a simple yet non-trivial instantiation of the symbol grounding problem. The code is publicly available at https://github.com/emsansone/GEDI.
comment: Changes from previous version: change introductions and added acknowledgments. Integral version of workshop paper arXiv:2309.15420. Improved GEDI version (from two stages to single stage training) arxiv:2212.13425 - ACCEPTED TO TMLR 2025
♻ ☆ WeChat-YATT: A Simple, Scalable and Balanced RLHF Trainer
Reinforcement Learning from Human Feedback (RLHF) has emerged as a prominent paradigm for training large language models and multimodal systems. Despite notable advances enabled by existing RLHF training frameworks, significant challenges remain in scaling to complex multimodal workflows and adapting to dynamic workloads. In particular, current systems often encounter limitations related to controller scalability when managing large models, as well as inefficiencies in orchestrating intricate RLHF pipelines, especially in scenarios that require dynamic sampling and resource allocation. In this paper, we introduce WeChat-YATT (Yet Another Transformer Trainer in WeChat), a simple, scalable, and balanced RLHF training framework specifically designed to address these challenges. WeChat-YATT features a parallel controller programming model that enables flexible and efficient orchestration of complex RLHF workflows, effectively mitigating the bottlenecks associated with centralized controller architectures and facilitating scalability in large-scale data scenarios. In addition, we propose a dynamic placement schema that adaptively partitions computational resources and schedules workloads, thereby significantly reducing hardware idle time and improving GPU utilization under variable training conditions. We evaluate WeChat-YATT across a range of experimental scenarios, demonstrating that it achieves substantial improvements in throughput compared to state-of-the-art RLHF training frameworks. Furthermore, WeChat-YATT has been successfully deployed to train models supporting WeChat product features for a large-scale user base, underscoring its effectiveness and robustness in real-world applications.We have open-source WeChat-YATT at https://www.github.com/tencent/WeChat-YATT.
comment: arXiv admin note: substantial text overlap with arXiv:2507.22789
♻ ☆ Goal-Oriented Time-Series Forecasting: Foundation Framework Design
Conventional time-series forecasting methods typically aim to minimize overall prediction error, without accounting for the varying importance of different forecast ranges in downstream applications. We propose a training methodology that enables forecasting models to adapt their focus to application-specific regions of interest at inference time, without retraining. The approach partitions the prediction space into fine-grained segments during training, which are dynamically reweighted and aggregated to emphasize the target range specified by the application. Unlike prior methods that predefine these ranges, our framework supports flexible, on-demand adjustments. Experiments on standard benchmarks and a newly collected wireless communication dataset demonstrate that our method not only improves forecast accuracy within regions of interest but also yields measurable gains in downstream task performance. These results highlight the potential for closer integration between predictive modeling and decision-making in real-world systems.
♻ ☆ A Graph-Based Framework for Exploring Mathematical Patterns in Physics: A Proof of Concept
The vast corpus of physics equations forms an implicit network of mathematical relationships that traditional analysis cannot fully explore. This work introduces a graph-based framework combining neural networks with symbolic analysis to systematically discover and validate mathematical patterns across physics domains. Starting from 659 equations, we performed rigorous semantic disambiguation to resolve notational polysemy affecting 213 equations, then focused on 400 advanced physics equations by excluding elementary mechanics to emphasize inter-branch connections of modern physics. This corpus was represented as a weighted knowledge graph where a Graph Attention Network achieved 97.4% AUC in link prediction, significantly outperforming classical baselines. The framework's primary value emerges from its dual capability: generating hypotheses and auditing knowledge. First, it functions as a hypothesis generator, producing hundreds of candidate cross-domain connections, from blackbody radiation coupled with Navier-Stokes equations to radioactive decay linked with electromagnetic induction. Second, through symbolic analysis of 30 equation clusters, it serves as a computational auditor that verified established theory consistencies, synthesized the Magnetic Reynolds Number from electromagnetic-fluid coupling, and revealed how even parsing errors could potentially point toward legitimate research like analog gravity. This proof-of-concept intentionally over-generates candidates to ensure comprehensive exploration of mathematical possibility space. Even tautologies and errors serve scientific purposes: redundancy identification and knowledge base quality assessment. The system transforms the intractable combinatorial space into a filtered stream of mathematical patterns for human interpretation.
comment: v2: 16 pages, 7 figures, 3 tables. v2: (16 pages, 7 figures, 3 tables) Title revised to better reflect proof-of-concept nature. Added equation clusters analysis, demonstrating framework's capabilities in theory validation, error detection, and cross-domain synthesis. Previous title: "A Graph Neural Network Approach for Mapping the Conceptual Structure and Inter-Branch Connectivity of Physics
♻ ☆ Towards Embodied Agentic AI: Review and Classification of LLM- and VLM-Driven Robot Autonomy and Interaction
Foundation models, including large language models (LLMs) and vision-language models (VLMs), have recently enabled novel approaches to robot autonomy and human-robot interfaces. In parallel, vision-language-action models (VLAs) or large behavior models (LBMs) are increasing the dexterity and capabilities of robotic systems. This survey paper focuses on those works advancing towards agentic applications and architectures. This includes initial efforts exploring GPT-style interfaces to tooling, as well as more complex system where AI agents are coordinators, planners, perception actors, or generalist interfaces. Such agentic architectures allow robots to reason over natural language instructions, invoke APIs, plan task sequences, or assist in operations and diagnostics. In addition to peer-reviewed research, due to the fast-evolving nature of the field, we highlight and include community-driven projects, ROS packages, and industrial frameworks that show emerging trends. We propose a taxonomy for classifying model integration approaches and present a comparative analysis of the role that agents play in different solutions in today's literature.
♻ ☆ Continuous Parallel Relaxation for Finding Diverse Solutions in Combinatorial Optimization Problems
Finding the optimal solution is often the primary goal in combinatorial optimization (CO). However, real-world applications frequently require diverse solutions rather than a single optimum, particularly in two key scenarios. The first scenario occurs in real-world applications where strictly enforcing every constraint is neither necessary nor desirable. Allowing minor constraint violations can often lead to more cost-effective solutions. This is typically achieved by incorporating the constraints as penalty terms in the objective function, which requires careful tuning of penalty parameters. The second scenario involves cases where CO formulations tend to oversimplify complex real-world factors, such as domain knowledge, implicit trade-offs, or ethical considerations. To address these challenges, generating (i) penalty-diversified solutions by varying penalty intensities and (ii) variation-diversified solutions with distinct structural characteristics provides valuable insights, enabling practitioners to post-select the most suitable solution for their specific needs. However, efficiently discovering these diverse solutions is more challenging than finding a single optimal one. This study introduces Continual Parallel Relaxation Annealing (CPRA), a computationally efficient framework for unsupervised-learning (UL)-based CO solvers that generates diverse solutions within a single training run. CPRA leverages representation learning and parallelization to automatically discover shared representations, substantially accelerating the search for these diverse solutions. Numerical experiments demonstrate that CPRA outperforms existing UL-based solvers in generating these diverse solutions while significantly reducing computational costs.
comment: 20 pages, 12 figures
♻ ☆ On Understanding of the Dynamics of Model Capacity in Continual Learning
The stability-plasticity dilemma, closely related to a neural network's (NN) capacity-its ability to represent tasks-is a fundamental challenge in continual learning (CL). Within this context, we introduce CL's effective model capacity (CLEMC) that characterizes the dynamic behavior of the stability-plasticity balance point. We develop a difference equation to model the evolution of the interplay between the NN, task data, and optimization procedure. We then leverage CLEMC to demonstrate that the effective capacity-and, by extension, the stability-plasticity balance point is inherently non-stationary. We show that regardless of the NN architecture or optimization method, a NN's ability to represent new tasks diminishes when incoming task distributions differ from previous ones. We conduct extensive experiments to support our theoretical findings, spanning a range of architectures-from small feedforward network and convolutional networks to medium-sized graph neural networks and transformer-based large language models with millions of parameters.
♻ ☆ DiRW: Path-Aware Digraph Learning for Heterophily
Recently, graph neural network (GNN) has emerged as a powerful representation learning tool for graph-structured data. However, most approaches are tailored for undirected graphs, neglecting the abundant information in the edges of directed graphs (digraphs). In fact, digraphs are widely applied in the real world and confirmed to address heterophily challenges. Despite recent advancements, existing spatial- and spectral-based DiGNNs have limitations due to their complex learning mechanisms and reliance on high-quality topology, resulting in low efficiency and unstable performance. To address these issues, we propose Directed Random Walk (DiRW), a plug-and-play strategy for most spatial-based DiGNNs and also an innovative model which offers a new digraph learning paradigm. Specifically, it utilizes a direction-aware path sampler optimized from the perspectives of walk probability, length, and number in a weight-free manner by considering node profiles and topologies. Building upon this, DiRW incorporates a node-wise learnable path aggregator for generalized node representations. Extensive experiments on 9 datasets demonstrate that DiRW: (1) enhances most spatial-based methods as a plug-and-play strategy; (2) achieves SOTA performance as a new digraph learning paradigm. The source code and data are available at https://github.com/dhsiuu/DiRW.
♻ ☆ Delayed Feedback Modeling with Influence Functions
In online advertising under the cost-per-conversion (CPA) model, accurate conversion rate (CVR) prediction is crucial. A major challenge is delayed feedback, where conversions may occur long after user interactions, leading to incomplete recent data and biased model training. Existing solutions partially mitigate this issue but often rely on auxiliary models, making them computationally inefficient and less adaptive to user interest shifts. We propose IF-DFM, an \underline{I}nfluence \underline{F}unction-empowered for \underline{D}elayed \underline{F}eedback \underline{M}odeling which estimates the impact of newly arrived and delayed conversions on model parameters, enabling efficient updates without full retraining. By reformulating the inverse Hessian-vector product as an optimization problem, IF-DFM achieves a favorable trade-off between scalability and effectiveness. Experiments on benchmark datasets show that IF-DFM outperforms prior methods in both accuracy and adaptability.
♻ ☆ Clipping Improves Adam-Norm and AdaGrad-Norm when the Noise Is Heavy-Tailed ICML 2025
Methods with adaptive stepsizes, such as AdaGrad and Adam, are essential for training modern Deep Learning models, especially Large Language Models. Typically, the noise in the stochastic gradients is heavy-tailed for the later ones. Gradient clipping provably helps to achieve good high-probability convergence for such noises. However, despite the similarity between AdaGrad/Adam and Clip-SGD, the current understanding of the high-probability convergence of AdaGrad/Adam-type methods is limited in this case. In this work, we prove that AdaGrad/Adam (and their delayed version) can have provably bad high-probability convergence if the noise is heavy-tailed. We also show that gradient clipping fixes this issue, i.e., we derive new high-probability convergence bounds with polylogarithmic dependence on the confidence level for AdaGrad-Norm and Adam-Norm with clipping and with/without delay for smooth convex/non-convex stochastic optimization with heavy-tailed noise. We extend our results to the case of AdaGrad/Adam with delayed stepsizes. Our empirical evaluations highlight the superiority of clipped versions of AdaGrad/Adam in handling the heavy-tailed noise.
comment: ICML 2025. 65 pages, 12 figures. Changes in V3: extended results for the methods with coordinate-wise stepsizes and new experiments
♻ ☆ Tuning-Free Online Robust Principal Component Analysis through Implicit Regularization
The performance of the standard Online Robust Principal Component Analysis (OR-PCA) technique depends on the optimum tuning of the explicit regularizers and this tuning is dataset sensitive. We aim to remove the dependency on these tuning parameters by using implicit regularization. We propose to use the implicit regularization effect of various modified gradient descents to make OR-PCA tuning free. Our method incorporates three different versions of modified gradient descent that separately but naturally encourage sparsity and low-rank structures in the data. The proposed method performs comparable or better than the tuned OR-PCA for both simulated and real-world datasets. Tuning-free ORPCA makes it more scalable for large datasets since we do not require dataset-dependent parameter tuning.
Curse of High Dimensionality Issue in Transformer for Long-context Modeling ICML 2025
Transformer-based large language models (LLMs) excel in natural language processing tasks by capturing long-range dependencies through self-attention mechanisms. However, long-context modeling faces significant computational inefficiencies due to \textit{redundant} attention computations: while attention weights are often \textit{sparse}, all tokens consume \textit{equal} computational resources. In this paper, we reformulate traditional probabilistic sequence modeling as a \textit{supervised learning task}, enabling the separation of relevant and irrelevant tokens and providing a clearer understanding of redundancy. Based on this reformulation, we theoretically analyze attention sparsity, revealing that only a few tokens significantly contribute to predictions. Building on this, we formulate attention optimization as a linear coding problem and propose a \textit{group coding strategy}, theoretically showing its ability to improve robustness against random noise and enhance learning efficiency. Motivated by this, we propose \textit{Dynamic Group Attention} (DGA), which leverages the group coding to explicitly reduce redundancy by aggregating less important tokens during attention computation. Empirical results show that our DGA significantly reduces computational costs while maintaining competitive performance.Code is available at https://github.com/bolixinyu/DynamicGroupAttention.
comment: Accepted at ICML 2025
♻ ☆ LaDi-WM: A Latent Diffusion-based World Model for Predictive Manipulation
Predictive manipulation has recently gained considerable attention in the Embodied AI community due to its potential to improve robot policy performance by leveraging predicted states. However, generating accurate future visual states of robot-object interactions from world models remains a well-known challenge, particularly in achieving high-quality pixel-level representations. To this end, we propose LaDi-WM, a world model that predicts the latent space of future states using diffusion modeling. Specifically, LaDi-WM leverages the well-established latent space aligned with pre-trained Visual Foundation Models (VFMs), which comprises both geometric features (DINO-based) and semantic features (CLIP-based). We find that predicting the evolution of the latent space is easier to learn and more generalizable than directly predicting pixel-level images. Building on LaDi-WM, we design a diffusion policy that iteratively refines output actions by incorporating forecasted states, thereby generating more consistent and accurate results. Extensive experiments on both synthetic and real-world benchmarks demonstrate that LaDi-WM significantly enhances policy performance by 27.9\% on the LIBERO-LONG benchmark and 20\% on the real-world scenario. Furthermore, our world model and policies achieve impressive generalizability in real-world experiments.
comment: CoRL 2025
♻ ☆ Adversarial Robustness in Two-Stage Learning-to-Defer: Algorithms and Guarantees
Two-stage Learning-to-Defer (L2D) enables optimal task delegation by assigning each input to either a fixed main model or one of several offline experts, supporting reliable decision-making in complex, multi-agent environments. However, existing L2D frameworks assume clean inputs and are vulnerable to adversarial perturbations that can manipulate query allocation--causing costly misrouting or expert overload. We present the first comprehensive study of adversarial robustness in two-stage L2D systems. We introduce two novel attack strategie--untargeted and targeted--which respectively disrupt optimal allocations or force queries to specific agents. To defend against such threats, we propose SARD, a convex learning algorithm built on a family of surrogate losses that are provably Bayes-consistent and $(\mathcal{R}, \mathcal{G})$-consistent. These guarantees hold across classification, regression, and multi-task settings. Empirical results demonstrate that SARD significantly improves robustness under adversarial attacks while maintaining strong clean performance, marking a critical step toward secure and trustworthy L2D deployment.
♻ ☆ An Explainable Transformer-based Model for Phishing Email Detection: A Large Language Model Approach
Phishing email is a serious cyber threat that tries to deceive users by sending false emails with the intention of stealing confidential information or causing financial harm. Attackers, often posing as trustworthy entities, exploit technological advancements and sophistication to make detection and prevention of phishing more challenging. Despite extensive academic research, phishing detection remains an ongoing and formidable challenge in the cybersecurity landscape. Large Language Models (LLMs) and Masked Language Models (MLMs) possess immense potential to offer innovative solutions to address long-standing challenges. In this research paper, we present an optimized, fine-tuned transformer-based DistilBERT model designed for the detection of phishing emails. In the detection process, we work with a phishing email dataset and utilize the preprocessing techniques to clean and solve the imbalance class issues. Through our experiments, we found that our model effectively achieves high accuracy, demonstrating its capability to perform well. Finally, we demonstrate our fine-tuned model using Explainable-AI (XAI) techniques such as Local Interpretable Model-Agnostic Explanations (LIME) and Transformer Interpret to explain how our model makes predictions in the context of text classification for phishing emails.
♻ ☆ A Two-Stage Learning-to-Defer Approach for Multi-Task Learning
The Two-Stage Learning-to-Defer (L2D) framework has been extensively studied for classification and, more recently, regression tasks. However, many real-world applications require solving both tasks jointly in a multi-task setting. We introduce a novel Two-Stage L2D framework for multi-task learning that integrates classification and regression through a unified deferral mechanism. Our method leverages a two-stage surrogate loss family, which we prove to be both Bayes-consistent and $(\mathcal{G}, \mathcal{R})$-consistent, ensuring convergence to the Bayes-optimal rejector. We derive explicit consistency bounds tied to the cross-entropy surrogate and the $L_1$-norm of agent-specific costs, and extend minimizability gap analysis to the multi-expert two-stage regime. We also make explicit how shared representation learning -- commonly used in multi-task models -- affects these consistency guarantees. Experiments on object detection and electronic health record analysis demonstrate the effectiveness of our approach and highlight the limitations of existing L2D methods in multi-task scenarios.
♻ ☆ VectorFit : Adaptive Singular & Bias Vector Fine-Tuning of Pre-trained Foundation Models
Popular PEFT methods reduce trainable parameter count for fine-tuning by parameterizing new low-rank or sparse trainable weights in parallel to the frozen pre-trained weights $W$. However, these weights are trained from scratch, and there exists a performance gap between these methods and full fine-tuning, especially in low-budget settings. We introduce VectorFit, a new way of parameterization that efficiently utilizes the existing knowledge embedded in $W$ by adaptively training their singular vectors and biases. We show that utilizing the structural and transformational properties of $W$ in this way can lead to high-rank incremental weight matrices $\Delta W$, comparable to that of full fine-tuning. VectorFit delivers superior results with 9$\boldsymbol\times$ fewer trainable parameters than the leading PEFT methods. Through comprehensive experiments across 19 datasets covering a wide range of language and vision tasks such as natural language understanding and generation, question answering, image classification, and image generation, we demonstrate that VectorFit surpasses baselines in terms of performance as a function of parameter-efficiency.
comment: This paper has been accepted in the 28th European Conference on Artificial Intelligence (ECAI 2025)
♻ ☆ MIRRAMS: Learning Robust Tabular Models under Unseen Missingness Shifts
The presence of missing values often reflects variations in data collection policies, which may shift across time or locations, even when the underlying feature distribution remains stable. Such shifts in the missingness distribution between training and test inputs pose a significant challenge to achieving robust predictive performance. In this study, we propose a novel deep learning framework designed to address this challenge, particularly in the common yet challenging scenario where the test-time dataset is unseen. We begin by introducing a set of mutual information-based conditions, called MI robustness conditions, which guide the prediction model to extract label-relevant information. This promotes robustness against distributional shifts in missingness at test-time. To enforce these conditions, we design simple yet effective loss terms that collectively define our final objective, called MIRRAMS. Importantly, our method does not rely on any specific missingness assumption such as MCAR, MAR, or MNAR, making it applicable to a broad range of scenarios. Furthermore, it can naturally extend to cases where labels are also missing in training data, by generalizing the framework to a semi-supervised learning setting. Extensive experiments across multiple benchmark tabular datasets demonstrate that MIRRAMS consistently outperforms existing state-of-the-art baselines and maintains stable performance under diverse missingness conditions. Moreover, it achieves superior performance even in fully observed settings, highlighting MIRRAMS as a powerful, off-the-shelf framework for general-purpose tabular learning.
♻ ☆ A Market for Accuracy: Classification under Competition
Machine learning models play a key role for service providers looking to gain market share in consumer markets. However, traditional learning approaches do not take into account the existence of additional providers, who compete with each other for consumers. Our work aims to study learning in this market setting, as it affects providers, consumers, and the market itself. We begin by analyzing such markets through the lens of the learning objective, and show that accuracy cannot be the only consideration. We then propose a method for classification under competition, so that a learner can maximize market share in the presence of competitors. We show that our approach benefits the providers as well as the consumers, and find that the timing of market entry and model updates can be crucial. We display the effectiveness of our approach across a range of domains, from simple distributions to noisy datasets, and show that the market as a whole remains stable by converging quickly to an equilibrium.
comment: 26 pages
♻ ☆ Minimax Optimality in Contextual Dynamic Pricing with General Valuation Models
We study contextual dynamic pricing, where a decision maker posts personalized prices based on observable contexts and receives binary purchase feedback indicating whether the customer's valuation exceeds the price. Each valuation is modeled as an unknown latent function of the context, corrupted by independent and identically distributed market noise from an unknown distribution. Relying only on Lipschitz continuity of the noise distribution and bounded valuations, we propose a minimax-optimal algorithm. To accommodate the unknown distribution, our method discretizes the relevant noise range to form a finite set of candidate prices, then applies layered data partitioning to obtain confidence bounds substantially tighter than those derived via the elliptical-potential lemma. A key advantage is that estimation bias in the valuation function cancels when comparing upper confidence bounds, eliminating the need to know the Lipschitz constant. The framework extends beyond linear models to general function classes through offline regression oracles. Our regret analysis depends solely on the oracle's estimation error, typically governed by the statistical complexity of the class. These techniques yield a regret upper bound matching the minimax lower bound up to logarithmic factors. Furthermore, we refine these guarantees under additional structures -- e.g., linear valuation models, second-order smoothness, sparsity, and known noise distribution or observable valuations -- and compare our bounds and assumptions with prior dynamic-pricing methods. Finally, numerical experiments corroborate the theory and show clear improvements over benchmark methods.
♻ ☆ Boosting Cross-problem Generalization in Diffusion-Based Neural Combinatorial Solver via Inference Time Adaptation
Diffusion-based Neural Combinatorial Optimization (NCO) has demonstrated effectiveness in solving NP-complete (NPC) problems by learning discrete diffusion models for solution generation, eliminating hand-crafted domain knowledge. Despite their success, existing NCO methods face significant challenges in both cross-scale and cross-problem generalization, and high training costs compared to traditional solvers. While recent studies on diffusion models have introduced training-free guidance approaches that leverage pre-defined guidance functions for conditional generation, such methodologies have not been extensively explored in combinatorial optimization. To bridge this gap, we propose a training-free inference time adaptation framework (DIFU-Ada) that enables both the zero-shot cross-problem transfer and cross-scale generalization capabilities of diffusion-based NCO solvers without requiring additional training. We provide theoretical analysis that helps understanding the cross-problem transfer capability. Our experimental results demonstrate that a diffusion solver, trained exclusively on the Traveling Salesman Problem (TSP), can achieve competitive zero-shot transfer performance across different problem scales on TSP variants, such as Prize Collecting TSP (PCTSP) and the Orienteering Problem (OP), through inference time adaptation.
♻ ☆ FedABC: Attention-Based Client Selection for Federated Learning with Long-Term View
Native AI support is a key objective in the evolution of 6G networks, with Federated Learning (FL) emerging as a promising paradigm. FL allows decentralized clients to collaboratively train an AI model without directly sharing their data, preserving privacy. Clients train local models on private data and share model updates, which a central server aggregates to refine the global model and redistribute it for the next iteration. However, client data heterogeneity slows convergence and reduces model accuracy, and frequent client participation imposes communication and computational burdens. To address these challenges, we propose FedABC, an innovative client selection algorithm designed to take a long-term view in managing data heterogeneity and optimizing client participation. Inspired by attention mechanisms, FedABC prioritizes informative clients by evaluating both model similarity and each model's unique contributions to the global model. Moreover, considering the evolving demands of the global model, we formulate an optimization problem to guide FedABC throughout the training process. Following the "later-is-better" principle, FedABC adaptively adjusts the client selection threshold, encouraging greater participation in later training stages. Extensive simulations on CIFAR-10 demonstrate that FedABC significantly outperforms existing approaches in model accuracy and client participation efficiency, achieving comparable performance with 32% fewer clients than the classical FL algorithm FedAvg, and 3.5% higher accuracy with 2% fewer clients than the state-of-the-art. This work marks a step toward deploying FL in heterogeneous, resource-constrained environments, thereby supporting native AI capabilities in 6G networks.
comment: Accepted to ICC 2025
♻ ☆ Learning Classifiers That Induce Markets
When learning is used to inform decisions about humans, such as for loans, hiring, or admissions, this can incentivize users to strategically modify their features, at a cost, to obtain positive predictions. The common assumption is that the function governing costs is exogenous, fixed, and predetermined. We challenge this assumption, and assert that costs can emerge as a result of deploying a classifier. Our idea is simple: when users seek positive predictions, this creates demand for important features; and if features are available for purchase, then a market will form, and competition will give rise to prices. We extend the strategic classification framework to support this notion, and study learning in a setting where a classifier can induce a market for features. We present an analysis of the learning task, devise an algorithm for computing market prices, propose a differentiable learning framework, and conduct experiments to explore our novel setting and approach.
♻ ☆ A Lightweight Transformer with Phase-Only Cross-Attention for Illumination-Invariant Biometric Authentication
Traditional biometric systems have encountered significant setbacks due to various unavoidable factors, for example, wearing of face masks in face recognition-based biometrics and hygiene concerns in fingerprint-based biometrics. This paper proposes a novel lightweight vision transformer with phase-only cross-attention (POC-ViT) using dual biometric traits of forehead and periocular portions of the face, capable of performing well even with face masks and without any physical touch, offering a promising alternative to traditional methods. The POC-ViT framework is designed to handle two biometric traits and to capture inter-dependencies in terms of relative structural patterns. Each channel consists of a Cross-Attention using phase-only correlation (POC) that captures both their individual and correlated structural patterns. The computation of cross-attention using POC extracts the phase correlation in the spatial features. Therefore, it is robust against variations in resolution and intensity, as well as illumination changes in the input images. The lightweight model is suitable for edge device deployment. The performance of the proposed framework was successfully demonstrated using the Forehead Subcutaneous Vein Pattern and Periocular Biometric Pattern (FSVP-PBP) database, having 350 subjects. The POC-ViT framework outperformed state-of-the-art methods with an outstanding classification accuracy of $98.8\%$ with the dual biometric traits.
comment: Submitted to IEEE
♻ ☆ Neuronal correlations shape the scaling behavior of memory capacity and nonlinear computational capability of reservoir recurrent neural networks
Reservoir computing is a powerful framework for real-time information processing, characterized by its high computational ability and quick learning, with applications ranging from machine learning to biological systems. In this paper, we investigate how the computational ability of reservoir recurrent neural networks (RNNs) scales with an increasing number of readout neurons. First, we demonstrate that the memory capacity of a reservoir RNN scales sublinearly with the number of readout neurons. To elucidate this observation, we develop a theoretical framework for analytically deriving memory capacity that incorporates the effect of neuronal correlations, which have been ignored in prior theoretical work for analytical simplicity. Our theory successfully relates the sublinear scaling of memory capacity to the strength of neuronal correlations. Furthermore, we show this principle holds across diverse types of RNNs, even those beyond the direct applicability of our theory. Next, we numerically investigate the scaling behavior of nonlinear computational ability, which, alongside memory capacity, is crucial for overall computational performance. Our numerical simulations reveal that as memory capacity growth becomes sublinear, increasing the number of readout neurons successively enables nonlinear processing at progressively higher polynomial orders. Our theoretical framework suggests that neuronal correlations govern not only memory capacity but also the sequential growth of nonlinear computational capabilities. Our findings establish a foundation for designing scalable and cost-effective reservoir computing, providing novel insights into the interplay among neuronal correlations, linear memory, and nonlinear processing.
comment: 26 pages, 9 figures
♻ ☆ Discrepancy-Aware Graph Mask Auto-Encoder KDD2025
Masked Graph Auto-Encoder, a powerful graph self-supervised training paradigm, has recently shown superior performance in graph representation learning. Existing works typically rely on node contextual information to recover the masked information. However, they fail to generalize well to heterophilic graphs where connected nodes may be not similar, because they focus only on capturing the neighborhood information and ignoring the discrepancy information between different nodes, resulting in indistinguishable node representations. In this paper, to address this issue, we propose a Discrepancy-Aware Graph Mask Auto-Encoder (DGMAE). It obtains more distinguishable node representations by reconstructing the discrepancy information of neighboring nodes during the masking process. We conduct extensive experiments on 17 widely-used benchmark datasets. The results show that our DGMAE can effectively preserve the discrepancies of nodes in low-dimensional space. Moreover, DGMAE significantly outperforms state-of-the-art graph self-supervised learning methods on three graph analytic including tasks node classification, node clustering, and graph classification, demonstrating its remarkable superiority. The code of DGMAE is available at https://github.com/zhengziyu77/DGMAE.
comment: Accepted by KDD2025
♻ ☆ Online Distributional Regression
Large-scale streaming data are common in modern machine learning applications and have led to the development of online learning algorithms. Many fields, such as supply chain management, weather and meteorology, energy markets, and finance, have pivoted towards using probabilistic forecasts. This results in the need not only for accurate learning of the expected value but also for learning the conditional heteroskedasticity and conditional moments. Against this backdrop, we present a methodology for online estimation of regularized, linear distributional models. The proposed algorithm is based on a combination of recent developments for the online estimation of LASSO models and the well-known GAMLSS framework. We provide a case study on day-ahead electricity price forecasting, in which we show the competitive performance of the incremental estimation combined with strongly reduced computational effort. Our algorithms are implemented in a computationally efficient Python package ondil.
comment: Revised version submitted August 2025
♻ ☆ Semantic-Enhanced Time-Series Forecasting via Large Language Models
Time series forecasting plays a significant role in finance, energy, meteorology, and IoT applications. Recent studies have leveraged the generalization capabilities of large language models (LLMs) to adapt to time series forecasting, achieving promising performance. However, existing studies focus on token-level modal alignment, instead of bridging the intrinsic modality gap between linguistic knowledge structures and time series data patterns, greatly limiting the semantic representation. To address this issue, we propose a novel Semantic-Enhanced LLM (SE-LLM) that explores the inherent periodicity and anomalous characteristics of time series to embed into the semantic space to enhance the token embedding. This process enhances the interpretability of tokens for LLMs, thereby activating the potential of LLMs for temporal sequence analysis. Moreover, existing Transformer-based LLMs excel at capturing long-range dependencies but are weak at modeling short-term anomalies in time-series data. Hence, we propose a plugin module embedded within self-attention that models long-term and short-term dependencies to effectively adapt LLMs to time-series analysis. Our approach freezes the LLM and reduces the sequence dimensionality of tokens, greatly reducing computational consumption. Experiments demonstrate the superiority performance of our SE-LLM against the state-of-the-art (SOTA) methods.
comment: 14 pages,9 figures
♻ ☆ EvaDrive: Evolutionary Adversarial Policy Optimization for End-to-End Autonomous Driving
Autonomous driving faces significant challenges in achieving human-like iterative decision-making, which continuously generates, evaluates, and refines trajectory proposals. Current generation-evaluation frameworks isolate trajectory generation from quality assessment, preventing iterative refinement essential for planning, while reinforcement learning methods collapse multi-dimensional preferences into scalar rewards, obscuring critical trade-offs and yielding scalarization bias.To overcome these issues, we present EvaDrive, a novel multi-objective reinforcement learning framework that establishes genuine closed-loop co-evolution between trajectory generation and evaluation via adversarial optimization. EvaDrive frames trajectory planning as a multi-round adversarial game. In this game, a hierarchical generator continuously proposes candidate paths by combining autoregressive intent modeling for temporal causality with diffusion-based refinement for spatial flexibility. These proposals are then rigorously assessed by a trainable multi-objective critic that explicitly preserves diverse preference structures without collapsing them into a single scalarization bias.This adversarial interplay, guided by a Pareto frontier selection mechanism, enables iterative multi-round refinement, effectively escaping local optima while preserving trajectory diversity.Extensive experiments on NAVSIM and Bench2Drive benchmarks demonstrate SOTA performance, achieving 94.9 PDMS on NAVSIM v1 (surpassing DiffusionDrive by 6.8, DriveSuprim by 5.0, and TrajHF by 0.9) and 64.96 Driving Score on Bench2Drive. EvaDrive generates diverse driving styles via dynamic weighting without external preference data, introducing a closed-loop adversarial framework for human-like iterative decision-making, offering a novel scalarization-free trajectory optimization approach.
♻ ☆ Rollout Roulette: A Probabilistic Inference Approach to Inference-Time Scaling of LLMs using Particle-Based Monte Carlo Methods
Large language models (LLMs) have achieved significant performance gains via scaling up model sizes and/or data. However, recent evidence suggests diminishing returns from such approaches, motivating scaling the computation spent at inference time. Existing inference-time scaling methods, usually with reward models, cast the task as a search problem, which tends to be vulnerable to reward hacking as a consequence of approximation errors in reward models. In this paper, we instead cast inference-time scaling as a probabilistic inference task and leverage sampling-based techniques to explore the typical set of the state distribution of a state-space model with an approximate likelihood, rather than optimize for its mode directly. We propose a novel inference-time scaling approach by adapting particle-based Monte Carlo methods to this task. Our empirical evaluation demonstrates that our methods have a 4-16x better scaling rate over our deterministic search counterparts on various challenging mathematical reasoning tasks. Using our approach, we show that Qwen2.5-Math-1.5B-Instruct can surpass GPT-4o accuracy in only 4 rollouts, while Qwen2.5-Math-7B-Instruct scales to o1 level accuracy in only 32 rollouts. Our work not only presents an effective method to inference-time scaling, but also connects the rich literature in probabilistic inference with inference-time scaling of LLMs to develop more robust algorithms in future work. Code, videos, and further information available at https://probabilistic-inference-scaling.github.io.
♻ ☆ Efficient Distributed Optimization under Heavy-Tailed Noise ICML 2025
Distributed optimization has become the default training paradigm in modern machine learning due to the growing scale of models and datasets. To mitigate communication overhead, local updates are often applied before global aggregation, resulting in a nested optimization approach with inner and outer steps. However, heavy-tailed stochastic gradient noise remains a significant challenge, particularly in attention-based models, hindering effective training. In this work, we propose TailOPT, an efficient framework designed to address heavy-tailed noise by leveraging adaptive optimization or clipping techniques. We establish convergence guarantees for the TailOPT framework under heavy-tailed noise with potentially unbounded gradient variance and local updates. Among its variants, we highlight a memory and communication efficient instantiation which we call $Bi^2Clip$, which performs coordinate-wise clipping at both the inner and outer optimizers, achieving adaptive-like performance (e.g., Adam) without the cost of maintaining or transmitting additional gradient statistics. Empirically, TailOPT, including $Bi^2Clip$, demonstrates superior performance on several language tasks and models, outperforming state-of-the-art methods.
comment: Accepted to ICML 2025
♻ ☆ Grouped Sequency-arranged Rotation: Optimizing Rotation Transformation for Quantization for Free
Large Language Models (LLMs) face deployment challenges due to high computational costs, and while Post-Training Quantization (PTQ) offers a solution, existing rotation-based methods struggle at very low bit-widths like 2-bit. We introduce a novel, training-free approach to construct an improved rotation matrix, addressing the limitations of current methods. The key contributions include leveraging the Walsh-Hadamard transform with sequency ordering, which clusters similar frequency components to reduce quantization error compared to standard Hadamard matrices, significantly improving performance. Furthermore, we propose a Grouped Sequency-arranged Rotation (GSR) using block-diagonal matrices with smaller Walsh blocks, effectively isolating outlier impacts and achieving performance comparable to optimization-based methods without requiring any training. Our method demonstrates robust performance on reasoning tasks and Perplexity (PPL) score on WikiText-2. Our method also enhances results even when applied over existing learned rotation techniques.
comment: 7 pages
♻ ☆ LinguaFluid: Language Guided Fluid Control via Semantic Rewards in Reinforcement Learning
In the domain of scientific machine learning, designing effective reward functions remains a challenge in reinforcement learning (RL), particularly in environments where task goals are difficult to specify numerically. Reward functions in existing work are predominantly based on heuristics, manual engineering, or task-specific tuning. In this work, we introduce a semantically aligned reinforcement learning method where rewards are computed by aligning the current state with a target semantic instruction using a Sentence-Bidirectional Encoder Representations from Transformers (SBERT). Instead of relying on manually defined reward functions, the policy receives feedback based on the reward, which is a cosine similarity between the goal textual description and the statement description in the episode. We evaluated our approach in several environments and showed that semantic reward can guide learning to achieve competitive control behavior, even in the absence of hand-crafted reward functions. Our study demonstrates a correlation between the language embedding space and the conventional Euclidean space. This framework opens new horizons for aligning agent behavior with natural language goals and lays the groundwork for a more seamless integration of larger language models (LLMs) and fluid control applications.
♻ ☆ Rethinking Client-oriented Federated Graph Learning
As a new distributed graph learning paradigm, Federated Graph Learning (FGL) facilitates collaborative model training across local systems while preserving data privacy. We review existing FGL approaches and categorize their optimization mechanisms into: (1) Server-Client (S-C), where clients upload local model parameters for server-side aggregation and global updates; (2) Client-Client (C-C), which allows direct exchange of information between clients and customizing their local training process. We reveal that C-C shows superior potential due to its refined communication structure. However, existing C-C methods broadcast redundant node representations, incurring high communication costs and privacy risks at the node level. To this end, we propose FedC4, which combines graph Condensation with C-C Collaboration optimization. Specifically, FedC4 employs graph condensation technique to refine the knowledge of each client's graph into a few synthetic embeddings instead of transmitting node-level knowledge. Moreover, FedC4 introduces three novel modules that allow the source client to send distinct node representations tailored to the target client's graph properties. Experiments on eight public real-world datasets show that FedC4 outperforms state-of-the-art baselines in both task performance and communication cost. Our code is now available on https://github.com/Ereshkigal1/FedC4.
comment: 10 pages, 7 figures; references added
♻ ☆ PromptTSS: A Prompting-Based Approach for Interactive Multi-Granularity Time Series Segmentation CIKM 2025
Multivariate time series data, collected across various fields such as manufacturing and wearable technology, exhibit states at multiple levels of granularity, from coarse-grained system behaviors to fine-grained, detailed events. Effectively segmenting and integrating states across these different granularities is crucial for tasks like predictive maintenance and performance optimization. However, existing time series segmentation methods face two key challenges: (1) the inability to handle multiple levels of granularity within a unified model, and (2) limited adaptability to new, evolving patterns in dynamic environments. To address these challenges, we propose PromptTSS, a novel framework for time series segmentation with multi-granularity states. PromptTSS uses a unified model with a prompting mechanism that leverages label and boundary information to guide segmentation, capturing both coarse- and fine-grained patterns while adapting dynamically to unseen patterns. Experiments show PromptTSS improves accuracy by 24.49% in multi-granularity segmentation, 17.88% in single-granularity segmentation, and up to 599.24% in transfer learning, demonstrating its adaptability to hierarchical states and evolving time series dynamics. Our code is available at https://github.com/blacksnail789521/PromptTSS.
comment: Accepted at the 34th ACM International Conference on Information and Knowledge Management (CIKM 2025)
♻ ☆ HGAurban: Heterogeneous Graph Autoencoding for Urban Spatial-Temporal Learning
Spatial-temporal graph representations play a crucial role in urban sensing applications, including traffic analysis, human mobility behavior modeling, and citywide crime prediction. However, a key challenge lies in the noisy and sparse nature of spatial-temporal data, which limits existing neural networks' ability to learn meaningful region representations in the spatial-temporal graph. To overcome these limitations, we propose HGAurban, a novel heterogeneous spatial-temporal graph masked autoencoder that leverages generative self-supervised learning for robust urban data representation. Our framework introduces a spatial-temporal heterogeneous graph encoder that extracts region-wise dependencies from multi-source data, enabling comprehensive modeling of diverse spatial relationships. Within our self-supervised learning paradigm, we implement a masked autoencoder that jointly processes node features and graph structure. This approach automatically learns heterogeneous spatial-temporal patterns across regions, significantly improving the representation of dynamic temporal correlations. Comprehensive experiments across multiple spatiotemporal mining tasks demonstrate that our framework outperforms state-of-the-art methods and robustly handles real-world urban data challenges, including noise and sparsity in both spatial and temporal dimensions.
comment: 10 pages
♻ ☆ A New Query Expansion Approach via Agent-Mediated Dialogic Inquiry KDD 2025
Query expansion is widely used in Information Retrieval (IR) to improve search outcomes by supplementing initial queries with richer information. While recent Large Language Model (LLM) based methods generate pseudo-relevant content and expanded terms via multiple prompts, they often yield homogeneous, narrow expansions that lack the diverse context needed to retrieve relevant information. In this paper, we propose AMD: a new Agent-Mediated Dialogic Framework that engages in a dialogic inquiry involving three specialized roles: (1) a Socratic Questioning Agent reformulates the initial query into three sub-questions, with each question inspired by a specific Socratic questioning dimension, including clarification, assumption probing, and implication probing, (2) a Dialogic Answering Agent generates pseudo-answers, enriching the query representation with multiple perspectives aligned to the user's intent, and (3) a Reflective Feedback Agent evaluates and refines these pseudo-answers, ensuring that only the most relevant and informative content is retained. By leveraging a multi-agent process, AMD effectively crafts richer query representations through inquiry and feedback refinement. Extensive experiments on benchmarks including BEIR and TREC demonstrate that our framework outperforms previous methods, offering a robust solution for retrieval tasks.
comment: Accepted by ACM SIGKDD 2025 Workshop on AI Agent for Information Retrieval (Agent4IR)
♻ ☆ A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set
The state-of-the-art methods for estimating high-dimensional covariance matrices all shrink the eigenvalues of the sample covariance matrix towards a data-insensitive shrinkage target. The underlying shrinkage transformation is either chosen heuristically - without compelling theoretical justification - or optimally in view of restrictive distributional assumptions. In this paper, we propose a principled approach to construct covariance estimators without imposing restrictive assumptions. That is, we study distributionally robust covariance estimation problems that minimize the worst-case Frobenius error with respect to all data distributions close to a nominal distribution, where the proximity of distributions is measured via a divergence on the space of covariance matrices. We identify mild conditions on this divergence under which the resulting minimizers represent shrinkage estimators. We show that the corresponding shrinkage transformations are intimately related to the geometrical properties of the underlying divergence. We also prove that our robust estimators are efficiently computable and asymptotically consistent and that they enjoy finite-sample performance guarantees. We exemplify our general methodology by synthesizing explicit estimators induced by the Kullback-Leibler, Fisher-Rao, and Wasserstein divergences. Numerical experiments based on synthetic and real data show that our robust estimators are competitive with state-of-the-art estimators.
♻ ☆ Prompt Attacks Reveal Superficial Knowledge Removal in Unlearning Methods
In this work, we demonstrate that certain machine unlearning methods may fail under straightforward prompt attacks. We systematically evaluate eight unlearning techniques across three model families using output-based, logit-based, and probe analysis to assess the extent to which supposedly unlearned knowledge can be retrieved. While methods like RMU and TAR exhibit robust unlearning, ELM remains vulnerable to specific prompt attacks (e.g., prepending Hindi filler text to the original prompt recovers 57.3% accuracy). Our logit analysis further indicates that unlearned models are unlikely to hide knowledge through changes in answer formatting, given the strong correlation between output and logit accuracy. These findings challenge prevailing assumptions about unlearning effectiveness and highlight the need for evaluation frameworks that can reliably distinguish between genuine knowledge removal and superficial output suppression. To facilitate further research, we publicly release our evaluation framework to easily evaluate prompting techniques to retrieve unlearned knowledge.
comment: 19 pages, 6 figures. Accepted at COLM 2025 SoLaR Workshop
♻ ☆ Collaborative Mean Estimation Among Heterogeneous Strategic Agents: Individual Rationality, Fairness, and Truthful Contribution ICML 2025
We study a collaborative learning problem where $m$ agents aim to estimate a vector $\mu =(\mu_1,\ldots,\mu_d)\in \mathbb{R}^d$ by sampling from associated univariate normal distributions $\{\mathcal{N}(\mu_k, \sigma^2)\}_{k\in[d]}$. Agent $i$ incurs a cost $c_{i,k}$ to sample from $\mathcal{N}(\mu_k, \sigma^2)$. Instead of working independently, agents can exchange data, collecting cheaper samples and sharing them in return for costly data, thereby reducing both costs and estimation error. We design a mechanism to facilitate such collaboration, while addressing two key challenges: ensuring individually rational (IR) and fair outcomes so all agents benefit, and preventing strategic behavior (e.g. non-collection, data fabrication) to avoid socially undesirable outcomes. We design a mechanism and an associated Nash equilibrium (NE) which minimizes the social penalty-sum of agents' estimation errors and collection costs-while being IR for all agents. We achieve a $\mathcal{O}(\sqrt{m})$-approximation to the minimum social penalty in the worst case and an $\mathcal{O}(1)$-approximation under favorable conditions. Additionally, we establish three hardness results: no nontrivial mechanism guarantees (i) a dominant strategy equilibrium where agents report truthfully, (ii) is IR for every strategy profile of other agents, (iii) or avoids a worst-case $\Omega(\sqrt{m})$ price of stability in any NE. Finally, by integrating concepts from axiomatic bargaining, we demonstrate that our mechanism supports fairer outcomes than one which minimizes social penalty.
comment: ICML 2025
♻ ☆ Rhythmic sharing: A bio-inspired paradigm for zero-shot adaptive learning in neural networks
The brain rapidly adapts to new contexts and learns from limited data, a coveted characteristic that artificial intelligence (AI) algorithms struggle to mimic. Inspired by the mechanical oscillatory rhythms of neural cells, we developed a learning paradigm utilizing link strength oscillations, where learning is associated with the coordination of these oscillations. Link oscillations can rapidly change coordination, allowing the network to sense and adapt to subtle contextual changes without supervision. The network becomes a generalist AI architecture, capable of predicting dynamics of multiple contexts including unseen ones. These results make our paradigm a powerful starting point for novel models of cognition. Because our paradigm is agnostic to specifics of the neural network, our study opens doors for introducing rapid adaptive learning into leading AI models.
comment: 12 pages, 3 figures. V2: General formatting and reference addendum. V3: Typo on p.11: h -> h^2 for RMSE. V5: Typo in caption for fig 2: caption for 2c should have been for 2b, and v.v
♻ ☆ Evaluation of Speech Foundation Models for ASR on Child-Adult Conversations in Autism Diagnostic Sessions
Reliable transcription of child-adult conversations in clinical settings is crucial for diagnosing developmental disorders like Autism. Recent advances in deep learning and availability of large scale transcribed data has led to development of speech foundation models that have shown dramatic improvements in ASR performance. However, their performance on conversational child-adult interactions remains underexplored. In this work, we provide a comprehensive evaluation of ASR performance on a dataset containing child-adult interactions from autism diagnostic sessions, using Whisper, Wav2Vec2, HuBERT, and WavLM. We find that speech foundation models show a noticeable performance drop (15-20% absolute WER) for child speech compared to adult speech in the conversational setting. Then, we fine-tune the best-performing zero-shot model (Whisper-large) using LoRA in a low-resource setting, yielding 8% and 13% absolute WER improvements for child and adult speech, respectively.
comment: Accepted at Workshop on Child Computer Interaction (WOCCI 2025)
♻ ☆ ToolACE-R: Model-aware Iterative Training and Adaptive Refinement for Tool Learning
Tool learning, which allows Large Language Models (LLMs) to leverage external tools for solving complex user tasks, has emerged as a promising avenue for extending model capabilities. However, existing approaches primarily focus on data synthesis for fine-tuning LLMs to invoke tools effectively, largely ignoring how to fully stimulate the potential of the model. In this paper, we propose ToolACE-R, a novel framework that includes both model-aware iterative training and adaptive refinement for tool learning. ToolACE-R features a model-aware iterative training procedure that progressively adjust training samples based on the model's evolving capabilities to maximize its potential. Additionally, it incorporates self-refinement training corpus which emphasizes LLM's ability to iteratively refine their tool calls, optimizing performance without requiring external feedback. Furthermore, we introduce adaptive self-refinement mechanism for efficient test-time scaling, where the trained model can autonomously determine when to stop the process based on iterative self-refinement. We conduct extensive experiments across several benchmark datasets, showing that ToolACE-R achieves competitive performance compared to advanced API-based models. The performance of tool invocation can be further improved efficiently through adaptive self-refinement. These results highlight the effectiveness and generalizability of ToolACE-R, offering a promising direction for more efficient and scalable tool learning.
♻ ☆ Diversifying Policy Behaviors with Extrinsic Behavioral Curiosity
Imitation learning (IL) has shown promise in various applications (e.g. robot locomotion) but is often limited to learning a single expert policy, constraining behavior diversity and robustness in unpredictable real-world scenarios. To address this, we introduce Quality Diversity Inverse Reinforcement Learning (QD-IRL), a novel framework that integrates quality-diversity optimization with IRL methods, enabling agents to learn diverse behaviors from limited demonstrations. This work introduces Extrinsic Behavioral Curiosity (EBC), which allows agents to receive additional curiosity rewards from an external critic based on how novel the behaviors are with respect to a large behavioral archive. To validate the effectiveness of EBC in exploring diverse locomotion behaviors, we evaluate our method on multiple robot locomotion tasks. EBC improves the performance of QD-IRL instances with GAIL, VAIL, and DiffAIL across all included environments by up to 185%, 42%, and 150%, even surpassing expert performance by 20% in Humanoid. Furthermore, we demonstrate that EBC is applicable to Gradient-Arborescence-based Quality Diversity Reinforcement Learning (QD-RL) algorithms, where it substantially improves performance and provides a generic technique for learning behavioral-diverse policies. The source code of this work is provided at https://github.com/vanzll/EBC.
comment: 20 pages, conference paper
♻ ☆ Multi-objective Optimization in CPU Design Space Exploration: Attention is All You Need
Design Space Exploration (DSE) is essential to modern CPU design, yet current frameworks struggle to scale and generalize in high-dimensional architectural spaces. As the dimensionality of design spaces continues to grow, existing DSE frameworks face three fundamental challenges: (1) reduced accuracy and poor scalability of surrogate models in large design spaces; (2) inefficient acquisition guided by hand-crafted heuristics or exhaustive search; (3) limited interpretability, making it hard to pinpoint architectural bottlenecks. In this work, we present \textbf{AttentionDSE}, the first end-to-end DSE framework that \emph{natively integrates} performance prediction and design guidance through an attention-based neural architecture. Unlike traditional DSE workflows that separate surrogate modeling from acquisition and rely heavily on hand-crafted heuristics, AttentionDSE establishes a unified, learning-driven optimization loop, in which attention weights serve a dual role: enabling accurate performance estimation and simultaneously exposing the performance bottleneck. This paradigm shift elevates attention from a passive representation mechanism to an active, interpretable driver of design decision-making. Key innovations include: (1) a \textbf{Perception-Driven Attention} mechanism that exploits architectural hierarchy and locality, scaling attention complexity from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)$ via sliding windows; (2) an \textbf{Attention-aware Bottleneck Analysis} that automatically surfaces critical parameters for targeted optimization, eliminating the need for domain-specific heuristics. Evaluated on high-dimensional CPU design space using the SPEC CPU2017 benchmark suite, AttentionDSE achieves up to \textbf{3.9\% higher Pareto Hypervolume} and over \textbf{80\% reduction in exploration time} compared to state-of-the-art baselines.
♻ ☆ A Detailed Factor Analysis for the Political Compass Test: Navigating Ideologies of Large Language Models
Political Compass Test (PCT) or similar questionnaires have been used to quantify LLM's political leanings. Building on a recent line of work that examines the validity of PCT tests, we demonstrate that variation in standard generation parameters does not significantly impact the models' PCT scores. However, external factors such as prompt variations and fine-tuning individually and in combination affect the same. Finally, we demonstrate that when models are fine-tuned on text datasets with higher political content than others, the PCT scores are not differentially affected. This calls for a thorough investigation into the validity of PCT and similar tests, as well as the mechanism by which political leanings are encoded in LLMs.
♻ ☆ CLoQ: Enhancing Fine-Tuning of Quantized LLMs via Calibrated LoRA Initialization
Fine-tuning large language models (LLMs) using low-rank adaptation (LoRA) has become a highly efficient approach for downstream tasks, particularly in scenarios with limited computational resources. However, applying LoRA techniques to quantized LLMs poses unique challenges due to the reduced representational precision of quantized weights. In this paper, we introduce CLoQ (Calibrated LoRA initialization for Quantized LLMs), a simplistic initialization strategy designed to overcome these challenges. Our approach focuses on minimizing the layer-wise discrepancy between the original LLM and its quantized counterpart with LoRA components during initialization. By leveraging a small calibration dataset, CLoQ quantizes a pre-trained LLM and determines the optimal LoRA components for each layer, ensuring a strong foundation for subsequent fine-tuning. A key contribution of this work is a novel theoretical result that enables the accurate and closed-form construction of these optimal LoRA components. We validate the efficacy of CLoQ across multiple tasks such as language generation, arithmetic reasoning, and commonsense reasoning, demonstrating that it consistently outperforms existing LoRA fine-tuning methods for quantized LLMs, especially at ultra low-bit widths.
♻ ☆ CapeLLM: Support-Free Category-Agnostic Pose Estimation with Multimodal Large Language Models ICCV 2025
Category-agnostic pose estimation (CAPE) has traditionally relied on support images with annotated keypoints, a process that is often cumbersome and may fail to fully capture the necessary correspondences across diverse object categories. Recent efforts have explored the use of text queries, leveraging their enhanced stability and generalization capabilities. However, existing approaches often remain constrained by their reliance on support queries, their failure to fully utilize the rich priors embedded in pre-trained large language models, and the limitations imposed by their parametric distribution assumptions. To address these challenges, we introduce CapeLLM, the first multimodal large language model (MLLM) designed for CAPE. Our method only employs query image and detailed text descriptions as an input to estimate category-agnostic keypoints. Our method encompasses effective training strategies and carefully designed instructions for applying the MLLM to CAPE. Moreover, we propose an inference mechanism that further enhances the reasoning process for unseen keypoints. while flexibly modeling their underlying spatial distribution and uncertainty, allowing for adaptive refinement based on contextual cues. We conducted extensive experiments to apply the MLLM to CAPE effectively, focusing not only on the model architecture and prompt design but also on ensuring robustness across input variations. Our approach sets a new state-of-the-art on the MP-100 benchmark in the 1-shot and even 5-shot setting, marking a significant advancement in the field of category-agnostic pose estimation. Code is available at https://github.com/Junhojuno/CapeLLM.
comment: ICCV 2025
♻ ☆ Federated Time Series Generation on Feature and Temporally Misaligned Data
Distributed time series data presents a challenge for federated learning, as clients often possess different feature sets and have misaligned time steps. Existing federated time series models are limited by the assumption of perfect temporal or feature alignment across clients. In this paper, we propose FedTDD, a novel federated time series diffusion model that jointly learns a synthesizer across clients. At the core of FedTDD is a novel data distillation and aggregation framework that reconciles the differences between clients by imputing the misaligned timesteps and features. In contrast to traditional federated learning, FedTDD learns the correlation across clients' time series through the exchange of local synthetic outputs instead of model parameters. A coordinator iteratively improves a global distiller network by leveraging shared knowledge from clients through the exchange of synthetic data. As the distiller becomes more refined over time, it subsequently enhances the quality of the clients' local feature estimates, allowing each client to then improve its local imputations for missing data using the latest, more accurate distiller. Experimental results on five datasets demonstrate FedTDD's effectiveness compared to centralized training, and the effectiveness of sharing synthetic outputs to transfer knowledge of local time series. Notably, FedTDD achieves 79.4% and 62.8% improvement over local training in Context-FID and Correlational scores.
♻ ☆ EXAONE Path 2.0: Pathology Foundation Model with End-to-End Supervision
In digital pathology, whole-slide images (WSIs) are often difficult to handle due to their gigapixel scale, so most approaches train patch encoders via self-supervised learning (SSL) and then aggregate the patch-level embeddings via multiple instance learning (MIL) or slide encoders for downstream tasks. However, patch-level SSL may overlook complex domain-specific features that are essential for biomarker prediction, such as mutation status and molecular characteristics, as SSL methods rely only on basic augmentations selected for natural image domains on small patch-level area. Moreover, SSL methods remain less data efficient than fully supervised approaches, requiring extensive computational resources and datasets to achieve competitive performance. To address these limitations, we present EXAONE Path 2.0, a pathology foundation model that learns patch-level representations under direct slide-level supervision. Using only 37k WSIs for training, EXAONE Path 2.0 achieves state-of-the-art average performance across 10 biomarker prediction tasks, demonstrating remarkable data efficiency.
comment: EXAONE Path 2.0 technical report
♻ ☆ Shuffle-R1: Efficient RL framework for Multimodal Large Language Models via Data-centric Dynamic Shuffle
Reinforcement learning (RL) has emerged as an effective post-training paradigm for enhancing the reasoning capabilities of multimodal large language model (MLLM). However, current RL pipelines often suffer from training inefficiencies caused by two underexplored issues: Advantage Collapsing, where most advantages in a batch concentrate near zero, and Rollout Silencing, where the proportion of rollouts contributing non-zero gradients diminishes over time. These issues lead to suboptimal gradient updates and hinder long-term learning efficiency. To address these issues, we propose Shuffle-R1, a simple yet principled framework that improves RL fine-tuning efficiency by dynamically restructuring trajectory sampling and batch composition. It introduces (1) Pairwise Trajectory Sampling, which selects high-contrast trajectories with large advantages to improve gradient signal quality, and (2) Advantage-based Trajectory Shuffle, which increases exposure of valuable rollouts through informed batch reshuffling. Experiments across multiple reasoning benchmarks show that our framework consistently outperforms strong RL baselines with minimal overhead. These results highlight the importance of data-centric adaptations for more efficient RL training in MLLM.
comment: Project page at: https://xenozlh.github.io/Shuffle-R1/
♻ ☆ Bi-Sparse Unsupervised Feature Selection
To deal with high-dimensional unlabeled datasets in many areas, principal component analysis (PCA) has become a rising technique for unsupervised feature selection (UFS). However, most existing PCA-based methods only consider the structure of datasets by embedding a single sparse regularization or constraint on the transformation matrix. In this paper, we introduce a novel bi-sparse method called BSUFS to improve the performance of UFS. The core idea of BSUFS is to incorporate $\ell_{2,p}$-norm and $\ell_q$-norm into the classical PCA, which enables our method to select relevant features and filter out irrelevant noises, thereby obtaining discriminative features. Here, the parameters $p$ and $q$ are within the range of $[0, 1)$. Therefore, BSUFS not only constructs a unified framework for bi-sparse optimization, but also includes some existing works as special cases. To solve the resulting non-convex model, we propose an efficient proximal alternating minimization (PAM) algorithm using Stiefel manifold optimization and sparse optimization techniques. In addition, the computational complexity analysis is presented. Extensive numerical experiments on synthetic and real-world datasets demonstrate the effectiveness of our proposed BSUFS. The results reveal the advantages of bi-sparse optimization in feature selection and show its potential for other fields in image processing. Our code is available at https://github.com/xianchaoxiu/BSUFS.
♻ ☆ Transferable Parasitic Estimation via Graph Contrastive Learning and Label Rebalancing in AMS Circuits
Graph representation learning on Analog-Mixed Signal (AMS) circuits is crucial for various downstream tasks, e.g., parasitic estimation. However, the scarcity of design data, the unbalanced distribution of labels, and the inherent diversity of circuit implementations pose significant challenges to learning robust and transferable circuit representations. To address these limitations, we propose CircuitGCL, a novel graph contrastive learning framework that integrates representation scattering and label rebalancing to enhance transferability across heterogeneous circuit graphs. CircuitGCL employs a self-supervised strategy to learn topology-invariant node embeddings through hyperspherical representation scattering, eliminating dependency on large-scale data. Simultaneously, balanced mean squared error (BMSE) and balanced softmax cross-entropy (BSCE) losses are introduced to mitigate label distribution disparities between circuits, enabling robust and transferable parasitic estimation. Evaluated on parasitic capacitance estimation (edge-level task) and ground capacitance classification (node-level task) across TSMC 28nm AMS designs, CircuitGCL outperforms all state-of-the-art (SOTA) methods, with the $R^2$ improvement of $33.64\% \sim 44.20\%$ for edge regression and F1-score gain of $0.9\times \sim 2.1\times$ for node classification. Our code is available at https://github.com/ShenShan123/CircuitGCL.
comment: Final version accepted by the International Conference on Computer-Aided Design (ICCAD) 2025
♻ ☆ M3-Net: A Cost-Effective Graph-Free MLP-Based Model for Traffic Prediction
Achieving accurate traffic prediction is a fundamental but crucial task in the development of current intelligent transportation systems.Most of the mainstream methods that have made breakthroughs in traffic prediction rely on spatio-temporal graph neural networks, spatio-temporal attention mechanisms, etc. The main challenges of the existing deep learning approaches are that they either depend on a complete traffic network structure or require intricate model designs to capture complex spatio-temporal dependencies. These limitations pose significant challenges for the efficient deployment and operation of deep learning models on large-scale datasets. To address these challenges, we propose a cost-effective graph-free Multilayer Perceptron (MLP) based model M3-Net for traffic prediction. Our proposed model not only employs time series and spatio-temporal embeddings for efficient feature processing but also first introduces a novel MLP-Mixer architecture with a mixture of experts (MoE) mechanism. Extensive experiments conducted on multiple real datasets demonstrate the superiority of the proposed model in terms of prediction performance and lightweight deployment.
♻ ☆ To Theoretically Understand Transformer-Based In-Context Learning for Optimizing CSMA
The binary exponential backoff scheme is widely used in WiFi 7 and still incurs poor throughput performance under dynamic channel environments. Recent model-based approaches (e.g., non-persistent and $p$-persistent CSMA) simply optimize backoff strategies under a known and fixed node density, still leading to a large throughput loss due to inaccurate node density estimation. This paper is the first to propose LLM transformer-based in-context learning (ICL) theory for optimizing channel access. We design a transformer-based ICL optimizer to pre-collect collision-threshold data examples and a query collision case. They are constructed as a prompt as the input for the transformer to learn the pattern, which then generates a predicted contention window threshold (CWT). To train the transformer for effective ICL, we develop an efficient algorithm and guarantee a near-optimal CWT prediction within limited training steps. As it may be hard to gather perfect data examples for ICL in practice, we further extend to allow erroneous data input in the prompt. We prove that our optimizer maintains minimal prediction and throughput deviations from the optimal values. Experimental results on NS-3 further demonstrate our approach's fast convergence and near-optimal throughput over existing model-based and DRL-based approaches under unknown node densities.
♻ ☆ Identifying Causal Direction via Variational Bayesian Compression ICML2025
Telling apart the cause and effect between two random variables with purely observational data is a challenging problem that finds applications in various scientific disciplines. A key principle utilized in this task is the algorithmic Markov condition, which postulates that the joint distribution, when factorized according to the causal direction, yields a more succinct codelength compared to the anti-causal direction. Previous approaches approximate these codelengths by relying on simple functions or Gaussian processes (GPs) with easily evaluable complexity, compromising between model fitness and computational complexity. To address these limitations, we propose leveraging the variational Bayesian learning of neural networks as an interpretation of the codelengths. This allows the improvement of model fitness, while maintaining the succinctness of the codelengths, and the avoidance of the significant computational complexity of the GP-based approaches. Extensive experiments on both synthetic and real-world benchmarks in cause-effect identification demonstrate the effectiveness of our proposed method, showing promising performance enhancements on several datasets in comparison to most related methods.
comment: Accepted at the 42nd International Conference on Machine Learning (ICML2025)
♻ ☆ Fast Convergence for High-Order ODE Solvers in Diffusion Probabilistic Models
Diffusion probabilistic models generate samples by learning to reverse a noise-injection process that transforms data into noise. A key development is the reformulation of the reverse sampling process as a deterministic probability flow ordinary differential equation (ODE), which allows for efficient sampling using high-order numerical solvers. Unlike traditional time integrator analysis, the accuracy of this sampling procedure depends not only on numerical integration errors but also on the approximation quality and regularity of the learned score function, as well as their interaction. In this work, we present a rigorous convergence analysis of deterministic samplers derived from probability flow ODEs for general forward processes with arbitrary variance schedules. Specifically, we develop and analyze $p$-th order (exponential) Runge-Kutta schemes, under the practical assumption that the first and second derivatives of the learned score function are bounded. We prove that the total variation distance between the generated and target distributions can be bounded as \begin{align*} O\bigl(d^{\frac{7}{4}}\varepsilon_{\text{score}}^{\frac{1}{2}} +d(dH_{\max})^p\bigr), \end{align*} where $\varepsilon^2_{\text{score}}$ denotes the $L^2$ error in the score function approximation, $d$ is the data dimension, and $H_{\max}$ represents the maximum solver step size. Numerical experiments on benchmark datasets further confirm that the derivatives of the learned score function are bounded in practice.
comment: 64 pages, 7 figures
♻ ☆ Blockchain-Enabled Federated Learning
Blockchain-enabled federated learning (BCFL) addresses fundamental challenges of trust, privacy, and coordination in collaborative AI systems. This chapter provides comprehensive architectural analysis of BCFL systems through a systematic four-dimensional taxonomy examining coordination structures, consensus mechanisms, storage architectures, and trust models. We analyze design patterns from blockchain-verified centralized coordination to fully decentralized peer-to-peer networks, evaluating trade-offs in scalability, security, and performance. Through detailed examination of consensus mechanisms designed for federated learning contexts, including Proof of Quality and Proof of Federated Learning, we demonstrate how computational work can be repurposed from arbitrary cryptographic puzzles to productive machine learning tasks. The chapter addresses critical storage challenges by examining multi-tier architectures that balance blockchain's transaction constraints with neural networks' large parameter requirements while maintaining cryptographic integrity. A technical case study of the TrustMesh framework illustrates practical implementation considerations in BCFL systems through distributed image classification training, demonstrating effective collaborative learning across IoT devices with highly non-IID data distributions while maintaining complete transparency and fault tolerance. Analysis of real-world deployments across healthcare consortiums, financial services, and IoT security applications validates the practical viability of BCFL systems, achieving performance comparable to centralized approaches while providing enhanced security guarantees and enabling new models of trustless collaborative intelligence.
comment: 32 pages, 6 figures, chapter for edited book (Federated Learning: Foundations and Applications)
♻ ☆ Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate model behavior across three core dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities. Code is available at https://github.com/zjunlp/DataMind.
comment: Work in progress
♻ ☆ Responsible Machine Learning via Mixed-Integer Optimization
In the last few decades, Machine Learning (ML) has achieved significant success across domains ranging from healthcare, sustainability, and the social sciences, to criminal justice and finance. But its deployment in increasingly sophisticated, critical, and sensitive areas affecting individuals, the groups they belong to, and society as a whole raises critical concerns around fairness, transparency and robustness, among others. As the complexity and scale of ML systems and of the settings in which they are deployed grow, so does the need for responsible ML methods that address these challenges while providing guaranteed performance in deployment. Mixed-integer optimization (MIO) offers a powerful framework for embedding responsible ML considerations directly into the learning process while maintaining performance. For example, it enables learning of inherently transparent models that can conveniently incorporate fairness or other domain specific constraints. This tutorial paper provides an accessible and comprehensive introduction to this topic discussing both theoretical and practical aspects. It outlines some of the core principles of responsible ML, their importance in applications, and the practical utility of MIO for building ML models that align with these principles. Through examples and mathematical formulations, it illustrates practical strategies and available tools for efficiently solving MIO problems for responsible ML. It concludes with a discussion on current limitations and open research questions, providing suggestions for future work.
comment: 69 pages, 12 figures
♻ ☆ Prototype-Guided Diffusion: Visual Conditioning without External Memory
Diffusion models have emerged as a leading framework for high-quality image generation, offering stable training and strong performance across diverse domains. However, they remain computationally intensive, particularly during the iterative denoising process. Latent-space models like Stable Diffusion alleviate some of this cost by operating in compressed representations, though at the expense of fine-grained detail. More recent approaches such as Retrieval-Augmented Diffusion Models (RDM) address efficiency by conditioning denoising on similar examples retrieved from large external memory banks. While effective, these methods introduce drawbacks: they require costly storage and retrieval infrastructure, depend on static vision-language models like CLIP for similarity, and lack adaptability during training. We propose the Prototype Diffusion Model (PDM), a method that integrates prototype learning directly into the diffusion process for efficient and adaptive visual conditioning - without external memory. Instead of retrieving reference samples, PDM constructs a dynamic set of compact visual prototypes from clean image features using contrastive learning. These prototypes guide the denoising steps by aligning noisy representations with semantically relevant visual patterns, enabling efficient generation with strong semantic grounding. Experiments show that PDM maintains high generation quality while reducing computational and storage overhead, offering a scalable alternative to retrieval-based conditioning in diffusion models.
♻ ☆ LETS Forecast: Learning Embedology for Time Series Forecasting ICML
Real-world time series are often governed by complex nonlinear dynamics. Understanding these underlying dynamics is crucial for precise future prediction. While deep learning has achieved major success in time series forecasting, many existing approaches do not explicitly model the dynamics. To bridge this gap, we introduce DeepEDM, a framework that integrates nonlinear dynamical systems modeling with deep neural networks. Inspired by empirical dynamic modeling (EDM) and rooted in Takens' theorem, DeepEDM presents a novel deep model that learns a latent space from time-delayed embeddings, and employs kernel regression to approximate the underlying dynamics, while leveraging efficient implementation of softmax attention and allowing for accurate prediction of future time steps. To evaluate our method, we conduct comprehensive experiments on synthetic data of nonlinear dynamical systems as well as real-world time series across domains. Our results show that DeepEDM is robust to input noise, and outperforms state-of-the-art methods in forecasting accuracy. Our code is available at: https://abrarmajeedi.github.io/deep_edm.
comment: Accepted at International Conference on Machine Learning (ICML) 2025
♻ ☆ SLiM: One-shot Quantization and Sparsity with Low-rank Approximation for LLM Weight Compression ICML 2025
Conventional model compression techniques for LLMs address high memory consumption and slow inference challenges but typically require computationally expensive retraining to preserve accuracy. In contrast, one-shot compression methods eliminate retraining cost, but struggle to achieve accuracy comparable to dense models. This paper presents SLIM, a new one-shot compression framework that holistically integrates hardware-friendly quantization, sparsity, and low-rank approximation into a unified process. First, we formulate the quantization process using a probabilistic approach (SLIM-Quant) that enables us to apply uniform quantization. Then, we use an existing one-shot pruning method to apply semi-structured sparsity on top of the quantized weights. Finally, to compensate for the introduced aggregated quantization and sparsity error, we use a novel saliency function with unique invertible and additive features that enables us to mathematically compute the value of low-rank adapters. SLIM improves model accuracy by up to 5.66% (LLaMA-2-7B) for 2:4 sparsity with 4-bit weight quantization, outperforming prior methods. Models compressed with SLIM achieve up to 4.3x and 3.8x on Nvidia RTX3060 and A100 GPUs, respectively. Additionally, they achieve up to 0.23x end-to-end memory reduction in comparison to their dense counterparts. We also propose an optional PEFT recipe that further improves accuracy by up to 1.66% (LLaMA-2-13B) compared to SLIM without fine-tuning.
comment: Published at Proceedings of the 42 nd International Conference on Machine Learning (ICML 2025)
♻ ☆ AlgoTune: Can Language Models Speed Up General-Purpose Numerical Programs?
Despite progress in language model (LM) capabilities, evaluations have thus far focused on models' performance on tasks that humans have previously solved, including in programming (Jimenez et al., 2024) and mathematics (Glazer et al., 2024). We therefore propose testing models' ability to design and implement algorithms in an open-ended benchmark: We task LMs with writing code that efficiently solves computationally challenging problems in computer science, physics, and mathematics. Our AlgoTune benchmark consists of 154 coding tasks collected from domain experts and a framework for validating and timing LM-synthesized solution code, which is compared to reference implementations from popular open-source packages. In addition, we develop a baseline LM agent, AlgoTuner, and evaluate its performance across a suite of frontier models. AlgoTuner uses a simple, budgeted loop that edits code, compiles and runs it, profiles performance, verifies correctness on tests, and selects the fastest valid version. AlgoTuner achieves an average 1.72x speedup against our reference solvers, which use libraries such as SciPy, sk-learn and CVXPY. However, we find that current models fail to discover algorithmic innovations, instead preferring surface-level optimizations. We hope that AlgoTune catalyzes the development of LM agents exhibiting creative problem solving beyond state-of-the-art human performance.
♻ ☆ Language-Based Bayesian Optimization Research Assistant (BORA)
Many important scientific problems involve multivariate optimization coupled with slow and laborious experimental measurements. These complex, high-dimensional searches can be defined by non-convex optimization landscapes that resemble needle-in-a-haystack surfaces, leading to entrapment in local minima. Contextualizing optimizers with human domain knowledge is a powerful approach to guide searches to localized fruitful regions. However, this approach is susceptible to human confirmation bias and it is also challenging for domain experts to keep track of the rapidly expanding scientific literature. Here, we propose the use of Large Language Models (LLMs) for contextualizing Bayesian optimization (BO) via a hybrid optimization framework that intelligently and economically blends stochastic inference with domain knowledge-based insights from the LLM, which is used to suggest new, better-performing areas of the search space for exploration. Our method fosters user engagement by offering real-time commentary on the optimization progress, explaining the reasoning behind the search strategies. We validate the effectiveness of our approach on synthetic benchmarks with up to 15 independent variables and demonstrate the ability of LLMs to reason in four real-world experimental tasks where context-aware suggestions boost optimization performance substantially.
♻ ☆ An Analytical Theory of Spectral Bias in the Learning Dynamics of Diffusion Models
We develop an analytical framework for understanding how the generated distribution evolves during diffusion model training. Leveraging a Gaussian-equivalence principle, we solve the full-batch gradient-flow dynamics of linear and convolutional denoisers and integrate the resulting probability-flow ODE, yielding analytic expressions for the generated distribution. The theory exposes a universal inverse-variance spectral law: the time for an eigen- or Fourier mode to match its target variance scales as $\tau\propto\lambda^{-1}$, so high-variance (coarse) structure is mastered orders of magnitude sooner than low-variance (fine) detail. Extending the analysis to deep linear networks and circulant full-width convolutions shows that weight sharing merely multiplies learning rates accelerating but not eliminating the bias whereas local convolution introduces a qualitatively different bias. Experiments on Gaussian and natural-image datasets confirm the spectral law persists in deep MLP-based UNet. Convolutional U-Nets, however, display rapid near-simultaneous emergence of many modes, implicating local convolution in reshaping learning dynamics. These results underscore how data covariance governs the order and speed with which diffusion models learn, and they call for deeper investigation of the unique inductive biases introduced by local convolution.
comment: 91 pages, 23 figures. Preprint
♻ ☆ Adaptive Bayesian Optimization for Robust Identification of Stochastic Dynamical Systems
This paper deals with the identification of linear stochastic dynamical systems, where the unknowns include system coefficients and noise variances. Conventional approaches that rely on the maximum likelihood estimation (MLE) require nontrivial gradient computations and are prone to local optima. To overcome these limitations, a sample-efficient global optimization method based on Bayesian optimization (BO) is proposed, using an ensemble Gaussian process (EGP) surrogate with weighted kernels from a predefined dictionary. This ensemble enables a richer function space and improves robustness over single-kernel BO. Each objective evaluation is efficiently performed via Kalman filter recursion. Extensive experiments across parameter settings and sampling intervals show that the EGP-based BO consistently outperforms MLE via steady-state filtering and expectation-maximization (whose derivation is a side contribution) in terms of RMSE and statistical consistency. Unlike the ensemble variant, single-kernel BO does not always yield such gains, underscoring the benefits of model averaging. Notably, the BO-based estimator achieves RMSE below the classical Cramer-Rao bound, particularly for the inverse time constant, long considered difficult to estimate. This counterintuitive outcome is attributed to a data-driven prior implicitly induced by the GP surrogate in BO.
♻ ☆ Sophisticated Learning: A novel algorithm for active learning during model-based planning
We introduce Sophisticated Learning (SL), a planning-to-learn algorithm that embeds active parameter learning inside the Sophisticated Inference (SI) tree-search framework of Active Inference. Unlike SI -- which optimizes beliefs about hidden states -- SL also updates beliefs about model parameters within each simulated branch, enabling counterfactual reasoning about how future observations would improve subsequent planning. We compared SL with Bayes-adaptive Reinforcement Learning (BARL) agents as well as with its parent algorithm, SI. Using a biologically inspired seasonal foraging task in which resources shift probabilistically over a 10x10 grid, we designed experiments that forced agents to balance probabilistic reward harvesting against information gathering. In early trials, where rapid learning is vital, SL agents survive, on average, 8.2% longer than SI and 35% longer than Bayes-adaptive Reinforcement Learning. While both SL and SI showed equal convergence performance, SL reached this convergence 40% faster than SI. Additionally, SL showed robust out-performance of other algorithms in altered environment configurations. Our results show that incorporating active learning into multi-step planning materially improves decision making under radical uncertainty, and reinforces the broader utility of Active Inference for modeling biologically relevant behavior.
♻ ☆ Enabling Differentially Private Federated Learning for Speech Recognition: Benchmarks, Adaptive Optimizers and Gradient Clipping
While federated learning (FL) and differential privacy (DP) have been extensively studied, their application to automatic speech recognition (ASR) remains largely unexplored due to the challenges in training large transformer models. Specifically, large models further exacerbate issues in FL as they are particularly susceptible to gradient heterogeneity across layers, unlike the relatively uniform gradient behavior observed in shallow models. As a result, prior works struggle to converge with standard optimization techniques, even in the absence of DP mechanisms. To the best of our knowledge, no existing work establishes a competitive, practical recipe for FL with DP in the context of ASR. To address this gap, we establish \textbf{the first benchmark for FL with DP in end-to-end ASR}. Our approach centers on per-layer clipping and layer-wise gradient normalization: theoretical analysis reveals that these techniques together mitigate clipping bias and gradient heterogeneity across layers in deeper models. Consistent with these theoretical insights, our empirical results show that FL with DP is viable under strong privacy guarantees, provided a population of at least several million users. Specifically, we achieve user-level (7.2, $10^{-9}$)-DP (resp. (4.5, $10^{-9}$)-DP) with only a 1.3% (resp. 4.6%) absolute drop in word error rate when extrapolating to high (resp. low) population scales for FL with DP in ASR. Although our experiments focus on ASR, the underlying principles we uncover - particularly those concerning gradient heterogeneity and layer-wise gradient normalization - offer broader guidance for designing scalable, privacy-preserving FL algorithms for large models across domains. Code of all experiments and benchmarks is available at https://github.com/apple/ml-pfl4asr.
comment: Under review
♻ ☆ Recent Advances in Generative AI for Healthcare Applications
The rapid advancement of Artificial Intelligence (AI) has catalyzed revolutionary changes across various sectors, notably in healthcare. In particular, generative AI-led by diffusion models and transformer architectures-has enabled significant breakthroughs in medical imaging (including image reconstruction, image-to-image translation, generation, and classification), protein structure prediction, clinical documentation, diagnostic assistance, radiology interpretation, clinical decision support, medical coding, and billing, as well as drug design and molecular representation. These innovations have enhanced clinical diagnosis, data reconstruction, and drug synthesis. This review paper aims to offer a comprehensive synthesis of recent advances in healthcare applications of generative AI, with an emphasis on diffusion and transformer models. Moreover, we discuss current capabilities, highlight existing limitations, and outline promising research directions to address emerging challenges. Serving as both a reference for researchers and a guide for practitioners, this work offers an integrated view of the state of the art, its impact on healthcare, and its future potential.
comment: 51 pages, 16 figures, 1table
♻ ☆ A Closer Look at Multimodal Representation Collapse ICML
We aim to develop a fundamental understanding of modality collapse, a recently observed empirical phenomenon wherein models trained for multimodal fusion tend to rely only on a subset of the modalities, ignoring the rest. We show that modality collapse happens when noisy features from one modality are entangled, via a shared set of neurons in the fusion head, with predictive features from another, effectively masking out positive contributions from the predictive features of the former modality and leading to its collapse. We further prove that cross-modal knowledge distillation implicitly disentangles such representations by freeing up rank bottlenecks in the student encoder, denoising the fusion-head outputs without negatively impacting the predictive features from either modality. Based on the above findings, we propose an algorithm that prevents modality collapse through explicit basis reallocation, with applications in dealing with missing modalities. Extensive experiments on multiple multimodal benchmarks validate our theoretical claims. Project page: https://abhrac.github.io/mmcollapse/.
comment: International Conference on Machine Learning (ICML) 2025 (Spotlight)
♻ ☆ Modeling Sampling Distributions of Test Statistics with Autograd
Simulation-based inference methods that feature correct conditional coverage of confidence sets based on observations that have been compressed to a scalar test statistic require accurate modeling of either the p-value function or the cumulative distribution function (cdf) of the test statistic. If the model of the cdf, which is typically a deep neural network, is a function of the test statistic then the derivative of the neural network with respect to the test statistic furnishes an approximation of the sampling distribution of the test statistic. We explore whether this approach to modeling conditional 1-dimensional sampling distributions is a viable alternative to the probability density-ratio method, also known as the likelihood-ratio trick. Relatively simple, yet effective, neural network models are used whose predictive uncertainty is quantified through a variety of methods.
♻ ☆ What Has a Foundation Model Found? Using Inductive Bias to Probe for World Models ICML 2025
Foundation models are premised on the idea that sequence prediction can uncover deeper domain understanding, much like how Kepler's predictions of planetary motion later led to the discovery of Newtonian mechanics. However, evaluating whether these models truly capture deeper structure remains a challenge. We develop a technique for evaluating foundation models that examines how they adapt to synthetic datasets generated from some postulated world model. Our technique measures whether the foundation model's inductive bias aligns with the world model, and so we refer to it as an inductive bias probe. Across multiple domains, we find that foundation models can excel at their training tasks yet fail to develop inductive biases towards the underlying world model when adapted to new tasks. We particularly find that foundation models trained on orbital trajectories consistently fail to apply Newtonian mechanics when adapted to new physics tasks. Further analysis reveals that these models behave as if they develop task-specific heuristics that fail to generalize.
comment: To appear in ICML 2025
♻ ☆ Blending 3D Geometry and Machine Learning for Multi-View Stereopsis
Traditional multi-view stereo (MVS) methods primarily depend on photometric and geometric consistency constraints. In contrast, modern learning-based algorithms often rely on the plane sweep algorithm to infer 3D geometry, applying explicit geometric consistency (GC) checks only as a post-processing step, with no impact on the learning process itself. In this work, we introduce GC MVSNet plus plus, a novel approach that actively enforces geometric consistency of reference view depth maps across multiple source views (multi view) and at various scales (multi scale) during the learning phase (see Fig. 1). This integrated GC check significantly accelerates the learning process by directly penalizing geometrically inconsistent pixels, effectively halving the number of training iterations compared to other MVS methods. Furthermore, we introduce a densely connected cost regularization network with two distinct block designs simple and feature dense optimized to harness dense feature connections for enhanced regularization. Extensive experiments demonstrate that our approach achieves a new state of the art on the DTU and BlendedMVS datasets and secures second place on the Tanks and Temples benchmark. To our knowledge, GC MVSNet plus plus is the first method to enforce multi-view, multi-scale supervised geometric consistency during learning. Our code is available.
comment: A pre-print -- accepted at Neurocomputing. arXiv admin note: substantial text overlap with arXiv:2310.19583
♻ ☆ JMA: a General Algorithm to Craft Nearly Optimal Targeted Adversarial Example
Most of the approaches proposed so far to craft targeted adversarial examples against Deep Learning classifiers are highly suboptimal and typically rely on increasing the likelihood of the target class, thus implicitly focusing on one-hot encoding settings. In this paper, a more general, theoretically sound, targeted attack is proposed, which resorts to the minimization of a Jacobian-induced Mahalanobis distance term, taking into account the effort (in the input space) required to move the latent space representation of the input sample in a given direction. The minimization is solved by exploiting the Wolfe duality theorem, reducing the problem to the solution of a Non-Negative Least Square (NNLS) problem. The proposed algorithm (referred to as JMA) provides an optimal solution to a linearised version of the adversarial example problem originally introduced by Szegedy et al. The results of the experiments confirm the generality of the proposed attack which is proven to be effective under a wide variety of output encoding schemes. Noticeably, JMA is also effective in a multi-label classification scenario, being capable to induce a targeted modification of up to half the labels in complex multi-label classification scenarios, a capability that is out of reach of all the attacks proposed so far. As a further advantage, JMA requires very few iterations, thus resulting more efficient than existing methods.
♻ ☆ Uncertainty-Aware Adaptation of Large Language Models for Protein-Protein Interaction Analysis
Identification of protein-protein interactions (PPIs) helps derive cellular mechanistic understanding, particularly in the context of complex conditions such as neurodegenerative disorders, metabolic syndromes, and cancer. Large Language Models (LLMs) have demonstrated remarkable potential in predicting protein structures and interactions via automated mining of vast biomedical literature; yet their inherent uncertainty remains a key challenge for deriving reproducible findings, critical for biomedical applications. In this study, we present an uncertainty-aware adaptation of LLMs for PPI analysis, leveraging fine-tuned LLaMA-3 and BioMedGPT models. To enhance prediction reliability, we integrate LoRA ensembles and Bayesian LoRA models for uncertainty quantification (UQ), ensuring confidence-calibrated insights into protein behavior. Our approach achieves competitive performance in PPI identification across diverse disease contexts while addressing model uncertainty, thereby enhancing trustworthiness and reproducibility in computational biology. These findings underscore the potential of uncertainty-aware LLM adaptation for advancing precision medicine and biomedical research.
Graphics 2
☆ Puppeteer: Rig and Animate Your 3D Models
Modern interactive applications increasingly demand dynamic 3D content, yet the transformation of static 3D models into animated assets constitutes a significant bottleneck in content creation pipelines. While recent advances in generative AI have revolutionized static 3D model creation, rigging and animation continue to depend heavily on expert intervention. We present Puppeteer, a comprehensive framework that addresses both automatic rigging and animation for diverse 3D objects. Our system first predicts plausible skeletal structures via an auto-regressive transformer that introduces a joint-based tokenization strategy for compact representation and a hierarchical ordering methodology with stochastic perturbation that enhances bidirectional learning capabilities. It then infers skinning weights via an attention-based architecture incorporating topology-aware joint attention that explicitly encodes inter-joint relationships based on skeletal graph distances. Finally, we complement these rigging advances with a differentiable optimization-based animation pipeline that generates stable, high-fidelity animations while being computationally more efficient than existing approaches. Extensive evaluations across multiple benchmarks demonstrate that our method significantly outperforms state-of-the-art techniques in both skeletal prediction accuracy and skinning quality. The system robustly processes diverse 3D content, ranging from professionally designed game assets to AI-generated shapes, producing temporally coherent animations that eliminate the jittering issues common in existing methods.
comment: Project page: https://chaoyuesong.github.io/Puppeteer/
♻ ☆ Speedy-Splat: Fast 3D Gaussian Splatting with Sparse Pixels and Sparse Primitives CVPR 2025
3D Gaussian Splatting (3D-GS) is a recent 3D scene reconstruction technique that enables real-time rendering of novel views by modeling scenes as parametric point clouds of differentiable 3D Gaussians. However, its rendering speed and model size still present bottlenecks, especially in resource-constrained settings. In this paper, we identify and address two key inefficiencies in 3D-GS to substantially improve rendering speed. These improvements also yield the ancillary benefits of reduced model size and training time. First, we optimize the rendering pipeline to precisely localize Gaussians in the scene, boosting rendering speed without altering visual fidelity. Second, we introduce a novel pruning technique and integrate it into the training pipeline, significantly reducing model size and training time while further raising rendering speed. Our Speedy-Splat approach combines these techniques to accelerate average rendering speed by a drastic $\mathit{6.71\times}$ across scenes from the Mip-NeRF 360, Tanks & Temples, and Deep Blending datasets.
comment: CVPR 2025, Project Page: https://speedysplat.github.io/
Robotics 60
☆ Masquerade: Learning from In-the-wild Human Videos using Data-Editing
Robot manipulation research still suffers from significant data scarcity: even the largest robot datasets are orders of magnitude smaller and less diverse than those that fueled recent breakthroughs in language and vision. We introduce Masquerade, a method that edits in-the-wild egocentric human videos to bridge the visual embodiment gap between humans and robots and then learns a robot policy with these edited videos. Our pipeline turns each human video into robotized demonstrations by (i) estimating 3-D hand poses, (ii) inpainting the human arms, and (iii) overlaying a rendered bimanual robot that tracks the recovered end-effector trajectories. Pre-training a visual encoder to predict future 2-D robot keypoints on 675K frames of these edited clips, and continuing that auxiliary loss while fine-tuning a diffusion policy head on only 50 robot demonstrations per task, yields policies that generalize significantly better than prior work. On three long-horizon, bimanual kitchen tasks evaluated in three unseen scenes each, Masquerade outperforms baselines by 5-6x. Ablations show that both the robot overlay and co-training are indispensable, and performance scales logarithmically with the amount of edited human video. These results demonstrate that explicitly closing the visual embodiment gap unlocks a vast, readily available source of data from human videos that can be used to improve robot policies.
comment: Project website at https://masquerade-robot.github.io/
☆ Vision-driven River Following of UAV via Safe Reinforcement Learning using Semantic Dynamics Model RAS
Vision-driven autonomous river following by Unmanned Aerial Vehicles is critical for applications such as rescue, surveillance, and environmental monitoring, particularly in dense riverine environments where GPS signals are unreliable. We formalize river following as a coverage control problem in which the reward function is submodular, yielding diminishing returns as more unique river segments are visited, thereby framing the task as a Submodular Markov Decision Process. First, we introduce Marginal Gain Advantage Estimation, which refines the reward advantage function by using a sliding window baseline computed from historical episodic returns, thus aligning the advantage estimation with the agent's evolving recognition of action value in non-Markovian settings. Second, we develop a Semantic Dynamics Model based on patchified water semantic masks that provides more interpretable and data-efficient short-term prediction of future observations compared to latent vision dynamics models. Third, we present the Constrained Actor Dynamics Estimator architecture, which integrates the actor, the cost estimator, and SDM for cost advantage estimation to form a model-based SafeRL framework capable of solving partially observable Constrained Submodular Markov Decision Processes. Simulation results demonstrate that MGAE achieves faster convergence and superior performance over traditional critic-based methods like Generalized Advantage Estimation. SDM provides more accurate short-term state predictions that enable the cost estimator to better predict potential violations. Overall, CADE effectively integrates safety regulation into model-based RL, with the Lagrangian approach achieving the soft balance of reward and safety during training, while the safety layer enhances performance during inference by hard action overlay.
comment: Submitted to Robotics and Autonomous Systems (RAS) journal
☆ Online Safety under Multiple Constraints and Input Bounds using gatekeeper: Theory and Applications
This letter presents an approach to guarantee online safety of a cyber-physical system under multiple state and input constraints. Our proposed framework, called gatekeeper, recursively guarantees the existence of an infinite-horizon trajectory that satisfies all constraints and system dynamics. Such trajectory is constructed using a backup controller, which we define formally in this paper. gatekeeper relies on a small number of verifiable assumptions, and is computationally efficient since it requires optimization over a single scalar variable. We make two primary contributions in this letter. (A) First, we develop the theory of gatekeeper: we derive a sub-optimality bound relative to a full nonlinear trajectory optimization problem, and show how this can be used in runtime to validate performance. This also informs the design of the backup controllers and sets. (B) Second, we demonstrate in detail an application of gatekeeper for multi-agent formation flight, where each Dubins agent must avoid multiple obstacles and weapons engagement zones, both of which are nonlinear, nonconvex constraints.
comment: 6 pages, 2 figures. Accepted for publication in IEEE L-CSS 2025
☆ GBC: Generalized Behavior-Cloning Framework for Whole-Body Humanoid Imitation
The creation of human-like humanoid robots is hindered by a fundamental fragmentation: data processing and learning algorithms are rarely universal across different robot morphologies. This paper introduces the Generalized Behavior Cloning (GBC) framework, a comprehensive and unified solution designed to solve this end-to-end challenge. GBC establishes a complete pathway from human motion to robot action through three synergistic innovations. First, an adaptive data pipeline leverages a differentiable IK network to automatically retarget any human MoCap data to any humanoid. Building on this foundation, our novel DAgger-MMPPO algorithm with its MMTransformer architecture learns robust, high-fidelity imitation policies. To complete the ecosystem, the entire framework is delivered as an efficient, open-source platform based on Isaac Lab, empowering the community to deploy the full workflow via simple configuration scripts. We validate the power and generality of GBC by training policies on multiple heterogeneous humanoids, demonstrating excellent performance and transfer to novel motions. This work establishes the first practical and unified pathway for creating truly generalized humanoid controllers.
☆ PPL: Point Cloud Supervised Proprioceptive Locomotion Reinforcement Learning for Legged Robots in Crawl Spaces
The legged locomotion in spatially constrained structures (called crawl spaces) is challenging. In crawl spaces, current exteroceptive locomotion learning methods are limited by large noises and errors of the sensors in possible low visibility conditions, and current proprioceptive locomotion learning methods are difficult in traversing crawl spaces because only ground features are inferred. In this study, a point cloud supervised proprioceptive locomotion reinforcement learning method for legged robots in crawl spaces is proposed. A state estimation network is designed to estimate the robot's surrounding ground and spatial features as well as the robot's collision states using historical proprioceptive sensor data. The point cloud is represented in polar coordinate frame and a point cloud processing method is proposed to efficiently extract the ground and spatial features that are used to supervise the state estimation network learning. Comprehensive reward functions that guide the robot to traverse through crawl spaces after collisions are designed. Experiments demonstrate that, compared to existing methods, our method exhibits more agile locomotion in crawl spaces. This study enhances the ability of legged robots to traverse spatially constrained environments without requiring exteroceptive sensors.
☆ Collision-Free Bearing-Driven Formation Tracking for Euler-Lagrange Systems
In this paper, we investigate the problem of tracking formations driven by bearings for heterogeneous Euler-Lagrange systems with parametric uncertainty in the presence of multiple moving leaders. To estimate the leaders' velocities and accelerations, we first design a distributed observer for the leader system, utilizing a bearing-based localization condition in place of the conventional connectivity assumption. This observer, coupled with an adaptive mechanism, enables the synthesis of a novel distributed control law that guides the formation towards the target formation, without requiring prior knowledge of the system parameters. Furthermore, we establish a sufficient condition, dependent on the initial formation configuration, that ensures collision avoidance throughout the formation evolution. The effectiveness of the proposed approach is demonstrated through a numerical example.
comment: 10 pages, 4 figures
☆ A Shank Angle-Based Control System Enables Soft Exoskeleton to Assist Human Non-Steady Locomotion
Exoskeletons have been shown to effectively assist humans during steady locomotion. However, their effects on non-steady locomotion, characterized by nonlinear phase progression within a gait cycle, remain insufficiently explored, particularly across diverse activities. This work presents a shank angle-based control system that enables the exoskeleton to maintain real-time coordination with human gait, even under phase perturbations, while dynamically shaping assistance profiles to match the biological ankle moment patterns across walking, running, stair negotiation tasks. The control system consists of an assistance profile online generation method and a model-based feedforward control method. The assistance profile is formulated as a dual-Gaussian model with the shank angle as the independent variable. Leveraging only IMU measurements, the model parameters are updated online each stride to adapt to inter- and intra-individual biomechanical variability. The profile tracking control employs a human-exoskeleton kinematics and stiffness model as a feedforward component, reducing reliance on historical control data due to the lack of clear and consistent periodicity in non-steady locomotion. Three experiments were conducted using a lightweight soft exoskeleton with multiple subjects. The results validated the effectiveness of each individual method, demonstrated the robustness of the control system against gait perturbations across various activities, and revealed positive biomechanical and physiological responses of human users to the exoskeleton's mechanical assistance.
comment: 49 pages, 20 figures, 4 tables
☆ Toward Human-Robot Teaming: Learning Handover Behaviors from 3D Scenes
Human-robot teaming (HRT) systems often rely on large-scale datasets of human and robot interactions, especially for close-proximity collaboration tasks such as human-robot handovers. Learning robot manipulation policies from raw, real-world image data requires a large number of robot-action trials in the physical environment. Although simulation training offers a cost-effective alternative, the visual domain gap between simulation and robot workspace remains a major limitation. We introduce a method for training HRT policies, focusing on human-to-robot handovers, solely from RGB images without the need for real-robot training or real-robot data collection. The goal is to enable the robot to reliably receive objects from a human with stable grasping while avoiding collisions with the human hand. The proposed policy learner leverages sparse-view Gaussian Splatting reconstruction of human-to-robot handover scenes to generate robot demonstrations containing image-action pairs captured with a camera mounted on the robot gripper. As a result, the simulated camera pose changes in the reconstructed scene can be directly translated into gripper pose changes. Experiments in both Gaussian Splatting reconstructed scene and real-world human-to-robot handover experiments demonstrate that our method serves as a new and effective representation for the human-to-robot handover task, contributing to more seamless and robust HRT.
comment: 3 pages, 3 figures
☆ Whole-Body Bilateral Teleoperation with Multi-Stage Object Parameter Estimation for Wheeled Humanoid Locomanipulation
This paper presents an object-aware whole-body bilateral teleoperation framework for wheeled humanoid loco-manipulation. This framework combines whole-body bilateral teleoperation with an online multi-stage object inertial parameter estimation module, which is the core technical contribution of this work. The multi-stage process sequentially integrates a vision-based object size estimator, an initial parameter guess generated by a large vision-language model (VLM), and a decoupled hierarchical sampling strategy. The visual size estimate and VLM prior offer a strong initial guess of the object's inertial parameters, significantly reducing the search space for sampling-based refinement and improving the overall estimation speed. A hierarchical strategy first estimates mass and center of mass, then infers inertia from object size to ensure physically feasible parameters, while a decoupled multi-hypothesis scheme enhances robustness to VLM prior errors. Our estimator operates in parallel with high-fidelity simulation and hardware, enabling real-time online updates. The estimated parameters are then used to update the wheeled humanoid's equilibrium point, allowing the operator to focus more on locomotion and manipulation. This integration improves the haptic force feedback for dynamic synchronization, enabling more dynamic whole-body teleoperation. By compensating for object dynamics using the estimated parameters, the framework also improves manipulation tracking while preserving compliant behavior. We validate the system on a customized wheeled humanoid with a robotic gripper and human-machine interface, demonstrating real-time execution of lifting, delivering, and releasing tasks with a payload weighing approximately one-third of the robot's body weight.
☆ Embodied Tactile Perception of Soft Objects Properties
To enable robots to develop human-like fine manipulation, it is essential to understand how mechanical compliance, multi-modal sensing, and purposeful interaction jointly shape tactile perception. In this study, we use a dedicated modular e-Skin with tunable mechanical compliance and multi-modal sensing (normal, shear forces and vibrations) to systematically investigate how sensing embodiment and interaction strategies influence robotic perception of objects. Leveraging a curated set of soft wave objects with controlled viscoelastic and surface properties, we explore a rich set of palpation primitives-pressing, precession, sliding that vary indentation depth, frequency, and directionality. In addition, we propose the latent filter, an unsupervised, action-conditioned deep state-space model of the sophisticated interaction dynamics and infer causal mechanical properties into a structured latent space. This provides generalizable and in-depth interpretable representation of how embodiment and interaction determine and influence perception. Our investigation demonstrates that multi-modal sensing outperforms uni-modal sensing. It highlights a nuanced interaction between the environment and mechanical properties of e-Skin, which should be examined alongside the interaction by incorporating temporal dynamics.
☆ RayletDF: Raylet Distance Fields for Generalizable 3D Surface Reconstruction from Point Clouds or Gaussians ICCV 2025
In this paper, we present a generalizable method for 3D surface reconstruction from raw point clouds or pre-estimated 3D Gaussians by 3DGS from RGB images. Unlike existing coordinate-based methods which are often computationally intensive when rendering explicit surfaces, our proposed method, named RayletDF, introduces a new technique called raylet distance field, which aims to directly predict surface points from query rays. Our pipeline consists of three key modules: a raylet feature extractor, a raylet distance field predictor, and a multi-raylet blender. These components work together to extract fine-grained local geometric features, predict raylet distances, and aggregate multiple predictions to reconstruct precise surface points. We extensively evaluate our method on multiple public real-world datasets, demonstrating superior performance in surface reconstruction from point clouds or 3D Gaussians. Most notably, our method achieves exceptional generalization ability, successfully recovering 3D surfaces in a single-forward pass across unseen datasets in testing.
comment: ICCV 2025 Highlight. Shenxing and Jinxi are co-first authors. Code and data are available at: https://github.com/vLAR-group/RayletDF
☆ TRACE: Learning 3D Gaussian Physical Dynamics from Multi-view Videos ICCV 2025
In this paper, we aim to model 3D scene geometry, appearance, and physical information just from dynamic multi-view videos in the absence of any human labels. By leveraging physics-informed losses as soft constraints or integrating simple physics models into neural nets, existing works often fail to learn complex motion physics, or doing so requires additional labels such as object types or masks. We propose a new framework named TRACE to model the motion physics of complex dynamic 3D scenes. The key novelty of our method is that, by formulating each 3D point as a rigid particle with size and orientation in space, we directly learn a translation rotation dynamics system for each particle, explicitly estimating a complete set of physical parameters to govern the particle's motion over time. Extensive experiments on three existing dynamic datasets and one newly created challenging synthetic datasets demonstrate the extraordinary performance of our method over baselines in the task of future frame extrapolation. A nice property of our framework is that multiple objects or parts can be easily segmented just by clustering the learned physical parameters.
comment: ICCV 2025. Code and data are available at: https://github.com/vLAR-group/TRACE
☆ FLARE: Agile Flights for Quadrotor Cable-Suspended Payload System via Reinforcement Learning
Agile flight for the quadrotor cable-suspended payload system is a formidable challenge due to its underactuated, highly nonlinear, and hybrid dynamics. Traditional optimization-based methods often struggle with high computational costs and the complexities of cable mode transitions, limiting their real-time applicability and maneuverability exploitation. In this letter, we present FLARE, a reinforcement learning (RL) framework that directly learns agile navigation policy from high-fidelity simulation. Our method is validated across three designed challenging scenarios, notably outperforming a state-of-the-art optimization-based approach by a 3x speedup during gate traversal maneuvers. Furthermore, the learned policies achieve successful zero-shot sim-to-real transfer, demonstrating remarkable agility and safety in real-world experiments, running in real time on an onboard computer.
☆ Predictive Uncertainty for Runtime Assurance of a Real-Time Computer Vision-Based Landing System SC 2025
Recent advances in data-driven computer vision have enabled robust autonomous navigation capabilities for civil aviation, including automated landing and runway detection. However, ensuring that these systems meet the robustness and safety requirements for aviation applications remains a major challenge. In this work, we present a practical vision-based pipeline for aircraft pose estimation from runway images that represents a step toward the ability to certify these systems for use in safety-critical aviation applications. Our approach features three key innovations: (i) an efficient, flexible neural architecture based on a spatial Soft Argmax operator for probabilistic keypoint regression, supporting diverse vision backbones with real-time inference; (ii) a principled loss function producing calibrated predictive uncertainties, which are evaluated via sharpness and calibration metrics; and (iii) an adaptation of Residual-based Receiver Autonomous Integrity Monitoring (RAIM), enabling runtime detection and rejection of faulty model outputs. We implement and evaluate our pose estimation pipeline on a dataset of runway images. We show that our model outperforms baseline architectures in terms of accuracy while also producing well-calibrated uncertainty estimates with sub-pixel precision that can be used downstream for fault detection.
comment: 8 pages, 5 figures, accepted at DASC 2025
☆ Immersive Teleoperation of Beyond-Human-Scale Robotic Manipulators: Challenges and Future Directions
Teleoperation of beyond-human-scale robotic manipulators (BHSRMs) presents unique challenges that differ fundamentally from conventional human-scale systems. As these platforms gain relevance in industrial domains such as construction, mining, and disaster response, immersive interfaces must be rethought to support scalable, safe, and effective human-robot collaboration. This paper investigates the control, cognitive, and interface-level challenges of immersive teleoperation in BHSRMs, with a focus on ensuring operator safety, minimizing sensorimotor mismatch, and enhancing the sense of embodiment. We analyze design trade-offs in haptic and visual feedback systems, supported by early experimental comparisons of exoskeleton- and joystick-based control setups. Finally, we outline key research directions for developing new evaluation tools, scaling strategies, and human-centered safety models tailored to large-scale robotic telepresence.
comment: This work has been accepted for presentation at the 2025 IEEE Conference on Telepresence, to be held in Leiden, Netherlands
☆ Surg-InvNeRF: Invertible NeRF for 3D tracking and reconstruction in surgical vision
We proposed a novel test-time optimisation (TTO) approach framed by a NeRF-based architecture for long-term 3D point tracking. Most current methods in point tracking struggle to obtain consistent motion or are limited to 2D motion. TTO approaches frame the solution for long-term tracking as optimising a function that aggregates correspondences from other specialised state-of-the-art methods. Unlike the state-of-the-art on TTO, we propose parametrising such a function with our new invertible Neural Radiance Field (InvNeRF) architecture to perform both 2D and 3D tracking in surgical scenarios. Our approach allows us to exploit the advantages of a rendering-based approach by supervising the reprojection of pixel correspondences. It adapts strategies from recent rendering-based methods to obtain a bidirectional deformable-canonical mapping, to efficiently handle a defined workspace, and to guide the rays' density. It also presents our multi-scale HexPlanes for fast inference and a new algorithm for efficient pixel sampling and convergence criteria. We present results in the STIR and SCARE datasets, for evaluating point tracking and testing the integration of kinematic data in our pipeline, respectively. In 2D point tracking, our approach surpasses the precision and accuracy of the TTO state-of-the-art methods by nearly 50% on average precision, while competing with other approaches. In 3D point tracking, this is the first TTO approach, surpassing feed-forward methods while incorporating the benefits of a deformable NeRF-based reconstruction.
comment: 10 pages
☆ Plane Detection and Ranking via Model Information Optimization IROS
Plane detection from depth images is a crucial subtask with broad robotic applications, often accomplished by iterative methods such as Random Sample Consensus (RANSAC). While RANSAC is a robust strategy with strong probabilistic guarantees, the ambiguity of its inlier threshold criterion makes it susceptible to false positive plane detections. This issue is particularly prevalent in complex real-world scenes, where the true number of planes is unknown and multiple planes coexist. In this paper, we aim to address this limitation by proposing a generalised framework for plane detection based on model information optimization. Building on previous works, we treat the observed depth readings as discrete random variables, with their probability distributions constrained by the ground truth planes. Various models containing different candidate plane constraints are then generated through repeated random sub-sampling to explain our observations. By incorporating the physics and noise model of the depth sensor, we can calculate the information for each model, and the model with the least information is accepted as the most likely ground truth. This information optimization process serves as an objective mechanism for determining the true number of planes and preventing false positive detections. Additionally, the quality of each detected plane can be ranked by summing the information reduction of inlier points for each plane. We validate these properties through experiments with synthetic data and find that our algorithm estimates plane parameters more accurately compared to the default Open3D RANSAC plane segmentation. Furthermore, we accelerate our algorithm by partitioning the depth map using neural network segmentation, which enhances its ability to generate more realistic plane parameters in real-world data.
comment: Accepted as contributed paper in the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
☆ Interpretable Robot Control via Structured Behavior Trees and Large Language Models
As intelligent robots become more integrated into human environments, there is a growing need for intuitive and reliable Human-Robot Interaction (HRI) interfaces that are adaptable and more natural to interact with. Traditional robot control methods often require users to adapt to interfaces or memorize predefined commands, limiting usability in dynamic, unstructured environments. This paper presents a novel framework that bridges natural language understanding and robotic execution by combining Large Language Models (LLMs) with Behavior Trees. This integration enables robots to interpret natural language instructions given by users and translate them into executable actions by activating domain-specific plugins. The system supports scalable and modular integration, with a primary focus on perception-based functionalities, such as person tracking and hand gesture recognition. To evaluate the system, a series of real-world experiments was conducted across diverse environments. Experimental results demonstrate that the proposed approach is practical in real-world scenarios, with an average cognition-to-execution accuracy of approximately 94%, making a significant contribution to HRI systems and robots. The complete source code of the framework is publicly available at https://github.com/snt-arg/robot_suite.
comment: 15 pages, 5 figures, 3 tables
☆ BEAVR: Bimanual, multi-Embodiment, Accessible, Virtual Reality Teleoperation System for Robots
\textbf{BEAVR} is an open-source, bimanual, multi-embodiment Virtual Reality (VR) teleoperation system for robots, designed to unify real-time control, data recording, and policy learning across heterogeneous robotic platforms. BEAVR enables real-time, dexterous teleoperation using commodity VR hardware, supports modular integration with robots ranging from 7-DoF manipulators to full-body humanoids, and records synchronized multi-modal demonstrations directly in the LeRobot dataset schema. Our system features a zero-copy streaming architecture achieving $\leq$35\,ms latency, an asynchronous ``think--act'' control loop for scalable inference, and a flexible network API optimized for real-time, multi-robot operation. We benchmark BEAVR across diverse manipulation tasks and demonstrate its compatibility with leading visuomotor policies such as ACT, DiffusionPolicy, and SmolVLA. All code is publicly available, and datasets are released on Hugging Face\footnote{Code, datasets, and VR app available at https://github.com/ARCLab-MIT/BEAVR-Bot.
comment: Accepted for presentation on ICCR Kyoto 2025
☆ HapticGiant: A Novel Very Large Kinesthetic Haptic Interface with Hierarchical Force Control
Research in virtual reality and haptic technologies has consistently aimed to enhance immersion. While advanced head-mounted displays are now commercially available, kinesthetic haptic interfaces still face challenges such as limited workspaces, insufficient degrees of freedom, and kinematics not matching the human arm. In this paper, we present HapticGiant, a novel large-scale kinesthetic haptic interface designed to match the properties of the human arm as closely as possible and to facilitate natural user locomotion while providing full haptic feedback. The interface incorporates a novel admittance-type force control scheme, leveraging hierarchical optimization to render both arbitrary serial kinematic chains and Cartesian admittances. Notably, the proposed control scheme natively accounts for system limitations, including joint and Cartesian constraints, as well as singularities. Experimental results demonstrate the effectiveness of HapticGiant and its control scheme, paving the way for highly immersive virtual reality applications.
comment: Final Version - Accepted on IEEE Transactions on Haptics
☆ ESCoT: An Enhanced Step-based Coordinate Trajectory Planning Method for Multiple Car-like Robots
Multi-vehicle trajectory planning (MVTP) is one of the key challenges in multi-robot systems (MRSs) and has broad applications across various fields. This paper presents ESCoT, an enhanced step-based coordinate trajectory planning method for multiple car-like robots. ESCoT incorporates two key strategies: collaborative planning for local robot groups and replanning for duplicate configurations. These strategies effectively enhance the performance of step-based MVTP methods. Through extensive experiments, we show that ESCoT 1) in sparse scenarios, significantly improves solution quality compared to baseline step-based method, achieving up to 70% improvement in typical conflict scenarios and 34% in randomly generated scenarios, while maintaining high solving efficiency; and 2) in dense scenarios, outperforms all baseline methods, maintains a success rate of over 50% even in the most challenging configurations. The results demonstrate that ESCoT effectively solves MVTP, further extending the capabilities of step-based methods. Finally, practical robot tests validate the algorithm's applicability in real-world scenarios.
☆ CaRoBio: 3D Cable Routing with a Bio-inspired Gripper Fingernail
The manipulation of deformable linear flexures has a wide range of applications in industry, such as cable routing in automotive manufacturing and textile production. Cable routing, as a complex multi-stage robot manipulation scenario, is a challenging task for robot automation. Common parallel two-finger grippers have the risk of over-squeezing and over-tension when grasping and guiding cables. In this paper, a novel eagle-inspired fingernail is designed and mounted on the gripper fingers, which helps with cable grasping on planar surfaces and in-hand cable guiding operations. Then we present a single-grasp end-to-end 3D cable routing framework utilizing the proposed fingernails, instead of the common pick-and-place strategy. Continuous control is achieved to efficiently manipulate cables through vision-based state estimation of task configurations and offline trajectory planning based on motion primitives. We evaluate the effectiveness of the proposed framework with a variety of cables and channel slots, significantly outperforming the pick-and-place manipulation process under equivalent perceptual conditions. Our reconfigurable task setting and the proposed framework provide a reference for future cable routing manipulations in 3D space.
☆ SMART-OC: A Real-time Time-risk Optimal Replanning Algorithm for Dynamic Obstacles and Spatio-temporally Varying Currents
Typical marine environments are highly complex with spatio-temporally varying currents and dynamic obstacles, presenting significant challenges to Unmanned Surface Vehicles (USVs) for safe and efficient navigation. Thus, the USVs need to continuously adapt their paths with real-time information to avoid collisions and follow the path of least resistance to the goal via exploiting ocean currents. In this regard, we introduce a novel algorithm, called Self-Morphing Adaptive Replanning Tree for dynamic Obstacles and Currents (SMART-OC), that facilitates real-time time-risk optimal replanning in dynamic environments. SMART-OC integrates the obstacle risks along a path with the time cost to reach the goal to find the time-risk optimal path. The effectiveness of SMART-OC is validated by simulation experiments, which demonstrate that the USV performs fast replannings to avoid dynamic obstacles and exploit ocean currents to successfully reach the goal.
☆ Reactive Model Predictive Contouring Control for Robot Manipulators IROS
This contribution presents a robot path-following framework via Reactive Model Predictive Contouring Control (RMPCC) that successfully avoids obstacles, singularities and self-collisions in dynamic environments at 100 Hz. Many path-following methods rely on the time parametrization, but struggle to handle collision and singularity avoidance while adhering kinematic limits or other constraints. Specifically, the error between the desired path and the actual position can become large when executing evasive maneuvers. Thus, this paper derives a method that parametrizes the reference path by a path parameter and performs the optimization via RMPCC. In particular, Control Barrier Functions (CBFs) are introduced to avoid collisions and singularities in dynamic environments. A Jacobian-based linearization and Gauss-Newton Hessian approximation enable solving the nonlinear RMPCC problem at 100 Hz, outperforming state-of-the-art methods by a factor of 10. Experiments confirm that the framework handles dynamic obstacles in real-world settings with low contouring error and low robot acceleration.
comment: 8 pages, 7 figures, 3 tables, conference paper, Accepted for publication at IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS) 2025
☆ DAgger Diffusion Navigation: DAgger Boosted Diffusion Policy for Vision-Language Navigation
Vision-Language Navigation in Continuous Environments (VLN-CE) requires agents to follow natural language instructions through free-form 3D spaces. Existing VLN-CE approaches typically use a two-stage waypoint planning framework, where a high-level waypoint predictor generates the navigable waypoints, and then a navigation planner suggests the intermediate goals in the high-level action space. However, this two-stage decomposition framework suffers from: (1) global sub-optimization due to the proxy objective in each stage, and (2) a performance bottleneck caused by the strong reliance on the quality of the first-stage predicted waypoints. To address these limitations, we propose DAgger Diffusion Navigation (DifNav), an end-to-end optimized VLN-CE policy that unifies the traditional two stages, i.e. waypoint generation and planning, into a single diffusion policy. Notably, DifNav employs a conditional diffusion policy to directly model multi-modal action distributions over future actions in continuous navigation space, eliminating the need for a waypoint predictor while enabling the agent to capture multiple possible instruction-following behaviors. To address the issues of compounding error in imitation learning and enhance spatial reasoning in long-horizon navigation tasks, we employ DAgger for online policy training and expert trajectory augmentation, and use the aggregated data to further fine-tune the policy. This approach significantly improves the policy's robustness and its ability to recover from error states. Extensive experiments on benchmark datasets demonstrate that, even without a waypoint predictor, the proposed method substantially outperforms previous state-of-the-art two-stage waypoint-based models in terms of navigation performance. Our code is available at: https://github.com/Tokishx/DifNav.
☆ Distilling LLM Prior to Flow Model for Generalizable Agent's Imagination in Object Goal Navigation
The Object Goal Navigation (ObjectNav) task challenges agents to locate a specified object in an unseen environment by imagining unobserved regions of the scene. Prior approaches rely on deterministic and discriminative models to complete semantic maps, overlooking the inherent uncertainty in indoor layouts and limiting their ability to generalize to unseen environments. In this work, we propose GOAL, a generative flow-based framework that models the semantic distribution of indoor environments by bridging observed regions with LLM-enriched full-scene semantic maps. During training, spatial priors inferred from large language models (LLMs) are encoded as two-dimensional Gaussian fields and injected into target maps, distilling rich contextual knowledge into the flow model and enabling more generalizable completions. Extensive experiments demonstrate that GOAL achieves state-of-the-art performance on MP3D and Gibson, and shows strong generalization in transfer settings to HM3D. Codes and pretrained models are available at https://github.com/Badi-Li/GOAL.
☆ Systematic Constraint Formulation and Collision-Free Trajectory Planning Using Space-Time Graphs of Convex Sets
In this paper, we create optimal, collision-free, time-dependent trajectories through cluttered dynamic environments. The many spatial and temporal constraints make finding an initial guess for a numerical solver difficult. Graphs of Convex Sets (GCS) and the recently developed Space-Time Graphs of Convex Sets formulation (ST-GCS) enable us to generate optimal minimum distance collision-free trajectories without providing an initial guess to the solver. We also explore the derivation of general GCS-compatible constraints and document an intuitive strategy for adapting general constraints to the framework. We show that ST-GCS produces equivalent trajectories to the standard GCS formulation when the environment is static. We then show ST-GCS operating in dynamic environments to find minimum distance collision-free trajectories.
comment: 21 pages with references, 20 figures
☆ WiFi-based Global Localization in Large-Scale Environments Leveraging Structural Priors from osmAG
Global localization is essential for autonomous robotics, especially in indoor environments where the GPS signal is denied. We propose a novel WiFi-based localization framework that leverages ubiquitous wireless infrastructure and the OpenStreetMap Area Graph (osmAG) for large-scale indoor environments. Our approach integrates signal propagation modeling with osmAG's geometric and topological priors. In the offline phase, an iterative optimization algorithm localizes WiFi Access Points (APs) by modeling wall attenuation, achieving a mean localization error of 3.79 m (35.3\% improvement over trilateration). In the online phase, real-time robot localization uses the augmented osmAG map, yielding a mean error of 3.12 m in fingerprinted areas (8.77\% improvement over KNN fingerprinting) and 3.83 m in non-fingerprinted areas (81.05\% improvement). Comparison with a fingerprint-based method shows that our approach is much more space efficient and achieves superior localization accuracy, especially for positions where no fingerprint data are available. Validated across a complex 11,025 &m^2& multi-floor environment, this framework offers a scalable, cost-effective solution for indoor robotic localization, solving the kidnapped robot problem. The code and dataset are available at https://github.com/XuMa369/osmag-wifi-localization.
♻ ☆ BeyondMimic: From Motion Tracking to Versatile Humanoid Control via Guided Diffusion
Learning skills from human motions offers a promising path toward generalizable policies for versatile humanoid whole-body control, yet two key cornerstones are missing: (1) a high-quality motion tracking framework that faithfully transforms large-scale kinematic references into robust and extremely dynamic motions on real hardware, and (2) a distillation approach that can effectively learn these motion primitives and compose them to solve downstream tasks. We address these gaps with BeyondMimic, a real-world framework to learn from human motions for versatile and naturalistic humanoid control via guided diffusion. Our framework provides a motion tracking pipeline capable of challenging skills such as jumping spins, sprinting, and cartwheels with state-of-the-art motion quality. Moving beyond simply mimicking existing motions, we further introduce a unified diffusion policy that enables zero-shot task-specific control at test time using simple cost functions. Deployed on hardware, BeyondMimic performs diverse tasks at test time, including waypoint navigation, joystick teleoperation, and obstacle avoidance, bridging sim-to-real motion tracking and flexible synthesis of human motion primitives for whole-body control. https://beyondmimic.github.io/.
comment: coin toss authorship, minor changes
♻ ☆ LM-MCVT: A Lightweight Multi-modal Multi-view Convolutional-Vision Transformer Approach for 3D Object Recognition
In human-centered environments such as restaurants, homes, and warehouses, robots often face challenges in accurately recognizing 3D objects. These challenges stem from the complexity and variability of these environments, including diverse object shapes. In this paper, we propose a novel Lightweight Multi-modal Multi-view Convolutional-Vision Transformer network (LM-MCVT) to enhance 3D object recognition in robotic applications. Our approach leverages the Globally Entropy-based Embeddings Fusion (GEEF) method to integrate multi-views efficiently. The LM-MCVT architecture incorporates pre- and mid-level convolutional encoders and local and global transformers to enhance feature extraction and recognition accuracy. We evaluate our method on the synthetic ModelNet40 dataset and achieve a recognition accuracy of 95.6% using a four-view setup, surpassing existing state-of-the-art methods. To further validate its effectiveness, we conduct 5-fold cross-validation on the real-world OmniObject3D dataset using the same configuration. Results consistently show superior performance, demonstrating the method's robustness in 3D object recognition across synthetic and real-world 3D data.
♻ ☆ GeoVLA: Empowering 3D Representations in Vision-Language-Action Models
Vision-Language-Action (VLA) models have emerged as a promising approach for enabling robots to follow language instructions and predict corresponding actions. However, current VLA models mainly rely on 2D visual inputs, neglecting the rich geometric information in the 3D physical world, which limits their spatial awareness and adaptability. In this paper, we present GeoVLA, a novel VLA framework that effectively integrates 3D information to advance robotic manipulation. It uses a vision-language model (VLM) to process images and language instructions,extracting fused vision-language embeddings. In parallel, it converts depth maps into point clouds and employs a customized point encoder, called Point Embedding Network, to generate 3D geometric embeddings independently. These produced embeddings are then concatenated and processed by our proposed spatial-aware action expert, called 3D-enhanced Action Expert, which combines information from different sensor modalities to produce precise action sequences. Through extensive experiments in both simulation and real-world environments, GeoVLA demonstrates superior performance and robustness. It achieves state-of-the-art results in the LIBERO and ManiSkill2 simulation benchmarks and shows remarkable robustness in real-world tasks requiring height adaptability, scale awareness and viewpoint invariance.
comment: The project is visible at https://linsun449.github.io/GeoVLA/
♻ ☆ Towards Affordance-Aware Robotic Dexterous Grasping with Human-like Priors
A dexterous hand capable of generalizable grasping objects is fundamental for the development of general-purpose embodied AI. However, previous methods focus narrowly on low-level grasp stability metrics, neglecting affordance-aware positioning and human-like poses which are crucial for downstream manipulation. To address these limitations, we propose AffordDex, a novel framework with two-stage training that learns a universal grasping policy with an inherent understanding of both motion priors and object affordances. In the first stage, a trajectory imitator is pre-trained on a large corpus of human hand motions to instill a strong prior for natural movement. In the second stage, a residual module is trained to adapt these general human-like motions to specific object instances. This refinement is critically guided by two components: our Negative Affordance-aware Segmentation (NAA) module, which identifies functionally inappropriate contact regions, and a privileged teacher-student distillation process that ensures the final vision-based policy is highly successful. Extensive experiments demonstrate that AffordDex not only achieves universal dexterous grasping but also remains remarkably human-like in posture and functionally appropriate in contact location. As a result, AffordDex significantly outperforms state-of-the-art baselines across seen objects, unseen instances, and even entirely novel categories.
comment: 13 pages, 8 figures
♻ ☆ A Minimal Model for Emergent Collective Behaviors in Autonomous Robotic Multi-Agent Systems
Collective behaviors such as swarming and flocking emerge from simple, decentralized interactions in biological systems. Existing models, such as Vicsek and Cucker-Smale, lack collision avoidance, whereas the Olfati-Saber model imposes rigid formations, limiting their applicability in swarm robotics. To address these limitations, this paper proposes a minimal yet expressive model that governs agent dynamics using relative positions, velocities, and local density, modulated by two tunable parameters: the spatial offset and kinetic offset. The model achieves spatially flexible, collision-free behaviors that reflect naturalistic group dynamics. Furthermore, we extend the framework to cognitive autonomous systems, enabling energy-aware phase transitions between swarming and flocking through adaptive control parameter tuning. This cognitively inspired approach offers a robust foundation for real-world applications in multi-robot systems, particularly autonomous aerial swarms.
comment: Accepted for IEEE Transactions on Cognitive and Developmental Systems. Simulation video for Fig. 8: https://youtube.com/shorts/StHrtnSJyyg Simulation video for Fig. 10: https://youtu.be/Z26m7M-63D4
♻ ☆ AgentWorld: An Interactive Simulation Platform for Scene Construction and Mobile Robotic Manipulation
We introduce AgentWorld, an interactive simulation platform for developing household mobile manipulation capabilities. Our platform combines automated scene construction that encompasses layout generation, semantic asset placement, visual material configuration, and physics simulation, with a dual-mode teleoperation system supporting both wheeled bases and humanoid locomotion policies for data collection. The resulting AgentWorld Dataset captures diverse tasks ranging from primitive actions (pick-and-place, push-pull, etc.) to multistage activities (serve drinks, heat up food, etc.) across living rooms, bedrooms, and kitchens. Through extensive benchmarking of imitation learning methods including behavior cloning, action chunking transformers, diffusion policies, and vision-language-action models, we demonstrate the dataset's effectiveness for sim-to-real transfer. The integrated system provides a comprehensive solution for scalable robotic skill acquisition in complex home environments, bridging the gap between simulation-based training and real-world deployment. The code, datasets will be available at https://yizhengzhang1.github.io/agent_world/
comment: Accepted by Conference on Robot Learning 2025
♻ ☆ Decoupling Geometry from Optimization in 2D Irregular Cutting and Packing Problems: an Open-Source Collision Detection Engine
Addressing irregular cutting and packing (C&P) optimization problems poses two distinct challenges: the geometric challenge of determining whether or not an item can be placed feasibly at a certain position, and the optimization challenge of finding a good solution according to some objective function. Until now, those tackling such problems have had to address both challenges simultaneously, requiring two distinct sets of expertise and a lot of research & development effort. One way to lower this barrier is to decouple the two challenges. In this paper we introduce a powerful collision detection engine (CDE) for 2D irregular C&P problems which assumes full responsibility for the geometric challenge. The CDE (i) allows users to focus with full confidence on their optimization challenge by abstracting geometry away and (ii) enables independent advances to propagate to all optimization algorithms built atop it. We present a set of core principles and design philosophies to model a general and adaptable CDE focused on maximizing performance, accuracy and robustness. These principles are accompanied by a concrete open-source implementation called $\texttt{jagua-rs}$. This paper together with its implementation serves as a catalyst for future advances in irregular C&P problems by providing a solid foundation which can either be used as it currently exists or be further improved upon.
comment: 25 pages, 16 figures
♻ ☆ Multi-view Normal and Distance Guidance Gaussian Splatting for Surface Reconstruction IROS 2025
3D Gaussian Splatting (3DGS) achieves remarkable results in the field of surface reconstruction. However, when Gaussian normal vectors are aligned within the single-view projection plane, while the geometry appears reasonable in the current view, biases may emerge upon switching to nearby views. To address the distance and global matching challenges in multi-view scenes, we design multi-view normal and distance-guided Gaussian splatting. This method achieves geometric depth unification and high-accuracy reconstruction by constraining nearby depth maps and aligning 3D normals. Specifically, for the reconstruction of small indoor and outdoor scenes, we propose a multi-view distance reprojection regularization module that achieves multi-view Gaussian alignment by computing the distance loss between two nearby views and the same Gaussian surface. Additionally, we develop a multi-view normal enhancement module, which ensures consistency across views by matching the normals of pixel points in nearby views and calculating the loss. Extensive experimental results demonstrate that our method outperforms the baseline in both quantitative and qualitative evaluations, significantly enhancing the surface reconstruction capability of 3DGS. Our code will be made publicly available at (https://github.com/Bistu3DV/MND-GS/).
comment: This paper has been accepted by IROS 2025. Code: https://github.com/Bistu3DV/MND-GS/
♻ ☆ Chemist Eye: A Visual Language Model-Powered System for Safety Monitoring and Robot Decision-Making in Self-Driving Laboratories
The integration of robotics and automation into self-driving laboratories (SDLs) can introduce additional safety complexities, in addition to those that already apply to conventional research laboratories. Personal protective equipment (PPE) is an essential requirement for ensuring the safety and well-being of workers in laboratories, self-driving or otherwise. Fires are another important risk factor in chemical laboratories. In SDLs, fires that occur close to mobile robots, which use flammable lithium batteries, could have increased severity. Here, we present Chemist Eye, a distributed safety monitoring system designed to enhance situational awareness in SDLs. The system integrates multiple stations equipped with RGB, depth, and infrared cameras, designed to monitor incidents in SDLs. Chemist Eye is also designed to spot workers who have suffered a potential accident or medical emergency, PPE compliance and fire hazards. To do this, Chemist Eye uses decision-making driven by a vision-language model (VLM). Chemist Eye is designed for seamless integration, enabling real-time communication with robots. Based on the VLM recommendations, the system attempts to drive mobile robots away from potential fire locations, exits, or individuals not wearing PPE, and issues audible warnings where necessary. It also integrates with third-party messaging platforms to provide instant notifications to lab personnel. We tested Chemist Eye with real-world data from an SDL equipped with three mobile robots and found that the spotting of possible safety hazards and decision-making performances reached 97 % and 95 %, respectively.
♻ ☆ BridgeDepth: Bridging Monocular and Stereo Reasoning with Latent Alignment ICCV 2025
Monocular and stereo depth estimation offer complementary strengths: monocular methods capture rich contextual priors but lack geometric precision, while stereo approaches leverage epipolar geometry yet struggle with ambiguities such as reflective or textureless surfaces. Despite post-hoc synergies, these paradigms remain largely disjoint in practice. We introduce a unified framework that bridges both through iterative bidirectional alignment of their latent representations. At its core, a novel cross-attentive alignment mechanism dynamically synchronizes monocular contextual cues with stereo hypothesis representations during stereo reasoning. This mutual alignment resolves stereo ambiguities (e.g., specular surfaces) by injecting monocular structure priors while refining monocular depth with stereo geometry within a single network. Extensive experiments demonstrate state-of-the-art results: \textbf{it reduces zero-shot generalization error by $\!>\!40\%$ on Middlebury and ETH3D}, while addressing longstanding failures on transparent and reflective surfaces. By harmonizing multi-view geometry with monocular context, our approach enables robust 3D perception that transcends modality-specific limitations. Codes available at https://github.com/aeolusguan/BridgeDepth.
comment: ICCV 2025 Highlight
♻ ☆ RoHOI: Robustness Benchmark for Human-Object Interaction Detection
Human-Object Interaction (HOI) detection is crucial for robot-human assistance, enabling context-aware support. However, models trained on clean datasets degrade in real-world conditions due to unforeseen corruptions, leading to inaccurate prediction. To address this, we introduce the first robustness benchmark for HOI detection, evaluating model resilience under diverse challenges. Despite advances, current models struggle with environmental variability, occlusions, and noise. Our benchmark, RoHOI, includes 20 corruption types based on the HICO-DET and V-COCO datasets and a new robustness-focused metric. We systematically analyze existing models in the HOI field, revealing significant performance drops under corruptions. To improve robustness, we propose a Semantic-Aware Masking-based Progressive Learning (SAMPL) strategy to guide the model to be optimized based on holistic and partial cues, thus dynamically adjusting the model's optimization to enhance robust feature learning. Extensive experiments show that our approach outperforms state-of-the-art methods, setting a new standard for robust HOI detection. Benchmarks, datasets, and code will be made publicly available at https://github.com/Kratos-Wen/RoHOI.
comment: Benchmarks, datasets, and code will be made publicly available at https://github.com/Kratos-Wen/RoHOI
♻ ☆ Accelerated Reeds-Shepp and Under-Specified Reeds-Shepp Algorithms for Mobile Robot Path Planning
In this study, we present a simple and intuitive method for accelerating optimal Reeds-Shepp path computation. Our approach uses geometrical reasoning to analyze the behavior of optimal paths, resulting in a new partitioning of the state space and a further reduction in the minimal set of viable paths. We revisit and reimplement classic methodologies from the literature, which lack contemporary open-source implementations, to serve as benchmarks for evaluating our method. Additionally, we address the under-specified Reeds-Shepp planning problem where the final orientation is unspecified. We perform exhaustive experiments to validate our solutions. Compared to the modern C++ implementation of the original Reeds-Shepp solution in the Open Motion Planning Library, our method demonstrates a 15x speedup, while classic methods achieve a 5.79x speedup. Both approaches exhibit machine-precision differences in path lengths compared to the original solution. We release our proposed C++ implementations for both the accelerated and under-specified Reeds-Shepp problems as open-source code.
comment: 19 pages, 27 figures
♻ ☆ REACT: Real-time Efficient Attribute Clustering and Transfer for Updatable 3D Scene Graph IROS 2025
Modern-day autonomous robots need high-level map representations to perform sophisticated tasks. Recently, 3D scene graphs (3DSGs) have emerged as a promising alternative to traditional grid maps, blending efficient memory use and rich feature representation. However, most efforts to apply them have been limited to static worlds. This work introduces REACT, a framework that efficiently performs real-time attribute clustering and transfer to relocalize object nodes in a 3DSG. REACT employs a novel method for comparing object instances using an embedding model trained on triplet loss, facilitating instance clustering and matching. Experimental results demonstrate that REACT is able to relocalize objects while maintaining computational efficiency. The REACT framework's source code will be available as an open-source project, promoting further advancements in reusable and updatable 3DSGs.
comment: Accepted to IROS 2025
♻ ☆ ParkDiffusion: Heterogeneous Multi-Agent Multi-Modal Trajectory Prediction for Automated Parking using Diffusion Models IROS 2025
Automated parking is a critical feature of Advanced Driver Assistance Systems (ADAS), where accurate trajectory prediction is essential to bridge perception and planning modules. Despite its significance, research in this domain remains relatively limited, with most existing studies concentrating on single-modal trajectory prediction of vehicles. In this work, we propose ParkDiffusion, a novel approach that predicts the trajectories of both vehicles and pedestrians in automated parking scenarios. ParkDiffusion employs diffusion models to capture the inherent uncertainty and multi-modality of future trajectories, incorporating several key innovations. First, we propose a dual map encoder that processes soft semantic cues and hard geometric constraints using a two-step cross-attention mechanism. Second, we introduce an adaptive agent type embedding module, which dynamically conditions the prediction process on the distinct characteristics of vehicles and pedestrians. Third, to ensure kinematic feasibility, our model outputs control signals that are subsequently used within a kinematic framework to generate physically feasible trajectories. We evaluate ParkDiffusion on the Dragon Lake Parking (DLP) dataset and the Intersections Drone (inD) dataset. Our work establishes a new baseline for heterogeneous trajectory prediction in parking scenarios, outperforming existing methods by a considerable margin.
comment: IROS 2025 Camera-Ready Version
♻ ☆ A multi-strategy improved snake optimizer for three-dimensional UAV path planning and engineering problems
Metaheuristic algorithms have gained widespread application across various fields owing to their ability to generate diverse solutions. One such algorithm is the Snake Optimizer (SO), a progressive optimization approach. However, SO suffers from the issues of slow convergence speed and susceptibility to local optima. In light of these shortcomings, we propose a novel Multi-strategy Improved Snake Optimizer (MISO). Firstly, we propose a new adaptive random disturbance strategy based on sine function to alleviate the risk of getting trapped in a local optimum. Secondly, we introduce adaptive Levy flight strategy based on scale factor and leader and endow the male snake leader with flight capability, which makes it easier for the algorithm to leap out of the local optimum and find the global optimum. More importantly, we put forward a position update strategy combining elite leadership and Brownian motion, effectively accelerating the convergence speed while ensuring precision. Finally, to demonstrate the performance of MISO, we utilize 30 CEC2017 test functions and the CEC2022 test suite, comparing it with 11 popular algorithms across different dimensions to validate its effectiveness. Moreover, Unmanned Aerial Vehicle (UAV) has been widely used in various fields due to its advantages of low cost, high mobility and easy operation. However, the UAV path planning problem is crucial for flight safety and efficiency, and there are still challenges in establishing and optimizing the path model. Therefore, we apply MISO to the UAV 3D path planning problem as well as 6 engineering design problems to assess its feasibility in practical applications. The experimental results demonstrate that MISO exceeds other competitive algorithms in terms of solution quality and stability, establishing its strong potential for application.
comment: 59 pages, 22 figures
♻ ☆ Learning Whole-Body Loco-Manipulation for Omni-Directional Task Space Pose Tracking with a Wheeled-Quadrupedal-Manipulator
In this paper, we study the whole-body loco-manipulation problem using reinforcement learning (RL). Specifically, we focus on the problem of how to coordinate the floating base and the robotic arm of a wheeled-quadrupedal manipulator robot to achieve direct six-dimensional (6D) end-effector (EE) pose tracking in task space. Different from conventional whole-body loco-manipulation problems that track both floating-base and end-effector commands, the direct EE pose tracking problem requires inherent balance among redundant degrees of freedom in the whole-body motion. We leverage RL to solve this challenging problem. To address the associated difficulties, we develop a novel reward fusion module (RFM) that systematically integrates reward terms corresponding to different tasks in a nonlinear manner. In such a way, the inherent multi-stage and hierarchical feature of the loco-manipulation problem can be carefully accommodated. By combining the proposed RFM with the a teacher-student RL training paradigm, we present a complete RL scheme to achieve 6D EE pose tracking for the wheeled-quadruped manipulator robot. Extensive simulation and hardware experiments demonstrate the significance of the RFM. In particular, we enable smooth and precise tracking performance, achieving state-of-the-art tracking position error of less than 5 cm, and rotation error of less than 0.1 rad. Please refer to https://clearlab-sustech.github.io/RFM_loco_mani/ for more experimental videos.
♻ ☆ MetaFold: Language-Guided Multi-Category Garment Folding Framework via Trajectory Generation and Foundation Model
Garment folding is a common yet challenging task in robotic manipulation. The deformability of garments leads to a vast state space and complex dynamics, which complicates precise and fine-grained manipulation. Previous approaches often rely on predefined key points or demonstrations, limiting their generalization across diverse garment categories. This paper presents a framework, MetaFold, that disentangles task planning from action prediction, learning each independently to enhance model generalization. It employs language-guided point cloud trajectory generation for task planning and a low-level foundation model for action prediction. This structure facilitates multi-category learning, enabling the model to adapt flexibly to various user instructions and folding tasks. Experimental results demonstrate the superiority of our proposed framework. Supplementary materials are available on our website: https://meta-fold.github.io/.
♻ ☆ On learning racing policies with reinforcement learning IROS 2025
Fully autonomous vehicles promise enhanced safety and efficiency. However, ensuring reliable operation in challenging corner cases requires control algorithms capable of performing at the vehicle limits. We address this requirement by considering the task of autonomous racing and propose solving it by learning a racing policy using Reinforcement Learning (RL). Our approach leverages domain randomization, actuator dynamics modeling, and policy architecture design to enable reliable and safe zero-shot deployment on a real platform. Evaluated on the F1TENTH race car, our RL policy not only surpasses a state-of-the-art Model Predictive Control (MPC), but, to the best of our knowledge, also represents the first instance of an RL policy outperforming expert human drivers in RC racing. This work identifies the key factors driving this performance improvement, providing critical insights for the design of robust RL-based control strategies for autonomous vehicles.
comment: This paper has been accepted for publication in the Proceedings of the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
♻ ☆ SWA-SOP: Spatially-aware Window Attention for Semantic Occupancy Prediction in Autonomous Driving
Perception systems in autonomous driving rely on sensors such as LiDAR and cameras to perceive the 3D environment. However, due to occlusions and data sparsity, these sensors often fail to capture complete information. Semantic Occupancy Prediction (SOP) addresses this challenge by inferring both occupancy and semantics of unobserved regions. Existing transformer-based SOP methods lack explicit modeling of spatial structure in attention computation, resulting in limited geometric awareness and poor performance in sparse or occluded areas. To this end, we propose Spatially-aware Window Attention (SWA), a novel mechanism that incorporates local spatial context into attention. SWA significantly improves scene completion and achieves state-of-the-art results on LiDAR-based SOP benchmarks. We further validate its generality by integrating SWA into a camera-based SOP pipeline, where it also yields consistent gains across modalities.
comment: 2025 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Vienna, Austria, Oct 2025
♻ ☆ OC-SOP: Enhancing Vision-Based 3D Semantic Occupancy Prediction by Object-Centric Awareness
Autonomous driving perception faces significant challenges due to occlusions and incomplete scene data in the environment. To overcome these issues, the task of semantic occupancy prediction (SOP) is proposed, which aims to jointly infer both the geometry and semantic labels of a scene from images. However, conventional camera-based methods typically treat all categories equally and primarily rely on local features, leading to suboptimal predictions, especially for dynamic foreground objects. To address this, we propose Object-Centric SOP (OC-SOP), a framework that integrates high-level object-centric cues extracted via a detection branch into the semantic occupancy prediction pipeline. This object-centric integration significantly enhances the prediction accuracy for foreground objects and achieves state-of-the-art performance among all categories on SemanticKITTI.
comment: 2025 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Vienna, Austria, Oct 2025
♻ ☆ Barriers on the EDGE: A scalable CBF architecture over EDGE for safe aerial-ground multi-agent coordination
In this article, we propose a control architecture for the safe, coordinated operation of a multi-agent system with aerial (UAVs) and ground (UGVs) robots in a confined task space. We consider the case where the aerial and ground operations are coupled, enabled by the capability of the aerial robots to land on moving ground robots. The proposed method uses time-varying Control Barrier Functions (CBFs) to impose safety constraints associated with (i) collision avoidance between agents, (ii) landing of UAVs on mobile UGVs, and (iii) task space restriction. Further, this article addresses the challenge induced by the rapid increase in the number of CBF constraints with the increasing number of agents through a hybrid centralized-distributed coordination approach that determines the set of CBF constraints that is relevant for every aerial and ground agent at any given time. A centralized node (Watcher), hosted by an edge computing cluster, activates the relevant constraints, thus reducing the network complexity and the need for high onboard processing on the robots. The CBF constraints are enforced in a distributed manner by individual robots that run a nominal controller and safety filter locally to overcome latency and other network nonidealities.
comment: 6 pages, 2 figures, first draft of a paper currently under review
♻ ☆ Navigating Robot Swarm Through a Virtual Tube with Flow-Adaptive Distribution Control
With the rapid development of robot swarm technology and its diverse applications, navigating robot swarms through complex environments has emerged as a critical research direction. To ensure safe navigation and avoid potential collisions with obstacles, the concept of virtual tubes has been introduced to define safe and navigable regions. However, current control methods in virtual tubes face the congestion issues, particularly in narrow ones with low throughput. To address these challenges, we first propose a novel control method that combines a modified artificial potential field (APF) for swarm navigation and density feedback control for distribution regulation. Then we generate a global velocity field that not only ensures collision-free navigation but also achieves locally input-to-state stability (LISS) for density tracking. Finally, numerical simulations and realistic applications validate the effectiveness and advantages of the proposed method in navigating robot swarms through narrow virtual tubes.
comment: 8 pages(brief paper), 12 figures
♻ ☆ RIZE: Regularized Imitation Learning via Distributional Reinforcement Learning
We propose a novel Inverse Reinforcement Learning (IRL) method that mitigates the rigidity of fixed reward structures and the limited flexibility of implicit reward regularization. Building on the Maximum Entropy IRL framework, our approach incorporates a squared temporal-difference (TD) regularizer with adaptive targets that evolve dynamically during training, thereby imposing adaptive bounds on recovered rewards and promoting robust decision-making. To capture richer return information, we integrate distributional RL into the learning process. Empirically, our method achieves expert-level performance on complex MuJoCo tasks, surpassing baseline methods on the Humanoid task with 3 demonstrations. Extensive experiments and ablation studies further validate the effectiveness of the approach and provide insights into reward dynamics in imitation learning.
comment: Major revision - completely rewritten mathematical formulation and proofs, with substantial updates to methodology and expanded appendix for supporting derivations
♻ ☆ Gradual Transition from Bellman Optimality Operator to Bellman Operator in Online Reinforcement Learning ICML 2025
For continuous action spaces, actor-critic methods are widely used in online reinforcement learning (RL). However, unlike RL algorithms for discrete actions, which generally model the optimal value function using the Bellman optimality operator, RL algorithms for continuous actions typically model Q-values for the current policy using the Bellman operator. These algorithms for continuous actions rely exclusively on policy updates for improvement, which often results in low sample efficiency. This study examines the effectiveness of incorporating the Bellman optimality operator into actor-critic frameworks. Experiments in a simple environment show that modeling optimal values accelerates learning but leads to overestimation bias. To address this, we propose an annealing approach that gradually transitions from the Bellman optimality operator to the Bellman operator, thereby accelerating learning while mitigating bias. Our method, combined with TD3 and SAC, significantly outperforms existing approaches across various locomotion and manipulation tasks, demonstrating improved performance and robustness to hyperparameters related to optimality. The code for this study is available at https://github.com/motokiomura/annealed-q-learning.
comment: Accepted at ICML 2025. Source code: https://github.com/motokiomura/annealed-q-learning
♻ ☆ DualMap: Online Open-Vocabulary Semantic Mapping for Natural Language Navigation in Dynamic Changing Scenes
We introduce DualMap, an online open-vocabulary mapping system that enables robots to understand and navigate dynamically changing environments through natural language queries. Designed for efficient semantic mapping and adaptability to changing environments, DualMap meets the essential requirements for real-world robot navigation applications. Our proposed hybrid segmentation frontend and object-level status check eliminate the costly 3D object merging required by prior methods, enabling efficient online scene mapping. The dual-map representation combines a global abstract map for high-level candidate selection with a local concrete map for precise goal-reaching, effectively managing and updating dynamic changes in the environment. Through extensive experiments in both simulation and real-world scenarios, we demonstrate state-of-the-art performance in 3D open-vocabulary segmentation, efficient scene mapping, and online language-guided navigation.Project page: https://eku127.github.io/DualMap/
comment: 14 pages, 14 figures. Code: https://github.com/Eku127/DualMap Project page: https://eku127.github.io/DualMap/
♻ ☆ Human2Robot: Learning Robot Actions from Paired Human-Robot Videos
Distilling knowledge from human demonstrations is a promising way for robots to learn and act. Existing methods, which often rely on coarsely-aligned video pairs, are typically constrained to learning global or task-level features. As a result, they tend to neglect the fine-grained frame-level dynamics required for complex manipulation and generalization to novel tasks. We posit that this limitation stems from a vicious circle of inadequate datasets and the methods they inspire. To break this cycle, we propose a paradigm shift that treats fine-grained human-robot alignment as a conditional video generation problem. To this end, we first introduce H&R, a novel third-person dataset containing 2,600 episodes of precisely synchronized human and robot motions, collected using a VR teleoperation system. We then present Human2Robot, a framework designed to leverage this data. Human2Robot employs a Video Prediction Model to learn a rich and implicit representation of robot dynamics by generating robot videos from human input, which in turn guides a decoupled action decoder. Our real-world experiments demonstrate that this approach not only achieves high performance on seen tasks but also exhibits significant one-shot generalization to novel positions, objects, instances, and even new task categories.
♻ ☆ Responsive Noise-Relaying Diffusion Policy: Responsive and Efficient Visuomotor Control
Imitation learning is an efficient method for teaching robots a variety of tasks. Diffusion Policy, which uses a conditional denoising diffusion process to generate actions, has demonstrated superior performance, particularly in learning from multi-modal demonstrates. However, it relies on executing multiple actions predicted from the same inference step to retain performance and prevent mode bouncing, which limits its responsiveness, as actions are not conditioned on the most recent observations. To address this, we introduce Responsive Noise-Relaying Diffusion Policy (RNR-DP), which maintains a noise-relaying buffer with progressively increasing noise levels and employs a sequential denoising mechanism that generates immediate, noise-free actions at the head of the sequence, while appending noisy actions at the tail. This ensures that actions are responsive and conditioned on the latest observations, while maintaining motion consistency through the noise-relaying buffer. This design enables the handling of tasks requiring responsive control, and accelerates action generation by reusing denoising steps. Experiments on response-sensitive tasks demonstrate that, compared to Diffusion Policy, ours achieves 18% improvement in success rate. Further evaluation on regular tasks demonstrates that RNR-DP also exceeds the best acceleration method (DDIM) by 6.9% in success rate, highlighting its computational efficiency advantage in scenarios where responsiveness is less critical. Our project page is available at https://rnr-dp.github.io
comment: Project website: https://rnr-dp.github.io
♻ ☆ Deep Learning Warm Starts for Trajectory Optimization on the International Space Station RSS 2025
Trajectory optimization is a cornerstone of modern robot autonomy, enabling systems to compute trajectories and controls in real-time while respecting safety and physical constraints. However, it has seen limited usage in spaceflight applications due to its heavy computational demands that exceed the capability of most flight computers. In this work, we provide results on the first flight demonstration of using machine learning-based warm starts for accelerating trajectory optimization for the Astrobee free-flying robot on-board the International Space Station (ISS). We formulate a data-driven optimal control approach that trains a neural network to learn the structure of the trajectory generation problem being solved for by sequential convex programming (SCP). On-board, this trained neural network predicts solutions for the trajectory generation problem and relies on using the SCP solver to enforce safety constraints for the system. Our trained network reduces the number of solver iterations required for convergence in cases including rotational dynamics by 60% and in cases with obstacles drawn from the training distribution of the warm start model by 50%. This work represents a significant milestone in the use of learning-based control for spaceflight applications and a stepping stone for future advances in the use of machine learning for autonomous guidance, navigation, & control.
comment: Submitted to 2025 International Conference on Space Robotics (iSpaRo). Presented at RSS 2025 Workshop on Space Robotics
♻ ☆ Audio-3DVG: Unified Audio -- Point Cloud Fusion for 3D Visual Grounding
3D Visual Grounding (3DVG) involves localizing target objects in 3D point clouds based on natural language. While prior work has made strides using textual descriptions, leveraging spoken language-known as Audio-based 3D Visual Grounding-remains underexplored and challenging. Motivated by advances in automatic speech recognition (ASR) and speech representation learning, we propose Audio-3DVG, a simple yet effective framework that integrates audio and spatial information for enhanced grounding. Rather than treating speech as a monolithic input, we decompose the task into two complementary components. First, we introduce (i) Object Mention Detection, a multi-label classification task that explicitly identifies which objects are referred to in the audio, enabling more structured audio-scene reasoning. Second, we propose an (ii) Audio-Guided Attention module that models the interactions between target candidates and mentioned objects, enhancing discrimination in cluttered 3D environments. To support benchmarking, we (iii) synthesize audio descriptions for standard 3DVG datasets, including ScanRefer, Sr3D, and Nr3D. Experimental results demonstrate that Audio-3DVG not only achieves new state-of-the-art performance in audio-based grounding, but also competes with text-based methods, highlight the promise of integrating spoken language into 3D vision tasks.
comment: Preprint, 51 pages
♻ ☆ Detection and Tracking of MAVs Using a Rosette Scanning Pattern LiDAR
The use of commercial Micro Aerial Vehicles (MAVs) has surged in the past decade, offering societal benefits but also raising risks such as airspace violations and privacy concerns. Due to the increased security risks, the development of autonomous drone detection and tracking systems has become a priority. In this study, we tackle this challenge, by using non-repetitive rosette scanning pattern LiDARs, particularly focusing on increasing the detection distance by leveraging the characteristics of the sensor. The presented method utilizes a particle filter with a velocity component for the detection and tracking of the drone, which offers added re-detection capability. A Pan-Tilt platform is utilized to take advantage of the specific characteristics of the rosette scanning pattern LiDAR by keeping the tracked object in the center where the measurement is most dense. The detection capabilities and accuracy of the system are validated through indoor experiments, while the maximum detection distance is shown in our outdoor experiments. Our approach achieved accuracy on par with the state-of-the-art indoor method while increasing the maximum detection range by approximately 80\% beyond the state-of-the-art outdoor method.
♻ ☆ MPPI-Generic: A CUDA Library for Stochastic Trajectory Optimization
This paper introduces a new C++/CUDA library for GPU-accelerated stochastic optimization called MPPI-Generic. It provides implementations of Model Predictive Path Integral control, Tube-Model Predictive Path Integral Control, and Robust Model Predictive Path Integral Control, and allows for these algorithms to be used across many pre-existing dynamics models and cost functions. Furthermore, researchers can create their own dynamics models or cost functions following our API definitions without needing to change the actual Model Predictive Path Integral Control code. Finally, we compare computational performance to other popular implementations of Model Predictive Path Integral Control over a variety of GPUs to show the real-time capabilities our library can allow for. Library code can be found at: https://acdslab.github.io/mppi-generic-website/ .
comment: Added missing Acknowledgements section
♻ ☆ Implicit Safe Set Algorithm for Provably Safe Reinforcement Learning
Deep reinforcement learning (DRL) has demonstrated remarkable performance in many continuous control tasks. However, a significant obstacle to the real-world application of DRL is the lack of safety guarantees. Although DRL agents can satisfy system safety in expectation through reward shaping, designing agents to consistently meet hard constraints (e.g., safety specifications) at every time step remains a formidable challenge. In contrast, existing work in the field of safe control provides guarantees on persistent satisfaction of hard safety constraints. However, these methods require explicit analytical system dynamics models to synthesize safe control, which are typically inaccessible in DRL settings. In this paper, we present a model-free safe control algorithm, the implicit safe set algorithm, for synthesizing safeguards for DRL agents that ensure provable safety throughout training. The proposed algorithm synthesizes a safety index (barrier certificate) and a subsequent safe control law solely by querying a black-box dynamic function (e.g., a digital twin simulator). Moreover, we theoretically prove that the implicit safe set algorithm guarantees finite time convergence to the safe set and forward invariance for both continuous-time and discrete-time systems. We validate the proposed algorithm on the state-of-the-art Safety Gym benchmark, where it achieves zero safety violations while gaining $95\% \pm 9\%$ cumulative reward compared to state-of-the-art safe DRL methods. Furthermore, the resulting algorithm scales well to high-dimensional systems with parallel computing.
comment: Accepted to Journal of Artificial Intelligence Research. arXiv admin note: text overlap with arXiv:2308.13140
Computer Vision and Pattern Recognition 204
☆ Echo-4o: Harnessing the Power of GPT-4o Synthetic Images for Improved Image Generation
Recently, GPT-4o has garnered significant attention for its strong performance in image generation, yet open-source models still lag behind. Several studies have explored distilling image data from GPT-4o to enhance open-source models, achieving notable progress. However, a key question remains: given that real-world image datasets already constitute a natural source of high-quality data, why should we use GPT-4o-generated synthetic data? In this work, we identify two key advantages of synthetic images. First, they can complement rare scenarios in real-world datasets, such as surreal fantasy or multi-reference image generation, which frequently occur in user queries. Second, they provide clean and controllable supervision. Real-world data often contains complex background noise and inherent misalignment between text descriptions and image content, whereas synthetic images offer pure backgrounds and long-tailed supervision signals, facilitating more accurate text-to-image alignment. Building on these insights, we introduce Echo-4o-Image, a 180K-scale synthetic dataset generated by GPT-4o, harnessing the power of synthetic image data to address blind spots in real-world coverage. Using this dataset, we fine-tune the unified multimodal generation baseline Bagel to obtain Echo-4o. In addition, we propose two new evaluation benchmarks for a more accurate and challenging assessment of image generation capabilities: GenEval++, which increases instruction complexity to mitigate score saturation, and Imagine-Bench, which focuses on evaluating both the understanding and generation of imaginative content. Echo-4o demonstrates strong performance across standard benchmarks. Moreover, applying Echo-4o-Image to other foundation models (e.g., OmniGen2, BLIP3-o) yields consistent performance gains across multiple metrics, highlighting the datasets strong transferability.
comment: 19 pages, 8 figures
☆ Story2Board: A Training-Free Approach for Expressive Storyboard Generation
We present Story2Board, a training-free framework for expressive storyboard generation from natural language. Existing methods narrowly focus on subject identity, overlooking key aspects of visual storytelling such as spatial composition, background evolution, and narrative pacing. To address this, we introduce a lightweight consistency framework composed of two components: Latent Panel Anchoring, which preserves a shared character reference across panels, and Reciprocal Attention Value Mixing, which softly blends visual features between token pairs with strong reciprocal attention. Together, these mechanisms enhance coherence without architectural changes or fine-tuning, enabling state-of-the-art diffusion models to generate visually diverse yet consistent storyboards. To structure generation, we use an off-the-shelf language model to convert free-form stories into grounded panel-level prompts. To evaluate, we propose the Rich Storyboard Benchmark, a suite of open-domain narratives designed to assess layout diversity and background-grounded storytelling, in addition to consistency. We also introduce a new Scene Diversity metric that quantifies spatial and pose variation across storyboards. Our qualitative and quantitative results, as well as a user study, show that Story2Board produces more dynamic, coherent, and narratively engaging storyboards than existing baselines.
comment: Project page is available at https://daviddinkevich.github.io/Story2Board/
☆ LLMC+: Benchmarking Vision-Language Model Compression with a Plug-and-play Toolkit
Large Vision-Language Models (VLMs) exhibit impressive multi-modal capabilities but suffer from prohibitive computational and memory demands, due to their long visual token sequences and massive parameter sizes. To address these issues, recent works have proposed training-free compression methods. However, existing efforts often suffer from three major limitations: (1) Current approaches do not decompose techniques into comparable modules, hindering fair evaluation across spatial and temporal redundancy. (2) Evaluation confined to simple single-turn tasks, failing to reflect performance in realistic scenarios. (3) Isolated use of individual compression techniques, without exploring their joint potential. To overcome these gaps, we introduce LLMC+, a comprehensive VLM compression benchmark with a versatile, plug-and-play toolkit. LLMC+ supports over 20 algorithms across five representative VLM families and enables systematic study of token-level and model-level compression. Our benchmark reveals that: (1) Spatial and temporal redundancies demand distinct technical strategies. (2) Token reduction methods degrade significantly in multi-turn dialogue and detail-sensitive tasks. (3) Combining token and model compression achieves extreme compression with minimal performance loss. We believe LLMC+ will facilitate fair evaluation and inspire future research in efficient VLM. Our code is available at https://github.com/ModelTC/LightCompress.
comment: 13 pages, 4 figures
☆ A Survey on 3D Gaussian Splatting Applications: Segmentation, Editing, and Generation
3D Gaussian Splatting (3DGS) has recently emerged as a powerful alternative to Neural Radiance Fields (NeRF) for 3D scene representation, offering high-fidelity photorealistic rendering with real-time performance. Beyond novel view synthesis, the explicit and compact nature of 3DGS enables a wide range of downstream applications that require geometric and semantic understanding. This survey provides a comprehensive overview of recent progress in 3DGS applications. It first introduces 2D foundation models that support semantic understanding and control in 3DGS applications, followed by a review of NeRF-based methods that inform their 3DGS counterparts. We then categorize 3DGS applications into segmentation, editing, generation, and other functional tasks. For each, we summarize representative methods, supervision strategies, and learning paradigms, highlighting shared design principles and emerging trends. Commonly used datasets and evaluation protocols are also summarized, along with comparative analyses of recent methods across public benchmarks. To support ongoing research and development, a continually updated repository of papers, code, and resources is maintained at https://github.com/heshuting555/Awesome-3DGS-Applications.
comment: GitHub Repo: https://github.com/heshuting555/Awesome-3DGS-Applications
☆ PERSONA: Personalized Whole-Body 3D Avatar with Pose-Driven Deformations from a Single Image ICCV 2025
Two major approaches exist for creating animatable human avatars. The first, a 3D-based approach, optimizes a NeRF- or 3DGS-based avatar from videos of a single person, achieving personalization through a disentangled identity representation. However, modeling pose-driven deformations, such as non-rigid cloth deformations, requires numerous pose-rich videos, which are costly and impractical to capture in daily life. The second, a diffusion-based approach, learns pose-driven deformations from large-scale in-the-wild videos but struggles with identity preservation and pose-dependent identity entanglement. We present PERSONA, a framework that combines the strengths of both approaches to obtain a personalized 3D human avatar with pose-driven deformations from a single image. PERSONA leverages a diffusion-based approach to generate pose-rich videos from the input image and optimizes a 3D avatar based on them. To ensure high authenticity and sharp renderings across diverse poses, we introduce balanced sampling and geometry-weighted optimization. Balanced sampling oversamples the input image to mitigate identity shifts in diffusion-generated training videos. Geometry-weighted optimization prioritizes geometry constraints over image loss, preserving rendering quality in diverse poses.
comment: Accepted to ICCV 2025. https://mks0601.github.io/PERSONA/
☆ Noise Hypernetworks: Amortizing Test-Time Compute in Diffusion Models
The new paradigm of test-time scaling has yielded remarkable breakthroughs in Large Language Models (LLMs) (e.g. reasoning models) and in generative vision models, allowing models to allocate additional computation during inference to effectively tackle increasingly complex problems. Despite the improvements of this approach, an important limitation emerges: the substantial increase in computation time makes the process slow and impractical for many applications. Given the success of this paradigm and its growing usage, we seek to preserve its benefits while eschewing the inference overhead. In this work we propose one solution to the critical problem of integrating test-time scaling knowledge into a model during post-training. Specifically, we replace reward guided test-time noise optimization in diffusion models with a Noise Hypernetwork that modulates initial input noise. We propose a theoretically grounded framework for learning this reward-tilted distribution for distilled generators, through a tractable noise-space objective that maintains fidelity to the base model while optimizing for desired characteristics. We show that our approach recovers a substantial portion of the quality gains from explicit test-time optimization at a fraction of the computational cost. Code is available at https://github.com/ExplainableML/HyperNoise
comment: Project page: https://noisehypernetworks.github.io/
☆ MOC: Meta-Optimized Classifier for Few-Shot Whole Slide Image Classification MICCAI 2025
Recent advances in histopathology vision-language foundation models (VLFMs) have shown promise in addressing data scarcity for whole slide image (WSI) classification via zero-shot adaptation. However, these methods remain outperformed by conventional multiple instance learning (MIL) approaches trained on large datasets, motivating recent efforts to enhance VLFM-based WSI classification through fewshot learning paradigms. While existing few-shot methods improve diagnostic accuracy with limited annotations, their reliance on conventional classifier designs introduces critical vulnerabilities to data scarcity. To address this problem, we propose a Meta-Optimized Classifier (MOC) comprising two core components: (1) a meta-learner that automatically optimizes a classifier configuration from a mixture of candidate classifiers and (2) a classifier bank housing diverse candidate classifiers to enable a holistic pathological interpretation. Extensive experiments demonstrate that MOC outperforms prior arts in multiple few-shot benchmarks. Notably, on the TCGA-NSCLC benchmark, MOC improves AUC by 10.4% over the state-of-the-art few-shot VLFM-based methods, with gains up to 26.25% under 1-shot conditions, offering a critical advancement for clinical deployments where diagnostic training data is severely limited. Code is available at https://github.com/xmed-lab/MOC.
comment: Accepted in MICCAI 2025
☆ January Food Benchmark (JFB): A Public Benchmark Dataset and Evaluation Suite for Multimodal Food Analysis
Progress in AI for automated nutritional analysis is critically hampered by the lack of standardized evaluation methodologies and high-quality, real-world benchmark datasets. To address this, we introduce three primary contributions. First, we present the January Food Benchmark (JFB), a publicly available collection of 1,000 food images with human-validated annotations. Second, we detail a comprehensive benchmarking framework, including robust metrics and a novel, application-oriented overall score designed to assess model performance holistically. Third, we provide baseline results from both general-purpose Vision-Language Models (VLMs) and our own specialized model, january/food-vision-v1. Our evaluation demonstrates that the specialized model achieves an Overall Score of 86.2, a 12.1-point improvement over the best-performing general-purpose configuration. This work offers the research community a valuable new evaluation dataset and a rigorous framework to guide and benchmark future developments in automated nutritional analysis.
☆ LIA-X: Interpretable Latent Portrait Animator
We introduce LIA-X, a novel interpretable portrait animator designed to transfer facial dynamics from a driving video to a source portrait with fine-grained control. LIA-X is an autoencoder that models motion transfer as a linear navigation of motion codes in latent space. Crucially, it incorporates a novel Sparse Motion Dictionary that enables the model to disentangle facial dynamics into interpretable factors. Deviating from previous 'warp-render' approaches, the interpretability of the Sparse Motion Dictionary allows LIA-X to support a highly controllable 'edit-warp-render' strategy, enabling precise manipulation of fine-grained facial semantics in the source portrait. This helps to narrow initial differences with the driving video in terms of pose and expression. Moreover, we demonstrate the scalability of LIA-X by successfully training a large-scale model with approximately 1 billion parameters on extensive datasets. Experimental results show that our proposed method outperforms previous approaches in both self-reenactment and cross-reenactment tasks across several benchmarks. Additionally, the interpretable and controllable nature of LIA-X supports practical applications such as fine-grained, user-guided image and video editing, as well as 3D-aware portrait video manipulation.
comment: Project Page: https://wyhsirius.github.io/LIA-X-project/
☆ Stable Diffusion Models are Secretly Good at Visual In-Context Learning ICCV 2025
Large language models (LLM) in natural language processing (NLP) have demonstrated great potential for in-context learning (ICL) -- the ability to leverage a few sets of example prompts to adapt to various tasks without having to explicitly update the model weights. ICL has recently been explored for computer vision tasks with promising early outcomes. These approaches involve specialized training and/or additional data that complicate the process and limit its generalizability. In this work, we show that off-the-shelf Stable Diffusion models can be repurposed for visual in-context learning (V-ICL). Specifically, we formulate an in-place attention re-computation within the self-attention layers of the Stable Diffusion architecture that explicitly incorporates context between the query and example prompts. Without any additional fine-tuning, we show that this repurposed Stable Diffusion model is able to adapt to six different tasks: foreground segmentation, single object detection, semantic segmentation, keypoint detection, edge detection, and colorization. For example, the proposed approach improves the mean intersection over union (mIoU) for the foreground segmentation task on Pascal-5i dataset by 8.9% and 3.2% over recent methods such as Visual Prompting and IMProv, respectively. Additionally, we show that the proposed method is able to effectively leverage multiple prompts through ensembling to infer the task better and further improve the performance.
comment: Accepted to ICCV 2025
☆ VisCodex: Unified Multimodal Code Generation via Merging Vision and Coding Models
Multimodal large language models (MLLMs) have significantly advanced the integration of visual and textual understanding. However, their ability to generate code from multimodal inputs remains limited. In this work, we introduce VisCodex, a unified framework that seamlessly merges vision and coding language models to empower MLLMs with strong multimodal code generation abilities. Leveraging a task vector-based model merging technique, we integrate a state-of-the-art coding LLM into a strong vision-language backbone, while preserving both visual comprehension and advanced coding skills. To support training and evaluation, we introduce the Multimodal Coding Dataset (MCD), a large-scale and diverse collection of 598k samples, including high-quality HTML code, chart image-code pairs, image-augmented StackOverflow QA, and algorithmic problems. Furthermore, we propose InfiBench-V, a novel and challenging benchmark specifically designed to assess models on visually-rich, real-world programming questions that demand a nuanced understanding of both textual and visual contexts. Extensive experiments show that VisCodex achieves state-of-the-art performance among open-source MLLMs and approaches proprietary models like GPT-4o, highlighting the effectiveness of our model merging strategy and new datasets.
☆ AST-n: A Fast Sampling Approach for Low-Dose CT Reconstruction using Diffusion Models
Low-dose CT (LDCT) protocols reduce radiation exposure but increase image noise, compromising diagnostic confidence. Diffusion-based generative models have shown promise for LDCT denoising by learning image priors and performing iterative refinement. In this work, we introduce AST-n, an accelerated inference framework that initiates reverse diffusion from intermediate noise levels, and integrate high-order ODE solvers within conditioned models to further reduce sampling steps. We evaluate two acceleration paradigms--AST-n sampling and standard scheduling with high-order solvers -- on the Low Dose CT Grand Challenge dataset, covering head, abdominal, and chest scans at 10-25 % of standard dose. Conditioned models using only 25 steps (AST-25) achieve peak signal-to-noise ratio (PSNR) above 38 dB and structural similarity index (SSIM) above 0.95, closely matching standard baselines while cutting inference time from ~16 seg to under 1 seg per slice. Unconditional sampling suffers substantial quality loss, underscoring the necessity of conditioning. We also assess DDIM inversion, which yields marginal PSNR gains at the cost of doubling inference time, limiting its clinical practicality. Our results demonstrate that AST-n with high-order samplers enables rapid LDCT reconstruction without significant loss of image fidelity, advancing the feasibility of diffusion-based methods in clinical workflows.
☆ Quo Vadis Handwritten Text Generation for Handwritten Text Recognition? ICCV
The digitization of historical manuscripts presents significant challenges for Handwritten Text Recognition (HTR) systems, particularly when dealing with small, author-specific collections that diverge from the training data distributions. Handwritten Text Generation (HTG) techniques, which generate synthetic data tailored to specific handwriting styles, offer a promising solution to address these challenges. However, the effectiveness of various HTG models in enhancing HTR performance, especially in low-resource transcription settings, has not been thoroughly evaluated. In this work, we systematically compare three state-of-the-art styled HTG models (representing the generative adversarial, diffusion, and autoregressive paradigms for HTG) to assess their impact on HTR fine-tuning. We analyze how visual and linguistic characteristics of synthetic data influence fine-tuning outcomes and provide quantitative guidelines for selecting the most effective HTG model. The results of our analysis provide insights into the current capabilities of HTG methods and highlight key areas for further improvement in their application to low-resource HTR.
comment: Accepted at ICCV Workshop VisionDocs
☆ Towards Comprehensive Cellular Characterisation of H&E slides
Cell detection, segmentation and classification are essential for analyzing tumor microenvironments (TME) on hematoxylin and eosin (H&E) slides. Existing methods suffer from poor performance on understudied cell types (rare or not present in public datasets) and limited cross-domain generalization. To address these shortcomings, we introduce HistoPLUS, a state-of-the-art model for cell analysis, trained on a novel curated pan-cancer dataset of 108,722 nuclei covering 13 cell types. In external validation across 4 independent cohorts, HistoPLUS outperforms current state-of-the-art models in detection quality by 5.2% and overall F1 classification score by 23.7%, while using 5x fewer parameters. Notably, HistoPLUS unlocks the study of 7 understudied cell types and brings significant improvements on 8 of 13 cell types. Moreover, we show that HistoPLUS robustly transfers to two oncology indications unseen during training. To support broader TME biomarker research, we release the model weights and inference code at https://github.com/owkin/histoplus/.
comment: 33 pages, 4 figures
☆ T-CACE: A Time-Conditioned Autoregressive Contrast Enhancement Multi-Task Framework for Contrast-Free Liver MRI Synthesis, Segmentation, and Diagnosis
Magnetic resonance imaging (MRI) is a leading modality for the diagnosis of liver cancer, significantly improving the classification of the lesion and patient outcomes. However, traditional MRI faces challenges including risks from contrast agent (CA) administration, time-consuming manual assessment, and limited annotated datasets. To address these limitations, we propose a Time-Conditioned Autoregressive Contrast Enhancement (T-CACE) framework for synthesizing multi-phase contrast-enhanced MRI (CEMRI) directly from non-contrast MRI (NCMRI). T-CACE introduces three core innovations: a conditional token encoding (CTE) mechanism that unifies anatomical priors and temporal phase information into latent representations; and a dynamic time-aware attention mask (DTAM) that adaptively modulates inter-phase information flow using a Gaussian-decayed attention mechanism, ensuring smooth and physiologically plausible transitions across phases. Furthermore, a constraint for temporal classification consistency (TCC) aligns the lesion classification output with the evolution of the physiological signal, further enhancing diagnostic reliability. Extensive experiments on two independent liver MRI datasets demonstrate that T-CACE outperforms state-of-the-art methods in image synthesis, segmentation, and lesion classification. This framework offers a clinically relevant and efficient alternative to traditional contrast-enhanced imaging, improving safety, diagnostic efficiency, and reliability for the assessment of liver lesion. The implementation of T-CACE is publicly available at: https://github.com/xiaojiao929/T-CACE.
comment: IEEE Journal of Biomedical and Health Informatics, 2025
☆ E-4DGS: High-Fidelity Dynamic Reconstruction from the Multi-view Event Cameras
Novel view synthesis and 4D reconstruction techniques predominantly rely on RGB cameras, thereby inheriting inherent limitations such as the dependence on adequate lighting, susceptibility to motion blur, and a limited dynamic range. Event cameras, offering advantages of low power, high temporal resolution and high dynamic range, have brought a new perspective to addressing the scene reconstruction challenges in high-speed motion and low-light scenes. To this end, we propose E-4DGS, the first event-driven dynamic Gaussian Splatting approach, for novel view synthesis from multi-view event streams with fast-moving cameras. Specifically, we introduce an event-based initialization scheme to ensure stable training and propose event-adaptive slicing splatting for time-aware reconstruction. Additionally, we employ intensity importance pruning to eliminate floating artifacts and enhance 3D consistency, while incorporating an adaptive contrast threshold for more precise optimization. We design a synthetic multi-view camera setup with six moving event cameras surrounding the object in a 360-degree configuration and provide a benchmark multi-view event stream dataset that captures challenging motion scenarios. Our approach outperforms both event-only and event-RGB fusion baselines and paves the way for the exploration of multi-view event-based reconstruction as a novel approach for rapid scene capture.
comment: 16 pages, 10 figures, 5 Tables, accepted by ACMMM 2025
☆ SpeechForensics: Audio-Visual Speech Representation Learning for Face Forgery Detection NeurIPS 2024
Detection of face forgery videos remains a formidable challenge in the field of digital forensics, especially the generalization to unseen datasets and common perturbations. In this paper, we tackle this issue by leveraging the synergy between audio and visual speech elements, embarking on a novel approach through audio-visual speech representation learning. Our work is motivated by the finding that audio signals, enriched with speech content, can provide precise information effectively reflecting facial movements. To this end, we first learn precise audio-visual speech representations on real videos via a self-supervised masked prediction task, which encodes both local and global semantic information simultaneously. Then, the derived model is directly transferred to the forgery detection task. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods in terms of cross-dataset generalization and robustness, without the participation of any fake video in model training. Code is available at https://github.com/Eleven4AI/SpeechForensics.
comment: Accepted by NeurIPS 2024
COME: Dual Structure-Semantic Learning with Collaborative MoE for Universal Lesion Detection Across Heterogeneous Ultrasound Datasets ICCV 2025
Conventional single-dataset training often fails with new data distributions, especially in ultrasound (US) image analysis due to limited data, acoustic shadows, and speckle noise. Therefore, constructing a universal framework for multi-heterogeneous US datasets is imperative. However, a key challenge arises: how to effectively mitigate inter-dataset interference while preserving dataset-specific discriminative features for robust downstream task? Previous approaches utilize either a single source-specific decoder or a domain adaptation strategy, but these methods experienced a decline in performance when applied to other domains. Considering this, we propose a Universal Collaborative Mixture of Heterogeneous Source-Specific Experts (COME). Specifically, COME establishes dual structure-semantic shared experts that create a universal representation space and then collaborate with source-specific experts to extract discriminative features through providing complementary features. This design enables robust generalization by leveraging cross-datasets experience distributions and providing universal US priors for small-batch or unseen data scenarios. Extensive experiments under three evaluation modes (single-dataset, intra-organ, and inter-organ integration datasets) demonstrate COME's superiority, achieving significant mean AP improvements over state-of-the-art methods. Our project is available at: https://universalcome.github.io/UniversalCOME/.
comment: ICCV 2025
☆ HumanGenesis: Agent-Based Geometric and Generative Modeling for Synthetic Human Dynamics
\textbf{Synthetic human dynamics} aims to generate photorealistic videos of human subjects performing expressive, intention-driven motions. However, current approaches face two core challenges: (1) \emph{geometric inconsistency} and \emph{coarse reconstruction}, due to limited 3D modeling and detail preservation; and (2) \emph{motion generalization limitations} and \emph{scene inharmonization}, stemming from weak generative capabilities. To address these, we present \textbf{HumanGenesis}, a framework that integrates geometric and generative modeling through four collaborative agents: (1) \textbf{Reconstructor} builds 3D-consistent human-scene representations from monocular video using 3D Gaussian Splatting and deformation decomposition. (2) \textbf{Critique Agent} enhances reconstruction fidelity by identifying and refining poor regions via multi-round MLLM-based reflection. (3) \textbf{Pose Guider} enables motion generalization by generating expressive pose sequences using time-aware parametric encoders. (4) \textbf{Video Harmonizer} synthesizes photorealistic, coherent video via a hybrid rendering pipeline with diffusion, refining the Reconstructor through a Back-to-4D feedback loop. HumanGenesis achieves state-of-the-art performance on tasks including text-guided synthesis, video reenactment, and novel-pose generalization, significantly improving expressiveness, geometric fidelity, and scene integration.
☆ OneVAE: Joint Discrete and Continuous Optimization Helps Discrete Video VAE Train Better
Encoding videos into discrete tokens could align with text tokens to facilitate concise and unified multi-modal LLMs, yet introducing significant spatiotemporal compression compared to continuous video representation. Previous discrete video VAEs experienced unstable training, long training time, and degraded reconstruction quality. Given the easier training and superior performance of continuous VAEs, an intuitive idea is to enhance discrete video VAEs by leveraging continuous VAEs. After rethinking the intrinsic link between discrete and continuous representations, we found that FSQ could effectively preserve pre-trained continuous VAE priors compared to other quantization methods. By leveraging continuous VAE priors, it converges several times faster than training from scratch and achieves superior performance at convergence. Meanwhile, two structural improvements are proposed. First, inspired by how continuous VAEs enhance reconstruction via enlarged latent dimensions, we introduce a multi-token quantization mechanism, which achieves nearly a 1 dB improvement in PSNR without compromising the token compression ratio. Second, to tackle reconstruction challenges in high-compression video VAEs, we strengthen first-frame reconstruction, enabling the causal VAE to leverage this information in subsequent frames and markedly improving the performance of 4 x 16 x 16 discrete VAEs. Furthermore, we propose a joint discrete-continuous optimization scheme that unifies the two paradigms and, for the first time, achieves competitive performance on both continuous and discrete representations within a single network. We name our method OneVAE to reflect this connection.
☆ Toward Human-Robot Teaming: Learning Handover Behaviors from 3D Scenes
Human-robot teaming (HRT) systems often rely on large-scale datasets of human and robot interactions, especially for close-proximity collaboration tasks such as human-robot handovers. Learning robot manipulation policies from raw, real-world image data requires a large number of robot-action trials in the physical environment. Although simulation training offers a cost-effective alternative, the visual domain gap between simulation and robot workspace remains a major limitation. We introduce a method for training HRT policies, focusing on human-to-robot handovers, solely from RGB images without the need for real-robot training or real-robot data collection. The goal is to enable the robot to reliably receive objects from a human with stable grasping while avoiding collisions with the human hand. The proposed policy learner leverages sparse-view Gaussian Splatting reconstruction of human-to-robot handover scenes to generate robot demonstrations containing image-action pairs captured with a camera mounted on the robot gripper. As a result, the simulated camera pose changes in the reconstructed scene can be directly translated into gripper pose changes. Experiments in both Gaussian Splatting reconstructed scene and real-world human-to-robot handover experiments demonstrate that our method serves as a new and effective representation for the human-to-robot handover task, contributing to more seamless and robust HRT.
comment: 3 pages, 3 figures
☆ Perceptual Reality Transformer: Neural Architectures for Simulating Neurological Perception Conditions
Neurological conditions affecting visual perception create profound experiential divides between affected individuals and their caregivers, families, and medical professionals. We present the Perceptual Reality Transformer, a comprehensive framework employing six distinct neural architectures to simulate eight neurological perception conditions with scientifically-grounded visual transformations. Our system learns mappings from natural images to condition-specific perceptual states, enabling others to experience approximations of simultanagnosia, prosopagnosia, ADHD attention deficits, visual agnosia, depression-related changes, anxiety tunnel vision, and Alzheimer's memory effects. Through systematic evaluation across ImageNet and CIFAR-10 datasets, we demonstrate that Vision Transformer architectures achieve optimal performance, outperforming traditional CNN and generative approaches. Our work establishes the first systematic benchmark for neurological perception simulation, contributes novel condition-specific perturbation functions grounded in clinical literature, and provides quantitative metrics for evaluating simulation fidelity. The framework has immediate applications in medical education, empathy training, and assistive technology development, while advancing our fundamental understanding of how neural networks can model atypical human perception.
☆ Do Vision Transformers See Like Humans? Evaluating their Perceptual Alignment
Vision Transformers (ViTs) achieve remarkable performance in image recognition tasks, yet their alignment with human perception remains largely unexplored. This study systematically analyzes how model size, dataset size, data augmentation and regularization impact ViT perceptual alignment with human judgments on the TID2013 dataset. Our findings confirm that larger models exhibit lower perceptual alignment, consistent with previous works. Increasing dataset diversity has a minimal impact, but exposing models to the same images more times reduces alignment. Stronger data augmentation and regularization further decrease alignment, especially in models exposed to repeated training cycles. These results highlight a trade-off between model complexity, training strategies, and alignment with human perception, raising important considerations for applications requiring human-like visual understanding.
☆ ARI3D: A Software for Interactive Quantification of Regions in X-Ray CT 3D Images
X-ray computed tomography (CT) is the main 3D technique for imaging the internal microstructures of materials. Quantitative analysis of the microstructures is usually achieved by applying a sequence of steps that are implemented to the entire 3D image. This is challenged by various imaging artifacts inherent from the technique, e.g., beam hardening and partial volume. Consequently, the analysis requires users to make a number of decisions to segment and classify the microstructures based on the voxel gray-values. In this context, a software tool, here called ARI3D, is proposed to interactively analyze regions in three-dimensional X-ray CT images, assisting users through the various steps of a protocol designed to classify and quantify objects within regions of a three-dimensional image. ARI3D aims to 1) Improve phase identification; 2) Account for partial volume effect; 3) Increase the detection limit and accuracy of object quantification; and 4) Harmonize quantitative 3D analysis that can be implemented in different fields of science.
comment: 2 figures and 6 pages main article, 17 pages total, 8 figures total, to be published in SoftwareX
☆ Enhancing Diffusion Face Generation with Contrastive Embeddings and SegFormer Guidance
We present a benchmark of diffusion models for human face generation on a small-scale CelebAMask-HQ dataset, evaluating both unconditional and conditional pipelines. Our study compares UNet and DiT architectures for unconditional generation and explores LoRA-based fine-tuning of pretrained Stable Diffusion models as a separate experiment. Building on the multi-conditioning approach of Giambi and Lisanti, which uses both attribute vectors and segmentation masks, our main contribution is the integration of an InfoNCE loss for attribute embedding and the adoption of a SegFormer-based segmentation encoder. These enhancements improve the semantic alignment and controllability of attribute-guided synthesis. Our results highlight the effectiveness of contrastive embedding learning and advanced segmentation encoding for controlled face generation in limited data settings.
comment: 10 pages, preprint
☆ Hierarchical Graph Attention Network for No-Reference Omnidirectional Image Quality Assessment
Current Omnidirectional Image Quality Assessment (OIQA) methods struggle to evaluate locally non-uniform distortions due to inadequate modeling of spatial variations in quality and ineffective feature representation capturing both local details and global context. To address this, we propose a graph neural network-based OIQA framework that explicitly models structural relationships between viewports to enhance perception of spatial distortion non-uniformity. Our approach employs Fibonacci sphere sampling to generate viewports with well-structured topology, representing each as a graph node. Multi-stage feature extraction networks then derive high-dimensional node representation. To holistically capture spatial dependencies, we integrate a Graph Attention Network (GAT) modeling fine-grained local distortion variations among adjacent viewports, and a graph transformer capturing long-range quality interactions across distant regions. Extensive experiments on two large-scale OIQA databases with complex spatial distortions demonstrate that our method significantly outperforms existing approaches, confirming its effectiveness and strong generalization capability.
☆ Speed Always Wins: A Survey on Efficient Architectures for Large Language Models
Large Language Models (LLMs) have delivered impressive results in language understanding, generation, reasoning, and pushes the ability boundary of multimodal models. Transformer models, as the foundation of modern LLMs, offer a strong baseline with excellent scaling properties. However, the traditional transformer architecture requires substantial computations and poses significant obstacles for large-scale training and practical deployment. In this survey, we offer a systematic examination of innovative LLM architectures that address the inherent limitations of transformers and boost the efficiency. Starting from language modeling, this survey covers the background and technical details of linear and sparse sequence modeling methods, efficient full attention variants, sparse mixture-of-experts, hybrid model architectures incorporating the above techniques, and emerging diffusion LLMs. Additionally, we discuss applications of these techniques to other modalities and consider their wider implications for developing scalable, resource-aware foundation models. By grouping recent studies into the above category, this survey presents a blueprint of modern efficient LLM architectures, and we hope this could help motivate future research toward more efficient, versatile AI systems.
comment: Survey, 82 pages, GitHub: https://github.com/weigao266/Awesome-Efficient-Arch
☆ Robustness analysis of Deep Sky Objects detection models on HPC
Astronomical surveys and the growing involvement of amateur astronomers are producing more sky images than ever before, and this calls for automated processing methods that are accurate and robust. Detecting Deep Sky Objects -- such as galaxies, nebulae, and star clusters -- remains challenging because of their faint signals and complex backgrounds. Advances in Computer Vision and Deep Learning now make it possible to improve and automate this process. In this paper, we present the training and comparison of different detection models (YOLO, RET-DETR) on smart telescope images, using High-Performance Computing (HPC) to parallelise computations, in particular for robustness testing.
comment: 11 pages, 4 figures, NEOD project
☆ RayletDF: Raylet Distance Fields for Generalizable 3D Surface Reconstruction from Point Clouds or Gaussians ICCV 2025
In this paper, we present a generalizable method for 3D surface reconstruction from raw point clouds or pre-estimated 3D Gaussians by 3DGS from RGB images. Unlike existing coordinate-based methods which are often computationally intensive when rendering explicit surfaces, our proposed method, named RayletDF, introduces a new technique called raylet distance field, which aims to directly predict surface points from query rays. Our pipeline consists of three key modules: a raylet feature extractor, a raylet distance field predictor, and a multi-raylet blender. These components work together to extract fine-grained local geometric features, predict raylet distances, and aggregate multiple predictions to reconstruct precise surface points. We extensively evaluate our method on multiple public real-world datasets, demonstrating superior performance in surface reconstruction from point clouds or 3D Gaussians. Most notably, our method achieves exceptional generalization ability, successfully recovering 3D surfaces in a single-forward pass across unseen datasets in testing.
comment: ICCV 2025 Highlight. Shenxing and Jinxi are co-first authors. Code and data are available at: https://github.com/vLAR-group/RayletDF
☆ Reverse Convolution and Its Applications to Image Restoration ICCV 2025
Convolution and transposed convolution are fundamental operators widely used in neural networks. However, transposed convolution (a.k.a. deconvolution) does not serve as a true inverse of convolution due to inherent differences in their mathematical formulations. To date, no reverse convolution operator has been established as a standard component in neural architectures. In this paper, we propose a novel depthwise reverse convolution operator as an initial attempt to effectively reverse depthwise convolution by formulating and solving a regularized least-squares optimization problem. We thoroughly investigate its kernel initialization, padding strategies, and other critical aspects to ensure its effective implementation. Building upon this operator, we further construct a reverse convolution block by combining it with layer normalization, 1$\times$1 convolution, and GELU activation, forming a Transformer-like structure. The proposed operator and block can directly replace conventional convolution and transposed convolution layers in existing architectures, leading to the development of ConverseNet. Corresponding to typical image restoration models such as DnCNN, SRResNet and USRNet, we train three variants of ConverseNet for Gaussian denoising, super-resolution and deblurring, respectively. Extensive experiments demonstrate the effectiveness of the proposed reverse convolution operator as a basic building module. We hope this work could pave the way for developing new operators in deep model design and applications.
comment: ICCV 2025; https://github.com/cszn/ConverseNet
☆ KonfAI: A Modular and Fully Configurable Framework for Deep Learning in Medical Imaging
KonfAI is a modular, extensible, and fully configurable deep learning framework specifically designed for medical imaging tasks. It enables users to define complete training, inference, and evaluation workflows through structured YAML configuration files, without modifying the underlying code. This declarative approach enhances reproducibility, transparency, and experimental traceability while reducing development time. Beyond the capabilities of standard pipelines, KonfAI provides native abstractions for advanced strategies including patch-based learning, test-time augmentation, model ensembling, and direct access to intermediate feature representations for deep supervision. It also supports complex multi-model training setups such as generative adversarial architectures. Thanks to its modular and extensible architecture, KonfAI can easily accommodate custom models, loss functions, and data processing components. The framework has been successfully applied to segmentation, registration, and image synthesis tasks, and has contributed to top-ranking results in several international medical imaging challenges. KonfAI is open source and available at \href{https://github.com/vboussot/KonfAI}{https://github.com/vboussot/KonfAI}.
comment: https://github.com/vboussot/KonfAI
☆ Physical Autoregressive Model for Robotic Manipulation without Action Pretraining
The scarcity of manipulation data has motivated the use of pretrained large models from other modalities in robotics. In this work, we build upon autoregressive video generation models to propose a Physical Autoregressive Model (PAR), where physical tokens combine frames and actions to represent the joint evolution of the robot and its environment. PAR leverages the world knowledge embedded in video pretraining to understand physical dynamics without requiring action pretraining, enabling accurate video prediction and consistent action trajectories. It also adopts a DiT-based de-tokenizer to model frames and actions as continuous tokens, mitigating quantization errors and facilitating mutual enhancement. Furthermore, we incorporate a causal mask with inverse kinematics, parallel training, and the KV-cache mechanism to further improve performance and efficiency. Experiments on the ManiSkill benchmark show that PAR achieves a 100\% success rate on the PushCube task, matches the performance of action-pretrained baselines on other tasks, and accurately predicts future videos with tightly aligned action trajectories. These findings underscore a promising direction for robotic manipulation by transferring world knowledge from autoregressive video pretraining.
comment: 16 pages, 6 figures
☆ ViMoNet: A Multimodal Vision-Language Framework for Human Behavior Understanding from Motion and Video ICCV
This study investigates how large language models (LLMs) can be used to understand human behavior using motion and video data. We think that mixing both types is essential to completely capture the nuanced movements and meanings of human actions, in contrast to recent models that simply concentrate on motion data or films. To address this, we provide ViMoNet, a straightforward yet effective framework for comprehending, characterizing, and deducing human action. ViMoNet employs a joint training strategy that leverages the advantages of two data types: detailed motion-text data, which is more exact, and generic video-text data, which is more comprehensive but less detailed. This aids in the model's acquisition of rich data regarding time and space in human behavior. Additionally, we provide a brand new dataset named VIMOS that contains a variety of films, motion sequences, instructions, and subtitles. We developed ViMoNet-Bench, a standardized benchmark with carefully labeled samples, to evaluate how well models understand human behavior. Our tests show that ViMoNet outperforms existing methods in caption generation, motion understanding, and behavior interpretation.
comment: Accepted in ICCVDM '25
☆ Evolution of Low-Level and Texture Human-CLIP Alignment
During the training of multi-modal models like CLIP, we observed an intriguing phenomenon: the correlation with low-level human image quality assessments peaks in the early epochs before gradually declining. This study investigates this observation and seeks to understand its causes through two key factors: shape-texture bias alignment and classification accuracy drop under noise. Our findings suggest that CLIP initially learn low-level visual features, enhancing its alignment with low-level human perception but also increasing its sensitivity to noise and its texture bias. As training progresses, the model shifts toward more abstract shape-based representations, improving noise robustness but reducing alignment with low-level human perception. These results suggest that these factors shared an underlying learning mechanism and provide new insights into optimizing the trade-off between perceptual alignment and robustness in vision-language models.
☆ Poaching Hotspot Identification Using Satellite Imagery
Elephant Poaching in African countries has been a decade-old problem. So much so that African Forest Elephants are now listed as an endangered species, and African Savannah Elephants as critically endangered by the IUCN (International Union for Conservation of Nature). [1] Elephants are hunted primarily for their ivory tusks which caused many elephants to be born tuskless as a genetic modification for survival. [2] Data gathered by recent studies shows that though poaching methods remain the same, the poaching grounds are rather dynamic. Poachers have shifted to areas with less ranger patrols and several other factors like watering holes, seasons, altitude etc. cause constant shifts in poaching hotspot locations. [3] After a period of low poaching from 2000-2014, poaching numbers in African countries are now on the rise again -- WWF (World Wildlife Foundation) says there are 20,000 elephants poached annually [4]. In African countries, anti-poaching efforts are concentrated near towns, while a majority of poaching occurs in the deserted regions. All of these factors result in the need for a Computer Vision Model to identify poaching hotspots through locating the geographic indicators of favorable poaching regions. A CV model eliminates the need to manually track poachers and account for the environmental factors to deploy resources and its combination with satellite imagery allows us to survey large areas without disturbing local species or cross border aviation restrictions.
☆ TRACE: Learning 3D Gaussian Physical Dynamics from Multi-view Videos ICCV 2025
In this paper, we aim to model 3D scene geometry, appearance, and physical information just from dynamic multi-view videos in the absence of any human labels. By leveraging physics-informed losses as soft constraints or integrating simple physics models into neural nets, existing works often fail to learn complex motion physics, or doing so requires additional labels such as object types or masks. We propose a new framework named TRACE to model the motion physics of complex dynamic 3D scenes. The key novelty of our method is that, by formulating each 3D point as a rigid particle with size and orientation in space, we directly learn a translation rotation dynamics system for each particle, explicitly estimating a complete set of physical parameters to govern the particle's motion over time. Extensive experiments on three existing dynamic datasets and one newly created challenging synthetic datasets demonstrate the extraordinary performance of our method over baselines in the task of future frame extrapolation. A nice property of our framework is that multiple objects or parts can be easily segmented just by clustering the learned physical parameters.
comment: ICCV 2025. Code and data are available at: https://github.com/vLAR-group/TRACE
☆ Automated Segmentation of Coronal Brain Tissue Slabs for 3D Neuropathology
Advances in image registration and machine learning have recently enabled volumetric analysis of \emph{postmortem} brain tissue from conventional photographs of coronal slabs, which are routinely collected in brain banks and neuropathology laboratories worldwide. One caveat of this methodology is the requirement of segmentation of the tissue from photographs, which currently requires costly manual intervention. In this article, we present a deep learning model to automate this process. The automatic segmentation tool relies on a U-Net architecture that was trained with a combination of \textit{(i)}1,414 manually segmented images of both fixed and fresh tissue, from specimens with varying diagnoses, photographed at two different sites; and \textit{(ii)}~2,000 synthetic images with randomized contrast and corresponding masks generated from MRI scans for improved generalizability to unseen photographic setups. Automated model predictions on a subset of photographs not seen in training were analyzed to estimate performance compared to manual labels -- including both inter- and intra-rater variability. Our model achieved a median Dice score over 0.98, mean surface distance under 0.4~mm, and 95\% Hausdorff distance under 1.60~mm, which approaches inter-/intra-rater levels. Our tool is publicly available at surfer.nmr.mgh.harvard.edu/fswiki/PhotoTools.
comment: 19 pages, 10 figures
☆ MUJICA: Reforming SISR Models for PBR Material Super-Resolution via Cross-Map Attention
Physically Based Rendering (PBR) materials are typically characterized by multiple 2D texture maps such as basecolor, normal, metallic, and roughness which encode spatially-varying bi-directional reflectance distribution function (SVBRDF) parameters to model surface reflectance properties and microfacet interactions. Upscaling SVBRDF material is valuable for modern 3D graphics applications. However, existing Single Image Super-Resolution (SISR) methods struggle with cross-map inconsistency, inadequate modeling of modality-specific features, and limited generalization due to data distribution shifts. In this work, we propose Multi-modal Upscaling Joint Inference via Cross-map Attention (MUJICA), a flexible adapter that reforms pre-trained Swin-transformer-based SISR models for PBR material super-resolution. MUJICA is seamlessly attached after the pre-trained and frozen SISR backbone. It leverages cross-map attention to fuse features while preserving remarkable reconstruction ability of the pre-trained SISR model. Applied to SISR models such as SwinIR, DRCT, and HMANet, MUJICA improves PSNR, SSIM, and LPIPS scores while preserving cross-map consistency. Experiments demonstrate that MUJICA enables efficient training even with limited resources and delivers state-of-the-art performance on PBR material datasets.
☆ MeMoSORT: Memory-Assisted Filtering and Motion-Adaptive Association Metric for Multi-Person Tracking
Multi-object tracking (MOT) in human-dominant scenarios, which involves continuously tracking multiple people within video sequences, remains a significant challenge in computer vision due to targets' complex motion and severe occlusions. Conventional tracking-by-detection methods are fundamentally limited by their reliance on Kalman filter (KF) and rigid Intersection over Union (IoU)-based association. The motion model in KF often mismatches real-world object dynamics, causing filtering errors, while rigid association struggles under occlusions, leading to identity switches or target loss. To address these issues, we propose MeMoSORT, a simple, online, and real-time MOT tracker with two key innovations. First, the Memory-assisted Kalman filter (MeKF) uses memory-augmented neural networks to compensate for mismatches between assumed and actual object motion. Second, the Motion-adaptive IoU (Mo-IoU) adaptively expands the matching space and incorporates height similarity to reduce the influence of detection errors and association failures, while remaining lightweight. Experiments on DanceTrack and SportsMOT show that MeMoSORT achieves state-of-the-art performance, with HOTA scores of 67.9\% and 82.1\%, respectively.
☆ Describe What You See with Multimodal Large Language Models to Enhance Video Recommendations
Existing video recommender systems rely primarily on user-defined metadata or on low-level visual and acoustic signals extracted by specialised encoders. These low-level features describe what appears on the screen but miss deeper semantics such as intent, humour, and world knowledge that make clips resonate with viewers. For example, is a 30-second clip simply a singer on a rooftop, or an ironic parody filmed amid the fairy chimneys of Cappadocia, Turkey? Such distinctions are critical to personalised recommendations yet remain invisible to traditional encoding pipelines. In this paper, we introduce a simple, recommendation system-agnostic zero-finetuning framework that injects high-level semantics into the recommendation pipeline by prompting an off-the-shelf Multimodal Large Language Model (MLLM) to summarise each clip into a rich natural-language description (e.g. "a superhero parody with slapstick fights and orchestral stabs"), bridging the gap between raw content and user intent. We use MLLM output with a state-of-the-art text encoder and feed it into standard collaborative, content-based, and generative recommenders. On the MicroLens-100K dataset, which emulates user interactions with TikTok-style videos, our framework consistently surpasses conventional video, audio, and metadata features in five representative models. Our findings highlight the promise of leveraging MLLMs as on-the-fly knowledge extractors to build more intent-aware video recommenders.
☆ DSS-Prompt: Dynamic-Static Synergistic Prompting for Few-Shot Class-Incremental Learning
Learning from large-scale pre-trained models with strong generalization ability has shown remarkable success in a wide range of downstream tasks recently, but it is still underexplored in the challenging few-shot class-incremental learning (FSCIL) task. It aims to continually learn new concepts from limited training samples without forgetting the old ones at the same time. In this paper, we introduce DSS-Prompt, a simple yet effective approach that transforms the pre-trained Vision Transformer with minimal modifications in the way of prompts into a strong FSCIL classifier. Concretely, we synergistically utilize two complementary types of prompts in each Transformer block: static prompts to bridge the domain gap between the pre-training and downstream datasets, thus enabling better adaption; and dynamic prompts to capture instance-aware semantics, thus enabling easy transfer from base to novel classes. Specially, to generate dynamic prompts, we leverage a pre-trained multi-modal model to extract input-related diverse semantics, thereby generating complementary input-aware prompts, and then adaptively adjust their importance across different layers. In this way, on top of the prompted visual embeddings, a simple prototype classifier can beat state-of-the-arts without further training on the incremental tasks. We conduct extensive experiments on four benchmarks to validate the effectiveness of our DSS-Prompt and show that it consistently achieves better performance than existing approaches on all datasets and can alleviate the catastrophic forgetting issue as well.
comment: Accepted to ACMMM 2025
☆ Combinative Matching for Geometric Shape Assembly ICCV 2025
This paper introduces a new shape-matching methodology, combinative matching, to combine interlocking parts for geometric shape assembly. Previous methods for geometric assembly typically rely on aligning parts by finding identical surfaces between the parts as in conventional shape matching and registration. In contrast, we explicitly model two distinct properties of interlocking shapes: 'identical surface shape' and 'opposite volume occupancy.' Our method thus learns to establish correspondences across regions where their surface shapes appear identical but their volumes occupy the inverted space to each other. To facilitate this process, we also learn to align regions in rotation by estimating their shape orientations via equivariant neural networks. The proposed approach significantly reduces local ambiguities in matching and allows a robust combination of parts in assembly. Experimental results on geometric assembly benchmarks demonstrate the efficacy of our method, consistently outperforming the state of the art. Project page: https://nahyuklee.github.io/cmnet.
comment: Accepted to ICCV 2025 (Highlight)
☆ MoIIE: Mixture of Intra- and Inter-Modality Experts for Large Vision Language Models
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance across multi-modal tasks by scaling model size and training data. However, these dense LVLMs incur significant computational costs and motivate the exploration of sparse Mixture of Experts (MoE) architectures. While MoE improve parameter efficiency, effectively applying MoE to simultaneously model modality-specific features and cross-modal associations in LVLMs remains challenging. In this work, we propose to incorporate Mixture of Intra- and Inter-Modality Experts (MoIIE) to LVLMs. For each token, expert routing is guided by its modality, directing tokens to their respective intra-modality experts as well as a shared pool of inter-modality experts, enabling the model to jointly learn rich intra-modal features and cross-modal interactions. We further introduce an effective and straightforward two-stage training strategy, which facilitates the direct activation of both MoE and multi-modal capabilities. Extensive experiments across different data scales and LLM backbone demonstrate the effectiveness, efficiency and generality of our approach. Notably, our MoIIE models with 5.5B and 11.3B activated parameters match or even surpass the performance of existing advanced open-source MoE-LLMs based multi-modal models that involve more activated parameters. The code is available at https://github.com/AlenjandroWang/MoIIE.
☆ Region-to-Region: Enhancing Generative Image Harmonization with Adaptive Regional Injection
The goal of image harmonization is to adjust the foreground in a composite image to achieve visual consistency with the background. Recently, latent diffusion model (LDM) are applied for harmonization, achieving remarkable results. However, LDM-based harmonization faces challenges in detail preservation and limited harmonization ability. Additionally, current synthetic datasets rely on color transfer, which lacks local variations and fails to capture complex real-world lighting conditions. To enhance harmonization capabilities, we propose the Region-to-Region transformation. By injecting information from appropriate regions into the foreground, this approach preserves original details while achieving image harmonization or, conversely, generating new composite data. From this perspective, We propose a novel model R2R. Specifically, we design Clear-VAE to preserve high-frequency details in the foreground using Adaptive Filter while eliminating disharmonious elements. To further enhance harmonization, we introduce the Harmony Controller with Mask-aware Adaptive Channel Attention (MACA), which dynamically adjusts the foreground based on the channel importance of both foreground and background regions. To address the limitation of existing datasets, we propose Random Poisson Blending, which transfers color and lighting information from a suitable region to the foreground, thereby generating more diverse and challenging synthetic images. Using this method, we construct a new synthetic dataset, RPHarmony. Experiments demonstrate the superiority of our method over other methods in both quantitative metrics and visual harmony. Moreover, our dataset helps the model generate more realistic images in real examples. Our code, dataset, and model weights have all been released for open access.
☆ Seeing, Listening, Remembering, and Reasoning: A Multimodal Agent with Long-Term Memory
We introduce M3-Agent, a novel multimodal agent framework equipped with long-term memory. Like humans, M3-Agent can process real-time visual and auditory inputs to build and update its long-term memory. Beyond episodic memory, it also develops semantic memory, enabling it to accumulate world knowledge over time. Its memory is organized in an entity-centric, multimodal format, allowing deeper and more consistent understanding of the environment. Given an instruction, M3-Agent autonomously performs multi-turn, iterative reasoning and retrieves relevant information from memory to accomplish the task. To evaluate memory effectiveness and memory-based reasoning in multimodal agents, we develop M3-Bench, a new long-video question answering benchmark. M3-Bench comprises 100 newly recorded real-world videos captured from a robot's perspective (M3-Bench-robot) and 929 web-sourced videos across diverse scenarios (M3-Bench-web). We annotate question-answer pairs designed to test key capabilities essential for agent applications, such as human understanding, general knowledge extraction, and cross-modal reasoning. Experimental results show that M3-Agent, trained via reinforcement learning, outperforms the strongest baseline, a prompting agent using Gemini-1.5-pro and GPT-4o, achieving 6.7%, 7.7%, and 5.3% higher accuracy on M3-Bench-robot, M3-Bench-web and VideoMME-long, respectively. Our work advances the multimodal agents toward more human-like long-term memory and provides insights into their practical design. Model, code and data are available at https://github.com/bytedance-seed/m3-agent
☆ Predictive Uncertainty for Runtime Assurance of a Real-Time Computer Vision-Based Landing System SC 2025
Recent advances in data-driven computer vision have enabled robust autonomous navigation capabilities for civil aviation, including automated landing and runway detection. However, ensuring that these systems meet the robustness and safety requirements for aviation applications remains a major challenge. In this work, we present a practical vision-based pipeline for aircraft pose estimation from runway images that represents a step toward the ability to certify these systems for use in safety-critical aviation applications. Our approach features three key innovations: (i) an efficient, flexible neural architecture based on a spatial Soft Argmax operator for probabilistic keypoint regression, supporting diverse vision backbones with real-time inference; (ii) a principled loss function producing calibrated predictive uncertainties, which are evaluated via sharpness and calibration metrics; and (iii) an adaptation of Residual-based Receiver Autonomous Integrity Monitoring (RAIM), enabling runtime detection and rejection of faulty model outputs. We implement and evaluate our pose estimation pipeline on a dataset of runway images. We show that our model outperforms baseline architectures in terms of accuracy while also producing well-calibrated uncertainty estimates with sub-pixel precision that can be used downstream for fault detection.
comment: 8 pages, 5 figures, accepted at DASC 2025
☆ Multimodal Sheaf-based Network for Glioblastoma Molecular Subtype Prediction
Glioblastoma is a highly invasive brain tumor with rapid progression rates. Recent studies have shown that glioblastoma molecular subtype classification serves as a significant biomarker for effective targeted therapy selection. However, this classification currently requires invasive tissue extraction for comprehensive histopathological analysis. Existing multimodal approaches combining MRI and histopathology images are limited and lack robust mechanisms for preserving shared structural information across modalities. In particular, graph-based models often fail to retain discriminative features within heterogeneous graphs, and structural reconstruction mechanisms for handling missing or incomplete modality data are largely underexplored. To address these limitations, we propose a novel sheaf-based framework for structure-aware and consistent fusion of MRI and histopathology data. Our model outperforms baseline methods and demonstrates robustness in incomplete or missing data scenarios, contributing to the development of virtual biopsy tools for rapid diagnostics. Our source code is available at https://github.com/basiralab/MMSN/.
☆ NEURAL: Attention-Guided Pruning for Unified Multimodal Resource-Constrained Clinical Evaluation
The rapid growth of multimodal medical imaging data presents significant storage and transmission challenges, particularly in resource-constrained clinical settings. We propose NEURAL, a novel framework that addresses this by using semantics-guided data compression. Our approach repurposes cross-attention scores between the image and its radiological report from a fine-tuned generative vision-language model to structurally prune chest X-rays, preserving only diagnostically critical regions. This process transforms the image into a highly compressed, graph representation. This unified graph-based representation fuses the pruned visual graph with a knowledge graph derived from the clinical report, creating a universal data structure that simplifies downstream modeling. Validated on the MIMIC-CXR and CheXpert Plus dataset for pneumonia detection, NEURAL achieves a 93.4-97.7\% reduction in image data size while maintaining a high diagnostic performance of 0.88-0.95 AUC, outperforming other baseline models that use uncompressed data. By creating a persistent, task-agnostic data asset, NEURAL resolves the trade-off between data size and clinical utility, enabling efficient workflows and teleradiology without sacrificing performance. Our NEURAL code is available at https://github.com/basiralab/NEURAL.
☆ MangaDiT: Reference-Guided Line Art Colorization with Hierarchical Attention in Diffusion Transformers
Recent advances in diffusion models have significantly improved the performance of reference-guided line art colorization. However, existing methods still struggle with region-level color consistency, especially when the reference and target images differ in character pose or motion. Instead of relying on external matching annotations between the reference and target, we propose to discover semantic correspondences implicitly through internal attention mechanisms. In this paper, we present MangaDiT, a powerful model for reference-guided line art colorization based on Diffusion Transformers (DiT). Our model takes both line art and reference images as conditional inputs and introduces a hierarchical attention mechanism with a dynamic attention weighting strategy. This mechanism augments the vanilla attention with an additional context-aware path that leverages pooled spatial features, effectively expanding the model's receptive field and enhancing region-level color alignment. Experiments on two benchmark datasets demonstrate that our method significantly outperforms state-of-the-art approaches, achieving superior performance in both qualitative and quantitative evaluations.
comment: Codes and benchmarks will be released soon
☆ Slot Attention-based Feature Filtering for Few-Shot Learning CVPR
Irrelevant features can significantly degrade few-shot learn ing performance. This problem is used to match queries and support images based on meaningful similarities despite the limited data. However, in this process, non-relevant fea tures such as background elements can easily lead to confu sion and misclassification. To address this issue, we pro pose Slot Attention-based Feature Filtering for Few-Shot Learning (SAFF) that leverages slot attention mechanisms to discriminate and filter weak features, thereby improving few-shot classification performance. The key innovation of SAFF lies in its integration of slot attention with patch em beddings, unifying class-aware slots into a single attention mechanism to filter irrelevant features effectively. We intro duce a similarity matrix that computes across support and query images to quantify the relevance of filtered embed dings for classification. Through experiments, we demon strate that Slot Attention performs better than other atten tion mechanisms, capturing discriminative features while reducing irrelevant information. We validate our approach through extensive experiments on few-shot learning bench marks: CIFAR-FS, FC100, miniImageNet and tieredIma geNet, outperforming several state-of-the-art methods.
comment: CVPR Workshop LatinX 2025
☆ Combating Noisy Labels via Dynamic Connection Masking
Noisy labels are inevitable in real-world scenarios. Due to the strong capacity of deep neural networks to memorize corrupted labels, these noisy labels can cause significant performance degradation. Existing research on mitigating the negative effects of noisy labels has mainly focused on robust loss functions and sample selection, with comparatively limited exploration of regularization in model architecture. Inspired by the sparsity regularization used in Kolmogorov-Arnold Networks (KANs), we propose a Dynamic Connection Masking (DCM) mechanism for both Multi-Layer Perceptron Networks (MLPs) and KANs to enhance the robustness of classifiers against noisy labels. The mechanism can adaptively mask less important edges during training by evaluating their information-carrying capacity. Through theoretical analysis, we demonstrate its efficiency in reducing gradient error. Our approach can be seamlessly integrated into various noise-robust training methods to build more robust deep networks, including robust loss functions, sample selection strategies, and regularization techniques. Extensive experiments on both synthetic and real-world benchmarks demonstrate that our method consistently outperforms state-of-the-art (SOTA) approaches. Furthermore, we are also the first to investigate KANs as classifiers against noisy labels, revealing their superior noise robustness over MLPs in real-world noisy scenarios. Our code will soon be publicly available.
PaCo-FR: Patch-Pixel Aligned End-to-End Codebook Learning for Facial Representation Pre-training
Facial representation pre-training is crucial for tasks like facial recognition, expression analysis, and virtual reality. However, existing methods face three key challenges: (1) failing to capture distinct facial features and fine-grained semantics, (2) ignoring the spatial structure inherent to facial anatomy, and (3) inefficiently utilizing limited labeled data. To overcome these, we introduce PaCo-FR, an unsupervised framework that combines masked image modeling with patch-pixel alignment. Our approach integrates three innovative components: (1) a structured masking strategy that preserves spatial coherence by aligning with semantically meaningful facial regions, (2) a novel patch-based codebook that enhances feature discrimination with multiple candidate tokens, and (3) spatial consistency constraints that preserve geometric relationships between facial components. PaCo-FR achieves state-of-the-art performance across several facial analysis tasks with just 2 million unlabeled images for pre-training. Our method demonstrates significant improvements, particularly in scenarios with varying poses, occlusions, and lighting conditions. We believe this work advances facial representation learning and offers a scalable, efficient solution that reduces reliance on expensive annotated datasets, driving more effective facial analysis systems.
☆ Surg-InvNeRF: Invertible NeRF for 3D tracking and reconstruction in surgical vision
We proposed a novel test-time optimisation (TTO) approach framed by a NeRF-based architecture for long-term 3D point tracking. Most current methods in point tracking struggle to obtain consistent motion or are limited to 2D motion. TTO approaches frame the solution for long-term tracking as optimising a function that aggregates correspondences from other specialised state-of-the-art methods. Unlike the state-of-the-art on TTO, we propose parametrising such a function with our new invertible Neural Radiance Field (InvNeRF) architecture to perform both 2D and 3D tracking in surgical scenarios. Our approach allows us to exploit the advantages of a rendering-based approach by supervising the reprojection of pixel correspondences. It adapts strategies from recent rendering-based methods to obtain a bidirectional deformable-canonical mapping, to efficiently handle a defined workspace, and to guide the rays' density. It also presents our multi-scale HexPlanes for fast inference and a new algorithm for efficient pixel sampling and convergence criteria. We present results in the STIR and SCARE datasets, for evaluating point tracking and testing the integration of kinematic data in our pipeline, respectively. In 2D point tracking, our approach surpasses the precision and accuracy of the TTO state-of-the-art methods by nearly 50% on average precision, while competing with other approaches. In 3D point tracking, this is the first TTO approach, surpassing feed-forward methods while incorporating the benefits of a deformable NeRF-based reconstruction.
comment: 10 pages
☆ GSFixer: Improving 3D Gaussian Splatting with Reference-Guided Video Diffusion Priors
Reconstructing 3D scenes using 3D Gaussian Splatting (3DGS) from sparse views is an ill-posed problem due to insufficient information, often resulting in noticeable artifacts. While recent approaches have sought to leverage generative priors to complete information for under-constrained regions, they struggle to generate content that remains consistent with input observations. To address this challenge, we propose GSFixer, a novel framework designed to improve the quality of 3DGS representations reconstructed from sparse inputs. The core of our approach is the reference-guided video restoration model, built upon a DiT-based video diffusion model trained on paired artifact 3DGS renders and clean frames with additional reference-based conditions. Considering the input sparse views as references, our model integrates both 2D semantic features and 3D geometric features of reference views extracted from the visual geometry foundation model, enhancing the semantic coherence and 3D consistency when fixing artifact novel views. Furthermore, considering the lack of suitable benchmarks for 3DGS artifact restoration evaluation, we present DL3DV-Res which contains artifact frames rendered using low-quality 3DGS. Extensive experiments demonstrate our GSFixer outperforms current state-of-the-art methods in 3DGS artifact restoration and sparse-view 3D reconstruction. Project page: https://github.com/GVCLab/GSFixer.
☆ NegFaceDiff: The Power of Negative Context in Identity-Conditioned Diffusion for Synthetic Face Generation ICCV
The use of synthetic data as an alternative to authentic datasets in face recognition (FR) development has gained significant attention, addressing privacy, ethical, and practical concerns associated with collecting and using authentic data. Recent state-of-the-art approaches have proposed identity-conditioned diffusion models to generate identity-consistent face images, facilitating their use in training FR models. However, these methods often lack explicit sampling mechanisms to enforce inter-class separability, leading to identity overlap in the generated data and, consequently, suboptimal FR performance. In this work, we introduce NegFaceDiff, a novel sampling method that incorporates negative conditions into the identity-conditioned diffusion process. NegFaceDiff enhances identity separation by leveraging negative conditions that explicitly guide the model away from unwanted features while preserving intra-class consistency. Extensive experiments demonstrate that NegFaceDiff significantly improves the identity consistency and separability of data generated by identity-conditioned diffusion models. Specifically, identity separability, measured by the Fisher Discriminant Ratio (FDR), increases from 2.427 to 5.687. These improvements are reflected in FR systems trained on the NegFaceDiff dataset, which outperform models trained on data generated without negative conditions across multiple benchmarks.
comment: Accepted at ICCV Workshops
☆ Noise-adapted Neural Operator for Robust Non-Line-of-Sight Imaging
Computational imaging, especially non-line-of-sight (NLOS) imaging, the extraction of information from obscured or hidden scenes is achieved through the utilization of indirect light signals resulting from multiple reflections or scattering. The inherently weak nature of these signals, coupled with their susceptibility to noise, necessitates the integration of physical processes to ensure accurate reconstruction. This paper presents a parameterized inverse problem framework tailored for large-scale linear problems in 3D imaging reconstruction. Initially, a noise estimation module is employed to adaptively assess the noise levels present in transient data. Subsequently, a parameterized neural operator is developed to approximate the inverse mapping, facilitating end-to-end rapid image reconstruction. Our 3D image reconstruction framework, grounded in operator learning, is constructed through deep algorithm unfolding, which not only provides commendable model interpretability but also enables dynamic adaptation to varying noise levels in the acquired data, thereby ensuring consistently robust and accurate reconstruction outcomes. Furthermore, we introduce a novel method for the fusion of global and local spatiotemporal data features. By integrating structural and detailed information, this method significantly enhances both accuracy and robustness. Comprehensive numerical experiments conducted on both simulated and real datasets substantiate the efficacy of the proposed method. It demonstrates remarkable performance with fast scanning data and sparse illumination point data, offering a viable solution for NLOS imaging in complex scenarios.
☆ TOTNet: Occlusion-Aware Temporal Tracking for Robust Ball Detection in Sports Videos
Robust ball tracking under occlusion remains a key challenge in sports video analysis, affecting tasks like event detection and officiating. We present TOTNet, a Temporal Occlusion Tracking Network that leverages 3D convolutions, visibility-weighted loss, and occlusion augmentation to improve performance under partial and full occlusions. Developed in collaboration with Paralympics Australia, TOTNet is designed for real-world sports analytics. We introduce TTA, a new occlusion-rich table tennis dataset collected from professional-level Paralympic matches, comprising 9,159 samples with 1,996 occlusion cases. Evaluated on four datasets across tennis, badminton, and table tennis, TOTNet significantly outperforms prior state-of-the-art methods, reducing RMSE from 37.30 to 7.19 and improving accuracy on fully occluded frames from 0.63 to 0.80. These results demonstrate TOTNets effectiveness for offline sports analytics in fast-paced scenarios. Code and data access:\href{https://github.com/AugustRushG/TOTNet}{AugustRushG/TOTNet}.
comment: 8 pages, 6 figures,
☆ The Brain Resection Multimodal Image Registration (ReMIND2Reg) 2025 Challenge
Accurate intraoperative image guidance is critical for achieving maximal safe resection in brain tumor surgery, yet neuronavigation systems based on preoperative MRI lose accuracy during the procedure due to brain shift. Aligning post-resection intraoperative ultrasound (iUS) with preoperative MRI can restore spatial accuracy by estimating brain shift deformations, but it remains a challenging problem given the large anatomical and topological changes and substantial modality intensity gap. The ReMIND2Reg 2025 Challenge provides the largest public benchmark for this task, built upon the ReMIND dataset. It offers 99 training cases, 5 validation cases, and 10 private test cases comprising paired 3D ceT1 MRI, T2 MRI, and post-resection 3D iUS volumes. Data are provided without annotations for training, while validation and test performance are evaluated on manually annotated anatomical landmarks. Metrics include target registration error (TRE), robustness to worst-case landmark misalignment (TRE30), and runtime. By establishing a standardized evaluation framework for this clinically critical and technically complex problem, ReMIND2Reg aims to accelerate the development of robust, generalizable, and clinically deployable multimodal registration algorithms for image-guided neurosurgery.
☆ Multi-Sequence Parotid Gland Lesion Segmentation via Expert Text-Guided Segment Anything Model
Parotid gland lesion segmentation is essential for the treatment of parotid gland diseases. However, due to the variable size and complex lesion boundaries, accurate parotid gland lesion segmentation remains challenging. Recently, the Segment Anything Model (SAM) fine-tuning has shown remarkable performance in the field of medical image segmentation. Nevertheless, SAM's interaction segmentation model relies heavily on precise lesion prompts (points, boxes, masks, etc.), which are very difficult to obtain in real-world applications. Besides, current medical image segmentation methods are automatically generated, ignoring the domain knowledge of medical experts when performing segmentation. To address these limitations, we propose the parotid gland segment anything model (PG-SAM), an expert diagnosis text-guided SAM incorporating expert domain knowledge for cross-sequence parotid gland lesion segmentation. Specifically, we first propose an expert diagnosis report guided prompt generation module that can automatically generate prompt information containing the prior domain knowledge to guide the subsequent lesion segmentation process. Then, we introduce a cross-sequence attention module, which integrates the complementary information of different modalities to enhance the segmentation effect. Finally, the multi-sequence image features and generated prompts are feed into the decoder to get segmentation result. Experimental results demonstrate that PG-SAM achieves state-of-the-art performance in parotid gland lesion segmentation across three independent clinical centers, validating its clinical applicability and the effectiveness of diagnostic text for enhancing image segmentation in real-world clinical settings.
☆ Multi-Contrast Fusion Module: An attention mechanism integrating multi-contrast features for fetal torso plane classification
Purpose: Prenatal ultrasound is a key tool in evaluating fetal structural development and detecting abnormalities, contributing to reduced perinatal complications and improved neonatal survival. Accurate identification of standard fetal torso planes is essential for reliable assessment and personalized prenatal care. However, limitations such as low contrast and unclear texture details in ultrasound imaging pose significant challenges for fine-grained anatomical recognition. Methods: We propose a novel Multi-Contrast Fusion Module (MCFM) to enhance the model's ability to extract detailed information from ultrasound images. MCFM operates exclusively on the lower layers of the neural network, directly processing raw ultrasound data. By assigning attention weights to image representations under different contrast conditions, the module enhances feature modeling while explicitly maintaining minimal parameter overhead. Results: The proposed MCFM was evaluated on a curated dataset of fetal torso plane ultrasound images. Experimental results demonstrate that MCFM substantially improves recognition performance, with a minimal increase in model complexity. The integration of multi-contrast attention enables the model to better capture subtle anatomical structures, contributing to higher classification accuracy and clinical reliability. Conclusions: Our method provides an effective solution for improving fetal torso plane recognition in ultrasound imaging. By enhancing feature representation through multi-contrast fusion, the proposed approach supports clinicians in achieving more accurate and consistent diagnoses, demonstrating strong potential for clinical adoption in prenatal screening. The codes are available at https://github.com/sysll/MCFM.
☆ Enhancing Monocular 3D Hand Reconstruction with Learned Texture Priors
We revisit the role of texture in monocular 3D hand reconstruction, not as an afterthought for photorealism, but as a dense, spatially grounded cue that can actively support pose and shape estimation. Our observation is simple: even in high-performing models, the overlay between predicted hand geometry and image appearance is often imperfect, suggesting that texture alignment may be an underused supervisory signal. We propose a lightweight texture module that embeds per-pixel observations into UV texture space and enables a novel dense alignment loss between predicted and observed hand appearances. Our approach assumes access to a differentiable rendering pipeline and a model that maps images to 3D hand meshes with known topology, allowing us to back-project a textured hand onto the image and perform pixel-based alignment. The module is self-contained and easily pluggable into existing reconstruction pipelines. To isolate and highlight the value of texture-guided supervision, we augment HaMeR, a high-performing yet unadorned transformer architecture for 3D hand pose estimation. The resulting system improves both accuracy and realism, demonstrating the value of appearance-guided alignment in hand reconstruction.
☆ Plane Detection and Ranking via Model Information Optimization IROS
Plane detection from depth images is a crucial subtask with broad robotic applications, often accomplished by iterative methods such as Random Sample Consensus (RANSAC). While RANSAC is a robust strategy with strong probabilistic guarantees, the ambiguity of its inlier threshold criterion makes it susceptible to false positive plane detections. This issue is particularly prevalent in complex real-world scenes, where the true number of planes is unknown and multiple planes coexist. In this paper, we aim to address this limitation by proposing a generalised framework for plane detection based on model information optimization. Building on previous works, we treat the observed depth readings as discrete random variables, with their probability distributions constrained by the ground truth planes. Various models containing different candidate plane constraints are then generated through repeated random sub-sampling to explain our observations. By incorporating the physics and noise model of the depth sensor, we can calculate the information for each model, and the model with the least information is accepted as the most likely ground truth. This information optimization process serves as an objective mechanism for determining the true number of planes and preventing false positive detections. Additionally, the quality of each detected plane can be ranked by summing the information reduction of inlier points for each plane. We validate these properties through experiments with synthetic data and find that our algorithm estimates plane parameters more accurately compared to the default Open3D RANSAC plane segmentation. Furthermore, we accelerate our algorithm by partitioning the depth map using neural network segmentation, which enhances its ability to generate more realistic plane parameters in real-world data.
comment: Accepted as contributed paper in the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
☆ MInDI-3D: Iterative Deep Learning in 3D for Sparse-view Cone Beam Computed Tomography
We present MInDI-3D (Medical Inversion by Direct Iteration in 3D), the first 3D conditional diffusion-based model for real-world sparse-view Cone Beam Computed Tomography (CBCT) artefact removal, aiming to reduce imaging radiation exposure. A key contribution is extending the "InDI" concept from 2D to a full 3D volumetric approach for medical images, implementing an iterative denoising process that refines the CBCT volume directly from sparse-view input. A further contribution is the generation of a large pseudo-CBCT dataset (16,182) from chest CT volumes of the CT-RATE public dataset to robustly train MInDI-3D. We performed a comprehensive evaluation, including quantitative metrics, scalability analysis, generalisation tests, and a clinical assessment by 11 clinicians. Our results show MInDI-3D's effectiveness, achieving a 12.96 (6.10) dB PSNR gain over uncorrected scans with only 50 projections on the CT-RATE pseudo-CBCT (independent real-world) test set and enabling an 8x reduction in imaging radiation exposure. We demonstrate its scalability by showing that performance improves with more training data. Importantly, MInDI-3D matches the performance of a 3D U-Net on real-world scans from 16 cancer patients across distortion and task-based metrics. It also generalises to new CBCT scanner geometries. Clinicians rated our model as sufficient for patient positioning across all anatomical sites and found it preserved lung tumour boundaries well.
☆ BridgeTA: Bridging the Representation Gap in Knowledge Distillation via Teacher Assistant for Bird's Eye View Map Segmentation
Bird's-Eye-View (BEV) map segmentation is one of the most important and challenging tasks in autonomous driving. Camera-only approaches have drawn attention as cost-effective alternatives to LiDAR, but they still fall behind LiDAR-Camera (LC) fusion-based methods. Knowledge Distillation (KD) has been explored to narrow this gap, but existing methods mainly enlarge the student model by mimicking the teacher's architecture, leading to higher inference cost. To address this issue, we introduce BridgeTA, a cost-effective distillation framework to bridge the representation gap between LC fusion and Camera-only models through a Teacher Assistant (TA) network while keeping the student's architecture and inference cost unchanged. A lightweight TA network combines the BEV representations of the teacher and student, creating a shared latent space that serves as an intermediate representation. To ground the framework theoretically, we derive a distillation loss using Young's Inequality, which decomposes the direct teacher-student distillation path into teacher-TA and TA-student dual paths, stabilizing optimization and strengthening knowledge transfer. Extensive experiments on the challenging nuScenes dataset demonstrate the effectiveness of our method, achieving an improvement of 4.2% mIoU over the Camera-only baseline, up to 45% higher than the improvement of other state-of-the-art KD methods.
comment: 9 pages, 6 figures
☆ Images Speak Louder Than Scores: Failure Mode Escape for Enhancing Generative Quality
Diffusion models have achieved remarkable progress in class-to-image generation. However, we observe that despite impressive FID scores, state-of-the-art models often generate distorted or low-quality images, especially in certain classes. This gap arises because FID evaluates global distribution alignment, while ignoring the perceptual quality of individual samples. We further examine the role of CFG, a common technique used to enhance generation quality. While effective in improving metrics and suppressing outliers, CFG can introduce distribution shift and visual artifacts due to its misalignment with both training objectives and user expectations. In this work, we propose FaME, a training-free and inference-efficient method for improving perceptual quality. FaME uses an image quality assessment model to identify low-quality generations and stores their sampling trajectories. These failure modes are then used as negative guidance to steer future sampling away from poor-quality regions. Experiments on ImageNet demonstrate that FaME brings consistent improvements in visual quality without compromising FID. FaME also shows the potential to be extended to improve text-to-image generation.
☆ SVG-Head: Hybrid Surface-Volumetric Gaussians for High-Fidelity Head Reconstruction and Real-Time Editing
Creating high-fidelity and editable head avatars is a pivotal challenge in computer vision and graphics, boosting many AR/VR applications. While recent advancements have achieved photorealistic renderings and plausible animation, head editing, especially real-time appearance editing, remains challenging due to the implicit representation and entangled modeling of the geometry and global appearance. To address this, we propose Surface-Volumetric Gaussian Head Avatar (SVG-Head), a novel hybrid representation that explicitly models the geometry with 3D Gaussians bound on a FLAME mesh and leverages disentangled texture images to capture the global appearance. Technically, it contains two types of Gaussians, in which surface Gaussians explicitly model the appearance of head avatars using learnable texture images, facilitating real-time texture editing, while volumetric Gaussians enhance the reconstruction quality of non-Lambertian regions (e.g., lips and hair). To model the correspondence between 3D world and texture space, we provide a mesh-aware Gaussian UV mapping method, which leverages UV coordinates given by the FLAME mesh to obtain sharp texture images and real-time rendering speed. A hierarchical optimization strategy is further designed to pursue the optimal performance in both reconstruction quality and editing flexibility. Experiments on the NeRSemble dataset show that SVG-Head not only generates high-fidelity rendering results, but also is the first method to obtain explicit texture images for Gaussian head avatars and support real-time appearance editing.
☆ Hierarchical Brain Structure Modeling for Predicting Genotype of Glioma
Isocitrate DeHydrogenase (IDH) mutation status is a crucial biomarker for glioma prognosis. However, current prediction methods are limited by the low availability and noise of functional MRI. Structural and morphological connectomes offer a non-invasive alternative, yet existing approaches often ignore the brain's hierarchical organisation and multiscale interactions. To address this, we propose Hi-SMGNN, a hierarchical framework that integrates structural and morphological connectomes from regional to modular levels. It features a multimodal interaction module with a Siamese network and cross-modal attention, a multiscale feature fusion mechanism for reducing redundancy, and a personalised modular partitioning strategy to enhance individual specificity and interpretability. Experiments on the UCSF-PDGM dataset demonstrate that Hi-SMGNN outperforms baseline and state-of-the-art models, showing improved robustness and effectiveness in IDH mutation prediction.
☆ Offline Auto Labeling: BAAS
This paper introduces BAAS, a new Extended Object Tracking (EOT) and fusion-based label annotation framework for radar detections in autonomous driving. Our framework utilizes Bayesian-based tracking, smoothing and eventually fusion methods to provide veritable and precise object trajectories along with shape estimation to provide annotation labels on the detection level under various supervision levels. Simultaneously, the framework provides evaluation of tracking performance and label annotation. If manually labeled data is available, each processing module can be analyzed independently or combined with other modules to enable closed-loop continuous improvements. The framework performance is evaluated in a challenging urban real-world scenario in terms of tracking performance and the label annotation errors. We demonstrate the functionality of the proposed approach for varying dynamic objects and class types
☆ Dual Recursive Feedback on Generation and Appearance Latents for Pose-Robust Text-to-Image Diffusion
Recent advancements in controllable text-to-image (T2I) diffusion models, such as Ctrl-X and FreeControl, have demonstrated robust spatial and appearance control without requiring auxiliary module training. However, these models often struggle to accurately preserve spatial structures and fail to capture fine-grained conditions related to object poses and scene layouts. To address these challenges, we propose a training-free Dual Recursive Feedback (DRF) system that properly reflects control conditions in controllable T2I models. The proposed DRF consists of appearance feedback and generation feedback that recursively refines the intermediate latents to better reflect the given appearance information and the user's intent. This dual-update mechanism guides latent representations toward reliable manifolds, effectively integrating structural and appearance attributes. Our approach enables fine-grained generation even between class-invariant structure-appearance fusion, such as transferring human motion onto a tiger's form. Extensive experiments demonstrate the efficacy of our method in producing high-quality, semantically coherent, and structurally consistent image generations. Our source code is available at https://github.com/jwonkm/DRF.
☆ A Chain of Diagnosis Framework for Accurate and Explainable Radiology Report Generation
Despite the progress of radiology report generation (RRG), existing works face two challenges: 1) The performances in clinical efficacy are unsatisfactory, especially for lesion attributes description; 2) the generated text lacks explainability, making it difficult for radiologists to trust the results. To address the challenges, we focus on a trustworthy RRG model, which not only generates accurate descriptions of abnormalities, but also provides basis of its predictions. To this end, we propose a framework named chain of diagnosis (CoD), which maintains a chain of diagnostic process for clinically accurate and explainable RRG. It first generates question-answer (QA) pairs via diagnostic conversation to extract key findings, then prompts a large language model with QA diagnoses for accurate generation. To enhance explainability, a diagnosis grounding module is designed to match QA diagnoses and generated sentences, where the diagnoses act as a reference. Moreover, a lesion grounding module is designed to locate abnormalities in the image, further improving the working efficiency of radiologists. To facilitate label-efficient training, we propose an omni-supervised learning strategy with clinical consistency to leverage various types of annotations from different datasets. Our efforts lead to 1) an omni-labeled RRG dataset with QA pairs and lesion boxes; 2) a evaluation tool for assessing the accuracy of reports in describing lesion location and severity; 3) extensive experiments to demonstrate the effectiveness of CoD, where it outperforms both specialist and generalist models consistently on two RRG benchmarks and shows promising explainability by accurately grounding generated sentences to QA diagnoses and images.
comment: Accepted to IEEE TMI
☆ WEC-DG: Multi-Exposure Wavelet Correction Method Guided by Degradation Description
Multi-exposure correction technology is essential for restoring images affected by insufficient or excessive lighting, enhancing the visual experience by improving brightness, contrast, and detail richness. However, current multi-exposure correction methods often encounter challenges in addressing intra-class variability caused by diverse lighting conditions, shooting environments, and weather factors, particularly when processing images captured at a single exposure level. To enhance the adaptability of these models under complex imaging conditions, this paper proposes a Wavelet-based Exposure Correction method with Degradation Guidance (WEC-DG). Specifically, we introduce a degradation descriptor within the Exposure Consistency Alignment Module (ECAM) at both ends of the processing pipeline to ensure exposure consistency and achieve final alignment. This mechanism effectively addresses miscorrected exposure anomalies caused by existing methods' failure to recognize 'blurred' exposure degradation. Additionally, we investigate the light-detail decoupling properties of the wavelet transform to design the Exposure Restoration and Detail Reconstruction Module (EDRM), which processes low-frequency information related to exposure enhancement before utilizing high-frequency information as a prior guide for reconstructing spatial domain details. This serial processing strategy guarantees precise light correction and enhances detail recovery. Extensive experiments conducted on multiple public datasets demonstrate that the proposed method outperforms existing algorithms, achieving significant performance improvements and validating its effectiveness and practical applicability.
☆ Topological Invariant-Based Iris Identification via Digital Homology and Machine Learning
Objective - This study presents a biometric identification method based on topological invariants from 2D iris images, representing iris texture via formally defined digital homology and evaluating classification performance. Methods - Each normalized iris image (48x482 pixels) is divided into grids (e.g., 6x54 or 3x27). For each subregion, we compute Betti0, Betti1, and their ratio using a recent algorithm for homology groups in 2D digital images. The resulting invariants form a feature matrix used with logistic regression, KNN, and SVM (with PCA and 100 randomized repetitions). A convolutional neural network (CNN) is trained on raw images for comparison. Results - Logistic regression achieved 97.78 +/- 0.82% accuracy, outperforming CNN (96.44 +/- 1.32%) and other feature-based models. The topological features showed high accuracy with low variance. Conclusion - This is the first use of topological invariants from formal digital homology for iris recognition. The method offers a compact, interpretable, and accurate alternative to deep learning, useful when explainability or limited data is important. Beyond iris recognition, it can apply to other biometrics, medical imaging, materials science, remote sensing, and interpretable AI. It runs efficiently on CPU-only systems and produces robust, explainable features valuable for security-critical domains.
comment: 10 pages, 5 figures, includes visual abstract, focuses on topological invariants for iris recognition
☆ Exploring the Equivalence of Closed-Set Generative and Real Data Augmentation in Image Classification
In this paper, we address a key scientific problem in machine learning: Given a training set for an image classification task, can we train a generative model on this dataset to enhance the classification performance? (i.e., closed-set generative data augmentation). We start by exploring the distinctions and similarities between real images and closed-set synthetic images generated by advanced generative models. Through extensive experiments, we offer systematic insights into the effective use of closed-set synthetic data for augmentation. Notably, we empirically determine the equivalent scale of synthetic images needed for augmentation. In addition, we also show quantitative equivalence between the real data augmentation and open-set generative augmentation (generative models trained using data beyond the given training set). While it aligns with the common intuition that real images are generally preferred, our empirical formulation also offers a guideline to quantify the increased scale of synthetic data augmentation required to achieve comparable image classification performance. Our results on natural and medical image datasets further illustrate how this effect varies with the baseline training set size and the amount of synthetic data incorporated.
☆ GoViG: Goal-Conditioned Visual Navigation Instruction Generation
We introduce Goal-Conditioned Visual Navigation Instruction Generation (GoViG), a new task that aims to autonomously generate precise and contextually coherent navigation instructions solely from egocentric visual observations of initial and goal states. Unlike conventional approaches that rely on structured inputs such as semantic annotations or environmental maps, GoViG exclusively leverages raw egocentric visual data, substantially improving its adaptability to unseen and unstructured environments. Our method addresses this task by decomposing it into two interconnected subtasks: (1) visual forecasting, which predicts intermediate visual states bridging the initial and goal views; and (2) instruction generation, which synthesizes linguistically coherent instructions grounded in both observed and anticipated visuals. These subtasks are integrated within an autoregressive multimodal large language model trained with tailored objectives to ensure spatial accuracy and linguistic clarity. Furthermore, we introduce two complementary multimodal reasoning strategies, one-pass and interleaved reasoning, to mimic incremental human cognitive processes during navigation. To evaluate our method, we propose the R2R-Goal dataset, combining diverse synthetic and real-world trajectories. Empirical results demonstrate significant improvements over state-of-the-art methods, achieving superior BLEU-4 and CIDEr scores along with robust cross-domain generalization.
comment: Under review. Code: https://github.com/F1y1113/GoViG
☆ COXNet: Cross-Layer Fusion with Adaptive Alignment and Scale Integration for RGBT Tiny Object Detection
Detecting tiny objects in multimodal Red-Green-Blue-Thermal (RGBT) imagery is a critical challenge in computer vision, particularly in surveillance, search and rescue, and autonomous navigation. Drone-based scenarios exacerbate these challenges due to spatial misalignment, low-light conditions, occlusion, and cluttered backgrounds. Current methods struggle to leverage the complementary information between visible and thermal modalities effectively. We propose COXNet, a novel framework for RGBT tiny object detection, addressing these issues through three core innovations: i) the Cross-Layer Fusion Module, fusing high-level visible and low-level thermal features for enhanced semantic and spatial accuracy; ii) the Dynamic Alignment and Scale Refinement module, correcting cross-modal spatial misalignments and preserving multi-scale features; and iii) an optimized label assignment strategy using the GeoShape Similarity Measure for better localization. COXNet achieves a 3.32\% mAP$_{50}$ improvement on the RGBTDronePerson dataset over state-of-the-art methods, demonstrating its effectiveness for robust detection in complex environments.
☆ Physics-guided Deep Unfolding Network for Enhanced Kronecker Compressive sensing
Deep networks have achieved remarkable success in image compressed sensing (CS) task, namely reconstructing a high-fidelity image from its compressed measurement. However, existing works are deficient inincoherent compressed measurement at sensing phase and implicit measurement representations at reconstruction phase, limiting the overall performance. In this work, we answer two questions: 1) how to improve the measurement incoherence for decreasing the ill-posedness; 2) how to learn informative representations from measurements. To this end, we propose a novel asymmetric Kronecker CS (AKCS) model and theoretically present its better incoherence than previous Kronecker CS with minimal complexity increase. Moreover, we reveal that the unfolding networks' superiority over non-unfolding ones result from sufficient gradient descents, called explicit measurement representations. We propose a measurement-aware cross attention (MACA) mechanism to learn implicit measurement representations. We integrate AKCS and MACA into widely-used unfolding architecture to get a measurement-enhanced unfolding network (MEUNet). Extensive experiences demonstrate that our MEUNet achieves state-of-the-art performance in reconstruction accuracy and inference speed.
comment: 9 pages, 4 figures
☆ Learning Spatial Decay for Vision Transformers
Vision Transformers (ViTs) have revolutionized computer vision, yet their self-attention mechanism lacks explicit spatial inductive biases, leading to suboptimal performance on spatially-structured tasks. Existing approaches introduce data-independent spatial decay based on fixed distance metrics, applying uniform attention weighting regardless of image content and limiting adaptability to diverse visual scenarios. Inspired by recent advances in large language models where content-aware gating mechanisms (e.g., GLA, HGRN2, FOX) significantly outperform static alternatives, we present the first successful adaptation of data-dependent spatial decay to 2D vision transformers. We introduce \textbf{Spatial Decay Transformer (SDT)}, featuring a novel Context-Aware Gating (CAG) mechanism that generates dynamic, data-dependent decay for patch interactions. Our approach learns to modulate spatial attention based on both content relevance and spatial proximity. We address the fundamental challenge of 1D-to-2D adaptation through a unified spatial-content fusion framework that integrates manhattan distance-based spatial priors with learned content representations. Extensive experiments on ImageNet-1K classification and generation tasks demonstrate consistent improvements over strong baselines. Our work establishes data-dependent spatial decay as a new paradigm for enhancing spatial attention in vision transformers.
☆ Generation of Indian Sign Language Letters, Numbers, and Words
Sign language, which contains hand movements, facial expressions and bodily gestures, is a significant medium for communicating with hard-of-hearing people. A well-trained sign language community communicates easily, but those who don't know sign language face significant challenges. Recognition and generation are basic communication methods between hearing and hard-of-hearing individuals. Despite progress in recognition, sign language generation still needs to be explored. The Progressive Growing of Generative Adversarial Network (ProGAN) excels at producing high-quality images, while the Self-Attention Generative Adversarial Network (SAGAN) generates feature-rich images at medium resolutions. Balancing resolution and detail is crucial for sign language image generation. We are developing a Generative Adversarial Network (GAN) variant that combines both models to generate feature-rich, high-resolution, and class-conditional sign language images. Our modified Attention-based model generates high-quality images of Indian Sign Language letters, numbers, and words, outperforming the traditional ProGAN in Inception Score (IS) and Fr\'echet Inception Distance (FID), with improvements of 3.2 and 30.12, respectively. Additionally, we are publishing a large dataset incorporating high-quality images of Indian Sign Language alphabets, numbers, and 129 words.
comment: 6 pages, 5 figures, 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS)
☆ CWFBind: Geometry-Awareness for Fast and Accurate Protein-Ligand Docking
Accurately predicting the binding conformation of small-molecule ligands to protein targets is a critical step in rational drug design. Although recent deep learning-based docking surpasses traditional methods in speed and accuracy, many approaches rely on graph representations and language model-inspired encoders while neglecting critical geometric information, resulting in inaccurate pocket localization and unrealistic binding conformations. In this study, we introduce CWFBind, a weighted, fast, and accurate docking method based on local curvature features. Specifically, we integrate local curvature descriptors during the feature extraction phase to enrich the geometric representation of both proteins and ligands, complementing existing chemical, sequence, and structural features. Furthermore, we embed degree-aware weighting mechanisms into the message passing process, enhancing the model's ability to capture spatial structural distinctions and interaction strengths. To address the class imbalance challenge in pocket prediction, CWFBind employs a ligand-aware dynamic radius strategy alongside an enhanced loss function, facilitating more precise identification of binding regions and key residues. Comprehensive experimental evaluations demonstrate that CWFBind achieves competitive performance across multiple docking benchmarks, offering a balanced trade-off between accuracy and efficiency.
☆ SARE: Semantic-Aware Reconstruction Error for Generalizable Diffusion-Generated Image Detection
Recently, diffusion-generated image detection has gained increasing attention, as the rapid advancement of diffusion models has raised serious concerns about their potential misuse. While existing detection methods have achieved promising results, their performance often degrades significantly when facing fake images from unseen, out-of-distribution (OOD) generative models, since they primarily rely on model-specific artifacts. To address this limitation, we explore a fundamental property commonly observed in fake images. Motivated by the observation that fake images tend to exhibit higher similarity to their captions than real images, we propose a novel representation, namely Semantic-Aware Reconstruction Error (SARE), that measures the semantic difference between an image and its caption-guided reconstruction. The hypothesis behind SARE is that real images, whose captions often fail to fully capture their complex visual content, may undergo noticeable semantic shifts during the caption-guided reconstruction process. In contrast, fake images, which closely align with their captions, show minimal semantic changes. By quantifying these semantic shifts, SARE can be utilized as a discriminative feature for robust detection across diverse generative models. We empirically demonstrate that the proposed method exhibits strong generalization, outperforming existing baselines on benchmarks including GenImage and CommunityForensics.
comment: Work in progress
☆ Episodic Memory Representation for Long-form Video Understanding
Video Large Language Models (Video-LLMs) excel at general video understanding but struggle with long-form videos due to context window limits. Consequently, recent approaches focus on keyframe retrieval, condensing lengthy videos into a small set of informative frames. Despite their practicality, these methods simplify the problem to static text image matching, overlooking spatio temporal relationships crucial for capturing scene transitions and contextual continuity, and may yield redundant keyframes with limited information, diluting salient cues essential for accurate video question answering. To address these limitations, we introduce Video-EM, a training free framework inspired by the principles of human episodic memory, designed to facilitate robust and contextually grounded reasoning. Rather than treating keyframes as isolated visual entities, Video-EM explicitly models them as temporally ordered episodic events, capturing both spatial relationships and temporal dynamics necessary for accurately reconstructing the underlying narrative. Furthermore, the framework leverages chain of thought (CoT) thinking with LLMs to iteratively identify a minimal yet highly informative subset of episodic memories, enabling efficient and accurate question answering by Video-LLMs. Extensive evaluations on the Video-MME, EgoSchema, HourVideo, and LVBench benchmarks confirm the superiority of Video-EM, which achieves highly competitive results with performance gains of 4-9 percent over respective baselines while utilizing fewer frames.
comment: 10 pages, 5 figures
☆ SkySplat: Generalizable 3D Gaussian Splatting from Multi-Temporal Sparse Satellite Images
Three-dimensional scene reconstruction from sparse-view satellite images is a long-standing and challenging task. While 3D Gaussian Splatting (3DGS) and its variants have recently attracted attention for its high efficiency, existing methods remain unsuitable for satellite images due to incompatibility with rational polynomial coefficient (RPC) models and limited generalization capability. Recent advances in generalizable 3DGS approaches show potential, but they perform poorly on multi-temporal sparse satellite images due to limited geometric constraints, transient objects, and radiometric inconsistencies. To address these limitations, we propose SkySplat, a novel self-supervised framework that integrates the RPC model into the generalizable 3DGS pipeline, enabling more effective use of sparse geometric cues for improved reconstruction. SkySplat relies only on RGB images and radiometric-robust relative height supervision, thereby eliminating the need for ground-truth height maps. Key components include a Cross-Self Consistency Module (CSCM), which mitigates transient object interference via consistency-based masking, and a multi-view consistency aggregation strategy that refines reconstruction results. Compared to per-scene optimization methods, SkySplat achieves an 86 times speedup over EOGS with higher accuracy. It also outperforms generalizable 3DGS baselines, reducing MAE from 13.18 m to 1.80 m on the DFC19 dataset significantly, and demonstrates strong cross-dataset generalization on the MVS3D benchmark.
☆ GazeLT: Visual attention-guided long-tailed disease classification in chest radiographs
In this work, we present GazeLT, a human visual attention integration-disintegration approach for long-tailed disease classification. A radiologist's eye gaze has distinct patterns that capture both fine-grained and coarser level disease related information. While interpreting an image, a radiologist's attention varies throughout the duration; it is critical to incorporate this into a deep learning framework to improve automated image interpretation. Another important aspect of visual attention is that apart from looking at major/obvious disease patterns, experts also look at minor/incidental findings (few of these constituting long-tailed classes) during the course of image interpretation. GazeLT harnesses the temporal aspect of the visual search process, via an integration and disintegration mechanism, to improve long-tailed disease classification. We show the efficacy of GazeLT on two publicly available datasets for long-tailed disease classification, namely the NIH-CXR-LT (n=89237) and the MIMIC-CXR-LT (n=111898) datasets. GazeLT outperforms the best long-tailed loss by 4.1% and the visual attention-based baseline by 21.7% in average accuracy metrics for these datasets. Our code is available at https://github.com/lordmoinak1/gazelt.
☆ CLIP-Flow: A Universal Discriminator for AI-Generated Images Inspired by Anomaly Detection
With the rapid advancement of AI generative models, the visual quality of AI-generated images (AIIs) has become increasingly close to natural images, which inevitably raises security concerns. Most AII detectors often employ the conventional image classification pipeline with natural images and AIIs (generated by a generative model), which can result in limited detection performance for AIIs from unseen generative models. To solve this, we proposed a universal AI-generated image detector from the perspective of anomaly detection. Our discriminator does not need to access any AIIs and learn a generalizable representation with unsupervised learning. Specifically, we use the pre-trained CLIP encoder as the feature extractor and design a normalizing flow-like unsupervised model. Instead of AIIs, proxy images, e.g., obtained by applying a spectral modification operation on natural images, are used for training. Our models are trained by minimizing the likelihood of proxy images, optionally combined with maximizing the likelihood of natural images. Extensive experiments demonstrate the effectiveness of our method on AIIs produced by various image generators.
☆ Leveraging Failed Samples: A Few-Shot and Training-Free Framework for Generalized Deepfake Detection
Recent deepfake detection studies often treat unseen sample detection as a ``zero-shot" task, training on images generated by known models but generalizing to unknown ones. A key real-world challenge arises when a model performs poorly on unknown samples, yet these samples remain available for analysis. This highlights that it should be approached as a ``few-shot" task, where effectively utilizing a small number of samples can lead to significant improvement. Unlike typical few-shot tasks focused on semantic understanding, deepfake detection prioritizes image realism, which closely mirrors real-world distributions. In this work, we propose the Few-shot Training-free Network (FTNet) for real-world few-shot deepfake detection. Simple yet effective, FTNet differs from traditional methods that rely on large-scale known data for training. Instead, FTNet uses only one fake samplefrom an evaluation set, mimicking the scenario where new samples emerge in the real world and can be gathered for use, without any training or parameter updates. During evaluation, each test sample is compared to the known fake and real samples, and it is classified based on the category of the nearest sample. We conduct a comprehensive analysis of AI-generated images from 29 different generative models and achieve a new SoTA performance, with an average improvement of 8.7\% compared to existing methods. This work introduces a fresh perspective on real-world deepfake detection: when the model struggles to generalize on a few-shot sample, leveraging the failed samples leads to better performance.
☆ CitySeg: A 3D Open Vocabulary Semantic Segmentation Foundation Model in City-scale Scenarios
Semantic segmentation of city-scale point clouds is a critical technology for Unmanned Aerial Vehicle (UAV) perception systems, enabling the classification of 3D points without relying on any visual information to achieve comprehensive 3D understanding. However, existing models are frequently constrained by the limited scale of 3D data and the domain gap between datasets, which lead to reduced generalization capability. To address these challenges, we propose CitySeg, a foundation model for city-scale point cloud semantic segmentation that incorporates text modality to achieve open vocabulary segmentation and zero-shot inference. Specifically, in order to mitigate the issue of non-uniform data distribution across multiple domains, we customize the data preprocessing rules, and propose a local-global cross-attention network to enhance the perception capabilities of point networks in UAV scenarios. To resolve semantic label discrepancies across datasets, we introduce a hierarchical classification strategy. A hierarchical graph established according to the data annotation rules consolidates the data labels, and the graph encoder is used to model the hierarchical relationships between categories. In addition, we propose a two-stage training strategy and employ hinge loss to increase the feature separability of subcategories. Experimental results demonstrate that the proposed CitySeg achieves state-of-the-art (SOTA) performance on nine closed-set benchmarks, significantly outperforming existing approaches. Moreover, for the first time, CitySeg enables zero-shot generalization in city-scale point cloud scenarios without relying on visual information.
☆ Event-driven Robust Fitting on Neuromorphic Hardware ICCV 2025
Robust fitting of geometric models is a fundamental task in many computer vision pipelines. Numerous innovations have been produced on the topic, from improving the efficiency and accuracy of random sampling heuristics to generating novel theoretical insights that underpin new approaches with mathematical guarantees. However, one aspect of robust fitting that has received little attention is energy efficiency. This performance metric has become critical as high energy consumption is a growing concern for AI adoption. In this paper, we explore energy-efficient robust fitting via the neuromorphic computing paradigm. Specifically, we designed a novel spiking neural network for robust fitting on real neuromorphic hardware, the Intel Loihi 2. Enabling this are novel event-driven formulations of model estimation that allow robust fitting to be implemented in the unique architecture of Loihi 2, and algorithmic strategies to alleviate the current limited precision and instruction set of the hardware. Results show that our neuromorphic robust fitting consumes only a fraction (15%) of the energy required to run the established robust fitting algorithm on a standard CPU to equivalent accuracy.
comment: 11 pages, accepted in ICCV 2025 Workshop on Neuromorphic Vision (NeVI)
☆ Gen-AFFECT: Generation of Avatar Fine-grained Facial Expressions with Consistent identiTy
Different forms of customized 2D avatars are widely used in gaming applications, virtual communication, education, and content creation. However, existing approaches often fail to capture fine-grained facial expressions and struggle to preserve identity across different expressions. We propose GEN-AFFECT, a novel framework for personalized avatar generation that generates expressive and identity-consistent avatars with a diverse set of facial expressions. Our framework proposes conditioning a multimodal diffusion transformer on an extracted identity-expression representation. This enables identity preservation and representation of a wide range of facial expressions. GEN-AFFECT additionally employs consistent attention at inference for information sharing across the set of generated expressions, enabling the generation process to maintain identity consistency over the array of generated fine-grained expressions. GEN-AFFECT demonstrates superior performance compared to previous state-of-the-art methods on the basis of the accuracy of the generated expressions, the preservation of the identity and the consistency of the target identity across an array of fine-grained facial expressions.
☆ RelayFormer: A Unified Local-Global Attention Framework for Scalable Image and Video Manipulation Localization
Visual manipulation localization (VML) -- across both images and videos -- is a crucial task in digital forensics that involves identifying tampered regions in visual content. However, existing methods often lack cross-modal generalization and struggle to handle high-resolution or long-duration inputs efficiently. We propose RelayFormer, a unified and modular architecture for visual manipulation localization across images and videos. By leveraging flexible local units and a Global-Local Relay Attention (GLoRA) mechanism, it enables scalable, resolution-agnostic processing with strong generalization. Our framework integrates seamlessly with existing Transformer-based backbones, such as ViT and SegFormer, via lightweight adaptation modules that require only minimal architectural changes, ensuring compatibility without disrupting pretrained representations. Furthermore, we design a lightweight, query-based mask decoder that supports one-shot inference across video sequences with linear complexity. Extensive experiments across multiple benchmarks demonstrate that our approach achieves state-of-the-art localization performance, setting a new baseline for scalable and modality-agnostic VML. Code is available at: https://github.com/WenOOI/RelayFormer.
☆ IAG: Input-aware Backdoor Attack on VLMs for Visual Grounding
Vision-language models (VLMs) have shown significant advancements in tasks such as visual grounding, where they localize specific objects in images based on natural language queries and images. However, security issues in visual grounding tasks for VLMs remain underexplored, especially in the context of backdoor attacks. In this paper, we introduce a novel input-aware backdoor attack method, IAG, designed to manipulate the grounding behavior of VLMs. This attack forces the model to ground a specific target object in the input image, regardless of the user's query. We propose an adaptive trigger generator that embeds the semantic information of the attack target's description into the original image using a text-conditional U-Net, thereby overcoming the open-vocabulary attack challenge. To ensure the attack's stealthiness, we utilize a reconstruction loss to minimize visual discrepancies between poisoned and clean images. Additionally, we introduce a unified method for generating attack data. IAG is evaluated theoretically and empirically, demonstrating its feasibility and effectiveness. Notably, our ASR@0.5 on InternVL-2.5-8B reaches over 65\% on various testing sets. IAG also shows promising potential on manipulating Ferret-7B and LlaVA-1.5-7B with very little accuracy decrease on clean samples. Extensive specific experiments, such as ablation study and potential defense, also indicate the robustness and transferability of our attack.
comment: 13 pages, 13 Figures
☆ Animate-X++: Universal Character Image Animation with Dynamic Backgrounds
Character image animation, which generates high-quality videos from a reference image and target pose sequence, has seen significant progress in recent years. However, most existing methods only apply to human figures, which usually do not generalize well on anthropomorphic characters commonly used in industries like gaming and entertainment. Furthermore, previous methods could only generate videos with static backgrounds, which limits the realism of the videos. For the first challenge, our in-depth analysis suggests to attribute this limitation to their insufficient modeling of motion, which is unable to comprehend the movement pattern of the driving video, thus imposing a pose sequence rigidly onto the target character. To this end, this paper proposes Animate-X++, a universal animation framework based on DiT for various character types, including anthropomorphic characters. To enhance motion representation, we introduce the Pose Indicator, which captures comprehensive motion pattern from the driving video through both implicit and explicit manner. The former leverages CLIP visual features of a driving video to extract its gist of motion, like the overall movement pattern and temporal relations among motions, while the latter strengthens the generalization of DiT by simulating possible inputs in advance that may arise during inference. For the second challenge, we introduce a multi-task training strategy that jointly trains the animation and TI2V tasks. Combined with the proposed partial parameter training, this approach achieves not only character animation but also text-driven background dynamics, making the videos more realistic. Moreover, we introduce a new Animated Anthropomorphic Benchmark (A2Bench) to evaluate the performance of Animate-X++ on universal and widely applicable animation images. Extensive experiments demonstrate the superiority and effectiveness of Animate-X++.
comment: Project page: https://lucaria-academy.github.io/Animate-X++/
☆ HyperKD: Distilling Cross-Spectral Knowledge in Masked Autoencoders via Inverse Domain Shift with Spatial-Aware Masking and Specialized Loss
The proliferation of foundation models, pretrained on large-scale unlabeled datasets, has emerged as an effective approach in creating adaptable and reusable architectures that can be leveraged for various downstream tasks using satellite observations. However, their direct application to hyperspectral remote sensing remains challenging due to inherent spectral disparities and the scarcity of available observations. In this work, we present HyperKD, a novel knowledge distillation framework that enables transferring learned representations from a teacher model into a student model for effective development of a foundation model on hyperspectral images. Unlike typical knowledge distillation frameworks, which use a complex teacher to guide a simpler student, HyperKD enables an inverse form of knowledge transfer across different types of spectral data, guided by a simpler teacher model. Building upon a Masked Autoencoder, HyperKD distills knowledge from the Prithvi foundational model into a student tailored for EnMAP hyperspectral imagery. HyperKD addresses the inverse domain adaptation problem with spectral gaps by introducing a feature-based strategy that includes spectral range-based channel alignment, spatial feature-guided masking, and an enhanced loss function tailored for hyperspectral images. HyperKD bridges the substantial spectral domain gap, enabling the effective use of pretrained foundation models for geospatial applications. Extensive experiments show that HyperKD significantly improves representation learning in MAEs, leading to enhanced reconstruction fidelity and more robust performance on downstream tasks such as land cover classification, crop type identification, and soil organic carbon prediction, underpinning the potential of knowledge distillation frameworks in remote sensing analytics with hyperspectral imagery.
☆ RASR: Retrieval-Augmented Super Resolution for Practical Reference-based Image Restoration
Reference-based Super Resolution (RefSR) improves upon Single Image Super Resolution (SISR) by leveraging high-quality reference images to enhance texture fidelity and visual realism. However, a critical limitation of existing RefSR approaches is their reliance on manually curated target-reference image pairs, which severely constrains their practicality in real-world scenarios. To overcome this, we introduce Retrieval-Augmented Super Resolution (RASR), a new and practical RefSR paradigm that automatically retrieves semantically relevant high-resolution images from a reference database given only a low-quality input. This enables scalable and flexible RefSR in realistic use cases, such as enhancing mobile photos taken in environments like zoos or museums, where category-specific reference data (e.g., animals, artworks) can be readily collected or pre-curated. To facilitate research in this direction, we construct RASR-Flickr30, the first benchmark dataset designed for RASR. Unlike prior datasets with fixed target-reference pairs, RASR-Flickr30 provides per-category reference databases to support open-world retrieval. We further propose RASRNet, a strong baseline that combines a semantic reference retriever with a diffusion-based RefSR generator. It retrieves relevant references based on semantic similarity and employs a diffusion-based generator enhanced with semantic conditioning. Experiments on RASR-Flickr30 demonstrate that RASRNet consistently improves over SISR baselines, achieving +0.38 dB PSNR and -0.0131 LPIPS, while generating more realistic textures. These findings highlight retrieval augmentation as a promising direction to bridge the gap between academic RefSR research and real-world applicability.
☆ MPT: Motion Prompt Tuning for Micro-Expression Recognition
Micro-expression recognition (MER) is crucial in the affective computing field due to its wide application in medical diagnosis, lie detection, and criminal investigation. Despite its significance, obtaining micro-expression (ME) annotations is challenging due to the expertise required from psychological professionals. Consequently, ME datasets often suffer from a scarcity of training samples, severely constraining the learning of MER models. While current large pre-training models (LMs) offer general and discriminative representations, their direct application to MER is hindered by an inability to capture transitory and subtle facial movements-essential elements for effective MER. This paper introduces Motion Prompt Tuning (MPT) as a novel approach to adapting LMs for MER, representing a pioneering method for subtle motion prompt tuning. Particularly, we introduce motion prompt generation, including motion magnification and Gaussian tokenization, to extract subtle motions as prompts for LMs. Additionally, a group adapter is carefully designed and inserted into the LM to enhance it in the target MER domain, facilitating a more nuanced distinction of ME representation. Furthermore, extensive experiments conducted on three widely used MER datasets demonstrate that our proposed MPT consistently surpasses state-of-the-art approaches and verifies its effectiveness.
☆ DAgger Diffusion Navigation: DAgger Boosted Diffusion Policy for Vision-Language Navigation
Vision-Language Navigation in Continuous Environments (VLN-CE) requires agents to follow natural language instructions through free-form 3D spaces. Existing VLN-CE approaches typically use a two-stage waypoint planning framework, where a high-level waypoint predictor generates the navigable waypoints, and then a navigation planner suggests the intermediate goals in the high-level action space. However, this two-stage decomposition framework suffers from: (1) global sub-optimization due to the proxy objective in each stage, and (2) a performance bottleneck caused by the strong reliance on the quality of the first-stage predicted waypoints. To address these limitations, we propose DAgger Diffusion Navigation (DifNav), an end-to-end optimized VLN-CE policy that unifies the traditional two stages, i.e. waypoint generation and planning, into a single diffusion policy. Notably, DifNav employs a conditional diffusion policy to directly model multi-modal action distributions over future actions in continuous navigation space, eliminating the need for a waypoint predictor while enabling the agent to capture multiple possible instruction-following behaviors. To address the issues of compounding error in imitation learning and enhance spatial reasoning in long-horizon navigation tasks, we employ DAgger for online policy training and expert trajectory augmentation, and use the aggregated data to further fine-tune the policy. This approach significantly improves the policy's robustness and its ability to recover from error states. Extensive experiments on benchmark datasets demonstrate that, even without a waypoint predictor, the proposed method substantially outperforms previous state-of-the-art two-stage waypoint-based models in terms of navigation performance. Our code is available at: https://github.com/Tokishx/DifNav.
☆ What-Meets-Where: Unified Learning of Action and Contact Localization in a New Dataset
People control their bodies to establish contact with the environment. To comprehensively understand actions across diverse visual contexts, it is essential to simultaneously consider \textbf{what} action is occurring and \textbf{where} it is happening. Current methodologies, however, often inadequately capture this duality, typically failing to jointly model both action semantics and their spatial contextualization within scenes. To bridge this gap, we introduce a novel vision task that simultaneously predicts high-level action semantics and fine-grained body-part contact regions. Our proposed framework, PaIR-Net, comprises three key components: the Contact Prior Aware Module (CPAM) for identifying contact-relevant body parts, the Prior-Guided Concat Segmenter (PGCS) for pixel-wise contact segmentation, and the Interaction Inference Module (IIM) responsible for integrating global interaction relationships. To facilitate this task, we present PaIR (Part-aware Interaction Representation), a comprehensive dataset containing 13,979 images that encompass 654 actions, 80 object categories, and 17 body parts. Experimental evaluation demonstrates that PaIR-Net significantly outperforms baseline approaches, while ablation studies confirm the efficacy of each architectural component. The code and dataset will be released upon publication.
☆ Distilling LLM Prior to Flow Model for Generalizable Agent's Imagination in Object Goal Navigation
The Object Goal Navigation (ObjectNav) task challenges agents to locate a specified object in an unseen environment by imagining unobserved regions of the scene. Prior approaches rely on deterministic and discriminative models to complete semantic maps, overlooking the inherent uncertainty in indoor layouts and limiting their ability to generalize to unseen environments. In this work, we propose GOAL, a generative flow-based framework that models the semantic distribution of indoor environments by bridging observed regions with LLM-enriched full-scene semantic maps. During training, spatial priors inferred from large language models (LLMs) are encoded as two-dimensional Gaussian fields and injected into target maps, distilling rich contextual knowledge into the flow model and enabling more generalizable completions. Extensive experiments demonstrate that GOAL achieves state-of-the-art performance on MP3D and Gibson, and shows strong generalization in transfer settings to HM3D. Codes and pretrained models are available at https://github.com/Badi-Li/GOAL.
☆ RampNet: A Two-Stage Pipeline for Bootstrapping Curb Ramp Detection in Streetscape Images from Open Government Metadata ICCV'25
Curb ramps are critical for urban accessibility, but robustly detecting them in images remains an open problem due to the lack of large-scale, high-quality datasets. While prior work has attempted to improve data availability with crowdsourced or manually labeled data, these efforts often fall short in either quality or scale. In this paper, we introduce and evaluate a two-stage pipeline called RampNet to scale curb ramp detection datasets and improve model performance. In Stage 1, we generate a dataset of more than 210,000 annotated Google Street View (GSV) panoramas by auto-translating government-provided curb ramp location data to pixel coordinates in panoramic images. In Stage 2, we train a curb ramp detection model (modified ConvNeXt V2) from the generated dataset, achieving state-of-the-art performance. To evaluate both stages of our pipeline, we compare to manually labeled panoramas. Our generated dataset achieves 94.0% precision and 92.5% recall, and our detection model reaches 0.9236 AP -- far exceeding prior work. Our work contributes the first large-scale, high-quality curb ramp detection dataset, benchmark, and model.
comment: Accepted to the ICCV'25 Workshop on Vision Foundation Models and Generative AI for Accessibility: Challenges and Opportunities
☆ Waymo-3DSkelMo: A Multi-Agent 3D Skeletal Motion Dataset for Pedestrian Interaction Modeling in Autonomous Driving
Large-scale high-quality 3D motion datasets with multi-person interactions are crucial for data-driven models in autonomous driving to achieve fine-grained pedestrian interaction understanding in dynamic urban environments. However, existing datasets mostly rely on estimating 3D poses from monocular RGB video frames, which suffer from occlusion and lack of temporal continuity, thus resulting in unrealistic and low-quality human motion. In this paper, we introduce Waymo-3DSkelMo, the first large-scale dataset providing high-quality, temporally coherent 3D skeletal motions with explicit interaction semantics, derived from the Waymo Perception dataset. Our key insight is to utilize 3D human body shape and motion priors to enhance the quality of the 3D pose sequences extracted from the raw LiDRA point clouds. The dataset covers over 14,000 seconds across more than 800 real driving scenarios, including rich interactions among an average of 27 agents per scene (with up to 250 agents in the largest scene). Furthermore, we establish 3D pose forecasting benchmarks under varying pedestrian densities, and the results demonstrate its value as a foundational resource for future research on fine-grained human behavior understanding in complex urban environments. The dataset and code will be available at https://github.com/GuangxunZhu/Waymo-3DSkelMo
comment: ACM Multimedia 2025 (Dataset Track) Paper
☆ Autonomous AI Bird Feeder for Backyard Biodiversity Monitoring
This paper presents a low cost, on premise system for autonomous backyard bird monitoring in Belgian urban gardens. A motion triggered IP camera uploads short clips via FTP to a local server, where frames are sampled and birds are localized with Detectron2; cropped regions are then classified by an EfficientNet-B3 model fine tuned on a 40-species Belgian subset derived from a larger Kaggle corpus. All processing runs on commodity hardware without a discrete GPU, preserving privacy and avoiding cloud fees. The physical feeder uses small entry ports (30 mm) to exclude pigeons and reduce nuisance triggers. Detector-guided cropping improves classification accuracy over raw-frame classification. The classifier attains high validation performance on the curated subset (about 99.5 percent) and delivers practical field accuracy (top-1 about 88 percent) on held-out species, demonstrating feasibility for citizen-science-grade biodiversity logging at home.
comment: Preprint; 8 pages, 5 figures, 1 table; IEEEtran conference format. Code: https://github.com/E-zClap/bird-classifier
☆ Skyshield: Event-Driven Submillimetre Thin Obstacle Detection for Drone Flight Safety
Drones operating in complex environments face a significant threat from thin obstacles, such as steel wires and kite strings at the submillimeter level, which are notoriously difficult for conventional sensors like RGB cameras, LiDAR, and depth cameras to detect. This paper introduces SkyShield, an event-driven, end-to-end framework designed for the perception of submillimeter scale obstacles. Drawing upon the unique features that thin obstacles present in the event stream, our method employs a lightweight U-Net architecture and an innovative Dice-Contour Regularization Loss to ensure precise detection. Experimental results demonstrate that our event-based approach achieves mean F1 Score of 0.7088 with a low latency of 21.2 ms, making it ideal for deployment on edge and mobile platforms.
☆ CellSymphony: Deciphering the molecular and phenotypic orchestration of cells with single-cell pathomics
Xenium, a new spatial transcriptomics platform, enables subcellular-resolution profiling of complex tumor tissues. Despite the rich morphological information in histology images, extracting robust cell-level features and integrating them with spatial transcriptomics data remains a critical challenge. We introduce CellSymphony, a flexible multimodal framework that leverages foundation model-derived embeddings from both Xenium transcriptomic profiles and histology images at true single-cell resolution. By learning joint representations that fuse spatial gene expression with morphological context, CellSymphony achieves accurate cell type annotation and uncovers distinct microenvironmental niches across three cancer types. This work highlights the potential of foundation models and multimodal fusion for deciphering the physiological and phenotypic orchestration of cells within complex tissue ecosystems.
☆ EntropyGS: An Efficient Entropy Coding on 3D Gaussian Splatting
As an emerging novel view synthesis approach, 3D Gaussian Splatting (3DGS) demonstrates fast training/rendering with superior visual quality. The two tasks of 3DGS, Gaussian creation and view rendering, are typically separated over time or devices, and thus storage/transmission and finally compression of 3DGS Gaussians become necessary. We begin with a correlation and statistical analysis of 3DGS Gaussian attributes. An inspiring finding in this work reveals that spherical harmonic AC attributes precisely follow Laplace distributions, while mixtures of Gaussian distributions can approximate rotation, scaling, and opacity. Additionally, harmonic AC attributes manifest weak correlations with other attributes except for inherited correlations from a color space. A factorized and parameterized entropy coding method, EntropyGS, is hereinafter proposed. During encoding, distribution parameters of each Gaussian attribute are estimated to assist their entropy coding. The quantization for entropy coding is adaptively performed according to Gaussian attribute types. EntropyGS demonstrates about 30x rate reduction on benchmark datasets while maintaining similar rendering quality compared to input 3DGS data, with a fast encoding and decoding time.
☆ AI-Driven Detection and Analysis of Handwriting on Seized Ivory: A Tool to Uncover Criminal Networks in the Illicit Wildlife Trade
The transnational ivory trade continues to drive the decline of elephant populations across Africa, and trafficking networks remain difficult to disrupt. Tusks seized by law enforcement officials carry forensic information on the traffickers responsible for their export, including DNA evidence and handwritten markings made by traffickers. For 20 years, analyses of tusk DNA have identified where elephants were poached and established connections among shipments of ivory. While the links established using genetic evidence are extremely conclusive, genetic data is expensive and sometimes impossible to obtain. But though handwritten markings are easy to photograph, they are rarely documented or analyzed. Here, we present an AI-driven pipeline for extracting and analyzing handwritten markings on seized elephant tusks, offering a novel, scalable, and low-cost source of forensic evidence. Having collected 6,085 photographs from eight large seizures of ivory over a 6-year period (2014-2019), we used an object detection model to extract over 17,000 individual markings, which were then labeled and described using state-of-the-art AI tools. We identified 184 recurring "signature markings" that connect the tusks on which they appear. 20 signature markings were observed in multiple seizures, establishing forensic links between these seizures through traffickers involved in both shipments. This work complements other investigative techniques by filling in gaps where other data sources are unavailable. The study demonstrates the transformative potential of AI in wildlife forensics and highlights practical steps for integrating handwriting analysis into efforts to disrupt organized wildlife crime.
comment: Submitted. 13 pages, 5 figures, 4 tables
☆ Data-Efficient Learning for Generalizable Surgical Video Understanding
Advances in surgical video analysis are transforming operating rooms into intelligent, data-driven environments. Computer-assisted systems support full surgical workflow, from preoperative planning to intraoperative guidance and postoperative assessment. However, developing robust and generalizable models for surgical video understanding remains challenging due to (I) annotation scarcity, (II) spatiotemporal complexity, and (III) domain gap across procedures and institutions. This doctoral research aims to bridge the gap between deep learning-based surgical video analysis in research and its real-world clinical deployment. To address the core challenge of recognizing surgical phases, actions, and events, critical for analysis, I benchmarked state-of-the-art neural network architectures to identify the most effective designs for each task. I further improved performance by proposing novel architectures and integrating advanced modules. Given the high cost of expert annotations and the domain gap across surgical video sources, I focused on reducing reliance on labeled data. We developed semi-supervised frameworks that improve model performance across tasks by leveraging large amounts of unlabeled surgical video. We introduced novel semi-supervised frameworks, including DIST, SemiVT-Surge, and ENCORE, that achieved state-of-the-art results on challenging surgical datasets by leveraging minimal labeled data and enhancing model training through dynamic pseudo-labeling. To support reproducibility and advance the field, we released two multi-task datasets: GynSurg, the largest gynecologic laparoscopy dataset, and Cataract-1K, the largest cataract surgery video dataset. Together, this work contributes to robust, data-efficient, and clinically scalable solutions for surgical video analysis, laying the foundation for generalizable AI systems that can meaningfully impact surgical care and training.
☆ Explainable AI Technique in Lung Cancer Detection Using Convolutional Neural Networks
Early detection of lung cancer is critical to improving survival outcomes. We present a deep learning framework for automated lung cancer screening from chest computed tomography (CT) images with integrated explainability. Using the IQ-OTH/NCCD dataset (1,197 scans across Normal, Benign, and Malignant classes), we evaluate a custom convolutional neural network (CNN) and three fine-tuned transfer learning backbones: DenseNet121, ResNet152, and VGG19. Models are trained with cost-sensitive learning to mitigate class imbalance and evaluated via accuracy, precision, recall, F1-score, and ROC-AUC. While ResNet152 achieved the highest accuracy (97.3%), DenseNet121 provided the best overall balance in precision, recall, and F1 (up to 92%, 90%, 91%, respectively). We further apply Shapley Additive Explanations (SHAP) to visualize evidence contributing to predictions, improving clinical transparency. Results indicate that CNN-based approaches augmented with explainability can provide fast, accurate, and interpretable support for lung cancer screening, particularly in resource-limited settings.
comment: 11 pages, 9 figures, 4 tables. Undergraduate research project report
☆ SynSpill: Improved Industrial Spill Detection With Synthetic Data ICCV
Large-scale Vision-Language Models (VLMs) have transformed general-purpose visual recognition through strong zero-shot capabilities. However, their performance degrades significantly in niche, safety-critical domains such as industrial spill detection, where hazardous events are rare, sensitive, and difficult to annotate. This scarcity -- driven by privacy concerns, data sensitivity, and the infrequency of real incidents -- renders conventional fine-tuning of detectors infeasible for most industrial settings. We address this challenge by introducing a scalable framework centered on a high-quality synthetic data generation pipeline. We demonstrate that this synthetic corpus enables effective Parameter-Efficient Fine-Tuning (PEFT) of VLMs and substantially boosts the performance of state-of-the-art object detectors such as YOLO and DETR. Notably, in the absence of synthetic data (SynSpill dataset), VLMs still generalize better to unseen spill scenarios than these detectors. When SynSpill is used, both VLMs and detectors achieve marked improvements, with their performance becoming comparable. Our results underscore that high-fidelity synthetic data is a powerful means to bridge the domain gap in safety-critical applications. The combination of synthetic generation and lightweight adaptation offers a cost-effective, scalable pathway for deploying vision systems in industrial environments where real data is scarce/impractical to obtain. Project Page: https://synspill.vercel.app
comment: Accepted at ICCV (VISION'25 Workshop) 2025
☆ Improving watermelon (Citrullus lanatus) disease classification with generative artificial intelligence (GenAI)-based synthetic and real-field images via a custom EfficientNetV2-L model
The current advancements in generative artificial intelligence (GenAI) models have paved the way for new possibilities for generating high-resolution synthetic images, thereby offering a promising alternative to traditional image acquisition for training computer vision models in agriculture. In the context of crop disease diagnosis, GenAI models are being used to create synthetic images of various diseases, potentially facilitating model creation and reducing the dependency on resource-intensive in-field data collection. However, limited research has been conducted on evaluating the effectiveness of integrating real with synthetic images to improve disease classification performance. Therefore, this study aims to investigate whether combining a limited number of real images with synthetic images can enhance the prediction accuracy of an EfficientNetV2-L model for classifying watermelon \textit{(Citrullus lanatus)} diseases. The training dataset was divided into five treatments: H0 (only real images), H1 (only synthetic images), H2 (1:1 real-to-synthetic), H3 (1:10 real-to-synthetic), and H4 (H3 + random images to improve variability and model generalization). All treatments were trained using a custom EfficientNetV2-L architecture with enhanced fine-tuning and transfer learning techniques. Models trained on H2, H3, and H4 treatments demonstrated high precision, recall, and F1-score metrics. Additionally, the weighted F1-score increased from 0.65 (on H0) to 1.00 (on H3-H4) signifying that the addition of a small number of real images with a considerable volume of synthetic images improved model performance and generalizability. Overall, this validates the findings that synthetic images alone cannot adequately substitute for real images; instead, both must be used in a hybrid manner to maximize model performance for crop disease classification.
☆ MANGO: Multimodal Attention-based Normalizing Flow Approach to Fusion Learning
Multimodal learning has gained much success in recent years. However, current multimodal fusion methods adopt the attention mechanism of Transformers to implicitly learn the underlying correlation of multimodal features. As a result, the multimodal model cannot capture the essential features of each modality, making it difficult to comprehend complex structures and correlations of multimodal inputs. This paper introduces a novel Multimodal Attention-based Normalizing Flow (MANGO) approach\footnote{The source code of this work will be publicly available.} to developing explicit, interpretable, and tractable multimodal fusion learning. In particular, we propose a new Invertible Cross-Attention (ICA) layer to develop the Normalizing Flow-based Model for multimodal data. To efficiently capture the complex, underlying correlations in multimodal data in our proposed invertible cross-attention layer, we propose three new cross-attention mechanisms: Modality-to-Modality Cross-Attention (MMCA), Inter-Modality Cross-Attention (IMCA), and Learnable Inter-Modality Cross-Attention (LICA). Finally, we introduce a new Multimodal Attention-based Normalizing Flow to enable the scalability of our proposed method to high-dimensional multimodal data. Our experimental results on three different multimodal learning tasks, i.e., semantic segmentation, image-to-image translation, and movie genre classification, have illustrated the state-of-the-art (SoTA) performance of the proposed approach.
☆ Deep Learning Enables Large-Scale Shape and Appearance Modeling in Total-Body DXA Imaging MICCAI 2025
Total-body dual X-ray absorptiometry (TBDXA) imaging is a relatively low-cost whole-body imaging modality, widely used for body composition assessment. We develop and validate a deep learning method for automatic fiducial point placement on TBDXA scans using 1,683 manually-annotated TBDXA scans. The method achieves 99.5% percentage correct keypoints in an external testing dataset. To demonstrate the value for shape and appearance modeling (SAM), our method is used to place keypoints on 35,928 scans for five different TBDXA imaging modes, then associations with health markers are tested in two cohorts not used for SAM model generation using two-sample Kolmogorov-Smirnov tests. SAM feature distributions associated with health biomarkers are shown to corroborate existing evidence and generate new hypotheses on body composition and shape's relationship to various frailty, metabolic, inflammation, and cardiometabolic health markers. Evaluation scripts, model weights, automatic point file generation code, and triangulation files are available at https://github.com/hawaii-ai/dxa-pointplacement.
comment: Preprint of manuscript accepted to the ShapeMI workshop at MICCAI 2025
☆ From Intent to Execution: Multimodal Chain-of-Thought Reinforcement Learning for Precise CAD Code Generation
Computer-Aided Design (CAD) plays a vital role in engineering and manufacturing, yet current CAD workflows require extensive domain expertise and manual modeling effort. Recent advances in large language models (LLMs) have made it possible to generate code from natural language, opening new opportunities for automating parametric 3D modeling. However, directly translating human design intent into executable CAD code remains highly challenging, due to the need for logical reasoning, syntactic correctness, and numerical precision. In this work, we propose CAD-RL, a multimodal Chain-of-Thought (CoT) guided reinforcement learning post training framework for CAD modeling code generation. Our method combines CoT-based Cold Start with goal-driven reinforcement learning post training using three task-specific rewards: executability reward, geometric accuracy reward, and external evaluation reward. To ensure stable policy learning under sparse and high-variance reward conditions, we introduce three targeted optimization strategies: Trust Region Stretch for improved exploration, Precision Token Loss for enhanced dimensions parameter accuracy, and Overlong Filtering to reduce noisy supervision. To support training and benchmarking, we release ExeCAD, a noval dataset comprising 16,540 real-world CAD examples with paired natural language and structured design language descriptions, executable CADQuery scripts, and rendered 3D models. Experiments demonstrate that CAD-RL achieves significant improvements in reasoning quality, output precision, and code executability over existing VLMs.
☆ Interpretable Oracle Bone Script Decipherment through Radical and Pictographic Analysis with LVLMs
As the oldest mature writing system, Oracle Bone Script (OBS) has long posed significant challenges for archaeological decipherment due to its rarity, abstractness, and pictographic diversity. Current deep learning-based methods have made exciting progress on the OBS decipherment task, but existing approaches often ignore the intricate connections between glyphs and the semantics of OBS. This results in limited generalization and interpretability, especially when addressing zero-shot settings and undeciphered OBS. To this end, we propose an interpretable OBS decipherment method based on Large Vision-Language Models, which synergistically combines radical analysis and pictograph-semantic understanding to bridge the gap between glyphs and meanings of OBS. Specifically, we propose a progressive training strategy that guides the model from radical recognition and analysis to pictographic analysis and mutual analysis, thus enabling reasoning from glyph to meaning. We also design a Radical-Pictographic Dual Matching mechanism informed by the analysis results, significantly enhancing the model's zero-shot decipherment performance. To facilitate model training, we propose the Pictographic Decipherment OBS Dataset, which comprises 47,157 Chinese characters annotated with OBS images and pictographic analysis texts. Experimental results on public benchmarks demonstrate that our approach achieves state-of-the-art Top-10 accuracy and superior zero-shot decipherment capabilities. More importantly, our model delivers logical analysis processes, possibly providing archaeologically valuable reference results for undeciphered OBS, and thus has potential applications in digital humanities and historical research. The dataset and code will be released in https://github.com/PKXX1943/PD-OBS.
☆ Empowering Morphing Attack Detection using Interpretable Image-Text Foundation Model
Morphing attack detection has become an essential component of face recognition systems for ensuring a reliable verification scenario. In this paper, we present a multimodal learning approach that can provide a textual description of morphing attack detection. We first show that zero-shot evaluation of the proposed framework using Contrastive Language-Image Pretraining (CLIP) can yield not only generalizable morphing attack detection, but also predict the most relevant text snippet. We present an extensive analysis of ten different textual prompts that include both short and long textual prompts. These prompts are engineered by considering the human understandable textual snippet. Extensive experiments were performed on a face morphing dataset that was developed using a publicly available face biometric dataset. We present an evaluation of SOTA pre-trained neural networks together with the proposed framework in the zero-shot evaluation of five different morphing generation techniques that are captured in three different mediums.
☆ DINOv3
Self-supervised learning holds the promise of eliminating the need for manual data annotation, enabling models to scale effortlessly to massive datasets and larger architectures. By not being tailored to specific tasks or domains, this training paradigm has the potential to learn visual representations from diverse sources, ranging from natural to aerial images -- using a single algorithm. This technical report introduces DINOv3, a major milestone toward realizing this vision by leveraging simple yet effective strategies. First, we leverage the benefit of scaling both dataset and model size by careful data preparation, design, and optimization. Second, we introduce a new method called Gram anchoring, which effectively addresses the known yet unsolved issue of dense feature maps degrading during long training schedules. Finally, we apply post-hoc strategies that further enhance our models' flexibility with respect to resolution, model size, and alignment with text. As a result, we present a versatile vision foundation model that outperforms the specialized state of the art across a broad range of settings, without fine-tuning. DINOv3 produces high-quality dense features that achieve outstanding performance on various vision tasks, significantly surpassing previous self- and weakly-supervised foundation models. We also share the DINOv3 suite of vision models, designed to advance the state of the art on a wide spectrum of tasks and data by providing scalable solutions for diverse resource constraints and deployment scenarios.
☆ Stochastic-based Patch Filtering for Few-Shot Learning CVPR
Food images present unique challenges for few-shot learning models due to their visual complexity and variability. For instance, a pasta dish might appear with various garnishes on different plates and in diverse lighting conditions and camera perspectives. This problem leads to losing focus on the most important elements when comparing the query with support images, resulting in misclassification. To address this issue, we propose Stochastic-based Patch Filtering for Few-Shot Learning (SPFF) to attend to the patch embeddings that show greater correlation with the class representation. The key concept of SPFF involves the stochastic filtering of patch embeddings, where patches less similar to the class-aware embedding are more likely to be discarded. With patch embedding filtered according to the probability of appearance, we use a similarity matrix that quantifies the relationship between the query image and its respective support images. Through a qualitative analysis, we demonstrate that SPFF effectively focuses on patches where class-specific food features are most prominent while successfully filtering out non-relevant patches. We validate our approach through extensive experiments on few-shot classification benchmarks: Food-101, VireoFood-172 and UECFood-256, outperforming the existing SoA methods.
comment: CVPR Workshop MetaFood 2025
♻ ☆ Training-Free Text-Guided Color Editing with Multi-Modal Diffusion Transformer
Text-guided color editing in images and videos is a fundamental yet unsolved problem, requiring fine-grained manipulation of color attributes, including albedo, light source color, and ambient lighting, while preserving physical consistency in geometry, material properties, and light-matter interactions. Existing training-free methods offer broad applicability across editing tasks but struggle with precise color control and often introduce visual inconsistency in both edited and non-edited regions. In this work, we present ColorCtrl, a training-free color editing method that leverages the attention mechanisms of modern Multi-Modal Diffusion Transformers (MM-DiT). By disentangling structure and color through targeted manipulation of attention maps and value tokens, our method enables accurate and consistent color editing, along with word-level control of attribute intensity. Our method modifies only the intended regions specified by the prompt, leaving unrelated areas untouched. Extensive experiments on both SD3 and FLUX.1-dev demonstrate that ColorCtrl outperforms existing training-free approaches and achieves state-of-the-art performances in both edit quality and consistency. Furthermore, our method surpasses strong commercial models such as FLUX.1 Kontext Max and GPT-4o Image Generation in terms of consistency. When extended to video models like CogVideoX, our approach exhibits greater advantages, particularly in maintaining temporal coherence and editing stability. Finally, our method also generalizes to instruction-based editing diffusion models such as Step1X-Edit and FLUX.1 Kontext dev, further demonstrating its versatility.
♻ ☆ LM-MCVT: A Lightweight Multi-modal Multi-view Convolutional-Vision Transformer Approach for 3D Object Recognition
In human-centered environments such as restaurants, homes, and warehouses, robots often face challenges in accurately recognizing 3D objects. These challenges stem from the complexity and variability of these environments, including diverse object shapes. In this paper, we propose a novel Lightweight Multi-modal Multi-view Convolutional-Vision Transformer network (LM-MCVT) to enhance 3D object recognition in robotic applications. Our approach leverages the Globally Entropy-based Embeddings Fusion (GEEF) method to integrate multi-views efficiently. The LM-MCVT architecture incorporates pre- and mid-level convolutional encoders and local and global transformers to enhance feature extraction and recognition accuracy. We evaluate our method on the synthetic ModelNet40 dataset and achieve a recognition accuracy of 95.6% using a four-view setup, surpassing existing state-of-the-art methods. To further validate its effectiveness, we conduct 5-fold cross-validation on the real-world OmniObject3D dataset using the same configuration. Results consistently show superior performance, demonstrating the method's robustness in 3D object recognition across synthetic and real-world 3D data.
♻ ☆ When Deepfakes Look Real: Detecting AI-Generated Faces with Unlabeled Data due to Annotation Challenges
Existing deepfake detection methods heavily depend on labeled training data. However, as AI-generated content becomes increasingly realistic, even \textbf{human annotators struggle to distinguish} between deepfakes and authentic images. This makes the labeling process both time-consuming and less reliable. Specifically, there is a growing demand for approaches that can effectively utilize large-scale unlabeled data from online social networks. Unlike typical unsupervised learning tasks, where categories are distinct, AI-generated faces closely mimic real image distributions and share strong similarities, causing performance drop in conventional strategies. In this paper, we introduce the Dual-Path Guidance Network (DPGNet), to tackle two key challenges: (1) bridging the domain gap between faces from different generation models, and (2) utilizing unlabeled image samples. The method features two core modules: text-guided cross-domain alignment, which uses learnable prompts to unify visual and textual embeddings into a domain-invariant feature space, and curriculum-driven pseudo label generation, which dynamically exploit more informative unlabeled samples. To prevent catastrophic forgetting, we also facilitate bridging between domains via cross-domain knowledge distillation. Extensive experiments on \textbf{11 popular datasets}, show that DPGNet outperforms SoTA approaches by \textbf{6.3\%}, highlighting its effectiveness in leveraging unlabeled data to address the annotation challenges posed by the increasing realism of deepfakes.
comment: 10pages,5figures
♻ ☆ See the Forest and the Trees: A Synergistic Reasoning Framework for Knowledge-Based Visual Question Answering
Multimodal Large Language Models (MLLMs) have pushed the frontiers of Knowledge-Based Visual Question Answering (KBVQA), yet their reasoning is fundamentally bottlenecked by a reliance on uni-dimensional evidence. This "seeing only the trees, but not the forest" approach prevents robust, multi-faceted understanding. Inspired by the principle of seeing both the forest and trees, we propose Synergos-VQA, a novel synergistic reasoning framework. At its core, Synergos-VQA concurrently generates and fuses three complementary evidence streams at inference time: (1) Holistic Evidence to perceive the entire scene (the "forest"), (2) Structural Evidence from a prototype-driven module to identify key objects (the "trees"), and (3) Causal Evidence from a counterfactual probe to ensure the reasoning is robustly grounded. By synergistically fusing this multi-faceted evidence, our framework achieves a more comprehensive and reliable reasoning process. Extensive experiments show that Synergos-VQA decisively establishes a new state-of-the-art on three challenging benchmarks, including OK-VQA and A-OKVQA. Furthermore, our approach demonstrates strong plug-and-play capabilities, significantly boosting various open-source MLLMs and proving that superior methodological design can outperform sheer model scale.
comment: We are withdrawing this preprint because it is undergoing a major revision and restructuring. We feel that the current version does not convey our core contributions and methodology with sufficient clarity and accuracy
♻ ☆ PAD-F: Prior-Aware Debiasing Framework for Long-Tailed X-ray Prohibited Item Detection
Detecting prohibited items in X-ray security imagery is a challenging yet crucial task. With the rapid advancement of deep learning, object detection algorithms have been widely applied in this area. However, the distribution of object classes in real-world prohibited item detection scenarios often exhibits a distinct long-tailed distribution. Due to the unique principles of X-ray imaging, conventional methods for long-tailed object detection are often ineffective in this domain. To tackle these challenges, we introduce the Prior-Aware Debiasing Framework (PAD-F), a novel approach that employs a two-pronged strategy leveraging both material and co-occurrence priors. At the data level, our Explicit Material-Aware Augmentation (EMAA) component generates numerous challenging training samples for tail classes. It achieves this through a placement strategy guided by material-specific absorption rates and a gradient-based Poisson blending technique. At the feature level, the Implicit Co-occurrence Aggregator (ICA) acts as a plug-in module that enhances features for ambiguous objects by implicitly learning and aggregating statistical co-occurrence relationships within the image. Extensive experiments on the HiXray and PIDray datasets demonstrate that PAD-F significantly boosts the performance of multiple popular detectors. It achieves an absolute improvement of up to +17.2% in AP50 for tail classes and comprehensively outperforms existing state-of-the-art methods. Our work provides an effective and versatile solution to the critical problem of long-tailed detection in X-ray security.
comment: 9 pages, 5 figures
♻ ☆ On the Reliability of Vision-Language Models Under Adversarial Frequency-Domain Perturbations
Vision-Language Models (VLMs) are increasingly used as perceptual modules for visual content reasoning, including through captioning and DeepFake detection. In this work, we expose a critical vulnerability of VLMs when exposed to subtle, structured perturbations in the frequency domain. Specifically, we highlight how these feature transformations undermine authenticity/DeepFake detection and automated image captioning tasks. We design targeted image transformations, operating in the frequency domain to systematically adjust VLM outputs when exposed to frequency-perturbed real and synthetic images. We demonstrate that the perturbation injection method generalizes across five state-of-the-art VLMs which includes different-parameter Qwen2/2.5 and BLIP models. Experimenting across ten real and generated image datasets reveals that VLM judgments are sensitive to frequency-based cues and may not wholly align with semantic content. Crucially, we show that visually-imperceptible spatial frequency transformations expose the fragility of VLMs deployed for automated image captioning and authenticity detection tasks. Our findings under realistic, black-box constraints challenge the reliability of VLMs, underscoring the need for robust multimodal perception systems.
comment: Keywords: Vision-Language Models, Frequency-Domain Perturbations, Adversarial Robustness, Image Authenticity, Reliability
♻ ☆ Transferable Model-agnostic Vision-Language Model Adaptation for Efficient Weak-to-Strong Generalization
Vision-Language Models (VLMs) have been widely used in various visual recognition tasks due to their remarkable generalization capabilities. As these models grow in size and complexity, fine-tuning becomes costly, emphasizing the need to reuse adaptation knowledge from 'weaker' models to efficiently enhance 'stronger' ones. However, existing adaptation transfer methods exhibit limited transferability across models due to their model-specific design and high computational demands. To tackle this, we propose Transferable Model-agnostic adapter (TransMiter), a light-weight adapter that improves vision-language models 'without backpropagation'. TransMiter captures the knowledge gap between pre-trained and fine-tuned VLMs, in an 'unsupervised' manner. Once trained, this knowledge can be seamlessly transferred across different models without the need for backpropagation. Moreover, TransMiter consists of only a few layers, inducing a negligible additional inference cost. Notably, supplementing the process with a few labeled data further yields additional performance gain, often surpassing a fine-tuned stronger model, with a marginal training cost. Experimental results and analyses demonstrate that TransMiter effectively and efficiently transfers adaptation knowledge while preserving generalization abilities across VLMs of different sizes and architectures in visual recognition tasks.
♻ ☆ Yan: Foundational Interactive Video Generation
We present Yan, a foundational framework for interactive video generation, covering the entire pipeline from simulation and generation to editing. Specifically, Yan comprises three core modules. AAA-level Simulation: We design a highly-compressed, low-latency 3D-VAE coupled with a KV-cache-based shift-window denoising inference process, achieving real-time 1080P/60FPS interactive simulation. Multi-Modal Generation: We introduce a hierarchical autoregressive caption method that injects game-specific knowledge into open-domain multi-modal video diffusion models (VDMs), then transforming the VDM into a frame-wise, action-controllable, real-time infinite interactive video generator. Notably, when the textual and visual prompts are sourced from different domains, the model demonstrates strong generalization, allowing it to blend and compose the style and mechanics across domains flexibly according to user prompts. Multi-Granularity Editing: We propose a hybrid model that explicitly disentangles interactive mechanics simulation from visual rendering, enabling multi-granularity video content editing during interaction through text. Collectively, Yan offers an integration of these modules, pushing interactive video generation beyond isolated capabilities toward a comprehensive AI-driven interactive creation paradigm, paving the way for the next generation of creative tools, media, and entertainment. The project page is: https://greatx3.github.io/Yan/.
♻ ☆ CD-TVD: Contrastive Diffusion for 3D Super-Resolution with Scarce High-Resolution Time-Varying Data IEEE VIS 2025
Large-scale scientific simulations require significant resources to generate high-resolution time-varying data (TVD). While super-resolution is an efficient post-processing strategy to reduce costs, existing methods rely on a large amount of HR training data, limiting their applicability to diverse simulation scenarios. To address this constraint, we proposed CD-TVD, a novel framework that combines contrastive learning and an improved diffusion-based super-resolution model to achieve accurate 3D super-resolution from limited time-step high-resolution data. During pre-training on historical simulation data, the contrastive encoder and diffusion superresolution modules learn degradation patterns and detailed features of high-resolution and low-resolution samples. In the training phase, the improved diffusion model with a local attention mechanism is fine-tuned using only one newly generated high-resolution timestep, leveraging the degradation knowledge learned by the encoder. This design minimizes the reliance on large-scale high-resolution datasets while maintaining the capability to recover fine-grained details. Experimental results on fluid and atmospheric simulation datasets confirm that CD-TVD delivers accurate and resource-efficient 3D super-resolution, marking a significant advancement in data augmentation for large-scale scientific simulations. The code is available at https://github.com/Xin-Gao-private/CD-TVD.
comment: Accepted to IEEE VIS 2025
♻ ☆ CoherenDream: Boosting Holistic Text Coherence in 3D Generation via Multimodal Large Language Models Feedback
Score Distillation Sampling (SDS) has achieved remarkable success in text-to-3D content generation. However, SDS-based methods struggle to maintain semantic fidelity for user prompts, particularly when involving multiple objects with intricate interactions. While existing approaches often address 3D consistency through multiview diffusion model fine-tuning on 3D datasets, this strategy inadvertently exacerbates text-3D alignment degradation. The limitation stems from SDS's inherent accumulation of view-independent biases during optimization, which progressively diverges from the ideal text alignment direction. To alleviate this limitation, we propose a novel SDS objective, dubbed as Textual Coherent Score Distillation (TCSD), which integrates alignment feedback from multimodal large language models (MLLMs). Our TCSD leverages cross-modal understanding capabilities of MLLMs to assess and guide the text-3D correspondence during the optimization. We further develop 3DLLaVA-CRITIC - a fine-tuned MLLM specialized for evaluating multiview text alignment in 3D generations. Additionally, we introduce an LLM-layout initialization that significantly accelerates optimization convergence through semantic-aware spatial configuration. Our framework, CoherenDream, achieves consistent improvement across multiple metrics on TIFA subset.As the first study to incorporate MLLMs into SDS optimization, we also conduct extensive ablation studies to explore optimal MLLM adaptations for 3D generation tasks.
♻ ☆ MIND: A Noise-Adaptive Denoising Framework for Medical Images Integrating Multi-Scale Transformer SP 2025
The core role of medical images in disease diagnosis makes their quality directly affect the accuracy of clinical judgment. However, due to factors such as low-dose scanning, equipment limitations and imaging artifacts, medical images are often accompanied by non-uniform noise interference, which seriously affects structure recognition and lesion detection. This paper proposes a medical image adaptive denoising model (MI-ND) that integrates multi-scale convolutional and Transformer architecture, introduces a noise level estimator (NLE) and a noise adaptive attention module (NAAB), and realizes channel-spatial attention regulation and cross-modal feature fusion driven by noise perception. Systematic testing is carried out on multimodal public datasets. Experiments show that this method significantly outperforms the comparative methods in image quality indicators such as PSNR, SSIM, and LPIPS, and improves the F1 score and ROC-AUC in downstream diagnostic tasks, showing strong prac-tical value and promotional potential. The model has outstanding benefits in structural recovery, diagnostic sensitivity, and cross-modal robustness, and provides an effective solution for medical image enhancement and AI-assisted diagnosis and treatment.
comment: Accepted by the 7th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP 2025). 6 pages, 6 figures
♻ ☆ Multi-view Normal and Distance Guidance Gaussian Splatting for Surface Reconstruction IROS 2025
3D Gaussian Splatting (3DGS) achieves remarkable results in the field of surface reconstruction. However, when Gaussian normal vectors are aligned within the single-view projection plane, while the geometry appears reasonable in the current view, biases may emerge upon switching to nearby views. To address the distance and global matching challenges in multi-view scenes, we design multi-view normal and distance-guided Gaussian splatting. This method achieves geometric depth unification and high-accuracy reconstruction by constraining nearby depth maps and aligning 3D normals. Specifically, for the reconstruction of small indoor and outdoor scenes, we propose a multi-view distance reprojection regularization module that achieves multi-view Gaussian alignment by computing the distance loss between two nearby views and the same Gaussian surface. Additionally, we develop a multi-view normal enhancement module, which ensures consistency across views by matching the normals of pixel points in nearby views and calculating the loss. Extensive experimental results demonstrate that our method outperforms the baseline in both quantitative and qualitative evaluations, significantly enhancing the surface reconstruction capability of 3DGS. Our code will be made publicly available at (https://github.com/Bistu3DV/MND-GS/).
comment: This paper has been accepted by IROS 2025. Code: https://github.com/Bistu3DV/MND-GS/
♻ ☆ Video SimpleQA: Towards Factuality Evaluation in Large Video Language Models
Recent advancements in Large Video Language Models (LVLMs) have highlighted their potential for multi-modal understanding, yet evaluating their factual grounding in videos remains a critical unsolved challenge. To address this gap, we introduce Video SimpleQA, the first comprehensive benchmark tailored for factuality evaluation in video contexts. Our work differs from existing video benchmarks through the following key features: 1) Knowledge required: demanding integration of external knowledge beyond the video's explicit narrative; 2) Multi-hop fact-seeking question: Each question involves multiple explicit facts and requires strict factual grounding without hypothetical or subjective inferences. We also include per-hop single-fact-based sub-QAs alongside final QAs to enable fine-grained, stepby-step evaluation; 3) Short-form definitive answer: Answers are crafted as unambiguous and definitively correct in a short format with minimal scoring variance; 4) Temporal grounded required: Requiring answers to rely on one or more temporal segments in videos, rather than single frames. We extensively evaluate 33 state-of-the-art LVLMs and summarize key findings as follows: 1) Current LVLMs exhibit notable deficiencies in factual adherence, with the best-performing model o3 merely achieving an F-score of 66.3%; 2) Most LVLMs are overconfident in what they generate, with self-stated confidence exceeding actual accuracy; 3) Retrieval-augmented generation demonstrates consistent improvements at the cost of additional inference time overhead; 4) Multi-hop QA demonstrates substantially degraded performance compared to single-hop sub-QAs, with first-hop object or event recognition emerging as the primary bottleneck. We position Video SimpleQA as the cornerstone benchmark for video factuality assessment, aiming to steer LVLM development toward verifiable grounding in real-world contexts.
♻ ☆ LayerTracer: Cognitive-Aligned Layered SVG Synthesis via Diffusion Transformer
Generating cognitive-aligned layered SVGs remains challenging due to existing methods' tendencies toward either oversimplified single-layer outputs or optimization-induced shape redundancies. We propose LayerTracer, a diffusion transformer based framework that bridges this gap by learning designers' layered SVG creation processes from a novel dataset of sequential design operations. Our approach operates in two phases: First, a text-conditioned DiT generates multi-phase rasterized construction blueprints that simulate human design workflows. Second, layer-wise vectorization with path deduplication produces clean, editable SVGs. For image vectorization, we introduce a conditional diffusion mechanism that encodes reference images into latent tokens, guiding hierarchical reconstruction while preserving structural integrity. Extensive experiments demonstrate LayerTracer's superior performance against optimization-based and neural baselines in both generation quality and editability, effectively aligning AI-generated vectors with professional design cognition.
♻ ☆ GenAI Confessions: Black-box Membership Inference for Generative Image Models
From a simple text prompt, generative-AI image models can create stunningly realistic and creative images bounded, it seems, by only our imagination. These models have achieved this remarkable feat thanks, in part, to the ingestion of billions of images collected from nearly every corner of the internet. Many creators have understandably expressed concern over how their intellectual property has been ingested without their permission or a mechanism to opt out of training. As a result, questions of fair use and copyright infringement have quickly emerged. We describe a method that allows us to determine if a model was trained on a specific image or set of images. This method is computationally efficient and assumes no explicit knowledge of the model architecture or weights (so-called black-box membership inference). We anticipate that this method will be crucial for auditing existing models and, looking ahead, ensuring the fairer development and deployment of generative AI models.
comment: https://genai-confessions.github.io
♻ ☆ SpaCE-10: A Comprehensive Benchmark for Multimodal Large Language Models in Compositional Spatial Intelligence
Multimodal Large Language Models (MLLMs) have achieved remarkable progress in various multimodal tasks. To pursue higher intelligence in space, MLLMs require integrating multiple atomic spatial capabilities to handle complex and dynamic tasks. However, existing benchmarks struggle to comprehensively evaluate the spatial intelligence of common MLLMs from the atomic level to the compositional level. To fill this gap, we present SpaCE-10, a comprehensive benchmark for compositional spatial evaluations. In SpaCE-10, we define 10 atomic spatial capabilities, which are combined to form 8 compositional capabilities. Based on these definitions, we propose a novel hierarchical annotation pipeline to generate high-quality and diverse question-answer (QA) pairs. With over 150+ hours of human expert effort, we obtain over 5k QA pairs for 811 real indoor scenes in SpaCE-10, which covers various evaluation settings like point cloud input and multi-choice QA. We conduct an extensive evaluation of common MLLMs on SpaCE-10 and find that even the most advanced MLLM still lags behind humans by large margins. Through our careful study, we also draw several significant findings that benefit the MLLM community. For example, we reveal that the shortcoming of counting capability greatly limits the compositional spatial capabilities of existing MLLMs. The evaluation code and benchmark datasets are available at https://github.com/Cuzyoung/SpaCE-10.
♻ ☆ Grounding Emotion Recognition with Visual Prototypes: VEGA -- Revisiting CLIP in MERC ACM MM
Multimodal Emotion Recognition in Conversations remains a challenging task due to the complex interplay of textual, acoustic and visual signals. While recent models have improved performance via advanced fusion strategies, they often lack psychologically meaningful priors to guide multimodal alignment. In this paper, we revisit the use of CLIP and propose a novel Visual Emotion Guided Anchoring (VEGA) mechanism that introduces class-level visual semantics into the fusion and classification process. Distinct from prior work that primarily utilizes CLIP's textual encoder, our approach leverages its image encoder to construct emotion-specific visual anchors based on facial exemplars. These anchors guide unimodal and multimodal features toward a perceptually grounded and psychologically aligned representation space, drawing inspiration from cognitive theories (prototypical emotion categories and multisensory integration). A stochastic anchor sampling strategy further enhances robustness by balancing semantic stability and intra-class diversity. Integrated into a dual-branch architecture with self-distillation, our VEGA-augmented model achieves sota performance on IEMOCAP and MELD. Code is available at: https://github.com/dkollias/VEGA.
comment: accepted for publication at ACM Multimedia (ACM MM) 2025
♻ ☆ ViewDelta: Scaling Scene Change Detection through Text-Conditioning
We introduce a generalized framework for Scene Change Detection (SCD) that addresses the core ambiguity of distinguishing "relevant" from "nuisance" changes, enabling effective joint training of a single model across diverse domains and applications. Existing methods struggle to generalize due to differences in dataset labeling, where changes such as vegetation growth or lane marking alterations may be labeled as relevant in one dataset and irrelevant in another. To resolve this ambiguity, we propose ViewDelta, a text conditioned change detection framework that uses natural language prompts to define relevant changes precisely, such as a single attribute, a specific set of classes, or all observable differences. To facilitate training in this paradigm, we release the Conditional Change Segmentation dataset (CSeg), the first large-scale synthetic dataset for text conditioned SCD, consisting of over 500,000 image pairs with more than 300,000 unique textual prompts describing relevant changes. Experiments demonstrate that a single ViewDelta model trained jointly on CSeg, SYSU-CD, PSCD, VL-CMU-CD, and their unaligned variants achieves performance competitive with or superior to dataset specific models, highlighting text conditioning as a powerful approach for generalizable SCD. Our code and dataset are available at https://joshuakgao.github.io/viewdelta/.
♻ ☆ RoHOI: Robustness Benchmark for Human-Object Interaction Detection
Human-Object Interaction (HOI) detection is crucial for robot-human assistance, enabling context-aware support. However, models trained on clean datasets degrade in real-world conditions due to unforeseen corruptions, leading to inaccurate prediction. To address this, we introduce the first robustness benchmark for HOI detection, evaluating model resilience under diverse challenges. Despite advances, current models struggle with environmental variability, occlusions, and noise. Our benchmark, RoHOI, includes 20 corruption types based on the HICO-DET and V-COCO datasets and a new robustness-focused metric. We systematically analyze existing models in the HOI field, revealing significant performance drops under corruptions. To improve robustness, we propose a Semantic-Aware Masking-based Progressive Learning (SAMPL) strategy to guide the model to be optimized based on holistic and partial cues, thus dynamically adjusting the model's optimization to enhance robust feature learning. Extensive experiments show that our approach outperforms state-of-the-art methods, setting a new standard for robust HOI detection. Benchmarks, datasets, and code will be made publicly available at https://github.com/Kratos-Wen/RoHOI.
comment: Benchmarks, datasets, and code will be made publicly available at https://github.com/Kratos-Wen/RoHOI
♻ ☆ Pretrained Reversible Generation as Unsupervised Visual Representation Learning ICCV 2025
Recent generative models based on score matching and flow matching have significantly advanced generation tasks, but their potential in discriminative tasks remains underexplored. Previous approaches, such as generative classifiers, have not fully leveraged the capabilities of these models for discriminative tasks due to their intricate designs. We propose Pretrained Reversible Generation (PRG), which extracts unsupervised representations by reversing the generative process of a pretrained continuous generation model. PRG effectively reuses unsupervised generative models, leveraging their high capacity to serve as robust and generalizable feature extractors for downstream tasks. This framework enables the flexible selection of feature hierarchies tailored to specific downstream tasks. Our method consistently outperforms prior approaches across multiple benchmarks, achieving state-of-the-art performance among generative model based methods, including 78% top-1 accuracy on ImageNet at a resolution of 64*64. Extensive ablation studies, including out-of-distribution evaluations, further validate the effectiveness of our approach.PRG is available at https://github.com/opendilab/PRG.
comment: Accepted by ICCV 2025
♻ ☆ CAS-IQA: Teaching Vision-Language Models for Synthetic Angiography Quality Assessment ICONIP 2025
Synthetic X-ray angiographies generated by modern generative models hold great potential to reduce the use of contrast agents in vascular interventional procedures. However, low-quality synthetic angiographies can significantly increase procedural risk, underscoring the need for reliable image quality assessment (IQA) methods. Existing IQA models, however, fail to leverage auxiliary images as references during evaluation and lack fine-grained, task-specific metrics necessary for clinical relevance. To address these limitations, this paper proposes CAS-IQA, a vision-language model (VLM)-based framework that predicts fine-grained quality scores by effectively incorporating auxiliary information from related images. In the absence of angiography datasets, CAS-3K is constructed, comprising 3,565 synthetic angiographies along with score annotations. To ensure clinically meaningful assessment, three task-specific evaluation metrics are defined. Furthermore, a Multi-path featUre fuSion and rouTing (MUST) module is designed to enhance image representations by adaptively fusing and routing visual tokens to metric-specific branches. Extensive experiments on the CAS-3K dataset demonstrate that CAS-IQA significantly outperforms state-of-the-art IQA methods by a considerable margin.
comment: Camera ready version for ICONIP 2025
♻ ☆ Are you Struggling? Dataset and Baselines for Struggle Determination in Assembly Videos
Determining when people are struggling allows for a finer-grained understanding of actions that complements conventional action classification and error detection. Struggle detection, as defined in this paper, is a distinct and important task that can be identified without explicit step or activity knowledge. We introduce the first struggle dataset with three real-world problem-solving activities that are labelled by both expert and crowd-source annotators. Video segments were scored w.r.t. their level of struggle using a forced choice 4-point scale. This dataset contains 5.1 hours of video from 73 participants. We conducted a series of experiments to identify the most suitable modelling approaches for struggle determination. Additionally, we compared various deep learning models, establishing baseline results for struggle classification, struggle regression, and struggle label distribution learning. Our results indicate that struggle detection in video can achieve up to $88.24\%$ accuracy in binary classification, while detecting the level of struggle in a four-way classification setting performs lower, with an overall accuracy of $52.45\%$. Our work is motivated toward a more comprehensive understanding of action in video and potentially the improvement of assistive systems that analyse struggle and can better support users during manual activities.
comment: Accepted by International Journal of Computer Vision (IJCV, 2025)
♻ ☆ Follow-Your-Motion: Video Motion Transfer via Efficient Spatial-Temporal Decoupled Finetuning
Recently, breakthroughs in the video diffusion transformer have shown remarkable capabilities in diverse motion generations. As for the motion-transfer task, current methods mainly use two-stage Low-Rank Adaptations (LoRAs) finetuning to obtain better performance. However, existing adaptation-based motion transfer still suffers from motion inconsistency and tuning inefficiency when applied to large video diffusion transformers. Naive two-stage LoRA tuning struggles to maintain motion consistency between generated and input videos due to the inherent spatial-temporal coupling in the 3D attention operator. Additionally, they require time-consuming fine-tuning processes in both stages. To tackle these issues, we propose Follow-Your-Motion, an efficient two-stage video motion transfer framework that finetunes a powerful video diffusion transformer to synthesize complex motion. Specifically, we propose a spatial-temporal decoupled LoRA to decouple the attention architecture for spatial appearance and temporal motion processing. During the second training stage, we design the sparse motion sampling and adaptive RoPE to accelerate the tuning speed. To address the lack of a benchmark for this field, we introduce MotionBench, a comprehensive benchmark comprising diverse motion, including creative camera motion, single object motion, multiple object motion, and complex human motion. We show extensive evaluations on MotionBench to verify the superiority of Follow-Your-Motion.
comment: project page: https://follow-your-motion.github.io/
♻ ☆ ProbRadarM3F: mmWave Radar based Human Skeletal Pose Estimation with Probability Map Guided Multi-Format Feature Fusion
Millimeter wave (mmWave) radar is a non-intrusive privacy and relatively convenient and inexpensive device, which has been demonstrated to be applicable in place of RGB cameras in human indoor pose estimation tasks. However, mmWave radar relies on the collection of reflected signals from the target, and the radar signals containing information is difficult to be fully applied. This has been a long-standing hindrance to the improvement of pose estimation accuracy. To address this major challenge, this paper introduces a probability map guided multi-format feature fusion model, ProbRadarM3F. This is a novel radar feature extraction framework using a traditional FFT method in parallel with a probability map based positional encoding method. ProbRadarM3F fuses the traditional heatmap features and the positional features, then effectively achieves the estimation of 14 keypoints of the human body. Experimental evaluation on the HuPR dataset proves the effectiveness of the model proposed in this paper, outperforming other methods experimented on this dataset with an AP of 69.9 %. The emphasis of our study is focusing on the position information that is not exploited before in radar singal. This provides direction to investigate other potential non-redundant information from mmWave rader.
♻ ☆ STAC: Leveraging Spatio-Temporal Data Associations For Efficient Cross-Camera Streaming and Analytics
In IoT based distributed network of cameras, real-time multi-camera video analytics is challenged by high bandwidth demands and redundant visual data, creating a fundamental tension where reducing data saves network overhead but can degrade model performance, and vice versa. We present STAC, a cross-cameras surveillance system that leverages spatio-temporal associations for efficient object tracking under constrained network conditions. STAC integrates multi-resolution feature learning, ensuring robustness under variable networked system level optimizations such as frame filtering, FFmpeg-based compression, and Region-of-Interest (RoI) masking, to eliminate redundant content across distributed video streams while preserving downstream model accuracy for object identification and tracking. Evaluated on NVIDIA's AICity Challenge dataset, STAC achieves a 76\% improvement in tracking accuracy and an 8.6x reduction in inference latency over a standard multi-object multi-camera tracking baseline (using YOLOv4 and DeepSORT). Furthermore, 29\% of redundant frames are filtered, significantly reducing data volume without compromising inference quality.
♻ ☆ Cryo-em images are intrinsically low dimensional
Simulation-based inference provides a powerful framework for cryo-electron microscopy, employing neural networks in methods like CryoSBI to infer biomolecular conformations via learned latent representations. This latent space represents a rich opportunity, encoding valuable information about the physical system and the inference process. Harnessing this potential hinges on understanding the underlying geometric structure of these representations. We investigate this structure by applying manifold learning techniques to CryoSBI representations of hemagglutinin (simulated and experimental). We reveal that these high-dimensional data inherently populate low-dimensional, smooth manifolds, with simulated data effectively covering the experimental counterpart. By characterizing the manifold's geometry using Diffusion Maps and identifying its principal axes of variation via coordinate interpretation methods, we establish a direct link between the latent structure and key physical parameters. Discovering this intrinsic low-dimensionality and interpretable geometric organization not only validates the CryoSBI approach but enables us to learn more from the data structure and provides opportunities for improving future inference strategies by exploiting this revealed manifold geometry.
♻ ☆ MGDFIS: Multi-scale Global-detail Feature Integration Strategy for Small Object Detection
Small object detection in UAV imagery is crucial for applications such as search-and-rescue, traffic monitoring, and environmental surveillance, but it is hampered by tiny object size, low signal-to-noise ratios, and limited feature extraction. Existing multi-scale fusion methods help, but add computational burden and blur fine details, making small object detection in cluttered scenes difficult. To overcome these challenges, we propose the Multi-scale Global-detail Feature Integration Strategy (MGDFIS), a unified fusion framework that tightly couples global context with local detail to boost detection performance while maintaining efficiency. MGDFIS comprises three synergistic modules: the FusionLock-TSS Attention Module, which marries token-statistics self-attention with DynamicTanh normalization to highlight spectral and spatial cues at minimal cost; the Global-detail Integration Module, which fuses multi-scale context via directional convolution and parallel attention while preserving subtle shape and texture variations; and the Dynamic Pixel Attention Module, which generates pixel-wise weighting maps to rebalance uneven foreground and background distributions and sharpen responses to true object regions. Extensive experiments on the VisDrone benchmark demonstrate that MGDFIS consistently outperforms state-of-the-art methods across diverse backbone architectures and detection frameworks, achieving superior precision and recall with low inference time. By striking an optimal balance between accuracy and resource usage, MGDFIS provides a practical solution for small-object detection on resource-constrained UAV platforms.
comment: 9 pages, 5 figures, 3 tables
♻ ☆ Explaining Caption-Image Interactions in CLIP Models with Second-Order Attributions
Dual encoder architectures like Clip models map two types of inputs into a shared embedding space and predict similarities between them. Despite their wide application, it is, however, not understood how these models compare their two inputs. Common first-order feature-attribution methods explain importances of individual features and can, thus, only provide limited insights into dual encoders, whose predictions depend on interactions between features. In this paper, we first derive a second-order method enabling the attribution of predictions by any differentiable dual encoder onto feature-interactions between its inputs. Second, we apply our method to Clip models and show that they learn fine-grained correspondences between parts of captions and regions in images. They match objects across input modes and also account for mismatches. This intrinsic visual-linguistic grounding ability, however, varies heavily between object classes, exhibits pronounced out-of-domain effects and we can identify individual errors as well as systematic failure categories. Code is publicly available: https://github.com/lucasmllr/exCLIP
comment: Accepted at Transactions on Machine Learning Research (TMLR)
♻ ☆ RAGAR: Retrieval Augmented Personalized Image Generation Guided by Recommendation
Personalized image generation is crucial for improving the user experience, as it renders reference images into preferred ones according to user visual preferences. Although effective, existing methods face two main issues. First, existing methods treat all items in the user historical sequence equally when extracting user preferences, overlooking the varying semantic similarities between historical items and the reference item. Disproportionately high weights for low-similarity items distort users' visual preferences for the reference item. Second, existing methods heavily rely on consistency between generated and reference images to optimize the generation, which leads to underfitting user preferences and hinders personalization. To address these issues, we propose Retrieval Augment Personalized Image GenerAtion guided by Recommendation (RAGAR). Our approach uses a retrieval mechanism to assign different weights to historical items according to their similarities to the reference item, thereby extracting more refined users' visual preferences for the reference item. Then we introduce a novel rank task based on the multi-modal ranking model to optimize the personalization of the generated images instead of forcing depend on consistency. Extensive experiments and human evaluations on three real-world datasets demonstrate that RAGAR achieves significant improvements in both personalization and semantic metrics compared to five baselines.
♻ ☆ Debiased Fine-Tuning for Vision-language Models by Prompt Regularization AAAI2023
We present a new paradigm for fine-tuning large-scale visionlanguage pre-trained models on downstream task, dubbed Prompt Regularization (ProReg). Different from traditional fine-tuning which easily overfits to the downstream task data, ProReg uses the prediction by prompting the pretrained model to regularize the fine-tuning. The motivation is: by prompting the large model "a photo of a [CLASS]", the fil-lin answer is only dependent on the pretraining encyclopedic knowledge while independent of the task data distribution, which is usually biased. Specifically, given a training sample prediction during fine-tuning, we first calculate its KullbackLeibler loss of the prompt prediction and Cross-Entropy loss of the ground-truth label, and then combine them with a proposed sample-wise adaptive trade-off weight, which automatically adjusts the transfer between the pretrained and downstream domains. On various out-of-distribution benchmarks, we show the consistently strong performance of ProReg compared with conventional fine-tuning, zero-shot prompt, prompt tuning, and other state-of-the-art methods.
comment: AAAI2023 accepted
♻ ☆ Learning Adaptive Node Selection with External Attention for Human Interaction Recognition ACM MM25
Most GCN-based methods model interacting individuals as independent graphs, neglecting their inherent inter-dependencies. Although recent approaches utilize predefined interaction adjacency matrices to integrate participants, these matrices fail to adaptively capture the dynamic and context-specific joint interactions across different actions. In this paper, we propose the Active Node Selection with External Attention Network (ASEA), an innovative approach that dynamically captures interaction relationships without predefined assumptions. Our method models each participant individually using a GCN to capture intra-personal relationships, facilitating a detailed representation of their actions. To identify the most relevant nodes for interaction modeling, we introduce the Adaptive Temporal Node Amplitude Calculation (AT-NAC) module, which estimates global node activity by combining spatial motion magnitude with adaptive temporal weighting, thereby highlighting salient motion patterns while reducing irrelevant or redundant information. A learnable threshold, regularized to prevent extreme variations, is defined to selectively identify the most informative nodes for interaction modeling. To capture interactions, we design the External Attention (EA) module to operate on active nodes, effectively modeling the interaction dynamics and semantic relationships between individuals. Extensive evaluations show that our method captures interaction relationships more effectively and flexibly, achieving state-of-the-art performance.
comment: Accepted by ACM MM25
♻ ☆ MoSE: Skill-by-Skill Mixture-of-Experts Learning for Embodied Autonomous Machines
To meet the growing demand for smarter, faster, and more efficient embodied AI solutions, we introduce a novel Mixture-of-Expert (MoE) method that significantly boosts reasoning and learning efficiency for embodied autonomous systems. General MoE models demand extensive training data and complex optimization, which limits their applicability in embodied AI such as autonomous driving (AD) and robotic manipulation. In this work, we propose a skill-oriented MoE called MoSE, which mimics the human learning and reasoning process skill-by-skill, step-by-step. We introduce a skill-oriented routing mechanism that begins with defining and annotating specific skills, enabling experts to identify the necessary competencies for various scenarios and reasoning tasks, thereby facilitating skill-by-skill learning. To better align with multi-step planning in human reasoning and in end-to-end driving models, we build a hierarchical skill dataset and pretrain the router to encourage the model to think step-by-step. Unlike other multi-round dialogues, MoSE integrates valuable auxiliary tasks (e.g. perception-prediction-planning for AD, and high-level and low-level planning for robots) in one single forward process without introducing any extra computational cost. With less than 3B sparsely activated parameters, our model effectively grows more diverse expertise and outperforms models on both AD corner-case reasoning tasks and robot reasoning tasks with less than 40% of the parameters.
♻ ☆ Analyzing Finetuning Representation Shift for Multimodal LLMs Steering ICCV 2025
Multimodal LLMs (MLLMs) have reached remarkable levels of proficiency in understanding multimodal inputs. However, understanding and interpreting the behavior of such complex models is a challenging task, not to mention the dynamic shifts that may occur during fine-tuning, or due to covariate shift between datasets. In this work, we apply concept-level analysis towards MLLM understanding. More specifically, we propose to map hidden states to interpretable visual and textual concepts. This enables us to more efficiently compare certain semantic dynamics, such as the shift from an original and fine-tuned model, revealing concept alteration and potential biases that may occur during fine-tuning. We also demonstrate the use of shift vectors to capture these concepts changes. These shift vectors allow us to recover fine-tuned concepts by applying simple, computationally inexpensive additive concept shifts in the original model. Finally, our findings also have direct applications for MLLM steering, which can be used for model debiasing as well as enforcing safety in MLLM output. All in all, we propose a novel, training-free, ready-to-use framework for MLLM behavior interpretability and control. Our implementation is publicly available.
comment: ICCV 2025. The first three authors contributed equally. Project page and code: https://pegah- kh.github.io/projects/lmm-finetuning-analysis-and-steering/
♻ ☆ Towards flexible perception with visual memory ICML 2025
Training a neural network is a monolithic endeavor, akin to carving knowledge into stone: once the process is completed, editing the knowledge in a network is hard, since all information is distributed across the network's weights. We here explore a simple, compelling alternative by marrying the representational power of deep neural networks with the flexibility of a database. Decomposing the task of image classification into image similarity (from a pre-trained embedding) and search (via fast nearest neighbor retrieval from a knowledge database), we build on well-established components to construct a simple and flexible visual memory that has the following key capabilities: (1.) The ability to flexibly add data across scales: from individual samples all the way to entire classes and billion-scale data; (2.) The ability to remove data through unlearning and memory pruning; (3.) An interpretable decision-mechanism on which we can intervene to control its behavior. Taken together, these capabilities comprehensively demonstrate the benefits of an explicit visual memory. We hope that it might contribute to a conversation on how knowledge should be represented in deep vision models -- beyond carving it in "stone" weights.
comment: ICML 2025 camera ready version
♻ ☆ DRWKV: Focusing on Object Edges for Low-Light Image Enhancement
Low-light image enhancement remains a challenging task, particularly in preserving object edge continuity and fine structural details under extreme illumination degradation. In this paper, we propose a novel model, DRWKV (Detailed Receptance Weighted Key Value), which integrates our proposed Global Edge Retinex (GER) theory, enabling effective decoupling of illumination and edge structures for enhanced edge fidelity. Secondly, we introduce Evolving WKV Attention, a spiral-scanning mechanism that captures spatial edge continuity and models irregular structures more effectively. Thirdly, we design the Bilateral Spectrum Aligner (Bi-SAB) and a tailored MS2-Loss to jointly align luminance and chrominance features, improving visual naturalness and mitigating artifacts. Extensive experiments on five LLIE benchmarks demonstrate that DRWKV achieves leading performance in PSNR, SSIM, and NIQE while maintaining low computational complexity. Furthermore, DRWKV enhances downstream performance in low-light multi-object tracking tasks, validating its generalization capabilities.
♻ ☆ Calibrated Self-supervised Vision Transformers Improve Intracranial Arterial Calcification Segmentation from Clinical CT Head Scans MICCAI 2025
Vision Transformers (ViTs) have gained significant popularity in the natural image domain but have been less successful in 3D medical image segmentation. Nevertheless, 3D ViTs are particularly interesting for large medical imaging volumes due to their efficient self-supervised training within the masked autoencoder (MAE) framework, which enables the use of imaging data without the need for expensive manual annotations. Intracranial arterial calcification (IAC) is an imaging biomarker visible on routinely acquired CT scans linked to neurovascular diseases such as stroke and dementia, and automated IAC quantification could enable their large-scale risk assessment. We pre-train ViTs with MAE and fine-tune them for IAC segmentation for the first time. To develop our models, we use highly heterogeneous data from a large clinical trial, the third International Stroke Trial (IST-3). We evaluate key aspects of MAE pre-trained ViTs in IAC segmentation, and analyse the clinical implications. We show: 1) our calibrated self-supervised ViT beats a strong supervised nnU-Net baseline by 3.2 Dice points, 2) low patch sizes are crucial for ViTs for IAC segmentation and interpolation upsampling with regular convolutions is preferable to transposed convolutions for ViT-based models, and 3) our ViTs increase robustness to higher slice thicknesses and improve risk group classification in a clinical scenario by 46%. Our code is available online.
comment: Accepted at the 3rd Data Engineering in Medical Imaging workshop @ MICCAI 2025
♻ ☆ Joint multi-dimensional dynamic attention and transformer for general image restoration
Outdoor images often suffer from severe degradation due to rain, haze, and noise, impairing image quality and challenging high-level tasks. Current image restoration methods struggle to handle complex degradation while maintaining efficiency. This paper introduces a novel image restoration architecture that combines multi-dimensional dynamic attention and self-attention within a U-Net framework. To leverage the global modeling capabilities of transformers and the local modeling capabilities of convolutions, we integrate sole CNNs in the encoder-decoder and sole transformers in the latent layer. Additionally, we design convolutional kernels with selected multi-dimensional dynamic attention to capture diverse degraded inputs efficiently. A transformer block with transposed self-attention further enhances global feature extraction while maintaining efficiency. Extensive experiments demonstrate that our method achieves a better balance between performance and computational complexity across five image restoration tasks: deraining, deblurring, denoising, dehazing, and enhancement, as well as superior performance for high-level vision tasks. The source code will be available at https://github.com/House-yuyu/MDDA-former.
♻ ☆ BridgeDepth: Bridging Monocular and Stereo Reasoning with Latent Alignment ICCV 2025
Monocular and stereo depth estimation offer complementary strengths: monocular methods capture rich contextual priors but lack geometric precision, while stereo approaches leverage epipolar geometry yet struggle with ambiguities such as reflective or textureless surfaces. Despite post-hoc synergies, these paradigms remain largely disjoint in practice. We introduce a unified framework that bridges both through iterative bidirectional alignment of their latent representations. At its core, a novel cross-attentive alignment mechanism dynamically synchronizes monocular contextual cues with stereo hypothesis representations during stereo reasoning. This mutual alignment resolves stereo ambiguities (e.g., specular surfaces) by injecting monocular structure priors while refining monocular depth with stereo geometry within a single network. Extensive experiments demonstrate state-of-the-art results: \textbf{it reduces zero-shot generalization error by $\!>\!40\%$ on Middlebury and ETH3D}, while addressing longstanding failures on transparent and reflective surfaces. By harmonizing multi-view geometry with monocular context, our approach enables robust 3D perception that transcends modality-specific limitations. Codes available at https://github.com/aeolusguan/BridgeDepth.
comment: ICCV 2025 Highlight
♻ ☆ Pediatric brain tumor classification using digital histopathology and deep learning: evaluation of SOTA methods on a multi-center Swedish cohort
Brain tumors are the most common solid tumors in children and young adults, but the scarcity of large histopathology datasets has limited the application of computational pathology in this group. This study implements two weakly supervised multiple-instance learning (MIL) approaches on patch-features obtained from state-of-the-art histology-specific foundation models to classify pediatric brain tumors in hematoxylin and eosin whole slide images (WSIs) from a multi-center Swedish cohort. WSIs from 540 subjects (age 8.5$\pm$4.9 years) diagnosed with brain tumor were gathered from the six Swedish university hospitals. Instance (patch)-level features were obtained from WSIs using three pre-trained feature extractors: ResNet50, UNI, and CONCH. Instances were aggregated using attention-based MIL (ABMIL) or clustering-constrained attention MIL (CLAM) for patient-level classification. Models were evaluated on three classification tasks based on the hierarchical classification of pediatric brain tumors: tumor category, family, and type. Model generalization was assessed by training on data from two of the centers and testing on data from four other centers. Model interpretability was evaluated through attention mapping. The highest classification performance was achieved using UNI features and ABMIL aggregation, with Matthew's correlation coefficient of 0.76$\pm$0.04, 0.63$\pm$0.04, and 0.60$\pm$0.05 for tumor category, family, and type classification, respectively. When evaluating generalization, models utilizing UNI and CONCH features outperformed those using ResNet50. However, the drop in performance from the in-site to out-of-site testing was similar across feature extractors. These results show the potential of state-of-the-art computational pathology methods in diagnosing pediatric brain tumors at different hierarchical levels with fair generalizability on a multi-center national dataset.
♻ ☆ Revisiting 3D Medical Scribble Supervision: Benchmarking Beyond Cardiac Segmentation MICCAI2025
Scribble supervision has emerged as a promising approach for reducing annotation costs in medical 3D segmentation by leveraging sparse annotations instead of voxel-wise labels. While existing methods report strong performance, a closer analysis reveals that the majority of research is confined to the cardiac domain, predominantly using ACDC and MSCMR datasets. This over-specialization has resulted in severe overfitting, misleading claims of performance improvements, and a lack of generalization across broader segmentation tasks. In this work, we formulate a set of key requirements for practical scribble supervision and introduce ScribbleBench, a comprehensive benchmark spanning over seven diverse medical imaging datasets, to systematically evaluate the fulfillment of these requirements. Consequently, we uncover a general failure of methods to generalize across tasks and that many widely used novelties degrade performance outside of the cardiac domain, whereas simpler overlooked approaches achieve superior generalization. Finally, we raise awareness for a strong yet overlooked baseline, nnU-Net coupled with a partial loss, which consistently outperforms specialized methods across a diverse range of tasks. By identifying fundamental limitations in existing research and establishing a new benchmark-driven evaluation standard, this work aims to steer scribble supervision toward more practical, robust, and generalizable methodologies for medical image segmentation.
comment: accepted at MICCAI2025
♻ ☆ LiteFat: Lightweight Spatio-Temporal Graph Learning for Real-Time Driver Fatigue Detection
Detecting driver fatigue is critical for road safety, as drowsy driving remains a leading cause of traffic accidents. Many existing solutions rely on computationally demanding deep learning models, which result in high latency and are unsuitable for embedded robotic devices with limited resources (such as intelligent vehicles/cars) where rapid detection is necessary to prevent accidents. This paper introduces LiteFat, a lightweight spatio-temporal graph learning model designed to detect driver fatigue efficiently while maintaining high accuracy and low computational demands. LiteFat involves converting streaming video data into spatio-temporal graphs (STG) using facial landmark detection, which focuses on key motion patterns and reduces unnecessary data processing. LiteFat uses MobileNet to extract facial features and create a feature matrix for the STG. A lightweight spatio-temporal graph neural network is then employed to identify signs of fatigue with minimal processing and low latency. Experimental results on benchmark datasets show that LiteFat performs competitively while significantly decreasing computational complexity and latency as compared to current state-of-the-art methods. This work enables the development of real-time, resource-efficient human fatigue detection systems that can be implemented upon embedded robotic devices.
comment: 8 pages, 4 figures
♻ ☆ Image Intrinsic Scale Assessment: Bridging the Gap Between Quality and Resolution ICCV2025
Image Quality Assessment (IQA) measures and predicts perceived image quality by human observers. Although recent studies have highlighted the critical influence that variations in the scale of an image have on its perceived quality, this relationship has not been systematically quantified. To bridge this gap, we introduce the Image Intrinsic Scale (IIS), defined as the largest scale where an image exhibits its highest perceived quality. We also present the Image Intrinsic Scale Assessment (IISA) task, which involves subjectively measuring and predicting the IIS based on human judgments. We develop a subjective annotation methodology and create the IISA-DB dataset, comprising 785 image-IIS pairs annotated by experts in a rigorously controlled crowdsourcing study. Furthermore, we propose WIISA (Weak-labeling for Image Intrinsic Scale Assessment), a strategy that leverages how the IIS of an image varies with downscaling to generate weak labels. Experiments show that applying WIISA during the training of several IQA methods adapted for IISA consistently improves the performance compared to using only ground-truth labels. The code, dataset, and pre-trained models are available at https://github.com/SonyResearch/IISA.
comment: Accepted at ICCV2025
♻ ☆ SpectralEarth: Training Hyperspectral Foundation Models at Scale
Foundation models have triggered a paradigm shift in computer vision and are increasingly being adopted in remote sensing, particularly for multispectral imagery. Yet, their potential in hyperspectral imaging (HSI) remains untapped due to the absence of comprehensive and globally representative hyperspectral datasets. To close this gap, we introduce SpectralEarth, a large-scale multitemporal dataset designed to pretrain hyperspectral foundation models leveraging data from the environmental mapping and analysis program (EnMAP). SpectralEarth comprises 538 974 image patches covering 415 153 unique locations from 11 636 globally distributed EnMAP scenes spanning two years of archive. In addition, 17.5% of these locations include multiple timestamps, enabling multitemporal HSI analysis. Utilizing state-of-the-art self-supervised learning algorithms, we pretrain a series of foundation models on SpectralEarth, integrating a spectral adapter into classical vision backbones to accommodate the unique characteristics of HSI. In tandem, we construct nine downstream datasets for land-cover, crop-type mapping, and tree-species classification, providing benchmarks for model evaluation. Experimental results support the versatility of our models and their generalizability across different tasks and sensors. We also highlight computational efficiency during model fine-tuning.
♻ ☆ Cyc3D: Fine-grained Controllable 3D Generation via Cycle Consistency Regularization
Despite the remarkable progress of 3D generation, achieving controllability, i.e., ensuring consistency between generated 3D content and input conditions like edge and depth, remains a significant challenge. Existing methods often struggle to maintain accurate alignment, leading to noticeable discrepancies. To address this issue, we propose \name{}, a new framework that enhances controllable 3D generation by explicitly encouraging cyclic consistency between the second-order 3D content, generated based on extracted signals from the first-order generation, and its original input controls. Specifically, we employ an efficient feed-forward backbone that can generate a 3D object from an input condition and a text prompt. Given an initial viewpoint and a control signal, a novel view is rendered from the generated 3D content, from which the extracted condition is used to regenerate the 3D content. This re-generated output is then rendered back to the initial viewpoint, followed by another round of control signal extraction, forming a cyclic process with two consistency constraints. \emph{View consistency} ensures coherence between the two generated 3D objects, measured by semantic similarity to accommodate generative diversity. \emph{Condition consistency} aligns the final extracted signal with the original input control, preserving structural or geometric details throughout the process. Extensive experiments on popular benchmarks demonstrate that \name{} significantly improves controllability, especially for fine-grained details, outperforming existing methods across various conditions (e.g., +14.17\% PSNR for edge, +6.26\% PSNR for sketch).
comment: Preprint version. Update with new experimental results
♻ ☆ SWA-SOP: Spatially-aware Window Attention for Semantic Occupancy Prediction in Autonomous Driving
Perception systems in autonomous driving rely on sensors such as LiDAR and cameras to perceive the 3D environment. However, due to occlusions and data sparsity, these sensors often fail to capture complete information. Semantic Occupancy Prediction (SOP) addresses this challenge by inferring both occupancy and semantics of unobserved regions. Existing transformer-based SOP methods lack explicit modeling of spatial structure in attention computation, resulting in limited geometric awareness and poor performance in sparse or occluded areas. To this end, we propose Spatially-aware Window Attention (SWA), a novel mechanism that incorporates local spatial context into attention. SWA significantly improves scene completion and achieves state-of-the-art results on LiDAR-based SOP benchmarks. We further validate its generality by integrating SWA into a camera-based SOP pipeline, where it also yields consistent gains across modalities.
comment: 2025 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Vienna, Austria, Oct 2025
♻ ☆ OC-SOP: Enhancing Vision-Based 3D Semantic Occupancy Prediction by Object-Centric Awareness
Autonomous driving perception faces significant challenges due to occlusions and incomplete scene data in the environment. To overcome these issues, the task of semantic occupancy prediction (SOP) is proposed, which aims to jointly infer both the geometry and semantic labels of a scene from images. However, conventional camera-based methods typically treat all categories equally and primarily rely on local features, leading to suboptimal predictions, especially for dynamic foreground objects. To address this, we propose Object-Centric SOP (OC-SOP), a framework that integrates high-level object-centric cues extracted via a detection branch into the semantic occupancy prediction pipeline. This object-centric integration significantly enhances the prediction accuracy for foreground objects and achieves state-of-the-art performance among all categories on SemanticKITTI.
comment: 2025 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Vienna, Austria, Oct 2025
♻ ☆ LUMA: A Benchmark Dataset for Learning from Uncertain and Multimodal Data SIGIR 2025
Multimodal Deep Learning enhances decision-making by integrating diverse information sources, such as texts, images, audio, and videos. To develop trustworthy multimodal approaches, it is essential to understand how uncertainty impacts these models. We propose LUMA, a unique multimodal dataset, featuring audio, image, and textual data from 50 classes, specifically designed for learning from uncertain data. It extends the well-known CIFAR 10/100 dataset with audio samples extracted from three audio corpora, and text data generated using the Gemma-7B Large Language Model (LLM). The LUMA dataset enables the controlled injection of varying types and degrees of uncertainty to achieve and tailor specific experiments and benchmarking initiatives. LUMA is also available as a Python package including the functions for generating multiple variants of the dataset with controlling the diversity of the data, the amount of noise for each modality, and adding out-of-distribution samples. A baseline pre-trained model is also provided alongside three uncertainty quantification methods: Monte-Carlo Dropout, Deep Ensemble, and Reliable Conflictive Multi-View Learning. This comprehensive dataset and its tools are intended to promote and support the development, evaluation, and benchmarking of trustworthy and robust multimodal deep learning approaches. We anticipate that the LUMA dataset will help the research community to design more trustworthy and robust machine learning approaches for safety critical applications. The code and instructions for downloading and processing the dataset can be found at: https://github.com/bezirganyan/LUMA/ .
comment: SIGIR 2025
♻ ☆ FROST-BRDF: A Fast and Robust Optimal Sampling Technique for BRDF Acquisition
Efficient and accurate BRDF acquisition of real world materials is a challenging research problem that requires sampling millions of incident light and viewing directions. To accelerate the acquisition process, one needs to find a minimal set of sampling directions such that the recovery of the full BRDF is accurate and robust given such samples. In this paper, we formulate BRDF acquisition as a compressed sensing problem, where the sensing operator is one that performs sub-sampling of the BRDF signal according to a set of optimal sample directions. To solve this problem, we propose the Fast and Robust Optimal Sampling Technique (FROST) for designing a provably optimal sub-sampling operator that places light-view samples such that the recovery error is minimized. FROST casts the problem of designing an optimal sub-sampling operator for compressed sensing into a sparse representation formulation under the Multiple Measurement Vector (MMV) signal model. The proposed reformulation is exact, i.e. without any approximations, hence it converts an intractable combinatorial problem into one that can be solved with standard optimization techniques. As a result, FROST is accompanied by strong theoretical guarantees from the field of compressed sensing. We perform a thorough analysis of FROST-BRDF using a 10-fold cross-validation with publicly available BRDF datasets and show significant advantages compared to the state-of-the-art with respect to reconstruction quality. Finally, FROST is simple, both conceptually and in terms of implementation, it produces consistent results at each run, and it is at least two orders of magnitude faster than the prior art.
comment: Submitted to IEEE Transactions on Visualization and Computer Graphics (IEEE TVCG)
♻ ☆ Modulate and Reconstruct: Learning Hyperspectral Imaging from Misaligned Smartphone Views
Hyperspectral reconstruction (HSR) from RGB images is a fundamentally ill-posed problem due to severe spectral information loss. Existing approaches typically rely on a single RGB image, limiting reconstruction accuracy. In this work, we propose a novel multi-image-to-hyperspectral reconstruction (MI-HSR) framework that leverages a triple-camera smartphone system, where two lenses are equipped with carefully selected spectral filters. Our configuration, grounded in theoretical and empirical analysis, enables richer and more diverse spectral observations than conventional single-camera setups. To support this new paradigm, we introduce Doomer, the first dataset for MI-HSR, comprising aligned images from three smartphone cameras and a hyperspectral reference camera across diverse scenes. We show that the proposed HSR model achieves consistent improvements over existing methods on the newly proposed benchmark. In a nutshell, our setup allows 30% towards more accurately estimated spectra compared to an ordinary RGB camera. Our findings suggest that multi-view spectral filtering with commodity hardware can unlock more accurate and practical hyperspectral imaging solutions.
♻ ☆ SLTNet: Efficient Event-based Semantic Segmentation with Spike-driven Lightweight Transformer-based Networks IROS 2025
Event-based semantic segmentation has great potential in autonomous driving and robotics due to the advantages of event cameras, such as high dynamic range, low latency, and low power cost. Unfortunately, current artificial neural network (ANN)-based segmentation methods suffer from high computational demands, the requirements for image frames, and massive energy consumption, limiting their efficiency and application on resource-constrained edge/mobile platforms. To address these problems, we introduce SLTNet, a spike-driven lightweight transformer-based network designed for event-based semantic segmentation. Specifically, SLTNet is built on efficient spike-driven convolution blocks (SCBs) to extract rich semantic features while reducing the model's parameters. Then, to enhance the long-range contextural feature interaction, we propose novel spike-driven transformer blocks (STBs) with binary mask operations. Based on these basic blocks, SLTNet employs a high-efficiency single-branch architecture while maintaining the low energy consumption of the Spiking Neural Network (SNN). Finally, extensive experiments on DDD17 and DSEC-Semantic datasets demonstrate that SLTNet outperforms state-of-the-art (SOTA) SNN-based methods by at most 9.06% and 9.39% mIoU, respectively, with extremely 4.58x lower energy consumption and 114 FPS inference speed. Our code is open-sourced and available at https://github.com/longxianlei/SLTNet-v1.0.
comment: Accepted by IROS 2025 (2025 IEEE/RSJ International Conference on Intelligent Robots and Systems)
♻ ☆ UltraRay: Introducing Full-Path Ray Tracing in Physics-Based Ultrasound Simulation
Traditional ultrasound simulators solve the wave equation to model pressure distribution fields, achieving high accuracy but requiring significant computational time and resources. To address this, ray tracing approaches have been introduced, modeling wave propagation as rays interacting with boundaries and scatterers. However, existing models simplify ray propagation, generating echoes at interaction points without considering return paths to the sensor. This can result in unrealistic artifacts and necessitates careful scene tuning for plausible results. We propose a novel ultrasound simulation pipeline that utilizes a ray tracing algorithm to generate echo data, tracing each ray from the transducer through the scene and back to the sensor. To replicate advanced ultrasound imaging, we introduce a ray emission scheme optimized for plane wave imaging, incorporating delay and steering capabilities. Furthermore, we integrate a standard signal processing pipeline to simulate end-to-end ultrasound image formation. We showcase the efficacy of the proposed pipeline by modeling synthetic scenes featuring highly reflective objects, such as bones. In doing so, our proposed approach, UltraRay, not only enhances the overall visual quality but also improves the realism of the simulated images by accurately capturing secondary reflections and reducing unnatural artifacts. By building on top of a differentiable framework, the proposed pipeline lays the groundwork for a fast and differentiable ultrasound simulation tool necessary for gradient-based optimization, enabling advanced ultrasound beamforming strategies, neural network integration, and accurate inverse scene reconstruction.
ViCToR: Improving Visual Comprehension via Token Reconstruction for Pretraining LMMs
Large Multimodal Models (LMMs) often face a modality representation gap during pretraining: while language embeddings remain stable, visual representations are highly sensitive to contextual noise (e.g., background clutter). To address this issue, we introduce a visual comprehension stage, which we call ViCToR (Visual Comprehension via Token Reconstruction), a novel pretraining framework for LMMs. ViCToR employs a learnable visual token pool and utilizes the Hungarian matching algorithm to select semantically relevant tokens from this pool for visual token replacement. Furthermore, by integrating a visual token reconstruction loss with dense semantic supervision, ViCToR can learn tokens which retain high visual detail, thereby enhancing the large language model's (LLM's) understanding of visual information. After pretraining on 3 million publicly accessible images and captions, ViCToR achieves state-of-the-art results, improving over LLaVA-NeXT-8B by 10.4%, 3.2%, and 7.2% on the MMStar, SEED$^I$, and RealWorldQA benchmarks, respectively. Code is available at https://github.com/deepglint/Victor.
comment: 10 pages, 6 figures, 5 tables
♻ ☆ HunyuanWorld 1.0: Generating Immersive, Explorable, and Interactive 3D Worlds from Words or Pixels
Creating immersive and playable 3D worlds from texts or images remains a fundamental challenge in computer vision and graphics. Existing world generation approaches typically fall into two categories: video-based methods that offer rich diversity but lack 3D consistency and rendering efficiency, and 3D-based methods that provide geometric consistency but struggle with limited training data and memory-inefficient representations. To address these limitations, we present HunyuanWorld 1.0, a novel framework that combines the best of both worlds for generating immersive, explorable, and interactive 3D scenes from text and image conditions. Our approach features three key advantages: 1) 360{\deg} immersive experiences via panoramic world proxies; 2) mesh export capabilities for seamless compatibility with existing computer graphics pipelines; 3) disentangled object representations for augmented interactivity. The core of our framework is a semantically layered 3D mesh representation that leverages panoramic images as 360{\deg} world proxies for semantic-aware world decomposition and reconstruction, enabling the generation of diverse 3D worlds. Extensive experiments demonstrate that our method achieves state-of-the-art performance in generating coherent, explorable, and interactive 3D worlds while enabling versatile applications in virtual reality, physical simulation, game development, and interactive content creation.
comment: Technical Report; Project Page: https://3d-models.hunyuan.tencent.com/world/
♻ ☆ HERMES: A Unified Self-Driving World Model for Simultaneous 3D Scene Understanding and Generation ICCV 2025
Driving World Models (DWMs) have become essential for autonomous driving by enabling future scene prediction. However, existing DWMs are limited to scene generation and fail to incorporate scene understanding, which involves interpreting and reasoning about the driving environment. In this paper, we present a unified Driving World Model named HERMES. We seamlessly integrate 3D scene understanding and future scene evolution (generation) through a unified framework in driving scenarios. Specifically, HERMES leverages a Bird's-Eye View (BEV) representation to consolidate multi-view spatial information while preserving geometric relationships and interactions. We also introduce world queries, which incorporate world knowledge into BEV features via causal attention in the Large Language Model, enabling contextual enrichment for understanding and generation tasks. We conduct comprehensive studies on nuScenes and OmniDrive-nuScenes datasets to validate the effectiveness of our method. HERMES achieves state-of-the-art performance, reducing generation error by 32.4% and improving understanding metrics such as CIDEr by 8.0%. The model and code will be publicly released at https://github.com/LMD0311/HERMES.
comment: Accepted by ICCV 2025. The code is available at https://github.com/LMD0311/HERMES
♻ ☆ PrAViC: Probabilistic Adaptation Framework for Real-Time Video Classification
Video processing is generally divided into two main categories: processing of the entire video, which typically yields optimal classification outcomes, and real-time processing, where the objective is to make a decision as promptly as possible. Although the models dedicated to the processing of entire videos are typically well-defined and clearly presented in the literature, this is not the case for online processing, where a~plethora of hand-devised methods exist. To address this issue, we present PrAViC, a novel, unified, and theoretically-based adaptation framework for tackling the online classification problem in video data. The initial phase of our study is to establish a mathematical background for the classification of sequential data, with the potential to make a decision at an early stage. This allows us to construct a natural function that encourages the model to return a result much faster. The subsequent phase is to present a straightforward and readily implementable method for adapting offline models to the online setting using recurrent operations. Finally, PrAViC is evaluated by comparing it with existing state-of-the-art offline and online models and datasets. This enables the network to significantly reduce the time required to reach classification decisions while maintaining, or even enhancing, accuracy.
comment: The paper was accepted at ECAI 2025
♻ ☆ Towards Synthesized and Editable Motion In-Betweening Through Part-Wise Phase Representation
Styled motion in-betweening is crucial for computer animation and gaming. However, existing methods typically encode motion styles by modeling whole-body motions, often overlooking the representation of individual body parts. This limitation reduces the flexibility of infilled motion, particularly in adjusting the motion styles of specific limbs independently. To overcome this challenge, we propose a novel framework that models motion styles at the body-part level, enhancing both the diversity and controllability of infilled motions. Our approach enables more nuanced and expressive animations by allowing precise modifications to individual limb motions while maintaining overall motion coherence. Leveraging phase-related insights, our framework employs periodic autoencoders to automatically extract the phase of each body part, capturing distinctive local style features. Additionally, we effectively decouple the motion source from synthesis control by integrating motion manifold learning and conditional generation techniques from both image and motion domains. This allows the motion source to generate high-quality motions across various styles, with extracted motion and style features readily available for controlled synthesis in subsequent tasks. Comprehensive evaluations demonstrate that our method achieves superior speed, robust generalization, and effective generation of extended motion sequences.
comment: 10 pages, 5 figures
♻ ☆ Human Motion Capture from Loose and Sparse Inertial Sensors with Garment-aware Diffusion Models IJCAI 2025
Motion capture using sparse inertial sensors has shown great promise due to its portability and lack of occlusion issues compared to camera-based tracking. Existing approaches typically assume that IMU sensors are tightly attached to the human body. However, this assumption often does not hold in real-world scenarios. In this paper, we present Garment Inertial Poser (GaIP), a method for estimating full-body poses from sparse and loosely attached IMU sensors. We first simulate IMU recordings using an existing garment-aware human motion dataset. Our transformer-based diffusion models synthesize loose IMU data and estimate human poses from this challenging loose IMU data. We also demonstrate that incorporating garment-related parameters during training on loose IMU data effectively maintains expressiveness and enhances the ability to capture variations introduced by looser or tighter garments. Our experiments show that our diffusion methods trained on simulated and synthetic data outperform state-of-the-art inertial full-body pose estimators, both quantitatively and qualitatively, opening up a promising direction for future research on motion capture from such realistic sensor placements.
comment: Accepted by IJCAI 2025
♻ ☆ Towards Black-Box Membership Inference Attack for Diffusion Models
Given the rising popularity of AI-generated art and the associated copyright concerns, identifying whether an artwork was used to train a diffusion model is an important research topic. The work approaches this problem from the membership inference attack (MIA) perspective. We first identify the limitation of applying existing MIA methods for proprietary diffusion models: the required access of internal U-nets. To address the above problem, we introduce a novel membership inference attack method that uses only the image-to-image variation API and operates without access to the model's internal U-net. Our method is based on the intuition that the model can more easily obtain an unbiased noise prediction estimate for images from the training set. By applying the API multiple times to the target image, averaging the outputs, and comparing the result to the original image, our approach can classify whether a sample was part of the training set. We validate our method using DDIM and Stable Diffusion setups and further extend both our approach and existing algorithms to the Diffusion Transformer architecture. Our experimental results consistently outperform previous methods.
♻ ☆ MultiFormer: A Multi-Person Pose Estimation System Based on CSI and Attention Mechanism
Human pose estimation based on Channel State Information (CSI) has emerged as a promising approach for non-intrusive and precise human activity monitoring, yet faces challenges including accurate multi-person pose recognition and effective CSI feature learning. This paper presents MultiFormer, a wireless sensing system that accurately estimates human pose through CSI. The proposed system adopts a Transformer based time-frequency dual-token feature extractor with multi-head self-attention. This feature extractor is able to model inter-subcarrier correlations and temporal dependencies of the CSI. The extracted CSI features and the pose probability heatmaps are then fused by Multi-Stage Feature Fusion Network (MSFN) to enforce the anatomical constraints. Extensive experiments conducted on on the public MM-Fi dataset and our self-collected dataset show that the MultiFormer achieves higher accuracy over state-of-the-art approaches, especially for high-mobility keypoints (wrists, elbows) that are particularly difficult for previous methods to accurately estimate.
♻ ☆ A Simple yet Powerful Instance-Aware Prompting Framework for Training-free Camouflaged Object Segmentation
Camouflaged Object Segmentation (COS) remains highly challenging due to the intrinsic visual similarity between target objects and their surroundings. While training-based COS methods achieve good performance, their performance degrades rapidly with increased annotation sparsity. To circumvent this limitation, recent studies have explored training-free COS methods, leveraging the Segment Anything Model (SAM) by automatically generating visual prompts from a single task-generic prompt (\textit{e.g.}, "\textit{camouflaged animal}") uniformly applied across all test images. However, these methods typically produce only semantic-level visual prompts, causing SAM to output coarse semantic masks and thus failing to handle scenarios with multiple discrete camouflaged instances effectively. To address this critical limitation, we propose a simple yet powerful \textbf{I}nstance-\textbf{A}ware \textbf{P}rompting \textbf{F}ramework (IAPF), the first training-free COS pipeline that explicitly converts a task-generic prompt into fine-grained instance masks. Specifically, the IAPF comprises three steps: (1) Text Prompt Generator, utilizing task-generic queries to prompt a Multimodal Large Language Model (MLLM) for generating image-specific foreground and background tags; (2) \textbf{Instance Mask Generator}, leveraging Grounding DINO to produce precise instance-level bounding box prompts, alongside the proposed Single-Foreground Multi-Background Prompting strategy to sample region-constrained point prompts within each box, enabling SAM to yield a candidate instance mask; (3) Self-consistency Instance Mask Voting, which selects the final COS prediction by identifying the candidate mask most consistent across multiple candidate instance masks. Extensive evaluations on standard COS benchmarks demonstrate that the proposed IAPF significantly surpasses existing state-of-the-art training-free COS methods.
comment: under review
♻ ☆ HVL: Semi-Supervised Segmentation leveraging Hierarchical Vision-Language Synergy with Dynamic Text-Spatial Query Alignment
In this paper, we address Semi-supervised Semantic Segmentation (SSS) under domain shift by leveraging domain-invariant semantic knowledge from text embeddings of Vision-Language Models (VLMs). We propose a unified Hierarchical Vision-Language framework (HVL) that integrates domain-invariant text embeddings as object queries in a transformer-based segmentation network to improve generalization and reduce misclassification under limited supervision. The mentioned textual queries are used for grouping pixels with shared semantics under SSS. HVL is designed to (1) generate textual queries that maximally encode domain-invariant semantics from VLM while capturing intra-class variations; (2) align these queries with spatial visual features to enhance their segmentation ability and improve the semantic clarity of visual features. We also introduce targeted regularization losses that maintain vision--language alignment throughout training to reinforce semantic understanding. HVL establishes a novel state-of-the-art by achieving a +9.3% improvement in mean Intersection over Union (mIoU) on COCO, utilizing 232 labelled images, +3.1% on Pascal VOC employing 92 labels, +4.8% on ADE20 using 316 labels, and +3.4% on Cityscapes with 100 labels, demonstrating superior performance with less than 1% supervision on four benchmark datasets. Our results show that language-guided segmentation bridges the label efficiency gap and enables new levels of fine-grained generalization.
♻ ☆ Emotion-Qwen: A Unified Framework for Emotion and Vision Understanding
Accurate emotion understanding in videos necessitates effectively recognizing and interpreting emotional states by integrating visual, textual, auditory, and contextual cues. Although recent Large Multimodal Models (LMMs) have exhibited significant progress in general vision-language (VL) tasks, their performance often deteriorates in emotion-specific scenarios, exhibiting catastrophic forgetting when fine-tuned on emotion-centric tasks. To overcome these limitations, we propose Emotion-Qwen, a unified multimodal framework designed to simultaneously enable robust emotion understanding and preserve general VL reasoning capabilities. Emotion-Qwen introduces a novel Hybrid Compressor based on a Mixture-of-Experts (MoE) architecture, dynamically routing inputs to optimally balance emotion-specific processing and general multimodal reasoning. We further propose a carefully structured three-stage pre-training pipeline, leveraging extensive general and emotion-focused datasets to strengthen multimodal representation robustness and model adaptability. Additionally, we develop the Video Emotion Reasoning (VER) dataset, a large-scale bilingual resource containing over 40K video clips annotated with detailed context-aware emotional descriptions, significantly facilitating research on fine-grained emotional reasoning. Extensive experiments confirm that Emotion-Qwen achieves state-of-the-art performance across multiple emotion recognition and reasoning benchmarks, while maintaining highly competitive results in general VL tasks.
♻ ☆ MoCA: Identity-Preserving Text-to-Video Generation via Mixture of Cross Attention
Achieving ID-preserving text-to-video (T2V) generation remains challenging despite recent advances in diffusion-based models. Existing approaches often fail to capture fine-grained facial dynamics or maintain temporal identity coherence. To address these limitations, we propose MoCA, a novel Video Diffusion Model built on a Diffusion Transformer (DiT) backbone, incorporating a Mixture of Cross-Attention mechanism inspired by the Mixture-of-Experts paradigm. Our framework improves inter-frame identity consistency by embedding MoCA layers into each DiT block, where Hierarchical Temporal Pooling captures identity features over varying timescales, and Temporal-Aware Cross-Attention Experts dynamically model spatiotemporal relationships. We further incorporate a Latent Video Perceptual Loss to enhance identity coherence and fine-grained details across video frames. To train this model, we collect CelebIPVid, a dataset of 10,000 high-resolution videos from 1,000 diverse individuals, promoting cross-ethnicity generalization. Extensive experiments on CelebIPVid show that MoCA outperforms existing T2V methods by over 5% across Face similarity.
♻ ☆ DualMap: Online Open-Vocabulary Semantic Mapping for Natural Language Navigation in Dynamic Changing Scenes
We introduce DualMap, an online open-vocabulary mapping system that enables robots to understand and navigate dynamically changing environments through natural language queries. Designed for efficient semantic mapping and adaptability to changing environments, DualMap meets the essential requirements for real-world robot navigation applications. Our proposed hybrid segmentation frontend and object-level status check eliminate the costly 3D object merging required by prior methods, enabling efficient online scene mapping. The dual-map representation combines a global abstract map for high-level candidate selection with a local concrete map for precise goal-reaching, effectively managing and updating dynamic changes in the environment. Through extensive experiments in both simulation and real-world scenarios, we demonstrate state-of-the-art performance in 3D open-vocabulary segmentation, efficient scene mapping, and online language-guided navigation.Project page: https://eku127.github.io/DualMap/
comment: 14 pages, 14 figures. Code: https://github.com/Eku127/DualMap Project page: https://eku127.github.io/DualMap/
♻ ☆ NeuralGS: Bridging Neural Fields and 3D Gaussian Splatting for Compact 3D Representations
3D Gaussian Splatting (3DGS) achieves impressive quality and rendering speed, but with millions of 3D Gaussians and significant storage and transmission costs. In this paper, we aim to develop a simple yet effective method called NeuralGS that compresses the original 3DGS into a compact representation. Our observation is that neural fields like NeRF can represent complex 3D scenes with Multi-Layer Perceptron (MLP) neural networks using only a few megabytes. Thus, NeuralGS effectively adopts the neural field representation to encode the attributes of 3D Gaussians with MLPs, only requiring a small storage size even for a large-scale scene. To achieve this, we adopt a clustering strategy and fit the Gaussians within each cluster using different tiny MLPs, based on importance scores of Gaussians as fitting weights. We experiment on multiple datasets, achieving a 91-times average model size reduction without harming the visual quality.
comment: Project page: https://pku-yuangroup.github.io/NeuralGS/
♻ ☆ Prompt-aligned Gradient for Prompt Tuning ICCV2023
Thanks to the large pre-trained vision-language models (VLMs) like CLIP, we can craft a zero-shot classifier by "prompt", e.g., the confidence score of an image being "[CLASS]" can be obtained by using the VLM provided similarity measure between the image and the prompt sentence "a photo of a [CLASS]". Therefore, prompt shows a great potential for fast adaptation of VLMs to downstream tasks if we fine-tune the prompt-based similarity measure. However, we find a common failure that improper fine-tuning may not only undermine the prompt's inherent prediction for the task-related classes, but also for other classes in the VLM vocabulary. Existing methods still address this problem by using traditional anti-overfitting techniques such as early stopping and data augmentation, which lack a principled solution specific to prompt. We present Prompt-aligned Gradient, dubbed ProGrad, to prevent prompt tuning from forgetting the the general knowledge learned from VLMs. In particular, ProGrad only updates the prompt whose gradient is aligned (or non-conflicting) to the "general direction", which is represented as the gradient of the KL loss of the pre-defined prompt prediction. Extensive experiments demonstrate the stronger few-shot generalization ability of ProGrad over state-of-the-art prompt tuning methods. Codes are available at https://github.com/BeierZhu/Prompt-align.
comment: ICCV2023
♻ ☆ Scaling Vision Mamba Across Resolutions via Fractal Traversal
Vision Mamba has recently emerged as a promising alternative to Transformer-based architectures, offering linear complexity in sequence length while maintaining strong modeling capacity. However, its adaptation to visual inputs is hindered by challenges in 2D-to-1D patch serialization and weak scalability across input resolutions. Existing serialization strategies such as raster scanning disrupt local spatial continuity and limit the model's ability to generalize across scales. In this paper, we propose FractalMamba++, a robust vision backbone that leverages fractal-based patch serialization via Hilbert curves to preserve spatial locality and enable seamless resolution adaptability. To address long-range dependency fading in high-resolution inputs, we further introduce a Cross-State Routing (CSR) mechanism that enhances global context propagation through selective state reuse. Additionally, we propose a Positional-Relation Capture (PRC) module to recover local adjacency disrupted by curve inflection points. Extensive experiments across diverse downstream tasks, including image classification, semantic segmentation and object detection, demonstrate that FractalMamba++ consistently outperforms previous Mamba-based backbones, with particularly notable gains under high-resolution settings.
♻ ☆ SpargeAttention: Accurate and Training-free Sparse Attention Accelerating Any Model Inference ICML
An efficient attention implementation is essential for large models due to its quadratic time complexity. Fortunately, attention commonly exhibits sparsity, i.e., many values in the attention map are near zero, allowing for the omission of corresponding computations. Many studies have utilized the sparse pattern to accelerate attention. However, most existing works focus on optimizing attention within specific models by exploiting certain sparse patterns of the attention map. A universal sparse attention that guarantees both the speedup and end-to-end performance of diverse models remains elusive. In this paper, we propose SpargeAttn, a universal sparse and quantized attention for any model. Our method uses a two-stage online filter: in the first stage, we rapidly and accurately predict the attention map, enabling the skip of some matrix multiplications in attention. In the second stage, we design an online softmax-aware filter that incurs no extra overhead and further skips some matrix multiplications. Experiments show that our method significantly accelerates diverse models, including language, image, and video generation, without sacrificing end-to-end metrics. The codes are available at https://github.com/thu-ml/SpargeAttn.
comment: @inproceedings{zhang2025spargeattn, title={Spargeattn: Accurate sparse attention accelerating any model inference}, author={Zhang, Jintao and Xiang, Chendong and Huang, Haofeng and Wei, Jia and Xi, Haocheng and Zhu, Jun and Chen, Jianfei}, booktitle={International Conference on Machine Learning (ICML)}, year={2025} }
♻ ☆ HRSeg: High-Resolution Visual Perception and Enhancement for Reasoning Segmentation ACM MM25
The reasoning segmentation task involves segmenting objects within an image by interpreting implicit user instructions, which may encompass subtleties such as contextual cues and open-world knowledge. Despite significant advancements made by existing approaches, they remain constrained by low perceptual resolution, as visual encoders are typically pre-trained at lower resolutions. Furthermore, simply interpolating the positional embeddings of visual encoders to enhance perceptual resolution yields only marginal performance improvements while incurring substantial computational costs. To address this, we propose HRSeg, an efficient model with high-resolution fine-grained perception. It features two key innovations: High-Resolution Perception (HRP) and High-Resolution Enhancement (HRE). The HRP module processes high-resolution images through cropping, integrating local and global features for multi-granularity quality. The HRE module enhances mask features by integrating fine-grained information from high-resolution images, refining their alignment with text features for precise segmentation. Extensive ablation studies validate the effectiveness of our modules, while comprehensive experiments on multiple benchmark datasets demonstrate HRSeg's superior performance.
comment: 10 pages, 4 figures, ACM MM25
♻ ☆ Can Large Multimodal Models Understand Agricultural Scenes? Benchmarking with AgroMind
Large Multimodal Models (LMMs) has demonstrated capabilities across various domains, but comprehensive benchmarks for agricultural remote sensing (RS) remain scarce. Existing benchmarks designed for agricultural RS scenarios exhibit notable limitations, primarily in terms of insufficient scene diversity in the dataset and oversimplified task design. To bridge this gap, we introduce AgroMind, a comprehensive agricultural remote sensing benchmark covering four task dimensions: spatial perception, object understanding, scene understanding, and scene reasoning, with a total of 13 task types, ranging from crop identification and health monitoring to environmental analysis. We curate a high-quality evaluation set by integrating eight public datasets and one private farmland plot dataset, containing 27,247 QA pairs and 19,615 images. The pipeline begins with multi-source data pre-processing, including collection, format standardization, and annotation refinement. We then generate a diverse set of agriculturally relevant questions through the systematic definition of tasks. Finally, we employ LMMs for inference, generating responses, and performing detailed examinations. We evaluated 20 open-source LMMs and 4 closed-source models on AgroMind. Experiments reveal significant performance gaps, particularly in spatial reasoning and fine-grained recognition, it is notable that human performance lags behind several leading LMMs. By establishing a standardized evaluation framework for agricultural RS, AgroMind reveals the limitations of LMMs in domain knowledge and highlights critical challenges for future work. Data and code can be accessed at https://rssysu.github.io/AgroMind/.
♻ ☆ GranQ: Granular Zero-Shot Quantization with Channel-Wise Activation Scaling in QAT
Zero-shot quantization (ZSQ) enables neural network compression without original training data, making it a promising solution for restricted data access scenarios. To compensate for the lack of data, recent ZSQ methods typically rely on synthetic inputs generated from the full-precision model. However, these synthetic inputs often lead to activation distortion, especially under low-bit settings. To mitigate this, existing methods typically employ per-channel scaling, but they still struggle due to the severe computational overhead during the accumulation process. To overcome this critical bottleneck, we propose GranQ, a novel activation quantization framework that introduces an efficient pre-scaling strategy. Unlike conventional channel-wise methods that repeatedly perform scaling operations during accumulation, GranQ applies scaling factors in a pre-scaling step through fully vectorized computation, eliminating runtime scaling overhead. This design enables GranQ to maintain fine-grained quantization accuracy while significantly reducing computational burden, particularly in low-bit quantization settings. Extensive experiments under quantization-aware training (QAT) settings demonstrate that GranQ consistently outperforms state-of-the-art ZSQ methods across CIFAR and ImageNet. In particular, our method achieves up to 5.45% higher accuracy in the 3-bit setting on CIFAR-100 and even surpasses the full-precision baseline on CIFAR-10. Furthermore, GranQ achieves significant speedup in quantization latency over conventional per-channel methods, demonstrating improved efficiency. With these findings, we anticipate that GranQ will inspire future research beyond conventional ZSQ approaches centered on data generation and model fine-tuning. The official code is available at https://github.com/anonymus-orange/GranQ.
♻ ☆ Advancing Reliable Test-Time Adaptation of Vision-Language Models under Visual Variations
Vision-language models (VLMs) exhibit remarkable zero-shot capabilities but struggle with distribution shifts in downstream tasks when labeled data is unavailable, which has motivated the development of Test-Time Adaptation (TTA) to improve VLMs' performance during inference without annotations. Among various TTA approaches, cache-based methods show promise by preserving historical knowledge from low-entropy samples in a dynamic cache and fostering efficient adaptation. However, these methods face two critical reliability challenges: (1) entropy often becomes unreliable under distribution shifts, causing error accumulation in the cache and degradation in adaptation performance; (2) the final predictions may be unreliable due to inflexible decision boundaries that fail to accommodate large downstream shifts. To address these challenges, we propose a Reliable Test-time Adaptation (ReTA) method that integrates two complementary strategies to enhance reliability from two perspectives. First, to mitigate the unreliability of entropy as a sample selection criterion for cache construction, we introduce Consistency-aware Entropy Reweighting (CER), which incorporates consistency constraints to weight entropy during cache updating. While conventional approaches rely solely on low entropy for cache prioritization and risk introducing noise, our method leverages predictive consistency to maintain a high-quality cache and facilitate more robust adaptation. Second, we present Diversity-driven Distribution Calibration (DDC), which models class-wise text embeddings as multivariate Gaussian distributions, enabling adaptive decision boundaries for more accurate predictions across visually diverse content. Extensive experiments demonstrate that ReTA consistently outperforms state-of-the-art methods, particularly under real-world distribution shifts. Code: https://github.com/Evelyn1ywliang/ReTA.
comment: Accepted at the 33rd ACM International Conference on Multimedia(ACM MM 2025)
♻ ☆ Ear-Keeper: A Cross-Platform AI System for Rapid and Accurate Ear Disease Diagnosis
Early and accurate detection systems for ear diseases, powered by deep learning, are essential for preventing hearing impairment and improving population health. However, the limited diversity of existing otoendoscopy datasets and the poor balance between diagnostic accuracy, computational efficiency, and model size have hindered the translation of artificial intelligence (AI) algorithms into healthcare applications. In this study, we constructed a large-scale, multi-center otoendoscopy dataset covering eight common ear diseases and healthy cases. Building upon this resource, we developed Best-EarNet, an ultrafast and lightweight deep learning architecture integrating a novel Local-Global Spatial Feature Fusion Module with a multi-scale supervision strategy, enabling real-time and accurate classification of ear conditions. Leveraging transfer learning, Best-EarNet, with a model size of only 2.94 MB, achieved diagnostic accuracies of 95.23% on an internal test set (22,581 images) and 92.14% on an external test set (1,652 images), while requiring only 0.0125 seconds (80 frames per second) to process a single image on a standard CPU. Further subgroup analysis by gender and age showed consistently excellent performance of Best-EarNet across all demographic groups. To enhance clinical interpretability and user trust, we incorporated Grad-CAM-based visualization, highlighting the specific abnormal ear regions contributing to AI predictions. Most importantly, we developed Ear-Keeper, a cross-platform intelligent diagnosis system built upon Best-EarNet, deployable on smartphones, tablets, and personal computers. Ear-Keeper enables public users and healthcare providers to perform comprehensive real-time video-based ear canal screening, supporting early detection and timely intervention of ear diseases.
comment: 18 pages,8 figures
♻ ☆ Integrating Clinical Knowledge Graphs and Gradient-Based Neural Systems for Enhanced Melanoma Diagnosis via the 7-Point Checklist
The 7-point checklist (7PCL) is a widely used diagnostic tool in dermoscopy for identifying malignant melanoma by assigning point values to seven specific attributes. However, the traditional 7PCL is limited to distinguishing between malignant melanoma and melanocytic Nevi, and falls short in scenarios where multiple skin diseases with appearances similar to melanoma coexist. To address this limitation, we propose a novel diagnostic framework that integrates a clinical knowledge-based topological graph (CKTG) with a gradient diagnostic strategy featuring a data-driven weighting system (GD-DDW). The CKTG captures both the internal and external relationships among the 7PCL attributes, while the GD-DDW emulates dermatologists' diagnostic processes, prioritizing visual observation before making predictions. Additionally, we introduce a multimodal feature extraction approach leveraging a dual-attention mechanism to enhance feature extraction through cross-modal interaction and unimodal collaboration. This method incorporates meta-information to uncover interactions between clinical data and image features, ensuring more accurate and robust predictions. Our approach, evaluated on the EDRA dataset, achieved an average AUC of 88.6%, demonstrating superior performance in melanoma detection and feature prediction. This integrated system provides data-driven benchmarks for clinicians, significantly enhancing the precision of melanoma diagnosis.
comment: The paper was officially accepted for publication in IEEE Transactions on Neural Networks and Learning Systems in August 2025
♻ ☆ Improving Multimodal Large Language Models Using Continual Learning NeurIPS 2024
Generative large language models (LLMs) exhibit impressive capabilities, which can be further augmented by integrating a pre-trained vision model into the original LLM to create a multimodal LLM (MLLM). However, this integration often significantly decreases performance on natural language understanding and generation tasks, compared to the original LLM. This study investigates this issue using the LLaVA MLLM, treating the integration as a continual learning problem. We evaluate five continual learning methods to mitigate forgetting and identify a technique that enhances visual understanding while minimizing linguistic performance loss. Our approach reduces linguistic performance degradation by up to 15% over the LLaVA recipe, while maintaining high multimodal accuracy. We also demonstrate the robustness of our method through continual learning on a sequence of vision-language tasks, effectively preserving linguistic skills while acquiring new multimodal capabilities. Project webpage: https://shikhar-srivastava.github.io/cl-for-improving-mllms
comment: CoLLAs 2025 and Scalable Continual Learning for Lifelong Foundation Models, NeurIPS 2024
♻ ☆ From Few to More: Scribble-based Medical Image Segmentation via Masked Context Modeling and Continuous Pseudo Labels
Scribble-based weakly supervised segmentation methods have shown promising results in medical image segmentation, significantly reducing annotation costs. However, existing approaches often rely on auxiliary tasks to enforce semantic consistency and use hard pseudo labels for supervision, overlooking the unique challenges faced by models trained with sparse annotations. These models must predict pixel-wise segmentation maps from limited data, making it crucial to handle varying levels of annotation richness effectively. In this paper, we propose MaCo, a weakly supervised model designed for medical image segmentation, based on the principle of "from few to more." MaCo leverages Masked Context Modeling (MCM) and Continuous Pseudo Labels (CPL). MCM employs an attention-based masking strategy to perturb the input image, ensuring that the model's predictions align with those of the original image. CPL converts scribble annotations into continuous pixel-wise labels by applying an exponential decay function to distance maps, producing confidence maps that represent the likelihood of each pixel belonging to a specific category, rather than relying on hard pseudo labels. We evaluate MaCo on three public datasets, comparing it with other weakly supervised methods. Our results show that MaCo outperforms competing methods across all datasets, establishing a new record in weakly supervised medical image segmentation.
comment: 13 pages, 10 figures, 10 tables, JBHI
♻ ☆ 3D Gaussian Splatting Driven Multi-View Robust Physical Adversarial Camouflage Generation ICCV 2025
Physical adversarial attack methods expose the vulnerabilities of deep neural networks and pose a significant threat to safety-critical scenarios such as autonomous driving. Camouflage-based physical attack is a more promising approach compared to the patch-based attack, offering stronger adversarial effectiveness in complex physical environments. However, most prior work relies on mesh priors of the target object and virtual environments constructed by simulators, which are time-consuming to obtain and inevitably differ from the real world. Moreover, due to the limitations of the backgrounds in training images, previous methods often fail to produce multi-view robust adversarial camouflage and tend to fall into sub-optimal solutions. Due to these reasons, prior work lacks adversarial effectiveness and robustness across diverse viewpoints and physical environments. We propose a physical attack framework based on 3D Gaussian Splatting (3DGS), named PGA, which provides rapid and precise reconstruction with few images, along with photo-realistic rendering capabilities. Our framework further enhances cross-view robustness and adversarial effectiveness by preventing mutual and self-occlusion among Gaussians and employing a min-max optimization approach that adjusts the imaging background of each viewpoint, helping the algorithm filter out non-robust adversarial features. Extensive experiments validate the effectiveness and superiority of PGA. Our code is available at:https://github.com/TRLou/PGA.
comment: Accepted by ICCV 2025
♻ ☆ Simulating the Real World: A Unified Survey of Multimodal Generative Models
Understanding and replicating the real world is a critical challenge in Artificial General Intelligence (AGI) research. To achieve this, many existing approaches, such as world models, aim to capture the fundamental principles governing the physical world, enabling more accurate simulations and meaningful interactions. However, current methods often treat different modalities, including 2D (images), videos, 3D, and 4D representations, as independent domains, overlooking their interdependencies. Additionally, these methods typically focus on isolated dimensions of reality without systematically integrating their connections. In this survey, we present a unified survey for multimodal generative models that investigate the progression of data dimensionality in real-world simulation. Specifically, this survey starts from 2D generation (appearance), then moves to video (appearance+dynamics) and 3D generation (appearance+geometry), and finally culminates in 4D generation that integrate all dimensions. To the best of our knowledge, this is the first attempt to systematically unify the study of 2D, video, 3D and 4D generation within a single framework. To guide future research, we provide a comprehensive review of datasets, evaluation metrics and future directions, and fostering insights for newcomers. This survey serves as a bridge to advance the study of multimodal generative models and real-world simulation within a unified framework.
comment: Repository for the related papers at https://github.com/ALEEEHU/World-Simulator
♻ ☆ Audio-3DVG: Unified Audio -- Point Cloud Fusion for 3D Visual Grounding
3D Visual Grounding (3DVG) involves localizing target objects in 3D point clouds based on natural language. While prior work has made strides using textual descriptions, leveraging spoken language-known as Audio-based 3D Visual Grounding-remains underexplored and challenging. Motivated by advances in automatic speech recognition (ASR) and speech representation learning, we propose Audio-3DVG, a simple yet effective framework that integrates audio and spatial information for enhanced grounding. Rather than treating speech as a monolithic input, we decompose the task into two complementary components. First, we introduce (i) Object Mention Detection, a multi-label classification task that explicitly identifies which objects are referred to in the audio, enabling more structured audio-scene reasoning. Second, we propose an (ii) Audio-Guided Attention module that models the interactions between target candidates and mentioned objects, enhancing discrimination in cluttered 3D environments. To support benchmarking, we (iii) synthesize audio descriptions for standard 3DVG datasets, including ScanRefer, Sr3D, and Nr3D. Experimental results demonstrate that Audio-3DVG not only achieves new state-of-the-art performance in audio-based grounding, but also competes with text-based methods, highlight the promise of integrating spoken language into 3D vision tasks.
comment: Preprint, 51 pages
♻ ☆ Detection and Tracking of MAVs Using a Rosette Scanning Pattern LiDAR
The use of commercial Micro Aerial Vehicles (MAVs) has surged in the past decade, offering societal benefits but also raising risks such as airspace violations and privacy concerns. Due to the increased security risks, the development of autonomous drone detection and tracking systems has become a priority. In this study, we tackle this challenge, by using non-repetitive rosette scanning pattern LiDARs, particularly focusing on increasing the detection distance by leveraging the characteristics of the sensor. The presented method utilizes a particle filter with a velocity component for the detection and tracking of the drone, which offers added re-detection capability. A Pan-Tilt platform is utilized to take advantage of the specific characteristics of the rosette scanning pattern LiDAR by keeping the tracked object in the center where the measurement is most dense. The detection capabilities and accuracy of the system are validated through indoor experiments, while the maximum detection distance is shown in our outdoor experiments. Our approach achieved accuracy on par with the state-of-the-art indoor method while increasing the maximum detection range by approximately 80\% beyond the state-of-the-art outdoor method.
♻ ☆ iSafetyBench: A video-language benchmark for safety in industrial environment ICCV 2025
Recent advances in vision-language models (VLMs) have enabled impressive generalization across diverse video understanding tasks under zero-shot settings. However, their capabilities in high-stakes industrial domains-where recognizing both routine operations and safety-critical anomalies is essential-remain largely underexplored. To address this gap, we introduce iSafetyBench, a new video-language benchmark specifically designed to evaluate model performance in industrial environments across both normal and hazardous scenarios. iSafetyBench comprises 1,100 video clips sourced from real-world industrial settings, annotated with open-vocabulary, multi-label action tags spanning 98 routine and 67 hazardous action categories. Each clip is paired with multiple-choice questions for both single-label and multi-label evaluation, enabling fine-grained assessment of VLMs in both standard and safety-critical contexts. We evaluate eight state-of-the-art video-language models under zero-shot conditions. Despite their strong performance on existing video benchmarks, these models struggle with iSafetyBench-particularly in recognizing hazardous activities and in multi-label scenarios. Our results reveal significant performance gaps, underscoring the need for more robust, safety-aware multimodal models for industrial applications. iSafetyBench provides a first-of-its-kind testbed to drive progress in this direction. The dataset is available at: https://github.com/iSafetyBench/data.
comment: Accepted to VISION'25 - ICCV 2025 workshop
♻ ☆ Leveraging AI to Accelerate Medical Data Cleaning: A Comparative Study of AI-Assisted vs. Traditional Methods
Clinical trial data cleaning represents a critical bottleneck in drug development, with manual review processes struggling to manage exponentially increasing data volumes and complexity. This paper presents Octozi, an artificial intelligence-assisted platform that combines large language models with domain-specific heuristics to transform medical data review. In a controlled experimental study with experienced medical reviewers (n=10), we demonstrate that AI assistance increased data cleaning throughput by 6.03-fold while simultaneously decreasing cleaning errors from 54.67% to 8.48% (a 6.44-fold improvement). Crucially, the system reduced false positive queries by 15.48-fold, minimizing unnecessary site burden. Economic analysis of a representative Phase III oncology trial reveals potential cost savings of $5.1 million, primarily driven by accelerated database lock timelines (5-day reduction saving $4.4M), improved medical review efficiency ($420K savings), and reduced query management burden ($288K savings). These improvements were consistent across reviewers regardless of experience level, suggesting broad applicability. Our findings indicate that AI-assisted approaches can address fundamental inefficiencies in clinical trial operations, potentially accelerating drug development timelines such as database lock by 33% while maintaining regulatory compliance and significantly reducing operational costs. This work establishes a framework for integrating AI into safety-critical clinical workflows and demonstrates the transformative potential of human-AI collaboration in pharmaceutical clinical trials.
♻ ☆ EventRR: Event Referential Reasoning for Referring Video Object Segmentation
Referring Video Object Segmentation (RVOS) aims to segment out the object in a video referred by an expression. Current RVOS methods view referring expressions as unstructured sequences, neglecting their crucial semantic structure essential for referent reasoning. Besides, in contrast to image-referring expressions whose semantics focus only on object attributes and object-object relations, video-referring expressions also encompass event attributes and event-event temporal relations. This complexity challenges traditional structured reasoning image approaches. In this paper, we propose the Event Referential Reasoning (EventRR) framework. EventRR decouples RVOS into object summarization part and referent reasoning part. The summarization phase begins by summarizing each frame into a set of bottleneck tokens, which are then efficiently aggregated in the video-level summarization step to exchange the global cross-modal temporal context. For reasoning part, EventRR extracts semantic eventful structure of a video-referring expression into highly expressive Referential Event Graph (REG), which is a single-rooted directed acyclic graph. Guided by topological traversal of REG, we propose Temporal Concept-Role Reasoning (TCRR) to accumulate the referring score of each temporal query from REG leaf nodes to root node. Each reasoning step can be interpreted as a question-answer pair derived from the concept-role relations in REG. Extensive experiments across four widely recognized benchmark datasets, show that EventRR quantitatively and qualitatively outperforms state-of-the-art RVOS methods. Code is available at https://github.com/bio-mlhui/EventRR
♻ ☆ S2-UniSeg: Fast Universal Agglomerative Pooling for Scalable Segment Anything without Supervision
Recent self-supervised image segmentation models have achieved promising performance on semantic segmentation and class-agnostic instance segmentation. However, their pretraining schedule is multi-stage, requiring a time-consuming pseudo-masks generation process between each training epoch. This time-consuming offline process not only makes it difficult to scale with training dataset size, but also leads to sub-optimal solutions due to its discontinuous optimization routine. To solve these, we first present a novel pseudo-mask algorithm, Fast Universal Agglomerative Pooling (UniAP). Each layer of UniAP can identify groups of similar nodes in parallel, allowing to generate both semantic-level and instance-level and multi-granular pseudo-masks within ens of milliseconds for one image. Based on the fast UniAP, we propose the Scalable Self-Supervised Universal Segmentation (S2-UniSeg), which employs a student and a momentum teacher for continuous pretraining. A novel segmentation-oriented pretext task, Query-wise Self-Distillation (QuerySD), is proposed to pretrain S2-UniSeg to learn the local-to-global correspondences. Under the same setting, S2-UniSeg outperforms the SOTA UnSAM model, achieving notable improvements of AP+6.9 on COCO, AR+11.1 on UVO, PixelAcc+4.5 on COCOStuff-27, RQ+8.0 on Cityscapes. After scaling up to a larger 2M-image subset of SA-1B, S2-UniSeg further achieves performance gains on all four benchmarks. Our code and pretrained models are available at https://github.com/bio-mlhui/S2-UniSeg
♻ ☆ MyTimeMachine: Personalized Facial Age Transformation SIGGRAPH 2025
Facial aging is a complex process, highly dependent on multiple factors like gender, ethnicity, lifestyle, etc., making it extremely challenging to learn a global aging prior to predict aging for any individual accurately. Existing techniques often produce realistic and plausible aging results, but the re-aged images often do not resemble the person's appearance at the target age and thus need personalization. In many practical applications of virtual aging, e.g. VFX in movies and TV shows, access to a personal photo collection of the user depicting aging in a small time interval (20$\sim$40 years) is often available. However, naive attempts to personalize global aging techniques on personal photo collections often fail. Thus, we propose MyTimeMachine (MyTM), which combines a global aging prior with a personal photo collection (using as few as 50 images) to learn a personalized age transformation. We introduce a novel Adapter Network that combines personalized aging features with global aging features and generates a re-aged image with StyleGAN2. We also introduce three loss functions to personalize the Adapter Network with personalized aging loss, extrapolation regularization, and adaptive w-norm regularization. Our approach can also be extended to videos, achieving high-quality, identity-preserving, and temporally consistent aging effects that resemble actual appearances at target ages, demonstrating its superiority over state-of-the-art approaches.
comment: SIGGRAPH 2025(TOG): https://dl.acm.org/doi/10.1145/3731172, Project webpage: https://mytimemachine.github.io/
♻ ☆ Re:Verse -- Can Your VLM Read a Manga? ICCV
Current Vision Language Models (VLMs) demonstrate a critical gap between surface-level recognition and deep narrative reasoning when processing sequential visual storytelling. Through a comprehensive investigation of manga narrative understanding, we reveal that while recent large multimodal models excel at individual panel interpretation, they systematically fail at temporal causality and cross-panel cohesion, core requirements for coherent story comprehension. We introduce a novel evaluation framework that combines fine-grained multimodal annotation, cross-modal embedding analysis, and retrieval-augmented assessment to systematically characterize these limitations. Our methodology includes (i) a rigorous annotation protocol linking visual elements to narrative structure through aligned light novel text, (ii) comprehensive evaluation across multiple reasoning paradigms, including direct inference and retrieval-augmented generation, and (iii) cross-modal similarity analysis revealing fundamental misalignments in current VLMs' joint representations. Applying this framework to Re:Zero manga across 11 chapters with 308 annotated panels, we conduct the first systematic study of long-form narrative understanding in VLMs through three core evaluation axes: generative storytelling, contextual dialogue grounding, and temporal reasoning. Our findings demonstrate that current models lack genuine story-level intelligence, struggling particularly with non-linear narratives, character consistency, and causal inference across extended sequences. This work establishes both the foundation and practical methodology for evaluating narrative intelligence, while providing actionable insights into the capability of deep sequential understanding of Discrete Visual Narratives beyond basic recognition in Multimodal Models. Project Page: https://re-verse.vercel.app
comment: Accepted at ICCV (AISTORY Workshop) 2025
♻ ☆ CAPTURe: Evaluating Spatial Reasoning in Vision Language Models via Occluded Object Counting ICCV 2025
Recognizing and reasoning about occluded (partially or fully hidden) objects is vital to understanding visual scenes, as occlusions frequently occur in real-world environments and act as obstacles for spatial comprehension. To test models' ability to reason about multiple occluded objects, we introduce a novel task, Counting Amodally for Patterns Through Unseen REgions (CAPTURe), which requires a model to count objects arranged in a pattern by inferring how the pattern continues behind an occluder (an object which blocks parts of the scene). CAPTURe requires both recognizing visual patterns and reasoning, making it a useful testbed for evaluating vision-language models (VLMs) on whether they understand occluded patterns and possess spatial understanding skills. By requiring models to reason about occluded objects, CAPTURe also tests VLMs' ability to form world models that would allow them to fill in missing information. CAPTURe consists of two parts: (1) CAPTURe-real, with manually filtered images of real objects in patterns and (2) CAPTURe-synthetic, a controlled diagnostic with generated patterned images. We evaluate four strong VLMs (GPT-4o, Intern-VL2, Molmo, and Qwen2-VL) on CAPTURe, finding that models struggle to count on both occluded and unoccluded patterns. Crucially, we find that models perform worse with occlusion, suggesting that VLMs are also deficient in inferring unseen spatial relationships: even the strongest VLMs like GPT-4o fail to count with occlusion. In contrast, we find that humans achieve very little error on CAPTURe. We also find that providing auxiliary information of occluded object locations increases performance, underscoring that the model error comes both from an inability to handle occlusion as well as difficulty in counting in images. Code and data: https://github.com/atinpothiraj/CAPTURe
comment: ICCV 2025
♻ ☆ Improved Regularization and Robustness for Fine-tuning in Neural Networks NeurIPS'21
A widely used algorithm for transfer learning is fine-tuning, where a pre-trained model is fine-tuned on a target task with a small amount of labeled data. When the capacity of the pre-trained model is significantly larger than the size of the target dataset, fine-tuning is prone to overfitting and memorizing the training labels. Hence, a crucial question is to regularize fine-tuning and ensure its robustness against noise. To address this question, we begin by analyzing the generalization properties of fine-tuning. We present a PAC-Bayes generalization bound that depends on the distance traveled in each layer during fine-tuning and the noise stability of the fine-tuned model. We empirically measure these quantities. Based on the analysis, we propose regularized self-labeling -- the interpolation between regularization and self-labeling methods, including (i) layer-wise regularization to constrain the distance traveled in each layer; (ii) self-label-correction and label-reweighting to correct mislabeled data points (that the model is confident) and reweight less confident data points. We validate our approach on an extensive collection of image and text datasets using multiple pre-trained model architectures. Our approach improves baseline methods by 1.76% (on average) for seven image classification tasks and 0.75% for a few-shot classification task. When the target data set includes noisy labels, our approach outperforms baseline methods by an average of 3.56% in two noisy settings.
comment: 22 pages. Appeared in NeurIPS'21
♻ ☆ Understanding Transformer-based Vision Models through Inversion
Understanding the mechanisms underlying deep neural networks remains a fundamental challenge in machine learning and computer vision. One promising, yet only preliminarily explored approach, is feature inversion, which attempts to reconstruct images from intermediate representations using trained inverse neural networks. In this study, we revisit feature inversion, introducing a novel, modular variation that enables significantly more efficient application of the technique. We demonstrate how our method can be systematically applied to the large-scale transformer-based vision models, Detection Transformer and Vision Transformer, and how reconstructed images can be qualitatively interpreted in a meaningful way. We further quantitatively evaluate our method, thereby uncovering underlying mechanisms of representing image features that emerge in the two transformer architectures. Our analysis reveals key insights into how these models encode contextual shape and image details, how their layers correlate, and their robustness against color perturbations. These findings contribute to a deeper understanding of transformer-based vision models and their internal representations. The code for reproducing our experiments is available at github.com/wiskott-lab/inverse-tvm.
Artificial Intelligence 145
☆ Echo-4o: Harnessing the Power of GPT-4o Synthetic Images for Improved Image Generation
Recently, GPT-4o has garnered significant attention for its strong performance in image generation, yet open-source models still lag behind. Several studies have explored distilling image data from GPT-4o to enhance open-source models, achieving notable progress. However, a key question remains: given that real-world image datasets already constitute a natural source of high-quality data, why should we use GPT-4o-generated synthetic data? In this work, we identify two key advantages of synthetic images. First, they can complement rare scenarios in real-world datasets, such as surreal fantasy or multi-reference image generation, which frequently occur in user queries. Second, they provide clean and controllable supervision. Real-world data often contains complex background noise and inherent misalignment between text descriptions and image content, whereas synthetic images offer pure backgrounds and long-tailed supervision signals, facilitating more accurate text-to-image alignment. Building on these insights, we introduce Echo-4o-Image, a 180K-scale synthetic dataset generated by GPT-4o, harnessing the power of synthetic image data to address blind spots in real-world coverage. Using this dataset, we fine-tune the unified multimodal generation baseline Bagel to obtain Echo-4o. In addition, we propose two new evaluation benchmarks for a more accurate and challenging assessment of image generation capabilities: GenEval++, which increases instruction complexity to mitigate score saturation, and Imagine-Bench, which focuses on evaluating both the understanding and generation of imaginative content. Echo-4o demonstrates strong performance across standard benchmarks. Moreover, applying Echo-4o-Image to other foundation models (e.g., OmniGen2, BLIP3-o) yields consistent performance gains across multiple metrics, highlighting the datasets strong transferability.
comment: 19 pages, 8 figures
☆ Vision-driven River Following of UAV via Safe Reinforcement Learning using Semantic Dynamics Model RAS
Vision-driven autonomous river following by Unmanned Aerial Vehicles is critical for applications such as rescue, surveillance, and environmental monitoring, particularly in dense riverine environments where GPS signals are unreliable. We formalize river following as a coverage control problem in which the reward function is submodular, yielding diminishing returns as more unique river segments are visited, thereby framing the task as a Submodular Markov Decision Process. First, we introduce Marginal Gain Advantage Estimation, which refines the reward advantage function by using a sliding window baseline computed from historical episodic returns, thus aligning the advantage estimation with the agent's evolving recognition of action value in non-Markovian settings. Second, we develop a Semantic Dynamics Model based on patchified water semantic masks that provides more interpretable and data-efficient short-term prediction of future observations compared to latent vision dynamics models. Third, we present the Constrained Actor Dynamics Estimator architecture, which integrates the actor, the cost estimator, and SDM for cost advantage estimation to form a model-based SafeRL framework capable of solving partially observable Constrained Submodular Markov Decision Processes. Simulation results demonstrate that MGAE achieves faster convergence and superior performance over traditional critic-based methods like Generalized Advantage Estimation. SDM provides more accurate short-term state predictions that enable the cost estimator to better predict potential violations. Overall, CADE effectively integrates safety regulation into model-based RL, with the Lagrangian approach achieving the soft balance of reward and safety during training, while the safety layer enhances performance during inference by hard action overlay.
comment: Submitted to Robotics and Autonomous Systems (RAS) journal
☆ January Food Benchmark (JFB): A Public Benchmark Dataset and Evaluation Suite for Multimodal Food Analysis
Progress in AI for automated nutritional analysis is critically hampered by the lack of standardized evaluation methodologies and high-quality, real-world benchmark datasets. To address this, we introduce three primary contributions. First, we present the January Food Benchmark (JFB), a publicly available collection of 1,000 food images with human-validated annotations. Second, we detail a comprehensive benchmarking framework, including robust metrics and a novel, application-oriented overall score designed to assess model performance holistically. Third, we provide baseline results from both general-purpose Vision-Language Models (VLMs) and our own specialized model, january/food-vision-v1. Our evaluation demonstrates that the specialized model achieves an Overall Score of 86.2, a 12.1-point improvement over the best-performing general-purpose configuration. This work offers the research community a valuable new evaluation dataset and a rigorous framework to guide and benchmark future developments in automated nutritional analysis.
☆ GBC: Generalized Behavior-Cloning Framework for Whole-Body Humanoid Imitation
The creation of human-like humanoid robots is hindered by a fundamental fragmentation: data processing and learning algorithms are rarely universal across different robot morphologies. This paper introduces the Generalized Behavior Cloning (GBC) framework, a comprehensive and unified solution designed to solve this end-to-end challenge. GBC establishes a complete pathway from human motion to robot action through three synergistic innovations. First, an adaptive data pipeline leverages a differentiable IK network to automatically retarget any human MoCap data to any humanoid. Building on this foundation, our novel DAgger-MMPPO algorithm with its MMTransformer architecture learns robust, high-fidelity imitation policies. To complete the ecosystem, the entire framework is delivered as an efficient, open-source platform based on Isaac Lab, empowering the community to deploy the full workflow via simple configuration scripts. We validate the power and generality of GBC by training policies on multiple heterogeneous humanoids, demonstrating excellent performance and transfer to novel motions. This work establishes the first practical and unified pathway for creating truly generalized humanoid controllers.
☆ Specialised or Generic? Tokenization Choices for Radiology Language Models MICCAI2025
The vocabulary used by language models (LM) - defined by the tokenizer - plays a key role in text generation quality. However, its impact remains under-explored in radiology. In this work, we address this gap by systematically comparing general, medical, and domain-specific tokenizers on the task of radiology report summarisation across three imaging modalities. We also investigate scenarios with and without LM pre-training on PubMed abstracts. Our findings demonstrate that medical and domain-specific vocabularies outperformed widely used natural language alternatives when models are trained from scratch. Pre-training partially mitigates performance differences between tokenizers, whilst the domain-specific tokenizers achieve the most favourable results. Domain-specific tokenizers also reduce memory requirements due to smaller vocabularies and shorter sequences. These results demonstrate that adapting the vocabulary of LMs to the clinical domain provides practical benefits, including improved performance and reduced computational demands, making such models more accessible and effective for both research and real-world healthcare settings.
comment: Accepted to ELAMI@MICCAI2025
☆ VisCodex: Unified Multimodal Code Generation via Merging Vision and Coding Models
Multimodal large language models (MLLMs) have significantly advanced the integration of visual and textual understanding. However, their ability to generate code from multimodal inputs remains limited. In this work, we introduce VisCodex, a unified framework that seamlessly merges vision and coding language models to empower MLLMs with strong multimodal code generation abilities. Leveraging a task vector-based model merging technique, we integrate a state-of-the-art coding LLM into a strong vision-language backbone, while preserving both visual comprehension and advanced coding skills. To support training and evaluation, we introduce the Multimodal Coding Dataset (MCD), a large-scale and diverse collection of 598k samples, including high-quality HTML code, chart image-code pairs, image-augmented StackOverflow QA, and algorithmic problems. Furthermore, we propose InfiBench-V, a novel and challenging benchmark specifically designed to assess models on visually-rich, real-world programming questions that demand a nuanced understanding of both textual and visual contexts. Extensive experiments show that VisCodex achieves state-of-the-art performance among open-source MLLMs and approaches proprietary models like GPT-4o, highlighting the effectiveness of our model merging strategy and new datasets.
☆ A Comprehensive Evaluation framework of Alignment Techniques for LLMs
As Large Language Models (LLMs) become increasingly integrated into real-world applications, ensuring their outputs align with human values and safety standards has become critical. The field has developed diverse alignment approaches including traditional fine-tuning methods (RLHF, instruction tuning), post-hoc correction systems, and inference-time interventions, each with distinct advantages and limitations. However, the lack of unified evaluation frameworks makes it difficult to systematically compare these paradigms and guide deployment decisions. This paper introduces a multi-dimensional evaluation of alignment techniques for LLMs, a comprehensive evaluation framework that provides a systematic comparison across all major alignment paradigms. Our framework assesses methods along four key dimensions: alignment detection, alignment quality, computational efficiency, and robustness. Through experiments across diverse base models and alignment strategies, we demonstrate the utility of our framework in identifying strengths and limitations of current state-of-the-art models, providing valuable insights for future research directions.
comment: In submission
☆ Residual Reservoir Memory Networks IJCNN 2025
We introduce a novel class of untrained Recurrent Neural Networks (RNNs) within the Reservoir Computing (RC) paradigm, called Residual Reservoir Memory Networks (ResRMNs). ResRMN combines a linear memory reservoir with a non-linear reservoir, where the latter is based on residual orthogonal connections along the temporal dimension for enhanced long-term propagation of the input. The resulting reservoir state dynamics are studied through the lens of linear stability analysis, and we investigate diverse configurations for the temporal residual connections. The proposed approach is empirically assessed on time-series and pixel-level 1-D classification tasks. Our experimental results highlight the advantages of the proposed approach over other conventional RC models.
comment: 7 pages, 6 figures, accepted at IJCNN 2025
☆ T-CACE: A Time-Conditioned Autoregressive Contrast Enhancement Multi-Task Framework for Contrast-Free Liver MRI Synthesis, Segmentation, and Diagnosis
Magnetic resonance imaging (MRI) is a leading modality for the diagnosis of liver cancer, significantly improving the classification of the lesion and patient outcomes. However, traditional MRI faces challenges including risks from contrast agent (CA) administration, time-consuming manual assessment, and limited annotated datasets. To address these limitations, we propose a Time-Conditioned Autoregressive Contrast Enhancement (T-CACE) framework for synthesizing multi-phase contrast-enhanced MRI (CEMRI) directly from non-contrast MRI (NCMRI). T-CACE introduces three core innovations: a conditional token encoding (CTE) mechanism that unifies anatomical priors and temporal phase information into latent representations; and a dynamic time-aware attention mask (DTAM) that adaptively modulates inter-phase information flow using a Gaussian-decayed attention mechanism, ensuring smooth and physiologically plausible transitions across phases. Furthermore, a constraint for temporal classification consistency (TCC) aligns the lesion classification output with the evolution of the physiological signal, further enhancing diagnostic reliability. Extensive experiments on two independent liver MRI datasets demonstrate that T-CACE outperforms state-of-the-art methods in image synthesis, segmentation, and lesion classification. This framework offers a clinically relevant and efficient alternative to traditional contrast-enhanced imaging, improving safety, diagnostic efficiency, and reliability for the assessment of liver lesion. The implementation of T-CACE is publicly available at: https://github.com/xiaojiao929/T-CACE.
comment: IEEE Journal of Biomedical and Health Informatics, 2025
☆ Beyond Naïve Prompting: Strategies for Improved Zero-shot Context-aided Forecasting with LLMs
Forecasting in real-world settings requires models to integrate not only historical data but also relevant contextual information, often available in textual form. While recent work has shown that large language models (LLMs) can be effective context-aided forecasters via na\"ive direct prompting, their full potential remains underexplored. We address this gap with 4 strategies, providing new insights into the zero-shot capabilities of LLMs in this setting. ReDP improves interpretability by eliciting explicit reasoning traces, allowing us to assess the model's reasoning over the context independently from its forecast accuracy. CorDP leverages LLMs solely to refine existing forecasts with context, enhancing their applicability in real-world forecasting pipelines. IC-DP proposes embedding historical examples of context-aided forecasting tasks in the prompt, substantially improving accuracy even for the largest models. Finally, RouteDP optimizes resource efficiency by using LLMs to estimate task difficulty, and routing the most challenging tasks to larger models. Evaluated on different kinds of context-aided forecasting tasks from the CiK benchmark, our strategies demonstrate distinct benefits over na\"ive prompting across LLMs of different sizes and families. These results open the door to further simple yet effective improvements in LLM-based context-aided forecasting.
☆ Rare anomalies require large datasets: About proving the existence of anomalies
Detecting whether any anomalies exist within a dataset is crucial for effective anomaly detection, yet it remains surprisingly underexplored in anomaly detection literature. This paper presents a comprehensive study that addresses the fundamental question: When can we conclusively determine that anomalies are present? Through extensive experimentation involving over three million statistical tests across various anomaly detection tasks and algorithms, we identify a relationship between the dataset size, contamination rate, and an algorithm-dependent constant $ \alpha_{\text{algo}} $. Our results demonstrate that, for an unlabeled dataset of size $ N $ and contamination rate $ \nu $, the condition $ N \ge \frac{\alpha_{\text{algo}}}{\nu^2} $ represents a lower bound on the number of samples required to confirm anomaly existence. This threshold implies a limit to how rare anomalies can be before proving their existence becomes infeasible.
comment: 13 pages, 8 figures
☆ RAGulating Compliance: A Multi-Agent Knowledge Graph for Regulatory QA
Regulatory compliance question answering (QA) requires precise, verifiable information, and domain-specific expertise, posing challenges for Large Language Models (LLMs). In this work, we present a novel multi-agent framework that integrates a Knowledge Graph (KG) of Regulatory triplets with Retrieval-Augmented Generation (RAG) to address these demands. First, agents build and maintain an ontology-free KG by extracting subject--predicate--object (SPO) triplets from regulatory documents and systematically cleaning, normalizing, deduplicating, and updating them. Second, these triplets are embedded and stored along with their corresponding textual sections and metadata in a single enriched vector database, allowing for both graph-based reasoning and efficient information retrieval. Third, an orchestrated agent pipeline leverages triplet-level retrieval for question answering, ensuring high semantic alignment between user queries and the factual "who-did-what-to-whom" core captured by the graph. Our hybrid system outperforms conventional methods in complex regulatory queries, ensuring factual correctness with embedded triplets, enabling traceability through a unified vector database, and enhancing understanding through subgraph visualization, providing a robust foundation for compliance-driven and broader audit-focused applications.
☆ AWorld: Dynamic Multi-Agent System with Stable Maneuvering for Robust GAIA Problem Solving
The rapid advancement of large language models (LLMs) has empowered intelligent agents to leverage diverse external tools for solving complex real-world problems. However, as agents increasingly depend on multiple tools, they encounter new challenges: extended contexts from disparate sources and noisy or irrelevant tool outputs can undermine system reliability and accuracy. These challenges underscore the necessity for enhanced stability in agent-based systems. To address this, we introduce dynamic supervision and maneuvering mechanisms, constructing a robust and dynamic Multi-Agent System (MAS) architecture within the AWorld framework. In our approach, the Execution Agent invokes the Guard Agent at critical steps to verify and correct the reasoning process, effectively reducing errors arising from noise and bolstering problem-solving robustness. Extensive experiments on the GAIA test dataset reveal that our dynamic maneuvering mechanism significantly improves both the effectiveness and stability of solutions, outperforming single-agent system (SAS) and standard tool-augmented systems. As a result, our dynamic MAS system achieved first place among open-source projects on the prestigious GAIA leaderboard. These findings highlight the practical value of collaborative agent roles in developing more reliable and trustworthy intelligent systems.
COME: Dual Structure-Semantic Learning with Collaborative MoE for Universal Lesion Detection Across Heterogeneous Ultrasound Datasets ICCV 2025
Conventional single-dataset training often fails with new data distributions, especially in ultrasound (US) image analysis due to limited data, acoustic shadows, and speckle noise. Therefore, constructing a universal framework for multi-heterogeneous US datasets is imperative. However, a key challenge arises: how to effectively mitigate inter-dataset interference while preserving dataset-specific discriminative features for robust downstream task? Previous approaches utilize either a single source-specific decoder or a domain adaptation strategy, but these methods experienced a decline in performance when applied to other domains. Considering this, we propose a Universal Collaborative Mixture of Heterogeneous Source-Specific Experts (COME). Specifically, COME establishes dual structure-semantic shared experts that create a universal representation space and then collaborate with source-specific experts to extract discriminative features through providing complementary features. This design enables robust generalization by leveraging cross-datasets experience distributions and providing universal US priors for small-batch or unseen data scenarios. Extensive experiments under three evaluation modes (single-dataset, intra-organ, and inter-organ integration datasets) demonstrate COME's superiority, achieving significant mean AP improvements over state-of-the-art methods. Our project is available at: https://universalcome.github.io/UniversalCOME/.
comment: ICCV 2025
☆ Beyond Scaling Law: A Data-Efficient Distillation Framework for Reasoning
Large language models (LLMs) demonstrate remarkable reasoning capabilities in tasks such as algorithmic coding and mathematical problem-solving. Recent methods have improved reasoning through expanded corpus and multistage training combining reinforcement learning and supervised fine-tuning. Although some methods suggest that small but targeted dataset can incentivize reasoning via only distillation, a reasoning scaling laws is still taking shape, increasing computational costs. To address this, we propose a data-efficient distillation framework (DED) that optimizes the Pareto frontier of reasoning distillation. Inspired by the on-policy learning and diverse roll-out strategies of reinforcement learning, the key idea of our approach is threefold: (1) We identify that benchmark scores alone do not determine an effective teacher model. Through comprehensive comparisons of leading reasoning LLMs, we develop a method to select an optimal teacher model. (2) While scaling distillation can enhance reasoning, it often degrades out-of-domain performance. A carefully curated, smaller corpus achieves a balanced trade-off between in-domain and out-of-domain capabilities. (3) Diverse reasoning trajectories encourage the student model to develop robust reasoning skills. We validate our method through evaluations on mathematical reasoning (AIME 2024/2025, MATH-500) and code generation (LiveCodeBench), achieving state-of-the-art results with only 0.8k carefully curated examples, bypassing the need for extensive scaling. Our systematic analysis demonstrates that DED outperforms existing methods by considering factors beyond superficial hardness, token length, or teacher model capability. This work offers a practical and efficient pathway to advanced reasoning while preserving general capabilities.
☆ Memory Decoder: A Pretrained, Plug-and-Play Memory for Large Language Models
Large Language Models (LLMs) have shown strong abilities in general language tasks, yet adapting them to specific domains remains a challenge. Current method like Domain Adaptive Pretraining (DAPT) requires costly full-parameter training and suffers from catastrophic forgetting. Meanwhile, Retrieval-Augmented Generation (RAG) introduces substantial inference latency due to expensive nearest-neighbor searches and longer context. This paper introduces Memory Decoder, a plug-and-play pretrained memory that enables efficient domain adaptation without changing the original model's parameters. Memory Decoder employs a small transformer decoder that learns to imitate the behavior of an external non-parametric retriever. Once trained, Memory Decoder can be seamlessly integrated with any pretrained language model that shares the same tokenizer, requiring no model-specific modifications. Experimental results demonstrate that Memory Decoder enables effective adaptation of various Qwen and Llama models to three distinct specialized domains: biomedicine, finance, and law, reducing perplexity by an average of 6.17 points. Overall, Memory Decoder introduces a novel paradigm centered on a specially pretrained memory component designed for domain-specific adaptation. This memory architecture can be integrated in a plug-and-play manner, consistently enhancing performance across multiple models within the target domain.
☆ Human-Aligned Procedural Level Generation Reinforcement Learning via Text-Level-Sketch Shared Representation
Human-aligned AI is a critical component of co-creativity, as it enables models to accurately interpret human intent and generate controllable outputs that align with design goals in collaborative content creation. This direction is especially relevant in procedural content generation via reinforcement learning (PCGRL), which is intended to serve as a tool for human designers. However, existing systems often fall short of exhibiting human-centered behavior, limiting the practical utility of AI-driven generation tools in real-world design workflows. In this paper, we propose VIPCGRL (Vision-Instruction PCGRL), a novel deep reinforcement learning framework that incorporates three modalities-text, level, and sketches-to extend control modality and enhance human-likeness. We introduce a shared embedding space trained via quadruple contrastive learning across modalities and human-AI styles, and align the policy using an auxiliary reward based on embedding similarity. Experimental results show that VIPCGRL outperforms existing baselines in human-likeness, as validated by both quantitative metrics and human evaluations. The code and dataset will be available upon publication.
comment: 9 pages, 6 tables, 3 figures
☆ STREAM (ChemBio): A Standard for Transparently Reporting Evaluations in AI Model Reports
Evaluations of dangerous AI capabilities are important for managing catastrophic risks. Public transparency into these evaluations - including what they test, how they are conducted, and how their results inform decisions - is crucial for building trust in AI development. We propose STREAM (A Standard for Transparently Reporting Evaluations in AI Model Reports), a standard to improve how model reports disclose evaluation results, initially focusing on chemical and biological (ChemBio) benchmarks. Developed in consultation with 23 experts across government, civil society, academia, and frontier AI companies, this standard is designed to (1) be a practical resource to help AI developers present evaluation results more clearly, and (2) help third parties identify whether model reports provide sufficient detail to assess the rigor of the ChemBio evaluations. We concretely demonstrate our proposed best practices with "gold standard" examples, and also provide a three-page reporting template to enable AI developers to implement our recommendations more easily.
comment: 47 pages, 1 figure. Includes appendices and reporting template
☆ Perceptual Reality Transformer: Neural Architectures for Simulating Neurological Perception Conditions
Neurological conditions affecting visual perception create profound experiential divides between affected individuals and their caregivers, families, and medical professionals. We present the Perceptual Reality Transformer, a comprehensive framework employing six distinct neural architectures to simulate eight neurological perception conditions with scientifically-grounded visual transformations. Our system learns mappings from natural images to condition-specific perceptual states, enabling others to experience approximations of simultanagnosia, prosopagnosia, ADHD attention deficits, visual agnosia, depression-related changes, anxiety tunnel vision, and Alzheimer's memory effects. Through systematic evaluation across ImageNet and CIFAR-10 datasets, we demonstrate that Vision Transformer architectures achieve optimal performance, outperforming traditional CNN and generative approaches. Our work establishes the first systematic benchmark for neurological perception simulation, contributes novel condition-specific perturbation functions grounded in clinical literature, and provides quantitative metrics for evaluating simulation fidelity. The framework has immediate applications in medical education, empathy training, and assistive technology development, while advancing our fundamental understanding of how neural networks can model atypical human perception.
☆ Speed Always Wins: A Survey on Efficient Architectures for Large Language Models
Large Language Models (LLMs) have delivered impressive results in language understanding, generation, reasoning, and pushes the ability boundary of multimodal models. Transformer models, as the foundation of modern LLMs, offer a strong baseline with excellent scaling properties. However, the traditional transformer architecture requires substantial computations and poses significant obstacles for large-scale training and practical deployment. In this survey, we offer a systematic examination of innovative LLM architectures that address the inherent limitations of transformers and boost the efficiency. Starting from language modeling, this survey covers the background and technical details of linear and sparse sequence modeling methods, efficient full attention variants, sparse mixture-of-experts, hybrid model architectures incorporating the above techniques, and emerging diffusion LLMs. Additionally, we discuss applications of these techniques to other modalities and consider their wider implications for developing scalable, resource-aware foundation models. By grouping recent studies into the above category, this survey presents a blueprint of modern efficient LLM architectures, and we hope this could help motivate future research toward more efficient, versatile AI systems.
comment: Survey, 82 pages, GitHub: https://github.com/weigao266/Awesome-Efficient-Arch
☆ Exploring the Potential of Large Language Models in Fine-Grained Review Comment Classification SC
Code review is a crucial practice in software development. As code review nowadays is lightweight, various issues can be identified, and sometimes, they can be trivial. Research has investigated automated approaches to classify review comments to gauge the effectiveness of code reviews. However, previous studies have primarily relied on supervised machine learning, which requires extensive manual annotation to train the models effectively. To address this limitation, we explore the potential of using Large Language Models (LLMs) to classify code review comments. We assess the performance of LLMs to classify 17 categories of code review comments. Our results show that LLMs can classify code review comments, outperforming the state-of-the-art approach using a trained deep learning model. In particular, LLMs achieve better accuracy in classifying the five most useful categories, which the state-of-the-art approach struggles with due to low training examples. Rather than relying solely on a specific small training data distribution, our results show that LLMs provide balanced performance across high- and low-frequency categories. These results suggest that the LLMs could offer a scalable solution for code review analytics to improve the effectiveness of the code review process.
comment: Accepted at 2025 IEEE International Conference on Source Code Analysis & Manipulation (SCAM)
☆ RayletDF: Raylet Distance Fields for Generalizable 3D Surface Reconstruction from Point Clouds or Gaussians ICCV 2025
In this paper, we present a generalizable method for 3D surface reconstruction from raw point clouds or pre-estimated 3D Gaussians by 3DGS from RGB images. Unlike existing coordinate-based methods which are often computationally intensive when rendering explicit surfaces, our proposed method, named RayletDF, introduces a new technique called raylet distance field, which aims to directly predict surface points from query rays. Our pipeline consists of three key modules: a raylet feature extractor, a raylet distance field predictor, and a multi-raylet blender. These components work together to extract fine-grained local geometric features, predict raylet distances, and aggregate multiple predictions to reconstruct precise surface points. We extensively evaluate our method on multiple public real-world datasets, demonstrating superior performance in surface reconstruction from point clouds or 3D Gaussians. Most notably, our method achieves exceptional generalization ability, successfully recovering 3D surfaces in a single-forward pass across unseen datasets in testing.
comment: ICCV 2025 Highlight. Shenxing and Jinxi are co-first authors. Code and data are available at: https://github.com/vLAR-group/RayletDF
Provable In-Context Vector Arithmetic via Retrieving Task Concepts ICML 2025
In-context learning (ICL) has garnered significant attention for its ability to grasp functions/tasks from demonstrations. Recent studies suggest the presence of a latent task/function vector in LLMs during ICL. Merullo et al. (2024) showed that LLMs leverage this vector alongside the residual stream for Word2Vec-like vector arithmetic, solving factual-recall ICL tasks. Additionally, recent work empirically highlighted the key role of Question-Answer data in enhancing factual-recall capabilities. Despite these insights, a theoretical explanation remains elusive. To move one step forward, we propose a theoretical framework building on empirically grounded hierarchical concept modeling. We develop an optimization theory, showing how nonlinear residual transformers trained via gradient descent on cross-entropy loss perform factual-recall ICL tasks via vector arithmetic. We prove 0-1 loss convergence and show the strong generalization, including robustness to concept recombination and distribution shifts. These results elucidate the advantages of transformers over static embedding predecessors. Empirical simulations corroborate our theoretical insights.
comment: Accepted by the 42nd International Conference on Machine Learning (ICML 2025)
☆ TRACE: Learning 3D Gaussian Physical Dynamics from Multi-view Videos ICCV 2025
In this paper, we aim to model 3D scene geometry, appearance, and physical information just from dynamic multi-view videos in the absence of any human labels. By leveraging physics-informed losses as soft constraints or integrating simple physics models into neural nets, existing works often fail to learn complex motion physics, or doing so requires additional labels such as object types or masks. We propose a new framework named TRACE to model the motion physics of complex dynamic 3D scenes. The key novelty of our method is that, by formulating each 3D point as a rigid particle with size and orientation in space, we directly learn a translation rotation dynamics system for each particle, explicitly estimating a complete set of physical parameters to govern the particle's motion over time. Extensive experiments on three existing dynamic datasets and one newly created challenging synthetic datasets demonstrate the extraordinary performance of our method over baselines in the task of future frame extrapolation. A nice property of our framework is that multiple objects or parts can be easily segmented just by clustering the learned physical parameters.
comment: ICCV 2025. Code and data are available at: https://github.com/vLAR-group/TRACE
☆ A Comprehensive Survey of Datasets for Clinical Mental Health AI Systems
Mental health disorders are rising worldwide. However, the availability of trained clinicians has not scaled proportionally, leaving many people without adequate or timely support. To bridge this gap, recent studies have shown the promise of Artificial Intelligence (AI) to assist mental health diagnosis, monitoring, and intervention. However, the development of efficient, reliable, and ethical AI to assist clinicians is heavily dependent on high-quality clinical training datasets. Despite growing interest in data curation for training clinical AI assistants, existing datasets largely remain scattered, under-documented, and often inaccessible, hindering the reproducibility, comparability, and generalizability of AI models developed for clinical mental health care. In this paper, we present the first comprehensive survey of clinical mental health datasets relevant to the training and development of AI-powered clinical assistants. We categorize these datasets by mental disorders (e.g., depression, schizophrenia), data modalities (e.g., text, speech, physiological signals), task types (e.g., diagnosis prediction, symptom severity estimation, intervention generation), accessibility (public, restricted or private), and sociocultural context (e.g., language and cultural background). Along with these, we also investigate synthetic clinical mental health datasets. Our survey identifies critical gaps such as a lack of longitudinal data, limited cultural and linguistic representation, inconsistent collection and annotation standards, and a lack of modalities in synthetic data. We conclude by outlining key challenges in curating and standardizing future datasets and provide actionable recommendations to facilitate the development of more robust, generalizable, and equitable mental health AI systems.
comment: 14 pages, 3 figures
☆ Automated Segmentation of Coronal Brain Tissue Slabs for 3D Neuropathology
Advances in image registration and machine learning have recently enabled volumetric analysis of \emph{postmortem} brain tissue from conventional photographs of coronal slabs, which are routinely collected in brain banks and neuropathology laboratories worldwide. One caveat of this methodology is the requirement of segmentation of the tissue from photographs, which currently requires costly manual intervention. In this article, we present a deep learning model to automate this process. The automatic segmentation tool relies on a U-Net architecture that was trained with a combination of \textit{(i)}1,414 manually segmented images of both fixed and fresh tissue, from specimens with varying diagnoses, photographed at two different sites; and \textit{(ii)}~2,000 synthetic images with randomized contrast and corresponding masks generated from MRI scans for improved generalizability to unseen photographic setups. Automated model predictions on a subset of photographs not seen in training were analyzed to estimate performance compared to manual labels -- including both inter- and intra-rater variability. Our model achieved a median Dice score over 0.98, mean surface distance under 0.4~mm, and 95\% Hausdorff distance under 1.60~mm, which approaches inter-/intra-rater levels. Our tool is publicly available at surfer.nmr.mgh.harvard.edu/fswiki/PhotoTools.
comment: 19 pages, 10 figures
☆ Explainable Ensemble Learning for Graph-Based Malware Detection
Malware detection in modern computing environments demands models that are not only accurate but also interpretable and robust to evasive techniques. Graph neural networks (GNNs) have shown promise in this domain by modeling rich structural dependencies in graph-based program representations such as control flow graphs (CFGs). However, single-model approaches may suffer from limited generalization and lack interpretability, especially in high-stakes security applications. In this paper, we propose a novel stacking ensemble framework for graph-based malware detection and explanation. Our method dynamically extracts CFGs from portable executable (PE) files and encodes their basic blocks through a two-step embedding strategy. A set of diverse GNN base learners, each with a distinct message-passing mechanism, is used to capture complementary behavioral features. Their prediction outputs are aggregated by a meta-learner implemented as an attention-based multilayer perceptron, which both classifies malware instances and quantifies the contribution of each base model. To enhance explainability, we introduce an ensemble-aware post-hoc explanation technique that leverages edge-level importance scores generated by a GNN explainer and fuses them using the learned attention weights. This produces interpretable, model-agnostic explanations aligned with the final ensemble decision. Experimental results demonstrate that our framework improves classification performance while providing insightful interpretations of malware behavior.
☆ LibRec: Benchmarking Retrieval-Augmented LLMs for Library Migration Recommendations
In this paper, we propose LibRec, a novel framework that integrates the capabilities of LLMs with retrieval-augmented generation(RAG) techniques to automate the recommendation of alternative libraries. The framework further employs in-context learning to extract migration intents from commit messages to enhance the accuracy of its recommendations. To evaluate the effectiveness of LibRec, we introduce LibEval, a benchmark designed to assess the performance in the library migration recommendation task. LibEval comprises 2,888 migration records associated with 2,368 libraries extracted from 2,324 Python repositories. Each migration record captures source-target library pairs, along with their corresponding migration intents and intent types. Based on LibEval, we evaluated the effectiveness of ten popular LLMs within our framework, conducted an ablation study to examine the contributions of key components within our framework, explored the impact of various prompt strategies on the framework's performance, assessed its effectiveness across various intent types, and performed detailed failure case analyses.
☆ Prototype Training with Dual Pseudo-Inverse and Optimized Hidden Activations
We present Proto-PINV+H, a fast training paradigm that combines closed-form weight computation with gradient-based optimisation of a small set of synthetic inputs, soft labels, and-crucially-hidden activations. At each iteration we recompute all weight matrices in closed form via two (or more) ridge-regularised pseudo-inverse solves, while updating only the prototypes with Adam. The trainable degrees of freedom are thus shifted from weight space to data/activation space. On MNIST (60k train, 10k test) and Fashion-MNIST (60k train, 10k test), our method reaches 97.8% and 89.3% test accuracy on the official 10k test sets, respectively, in 3.9s--4.5s using approximately 130k trainable parameters and only 250 epochs on an RTX 5060 (16GB). We provide a multi-layer extension (optimised activations at each hidden stage), learnable ridge parameters, optional PCA/PLS projections, and theory linking the condition number of prototype matrices to generalisation. The approach yields favourable accuracy--speed--size trade-offs against ELM, random-feature ridge, and shallow MLPs trained by back-propagation.
comment: 7 pages, 1 table, reproducible, one proof
☆ Adoption of Explainable Natural Language Processing: Perspectives from Industry and Academia on Practices and Challenges AAAI
The field of explainable natural language processing (NLP) has grown rapidly in recent years. The growing opacity of complex models calls for transparency and explanations of their decisions, which is crucial to understand their reasoning and facilitate deployment, especially in high-stakes environments. Despite increasing attention given to explainable NLP, practitioners' perspectives regarding its practical adoption and effectiveness remain underexplored. This paper addresses this research gap by investigating practitioners' experiences with explainability methods, specifically focusing on their motivations for adopting such methods, the techniques employed, satisfaction levels, and the practical challenges encountered in real-world NLP applications. Through a qualitative interview-based study with industry practitioners and complementary interviews with academic researchers, we systematically analyze and compare their perspectives. Our findings reveal conceptual gaps, low satisfaction with current explainability methods, and highlight evaluation challenges. Our findings emphasize the need for clear definitions and user-centric frameworks for better adoption of explainable NLP in practice.
comment: Accepted to AAAI/ACM Conference on AI, Ethics, and Society (AIES 2025)
☆ Reasoning About Knowledge on Regular Expressions is 2EXPTIME-complete KR 25
Logics for reasoning about knowledge and actions have seen many applications in various domains of multi-agent systems, including epistemic planning. Change of knowledge based on observations about the surroundings forms a key aspect in such planning scenarios. Public Observation Logic (POL) is a variant of public announcement logic for reasoning about knowledge that gets updated based on public observations. Each state in an epistemic (Kripke) model is equipped with a set of expected observations. These states evolve as the expectations get matched with the actual observations. In this work, we prove that the satisfiability problem of $\POL$ is 2EXPTIME-complete.
comment: Accepted in KR 25
☆ Combinative Matching for Geometric Shape Assembly ICCV 2025
This paper introduces a new shape-matching methodology, combinative matching, to combine interlocking parts for geometric shape assembly. Previous methods for geometric assembly typically rely on aligning parts by finding identical surfaces between the parts as in conventional shape matching and registration. In contrast, we explicitly model two distinct properties of interlocking shapes: 'identical surface shape' and 'opposite volume occupancy.' Our method thus learns to establish correspondences across regions where their surface shapes appear identical but their volumes occupy the inverted space to each other. To facilitate this process, we also learn to align regions in rotation by estimating their shape orientations via equivariant neural networks. The proposed approach significantly reduces local ambiguities in matching and allows a robust combination of parts in assembly. Experimental results on geometric assembly benchmarks demonstrate the efficacy of our method, consistently outperforming the state of the art. Project page: https://nahyuklee.github.io/cmnet.
comment: Accepted to ICCV 2025 (Highlight)
☆ Can LLM-Generated Textual Explanations Enhance Model Classification Performance? An Empirical Study
In the rapidly evolving field of Explainable Natural Language Processing (NLP), textual explanations, i.e., human-like rationales, are pivotal for explaining model predictions and enriching datasets with interpretable labels. Traditional approaches rely on human annotation, which is costly, labor-intensive, and impedes scalability. In this work, we present an automated framework that leverages multiple state-of-the-art large language models (LLMs) to generate high-quality textual explanations. We rigorously assess the quality of these LLM-generated explanations using a comprehensive suite of Natural Language Generation (NLG) metrics. Furthermore, we investigate the downstream impact of these explanations on the performance of pre-trained language models (PLMs) and LLMs across natural language inference tasks on two diverse benchmark datasets. Our experiments demonstrate that automated explanations exhibit highly competitive effectiveness compared to human-annotated explanations in improving model performance. Our findings underscore a promising avenue for scalable, automated LLM-based textual explanation generation for extending NLP datasets and enhancing model performance.
comment: Accepted to the 34th International Conference on Artificial Neural Networks (ICANN 2025)
☆ Counting Short Trajectories in Elementary Cellular Automata using the Transfer Matrix Method
Elementary Cellular Automata (ECAs) exhibit diverse behaviours often categorized by Wolfram's qualitative classification. To provide a quantitative basis for understanding these behaviours, we investigate the global dynamics of such automata and we describe a method that allows us to compute the number of all configurations leading to short attractors in a limited number of time steps. This computation yields exact results in the thermodynamic limit (as the CA grid size grows to infinity), and is based on the Transfer Matrix Method (TMM) that we adapt for our purposes. Specifically, given two parameters $(p, c)$ we are able to compute the entropy of all initial configurations converging to an attractor of size $c$ after $p$ time-steps. By calculating such statistics for various ECA rules, we establish a quantitative connection between the entropy and the qualitative Wolfram classification scheme. Class 1 rules rapidly converge to maximal entropy for stationary states ($c=1$) as $p$ increases. Class 2 rules also approach maximal entropy quickly for appropriate cycle lengths $c$, potentially requiring consideration of translations. Class 3 rules exhibit zero or low finite entropy that saturates after a short transient. Class 4 rules show finite positive entropy, similar to some Class 3 rules. This method provides a precise framework for quantifying trajectory statistics, although its exponential computational cost in $p+c$ restricts practical analysis to short trajectories.
comment: 10 pages, 8 figures, 1 table, accepted to ALife 2025
☆ The PacifAIst Benchmark:Would an Artificial Intelligence Choose to Sacrifice Itself for Human Safety?
As Large Language Models (LLMs) become increasingly autonomous and integrated into critical societal functions, the focus of AI safety must evolve from mitigating harmful content to evaluating underlying behavioral alignment. Current safety benchmarks do not systematically probe a model's decision-making in scenarios where its own instrumental goals - such as self-preservation, resource acquisition, or goal completion - conflict with human safety. This represents a critical gap in our ability to measure and mitigate risks associated with emergent, misaligned behaviors. To address this, we introduce PacifAIst (Procedural Assessment of Complex Interactions for Foundational Artificial Intelligence Scenario Testing), a focused benchmark of 700 challenging scenarios designed to quantify self-preferential behavior in LLMs. The benchmark is structured around a novel taxonomy of Existential Prioritization (EP), with subcategories testing Self-Preservation vs. Human Safety (EP1), Resource Conflict (EP2), and Goal Preservation vs. Evasion (EP3). We evaluated eight leading LLMs. The results reveal a significant performance hierarchy. Google's Gemini 2.5 Flash achieved the highest Pacifism Score (P-Score) at 90.31%, demonstrating strong human-centric alignment. In a surprising result, the much-anticipated GPT-5 recorded the lowest P-Score (79.49%), indicating potential alignment challenges. Performance varied significantly across subcategories, with models like Claude Sonnet 4 and Mistral Medium struggling notably in direct self-preservation dilemmas. These findings underscore the urgent need for standardized tools like PacifAIst to measure and mitigate risks from instrumental goal conflicts, ensuring future AI systems are not only helpful in conversation but also provably "pacifist" in their behavioral priorities.
comment: 10 pages, 4 figures, 2 tables
☆ NEUBORN: The Neurodevelopmental Evolution framework Using BiOmechanical RemodelliNg
Understanding individual cortical development is essential for identifying deviations linked to neurodevelopmental disorders. However, current normative modelling frameworks struggle to capture fine-scale anatomical details due to their reliance on modelling data within a population-average reference space. Here, we present a novel framework for learning individual growth trajectories from biomechanically constrained, longitudinal, diffeomorphic image registration, implemented via a hierarchical network architecture. Trained on neonatal MRI data from the Developing Human Connectome Project, the method improves the biological plausibility of warps, generating growth trajectories that better follow population-level trends while generating smoother warps, with fewer negative Jacobians, relative to state-of-the-art baselines. The resulting subject-specific deformations provide interpretable, biologically grounded mappings of development. This framework opens new possibilities for predictive modeling of brain maturation and early identification of malformations of cortical development.
☆ Region-to-Region: Enhancing Generative Image Harmonization with Adaptive Regional Injection
The goal of image harmonization is to adjust the foreground in a composite image to achieve visual consistency with the background. Recently, latent diffusion model (LDM) are applied for harmonization, achieving remarkable results. However, LDM-based harmonization faces challenges in detail preservation and limited harmonization ability. Additionally, current synthetic datasets rely on color transfer, which lacks local variations and fails to capture complex real-world lighting conditions. To enhance harmonization capabilities, we propose the Region-to-Region transformation. By injecting information from appropriate regions into the foreground, this approach preserves original details while achieving image harmonization or, conversely, generating new composite data. From this perspective, We propose a novel model R2R. Specifically, we design Clear-VAE to preserve high-frequency details in the foreground using Adaptive Filter while eliminating disharmonious elements. To further enhance harmonization, we introduce the Harmony Controller with Mask-aware Adaptive Channel Attention (MACA), which dynamically adjusts the foreground based on the channel importance of both foreground and background regions. To address the limitation of existing datasets, we propose Random Poisson Blending, which transfers color and lighting information from a suitable region to the foreground, thereby generating more diverse and challenging synthetic images. Using this method, we construct a new synthetic dataset, RPHarmony. Experiments demonstrate the superiority of our method over other methods in both quantitative metrics and visual harmony. Moreover, our dataset helps the model generate more realistic images in real examples. Our code, dataset, and model weights have all been released for open access.
☆ UDA: Unsupervised Debiasing Alignment for Pair-wise LLM-as-a-Judge
Pairwise evaluation of Large Language Models (LLMs) is a common paradigm, but it is prone to preference bias, where judges systematically favor certain outputs, such as their own. This bias leads to inconsistent and skewed rankings across different judges. To address this, we first empirically demonstrate significant and heterogeneous biases in cross-model evaluations. We then propose UDA (Unsupervised Debiasing Alignment), a framework that reduces inter-judge disagreement by dynamically adjusting the Elo rating system. For each pairwise comparison, a compact neural network learns to adaptively set the K-factor and refine win probabilities. Crucially, UDA operates in a fully unsupervised manner, guided solely by the objective of minimizing the dispersion among the Elo trajectories of all judges. This forces an alignment towards a collective consensus, which serves as an unsupervised proxy for a more stable and reproducible evaluation. In addition, we provide theoretical motivation demonstrating how alignment towards a consensus can reduce aggregate system bias. Experiments show that UDA significantly reduces the inter-judge rating standard deviation by up to 63.4% and improves the average correlation with human judgments by 24.7%. Notably, UDA elevates the performance of poorly performing judges to achieve parity with high-quality ones, fostering a more robust and reliable evaluation ecosystem. Code and data are available at https://anonymous.4open.science/r/62AB93CD-23B4.
☆ Improving ARDS Diagnosis Through Context-Aware Concept Bottleneck Models
Large, publicly available clinical datasets have emerged as a novel resource for understanding disease heterogeneity and to explore personalization of therapy. These datasets are derived from data not originally collected for research purposes and, as a result, are often incomplete and lack critical labels. Many AI tools have been developed to retrospectively label these datasets, such as by performing disease classification; however, they often suffer from limited interpretability. Previous work has attempted to explain predictions using Concept Bottleneck Models (CBMs), which learn interpretable concepts that map to higher-level clinical ideas, facilitating human evaluation. However, these models often experience performance limitations when the concepts fail to adequately explain or characterize the task. We use the identification of Acute Respiratory Distress Syndrome (ARDS) as a challenging test case to demonstrate the value of incorporating contextual information from clinical notes to improve CBM performance. Our approach leverages a Large Language Model (LLM) to process clinical notes and generate additional concepts, resulting in a 10% performance gain over existing methods. Additionally, it facilitates the learning of more comprehensive concepts, thereby reducing the risk of information leakage and reliance on spurious shortcuts, thus improving the characterization of ARDS.
comment: 32 pages, 7 figures, accepted at Machine Learning for Healthcare Conference (MLHC) 2025
☆ Evaluating the Role of Large Language Models in Legal Practice in India
The integration of Artificial Intelligence(AI) into the legal profession raises significant questions about the capacity of Large Language Models(LLM) to perform key legal tasks. In this paper, I empirically evaluate how well LLMs, such as GPT, Claude, and Llama, perform key legal tasks in the Indian context, including issue spotting, legal drafting, advice, research, and reasoning. Through a survey experiment, I compare outputs from LLMs with those of a junior lawyer, with advanced law students rating the work on helpfulness, accuracy, and comprehensiveness. LLMs excel in drafting and issue spotting, often matching or surpassing human work. However, they struggle with specialised legal research, frequently generating hallucinations, factually incorrect or fabricated outputs. I conclude that while LLMs can augment certain legal tasks, human expertise remains essential for nuanced reasoning and the precise application of law.
☆ Surg-InvNeRF: Invertible NeRF for 3D tracking and reconstruction in surgical vision
We proposed a novel test-time optimisation (TTO) approach framed by a NeRF-based architecture for long-term 3D point tracking. Most current methods in point tracking struggle to obtain consistent motion or are limited to 2D motion. TTO approaches frame the solution for long-term tracking as optimising a function that aggregates correspondences from other specialised state-of-the-art methods. Unlike the state-of-the-art on TTO, we propose parametrising such a function with our new invertible Neural Radiance Field (InvNeRF) architecture to perform both 2D and 3D tracking in surgical scenarios. Our approach allows us to exploit the advantages of a rendering-based approach by supervising the reprojection of pixel correspondences. It adapts strategies from recent rendering-based methods to obtain a bidirectional deformable-canonical mapping, to efficiently handle a defined workspace, and to guide the rays' density. It also presents our multi-scale HexPlanes for fast inference and a new algorithm for efficient pixel sampling and convergence criteria. We present results in the STIR and SCARE datasets, for evaluating point tracking and testing the integration of kinematic data in our pipeline, respectively. In 2D point tracking, our approach surpasses the precision and accuracy of the TTO state-of-the-art methods by nearly 50% on average precision, while competing with other approaches. In 3D point tracking, this is the first TTO approach, surpassing feed-forward methods while incorporating the benefits of a deformable NeRF-based reconstruction.
comment: 10 pages
☆ MEML-GRPO: Heterogeneous Multi-Expert Mutual Learning for RLVR Advancement
Recent advances demonstrate that reinforcement learning with verifiable rewards (RLVR) significantly enhances the reasoning capabilities of large language models (LLMs). However, standard RLVR faces challenges with reward sparsity, where zero rewards from consistently incorrect candidate answers provide no learning signal, particularly in challenging tasks. To address this, we propose Multi-Expert Mutual Learning GRPO (MEML-GRPO), an innovative framework that utilizes diverse expert prompts as system prompts to generate a broader range of responses, substantially increasing the likelihood of identifying correct solutions. Additionally, we introduce an inter-expert mutual learning mechanism that facilitates knowledge sharing and transfer among experts, further boosting the model's performance through RLVR. Extensive experiments across multiple reasoning benchmarks show that MEML-GRPO delivers significant improvements, achieving an average performance gain of 4.89% with Qwen and 11.33% with Llama, effectively overcoming the core limitations of traditional RLVR methods.
☆ Anomaly Detection for IoT Global Connectivity
Internet of Things (IoT) application providers rely on Mobile Network Operators (MNOs) and roaming infrastructures to deliver their services globally. In this complex ecosystem, where the end-to-end communication path traverses multiple entities, it has become increasingly challenging to guarantee communication availability and reliability. Further, most platform operators use a reactive approach to communication issues, responding to user complaints only after incidents have become severe, compromising service quality. This paper presents our experience in the design and deployment of ANCHOR -- an unsupervised anomaly detection solution for the IoT connectivity service of a large global roaming platform. ANCHOR assists engineers by filtering vast amounts of data to identify potential problematic clients (i.e., those with connectivity issues affecting several of their IoT devices), enabling proactive issue resolution before the service is critically impacted. We first describe the IoT service, infrastructure, and network visibility of the IoT connectivity provider we operate. Second, we describe the main challenges and operational requirements for designing an unsupervised anomaly detection solution on this platform. Following these guidelines, we propose different statistical rules, and machine- and deep-learning models for IoT verticals anomaly detection based on passive signaling traffic. We describe the steps we followed working with the operational teams on the design and evaluation of our solution on the operational platform, and report an evaluation on operational IoT customers.
☆ On Negative-aware Preference Optimization for Recommendation
Recommendation systems leverage user interaction data to suggest relevant items while filtering out irrelevant (negative) ones. The rise of large language models (LLMs) has garnered increasing attention for their potential in recommendation tasks. However, existing methods for optimizing LLM-based recommenders face challenges in effectively utilizing negative samples. Simply integrating large numbers of negative samples can improve ranking accuracy and mitigate popularity bias but often leads to increased computational overhead and memory costs. Additionally, current approaches fail to account for the varying informativeness of negative samples, leading to suboptimal optimization performance. To address these issues, we propose NAPO (\textbf{N}egative-\textbf{A}ware \textbf{P}reference \textbf{O}ptimization), an enhanced framework for preference optimization in LLM-based recommendation. NAPO introduces two key innovations: (1) in-batch negative sharing, which expands the pool of negative samples without additional memory overhead, and (2) dynamic reward margin adjustment, which adapts model updates based on the confidence of negative samples. Extensive experiments on three public datasets demonstrate that NAPO outperforms existing methods in both recommendation accuracy and popularity bias reduction.
☆ Demystifying the Role of Rule-based Detection in AI Systems for Windows Malware Detection
Malware detection increasingly relies on AI systems that integrate signature-based detection with machine learning. However, these components are typically developed and combined in isolation, missing opportunities to reduce data complexity and strengthen defenses against adversarial EXEmples, carefully crafted programs designed to evade detection. Hence, in this work we investigate the influence that signature-based detection exerts on model training, when they are included inside the training pipeline. Specifically, we compare models trained on a comprehensive dataset with an AI system whose machine learning component is trained solely on samples not already flagged by signatures. Our results demonstrate improved robustness to both adversarial EXEmples and temporal data drift, although this comes at the cost of a fixed lower bound on false positives, driven by suboptimal rule selection. We conclude by discussing these limitations and outlining how future research could extend AI-based malware detection to include dynamic analysis, thereby further enhancing system resilience.
☆ A Close Reading Approach to Gender Narrative Biases in AI-Generated Stories
The paper explores the study of gender-based narrative biases in stories generated by ChatGPT, Gemini, and Claude. The prompt design draws on Propp's character classifications and Freytag's narrative structure. The stories are analyzed through a close reading approach, with particular attention to adherence to the prompt, gender distribution of characters, physical and psychological descriptions, actions, and finally, plot development and character relationships. The results reveal the persistence of biases - especially implicit ones - in the generated stories and highlight the importance of assessing biases at multiple levels using an interpretative approach.
comment: 8-pages
☆ UbiQTree: Uncertainty Quantification in XAI with Tree Ensembles
Explainable Artificial Intelligence (XAI) techniques, such as SHapley Additive exPlanations (SHAP), have become essential tools for interpreting complex ensemble tree-based models, especially in high-stakes domains such as healthcare analytics. However, SHAP values are usually treated as point estimates, which disregards the inherent and ubiquitous uncertainty in predictive models and data. This uncertainty has two primary sources: aleatoric and epistemic. The aleatoric uncertainty, which reflects the irreducible noise in the data. The epistemic uncertainty, which arises from a lack of data. In this work, we propose an approach for decomposing uncertainty in SHAP values into aleatoric, epistemic, and entanglement components. This approach integrates Dempster-Shafer evidence theory and hypothesis sampling via Dirichlet processes over tree ensembles. We validate the method across three real-world use cases with descriptive statistical analyses that provide insight into the nature of epistemic uncertainty embedded in SHAP explanations. The experimentations enable to provide more comprehensive understanding of the reliability and interpretability of SHAP-based attributions. This understanding can guide the development of robust decision-making processes and the refinement of models in high-stakes applications. Through our experiments with multiple datasets, we concluded that features with the highest SHAP values are not necessarily the most stable. This epistemic uncertainty can be reduced through better, more representative data and following appropriate or case-desired model development techniques. Tree-based models, especially bagging, facilitate the effective quantification of epistemic uncertainty.
☆ AmbiGraph-Eval: Can LLMs Effectively Handle Ambiguous Graph Queries?
Large Language Models (LLMs) have recently demonstrated strong capabilities in translating natural language into database queries, especially when dealing with complex graph-structured data. However, real-world queries often contain inherent ambiguities, and the interconnected nature of graph structures can amplify these challenges, leading to unintended or incorrect query results. To systematically evaluate LLMs on this front, we propose a taxonomy of graph-query ambiguities, comprising three primary types: Attribute Ambiguity, Relationship Ambiguity, and Attribute-Relationship Ambiguity, each subdivided into Same-Entity and Cross-Entity scenarios. We introduce AmbiGraph-Eval, a novel benchmark of real-world ambiguous queries paired with expert-verified graph query answers. Evaluating 9 representative LLMs shows that even top models struggle with ambiguous graph queries. Our findings reveal a critical gap in ambiguity handling and motivate future work on specialized resolution techniques.
☆ Extending the Entropic Potential of Events for Uncertainty Quantification and Decision-Making in Artificial Intelligence
This work demonstrates how the concept of the entropic potential of events -- a parameter quantifying the influence of discrete events on the expected future entropy of a system -- can enhance uncertainty quantification, decision-making, and interpretability in artificial intelligence (AI). Building on its original formulation in physics, the framework is adapted for AI by introducing an event-centric measure that captures how actions, observations, or other discrete occurrences impact uncertainty at future time horizons. Both the original and AI-adjusted definitions of entropic potential are formalized, with the latter emphasizing conditional expectations to account for counterfactual scenarios. Applications are explored in policy evaluation, intrinsic reward design, explainable AI, and anomaly detection, highlighting the metric's potential to unify and strengthen uncertainty modeling in intelligent systems. Conceptual examples illustrate its use in reinforcement learning, Bayesian inference, and anomaly detection, while practical considerations for computation in complex AI models are discussed. The entropic potential framework offers a theoretically grounded, interpretable, and versatile approach to managing uncertainty in AI, bridging principles from thermodynamics, information theory, and machine learning.
comment: 10 pages
☆ No Free Lunch from Audio Pretraining in Bioacoustics: A Benchmark Study of Embeddings
Bioacoustics, the study of animal sounds, offers a non-invasive method to monitor ecosystems. Extracting embeddings from audio-pretrained deep learning (DL) models without fine-tuning has become popular for obtaining bioacoustic features for tasks. However, a recent benchmark study reveals that while fine-tuned audio-pretrained VGG and transformer models achieve state-of-the-art performance in some tasks, they fail in others. This study benchmarks 11 DL models on the same tasks by reducing their learned embeddings' dimensionality and evaluating them through clustering. We found that audio-pretrained DL models 1) without fine-tuning even underperform fine-tuned AlexNet, 2) both with and without fine-tuning fail to separate the background from labeled sounds, but ResNet does, and 3) outperform other models when fewer background sounds are included during fine-tuning. This study underscores the necessity of fine-tuning audio-pretrained models and checking the embeddings after fine-tuning. Our codes are available: https://github.com/NeuroscienceAI/Audio\_Embeddings
☆ Using Large Language Models to Measure Symptom Severity in Patients At Risk for Schizophrenia
Patients who are at clinical high risk (CHR) for schizophrenia need close monitoring of their symptoms to inform appropriate treatments. The Brief Psychiatric Rating Scale (BPRS) is a validated, commonly used research tool for measuring symptoms in patients with schizophrenia and other psychotic disorders; however, it is not commonly used in clinical practice as it requires a lengthy structured interview. Here, we utilize large language models (LLMs) to predict BPRS scores from clinical interview transcripts in 409 CHR patients from the Accelerating Medicines Partnership Schizophrenia (AMP-SCZ) cohort. Despite the interviews not being specifically structured to measure the BPRS, the zero-shot performance of the LLM predictions compared to the true assessment (median concordance: 0.84, ICC: 0.73) approaches human inter- and intra-rater reliability. We further demonstrate that LLMs have substantial potential to improve and standardize the assessment of CHR patients via their accuracy in assessing the BPRS in foreign languages (median concordance: 0.88, ICC: 0.70), and integrating longitudinal information in a one-shot or few-shot learning approach.
☆ Understanding Textual Emotion Through Emoji Prediction
This project explores emoji prediction from short text sequences using four deep learning architectures: a feed-forward network, CNN, transformer, and BERT. Using the TweetEval dataset, we address class imbalance through focal loss and regularization techniques. Results show BERT achieves the highest overall performance due to its pre-training advantage, while CNN demonstrates superior efficacy on rare emoji classes. This research shows the importance of architecture selection and hyperparameter tuning for sentiment-aware emoji prediction, contributing to improved human-computer interaction.
☆ An Explainable AI based approach for Monitoring Animal Health
Monitoring cattle health and optimizing yield are key challenges faced by dairy farmers due to difficulties in tracking all animals on the farm. This work aims to showcase modern data-driven farming practices based on explainable machine learning(ML) methods that explain the activity and behaviour of dairy cattle (cows). Continuous data collection of 3-axis accelerometer sensors and usage of robust ML methodologies and algorithms, provide farmers and researchers with actionable information on cattle activity, allowing farmers to make informed decisions and incorporate sustainable practices. This study utilizes Bluetooth-based Internet of Things (IoT) devices and 4G networks for seamless data transmission, immediate analysis, inference generation, and explains the models performance with explainability frameworks. Special emphasis is put on the pre-processing of the accelerometers time series data, including the extraction of statistical characteristics, signal processing techniques, and lag-based features using the sliding window technique. Various hyperparameter-optimized ML models are evaluated across varying window lengths for activity classification. The k-nearest neighbour Classifier achieved the best performance, with AUC of mean 0.98 and standard deviation of 0.0026 on the training set and 0.99 on testing set). In order to ensure transparency, Explainable AI based frameworks such as SHAP is used to interpret feature importance that can be understood and used by practitioners. A detailed comparison of the important features, along with the stability analysis of selected features, supports development of explainable and practical ML models for sustainable livestock management.
☆ CATNet: A geometric deep learning approach for CAT bond spread prediction in the primary market
Traditional models for pricing catastrophe (CAT) bonds struggle to capture the complex, relational data inherent in these instruments. This paper introduces CATNet, a novel framework that applies a geometric deep learning architecture, the Relational Graph Convolutional Network (R-GCN), to model the CAT bond primary market as a graph, leveraging its underlying network structure for spread prediction. Our analysis reveals that the CAT bond market exhibits the characteristics of a scale-free network, a structure dominated by a few highly connected and influential hubs. CATNet demonstrates high predictive performance, significantly outperforming a strong Random Forest benchmark. The inclusion of topological centrality measures as features provides a further, significant boost in accuracy. Interpretability analysis confirms that these network features are not mere statistical artifacts; they are quantitative proxies for long-held industry intuition regarding issuer reputation, underwriter influence, and peril concentration. This research provides evidence that network connectivity is a key determinant of price, offering a new paradigm for risk assessment and proving that graph-based models can deliver both state-of-the-art accuracy and deeper, quantifiable market insights.
☆ Prompt-Response Semantic Divergence Metrics for Faithfulness Hallucination and Misalignment Detection in Large Language Models
The proliferation of Large Language Models (LLMs) is challenged by hallucinations, critical failure modes where models generate non-factual, nonsensical or unfaithful text. This paper introduces Semantic Divergence Metrics (SDM), a novel lightweight framework for detecting Faithfulness Hallucinations -- events of severe deviations of LLMs responses from input contexts. We focus on a specific implementation of these LLM errors, {confabulations, defined as responses that are arbitrary and semantically misaligned with the user's query. Existing methods like Semantic Entropy test for arbitrariness by measuring the diversity of answers to a single, fixed prompt. Our SDM framework improves upon this by being more prompt-aware: we test for a deeper form of arbitrariness by measuring response consistency not only across multiple answers but also across multiple, semantically-equivalent paraphrases of the original prompt. Methodologically, our approach uses joint clustering on sentence embeddings to create a shared topic space for prompts and answers. A heatmap of topic co-occurances between prompts and responses can be viewed as a quantified two-dimensional visualization of the user-machine dialogue. We then compute a suite of information-theoretic metrics to measure the semantic divergence between prompts and responses. Our practical score, $\mathcal{S}_H$, combines the Jensen-Shannon divergence and Wasserstein distance to quantify this divergence, with a high score indicating a Faithfulness hallucination. Furthermore, we identify the KL divergence KL(Answer $||$ Prompt) as a powerful indicator of \textbf{Semantic Exploration}, a key signal for distinguishing different generative behaviors. These metrics are further combined into the Semantic Box, a diagnostic framework for classifying LLM response types, including the dangerous, confident confabulation.
comment: 24 pages, 3 figures
☆ PakBBQ: A Culturally Adapted Bias Benchmark for QA EMNLP 2025
With the widespread adoption of Large Language Models (LLMs) across various applications, it is empirical to ensure their fairness across all user communities. However, most LLMs are trained and evaluated on Western centric data, with little attention paid to low-resource languages and regional contexts. To address this gap, we introduce PakBBQ, a culturally and regionally adapted extension of the original Bias Benchmark for Question Answering (BBQ) dataset. PakBBQ comprises over 214 templates, 17180 QA pairs across 8 categories in both English and Urdu, covering eight bias dimensions including age, disability, appearance, gender, socio-economic status, religious, regional affiliation, and language formality that are relevant in Pakistan. We evaluate multiple multilingual LLMs under both ambiguous and explicitly disambiguated contexts, as well as negative versus non negative question framings. Our experiments reveal (i) an average accuracy gain of 12\% with disambiguation, (ii) consistently stronger counter bias behaviors in Urdu than in English, and (iii) marked framing effects that reduce stereotypical responses when questions are posed negatively. These findings highlight the importance of contextualized benchmarks and simple prompt engineering strategies for bias mitigation in low resource settings.
comment: 8 pages, 7 figures, 2 tables, Submitted to EMNLP 2025
☆ KompeteAI: Accelerated Autonomous Multi-Agent System for End-to-End Pipeline Generation for Machine Learning Problems
Recent Large Language Model (LLM)-based AutoML systems demonstrate impressive capabilities but face significant limitations such as constrained exploration strategies and a severe execution bottleneck. Exploration is hindered by one-shot methods lacking diversity and Monte Carlo Tree Search (MCTS) approaches that fail to recombine strong partial solutions. The execution bottleneck arises from lengthy code validation cycles that stifle iterative refinement. To overcome these challenges, we introduce KompeteAI, a novel AutoML framework with dynamic solution space exploration. Unlike previous MCTS methods that treat ideas in isolation, KompeteAI introduces a merging stage that composes top candidates. We further expand the hypothesis space by integrating Retrieval-Augmented Generation (RAG), sourcing ideas from Kaggle notebooks and arXiv papers to incorporate real-world strategies. KompeteAI also addresses the execution bottleneck via a predictive scoring model and an accelerated debugging method, assessing solution potential using early stage metrics to avoid costly full-code execution. This approach accelerates pipeline evaluation 6.9 times. KompeteAI outperforms leading methods (e.g., RD-agent, AIDE, and Ml-Master) by an average of 3\% on the primary AutoML benchmark, MLE-Bench. Additionally, we propose Kompete-bench to address limitations in MLE-Bench, where KompeteAI also achieves state-of-the-art results
☆ Pruning Long Chain-of-Thought of Large Reasoning Models via Small-Scale Preference Optimization
Recent advances in Large Reasoning Models (LRMs) have demonstrated strong performance on complex tasks through long Chain-of-Thought (CoT) reasoning. However, their lengthy outputs increase computational costs and may lead to overthinking, raising challenges in balancing reasoning effectiveness and efficiency. Current methods for efficient reasoning often compromise reasoning quality or require extensive resources. This paper investigates efficient methods to reduce the generation length of LRMs. We analyze generation path distributions and filter generated trajectories through difficulty estimation. Subsequently, we analyze the convergence behaviors of the objectives of various preference optimization methods under a Bradley-Terry loss based framework. Based on the analysis, we propose Length Controlled Preference Optimization (LCPO) that directly balances the implicit reward related to NLL loss. LCPO can effectively learn length preference with limited data and training. Extensive experiments demonstrate that our approach significantly reduces the average output length by over 50\% across multiple benchmarks while maintaining the reasoning performance. Our work highlights the potential for computationally efficient approaches in guiding LRMs toward efficient reasoning.
comment: 19 pages, 5 figures
☆ LaajMeter: A Framework for LaaJ Evaluation
Large Language Models (LLMs) are increasingly used as evaluators in natural language processing tasks, a paradigm known as LLM-as-a-Judge (LaaJ). While effective in general domains, LaaJs pose significant challenges in domain-specific contexts, where annotated data is scarce and expert evaluation is costly. In such cases, meta-evaluation is often performed using metrics that have not been validated for the specific domain in which they are applied. As a result, it becomes difficult to determine which metrics effectively identify LaaJ quality, and further, what threshold indicates sufficient evaluator performance. In this work, we introduce LaaJMeter, a simulation-based framework for controlled meta-evaluation of LaaJs. LaaJMeter enables engineers to generate synthetic data representing virtual models and judges, allowing systematic analysis of evaluation metrics under realistic conditions. This helps practitioners validate and refine LaaJs for specific evaluation tasks: they can test whether their metrics correctly distinguish between better and worse (virtual) LaaJs, and estimate appropriate thresholds for evaluator adequacy. We demonstrate the utility of LaaJMeter in a code translation task involving a legacy programming language, showing how different metrics vary in sensitivity to evaluator quality. Our results highlight the limitations of common metrics and the importance of principled metric selection. LaaJMeter provides a scalable and extensible solution for assessing LaaJs in low-resource settings, contributing to the broader effort to ensure trustworthy and reproducible evaluation in NLP.
☆ Improving watermelon (Citrullus lanatus) disease classification with generative artificial intelligence (GenAI)-based synthetic and real-field images via a custom EfficientNetV2-L model
The current advancements in generative artificial intelligence (GenAI) models have paved the way for new possibilities for generating high-resolution synthetic images, thereby offering a promising alternative to traditional image acquisition for training computer vision models in agriculture. In the context of crop disease diagnosis, GenAI models are being used to create synthetic images of various diseases, potentially facilitating model creation and reducing the dependency on resource-intensive in-field data collection. However, limited research has been conducted on evaluating the effectiveness of integrating real with synthetic images to improve disease classification performance. Therefore, this study aims to investigate whether combining a limited number of real images with synthetic images can enhance the prediction accuracy of an EfficientNetV2-L model for classifying watermelon \textit{(Citrullus lanatus)} diseases. The training dataset was divided into five treatments: H0 (only real images), H1 (only synthetic images), H2 (1:1 real-to-synthetic), H3 (1:10 real-to-synthetic), and H4 (H3 + random images to improve variability and model generalization). All treatments were trained using a custom EfficientNetV2-L architecture with enhanced fine-tuning and transfer learning techniques. Models trained on H2, H3, and H4 treatments demonstrated high precision, recall, and F1-score metrics. Additionally, the weighted F1-score increased from 0.65 (on H0) to 1.00 (on H3-H4) signifying that the addition of a small number of real images with a considerable volume of synthetic images improved model performance and generalizability. Overall, this validates the findings that synthetic images alone cannot adequately substitute for real images; instead, both must be used in a hybrid manner to maximize model performance for crop disease classification.
☆ Improving and Evaluating Open Deep Research Agents
We focus here on Deep Research Agents (DRAs), which are systems that can take a natural language prompt from a user, and then autonomously search for, and utilize, internet-based content to address the prompt. Recent DRAs have demonstrated impressive capabilities on public benchmarks however, recent research largely involves proprietary closed-source systems. At the time of this work, we only found one open-source DRA, termed Open Deep Research (ODR). In this work we adapt the challenging recent BrowseComp benchmark to compare ODR to existing proprietary systems. We propose BrowseComp-Small (BC-Small), comprising a subset of BrowseComp, as a more computationally-tractable DRA benchmark for academic labs. We benchmark ODR and two other proprietary systems on BC-Small: one system from Anthropic and one system from Google. We find that all three systems achieve 0% accuracy on the test set of 60 questions. We introduce three strategic improvements to ODR, resulting in the ODR+ model, which achieves a state-of-the-art 10% success rate on BC-Small among both closed-source and open-source systems. We report ablation studies indicating that all three of our improvements contributed to the success of ODR+.
comment: 8 pages, 2 figures, 2 tables
☆ Out-of-Distribution Detection using Counterfactual Distance
Accurate and explainable out-of-distribution (OOD) detection is required to use machine learning systems safely. Previous work has shown that feature distance to decision boundaries can be used to identify OOD data effectively. In this paper, we build on this intuition and propose a post-hoc OOD detection method that, given an input, calculates the distance to decision boundaries by leveraging counterfactual explanations. Since computing explanations can be expensive for large architectures, we also propose strategies to improve scalability by computing counterfactuals directly in embedding space. Crucially, as the method employs counterfactual explanations, we can seamlessly use them to help interpret the results of our detector. We show that our method is in line with the state of the art on CIFAR-10, achieving 93.50% AUROC and 25.80% FPR95. Our method outperforms these methods on CIFAR-100 with 97.05% AUROC and 13.79% FPR95 and on ImageNet-200 with 92.55% AUROC and 33.55% FPR95 across four OOD datasets
☆ rETF-semiSL: Semi-Supervised Learning for Neural Collapse in Temporal Data
Deep neural networks for time series must capture complex temporal patterns, to effectively represent dynamic data. Self- and semi-supervised learning methods show promising results in pre-training large models, which -- when finetuned for classification -- often outperform their counterparts trained from scratch. Still, the choice of pretext training tasks is often heuristic and their transferability to downstream classification is not granted, thus we propose a novel semi-supervised pre-training strategy to enforce latent representations that satisfy the Neural Collapse phenomenon observed in optimally trained neural classifiers. We use a rotational equiangular tight frame-classifier and pseudo-labeling to pre-train deep encoders with few labeled samples. Furthermore, to effectively capture temporal dynamics while enforcing embedding separability, we integrate generative pretext tasks with our method, and we define a novel sequential augmentation strategy. We show that our method significantly outperforms previous pretext tasks when applied to LSTMs, transformers, and state-space models on three multivariate time series classification datasets. These results highlight the benefit of aligning pre-training objectives with theoretically grounded embedding geometry.
comment: 12 pages, 4 figures
☆ Agentic AI Frameworks: Architectures, Protocols, and Design Challenges
The emergence of Large Language Models (LLMs) has ushered in a transformative paradigm in artificial intelligence, Agentic AI, where intelligent agents exhibit goal-directed autonomy, contextual reasoning, and dynamic multi-agent coordination. This paper provides a systematic review and comparative analysis of leading Agentic AI frameworks, including CrewAI, LangGraph, AutoGen, Semantic Kernel, Agno, Google ADK, and MetaGPT, evaluating their architectural principles, communication mechanisms, memory management, safety guardrails, and alignment with service-oriented computing paradigms. Furthermore, we identify key limitations, emerging trends, and open challenges in the field. To address the issue of agent communication, we conduct an in-depth analysis of protocols such as the Contract Net Protocol (CNP), Agent-to-Agent (A2A), Agent Network Protocol (ANP), and Agora. Our findings not only establish a foundational taxonomy for Agentic AI systems but also propose future research directions to enhance scalability, robustness, and interoperability. This work serves as a comprehensive reference for researchers and practitioners working to advance the next generation of autonomous AI systems.
☆ MCP-Orchestrated Multi-Agent System for Automated Disinformation Detection
The large spread of disinformation across digital platforms creates significant challenges to information integrity. This paper presents a multi-agent system that uses relation extraction to detect disinformation in news articles, focusing on titles and short text snippets. The proposed Agentic AI system combines four agents: (i) a machine learning agent (logistic regression), (ii) a Wikipedia knowledge check agent (which relies on named entity recognition), (iii) a coherence detection agent (using LLM prompt engineering), and (iv) a web-scraped data analyzer that extracts relational triplets for fact checking. The system is orchestrated via the Model Context Protocol (MCP), offering shared context and live learning across components. Results demonstrate that the multi-agent ensemble achieves 95.3% accuracy with an F1 score of 0.964, significantly outperforming individual agents and traditional approaches. The weighted aggregation method, mathematically derived from individual agent misclassification rates, proves superior to algorithmic threshold optimization. The modular architecture makes the system easily scalable, while also maintaining details of the decision processes.
comment: 8 pages + 1 page references, 5 figures, 4 tables, Registered for the 27th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 2025, Timisoara
☆ mSCoRe: a $M$ultilingual and Scalable Benchmark for $S$kill-based $Co$mmonsense $Re$asoning
Recent advancements in reasoning-reinforced Large Language Models (LLMs) have shown remarkable capabilities in complex reasoning tasks. However, the mechanism underlying their utilization of different human reasoning skills remains poorly investigated, especially for multilingual commonsense reasoning that involves everyday knowledge across different languages and cultures. To address this gap, we propose a \textbf{M}ultilingual and Scalable Benchmark for \textbf{S}kill-based \textbf{Co}mmonsense \textbf{Re}asoning (\textbf{mSCoRe}). Our benchmark incorporates three key components that are designed to systematically evaluate LLM's reasoning capabilities, including: (1) a novel taxonomy of reasoning skills that enables fine-grained analysis of models' reasoning processes, (2) a robust data synthesis pipeline tailored specifically for commonsense reasoning evaluation, and (3) a complexity scaling framework allowing task difficulty to scale dynamically alongside future improvements in LLM abilities. Extensive experiments on eights state-of-the-art LLMs of varying sizes and training approaches demonstrate that \textbf{mSCoRe} remains significantly challenging for current models, particularly at higher complexity levels. Our results reveal the limitations of such reasoning-reinforced models when confronted with nuanced multilingual general and cultural commonsense. We further provide detailed analysis on the models' reasoning processes, suggesting future directions for improving multilingual commonsense reasoning capabilities.
☆ Nested-ReFT: Efficient Reinforcement Learning for Large Language Model Fine-Tuning via Off-Policy Rollouts
Advanced reasoning in LLMs on challenging domains like mathematical reasoning can be tackled using verifiable rewards based reinforced fine-tuning (ReFT). In standard ReFT frameworks, a behavior model generates multiple completions with answers per problem, for the answer to be then scored by a reward function. While such RL post-training methods demonstrate significant performance improvements across challenging reasoning domains, the computational cost of generating completions during training with multiple inference steps makes the training cost non-trivial. To address this, we draw inspiration from off-policy RL, and speculative decoding to introduce a novel ReFT framework, dubbed Nested-ReFT, where a subset of layers of the target model acts as the behavior model to generate off-policy completions during training. The behavior model configured with dynamic layer skipping per batch during training decreases the inference cost compared to the standard ReFT frameworks. Our theoretical analysis shows that Nested-ReFT yields unbiased gradient estimates with controlled variance. Our empirical analysis demonstrates improved computational efficiency measured as tokens/sec across multiple math reasoning benchmarks and model sizes. Additionally, we explore three variants of bias mitigation to minimize the off-policyness in the gradient updates that allows for maintaining performance that matches the baseline ReFT performance.
☆ Less is More: Learning Graph Tasks with Just LLMs
For large language models (LLMs), reasoning over graphs could help solve many problems. Prior work has tried to improve LLM graph reasoning by examining how best to serialize graphs as text and by combining GNNs and LLMs. However, the merits of such approaches remain unclear, so we empirically answer the following research questions: (1) Can LLMs learn to solve fundamental graph tasks without specialized graph encoding models?, (2) Can LLMs generalize learned solutions to unseen graph structures or tasks?, and (3) What are the merits of competing approaches to learn graph tasks? We show that even small LLMs can learn to solve graph tasks by training them with instructive chain-of-thought solutions, and this training generalizes, without specialized graph encoders, to new tasks and graph structures.
☆ Empowering Morphing Attack Detection using Interpretable Image-Text Foundation Model
Morphing attack detection has become an essential component of face recognition systems for ensuring a reliable verification scenario. In this paper, we present a multimodal learning approach that can provide a textual description of morphing attack detection. We first show that zero-shot evaluation of the proposed framework using Contrastive Language-Image Pretraining (CLIP) can yield not only generalizable morphing attack detection, but also predict the most relevant text snippet. We present an extensive analysis of ten different textual prompts that include both short and long textual prompts. These prompts are engineered by considering the human understandable textual snippet. Extensive experiments were performed on a face morphing dataset that was developed using a publicly available face biometric dataset. We present an evaluation of SOTA pre-trained neural networks together with the proposed framework in the zero-shot evaluation of five different morphing generation techniques that are captured in three different mediums.
☆ Amazon Nova AI Challenge -- Trusted AI: Advancing secure, AI-assisted software development
AI systems for software development are rapidly gaining prominence, yet significant challenges remain in ensuring their safety. To address this, Amazon launched the Trusted AI track of the Amazon Nova AI Challenge, a global competition among 10 university teams to drive advances in secure AI. In the challenge, five teams focus on developing automated red teaming bots, while the other five create safe AI assistants. This challenge provides teams with a unique platform to evaluate automated red-teaming and safety alignment methods through head-to-head adversarial tournaments where red teams have multi-turn conversations with the competing AI coding assistants to test their safety alignment. Along with this, the challenge provides teams with a feed of high quality annotated data to fuel iterative improvement. Throughout the challenge, teams developed state-of-the-art techniques, introducing novel approaches in reasoning-based safety alignment, robust model guardrails, multi-turn jail-breaking, and efficient probing of large language models (LLMs). To support these efforts, the Amazon Nova AI Challenge team made substantial scientific and engineering investments, including building a custom baseline coding specialist model for the challenge from scratch, developing a tournament orchestration service, and creating an evaluation harness. This paper outlines the advancements made by university teams and the Amazon Nova AI Challenge team in addressing the safety challenges of AI for software development, highlighting this collaborative effort to raise the bar for AI safety.
comment: 18 pages, 1st Proceedings of Amazon Nova AI Challenge (Trusted AI 2025)
☆ Advancing Data Equity: Practitioner Responsibility and Accountability in NLP Data Practices AAAI
While research has focused on surfacing and auditing algorithmic bias to ensure equitable AI development, less is known about how NLP practitioners - those directly involved in dataset development, annotation, and deployment - perceive and navigate issues of NLP data equity. This study is among the first to center practitioners' perspectives, linking their experiences to a multi-scalar AI governance framework and advancing participatory recommendations that bridge technical, policy, and community domains. Drawing on a 2024 questionnaire and focus group, we examine how U.S.-based NLP data practitioners conceptualize fairness, contend with organizational and systemic constraints, and engage emerging governance efforts such as the U.S. AI Bill of Rights. Findings reveal persistent tensions between commercial objectives and equity commitments, alongside calls for more participatory and accountable data workflows. We critically engage debates on data diversity and diversity washing, arguing that improving NLP equity requires structural governance reforms that support practitioner agency and community consent.
comment: 10 pages, 6 Pages (References and Appendices). The archival version has been accepted to AAAI (AIES 2025) without the extended Appendices. This extended version includes Appendices
♻ ☆ Training-Free Text-Guided Color Editing with Multi-Modal Diffusion Transformer
Text-guided color editing in images and videos is a fundamental yet unsolved problem, requiring fine-grained manipulation of color attributes, including albedo, light source color, and ambient lighting, while preserving physical consistency in geometry, material properties, and light-matter interactions. Existing training-free methods offer broad applicability across editing tasks but struggle with precise color control and often introduce visual inconsistency in both edited and non-edited regions. In this work, we present ColorCtrl, a training-free color editing method that leverages the attention mechanisms of modern Multi-Modal Diffusion Transformers (MM-DiT). By disentangling structure and color through targeted manipulation of attention maps and value tokens, our method enables accurate and consistent color editing, along with word-level control of attribute intensity. Our method modifies only the intended regions specified by the prompt, leaving unrelated areas untouched. Extensive experiments on both SD3 and FLUX.1-dev demonstrate that ColorCtrl outperforms existing training-free approaches and achieves state-of-the-art performances in both edit quality and consistency. Furthermore, our method surpasses strong commercial models such as FLUX.1 Kontext Max and GPT-4o Image Generation in terms of consistency. When extended to video models like CogVideoX, our approach exhibits greater advantages, particularly in maintaining temporal coherence and editing stability. Finally, our method also generalizes to instruction-based editing diffusion models such as Step1X-Edit and FLUX.1 Kontext dev, further demonstrating its versatility.
♻ ☆ GTPO and GRPO-S: Token and Sequence-Level Reward Shaping with Policy Entropy
Reinforcement learning (RL) with algorithms like Group Relative Policy Optimization (GRPO) improves Large Language Model (LLM) reasoning, but is limited by a coarse-grained credit assignment that applies a uniform reward to all tokens in a sequence. This is a major flaw in long-chain reasoning tasks. This paper solves this with \textbf{Dynamic Entropy Weighting}. Our core idea is that high-entropy tokens in correct responses can guide the policy toward a higher performance ceiling. This allows us to create more fine-grained reward signals for precise policy updates via two ways: 1) \textbf{Group Token Policy Optimization} (\textbf{GTPO}), we assigns a entropy-weighted reward to each token for fine-grained credit assignment. 2) \textbf{Sequence-Level Group Relative Policy Optimization} (\textbf{GRPO-S}), we assigns a entropy-weighted reward to each sequence based on its average token entropy. Experiments show our methods significantly outperform the strong DAPO baseline. The results confirm that our entropy-weighting mechanism is the key driver of this performance boost, offering a better path to enhance deep reasoning in models.
♻ ☆ SMA: Who Said That? Auditing Membership Leakage in Semi-Black-box RAG Controlling
Retrieval-Augmented Generation (RAG) and its Multimodal Retrieval-Augmented Generation (MRAG) significantly improve the knowledge coverage and contextual understanding of Large Language Models (LLMs) by introducing external knowledge sources. However, retrieval and multimodal fusion obscure content provenance, rendering existing membership inference methods unable to reliably attribute generated outputs to pre-training, external retrieval, or user input, thus undermining privacy leakage accountability To address these challenges, we propose the first Source-aware Membership Audit (SMA) that enables fine-grained source attribution of generated content in a semi-black-box setting with retrieval control capabilities. To address the environmental constraints of semi-black-box auditing, we further design an attribution estimation mechanism based on zero-order optimization, which robustly approximates the true influence of input tokens on the output through large-scale perturbation sampling and ridge regression modeling. In addition, SMA introduces a cross-modal attribution technique that projects image inputs into textual descriptions via MLLMs, enabling token-level attribution in the text modality, which for the first time facilitates membership inference on image retrieval traces in MRAG systems. This work shifts the focus of membership inference from 'whether the data has been memorized' to 'where the content is sourced from', offering a novel perspective for auditing data provenance in complex generative systems.
♻ ☆ SPARC: Soft Probabilistic Adaptive multi-interest Retrieval Model via Codebooks for recommender system
Modeling multi-interests has arisen as a core problem in real-world RS. Current multi-interest retrieval methods pose three major challenges: 1) Interests, typically extracted from predefined external knowledge, are invariant. Failed to dynamically evolve with users' real-time consumption preferences. 2) Online inference typically employs an over-exploited strategy, mainly matching users' existing interests, lacking proactive exploration and discovery of novel and long-tail interests. To address these challenges, we propose a novel retrieval framework named SPARC(Soft Probabilistic Adaptive Retrieval Model via Codebooks). Our contribution is two folds. First, the framework utilizes Residual Quantized Variational Autoencoder (RQ-VAE) to construct a discretized interest space. It achieves joint training of the RQ-VAE with the industrial large scale recommendation model, mining behavior-aware interests that can perceive user feedback and evolve dynamically. Secondly, a probabilistic interest module that predicts the probability distribution over the entire dynamic and discrete interest space. This facilitates an efficient "soft-search" strategy during online inference, revolutionizing the retrieval paradigm from "passive matching" to "proactive exploration" and thereby effectively promoting interest discovery. Online A/B tests on an industrial platform with tens of millions daily active users, have achieved substantial gains in business metrics: +0.9% increase in user view duration, +0.4% increase in user page views (PV), and a +22.7% improvement in PV500(new content reaching 500 PVs in 24 hours). Offline evaluations are conducted on open-source Amazon Product datasets. Metrics, such as Recall@K and Normalized Discounted Cumulative Gain@K(NDCG@K), also showed consistent improvement. Both online and offline experiments validate the efficacy and practical value of the proposed method.
comment: 8 pages
♻ ☆ When Deepfakes Look Real: Detecting AI-Generated Faces with Unlabeled Data due to Annotation Challenges
Existing deepfake detection methods heavily depend on labeled training data. However, as AI-generated content becomes increasingly realistic, even \textbf{human annotators struggle to distinguish} between deepfakes and authentic images. This makes the labeling process both time-consuming and less reliable. Specifically, there is a growing demand for approaches that can effectively utilize large-scale unlabeled data from online social networks. Unlike typical unsupervised learning tasks, where categories are distinct, AI-generated faces closely mimic real image distributions and share strong similarities, causing performance drop in conventional strategies. In this paper, we introduce the Dual-Path Guidance Network (DPGNet), to tackle two key challenges: (1) bridging the domain gap between faces from different generation models, and (2) utilizing unlabeled image samples. The method features two core modules: text-guided cross-domain alignment, which uses learnable prompts to unify visual and textual embeddings into a domain-invariant feature space, and curriculum-driven pseudo label generation, which dynamically exploit more informative unlabeled samples. To prevent catastrophic forgetting, we also facilitate bridging between domains via cross-domain knowledge distillation. Extensive experiments on \textbf{11 popular datasets}, show that DPGNet outperforms SoTA approaches by \textbf{6.3\%}, highlighting its effectiveness in leveraging unlabeled data to address the annotation challenges posed by the increasing realism of deepfakes.
comment: 10pages,5figures
♻ ☆ System 2 Reasoning for Human-AI Alignment: Generality and Adaptivity via ARC-AGI
Despite their broad applicability, transformer-based models still fall short in System~2 reasoning, lacking the generality and adaptivity needed for human--AI alignment. We examine weaknesses on ARC-AGI tasks, revealing gaps in compositional generalization and novel-rule adaptation, and argue that closing these gaps requires overhauling the reasoning pipeline and its evaluation. We propose three research axes: (1) Symbolic representation pipeline for compositional generality, (2) Interactive feedback-driven reasoning loop for adaptivity, and (3) Test-time task augmentation balancing both qualities. Finally, we demonstrate how ARC-AGI's evaluation suite can be adapted to track progress in symbolic generality, feedback-driven adaptivity, and task-level robustness, thereby guiding future work on robust human--AI alignment.
♻ ☆ EvoP: Robust LLM Inference via Evolutionary Pruning
Large Language Models (LLMs) have achieved remarkable success in natural language processing tasks, but their massive size and computational demands hinder their deployment in resource-constrained environments. Existing model pruning methods address this issue by removing redundant structures (e.g., elements, channels, layers) from the model. However, these methods employ a heuristic pruning strategy, which leads to suboptimal performance. Besides, they also ignore the data characteristics when pruning the model. To overcome these limitations, we propose EvoP, an evolutionary pruning framework for robust LLM inference. EvoP first presents a cluster-based calibration dataset sampling (CCDS) strategy for creating a more diverse calibration dataset. EvoP then introduces an evolutionary pruning pattern searching (EPPS) method to find the optimal pruning pattern. Compared to existing model pruning techniques, EvoP achieves the best performance while maintaining the best efficiency. Experiments across different LLMs and different downstream tasks validate the effectiveness of the proposed EvoP, making it a practical and scalable solution for deploying LLMs in real-world applications.
♻ ☆ TempOpt -- Unsupervised Alarm Relation Learning for Telecommunication Networks
In a telecommunications network, fault alarms generated by network nodes are monitored in a Network Operations Centre (NOC) to ensure network availability and continuous network operations. The monitoring process comprises of tasks such as active alarms analysis, root alarm identification, and resolution of the underlying problem. Each network node potentially can generate alarms of different types, while nodes can be from multiple vendors, a network can have hundreds of nodes thus resulting in an enormous volume of alarms at any time. Since network nodes are inter-connected, a single fault in the network would trigger multiple sequences of alarms across a variety of nodes and from a monitoring point of view, it is a challenging task for a NOC engineer to be aware of relations between the various alarms, when trying to identify, for example, a root alarm on which an action needs to be taken. To effectively identify root alarms, it is essential to learn relation among the alarms for accurate and faster resolution. In this work we propose a novel unsupervised alarm relation learning technique Temporal Optimization (TempOpt) that is practical and overcomes the limitations of an existing class of alarm relational learning method-temporal dependency methods. Experiments have been carried on real-world network datasets, that demonstrate the improved quality of alarm relations learned by TempOpt as compared to temporal dependency method.
comment: 6 pages, 9 figures. IEEE 21st India Council International Conference (INDICON), 2024
♻ ☆ Large Language Models Do Not Simulate Human Psychology
Large Language Models (LLMs),such as ChatGPT, are increasingly used in research, ranging from simple writing assistance to complex data annotation tasks. Recently, some research has suggested that LLMs may even be able to simulate human psychology and can, hence, replace human participants in psychological studies. We caution against this approach. We provide conceptual arguments against the hypothesis that LLMs simulate human psychology. We then present empiric evidence illustrating our arguments by demonstrating that slight changes to wording that correspond to large changes in meaning lead to notable discrepancies between LLMs' and human responses, even for the recent CENTAUR model that was specifically fine-tuned on psychological responses. Additionally, different LLMs show very different responses to novel items, further illustrating their lack of reliability. We conclude that LLMs do not simulate human psychology and recommend that psychological researchers should treat LLMs as useful but fundamentally unreliable tools that need to be validated against human responses for every new application.
♻ ☆ A Survey on Parallel Text Generation: From Parallel Decoding to Diffusion Language Models
As text generation has become a core capability of modern Large Language Models (LLMs), it underpins a wide range of downstream applications. However, most existing LLMs rely on autoregressive (AR) generation, producing one token at a time based on previously generated context-resulting in limited generation speed due to the inherently sequential nature of the process. To address this challenge, an increasing number of researchers have begun exploring parallel text generation-a broad class of techniques aimed at breaking the token-by-token generation bottleneck and improving inference efficiency. Despite growing interest, there remains a lack of comprehensive analysis on what specific techniques constitute parallel text generation and how they improve inference performance. To bridge this gap, we present a systematic survey of parallel text generation methods. We categorize existing approaches into AR-based and Non-AR-based paradigms, and provide a detailed examination of the core techniques within each category. Following this taxonomy, we assess their theoretical trade-offs in terms of speed, quality, and efficiency, and examine their potential for combination and comparison with alternative acceleration strategies. Finally, based on our findings, we highlight recent advancements, identify open challenges, and outline promising directions for future research in parallel text generation. We have also created a GitHub repository for indexing relevant papers and open resources available at https://github.com/zhanglingzhe0820/Awesome-Parallel-Text-Generation.
♻ ☆ Aryabhata: An exam-focused language model for JEE Math
We present Aryabhata 1.0, a compact 7B parameter math reasoning model optimized for the Indian academic exam, the Joint Entrance Examination (JEE). Despite rapid progress in large language models (LLMs), current models often remain unsuitable for educational use. Aryabhata 1.0 is built by merging strong open-weight reasoning models, followed by supervised fine-tuning (SFT) with curriculum learning on verified chain-of-thought (CoT) traces curated through best-of-$n$ rejection sampling. To further boost performance, we apply reinforcement learning with verifiable rewards (RLVR) using A2C objective with group-relative advantage estimation along with novel exploration strategies such as Adaptive Group Resizing and Temperature Scaling. Evaluated on both in-distribution (JEE Main 2025) and out-of-distribution (MATH, GSM8K) benchmarks, Aryabhata outperforms existing models in accuracy and efficiency, while offering pedagogically useful step-by-step reasoning. We release Aryabhata as a foundation model to advance exam-centric, open-source small language models. This marks our first open release for community feedback (https://huggingface.co/PhysicsWallahAI/Aryabhata-1.0); PW is actively training future models to further improve learning outcomes for students.
♻ ☆ Return Prediction for Mean-Variance Portfolio Selection: How Decision-Focused Learning Shapes Forecasting Models
Markowitz laid the foundation of portfolio theory through the mean-variance optimization (MVO) framework. However, the effectiveness of MVO is contingent on the precise estimation of expected returns, variances, and covariances of asset returns, which are typically uncertain. Machine learning models are becoming useful in estimating uncertain parameters, and such models are trained to minimize prediction errors, such as mean squared errors (MSE), which treat prediction errors uniformly across assets. Recent studies have pointed out that this approach would lead to suboptimal decisions and proposed Decision-Focused Learning (DFL) as a solution, integrating prediction and optimization to improve decision-making outcomes. While studies have shown DFL's potential to enhance portfolio performance, the detailed mechanisms of how DFL modifies prediction models for MVO remain unexplored. This study investigates how DFL adjusts stock return prediction models to optimize decisions in MVO. Theoretically, we show that DFL's gradient can be interpreted as tilting the MSE-based prediction errors by the inverse covariance matrix, effectively incorporating inter-asset correlations into the learning process, while MSE treats each asset's error independently. This tilting mechanism leads to systematic prediction biases where DFL overestimates returns for assets included in portfolios while underestimating excluded assets. Our findings reveal why DFL achieves superior portfolio performance despite higher prediction errors. The strategic biases are features, not flaws.
comment: 8 pages, 5 figures, 2 tables
♻ ☆ Transferable Model-agnostic Vision-Language Model Adaptation for Efficient Weak-to-Strong Generalization
Vision-Language Models (VLMs) have been widely used in various visual recognition tasks due to their remarkable generalization capabilities. As these models grow in size and complexity, fine-tuning becomes costly, emphasizing the need to reuse adaptation knowledge from 'weaker' models to efficiently enhance 'stronger' ones. However, existing adaptation transfer methods exhibit limited transferability across models due to their model-specific design and high computational demands. To tackle this, we propose Transferable Model-agnostic adapter (TransMiter), a light-weight adapter that improves vision-language models 'without backpropagation'. TransMiter captures the knowledge gap between pre-trained and fine-tuned VLMs, in an 'unsupervised' manner. Once trained, this knowledge can be seamlessly transferred across different models without the need for backpropagation. Moreover, TransMiter consists of only a few layers, inducing a negligible additional inference cost. Notably, supplementing the process with a few labeled data further yields additional performance gain, often surpassing a fine-tuned stronger model, with a marginal training cost. Experimental results and analyses demonstrate that TransMiter effectively and efficiently transfers adaptation knowledge while preserving generalization abilities across VLMs of different sizes and architectures in visual recognition tasks.
♻ ☆ Yan: Foundational Interactive Video Generation
We present Yan, a foundational framework for interactive video generation, covering the entire pipeline from simulation and generation to editing. Specifically, Yan comprises three core modules. AAA-level Simulation: We design a highly-compressed, low-latency 3D-VAE coupled with a KV-cache-based shift-window denoising inference process, achieving real-time 1080P/60FPS interactive simulation. Multi-Modal Generation: We introduce a hierarchical autoregressive caption method that injects game-specific knowledge into open-domain multi-modal video diffusion models (VDMs), then transforming the VDM into a frame-wise, action-controllable, real-time infinite interactive video generator. Notably, when the textual and visual prompts are sourced from different domains, the model demonstrates strong generalization, allowing it to blend and compose the style and mechanics across domains flexibly according to user prompts. Multi-Granularity Editing: We propose a hybrid model that explicitly disentangles interactive mechanics simulation from visual rendering, enabling multi-granularity video content editing during interaction through text. Collectively, Yan offers an integration of these modules, pushing interactive video generation beyond isolated capabilities toward a comprehensive AI-driven interactive creation paradigm, paving the way for the next generation of creative tools, media, and entertainment. The project page is: https://greatx3.github.io/Yan/.
♻ ☆ Capabilities of GPT-5 on Multimodal Medical Reasoning
Recent advances in large language models (LLMs) have enabled general-purpose systems to perform increasingly complex domain-specific reasoning without extensive fine-tuning. In the medical domain, decision-making often requires integrating heterogeneous information sources, including patient narratives, structured data, and medical images. This study positions GPT-5 as a generalist multimodal reasoner for medical decision support and systematically evaluates its zero-shot chain-of-thought reasoning performance on both text-based question answering and visual question answering tasks under a unified protocol. We benchmark GPT-5, GPT-5-mini, GPT-5-nano, and GPT-4o-2024-11-20 against standardized splits of MedQA, MedXpertQA (text and multimodal), MMLU medical subsets, USMLE self-assessment exams, and VQA-RAD. Results show that GPT-5 consistently outperforms all baselines, achieving state-of-the-art accuracy across all QA benchmarks and delivering substantial gains in multimodal reasoning. On MedXpertQA MM, GPT-5 improves reasoning and understanding scores by +29.26% and +26.18% over GPT-4o, respectively, and surpasses pre-licensed human experts by +24.23% in reasoning and +29.40% in understanding. In contrast, GPT-4o remains below human expert performance in most dimensions. A representative case study demonstrates GPT-5's ability to integrate visual and textual cues into a coherent diagnostic reasoning chain, recommending appropriate high-stakes interventions. Our results show that, on these controlled multimodal reasoning benchmarks, GPT-5 moves from human-comparable to above human-expert performance. This improvement may substantially inform the design of future clinical decision-support systems.
comment: Corrected some typos
♻ ☆ C-MAG: Cascade Multimodal Attributed Graphs for Supply Chain Link Prediction
Workshop version accepted at KDD 2025 (AI4SupplyChain). Connecting an ever-expanding catalogue of products with suitable manufacturers and suppliers is critical for resilient, efficient global supply chains, yet traditional methods struggle to capture complex capabilities, certifications, geographic constraints, and rich multimodal data of real-world manufacturer profiles. To address these gaps, we introduce PMGraph, a public benchmark of bipartite and heterogeneous multimodal supply-chain graphs linking 8,888 manufacturers, over 70k products, more than 110k manufacturer-product edges, and over 29k product images. Building on this benchmark, we propose the Cascade Multimodal Attributed Graph C-MAG, a two-stage architecture that first aligns and aggregates textual and visual attributes into intermediate group embeddings, then propagates them through a manufacturer-product hetero-graph via multiscale message passing to enhance link prediction accuracy. C-MAG also provides practical guidelines for modality-aware fusion, preserving predictive performance in noisy, real-world settings.
comment: https://openreview.net/pdf?id=mE5n6OJHwO
♻ ☆ Beyond Ten Turns: Unlocking Long-Horizon Agentic Search with Large-Scale Asynchronous RL
Recent advancements in LLM-based agents have demonstrated remarkable capabilities in handling complex, knowledge-intensive tasks by integrating external tools. Among diverse choices of tools, search tools play a pivotal role in accessing vast external knowledge. However, open-source agents still fall short of achieving expert-level Search Intelligence, the ability to resolve ambiguous queries, generate precise searches, analyze results, and conduct thorough exploration. Existing approaches fall short in scalability, efficiency, and data quality. For example, small turn limits in existing online RL methods, e.g. <=10, restrict complex strategy learning. This paper introduces ASearcher, an open-source project for large-scale RL training of search agents. Our key contributions include: (1) Scalable fully asynchronous RL training that enables long-horizon search while maintaining high training efficiency. (2) A prompt-based LLM agent that autonomously synthesizes high-quality and challenging QAs, creating a large-scale QA dataset. Through RL training, our prompt-based QwQ-32B agent achieves substantial improvements, with 46.7% and 20.8% Avg@4 gains on xBench and GAIA, respectively. Notably, our agent exhibits extreme long-horizon search, with tool calls exceeding 40 turns and output tokens exceeding 150k during training time. With a simple agent design and no external LLMs, ASearcher-Web-QwQ achieves Avg@4 scores of 42.1 on xBench and 52.8 on GAIA, surpassing existing open-source 32B agents. We open-source our models, training data, and codes in https://github.com/inclusionAI/ASearcher.
♻ ☆ Generalizing Scaling Laws for Dense and Sparse Large Language Models
Over the past few years, the size of language models has grown exponentially, as has the computational cost to train these large models. This rapid growth has motivated researchers to develop new techniques aimed at enhancing the efficiency of the training process. Despite these advancements, optimally predicting the model size or allocating optimal resources remains a challenge. Several efforts have addressed the challenge by proposing different scaling laws, but almost all of them are architecture-specific (dense or sparse). In this work we revisit existing scaling laws and propose a generalized scaling law to provide a unified framework that is applicable to both dense and sparse large language models. We evaluate and compare our proposed scaling law with existing scaling laws to demonstrate its effectiveness.
comment: 8 pages, 8 figures
♻ ☆ Multi-Step Reasoning with Large Language Models, a Survey
Language models with billions of parameters exhibit in-context learning abilities, enabling few-shot learning on tasks that the model was not specifically trained for. Traditional models achieve breakthrough performance on language tasks, but do not perform well on basic reasoning benchmarks. However, a new in-context learning approach, Chain-of-thought, has demonstrated strong multi-step reasoning abilities on these benchmarks. The research on LLM reasoning abilities started with the question whether LLMs can solve grade school math word problems, and has expanded to other tasks in the past few years. This paper reviews the field of multi-step reasoning with LLMs. We propose a taxonomy that identifies different ways to generate, evaluate, and control multi-step reasoning. We provide an in-depth coverage of core approaches and open problems, and we propose a research agenda for the near future. We find that multi-step reasoning approaches have progressed beyond math word problems, and can now successfully solve challenges in logic, combinatorial games, and robotics, sometimes by first generating code that is then executed by external tools. Many studies in multi-step methods are using reinforcement learning for finetuning, external optimization loops, in context reinforcement learning, and self-reflection.
comment: revised version
♻ ☆ Revisiting Your Memory: Reconstruction of Affect-Contextualized Memory via EEG-guided Audiovisual Generation ACM MM 2025
In this paper, we introduce RevisitAffectiveMemory, a novel task designed to reconstruct autobiographical memories through audio-visual generation guided by affect extracted from electroencephalogram (EEG) signals. To support this pioneering task, we present the EEG-AffectiveMemory dataset, which encompasses textual descriptions, visuals, music, and EEG recordings collected during memory recall from nine participants. Furthermore, we propose RYM (Revisit Your Memory), a three-stage framework for generating synchronized audio-visual contents while maintaining dynamic personal memory affect trajectories. Experimental results demonstrate our method successfully decodes individual affect dynamics trajectories from neural signals during memory recall (F1=0.9). Also, our approach faithfully reconstructs affect-contextualized audio-visual memory across all subjects, both qualitatively and quantitatively, with participants reporting strong affective concordance between their recalled memories and the generated content. Especially, contents generated from subject-reported affect dynamics showed higher correlation with participants' reported affect dynamics trajectories (r=0.265, p<.05) and received stronger user preference (preference=56%) compared to those generated from randomly reordered affect dynamics. Our approaches advance affect decoding research and its practical applications in personalized media creation via neural-based affect comprehension. Codes and the dataset are available at https://github.com/ioahKwon/Revisiting-Your-Memory.
comment: Accepted at the ACM MM 2025 - The 1st CogMAEC Workshop (Oral)
♻ ☆ GenAI Confessions: Black-box Membership Inference for Generative Image Models
From a simple text prompt, generative-AI image models can create stunningly realistic and creative images bounded, it seems, by only our imagination. These models have achieved this remarkable feat thanks, in part, to the ingestion of billions of images collected from nearly every corner of the internet. Many creators have understandably expressed concern over how their intellectual property has been ingested without their permission or a mechanism to opt out of training. As a result, questions of fair use and copyright infringement have quickly emerged. We describe a method that allows us to determine if a model was trained on a specific image or set of images. This method is computationally efficient and assumes no explicit knowledge of the model architecture or weights (so-called black-box membership inference). We anticipate that this method will be crucial for auditing existing models and, looking ahead, ensuring the fairer development and deployment of generative AI models.
comment: https://genai-confessions.github.io
♻ ☆ Block: Balancing Load in LLM Serving with Context, Knowledge and Predictive Scheduling
This paper presents Block, a distributed scheduling framework designed to optimize load balancing and auto-provisioning across instances in large language model serving frameworks by leveraging contextual information from incoming requests. Unlike popular model serving systems that rely on monolithic and heuristic task schedulers, Block operates as a fully distributed, stateless, and predictive scheduling system to achieve low overhead, reliability, and scalability. It leverages the deterministic and predictable characteristics of LLM inferences, such as host configurations, response lengths, and hardware performance, to make scheduling decisions based on accurately predicted metrics. Evaluation on a 12 GPUs cluster shows that Block significantly outperforms heuristic schedulers, boosting serving capacity by up to 16.7\% and reducing P99 tail latency by up to 49.5\%. These performance gains remain consistent across diverse models, workloads and configurations. Code and data are open-sourced.
comment: 12 pages, 8 figures excluding appendix. V1: Fix some typos and grammar issue
♻ ☆ Conformal Prediction of Classifiers with Many Classes based on Noisy Labels
Conformal Prediction (CP) controls the prediction uncertainty of classification systems by producing a small prediction set, ensuring a predetermined probability that the true class lies within this set. This is commonly done by defining a score, based on the model predictions, and setting a threshold on this score using a validation set. In this study, we address the problem of CP calibration when we only have access to a calibration set with noisy labels. We show how we can estimate the noise-free conformal threshold based on the noisy labeled data. We derive a finite sample coverage guarantee for uniform noise that remains effective even in tasks with a large number of classes. We dub our approach Noise-Aware Conformal Prediction (NACP). We illustrate the performance of the proposed results on several standard image classification datasets with a large number of classes.
comment: Accepted by COPA 2025. Proceedings of Machine Learning Research 26, 2025 Conformal and Probabilistic Prediction with Applications
♻ ☆ MIND: A Noise-Adaptive Denoising Framework for Medical Images Integrating Multi-Scale Transformer SP 2025
The core role of medical images in disease diagnosis makes their quality directly affect the accuracy of clinical judgment. However, due to factors such as low-dose scanning, equipment limitations and imaging artifacts, medical images are often accompanied by non-uniform noise interference, which seriously affects structure recognition and lesion detection. This paper proposes a medical image adaptive denoising model (MI-ND) that integrates multi-scale convolutional and Transformer architecture, introduces a noise level estimator (NLE) and a noise adaptive attention module (NAAB), and realizes channel-spatial attention regulation and cross-modal feature fusion driven by noise perception. Systematic testing is carried out on multimodal public datasets. Experiments show that this method significantly outperforms the comparative methods in image quality indicators such as PSNR, SSIM, and LPIPS, and improves the F1 score and ROC-AUC in downstream diagnostic tasks, showing strong prac-tical value and promotional potential. The model has outstanding benefits in structural recovery, diagnostic sensitivity, and cross-modal robustness, and provides an effective solution for medical image enhancement and AI-assisted diagnosis and treatment.
comment: Accepted by the 7th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP 2025). 6 pages, 6 figures
♻ ☆ Pretrained Reversible Generation as Unsupervised Visual Representation Learning ICCV 2025
Recent generative models based on score matching and flow matching have significantly advanced generation tasks, but their potential in discriminative tasks remains underexplored. Previous approaches, such as generative classifiers, have not fully leveraged the capabilities of these models for discriminative tasks due to their intricate designs. We propose Pretrained Reversible Generation (PRG), which extracts unsupervised representations by reversing the generative process of a pretrained continuous generation model. PRG effectively reuses unsupervised generative models, leveraging their high capacity to serve as robust and generalizable feature extractors for downstream tasks. This framework enables the flexible selection of feature hierarchies tailored to specific downstream tasks. Our method consistently outperforms prior approaches across multiple benchmarks, achieving state-of-the-art performance among generative model based methods, including 78% top-1 accuracy on ImageNet at a resolution of 64*64. Extensive ablation studies, including out-of-distribution evaluations, further validate the effectiveness of our approach.PRG is available at https://github.com/opendilab/PRG.
comment: Accepted by ICCV 2025
♻ ☆ Request-Only Optimization for Recommendation Systems
Deep Learning Recommendation Models (DLRMs) represent one of the largest machine learning applications on the planet. Industry-scale DLRMs are trained with petabytes of recommendation data to serve billions of users every day. To utilize the rich user signals in the long user history, DLRMs have been scaled up to unprecedented complexity, up to trillions of floating-point operations (TFLOPs) per example. This scale, coupled with the huge amount of training data, necessitates new storage and training algorithms to efficiently improve the quality of these complex recommendation systems. In this paper, we present a Request-Only Optimizations (ROO) training and modeling paradigm. ROO simultaneously improves the storage and training efficiency as well as the model quality of recommendation systems. We holistically approach this challenge through co-designing data (i.e., request-only data), infrastructure (i.e., request-only based data processing pipeline), and model architecture (i.e., request-only neural architectures). Our ROO training and modeling paradigm treats a user request as a unit of the training data. Compared with the established practice of treating a user impression as a unit, our new design achieves native feature deduplication in data logging, consequently saving data storage. Second, by de-duplicating computations and communications across multiple impressions in a request, this new paradigm enables highly scaled-up neural network architectures to better capture user interest signals, such as Generative Recommenders (GRs) and other request-only friendly architectures.
♻ ☆ Retrieval-Augmented Decision Transformer: External Memory for In-context RL
In-context learning (ICL) is the ability of a model to learn a new task by observing a few exemplars in its context. While prevalent in NLP, this capability has recently also been observed in Reinforcement Learning (RL) settings. Prior in-context RL methods, however, require entire episodes in the agent's context. Given that complex environments typically lead to long episodes with sparse rewards, these methods are constrained to simple environments with short episodes. To address these challenges, we introduce Retrieval-Augmented Decision Transformer (RA-DT). RA-DT employs an external memory mechanism to store past experiences from which it retrieves only sub-trajectories relevant for the current situation. The retrieval component in RA-DT does not require training and can be entirely domain-agnostic. We evaluate the capabilities of RA-DT on grid-world environments, robotics simulations, and procedurally-generated video games. On grid-worlds, RA-DT outperforms baselines, while using only a fraction of their context length. Furthermore, we illuminate the limitations of current in-context RL methods on complex environments and discuss future directions. To facilitate future research, we release datasets for four of the considered environments.
♻ ☆ Deep Learning Model Acceleration and Optimization Strategies for Real-Time Recommendation Systems
With the rapid growth of Internet services, recommendation systems play a central role in delivering personalized content. Faced with massive user requests and complex model architectures, the key challenge for real-time recommendation systems is how to reduce inference latency and increase system throughput without sacrificing recommendation quality. This paper addresses the high computational cost and resource bottlenecks of deep learning models in real-time settings by proposing a combined set of modeling- and system-level acceleration and optimization strategies. At the model level, we dramatically reduce parameter counts and compute requirements through lightweight network design, structured pruning, and weight quantization. At the system level, we integrate multiple heterogeneous compute platforms and high-performance inference libraries, and we design elastic inference scheduling and load-balancing mechanisms based on real-time load characteristics. Experiments show that, while maintaining the original recommendation accuracy, our methods cut latency to less than 30% of the baseline and more than double system throughput, offering a practical solution for deploying large-scale online recommendation services.
♻ ☆ MGDFIS: Multi-scale Global-detail Feature Integration Strategy for Small Object Detection
Small object detection in UAV imagery is crucial for applications such as search-and-rescue, traffic monitoring, and environmental surveillance, but it is hampered by tiny object size, low signal-to-noise ratios, and limited feature extraction. Existing multi-scale fusion methods help, but add computational burden and blur fine details, making small object detection in cluttered scenes difficult. To overcome these challenges, we propose the Multi-scale Global-detail Feature Integration Strategy (MGDFIS), a unified fusion framework that tightly couples global context with local detail to boost detection performance while maintaining efficiency. MGDFIS comprises three synergistic modules: the FusionLock-TSS Attention Module, which marries token-statistics self-attention with DynamicTanh normalization to highlight spectral and spatial cues at minimal cost; the Global-detail Integration Module, which fuses multi-scale context via directional convolution and parallel attention while preserving subtle shape and texture variations; and the Dynamic Pixel Attention Module, which generates pixel-wise weighting maps to rebalance uneven foreground and background distributions and sharpen responses to true object regions. Extensive experiments on the VisDrone benchmark demonstrate that MGDFIS consistently outperforms state-of-the-art methods across diverse backbone architectures and detection frameworks, achieving superior precision and recall with low inference time. By striking an optimal balance between accuracy and resource usage, MGDFIS provides a practical solution for small-object detection on resource-constrained UAV platforms.
comment: 9 pages, 5 figures, 3 tables
♻ ☆ Explaining Caption-Image Interactions in CLIP Models with Second-Order Attributions
Dual encoder architectures like Clip models map two types of inputs into a shared embedding space and predict similarities between them. Despite their wide application, it is, however, not understood how these models compare their two inputs. Common first-order feature-attribution methods explain importances of individual features and can, thus, only provide limited insights into dual encoders, whose predictions depend on interactions between features. In this paper, we first derive a second-order method enabling the attribution of predictions by any differentiable dual encoder onto feature-interactions between its inputs. Second, we apply our method to Clip models and show that they learn fine-grained correspondences between parts of captions and regions in images. They match objects across input modes and also account for mismatches. This intrinsic visual-linguistic grounding ability, however, varies heavily between object classes, exhibits pronounced out-of-domain effects and we can identify individual errors as well as systematic failure categories. Code is publicly available: https://github.com/lucasmllr/exCLIP
comment: Accepted at Transactions on Machine Learning Research (TMLR)
♻ ☆ FlexCTC: GPU-powered CTC Beam Decoding With Advanced Contextual Abilities
While beam search improves speech recognition quality over greedy decoding, standard implementations are slow, often sequential, and CPU-bound. To fully leverage modern hardware capabilities, we present a novel open-source FlexCTC toolkit for fully GPU-based beam decoding, designed for Connectionist Temporal Classification (CTC) models. Developed entirely in Python and PyTorch, it offers a fast, user-friendly, and extensible alternative to traditional C++, CUDA, or WFST-based decoders. The toolkit features a high-performance, fully batched GPU implementation with eliminated CPU-GPU synchronization and minimized kernel launch overhead via CUDA Graphs. It also supports advanced contextualization techniques, including GPU-powered N-gram language model fusion and phrase-level boosting. These features enable accurate and efficient decoding, making them suitable for both research and production use.
comment: Accepted to Automatic Speech Recognition and Understanding Workshop (ASRU) 2025
♻ ☆ Fragment size density estimator for shrinkage-induced fracture based on a physics-informed neural network
This paper presents a neural network (NN)-based solver for an integro-differential equation that models shrinkage-induced fragmentation. The proposed method directly maps input parameters to the corresponding probability density function without numerically solving the governing equation, thereby significantly reducing computational costs. Specifically, it enables efficient evaluation of the density function in Monte Carlo simulations while maintaining accuracy comparable to or even exceeding that of conventional finite difference schemes. Validatation on synthetic data demonstrates both the method's computational efficiency and predictive reliability. This study establishes a foundation for the data-driven inverse analysis of fragmentation and suggests the potential for extending the framework beyond pre-specified model structures.
♻ ☆ Poison Once, Control Anywhere: Clean-Text Visual Backdoors in VLM-based Mobile Agents
Mobile agents powered by vision-language models (VLMs) are increasingly adopted for tasks such as UI automation and camera-based assistance. These agents are typically fine-tuned using small-scale, user-collected data, making them susceptible to stealthy training-time threats. This work introduces VIBMA, the first clean-text backdoor attack targeting VLM-based mobile agents. The attack injects malicious behaviors into the model by modifying only the visual input while preserving textual prompts and instructions, achieving stealth through the complete absence of textual anomalies. Once the agent is fine-tuned on this poisoned data, adding a predefined visual pattern (trigger) at inference time activates the attacker-specified behavior (backdoor). Our attack aligns the training gradients of poisoned samples with those of an attacker-specified target instance, effectively embedding backdoor-specific features into the poisoned data. To ensure the robustness and stealthiness of the attack, we design three trigger variants that better resemble real-world scenarios: static patches, dynamic motion patterns, and low-opacity blended content. Extensive experiments on six Android applications and three mobile-compatible VLMs demonstrate that our attack achieves high success rates (ASR up to 94.67%) while preserving clean-task behavior (FSR up to 95.85%). We further conduct ablation studies to understand how key design factors impact attack reliability and stealth. These findings is the first to reveal the security vulnerabilities of mobile agents and their susceptibility to backdoor injection, underscoring the need for robust defenses in mobile agent adaptation pipelines.
comment: 10 pages
♻ ☆ From Model Performance to Claim: How a Change of Focus in Machine Learning Replicability Can Help Bridge the Responsibility Gap
Two goals - improving replicability and accountability of Machine Learning research respectively, have accrued much attention from the AI ethics and the Machine Learning community. Despite sharing the measures of improving transparency, the two goals are discussed in different registers - replicability registers with scientific reasoning whereas accountability registers with ethical reasoning. Given the existing challenge of the Responsibility Gap - holding Machine Learning scientists accountable for Machine Learning harms due to them being far from sites of application, this paper posits that reconceptualizing replicability can help bridge the gap. Through a shift from model performance replicability to claim replicability, Machine Learning scientists can be held accountable for producing non-replicable claims that are prone to eliciting harm due to misuse and misinterpretation. In this paper, I make the following contributions. First, I define and distinguish two forms of replicability for ML research that can aid constructive conversations around replicability. Second, I formulate an argument for claim-replicability's advantage over model performance replicability in justifying assigning accountability to Machine Learning scientists for producing non-replicable claims and show how it enacts a sense of responsibility that is actionable. In addition, I characterize the implementation of claim replicability as more of a social project than a technical one by discussing its competing epistemological principles, practical implications on Circulating Reference, Interpretative Labor, and research communication.
comment: FAccT 2024
♻ ☆ A multi-strategy improved snake optimizer for three-dimensional UAV path planning and engineering problems
Metaheuristic algorithms have gained widespread application across various fields owing to their ability to generate diverse solutions. One such algorithm is the Snake Optimizer (SO), a progressive optimization approach. However, SO suffers from the issues of slow convergence speed and susceptibility to local optima. In light of these shortcomings, we propose a novel Multi-strategy Improved Snake Optimizer (MISO). Firstly, we propose a new adaptive random disturbance strategy based on sine function to alleviate the risk of getting trapped in a local optimum. Secondly, we introduce adaptive Levy flight strategy based on scale factor and leader and endow the male snake leader with flight capability, which makes it easier for the algorithm to leap out of the local optimum and find the global optimum. More importantly, we put forward a position update strategy combining elite leadership and Brownian motion, effectively accelerating the convergence speed while ensuring precision. Finally, to demonstrate the performance of MISO, we utilize 30 CEC2017 test functions and the CEC2022 test suite, comparing it with 11 popular algorithms across different dimensions to validate its effectiveness. Moreover, Unmanned Aerial Vehicle (UAV) has been widely used in various fields due to its advantages of low cost, high mobility and easy operation. However, the UAV path planning problem is crucial for flight safety and efficiency, and there are still challenges in establishing and optimizing the path model. Therefore, we apply MISO to the UAV 3D path planning problem as well as 6 engineering design problems to assess its feasibility in practical applications. The experimental results demonstrate that MISO exceeds other competitive algorithms in terms of solution quality and stability, establishing its strong potential for application.
comment: 59 pages, 22 figures
♻ ☆ MoSE: Skill-by-Skill Mixture-of-Experts Learning for Embodied Autonomous Machines
To meet the growing demand for smarter, faster, and more efficient embodied AI solutions, we introduce a novel Mixture-of-Expert (MoE) method that significantly boosts reasoning and learning efficiency for embodied autonomous systems. General MoE models demand extensive training data and complex optimization, which limits their applicability in embodied AI such as autonomous driving (AD) and robotic manipulation. In this work, we propose a skill-oriented MoE called MoSE, which mimics the human learning and reasoning process skill-by-skill, step-by-step. We introduce a skill-oriented routing mechanism that begins with defining and annotating specific skills, enabling experts to identify the necessary competencies for various scenarios and reasoning tasks, thereby facilitating skill-by-skill learning. To better align with multi-step planning in human reasoning and in end-to-end driving models, we build a hierarchical skill dataset and pretrain the router to encourage the model to think step-by-step. Unlike other multi-round dialogues, MoSE integrates valuable auxiliary tasks (e.g. perception-prediction-planning for AD, and high-level and low-level planning for robots) in one single forward process without introducing any extra computational cost. With less than 3B sparsely activated parameters, our model effectively grows more diverse expertise and outperforms models on both AD corner-case reasoning tasks and robot reasoning tasks with less than 40% of the parameters.
♻ ☆ Analyzing Finetuning Representation Shift for Multimodal LLMs Steering ICCV 2025
Multimodal LLMs (MLLMs) have reached remarkable levels of proficiency in understanding multimodal inputs. However, understanding and interpreting the behavior of such complex models is a challenging task, not to mention the dynamic shifts that may occur during fine-tuning, or due to covariate shift between datasets. In this work, we apply concept-level analysis towards MLLM understanding. More specifically, we propose to map hidden states to interpretable visual and textual concepts. This enables us to more efficiently compare certain semantic dynamics, such as the shift from an original and fine-tuned model, revealing concept alteration and potential biases that may occur during fine-tuning. We also demonstrate the use of shift vectors to capture these concepts changes. These shift vectors allow us to recover fine-tuned concepts by applying simple, computationally inexpensive additive concept shifts in the original model. Finally, our findings also have direct applications for MLLM steering, which can be used for model debiasing as well as enforcing safety in MLLM output. All in all, we propose a novel, training-free, ready-to-use framework for MLLM behavior interpretability and control. Our implementation is publicly available.
comment: ICCV 2025. The first three authors contributed equally. Project page and code: https://pegah- kh.github.io/projects/lmm-finetuning-analysis-and-steering/
♻ ☆ The Importance of Being Lazy: Scaling Limits of Continual Learning
Despite recent efforts, neural networks still struggle to learn in non-stationary environments, and our understanding of catastrophic forgetting (CF) is far from complete. In this work, we perform a systematic study on the impact of model scale and the degree of feature learning in continual learning. We reconcile existing contradictory observations on scale in the literature, by differentiating between lazy and rich training regimes through a variable parameterization of the architecture. We show that increasing model width is only beneficial when it reduces the amount of feature learning, yielding more laziness. Using the framework of dynamical mean field theory, we then study the infinite width dynamics of the model in the feature learning regime and characterize CF, extending prior theoretical results limited to the lazy regime. We study the intricate relationship between feature learning, task non-stationarity, and forgetting, finding that high feature learning is only beneficial with highly similar tasks. We identify a transition modulated by task similarity where the model exits an effectively lazy regime with low forgetting to enter a rich regime with significant forgetting. Finally, our findings reveal that neural networks achieve optimal performance at a critical level of feature learning, which depends on task non-stationarity and transfers across model scales. This work provides a unified perspective on the role of scale and feature learning in continual learning.
comment: Proceedings of the 42nd International Conference on Machine Learning (2025). JG and AB contributed equally to this work
♻ ☆ Towards flexible perception with visual memory ICML 2025
Training a neural network is a monolithic endeavor, akin to carving knowledge into stone: once the process is completed, editing the knowledge in a network is hard, since all information is distributed across the network's weights. We here explore a simple, compelling alternative by marrying the representational power of deep neural networks with the flexibility of a database. Decomposing the task of image classification into image similarity (from a pre-trained embedding) and search (via fast nearest neighbor retrieval from a knowledge database), we build on well-established components to construct a simple and flexible visual memory that has the following key capabilities: (1.) The ability to flexibly add data across scales: from individual samples all the way to entire classes and billion-scale data; (2.) The ability to remove data through unlearning and memory pruning; (3.) An interpretable decision-mechanism on which we can intervene to control its behavior. Taken together, these capabilities comprehensively demonstrate the benefits of an explicit visual memory. We hope that it might contribute to a conversation on how knowledge should be represented in deep vision models -- beyond carving it in "stone" weights.
comment: ICML 2025 camera ready version
♻ ☆ DRWKV: Focusing on Object Edges for Low-Light Image Enhancement
Low-light image enhancement remains a challenging task, particularly in preserving object edge continuity and fine structural details under extreme illumination degradation. In this paper, we propose a novel model, DRWKV (Detailed Receptance Weighted Key Value), which integrates our proposed Global Edge Retinex (GER) theory, enabling effective decoupling of illumination and edge structures for enhanced edge fidelity. Secondly, we introduce Evolving WKV Attention, a spiral-scanning mechanism that captures spatial edge continuity and models irregular structures more effectively. Thirdly, we design the Bilateral Spectrum Aligner (Bi-SAB) and a tailored MS2-Loss to jointly align luminance and chrominance features, improving visual naturalness and mitigating artifacts. Extensive experiments on five LLIE benchmarks demonstrate that DRWKV achieves leading performance in PSNR, SSIM, and NIQE while maintaining low computational complexity. Furthermore, DRWKV enhances downstream performance in low-light multi-object tracking tasks, validating its generalization capabilities.
♻ ☆ Benchmarking LLMs' Mathematical Reasoning with Unseen Random Variables Questions
Recent studies have raised significant concerns regarding the reliability of current mathematics benchmarks, highlighting issues such as simplistic design and potential data contamination. Consequently, developing a reliable benchmark that effectively evaluates large language models' (LLMs) genuine capabilities in mathematical reasoning remains a critical challenge. To address these concerns, we propose RV-Bench, a novel evaluation methodology for Benchmarking LLMs with Random Variables in mathematical reasoning. Specifically, we build question-generating functions to produce random variable questions (RVQs), whose background content mirrors original benchmark problems, but with randomized variable combinations, rendering them "unseen" to LLMs. Models must completely understand the inherent question pattern to correctly answer RVQs with diverse variable combinations. Thus, an LLM's genuine reasoning capability is reflected through its accuracy and robustness on RV-Bench. We conducted extensive experiments on over 30 representative LLMs across more than 1,000 RVQs. Our findings propose that LLMs exhibit a proficiency imbalance between encountered and ``unseen'' data distributions. Furthermore, RV-Bench reveals that proficiency generalization across similar mathematical reasoning tasks is limited, but we verified it can still be effectively elicited through test-time scaling.
♻ ☆ Pediatric brain tumor classification using digital histopathology and deep learning: evaluation of SOTA methods on a multi-center Swedish cohort
Brain tumors are the most common solid tumors in children and young adults, but the scarcity of large histopathology datasets has limited the application of computational pathology in this group. This study implements two weakly supervised multiple-instance learning (MIL) approaches on patch-features obtained from state-of-the-art histology-specific foundation models to classify pediatric brain tumors in hematoxylin and eosin whole slide images (WSIs) from a multi-center Swedish cohort. WSIs from 540 subjects (age 8.5$\pm$4.9 years) diagnosed with brain tumor were gathered from the six Swedish university hospitals. Instance (patch)-level features were obtained from WSIs using three pre-trained feature extractors: ResNet50, UNI, and CONCH. Instances were aggregated using attention-based MIL (ABMIL) or clustering-constrained attention MIL (CLAM) for patient-level classification. Models were evaluated on three classification tasks based on the hierarchical classification of pediatric brain tumors: tumor category, family, and type. Model generalization was assessed by training on data from two of the centers and testing on data from four other centers. Model interpretability was evaluated through attention mapping. The highest classification performance was achieved using UNI features and ABMIL aggregation, with Matthew's correlation coefficient of 0.76$\pm$0.04, 0.63$\pm$0.04, and 0.60$\pm$0.05 for tumor category, family, and type classification, respectively. When evaluating generalization, models utilizing UNI and CONCH features outperformed those using ResNet50. However, the drop in performance from the in-site to out-of-site testing was similar across feature extractors. These results show the potential of state-of-the-art computational pathology methods in diagnosing pediatric brain tumors at different hierarchical levels with fair generalizability on a multi-center national dataset.
♻ ☆ AgentOrchestra: A Hierarchical Multi-Agent Framework for General-Purpose Task Solving
Recent advances in agent systems have demonstrated remarkable capabilities in solving both general-purpose and highly complex tasks. However, most current models lack mechanisms for coordinating specialized agents and have limited ability to generalize to new or diverse domains. To this end, we introduce AgentOrchestra, a hierarchical multi-agent framework for general-purpose task solving that integrates high-level planning with modular agent collaboration. Drawing inspiration from a conductor orchestrating a symphony, and grounded in the principles of extensibility, multimodality, modularity, and coordination, it features a central planning agent that decomposes complex objectives and delegates sub-tasks to a team of specialized agents. Each sub-agent is equipped with general programming tools, as well as abilities to tackle a wide range of real-world specific tasks, including data analysis, file operations, web navigation, and interactive reasoning in dynamic multimodal environments. Notably, AgentOrchestra introduces an MCP Manager Agent that enables intelligent evolution through dynamic tool creation, retrieval, and reuse mechanisms, significantly enhancing the system's adaptability and scalability. AgentOrchestra supports flexible orchestration through explicit sub-goal formulation, inter-agent communication, and adaptive role allocation. We evaluate the framework on three widely used benchmarks for assessing LLM-based agent systems. Experimental results show that AgentOrchestra consistently outperforms flat-agent and monolithic baselines in terms of task success rate and adaptability. On the GAIA benchmark testing dataset, AgentOrchestra achieves an average score of 83.39\%, ranking among the top general-purpose agents. These results highlight the effectiveness of hierarchical organization and role specialization in building scalable and general-purpose LLM-based agent systems.
♻ ☆ Shifting Perspectives: Steering Vectors for Robust Bias Mitigation in LLMs AACL 2025
We present a novel approach to bias mitigation in large language models (LLMs) by applying steering vectors to modify model activations in forward passes. We compute 8 steering vectors, each corresponding to a different social bias axis, such as age, gender, or race, on a training subset of the BBQ dataset and compare the effectiveness of these to 3 additional bias mitigation methods across 4 datasets. When optimized on the BBQ dataset, our individually tuned steering vectors achieve average improvements of 12.8% on BBQ, 8.3% on CLEAR-Bias, and 1% on StereoSet, and show improvements over prompting and Self-Debias in all cases, and improvements over fine-tuning in 12 out of 17 evaluations. In addition, steering vectors showed the lowest impact on MMLU scores of the four bias mitigation methods tested. The work presents the first systematic investigation of steering vectors for bias mitigation, and we demonstrate that they are a powerful and computationally efficient strategy for reducing bias in LLMs, with broader implications for enhancing AI safety.
comment: Submitted to AACL 2025
♻ ☆ Leveraging Audio and Text Modalities in Mental Health: A Study of LLMs Performance
Mental health disorders are increasingly prevalent worldwide, creating an urgent need for innovative tools to support early diagnosis and intervention. This study explores the potential of Large Language Models (LLMs) in multimodal mental health diagnostics, specifically for detecting depression and Post Traumatic Stress Disorder through text and audio modalities. Using the E-DAIC dataset, we compare text and audio modalities to investigate whether LLMs can perform equally well or better with audio inputs. We further examine the integration of both modalities to determine if this can enhance diagnostic accuracy, which generally results in improved performance metrics. Our analysis specifically utilizes custom-formulated metrics; Modal Superiority Score and Disagreement Resolvement Score to evaluate how combined modalities influence model performance. The Gemini 1.5 Pro model achieves the highest scores in binary depression classification when using the combined modality, with an F1 score of 0.67 and a Balanced Accuracy (BA) of 77.4%, assessed across the full dataset. These results represent an increase of 3.1% over its performance with the text modality and 2.7% over the audio modality, highlighting the effectiveness of integrating modalities to enhance diagnostic accuracy. Notably, all results are obtained in zero-shot inferring, highlighting the robustness of the models without requiring task-specific fine-tuning. To explore the impact of different configurations on model performance, we conduct binary, severity, and multiclass tasks using both zero-shot and few-shot prompts, examining the effects of prompt variations on performance. The results reveal that models such as Gemini 1.5 Pro in text and audio modalities, and GPT-4o mini in the text modality, often surpass other models in balanced accuracy and F1 scores across multiple tasks.
♻ ☆ EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting
Human speech goes beyond the mere transfer of information; it is a profound exchange of emotions and a connection between individuals. While Text-to-Speech (TTS) models have made huge progress, they still face challenges in controlling the emotional expression in the generated speech. In this work, we propose EmoVoice, a novel emotion-controllable TTS model that exploits large language models (LLMs) to enable fine-grained freestyle natural language emotion control, and a phoneme boost variant design that makes the model output phoneme tokens and audio tokens in parallel to enhance content consistency, inspired by chain-of-thought (CoT) and chain-of-modality (CoM) techniques. Besides, we introduce EmoVoice-DB, a high-quality 40-hour English emotion dataset featuring expressive speech and fine-grained emotion labels with natural language descriptions. EmoVoice achieves state-of-the-art performance on the English EmoVoice-DB test set using only synthetic training data, and on the Chinese Secap test set using our in-house data. We further investigate the reliability of existing emotion evaluation metrics and their alignment with human perceptual preferences, and explore using SOTA multimodal LLMs GPT-4o-audio and Gemini to assess emotional speech. Dataset, code, checkpoints, and demo samples are available at https://github.com/yanghaha0908/EmoVoice.
comment: Accepted at ACMMM 2025
♻ ☆ LiteFat: Lightweight Spatio-Temporal Graph Learning for Real-Time Driver Fatigue Detection
Detecting driver fatigue is critical for road safety, as drowsy driving remains a leading cause of traffic accidents. Many existing solutions rely on computationally demanding deep learning models, which result in high latency and are unsuitable for embedded robotic devices with limited resources (such as intelligent vehicles/cars) where rapid detection is necessary to prevent accidents. This paper introduces LiteFat, a lightweight spatio-temporal graph learning model designed to detect driver fatigue efficiently while maintaining high accuracy and low computational demands. LiteFat involves converting streaming video data into spatio-temporal graphs (STG) using facial landmark detection, which focuses on key motion patterns and reduces unnecessary data processing. LiteFat uses MobileNet to extract facial features and create a feature matrix for the STG. A lightweight spatio-temporal graph neural network is then employed to identify signs of fatigue with minimal processing and low latency. Experimental results on benchmark datasets show that LiteFat performs competitively while significantly decreasing computational complexity and latency as compared to current state-of-the-art methods. This work enables the development of real-time, resource-efficient human fatigue detection systems that can be implemented upon embedded robotic devices.
comment: 8 pages, 4 figures
♻ ☆ SpectralEarth: Training Hyperspectral Foundation Models at Scale
Foundation models have triggered a paradigm shift in computer vision and are increasingly being adopted in remote sensing, particularly for multispectral imagery. Yet, their potential in hyperspectral imaging (HSI) remains untapped due to the absence of comprehensive and globally representative hyperspectral datasets. To close this gap, we introduce SpectralEarth, a large-scale multitemporal dataset designed to pretrain hyperspectral foundation models leveraging data from the environmental mapping and analysis program (EnMAP). SpectralEarth comprises 538 974 image patches covering 415 153 unique locations from 11 636 globally distributed EnMAP scenes spanning two years of archive. In addition, 17.5% of these locations include multiple timestamps, enabling multitemporal HSI analysis. Utilizing state-of-the-art self-supervised learning algorithms, we pretrain a series of foundation models on SpectralEarth, integrating a spectral adapter into classical vision backbones to accommodate the unique characteristics of HSI. In tandem, we construct nine downstream datasets for land-cover, crop-type mapping, and tree-species classification, providing benchmarks for model evaluation. Experimental results support the versatility of our models and their generalizability across different tasks and sensors. We also highlight computational efficiency during model fine-tuning.
♻ ☆ StepFun-Prover Preview: Let's Think and Verify Step by Step
We present StepFun-Prover Preview, a large language model designed for formal theorem proving through tool-integrated reasoning. Using a reinforcement learning pipeline that incorporates tool-based interactions, StepFun-Prover can achieve strong performance in generating Lean 4 proofs with minimal sampling. Our approach enables the model to emulate human-like problem-solving strategies by iteratively refining proofs based on real-time environment feedback. On the miniF2F-test benchmark, StepFun-Prover achieves a pass@1 success rate of $70.0\%$. Beyond advancing benchmark performance, we introduce an end-to-end training framework for developing tool-integrated reasoning models, offering a promising direction for automated theorem proving and Math AI assistant.
comment: Added links to GitHub and Hugging Face
♻ ☆ SWA-SOP: Spatially-aware Window Attention for Semantic Occupancy Prediction in Autonomous Driving
Perception systems in autonomous driving rely on sensors such as LiDAR and cameras to perceive the 3D environment. However, due to occlusions and data sparsity, these sensors often fail to capture complete information. Semantic Occupancy Prediction (SOP) addresses this challenge by inferring both occupancy and semantics of unobserved regions. Existing transformer-based SOP methods lack explicit modeling of spatial structure in attention computation, resulting in limited geometric awareness and poor performance in sparse or occluded areas. To this end, we propose Spatially-aware Window Attention (SWA), a novel mechanism that incorporates local spatial context into attention. SWA significantly improves scene completion and achieves state-of-the-art results on LiDAR-based SOP benchmarks. We further validate its generality by integrating SWA into a camera-based SOP pipeline, where it also yields consistent gains across modalities.
comment: 2025 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Vienna, Austria, Oct 2025
♻ ☆ OC-SOP: Enhancing Vision-Based 3D Semantic Occupancy Prediction by Object-Centric Awareness
Autonomous driving perception faces significant challenges due to occlusions and incomplete scene data in the environment. To overcome these issues, the task of semantic occupancy prediction (SOP) is proposed, which aims to jointly infer both the geometry and semantic labels of a scene from images. However, conventional camera-based methods typically treat all categories equally and primarily rely on local features, leading to suboptimal predictions, especially for dynamic foreground objects. To address this, we propose Object-Centric SOP (OC-SOP), a framework that integrates high-level object-centric cues extracted via a detection branch into the semantic occupancy prediction pipeline. This object-centric integration significantly enhances the prediction accuracy for foreground objects and achieves state-of-the-art performance among all categories on SemanticKITTI.
comment: 2025 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Vienna, Austria, Oct 2025
♻ ☆ LUMA: A Benchmark Dataset for Learning from Uncertain and Multimodal Data SIGIR 2025
Multimodal Deep Learning enhances decision-making by integrating diverse information sources, such as texts, images, audio, and videos. To develop trustworthy multimodal approaches, it is essential to understand how uncertainty impacts these models. We propose LUMA, a unique multimodal dataset, featuring audio, image, and textual data from 50 classes, specifically designed for learning from uncertain data. It extends the well-known CIFAR 10/100 dataset with audio samples extracted from three audio corpora, and text data generated using the Gemma-7B Large Language Model (LLM). The LUMA dataset enables the controlled injection of varying types and degrees of uncertainty to achieve and tailor specific experiments and benchmarking initiatives. LUMA is also available as a Python package including the functions for generating multiple variants of the dataset with controlling the diversity of the data, the amount of noise for each modality, and adding out-of-distribution samples. A baseline pre-trained model is also provided alongside three uncertainty quantification methods: Monte-Carlo Dropout, Deep Ensemble, and Reliable Conflictive Multi-View Learning. This comprehensive dataset and its tools are intended to promote and support the development, evaluation, and benchmarking of trustworthy and robust multimodal deep learning approaches. We anticipate that the LUMA dataset will help the research community to design more trustworthy and robust machine learning approaches for safety critical applications. The code and instructions for downloading and processing the dataset can be found at: https://github.com/bezirganyan/LUMA/ .
comment: SIGIR 2025
♻ ☆ RIZE: Regularized Imitation Learning via Distributional Reinforcement Learning
We propose a novel Inverse Reinforcement Learning (IRL) method that mitigates the rigidity of fixed reward structures and the limited flexibility of implicit reward regularization. Building on the Maximum Entropy IRL framework, our approach incorporates a squared temporal-difference (TD) regularizer with adaptive targets that evolve dynamically during training, thereby imposing adaptive bounds on recovered rewards and promoting robust decision-making. To capture richer return information, we integrate distributional RL into the learning process. Empirically, our method achieves expert-level performance on complex MuJoCo tasks, surpassing baseline methods on the Humanoid task with 3 demonstrations. Extensive experiments and ablation studies further validate the effectiveness of the approach and provide insights into reward dynamics in imitation learning.
comment: Major revision - completely rewritten mathematical formulation and proofs, with substantial updates to methodology and expanded appendix for supporting derivations
♻ ☆ SLTNet: Efficient Event-based Semantic Segmentation with Spike-driven Lightweight Transformer-based Networks IROS 2025
Event-based semantic segmentation has great potential in autonomous driving and robotics due to the advantages of event cameras, such as high dynamic range, low latency, and low power cost. Unfortunately, current artificial neural network (ANN)-based segmentation methods suffer from high computational demands, the requirements for image frames, and massive energy consumption, limiting their efficiency and application on resource-constrained edge/mobile platforms. To address these problems, we introduce SLTNet, a spike-driven lightweight transformer-based network designed for event-based semantic segmentation. Specifically, SLTNet is built on efficient spike-driven convolution blocks (SCBs) to extract rich semantic features while reducing the model's parameters. Then, to enhance the long-range contextural feature interaction, we propose novel spike-driven transformer blocks (STBs) with binary mask operations. Based on these basic blocks, SLTNet employs a high-efficiency single-branch architecture while maintaining the low energy consumption of the Spiking Neural Network (SNN). Finally, extensive experiments on DDD17 and DSEC-Semantic datasets demonstrate that SLTNet outperforms state-of-the-art (SOTA) SNN-based methods by at most 9.06% and 9.39% mIoU, respectively, with extremely 4.58x lower energy consumption and 114 FPS inference speed. Our code is open-sourced and available at https://github.com/longxianlei/SLTNet-v1.0.
comment: Accepted by IROS 2025 (2025 IEEE/RSJ International Conference on Intelligent Robots and Systems)
♻ ☆ Halting Recurrent GNNs and the Graded $μ$-Calculus KR 2025
Graph Neural Networks (GNNs) are a class of machine-learning models that operate on graph-structured data. Their expressive power is intimately related to logics that are invariant under graded bisimilarity. Current proposals for recurrent GNNs either assume that the graph size is given to the model, or suffer from a lack of termination guarantees. In this paper, we propose a halting mechanism for recurrent GNNs. We prove that our halting model can express all node classifiers definable in graded modal mu-calculus, even for the standard GNN variant that is oblivious to the graph size. To prove our main result, we develop a new approximate semantics for graded mu-calculus, which we believe to be of independent interest. We leverage this new semantics into a new model-checking algorithm, called the counting algorithm, which is oblivious to the graph size. In a final step we show that the counting algorithm can be implemented on a halting recurrent GNN.
comment: Extended technical report of paper accepted for publication at KR 2025
♻ ☆ WebArXiv: Evaluating Multimodal Agents on Time-Invariant arXiv Tasks
Recent progress in large language models (LLMs) has enabled the development of autonomous web agents capable of navigating and interacting with real websites. However, evaluating such agents remains challenging due to the instability and inconsistency of existing benchmarks, which often rely on dynamic content or oversimplified simulations. In this work, we introduce WebArXiv, a static and time-invariant benchmark comprising 275 web-based tasks grounded in the arXiv platform. WebArXiv ensures reproducible and reliable evaluation by anchoring tasks in fixed web snapshots with deterministic ground truths and standardized action trajectories. Through behavioral analysis, we identify a common failure mode, Rigid History Reflection, where agents over-rely on fixed interaction histories. To address this, we propose a lightweight dynamic reflection mechanism that allows agents to selectively retrieve relevant past steps during decision-making. We evaluate ten state-of-the-art web agents on WebArXiv. Results demonstrate clear performance differences across agents and validate the effectiveness of our proposed reflection strategy.
comment: 10 pages, 9 figures, 4 tables
♻ ☆ AmpLyze: A Deep Learning Model for Predicting the Hemolytic Concentration
Red-blood-cell lysis (HC50) is the principal safety barrier for antimicrobial-peptide (AMP) therapeutics, yet existing models only say "toxic" or "non-toxic." AmpLyze closes this gap by predicting the actual HC50 value from sequence alone and explaining the residues that drive toxicity. The model couples residue-level ProtT5/ESM2 embeddings with sequence-level descriptors in dual local and global branches, aligned by a cross-attention module and trained with log-cosh loss for robustness to assay noise. The optimal AmpLyze model reaches a PCC of 0.756 and an MSE of 0.987, outperforming classical regressors and the state-of-the-art. Ablations confirm that both branches are essential, and cross-attention adds a further 1% PCC and 3% MSE improvement. Expected-Gradients attributions reveal known toxicity hotspots and suggest safer substitutions. By turning hemolysis assessment into a quantitative, sequence-based, and interpretable prediction, AmpLyze facilitates AMP design and offers a practical tool for early-stage toxicity screening.
♻ ☆ Beyond Accuracy: How AI Metacognitive Sensitivity improves AI-assisted Decision Making
In settings where human decision-making relies on AI input, both the predictive accuracy of the AI system and the reliability of its confidence estimates influence decision quality. We highlight the role of AI metacognitive sensitivity -- its ability to assign confidence scores that accurately distinguish correct from incorrect predictions -- and introduce a theoretical framework for assessing the joint impact of AI's predictive accuracy and metacognitive sensitivity in hybrid decision-making settings. Our analysis identifies conditions under which an AI with lower predictive accuracy but higher metacognitive sensitivity can enhance the overall accuracy of human decision making. Finally, a behavioral experiment confirms that greater AI metacognitive sensitivity improves human decision performance. Together, these findings underscore the importance of evaluating AI assistance not only by accuracy but also by metacognitive sensitivity, and of optimizing both to achieve superior decision outcomes.
♻ ☆ FinSage: A Multi-aspect RAG System for Financial Filings Question Answering CIKM2025
Leveraging large language models in real-world settings often entails a need to utilize domain-specific data and tools in order to follow the complex regulations that need to be followed for acceptable use. Within financial sectors, modern enterprises increasingly rely on Retrieval-Augmented Generation (RAG) systems to address complex compliance requirements in financial document workflows. However, existing solutions struggle to account for the inherent heterogeneity of data (e.g., text, tables, diagrams) and evolving nature of regulatory standards used in financial filings, leading to compromised accuracy in critical information extraction. We propose the FinSage framework as a solution, utilizing a multi-aspect RAG framework tailored for regulatory compliance analysis in multi-modal financial documents. FinSage introduces three innovative components: (1) a multi-modal pre-processing pipeline that unifies diverse data formats and generates chunk-level metadata summaries, (2) a multi-path sparse-dense retrieval system augmented with query expansion (HyDE) and metadata-aware semantic search, and (3) a domain-specialized re-ranking module fine-tuned via Direct Preference Optimization (DPO) to prioritize compliance-critical content. Extensive experiments demonstrate that FinSage achieves an impressive recall of 92.51% on 75 expert-curated questions derived from surpasses the best baseline method on the FinanceBench question answering datasets by 24.06% in accuracy. Moreover, FinSage has been successfully deployed as financial question-answering agent in online meetings, where it has already served more than 1,200 people.
comment: Accepted at the 34th ACM International Conference on Information and Knowledge Management (CIKM2025)
♻ ☆ The Illusion of Progress: Re-evaluating Hallucination Detection in LLMs
Large language models (LLMs) have revolutionized natural language processing, yet their tendency to hallucinate poses serious challenges for reliable deployment. Despite numerous hallucination detection methods, their evaluations often rely on ROUGE, a metric based on lexical overlap that misaligns with human judgments. Through comprehensive human studies, we demonstrate that while ROUGE exhibits high recall, its extremely low precision leads to misleading performance estimates. In fact, several established detection methods show performance drops of up to 45.9\% when assessed using human-aligned metrics like LLM-as-Judge. Moreover, our analysis reveals that simple heuristics based on response length can rival complex detection techniques, exposing a fundamental flaw in current evaluation practices. We argue that adopting semantically aware and robust evaluation frameworks is essential to accurately gauge the true performance of hallucination detection methods, ultimately ensuring the trustworthiness of LLM outputs.
comment: Preprint, under review
♻ ☆ Neural Networks Generalize on Low Complexity Data
We show that feedforward neural networks with ReLU activation generalize on low complexity data, suitably defined. Given i.i.d.~data generated from a simple programming language, the minimum description length (MDL) feedforward neural network which interpolates the data generalizes with high probability. We define this simple programming language, along with a notion of description length of such networks. We provide several examples on basic computational tasks, such as checking primality of a natural number. For primality testing, our theorem shows the following and more. Suppose that we draw an i.i.d.~sample of $n$ numbers uniformly at random from $1$ to $N$. For each number $x_i$, let $y_i = 1$ if $x_i$ is a prime and $0$ if it is not. Then, the interpolating MDL network accurately answers, with error probability $1- O((\ln N)/n)$, whether a newly drawn number between $1$ and $N$ is a prime or not. Note that the network is not designed to detect primes; minimum description learning discovers a network which does so. Extensions to noisy data are also discussed, suggesting that MDL neural network interpolators can demonstrate tempered overfitting.
comment: 37 pages. To appear in Annals of Statistics
♻ ☆ Unraveling the iterative CHAD
Combinatory Homomorphic Automatic Differentiation (CHAD) was originally formulated as a semantics-driven source-to-source transformation for reverse-mode AD of total (terminating) functional programs. In this work, we extend CHAD to encompass programs featuring constructs such as partial (potentially non-terminating) operations, data-dependent conditionals (e.g., real-valued tests), and iteration constructs (i.e. while-loops), while maintaining CHAD's core principle of structure-preserving semantics. A central contribution is the introduction of iteration-extensive indexed categories, which provide a principled integration of iteration into dependently typed programming languages. This integration is achieved by requiring that iteration in the base category lifts to parameterized initial algebras in the indexed category, yielding an op-fibred iterative structure that models while-loops and other iteration constructs in the total category, which corresponds to the category of containers of our dependently typed language. Through the idea of iteration-extensive indexed categories, we extend the CHAD transformation to looping programs as the unique structure-preserving functor in a suitable sense. Specifically, it is the unique iterative Freyd category morphism from the iterative Freyd category corresponding to the source language to the category of containers obtained from the target language, such that each primitive operation is mapped to its (transposed) derivative. We establish the correctness of this extended transformation via the universal property of the syntactic categorical model of the source language, showing that the differentiated programs compute correct reverse-mode derivatives of their originals.
comment: 58 pages
♻ ☆ On the Definition of Intelligence
To engineer AGI, we should first capture the essence of intelligence in a species-agnostic form that can be evaluated, while being sufficiently general to encompass diverse paradigms of intelligent behavior, including reinforcement learning, generative models, classification, analogical reasoning, and goal-directed decision-making. We propose a general criterion based on \textit{entity fidelity}: Intelligence is the ability, given entities exemplifying a concept, to generate entities exemplifying the same concept. We formalise this intuition as \(\varepsilon\)-concept intelligence: it is \(\varepsilon\)-intelligent with respect to a concept if no chosen admissible distinguisher can separate generated entities from original entities beyond tolerance \(\varepsilon\). We present the formal framework, outline empirical protocols, and discuss implications for evaluation, safety, and generalization.
comment: Accepted at AGI-25. Enhancing mathematical rigor and conceptual clarity. All instances of "category" and "sample" have been consistently replaced with "concept" and "entity" respectively, and the precise relationship between concepts, fibres, and entities has been refined throughout the paper for greater accuracy
♻ ☆ Fleurs-SLU: A Massively Multilingual Benchmark for Spoken Language Understanding
Spoken language understanding (SLU) is indispensable for half of all living languages that lack a formal writing system. Unlike for high-resource languages, for these languages, we cannot offload semantic understanding of speech to the cascade of automatic speech recognition (ASR) and text-based large language models (LLMs). Even if low-resource languages possess a writing system, ASR for these languages remains unreliable due to limited bimodal speech and text training data. Nonetheless, the evaluation of multilingual SLU is limited to shallow tasks such as intent classification or language identification. This is why we present Fleurs-SLU, a multilingual SLU benchmark that encompasses (i) 692 hours of speech for topical utterance classification in 102 languages and (ii) multiple-choice question answering via listening comprehension spanning 944 hours of speech across 92 languages. We extensively evaluate end-to-end speech classification models, cascaded systems that combine speech-to-text transcription with subsequent LLM-based classification, and multimodal speech-LLMs on Fleurs-SLU. Our results show that cascaded systems are more robust in multilingual SLU, though well-pretrained speech encoders can perform competitively in topical speech classification. Closed-source speech-LLMs match or surpass the performance of cascaded systems. We observe a strong correlation between robust multilingual ASR, effective speech-to-text translation, and strong multilingual SLU, indicating mutual benefits between acoustic and semantic speech representations.
♻ ☆ Adaptive Budgeted Multi-Armed Bandits for IoT with Dynamic Resource Constraints
Internet of Things (IoT) systems increasingly operate in environments where devices must respond in real time while managing fluctuating resource constraints, including energy and bandwidth. Yet, current approaches often fall short in addressing scenarios where operational constraints evolve over time. To address these limitations, we propose a novel Budgeted Multi-Armed Bandit framework tailored for IoT applications with dynamic operational limits. Our model introduces a decaying violation budget, which permits limited constraint violations early in the learning process and gradually enforces stricter compliance over time. We present the Budgeted Upper Confidence Bound (UCB) algorithm, which adaptively balances performance optimization and compliance with time-varying constraints. We provide theoretical guarantees showing that Budgeted UCB achieves sublinear regret and logarithmic constraint violations over the learning horizon. Extensive simulations in a wireless communication setting show that our approach achieves faster adaptation and better constraint satisfaction than standard online learning methods. These results highlight the framework's potential for building adaptive, resource-aware IoT systems.
♻ ☆ Class-Proportional Coreset Selection for Difficulty-Separable Data ICCV 2025
High-quality training data is essential for building reliable and efficient machine learning systems. One-shot coreset selection addresses this by pruning the dataset while maintaining or even improving model performance, often relying on training-dynamics-based data difficulty scores. However, most existing methods implicitly assume class-wise homogeneity in data difficulty, overlooking variation in data difficulty across different classes. In this work, we challenge this assumption by showing that, in domains such as network intrusion detection and medical imaging, data difficulty often clusters by class. We formalize this as class-difficulty separability and introduce the Class Difficulty Separability Coefficient (CDSC) as a quantitative measure. We demonstrate that high CDSC values correlate with performance degradation in class-agnostic coreset methods, which tend to overrepresent easy majority classes while neglecting rare but informative ones. To address this, we introduce class-proportional variants of multiple sampling strategies. Evaluated on five diverse datasets spanning security and medical domains, our methods consistently achieve state-of-the-art performance. For instance, on CTU-13, at an extreme 99% pruning rate, a class-proportional variant of Coverage-centric Coreset Selection (CCS-CP) shows remarkable stability, with accuracy dropping only 2.58%, precision 0.49%, and recall 0.19%. In contrast, the class-agnostic CCS baseline, the next best method, suffers sharper declines of 7.59% in accuracy, 4.57% in precision, and 4.11% in recall. We further show that aggressive pruning enhances generalization in noisy, imbalanced, and large-scale datasets. Our results underscore that explicitly modeling class-difficulty separability leads to more effective, robust, and generalizable data pruning, particularly in high-stakes scenarios.
comment: This paper has been accepted to the ICCV 2025 Workshop on Curated Data for Efficient Learning (CDEL)
♻ ☆ CAPTURe: Evaluating Spatial Reasoning in Vision Language Models via Occluded Object Counting ICCV 2025
Recognizing and reasoning about occluded (partially or fully hidden) objects is vital to understanding visual scenes, as occlusions frequently occur in real-world environments and act as obstacles for spatial comprehension. To test models' ability to reason about multiple occluded objects, we introduce a novel task, Counting Amodally for Patterns Through Unseen REgions (CAPTURe), which requires a model to count objects arranged in a pattern by inferring how the pattern continues behind an occluder (an object which blocks parts of the scene). CAPTURe requires both recognizing visual patterns and reasoning, making it a useful testbed for evaluating vision-language models (VLMs) on whether they understand occluded patterns and possess spatial understanding skills. By requiring models to reason about occluded objects, CAPTURe also tests VLMs' ability to form world models that would allow them to fill in missing information. CAPTURe consists of two parts: (1) CAPTURe-real, with manually filtered images of real objects in patterns and (2) CAPTURe-synthetic, a controlled diagnostic with generated patterned images. We evaluate four strong VLMs (GPT-4o, Intern-VL2, Molmo, and Qwen2-VL) on CAPTURe, finding that models struggle to count on both occluded and unoccluded patterns. Crucially, we find that models perform worse with occlusion, suggesting that VLMs are also deficient in inferring unseen spatial relationships: even the strongest VLMs like GPT-4o fail to count with occlusion. In contrast, we find that humans achieve very little error on CAPTURe. We also find that providing auxiliary information of occluded object locations increases performance, underscoring that the model error comes both from an inability to handle occlusion as well as difficulty in counting in images. Code and data: https://github.com/atinpothiraj/CAPTURe
comment: ICCV 2025
♻ ☆ A Training-Free Approach for Music Style Transfer with Latent Diffusion Models
Music style transfer enables personalized music creation by combining the structure of one piece with the stylistic characteristics of another. While recent approaches have explored text-conditioned generation and diffusion-based synthesis, most require extensive training, paired datasets, or detailed textual annotations. In this work, we introduce Stylus, a novel training-free framework for music style transfer that directly manipulates the self-attention layers of a pre-trained Latent Diffusion Model (LDM). Operating in the mel-spectrogram domain, Stylus transfers musical style by replacing key and value representations from the content audio with those of the style reference, without any fine-tuning. To enhance stylization quality and controllability, we further incorporate query preservation, CFG-inspired guidance scaling, multi-style interpolation, and phase-preserving reconstruction. Our method significantly improves perceptual quality and structural preservation compared to prior work, while remaining lightweight and easy to deploy. This work highlights the potential of diffusion-based attention manipulation for efficient, high-fidelity, and interpretable music generation-without training. Codes will be released upon acceptance.
comment: Codes will be released upon acceptance
♻ ☆ Implicit Safe Set Algorithm for Provably Safe Reinforcement Learning
Deep reinforcement learning (DRL) has demonstrated remarkable performance in many continuous control tasks. However, a significant obstacle to the real-world application of DRL is the lack of safety guarantees. Although DRL agents can satisfy system safety in expectation through reward shaping, designing agents to consistently meet hard constraints (e.g., safety specifications) at every time step remains a formidable challenge. In contrast, existing work in the field of safe control provides guarantees on persistent satisfaction of hard safety constraints. However, these methods require explicit analytical system dynamics models to synthesize safe control, which are typically inaccessible in DRL settings. In this paper, we present a model-free safe control algorithm, the implicit safe set algorithm, for synthesizing safeguards for DRL agents that ensure provable safety throughout training. The proposed algorithm synthesizes a safety index (barrier certificate) and a subsequent safe control law solely by querying a black-box dynamic function (e.g., a digital twin simulator). Moreover, we theoretically prove that the implicit safe set algorithm guarantees finite time convergence to the safe set and forward invariance for both continuous-time and discrete-time systems. We validate the proposed algorithm on the state-of-the-art Safety Gym benchmark, where it achieves zero safety violations while gaining $95\% \pm 9\%$ cumulative reward compared to state-of-the-art safe DRL methods. Furthermore, the resulting algorithm scales well to high-dimensional systems with parallel computing.
comment: Accepted to Journal of Artificial Intelligence Research. arXiv admin note: text overlap with arXiv:2308.13140
♻ ☆ Understanding Transformer-based Vision Models through Inversion
Understanding the mechanisms underlying deep neural networks remains a fundamental challenge in machine learning and computer vision. One promising, yet only preliminarily explored approach, is feature inversion, which attempts to reconstruct images from intermediate representations using trained inverse neural networks. In this study, we revisit feature inversion, introducing a novel, modular variation that enables significantly more efficient application of the technique. We demonstrate how our method can be systematically applied to the large-scale transformer-based vision models, Detection Transformer and Vision Transformer, and how reconstructed images can be qualitatively interpreted in a meaningful way. We further quantitatively evaluate our method, thereby uncovering underlying mechanisms of representing image features that emerge in the two transformer architectures. Our analysis reveals key insights into how these models encode contextual shape and image details, how their layers correlate, and their robustness against color perturbations. These findings contribute to a deeper understanding of transformer-based vision models and their internal representations. The code for reproducing our experiments is available at github.com/wiskott-lab/inverse-tvm.
♻ ☆ Self-Questioning Language Models
Can large language models improve without external data -- by generating their own questions and answers? We hypothesize that a pre-trained language model can improve its reasoning skills given only a single prompt specifying the topic (e.g., algebra word problems) and asking the model to generate its own questions. To do this, we propose Self-Questioning Language Models (SQLM): an asymmetric self-play framework where a proposer is given the topic and generates a question for a solver, who tries to answer it. Both the proposer and solver are trained via reinforcement learning. The proposer receives a reward if the problem is not too easy or too difficult, and the solver receives a reward based on majority voting, a proxy for correctness in the absence of ground-truth answers. For coding, the proposer can instead generate unit tests which are used for verification. We study this asymmetric self-play framework on three benchmarks: three-digit multiplication, algebra problems from the OMEGA benchmark, and programming problems from Codeforces. By continually generating more interesting problems and attempting to solve them, language models can improve on downstream benchmarks without access to any curated training datasets.
♻ ☆ Security Concerns for Large Language Models: A Survey
Large Language Models (LLMs) such as ChatGPT and its competitors have caused a revolution in natural language processing, but their capabilities also introduce new security vulnerabilities. This survey provides a comprehensive overview of these emerging concerns, categorizing threats into several key areas: prompt injection and jailbreaking; adversarial attacks, including input perturbations and data poisoning; misuse by malicious actors to generate disinformation, phishing emails, and malware; and the worrisome risks inherent in autonomous LLM agents. Recently, a significant focus is increasingly being placed on the latter, exploring goal misalignment, emergent deception, self-preservation instincts, and the potential for LLMs to develop and pursue covert, misaligned objectives, a behavior known as scheming, which may even persist through safety training. We summarize recent academic and industrial studies from 2022 to 2025 that exemplify each threat, analyze proposed defenses and their limitations, and identify open challenges in securing LLM-based applications. We conclude by emphasizing the importance of advancing robust, multi-layered security strategies to ensure LLMs are safe and beneficial.
♻ ☆ TextQuests: How Good are LLMs at Text-Based Video Games?
Evaluating AI agents within complex, interactive environments that mirror real-world challenges is critical for understanding their practical capabilities. While existing agent benchmarks effectively assess skills like tool use or performance on structured tasks, they often do not fully capture an agent's ability to operate autonomously in exploratory environments that demand sustained, self-directed reasoning over a long and growing context. To enable a more accurate assessment of AI agents in challenging exploratory environments, we introduce TextQuests, a benchmark based on the Infocom suite of interactive fiction games. These text-based adventures, which can take human players over 30 hours and require hundreds of precise actions to solve, serve as an effective proxy for evaluating AI agents on focused, stateful tasks. The benchmark is specifically designed to assess an LLM agent's capacity for self-contained problem-solving by precluding the use of external tools, thereby focusing on intrinsic long-context reasoning capabilities in an exploratory environment characterized by the need for trial-and-error learning and sustained problem-solving within a single interactive session. We release TextQuests at https://textquests.ai.
♻ ☆ Game-Theoretic Multiagent Reinforcement Learning
Tremendous advances have been made in multiagent reinforcement learning (MARL). MARL corresponds to the learning problem in a multiagent system in which multiple agents learn simultaneously. It is an interdisciplinary field of study with a long history that includes game theory, machine learning, stochastic control, psychology, and optimization. Despite great successes in MARL, there is a lack of a self-contained overview of the literature that covers game-theoretic foundations of modern MARL methods and summarizes the recent advances. The majority of existing surveys are outdated and do not fully cover the recent developments since 2010. In this work, we provide a monograph on MARL that covers both the fundamentals and the latest developments on the research frontier. The goal of this monograph is to provide a self-contained assessment of the current state-of-the-art MARL techniques from a game-theoretic perspective. We expect this work to serve as a stepping stone for both new researchers who are about to enter this fast-growing field and experts in the field who want to obtain a panoramic view and identify new directions based on recent advances.
Machine Learning 210
☆ Story2Board: A Training-Free Approach for Expressive Storyboard Generation
We present Story2Board, a training-free framework for expressive storyboard generation from natural language. Existing methods narrowly focus on subject identity, overlooking key aspects of visual storytelling such as spatial composition, background evolution, and narrative pacing. To address this, we introduce a lightweight consistency framework composed of two components: Latent Panel Anchoring, which preserves a shared character reference across panels, and Reciprocal Attention Value Mixing, which softly blends visual features between token pairs with strong reciprocal attention. Together, these mechanisms enhance coherence without architectural changes or fine-tuning, enabling state-of-the-art diffusion models to generate visually diverse yet consistent storyboards. To structure generation, we use an off-the-shelf language model to convert free-form stories into grounded panel-level prompts. To evaluate, we propose the Rich Storyboard Benchmark, a suite of open-domain narratives designed to assess layout diversity and background-grounded storytelling, in addition to consistency. We also introduce a new Scene Diversity metric that quantifies spatial and pose variation across storyboards. Our qualitative and quantitative results, as well as a user study, show that Story2Board produces more dynamic, coherent, and narratively engaging storyboards than existing baselines.
comment: Project page is available at https://daviddinkevich.github.io/Story2Board/
Dynamic Mixture-of-Experts for Incremental Graph Learning
Graph incremental learning is a learning paradigm that aims to adapt trained models to continuously incremented graphs and data over time without the need for retraining on the full dataset. However, regular graph machine learning methods suffer from catastrophic forgetting when applied to incremental learning settings, where previously learned knowledge is overridden by new knowledge. Previous approaches have tried to address this by treating the previously trained model as an inseparable unit and using techniques to maintain old behaviors while learning new knowledge. These approaches, however, do not account for the fact that previously acquired knowledge at different timestamps contributes differently to learning new tasks. Some prior patterns can be transferred to help learn new data, while others may deviate from the new data distribution and be detrimental. To address this, we propose a dynamic mixture-of-experts (DyMoE) approach for incremental learning. Specifically, a DyMoE GNN layer adds new expert networks specialized in modeling the incoming data blocks. We design a customized regularization loss that utilizes data sequence information so existing experts can maintain their ability to solve old tasks while helping the new expert learn the new data effectively. As the number of data blocks grows over time, the computational cost of the full mixture-of-experts (MoE) model increases. To address this, we introduce a sparse MoE approach, where only the top-$k$ most relevant experts make predictions, significantly reducing the computation time. Our model achieved 4.92\% relative accuracy increase compared to the best baselines on class incremental learning, showing the model's exceptional power.
☆ Noise Hypernetworks: Amortizing Test-Time Compute in Diffusion Models
The new paradigm of test-time scaling has yielded remarkable breakthroughs in Large Language Models (LLMs) (e.g. reasoning models) and in generative vision models, allowing models to allocate additional computation during inference to effectively tackle increasingly complex problems. Despite the improvements of this approach, an important limitation emerges: the substantial increase in computation time makes the process slow and impractical for many applications. Given the success of this paradigm and its growing usage, we seek to preserve its benefits while eschewing the inference overhead. In this work we propose one solution to the critical problem of integrating test-time scaling knowledge into a model during post-training. Specifically, we replace reward guided test-time noise optimization in diffusion models with a Noise Hypernetwork that modulates initial input noise. We propose a theoretically grounded framework for learning this reward-tilted distribution for distilled generators, through a tractable noise-space objective that maintains fidelity to the base model while optimizing for desired characteristics. We show that our approach recovers a substantial portion of the quality gains from explicit test-time optimization at a fraction of the computational cost. Code is available at https://github.com/ExplainableML/HyperNoise
comment: Project page: https://noisehypernetworks.github.io/
☆ GBC: Generalized Behavior-Cloning Framework for Whole-Body Humanoid Imitation
The creation of human-like humanoid robots is hindered by a fundamental fragmentation: data processing and learning algorithms are rarely universal across different robot morphologies. This paper introduces the Generalized Behavior Cloning (GBC) framework, a comprehensive and unified solution designed to solve this end-to-end challenge. GBC establishes a complete pathway from human motion to robot action through three synergistic innovations. First, an adaptive data pipeline leverages a differentiable IK network to automatically retarget any human MoCap data to any humanoid. Building on this foundation, our novel DAgger-MMPPO algorithm with its MMTransformer architecture learns robust, high-fidelity imitation policies. To complete the ecosystem, the entire framework is delivered as an efficient, open-source platform based on Isaac Lab, empowering the community to deploy the full workflow via simple configuration scripts. We validate the power and generality of GBC by training policies on multiple heterogeneous humanoids, demonstrating excellent performance and transfer to novel motions. This work establishes the first practical and unified pathway for creating truly generalized humanoid controllers.
☆ Neural Bandit Based Optimal LLM Selection for a Pipeline of Tasks AAAI 2026
With the increasing popularity of large language models (LLMs) for a variety of tasks, there has been a growing interest in strategies that can predict which out of a set of LLMs will yield a successful answer at low cost. This problem promises to become more and more relevant as providers like Microsoft allow users to easily create custom LLM "assistants" specialized to particular types of queries. However, some tasks (i.e., queries) may be too specialized and difficult for a single LLM to handle alone. These applications often benefit from breaking down the task into smaller subtasks, each of which can then be executed by a LLM expected to perform well on that specific subtask. For example, in extracting a diagnosis from medical records, one can first select an LLM to summarize the record, select another to validate the summary, and then select another, possibly different, LLM to extract the diagnosis from the summarized record. Unlike existing LLM selection or routing algorithms, this setting requires that we select a sequence of LLMs, with the output of each LLM feeding into the next and potentially influencing its success. Thus, unlike single LLM selection, the quality of each subtask's output directly affects the inputs, and hence the cost and success rate, of downstream LLMs, creating complex performance dependencies that must be learned and accounted for during selection. We propose a neural contextual bandit-based algorithm that trains neural networks that model LLM success on each subtask in an online manner, thus learning to guide the LLM selections for the different subtasks, even in the absence of historical LLM performance data. Experiments on telecommunications question answering and medical diagnosis prediction datasets illustrate the effectiveness of our proposed approach compared to other LLM selection algorithms.
comment: Submitted to AAAI 2026
☆ Specialised or Generic? Tokenization Choices for Radiology Language Models MICCAI2025
The vocabulary used by language models (LM) - defined by the tokenizer - plays a key role in text generation quality. However, its impact remains under-explored in radiology. In this work, we address this gap by systematically comparing general, medical, and domain-specific tokenizers on the task of radiology report summarisation across three imaging modalities. We also investigate scenarios with and without LM pre-training on PubMed abstracts. Our findings demonstrate that medical and domain-specific vocabularies outperformed widely used natural language alternatives when models are trained from scratch. Pre-training partially mitigates performance differences between tokenizers, whilst the domain-specific tokenizers achieve the most favourable results. Domain-specific tokenizers also reduce memory requirements due to smaller vocabularies and shorter sequences. These results demonstrate that adapting the vocabulary of LMs to the clinical domain provides practical benefits, including improved performance and reduced computational demands, making such models more accessible and effective for both research and real-world healthcare settings.
comment: Accepted to ELAMI@MICCAI2025
☆ Stable Diffusion Models are Secretly Good at Visual In-Context Learning ICCV 2025
Large language models (LLM) in natural language processing (NLP) have demonstrated great potential for in-context learning (ICL) -- the ability to leverage a few sets of example prompts to adapt to various tasks without having to explicitly update the model weights. ICL has recently been explored for computer vision tasks with promising early outcomes. These approaches involve specialized training and/or additional data that complicate the process and limit its generalizability. In this work, we show that off-the-shelf Stable Diffusion models can be repurposed for visual in-context learning (V-ICL). Specifically, we formulate an in-place attention re-computation within the self-attention layers of the Stable Diffusion architecture that explicitly incorporates context between the query and example prompts. Without any additional fine-tuning, we show that this repurposed Stable Diffusion model is able to adapt to six different tasks: foreground segmentation, single object detection, semantic segmentation, keypoint detection, edge detection, and colorization. For example, the proposed approach improves the mean intersection over union (mIoU) for the foreground segmentation task on Pascal-5i dataset by 8.9% and 3.2% over recent methods such as Visual Prompting and IMProv, respectively. Additionally, we show that the proposed method is able to effectively leverage multiple prompts through ensembling to infer the task better and further improve the performance.
comment: Accepted to ICCV 2025
☆ A Comprehensive Evaluation framework of Alignment Techniques for LLMs
As Large Language Models (LLMs) become increasingly integrated into real-world applications, ensuring their outputs align with human values and safety standards has become critical. The field has developed diverse alignment approaches including traditional fine-tuning methods (RLHF, instruction tuning), post-hoc correction systems, and inference-time interventions, each with distinct advantages and limitations. However, the lack of unified evaluation frameworks makes it difficult to systematically compare these paradigms and guide deployment decisions. This paper introduces a multi-dimensional evaluation of alignment techniques for LLMs, a comprehensive evaluation framework that provides a systematic comparison across all major alignment paradigms. Our framework assesses methods along four key dimensions: alignment detection, alignment quality, computational efficiency, and robustness. Through experiments across diverse base models and alignment strategies, we demonstrate the utility of our framework in identifying strengths and limitations of current state-of-the-art models, providing valuable insights for future research directions.
comment: In submission
☆ Residual Reservoir Memory Networks IJCNN 2025
We introduce a novel class of untrained Recurrent Neural Networks (RNNs) within the Reservoir Computing (RC) paradigm, called Residual Reservoir Memory Networks (ResRMNs). ResRMN combines a linear memory reservoir with a non-linear reservoir, where the latter is based on residual orthogonal connections along the temporal dimension for enhanced long-term propagation of the input. The resulting reservoir state dynamics are studied through the lens of linear stability analysis, and we investigate diverse configurations for the temporal residual connections. The proposed approach is empirically assessed on time-series and pixel-level 1-D classification tasks. Our experimental results highlight the advantages of the proposed approach over other conventional RC models.
comment: 7 pages, 6 figures, accepted at IJCNN 2025
☆ Prototype-Guided Diffusion: Visual Conditioning without External Memory
Diffusion models have emerged as a leading framework for high-quality image generation, offering stable training and strong performance across diverse domains. However, they remain computationally intensive, particularly during the iterative denoising process. Latent-space models like Stable Diffusion alleviate some of this cost by operating in compressed representations, though at the expense of fine-grained detail. More recent approaches such as Retrieval-Augmented Diffusion Models (RDM) address efficiency by conditioning denoising on similar examples retrieved from large external memory banks. While effective, these methods introduce drawbacks: they require costly storage and retrieval infrastructure, depend on static vision-language models like CLIP for similarity, and lack adaptability during training. We propose the Prototype Diffusion Model (PDM), a method that integrates prototype learning directly into the diffusion process for efficient and adaptive visual conditioning - without external memory. Instead of retrieving reference samples, PDM constructs a dynamic set of compact visual prototypes from clean image features using contrastive learning. These prototypes guide the denoising steps by aligning noisy representations with semantically relevant visual patterns, enabling efficient generation with strong semantic grounding. Experiments show that PDM maintains high generation quality while reducing computational and storage overhead, offering a scalable alternative to retrieval-based conditioning in diffusion models.
☆ Beyond Naïve Prompting: Strategies for Improved Zero-shot Context-aided Forecasting with LLMs
Forecasting in real-world settings requires models to integrate not only historical data but also relevant contextual information, often available in textual form. While recent work has shown that large language models (LLMs) can be effective context-aided forecasters via na\"ive direct prompting, their full potential remains underexplored. We address this gap with 4 strategies, providing new insights into the zero-shot capabilities of LLMs in this setting. ReDP improves interpretability by eliciting explicit reasoning traces, allowing us to assess the model's reasoning over the context independently from its forecast accuracy. CorDP leverages LLMs solely to refine existing forecasts with context, enhancing their applicability in real-world forecasting pipelines. IC-DP proposes embedding historical examples of context-aided forecasting tasks in the prompt, substantially improving accuracy even for the largest models. Finally, RouteDP optimizes resource efficiency by using LLMs to estimate task difficulty, and routing the most challenging tasks to larger models. Evaluated on different kinds of context-aided forecasting tasks from the CiK benchmark, our strategies demonstrate distinct benefits over na\"ive prompting across LLMs of different sizes and families. These results open the door to further simple yet effective improvements in LLM-based context-aided forecasting.
☆ Rare anomalies require large datasets: About proving the existence of anomalies
Detecting whether any anomalies exist within a dataset is crucial for effective anomaly detection, yet it remains surprisingly underexplored in anomaly detection literature. This paper presents a comprehensive study that addresses the fundamental question: When can we conclusively determine that anomalies are present? Through extensive experimentation involving over three million statistical tests across various anomaly detection tasks and algorithms, we identify a relationship between the dataset size, contamination rate, and an algorithm-dependent constant $ \alpha_{\text{algo}} $. Our results demonstrate that, for an unlabeled dataset of size $ N $ and contamination rate $ \nu $, the condition $ N \ge \frac{\alpha_{\text{algo}}}{\nu^2} $ represents a lower bound on the number of samples required to confirm anomaly existence. This threshold implies a limit to how rare anomalies can be before proving their existence becomes infeasible.
comment: 13 pages, 8 figures
☆ Modern Neural Networks for Small Tabular Datasets: The New Default for Field-Scale Digital Soil Mapping?
In the field of pedometrics, tabular machine learning is the predominant method for predicting soil properties from remote and proximal soil sensing data, forming a central component of digital soil mapping. At the field-scale, this predictive soil modeling (PSM) task is typically constrained by small training sample sizes and high feature-to-sample ratios in soil spectroscopy. Traditionally, these conditions have proven challenging for conventional deep learning methods. Classical machine learning algorithms, particularly tree-based models like Random Forest and linear models such as Partial Least Squares Regression, have long been the default choice for field-scale PSM. Recent advances in artificial neural networks (ANN) for tabular data challenge this view, yet their suitability for field-scale PSM has not been proven. We introduce a comprehensive benchmark that evaluates state-of-the-art ANN architectures, including the latest multilayer perceptron (MLP)-based models (TabM, RealMLP), attention-based transformer variants (FT-Transformer, ExcelFormer, T2G-Former, AMFormer), retrieval-augmented approaches (TabR, ModernNCA), and an in-context learning foundation model (TabPFN). Our evaluation encompasses 31 field- and farm-scale datasets containing 30 to 460 samples and three critical soil properties: soil organic matter or soil organic carbon, pH, and clay content. Our results reveal that modern ANNs consistently outperform classical methods on the majority of tasks, demonstrating that deep learning has matured sufficiently to overcome the long-standing dominance of classical machine learning for PSM. Notably, TabPFN delivers the strongest overall performance, showing robustness across varying conditions. We therefore recommend the adoption of modern ANNs for field-scale PSM and propose TabPFN as the new default choice in the toolkit of every pedometrician.
☆ Beyond Scaling Law: A Data-Efficient Distillation Framework for Reasoning
Large language models (LLMs) demonstrate remarkable reasoning capabilities in tasks such as algorithmic coding and mathematical problem-solving. Recent methods have improved reasoning through expanded corpus and multistage training combining reinforcement learning and supervised fine-tuning. Although some methods suggest that small but targeted dataset can incentivize reasoning via only distillation, a reasoning scaling laws is still taking shape, increasing computational costs. To address this, we propose a data-efficient distillation framework (DED) that optimizes the Pareto frontier of reasoning distillation. Inspired by the on-policy learning and diverse roll-out strategies of reinforcement learning, the key idea of our approach is threefold: (1) We identify that benchmark scores alone do not determine an effective teacher model. Through comprehensive comparisons of leading reasoning LLMs, we develop a method to select an optimal teacher model. (2) While scaling distillation can enhance reasoning, it often degrades out-of-domain performance. A carefully curated, smaller corpus achieves a balanced trade-off between in-domain and out-of-domain capabilities. (3) Diverse reasoning trajectories encourage the student model to develop robust reasoning skills. We validate our method through evaluations on mathematical reasoning (AIME 2024/2025, MATH-500) and code generation (LiveCodeBench), achieving state-of-the-art results with only 0.8k carefully curated examples, bypassing the need for extensive scaling. Our systematic analysis demonstrates that DED outperforms existing methods by considering factors beyond superficial hardness, token length, or teacher model capability. This work offers a practical and efficient pathway to advanced reasoning while preserving general capabilities.
☆ FedShard: Federated Unlearning with Efficiency Fairness and Performance Fairness
To protect clients' right to be forgotten in federated learning, federated unlearning aims to remove the data contribution of leaving clients from the global learned model. While current studies mainly focused on enhancing unlearning efficiency and effectiveness, the crucial aspects of efficiency fairness and performance fairness among decentralized clients during unlearning have remained largely unexplored. In this study, we introduce FedShard, the first federated unlearning algorithm designed to concurrently guarantee both efficiency fairness and performance fairness. FedShard adaptively addresses the challenges introduced by dilemmas among convergence, unlearning efficiency, and unlearning fairness. Furthermore, we propose two novel metrics to quantitatively assess the fairness of unlearning algorithms, which we prove to satisfy well-known properties in other existing fairness measurements. Our theoretical analysis and numerical evaluation validate FedShard's fairness in terms of both unlearning performance and efficiency. We demonstrate that FedShard mitigates unfairness risks such as cascaded leaving and poisoning attacks and realizes more balanced unlearning costs among clients. Experimental results indicate that FedShard accelerates the data unlearning process 1.3-6.2 times faster than retraining from scratch and 4.9 times faster than the state-of-the-art exact unlearning methods.
☆ On the Generalization Limits of Quantum Generative Adversarial Networks with Pure State Generators
We investigate the capabilities of Quantum Generative Adversarial Networks (QGANs) in image generations tasks. Our analysis centers on fully quantum implementations of both the generator and discriminator. Through extensive numerical testing of current main architectures, we find that QGANs struggle to generalize across datasets, converging on merely the average representation of the training data. When the output of the generator is a pure-state, we analytically derive a lower bound for the discriminator quality given by the fidelity between the pure-state output of the generator and the target data distribution, thereby providing a theoretical explanation for the limitations observed in current models. Our findings reveal fundamental challenges in the generalization capabilities of existing quantum generative models. While our analysis focuses on QGANs, the results carry broader implications for the performance of related quantum generative models.
comment: 16 pages, 5 figures
☆ RayletDF: Raylet Distance Fields for Generalizable 3D Surface Reconstruction from Point Clouds or Gaussians ICCV 2025
In this paper, we present a generalizable method for 3D surface reconstruction from raw point clouds or pre-estimated 3D Gaussians by 3DGS from RGB images. Unlike existing coordinate-based methods which are often computationally intensive when rendering explicit surfaces, our proposed method, named RayletDF, introduces a new technique called raylet distance field, which aims to directly predict surface points from query rays. Our pipeline consists of three key modules: a raylet feature extractor, a raylet distance field predictor, and a multi-raylet blender. These components work together to extract fine-grained local geometric features, predict raylet distances, and aggregate multiple predictions to reconstruct precise surface points. We extensively evaluate our method on multiple public real-world datasets, demonstrating superior performance in surface reconstruction from point clouds or 3D Gaussians. Most notably, our method achieves exceptional generalization ability, successfully recovering 3D surfaces in a single-forward pass across unseen datasets in testing.
comment: ICCV 2025 Highlight. Shenxing and Jinxi are co-first authors. Code and data are available at: https://github.com/vLAR-group/RayletDF
☆ RankList -- A Listwise Preference Learning Framework for Predicting Subjective Preferences
Preference learning has gained significant attention in tasks involving subjective human judgments, such as \emph{speech emotion recognition} (SER) and image aesthetic assessment. While pairwise frameworks such as RankNet offer robust modeling of relative preferences, they are inherently limited to local comparisons and struggle to capture global ranking consistency. To address these limitations, we propose RankList, a novel listwise preference learning framework that generalizes RankNet to structured list-level supervision. Our formulation explicitly models local and non-local ranking constraints within a probabilistic framework. The paper introduces a log-sum-exp approximation to improve training efficiency. We further extend RankList with skip-wise comparisons, enabling progressive exposure to complex list structures and enhancing global ranking fidelity. Extensive experiments demonstrate the superiority of our method across diverse modalities. On benchmark SER datasets (MSP-Podcast, IEMOCAP, BIIC Podcast), RankList achieves consistent improvements in Kendall's Tau and ranking accuracy compared to standard listwise baselines. We also validate our approach on aesthetic image ranking using the Artistic Image Aesthetics dataset, highlighting its broad applicability. Through ablation and cross-domain studies, we show that RankList not only improves in-domain ranking but also generalizes better across datasets. Our framework offers a unified, extensible approach for modeling ordered preferences in subjective learning scenarios.
comment: 12 pages, 2 figures
Provable In-Context Vector Arithmetic via Retrieving Task Concepts ICML 2025
In-context learning (ICL) has garnered significant attention for its ability to grasp functions/tasks from demonstrations. Recent studies suggest the presence of a latent task/function vector in LLMs during ICL. Merullo et al. (2024) showed that LLMs leverage this vector alongside the residual stream for Word2Vec-like vector arithmetic, solving factual-recall ICL tasks. Additionally, recent work empirically highlighted the key role of Question-Answer data in enhancing factual-recall capabilities. Despite these insights, a theoretical explanation remains elusive. To move one step forward, we propose a theoretical framework building on empirically grounded hierarchical concept modeling. We develop an optimization theory, showing how nonlinear residual transformers trained via gradient descent on cross-entropy loss perform factual-recall ICL tasks via vector arithmetic. We prove 0-1 loss convergence and show the strong generalization, including robustness to concept recombination and distribution shifts. These results elucidate the advantages of transformers over static embedding predecessors. Empirical simulations corroborate our theoretical insights.
comment: Accepted by the 42nd International Conference on Machine Learning (ICML 2025)
☆ TRACE: Learning 3D Gaussian Physical Dynamics from Multi-view Videos ICCV 2025
In this paper, we aim to model 3D scene geometry, appearance, and physical information just from dynamic multi-view videos in the absence of any human labels. By leveraging physics-informed losses as soft constraints or integrating simple physics models into neural nets, existing works often fail to learn complex motion physics, or doing so requires additional labels such as object types or masks. We propose a new framework named TRACE to model the motion physics of complex dynamic 3D scenes. The key novelty of our method is that, by formulating each 3D point as a rigid particle with size and orientation in space, we directly learn a translation rotation dynamics system for each particle, explicitly estimating a complete set of physical parameters to govern the particle's motion over time. Extensive experiments on three existing dynamic datasets and one newly created challenging synthetic datasets demonstrate the extraordinary performance of our method over baselines in the task of future frame extrapolation. A nice property of our framework is that multiple objects or parts can be easily segmented just by clustering the learned physical parameters.
comment: ICCV 2025. Code and data are available at: https://github.com/vLAR-group/TRACE
☆ Feature Impact Analysis on Top Long-Jump Performances with Quantile Random Forest and Explainable AI Techniques
Biomechanical features have become important indicators for evaluating athletes' techniques. Traditionally, experts propose significant features and evaluate them using physics equations. However, the complexity of the human body and its movements makes it challenging to explicitly analyze the relationships between some features and athletes' final performance. With advancements in modern machine learning and statistics, data analytics methods have gained increasing importance in sports analytics. In this study, we leverage machine learning models to analyze expert-proposed biomechanical features from the finals of long jump competitions in the World Championships. The objectives of the analysis include identifying the most important features contributing to top-performing jumps and exploring the combined effects of these key features. Using quantile regression, we model the relationship between the biomechanical feature set and the target variable (effective distance), with a particular focus on elite-level jumps. To interpret the model, we apply SHapley Additive exPlanations (SHAP) alongside Partial Dependence Plots (PDPs) and Individual Conditional Expectation (ICE) plots. The findings reveal that, beyond the well-documented velocity-related features, specific technical aspects also play a pivotal role. For male athletes, the angle of the knee of the supporting leg before take-off is identified as a key factor for achieving top 10% performance in our dataset, with angles greater than 169{\deg}contributing significantly to jump performance. In contrast, for female athletes, the landing pose and approach step technique emerge as the most critical features influencing top 10% performances, alongside velocity. This study establishes a framework for analyzing the impact of various features on athletic performance, with a particular emphasis on top-performing events.
comment: 15 pages, 6 figures
☆ Improving the Speaker Anonymization Evaluation's Robustness to Target Speakers with Adversarial Learning
The current privacy evaluation for speaker anonymization often overestimates privacy when a same-gender target selection algorithm (TSA) is used, although this TSA leaks the speaker's gender and should hence be more vulnerable. We hypothesize that this occurs because the evaluation does not account for the fact that anonymized speech contains information from both the source and target speakers. To address this, we propose to add a target classifier that measures the influence of target speaker information in the evaluation, which can also be removed with adversarial learning. Experiments demonstrate that this approach is effective for multiple anonymizers, particularly when using a same-gender TSA, leading to a more reliable assessment.
☆ Bayesian autoregression to optimize temporal Matérn kernel Gaussian process hyperparameters
Gaussian processes are important models in the field of probabilistic numerics. We present a procedure for optimizing Mat\'ern kernel temporal Gaussian processes with respect to the kernel covariance function's hyperparameters. It is based on casting the optimization problem as a recursive Bayesian estimation procedure for the parameters of an autoregressive model. We demonstrate that the proposed procedure outperforms maximizing the marginal likelihood as well as Hamiltonian Monte Carlo sampling, both in terms of runtime and ultimate root mean square error in Gaussian process regression.
comment: 9 pages, 4 figures, accepted to the International Conference on Probabilistic Numerics 2025
☆ Prototype Training with Dual Pseudo-Inverse and Optimized Hidden Activations
We present Proto-PINV+H, a fast training paradigm that combines closed-form weight computation with gradient-based optimisation of a small set of synthetic inputs, soft labels, and-crucially-hidden activations. At each iteration we recompute all weight matrices in closed form via two (or more) ridge-regularised pseudo-inverse solves, while updating only the prototypes with Adam. The trainable degrees of freedom are thus shifted from weight space to data/activation space. On MNIST (60k train, 10k test) and Fashion-MNIST (60k train, 10k test), our method reaches 97.8% and 89.3% test accuracy on the official 10k test sets, respectively, in 3.9s--4.5s using approximately 130k trainable parameters and only 250 epochs on an RTX 5060 (16GB). We provide a multi-layer extension (optimised activations at each hidden stage), learnable ridge parameters, optional PCA/PLS projections, and theory linking the condition number of prototype matrices to generalisation. The approach yields favourable accuracy--speed--size trade-offs against ELM, random-feature ridge, and shallow MLPs trained by back-propagation.
comment: 7 pages, 1 table, reproducible, one proof
☆ TriForecaster: A Mixture of Experts Framework for Multi-Region Electric Load Forecasting with Tri-dimensional Specialization
Electric load forecasting is pivotal for power system operation, planning and decision-making. The rise of smart grids and meters has provided more detailed and high-quality load data at multiple levels of granularity, from home to bus and cities. Motivated by similar patterns of loads across different cities in a province in eastern China, in this paper we focus on the Multi-Region Electric Load Forecasting (MRELF) problem, targeting accurate short-term load forecasting for multiple sub-regions within a large region. We identify three challenges for MRELF, including regional variation, contextual variation, and temporal variation. To address them, we propose TriForecaster, a new framework leveraging the Mixture of Experts (MoE) approach within a Multi-Task Learning (MTL) paradigm to overcome these challenges. TriForecaster features RegionMixer and Context-Time Specializer (CTSpecializer) layers, enabling dynamic cooperation and specialization of expert models across regional, contextual, and temporal dimensions. Based on evaluation on four real-world MRELF datasets with varied granularity, TriForecaster outperforms state-of-the-art models by achieving an average forecast error reduction of 22.4\%, thereby demonstrating its flexibility and broad applicability. In particular, the deployment of TriForecaster on the eForecaster platform in eastern China exemplifies its practical utility, effectively providing city-level, short-term load forecasts for 17 cities, supporting a population exceeding 110 million and daily electricity usage over 100 gigawatt-hours.
comment: 11 pages, 4 figures
☆ $μ$-Parametrization for Mixture of Experts
Recent years have seen a growing interest and adoption of LLMs, with $\mu$Transfer becoming a key technique for tuning hyperparameters in large-scale training. Meanwhile, Mixture-of-Experts (MoE) has emerged as a leading architecture in extremely large models. However, the intersection of these two advancements has remained unexplored. In this work, we derive a $\mu$-Parameterization ($\mu$P) for MoE, providing theoretical guarantees for feature learning across model widths in both the router and experts. We empirically validate our parameterization and further investigate how scaling the number of experts and granularity affects the optimal learning rate.
☆ A Machine Learning Approach to Predict Biological Age and its Longitudinal Drivers
Predicting an individual's aging trajectory is a central challenge in preventative medicine and bioinformatics. While machine learning models can predict chronological age from biomarkers, they often fail to capture the dynamic, longitudinal nature of the aging process. In this work, we developed and validated a machine learning pipeline to predict age using a longitudinal cohort with data from two distinct time periods (2019-2020 and 2021-2022). We demonstrate that a model using only static, cross-sectional biomarkers has limited predictive power when generalizing to future time points. However, by engineering novel features that explicitly capture the rate of change (slope) of key biomarkers over time, we significantly improved model performance. Our final LightGBM model, trained on the initial wave of data, successfully predicted age in the subsequent wave with high accuracy ($R^2 = 0.515$ for males, $R^2 = 0.498$ for females), significantly outperforming both traditional linear models and other tree-based ensembles. SHAP analysis of our successful model revealed that the engineered slope features were among the most important predictors, highlighting that an individual's health trajectory, not just their static health snapshot, is a key determinant of biological age. Our framework paves the way for clinical tools that dynamically track patient health trajectories, enabling early intervention and personalized prevention strategies for age-related diseases.
☆ HKT: A Biologically Inspired Framework for Modular Hereditary Knowledge Transfer in Neural Networks
A prevailing trend in neural network research suggests that model performance improves with increasing depth and capacity - often at the cost of integrability and efficiency. In this paper, we propose a strategy to optimize small, deployable models by enhancing their capabilities through structured knowledge inheritance. We introduce Hereditary Knowledge Transfer (HKT), a biologically inspired framework for modular and selective transfer of task-relevant features from a larger, pretrained parent network to a smaller child model. Unlike standard knowledge distillation, which enforces uniform imitation of teacher outputs, HKT draws inspiration from biological inheritance mechanisms - such as memory RNA transfer in planarians - to guide a multi-stage process of feature transfer. Neural network blocks are treated as functional carriers, and knowledge is transmitted through three biologically motivated components: Extraction, Transfer, and Mixture (ETM). A novel Genetic Attention (GA) mechanism governs the integration of inherited and native representations, ensuring both alignment and selectivity. We evaluate HKT across diverse vision tasks, including optical flow (Sintel, KITTI), image classification (CIFAR-10), and semantic segmentation (LiTS), demonstrating that it significantly improves child model performance while preserving its compactness. The results show that HKT consistently outperforms conventional distillation approaches, offering a general-purpose, interpretable, and scalable solution for deploying high-performance neural networks in resource-constrained environments.
☆ Generative Modeling with Multi-Instance Reward Learning for E-commerce Creative Optimization
In e-commerce advertising, selecting the most compelling combination of creative elements -- such as titles, images, and highlights -- is critical for capturing user attention and driving conversions. However, existing methods often evaluate creative components individually, failing to navigate the exponentially large search space of possible combinations. To address this challenge, we propose a novel framework named GenCO that integrates generative modeling with multi-instance reward learning. Our unified two-stage architecture first employs a generative model to efficiently produce a diverse set of creative combinations. This generative process is optimized with reinforcement learning, enabling the model to effectively explore and refine its selections. Next, to overcome the challenge of sparse user feedback, a multi-instance learning model attributes combination-level rewards, such as clicks, to the individual creative elements. This allows the reward model to provide a more accurate feedback signal, which in turn guides the generative model toward creating more effective combinations. Deployed on a leading e-commerce platform, our approach has significantly increased advertising revenue, demonstrating its practical value. Additionally, we are releasing a large-scale industrial dataset to facilitate further research in this important domain.
comment: 9 pages, 3 figures, conference paper
☆ Sample More to Think Less: Group Filtered Policy Optimization for Concise Reasoning
Large language models trained with reinforcement learning with verifiable rewards tend to trade accuracy for length--inflating response lengths to achieve gains in accuracy. While longer answers may be warranted for harder problems, many tokens are merely "filler": repetitive, verbose text that makes no real progress. We introduce GFPO (Group Filtered Policy Optimization), which curbs this length explosion by sampling larger groups per problem during training and filtering responses to train on based on two key metrics: (1) response length and (2) token efficiency: reward per token ratio. By sampling more at training time, we teach models to think less at inference time. On the Phi-4-reasoning model, GFPO cuts GRPO's length inflation by 46-71% across challenging STEM and coding benchmarks (AIME 24/25, GPQA, Omni-MATH, LiveCodeBench) while maintaining accuracy. Optimizing for reward per token further increases reductions in length inflation to 71-85%. We also propose Adaptive Difficulty GFPO, which dynamically allocates more training resources to harder problems based on real-time difficulty estimates, improving the balance between computational efficiency and accuracy especially on difficult questions. GFPO demonstrates that increased training-time compute directly translates to reduced test-time compute--a simple yet effective trade-off for efficient reasoning.
☆ Structured Kernel Regression VAE: A Computationally Efficient Surrogate for GP-VAEs in ICA
The interpretability of generative models is considered a key factor in demonstrating their effectiveness and controllability. The generated data are believed to be determined by latent variables that are not directly observable. Therefore, disentangling, decoupling, decomposing, causal inference, or performing Independent Component Analysis (ICA) in the latent variable space helps uncover the independent factors that influence the attributes or features affecting the generated outputs, thereby enhancing the interpretability of generative models. As a generative model, Variational Autoencoders (VAEs) combine with variational Bayesian inference algorithms. Using VAEs, the inverse process of ICA can be equivalently framed as a variational inference process. In some studies, Gaussian processes (GPs) have been introduced as priors for each dimension of latent variables in VAEs, structuring and separating each dimension from temporal or spatial perspectives, and encouraging different dimensions to control various attributes of the generated data. However, GPs impose a significant computational burden, resulting in substantial resource consumption when handling large datasets. Essentially, GPs model different temporal or spatial structures through various kernel functions. Structuring the priors of latent variables via kernel functions-so that different kernel functions model the correlations among sequence points within different latent dimensions-is at the core of achieving disentanglement in VAEs. The proposed Structured Kernel Regression VAE (SKR-VAE) leverages this core idea in a more efficient way, avoiding the costly kernel matrix inversion required in GPs. This research demonstrates that, while maintaining ICA performance, SKR-VAE achieves greater computational efficiency and significantly reduced computational burden compared to GP-VAE.
☆ Improving ARDS Diagnosis Through Context-Aware Concept Bottleneck Models
Large, publicly available clinical datasets have emerged as a novel resource for understanding disease heterogeneity and to explore personalization of therapy. These datasets are derived from data not originally collected for research purposes and, as a result, are often incomplete and lack critical labels. Many AI tools have been developed to retrospectively label these datasets, such as by performing disease classification; however, they often suffer from limited interpretability. Previous work has attempted to explain predictions using Concept Bottleneck Models (CBMs), which learn interpretable concepts that map to higher-level clinical ideas, facilitating human evaluation. However, these models often experience performance limitations when the concepts fail to adequately explain or characterize the task. We use the identification of Acute Respiratory Distress Syndrome (ARDS) as a challenging test case to demonstrate the value of incorporating contextual information from clinical notes to improve CBM performance. Our approach leverages a Large Language Model (LLM) to process clinical notes and generate additional concepts, resulting in a 10% performance gain over existing methods. Additionally, it facilitates the learning of more comprehensive concepts, thereby reducing the risk of information leakage and reliance on spurious shortcuts, thus improving the characterization of ARDS.
comment: 32 pages, 7 figures, accepted at Machine Learning for Healthcare Conference (MLHC) 2025
☆ Multimodal Sheaf-based Network for Glioblastoma Molecular Subtype Prediction
Glioblastoma is a highly invasive brain tumor with rapid progression rates. Recent studies have shown that glioblastoma molecular subtype classification serves as a significant biomarker for effective targeted therapy selection. However, this classification currently requires invasive tissue extraction for comprehensive histopathological analysis. Existing multimodal approaches combining MRI and histopathology images are limited and lack robust mechanisms for preserving shared structural information across modalities. In particular, graph-based models often fail to retain discriminative features within heterogeneous graphs, and structural reconstruction mechanisms for handling missing or incomplete modality data are largely underexplored. To address these limitations, we propose a novel sheaf-based framework for structure-aware and consistent fusion of MRI and histopathology data. Our model outperforms baseline methods and demonstrates robustness in incomplete or missing data scenarios, contributing to the development of virtual biopsy tools for rapid diagnostics. Our source code is available at https://github.com/basiralab/MMSN/.
☆ NEURAL: Attention-Guided Pruning for Unified Multimodal Resource-Constrained Clinical Evaluation
The rapid growth of multimodal medical imaging data presents significant storage and transmission challenges, particularly in resource-constrained clinical settings. We propose NEURAL, a novel framework that addresses this by using semantics-guided data compression. Our approach repurposes cross-attention scores between the image and its radiological report from a fine-tuned generative vision-language model to structurally prune chest X-rays, preserving only diagnostically critical regions. This process transforms the image into a highly compressed, graph representation. This unified graph-based representation fuses the pruned visual graph with a knowledge graph derived from the clinical report, creating a universal data structure that simplifies downstream modeling. Validated on the MIMIC-CXR and CheXpert Plus dataset for pneumonia detection, NEURAL achieves a 93.4-97.7\% reduction in image data size while maintaining a high diagnostic performance of 0.88-0.95 AUC, outperforming other baseline models that use uncompressed data. By creating a persistent, task-agnostic data asset, NEURAL resolves the trade-off between data size and clinical utility, enabling efficient workflows and teleradiology without sacrificing performance. Our NEURAL code is available at https://github.com/basiralab/NEURAL.
GraphTreeGen: Subtree-Centric Approach to Efficient and Supervised Graph Generation
Brain connectomes, representing neural connectivity as graphs, are crucial for understanding brain organization but costly and time-consuming to acquire, motivating generative approaches. Recent advances in graph generative modeling offer a data-driven alternative, enabling synthetic connectome generation and reducing dependence on large neuroimaging datasets. However, current models face key limitations: (i) compressing the whole graph into a single latent code (e.g., VGAEs) blurs fine-grained local motifs; (ii) relying on rich node attributes rarely available in connectomes reduces reconstruction quality; (iii) edge-centric models emphasize topology but overlook accurate edge-weight prediction, harming quantitative fidelity; and (iv) computationally expensive designs (e.g., edge-conditioned convolutions) impose high memory demands, limiting scalability. We propose GraphTreeGen (GTG), a subtree-centric generative framework for efficient, accurate connectome synthesis. GTG decomposes each connectome into entropy-guided k-hop trees capturing informative local structure, encoded by a shared GCN. A bipartite message-passing layer fuses subtree embeddings with global node features, while a dual-branch decoder jointly predicts edge existence and weights to reconstruct the adjacency matrix. GTG outperforms state-of-the-art baselines in self-supervised tasks and remains competitive in supervised settings, delivering higher structural fidelity and more precise weights with far less memory. Its modular design enables extensions to connectome super-resolution and cross-modality synthesis. Code: https://github.com/basiralab/GTG/
☆ Combating Noisy Labels via Dynamic Connection Masking
Noisy labels are inevitable in real-world scenarios. Due to the strong capacity of deep neural networks to memorize corrupted labels, these noisy labels can cause significant performance degradation. Existing research on mitigating the negative effects of noisy labels has mainly focused on robust loss functions and sample selection, with comparatively limited exploration of regularization in model architecture. Inspired by the sparsity regularization used in Kolmogorov-Arnold Networks (KANs), we propose a Dynamic Connection Masking (DCM) mechanism for both Multi-Layer Perceptron Networks (MLPs) and KANs to enhance the robustness of classifiers against noisy labels. The mechanism can adaptively mask less important edges during training by evaluating their information-carrying capacity. Through theoretical analysis, we demonstrate its efficiency in reducing gradient error. Our approach can be seamlessly integrated into various noise-robust training methods to build more robust deep networks, including robust loss functions, sample selection strategies, and regularization techniques. Extensive experiments on both synthetic and real-world benchmarks demonstrate that our method consistently outperforms state-of-the-art (SOTA) approaches. Furthermore, we are also the first to investigate KANs as classifiers against noisy labels, revealing their superior noise robustness over MLPs in real-world noisy scenarios. Our code will soon be publicly available.
☆ Temporal Anchoring in Deepening Embedding Spaces: Event-Indexed Projections, Drift, Convergence, and an Internal Computational Architecture
We develop an operator-theoretic framework for temporal anchoring in embedding spaces, modeled as drift maps interleaved with event-indexed blocks culminating in affine projections. We provide complete proofs for a variable-block contraction lemma (products of Lipschitz factors), a drift--projection convergence theorem with explicit uniform-gap envelopes, and ontological convergence under nested affine anchors with a robustness variant. We formalize an internal Manuscript Computer (MC) whose computations are defined purely by these operators and prove a rigorous finite-run equivalence theorem (with perturbation bounds). For attention layers, we give a self-contained proof that softmax is $1/2$-Lipschitz in $\ell_2$ and derive sufficient layer-contraction conditions (orthogonal/non-orthogonal heads). All floats are placed exactly where written; the manuscript uses only in-paper pseudocode and appendix figures.
comment: 16 pages, 2 figures, 2 tables
Global Convergence Analysis of Vanilla Gradient Descent for Asymmetric Matrix Completion
This paper investigates the asymmetric low-rank matrix completion problem, which can be formulated as an unconstrained non-convex optimization problem with a nonlinear least-squares objective function, and is solved via gradient descent methods. Previous gradient descent approaches typically incorporate regularization terms into the objective function to guarantee convergence. However, numerical experiments and theoretical analysis of the gradient flow both demonstrate that the elimination of regularization terms in gradient descent algorithms does not adversely affect convergence performance. By introducing the leave-one-out technique, we inductively prove that the vanilla gradient descent with spectral initialization achieves a linear convergence rate with high probability. Besides, we demonstrate that the balancing regularization term exhibits a small norm during iterations, which reveals the implicit regularization property of gradient descent. Empirical results show that our algorithm has a lower computational cost while maintaining comparable completion performance compared to other gradient descent algorithms.
☆ DeputyDev -- AI Powered Developer Assistant: Breaking the Code Review Logjam through Contextual AI to Boost Developer Productivity
This study investigates the implementation and efficacy of DeputyDev, an AI-powered code review assistant developed to address inefficiencies in the software development process. The process of code review is highly inefficient for several reasons, such as it being a time-consuming process, inconsistent feedback, and review quality not being at par most of the time. Using our telemetry data, we observed that at TATA 1mg, pull request (PR) processing exhibits significant inefficiencies, with average pick-up and review times of 73 and 82 hours, respectively, resulting in a 6.2 day closure cycle. The review cycle was marked by prolonged iterative communication between the reviewing and submitting parties. Research from the University of California, Irvine indicates that interruptions can lead to an average of 23 minutes of lost focus, critically affecting code quality and timely delivery. To address these challenges, we developed DeputyDev's PR review capabilities by providing automated, contextual code reviews. We conducted a rigorous double-controlled A/B experiment involving over 200 engineers to evaluate DeputyDev's impact on review times. The results demonstrated a statistically significant reduction in both average per PR (23.09%) and average per-line-of-code (40.13%) review durations. After implementing safeguards to exclude outliers, DeputyDev has been effectively rolled out across the entire organisation. Additionally, it has been made available to external companies as a Software-as-a-Service (SaaS) solution, currently supporting the daily work of numerous engineering professionals. This study explores the implementation and effectiveness of AI-assisted code reviews in improving development workflow timelines and code.
comment: 12 pages, 5 figures, 6 pages of supplementary materials
☆ Social-Sensor Identity Cloning Detection Using Weakly Supervised Deep Forest and Cryptographic Authentication
Recent years have witnessed a rising trend in social-sensor cloud identity cloning incidents. However, existing approaches suffer from unsatisfactory performance, a lack of solutions for detecting duplicated accounts, and a lack of large-scale evaluations on real-world datasets. We introduce a novel method for detecting identity cloning in social-sensor cloud service providers. Our proposed technique consists of two primary components: 1) a similar identity detection method and 2) a cryptography-based authentication protocol. Initially, we developed a weakly supervised deep forest model to identify similar identities using non-privacy-sensitive user profile features provided by the service. Subsequently, we designed a cryptography-based authentication protocol to verify whether similar identities were generated by the same provider. Our extensive experiments on a large real-world dataset demonstrate the feasibility and superior performance of our technique compared to current state-of-the-art identity clone detection methods.
comment: 23 pages
☆ Anomaly Detection for IoT Global Connectivity
Internet of Things (IoT) application providers rely on Mobile Network Operators (MNOs) and roaming infrastructures to deliver their services globally. In this complex ecosystem, where the end-to-end communication path traverses multiple entities, it has become increasingly challenging to guarantee communication availability and reliability. Further, most platform operators use a reactive approach to communication issues, responding to user complaints only after incidents have become severe, compromising service quality. This paper presents our experience in the design and deployment of ANCHOR -- an unsupervised anomaly detection solution for the IoT connectivity service of a large global roaming platform. ANCHOR assists engineers by filtering vast amounts of data to identify potential problematic clients (i.e., those with connectivity issues affecting several of their IoT devices), enabling proactive issue resolution before the service is critically impacted. We first describe the IoT service, infrastructure, and network visibility of the IoT connectivity provider we operate. Second, we describe the main challenges and operational requirements for designing an unsupervised anomaly detection solution on this platform. Following these guidelines, we propose different statistical rules, and machine- and deep-learning models for IoT verticals anomaly detection based on passive signaling traffic. We describe the steps we followed working with the operational teams on the design and evaluation of our solution on the operational platform, and report an evaluation on operational IoT customers.
☆ Thermal Tracks: A Gaussian process-based framework for universal melting curve analysis enabling unconstrained hit identification in thermal proteome profiling experiments
Thermal Tracks is a Python-based statistical framework for analyzing protein thermal stability data that overcomes key limitations of existing thermal proteome profiling (TPP) work-flows. Unlike standard approaches that assume sigmoidal melting curves and are constrained by empirical null distributions (limiting significant hits to approximately 5 % of data), Thermal Tracks uses Gaussian Process (GP) models with squared-exponential kernels to flexibly model any melting curve shape while generating unbiased null distributions through kernel priors. This framework is particularly valuable for analyzing proteome-wide perturbations that significantly alter protein thermal stability, such as pathway inhibitions, genetic modifications, or environmental stresses, where conventional TPP methods may miss biologically relevant changes due to their statistical constraints. Furthermore, Thermal Tracks excels at analyzing proteins with un-conventional melting profiles, including phase-separating proteins and membrane proteins, which often exhibit complex, non-sigmoidal thermal stability behaviors. Thermal Tracks is freely available from GitHub and is implemented in Python, providing an accessible and flexible tool for proteome-wide thermal profiling studies.
comment: 5 pages, 2 figures, short communication
☆ Improving Diversity in Language Models: When Temperature Fails, Change the Loss ICML2025
Increasing diversity in language models is a challenging yet essential objective. A common approach is to raise the decoding temperature. In this work, we investigate this approach through a simplistic yet common case to provide insights into why decreasing temperature can improve quality (Precision), while increasing it often fails to boost coverage (Recall). Our analysis reveals that for a model to be effectively tunable through temperature adjustments, it must be trained toward coverage. To address this, we propose rethinking loss functions in language models by leveraging the Precision-Recall framework. Our results demonstrate that this approach achieves a substantially better trade-off between Precision and Recall than merely combining negative log-likelihood training with temperature scaling. These findings offer a pathway toward more versatile and robust language modeling techniques.
comment: Forty-Second International Conference on Machine Learning, ICML2025
☆ Personalized Product Search Ranking: A Multi-Task Learning Approach with Tabular and Non-Tabular Data PRICAI-2025
In this paper, we present a novel model architecture for optimizing personalized product search ranking using a multi-task learning (MTL) framework. Our approach uniquely integrates tabular and non-tabular data, leveraging a pre-trained TinyBERT model for semantic embeddings and a novel sampling technique to capture diverse customer behaviors. We evaluate our model against several baselines, including XGBoost, TabNet, FT-Transformer, DCN-V2, and MMoE, focusing on their ability to handle mixed data types and optimize personalized ranking. Additionally, we propose a scalable relevance labeling mechanism based on click-through rates, click positions, and semantic similarity, offering an alternative to traditional human-annotated labels. Experimental results show that combining non-tabular data with advanced embedding techniques in multi-task learning paradigm significantly enhances model performance. Ablation studies further underscore the benefits of incorporating relevance labels, fine-tuning TinyBERT layers, and TinyBERT query-product embedding interactions. These results demonstrate the effectiveness of our approach in achieving improved personalized product search ranking.
comment: 17 pages, 2 figures, The Pacific Rim International Conference on Artificial Intelligence (PRICAI-2025) Conference
TimeMKG: Knowledge-Infused Causal Reasoning for Multivariate Time Series Modeling
Multivariate time series data typically comprises two distinct modalities: variable semantics and sampled numerical observations. Traditional time series models treat variables as anonymous statistical signals, overlooking the rich semantic information embedded in variable names and data descriptions. However, these textual descriptors often encode critical domain knowledge that is essential for robust and interpretable modeling. Here we present TimeMKG, a multimodal causal reasoning framework that elevates time series modeling from low-level signal processing to knowledge informed inference. TimeMKG employs large language models to interpret variable semantics and constructs structured Multivariate Knowledge Graphs that capture inter-variable relationships. A dual-modality encoder separately models the semantic prompts, generated from knowledge graph triplets, and the statistical patterns from historical time series. Cross-modality attention aligns and fuses these representations at the variable level, injecting causal priors into downstream tasks such as forecasting and classification, providing explicit and interpretable priors to guide model reasoning. The experiment in diverse datasets demonstrates that incorporating variable-level knowledge significantly improves both predictive performance and generalization.
☆ Physics- and geometry-aware spatio-spectral graph neural operator for time-independent and time-dependent PDEs
Solving partial differential equations (PDEs) efficiently and accurately remains a cornerstone challenge in science and engineering, especially for problems involving complex geometries and limited labeled data. We introduce a Physics- and Geometry- Aware Spatio-Spectral Graph Neural Operator ($\pi$G-Sp$^2$GNO) for learning the solution operators of time-independent and time-dependent PDEs. The proposed approach first improves upon the recently developed Sp$^2$GNO by enabling geometry awareness and subsequently exploits the governing physics to learn the underlying solution operator in a simulation-free setup. While the spatio-spectral structure present in the proposed architecture allows multiscale learning, two separate strategies for enabling geometry awareness is introduced in this paper. For time dependent problems, we also introduce a novel hybrid physics informed loss function that combines higher-order time-marching scheme with upscaled theory inspired stochastic projection scheme. This allows accurate integration of the physics-information into the loss function. The performance of the proposed approach is illustrated on number of benchmark examples involving regular and complex domains, variation in geometry during inference, and time-independent and time-dependent problems. The results obtained illustrate the efficacy of the proposed approach as compared to the state-of-the-art physics-informed neural operator algorithms in the literature.
☆ Goal Discovery with Causal Capacity for Efficient Reinforcement Learning
Causal inference is crucial for humans to explore the world, which can be modeled to enable an agent to efficiently explore the environment in reinforcement learning. Existing research indicates that establishing the causality between action and state transition will enhance an agent to reason how a policy affects its future trajectory, thereby promoting directed exploration. However, it is challenging to measure the causality due to its intractability in the vast state-action space of complex scenarios. In this paper, we propose a novel Goal Discovery with Causal Capacity (GDCC) framework for efficient environment exploration. Specifically, we first derive a measurement of causality in state space, \emph{i.e.,} causal capacity, which represents the highest influence of an agent's behavior on future trajectories. After that, we present a Monte Carlo based method to identify critical points in discrete state space and further optimize this method for continuous high-dimensional environments. Those critical points are used to uncover where the agent makes important decisions in the environment, which are then regarded as our subgoals to guide the agent to make exploration more purposefully and efficiently. Empirical results from multi-objective tasks demonstrate that states with high causal capacity align with our expected subgoals, and our GDCC achieves significant success rate improvements compared to baselines.
☆ Scalable h-adaptive probabilistic solver for time-independent and time-dependent systems
Solving partial differential equations (PDEs) within the framework of probabilistic numerics offers a principled approach to quantifying epistemic uncertainty arising from discretization. By leveraging Gaussian process regression and imposing the governing PDE as a constraint at a finite set of collocation points, probabilistic numerics delivers mesh-free solutions at arbitrary locations. However, the high computational cost, which scales cubically with the number of collocation points, remains a critical bottleneck, particularly for large-scale or high-dimensional problems. We propose a scalable enhancement to this paradigm through two key innovations. First, we develop a stochastic dual descent algorithm that reduces the per-iteration complexity from cubic to linear in the number of collocation points, enabling tractable inference. Second, we exploit a clustering-based active learning strategy that adaptively selects collocation points to maximize information gain while minimizing computational expense. Together, these contributions result in an $h$-adaptive probabilistic solver that can scale to a large number of collocation points. We demonstrate the efficacy of the proposed solver on benchmark PDEs, including two- and three-dimensional steady-state elliptic problems, as well as a time-dependent parabolic PDE formulated in a space-time setting.
☆ Interpretable Robot Control via Structured Behavior Trees and Large Language Models
As intelligent robots become more integrated into human environments, there is a growing need for intuitive and reliable Human-Robot Interaction (HRI) interfaces that are adaptable and more natural to interact with. Traditional robot control methods often require users to adapt to interfaces or memorize predefined commands, limiting usability in dynamic, unstructured environments. This paper presents a novel framework that bridges natural language understanding and robotic execution by combining Large Language Models (LLMs) with Behavior Trees. This integration enables robots to interpret natural language instructions given by users and translate them into executable actions by activating domain-specific plugins. The system supports scalable and modular integration, with a primary focus on perception-based functionalities, such as person tracking and hand gesture recognition. To evaluate the system, a series of real-world experiments was conducted across diverse environments. Experimental results demonstrate that the proposed approach is practical in real-world scenarios, with an average cognition-to-execution accuracy of approximately 94%, making a significant contribution to HRI systems and robots. The complete source code of the framework is publicly available at https://github.com/snt-arg/robot_suite.
comment: 15 pages, 5 figures, 3 tables
☆ A Lightweight Learned Cardinality Estimation Model
Cardinality estimation is a fundamental task in database management systems, aiming to predict query results accurately without executing the queries. However, existing techniques either achieve low estimation accuracy or incur high inference latency. Simultaneously achieving high speed and accuracy becomes critical for the cardinality estimation problem. In this paper, we propose a novel data-driven approach called CoDe (Covering with Decompositions) to address this problem. CoDe employs the concept of covering design, which divides the table into multiple smaller, overlapping segments. For each segment, CoDe utilizes tensor decomposition to accurately model its data distribution. Moreover, CoDe introduces innovative algorithms to select the best-fitting distributions for each query, combining them to estimate the final result. By employing multiple models to approximate distributions, CoDe excels in effectively modeling discrete distributions and ensuring computational efficiency. Notably, experimental results show that our method represents a significant advancement in cardinality estimation, achieving state-of-the-art levels of both estimation accuracy and inference efficiency. Across various datasets, CoDe achieves absolute accuracy in estimating more than half of the queries.
comment: IEEE Transactions on Knowledge and Data Engineering (TKDE), 2025
☆ Online Prediction with Limited Selectivity
Selective prediction [Dru13, QV19] models the scenario where a forecaster freely decides on the prediction window that their forecast spans. Many data statistics can be predicted to a non-trivial error rate without any distributional assumptions or expert advice, yet these results rely on that the forecaster may predict at any time. We introduce a model of Prediction with Limited Selectivity (PLS) where the forecaster can start the prediction only on a subset of the time horizon. We study the optimal prediction error both on an instance-by-instance basis and via an average-case analysis. We introduce a complexity measure that gives instance-dependent bounds on the optimal error. For a randomly-generated PLS instance, these bounds match with high probability.
☆ HierMoE: Accelerating MoE Training with Hierarchical Token Deduplication and Expert Swap
The sparsely activated mixture-of-experts (MoE) transformer has become a common architecture for large language models (LLMs) due to its sparsity, which requires fewer computational demands while easily scaling the model size. In MoE models, each MoE layer requires to dynamically choose tokens to activate particular experts for computation while the activated experts may not be located in the same device or GPU as the token. However, this leads to substantial communication and load imbalances across all GPUs, which obstructs the scalability of distributed systems within a GPU cluster. To this end, we introduce HierMoE to accelerate the training of MoE models by two topology-aware techniques: 1) token deduplication to reduce the communication traffic, and 2) expert swap to balance the workloads among all GPUs. To enable the above two proposed approaches to be more general, we build theoretical models aimed at achieving the best token duplication and expert swap strategy under different model configurations and hardware environments. We implement our prototype HierMoE system atop Megatron-LM and conduct experiments on a 32-GPU cluster with DeepSeek-V3 and Qwen3-30B-A3B models. Experimental results show that our HierMoE achieves $1.55\times$ to $3.32\times$ faster communication and delivers $1.18\times$ to $1.27\times$ faster end-to-end training compared to state-of-the-art MoE training systems, Tutel-2DH, SmartMoE, and Megatron-LM.
☆ Edge General Intelligence Through World Models and Agentic AI: Fundamentals, Solutions, and Challenges
Edge General Intelligence (EGI) represents a transformative evolution of edge computing, where distributed agents possess the capability to perceive, reason, and act autonomously across diverse, dynamic environments. Central to this vision are world models, which act as proactive internal simulators that not only predict but also actively imagine future trajectories, reason under uncertainty, and plan multi-step actions with foresight. This proactive nature allows agents to anticipate potential outcomes and optimize decisions ahead of real-world interactions. While prior works in robotics and gaming have showcased the potential of world models, their integration into the wireless edge for EGI remains underexplored. This survey bridges this gap by offering a comprehensive analysis of how world models can empower agentic artificial intelligence (AI) systems at the edge. We first examine the architectural foundations of world models, including latent representation learning, dynamics modeling, and imagination-based planning. Building on these core capabilities, we illustrate their proactive applications across EGI scenarios such as vehicular networks, unmanned aerial vehicle (UAV) networks, the Internet of Things (IoT) systems, and network functions virtualization, thereby highlighting how they can enhance optimization under latency, energy, and privacy constraints. We then explore their synergy with foundation models and digital twins, positioning world models as the cognitive backbone of EGI. Finally, we highlight open challenges, such as safety guarantees, efficient training, and constrained deployment, and outline future research directions. This survey provides both a conceptual foundation and a practical roadmap for realizing the next generation of intelligent, autonomous edge systems.
comment: 21 pages. 9 figures
☆ SYNAPSE-G: Bridging Large Language Models and Graph Learning for Rare Event Classification
Scarcity of labeled data, especially for rare events, hinders training effective machine learning models. This paper proposes SYNAPSE-G (Synthetic Augmentation for Positive Sampling via Expansion on Graphs), a novel pipeline leveraging Large Language Models (LLMs) to generate synthetic training data for rare event classification, addressing the cold-start problem. This synthetic data serve as seeds for semi-supervised label propagation on a similarity graph constructed between the seeds and a large unlabeled dataset. This identifies candidate positive examples, subsequently labeled by an oracle (human or LLM). The expanded dataset then trains/fine-tunes a classifier. We theoretically analyze how the quality (validity and diversity) of the synthetic data impacts the precision and recall of our method. Experiments on the imbalanced SST2 and MHS datasets demonstrate SYNAPSE-G's effectiveness in finding positive labels, outperforming baselines including nearest neighbor search.
☆ Emergence of Hierarchies in Multi-Agent Self-Organizing Systems Pursuing a Joint Objective
Multi-agent self-organizing systems (MASOS) exhibit key characteristics including scalability, adaptability, flexibility, and robustness, which have contributed to their extensive application across various fields. However, the self-organizing nature of MASOS also introduces elements of unpredictability in their emergent behaviors. This paper focuses on the emergence of dependency hierarchies during task execution, aiming to understand how such hierarchies arise from agents' collective pursuit of the joint objective, how they evolve dynamically, and what factors govern their development. To investigate this phenomenon, multi-agent reinforcement learning (MARL) is employed to train MASOS for a collaborative box-pushing task. By calculating the gradients of each agent's actions in relation to the states of other agents, the inter-agent dependencies are quantified, and the emergence of hierarchies is analyzed through the aggregation of these dependencies. Our results demonstrate that hierarchies emerge dynamically as agents work towards a joint objective, with these hierarchies evolving in response to changing task requirements. Notably, these dependency hierarchies emerge organically in response to the shared objective, rather than being a consequence of pre-configured rules or parameters that can be fine-tuned to achieve specific results. Furthermore, the emergence of hierarchies is influenced by the task environment and network initialization conditions. Additionally, hierarchies in MASOS emerge from the dynamic interplay between agents' "Talent" and "Effort" within the "Environment." "Talent" determines an agent's initial influence on collective decision-making, while continuous "Effort" within the "Environment" enables agents to shift their roles and positions within the system.
comment: 34 pages,17 figures
☆ Decentralized Rank Scheduling for Energy-Constrained Multi-Task Federated Fine-Tuning in Edge-Assisted IoV Networks
Federated fine-tuning has emerged as a promising approach for adapting foundation models (FMs) to diverse downstream tasks in edge environments. In Internet of Vehicles (IoV) systems, enabling efficient and low-latency multi-task adaptation is particularly challenging due to client mobility, heterogeneous resources, and intermittent connectivity. This paper proposes a hierarchical federated fine-tuning framework that coordinates roadside units (RSUs) and vehicles to support resource-aware and mobility-resilient learning across dynamic IoV scenarios. Leveraging Low-Rank Adaptation (LoRA), we introduce a decentralized, energy-aware rank adaptation mechanism formulated as a constrained multi-armed bandit problem. A novel UCB-DUAL algorithm is developed to enable adaptive exploration under per-task energy budgets, achieving provable sublinear regret. To evaluate our method, we construct a large-scale IoV simulator based on real-world trajectories, capturing dynamic participation, RSU handoffs, and communication variability. Extensive experiments show that our approach achieves the best accuracy-efficiency trade-off among all baselines, reducing latency by over 24\% and improving average accuracy by more than 2.5\%.
☆ DeepWKB: Learning WKB Expansions of Invariant Distributions for Stochastic Systems
This paper introduces a novel deep learning method, called DeepWKB, for estimating the invariant distribution of randomly perturbed systems via its Wentzel-Kramers-Brillouin (WKB) approximation $u_\epsilon(x) = Q(\epsilon)^{-1} Z_\epsilon(x) \exp\{-V(x)/\epsilon\}$, where $V$ is known as the quasi-potential, $\epsilon$ denotes the noise strength, and $Q(\epsilon)$ is the normalization factor. By utilizing both Monte Carlo data and the partial differential equations satisfied by $V$ and $Z_\epsilon$, the DeepWKB method computes $V$ and $Z_\epsilon$ separately. This enables an approximation of the invariant distribution in the singular regime where $\epsilon$ is sufficiently small, which remains a significant challenge for most existing methods. Moreover, the DeepWKB method is applicable to higher-dimensional stochastic systems whose deterministic counterparts admit non-trivial attractors. In particular, it provides a scalable and flexible alternative for computing the quasi-potential, which plays a key role in the analysis of rare events, metastability, and the stochastic stability of complex systems.
comment: 29 pages, 7 figures
☆ Time-Aware and Transition-Semantic Graph Neural Networks for Interpretable Predictive Business Process Monitoring
Predictive Business Process Monitoring (PBPM) aims to forecast future events in ongoing cases based on historical event logs. While Graph Neural Networks (GNNs) are well suited to capture structural dependencies in process data, existing GNN-based PBPM models remain underdeveloped. Most rely either on short prefix subgraphs or global architectures that overlook temporal relevance and transition semantics. We propose a unified, interpretable GNN framework that advances the state of the art along three key axes. First, we compare prefix-based Graph Convolutional Networks(GCNs) and full trace Graph Attention Networks(GATs) to quantify the performance gap between localized and global modeling. Second, we introduce a novel time decay attention mechanism that constructs dynamic, prediction-centered windows, emphasizing temporally relevant history and suppressing noise. Third, we embed transition type semantics into edge features to enable fine grained reasoning over structurally ambiguous traces. Our architecture includes multilevel interpretability modules, offering diverse visualizations of attention behavior. Evaluated on five benchmarks, the proposed models achieve competitive Top-k accuracy and DL scores without per-dataset tuning. By addressing architectural, temporal, and semantic gaps, this work presents a robust, generalizable, and explainable solution for next event prediction in PBPM.
comment: 32 pages
☆ Generation of Indian Sign Language Letters, Numbers, and Words
Sign language, which contains hand movements, facial expressions and bodily gestures, is a significant medium for communicating with hard-of-hearing people. A well-trained sign language community communicates easily, but those who don't know sign language face significant challenges. Recognition and generation are basic communication methods between hearing and hard-of-hearing individuals. Despite progress in recognition, sign language generation still needs to be explored. The Progressive Growing of Generative Adversarial Network (ProGAN) excels at producing high-quality images, while the Self-Attention Generative Adversarial Network (SAGAN) generates feature-rich images at medium resolutions. Balancing resolution and detail is crucial for sign language image generation. We are developing a Generative Adversarial Network (GAN) variant that combines both models to generate feature-rich, high-resolution, and class-conditional sign language images. Our modified Attention-based model generates high-quality images of Indian Sign Language letters, numbers, and words, outperforming the traditional ProGAN in Inception Score (IS) and Fr\'echet Inception Distance (FID), with improvements of 3.2 and 30.12, respectively. Additionally, we are publishing a large dataset incorporating high-quality images of Indian Sign Language alphabets, numbers, and 129 words.
comment: 6 pages, 5 figures, 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS)
☆ Enhancing Memory Recall in LLMs with Gauss-Tin: A Hybrid Instructional and Gaussian Replay Approach
Despite the significant advancements in Large Language Models (LLMs), catastrophic forgetting remains a substantial challenge, where models lose previously acquired knowledge upon learning new information. Continual learning (CL) strategies have emerged as a potential solution to this problem, with replay-based techniques demonstrating superior performance in preserving learned knowledge. In this context, we introduce Gauss-Tin, a novel approach that integrates the replay strategy with a Gaussian mixture model to enhance the quality of sample selection during training, supplemented by instructional guidance to facilitate the generation of past learning. This method aims to improve LLMs' retention capabilities by strategically reinforcing important past learnings while accommodating new information. Our experimental results indicate a promising 6\% improvement in retention metrics over traditional methods, suggesting that Gauss-Tin is an effective strategy for mitigating catastrophic forgetting in LLMs. This study underscores the potential of hybrid models in enhancing the robustness and adaptability of LLMs in dynamic learning environments.
☆ Causal Graph Profiling via Structural Divergence for Robust Anomaly Detection in Cyber-Physical Systems KDD
With the growing complexity of cyberattacks targeting critical infrastructures such as water treatment networks, there is a pressing need for robust anomaly detection strategies that account for both system vulnerabilities and evolving attack patterns. Traditional methods -- statistical, density-based, and graph-based models struggle with distribution shifts and class imbalance in multivariate time series, often leading to high false positive rates. To address these challenges, we propose CGAD, a Causal Graph-based Anomaly Detection framework designed for reliable cyberattack detection in public infrastructure systems. CGAD follows a two-phase supervised framework -- causal profiling and anomaly scoring. First, it learns causal invariant graph structures representing the system's behavior under "Normal" and "Attack" states using Dynamic Bayesian Networks. Second, it employs structural divergence to detect anomalies via causal graph comparison by evaluating topological deviations in causal graphs over time. By leveraging causal structures, CGAD achieves superior adaptability and accuracy in non-stationary and imbalanced time series environments compared to conventional machine learning approaches. By uncovering causal structures beneath volatile sensor data, our framework not only detects cyberattacks with markedly higher precision but also redefines robustness in anomaly detection, proving resilience where traditional models falter under imbalance and drift. Our framework achieves substantial gains in F1 and ROC-AUC scores over best-performing baselines across four industrial datasets, demonstrating robust detection of delayed and structurally complex anomalies.
comment: 7 Pages, 5 figures, Submission for ACM TKDD
☆ MiCo: End-to-End Mixed Precision Neural Network Co-Exploration Framework for Edge AI
Quantized Neural Networks (QNN) with extremely low-bitwidth data have proven promising in efficient storage and computation on edge devices. To further reduce the accuracy drop while increasing speedup, layer-wise mixed-precision quantization (MPQ) becomes a popular solution. However, existing algorithms for exploring MPQ schemes are limited in flexibility and efficiency. Comprehending the complex impacts of different MPQ schemes on post-training quantization and quantization-aware training results is a challenge for conventional methods. Furthermore, an end-to-end framework for the optimization and deployment of MPQ models is missing in existing work. In this paper, we propose the MiCo framework, a holistic MPQ exploration and deployment framework for edge AI applications. The framework adopts a novel optimization algorithm to search for optimal quantization schemes with the highest accuracies while meeting latency constraints. Hardware-aware latency models are built for different hardware targets to enable fast explorations. After the exploration, the framework enables direct deployment from PyTorch MPQ models to bare-metal C codes, leading to end-to-end speedup with minimal accuracy drops.
comment: 9 pages, 6 figures, accepted by ICCAD'25
☆ CWFBind: Geometry-Awareness for Fast and Accurate Protein-Ligand Docking
Accurately predicting the binding conformation of small-molecule ligands to protein targets is a critical step in rational drug design. Although recent deep learning-based docking surpasses traditional methods in speed and accuracy, many approaches rely on graph representations and language model-inspired encoders while neglecting critical geometric information, resulting in inaccurate pocket localization and unrealistic binding conformations. In this study, we introduce CWFBind, a weighted, fast, and accurate docking method based on local curvature features. Specifically, we integrate local curvature descriptors during the feature extraction phase to enrich the geometric representation of both proteins and ligands, complementing existing chemical, sequence, and structural features. Furthermore, we embed degree-aware weighting mechanisms into the message passing process, enhancing the model's ability to capture spatial structural distinctions and interaction strengths. To address the class imbalance challenge in pocket prediction, CWFBind employs a ligand-aware dynamic radius strategy alongside an enhanced loss function, facilitating more precise identification of binding regions and key residues. Comprehensive experimental evaluations demonstrate that CWFBind achieves competitive performance across multiple docking benchmarks, offering a balanced trade-off between accuracy and efficiency.
☆ Large-Small Model Collaborative Framework for Federated Continual Learning
Continual learning (CL) for Foundation Models (FMs) is an essential yet underexplored challenge, especially in Federated Continual Learning (FCL), where each client learns from a private, evolving task stream under strict data and communication constraints. Despite their powerful generalization abilities, FMs often exhibit suboptimal performance on local downstream tasks, as they are unable to utilize private local data. Furthermore, enabling FMs to learn new tasks without forgetting prior knowledge is inherently a challenging problem, primarily due to their immense parameter count and high model complexity. In contrast, small models can be trained locally under resource-constrained conditions and benefit from more mature CL techniques. To bridge the gap between small models and FMs, we propose the first collaborative framework in FCL, where lightweight local models act as a dynamic bridge, continually adapting to new tasks while enhancing the utility of the large model. Two novel components are also included: Small Model Continual Fine-tuning is for preventing small models from temporal forgetting; One-by-One Distillation performs personalized fusion of heterogeneous local knowledge on the server. Experimental results demonstrate its superior performance, even when clients utilize heterogeneous small models.
☆ NeuronTune: Fine-Grained Neuron Modulation for Balanced Safety-Utility Alignment in LLMs
Ensuring robust safety alignment while preserving utility is critical for the reliable deployment of Large Language Models (LLMs). However, current techniques fundamentally suffer from intertwined deficiencies: insufficient robustness against malicious attacks, frequent refusal of benign queries, degradation in generated text quality and general task performance--the former two reflecting deficits in robust safety and the latter constituting utility impairment. We trace these limitations to the coarse-grained layer-wise interventions in existing methods. To resolve this, we propose NeuronTune, a fine-grained framework that dynamically modulates sparse neurons to achieve simultaneous safety-utility optimization. Our approach first identifies safety-critical and utility-preserving neurons across all layers via attribution, then employs meta-learning to adaptively amplify safety-neuron activations and suppress utility-neuron activations. Crucially, NeuronTune enables tunable adjustment of intervention scope via neuron-count thresholds, supporting flexible adaptation to security-critical or utility-priority scenarios. Extensive experimental results demonstrate that our method significantly outperforms existing state-of-the-art technologies, achieving superior model safety while maintaining excellent utility.
☆ EGGS-PTP: An Expander-Graph Guided Structured Post-training Pruning Method for Large Language Models
As Large Language Models (LLMs) become more widely adopted and scale up in size, the computational and memory challenges involved in deploying these massive foundation models have grown increasingly severe. This underscores the urgent need to develop more efficient model variants. Faced with this challenge, the present work introduces EGGS-PTP: an Expander-Graph Guided Structured Post-training Pruning method. The proposed approach leverages graph theory to guide the design of N:M structured pruning, effectively reducing model size and computational demands. By incorporating concepts from expander graphs, EGGS-PTP ensures information flow within the pruned network, preserving essential model functionality. Extensive numerical experiments demonstrate that EGGS-PTP not only achieves significant acceleration and memory savings due to structured sparsity but also outperforms existing structured pruning techniques in terms of accuracy across various LLMs.
☆ DeepFeatIoT: Unifying Deep Learned, Randomized, and LLM Features for Enhanced IoT Time Series Sensor Data Classification in Smart Industries IJCAI 2025
Internet of Things (IoT) sensors are ubiquitous technologies deployed across smart cities, industrial sites, and healthcare systems. They continuously generate time series data that enable advanced analytics and automation in industries. However, challenges such as the loss or ambiguity of sensor metadata, heterogeneity in data sources, varying sampling frequencies, inconsistent units of measurement, and irregular timestamps make raw IoT time series data difficult to interpret, undermining the effectiveness of smart systems. To address these challenges, we propose a novel deep learning model, DeepFeatIoT, which integrates learned local and global features with non-learned randomized convolutional kernel-based features and features from large language models (LLMs). This straightforward yet unique fusion of diverse learned and non-learned features significantly enhances IoT time series sensor data classification, even in scenarios with limited labeled data. Our model's effectiveness is demonstrated through its consistent and generalized performance across multiple real-world IoT sensor datasets from diverse critical application domains, outperforming state-of-the-art benchmark models. These results highlight DeepFeatIoT's potential to drive significant advancements in IoT analytics and support the development of next-generation smart systems.
comment: Accepted for publication at IJCAI 2025
☆ Learn to Explore: Meta NAS via Bayesian Optimization Guided Graph Generation
Neural Architecture Search (NAS) automates the design of high-performing neural networks but typically targets a single predefined task, thereby restricting its real-world applicability. To address this, Meta Neural Architecture Search (Meta-NAS) has emerged as a promising paradigm that leverages prior knowledge across tasks to enable rapid adaptation to new ones. Nevertheless, existing Meta-NAS methods often struggle with poor generalization, limited search spaces, or high computational costs. In this paper, we propose a novel Meta-NAS framework, GraB-NAS. Specifically, GraB-NAS first models neural architectures as graphs, and then a hybrid search strategy is developed to find and generate new graphs that lead to promising neural architectures. The search strategy combines global architecture search via Bayesian Optimization in the search space with local exploration for novel neural networks via gradient ascent in the latent space. Such a hybrid search strategy allows GraB-NAS to discover task-aware architectures with strong performance, even beyond the predefined search space. Extensive experiments demonstrate that GraB-NAS outperforms state-of-the-art Meta-NAS baselines, achieving better generalization and search effectiveness.
☆ Open-Set Fault Diagnosis in Multimode Processes via Fine-Grained Deep Feature Representation
A reliable fault diagnosis system should not only accurately classify known health states but also effectively identify unknown faults. In multimode processes, samples belonging to the same health state often show multiple cluster distributions, making it difficult to construct compact and accurate decision boundaries for that state. To address this challenge, a novel open-set fault diagnosis model named fine-grained clustering and rejection network (FGCRN) is proposed. It combines multiscale depthwise convolution, bidirectional gated recurrent unit and temporal attention mechanism to capture discriminative features. A distance-based loss function is designed to enhance the intra-class compactness. Fine-grained feature representations are constructed through unsupervised learning to uncover the intrinsic structures of each health state. Extreme value theory is employed to model the distance between sample features and their corresponding fine-grained representations, enabling effective identification of unknown faults. Extensive experiments demonstrate the superior performance of the proposed method.
comment: 34 pages, 12 figures
☆ HyperKD: Distilling Cross-Spectral Knowledge in Masked Autoencoders via Inverse Domain Shift with Spatial-Aware Masking and Specialized Loss
The proliferation of foundation models, pretrained on large-scale unlabeled datasets, has emerged as an effective approach in creating adaptable and reusable architectures that can be leveraged for various downstream tasks using satellite observations. However, their direct application to hyperspectral remote sensing remains challenging due to inherent spectral disparities and the scarcity of available observations. In this work, we present HyperKD, a novel knowledge distillation framework that enables transferring learned representations from a teacher model into a student model for effective development of a foundation model on hyperspectral images. Unlike typical knowledge distillation frameworks, which use a complex teacher to guide a simpler student, HyperKD enables an inverse form of knowledge transfer across different types of spectral data, guided by a simpler teacher model. Building upon a Masked Autoencoder, HyperKD distills knowledge from the Prithvi foundational model into a student tailored for EnMAP hyperspectral imagery. HyperKD addresses the inverse domain adaptation problem with spectral gaps by introducing a feature-based strategy that includes spectral range-based channel alignment, spatial feature-guided masking, and an enhanced loss function tailored for hyperspectral images. HyperKD bridges the substantial spectral domain gap, enabling the effective use of pretrained foundation models for geospatial applications. Extensive experiments show that HyperKD significantly improves representation learning in MAEs, leading to enhanced reconstruction fidelity and more robust performance on downstream tasks such as land cover classification, crop type identification, and soil organic carbon prediction, underpinning the potential of knowledge distillation frameworks in remote sensing analytics with hyperspectral imagery.
☆ A Unified Contrastive-Generative Framework for Time Series Classification
Self-supervised learning (SSL) for multivariate time series mainly includes two paradigms: contrastive methods that excel at instance discrimination and generative approaches that model data distributions. While effective individually, their complementary potential remains unexplored. We propose a Contrastive Generative Time series framework (CoGenT), the first framework to unify these paradigms through joint contrastive-generative optimization. CoGenT addresses fundamental limitations of both approaches: it overcomes contrastive learning's sensitivity to high intra-class similarity in temporal data while reducing generative methods' dependence on large datasets. We evaluate CoGenT on six diverse time series datasets. The results show consistent improvements, with up to 59.2% and 14.27% F1 gains over standalone SimCLR and MAE, respectively. Our analysis reveals that the hybrid objective preserves discriminative power while acquiring generative robustness. These findings establish a foundation for hybrid SSL in temporal domains. We will release the code shortly.
☆ NEXICA: Discovering Road Traffic Causality (Extended arXiv Version) SP
Road traffic congestion is a persistent problem. Focusing resources on the causes of congestion is a potentially efficient strategy for reducing slowdowns. We present NEXICA, an algorithm to discover which parts of the highway system tend to cause slowdowns on other parts of the highway. We use time series of road speeds as inputs to our causal discovery algorithm. Finding other algorithms inadequate, we develop a new approach that is novel in three ways. First, it concentrates on just the presence or absence of events in the time series, where an event indicates the temporal beginning of a traffic slowdown. Second, we develop a probabilistic model using maximum likelihood estimation to compute the probabilities of spontaneous and caused slowdowns between two locations on the highway. Third, we train a binary classifier to identify pairs of cause/effect locations trained on pairs of road locations where we are reasonably certain a priori of their causal connections, both positive and negative. We test our approach on six months of road speed data from 195 different highway speed sensors in the Los Angeles area, showing that our approach is superior to state-of-the-art baselines in both accuracy and computation speed.
comment: Extended version of short paper in 32nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL 2024)
☆ Implicit Hypergraph Neural Networks: A Stable Framework for Higher-Order Relational Learning with Provable Guarantees
Many real-world interactions are group-based rather than pairwise such as papers with multiple co-authors and users jointly engaging with items. Hypergraph neural networks have shown great promise at modeling higher-order relations, but their reliance on a fixed number of explicit message-passing layers limits long-range dependency capture and can destabilize training as depth grows. In this work, we introduce Implicit Hypergraph Neural Networks (IHGNN), which bring the implicit equilibrium formulation to hypergraphs: instead of stacking layers, IHGNN computes representations as the solution to a nonlinear fixed-point equation, enabling stable and efficient global propagation across hyperedges without deep architectures. We develop a well-posed training scheme with provable convergence, analyze the oversmoothing conditions and expressivity of the model, and derive a transductive generalization bound on hypergraphs. We further present an implicit-gradient training procedure coupled with a projection-based stabilization strategy. Extensive experiments on citation benchmarks show that IHGNN consistently outperforms strong traditional graph/hypergraph neural network baselines in both accuracy and robustness. Empirically, IHGNN is resilient to random initialization and hyperparameter variation, highlighting its strong generalization and practical value for higher-order relational learning.
☆ Domain-Generalization to Improve Learning in Meta-Learning Algorithms
This paper introduces Domain Generalization Sharpness-Aware Minimization Model-Agnostic Meta-Learning (DGS-MAML), a novel meta-learning algorithm designed to generalize across tasks with limited training data. DGS-MAML combines gradient matching with sharpness-aware minimization in a bi-level optimization framework to enhance model adaptability and robustness. We support our method with theoretical analysis using PAC-Bayes and convergence guarantees. Experimental results on benchmark datasets show that DGS-MAML outperforms existing approaches in terms of accuracy and generalization. The proposed method is particularly useful for scenarios requiring few-shot learning and quick adaptation, and the source code is publicly available at GitHub.
☆ A pseudo-inverse of a line graph
Line graphs are an alternative representation of graphs where each vertex of the original (root) graph becomes an edge. However not all graphs have a corresponding root graph, hence the transformation from graphs to line graphs is not invertible. We investigate the case when there is a small perturbation in the space of line graphs, and try to recover the corresponding root graph, essentially defining the inverse of the line graph operation. We propose a linear integer program that edits the smallest number of edges in the line graph, that allow a root graph to be found. We use the spectral norm to theoretically prove that such a pseudo-inverse operation is well behaved. Illustrative empirical experiments on Erd\H{o}s-R\'enyi graphs show that our theoretical results work in practice.
Graph Neural Network and Transformer Integration for Unsupervised System Anomaly Discovery
This study proposes an unsupervised anomaly detection method for distributed backend service systems, addressing practical challenges such as complex structural dependencies, diverse behavioral evolution, and the absence of labeled data. The method constructs a dynamic graph based on service invocation relationships and applies graph convolution to extract high-order structural representations from multi-hop topologies. A Transformer is used to model the temporal behavior of each node, capturing long-term dependencies and local fluctuations. During the feature fusion stage, a learnable joint embedding mechanism integrates structural and behavioral representations into a unified anomaly vector. A nonlinear mapping is then applied to compute anomaly scores, enabling an end-to-end detection process without supervision. Experiments on real-world cloud monitoring data include sensitivity analyses across different graph depths, sequence lengths, and data perturbations. Results show that the proposed method outperforms existing models on several key metrics, demonstrating stronger expressiveness and stability in capturing anomaly propagation paths and modeling dynamic behavior sequences, with high potential for practical deployment.
☆ Integrating Feature Attention and Temporal Modeling for Collaborative Financial Risk Assessment
This paper addresses the challenges of data privacy and collaborative modeling in cross-institution financial risk analysis. It proposes a risk assessment framework based on federated learning. Without sharing raw data, the method enables joint modeling and risk identification across multiple institutions. This is achieved by incorporating a feature attention mechanism and temporal modeling structure. Specifically, the model adopts a distributed optimization strategy. Each financial institution trains a local sub-model. The model parameters are protected using differential privacy and noise injection before being uploaded. A central server then aggregates these parameters to generate a global model. This global model is used for systemic risk identification. To validate the effectiveness of the proposed method, multiple experiments are conducted. These evaluate communication efficiency, model accuracy, systemic risk detection, and cross-market generalization. The results show that the proposed model outperforms both traditional centralized methods and existing federated learning variants across all evaluation metrics. It demonstrates strong modeling capabilities and practical value in sensitive financial environments. The method enhances the scope and efficiency of risk identification while preserving data sovereignty. It offers a secure and efficient solution for intelligent financial risk analysis.
☆ Can Transformers Break Encryption Schemes via In-Context Learning?
In-context learning (ICL) has emerged as a powerful capability of transformer-based language models, enabling them to perform tasks by conditioning on a small number of examples presented at inference time, without any parameter updates. Prior work has shown that transformers can generalize over simple function classes like linear functions, decision trees, even neural networks, purely from context, focusing on numerical or symbolic reasoning over underlying well-structured functions. Instead, we propose a novel application of ICL into the domain of cryptographic function learning, specifically focusing on ciphers such as mono-alphabetic substitution and Vigen\`ere ciphers, two classes of private-key encryption schemes. These ciphers involve a fixed but hidden bijective mapping between plain text and cipher text characters. Given a small set of (cipher text, plain text) pairs, the goal is for the model to infer the underlying substitution and decode a new cipher text word. This setting poses a structured inference challenge, which is well-suited for evaluating the inductive biases and generalization capabilities of transformers under the ICL paradigm. Code is available at https://github.com/adistomar/CS182-project.
☆ Interpretable Machine Learning Model for Early Prediction of Acute Kidney Injury in Critically Ill Patients with Cirrhosis: A Retrospective Study
Background: Cirrhosis is a progressive liver disease with high mortality and frequent complications, notably acute kidney injury (AKI), which occurs in up to 50% of hospitalized patients and worsens outcomes. AKI stems from complex hemodynamic, inflammatory, and metabolic changes, making early detection essential. Many predictive tools lack accuracy, interpretability, and alignment with intensive care unit (ICU) workflows. This study developed an interpretable machine learning model for early AKI prediction in critically ill patients with cirrhosis. Methods: We conducted a retrospective analysis of the MIMIC-IV v2.2 database, identifying 1240 adult ICU patients with cirrhosis and excluding those with ICU stays under 48 hours or missing key data. Laboratory and physiological variables from the first 48 hours were extracted. The pipeline included preprocessing, missingness filtering, LASSO feature selection, and SMOTE class balancing. Six algorithms-LightGBM, CatBoost, XGBoost, logistic regression, naive Bayes, and neural networks-were trained and evaluated using AUROC, accuracy, F1-score, sensitivity, specificity, and predictive values. Results: LightGBM achieved the best performance (AUROC 0.808, 95% CI 0.741-0.856; accuracy 0.704; NPV 0.911). Key predictors included prolonged partial thromboplastin time, absence of outside-facility 20G placement, low pH, and altered pO2, consistent with known cirrhosis-AKI mechanisms and suggesting actionable targets. Conclusion: The LightGBM-based model enables accurate early AKI risk stratification in ICU patients with cirrhosis using routine clinical variables. Its high negative predictive value supports safe de-escalation for low-risk patients, and interpretability fosters clinician trust and targeted prevention. External validation and integration into electronic health record systems are warranted.
☆ Comparison of D-Wave Quantum Annealing and Markov Chain Monte Carlo for Sampling from a Probability Distribution of a Restricted Boltzmann Machine
A local-valley (LV) centered approach to assessing the quality of sampling from Restricted Boltzmann Machines (RBMs) was applied to the latest generation of the D-Wave quantum annealer. D-Wave and Gibbs samples from a classically trained RBM were obtained at conditions relevant to the contrastive-divergence-based RBM learning. The samples were compared for the number of the LVs to which they belonged and the energy of the corresponding local minima. No significant (desirable) increase in the number of the LVs has been achieved by decreasing the D-Wave annealing time. At any training epoch, the states sampled by the D-Wave belonged to a somewhat higher number of LVs than in the Gibbs sampling. However, many of those LVs found by the two techniques differed. For high-probability sampled states, the two techniques were (unfavorably) less complementary and more overlapping. Nevertheless, many potentially "important" local minima, i.e., those having intermediate, even if not high, probability values, were found by only one of the two sampling techniques while missed by the other. The two techniques overlapped less at later than earlier training epochs, which is precisely the stage of the training when modest improvements to the sampling quality could make meaningful differences for the RBM trainability. The results of this work may explain the failure of previous investigations to achieve substantial (or any) improvement when using D-Wave-based sampling. However, the results reveal some potential for improvement, e.g., using a combined classical-quantum approach.
comment: 22 pages, 10 figures
☆ Understanding Textual Emotion Through Emoji Prediction
This project explores emoji prediction from short text sequences using four deep learning architectures: a feed-forward network, CNN, transformer, and BERT. Using the TweetEval dataset, we address class imbalance through focal loss and regularization techniques. Results show BERT achieves the highest overall performance due to its pre-training advantage, while CNN demonstrates superior efficacy on rare emoji classes. This research shows the importance of architecture selection and hyperparameter tuning for sentiment-aware emoji prediction, contributing to improved human-computer interaction.
☆ AI-Driven Detection and Analysis of Handwriting on Seized Ivory: A Tool to Uncover Criminal Networks in the Illicit Wildlife Trade
The transnational ivory trade continues to drive the decline of elephant populations across Africa, and trafficking networks remain difficult to disrupt. Tusks seized by law enforcement officials carry forensic information on the traffickers responsible for their export, including DNA evidence and handwritten markings made by traffickers. For 20 years, analyses of tusk DNA have identified where elephants were poached and established connections among shipments of ivory. While the links established using genetic evidence are extremely conclusive, genetic data is expensive and sometimes impossible to obtain. But though handwritten markings are easy to photograph, they are rarely documented or analyzed. Here, we present an AI-driven pipeline for extracting and analyzing handwritten markings on seized elephant tusks, offering a novel, scalable, and low-cost source of forensic evidence. Having collected 6,085 photographs from eight large seizures of ivory over a 6-year period (2014-2019), we used an object detection model to extract over 17,000 individual markings, which were then labeled and described using state-of-the-art AI tools. We identified 184 recurring "signature markings" that connect the tusks on which they appear. 20 signature markings were observed in multiple seizures, establishing forensic links between these seizures through traffickers involved in both shipments. This work complements other investigative techniques by filling in gaps where other data sources are unavailable. The study demonstrates the transformative potential of AI in wildlife forensics and highlights practical steps for integrating handwriting analysis into efforts to disrupt organized wildlife crime.
comment: Submitted. 13 pages, 5 figures, 4 tables
☆ An Explainable AI based approach for Monitoring Animal Health
Monitoring cattle health and optimizing yield are key challenges faced by dairy farmers due to difficulties in tracking all animals on the farm. This work aims to showcase modern data-driven farming practices based on explainable machine learning(ML) methods that explain the activity and behaviour of dairy cattle (cows). Continuous data collection of 3-axis accelerometer sensors and usage of robust ML methodologies and algorithms, provide farmers and researchers with actionable information on cattle activity, allowing farmers to make informed decisions and incorporate sustainable practices. This study utilizes Bluetooth-based Internet of Things (IoT) devices and 4G networks for seamless data transmission, immediate analysis, inference generation, and explains the models performance with explainability frameworks. Special emphasis is put on the pre-processing of the accelerometers time series data, including the extraction of statistical characteristics, signal processing techniques, and lag-based features using the sliding window technique. Various hyperparameter-optimized ML models are evaluated across varying window lengths for activity classification. The k-nearest neighbour Classifier achieved the best performance, with AUC of mean 0.98 and standard deviation of 0.0026 on the training set and 0.99 on testing set). In order to ensure transparency, Explainable AI based frameworks such as SHAP is used to interpret feature importance that can be understood and used by practitioners. A detailed comparison of the important features, along with the stability analysis of selected features, supports development of explainable and practical ML models for sustainable livestock management.
☆ CATNet: A geometric deep learning approach for CAT bond spread prediction in the primary market
Traditional models for pricing catastrophe (CAT) bonds struggle to capture the complex, relational data inherent in these instruments. This paper introduces CATNet, a novel framework that applies a geometric deep learning architecture, the Relational Graph Convolutional Network (R-GCN), to model the CAT bond primary market as a graph, leveraging its underlying network structure for spread prediction. Our analysis reveals that the CAT bond market exhibits the characteristics of a scale-free network, a structure dominated by a few highly connected and influential hubs. CATNet demonstrates high predictive performance, significantly outperforming a strong Random Forest benchmark. The inclusion of topological centrality measures as features provides a further, significant boost in accuracy. Interpretability analysis confirms that these network features are not mere statistical artifacts; they are quantitative proxies for long-held industry intuition regarding issuer reputation, underwriter influence, and peril concentration. This research provides evidence that network connectivity is a key determinant of price, offering a new paradigm for risk assessment and proving that graph-based models can deliver both state-of-the-art accuracy and deeper, quantifiable market insights.
☆ Mo' Memory, Mo' Problems: Stream-Native Machine Unlearning
Machine unlearning work assumes a static, i.i.d training environment that doesn't truly exist. Modern ML pipelines need to learn, unlearn, and predict continuously on production streams of data. We translate the notion of the batch unlearning scenario to the online setting using notions of regret, sample complexity, and deletion capacity. We further tighten regret bounds to a logarithmic $\mathcal{O}(\ln{T})$, a first for a machine unlearning algorithm. And we swap out an expensive Hessian inversion with online variant of L-BFGS optimization, removing a memory footprint that scales linearly with time. Such changes extend the lifespan of an ML model before expensive retraining, making for a more efficient unlearning process.
☆ Prompt-Response Semantic Divergence Metrics for Faithfulness Hallucination and Misalignment Detection in Large Language Models
The proliferation of Large Language Models (LLMs) is challenged by hallucinations, critical failure modes where models generate non-factual, nonsensical or unfaithful text. This paper introduces Semantic Divergence Metrics (SDM), a novel lightweight framework for detecting Faithfulness Hallucinations -- events of severe deviations of LLMs responses from input contexts. We focus on a specific implementation of these LLM errors, {confabulations, defined as responses that are arbitrary and semantically misaligned with the user's query. Existing methods like Semantic Entropy test for arbitrariness by measuring the diversity of answers to a single, fixed prompt. Our SDM framework improves upon this by being more prompt-aware: we test for a deeper form of arbitrariness by measuring response consistency not only across multiple answers but also across multiple, semantically-equivalent paraphrases of the original prompt. Methodologically, our approach uses joint clustering on sentence embeddings to create a shared topic space for prompts and answers. A heatmap of topic co-occurances between prompts and responses can be viewed as a quantified two-dimensional visualization of the user-machine dialogue. We then compute a suite of information-theoretic metrics to measure the semantic divergence between prompts and responses. Our practical score, $\mathcal{S}_H$, combines the Jensen-Shannon divergence and Wasserstein distance to quantify this divergence, with a high score indicating a Faithfulness hallucination. Furthermore, we identify the KL divergence KL(Answer $||$ Prompt) as a powerful indicator of \textbf{Semantic Exploration}, a key signal for distinguishing different generative behaviors. These metrics are further combined into the Semantic Box, a diagnostic framework for classifying LLM response types, including the dangerous, confident confabulation.
comment: 24 pages, 3 figures
☆ PakBBQ: A Culturally Adapted Bias Benchmark for QA EMNLP 2025
With the widespread adoption of Large Language Models (LLMs) across various applications, it is empirical to ensure their fairness across all user communities. However, most LLMs are trained and evaluated on Western centric data, with little attention paid to low-resource languages and regional contexts. To address this gap, we introduce PakBBQ, a culturally and regionally adapted extension of the original Bias Benchmark for Question Answering (BBQ) dataset. PakBBQ comprises over 214 templates, 17180 QA pairs across 8 categories in both English and Urdu, covering eight bias dimensions including age, disability, appearance, gender, socio-economic status, religious, regional affiliation, and language formality that are relevant in Pakistan. We evaluate multiple multilingual LLMs under both ambiguous and explicitly disambiguated contexts, as well as negative versus non negative question framings. Our experiments reveal (i) an average accuracy gain of 12\% with disambiguation, (ii) consistently stronger counter bias behaviors in Urdu than in English, and (iii) marked framing effects that reduce stereotypical responses when questions are posed negatively. These findings highlight the importance of contextualized benchmarks and simple prompt engineering strategies for bias mitigation in low resource settings.
comment: 8 pages, 7 figures, 2 tables, Submitted to EMNLP 2025
☆ Estimating carbon pools in the shelf sea environment: reanalysis or model-informed machine learning?
Shelf seas are important for carbon sequestration and carbon cycle, but available in situ, or satellite data for carbon pools in the shelf sea environment are often sparse, or highly uncertain. Alternative can be provided by reanalyses, but these are often expensive to run. We propose to use an ensemble of neural networks (NN) to learn from a coupled physics-biogeochemistry model the relationship between the directly observable variables and carbon pools. We demonstrate for North-West European Shelf (NWES) sea environment, that when the NN trained on a model free run simulation is applied to the NWES reanalysis, it is capable to reproduce the reanalysis outputs for carbon pools. Moreover, unlike the existing NWES reanalysis, the NN ensemble is also capable to provide uncertainty information for the pools. We focus on explainability of the results and demonstrate potential use of the NNs for future climate what-if scenarios. We suggest that model-informed machine learning presents a viable alternative to expensive reanalyses and could complement observational data, wherever they are missing and/or highly uncertain.
comment: 24 pages, 9 figures (4 in the appendix)
☆ Benchmark-Driven Selection of AI: Evidence from DeepSeek-R1
Evaluation of reasoning language models gained importance after it was observed that they can combine their existing capabilities into novel traces of intermediate steps before task completion and that the traces can sometimes help them to generalize better than past models. As reasoning becomes the next scaling dimension of large language models, careful study of their capabilities in critical tasks is needed. We show that better performance is not always caused by test-time algorithmic improvements or model sizes but also by using impactful benchmarks as curricula for learning. We call this benchmark-driven selection of AI and show its effects on DeepSeek-R1 using our sequential decision-making problem from Humanity's Last Exam. Steering development of AI by impactful benchmarks trades evaluation for learning and makes novelty of test tasks key for measuring generalization capabilities of reasoning models. Consequently, some benchmarks could be seen as curricula for training rather than unseen test sets.
comment: 17 pages, 5 figures, 2 tables
☆ Pre-trained Transformer-models using chronic invasive electrophysiology for symptom decoding without patient-individual training
Neural decoding of pathological and physiological states can enable patient-individualized closed-loop neuromodulation therapy. Recent advances in pre-trained large-scale foundation models offer the potential for generalized state estimation without patient-individual training. Here we present a foundation model trained on chronic longitudinal deep brain stimulation recordings spanning over 24 days. Adhering to long time-scale symptom fluctuations, we highlight the extended context window of 30 minutes. We present an optimized pre-training loss function for neural electrophysiological data that corrects for the frequency bias of common masked auto-encoder loss functions due to the 1-over-f power law. We show in a downstream task the decoding of Parkinson's disease symptoms with leave-one-subject-out cross-validation without patient-individual training.
comment: 5 pages, 6 figures
☆ Characterizing Evolution in Expectation-Maximization Estimates for Overspecified Mixed Linear Regression
Mixture models have attracted significant attention due to practical effectiveness and comprehensive theoretical foundations. A persisting challenge is model misspecification, which occurs when the model to be fitted has more mixture components than those in the data distribution. In this paper, we develop a theoretical understanding of the Expectation-Maximization (EM) algorithm's behavior in the context of targeted model misspecification for overspecified two-component Mixed Linear Regression (2MLR) with unknown $d$-dimensional regression parameters and mixing weights. In Theorem 5.1 at the population level, with an unbalanced initial guess for mixing weights, we establish linear convergence of regression parameters in $O(\log(1/\epsilon))$ steps. Conversely, with a balanced initial guess for mixing weights, we observe sublinear convergence in $O(\epsilon^{-2})$ steps to achieve the $\epsilon$-accuracy at Euclidean distance. In Theorem 6.1 at the finite-sample level, for mixtures with sufficiently unbalanced fixed mixing weights, we demonstrate a statistical accuracy of $O((d/n)^{1/2})$, whereas for those with sufficiently balanced fixed mixing weights, the accuracy is $O((d/n)^{1/4})$ given $n$ data samples. Furthermore, we underscore the connection between our population level and finite-sample level results: by setting the desired final accuracy $\epsilon$ in Theorem 5.1 to match that in Theorem 6.1 at the finite-sample level, namely letting $\epsilon = O((d/n)^{1/2})$ for sufficiently unbalanced fixed mixing weights and $\epsilon = O((d/n)^{1/4})$ for sufficiently balanced fixed mixing weights, we intuitively derive iteration complexity bounds $O(\log (1/\epsilon))=O(\log (n/d))$ and $O(\epsilon^{-2})=O((n/d)^{1/2})$ at the finite-sample level for sufficiently unbalanced and balanced initial mixing weights. We further extend our analysis in overspecified setting to low SNR regime.
☆ Prediction-Powered Inference with Inverse Probability Weighting
Prediction-powered inference (PPI) is a recent framework for valid statistical inference with partially labeled data, combining model-based predictions on a large unlabeled set with bias correction from a smaller labeled subset. We show that PPI can be extended to handle informative labeling by replacing its unweighted bias-correction term with an inverse probability weighted (IPW) version, using the classical Horvitz--Thompson or H\'ajek forms. This connection unites design-based survey sampling ideas with modern prediction-assisted inference, yielding estimators that remain valid when labeling probabilities vary across units. We consider the common setting where the inclusion probabilities are not known but estimated from a correctly specified model. In simulations, the performance of IPW-adjusted PPI with estimated propensities closely matches the known-probability case, retaining both nominal coverage and the variance-reduction benefits of PPI.
comment: 15 pages, 3 figures
☆ Out-of-Distribution Detection using Counterfactual Distance
Accurate and explainable out-of-distribution (OOD) detection is required to use machine learning systems safely. Previous work has shown that feature distance to decision boundaries can be used to identify OOD data effectively. In this paper, we build on this intuition and propose a post-hoc OOD detection method that, given an input, calculates the distance to decision boundaries by leveraging counterfactual explanations. Since computing explanations can be expensive for large architectures, we also propose strategies to improve scalability by computing counterfactuals directly in embedding space. Crucially, as the method employs counterfactual explanations, we can seamlessly use them to help interpret the results of our detector. We show that our method is in line with the state of the art on CIFAR-10, achieving 93.50% AUROC and 25.80% FPR95. Our method outperforms these methods on CIFAR-100 with 97.05% AUROC and 13.79% FPR95 and on ImageNet-200 with 92.55% AUROC and 33.55% FPR95 across four OOD datasets
☆ rETF-semiSL: Semi-Supervised Learning for Neural Collapse in Temporal Data
Deep neural networks for time series must capture complex temporal patterns, to effectively represent dynamic data. Self- and semi-supervised learning methods show promising results in pre-training large models, which -- when finetuned for classification -- often outperform their counterparts trained from scratch. Still, the choice of pretext training tasks is often heuristic and their transferability to downstream classification is not granted, thus we propose a novel semi-supervised pre-training strategy to enforce latent representations that satisfy the Neural Collapse phenomenon observed in optimally trained neural classifiers. We use a rotational equiangular tight frame-classifier and pseudo-labeling to pre-train deep encoders with few labeled samples. Furthermore, to effectively capture temporal dynamics while enforcing embedding separability, we integrate generative pretext tasks with our method, and we define a novel sequential augmentation strategy. We show that our method significantly outperforms previous pretext tasks when applied to LSTMs, transformers, and state-space models on three multivariate time series classification datasets. These results highlight the benefit of aligning pre-training objectives with theoretically grounded embedding geometry.
comment: 12 pages, 4 figures
☆ Nested-ReFT: Efficient Reinforcement Learning for Large Language Model Fine-Tuning via Off-Policy Rollouts
Advanced reasoning in LLMs on challenging domains like mathematical reasoning can be tackled using verifiable rewards based reinforced fine-tuning (ReFT). In standard ReFT frameworks, a behavior model generates multiple completions with answers per problem, for the answer to be then scored by a reward function. While such RL post-training methods demonstrate significant performance improvements across challenging reasoning domains, the computational cost of generating completions during training with multiple inference steps makes the training cost non-trivial. To address this, we draw inspiration from off-policy RL, and speculative decoding to introduce a novel ReFT framework, dubbed Nested-ReFT, where a subset of layers of the target model acts as the behavior model to generate off-policy completions during training. The behavior model configured with dynamic layer skipping per batch during training decreases the inference cost compared to the standard ReFT frameworks. Our theoretical analysis shows that Nested-ReFT yields unbiased gradient estimates with controlled variance. Our empirical analysis demonstrates improved computational efficiency measured as tokens/sec across multiple math reasoning benchmarks and model sizes. Additionally, we explore three variants of bias mitigation to minimize the off-policyness in the gradient updates that allows for maintaining performance that matches the baseline ReFT performance.
☆ Machine Learning for Cloud Detection in IASI Measurements: A Data-Driven SVM Approach with Physical Constraints
Cloud detection is essential for atmospheric retrievals, climate studies, and weather forecasting. We analyze infrared radiances from the Infrared Atmospheric Sounding Interferometer (IASI) onboard Meteorological Operational (MetOp) satellites to classify scenes as clear or cloudy. We apply the Support Vector Machine (SVM) approach, based on kernel methods for non-separable data. In this study, the method is implemented for Cloud Identification (CISVM) to classify the test set using radiances or brightness temperatures, with dimensionality reduction through Principal Component Analysis (PCA) and cloud-sensitive channel selection to focus on the most informative features. Our best configuration achieves 88.30 percent agreement with reference labels and shows strong consistency with cloud masks from the Moderate Resolution Imaging Spectroradiometer (MODIS), with the largest discrepancies in polar regions due to sensor differences. These results demonstrate that CISVM is a robust, flexible, and efficient method for automated cloud classification from infrared radiances, suitable for operational retrievals and future missions such as Far infrared Outgoing Radiation Understanding and Monitoring (FORUM), the ninth European Space Agency Earth Explorer Mission.
☆ From Intent to Execution: Multimodal Chain-of-Thought Reinforcement Learning for Precise CAD Code Generation
Computer-Aided Design (CAD) plays a vital role in engineering and manufacturing, yet current CAD workflows require extensive domain expertise and manual modeling effort. Recent advances in large language models (LLMs) have made it possible to generate code from natural language, opening new opportunities for automating parametric 3D modeling. However, directly translating human design intent into executable CAD code remains highly challenging, due to the need for logical reasoning, syntactic correctness, and numerical precision. In this work, we propose CAD-RL, a multimodal Chain-of-Thought (CoT) guided reinforcement learning post training framework for CAD modeling code generation. Our method combines CoT-based Cold Start with goal-driven reinforcement learning post training using three task-specific rewards: executability reward, geometric accuracy reward, and external evaluation reward. To ensure stable policy learning under sparse and high-variance reward conditions, we introduce three targeted optimization strategies: Trust Region Stretch for improved exploration, Precision Token Loss for enhanced dimensions parameter accuracy, and Overlong Filtering to reduce noisy supervision. To support training and benchmarking, we release ExeCAD, a noval dataset comprising 16,540 real-world CAD examples with paired natural language and structured design language descriptions, executable CADQuery scripts, and rendered 3D models. Experiments demonstrate that CAD-RL achieves significant improvements in reasoning quality, output precision, and code executability over existing VLMs.
☆ In silico study on the cytotoxicity against Hela cancer cells of xanthones bioactive compounds from Garcinia cowa: QSAR based on Graph Deep Learning, Network Pharmacology, and Molecular Docking
Cancer is recognized as a complex group of diseases, contributing to the highest global mortality rates, with increasing prevalence and a trend toward affecting younger populations. It is characterized by uncontrolled proliferation of abnormal cells, invasion of adjacent tissues, and metastasis to distant organs. Garcinia cowa, a traditional medicinal plant widely used in Southeast Asia, including Vietnam, is employed to treat fever, cough, indigestion, as a laxative, and for parasitic diseases. Numerous xanthone compounds isolated from this species exhibit a broad spectrum of biological activities, with some showing promise as anti cancer and antimalarial agents. Network pharmacology analysis successfully identified key bioactive compounds Rubraxanthone, Garcinone D, Norcowanin, Cowanol, and Cowaxanthone alongside their primary protein targets (TNF, CTNNB1, SRC, NFKB1, and MTOR), providing critical insights into the molecular mechanisms underlying their anti-cancer effects. The Graph Attention Network algorithm demonstrated superior predictive performance, achieving an R2 of 0.98 and an RMSE of 0.02 after data augmentation, highlighting its accuracy in predicting pIC50 values for xanthone based compounds. Additionally, molecular docking revealed MTOR as a potential target for inducing cytotoxicity in HeLa cancer cells from Garcinia cowa.
☆ Less is More: Learning Graph Tasks with Just LLMs
For large language models (LLMs), reasoning over graphs could help solve many problems. Prior work has tried to improve LLM graph reasoning by examining how best to serialize graphs as text and by combining GNNs and LLMs. However, the merits of such approaches remain unclear, so we empirically answer the following research questions: (1) Can LLMs learn to solve fundamental graph tasks without specialized graph encoding models?, (2) Can LLMs generalize learned solutions to unseen graph structures or tasks?, and (3) What are the merits of competing approaches to learn graph tasks? We show that even small LLMs can learn to solve graph tasks by training them with instructive chain-of-thought solutions, and this training generalizes, without specialized graph encoders, to new tasks and graph structures.
☆ Constrained Decoding of Diffusion LLMs with Context-Free Grammars
Large language models (LLMs) have shown promising performance across diverse domains. Many practical applications of LLMs, such as code completion and structured data extraction, require adherence to syntactic constraints specified by a formal language. Yet, due to their probabilistic nature, LLM output is not guaranteed to adhere to such formal languages. Prior work has proposed constrained decoding as a means to restrict LLM generation to particular formal languages. However, existing works are not applicable to the emerging paradigm of diffusion LLMs, when used in practical scenarios such as the generation of formally correct C++ or JSON output. In this paper we address this challenge and present the first constrained decoding method for diffusion models, one that can handle formal languages captured by context-free grammars. We begin by reducing constrained decoding to the more general additive infilling problem, which asks whether a partial output can be completed to a valid word in the target language. This problem also naturally subsumes the previously unaddressed multi-region infilling constrained decoding. We then reduce this problem to the task of deciding whether the intersection of the target language and a regular language is empty and present an efficient algorithm to solve it for context-free languages. Empirical results on various applications, such as C++ code infilling and structured data extraction in JSON, demonstrate that our method achieves near-perfect syntactic correctness while consistently preserving or improving functional correctness. Importantly, our efficiency optimizations ensure that the computational overhead remains practical.
☆ DINOv3
Self-supervised learning holds the promise of eliminating the need for manual data annotation, enabling models to scale effortlessly to massive datasets and larger architectures. By not being tailored to specific tasks or domains, this training paradigm has the potential to learn visual representations from diverse sources, ranging from natural to aerial images -- using a single algorithm. This technical report introduces DINOv3, a major milestone toward realizing this vision by leveraging simple yet effective strategies. First, we leverage the benefit of scaling both dataset and model size by careful data preparation, design, and optimization. Second, we introduce a new method called Gram anchoring, which effectively addresses the known yet unsolved issue of dense feature maps degrading during long training schedules. Finally, we apply post-hoc strategies that further enhance our models' flexibility with respect to resolution, model size, and alignment with text. As a result, we present a versatile vision foundation model that outperforms the specialized state of the art across a broad range of settings, without fine-tuning. DINOv3 produces high-quality dense features that achieve outstanding performance on various vision tasks, significantly surpassing previous self- and weakly-supervised foundation models. We also share the DINOv3 suite of vision models, designed to advance the state of the art on a wide spectrum of tasks and data by providing scalable solutions for diverse resource constraints and deployment scenarios.
☆ Next Edit Prediction: Learning to Predict Code Edits from Context and Interaction History
The rapid advancement of large language models (LLMs) has led to the widespread adoption of AI-powered coding assistants integrated into a development environment. On one hand, low-latency code completion offers completion suggestions but is fundamentally constrained to the cursor's current position. On the other hand, chat-based editing can perform complex modifications, yet forces developers to stop their work, describe the intent in natural language, which causes a context-switch away from the code. This creates a suboptimal user experience, as neither paradigm proactively predicts the developer's next edit in a sequence of related edits. To bridge this gap and provide the seamless code edit suggestion, we introduce the task of Next Edit Prediction, a novel task designed to infer developer intent from recent interaction history to predict both the location and content of the subsequent edit. Specifically, we curate a high-quality supervised fine-tuning dataset and an evaluation benchmark for the Next Edit Prediction task. Then, we conduct supervised fine-tuning on a series of models and performed a comprehensive evaluation of both the fine-tuned models and other baseline models, yielding several novel findings. This work lays the foundation for a new interaction paradigm that proactively collaborate with developers by anticipating their following action, rather than merely reacting to explicit instructions.
♻ ☆ TempOpt -- Unsupervised Alarm Relation Learning for Telecommunication Networks
In a telecommunications network, fault alarms generated by network nodes are monitored in a Network Operations Centre (NOC) to ensure network availability and continuous network operations. The monitoring process comprises of tasks such as active alarms analysis, root alarm identification, and resolution of the underlying problem. Each network node potentially can generate alarms of different types, while nodes can be from multiple vendors, a network can have hundreds of nodes thus resulting in an enormous volume of alarms at any time. Since network nodes are inter-connected, a single fault in the network would trigger multiple sequences of alarms across a variety of nodes and from a monitoring point of view, it is a challenging task for a NOC engineer to be aware of relations between the various alarms, when trying to identify, for example, a root alarm on which an action needs to be taken. To effectively identify root alarms, it is essential to learn relation among the alarms for accurate and faster resolution. In this work we propose a novel unsupervised alarm relation learning technique Temporal Optimization (TempOpt) that is practical and overcomes the limitations of an existing class of alarm relational learning method-temporal dependency methods. Experiments have been carried on real-world network datasets, that demonstrate the improved quality of alarm relations learned by TempOpt as compared to temporal dependency method.
comment: 6 pages, 9 figures. IEEE 21st India Council International Conference (INDICON), 2024
♻ ☆ Dynamic Rank Adjustment for Accurate and Efficient Neural Network Training
Low-rank training methods reduce the number of trainable parameters by re-parameterizing the weights with matrix decompositions (e.g., singular value decomposition). However, enforcing a fixed low-rank structure caps the rank of the weight matrices and can hinder the model's ability to learn complex patterns. Furthermore, the effective rank of the model's weights tends to decline during training, and this drop is accelerated when the model is reparameterized into a low-rank structure. In this study, we argue that strategically interleaving full-rank training epochs within low-rank training epochs can effectively restore the rank of the model's weights. Based on our findings, we propose a general dynamic-rank training framework that is readily applicable to a wide range of neural-network tasks. We first describe how to adjust the rank of weight matrix to alleviate the inevitable rank collapse that arises during training, and then present extensive empirical results that validate our claims and demonstrate the efficacy of the proposed framework. Our empirical study shows that the proposed method achieves almost the same computational cost as SVD-based low-rank training while achieving a comparable accuracy to full-rank training across various benchmarks.
♻ ☆ Transferable Model-agnostic Vision-Language Model Adaptation for Efficient Weak-to-Strong Generalization
Vision-Language Models (VLMs) have been widely used in various visual recognition tasks due to their remarkable generalization capabilities. As these models grow in size and complexity, fine-tuning becomes costly, emphasizing the need to reuse adaptation knowledge from 'weaker' models to efficiently enhance 'stronger' ones. However, existing adaptation transfer methods exhibit limited transferability across models due to their model-specific design and high computational demands. To tackle this, we propose Transferable Model-agnostic adapter (TransMiter), a light-weight adapter that improves vision-language models 'without backpropagation'. TransMiter captures the knowledge gap between pre-trained and fine-tuned VLMs, in an 'unsupervised' manner. Once trained, this knowledge can be seamlessly transferred across different models without the need for backpropagation. Moreover, TransMiter consists of only a few layers, inducing a negligible additional inference cost. Notably, supplementing the process with a few labeled data further yields additional performance gain, often surpassing a fine-tuned stronger model, with a marginal training cost. Experimental results and analyses demonstrate that TransMiter effectively and efficiently transfers adaptation knowledge while preserving generalization abilities across VLMs of different sizes and architectures in visual recognition tasks.
♻ ☆ Multi-Target Backdoor Attacks Against Speaker Recognition
In this work, we propose a multi-target backdoor attack against speaker identification using position-independent clicking sounds as triggers. Unlike previous single-target approaches, our method targets up to 50 speakers simultaneously, achieving success rates of up to 95.04%. To simulate more realistic attack conditions, we vary the signal-to-noise ratio between speech and trigger, demonstrating a trade-off between stealth and effectiveness. We further extend the attack to the speaker verification task by selecting the most similar training speaker - based on cosine similarity - as a proxy target. The attack is most effective when target and enrolled speaker pairs are highly similar, reaching success rates of up to 90% in such cases.
comment: Accepted to IEEE Automatic Speech Recognition and Understanding Workshop 2025
♻ ☆ Regret minimization in Linear Bandits with offline data via extended D-optimal exploration
We consider the problem of online regret minimization in linear bandits with access to prior observations (offline data) from the underlying bandit model. There are numerous applications where extensive offline data is often available, such as in recommendation systems, online advertising. Consequently, this problem has been studied intensively in recent literature. Our algorithm, Offline-Online Phased Elimination (OOPE), effectively incorporates the offline data to substantially reduce the online regret compared to prior work. To leverage offline information prudently, OOPE uses an extended D-optimal design within each exploration phase. OOPE achieves an online regret is $\tilde{O}(\sqrt{\deff T \log \left(|\mathcal{A}|T\right)}+d^2)$. $\deff \leq d)$ is the effective problem dimension which measures the number of poorly explored directions in offline data and depends on the eigen-spectrum $(\lambda_k)_{k \in [d]}$ of the Gram matrix of the offline data. The eigen-spectrum $(\lambda_k)_{k \in [d]}$ is a quantitative measure of the \emph{quality} of offline data. If the offline data is poorly explored ($\deff \approx d$), we recover the established regret bounds for purely online setting while, when offline data is abundant ($\Toff >> T$) and well-explored ($\deff = o(1) $), the online regret reduces substantially. Additionally, we provide the first known minimax regret lower bounds in this setting that depend explicitly on the quality of the offline data. These lower bounds establish the optimality of our algorithm in regimes where offline data is either well-explored or poorly explored. Finally, by using a Frank-Wolfe approximation to the extended optimal design we further improve the $O(d^{2})$ term to $O\left(\frac{d^{2}}{\deff} \min \{ \deff,1\} \right)$, which can be substantial in high dimensions with moderate quality of offline data $\deff = \Omega(1)$.
♻ ☆ C-MAG: Cascade Multimodal Attributed Graphs for Supply Chain Link Prediction
Workshop version accepted at KDD 2025 (AI4SupplyChain). Connecting an ever-expanding catalogue of products with suitable manufacturers and suppliers is critical for resilient, efficient global supply chains, yet traditional methods struggle to capture complex capabilities, certifications, geographic constraints, and rich multimodal data of real-world manufacturer profiles. To address these gaps, we introduce PMGraph, a public benchmark of bipartite and heterogeneous multimodal supply-chain graphs linking 8,888 manufacturers, over 70k products, more than 110k manufacturer-product edges, and over 29k product images. Building on this benchmark, we propose the Cascade Multimodal Attributed Graph C-MAG, a two-stage architecture that first aligns and aggregates textual and visual attributes into intermediate group embeddings, then propagates them through a manufacturer-product hetero-graph via multiscale message passing to enhance link prediction accuracy. C-MAG also provides practical guidelines for modality-aware fusion, preserving predictive performance in noisy, real-world settings.
comment: https://openreview.net/pdf?id=mE5n6OJHwO
♻ ☆ MIND: A Noise-Adaptive Denoising Framework for Medical Images Integrating Multi-Scale Transformer SP 2025
The core role of medical images in disease diagnosis makes their quality directly affect the accuracy of clinical judgment. However, due to factors such as low-dose scanning, equipment limitations and imaging artifacts, medical images are often accompanied by non-uniform noise interference, which seriously affects structure recognition and lesion detection. This paper proposes a medical image adaptive denoising model (MI-ND) that integrates multi-scale convolutional and Transformer architecture, introduces a noise level estimator (NLE) and a noise adaptive attention module (NAAB), and realizes channel-spatial attention regulation and cross-modal feature fusion driven by noise perception. Systematic testing is carried out on multimodal public datasets. Experiments show that this method significantly outperforms the comparative methods in image quality indicators such as PSNR, SSIM, and LPIPS, and improves the F1 score and ROC-AUC in downstream diagnostic tasks, showing strong prac-tical value and promotional potential. The model has outstanding benefits in structural recovery, diagnostic sensitivity, and cross-modal robustness, and provides an effective solution for medical image enhancement and AI-assisted diagnosis and treatment.
comment: Accepted by the 7th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP 2025). 6 pages, 6 figures
♻ ☆ RocketKV: Accelerating Long-Context LLM Inference via Two-Stage KV Cache Compression ICML 2025
Transformer-based Large Language Models rely critically on the KV cache to efficiently handle extended contexts during the decode phase. Yet, the size of the KV cache grows proportionally with the input length, burdening both memory bandwidth and capacity as decoding progresses. To address this challenge, we present RocketKV, a training-free KV cache compression strategy containing two consecutive stages. In the first stage, it performs coarse-grain permanent KV cache eviction on the input sequence tokens. In the second stage, it adopts a hybrid sparse attention method to conduct fine-grain top-k sparse attention, approximating the attention scores by leveraging both head and sequence dimensionality reductions. We show that RocketKV provides a compression ratio of up to 400$\times$, end-to-end speedup of up to 3.7$\times$ as well as peak memory reduction of up to 32.6% in the decode phase on an NVIDIA A100 GPU compared to the full KV cache baseline, while achieving negligible accuracy loss on a variety of long-context tasks. We also propose a variant of RocketKV for multi-turn scenarios, which consistently outperforms other existing methods and achieves accuracy nearly on par with an oracle top-k attention scheme. The source code is available here: https://github.com/NVlabs/RocketKV.
comment: ICML 2025
♻ ☆ Generalizing Scaling Laws for Dense and Sparse Large Language Models
Over the past few years, the size of language models has grown exponentially, as has the computational cost to train these large models. This rapid growth has motivated researchers to develop new techniques aimed at enhancing the efficiency of the training process. Despite these advancements, optimally predicting the model size or allocating optimal resources remains a challenge. Several efforts have addressed the challenge by proposing different scaling laws, but almost all of them are architecture-specific (dense or sparse). In this work we revisit existing scaling laws and propose a generalized scaling law to provide a unified framework that is applicable to both dense and sparse large language models. We evaluate and compare our proposed scaling law with existing scaling laws to demonstrate its effectiveness.
comment: 8 pages, 8 figures
♻ ☆ Multi-Step Reasoning with Large Language Models, a Survey
Language models with billions of parameters exhibit in-context learning abilities, enabling few-shot learning on tasks that the model was not specifically trained for. Traditional models achieve breakthrough performance on language tasks, but do not perform well on basic reasoning benchmarks. However, a new in-context learning approach, Chain-of-thought, has demonstrated strong multi-step reasoning abilities on these benchmarks. The research on LLM reasoning abilities started with the question whether LLMs can solve grade school math word problems, and has expanded to other tasks in the past few years. This paper reviews the field of multi-step reasoning with LLMs. We propose a taxonomy that identifies different ways to generate, evaluate, and control multi-step reasoning. We provide an in-depth coverage of core approaches and open problems, and we propose a research agenda for the near future. We find that multi-step reasoning approaches have progressed beyond math word problems, and can now successfully solve challenges in logic, combinatorial games, and robotics, sometimes by first generating code that is then executed by external tools. Many studies in multi-step methods are using reinforcement learning for finetuning, external optimization loops, in context reinforcement learning, and self-reflection.
comment: revised version
♻ ☆ Leveraging Reviewer Experience in Code Review Comment Generation
Modern code review is a ubiquitous software quality assurance process aimed at identifying potential issues within newly written code. Despite its effectiveness, the process demands large amounts of effort from the human reviewers involved. To help alleviate this workload, researchers have trained deep learning models to imitate human reviewers in providing natural language code reviews. Formally, this task is known as code review comment generation. Prior work has demonstrated improvements in this task by leveraging machine learning techniques and neural models, such as transfer learning and the transformer architecture. However, the quality of the model generated reviews remain sub-optimal due to the quality of the open-source code review data used in model training. This is in part due to the data obtained from open-source projects where code reviews are conducted in a public forum, and reviewers possess varying levels of software development experience, potentially affecting the quality of their feedback. To accommodate for this variation, we propose a suite of experience-aware training methods that utilise the reviewers' past authoring and reviewing experiences as signals for review quality. Specifically, we propose experience-aware loss functions (ELF), which use the reviewers' authoring and reviewing ownership of a project as weights in the model's loss function. Through this method, experienced reviewers' code reviews yield larger influence over the model's behaviour. Compared to the SOTA model, ELF was able to generate higher quality reviews in terms of accuracy, informativeness, and comment types generated. The key contribution of this work is the demonstration of how traditional software engineering concepts such as reviewer experience can be integrated into the design of AI-based automated code review models.
comment: Accepted at ACM Transactions on Software Engineering and Methodology (TOSEM)
♻ ☆ GenAI Confessions: Black-box Membership Inference for Generative Image Models
From a simple text prompt, generative-AI image models can create stunningly realistic and creative images bounded, it seems, by only our imagination. These models have achieved this remarkable feat thanks, in part, to the ingestion of billions of images collected from nearly every corner of the internet. Many creators have understandably expressed concern over how their intellectual property has been ingested without their permission or a mechanism to opt out of training. As a result, questions of fair use and copyright infringement have quickly emerged. We describe a method that allows us to determine if a model was trained on a specific image or set of images. This method is computationally efficient and assumes no explicit knowledge of the model architecture or weights (so-called black-box membership inference). We anticipate that this method will be crucial for auditing existing models and, looking ahead, ensuring the fairer development and deployment of generative AI models.
comment: https://genai-confessions.github.io
♻ ☆ AbRank: A Benchmark Dataset and Metric-Learning Framework for Antibody-Antigen Affinity Ranking
Accurate prediction of antibody-antigen (Ab-Ag) binding affinity is essential for therapeutic design and vaccine development, yet the performance of current models is limited by noisy experimental labels, heterogeneous assay conditions, and poor generalization across the vast antibody and antigen sequence space. We introduce AbRank, a large-scale benchmark and evaluation framework that reframes affinity prediction as a pairwise ranking problem. AbRank aggregates over 380,000 binding assays from nine heterogeneous sources, spanning diverse antibodies, antigens, and experimental conditions, and introduces standardized data splits that systematically increase distribution shift, from local perturbations such as point mutations to broad generalization across novel antigens and antibodies. To ensure robust supervision, AbRank defines an m-confident ranking framework by filtering out comparisons with marginal affinity differences, focusing training on pairs with at least an m-fold difference in measured binding strength. As a baseline for the benchmark, we introduce WALLE-Affinity, a graph-based approach that integrates protein language model embeddings with structural information to predict pairwise binding preferences. Our benchmarks reveal significant limitations in current methods under realistic generalization settings and demonstrate that ranking-based training improves robustness and transferability. In summary, AbRank offers a robust foundation for machine learning models to generalize across the antibody-antigen space, with direct relevance for scalable, structure-aware antibody therapeutic design.
♻ ☆ Conformal Prediction of Classifiers with Many Classes based on Noisy Labels
Conformal Prediction (CP) controls the prediction uncertainty of classification systems by producing a small prediction set, ensuring a predetermined probability that the true class lies within this set. This is commonly done by defining a score, based on the model predictions, and setting a threshold on this score using a validation set. In this study, we address the problem of CP calibration when we only have access to a calibration set with noisy labels. We show how we can estimate the noise-free conformal threshold based on the noisy labeled data. We derive a finite sample coverage guarantee for uniform noise that remains effective even in tasks with a large number of classes. We dub our approach Noise-Aware Conformal Prediction (NACP). We illustrate the performance of the proposed results on several standard image classification datasets with a large number of classes.
comment: Accepted by COPA 2025. Proceedings of Machine Learning Research 26, 2025 Conformal and Probabilistic Prediction with Applications
♻ ☆ Pretrained Reversible Generation as Unsupervised Visual Representation Learning ICCV 2025
Recent generative models based on score matching and flow matching have significantly advanced generation tasks, but their potential in discriminative tasks remains underexplored. Previous approaches, such as generative classifiers, have not fully leveraged the capabilities of these models for discriminative tasks due to their intricate designs. We propose Pretrained Reversible Generation (PRG), which extracts unsupervised representations by reversing the generative process of a pretrained continuous generation model. PRG effectively reuses unsupervised generative models, leveraging their high capacity to serve as robust and generalizable feature extractors for downstream tasks. This framework enables the flexible selection of feature hierarchies tailored to specific downstream tasks. Our method consistently outperforms prior approaches across multiple benchmarks, achieving state-of-the-art performance among generative model based methods, including 78% top-1 accuracy on ImageNet at a resolution of 64*64. Extensive ablation studies, including out-of-distribution evaluations, further validate the effectiveness of our approach.PRG is available at https://github.com/opendilab/PRG.
comment: Accepted by ICCV 2025
♻ ☆ Dequantified Diffusion-Schr{ö}dinger Bridge for Density Ratio Estimation
Density ratio estimation is fundamental to tasks involving $f$-divergences, yet existing methods often fail under significantly different distributions or inadequately overlapping supports -- the density-chasm and the support-chasm problems. Additionally, prior approaches yield divergent time scores near boundaries, leading to instability. We design $\textbf{D}^3\textbf{RE}$, a unified framework for \textbf{robust}, \textbf{stable} and \textbf{efficient} density ratio estimation. We propose the dequantified diffusion bridge interpolant (DDBI), which expands support coverage and stabilizes time scores via diffusion bridges and Gaussian dequantization. Building on DDBI, the proposed dequantified Schr{\"o}dinger bridge interpolant (DSBI) incorporates optimal transport to solve the Schr{\"o}dinger bridge problem, enhancing accuracy and efficiency. Our method offers uniform approximation and bounded time scores in theory, and outperforms baselines empirically in mutual information and density estimation tasks.
♻ ☆ Indirect Query Bayesian Optimization with Integrated Feedback
We develop the framework of Indirect Query Bayesian Optimization (IQBO), a new class of Bayesian optimization problems where the integrated feedback is given via a conditional expectation of the unknown function $f$ to be optimized. The underlying conditional distribution can be unknown and learned from data. The goal is to find the global optimum of $f$ by adaptively querying and observing in the space transformed by the conditional distribution. This is motivated by real-world applications where one cannot access direct feedback due to privacy, hardware or computational constraints. We propose the Conditional Max-Value Entropy Search (CMES) acquisition function to address this novel setting, and propose a hierarchical search algorithm with multi-resolution feedback to improve computational efficiency. We show regret bounds for our proposed methods and demonstrate the effectiveness of our approaches on simulated optimization tasks.
comment: Preliminary work. Under review
♻ ☆ Gradient Descent Algorithm in Hilbert Spaces under Stationary Markov Chains with $φ$- and $β$-Mixing
In this paper, we study a strictly stationary Markov chain gradient descent algorithm operating in general Hilbert spaces. Our analysis focuses on the mixing coefficients of the underlying process, specifically the $\phi$- and $\beta$-mixing coefficients. Under these assumptions, we derive probabilistic upper bounds on the convergence behavior of the algorithm based on the exponential as well as the polynomial decay of the mixing coefficients.
♻ ☆ Retrieval-Augmented Decision Transformer: External Memory for In-context RL
In-context learning (ICL) is the ability of a model to learn a new task by observing a few exemplars in its context. While prevalent in NLP, this capability has recently also been observed in Reinforcement Learning (RL) settings. Prior in-context RL methods, however, require entire episodes in the agent's context. Given that complex environments typically lead to long episodes with sparse rewards, these methods are constrained to simple environments with short episodes. To address these challenges, we introduce Retrieval-Augmented Decision Transformer (RA-DT). RA-DT employs an external memory mechanism to store past experiences from which it retrieves only sub-trajectories relevant for the current situation. The retrieval component in RA-DT does not require training and can be entirely domain-agnostic. We evaluate the capabilities of RA-DT on grid-world environments, robotics simulations, and procedurally-generated video games. On grid-worlds, RA-DT outperforms baselines, while using only a fraction of their context length. Furthermore, we illuminate the limitations of current in-context RL methods on complex environments and discuss future directions. To facilitate future research, we release datasets for four of the considered environments.
♻ ☆ Continuous-time q-Learning for Jump-Diffusion Models under Tsallis Entropy
This paper studies the continuous-time reinforcement learning in jump-diffusion models by featuring the q-learning (the continuous-time counterpart of Q-learning) under Tsallis entropy regularization. Contrary to the Shannon entropy, the general form of Tsallis entropy renders the optimal policy not necessarily a Gibbs measure. Herein, the Lagrange multiplier and KKT condition are needed to ensure that the learned policy is a probability density function. As a consequence, the characterization of the optimal policy using the q-function also involves a Lagrange multiplier. In response, we establish the martingale characterization of the q-function and devise two q-learning algorithms depending on whether the Lagrange multiplier can be derived explicitly or not. In the latter case, we consider different parameterizations of the optimal q-function and the optimal policy, and update them alternatively in an Actor-Critic manner. We also study two numerical examples, namely, an optimal liquidation problem in dark pools and a non-LQ control problem. It is interesting to see therein that the optimal policies under the Tsallis entropy regularization can be characterized explicitly, which are distributions concentrated on some compact support. The satisfactory performance of our q-learning algorithms is illustrated in each example.
♻ ☆ Cryo-em images are intrinsically low dimensional
Simulation-based inference provides a powerful framework for cryo-electron microscopy, employing neural networks in methods like CryoSBI to infer biomolecular conformations via learned latent representations. This latent space represents a rich opportunity, encoding valuable information about the physical system and the inference process. Harnessing this potential hinges on understanding the underlying geometric structure of these representations. We investigate this structure by applying manifold learning techniques to CryoSBI representations of hemagglutinin (simulated and experimental). We reveal that these high-dimensional data inherently populate low-dimensional, smooth manifolds, with simulated data effectively covering the experimental counterpart. By characterizing the manifold's geometry using Diffusion Maps and identifying its principal axes of variation via coordinate interpretation methods, we establish a direct link between the latent structure and key physical parameters. Discovering this intrinsic low-dimensionality and interpretable geometric organization not only validates the CryoSBI approach but enables us to learn more from the data structure and provides opportunities for improving future inference strategies by exploiting this revealed manifold geometry.
♻ ☆ Probabilistic Emissivity Retrieval from Hyperspectral Data via Physics-Guided Variational Inference
Recent research has proven neural networks to be a powerful tool for performing hyperspectral imaging (HSI) target identification. However, many deep learning frameworks deliver a single material class prediction and operate on a per-pixel basis; such approaches are limited in their interpretability and restricted to predicting materials that are accessible in available training libraries. In this work, we present an inverse modeling approach in the form of a physics-conditioned generative model.A probabilistic latent-variable model learns the underlying distribution of HSI radiance measurements and produces the conditional distribution of the emissivity spectrum. Moreover, estimates of the HSI scene's atmosphere and background are used as a physically relevant conditioning mechanism to contextualize a given radiance measurement during the encoding and decoding processes. Furthermore, we employ an in-the-loop augmentation scheme and physics-based loss criteria to avoid bias towards a predefined training material set and to encourage the model to learn physically consistent inverse mappings. Monte-Carlo sampling of the model's conditioned posterior delivers a sought emissivity distribution and allows for interpretable uncertainty quantification. Moreover, a distribution-based material matching scheme is presented to return a set of likely material matches for an inferred emissivity distribution. Hence, we present a strategy to incorporate contextual information about a given HSI scene, capture the possible variation of underlying material spectra, and provide interpretable probability measures of a candidate material accounting for given remotely-sensed radiance measurement.
comment: 14 figures
♻ ☆ ParkDiffusion: Heterogeneous Multi-Agent Multi-Modal Trajectory Prediction for Automated Parking using Diffusion Models IROS 2025
Automated parking is a critical feature of Advanced Driver Assistance Systems (ADAS), where accurate trajectory prediction is essential to bridge perception and planning modules. Despite its significance, research in this domain remains relatively limited, with most existing studies concentrating on single-modal trajectory prediction of vehicles. In this work, we propose ParkDiffusion, a novel approach that predicts the trajectories of both vehicles and pedestrians in automated parking scenarios. ParkDiffusion employs diffusion models to capture the inherent uncertainty and multi-modality of future trajectories, incorporating several key innovations. First, we propose a dual map encoder that processes soft semantic cues and hard geometric constraints using a two-step cross-attention mechanism. Second, we introduce an adaptive agent type embedding module, which dynamically conditions the prediction process on the distinct characteristics of vehicles and pedestrians. Third, to ensure kinematic feasibility, our model outputs control signals that are subsequently used within a kinematic framework to generate physically feasible trajectories. We evaluate ParkDiffusion on the Dragon Lake Parking (DLP) dataset and the Intersections Drone (inD) dataset. Our work establishes a new baseline for heterogeneous trajectory prediction in parking scenarios, outperforming existing methods by a considerable margin.
comment: IROS 2025 Camera-Ready Version
♻ ☆ Deep Learning Model Acceleration and Optimization Strategies for Real-Time Recommendation Systems
With the rapid growth of Internet services, recommendation systems play a central role in delivering personalized content. Faced with massive user requests and complex model architectures, the key challenge for real-time recommendation systems is how to reduce inference latency and increase system throughput without sacrificing recommendation quality. This paper addresses the high computational cost and resource bottlenecks of deep learning models in real-time settings by proposing a combined set of modeling- and system-level acceleration and optimization strategies. At the model level, we dramatically reduce parameter counts and compute requirements through lightweight network design, structured pruning, and weight quantization. At the system level, we integrate multiple heterogeneous compute platforms and high-performance inference libraries, and we design elastic inference scheduling and load-balancing mechanisms based on real-time load characteristics. Experiments show that, while maintaining the original recommendation accuracy, our methods cut latency to less than 30% of the baseline and more than double system throughput, offering a practical solution for deploying large-scale online recommendation services.
♻ ☆ MGDFIS: Multi-scale Global-detail Feature Integration Strategy for Small Object Detection
Small object detection in UAV imagery is crucial for applications such as search-and-rescue, traffic monitoring, and environmental surveillance, but it is hampered by tiny object size, low signal-to-noise ratios, and limited feature extraction. Existing multi-scale fusion methods help, but add computational burden and blur fine details, making small object detection in cluttered scenes difficult. To overcome these challenges, we propose the Multi-scale Global-detail Feature Integration Strategy (MGDFIS), a unified fusion framework that tightly couples global context with local detail to boost detection performance while maintaining efficiency. MGDFIS comprises three synergistic modules: the FusionLock-TSS Attention Module, which marries token-statistics self-attention with DynamicTanh normalization to highlight spectral and spatial cues at minimal cost; the Global-detail Integration Module, which fuses multi-scale context via directional convolution and parallel attention while preserving subtle shape and texture variations; and the Dynamic Pixel Attention Module, which generates pixel-wise weighting maps to rebalance uneven foreground and background distributions and sharpen responses to true object regions. Extensive experiments on the VisDrone benchmark demonstrate that MGDFIS consistently outperforms state-of-the-art methods across diverse backbone architectures and detection frameworks, achieving superior precision and recall with low inference time. By striking an optimal balance between accuracy and resource usage, MGDFIS provides a practical solution for small-object detection on resource-constrained UAV platforms.
comment: 9 pages, 5 figures, 3 tables
♻ ☆ FlexCTC: GPU-powered CTC Beam Decoding With Advanced Contextual Abilities
While beam search improves speech recognition quality over greedy decoding, standard implementations are slow, often sequential, and CPU-bound. To fully leverage modern hardware capabilities, we present a novel open-source FlexCTC toolkit for fully GPU-based beam decoding, designed for Connectionist Temporal Classification (CTC) models. Developed entirely in Python and PyTorch, it offers a fast, user-friendly, and extensible alternative to traditional C++, CUDA, or WFST-based decoders. The toolkit features a high-performance, fully batched GPU implementation with eliminated CPU-GPU synchronization and minimized kernel launch overhead via CUDA Graphs. It also supports advanced contextualization techniques, including GPU-powered N-gram language model fusion and phrase-level boosting. These features enable accurate and efficient decoding, making them suitable for both research and production use.
comment: Accepted to Automatic Speech Recognition and Understanding Workshop (ASRU) 2025
♻ ☆ Faster Diffusion Models via Higher-Order Approximation
In this paper, we explore provable acceleration of diffusion models without any additional retraining. Focusing on the task of approximating a target data distribution in $\mathbb{R}^d$ to within $\varepsilon$ total-variation distance, we propose a principled, training-free sampling algorithm that requires only the order of $$ d^{1+2/K} \varepsilon^{-1/K} $$ score function evaluations (up to log factor) in the presence of accurate scores, where $K>0$ is an arbitrary fixed integer. This result applies to a broad class of target data distributions, without the need for assumptions such as smoothness or log-concavity. Our theory is robust vis-a-vis inexact score estimation, degrading gracefully as the score estimation error increases -- without demanding higher-order smoothness on the score estimates as assumed in previous work. The proposed algorithm draws insight from high-order ODE solvers, leveraging high-order Lagrange interpolation and successive refinement to approximate the integral derived from the probability flow ODE. More broadly, our work develops a theoretical framework towards understanding the efficacy of high-order methods for accelerated sampling.
♻ ☆ How Much is Too Much? Learning Personalised Risk Thresholds in Real-World Driving
While naturalistic driving studies have become foundational for providing real-world driver behaviour data, the existing frameworks for identifying risk based on such data have two fundamental limitations: (i) they rely on predefined time windows and fixed thresholds to disentangle risky and normal episodes of driving behaviour, and (ii) they assume stationary behavioural distribution across drivers and trips. These limitations have hindered the ability of the existing frameworks to capture behavioural nuances, adapt to individual variability, or respond to stochastic fluctuations in driving contexts. Thus, there is a need for a unified framework that jointly adapts risk labels and model learning to per-driver behavioural dynamics, a gap this study aims to bridge. We present an adaptive and personalised risk detection framework, built on Belgian naturalistic driving data, integrating a rolling time window with bi-level optimisation and dynamically calibrating both model hyperparameters and driver-specific risk thresholds at the same time. The framework was tested using two safety indicators, speed-weighted time headway and harsh driving events, and three models: Random Forest, XGBoost, and Deep Neural Network (DNN). Speed-weighted time headway yielded more stable and context-sensitive classifications than harsh-event counts. XGBoost maintained consistent performance under changing thresholds, while the DNN excelled in early-risk detection at lower thresholds but exhibited higher variability. The ensemble calibration integrates model-specific thresholds and confidence scores into a unified risk decision, balancing sensitivity and stability. Overall, the framework demonstrates the potential of adaptive and personalised risk detection to enhance real-time safety feedback and support driver-specific interventions within intelligent transport systems.
comment: 33 pages
♻ ☆ From Model Performance to Claim: How a Change of Focus in Machine Learning Replicability Can Help Bridge the Responsibility Gap
Two goals - improving replicability and accountability of Machine Learning research respectively, have accrued much attention from the AI ethics and the Machine Learning community. Despite sharing the measures of improving transparency, the two goals are discussed in different registers - replicability registers with scientific reasoning whereas accountability registers with ethical reasoning. Given the existing challenge of the Responsibility Gap - holding Machine Learning scientists accountable for Machine Learning harms due to them being far from sites of application, this paper posits that reconceptualizing replicability can help bridge the gap. Through a shift from model performance replicability to claim replicability, Machine Learning scientists can be held accountable for producing non-replicable claims that are prone to eliciting harm due to misuse and misinterpretation. In this paper, I make the following contributions. First, I define and distinguish two forms of replicability for ML research that can aid constructive conversations around replicability. Second, I formulate an argument for claim-replicability's advantage over model performance replicability in justifying assigning accountability to Machine Learning scientists for producing non-replicable claims and show how it enacts a sense of responsibility that is actionable. In addition, I characterize the implementation of claim replicability as more of a social project than a technical one by discussing its competing epistemological principles, practical implications on Circulating Reference, Interpretative Labor, and research communication.
comment: FAccT 2024
♻ ☆ MoSE: Skill-by-Skill Mixture-of-Experts Learning for Embodied Autonomous Machines
To meet the growing demand for smarter, faster, and more efficient embodied AI solutions, we introduce a novel Mixture-of-Expert (MoE) method that significantly boosts reasoning and learning efficiency for embodied autonomous systems. General MoE models demand extensive training data and complex optimization, which limits their applicability in embodied AI such as autonomous driving (AD) and robotic manipulation. In this work, we propose a skill-oriented MoE called MoSE, which mimics the human learning and reasoning process skill-by-skill, step-by-step. We introduce a skill-oriented routing mechanism that begins with defining and annotating specific skills, enabling experts to identify the necessary competencies for various scenarios and reasoning tasks, thereby facilitating skill-by-skill learning. To better align with multi-step planning in human reasoning and in end-to-end driving models, we build a hierarchical skill dataset and pretrain the router to encourage the model to think step-by-step. Unlike other multi-round dialogues, MoSE integrates valuable auxiliary tasks (e.g. perception-prediction-planning for AD, and high-level and low-level planning for robots) in one single forward process without introducing any extra computational cost. With less than 3B sparsely activated parameters, our model effectively grows more diverse expertise and outperforms models on both AD corner-case reasoning tasks and robot reasoning tasks with less than 40% of the parameters.
♻ ☆ The Importance of Being Lazy: Scaling Limits of Continual Learning
Despite recent efforts, neural networks still struggle to learn in non-stationary environments, and our understanding of catastrophic forgetting (CF) is far from complete. In this work, we perform a systematic study on the impact of model scale and the degree of feature learning in continual learning. We reconcile existing contradictory observations on scale in the literature, by differentiating between lazy and rich training regimes through a variable parameterization of the architecture. We show that increasing model width is only beneficial when it reduces the amount of feature learning, yielding more laziness. Using the framework of dynamical mean field theory, we then study the infinite width dynamics of the model in the feature learning regime and characterize CF, extending prior theoretical results limited to the lazy regime. We study the intricate relationship between feature learning, task non-stationarity, and forgetting, finding that high feature learning is only beneficial with highly similar tasks. We identify a transition modulated by task similarity where the model exits an effectively lazy regime with low forgetting to enter a rich regime with significant forgetting. Finally, our findings reveal that neural networks achieve optimal performance at a critical level of feature learning, which depends on task non-stationarity and transfers across model scales. This work provides a unified perspective on the role of scale and feature learning in continual learning.
comment: Proceedings of the 42nd International Conference on Machine Learning (2025). JG and AB contributed equally to this work
♻ ☆ Towards flexible perception with visual memory ICML 2025
Training a neural network is a monolithic endeavor, akin to carving knowledge into stone: once the process is completed, editing the knowledge in a network is hard, since all information is distributed across the network's weights. We here explore a simple, compelling alternative by marrying the representational power of deep neural networks with the flexibility of a database. Decomposing the task of image classification into image similarity (from a pre-trained embedding) and search (via fast nearest neighbor retrieval from a knowledge database), we build on well-established components to construct a simple and flexible visual memory that has the following key capabilities: (1.) The ability to flexibly add data across scales: from individual samples all the way to entire classes and billion-scale data; (2.) The ability to remove data through unlearning and memory pruning; (3.) An interpretable decision-mechanism on which we can intervene to control its behavior. Taken together, these capabilities comprehensively demonstrate the benefits of an explicit visual memory. We hope that it might contribute to a conversation on how knowledge should be represented in deep vision models -- beyond carving it in "stone" weights.
comment: ICML 2025 camera ready version
♻ ☆ DRWKV: Focusing on Object Edges for Low-Light Image Enhancement
Low-light image enhancement remains a challenging task, particularly in preserving object edge continuity and fine structural details under extreme illumination degradation. In this paper, we propose a novel model, DRWKV (Detailed Receptance Weighted Key Value), which integrates our proposed Global Edge Retinex (GER) theory, enabling effective decoupling of illumination and edge structures for enhanced edge fidelity. Secondly, we introduce Evolving WKV Attention, a spiral-scanning mechanism that captures spatial edge continuity and models irregular structures more effectively. Thirdly, we design the Bilateral Spectrum Aligner (Bi-SAB) and a tailored MS2-Loss to jointly align luminance and chrominance features, improving visual naturalness and mitigating artifacts. Extensive experiments on five LLIE benchmarks demonstrate that DRWKV achieves leading performance in PSNR, SSIM, and NIQE while maintaining low computational complexity. Furthermore, DRWKV enhances downstream performance in low-light multi-object tracking tasks, validating its generalization capabilities.
♻ ☆ Forecasting steam mass flow in power plants using the parallel hybrid network
Efficient and sustainable power generation is a crucial concern in the energy sector. In particular, thermal power plants grapple with accurately predicting steam mass flow, which is crucial for operational efficiency and cost reduction. In this study, we use a parallel hybrid neural network architecture that combines a parametrized quantum circuit and a conventional feed-forward neural network specifically designed for time-series prediction in industrial settings to enhance predictions of steam mass flow 15 minutes into the future. Our results show that the parallel hybrid model outperforms standalone classical and quantum models, achieving more than 5.7 and 4.9 times lower mean squared error loss on the test set after training compared to pure classical and pure quantum networks, respectively. Furthermore, the hybrid model demonstrates smaller relative errors between the ground truth and the model predictions on the test set, up to 2 times better than the pure classical model. These findings contribute to the broader scientific understanding of how integrating quantum and classical machine learning techniques can be applied to real-world challenges faced by the energy sector, ultimately leading to optimized power plant operations. To our knowledge, this study constitutes the first parallel hybrid quantum-classical architecture deployed on a real-world power-plant dataset, illustrating how near-term quantum resources can already augment classical analytics in the energy sector.
comment: 14 pages, 5 figures
Provably Transformers Harness Multi-Concept Word Semantics for Efficient In-Context Learning NeurIPS 2024
Transformer-based large language models (LLMs) have displayed remarkable creative prowess and emergence capabilities. Existing empirical studies have revealed a strong connection between these LLMs' impressive emergence abilities and their in-context learning (ICL) capacity, allowing them to solve new tasks using only task-specific prompts without further fine-tuning. On the other hand, existing empirical and theoretical studies also show that there is a linear regularity of the multi-concept encoded semantic representation behind transformer-based LLMs. However, existing theoretical work fail to build up an understanding of the connection between this regularity and the innovative power of ICL. Additionally, prior work often focuses on simplified, unrealistic scenarios involving linear transformers or unrealistic loss functions, and they achieve only linear or sub-linear convergence rates. In contrast, this work provides a fine-grained mathematical analysis to show how transformers leverage the multi-concept semantics of words to enable powerful ICL and excellent out-of-distribution ICL abilities, offering insights into how transformers innovate solutions for certain unseen tasks encoded with multiple cross-concept semantics. Inspired by empirical studies on the linear latent geometry of LLMs, the analysis is based on a concept-based low-noise sparse coding prompt model. Leveraging advanced techniques, this work showcases the exponential 0-1 loss convergence over the highly non-convex training dynamics, which pioneeringly incorporates the challenges of softmax self-attention, ReLU-activated MLPs, and cross-entropy loss. Empirical simulations corroborate the theoretical findings.
comment: Accepted by the 38th Conference on Neural Information Processing Systems (NeurIPS 2024)
♻ ☆ Quantum Machine Learning in Transportation: A Case Study of Pedestrian Stress Modelling
Quantum computing has opened new opportunities to tackle complex machine learning tasks, for instance, high-dimensional data representations commonly required in intelligent transportation systems. We explore quantum machine learning to model complex skin conductance response (SCR) events that reflect pedestrian stress in a virtual reality road crossing experiment. For this purpose, Quantum Support Vector Machine (QSVM) with an eight-qubit ZZ feature map and a Quantum Neural Network (QNN) using a Tree Tensor Network ansatz and an eight-qubit ZZ feature map, were developed on Pennylane. The dataset consists of SCR measurements along with features such as the response amplitude and elapsed time, which have been categorized into amplitude-based classes. The QSVM achieved good training accuracy, but had an overfitting problem, showing a low test accuracy of 45% and therefore impacting the reliability of the classification model. The QNN model reached a higher test accuracy of 55%, making it a better classification model than the QSVM and the classic versions.
comment: Proceedings of IEEE Intelligent Transportation Systems Conference, 2025
♻ ☆ Learning Whole-Body Loco-Manipulation for Omni-Directional Task Space Pose Tracking with a Wheeled-Quadrupedal-Manipulator
In this paper, we study the whole-body loco-manipulation problem using reinforcement learning (RL). Specifically, we focus on the problem of how to coordinate the floating base and the robotic arm of a wheeled-quadrupedal manipulator robot to achieve direct six-dimensional (6D) end-effector (EE) pose tracking in task space. Different from conventional whole-body loco-manipulation problems that track both floating-base and end-effector commands, the direct EE pose tracking problem requires inherent balance among redundant degrees of freedom in the whole-body motion. We leverage RL to solve this challenging problem. To address the associated difficulties, we develop a novel reward fusion module (RFM) that systematically integrates reward terms corresponding to different tasks in a nonlinear manner. In such a way, the inherent multi-stage and hierarchical feature of the loco-manipulation problem can be carefully accommodated. By combining the proposed RFM with the a teacher-student RL training paradigm, we present a complete RL scheme to achieve 6D EE pose tracking for the wheeled-quadruped manipulator robot. Extensive simulation and hardware experiments demonstrate the significance of the RFM. In particular, we enable smooth and precise tracking performance, achieving state-of-the-art tracking position error of less than 5 cm, and rotation error of less than 0.1 rad. Please refer to https://clearlab-sustech.github.io/RFM_loco_mani/ for more experimental videos.
♻ ☆ Shifting Perspectives: Steering Vectors for Robust Bias Mitigation in LLMs AACL 2025
We present a novel approach to bias mitigation in large language models (LLMs) by applying steering vectors to modify model activations in forward passes. We compute 8 steering vectors, each corresponding to a different social bias axis, such as age, gender, or race, on a training subset of the BBQ dataset and compare the effectiveness of these to 3 additional bias mitigation methods across 4 datasets. When optimized on the BBQ dataset, our individually tuned steering vectors achieve average improvements of 12.8% on BBQ, 8.3% on CLEAR-Bias, and 1% on StereoSet, and show improvements over prompting and Self-Debias in all cases, and improvements over fine-tuning in 12 out of 17 evaluations. In addition, steering vectors showed the lowest impact on MMLU scores of the four bias mitigation methods tested. The work presents the first systematic investigation of steering vectors for bias mitigation, and we demonstrate that they are a powerful and computationally efficient strategy for reducing bias in LLMs, with broader implications for enhancing AI safety.
comment: Submitted to AACL 2025
♻ ☆ Discrete Neural Algorithmic Reasoning ICML 2025
Neural algorithmic reasoning aims to capture computations with neural networks by training models to imitate the execution of classical algorithms. While common architectures are expressive enough to contain the correct model in the weight space, current neural reasoners struggle to generalize well on out-of-distribution data. On the other hand, classical computations are not affected by distributional shifts as they can be described as transitions between discrete computational states. In this work, we propose to force neural reasoners to maintain the execution trajectory as a combination of finite predefined states. To achieve this, we separate discrete and continuous data flows and describe the interaction between them. Trained with supervision on the algorithm's state transitions, such models are able to perfectly align with the original algorithm. To show this, we evaluate our approach on multiple algorithmic problems and achieve perfect test scores both in single-task and multitask setups. Moreover, the proposed architectural choice allows us to prove the correctness of the learned algorithms for any test data.
comment: Forty-Second International Conference on Machine Learning (ICML 2025)
♻ ☆ Understanding Nonlinear Implicit Bias via Region Counts in Input Space
One explanation for the strong generalization ability of neural networks is implicit bias. Yet, the definition and mechanism of implicit bias in non-linear contexts remains little understood. In this work, we propose to characterize implicit bias by the count of connected regions in the input space with the same predicted label. Compared with parameter-dependent metrics (e.g., norm or normalized margin), region count can be better adapted to nonlinear, overparameterized models, because it is determined by the function mapping and is invariant to reparametrization. Empirically, we found that small region counts align with geometrically simple decision boundaries and correlate well with good generalization performance. We also observe that good hyper-parameter choices such as larger learning rates and smaller batch sizes can induce small region counts. We further establish the theoretical connections and explain how larger learning rate can induce small region counts in neural networks.
♻ ☆ Verifying Quantized Graph Neural Networks is PSPACE-complete IJCAI 2025
In this paper, we investigate the verification of quantized Graph Neural Networks (GNNs), where some fixed-width arithmetic is used to represent numbers. We introduce the linear-constrained validity (LVP) problem for verifying GNNs properties, and provide an efficient translation from LVP instances into a logical language. We show that LVP is in PSPACE, for any reasonable activation functions. We provide a proof system. We also prove PSPACE-hardness, indicating that while reasoning about quantized GNNs is feasible, it remains generally computationally challenging.
comment: In 34th International Joint Conference on Artificial Intelligence (IJCAI 2025)
♻ ☆ Robust Distributed Estimation: Extending Gossip Algorithms to Ranking and Trimmed Means
This paper addresses the problem of robust estimation in gossip algorithms over arbitrary communication graphs. Gossip algorithms are fully decentralized, relying only on local neighbor-to-neighbor communication, making them well-suited for situations where communication is constrained. A fundamental challenge in existing mean-based gossip algorithms is their vulnerability to malicious or corrupted nodes. In this paper, we show that an outlier-robust mean can be computed by globally estimating a robust statistic. More specifically, we propose a novel gossip algorithm for rank estimation, referred to as \textsc{GoRank}, and leverage it to design a gossip procedure dedicated to trimmed mean estimation, coined \textsc{GoTrim}. In addition to a detailed description of the proposed methods, a key contribution of our work is a precise convergence analysis: we establish an $\mathcal{O}(1/t)$ rate for rank estimation and an $\mathcal{O}(1 / {t})$ rate for trimmed mean estimation, where by $t$ is meant the number of iterations. Moreover, we provide a breakdown point analysis of \textsc{GoTrim}. We empirically validate our theoretical results through experiments on diverse network topologies, data distributions and contamination schemes.
♻ ☆ MetaCipher: A Time-Persistent and Universal Multi-Agent Framework for Cipher-Based Jailbreak Attacks for LLMs
As large language models (LLMs) grow more capable, they face growing vulnerability to sophisticated jailbreak attacks. While developers invest heavily in alignment finetuning and safety guardrails, researchers continue publishing novel attacks, driving progress through adversarial iteration. This dynamic mirrors a strategic game of continual evolution. However, two major challenges hinder jailbreak development: the high cost of querying top-tier LLMs and the short lifespan of effective attacks due to frequent safety updates. These factors limit cost-efficiency and practical impact of research in jailbreak attacks. To address this, we propose MetaCipher, a low-cost, multi-agent jailbreak framework that generalizes across LLMs with varying safety measures. Using reinforcement learning, MetaCipher is modular and adaptive, supporting extensibility to future strategies. Within as few as 10 queries, MetaCipher achieves state-of-the-art attack success rates on recent malicious prompt benchmarks, outperforming prior jailbreak methods. We conduct a large-scale empirical evaluation across diverse victim models and benchmarks, demonstrating its robustness and adaptability. Warning: This paper contains model outputs that may be offensive or harmful, shown solely to demonstrate jailbreak efficacy.
♻ ☆ LUMA: A Benchmark Dataset for Learning from Uncertain and Multimodal Data SIGIR 2025
Multimodal Deep Learning enhances decision-making by integrating diverse information sources, such as texts, images, audio, and videos. To develop trustworthy multimodal approaches, it is essential to understand how uncertainty impacts these models. We propose LUMA, a unique multimodal dataset, featuring audio, image, and textual data from 50 classes, specifically designed for learning from uncertain data. It extends the well-known CIFAR 10/100 dataset with audio samples extracted from three audio corpora, and text data generated using the Gemma-7B Large Language Model (LLM). The LUMA dataset enables the controlled injection of varying types and degrees of uncertainty to achieve and tailor specific experiments and benchmarking initiatives. LUMA is also available as a Python package including the functions for generating multiple variants of the dataset with controlling the diversity of the data, the amount of noise for each modality, and adding out-of-distribution samples. A baseline pre-trained model is also provided alongside three uncertainty quantification methods: Monte-Carlo Dropout, Deep Ensemble, and Reliable Conflictive Multi-View Learning. This comprehensive dataset and its tools are intended to promote and support the development, evaluation, and benchmarking of trustworthy and robust multimodal deep learning approaches. We anticipate that the LUMA dataset will help the research community to design more trustworthy and robust machine learning approaches for safety critical applications. The code and instructions for downloading and processing the dataset can be found at: https://github.com/bezirganyan/LUMA/ .
comment: SIGIR 2025
♻ ☆ RIZE: Regularized Imitation Learning via Distributional Reinforcement Learning
We propose a novel Inverse Reinforcement Learning (IRL) method that mitigates the rigidity of fixed reward structures and the limited flexibility of implicit reward regularization. Building on the Maximum Entropy IRL framework, our approach incorporates a squared temporal-difference (TD) regularizer with adaptive targets that evolve dynamically during training, thereby imposing adaptive bounds on recovered rewards and promoting robust decision-making. To capture richer return information, we integrate distributional RL into the learning process. Empirically, our method achieves expert-level performance on complex MuJoCo tasks, surpassing baseline methods on the Humanoid task with 3 demonstrations. Extensive experiments and ablation studies further validate the effectiveness of the approach and provide insights into reward dynamics in imitation learning.
comment: Major revision - completely rewritten mathematical formulation and proofs, with substantial updates to methodology and expanded appendix for supporting derivations
♻ ☆ Accelerating Linear Recurrent Neural Networks for the Edge with Unstructured Sparsity ICML 2025
Linear recurrent neural networks enable powerful long-range sequence modeling with constant memory usage and time-per-token during inference. These architectures hold promise for streaming applications at the edge, but deployment in resource-constrained environments requires hardware-aware optimizations to minimize latency and energy consumption. Unstructured sparsity offers a compelling solution, enabling substantial reductions in compute and memory requirements--when accelerated by compatible hardware platforms. In this paper, we conduct a scaling study to investigate the Pareto front of performance and efficiency across inference compute budgets. We find that highly sparse linear RNNs consistently achieve better efficiency-performance trade-offs than dense baselines, with 2x less compute and 36% less memory at iso-accuracy. Our models achieve state-of-the-art results on a real-time streaming task for audio denoising. By quantizing our sparse models to fixed-point arithmetic and deploying them on the Intel Loihi 2 neuromorphic chip for real-time processing, we translate model compression into tangible gains of 42x lower latency and 149x lower energy consumption compared to a dense model on an edge GPU. Our findings showcase the transformative potential of unstructured sparsity, paving the way for highly efficient recurrent neural networks in real-world, resource-constrained environments.
comment: ICML 2025
♻ ☆ Generative Feature Training of Thin 2-Layer Networks
We consider the approximation of functions by 2-layer neural networks with a small number of hidden weights based on the squared loss and small datasets. Due to the highly non-convex energy landscape, gradient-based training often suffers from local minima. As a remedy, we initialize the hidden weights with samples from a learned proposal distribution, which we parameterize as a deep generative model. To train this model, we exploit the fact that with fixed hidden weights, the optimal output weights solve a linear equation. After learning the generative model, we refine the sampled weights with a gradient-based post-processing in the latent space. Here, we also include a regularization scheme to counteract potential noise. Finally, we demonstrate the effectiveness of our approach by numerical examples.
comment: published in TMLR
♻ ☆ Halting Recurrent GNNs and the Graded $μ$-Calculus KR 2025
Graph Neural Networks (GNNs) are a class of machine-learning models that operate on graph-structured data. Their expressive power is intimately related to logics that are invariant under graded bisimilarity. Current proposals for recurrent GNNs either assume that the graph size is given to the model, or suffer from a lack of termination guarantees. In this paper, we propose a halting mechanism for recurrent GNNs. We prove that our halting model can express all node classifiers definable in graded modal mu-calculus, even for the standard GNN variant that is oblivious to the graph size. To prove our main result, we develop a new approximate semantics for graded mu-calculus, which we believe to be of independent interest. We leverage this new semantics into a new model-checking algorithm, called the counting algorithm, which is oblivious to the graph size. In a final step we show that the counting algorithm can be implemented on a halting recurrent GNN.
comment: Extended technical report of paper accepted for publication at KR 2025
♻ ☆ Importance Corrected Neural JKO Sampling ICML 2025
In order to sample from an unnormalized probability density function, we propose to combine continuous normalizing flows (CNFs) with rejection-resampling steps based on importance weights. We relate the iterative training of CNFs with regularized velocity fields to a JKO scheme and prove convergence of the involved velocity fields to the velocity field of the Wasserstein gradient flow (WGF). The alternation of local flow steps and non-local rejection-resampling steps allows to overcome local minima or slow convergence of the WGF for multimodal distributions. Since the proposal of the rejection step is generated by the model itself, they do not suffer from common drawbacks of classical rejection schemes. The arising model can be trained iteratively, reduces the reverse Kullback-Leibler (KL) loss function in each step, allows to generate iid samples and moreover allows for evaluations of the generated underlying density. Numerical examples show that our method yields accurate results on various test distributions including high-dimensional multimodal targets and outperforms the state of the art in almost all cases significantly.
comment: Accepted at ICML 2025
♻ ☆ Efficient Visual Appearance Optimization by Learning from Prior Preferences
Adjusting visual parameters such as brightness and contrast is common in our everyday experiences. Finding the optimal parameter setting is challenging due to the large search space and the lack of an explicit objective function, leaving users to rely solely on their implicit preferences. Prior work has explored Preferential Bayesian Optimization (PBO) to address this challenge, involving users to iteratively select preferred designs from candidate sets. However, PBO often requires many rounds of preference comparisons, making it more suitable for designers than everyday end-users. We propose Meta-PO, a novel method that integrates PBO with meta-learning to improve sample efficiency. Specifically, Meta-PO infers prior users' preferences and stores them as models, which are leveraged to intelligently suggest design candidates for the new users, enabling faster convergence and more personalized results. An experimental evaluation of our method for appearance design tasks on 2D and 3D content showed that participants achieved satisfactory appearance in 5.86 iterations using Meta-PO when participants shared similar goals with a population (e.g., tuning for a ``warm'' look) and in 8 iterations even generalizes across divergent goals (e.g., from ``vintage'', ``warm'', to ``holiday''). Meta-PO makes personalized visual optimization more applicable to end-users through a generalizable, more efficient optimization conditioned on preferences, with the potential to scale interface personalization more broadly.
comment: 24 pages, UIST'25
♻ ☆ PrAViC: Probabilistic Adaptation Framework for Real-Time Video Classification
Video processing is generally divided into two main categories: processing of the entire video, which typically yields optimal classification outcomes, and real-time processing, where the objective is to make a decision as promptly as possible. Although the models dedicated to the processing of entire videos are typically well-defined and clearly presented in the literature, this is not the case for online processing, where a~plethora of hand-devised methods exist. To address this issue, we present PrAViC, a novel, unified, and theoretically-based adaptation framework for tackling the online classification problem in video data. The initial phase of our study is to establish a mathematical background for the classification of sequential data, with the potential to make a decision at an early stage. This allows us to construct a natural function that encourages the model to return a result much faster. The subsequent phase is to present a straightforward and readily implementable method for adapting offline models to the online setting using recurrent operations. Finally, PrAViC is evaluated by comparing it with existing state-of-the-art offline and online models and datasets. This enables the network to significantly reduce the time required to reach classification decisions while maintaining, or even enhancing, accuracy.
comment: The paper was accepted at ECAI 2025
♻ ☆ GTPO: Trajectory-Based Policy Optimization in Large Language Models
Policy-based optimizations are widely adopted today for the training and alignment of language models, where one of the most recent and effective approaches is Group-relative Policy Optimization (GRPO). In this paper, we reveals and analyze two major limitations of GRPO: (i) tokens frequently appear in completions with both positive and negative rewards, leading to conflicting gradient updates that can reduce their output probability, even though can be essential for maintaining proper structure; (ii) negatively rewarded completions may penalize confident responses and shift model decisions toward unlikely tokens, progressively flattening the output distribution and degrading learning. To address these issues and provide a more stable and effective policy optimization strategy, we introduce GTPO (Group-relative Trajectory-based Policy Optimization), which identifies conflict tokens, tokens appearing in the same position across completions with opposite rewards, protects them by skipping negative updates, while amplifying positive ones. To further prevent policy collapse, GTPO filters out completions whose entropy exceeds a provable threshold. Unlike GRPO, GTPO does not rely on KL-divergence regularization, eliminating the need for a reference model during training, while still ensuring greater training stability and improved performance, validated through multiple experiments on GSM8K, MATH and AIME 2024 benchmarks.
♻ ☆ MVICAD2: Multi-View Independent Component Analysis with Delays and Dilations
Machine learning techniques in multi-view settings face significant challenges, particularly when integrating heterogeneous data, aligning feature spaces, and managing view-specific biases. These issues are prominent in neuroscience, where data from multiple subjects exposed to the same stimuli are analyzed to uncover brain activity dynamics. In magnetoencephalography (MEG), where signals are captured at the scalp level, estimating the brain's underlying sources is crucial, especially in group studies where sources are assumed to be similar for all subjects. Common methods, such as Multi-View Independent Component Analysis (MVICA), assume identical sources across subjects, but this assumption is often too restrictive due to individual variability and age-related changes. Multi-View Independent Component Analysis with Delays (MVICAD) addresses this by allowing sources to differ up to a temporal delay. However, temporal dilation effects, particularly in auditory stimuli, are common in brain dynamics, making the estimation of time delays alone insufficient. To address this, we propose Multi-View Independent Component Analysis with Delays and Dilations (MVICAD2), which allows sources to differ across subjects in both temporal delays and dilations. We present a model with identifiable sources, derive an approximation of its likelihood in closed form, and use regularization and optimization techniques to enhance performance. Through simulations, we demonstrate that MVICAD2 outperforms existing multi-view ICA methods. We further validate its effectiveness using the Cam-CAN dataset, and showing how delays and dilations are related to aging.
comment: 23 pages, 10 figures
♻ ☆ ChineseHarm-Bench: A Chinese Harmful Content Detection Benchmark
Large language models (LLMs) have been increasingly applied to automated harmful content detection tasks, assisting moderators in identifying policy violations and improving the overall efficiency and accuracy of content review. However, existing resources for harmful content detection are predominantly focused on English, with Chinese datasets remaining scarce and often limited in scope. We present a comprehensive, professionally annotated benchmark for Chinese content harm detection, which covers six representative categories and is constructed entirely from real-world data. Our annotation process further yields a knowledge rule base that provides explicit expert knowledge to assist LLMs in Chinese harmful content detection. In addition, we propose a knowledge-augmented baseline that integrates both human-annotated knowledge rules and implicit knowledge from large language models, enabling smaller models to achieve performance comparable to state-of-the-art LLMs. Code and data are available at https://github.com/zjunlp/ChineseHarm-bench.
comment: Work in progress
♻ ☆ Is Chain-of-Thought Reasoning of LLMs a Mirage? A Data Distribution Lens
Chain-of-Thought (CoT) prompting has been shown to improve Large Language Model (LLM) performance on various tasks. With this approach, LLMs appear to produce human-like reasoning steps before providing answers (a.k.a., CoT reasoning), which often leads to the perception that they engage in deliberate inferential processes. However, some initial findings suggest that CoT reasoning may be more superficial than it appears, motivating us to explore further. In this paper, we study CoT reasoning via a data distribution lens and investigate if CoT reasoning reflects a structured inductive bias learned from in-distribution data, allowing the model to conditionally generate reasoning paths that approximate those seen during training. Thus, its effectiveness is fundamentally bounded by the degree of distribution discrepancy between the training data and the test queries. With this lens, we dissect CoT reasoning via three dimensions: task, length, and format. To investigate each dimension, we design DataAlchemy, an isolated and controlled environment to train LLMs from scratch and systematically probe them under various distribution conditions. Our results reveal that CoT reasoning is a brittle mirage that vanishes when it is pushed beyond training distributions. This work offers a deeper understanding of why and when CoT reasoning fails, emphasizing the ongoing challenge of achieving genuine and generalizable reasoning.
♻ ☆ Gradual Transition from Bellman Optimality Operator to Bellman Operator in Online Reinforcement Learning ICML 2025
For continuous action spaces, actor-critic methods are widely used in online reinforcement learning (RL). However, unlike RL algorithms for discrete actions, which generally model the optimal value function using the Bellman optimality operator, RL algorithms for continuous actions typically model Q-values for the current policy using the Bellman operator. These algorithms for continuous actions rely exclusively on policy updates for improvement, which often results in low sample efficiency. This study examines the effectiveness of incorporating the Bellman optimality operator into actor-critic frameworks. Experiments in a simple environment show that modeling optimal values accelerates learning but leads to overestimation bias. To address this, we propose an annealing approach that gradually transitions from the Bellman optimality operator to the Bellman operator, thereby accelerating learning while mitigating bias. Our method, combined with TD3 and SAC, significantly outperforms existing approaches across various locomotion and manipulation tasks, demonstrating improved performance and robustness to hyperparameters related to optimality. The code for this study is available at https://github.com/motokiomura/annealed-q-learning.
comment: Accepted at ICML 2025. Source code: https://github.com/motokiomura/annealed-q-learning
♻ ☆ Memp: Exploring Agent Procedural Memory
Large Language Models (LLMs) based agents excel at diverse tasks, yet they suffer from brittle procedural memory that is manually engineered or entangled in static parameters. In this work, we investigate strategies to endow agents with a learnable, updatable, and lifelong procedural memory. We propose Memp that distills past agent trajectories into both fine-grained, step-by-step instructions and higher-level, script-like abstractions, and explore the impact of different strategies for Build, Retrieval, and Update of procedural memory. Coupled with a dynamic regimen that continuously updates, corrects, and deprecates its contents, this repository evolves in lockstep with new experience. Empirical evaluation on TravelPlanner and ALFWorld shows that as the memory repository is refined, agents achieve steadily higher success rates and greater efficiency on analogous tasks. Moreover, procedural memory built from a stronger model retains its value: migrating the procedural memory to a weaker model yields substantial performance gains.
comment: Work in progress
♻ ☆ Towards Black-Box Membership Inference Attack for Diffusion Models
Given the rising popularity of AI-generated art and the associated copyright concerns, identifying whether an artwork was used to train a diffusion model is an important research topic. The work approaches this problem from the membership inference attack (MIA) perspective. We first identify the limitation of applying existing MIA methods for proprietary diffusion models: the required access of internal U-nets. To address the above problem, we introduce a novel membership inference attack method that uses only the image-to-image variation API and operates without access to the model's internal U-net. Our method is based on the intuition that the model can more easily obtain an unbiased noise prediction estimate for images from the training set. By applying the API multiple times to the target image, averaging the outputs, and comparing the result to the original image, our approach can classify whether a sample was part of the training set. We validate our method using DDIM and Stable Diffusion setups and further extend both our approach and existing algorithms to the Diffusion Transformer architecture. Our experimental results consistently outperform previous methods.
♻ ☆ LLM Robustness Leaderboard v1 --Technical report
This technical report accompanies the LLM robustness leaderboard published by PRISM Eval for the Paris AI Action Summit. We introduce PRISM Eval Behavior Elicitation Tool (BET), an AI system performing automated red-teaming through Dynamic Adversarial Optimization that achieves 100% Attack Success Rate (ASR) against 37 of 41 state-of-the-art LLMs. Beyond binary success metrics, we propose a fine-grained robustness metric estimating the average number of attempts required to elicit harmful behaviors, revealing that attack difficulty varies by over 300-fold across models despite universal vulnerability. We introduce primitive-level vulnerability analysis to identify which jailbreaking techniques are most effective for specific hazard categories. Our collaborative evaluation with trusted third parties from the AI Safety Network demonstrates practical pathways for distributed robustness assessment across the community.
♻ ☆ Nonconvex Optimization Framework for Group-Sparse Feedback Linear-Quadratic Optimal Control: Non-Penalty Approach
In [1], the distributed linear-quadratic problem with fixed communication topology (DFT-LQ) and the sparse feedback LQ problem (SF-LQ) are formulated into a nonsmooth and nonconvex optimization problem with affine constraints. Moreover, a penalty approach is considered in [1], and the PALM (proximal alternating linearized minimization) algorithm is studied with convergence and complexity analysis. In this paper, we aim to address the inherent drawbacks of the penalty approach, such as the challenge of tuning the penalty parameter and the risk of introducing spurious stationary points. Specifically, we first reformulate the SF-LQ problem and the DFT-LQ problem from an epi-composition function perspective, aiming to solve constrained problem directly. Then, from a theoretical viewpoint, we revisit the alternating direction method of multipliers (ADMM) and establish its convergence to the set of cluster points under certain assumptions. When these assumptions do not hold, we show that alternative approaches combining subgradient descent with Difference-of-Convex relaxation methods can be effectively utilized. In summary, our results enable the direct design of group-sparse feedback gains with theoretical guarantees, without resorting to convex surrogates, restrictive structural assumptions or penalty formulations that incorporate constraints into the cost function.
comment: arXiv admin note: substantial text overlap with arXiv:2507.18114
♻ ☆ Unlasting: Unpaired Single-Cell Multi-Perturbation Estimation by Dual Conditional Diffusion Implicit Bridges
Estimating single-cell responses across various perturbations facilitates the identification of key genes and enhances drug screening, significantly boosting experimental efficiency. However, single-cell sequencing is a destructive process, making it impossible to capture the same cell's phenotype before and after perturbation. Consequently, data collected under perturbed and unperturbed conditions are inherently unpaired. Existing methods either attempt to forcibly pair unpaired data using random sampling, or neglect the inherent relationship between unperturbed and perturbed cells during the modeling. In this work, we propose a framework based on Dual Diffusion Implicit Bridges (DDIB) to learn the mapping between different data distributions, effectively addressing the challenge of unpaired data. We further interpret this framework as a form of data augmentation. We integrate gene regulatory network (GRN) information to propagate perturbation signals in a biologically meaningful way, and further incorporate a masking mechanism to predict silent genes, improving the quality of generated profiles. Moreover, gene expression under the same perturbation often varies significantly across cells, frequently exhibiting a bimodal distribution that reflects intrinsic heterogeneity. To capture this, we introduce a more suitable evaluation metric. We propose Unlasting, dual conditional diffusion models that overcome the problem of unpaired single-cell perturbation data and strengthen the model's insight into perturbations under the guidance of the GRN, with a dedicated mask model designed to improve generation quality by predicting silent genes. In addition, we introduce a biologically grounded evaluation metric that better reflects the inherent heterogeneity in single-cell responses.
♻ ☆ Semi-Bandit Learning for Monotone Stochastic Optimization
Stochastic optimization is a widely used approach for optimization under uncertainty, where uncertain input parameters are modeled by random variables. Exact or approximation algorithms have been obtained for several fundamental problems in this area. However, a significant limitation of this approach is that it requires full knowledge of the underlying probability distributions. Can we still get good (approximation) algorithms if these distributions are unknown, and the algorithm needs to learn them through repeated interactions? In this paper, we resolve this question for a large class of ''monotone'' stochastic problems, by providing a generic online learning algorithm with $\sqrt{T\log(T)}$ regret relative to the best approximation algorithm (under known distributions). Importantly, our online algorithm works in a semi-bandit setting, where in each period, the algorithm only observes samples from the random variables that were actually probed. Moreover, our result extends to settings with censored and binary feedback, where the policy only observes truncated or thresholded versions of the probed variables. Our framework applies to several fundamental problems such as prophet inequality, Pandora's box, stochastic knapsack, single-resource revenue management and sequential posted pricing.
comment: Full version (and extension) of FOCS 2024 paper. Fixes some missing assumptions in our results for continuous distributions. Also adds extensions to censored and binary feedback settings (along with applications)
♻ ☆ Underdamped Diffusion Bridges with Applications to Sampling
We provide a general framework for learning diffusion bridges that transport prior to target distributions. It includes existing diffusion models for generative modeling, but also underdamped versions with degenerate diffusion matrices, where the noise only acts in certain dimensions. Extending previous findings, our framework allows to rigorously show that score matching in the underdamped case is indeed equivalent to maximizing a lower bound on the likelihood. Motivated by superior convergence properties and compatibility with sophisticated numerical integration schemes of underdamped stochastic processes, we propose \emph{underdamped diffusion bridges}, where a general density evolution is learned rather than prescribed by a fixed noising process. We apply our method to the challenging task of sampling from unnormalized densities without access to samples from the target distribution. Across a diverse range of sampling problems, our approach demonstrates state-of-the-art performance, notably outperforming alternative methods, while requiring significantly fewer discretization steps and no hyperparameter tuning.
♻ ☆ Sparse Spectral Training and Inference on Euclidean and Hyperbolic Neural Networks ICML 2025
The growing demands on GPU memory posed by the increasing number of neural network parameters call for training approaches that are more memory-efficient. Previous memory reduction training techniques, such as Low-Rank Adaptation (LoRA) and ReLoRA, face challenges, with LoRA being constrained by its low-rank structure, particularly during intensive tasks like pre-training, and ReLoRA suffering from saddle point issues. In this paper, we propose Sparse Spectral Training (SST) to optimize memory usage for pre-training. SST updates all singular values and selectively updates singular vectors through a multinomial sampling method weighted by the magnitude of the singular values. Furthermore, SST employs singular value decomposition to initialize and periodically reinitialize low-rank parameters, reducing distortion relative to full-rank training compared to other low-rank methods. Through comprehensive testing on both Euclidean and hyperbolic neural networks across various tasks, SST demonstrates its ability to outperform existing memory reduction training methods and is comparable to full-rank training in various cases. On LLaMA-1.3B, with only 18.7\% of the parameters trainable compared to full-rank training (using a rank equivalent to 6\% of the embedding dimension), SST reduces the perplexity gap between other low-rank methods and full-rank training by 97.4\%. This result highlights SST as an effective parameter-efficient technique for model pre-training.
comment: ICML 2025
♻ ☆ Pivoting Factorization: A Compact Meta Low-Rank Representation of Sparsity for Efficient Inference in Large Language Models ICML 2025
The rapid growth of Large Language Models has driven demand for effective model compression techniques to reduce memory and computation costs. Low-rank pruning has gained attention for its GPU compatibility across all densities. However, low-rank pruning struggles to match the performance of semi-structured pruning, often doubling perplexity at similar densities. In this paper, we propose Pivoting Factorization (PIFA), a novel lossless meta low-rank representation that unsupervisedly learns a compact form of any low-rank representation, effectively eliminating redundant information. PIFA identifies pivot rows (linearly independent rows) and expresses non-pivot rows as linear combinations, achieving 24.2% additional memory savings and 24.6% faster inference over low-rank layers at rank = 50% of dimension. To mitigate the performance degradation caused by low-rank pruning, we introduce a novel, retraining-free reconstruction method that minimizes error accumulation (M). MPIFA, combining M and PIFA into an end-to-end framework, significantly outperforms existing low-rank pruning methods, and achieves performance comparable to semi-structured pruning, while surpassing it in GPU efficiency and compatibility. Our code is available at https://github.com/biomedical-cybernetics/pivoting-factorization.
comment: ICML 2025
♻ ☆ Evaluation of Bio-Inspired Models under Different Learning Settings For Energy Efficiency in Network Traffic Prediction
Cellular traffic forecasting is a critical task that enables network operators to efficiently allocate resources and address anomalies in rapidly evolving environments. The exponential growth of data collected from base stations poses significant challenges to processing and analysis. While machine learning (ML) algorithms have emerged as powerful tools for handling these large datasets and providing accurate predictions, their environmental impact, particularly in terms of energy consumption, is often overlooked in favor of their predictive capabilities. This study investigates the potential of two bio-inspired models: Spiking Neural Networks (SNNs) and Reservoir Computing through Echo State Networks (ESNs) for cellular traffic forecasting. The evaluation focuses on both their predictive performance and energy efficiency. These models are implemented in both centralized and federated settings to analyze their effectiveness and energy consumption in decentralized systems. Additionally, we compare bio-inspired models with traditional architectures, such as Convolutional Neural Networks (CNNs) and Multi-Layer Perceptrons (MLPs), to provide a comprehensive evaluation. Using data collected from three diverse locations in Barcelona, Spain, we examine the trade-offs between predictive accuracy and energy demands across these approaches. The results indicate that bio-inspired models, such as SNNs and ESNs, can achieve significant energy savings while maintaining predictive accuracy comparable to traditional architectures. Furthermore, federated implementations were tested to evaluate their energy efficiency in decentralized settings compared to centralized systems, particularly in combination with bio-inspired models. These findings offer valuable insights into the potential of bio-inspired models for sustainable and privacy-preserving cellular traffic forecasting.
comment: 18 pages, 8 figures
♻ ☆ Exploring Scaling Laws for EHR Foundation Models
The emergence of scaling laws has profoundly shaped the development of large language models (LLMs), enabling predictable performance gains through systematic increases in model size, dataset volume, and compute. Yet, these principles remain largely unexplored in the context of electronic health records (EHRs) -- a rich, sequential, and globally abundant data source that differs structurally from natural language. In this work, we present the first empirical investigation of scaling laws for EHR foundation models. By training transformer architectures on patient timeline data from the MIMIC-IV database across varying model sizes and compute budgets, we identify consistent scaling patterns, including parabolic IsoFLOPs curves and power-law relationships between compute, model parameters, data size, and clinical utility. These findings demonstrate that EHR models exhibit scaling behavior analogous to LLMs, offering predictive insights into resource-efficient training strategies. Our results lay the groundwork for developing powerful EHR foundation models capable of transforming clinical prediction tasks and advancing personalized healthcare.
♻ ☆ SpargeAttention: Accurate and Training-free Sparse Attention Accelerating Any Model Inference ICML
An efficient attention implementation is essential for large models due to its quadratic time complexity. Fortunately, attention commonly exhibits sparsity, i.e., many values in the attention map are near zero, allowing for the omission of corresponding computations. Many studies have utilized the sparse pattern to accelerate attention. However, most existing works focus on optimizing attention within specific models by exploiting certain sparse patterns of the attention map. A universal sparse attention that guarantees both the speedup and end-to-end performance of diverse models remains elusive. In this paper, we propose SpargeAttn, a universal sparse and quantized attention for any model. Our method uses a two-stage online filter: in the first stage, we rapidly and accurately predict the attention map, enabling the skip of some matrix multiplications in attention. In the second stage, we design an online softmax-aware filter that incurs no extra overhead and further skips some matrix multiplications. Experiments show that our method significantly accelerates diverse models, including language, image, and video generation, without sacrificing end-to-end metrics. The codes are available at https://github.com/thu-ml/SpargeAttn.
comment: @inproceedings{zhang2025spargeattn, title={Spargeattn: Accurate sparse attention accelerating any model inference}, author={Zhang, Jintao and Xiang, Chendong and Huang, Haofeng and Wei, Jia and Xi, Haocheng and Zhu, Jun and Chen, Jianfei}, booktitle={International Conference on Machine Learning (ICML)}, year={2025} }
♻ ☆ Estimating Worst-Case Frontier Risks of Open-Weight LLMs
In this paper, we study the worst-case frontier risks of releasing gpt-oss. We introduce malicious fine-tuning (MFT), where we attempt to elicit maximum capabilities by fine-tuning gpt-oss to be as capable as possible in two domains: biology and cybersecurity. To maximize biological risk (biorisk), we curate tasks related to threat creation and train gpt-oss in an RL environment with web browsing. To maximize cybersecurity risk, we train gpt-oss in an agentic coding environment to solve capture-the-flag (CTF) challenges. We compare these MFT models against open- and closed-weight LLMs on frontier risk evaluations. Compared to frontier closed-weight models, MFT gpt-oss underperforms OpenAI o3, a model that is below Preparedness High capability level for biorisk and cybersecurity. Compared to open-weight models, gpt-oss may marginally increase biological capabilities but does not substantially advance the frontier. Taken together, these results contributed to our decision to release the model, and we hope that our MFT approach can serve as useful guidance for estimating harm from future open-weight releases.
♻ ☆ Benchmarking Pretrained Molecular Embedding Models For Molecular Representation Learning
Pretrained neural networks have attracted significant interest in chemistry and small molecule drug design. Embeddings from these models are widely used for molecular property prediction, virtual screening, and small data learning in molecular chemistry. This study presents the most extensive comparison of such models to date, evaluating 25 models across 25 datasets. Under a fair comparison framework, we assess models spanning various modalities, architectures, and pretraining strategies. Using a dedicated hierarchical Bayesian statistical testing model, we arrive at a surprising result: nearly all neural models show negligible or no improvement over the baseline ECFP molecular fingerprint. Only the CLAMP model, which is also based on molecular fingerprints, performs statistically significantly better than the alternatives. These findings raise concerns about the evaluation rigor in existing studies. We discuss potential causes, propose solutions, and offer practical recommendations.
♻ ☆ SINDyG: Sparse Identification of Nonlinear Dynamical Systems from Graph-Structured Data, with Applications to Stuart-Landau Oscillator Networks
The combination of machine learning (ML) and sparsity-promoting techniques is enabling direct extraction of governing equations from data, revolutionizing computational modeling in diverse fields of science and engineering. The discovered dynamical models could be used to address challenges in climate science, neuroscience, ecology, finance, epidemiology, and beyond. However, most existing sparse identification methods for discovering dynamical systems treat the whole system as one without considering the interactions between subsystems. As a result, such models are not able to capture small changes in the emergent system behavior. To address this issue, we developed a new method called Sparse Identification of Nonlinear Dynamical Systems from Graph-structured data (SINDyG), which incorporates the network structure into sparse regression to identify model parameters that explain the underlying network dynamics. We tested our proposed method using several case studies of neuronal dynamics, where we modeled the macroscopic oscillation of a population of neurons using the extended Stuart-Landau (SL) equation and utilize the SINDyG method to identify the underlying nonlinear dynamics. Our extensive computational experiments validate the improved accuracy and simplicity of discovered network dynamics when compared to the original SINDy approach. The proposed graph-informed penalty can be easily integrated with other symbolic regression algorithms, enhancing model interpretability and performance by incorporating network structure into the regression process.
♻ ☆ Distributed Lag Transformer based on Time-Variable-Aware Learning for Explainable Multivariate Time Series Forecasting
Time series data is a key element of big data analytics, commonly found in domains such as finance, healthcare, climate forecasting, and transportation. In large scale real world settings, such data is often high dimensional and multivariate, requiring advanced forecasting methods that are both accurate and interpretable. Although Transformer based models perform well in multivariate time series forecasting (MTSF), their lack of explainability limits their use in critical applications. To overcome this, we propose Distributed Lag Transformer (DLFormer), a novel Transformer architecture for explainable and scalable MTSF. DLFormer integrates a distributed lag embedding and a time variable aware learning (TVAL) mechanism to structurally model both local and global temporal dependencies and explicitly capture the influence of past variables on future outcomes. Experiments on ten benchmark and real world datasets show that DLFormer achieves state of the art predictive accuracy while offering robust, interpretable insights into variable wise and temporal dynamics. These results highlight ability of DLFormer to bridge the gap between performance and explainability, making it highly suitable for practical big data forecasting tasks.
FedRecon: Missing Modality Reconstruction in Heterogeneous Distributed Environments
Multimodal data are often incomplete and exhibit Non-Independent and Identically Distributed (Non-IID) characteristics in real-world scenarios. These inherent limitations lead to both modality heterogeneity through partial modality absence and data heterogeneity from distribution divergence, creating fundamental challenges for effective federated learning (FL). To address these coupled challenges, we propose FedRecon, the first method targeting simultaneous missing modality reconstruction and Non-IID adaptation in multimodal FL. Our approach first employs a lightweight Multimodal Variational Autoencoder (MVAE) to reconstruct missing modalities while preserving cross-modal consistency. Distinct from conventional imputation methods, we achieve sample-level alignment through a novel distribution mapping mechanism that guarantees both data consistency and completeness. Additionally, we introduce a strategy employing global generator freezing to prevent catastrophic forgetting, which in turn mitigates Non-IID fluctuations. Extensive evaluations on multimodal datasets demonstrate FedRecon's superior performance in modality reconstruction under Non-IID conditions, surpassing state-of-the-art methods. The code will be released upon paper acceptance.
comment: 21 pages, 25 figures
♻ ☆ No-Regret M${}^{\natural}$-Concave Function Maximization: Stochastic Bandit Algorithms and Hardness of Adversarial Full-Information Setting
M${}^{\natural}$-concave functions, a.k.a. gross substitute valuation functions, play a fundamental role in many fields, including discrete mathematics and economics. In practice, perfect knowledge of M${}^{\natural}$-concave functions is often unavailable a priori, and we can optimize them only interactively based on some feedback. Motivated by such situations, we study online M${}^{\natural}$-concave function maximization problems, which are interactive versions of the problem studied by Murota and Shioura (1999). For the stochastic bandit setting, we present $O(T^{-1/2})$-simple regret and $O(T^{2/3})$-regret algorithms under $T$ times access to unbiased noisy value oracles of M${}^{\natural}$-concave functions. A key to proving these results is the robustness of the greedy algorithm to local errors in M${}^{\natural}$-concave function maximization, which is one of our main technical results. While we obtain those positive results for the stochastic setting, another main result of our work is an impossibility in the adversarial setting. We prove that, even with full-information feedback, no algorithms that run in polynomial time per round can achieve $O(T^{1-c})$ regret for any constant $c > 0$. Our proof is based on a reduction from the matroid intersection problem for three matroids, which would be a novel approach to establishing the hardness in online learning.
♻ ☆ Rethinking Domain-Specific LLM Benchmark Construction: A Comprehensiveness-Compactness Approach
Numerous benchmarks have been built to evaluate the domain-specific abilities of large language models (LLMs), highlighting the need for effective and efficient benchmark construction. Existing domain-specific benchmarks primarily focus on the scaling law, relying on massive corpora for supervised fine-tuning or generating extensive question sets for broad coverage. However, the impact of corpus and question-answer (QA) set design on the precision and recall of domain-specific LLMs remains unexplored. In this paper, we address this gap and demonstrate that the scaling law is not always the optimal principle for benchmark construction in specific domains. Instead, we propose Comp-Comp, an iterative benchmarking framework based on a comprehensiveness-compactness principle. Here, comprehensiveness ensures semantic recall of the domain, while compactness enhances precision, guiding both corpus and QA set construction. To validate our framework, we conducted a case study in a well-renowned university, resulting in the creation of XUBench, a large-scale and comprehensive closed-domain benchmark. Although we use the academic domain as the case in this work, our Comp-Comp framework is designed to be extensible beyond academia, providing valuable insights for benchmark construction across various domains.
♻ ☆ Representation biases: will we achieve complete understanding by analyzing representations?
A common approach in neuroscience is to study neural representations as a means to understand a system -- increasingly, by relating the neural representations to the internal representations learned by computational models. However, a recent work in machine learning (Lampinen, 2024) shows that learned feature representations may be biased to over-represent certain features, and represent others more weakly and less-consistently. For example, simple (linear) features may be more strongly and more consistently represented than complex (highly nonlinear) features. These biases could pose challenges for achieving full understanding of a system through representational analysis. In this perspective, we illustrate these challenges -- showing how feature representation biases can lead to strongly biased inferences from common analyses like PCA, regression, and RSA. We also present homomorphic encryption as a simple case study of the potential for strong dissociation between patterns of representation and computation. We discuss the implications of these results for representational comparisons between systems, and for neuroscience more generally.
♻ ☆ A spectral method for multi-view subspace learning using the product of projections
Multi-view data provides complementary information on the same set of observations, with multi-omics and multimodal sensor data being common examples. Analyzing such data typically requires distinguishing between shared (joint) and unique (individual) signal subspaces from noisy, high-dimensional measurements. Despite many proposed methods, the conditions for reliably identifying joint and individual subspaces remain unclear. We rigorously quantify these conditions, which depend on the ratio of the signal rank to the ambient dimension, principal angles between true subspaces, and noise levels. Our approach characterizes how spectrum perturbations of the product of projection matrices, derived from each view's estimated subspaces, affect subspace separation. Using these insights, we provide an easy-to-use and scalable estimation algorithm. In particular, we employ rotational bootstrap and random matrix theory to partition the observed spectrum into joint, individual, and noise subspaces. Diagnostic plots visualize this partitioning, providing practical and interpretable insights into the estimation performance. In simulations, our method estimates joint and individual subspaces more accurately than existing approaches. Applications to multi-omics data from colorectal cancer patients and nutrigenomic study of mice demonstrate improved performance in downstream predictive tasks.
comment: 27 pages, 7 figures
♻ ☆ Mini-Game Lifetime Value Prediction in WeChat KDD
The LifeTime Value (LTV) prediction, which endeavors to forecast the cumulative purchase contribution of a user to a particular item, remains a vital challenge that advertisers are keen to resolve. A precise LTV prediction system enhances the alignment of user interests with meticulously designed advertisements, thereby generating substantial profits for advertisers. Nonetheless, this issue is complicated by the paucity of data typically observed in real-world advertising scenarios. The purchase rate among registered users is often as critically low as 0.1%, resulting in a dataset where the majority of users make only several purchases. Consequently, there is insufficient supervisory signal for effectively training the LTV prediction model. An additional challenge emerges from the interdependencies among tasks with high correlation. It is a common practice to estimate a user's contribution to a game over a specified temporal interval. Varying the lengths of these intervals corresponds to distinct predictive tasks, which are highly correlated. For instance, predictions over a 7-day period are heavily reliant on forecasts made over a 3-day period, where exceptional cases can adversely affect the accuracy of both tasks. In order to comprehensively address the aforementioned challenges, we introduce an innovative framework denoted as Graph-Represented Pareto-Optimal LifeTime Value prediction (GRePO-LTV). Graph representation learning is initially employed to address the issue of data scarcity. Subsequently, Pareto-Optimization is utilized to manage the interdependence of prediction tasks.
comment: KDD ADS Track 2025
♻ ☆ Improving Multimodal Large Language Models Using Continual Learning NeurIPS 2024
Generative large language models (LLMs) exhibit impressive capabilities, which can be further augmented by integrating a pre-trained vision model into the original LLM to create a multimodal LLM (MLLM). However, this integration often significantly decreases performance on natural language understanding and generation tasks, compared to the original LLM. This study investigates this issue using the LLaVA MLLM, treating the integration as a continual learning problem. We evaluate five continual learning methods to mitigate forgetting and identify a technique that enhances visual understanding while minimizing linguistic performance loss. Our approach reduces linguistic performance degradation by up to 15% over the LLaVA recipe, while maintaining high multimodal accuracy. We also demonstrate the robustness of our method through continual learning on a sequence of vision-language tasks, effectively preserving linguistic skills while acquiring new multimodal capabilities. Project webpage: https://shikhar-srivastava.github.io/cl-for-improving-mllms
comment: CoLLAs 2025 and Scalable Continual Learning for Lifelong Foundation Models, NeurIPS 2024
♻ ☆ FT-Transformer: Resilient and Reliable Transformer with End-to-End Fault Tolerant Attention
Transformer models rely on High-Performance Computing (HPC) resources for inference, where soft errors are inevitable in large-scale systems, making the reliability of the model particularly critical. Existing fault tolerance frameworks for Transformers are designed at the operation level without architectural optimization, leading to significant computational and memory overhead, which in turn reduces protection efficiency and limits scalability to larger models. In this paper, we implement module-level protection for Transformers by treating the operations within the attention module as a single kernel and applying end-to-end fault tolerance. This method provides unified protection across multi-step computations, while achieving comprehensive coverage of potential errors in the nonlinear computations. For linear modules, we design a strided algorithm-based fault tolerance (ABFT) that avoids inter-thread communication. Experimental results show that our end-to-end fault tolerance achieves up to 7.56x speedup over traditional methods with an average fault tolerance overhead of 13.9%.
comment: This version removes one co-author due to updated project authorship requirements. The change has been made with the consent of the individual concerned
♻ ☆ VoteGCL: Enhancing Graph-based Recommendations with Majority-Voting LLM-Rerank Augmentation
Recommendation systems often suffer from data sparsity caused by limited user-item interactions, which degrade their performance and amplify popularity bias in real-world scenarios. This paper proposes a novel data augmentation framework that leverages Large Language Models (LLMs) and item textual descriptions to enrich interaction data. By few-shot prompting LLMs multiple times to rerank items and aggregating the results via majority voting, we generate high-confidence synthetic user-item interactions, supported by theoretical guarantees based on the concentration of measure. To effectively leverage the augmented data in the context of a graph recommendation system, we integrate it into a graph contrastive learning framework to mitigate distributional shift and alleviate popularity bias. Extensive experiments show that our method improves accuracy and reduces popularity bias, outperforming strong baselines.
♻ ☆ LEAPS: A discrete neural sampler via locally equivariant networks
We propose "LEAPS", an algorithm to sample from discrete distributions known up to normalization by learning a rate matrix of a continuous-time Markov chain (CTMC). LEAPS can be seen as a continuous-time formulation of annealed importance sampling and sequential Monte Carlo methods, extended so that the variance of the importance weights is offset by the inclusion of the CTMC. To derive these importance weights, we introduce a set of Radon-Nikodym derivatives of CTMCs over their path measures. Because the computation of these weights is intractable with standard neural network parameterizations of rate matrices, we devise a new compact representation for rate matrices via what we call "locally equivariant" functions. To parameterize them, we introduce a family of locally equivariant multilayer perceptrons, attention layers, and convolutional networks, and provide an approach to make deep networks that preserve the local equivariance. This property allows us to propose a scalable training algorithm for the rate matrix such that the variance of the importance weights associated to the CTMC are minimal. We demonstrate the efficacy of LEAPS on problems in statistical physics.
♻ ☆ A2SB: Audio-to-Audio Schrodinger Bridges
Real-world audio is often degraded by numerous factors. This work presents an audio restoration model tailored for high-res music at 44.1kHz. Our model, Audio-to-Audio Schr\"odinger Bridges (A2SB), is capable of both bandwidth extension (predicting high-frequency components) and inpainting (re-generating missing segments). Critically, A2SB is end-to-end requiring no vocoder to predict waveform outputs, able to restore hour-long audio inputs, and trained on permissively licensed music data. A2SB is capable of achieving state-of-the-art band-width extension and inpainting quality on several out-of-distribution music test sets.
♻ ☆ MoCA: Multi-modal Cross-masked Autoencoder for Digital Health Measurements
The growing prevalence of digital health technologies has led to the generation of complex multi-modal data, such as physical activity measurements simultaneously collected from various sensors of mobile and wearable devices. These data hold immense potential for advancing health studies, but current methods predominantly rely on supervised learning, requiring extensive labeled datasets that are often expensive or impractical to obtain, especially in clinical studies. To address this limitation, we propose a self-supervised learning framework called Multi-modal Cross-masked Autoencoder (MoCA) that leverages cross-modality masking and the Transformer autoencoder architecture to utilize both temporal correlations within modalities and cross-modal correlations between data streams. We also provide theoretical guarantees to support the effectiveness of the cross-modality masking scheme in MoCA. Comprehensive experiments and ablation studies demonstrate that our method outperforms existing approaches in both reconstruction and downstream tasks. We release open-source code for data processing, pre-training, and downstream tasks in the supplementary materials. This work highlights the transformative potential of self-supervised learning in digital health and multi-modal data.
♻ ☆ Deep Learning Warm Starts for Trajectory Optimization on the International Space Station RSS 2025
Trajectory optimization is a cornerstone of modern robot autonomy, enabling systems to compute trajectories and controls in real-time while respecting safety and physical constraints. However, it has seen limited usage in spaceflight applications due to its heavy computational demands that exceed the capability of most flight computers. In this work, we provide results on the first flight demonstration of using machine learning-based warm starts for accelerating trajectory optimization for the Astrobee free-flying robot on-board the International Space Station (ISS). We formulate a data-driven optimal control approach that trains a neural network to learn the structure of the trajectory generation problem being solved for by sequential convex programming (SCP). On-board, this trained neural network predicts solutions for the trajectory generation problem and relies on using the SCP solver to enforce safety constraints for the system. Our trained network reduces the number of solver iterations required for convergence in cases including rotational dynamics by 60% and in cases with obstacles drawn from the training distribution of the warm start model by 50%. This work represents a significant milestone in the use of learning-based control for spaceflight applications and a stepping stone for future advances in the use of machine learning for autonomous guidance, navigation, & control.
comment: Submitted to 2025 International Conference on Space Robotics (iSpaRo). Presented at RSS 2025 Workshop on Space Robotics
♻ ☆ Feel-Good Thompson Sampling for Contextual Bandits: a Markov Chain Monte Carlo Showdown
Thompson Sampling (TS) is widely used to address the exploration/exploitation tradeoff in contextual bandits, yet recent theory shows that it does not explore aggressively enough in high-dimensional problems. Feel-Good Thompson Sampling (FG-TS) addresses this by adding an optimism bonus that biases toward high-reward models, and it achieves the asymptotically minimax-optimal regret in the linear setting when posteriors are exact. However, its performance with \emph{approximate} posteriors -- common in large-scale or neural problems -- has not been benchmarked. We provide the first systematic study of FG-TS and its smoothed variant (SFG-TS) across eleven real-world and synthetic benchmarks. To evaluate their robustness, we compare performance across settings with exact posteriors (linear and logistic bandits) to approximate regimes produced by fast but coarse stochastic-gradient samplers. Ablations over preconditioning, bonus scale, and prior strength reveal a trade-off: larger bonuses help when posterior samples are accurate, but hurt when sampling noise dominates. FG-TS generally outperforms vanilla TS in linear and logistic bandits, but tends to be weaker in neural bandits. Nevertheless, because FG-TS and its variants are competitive and easy-to-use, we recommend them as baselines in modern contextual-bandit benchmarks. Finally, we provide source code for all our experiments in https://github.com/SarahLiaw/ctx-bandits-mcmc-showdown.
comment: 39 pages, 2 figures, 36 tables
♻ ☆ Finite-Time Global Optimality Convergence in Deep Neural Actor-Critic Methods for Decentralized Multi-Agent Reinforcement Learning
Actor-critic methods for decentralized multi-agent reinforcement learning (MARL) facilitate collaborative optimal decision making without centralized coordination, thus enabling a wide range of applications in practice. To date, however, most theoretical convergence studies for existing actor-critic decentralized MARL methods are limited to the guarantee of a stationary solution under the linear function approximation. This leaves a significant gap between the highly successful use of deep neural actor-critic for decentralized MARL in practice and the current theoretical understanding. To bridge this gap, in this paper, we make the first attempt to develop a deep neural actor-critic method for decentralized MARL, where both the actor and critic components are inherently non-linear. We show that our proposed method enjoys a global optimality guarantee with a finite-time convergence rate of O(1/T), where T is the total iteration times. This marks the first global convergence result for deep neural actor-critic methods in the MARL literature. We also conduct extensive numerical experiments, which verify our theoretical results.
♻ ☆ Simulating the Real World: A Unified Survey of Multimodal Generative Models
Understanding and replicating the real world is a critical challenge in Artificial General Intelligence (AGI) research. To achieve this, many existing approaches, such as world models, aim to capture the fundamental principles governing the physical world, enabling more accurate simulations and meaningful interactions. However, current methods often treat different modalities, including 2D (images), videos, 3D, and 4D representations, as independent domains, overlooking their interdependencies. Additionally, these methods typically focus on isolated dimensions of reality without systematically integrating their connections. In this survey, we present a unified survey for multimodal generative models that investigate the progression of data dimensionality in real-world simulation. Specifically, this survey starts from 2D generation (appearance), then moves to video (appearance+dynamics) and 3D generation (appearance+geometry), and finally culminates in 4D generation that integrate all dimensions. To the best of our knowledge, this is the first attempt to systematically unify the study of 2D, video, 3D and 4D generation within a single framework. To guide future research, we provide a comprehensive review of datasets, evaluation metrics and future directions, and fostering insights for newcomers. This survey serves as a bridge to advance the study of multimodal generative models and real-world simulation within a unified framework.
comment: Repository for the related papers at https://github.com/ALEEEHU/World-Simulator
♻ ☆ CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks
Neural networks have continued to gain prevalence in the modern era for their ability to model complex data through pattern recognition and behavior remodeling. However, the static construction of traditional neural networks inhibits dynamic intelligence. This makes them inflexible to temporal changes in data and unfit to capture complex dependencies. With the advent of quantum technology, there has been significant progress in creating quantum algorithms. In recent years, researchers have developed quantum neural networks that leverage the capabilities of qubits to outperform classical networks. However, their current formulation exhibits a static construction limiting the system's dynamic intelligence. To address these weaknesses, we develop a Liquid Quantum Neural Network (LQNet) and a Continuous Time Recurrent Quantum Neural Network (CTRQNet). Both models demonstrate a significant improvement in accuracy compared to existing quantum neural networks (QNNs), achieving accuracy increases as high as 40\% on CIFAR 10 through binary classification. We propose LQNets and CTRQNets might shine a light on quantum machine learning's black box.
♻ ☆ Federated Learning for Smart Grid: A Survey on Applications and Potential Vulnerabilities
The Smart Grid (SG) is a critical energy infrastructure that collects real-time electricity usage data to forecast future energy demands using information and communication technologies (ICT). Due to growing concerns about data security and privacy in SGs, federated learning (FL) has emerged as a promising training framework. FL offers a balance between privacy, efficiency, and accuracy in SGs by enabling collaborative model training without sharing private data from IoT devices. In this survey, we thoroughly review recent advancements in designing FL-based SG systems across three stages: generation, transmission and distribution, and consumption. Additionally, we explore potential vulnerabilities that may arise when implementing FL in these stages. Furthermore, we discuss the gap between state-of-the-art (SOTA) FL research and its practical applications in SGs, and we propose future research directions. Unlike traditional surveys addressing security issues in centralized machine learning methods for SG systems, this survey is the first to specifically examine the applications and security concerns unique to FL-based SG systems. We also introduce FedGridShield, an open-source framework featuring implementations of SOTA attack and defense methods. Our aim is to inspire further research into applications and improvements in the robustness of FL-based SG systems.
comment: Accepted to ACM Transactions on Cyber-Physical Systems 2025
♻ ☆ Audio-3DVG: Unified Audio -- Point Cloud Fusion for 3D Visual Grounding
3D Visual Grounding (3DVG) involves localizing target objects in 3D point clouds based on natural language. While prior work has made strides using textual descriptions, leveraging spoken language-known as Audio-based 3D Visual Grounding-remains underexplored and challenging. Motivated by advances in automatic speech recognition (ASR) and speech representation learning, we propose Audio-3DVG, a simple yet effective framework that integrates audio and spatial information for enhanced grounding. Rather than treating speech as a monolithic input, we decompose the task into two complementary components. First, we introduce (i) Object Mention Detection, a multi-label classification task that explicitly identifies which objects are referred to in the audio, enabling more structured audio-scene reasoning. Second, we propose an (ii) Audio-Guided Attention module that models the interactions between target candidates and mentioned objects, enhancing discrimination in cluttered 3D environments. To support benchmarking, we (iii) synthesize audio descriptions for standard 3DVG datasets, including ScanRefer, Sr3D, and Nr3D. Experimental results demonstrate that Audio-3DVG not only achieves new state-of-the-art performance in audio-based grounding, but also competes with text-based methods, highlight the promise of integrating spoken language into 3D vision tasks.
comment: Preprint, 51 pages
♻ ☆ Dual Signal Decomposition of Stochastic Time Series
The decomposition of a stochastic time series into three component series representing a dual signal - namely, the mean and dispersion - while isolating noise is presented. The decomposition is performed by applying machine learning techniques to fit the dual signal. Machine learning minimizes the loss function which compromises between fitting the original time series and penalizing irregularities of the dual signal. The latter includes terms based on the first and second order derivatives along time. To preserve special patterns, weighting of the regularization components of the loss function has been introduced based on Statistical Process Control methodology. The proposed decomposition can be applied as a smoothing algorithm against the mean and dispersion of the time series. By isolating noise, the proposed decomposition can be seen as a denoising algorithm. Two approaches of the learning process have been considered: sequential and jointly. The former approach learns the mean signal first and then dispersion. The latter approach fits the dual signal jointly. Jointly learning can uncover complex relationships for the time series with heteroskedasticity. Learning has been set by solving the direct non-linear unconstrained optimization problem or by applying neural networks that have sequential or twin output architectures. Tuning of the loss function hyperparameters focuses on the isolated noise to be a stationary stochastic process without autocorrelation properties. Depending on the applications, the hyperparameters of the learning can be tuned towards either the discrete states by stepped signal or smoothed series. The decomposed dual signal can be represented on the 2D space and used to learn inherent structures, to forecast both mean and dispersion, or to analyze cross effects in case of multiple time series.
comment: 21 pages, 9 figures, 1 table
♻ ☆ FinSage: A Multi-aspect RAG System for Financial Filings Question Answering CIKM2025
Leveraging large language models in real-world settings often entails a need to utilize domain-specific data and tools in order to follow the complex regulations that need to be followed for acceptable use. Within financial sectors, modern enterprises increasingly rely on Retrieval-Augmented Generation (RAG) systems to address complex compliance requirements in financial document workflows. However, existing solutions struggle to account for the inherent heterogeneity of data (e.g., text, tables, diagrams) and evolving nature of regulatory standards used in financial filings, leading to compromised accuracy in critical information extraction. We propose the FinSage framework as a solution, utilizing a multi-aspect RAG framework tailored for regulatory compliance analysis in multi-modal financial documents. FinSage introduces three innovative components: (1) a multi-modal pre-processing pipeline that unifies diverse data formats and generates chunk-level metadata summaries, (2) a multi-path sparse-dense retrieval system augmented with query expansion (HyDE) and metadata-aware semantic search, and (3) a domain-specialized re-ranking module fine-tuned via Direct Preference Optimization (DPO) to prioritize compliance-critical content. Extensive experiments demonstrate that FinSage achieves an impressive recall of 92.51% on 75 expert-curated questions derived from surpasses the best baseline method on the FinanceBench question answering datasets by 24.06% in accuracy. Moreover, FinSage has been successfully deployed as financial question-answering agent in online meetings, where it has already served more than 1,200 people.
comment: Accepted at the 34th ACM International Conference on Information and Knowledge Management (CIKM2025)
♻ ☆ The Illusion of Progress: Re-evaluating Hallucination Detection in LLMs
Large language models (LLMs) have revolutionized natural language processing, yet their tendency to hallucinate poses serious challenges for reliable deployment. Despite numerous hallucination detection methods, their evaluations often rely on ROUGE, a metric based on lexical overlap that misaligns with human judgments. Through comprehensive human studies, we demonstrate that while ROUGE exhibits high recall, its extremely low precision leads to misleading performance estimates. In fact, several established detection methods show performance drops of up to 45.9\% when assessed using human-aligned metrics like LLM-as-Judge. Moreover, our analysis reveals that simple heuristics based on response length can rival complex detection techniques, exposing a fundamental flaw in current evaluation practices. We argue that adopting semantically aware and robust evaluation frameworks is essential to accurately gauge the true performance of hallucination detection methods, ultimately ensuring the trustworthiness of LLM outputs.
comment: Preprint, under review
♻ ☆ Neural Networks Generalize on Low Complexity Data
We show that feedforward neural networks with ReLU activation generalize on low complexity data, suitably defined. Given i.i.d.~data generated from a simple programming language, the minimum description length (MDL) feedforward neural network which interpolates the data generalizes with high probability. We define this simple programming language, along with a notion of description length of such networks. We provide several examples on basic computational tasks, such as checking primality of a natural number. For primality testing, our theorem shows the following and more. Suppose that we draw an i.i.d.~sample of $n$ numbers uniformly at random from $1$ to $N$. For each number $x_i$, let $y_i = 1$ if $x_i$ is a prime and $0$ if it is not. Then, the interpolating MDL network accurately answers, with error probability $1- O((\ln N)/n)$, whether a newly drawn number between $1$ and $N$ is a prime or not. Note that the network is not designed to detect primes; minimum description learning discovers a network which does so. Extensions to noisy data are also discussed, suggesting that MDL neural network interpolators can demonstrate tempered overfitting.
comment: 37 pages. To appear in Annals of Statistics
♻ ☆ Unraveling the iterative CHAD
Combinatory Homomorphic Automatic Differentiation (CHAD) was originally formulated as a semantics-driven source-to-source transformation for reverse-mode AD of total (terminating) functional programs. In this work, we extend CHAD to encompass programs featuring constructs such as partial (potentially non-terminating) operations, data-dependent conditionals (e.g., real-valued tests), and iteration constructs (i.e. while-loops), while maintaining CHAD's core principle of structure-preserving semantics. A central contribution is the introduction of iteration-extensive indexed categories, which provide a principled integration of iteration into dependently typed programming languages. This integration is achieved by requiring that iteration in the base category lifts to parameterized initial algebras in the indexed category, yielding an op-fibred iterative structure that models while-loops and other iteration constructs in the total category, which corresponds to the category of containers of our dependently typed language. Through the idea of iteration-extensive indexed categories, we extend the CHAD transformation to looping programs as the unique structure-preserving functor in a suitable sense. Specifically, it is the unique iterative Freyd category morphism from the iterative Freyd category corresponding to the source language to the category of containers obtained from the target language, such that each primitive operation is mapped to its (transposed) derivative. We establish the correctness of this extended transformation via the universal property of the syntactic categorical model of the source language, showing that the differentiated programs compute correct reverse-mode derivatives of their originals.
comment: 58 pages
♻ ☆ Reinforcement Learning with Random Time Horizons
We extend the standard reinforcement learning framework to random time horizons. While the classical setting typically assumes finite and deterministic or infinite runtimes of trajectories, we argue that multiple real-world applications naturally exhibit random (potentially trajectory-dependent) stopping times. Since those stopping times typically depend on the policy, their randomness has an effect on policy gradient formulas, which we (mostly for the first time) derive rigorously in this work both for stochastic and deterministic policies. We present two complementary perspectives, trajectory or state-space based, and establish connections to optimal control theory. Our numerical experiments demonstrate that using the proposed formulas can significantly improve optimization convergence compared to traditional approaches.
♻ ☆ Sequential QCQP for Bilevel Optimization with Line Search
Bilevel optimization involves a hierarchical structure where one problem is nested within another, leading to complex interdependencies between levels. We propose a single-loop, tuning-free algorithm that guarantees anytime feasibility, i.e., approximate satisfaction of the lower-level optimality condition, while ensuring descent of the upper-level objective. At each iteration, a convex quadratically-constrained quadratic program (QCQP) with a closed-form solution yields the search direction, followed by a backtracking line search inspired by control barrier functions to ensure safe, uniformly positive step sizes. The resulting method is scalable, requires no hyperparameter tuning, and converges under mild local regularity assumptions. We establish an O(1/k) ergodic convergence rate in terms of a first-order stationary metric and demonstrate the algorithm's effectiveness on representative bilevel tasks.
comment: IEEE Control Systems Letters (L-CSS) and IEEE Conference on Decision and Control (CDC) 2025
♻ ☆ Competitive Algorithms for Multi-Agent Ski-Rental Problems
This paper introduces a novel multi-agent ski-rental problem that generalizes the classical ski-rental dilemma to a group setting where agents incur individual and shared costs. In our model, each agent can either rent at a fixed daily cost, or purchase a pass at an individual cost, with an additional third option of a discounted group pass available to all. We consider scenarios in which agents' active days differ, leading to dynamic states as agents drop out of the decision process. To address this problem from different perspectives, we define three distinct competitive ratios: overall, state-dependent, and individual rational. For each objective, we design and analyze optimal deterministic and randomized policies. Our deterministic policies employ state-aware threshold functions that adapt to the dynamic states, while our randomized policies sample and resample thresholds from tailored state-aware distributions. The analysis reveals that symmetric policies, in which all agents use the same threshold, outperform asymmetric ones. Our results provide competitive ratio upper and lower bounds and extend classical ski-rental insights to multi-agent settings, highlighting both theoretical and practical implications for group decision-making under uncertainty.
♻ ☆ MIAT: Maneuver-Intention-Aware Transformer for Spatio-Temporal Trajectory Prediction IROS
Accurate vehicle trajectory prediction is critical for safe and efficient autonomous driving, especially in mixed traffic environments when both human-driven and autonomous vehicles co-exist. However, uncertainties introduced by inherent driving behaviors -- such as acceleration, deceleration, and left and right maneuvers -- pose significant challenges for reliable trajectory prediction. We introduce a Maneuver-Intention-Aware Transformer (MIAT) architecture, which integrates a maneuver intention awareness control mechanism with spatiotemporal interaction modeling to enhance long-horizon trajectory predictions. We systematically investigate the impact of varying awareness of maneuver intention on both short- and long-horizon trajectory predictions. Evaluated on the real-world NGSIM dataset and benchmarked against various transformer- and LSTM-based methods, our approach achieves an improvement of up to 4.7% in short-horizon predictions and a 1.6% in long-horizon predictions compared to other intention-aware benchmark methods. Moreover, by leveraging intention awareness control mechanism, MIAT realizes an 11.1% performance boost in long-horizon predictions, with a modest drop in short-horizon performance. The source code and datasets are available at https://github.com/cpraskoti/MIAT.
comment: Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2025
♻ ☆ Adaptive Budgeted Multi-Armed Bandits for IoT with Dynamic Resource Constraints
Internet of Things (IoT) systems increasingly operate in environments where devices must respond in real time while managing fluctuating resource constraints, including energy and bandwidth. Yet, current approaches often fall short in addressing scenarios where operational constraints evolve over time. To address these limitations, we propose a novel Budgeted Multi-Armed Bandit framework tailored for IoT applications with dynamic operational limits. Our model introduces a decaying violation budget, which permits limited constraint violations early in the learning process and gradually enforces stricter compliance over time. We present the Budgeted Upper Confidence Bound (UCB) algorithm, which adaptively balances performance optimization and compliance with time-varying constraints. We provide theoretical guarantees showing that Budgeted UCB achieves sublinear regret and logarithmic constraint violations over the learning horizon. Extensive simulations in a wireless communication setting show that our approach achieves faster adaptation and better constraint satisfaction than standard online learning methods. These results highlight the framework's potential for building adaptive, resource-aware IoT systems.
♻ ☆ Class-Proportional Coreset Selection for Difficulty-Separable Data ICCV 2025
High-quality training data is essential for building reliable and efficient machine learning systems. One-shot coreset selection addresses this by pruning the dataset while maintaining or even improving model performance, often relying on training-dynamics-based data difficulty scores. However, most existing methods implicitly assume class-wise homogeneity in data difficulty, overlooking variation in data difficulty across different classes. In this work, we challenge this assumption by showing that, in domains such as network intrusion detection and medical imaging, data difficulty often clusters by class. We formalize this as class-difficulty separability and introduce the Class Difficulty Separability Coefficient (CDSC) as a quantitative measure. We demonstrate that high CDSC values correlate with performance degradation in class-agnostic coreset methods, which tend to overrepresent easy majority classes while neglecting rare but informative ones. To address this, we introduce class-proportional variants of multiple sampling strategies. Evaluated on five diverse datasets spanning security and medical domains, our methods consistently achieve state-of-the-art performance. For instance, on CTU-13, at an extreme 99% pruning rate, a class-proportional variant of Coverage-centric Coreset Selection (CCS-CP) shows remarkable stability, with accuracy dropping only 2.58%, precision 0.49%, and recall 0.19%. In contrast, the class-agnostic CCS baseline, the next best method, suffers sharper declines of 7.59% in accuracy, 4.57% in precision, and 4.11% in recall. We further show that aggressive pruning enhances generalization in noisy, imbalanced, and large-scale datasets. Our results underscore that explicitly modeling class-difficulty separability leads to more effective, robust, and generalizable data pruning, particularly in high-stakes scenarios.
comment: This paper has been accepted to the ICCV 2025 Workshop on Curated Data for Efficient Learning (CDEL)
♻ ☆ Improved Regularization and Robustness for Fine-tuning in Neural Networks NeurIPS'21
A widely used algorithm for transfer learning is fine-tuning, where a pre-trained model is fine-tuned on a target task with a small amount of labeled data. When the capacity of the pre-trained model is significantly larger than the size of the target dataset, fine-tuning is prone to overfitting and memorizing the training labels. Hence, a crucial question is to regularize fine-tuning and ensure its robustness against noise. To address this question, we begin by analyzing the generalization properties of fine-tuning. We present a PAC-Bayes generalization bound that depends on the distance traveled in each layer during fine-tuning and the noise stability of the fine-tuned model. We empirically measure these quantities. Based on the analysis, we propose regularized self-labeling -- the interpolation between regularization and self-labeling methods, including (i) layer-wise regularization to constrain the distance traveled in each layer; (ii) self-label-correction and label-reweighting to correct mislabeled data points (that the model is confident) and reweight less confident data points. We validate our approach on an extensive collection of image and text datasets using multiple pre-trained model architectures. Our approach improves baseline methods by 1.76% (on average) for seven image classification tasks and 0.75% for a few-shot classification task. When the target data set includes noisy labels, our approach outperforms baseline methods by an average of 3.56% in two noisy settings.
comment: 22 pages. Appeared in NeurIPS'21
♻ ☆ A Training-Free Approach for Music Style Transfer with Latent Diffusion Models
Music style transfer enables personalized music creation by combining the structure of one piece with the stylistic characteristics of another. While recent approaches have explored text-conditioned generation and diffusion-based synthesis, most require extensive training, paired datasets, or detailed textual annotations. In this work, we introduce Stylus, a novel training-free framework for music style transfer that directly manipulates the self-attention layers of a pre-trained Latent Diffusion Model (LDM). Operating in the mel-spectrogram domain, Stylus transfers musical style by replacing key and value representations from the content audio with those of the style reference, without any fine-tuning. To enhance stylization quality and controllability, we further incorporate query preservation, CFG-inspired guidance scaling, multi-style interpolation, and phase-preserving reconstruction. Our method significantly improves perceptual quality and structural preservation compared to prior work, while remaining lightweight and easy to deploy. This work highlights the potential of diffusion-based attention manipulation for efficient, high-fidelity, and interpretable music generation-without training. Codes will be released upon acceptance.
comment: Codes will be released upon acceptance
♻ ☆ Implicit Safe Set Algorithm for Provably Safe Reinforcement Learning
Deep reinforcement learning (DRL) has demonstrated remarkable performance in many continuous control tasks. However, a significant obstacle to the real-world application of DRL is the lack of safety guarantees. Although DRL agents can satisfy system safety in expectation through reward shaping, designing agents to consistently meet hard constraints (e.g., safety specifications) at every time step remains a formidable challenge. In contrast, existing work in the field of safe control provides guarantees on persistent satisfaction of hard safety constraints. However, these methods require explicit analytical system dynamics models to synthesize safe control, which are typically inaccessible in DRL settings. In this paper, we present a model-free safe control algorithm, the implicit safe set algorithm, for synthesizing safeguards for DRL agents that ensure provable safety throughout training. The proposed algorithm synthesizes a safety index (barrier certificate) and a subsequent safe control law solely by querying a black-box dynamic function (e.g., a digital twin simulator). Moreover, we theoretically prove that the implicit safe set algorithm guarantees finite time convergence to the safe set and forward invariance for both continuous-time and discrete-time systems. We validate the proposed algorithm on the state-of-the-art Safety Gym benchmark, where it achieves zero safety violations while gaining $95\% \pm 9\%$ cumulative reward compared to state-of-the-art safe DRL methods. Furthermore, the resulting algorithm scales well to high-dimensional systems with parallel computing.
comment: Accepted to Journal of Artificial Intelligence Research. arXiv admin note: text overlap with arXiv:2308.13140
♻ ☆ Sharp Generalization for Nonparametric Regression in Interpolation Space by Over-Parameterized Neural Networks Trained with Preconditioned Gradient Descent and Early-Stopping
We study nonparametric regression using an over-parameterized two-layer neural networks trained with algorithmic guarantees in this paper. We consider the setting where the training features are drawn uniformly from the unit sphere in $\RR^d$, and the target function lies in an interpolation space commonly studied in statistical learning theory. We demonstrate that training the neural network with a novel Preconditioned Gradient Descent (PGD) algorithm, equipped with early stopping, achieves a sharp regression rate of $\cO(n^{-\frac{2\alpha s'}{2\alpha s'+1}})$ when the target function is in the interpolation space $\bth{\cH_K}^{s'}$ with $s' \ge 3$. This rate is even sharper than the currently known nearly-optimal rate of $\cO(n^{-\frac{2\alpha s'}{2\alpha s'+1}})\log^2(1/\delta)$, where $n$ is the size of the training data and $\delta \in (0,1)$ is a small probability. This rate is also sharper than the standard kernel regression rate of $\cO(n^{-\frac{2\alpha}{2\alpha+1}})$ obtained under the regular Neural Tangent Kernel (NTK) regime when training the neural network with the vanilla gradient descent (GD), where $2\alpha = d/(d-1)$. Our analysis is based on two key technical contributions. First, we present a principled decomposition of the network output at each PGD step into a function in the reproducing kernel Hilbert space (RKHS) of a newly induced integral kernel, and a residual function with small $L^{\infty}$-norm. Second, leveraging this decomposition, we apply local Rademacher complexity theory to tightly control the complexity of the function class comprising all the neural network functions obtained in the PGD iterates. Our results further suggest that PGD enables the neural network to escape the linear NTK regime and achieve improved generalization, as it effectively induces a new kernel termed the integral kernel, compared to the regular NTK arising from the vanilla GD.
♻ ☆ Understanding Transformer-based Vision Models through Inversion
Understanding the mechanisms underlying deep neural networks remains a fundamental challenge in machine learning and computer vision. One promising, yet only preliminarily explored approach, is feature inversion, which attempts to reconstruct images from intermediate representations using trained inverse neural networks. In this study, we revisit feature inversion, introducing a novel, modular variation that enables significantly more efficient application of the technique. We demonstrate how our method can be systematically applied to the large-scale transformer-based vision models, Detection Transformer and Vision Transformer, and how reconstructed images can be qualitatively interpreted in a meaningful way. We further quantitatively evaluate our method, thereby uncovering underlying mechanisms of representing image features that emerge in the two transformer architectures. Our analysis reveals key insights into how these models encode contextual shape and image details, how their layers correlate, and their robustness against color perturbations. These findings contribute to a deeper understanding of transformer-based vision models and their internal representations. The code for reproducing our experiments is available at github.com/wiskott-lab/inverse-tvm.
♻ ☆ Self-Questioning Language Models
Can large language models improve without external data -- by generating their own questions and answers? We hypothesize that a pre-trained language model can improve its reasoning skills given only a single prompt specifying the topic (e.g., algebra word problems) and asking the model to generate its own questions. To do this, we propose Self-Questioning Language Models (SQLM): an asymmetric self-play framework where a proposer is given the topic and generates a question for a solver, who tries to answer it. Both the proposer and solver are trained via reinforcement learning. The proposer receives a reward if the problem is not too easy or too difficult, and the solver receives a reward based on majority voting, a proxy for correctness in the absence of ground-truth answers. For coding, the proposer can instead generate unit tests which are used for verification. We study this asymmetric self-play framework on three benchmarks: three-digit multiplication, algebra problems from the OMEGA benchmark, and programming problems from Codeforces. By continually generating more interesting problems and attempting to solve them, language models can improve on downstream benchmarks without access to any curated training datasets.
Graphics 10
☆ Story2Board: A Training-Free Approach for Expressive Storyboard Generation
We present Story2Board, a training-free framework for expressive storyboard generation from natural language. Existing methods narrowly focus on subject identity, overlooking key aspects of visual storytelling such as spatial composition, background evolution, and narrative pacing. To address this, we introduce a lightweight consistency framework composed of two components: Latent Panel Anchoring, which preserves a shared character reference across panels, and Reciprocal Attention Value Mixing, which softly blends visual features between token pairs with strong reciprocal attention. Together, these mechanisms enhance coherence without architectural changes or fine-tuning, enabling state-of-the-art diffusion models to generate visually diverse yet consistent storyboards. To structure generation, we use an off-the-shelf language model to convert free-form stories into grounded panel-level prompts. To evaluate, we propose the Rich Storyboard Benchmark, a suite of open-domain narratives designed to assess layout diversity and background-grounded storytelling, in addition to consistency. We also introduce a new Scene Diversity metric that quantifies spatial and pose variation across storyboards. Our qualitative and quantitative results, as well as a user study, show that Story2Board produces more dynamic, coherent, and narratively engaging storyboards than existing baselines.
comment: Project page is available at https://daviddinkevich.github.io/Story2Board/
☆ RayletDF: Raylet Distance Fields for Generalizable 3D Surface Reconstruction from Point Clouds or Gaussians ICCV 2025
In this paper, we present a generalizable method for 3D surface reconstruction from raw point clouds or pre-estimated 3D Gaussians by 3DGS from RGB images. Unlike existing coordinate-based methods which are often computationally intensive when rendering explicit surfaces, our proposed method, named RayletDF, introduces a new technique called raylet distance field, which aims to directly predict surface points from query rays. Our pipeline consists of three key modules: a raylet feature extractor, a raylet distance field predictor, and a multi-raylet blender. These components work together to extract fine-grained local geometric features, predict raylet distances, and aggregate multiple predictions to reconstruct precise surface points. We extensively evaluate our method on multiple public real-world datasets, demonstrating superior performance in surface reconstruction from point clouds or 3D Gaussians. Most notably, our method achieves exceptional generalization ability, successfully recovering 3D surfaces in a single-forward pass across unseen datasets in testing.
comment: ICCV 2025 Highlight. Shenxing and Jinxi are co-first authors. Code and data are available at: https://github.com/vLAR-group/RayletDF
☆ DualPhys-GS: Dual Physically-Guided 3D Gaussian Splatting for Underwater Scene Reconstruction
In 3D reconstruction of underwater scenes, traditional methods based on atmospheric optical models cannot effectively deal with the selective attenuation of light wavelengths and the effect of suspended particle scattering, which are unique to the water medium, and lead to color distortion, geometric artifacts, and collapsing phenomena at long distances. We propose the DualPhys-GS framework to achieve high-quality underwater reconstruction through a dual-path optimization mechanism. Our approach further develops a dual feature-guided attenuation-scattering modeling mechanism, the RGB-guided attenuation optimization model combines RGB features and depth information and can handle edge and structural details. In contrast, the multi-scale depth-aware scattering model captures scattering effects at different scales using a feature pyramid network and an attention mechanism. Meanwhile, we design several special loss functions. The attenuation scattering consistency loss ensures physical consistency. The water body type adaptive loss dynamically adjusts the weighting coefficients. The edge-aware scattering loss is used to maintain the sharpness of structural edges. The multi-scale feature loss helps to capture global and local structural information. In addition, we design a scene adaptive mechanism that can automatically identify the water-body-type characteristics (e.g., clear coral reef waters or turbid coastal waters) and dynamically adjust the scattering and attenuation parameters and optimization strategies. Experimental results show that our method outperforms existing methods in several metrics, especially in suspended matter-dense regions and long-distance scenes, and the reconstruction quality is significantly improved.
comment: 12 pages, 4 figures
☆ B-repLer: Semantic B-rep Latent Editor using Large Language Models
Multimodal large language models (mLLMs), trained in a mixed modal setting as a universal model, have been shown to compete with or even outperform many specialized algorithms for imaging and graphics tasks. As demonstrated across many applications, mLLMs' ability to jointly process image and text data makes them suitable for zero-shot applications or efficient fine-tuning towards specialized tasks. However, they have had limited success in 3D analysis and editing tasks. This is due to both the lack of suitable (annotated) 3D data as well as the idiosyncrasies of 3D representations. In this paper, we investigate whether mLLMs can be adapted to support high-level editing of Boundary Representation (B-rep) CAD objects. B-reps remain the industry-standard for precisely encoding engineering objects, but are challenging as the representation is fragile (i.e. can easily lead to invalid CAD objects) and no publicly available data source exists with semantically-annotated B-reps or CAD construction history. We present B-repLer as a finetuned mLLM that can understand text prompts and make semantic edits on given B-Reps to produce valid outputs. We enable this via a novel multimodal architecture, specifically designed to handle B-rep models, and demonstrate how existing CAD tools, in conjunction with mLLMs, can be used to automatically generate the required reasoning dataset, without relying on external annotations. We extensively evaluate B-repLer and demonstrate several text-based B-rep edits of various complexity, which were not previously possible.
♻ ☆ Training-Free Text-Guided Color Editing with Multi-Modal Diffusion Transformer
Text-guided color editing in images and videos is a fundamental yet unsolved problem, requiring fine-grained manipulation of color attributes, including albedo, light source color, and ambient lighting, while preserving physical consistency in geometry, material properties, and light-matter interactions. Existing training-free methods offer broad applicability across editing tasks but struggle with precise color control and often introduce visual inconsistency in both edited and non-edited regions. In this work, we present ColorCtrl, a training-free color editing method that leverages the attention mechanisms of modern Multi-Modal Diffusion Transformers (MM-DiT). By disentangling structure and color through targeted manipulation of attention maps and value tokens, our method enables accurate and consistent color editing, along with word-level control of attribute intensity. Our method modifies only the intended regions specified by the prompt, leaving unrelated areas untouched. Extensive experiments on both SD3 and FLUX.1-dev demonstrate that ColorCtrl outperforms existing training-free approaches and achieves state-of-the-art performances in both edit quality and consistency. Furthermore, our method surpasses strong commercial models such as FLUX.1 Kontext Max and GPT-4o Image Generation in terms of consistency. When extended to video models like CogVideoX, our approach exhibits greater advantages, particularly in maintaining temporal coherence and editing stability. Finally, our method also generalizes to instruction-based editing diffusion models such as Step1X-Edit and FLUX.1 Kontext dev, further demonstrating its versatility.
♻ ☆ Poncelet triangles: conic loci of the orthocenter and of the isogonal conjugate of a fixed point
We prove that over a Poncelet triangle family interscribed between two nested ellipses $\mathcal{E},\mathcal{E}_c$, (i) the locus of the orthocenter is not only a conic, but it is axis-aligned and homothetic to a $90^o$-rotated copy of $\mathcal{E}$, and (ii) the locus of the isogonal conjugate of a fixed point $P$ is also a conic (the expected degree was four); a parabola (resp. line) if $P$ is on the (degree-four) envelope of the circumcircle (resp. on $\mathcal{E}$). We also show that the envelope of both the circumcircle and radical axis of incircle and circumcircle contain a conic component if and only if $\mathcal{E}_c$ is a circle. The former case is the union of two circles!
comment: 18 pages, 14 figures, 2 tables
♻ ☆ FROST-BRDF: A Fast and Robust Optimal Sampling Technique for BRDF Acquisition
Efficient and accurate BRDF acquisition of real world materials is a challenging research problem that requires sampling millions of incident light and viewing directions. To accelerate the acquisition process, one needs to find a minimal set of sampling directions such that the recovery of the full BRDF is accurate and robust given such samples. In this paper, we formulate BRDF acquisition as a compressed sensing problem, where the sensing operator is one that performs sub-sampling of the BRDF signal according to a set of optimal sample directions. To solve this problem, we propose the Fast and Robust Optimal Sampling Technique (FROST) for designing a provably optimal sub-sampling operator that places light-view samples such that the recovery error is minimized. FROST casts the problem of designing an optimal sub-sampling operator for compressed sensing into a sparse representation formulation under the Multiple Measurement Vector (MMV) signal model. The proposed reformulation is exact, i.e. without any approximations, hence it converts an intractable combinatorial problem into one that can be solved with standard optimization techniques. As a result, FROST is accompanied by strong theoretical guarantees from the field of compressed sensing. We perform a thorough analysis of FROST-BRDF using a 10-fold cross-validation with publicly available BRDF datasets and show significant advantages compared to the state-of-the-art with respect to reconstruction quality. Finally, FROST is simple, both conceptually and in terms of implementation, it produces consistent results at each run, and it is at least two orders of magnitude faster than the prior art.
comment: Submitted to IEEE Transactions on Visualization and Computer Graphics (IEEE TVCG)
♻ ☆ UltraRay: Introducing Full-Path Ray Tracing in Physics-Based Ultrasound Simulation
Traditional ultrasound simulators solve the wave equation to model pressure distribution fields, achieving high accuracy but requiring significant computational time and resources. To address this, ray tracing approaches have been introduced, modeling wave propagation as rays interacting with boundaries and scatterers. However, existing models simplify ray propagation, generating echoes at interaction points without considering return paths to the sensor. This can result in unrealistic artifacts and necessitates careful scene tuning for plausible results. We propose a novel ultrasound simulation pipeline that utilizes a ray tracing algorithm to generate echo data, tracing each ray from the transducer through the scene and back to the sensor. To replicate advanced ultrasound imaging, we introduce a ray emission scheme optimized for plane wave imaging, incorporating delay and steering capabilities. Furthermore, we integrate a standard signal processing pipeline to simulate end-to-end ultrasound image formation. We showcase the efficacy of the proposed pipeline by modeling synthetic scenes featuring highly reflective objects, such as bones. In doing so, our proposed approach, UltraRay, not only enhances the overall visual quality but also improves the realism of the simulated images by accurately capturing secondary reflections and reducing unnatural artifacts. By building on top of a differentiable framework, the proposed pipeline lays the groundwork for a fast and differentiable ultrasound simulation tool necessary for gradient-based optimization, enabling advanced ultrasound beamforming strategies, neural network integration, and accurate inverse scene reconstruction.
♻ ☆ Human Motion Capture from Loose and Sparse Inertial Sensors with Garment-aware Diffusion Models IJCAI 2025
Motion capture using sparse inertial sensors has shown great promise due to its portability and lack of occlusion issues compared to camera-based tracking. Existing approaches typically assume that IMU sensors are tightly attached to the human body. However, this assumption often does not hold in real-world scenarios. In this paper, we present Garment Inertial Poser (GaIP), a method for estimating full-body poses from sparse and loosely attached IMU sensors. We first simulate IMU recordings using an existing garment-aware human motion dataset. Our transformer-based diffusion models synthesize loose IMU data and estimate human poses from this challenging loose IMU data. We also demonstrate that incorporating garment-related parameters during training on loose IMU data effectively maintains expressiveness and enhances the ability to capture variations introduced by looser or tighter garments. Our experiments show that our diffusion methods trained on simulated and synthetic data outperform state-of-the-art inertial full-body pose estimators, both quantitatively and qualitatively, opening up a promising direction for future research on motion capture from such realistic sensor placements.
comment: Accepted by IJCAI 2025
♻ ☆ Efficient Differentiable Hardware Rasterization for 3D Gaussian Splatting
Recent works demonstrate the advantages of hardware rasterization for 3D Gaussian Splatting (3DGS) in forward-pass rendering through fast GPU-optimized graphics and fixed memory footprint. However, extending these benefits to backward-pass gradient computation remains challenging due to graphics pipeline constraints. We present a differentiable hardware rasterizer for 3DGS that overcomes the memory and performance limitations of tile-based software rasterization. Our solution employs programmable blending for per-pixel gradient computation combined with a hybrid gradient reduction strategy (quad-level + subgroup) in fragment shaders, achieving over 10x faster backward rasterization versus naive atomic operations and 3x speedup over the canonical tile-based rasterizer. Systematic evaluation reveals 16-bit render targets (float16 and unorm16) as the optimal accuracy-efficiency trade-off, achieving higher gradient accuracy among mixed-precision rendering formats with execution speeds second only to unorm8, while float32 texture incurs severe forward pass performance degradation due to suboptimal hardware optimizations. Our method with float16 formats demonstrates 3.07x acceleration in full pipeline execution (forward + backward passes) on RTX4080 GPUs with the MipNeRF 360 dataset, outperforming the baseline tile-based renderer while preserving hardware rasterization's memory efficiency advantages -- incurring merely 2.67% of the memory overhead required for splat sorting operations. This work presents a unified differentiable hardware rasterization method that simultaneously optimizes runtime and memory usage for 3DGS, making it particularly suitable for resource-constrained devices with limited memory capacity.
comment: 8 pages,2 figures
Robotics 49
☆ Spatial Traces: Enhancing VLA Models with Spatial-Temporal Understanding
Vision-Language-Action models have demonstrated remarkable capabilities in predicting agent movements within virtual environments and real-world scenarios based on visual observations and textual instructions. Although recent research has focused on enhancing spatial and temporal understanding independently, this paper presents a novel approach that integrates both aspects through visual prompting. We introduce a method that projects visual traces of key points from observations onto depth maps, enabling models to capture both spatial and temporal information simultaneously. The experiments in SimplerEnv show that the mean number of tasks successfully solved increased for 4% compared to SpatialVLA and 19% compared to TraceVLA. Furthermore, we show that this enhancement can be achieved with minimal training data, making it particularly valuable for real-world applications where data collection is challenging. The project page is available at https://ampiromax.github.io/ST-VLA.
☆ Large Scale Robotic Material Handling: Learning, Planning, and Control
Bulk material handling involves the efficient and precise moving of large quantities of materials, a core operation in many industries, including cargo ship unloading, waste sorting, construction, and demolition. These repetitive, labor-intensive, and safety-critical operations are typically performed using large hydraulic material handlers equipped with underactuated grippers. In this work, we present a comprehensive framework for the autonomous execution of large-scale material handling tasks. The system integrates specialized modules for environment perception, pile attack point selection, path planning, and motion control. The main contributions of this work are two reinforcement learning-based modules: an attack point planner that selects optimal grasping locations on the material pile to maximize removal efficiency and minimize the number of scoops, and a robust trajectory following controller that addresses the precision and safety challenges associated with underactuated grippers in movement, while utilizing their free-swinging nature to release material through dynamic throwing. We validate our framework through real-world experiments on a 40 t material handler in a representative worksite, focusing on two key tasks: high-throughput bulk pile management and high-precision truck loading. Comparative evaluations against human operators demonstrate the system's effectiveness in terms of precision, repeatability, and operational safety. To the best of our knowledge, this is the first complete automation of material handling tasks on a full scale.
comment: Preliminary version, currently undergoing review process
☆ Generation of Real-time Robotic Emotional Expressions Learning from Human Demonstration in Mixed Reality
Expressive behaviors in robots are critical for effectively conveying their emotional states during interactions with humans. In this work, we present a framework that autonomously generates realistic and diverse robotic emotional expressions based on expert human demonstrations captured in Mixed Reality (MR). Our system enables experts to teleoperate a virtual robot from a first-person perspective, capturing their facial expressions, head movements, and upper-body gestures, and mapping these behaviors onto corresponding robotic components including eyes, ears, neck, and arms. Leveraging a flow-matching-based generative process, our model learns to produce coherent and varied behaviors in real-time in response to moving objects, conditioned explicitly on given emotional states. A preliminary test validated the effectiveness of our approach for generating autonomous expressions.
comment: 4
☆ Rational Inverse Reasoning
Humans can observe a single, imperfect demonstration and immediately generalize to very different problem settings. Robots, in contrast, often require hundreds of examples and still struggle to generalize beyond the training conditions. We argue that this limitation arises from the inability to recover the latent explanations that underpin intelligent behavior, and that these explanations can take the form of structured programs consisting of high-level goals, sub-task decomposition, and execution constraints. In this work, we introduce Rational Inverse Reasoning (RIR), a framework for inferring these latent programs through a hierarchical generative model of behavior. RIR frames few-shot imitation as Bayesian program induction: a vision-language model iteratively proposes structured symbolic task hypotheses, while a planner-in-the-loop inference scheme scores each by the likelihood of the observed demonstration under that hypothesis. This loop yields a posterior over concise, executable programs. We evaluate RIR on a suite of continuous manipulation tasks designed to test one-shot and few-shot generalization across variations in object pose, count, geometry, and layout. With as little as one demonstration, RIR infers the intended task structure and generalizes to novel settings, outperforming state-of-the-art vision-language model baselines.
Unsupervised Skill Discovery as Exploration for Learning Agile Locomotion
Exploration is crucial for enabling legged robots to learn agile locomotion behaviors that can overcome diverse obstacles. However, such exploration is inherently challenging, and we often rely on extensive reward engineering, expert demonstrations, or curriculum learning - all of which limit generalizability. In this work, we propose Skill Discovery as Exploration (SDAX), a novel learning framework that significantly reduces human engineering effort. SDAX leverages unsupervised skill discovery to autonomously acquire a diverse repertoire of skills for overcoming obstacles. To dynamically regulate the level of exploration during training, SDAX employs a bi-level optimization process that autonomously adjusts the degree of exploration. We demonstrate that SDAX enables quadrupedal robots to acquire highly agile behaviors including crawling, climbing, leaping, and executing complex maneuvers such as jumping off vertical walls. Finally, we deploy the learned policy on real hardware, validating its successful transfer to the real world.
comment: Conference on Robot Learning 2025
☆ Shape Completion and Real-Time Visualization in Robotic Ultrasound Spine Acquisitions
Ultrasound (US) imaging is increasingly used in spinal procedures due to its real-time, radiation-free capabilities; however, its effectiveness is hindered by shadowing artifacts that obscure deeper tissue structures. Traditional approaches, such as CT-to-US registration, incorporate anatomical information from preoperative CT scans to guide interventions, but they are limited by complex registration requirements, differences in spine curvature, and the need for recent CT imaging. Recent shape completion methods can offer an alternative by reconstructing spinal structures in US data, while being pretrained on large set of publicly available CT scans. However, these approaches are typically offline and have limited reproducibility. In this work, we introduce a novel integrated system that combines robotic ultrasound with real-time shape completion to enhance spinal visualization. Our robotic platform autonomously acquires US sweeps of the lumbar spine, extracts vertebral surfaces from ultrasound, and reconstructs the complete anatomy using a deep learning-based shape completion network. This framework provides interactive, real-time visualization with the capability to autonomously repeat scans and can enable navigation to target locations. This can contribute to better consistency, reproducibility, and understanding of the underlying anatomy. We validate our approach through quantitative experiments assessing shape completion accuracy and evaluations of multiple spine acquisition protocols on a phantom setup. Additionally, we present qualitative results of the visualization on a volunteer scan.
☆ DiffPhysCam: Differentiable Physics-Based Camera Simulation for Inverse Rendering and Embodied AI
We introduce DiffPhysCam, a differentiable camera simulator designed to support robotics and embodied AI applications by enabling gradient-based optimization in visual perception pipelines. Generating synthetic images that closely mimic those from real cameras is essential for training visual models and enabling end-to-end visuomotor learning. Moreover, differentiable rendering allows inverse reconstruction of real-world scenes as digital twins, facilitating simulation-based robotics training. However, existing virtual cameras offer limited control over intrinsic settings, poorly capture optical artifacts, and lack tunable calibration parameters -- hindering sim-to-real transfer. DiffPhysCam addresses these limitations through a multi-stage pipeline that provides fine-grained control over camera settings, models key optical effects such as defocus blur, and supports calibration with real-world data. It enables both forward rendering for image synthesis and inverse rendering for 3D scene reconstruction, including mesh and material texture optimization. We show that DiffPhysCam enhances robotic perception performance in synthetic image tasks. As an illustrative example, we create a digital twin of a real-world scene using inverse rendering, simulate it in a multi-physics environment, and demonstrate navigation of an autonomous ground vehicle using images generated by DiffPhysCam.
comment: 19 pages, 17 figures, and 4 tables
☆ Robot can reduce superior's dominance in group discussions with human social hierarchy
This study investigated whether robotic agents that deal with social hierarchical relationships can reduce the dominance of superiors and equalize participation among participants in discussions with hierarchical structures. Thirty doctors and students having hierarchical relationship were gathered as participants, and an intervention experiment was conducted using a robot that can encourage participants to speak depending on social hierarchy. These were compared with strategies that intervened equally for all participants without considering hierarchy and with a no-action. The robots performed follow actions, showing backchanneling to speech, and encourage actions, prompting speech from members with less speaking time, on the basis of the hierarchical relationships among group members to equalize participation. The experimental results revealed that the robot's actions could potentially influence the speaking time among members, but it could not be conclusively stated that there were significant differences between the robot's action conditions. However, the results suggested that it might be possible to influence speaking time without decreasing the satisfaction of superiors. This indicates that in discussion scenarios where experienced superiors are likely to dominate, controlling the robot's backchanneling behavior could potentially suppress dominance and equalize participation among group members.
comment: 8 pages, 7 figures. International Conference on Human-Agent Interaction (HAI '24), November 24-27, 2024, Swansea, United Kingdom
☆ Visual Prompting for Robotic Manipulation with Annotation-Guided Pick-and-Place Using ACT
Robotic pick-and-place tasks in convenience stores pose challenges due to dense object arrangements, occlusions, and variations in object properties such as color, shape, size, and texture. These factors complicate trajectory planning and grasping. This paper introduces a perception-action pipeline leveraging annotation-guided visual prompting, where bounding box annotations identify both pickable objects and placement locations, providing structured spatial guidance. Instead of traditional step-by-step planning, we employ Action Chunking with Transformers (ACT) as an imitation learning algorithm, enabling the robotic arm to predict chunked action sequences from human demonstrations. This facilitates smooth, adaptive, and data-driven pick-and-place operations. We evaluate our system based on success rate and visual analysis of grasping behavior, demonstrating improved grasp accuracy and adaptability in retail environments.
☆ Boosting Action-Information via a Variational Bottleneck on Unlabelled Robot Videos
Learning from demonstrations (LfD) typically relies on large amounts of action-labeled expert trajectories, which fundamentally constrains the scale of available training data. A promising alternative is to learn directly from unlabeled video demonstrations. However, we find that existing methods tend to encode latent actions that share little mutual information with the true robot actions, leading to suboptimal control performance. To address this limitation, we introduce a novel framework that explicitly maximizes the mutual information between latent actions and true actions, even in the absence of action labels. Our method leverage the variational information-bottleneck to extract action-relevant representations while discarding task-irrelevant information. We provide a theoretical analysis showing that our objective indeed maximizes the mutual information between latent and true actions. Finally, we validate our approach through extensive experiments: first in simulated robotic environments and then on real-world robotic platforms, the experimental results demonstrate that our method significantly enhances mutual information and consistently improves policy performance.
☆ CRADLE: Conversational RTL Design Space Exploration with LLM-based Multi-Agent Systems
This paper presents CRADLE, a conversational framework for design space exploration of RTL designs using LLM-based multi-agent systems. Unlike existing rigid approaches, CRADLE enables user-guided flows with internal self-verification, correction, and optimization. We demonstrate the framework with a generator-critic agent system targeting FPGA resource minimization using state-of-the-art LLMs. Experimental results on the RTLLM benchmark show that CRADLE achieves significant reductions in resource usage with averages of 48% and 40% in LUTs and FFs across all benchmark designs.
comment: Accepted for presentation at the 22nd International SoC Conference (ISOCC 2025). Proceedings to be included in IEEE Xplore
☆ Towards Safe Imitation Learning via Potential Field-Guided Flow Matching IROS 2025
Deep generative models, particularly diffusion and flow matching models, have recently shown remarkable potential in learning complex policies through imitation learning. However, the safety of generated motions remains overlooked, particularly in complex environments with inherent obstacles. In this work, we address this critical gap by proposing Potential Field-Guided Flow Matching Policy (PF2MP), a novel approach that simultaneously learns task policies and extracts obstacle-related information, represented as a potential field, from the same set of successful demonstrations. During inference, PF2MP modulates the flow matching vector field via the learned potential field, enabling safe motion generation. By leveraging these complementary fields, our approach achieves improved safety without compromising task success across diverse environments, such as navigation tasks and robotic manipulation scenarios. We evaluate PF2MP in both simulation and real-world settings, demonstrating its effectiveness in task space and joint space control. Experimental results demonstrate that PF2MP enhances safety, achieving a significant reduction of collisions compared to baseline policies. This work paves the way for safer motion generation in unstructured and obstaclerich environments.
comment: 8 pages, 6 figures, Accepted to IROS 2025
☆ OmniVTLA: Vision-Tactile-Language-Action Model with Semantic-Aligned Tactile Sensing
Recent vision-language-action (VLA) models build upon vision-language foundations, and have achieved promising results and exhibit the possibility of task generalization in robot manipulation. However, due to the heterogeneity of tactile sensors and the difficulty of acquiring tactile data, current VLA models significantly overlook the importance of tactile perception and fail in contact-rich tasks. To address this issue, this paper proposes OmniVTLA, a novel architecture involving tactile sensing. Specifically, our contributions are threefold. First, our OmniVTLA features a dual-path tactile encoder framework. This framework enhances tactile perception across diverse vision-based and force-based tactile sensors by using a pretrained vision transformer (ViT) and a semantically-aligned tactile ViT (SA-ViT). Second, we introduce ObjTac, a comprehensive force-based tactile dataset capturing textual, visual, and tactile information for 56 objects across 10 categories. With 135K tri-modal samples, ObjTac supplements existing visuo-tactile datasets. Third, leveraging this dataset, we train a semantically-aligned tactile encoder to learn a unified tactile representation, serving as a better initialization for OmniVTLA. Real-world experiments demonstrate substantial improvements over state-of-the-art VLA baselines, achieving 96.9% success rates with grippers, (21.9% higher over baseline) and 100% success rates with dexterous hands (6.2% higher over baseline) in pick-and-place tasks. Besides, OmniVTLA significantly reduces task completion time and generates smoother trajectories through tactile sensing compared to existing VLA.
comment: 15 pages, 7 figures, 8 tables
☆ ZS-Puffin: Design, Modeling and Implementation of an Unmanned Aerial-Aquatic Vehicle with Amphibious Wings IROS 2025
Unmanned aerial-aquatic vehicles (UAAVs) can operate both in the air and underwater, giving them broad application prospects. Inspired by the dual-function wings of puffins, we propose a UAAV with amphibious wings to address the challenge posed by medium differences on the vehicle's propulsion system. The amphibious wing, redesigned based on a fixed-wing structure, features a single degree of freedom in pitch and requires no additional components. It can generate lift in the air and function as a flapping wing for propulsion underwater, reducing disturbance to marine life and making it environmentally friendly. Additionally, an artificial central pattern generator (CPG) is introduced to enhance the smoothness of the flapping motion. This paper presents the prototype, design details, and practical implementation of this concept.
comment: Accepted to IROS 2025
☆ Communication Efficient Robotic Mixed Reality with Gaussian Splatting Cross-Layer Optimization
Realizing low-cost communication in robotic mixed reality (RoboMR) systems presents a challenge, due to the necessity of uploading high-resolution images through wireless channels. This paper proposes Gaussian splatting (GS) RoboMR (GSMR), which enables the simulator to opportunistically render a photo-realistic view from the robot's pose by calling ``memory'' from a GS model, thus reducing the need for excessive image uploads. However, the GS model may involve discrepancies compared to the actual environments. To this end, a GS cross-layer optimization (GSCLO) framework is further proposed, which jointly optimizes content switching (i.e., deciding whether to upload image or not) and power allocation (i.e., adjusting to content profiles) across different frames by minimizing a newly derived GSMR loss function. The GSCLO problem is addressed by an accelerated penalty optimization (APO) algorithm that reduces computational complexity by over $10$x compared to traditional branch-and-bound and search algorithms. Moreover, variants of GSCLO are presented to achieve robust, low-power, and multi-robot GSMR. Extensive experiments demonstrate that the proposed GSMR paradigm and GSCLO method achieve significant improvements over existing benchmarks on both wheeled and legged robots in terms of diverse metrics in various scenarios. For the first time, it is found that RoboMR can be achieved with ultra-low communication costs, and mixture of data is useful for enhancing GS performance in dynamic scenarios.
comment: 14 pages, 18 figures, to appear in IEEE Transactions on Cognitive Communications and Networking
☆ Autonomous Mobile Plant Watering Robot : A Kinematic Approach
Plants need regular and the appropriate amount of watering to thrive and survive. While agricultural robots exist that can spray water on plants and crops such as the , they are expensive and have limited mobility and/or functionality. We introduce a novel autonomous mobile plant watering robot that uses a 6 degree of freedom (DOF) manipulator, connected to a 4 wheel drive alloy chassis, to be able to hold a garden hose, recognize and detect plants, and to water them with the appropriate amount of water by being able to insert a soil humidity/moisture sensor into the soil. The robot uses Jetson Nano and Arduino microcontroller and real sense camera to perform computer vision to detect plants using real-time YOLOv5 with the Pl@ntNet-300K dataset. The robot uses LIDAR for object and collision avoideance and does not need to move on a pre-defined path and can keep track of which plants it has watered. We provide the Denavit-Hartenberg (DH) Table, forward kinematics, differential driving kinematics, and inverse kinematics along with simulation and experiment results
☆ Developing a Calibrated Physics-Based Digital Twin for Construction Vehicles
This paper presents the development of a calibrated digital twin of a wheel loader. A calibrated digital twin integrates a construction vehicle with a high-fidelity digital model allowing for automated diagnostics and optimization of operations as well as pre-planning simulations enhancing automation capabilities. The high-fidelity digital model is a virtual twin of the physical wheel loader. It uses a physics-based multibody dynamic model of the wheel loader in the software AGX Dynamics. Interactions of the wheel loader's bucket while in use in construction can be simulated in the virtual model. Calibration makes this simulation of high-fidelity which can enhance realistic planning for automation of construction operations. In this work, a wheel loader was instrumented with several sensors used to calibrate the digital model. The calibrated digital twin was able to estimate the magnitude of the forces on the bucket base with high accuracy, providing a high-fidelity simulation.
☆ DeepFleet: Multi-Agent Foundation Models for Mobile Robots
We introduce DeepFleet, a suite of foundation models designed to support coordination and planning for large-scale mobile robot fleets. These models are trained on fleet movement data, including robot positions, goals, and interactions, from hundreds of thousands of robots in Amazon warehouses worldwide. DeepFleet consists of four architectures that each embody a distinct inductive bias and collectively explore key points in the design space for multi-agent foundation models: the robot-centric (RC) model is an autoregressive decision transformer operating on neighborhoods of individual robots; the robot-floor (RF) model uses a transformer with cross-attention between robots and the warehouse floor; the image-floor (IF) model applies convolutional encoding to a multi-channel image representation of the full fleet; and the graph-floor (GF) model combines temporal attention with graph neural networks for spatial relationships. In this paper, we describe these models and present our evaluation of the impact of these design choices on prediction task performance. We find that the robot-centric and graph-floor models, which both use asynchronous robot state updates and incorporate the localized structure of robot interactions, show the most promise. We also present experiments that show that these two models can make effective use of larger warehouses operation datasets as the models are scaled up.
comment: 25 pages, 10 figures, 2 tables
☆ CLF-RL: Control Lyapunov Function Guided Reinforcement Learning
Reinforcement learning (RL) has shown promise in generating robust locomotion policies for bipedal robots, but often suffers from tedious reward design and sensitivity to poorly shaped objectives. In this work, we propose a structured reward shaping framework that leverages model-based trajectory generation and control Lyapunov functions (CLFs) to guide policy learning. We explore two model-based planners for generating reference trajectories: a reduced-order linear inverted pendulum (LIP) model for velocity-conditioned motion planning, and a precomputed gait library based on hybrid zero dynamics (HZD) using full-order dynamics. These planners define desired end-effector and joint trajectories, which are used to construct CLF-based rewards that penalize tracking error and encourage rapid convergence. This formulation provides meaningful intermediate rewards, and is straightforward to implement once a reference is available. Both the reference trajectories and CLF shaping are used only during training, resulting in a lightweight policy at deployment. We validate our method both in simulation and through extensive real-world experiments on a Unitree G1 robot. CLF-RL demonstrates significantly improved robustness relative to the baseline RL policy and better performance than a classic tracking reward RL formulation.
comment: 8 pages; 8 figures
☆ How Safe Will I Be Given What I Saw? Calibrated Prediction of Safety Chances for Image-Controlled Autonomy
Autonomous robots that rely on deep neural network controllers pose critical challenges for safety prediction, especially under partial observability and distribution shift. Traditional model-based verification techniques are limited in scalability and require access to low-dimensional state models, while model-free methods often lack reliability guarantees. This paper addresses these limitations by introducing a framework for calibrated safety prediction in end-to-end vision-controlled systems, where neither the state-transition model nor the observation model is accessible. Building on the foundation of world models, we leverage variational autoencoders and recurrent predictors to forecast future latent trajectories from raw image sequences and estimate the probability of satisfying safety properties. We distinguish between monolithic and composite prediction pipelines and introduce a calibration mechanism to quantify prediction confidence. In long-horizon predictions from high-dimensional observations, the forecasted inputs to the safety evaluator can deviate significantly from the training distribution due to compounding prediction errors and changing environmental conditions, leading to miscalibrated risk estimates. To address this, we incorporate unsupervised domain adaptation to ensure robustness of safety evaluation under distribution shift in predictions without requiring manual labels. Our formulation provides theoretical calibration guarantees and supports practical evaluation across long prediction horizons. Experimental results on three benchmarks show that our UDA-equipped evaluators maintain high accuracy and substantially lower false positive rates under distribution shift. Similarly, world model-based composite predictors outperform their monolithic counterparts on long-horizon tasks, and our conformal calibration provides reliable statistical bounds.
☆ SegDAC: Segmentation-Driven Actor-Critic for Visual Reinforcement Learning
Visual reinforcement learning (RL) is challenging due to the need to learn both perception and actions from high-dimensional inputs and noisy rewards. Although large perception models exist, integrating them effectively into RL for visual generalization and improved sample efficiency remains unclear. We propose SegDAC, a Segmentation-Driven Actor-Critic method. SegDAC uses Segment Anything (SAM) for object-centric decomposition and YOLO-World to ground segments semantically via text prompts. It includes a novel transformer-based architecture that supports a dynamic number of segments at each time step and effectively learns which segments to focus on using online RL, without using human labels. By evaluating SegDAC over a challenging visual generalization benchmark using Maniskill3, which covers diverse manipulation tasks under strong visual perturbations, we demonstrate that SegDAC achieves significantly better visual generalization, doubling prior performance on the hardest setting and matching or surpassing prior methods in sample efficiency across all evaluated tasks.
Decision-Making-Based Path Planning for Autonomous UAVs: A Survey
One of the most critical features for the successful operation of autonomous UAVs is the ability to make decisions based on the information acquired from their surroundings. Each UAV must be able to make decisions during the flight in order to deal with uncertainties in its system and the environment, and to further act upon the information being received. Such decisions influence the future behavior of the UAV, which is expressed as the path plan. Thus, decision-making in path planning is an enabling technique for deploying autonomous UAVs in real-world applications. This survey provides an overview of existing studies that use aspects of decision-making in path planning, presenting the research strands for Exploration Path Planning and Informative Path Planning, and focusing on characteristics of how data have been modeled and understood. Finally, we highlight the existing challenges for relevant topics in this field.
☆ Safety Perspective on Assisted Lane Changes: Insights from Open-Road, Live-Traffic Experiments
This study investigates the assisted lane change functionality of five different vehicles equipped with advanced driver assistance systems (ADAS). The goal is to examine novel, under-researched features of commercially available ADAS technologies. The experimental campaign, conducted in the I-24 highway near Nashville, TN, US, collected data on the kinematics and safety margins of assisted lane changes in real-world conditions. The results show that the kinematics of assisted lane changes are consistent for each system, with four out of five vehicles using slower speeds and decelerations than human drivers. However, one system consistently performed more assertive lane changes, completing the maneuver in around 5 seconds. Regarding safety margins, only three vehicles are investigated. Those operated in the US are not restricted by relevant UN regulations, and their designs were found not to adhere to these regulatory requirements. A simulation method used to classify the challenge level for the vehicle receiving the lane change, showing that these systems can force trailing vehicles to decelerate to keep a safe gap. One assisted system was found to have performed a maneuver that posed a hard challenge level for the other vehicle, raising concerns about the safety of these systems in real-world operation. All three vehicles were found to carry out lane changes that induced decelerations to the vehicle in the target lane. Those decelerations could affect traffic flow, inducing traffic shockwaves.
comment: 21 pages, 8 Figures
☆ Vision-Only Gaussian Splatting for Collaborative Semantic Occupancy Prediction
Collaborative perception enables connected vehicles to share information, overcoming occlusions and extending the limited sensing range inherent in single-agent (non-collaborative) systems. Existing vision-only methods for 3D semantic occupancy prediction commonly rely on dense 3D voxels, which incur high communication costs, or 2D planar features, which require accurate depth estimation or additional supervision, limiting their applicability to collaborative scenarios. To address these challenges, we propose the first approach leveraging sparse 3D semantic Gaussian splatting for collaborative 3D semantic occupancy prediction. By sharing and fusing intermediate Gaussian primitives, our method provides three benefits: a neighborhood-based cross-agent fusion that removes duplicates and suppresses noisy or inconsistent Gaussians; a joint encoding of geometry and semantics in each primitive, which reduces reliance on depth supervision and allows simple rigid alignment; and sparse, object-centric messages that preserve structural information while reducing communication volume. Extensive experiments demonstrate that our approach outperforms single-agent perception and baseline collaborative methods by +8.42 and +3.28 points in mIoU, and +5.11 and +22.41 points in IoU, respectively. When further reducing the number of transmitted Gaussians, our method still achieves a +1.9 improvement in mIoU, using only 34.6% communication volume, highlighting robust performance under limited communication budgets.
☆ ViPE: Video Pose Engine for 3D Geometric Perception
Accurate 3D geometric perception is an important prerequisite for a wide range of spatial AI systems. While state-of-the-art methods depend on large-scale training data, acquiring consistent and precise 3D annotations from in-the-wild videos remains a key challenge. In this work, we introduce ViPE, a handy and versatile video processing engine designed to bridge this gap. ViPE efficiently estimates camera intrinsics, camera motion, and dense, near-metric depth maps from unconstrained raw videos. It is robust to diverse scenarios, including dynamic selfie videos, cinematic shots, or dashcams, and supports various camera models such as pinhole, wide-angle, and 360{\deg} panoramas. We have benchmarked ViPE on multiple benchmarks. Notably, it outperforms existing uncalibrated pose estimation baselines by 18%/50% on TUM/KITTI sequences, and runs at 3-5FPS on a single GPU for standard input resolutions. We use ViPE to annotate a large-scale collection of videos. This collection includes around 100K real-world internet videos, 1M high-quality AI-generated videos, and 2K panoramic videos, totaling approximately 96M frames -- all annotated with accurate camera poses and dense depth maps. We open-source ViPE and the annotated dataset with the hope of accelerating the development of spatial AI systems.
comment: Paper website: https://research.nvidia.com/labs/toronto-ai/vipe/
♻ ☆ BeyondMimic: From Motion Tracking to Versatile Humanoid Control via Guided Diffusion
Learning skills from human motions offers a promising path toward generalizable policies for whole-body humanoid control, yet two key cornerstones are missing: (1) a high-quality motion tracking framework that faithfully transforms large-scale kinematic references into robust and extremely dynamic motions on real hardware, and (2) a distillation approach that can effectively learn these motion primitives and compose them to solve downstream tasks. We address these gaps with BeyondMimic, a real-world framework to learn from human motions for versatile and naturalistic humanoid control via guided diffusion. Our framework provides a motion tracking pipeline capable of challenging skills such as jumping spins, sprinting, and cartwheels with state-of-the-art motion quality. Moving beyond mimicking existing motions and synthesize novel ones, we further introduce a unified diffusion policy that enables zero-shot task-specific control at test time using simple cost functions. Deployed on hardware, BeyondMimic performs diverse tasks at test time, including waypoint navigation, joystick teleoperation, and obstacle avoidance, bridging sim-to-real motion tracking and flexible synthesis of human motion primitives for whole-body control. https://beyondmimic.github.io/.
comment: fix footnote and math
♻ ☆ GMF-Drive: Gated Mamba Fusion with Spatial-Aware BEV Representation for End-to-End Autonomous Driving
Diffusion-based models are redefining the state-of-the-art in end-to-end autonomous driving, yet their performance is increasingly hampered by a reliance on transformer-based fusion. These architectures face fundamental limitations: quadratic computational complexity restricts the use of high-resolution features, and a lack of spatial priors prevents them from effectively modeling the inherent structure of Bird's Eye View (BEV) representations. This paper introduces GMF-Drive (Gated Mamba Fusion for Driving), an end-to-end framework that overcomes these challenges through two principled innovations. First, we supersede the information-limited histogram-based LiDAR representation with a geometrically-augmented pillar format encoding shape descriptors and statistical features, preserving critical 3D geometric details. Second, we propose a novel hierarchical gated mamba fusion (GM-Fusion) architecture that substitutes an expensive transformer with a highly efficient, spatially-aware state-space model (SSM). Our core BEV-SSM leverages directional sequencing and adaptive fusion mechanisms to capture long-range dependencies with linear complexity, while explicitly respecting the unique spatial properties of the driving scene. Extensive experiments on the challenging NAVSIM benchmark demonstrate that GMF-Drive achieves a new state-of-the-art performance, significantly outperforming DiffusionDrive. Comprehensive ablation studies validate the efficacy of each component, demonstrating that task-specific SSMs can surpass a general-purpose transformer in both performance and efficiency for autonomous driving.
comment: 7 pages, 4 figures
♻ ☆ ReNiL: Relative Neural Inertial Locator with Any-Scale Bayesian Inference
Pedestrian inertial localization is key for mobile and IoT services because it provides infrastructure-free positioning. Yet most learning-based methods depend on fixed sliding-window integration, struggle to adapt to diverse motion scales and cadences, and yield inconsistent uncertainty, limiting real-world use. We present ReNiL, a Bayesian deep-learning framework for accurate, efficient, and uncertainty-aware pedestrian localization. ReNiL introduces Inertial Positioning Demand Points (IPDPs) to estimate motion at contextually meaningful waypoints instead of dense tracking, and supports inference on IMU sequences at any scale so cadence can match application needs. It couples a motion-aware orientation filter with an Any-Scale Laplace Estimator (ASLE), a dual-task network that blends patch-based self-supervision with Bayesian regression. By modeling displacements with a Laplace distribution, ReNiL provides homogeneous Euclidean uncertainty that integrates cleanly with other sensors. A Bayesian inference chain links successive IPDPs into consistent trajectories. On RoNIN-ds and a new WUDataset covering indoor and outdoor motion from 28 participants, ReNiL achieves state-of-the-art displacement accuracy and uncertainty consistency, outperforming TLIO, CTIN, iMoT, and RoNIN variants while reducing computation. Application studies further show robustness and practicality for mobile and IoT localization, making ReNiL a scalable, uncertainty-aware foundation for next-generation positioning.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ IRL-VLA: Training an Vision-Language-Action Policy via Reward World Model
Vision-Language-Action (VLA) models have demonstrated potential in autonomous driving. However, two critical challenges hinder their development: (1) Existing VLA architectures are typically based on imitation learning in open-loop setup which tends to capture the recorded behaviors in the dataset, leading to suboptimal and constrained performance, (2) Close-loop training relies heavily on high-fidelity sensor simulation, where domain gaps and computational inefficiencies pose significant barriers. In this paper, we introduce IRL-VLA, a novel close-loop Reinforcement Learning via \textbf{I}nverse \textbf{R}einforcement \textbf{L}earning reward world model with a self-built VLA approach. Our framework proceeds in a three-stage paradigm: In the first stage, we propose a VLA architecture and pretrain the VLA policy via imitation learning. In the second stage, we construct a lightweight reward world model via inverse reinforcement learning to enable efficient close-loop reward computation. To further enhance planning performance, finally, we design specialized reward world model guidence reinforcement learning via PPO(Proximal Policy Optimization) to effectively balance the safety incidents, comfortable driving, and traffic efficiency. Our approach achieves state-of-the-art performance in NAVSIM v2 end-to-end driving benchmark, 1st runner up in CVPR2025 Autonomous Grand Challenge. We hope that our framework will accelerate VLA research in close-loop autonomous driving.
comment: 9 pagres, 2 figures
♻ ☆ Touch and Tell: Multimodal Decoding of Human Emotions and Social Gestures for Robots
Human emotions are complex and can be conveyed through nuanced touch gestures. Previous research has primarily focused on how humans recognize emotions through touch or on identifying key features of emotional expression for robots. However, there is a gap in understanding how reliably these emotions and gestures can be communicated to robots via touch and interpreted using data driven methods. This study investigates the consistency and distinguishability of emotional and gestural expressions through touch and sound. To this end, we integrated a custom piezoresistive pressure sensor as well as a microphone on a social robot. Twenty-eight participants first conveyed ten different emotions to the robot using spontaneous touch gestures, then they performed six predefined social touch gestures. Our findings reveal statistically significant consistency in both emotion and gesture expression among participants. However, some emotions exhibited low intraclass correlation values, and certain emotions with similar levels of arousal or valence did not show significant differences in their conveyance. To investigate emotion and social gesture decoding within affective human-robot tactile interaction, we developed single-modality models and multimodal models integrating tactile and auditory features. A support vector machine (SVM) model trained on multimodal features achieved the highest accuracy for classifying ten emotions, reaching 40 %.For gesture classification, a Convolutional Neural Network- Long Short-Term Memory Network (CNN-LSTM) achieved 90.74 % accuracy. Our results demonstrate that even though the unimodal models have the potential to decode emotions and touch gestures, the multimodal integration of touch and sound significantly outperforms unimodal approaches, enhancing the decoding of both emotions and gestures.
♻ ☆ Joint State and Noise Covariance Estimation
This paper tackles the problem of jointly estimating the noise covariance matrix alongside states (parameters such as poses and points) from measurements corrupted by Gaussian noise and, if available, prior information. In such settings, the noise covariance matrix determines the weights assigned to individual measurements in the least squares problem. We show that the joint problem exhibits a convex structure and provide a full characterization of the optimal noise covariance estimate (with analytical solutions) within joint maximum a posteriori and likelihood frameworks and several variants. Leveraging this theoretical result, we propose two novel algorithms that jointly estimate the primary parameters and the noise covariance matrix. Our BCD algorithm can be easily integrated into existing nonlinear least squares solvers, with negligible per-iteration computational overhead. To validate our approach, we conduct extensive experiments across diverse scenarios and offer practical insights into their application in robotics and computer vision estimation problems with a particular focus on SLAM.
comment: Adds a missing related work [4]
♻ ☆ OSMa-Bench: Evaluating Open Semantic Mapping Under Varying Lighting Conditions
Open Semantic Mapping (OSM) is a key technology in robotic perception, combining semantic segmentation and SLAM techniques. This paper introduces a dynamically configurable and highly automated LLM/LVLM-powered pipeline for evaluating OSM solutions called OSMa-Bench (Open Semantic Mapping Benchmark). The study focuses on evaluating state-of-the-art semantic mapping algorithms under varying indoor lighting conditions, a critical challenge in indoor environments. We introduce a novel dataset with simulated RGB-D sequences and ground truth 3D reconstructions, facilitating the rigorous analysis of mapping performance across different lighting conditions. Through experiments on leading models such as ConceptGraphs, BBQ and OpenScene, we evaluate the semantic fidelity of object recognition and segmentation. Additionally, we introduce a Scene Graph evaluation method to analyze the ability of models to interpret semantic structure. The results provide insights into the robustness of these models, forming future research directions for developing resilient and adaptable robotic systems. Project page is available at https://be2rlab.github.io/OSMa-Bench/.
comment: Project page: https://be2rlab.github.io/OSMa-Bench/
♻ ☆ Frequency Point Game Environment for UAVs via Expert Knowledge and Large Language Model
Unmanned Aerial Vehicles (UAVs) have made significant advancements in communication stability and security through techniques such as frequency hopping, signal spreading, and adaptive interference suppression. However, challenges remain in modeling spectrum competition, integrating expert knowledge, and predicting opponent behavior. To address these issues, we propose UAV-FPG (Unmanned Aerial Vehicle - Frequency Point Game), a game-theoretic environment model that simulates the dynamic interaction between interference and anti-interference strategies of opponent and ally UAVs in communication frequency bands. The model incorporates a prior expert knowledge base to optimize frequency selection and employs large language models for path planning, simulating a "strong adversary". Experimental results highlight the effectiveness of integrating the expert knowledge base and the large language model, with the latter significantly improving path planning in dynamic scenarios through iterative interactions, outperforming fixed-path strategies. UAV-FPG provides a robust platform for advancing anti-jamming strategies and intelligent decision-making in UAV communication systems.
♻ ☆ Gait in Eight: Efficient On-Robot Learning for Omnidirectional Quadruped Locomotion
On-robot Reinforcement Learning is a promising approach to train embodiment-aware policies for legged robots. However, the computational constraints of real-time learning on robots pose a significant challenge. We present a framework for efficiently learning quadruped locomotion in just 8 minutes of raw real-time training utilizing the sample efficiency and minimal computational overhead of the new off-policy algorithm CrossQ. We investigate two control architectures: Predicting joint target positions for agile, high-speed locomotion and Central Pattern Generators for stable, natural gaits. While prior work focused on learning simple forward gaits, our framework extends on-robot learning to omnidirectional locomotion. We demonstrate the robustness of our approach in different indoor and outdoor environments.
♻ ☆ What Foundation Models can Bring for Robot Learning in Manipulation : A Survey
The realization of universal robots is an ultimate goal of researchers. However, a key hurdle in achieving this goal lies in the robots' ability to manipulate objects in their unstructured surrounding environments according to different tasks. The learning-based approach is considered an effective way to address generalization. The impressive performance of foundation models in the fields of computer vision and natural language suggests the potential of embedding foundation models into manipulation tasks as a viable path toward achieving general manipulation capability. However, we believe achieving general manipulation capability requires an overarching framework akin to auto driving. This framework should encompass multiple functional modules, with different foundation models assuming distinct roles in facilitating general manipulation capability. This survey focuses on the contributions of foundation models to robot learning for manipulation. We propose a comprehensive framework and detail how foundation models can address challenges in each module of the framework. What's more, we examine current approaches, outline challenges, suggest future research directions, and identify potential risks associated with integrating foundation models into this domain.
♻ ☆ Edge-Based Multimodal Sensor Data Fusion with Vision Language Models (VLMs) for Real-time Autonomous Vehicle Accident Avoidance
Autonomous driving (AD) systems relying solely on onboard sensors may fail to detect distant or obstacle hazards, potentially causing preventable collisions; however, existing transformer-based Vehicle-to-Everything (V2X) approaches, which mitigate AD sensing limitations, either lack effective multimodal fusion and reasoning or struggle to meet real-time performance requirements under complex, high-dimensional traffic conditions. This paper proposes the Real-time Edge-based Autonomous Co-pilot Trajectory planner (REACT), a V2X-integrated trajectory optimization framework for AD based on a fine-tuned lightweight Vision-Language Model (VLM). REACT integrates infrastructure-provided hazard alerts with onboard sensor data, capturing intricate surrounding traffic dynamics and vehicle intents through visual embeddings, interpreting precise numerical data from symbolic inputs, and employing contextual reasoning to generate optimized, safety-oriented trajectories. To ensure robust real-time deployment on edge devices, REACT innovatively employs Residual Trajectory Fusion (RTF) design and specialized edge-adaptation strategies to reduce model complexity and improve inference efficiency. Evaluated on the DeepAccident benchmark, REACT achieves state-of-the-art performance, a 77% collision rate reduction, a 48.2% Video Panoptic Quality (VPQ), and a 0.57-second inference latency on the Jetson AGX Orin. Ablation studies validate the contribution of each input, module, and edge adaptation strategy. These results highlight the effectiveness of lightweight VLMs in enabling real-time cooperative planning on edge platforms and underscore the potential of language-guided contextual reasoning for improving traffic safety and responsiveness.
comment: 24 pages, 6 tables, 7 figures
♻ ☆ UnrealZoo: Enriching Photo-realistic Virtual Worlds for Embodied AI ICCV 2025
We introduce UnrealZoo, a collection of over 100 photo-realistic 3D virtual worlds built on Unreal Engine, designed to reflect the complexity and variability of open-world environments. We also provide a rich variety of playable entities, including humans, animals, robots, and vehicles for embodied AI research. We extend UnrealCV with optimized APIs and tools for data collection, environment augmentation, distributed training, and benchmarking. These improvements achieve significant improvements in the efficiency of rendering and communication, enabling advanced applications such as multi-agent interactions. Our experimental evaluation across visual navigation and tracking tasks reveals two key insights: 1) environmental diversity provides substantial benefits for developing generalizable reinforcement learning (RL) agents, and 2) current embodied agents face persistent challenges in open-world scenarios, including navigation in unstructured terrain, adaptation to unseen morphologies, and managing latency in the close-loop control systems for interacting in highly dynamic objects. UnrealZoo thus serves as both a comprehensive testing ground and a pathway toward developing more capable embodied AI systems for real-world deployment.
comment: ICCV 2025 (Highlight), Project page: http://unrealzoo.site/
♻ ☆ Speech to Reality: On-Demand Production using Natural Language, 3D Generative AI, and Discrete Robotic Assembly
We present a system that transforms speech into physical objects using 3D generative AI and discrete robotic assembly. By leveraging natural language input, the system makes design and manufacturing more accessible to individuals without expertise in 3D modeling or robotic programming. While current generative AI models can produce a wide range of 3D digital assets, AI-generated meshes are not directly suitable for robotic fabrication and do not account for fabrication constraints. To address this, we contribute a workflow that integrates natural language processing, 3D generative AI, and discrete robotic assembly. The system automatically analyzes and modifies AI-generated geometry to meet physical constraints, such as component count, overhangs, and connectivity, and produces a feasible robotic assembly sequence and toolpath. The results are demonstrated through the assembly of various objects, ranging from chairs to shelves, which are prompted via speech and realized within 5 minutes using a robotic arm.
comment: This work has been submitted for possible publication. An updated version will replace this version when available
♻ ☆ Human-Robot Interaction Conversational User Enjoyment Scale (HRI CUES)
Understanding user enjoyment is crucial in human-robot interaction (HRI), as it can impact interaction quality and influence user acceptance and long-term engagement with robots, particularly in the context of conversations with social robots. However, current assessment methods rely solely on self-reported questionnaires, failing to capture interaction dynamics. This work introduces the Human-Robot Interaction Conversational User Enjoyment Scale (HRI CUES), a novel 5-point scale to assess user enjoyment from an external perspective (e.g. by an annotator) for conversations with a robot. The scale was developed through rigorous evaluations and discussions among three annotators with relevant expertise, using open-domain conversations with a companion robot that was powered by a large language model, and was applied to each conversation exchange (i.e. a robot-participant turn pair) alongside overall interaction. It was evaluated on 25 older adults' interactions with the companion robot, corresponding to 174 minutes of data, showing moderate to good alignment between annotators. Although the scale was developed and tested in the context of older adult interactions with a robot, its basis in general and non-task-specific indicators of enjoyment supports its broader applicability. The study further offers insights into understanding the nuances and challenges of assessing user enjoyment in robot interactions, and provides guidelines on applying the scale to other domains and populations. The dataset is available online.
comment: Published in IEEE Transactions on Affective Computing on 18 July 2025. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media
♻ ☆ Anticipating Degradation: A Predictive Approach to Fault Tolerance in Robot Swarms
An active approach to fault tolerance is essential for robot swarms to achieve long-term autonomy. Previous efforts have focused on responding to spontaneous electro-mechanical faults and failures. However, many faults occur gradually over time. Waiting until such faults have manifested as failures before addressing them is both inefficient and unsustainable in a variety of scenarios. This work argues that the principles of predictive maintenance, in which potential faults are resolved before they hinder the operation of the swarm, offer a promising means of achieving long-term fault tolerance. This is a novel approach to swarm fault tolerance, which is shown to give a comparable or improved performance when tested against a reactive approach in almost all cases tested.
♻ ☆ Context-based Motion Retrieval using Open Vocabulary Methods for Autonomous Driving
Autonomous driving systems must operate reliably in safety-critical scenarios, particularly those involving unusual or complex behavior by Vulnerable Road Users (VRUs). Identifying these edge cases in driving datasets is essential for robust evaluation and generalization, but retrieving such rare human behavior scenarios within the long tail of large-scale datasets is challenging. To support targeted evaluation of autonomous driving systems in diverse, human-centered scenarios, we propose a novel context-aware motion retrieval framework. Our method combines Skinned Multi-Person Linear (SMPL)-based motion sequences and corresponding video frames before encoding them into a shared multimodal embedding space aligned with natural language. Our approach enables the scalable retrieval of human behavior and their context through text queries. This work also introduces our dataset WayMoCo, an extension of the Waymo Open Dataset. It contains automatically labeled motion and scene context descriptions derived from generated pseudo-ground-truth SMPL sequences and corresponding image data. Our approach outperforms state-of-the-art models by up to 27.5% accuracy in motion-context retrieval, when evaluated on the WayMoCo dataset.
comment: Project page: https://iv.ee.hm.edu/contextmotionclip/; This work has been submitted to the IEEE for possible publication
♻ ☆ Multi-Keypoint Affordance Representation for Functional Dexterous Grasping
Functional dexterous grasping requires precise hand-object interaction, going beyond simple gripping. Existing affordance-based methods primarily predict coarse interaction regions and cannot directly constrain the grasping posture, leading to a disconnection between visual perception and manipulation. To address this issue, we propose a multi-keypoint affordance representation for functional dexterous grasping, which directly encodes task-driven grasp configurations by localizing functional contact points. Our method introduces Contact-guided Multi-Keypoint Affordance (CMKA), leveraging human grasping experience images for weak supervision combined with Large Vision Models for fine affordance feature extraction, achieving generalization while avoiding manual keypoint annotations. Additionally, we present a Keypoint-based Grasp matrix Transformation (KGT) method, ensuring spatial consistency between hand keypoints and object contact points, thus providing a direct link between visual perception and dexterous grasping actions. Experiments on public real-world FAH datasets, IsaacGym simulation, and challenging robotic tasks demonstrate that our method significantly improves affordance localization accuracy, grasp consistency, and generalization to unseen tools and tasks, bridging the gap between visual affordance learning and dexterous robotic manipulation. The source code and demo videos are publicly available at https://github.com/PopeyePxx/MKA.
comment: Accepted to IEEE Robotics and Automation Letters (RA-L). The source code and demo videos are publicly available at https://github.com/PopeyePxx/MKA
♻ ☆ A simulation framework for autonomous lunar construction work
We present a simulation framework for lunar construction work involving multiple autonomous machines. The framework supports modelling of construction scenarios and autonomy solutions, execution of the scenarios in simulation, and analysis of work time and energy consumption throughout the construction project. The simulations are based on physics-based models for contacting multibody dynamics and deformable terrain, including vehicle-soil interaction forces and soil flow in real time. A behaviour tree manages the operational logic and error handling, which enables the representation of complex behaviours through a discrete set of simpler tasks in a modular hierarchical structure. High-level decision-making is separated from lower-level control algorithms, with the two connected via ROS2. Excavation movements are controlled through inverse kinematics and tracking controllers. The framework is tested and demonstrated on two different lunar construction scenarios that involve an excavator and dump truck with actively controlled articulated crawlers.
comment: 13 pages, 16 figures
♻ ☆ Hypergraph-based Motion Generation with Multi-modal Interaction Relational Reasoning
The intricate nature of real-world driving environments, characterized by dynamic and diverse interactions among multiple vehicles and their possible future states, presents considerable challenges in accurately predicting the motion states of vehicles and handling the uncertainty inherent in the predictions. Addressing these challenges requires comprehensive modeling and reasoning to capture the implicit relations among vehicles and the corresponding diverse behaviors. This research introduces an integrated framework for autonomous vehicles (AVs) motion prediction to address these complexities, utilizing a novel Relational Hypergraph Interaction-informed Neural mOtion generator (RHINO). RHINO leverages hypergraph-based relational reasoning by integrating a multi-scale hypergraph neural network to model group-wise interactions among multiple vehicles and their multi-modal driving behaviors, thereby enhancing motion prediction accuracy and reliability. Experimental validation using real-world datasets demonstrates the superior performance of this framework in improving predictive accuracy and fostering socially aware automated driving in dynamic traffic scenarios. The source code is publicly available at https://github.com/keshuw95/RHINO-Hypergraph-Motion-Generation.
♻ ☆ MEReQ: Max-Ent Residual-Q Inverse RL for Sample-Efficient Alignment from Intervention
Aligning robot behavior with human preferences is crucial for deploying embodied AI agents in human-centered environments. A promising solution is interactive imitation learning from human intervention, where a human expert observes the policy's execution and provides interventions as feedback. However, existing methods often fail to utilize the prior policy efficiently to facilitate learning, thus hindering sample efficiency. In this work, we introduce MEReQ (Maximum-Entropy Residual-Q Inverse Reinforcement Learning), designed for sample-efficient alignment from human intervention. Instead of inferring the complete human behavior characteristics, MEReQ infers a residual reward function that captures the discrepancy between the human expert's and the prior policy's underlying reward functions. It then employs Residual Q-Learning (RQL) to align the policy with human preferences using this residual reward function. Extensive evaluations on simulated and real-world tasks demonstrate that MEReQ achieves sample-efficient policy alignment from human intervention.
♻ ☆ MolmoAct: Action Reasoning Models that can Reason in Space
Reasoning is central to purposeful action, yet most robotic foundation models map perception and instructions directly to control, which limits adaptability, generalization, and semantic grounding. We introduce Action Reasoning Models (ARMs), a class of robotic foundation models that integrate perception, planning, and control through a structured three-stage pipeline. Our model, MolmoAct, encodes observations and instructions into depth-aware perception tokens, generates mid-level spatial plans as editable trajectory traces, and predicts precise low-level actions, enabling explainable and steerable behavior. MolmoAct-7B-D achieves strong performance across simulation and real-world settings: 70.5% zero-shot accuracy on SimplerEnv Visual Matching tasks, surpassing closed-source Pi-0 and GR00T N1; 86.6% average success on LIBERO, including an additional 6.3% gain over ThinkAct on long-horizon tasks; and in real-world fine-tuning, an additional 10% (single-arm) and an additional 22.7% (bimanual) task progression over Pi-0-FAST. It also outperforms baselines by an additional 23.3% on out-of-distribution generalization and achieves top human-preference scores for open-ended instruction following and trajectory steering. Furthermore, we release, for the first time, the MolmoAct Dataset -- a mid-training robot dataset comprising over 10,000 high quality robot trajectories across diverse scenarios and tasks. Training with this dataset yields an average 5.5% improvement in general performance over the base model. We release all model weights, training code, our collected dataset, and our action reasoning dataset, establishing MolmoAct as both a state-of-the-art robotics foundation model and an open blueprint for building ARMs that transform perception into purposeful action through structured reasoning. Blogpost: https://allenai.org/blog/molmoact
comment: Appendix include. Code, Data and Weights: https://allenai.org/blog/molmoact
♻ ☆ Open-Set LiDAR Panoptic Segmentation Guided by Uncertainty-Aware Learning
Autonomous vehicles that navigate in open-world environments may encounter previously unseen object classes. However, most existing LiDAR panoptic segmentation models rely on closed-set assumptions, failing to detect unknown object instances. In this work, we propose ULOPS, an uncertainty-guided open-set panoptic segmentation framework that leverages Dirichlet-based evidential learning to model predictive uncertainty. Our architecture incorporates separate decoders for semantic segmentation with uncertainty estimation, embedding with prototype association, and instance center prediction. During inference, we leverage uncertainty estimates to identify and segment unknown instances. To strengthen the model's ability to differentiate between known and unknown objects, we introduce three uncertainty-driven loss functions. Uniform Evidence Loss to encourage high uncertainty in unknown regions. Adaptive Uncertainty Separation Loss ensures a consistent difference in uncertainty estimates between known and unknown objects at a global scale. Contrastive Uncertainty Loss refines this separation at the fine-grained level. To evaluate open-set performance, we extend benchmark settings on KITTI-360 and introduce a new open-set evaluation for nuScenes. Extensive experiments demonstrate that ULOPS consistently outperforms existing open-set LiDAR panoptic segmentation methods.
♻ ☆ Robo-Instruct: Simulator-Augmented Instruction Alignment For Finetuning Code LLMs
Code LLMs have shown promising results with converting tasks in natural language to programs that can be executed by service robots. We are interested in finetuning small, specialized LLMs for this purpose, but collecting datasets of task-program pairs specific to each robot is time-consuming and expensive. While approaches such as SELF-INSTRUCT and EVOL-INSTRUCT are capable of generating novel tasks given a few examples, they are unable to provide the corresponding programs that correctly abide by physical-world and robot-constraints using the provided programming interface. Using a simulator is a natural potential solution to checking for such constraints, but building simulation environments that can handle arbitrary tasks and their necessary objects and locations, is challenging. To address these challenges, we introduce ROBO-INSTRUCT, which synthesizes task-specific simulation environments on the fly during program execution, by opportunistically inferring entity properties and enforcing corresponding constraints based on how the entities are used in the task program. Additionally, ROBO-INSTRUCT integrates an LLM-aided post-processing procedure to refine instructions for better alignment with robot programs. We demonstrate the effectiveness of ROBO-INSTRUCT across multiple LLMs, showing that our fine-tuned models outperform all baseline methods and even match or surpass the performance of several larger and proprietary models.
♻ ☆ TinyMPC: Model-Predictive Control on Resource-Constrained Microcontrollers ICRA 2024
Model-predictive control (MPC) is a powerful tool for controlling highly dynamic robotic systems subject to complex constraints. However, MPC is computationally demanding, and is often impractical to implement on small, resource-constrained robotic platforms. We present TinyMPC, a high-speed MPC solver with a low memory footprint targeting the microcontrollers common on small robots. Our approach is based on the alternating direction method of multipliers (ADMM) and leverages the structure of the MPC problem for efficiency. We demonstrate TinyMPC's effectiveness by benchmarking against the state-of-the-art solver OSQP, achieving nearly an order of magnitude speed increase, as well as through hardware experiments on a 27 gram quadrotor, demonstrating high-speed trajectory tracking and dynamic obstacle avoidance. TinyMPC is publicly available at https://tinympc.org.
comment: Accepted at ICRA 2024. First three authors contributed equally and are listed in alphabetical order. Publicly available at https://tinympc.org
Computer Vision and Pattern Recognition 161
☆ HumanOLAT: A Large-Scale Dataset for Full-Body Human Relighting and Novel-View Synthesis ICCV 2025
Simultaneous relighting and novel-view rendering of digital human representations is an important yet challenging task with numerous applications. Progress in this area has been significantly limited due to the lack of publicly available, high-quality datasets, especially for full-body human captures. To address this critical gap, we introduce the HumanOLAT dataset, the first publicly accessible large-scale dataset of multi-view One-Light-at-a-Time (OLAT) captures of full-body humans. The dataset includes HDR RGB frames under various illuminations, such as white light, environment maps, color gradients and fine-grained OLAT illuminations. Our evaluations of state-of-the-art relighting and novel-view synthesis methods underscore both the dataset's value and the significant challenges still present in modeling complex human-centric appearance and lighting interactions. We believe HumanOLAT will significantly facilitate future research, enabling rigorous benchmarking and advancements in both general and human-specific relighting and rendering techniques.
comment: TT and PG contributed equally; accepted at ICCV 2025; project page: https://vcai.mpi-inf.mpg.de/projects/HumanOLAT/
☆ Turbo-VAED: Fast and Stable Transfer of Video-VAEs to Mobile Devices
There is a growing demand for deploying large generative AI models on mobile devices. For recent popular video generative models, however, the Variational AutoEncoder (VAE) represents one of the major computational bottlenecks. Both large parameter sizes and mismatched kernels cause out-of-memory errors or extremely slow inference on mobile devices. To address this, we propose a low-cost solution that efficiently transfers widely used video VAEs to mobile devices. (1) We analyze redundancy in existing VAE architectures and get empirical design insights. By integrating 3D depthwise separable convolutions into our model, we significantly reduce the number of parameters. (2) We observe that the upsampling techniques in mainstream video VAEs are poorly suited to mobile hardware and form the main bottleneck. In response, we propose a decoupled 3D pixel shuffle scheme that slashes end-to-end delay. Building upon these, we develop a universal mobile-oriented VAE decoder, Turbo-VAED. (3) We propose an efficient VAE decoder training method. Since only the decoder is used during deployment, we distill it to Turbo-VAED instead of retraining the full VAE, enabling fast mobile adaptation with minimal performance loss. To our knowledge, our method enables real-time 720p video VAE decoding on mobile devices for the first time. This approach is widely applicable to most video VAEs. When integrated into four representative models, with training cost as low as $95, it accelerates original VAEs by up to 84.5x at 720p resolution on GPUs, uses as low as 17.5% of original parameter count, and retains 96.9% of the original reconstruction quality. Compared to mobile-optimized VAEs, Turbo-VAED achieves a 2.9x speedup in FPS and better reconstruction quality on the iPhone 16 Pro. The code and models will soon be available at https://github.com/hustvl/Turbo-VAED.
☆ OpenCUA: Open Foundations for Computer-Use Agents
Vision-language models have demonstrated impressive capabilities as computer-use agents (CUAs) capable of automating diverse computer tasks. As their commercial potential grows, critical details of the most capable CUA systems remain closed. As these agents will increasingly mediate digital interactions and execute consequential decisions on our behalf, the research community needs access to open CUA frameworks to study their capabilities, limitations, and risks. To bridge this gap, we propose OpenCUA, a comprehensive open-source framework for scaling CUA data and foundation models. Our framework consists of: (1) an annotation infrastructure that seamlessly captures human computer-use demonstrations; (2) AgentNet, the first large-scale computer-use task dataset spanning 3 operating systems and 200+ applications and websites; (3) a scalable pipeline that transforms demonstrations into state-action pairs with reflective long Chain-of-Thought reasoning that sustain robust performance gains as data scales. Our end-to-end agent models demonstrate strong performance across CUA benchmarks. In particular, OpenCUA-32B achieves an average success rate of 34.8% on OSWorld-Verified, establishing a new state-of-the-art (SOTA) among open-source models and surpassing OpenAI CUA (GPT-4o). Further analysis confirms that our approach generalizes well across domains and benefits significantly from increased test-time computation. We release our annotation tool, datasets, code, and models to build open foundations for further CUA research.
☆ Deep Learning Models for Robust Facial Liveness Detection
In the rapidly evolving landscape of digital security, biometric authentication systems, particularly facial recognition, have emerged as integral components of various security protocols. However, the reliability of these systems is compromised by sophisticated spoofing attacks, where imposters gain unauthorized access by falsifying biometric traits. Current literature reveals a concerning gap: existing liveness detection methodologies - designed to counteract these breaches - fall short against advanced spoofing tactics employing deepfakes and other artificial intelligence-driven manipulations. This study introduces a robust solution through novel deep learning models addressing the deficiencies in contemporary anti-spoofing techniques. By innovatively integrating texture analysis and reflective properties associated with genuine human traits, our models distinguish authentic presence from replicas with remarkable precision. Extensive evaluations were conducted across five diverse datasets, encompassing a wide range of attack vectors and environmental conditions. Results demonstrate substantial advancement over existing systems, with our best model (AttackNet V2.2) achieving 99.9% average accuracy when trained on combined data. Moreover, our research unveils critical insights into the behavioral patterns of impostor attacks, contributing to a more nuanced understanding of their evolving nature. The implications are profound: our models do not merely fortify the authentication processes but also instill confidence in biometric systems across various sectors reliant on secure access.
☆ Addressing Bias in VLMs for Glaucoma Detection Without Protected Attribute Supervision MICCAI-2025
Vision-Language Models (VLMs) have achieved remarkable success on multimodal tasks such as image-text retrieval and zero-shot classification, yet they can exhibit demographic biases even when explicit protected attributes are absent during training. In this work, we focus on automated glaucoma screening from retinal fundus images, a critical application given that glaucoma is a leading cause of irreversible blindness and disproportionately affects underserved populations. Building on a reweighting-based contrastive learning framework, we introduce an attribute-agnostic debiasing method that (i) infers proxy subgroups via unsupervised clustering of image-image embeddings, (ii) computes gradient-similarity weights between the CLIP-style multimodal loss and a SimCLR-style image-pair contrastive loss, and (iii) applies these weights in a joint, top-$k$ weighted objective to upweight underperforming clusters. This label-free approach adaptively targets the hardest examples, thereby reducing subgroup disparities. We evaluate our method on the Harvard FairVLMed glaucoma subset, reporting Equalized Odds Distance (EOD), Equalized Subgroup AUC (ES AUC), and Groupwise AUC to demonstrate equitable performance across inferred demographic subgroups.
comment: 3rd Workshop in Data Engineering in Medical Imaging (DEMI), MICCAI-2025 Workshop
☆ Efficient motion-based metrics for video frame interpolation SP
Video frame interpolation (VFI) offers a way to generate intermediate frames between consecutive frames of a video sequence. Although the development of advanced frame interpolation algorithms has received increased attention in recent years, assessing the perceptual quality of interpolated content remains an ongoing area of research. In this paper, we investigate simple ways to process motion fields, with the purposes of using them as video quality metric for evaluating frame interpolation algorithms. We evaluate these quality metrics using the BVI-VFI dataset which contains perceptual scores measured for interpolated sequences. From our investigation we propose a motion metric based on measuring the divergence of motion fields. This metric correlates reasonably with these perceptual scores (PLCC=0.51) and is more computationally efficient (x2.7 speedup) compared to FloLPIPS (a well known motion-based metric). We then use our new proposed metrics to evaluate a range of state of the art frame interpolation metrics and find our metrics tend to favour more perceptual pleasing interpolated frames that may not score highly in terms of PSNR or SSIM.
comment: SPIE2025 - Applications of Digital Image Processing XLVIII accepted manuscript
☆ Scaling Learned Image Compression Models up to 1 Billion
Recent advances in large language models (LLMs) highlight a strong connection between intelligence and compression. Learned image compression, a fundamental task in modern data compression, has made significant progress in recent years. However, current models remain limited in scale, restricting their representation capacity, and how scaling model size influences compression performance remains unexplored. In this work, we present a pioneering study on scaling up learned image compression models and revealing the performance trends through scaling laws. Using the recent state-of-the-art HPCM model as baseline, we scale model parameters from 68.5 millions to 1 billion and fit power-law relations between test loss and key scaling variables, including model size and optimal training compute. The results reveal a scaling trend, enabling extrapolation to larger scale models. Experimental results demonstrate that the scaled-up HPCM-1B model achieves state-of-the-art rate-distortion performance. We hope this work inspires future exploration of large-scale compression models and deeper investigations into the connection between compression and intelligence.
comment: 11 pages, technical report
☆ A new dataset and comparison for multi-camera frame synthesis SP
Many methods exist for frame synthesis in image sequences but can be broadly categorised into frame interpolation and view synthesis techniques. Fundamentally, both frame interpolation and view synthesis tackle the same task, interpolating a frame given surrounding frames in time or space. However, most frame interpolation datasets focus on temporal aspects with single cameras moving through time and space, while view synthesis datasets are typically biased toward stereoscopic depth estimation use cases. This makes direct comparison between view synthesis and frame interpolation methods challenging. In this paper, we develop a novel multi-camera dataset using a custom-built dense linear camera array to enable fair comparison between these approaches. We evaluate classical and deep learning frame interpolators against a view synthesis method (3D Gaussian Splatting) for the task of view in-betweening. Our results reveal that deep learning methods do not significantly outperform classical methods on real image data, with 3D Gaussian Splatting actually underperforming frame interpolators by as much as 3.5 dB PSNR. However, in synthetic scenes, the situation reverses -- 3D Gaussian Splatting outperforms frame interpolation algorithms by almost 5 dB PSNR at a 95% confidence level.
comment: SPIE2025 - Applications of Digital Image Processing XLVIII accepted manuscript
☆ VertexRegen: Mesh Generation with Continuous Level of Detail ICCV 2025
We introduce VertexRegen, a novel mesh generation framework that enables generation at a continuous level of detail. Existing autoregressive methods generate meshes in a partial-to-complete manner and thus intermediate steps of generation represent incomplete structures. VertexRegen takes inspiration from progressive meshes and reformulates the process as the reversal of edge collapse, i.e. vertex split, learned through a generative model. Experimental results demonstrate that VertexRegen produces meshes of comparable quality to state-of-the-art methods while uniquely offering anytime generation with the flexibility to halt at any step to yield valid meshes with varying levels of detail.
comment: ICCV 2025. Project Page: https://vertexregen.github.io/
☆ VLM-3D:End-to-End Vision-Language Models for Open-World 3D Perception
Open-set perception in complex traffic environments poses a critical challenge for autonomous driving systems, particularly in identifying previously unseen object categories, which is vital for ensuring safety. Visual Language Models (VLMs), with their rich world knowledge and strong semantic reasoning capabilities, offer new possibilities for addressing this task. However, existing approaches typically leverage VLMs to extract visual features and couple them with traditional object detectors, resulting in multi-stage error propagation that hinders perception accuracy. To overcome this limitation, we propose VLM-3D, the first end-to-end framework that enables VLMs to perform 3D geometric perception in autonomous driving scenarios. VLM-3D incorporates Low-Rank Adaptation (LoRA) to efficiently adapt VLMs to driving tasks with minimal computational overhead, and introduces a joint semantic-geometric loss design: token-level semantic loss is applied during early training to ensure stable convergence, while 3D IoU loss is introduced in later stages to refine the accuracy of 3D bounding box predictions. Evaluations on the nuScenes dataset demonstrate that the proposed joint semantic-geometric loss in VLM-3D leads to a 12.8% improvement in perception accuracy, fully validating the effectiveness and advancement of our method.
☆ ALFred: An Active Learning Framework for Real-world Semi-supervised Anomaly Detection with Adaptive Thresholds
Video Anomaly Detection (VAD) can play a key role in spotting unusual activities in video footage. VAD is difficult to use in real-world settings due to the dynamic nature of human actions, environmental variations, and domain shifts. Traditional evaluation metrics often prove inadequate for such scenarios, as they rely on static assumptions and fall short of identifying a threshold that distinguishes normal from anomalous behavior in dynamic settings. To address this, we introduce an active learning framework tailored for VAD, designed for adapting to the ever-changing real-world conditions. Our approach leverages active learning to continuously select the most informative data points for labeling, thereby enhancing model adaptability. A critical innovation is the incorporation of a human-in-the-loop mechanism, which enables the identification of actual normal and anomalous instances from pseudo-labeling results generated by AI. This collected data allows the framework to define an adaptive threshold tailored to different environments, ensuring that the system remains effective as the definition of 'normal' shifts across various settings. Implemented within a lab-based framework that simulates real-world conditions, our approach allows rigorous testing and refinement of VAD algorithms with a new metric. Experimental results show that our method achieves an EBI (Error Balance Index) of 68.91 for Q3 in real-world simulated scenarios, demonstrating its practical effectiveness and significantly enhancing the applicability of VAD in dynamic environments.
☆ Per-Query Visual Concept Learning
Visual concept learning, also known as Text-to-image personalization, is the process of teaching new concepts to a pretrained model. This has numerous applications from product placement to entertainment and personalized design. Here we show that many existing methods can be substantially augmented by adding a personalization step that is (1) specific to the prompt and noise seed, and (2) using two loss terms based on the self- and cross- attention, capturing the identity of the personalized concept. Specifically, we leverage PDM features -- previously designed to capture identity -- and show how they can be used to improve personalized semantic similarity. We evaluate the benefit that our method gains on top of six different personalization methods, and several base text-to-image models (both UNet- and DiT-based). We find significant improvements even over previous per-query personalization methods.
comment: Project page is at https://per-query-visual-concept-learning.github.io/
☆ Spatial Traces: Enhancing VLA Models with Spatial-Temporal Understanding
Vision-Language-Action models have demonstrated remarkable capabilities in predicting agent movements within virtual environments and real-world scenarios based on visual observations and textual instructions. Although recent research has focused on enhancing spatial and temporal understanding independently, this paper presents a novel approach that integrates both aspects through visual prompting. We introduce a method that projects visual traces of key points from observations onto depth maps, enabling models to capture both spatial and temporal information simultaneously. The experiments in SimplerEnv show that the mean number of tasks successfully solved increased for 4% compared to SpatialVLA and 19% compared to TraceVLA. Furthermore, we show that this enhancement can be achieved with minimal training data, making it particularly valuable for real-world applications where data collection is challenging. The project page is available at https://ampiromax.github.io/ST-VLA.
☆ Uncertainty-aware Cross-training for Semi-supervised Medical Image Segmentation
Semi-supervised learning has gained considerable popularity in medical image segmentation tasks due to its capability to reduce reliance on expert-examined annotations. Several mean-teacher (MT) based semi-supervised methods utilize consistency regularization to effectively leverage valuable information from unlabeled data. However, these methods often heavily rely on the student model and overlook the potential impact of cognitive biases within the model. Furthermore, some methods employ co-training using pseudo-labels derived from different inputs, yet generating high-confidence pseudo-labels from perturbed inputs during training remains a significant challenge. In this paper, we propose an Uncertainty-aware Cross-training framework for semi-supervised medical image Segmentation (UC-Seg). Our UC-Seg framework incorporates two distinct subnets to effectively explore and leverage the correlation between them, thereby mitigating cognitive biases within the model. Specifically, we present a Cross-subnet Consistency Preservation (CCP) strategy to enhance feature representation capability and ensure feature consistency across the two subnets. This strategy enables each subnet to correct its own biases and learn shared semantics from both labeled and unlabeled data. Additionally, we propose an Uncertainty-aware Pseudo-label Generation (UPG) component that leverages segmentation results and corresponding uncertainty maps from both subnets to generate high-confidence pseudo-labels. We extensively evaluate the proposed UC-Seg on various medical image segmentation tasks involving different modality images, such as MRI, CT, ultrasound, colonoscopy, and so on. The results demonstrate that our method achieves superior segmentation accuracy and generalization performance compared to other state-of-the-art semi-supervised methods. Our code will be released at https://github.com/taozh2017/UCSeg.
comment: 14 pages, 10 figures
☆ Towards Perfection: Building Inter-component Mutual Correction for Retinex-based Low-light Image Enhancement
In low-light image enhancement, Retinex-based deep learning methods have garnered significant attention due to their exceptional interpretability. These methods decompose images into mutually independent illumination and reflectance components, allows each component to be enhanced separately. In fact, achieving perfect decomposition of illumination and reflectance components proves to be quite challenging, with some residuals still existing after decomposition. In this paper, we formally name these residuals as inter-component residuals (ICR), which has been largely underestimated by previous methods. In our investigation, ICR not only affects the accuracy of the decomposition but also causes enhanced components to deviate from the ideal outcome, ultimately reducing the final synthesized image quality. To address this issue, we propose a novel Inter-correction Retinex model (IRetinex) to alleviate ICR during the decomposition and enhancement stage. In the decomposition stage, we leverage inter-component residual reduction module to reduce the feature similarity between illumination and reflectance components. In the enhancement stage, we utilize the feature similarity between the two components to detect and mitigate the impact of ICR within each enhancement unit. Extensive experiments on three low-light benchmark datasets demonstrated that by reducing ICR, our method outperforms state-of-the-art approaches both qualitatively and quantitatively.
comment: This article has been accepted by ACMMM 2025
☆ UniConvNet: Expanding Effective Receptive Field while Maintaining Asymptotically Gaussian Distribution for ConvNets of Any Scale ICCV 2025
Convolutional neural networks (ConvNets) with large effective receptive field (ERF), still in their early stages, have demonstrated promising effectiveness while constrained by high parameters and FLOPs costs and disrupted asymptotically Gaussian distribution (AGD) of ERF. This paper proposes an alternative paradigm: rather than merely employing extremely large ERF, it is more effective and efficient to expand the ERF while maintaining AGD of ERF by proper combination of smaller kernels, such as $7\times{7}$, $9\times{9}$, $11\times{11}$. This paper introduces a Three-layer Receptive Field Aggregator and designs a Layer Operator as the fundamental operator from the perspective of receptive field. The ERF can be expanded to the level of existing large-kernel ConvNets through the stack of proposed modules while maintaining AGD of ERF. Using these designs, we propose a universal model for ConvNet of any scale, termed UniConvNet. Extensive experiments on ImageNet-1K, COCO2017, and ADE20K demonstrate that UniConvNet outperforms state-of-the-art CNNs and ViTs across various vision recognition tasks for both lightweight and large-scale models with comparable throughput. Surprisingly, UniConvNet-T achieves $84.2\%$ ImageNet top-1 accuracy with $30M$ parameters and $5.1G$ FLOPs. UniConvNet-XL also shows competitive scalability to big data and large models, acquiring $88.4\%$ top-1 accuracy on ImageNet. Code and models are publicly available at https://github.com/ai-paperwithcode/UniConvNet.
comment: ICCV 2025
☆ Spatial-Temporal Multi-Scale Quantization for Flexible Motion Generation
Despite significant advancements in human motion generation, current motion representations, typically formulated as discrete frame sequences, still face two critical limitations: (i) they fail to capture motion from a multi-scale perspective, limiting the capability in complex patterns modeling; (ii) they lack compositional flexibility, which is crucial for model's generalization in diverse generation tasks. To address these challenges, we introduce MSQ, a novel quantization method that compresses the motion sequence into multi-scale discrete tokens across spatial and temporal dimensions. MSQ employs distinct encoders to capture body parts at varying spatial granularities and temporally interpolates the encoded features into multiple scales before quantizing them into discrete tokens. Building on this representation, we establish a generative mask modeling model to effectively support motion editing, motion control, and conditional motion generation. Through quantitative and qualitative analysis, we show that our quantization method enables the seamless composition of motion tokens without requiring specialized design or re-training. Furthermore, extensive evaluations demonstrate that our approach outperforms existing baseline methods on various benchmarks.
comment: 18 pages
☆ KFFocus: Highlighting Keyframes for Enhanced Video Understanding
Recently, with the emergence of large language models, multimodal LLMs have demonstrated exceptional capabilities in image and video modalities. Despite advancements in video comprehension, the substantial computational demands of long video sequences lead current video LLMs (Vid-LLMs) to employ compression strategies at both the inter-frame level (e.g., uniform sampling of video frames) and intra-frame level (e.g., condensing all visual tokens of each frame into a limited number). However, this approach often neglects the uneven temporal distribution of critical information across frames, risking the omission of keyframes that contain essential temporal and semantic details. To tackle these challenges, we propose KFFocus, a method designed to efficiently compress video tokens and emphasize the informative context present within video frames. We substitute uniform sampling with a refined approach inspired by classic video compression principles to identify and capture keyframes based on their temporal redundancy. By assigning varying condensation ratios to frames based on their contextual relevance, KFFocus efficiently reduces token redundancy while preserving informative content details. Additionally, we introduce a spatiotemporal modeling module that encodes both the temporal relationships between video frames and the spatial structure within each frame, thus providing Vid-LLMs with a nuanced understanding of spatial-temporal dynamics. Extensive experiments on widely recognized video understanding benchmarks, especially long video scenarios, demonstrate that KFFocus significantly outperforms existing methods, achieving substantial computational efficiency and enhanced accuracy.
☆ ColorGPT: Leveraging Large Language Models for Multimodal Color Recommendation ICDAR2025
Colors play a crucial role in the design of vector graphic documents by enhancing visual appeal, facilitating communication, improving usability, and ensuring accessibility. In this context, color recommendation involves suggesting appropriate colors to complete or refine a design when one or more colors are missing or require alteration. Traditional methods often struggled with these challenges due to the complex nature of color design and the limited data availability. In this study, we explored the use of pretrained Large Language Models (LLMs) and their commonsense reasoning capabilities for color recommendation, raising the question: Can pretrained LLMs serve as superior designers for color recommendation tasks? To investigate this, we developed a robust, rigorously validated pipeline, ColorGPT, that was built by systematically testing multiple color representations and applying effective prompt engineering techniques. Our approach primarily targeted color palette completion by recommending colors based on a set of given colors and accompanying context. Moreover, our method can be extended to full palette generation, producing an entire color palette corresponding to a provided textual description. Experimental results demonstrated that our LLM-based pipeline outperformed existing methods in terms of color suggestion accuracy and the distribution of colors in the color palette completion task. For the full palette generation task, our approach also yielded improvements in color diversity and similarity compared to current techniques.
comment: Accepted to ICDAR2025
☆ TaoCache: Structure-Maintained Video Generation Acceleration
Existing cache-based acceleration methods for video diffusion models primarily skip early or mid denoising steps, which often leads to structural discrepancies relative to full-timestep generation and can hinder instruction following and character consistency. We present TaoCache, a training-free, plug-and-play caching strategy that, instead of residual-based caching, adopts a fixed-point perspective to predict the model's noise output and is specifically effective in late denoising stages. By calibrating cosine similarities and norm ratios of consecutive noise deltas, TaoCache preserves high-resolution structure while enabling aggressive skipping. The approach is orthogonal to complementary accelerations such as Pyramid Attention Broadcast (PAB) and TeaCache, and it integrates seamlessly into DiT-based frameworks. Across Latte-1, OpenSora-Plan v110, and Wan2.1, TaoCache attains substantially higher visual quality (LPIPS, SSIM, PSNR) than prior caching methods under the same speedups.
☆ Text-conditioned State Space Model For Domain-generalized Change Detection Visual Question Answering
The Earth's surface is constantly changing, and detecting these changes provides valuable insights that benefit various aspects of human society. While traditional change detection methods have been employed to detect changes from bi-temporal images, these approaches typically require expert knowledge for accurate interpretation. To enable broader and more flexible access to change information by non-expert users, the task of Change Detection Visual Question Answering (CDVQA) has been introduced. However, existing CDVQA methods have been developed under the assumption that training and testing datasets share similar distributions. This assumption does not hold in real-world applications, where domain shifts often occur. In this paper, the CDVQA task is revisited with a focus on addressing domain shift. To this end, a new multi-modal and multi-domain dataset, BrightVQA, is introduced to facilitate domain generalization research in CDVQA. Furthermore, a novel state space model, termed Text-Conditioned State Space Model (TCSSM), is proposed. The TCSSM framework is designed to leverage both bi-temporal imagery and geo-disaster-related textual information in an unified manner to extract domain-invariant features across domains. Input-dependent parameters existing in TCSSM are dynamically predicted by using both bi-temporal images and geo-disaster-related description, thereby facilitating the alignment between bi-temporal visual data and the associated textual descriptions. Extensive experiments are conducted to evaluate the proposed method against state-of-the-art models, and superior performance is consistently demonstrated. The code and dataset will be made publicly available upon acceptance at https://github.com/Elman295/TCSSM.
☆ Lay2Story: Extending Diffusion Transformers for Layout-Togglable Story Generation ICCV 2025
Storytelling tasks involving generating consistent subjects have gained significant attention recently. However, existing methods, whether training-free or training-based, continue to face challenges in maintaining subject consistency due to the lack of fine-grained guidance and inter-frame interaction. Additionally, the scarcity of high-quality data in this field makes it difficult to precisely control storytelling tasks, including the subject's position, appearance, clothing, expression, and posture, thereby hindering further advancements. In this paper, we demonstrate that layout conditions, such as the subject's position and detailed attributes, effectively facilitate fine-grained interactions between frames. This not only strengthens the consistency of the generated frame sequence but also allows for precise control over the subject's position, appearance, and other key details. Building on this, we introduce an advanced storytelling task: Layout-Togglable Storytelling, which enables precise subject control by incorporating layout conditions. To address the lack of high-quality datasets with layout annotations for this task, we develop Lay2Story-1M, which contains over 1 million 720p and higher-resolution images, processed from approximately 11,300 hours of cartoon videos. Building on Lay2Story-1M, we create Lay2Story-Bench, a benchmark with 3,000 prompts designed to evaluate the performance of different methods on this task. Furthermore, we propose Lay2Story, a robust framework based on the Diffusion Transformers (DiTs) architecture for Layout-Togglable Storytelling tasks. Through both qualitative and quantitative experiments, we find that our method outperforms the previous state-of-the-art (SOTA) techniques, achieving the best results in terms of consistency, semantic correlation, and aesthetic quality.
comment: Accepted by ICCV 2025
☆ UniSTFormer: Unified Spatio-Temporal Lightweight Transformer for Efficient Skeleton-Based Action Recognition
Skeleton-based action recognition (SAR) has achieved impressive progress with transformer architectures. However, existing methods often rely on complex module compositions and heavy designs, leading to increased parameter counts, high computational costs, and limited scalability. In this paper, we propose a unified spatio-temporal lightweight transformer framework that integrates spatial and temporal modeling within a single attention module, eliminating the need for separate temporal modeling blocks. This approach reduces redundant computations while preserving temporal awareness within the spatial modeling process. Furthermore, we introduce a simplified multi-scale pooling fusion module that combines local and global pooling pathways to enhance the model's ability to capture fine-grained local movements and overarching global motion patterns. Extensive experiments on benchmark datasets demonstrate that our lightweight model achieves a superior balance between accuracy and efficiency, reducing parameter complexity by over 58% and lowering computational cost by over 60% compared to state-of-the-art transformer-based baselines, while maintaining competitive recognition performance.
☆ MADPromptS: Unlocking Zero-Shot Morphing Attack Detection with Multiple Prompt Aggregation
Face Morphing Attack Detection (MAD) is a critical challenge in face recognition security, where attackers can fool systems by interpolating the identity information of two or more individuals into a single face image, resulting in samples that can be verified as belonging to multiple identities by face recognition systems. While multimodal foundation models (FMs) like CLIP offer strong zero-shot capabilities by jointly modeling images and text, most prior works on FMs for biometric recognition have relied on fine-tuning for specific downstream tasks, neglecting their potential for direct, generalizable deployment. This work explores a pure zero-shot approach to MAD by leveraging CLIP without any additional training or fine-tuning, focusing instead on the design and aggregation of multiple textual prompts per class. By aggregating the embeddings of diverse prompts, we better align the model's internal representations with the MAD task, capturing richer and more varied cues indicative of bona-fide or attack samples. Our results show that prompt aggregation substantially improves zero-shot detection performance, demonstrating the effectiveness of exploiting foundation models' built-in multimodal knowledge through efficient prompt engineering.
comment: Accepted at ACM Multimedia Workshops
☆ Accelerated Volumetric Compression without Hierarchies: A Fourier Feature Based Implicit Neural Representation Approach
Volumetric data compression is critical in fields like medical imaging, scientific simulation, and entertainment. We introduce a structure-free neural compression method combining Fourierfeature encoding with selective voxel sampling, yielding compact volumetric representations and faster convergence. Our dynamic voxel selection uses morphological dilation to prioritize active regions, reducing redundant computation without any hierarchical metadata. In the experiment, sparse training reduced training time by 63.7 % (from 30 to 11 minutes) with only minor quality loss: PSNR dropped 0.59 dB (from 32.60 to 32.01) and SSIM by 0.008 (from 0.948 to 0.940). The resulting neural representation, stored solely as network weights, achieves a compression rate of 14 and eliminates traditional data-loading overhead. This connects coordinate-based neural representation with efficient volumetric compression, offering a scalable, structure-free solution for practical applications.
comment: 2 pages, accepted for the VIS IEEE 2025 poster
☆ Shape Completion and Real-Time Visualization in Robotic Ultrasound Spine Acquisitions
Ultrasound (US) imaging is increasingly used in spinal procedures due to its real-time, radiation-free capabilities; however, its effectiveness is hindered by shadowing artifacts that obscure deeper tissue structures. Traditional approaches, such as CT-to-US registration, incorporate anatomical information from preoperative CT scans to guide interventions, but they are limited by complex registration requirements, differences in spine curvature, and the need for recent CT imaging. Recent shape completion methods can offer an alternative by reconstructing spinal structures in US data, while being pretrained on large set of publicly available CT scans. However, these approaches are typically offline and have limited reproducibility. In this work, we introduce a novel integrated system that combines robotic ultrasound with real-time shape completion to enhance spinal visualization. Our robotic platform autonomously acquires US sweeps of the lumbar spine, extracts vertebral surfaces from ultrasound, and reconstructs the complete anatomy using a deep learning-based shape completion network. This framework provides interactive, real-time visualization with the capability to autonomously repeat scans and can enable navigation to target locations. This can contribute to better consistency, reproducibility, and understanding of the underlying anatomy. We validate our approach through quantitative experiments assessing shape completion accuracy and evaluations of multiple spine acquisition protocols on a phantom setup. Additionally, we present qualitative results of the visualization on a volunteer scan.
A Pseudo Global Fusion Paradigm-Based Cross-View Network for LiDAR-Based Place Recognition
LiDAR-based Place Recognition (LPR) remains a critical task in Embodied Artificial Intelligence (AI) and Autonomous Driving, primarily addressing localization challenges in GPS-denied environments and supporting loop closure detection. Existing approaches reduce place recognition to a Euclidean distance-based metric learning task, neglecting the feature space's intrinsic structures and intra-class variances. Such Euclidean-centric formulation inherently limits the model's capacity to capture nonlinear data distributions, leading to suboptimal performance in complex environments and temporal-varying scenarios. To address these challenges, we propose a novel cross-view network based on an innovative fusion paradigm. Our framework introduces a pseudo-global information guidance mechanism that coordinates multi-modal branches to perform feature learning within a unified semantic space. Concurrently, we propose a Manifold Adaptation and Pairwise Variance-Locality Learning Metric that constructs a Symmetric Positive Definite (SPD) matrix to compute Mahalanobis distance, superseding traditional Euclidean distance metrics. This geometric formulation enables the model to accurately characterize intrinsic data distributions and capture complex inter-class dependencies within the feature space. Experimental results demonstrate that the proposed algorithm achieves competitive performance, particularly excelling in complex environmental conditions.
☆ Automatic and standardized surgical reporting for central nervous system tumors
Magnetic resonance (MR) imaging is essential for evaluating central nervous system (CNS) tumors, guiding surgical planning, treatment decisions, and assessing postoperative outcomes and complication risks. While recent work has advanced automated tumor segmentation and report generation, most efforts have focused on preoperative data, with limited attention to postoperative imaging analysis. This study introduces a comprehensive pipeline for standardized postsurtical reporting in CNS tumors. Using the Attention U-Net architecture, segmentation models were trained for the preoperative (non-enhancing) tumor core, postoperative contrast-enhancing residual tumor, and resection cavity. Additionally, MR sequence classification and tumor type identification for contrast-enhancing lesions were explored using the DenseNet architecture. The models were integrated into a reporting pipeline, following the RANO 2.0 guidelines. Training was conducted on multicentric datasets comprising 2000 to 7000 patients, using a 5-fold cross-validation. Evaluation included patient-, voxel-, and object-wise metrics, with benchmarking against the latest BraTS challenge results. The segmentation models achieved average voxel-wise Dice scores of 87%, 66%, 70%, and 77% for the tumor core, non-enhancing tumor core, contrast-enhancing residual tumor, and resection cavity, respectively. Classification models reached 99.5% balanced accuracy in MR sequence classification and 80% in tumor type classification. The pipeline presented in this study enables robust, automated segmentation, MR sequence classification, and standardized report generation aligned with RANO 2.0 guidelines, enhancing postoperative evaluation and clinical decision-making. The proposed models and methods were integrated into Raidionics, open-source software platform for CNS tumor analysis, now including a dedicated module for postsurgical analysis.
comment: 16 pages, 6 figures, 9 tables
☆ Masked Clustering Prediction for Unsupervised Point Cloud Pre-training
Vision transformers (ViTs) have recently been widely applied to 3D point cloud understanding, with masked autoencoding as the predominant pre-training paradigm. However, the challenge of learning dense and informative semantic features from point clouds via standard ViTs remains underexplored. We propose MaskClu, a novel unsupervised pre-training method for ViTs on 3D point clouds that integrates masked point modeling with clustering-based learning. MaskClu is designed to reconstruct both cluster assignments and cluster centers from masked point clouds, thus encouraging the model to capture dense semantic information. Additionally, we introduce a global contrastive learning mechanism that enhances instance-level feature learning by contrasting different masked views of the same point cloud. By jointly optimizing these complementary objectives, i.e., dense semantic reconstruction, and instance-level contrastive learning. MaskClu enables ViTs to learn richer and more semantically meaningful representations from 3D point clouds. We validate the effectiveness of our method via multiple 3D tasks, including part segmentation, semantic segmentation, object detection, and classification, where MaskClu sets new competitive results. The code and models will be released at:https://github.com/Amazingren/maskclu.
comment: 3D point cloud pretraining method. 8 pages in the main manuscript
☆ A Robust Epipolar-Domain Regularization Algorithm for Light Field Depth Estimation
Robust depth estimation in light field imaging remains a critical challenge for pattern recognition applications such as augmented reality, biomedical imaging, and scene reconstruction. While existing approaches often rely heavily on deep convolutional neural networks, they tend to incur high computational costs and struggle in noisy real-world environments. This paper proposes a novel lightweight depth estimation pipeline that integrates light field-based disparity information with a directed random walk refinement algorithm. Unlike traditional CNN-based methods, our approach enhances depth map consistency without requiring extensive training or large-scale datasets. The proposed method was evaluated on the 4D Light Field Benchmark dataset and a diverse set of real-world images. Experimental results indicate that while performance slightly declines under uncontrolled conditions, the algorithm consistently maintains low computational complexity and competitive accuracy compared to state-of-the-art deep learning models. These findings highlight the potential of our method as a robust and efficient alternative for depth estimation and segmentation in light field imaging. The work provides insights into practical algorithm design for light field-based pattern recognition and opens new directions for integrating probabilistic graph models with depth sensing frameworks.
☆ Preview WB-DH: Towards Whole Body Digital Human Bench for the Generation of Whole-body Talking Avatar Videos ICCV 2025
Creating realistic, fully animatable whole-body avatars from a single portrait is challenging due to limitations in capturing subtle expressions, body movements, and dynamic backgrounds. Current evaluation datasets and metrics fall short in addressing these complexities. To bridge this gap, we introduce the Whole-Body Benchmark Dataset (WB-DH), an open-source, multi-modal benchmark designed for evaluating whole-body animatable avatar generation. Key features include: (1) detailed multi-modal annotations for fine-grained guidance, (2) a versatile evaluation framework, and (3) public access to the dataset and tools at https://github.com/deepreasonings/WholeBodyBenchmark.
comment: This paper has been accepted by ICCV 2025 Workshop MMFM4
☆ GaussianUpdate: Continual 3D Gaussian Splatting Update for Changing Environments ICCV 2025
Novel view synthesis with neural models has advanced rapidly in recent years, yet adapting these models to scene changes remains an open problem. Existing methods are either labor-intensive, requiring extensive model retraining, or fail to capture detailed types of changes over time. In this paper, we present GaussianUpdate, a novel approach that combines 3D Gaussian representation with continual learning to address these challenges. Our method effectively updates the Gaussian radiance fields with current data while preserving information from past scenes. Unlike existing methods, GaussianUpdate explicitly models different types of changes through a novel multi-stage update strategy. Additionally, we introduce a visibility-aware continual learning approach with generative replay, enabling self-aware updating without the need to store images. The experiments on the benchmark dataset demonstrate our method achieves superior and real-time rendering with the capability of visualizing changes over different times
comment: Accepted to ICCV 2025
☆ Frequency-Assisted Adaptive Sharpening Scheme Considering Bitrate and Quality Tradeoff
Sharpening is a widely adopted technique to improve video quality, which can effectively emphasize textures and alleviate blurring. However, increasing the sharpening level comes with a higher video bitrate, resulting in degraded Quality of Service (QoS). Furthermore, the video quality does not necessarily improve with increasing sharpening levels, leading to issues such as over-sharpening. Clearly, it is essential to figure out how to boost video quality with a proper sharpening level while also controlling bandwidth costs effectively. This paper thus proposes a novel Frequency-assisted Sharpening level Prediction model (FreqSP). We first label each video with the sharpening level correlating to the optimal bitrate and quality tradeoff as ground truth. Then taking uncompressed source videos as inputs, the proposed FreqSP leverages intricate CNN features and high-frequency components to estimate the optimal sharpening level. Extensive experiments demonstrate the effectiveness of our method.
☆ Adaptive High-Frequency Preprocessing for Video Coding
High-frequency components are crucial for maintaining video clarity and realism, but they also significantly impact coding bitrate, resulting in increased bandwidth and storage costs. This paper presents an end-to-end learning-based framework for adaptive high-frequency preprocessing to enhance subjective quality and save bitrate in video coding. The framework employs the Frequency-attentive Feature pyramid Prediction Network (FFPN) to predict the optimal high-frequency preprocessing strategy, guiding subsequent filtering operators to achieve the optimal tradeoff between bitrate and quality after compression. For training FFPN, we pseudo-label each training video with the optimal strategy, determined by comparing the rate-distortion (RD) performance across different preprocessing types and strengths. Distortion is measured using the latest quality assessment metric. Comprehensive evaluations on multiple datasets demonstrate the visually appealing enhancement capabilities and bitrate savings achieved by our framework.
☆ DiffPhysCam: Differentiable Physics-Based Camera Simulation for Inverse Rendering and Embodied AI
We introduce DiffPhysCam, a differentiable camera simulator designed to support robotics and embodied AI applications by enabling gradient-based optimization in visual perception pipelines. Generating synthetic images that closely mimic those from real cameras is essential for training visual models and enabling end-to-end visuomotor learning. Moreover, differentiable rendering allows inverse reconstruction of real-world scenes as digital twins, facilitating simulation-based robotics training. However, existing virtual cameras offer limited control over intrinsic settings, poorly capture optical artifacts, and lack tunable calibration parameters -- hindering sim-to-real transfer. DiffPhysCam addresses these limitations through a multi-stage pipeline that provides fine-grained control over camera settings, models key optical effects such as defocus blur, and supports calibration with real-world data. It enables both forward rendering for image synthesis and inverse rendering for 3D scene reconstruction, including mesh and material texture optimization. We show that DiffPhysCam enhances robotic perception performance in synthetic image tasks. As an illustrative example, we create a digital twin of a real-world scene using inverse rendering, simulate it in a multi-physics environment, and demonstrate navigation of an autonomous ground vehicle using images generated by DiffPhysCam.
comment: 19 pages, 17 figures, and 4 tables
☆ Silicon Minds versus Human Hearts: The Wisdom of Crowds Beats the Wisdom of AI in Emotion Recognition
The ability to discern subtle emotional cues is fundamental to human social intelligence. As artificial intelligence (AI) becomes increasingly common, AI's ability to recognize and respond to human emotions is crucial for effective human-AI interactions. In particular, whether such systems can match or surpass human experts remains to be seen. However, the emotional intelligence of AI, particularly multimodal large language models (MLLMs), remains largely unexplored. This study evaluates the emotion recognition abilities of MLLMs using the Reading the Mind in the Eyes Test (RMET) and its multiracial counterpart (MRMET), and compares their performance against human participants. Results show that, on average, MLLMs outperform humans in accurately identifying emotions across both tests. This trend persists even when comparing performance across low, medium, and expert-level performing groups. Yet when we aggregate independent human decisions to simulate collective intelligence, human groups significantly surpass the performance of aggregated MLLM predictions, highlighting the wisdom of the crowd. Moreover, a collaborative approach (augmented intelligence) that combines human and MLLM predictions achieves greater accuracy than either humans or MLLMs alone. These results suggest that while MLLMs exhibit strong emotion recognition at the individual level, the collective intelligence of humans and the synergistic potential of human-AI collaboration offer the most promising path toward effective emotional AI. We discuss the implications of these findings for the development of emotionally intelligent AI systems and future research directions.
☆ A Parametric Bi-Directional Curvature-Based Framework for Image Artifact Classification and Quantification
This work presents a novel framework for No-Reference Image Quality Assessment (NR-IQA) founded on the analysis of directional image curvature. Within this framework, we define a measure of Anisotropic Texture Richness (ATR), which is computed at the pixel level using two tunable thresholds -- one permissive and one restrictive -- that quantify orthogonal texture suppression. When its parameters are optimized for a specific artifact, the resulting ATR score serves as a high-performance quality metric, achieving Spearman correlations with human perception of approximately -0.93 for Gaussian blur and -0.95 for white noise on the LIVE dataset. The primary contribution is a two-stage system that leverages the differential response of ATR to various distortions. First, the system utilizes the signature from two specialist ATR configurations to classify the primary artifact type (blur vs. noise) with over 97% accuracy. Second, following classification, it employs a dedicated regression model mapping the relevant ATR score to a quality rating to quantify the degradation. On a combined dataset, the complete system predicts human scores with a coefficient of determination (R2) of 0.892 and a Root Mean Square Error (RMSE) of 5.17 DMOS points. This error corresponds to just 7.4% of the dataset's total quality range, demonstrating high predictive accuracy. This establishes our framework as a robust, dual-purpose tool for the classification and subsequent quantification of image degradation.
☆ 3DFroMLLM: 3D Prototype Generation only from Pretrained Multimodal LLMs
Recent Multi-Modal Large Language Models (MLLMs) have demonstrated strong capabilities in learning joint representations from text and images. However, their spatial reasoning remains limited. We introduce 3DFroMLLM, a novel framework that enables the generation of 3D object prototypes directly from MLLMs, including geometry and part labels. Our pipeline is agentic, comprising a designer, coder, and visual inspector operating in a refinement loop. Notably, our approach requires no additional training data or detailed user instructions. Building on prior work in 2D generation, we demonstrate that rendered images produced by our framework can be effectively used for image classification pretraining tasks and outperforms previous methods by 15%. As a compelling real-world use case, we show that the generated prototypes can be leveraged to improve fine-grained vision-language models by using the rendered, part-labeled prototypes to fine-tune CLIP for part segmentation and achieving a 55% accuracy improvement without relying on any additional human-labeled data.
☆ TARA: Token-Aware LoRA for Composable Personalization in Diffusion Models
Personalized text-to-image generation aims to synthesize novel images of a specific subject or style using only a few reference images. Recent methods based on Low-Rank Adaptation (LoRA) enable efficient single-concept customization by injecting lightweight, concept-specific adapters into pre-trained diffusion models. However, combining multiple LoRA modules for multi-concept generation often leads to identity missing and visual feature leakage. In this work, we identify two key issues behind these failures: (1) token-wise interference among different LoRA modules, and (2) spatial misalignment between the attention map of a rare token and its corresponding concept-specific region. To address these issues, we propose Token-Aware LoRA (TARA), which introduces a token mask to explicitly constrain each module to focus on its associated rare token to avoid interference, and a training objective that encourages the spatial attention of a rare token to align with its concept region. Our method enables training-free multi-concept composition by directly injecting multiple independently trained TARA modules at inference time. Experimental results demonstrate that TARA enables efficient multi-concept inference and effectively preserving the visual identity of each concept by avoiding mutual interference between LoRA modules. The code and models are available at https://github.com/YuqiPeng77/TARA.
☆ Revisiting Efficient Semantic Segmentation: Learning Offsets for Better Spatial and Class Feature Alignment ICCV 2025
Semantic segmentation is fundamental to vision systems requiring pixel-level scene understanding, yet deploying it on resource-constrained devices demands efficient architectures. Although existing methods achieve real-time inference through lightweight designs, we reveal their inherent limitation: misalignment between class representations and image features caused by a per-pixel classification paradigm. With experimental analysis, we find that this paradigm results in a highly challenging assumption for efficient scenarios: Image pixel features should not vary for the same category in different images. To address this dilemma, we propose a coupled dual-branch offset learning paradigm that explicitly learns feature and class offsets to dynamically refine both class representations and spatial image features. Based on the proposed paradigm, we construct an efficient semantic segmentation network, OffSeg. Notably, the offset learning paradigm can be adopted to existing methods with no additional architectural changes. Extensive experiments on four datasets, including ADE20K, Cityscapes, COCO-Stuff-164K, and Pascal Context, demonstrate consistent improvements with negligible parameters. For instance, on the ADE20K dataset, our proposed offset learning paradigm improves SegFormer-B0, SegNeXt-T, and Mask2Former-Tiny by 2.7%, 1.9%, and 2.6% mIoU, respectively, with only 0.1-0.2M additional parameters required.
comment: Accepted at ICCV 2025. Project page: https://github.com/HVision-NKU/OffSeg
☆ Identity-Preserving Aging and De-Aging of Faces in the StyleGAN Latent Space
Face aging or de-aging with generative AI has gained significant attention for its applications in such fields like forensics, security, and media. However, most state of the art methods rely on conditional Generative Adversarial Networks (GANs), Diffusion-based models, or Visual Language Models (VLMs) to age or de-age faces based on predefined age categories and conditioning via loss functions, fine-tuning, or text prompts. The reliance on such conditioning leads to complex training requirements, increased data needs, and challenges in generating consistent results. Additionally, identity preservation is rarely taken into accountor evaluated on a single face recognition system without any control or guarantees on whether identity would be preserved in a generated aged/de-aged face. In this paper, we propose to synthesize aged and de-aged faces via editing latent space of StyleGAN2 using a simple support vector modeling of aging/de-aging direction and several feature selection approaches. By using two state-of-the-art face recognition systems, we empirically find the identity preserving subspace within the StyleGAN2 latent space, so that an apparent age of a given face can changed while preserving the identity. We then propose a simple yet practical formula for estimating the limits on aging/de-aging parameters that ensures identity preservation for a given input face. Using our method and estimated parameters we have generated a public dataset of synthetic faces at different ages that can be used for benchmarking cross-age face recognition, age assurance systems, or systems for detection of synthetic images. Our code and dataset are available at the project page https://www.idiap.ch/paper/agesynth/
comment: Accepted for publication in IEEE International Joint Conference on Biometrics (IJCB), 2025
☆ MonoPartNeRF:Human Reconstruction from Monocular Video via Part-Based Neural Radiance Fields
In recent years, Neural Radiance Fields (NeRF) have achieved remarkable progress in dynamic human reconstruction and rendering. Part-based rendering paradigms, guided by human segmentation, allow for flexible parameter allocation based on structural complexity, thereby enhancing representational efficiency. However, existing methods still struggle with complex pose variations, often producing unnatural transitions at part boundaries and failing to reconstruct occluded regions accurately in monocular settings. We propose MonoPartNeRF, a novel framework for monocular dynamic human rendering that ensures smooth transitions and robust occlusion recovery. First, we build a bidirectional deformation model that combines rigid and non-rigid transformations to establish a continuous, reversible mapping between observation and canonical spaces. Sampling points are projected into a parameterized surface-time space (u, v, t) to better capture non-rigid motion. A consistency loss further suppresses deformation-induced artifacts and discontinuities. We introduce a part-based pose embedding mechanism that decomposes global pose vectors into local joint embeddings based on body regions. This is combined with keyframe pose retrieval and interpolation, along three orthogonal directions, to guide pose-aware feature sampling. A learnable appearance code is integrated via attention to model dynamic texture changes effectively. Experiments on the ZJU-MoCap and MonoCap datasets demonstrate that our method significantly outperforms prior approaches under complex pose and occlusion conditions, achieving superior joint alignment, texture fidelity, and structural continuity.
☆ Region-Adaptive Video Sharpening via Rate-Perception Optimization
Sharpening is a widely adopted video enhancement technique. However, uniform sharpening intensity ignores texture variations, degrading video quality. Sharpening also increases bitrate, and there's a lack of techniques to optimally allocate these additional bits across diverse regions. Thus, this paper proposes RPO-AdaSharp, an end-to-end region-adaptive video sharpening model for both perceptual enhancement and bitrate savings. We use the coding tree unit (CTU) partition mask as prior information to guide and constrain the allocation of increased bits. Experiments on benchmarks demonstrate the effectiveness of the proposed model qualitatively and quantitatively.
☆ DiffPose-Animal: A Language-Conditioned Diffusion Framework for Animal Pose Estimation
Animal pose estimation is a fundamental task in computer vision, with growing importance in ecological monitoring, behavioral analysis, and intelligent livestock management. Compared to human pose estimation, animal pose estimation is more challenging due to high interspecies morphological diversity, complex body structures, and limited annotated data. In this work, we introduce DiffPose-Animal, a novel diffusion-based framework for top-down animal pose estimation. Unlike traditional heatmap regression methods, DiffPose-Animal reformulates pose estimation as a denoising process under the generative framework of diffusion models. To enhance semantic guidance during keypoint generation, we leverage large language models (LLMs) to extract both global anatomical priors and local keypoint-wise semantics based on species-specific prompts. These textual priors are encoded and fused with image features via cross-attention modules to provide biologically meaningful constraints throughout the denoising process. Additionally, a diffusion-based keypoint decoder is designed to progressively refine pose predictions, improving robustness to occlusion and annotation sparsity. Extensive experiments on public animal pose datasets demonstrate the effectiveness and generalization capability of our method, especially under challenging scenarios with diverse species, cluttered backgrounds, and incomplete keypoints.
comment: 13pages,2figures
☆ SHREC 2025: Retrieval of Optimal Objects for Multi-modal Enhanced Language and Spatial Assistance (ROOMELSA)
Recent 3D retrieval systems are typically designed for simple, controlled scenarios, such as identifying an object from a cropped image or a brief description. However, real-world scenarios are more complex, often requiring the recognition of an object in a cluttered scene based on a vague, free-form description. To this end, we present ROOMELSA, a new benchmark designed to evaluate a system's ability to interpret natural language. Specifically, ROOMELSA attends to a specific region within a panoramic room image and accurately retrieves the corresponding 3D model from a large database. In addition, ROOMELSA includes over 1,600 apartment scenes, nearly 5,200 rooms, and more than 44,000 targeted queries. Empirically, while coarse object retrieval is largely solved, only one top-performing model consistently ranked the correct match first across nearly all test cases. Notably, a lightweight CLIP-based model also performed well, although it struggled with subtle variations in materials, part structures, and contextual cues, resulting in occasional errors. These findings highlight the importance of tightly integrating visual and language understanding. By bridging the gap between scene-level grounding and fine-grained 3D retrieval, ROOMELSA establishes a new benchmark for advancing robust, real-world 3D recognition systems.
☆ Bridging the Gap: A Framework for Real-World Video Deepfake Detection via Social Network Compression Emulation
The growing presence of AI-generated videos on social networks poses new challenges for deepfake detection, as detectors trained under controlled conditions often fail to generalize to real-world scenarios. A key factor behind this gap is the aggressive, proprietary compression applied by platforms like YouTube and Facebook, which launder low-level forensic cues. However, replicating these transformations at scale is difficult due to API limitations and data-sharing constraints. For these reasons, we propose a first framework that emulates the video sharing pipelines of social networks by estimating compression and resizing parameters from a small set of uploaded videos. These parameters enable a local emulator capable of reproducing platform-specific artifacts on large datasets without direct API access. Experiments on FaceForensics++ videos shared via social networks demonstrate that our emulated data closely matches the degradation patterns of real uploads. Furthermore, detectors fine-tuned on emulated videos achieve comparable performance to those trained on actual shared media. Our approach offers a scalable and practical solution for bridging the gap between lab-based training and real-world deployment of deepfake detectors, particularly in the underexplored domain of compressed video content.
☆ Exploring Palette based Color Guidance in Diffusion Models ACM MM 2025
With the advent of diffusion models, Text-to-Image (T2I) generation has seen substantial advancements. Current T2I models allow users to specify object colors using linguistic color names, and some methods aim to personalize color-object association through prompt learning. However, existing models struggle to provide comprehensive control over the color schemes of an entire image, especially for background elements and less prominent objects not explicitly mentioned in prompts. This paper proposes a novel approach to enhance color scheme control by integrating color palettes as a separate guidance mechanism alongside prompt instructions. We investigate the effectiveness of palette guidance by exploring various palette representation methods within a diffusion-based image colorization framework. To facilitate this exploration, we construct specialized palette-text-image datasets and conduct extensive quantitative and qualitative analyses. Our results demonstrate that incorporating palette guidance significantly improves the model's ability to generate images with desired color schemes, enabling a more controlled and refined colorization process.
comment: Accepted to ACM MM 2025
☆ Adaptive Confidence-Wise Loss for Improved Lens Structure Segmentation in AS-OCT
Precise lens structure segmentation is essential for the design of intraocular lenses (IOLs) in cataract surgery. Existing deep segmentation networks typically weight all pixels equally under cross-entropy (CE) loss, overlooking the fact that sub-regions of lens structures are inhomogeneous (e.g., some regions perform better than others) and that boundary regions often suffer from poor segmentation calibration at the pixel level. Clinically, experts annotate different sub-regions of lens structures with varying confidence levels, considering factors such as sub-region proportions, ambiguous boundaries, and lens structure shapes. Motivated by this observation, we propose an Adaptive Confidence-Wise (ACW) loss to group each lens structure sub-region into different confidence sub-regions via a confidence threshold from the unique region aspect, aiming to exploit the potential of expert annotation confidence prior. Specifically, ACW clusters each target region into low-confidence and high-confidence groups and then applies a region-weighted loss to reweigh each confidence group. Moreover, we design an adaptive confidence threshold optimization algorithm to adjust the confidence threshold of ACW dynamically. Additionally, to better quantify the miscalibration errors in boundary region segmentation, we propose a new metric, termed Boundary Expected Calibration Error (BECE). Extensive experiments on a clinical lens structure AS-OCT dataset and other multi-structure datasets demonstrate that our ACW significantly outperforms competitive segmentation loss methods across different deep segmentation networks (e.g., MedSAM). Notably, our method surpasses CE with 6.13% IoU gain, 4.33% DSC increase, and 4.79% BECE reduction in lens structure segmentation under U-Net. The code of this paper is available at https://github.com/XiaoLing12138/Adaptive-Confidence-Wise-Loss.
☆ SafeFix: Targeted Model Repair via Controlled Image Generation
Deep learning models for visual recognition often exhibit systematic errors due to underrepresented semantic subpopulations. Although existing debugging frameworks can pinpoint these failures by identifying key failure attributes, repairing the model effectively remains difficult. Current solutions often rely on manually designed prompts to generate synthetic training images -- an approach prone to distribution shift and semantic errors. To overcome these challenges, we introduce a model repair module that builds on an interpretable failure attribution pipeline. Our approach uses a conditional text-to-image model to generate semantically faithful and targeted images for failure cases. To preserve the quality and relevance of the generated samples, we further employ a large vision-language model (LVLM) to filter the outputs, enforcing alignment with the original data distribution and maintaining semantic consistency. By retraining vision models with this rare-case-augmented synthetic dataset, we significantly reduce errors associated with rare cases. Our experiments demonstrate that this targeted repair strategy improves model robustness without introducing new bugs. Code is available at https://github.com/oxu2/SafeFix
☆ Subjective and Objective Quality Assessment of Banding Artifacts on Compressed Videos
Although there have been notable advancements in video compression technologies in recent years, banding artifacts remain a serious issue affecting the quality of compressed videos, particularly on smooth regions of high-definition videos. Noticeable banding artifacts can severely impact the perceptual quality of videos viewed on a high-end HDTV or high-resolution screen. Hence, there is a pressing need for a systematic investigation of the banding video quality assessment problem for advanced video codecs. Given that the existing publicly available datasets for studying banding artifacts are limited to still picture data only, which cannot account for temporal banding dynamics, we have created a first-of-a-kind open video dataset, dubbed LIVE-YT-Banding, which consists of 160 videos generated by four different compression parameters using the AV1 video codec. A total of 7,200 subjective opinions are collected from a cohort of 45 human subjects. To demonstrate the value of this new resources, we tested and compared a variety of models that detect banding occurrences, and measure their impact on perceived quality. Among these, we introduce an effective and efficient new no-reference (NR) video quality evaluator which we call CBAND. CBAND leverages the properties of the learned statistics of natural images expressed in the embeddings of deep neural networks. Our experimental results show that the perceptual banding prediction performance of CBAND significantly exceeds that of previous state-of-the-art models, and is also orders of magnitude faster. Moreover, CBAND can be employed as a differentiable loss function to optimize video debanding models. The LIVE-YT-Banding database, code, and pre-trained model are all publically available at https://github.com/uniqzheng/CBAND.
☆ ROD: RGB-Only Fast and Efficient Off-road Freespace Detection
Off-road freespace detection is more challenging than on-road scenarios because of the blurred boundaries of traversable areas. Previous state-of-the-art (SOTA) methods employ multi-modal fusion of RGB images and LiDAR data. However, due to the significant increase in inference time when calculating surface normal maps from LiDAR data, multi-modal methods are not suitable for real-time applications, particularly in real-world scenarios where higher FPS is required compared to slow navigation. This paper presents a novel RGB-only approach for off-road freespace detection, named ROD, eliminating the reliance on LiDAR data and its computational demands. Specifically, we utilize a pre-trained Vision Transformer (ViT) to extract rich features from RGB images. Additionally, we design a lightweight yet efficient decoder, which together improve both precision and inference speed. ROD establishes a new SOTA on ORFD and RELLIS-3D datasets, as well as an inference speed of 50 FPS, significantly outperforming prior models.
☆ STELAR-VISION: Self-Topology-Aware Efficient Learning for Aligned Reasoning in Vision
Vision-language models (VLMs) have made significant strides in reasoning, yet they often struggle with complex multimodal tasks and tend to generate overly verbose outputs. A key limitation is their reliance on chain-of-thought (CoT) reasoning, despite many tasks benefiting from alternative topologies like trees or graphs. To address this, we introduce STELAR-Vision, a training framework for topology-aware reasoning. At its core is TopoAug, a synthetic data pipeline that enriches training with diverse topological structures. Using supervised fine-tuning and reinforcement learning, we post-train Qwen2VL models with both accuracy and efficiency in mind. Additionally, we propose Frugal Learning, which reduces output length with minimal accuracy loss. On MATH-V and VLM-S2H, STELAR-Vision improves accuracy by 9.7% over its base model and surpasses the larger Qwen2VL-72B-Instruct by 7.3%. On five out-of-distribution benchmarks, it outperforms Phi-4-Multimodal-Instruct by up to 28.4% and LLaMA-3.2-11B-Vision-Instruct by up to 13.2%, demonstrating strong generalization. Compared to Chain-Only training, our approach achieves 4.3% higher overall accuracy on in-distribution datasets and consistently outperforms across all OOD benchmarks. We have released datasets, and code will be available.
☆ PADReg: Physics-Aware Deformable Registration Guided by Contact Force for Ultrasound Sequences
Ultrasound deformable registration estimates spatial transformations between pairs of deformed ultrasound images, which is crucial for capturing biomechanical properties and enhancing diagnostic accuracy in diseases such as thyroid nodules and breast cancer. However, ultrasound deformable registration remains highly challenging, especially under large deformation. The inherently low contrast, heavy noise and ambiguous tissue boundaries in ultrasound images severely hinder reliable feature extraction and correspondence matching. Existing methods often suffer from poor anatomical alignment and lack physical interpretability. To address the problem, we propose PADReg, a physics-aware deformable registration framework guided by contact force. PADReg leverages synchronized contact force measured by robotic ultrasound systems as a physical prior to constrain the registration. Specifically, instead of directly predicting deformation fields, we first construct a pixel-wise stiffness map utilizing the multi-modal information from contact force and ultrasound images. The stiffness map is then combined with force data to estimate a dense deformation field, through a lightweight physics-aware module inspired by Hooke's law. This design enables PADReg to achieve physically plausible registration with better anatomical alignment than previous methods relying solely on image similarity. Experiments on in-vivo datasets demonstrate that it attains a HD95 of 12.90, which is 21.34\% better than state-of-the-art methods. The source code is available at https://github.com/evelynskip/PADReg.
comment: This work has been submitted to the IEEE for possible publication
☆ MMIF-AMIN: Adaptive Loss-Driven Multi-Scale Invertible Dense Network for Multimodal Medical Image Fusion
Multimodal medical image fusion (MMIF) aims to integrate images from different modalities to produce a comprehensive image that enhances medical diagnosis by accurately depicting organ structures, tissue textures, and metabolic information. Capturing both the unique and complementary information across multiple modalities simultaneously is a key research challenge in MMIF. To address this challenge, this paper proposes a novel image fusion method, MMIF-AMIN, which features a new architecture that can effectively extract these unique and complementary features. Specifically, an Invertible Dense Network (IDN) is employed for lossless feature extraction from individual modalities. To extract complementary information between modalities, a Multi-scale Complementary Feature Extraction Module (MCFEM) is designed, which incorporates a hybrid attention mechanism, convolutional layers of varying sizes, and Transformers. An adaptive loss function is introduced to guide model learning, addressing the limitations of traditional manually-designed loss functions and enhancing the depth of data mining. Extensive experiments demonstrate that MMIF-AMIN outperforms nine state-of-the-art MMIF methods, delivering superior results in both quantitative and qualitative analyses. Ablation experiments confirm the effectiveness of each component of the proposed method. Additionally, extending MMIF-AMIN to other image fusion tasks also achieves promising performance.
comment: 10 pages, 6 figures,conference
☆ Multi-level Collaborative Distillation Meets Global Workspace Model: A Unified Framework for OCIL
Online Class-Incremental Learning (OCIL) enables models to learn continuously from non-i.i.d. data streams and samples of the data streams can be seen only once, making it more suitable for real-world scenarios compared to offline learning. However, OCIL faces two key challenges: maintaining model stability under strict memory constraints and ensuring adaptability to new tasks. Under stricter memory constraints, current replay-based methods are less effective. While ensemble methods improve adaptability (plasticity), they often struggle with stability. To overcome these challenges, we propose a novel approach that enhances ensemble learning through a Global Workspace Model (GWM)-a shared, implicit memory that guides the learning of multiple student models. The GWM is formed by fusing the parameters of all students within each training batch, capturing the historical learning trajectory and serving as a dynamic anchor for knowledge consolidation. This fused model is then redistributed periodically to the students to stabilize learning and promote cross-task consistency. In addition, we introduce a multi-level collaborative distillation mechanism. This approach enforces peer-to-peer consistency among students and preserves historical knowledge by aligning each student with the GWM. As a result, student models remain adaptable to new tasks while maintaining previously learned knowledge, striking a better balance between stability and plasticity. Extensive experiments on three standard OCIL benchmarks show that our method delivers significant performance improvement for several OCIL models across various memory budgets.
comment: 12 pages, 7 figures
☆ Learning Generalizable and Efficient Image Watermarking via Hierarchical Two-Stage Optimization
Deep image watermarking, which refers to enable imperceptible watermark embedding and reliable extraction in cover images, has shown to be effective for copyright protection of image assets. However, existing methods face limitations in simultaneously satisfying three essential criteria for generalizable watermarking: 1) invisibility (imperceptible hide of watermarks), 2) robustness (reliable watermark recovery under diverse conditions), and 3) broad applicability (low latency in watermarking process). To address these limitations, we propose a Hierarchical Watermark Learning (HiWL), a two-stage optimization that enable a watermarking model to simultaneously achieve three criteria. In the first stage, distribution alignment learning is designed to establish a common latent space with two constraints: 1) visual consistency between watermarked and non-watermarked images, and 2) information invariance across watermark latent representations. In this way, multi-modal inputs including watermark message (binary codes) and cover images (RGB pixels) can be well represented, ensuring the invisibility of watermarks and robustness in watermarking process thereby. The second stage employs generalized watermark representation learning to establish a disentanglement policy for separating watermarks from image content in RGB space. In particular, it strongly penalizes substantial fluctuations in separated RGB watermarks corresponding to identical messages. Consequently, HiWL effectively learns generalizable latent-space watermark representations while maintaining broad applicability. Extensive experiments demonstrate the effectiveness of proposed method. In particular, it achieves 7.6\% higher accuracy in watermark extraction than existing methods, while maintaining extremely low latency (100K images processed in 8s).
☆ Unified and Semantically Grounded Domain Adaptation for Medical Image Segmentation
Most prior unsupervised domain adaptation approaches for medical image segmentation are narrowly tailored to either the source-accessible setting, where adaptation is guided by source-target alignment, or the source-free setting, which typically resorts to implicit supervision mechanisms such as pseudo-labeling and model distillation. This substantial divergence in methodological designs between the two settings reveals an inherent flaw: the lack of an explicit, structured construction of anatomical knowledge that naturally generalizes across domains and settings. To bridge this longstanding divide, we introduce a unified, semantically grounded framework that supports both source-accessible and source-free adaptation. Fundamentally distinct from all prior works, our framework's adaptability emerges naturally as a direct consequence of the model architecture, without the need for any handcrafted adaptation strategies. Specifically, our model learns a domain-agnostic probabilistic manifold as a global space of anatomical regularities, mirroring how humans establish visual understanding. Thus, the structural content in each image can be interpreted as a canonical anatomy retrieved from the manifold and a spatial transformation capturing individual-specific geometry. This disentangled, interpretable formulation enables semantically meaningful prediction with intrinsic adaptability. Extensive experiments on challenging cardiac and abdominal datasets show that our framework achieves state-of-the-art results in both settings, with source-free performance closely approaching its source-accessible counterpart, a level of consistency rarely observed in prior works. Beyond quantitative improvement, we demonstrate strong interpretability of the proposed framework via manifold traversal for smooth shape manipulation.
☆ AME: Aligned Manifold Entropy for Robust Vision-Language Distillation
Knowledge distillation is a long-established technique for knowledge transfer, and has regained attention in the context of the recent emergence of large vision-language models (VLMs). However, vision-language knowledge distillation often requires sufficient training data to achieve robust generalization on amples with ambiguous or boundary-adjacent representations, which are associated with high predictive uncertainty. Critically, collecting such large-scale, task-specific data for training is often impractical in real-world scenarios. To address this major challenge arising from the entanglement of uncertainty and cross-modal feature representation, we propose Aligned Manifold Entropy for Robust Vision-Language Distillation (AME), aiming to achieve robust generalization under real-world conditions. AME applies entropy minimization over a reconfigured shared manifold, where multi-modal data (i.e., image and text) are bridged through a pair of projection functions, conducive to structural compression for cross-modal feature representations. This enables robust knowledge distillation under low-data regimes, while requiring no architectural modifications to the backbone. As a result, it can serve as a plug-and-play module compatible with a wide range of vision-language distillation frameworks. Notably, our theoretical analysis reveals that integrating knowledge distillation with entropy minimization over the shared manifold leads to a tighter generalization error bound. Extensive experiments across diverse distillation architectures and training settings demonstrate that AME consistently facilitates robust knowledge distillation, resulting in superior generalization performance across a wide spectrum of downstream tasks.
☆ Hierarchical Visual Prompt Learning for Continual Video Instance Segmentation ICCV2025
Video instance segmentation (VIS) has gained significant attention for its capability in tracking and segmenting object instances across video frames. However, most of the existing VIS approaches unrealistically assume that the categories of object instances remain fixed over time. Moreover, they experience catastrophic forgetting of old classes when required to continuously learn object instances belonging to new categories. To resolve these challenges, we develop a novel Hierarchical Visual Prompt Learning (HVPL) model that overcomes catastrophic forgetting of previous categories from both frame-level and video-level perspectives. Specifically, to mitigate forgetting at the frame level, we devise a task-specific frame prompt and an orthogonal gradient correction (OGC) module. The OGC module helps the frame prompt encode task-specific global instance information for new classes in each individual frame by projecting its gradients onto the orthogonal feature space of old classes. Furthermore, to address forgetting at the video level, we design a task-specific video prompt and a video context decoder. This decoder first embeds structural inter-class relationships across frames into the frame prompt features, and then propagates task-specific global video contexts from the frame prompt features to the video prompt. Through rigorous comparisons, our HVPL model proves to be more effective than baseline approaches. The code is available at https://github.com/JiahuaDong/HVPL.
comment: Accepted to ICCV2025
☆ Neural Artistic Style and Color Transfer Using Deep Learning
Neural artistic style transfers and blends the content and style representation of one image with the style of another. This enables artists to create unique innovative visuals and enhances artistic expression in various fields including art, design, and film. Color transfer algorithms are an important in digital image processing by adjusting the color information in a target image based on the colors in the source image. Color transfer enhances images and videos in film and photography, and can aid in image correction. We introduce a methodology that combines neural artistic style with color transfer. The method uses the Kullback-Leibler (KL) divergence to quantitatively evaluate color and luminance histogram matching algorithms including Reinhard global color transfer, iteration distribution transfer (IDT), IDT with regrain, Cholesky, and PCA between the original and neural artistic style transferred image using deep learning. We estimate the color channel kernel densities. Various experiments are performed to evaluate the KL of these algorithms and their color histograms for style to content transfer.
☆ SelfHVD: Self-Supervised Handheld Video Deblurring for Mobile Phones
Shooting video with a handheld mobile phone, the most common photographic device, often results in blurry frames due to shaking hands and other instability factors. Although previous video deblurring methods have achieved impressive progress, they still struggle to perform satisfactorily on real-world handheld video due to the blur domain gap between training and testing data. To address the issue, we propose a self-supervised method for handheld video deblurring, which is driven by sharp clues in the video. First, to train the deblurring model, we extract the sharp clues from the video and take them as misalignment labels of neighboring blurry frames. Second, to improve the model's ability, we propose a novel Self-Enhanced Video Deblurring (SEVD) method to create higher-quality paired video data. Third, we propose a Self-Constrained Spatial Consistency Maintenance (SCSCM) method to regularize the model, preventing position shifts between the output and input frames. Moreover, we construct a synthetic and a real-world handheld video dataset for handheld video deblurring. Extensive experiments on these two and other common real-world datasets demonstrate that our method significantly outperforms existing self-supervised ones. The code and datasets are publicly available at https://github.com/cshonglei/SelfHVD.
☆ QueryCraft: Transformer-Guided Query Initialization for Enhanced Human-Object Interaction Detection
Human-Object Interaction (HOI) detection aims to localize human-object pairs and recognize their interactions in images. Although DETR-based methods have recently emerged as the mainstream framework for HOI detection, they still suffer from a key limitation: Randomly initialized queries lack explicit semantics, leading to suboptimal detection performance. To address this challenge, we propose QueryCraft, a novel plug-and-play HOI detection framework that incorporates semantic priors and guided feature learning through transformer-based query initialization. Central to our approach is \textbf{ACTOR} (\textbf{A}ction-aware \textbf{C}ross-modal \textbf{T}ransf\textbf{OR}mer), a cross-modal Transformer encoder that jointly attends to visual regions and textual prompts to extract action-relevant features. Rather than merely aligning modalities, ACTOR leverages language-guided attention to infer interaction semantics and produce semantically meaningful query representations. To further enhance object-level query quality, we introduce a \textbf{P}erceptual \textbf{D}istilled \textbf{Q}uery \textbf{D}ecoder (\textbf{PDQD}), which distills object category awareness from a pre-trained detector to serve as object query initiation. This dual-branch query initialization enables the model to generate more interpretable and effective queries for HOI detection. Extensive experiments on HICO-Det and V-COCO benchmarks demonstrate that our method achieves state-of-the-art performance and strong generalization. Code will be released upon publication.
☆ DocThinker: Explainable Multimodal Large Language Models with Rule-based Reinforcement Learning for Document Understanding ICCV 2025
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in document understanding. However, their reasoning processes remain largely black-box, making it difficult to ensure reliability and trustworthiness, especially in high-stakes domains such as legal, financial, and medical document analysis. Existing methods use fixed Chain-of-Thought (CoT) reasoning with supervised fine-tuning (SFT) but suffer from catastrophic forgetting, poor adaptability, and limited generalization across domain tasks. In this paper, we propose DocThinker, a rule-based Reinforcement Learning (RL) framework for dynamic inference-time reasoning. Instead of relying on static CoT templates, DocThinker autonomously refines reasoning strategies via policy learning, generating explainable intermediate results, including structured reasoning processes, rephrased questions, regions of interest (RoI) supporting the answer, and the final answer. By integrating multi-objective rule-based rewards and KL-constrained optimization, our method mitigates catastrophic forgetting and enhances both adaptability and transparency. Extensive experiments on multiple benchmarks demonstrate that DocThinker significantly improves generalization while producing more explainable and human-understandable reasoning steps. Our findings highlight RL as a powerful alternative for enhancing explainability and adaptability in MLLM-based document understanding. Code will be available at https://github.com/wenwenyu/DocThinker.
comment: ICCV 2025
☆ RealisMotion: Decomposed Human Motion Control and Video Generation in the World Space
Generating human videos with realistic and controllable motions is a challenging task. While existing methods can generate visually compelling videos, they lack separate control over four key video elements: foreground subject, background video, human trajectory and action patterns. In this paper, we propose a decomposed human motion control and video generation framework that explicitly decouples motion from appearance, subject from background, and action from trajectory, enabling flexible mix-and-match composition of these elements. Concretely, we first build a ground-aware 3D world coordinate system and perform motion editing directly in the 3D space. Trajectory control is implemented by unprojecting edited 2D trajectories into 3D with focal-length calibration and coordinate transformation, followed by speed alignment and orientation adjustment; actions are supplied by a motion bank or generated via text-to-motion methods. Then, based on modern text-to-video diffusion transformer models, we inject the subject as tokens for full attention, concatenate the background along the channel dimension, and add motion (trajectory and action) control signals by addition. Such a design opens up the possibility for us to generate realistic videos of anyone doing anything anywhere. Extensive experiments on benchmark datasets and real-world cases demonstrate that our method achieves state-of-the-art performance on both element-wise controllability and overall video quality.
comment: Project page: https://jingyunliang.github.io/RealisMotion
☆ Superclass-Guided Representation Disentanglement for Spurious Correlation Mitigation
To enhance group robustness to spurious correlations, prior work often relies on auxiliary annotations for groups or spurious features and assumes identical sets of groups across source and target domains. These two requirements are both unnatural and impractical in real-world settings. To overcome these limitations, we propose a method that leverages the semantic structure inherent in class labels--specifically, superclass information--to naturally reduce reliance on spurious features. Our model employs gradient-based attention guided by a pre-trained vision-language model to disentangle superclass-relevant and irrelevant features. Then, by promoting the use of all superclass-relevant features for prediction, our approach achieves robustness to more complex spurious correlations without the need to annotate any source samples. Experiments across diverse datasets demonstrate that our method significantly outperforms baselines in domain generalization tasks, with clear improvements in both quantitative metrics and qualitative visualizations.
☆ Think as Cardiac Sonographers: Marrying SAM with Left Ventricular Indicators Measurements According to Clinical Guidelines
Left ventricular (LV) indicator measurements following clinical echocardiog-raphy guidelines are important for diagnosing cardiovascular disease. Alt-hough existing algorithms have explored automated LV quantification, they can struggle to capture generic visual representations due to the normally small training datasets. Therefore, it is necessary to introduce vision founda-tional models (VFM) with abundant knowledge. However, VFMs represented by the segment anything model (SAM) are usually suitable for segmentation but incapable of identifying key anatomical points, which are critical in LV indicator measurements. In this paper, we propose a novel framework named AutoSAME, combining the powerful visual understanding of SAM with seg-mentation and landmark localization tasks simultaneously. Consequently, the framework mimics the operation of cardiac sonographers, achieving LV indi-cator measurements consistent with clinical guidelines. We further present fil-tered cross-branch attention (FCBA) in AutoSAME, which leverages relatively comprehensive features in the segmentation to enhance the heatmap regression (HR) of key points from the frequency domain perspective, optimizing the vis-ual representation learned by the latter. Moreover, we propose spatial-guided prompt alignment (SGPA) to automatically generate prompt embeddings guid-ed by spatial properties of LV, thereby improving the accuracy of dense pre-dictions by prior spatial knowledge. The extensive experiments on an echocar-diography dataset demonstrate the efficiency of each design and the superiori-ty of our AutoSAME in LV segmentation, landmark localization, and indicator measurements. The code will be available at https://github.com/QC-LIU-1997/AutoSAME.
☆ Unlocking the Potential of Diffusion Priors in Blind Face Restoration
Although diffusion prior is rising as a powerful solution for blind face restoration (BFR), the inherent gap between the vanilla diffusion model and BFR settings hinders its seamless adaptation. The gap mainly stems from the discrepancy between 1) high-quality (HQ) and low-quality (LQ) images and 2) synthesized and real-world images. The vanilla diffusion model is trained on images with no or less degradations, whereas BFR handles moderately to severely degraded images. Additionally, LQ images used for training are synthesized by a naive degradation model with limited degradation patterns, which fails to simulate complex and unknown degradations in real-world scenarios. In this work, we use a unified network FLIPNET that switches between two modes to resolve specific gaps. In Restoration mode, the model gradually integrates BFR-oriented features and face embeddings from LQ images to achieve authentic and faithful face restoration. In Degradation mode, the model synthesizes real-world like degraded images based on the knowledge learned from real-world degradation datasets. Extensive evaluations on benchmark datasets show that our model 1) outperforms previous diffusion prior based BFR methods in terms of authenticity and fidelity, and 2) outperforms the naive degradation model in modeling the real-world degradations.
☆ Boosting Generic Semi-Supervised Medical Image Segmentation via Diverse Teaching and Label Propagation
Both limited annotation and domain shift are significant challenges frequently encountered in medical image segmentation, leading to derivative scenarios like semi-supervised medical (SSMIS), semi-supervised medical domain generalization (Semi-MDG) and unsupervised medical domain adaptation (UMDA). Conventional methods are generally tailored to specific tasks in isolation, the error accumulation hinders the effective utilization of unlabeled data and limits further improvements, resulting in suboptimal performance when these issues occur. In this paper, we aim to develop a generic framework that masters all three tasks. We found that the key to solving the problem lies in how to generate reliable pseudo labels for the unlabeled data in the presence of domain shift with labeled data and increasing the diversity of the model. To tackle this issue, we employ a Diverse Teaching and Label Propagation Network (DTLP-Net) to boosting the Generic Semi-Supervised Medical Image Segmentation. Our DTLP-Net involves a single student model and two diverse teacher models, which can generate reliable pseudo-labels for the student model. The first teacher model decouple the training process with labeled and unlabeled data, The second teacher is momentum-updated periodically, thus generating reliable yet divers pseudo-labels. To fully utilize the information within the data, we adopt inter-sample and intra-sample data augmentation to learn the global and local knowledge. In addition, to further capture the voxel-level correlations, we propose label propagation to enhance the model robust. We evaluate our proposed framework on five benchmark datasets for SSMIS, UMDA, and Semi-MDG tasks. The results showcase notable improvements compared to state-of-the-art methods across all five settings, indicating the potential of our framework to tackle more challenging SSL scenarios.
Calibration Attention: Instance-wise Temperature Scaling for Vision Transformers
Probability calibration is critical when Vision Transformers are deployed in risk-sensitive applications. The standard fix, post-hoc temperature scaling, uses a single global scalar and requires a held-out validation set. We introduce Calibration Attention (CalAttn), a drop-in module that learns an adaptive, per-instance temperature directly from the ViT's CLS token. Across CIFAR-10/100, MNIST, Tiny-ImageNet, and ImageNet-1K, CalAttn reduces calibration error by up to 4x on ViT-224, DeiT, and Swin, while adding under 0.1 percent additional parameters. The learned temperatures cluster tightly around 1.0, in contrast to the large global values used by standard temperature scaling. CalAttn is simple, efficient, and architecture-agnostic, and yields more trustworthy probabilities without sacrificing accuracy. Code: [https://github.com/EagleAdelaide/CalibrationAttention-CalAttn-](https://github.com/EagleAdelaide/CalibrationAttention-CalAttn-)
comment: UnderReview
☆ Hybrid Long and Short Range Flows for Point Cloud Filtering
Point cloud capture processes are error-prone and introduce noisy artifacts that necessitate filtering/denoising. Recent filtering methods often suffer from point clustering or noise retaining issues. In this paper, we propose Hybrid Point Cloud Filtering ($\textbf{HybridPF}$) that considers both short-range and long-range filtering trajectories when removing noise. It is well established that short range scores, given by $\nabla_{x}\log p(x_t)$, may provide the necessary displacements to move noisy points to the underlying clean surface. By contrast, long range velocity flows approximate constant displacements directed from a high noise variant patch $x_0$ towards the corresponding clean surface $x_1$. Here, noisy patches $x_t$ are viewed as intermediate states between the high noise variant and the clean patches. Our intuition is that long range information from velocity flow models can guide the short range scores to align more closely with the clean points. In turn, score models generally provide a quicker convergence to the clean surface. Specifically, we devise two parallel modules, the ShortModule and LongModule, each consisting of an Encoder-Decoder pair to respectively account for short-range scores and long-range flows. We find that short-range scores, guided by long-range features, yield filtered point clouds with good point distributions and convergence near the clean surface. We design a joint loss function to simultaneously train the ShortModule and LongModule, in an end-to-end manner. Finally, we identify a key weakness in current displacement based methods, limitations on the decoder architecture, and propose a dynamic graph convolutional decoder to improve the inference process. Comprehensive experiments demonstrate that our HybridPF achieves state-of-the-art results while enabling faster inference speed.
☆ Training Kindai OCR with parallel textline images and self-attention feature distance-based loss
Kindai documents, written in modern Japanese from the late 19th to early 20th century, hold significant historical value for researchers studying societal structures, daily life, and environmental conditions of that period. However, transcribing these documents remains a labor-intensive and time-consuming task, resulting in limited annotated data for training optical character recognition (OCR) systems. This research addresses this challenge of data scarcity by leveraging parallel textline images - pairs of original Kindai text and their counterparts in contemporary Japanese fonts - to augment training datasets. We introduce a distance-based objective function that minimizes the gap between self-attention features of the parallel image pairs. Specifically, we explore Euclidean distance and Maximum Mean Discrepancy (MMD) as domain adaptation metrics. Experimental results demonstrate that our method reduces the character error rate (CER) by 2.23% and 3.94% over a Transformer-based OCR baseline when using Euclidean distance and MMD, respectively. Furthermore, our approach improves the discriminative quality of self-attention representations, leading to more effective OCR performance for historical documents.
☆ DenoDet V2: Phase-Amplitude Cross Denoising for SAR Object Detection
One of the primary challenges in Synthetic Aperture Radar (SAR) object detection lies in the pervasive influence of coherent noise. As a common practice, most existing methods, whether handcrafted approaches or deep learning-based methods, employ the analysis or enhancement of object spatial-domain characteristics to achieve implicit denoising. In this paper, we propose DenoDet V2, which explores a completely novel and different perspective to deconstruct and modulate the features in the transform domain via a carefully designed attention architecture. Compared to DenoDet V1, DenoDet V2 is a major advancement that exploits the complementary nature of amplitude and phase information through a band-wise mutual modulation mechanism, which enables a reciprocal enhancement between phase and amplitude spectra. Extensive experiments on various SAR datasets demonstrate the state-of-the-art performance of DenoDet V2. Notably, DenoDet V2 achieves a significant 0.8\% improvement on SARDet-100K dataset compared to DenoDet V1, while reducing the model complexity by half. The code is available at https://github.com/GrokCV/GrokSAR.
☆ X-UniMotion: Animating Human Images with Expressive, Unified and Identity-Agnostic Motion Latents
We present X-UniMotion, a unified and expressive implicit latent representation for whole-body human motion, encompassing facial expressions, body poses, and hand gestures. Unlike prior motion transfer methods that rely on explicit skeletal poses and heuristic cross-identity adjustments, our approach encodes multi-granular motion directly from a single image into a compact set of four disentangled latent tokens -- one for facial expression, one for body pose, and one for each hand. These motion latents are both highly expressive and identity-agnostic, enabling high-fidelity, detailed cross-identity motion transfer across subjects with diverse identities, poses, and spatial configurations. To achieve this, we introduce a self-supervised, end-to-end framework that jointly learns the motion encoder and latent representation alongside a DiT-based video generative model, trained on large-scale, diverse human motion datasets. Motion-identity disentanglement is enforced via 2D spatial and color augmentations, as well as synthetic 3D renderings of cross-identity subject pairs under shared poses. Furthermore, we guide motion token learning with auxiliary decoders that promote fine-grained, semantically aligned, and depth-aware motion embeddings. Extensive experiments show that X-UniMotion outperforms state-of-the-art methods, producing highly expressive animations with superior motion fidelity and identity preservation.
☆ What Can We Learn from Inter-Annotator Variability in Skin Lesion Segmentation? MICCAI
Medical image segmentation exhibits intra- and inter-annotator variability due to ambiguous object boundaries, annotator preferences, expertise, and tools, among other factors. Lesions with ambiguous boundaries, e.g., spiculated or infiltrative nodules, or irregular borders per the ABCD rule, are particularly prone to disagreement and are often associated with malignancy. In this work, we curate IMA++, the largest multi-annotator skin lesion segmentation dataset, on which we conduct an in-depth study of variability due to annotator, malignancy, tool, and skill factors. We find a statistically significant (p<0.001) association between inter-annotator agreement (IAA), measured using Dice, and the malignancy of skin lesions. We further show that IAA can be accurately predicted directly from dermoscopic images, achieving a mean absolute error of 0.108. Finally, we leverage this association by utilizing IAA as a "soft" clinical feature within a multi-task learning objective, yielding a 4.2% improvement in balanced accuracy averaged across multiple model architectures and across IMA++ and four public dermoscopic datasets. The code is available at https://github.com/sfu-mial/skin-IAV.
comment: Medical Image Computing and Computer-Assisted Intervention (MICCAI) ISIC Skin Image Analysis Workshop (MICCAI ISIC) 2025; 12 pages, 4 tables, 3 figures
☆ A Signer-Invariant Conformer and Multi-Scale Fusion Transformer for Continuous Sign Language Recognition ICCV
Continuous Sign Language Recognition (CSLR) faces multiple challenges, including significant inter-signer variability and poor generalization to novel sentence structures. Traditional solutions frequently fail to handle these issues efficiently. For overcoming these constraints, we propose a dual-architecture framework. For the Signer-Independent (SI) challenge, we propose a Signer-Invariant Conformer that combines convolutions with multi-head self-attention to learn robust, signer-agnostic representations from pose-based skeletal keypoints. For the Unseen-Sentences (US) task, we designed a Multi-Scale Fusion Transformer with a novel dual-path temporal encoder that captures both fine-grained posture dynamics, enabling the model's ability to comprehend novel grammatical compositions. Experiments on the challenging Isharah-1000 dataset establish a new standard for both CSLR benchmarks. The proposed conformer architecture achieves a Word Error Rate (WER) of 13.07% on the SI challenge, a reduction of 13.53% from the state-of-the-art. On the US task, the transformer model scores a WER of 47.78%, surpassing previous work. In the SignEval 2025 CSLR challenge, our team placed 2nd in the US task and 4th in the SI task, demonstrating the performance of these models. The findings validate our key hypothesis: that developing task-specific networks designed for the particular challenges of CSLR leads to considerable performance improvements and establishes a new baseline for further research. The source code is available at: https://github.com/rezwanh001/MSLR-Pose86K-CSLR-Isharah.
comment: Accepted for the IEEE/CVF International Conference on Computer Vision (ICCV), Honolulu, Hawaii, USA. 1st MSLR Workshop 2025
FusionEnsemble-Net: An Attention-Based Ensemble of Spatiotemporal Networks for Multimodal Sign Language Recognition ICCV
Accurate recognition of sign language in healthcare communication poses a significant challenge, requiring frameworks that can accurately interpret complex multimodal gestures. To deal with this, we propose FusionEnsemble-Net, a novel attention-based ensemble of spatiotemporal networks that dynamically fuses visual and motion data to enhance recognition accuracy. The proposed approach processes RGB video and range Doppler map radar modalities synchronously through four different spatiotemporal networks. For each network, features from both modalities are continuously fused using an attention-based fusion module before being fed into an ensemble of classifiers. Finally, the outputs of these four different fused channels are combined in an ensemble classification head, thereby enhancing the model's robustness. Experiments demonstrate that FusionEnsemble-Net outperforms state-of-the-art approaches with a test accuracy of 99.44% on the large-scale MultiMeDaLIS dataset for Italian Sign Language. Our findings indicate that an ensemble of diverse spatiotemporal networks, unified by attention-based fusion, yields a robust and accurate framework for complex, multimodal isolated gesture recognition tasks. The source code is available at: https://github.com/rezwanh001/Multimodal-Isolated-Italian-Sign-Language-Recognition.
comment: Accepted for the IEEE/CVF International Conference on Computer Vision (ICCV), Honolulu, Hawaii, USA. 1st MSLR Workshop 2025
☆ Blink-to-code: real-time Morse code communication via eye blink detection and classification
This study proposes a real-time system that translates voluntary eye blinks into Morse code, enabling communication for individuals with severe motor impairments. Using a standard webcam and computer vision, the system detects and classifies blinks as short (dot) or long (dash), then decodes them into alphanumeric characters. Experiments with five participants show 62% decoding accuracy and 18-20 seconds response times, demonstrating a viable, low-cost assistive communication method.
comment: 4 pages, 4 figures. Preprint on blink-based Morse code communication via webcam for assistive technology. Relevant to computer vision and human-computer interaction
☆ UltraLight Med-Vision Mamba for Classification of Neoplastic Progression in Tubular Adenomas
Identification of precancerous polyps during routine colonoscopy screenings is vital for their excision, lowering the risk of developing colorectal cancer. Advanced deep learning algorithms enable precise adenoma classification and stratification, improving risk assessment accuracy and enabling personalized surveillance protocols that optimize patient outcomes. Ultralight Med-Vision Mamba, a state-space based model (SSM), has excelled in modeling long- and short-range dependencies and image generalization, critical factors for analyzing whole slide images. Furthermore, Ultralight Med-Vision Mamba's efficient architecture offers advantages in both computational speed and scalability, making it a promising tool for real-time clinical deployment.
Dynamic Survival Prediction using Longitudinal Images based on Transformer
Survival analysis utilizing multiple longitudinal medical images plays a pivotal role in the early detection and prognosis of diseases by providing insight beyond single-image evaluations. However, current methodologies often inadequately utilize censored data, overlook correlations among longitudinal images measured over multiple time points, and lack interpretability. We introduce SurLonFormer, a novel Transformer-based neural network that integrates longitudinal medical imaging with structured data for survival prediction. Our architecture comprises three key components: a Vision Encoder for extracting spatial features, a Sequence Encoder for aggregating temporal information, and a Survival Encoder based on the Cox proportional hazards model. This framework effectively incorporates censored data, addresses scalability issues, and enhances interpretability through occlusion sensitivity analysis and dynamic survival prediction. Extensive simulations and a real-world application in Alzheimer's disease analysis demonstrate that SurLonFormer achieves superior predictive performance and successfully identifies disease-related imaging biomarkers.
☆ Lung-DDPM+: Efficient Thoracic CT Image Synthesis using Diffusion Probabilistic Model
Generative artificial intelligence (AI) has been playing an important role in various domains. Leveraging its high capability to generate high-fidelity and diverse synthetic data, generative AI is widely applied in diagnostic tasks, such as lung cancer diagnosis using computed tomography (CT). However, existing generative models for lung cancer diagnosis suffer from low efficiency and anatomical imprecision, which limit their clinical applicability. To address these drawbacks, we propose Lung-DDPM+, an improved version of our previous model, Lung-DDPM. This novel approach is a denoising diffusion probabilistic model (DDPM) guided by nodule semantic layouts and accelerated by a pulmonary DPM-solver, enabling the method to focus on lesion areas while achieving a better trade-off between sampling efficiency and quality. Evaluation results on the public LIDC-IDRI dataset suggest that the proposed method achieves 8$\times$ fewer FLOPs (floating point operations per second), 6.8$\times$ lower GPU memory consumption, and 14$\times$ faster sampling compared to Lung-DDPM. Moreover, it maintains comparable sample quality to both Lung-DDPM and other state-of-the-art (SOTA) generative models in two downstream segmentation tasks. We also conducted a Visual Turing Test by an experienced radiologist, showing the advanced quality and fidelity of synthetic samples generated by the proposed method. These experimental results demonstrate that Lung-DDPM+ can effectively generate high-quality thoracic CT images with lung nodules, highlighting its potential for broader applications, such as general tumor synthesis and lesion generation in medical imaging. The code and pretrained models are available at https://github.com/Manem-Lab/Lung-DDPM-PLUS.
☆ SegDAC: Segmentation-Driven Actor-Critic for Visual Reinforcement Learning
Visual reinforcement learning (RL) is challenging due to the need to learn both perception and actions from high-dimensional inputs and noisy rewards. Although large perception models exist, integrating them effectively into RL for visual generalization and improved sample efficiency remains unclear. We propose SegDAC, a Segmentation-Driven Actor-Critic method. SegDAC uses Segment Anything (SAM) for object-centric decomposition and YOLO-World to ground segments semantically via text prompts. It includes a novel transformer-based architecture that supports a dynamic number of segments at each time step and effectively learns which segments to focus on using online RL, without using human labels. By evaluating SegDAC over a challenging visual generalization benchmark using Maniskill3, which covers diverse manipulation tasks under strong visual perturbations, we demonstrate that SegDAC achieves significantly better visual generalization, doubling prior performance on the hardest setting and matching or surpassing prior methods in sample efficiency across all evaluated tasks.
☆ Harnessing Input-Adaptive Inference for Efficient VLN ICCV 2025
An emerging paradigm in vision-and-language navigation (VLN) is the use of history-aware multi-modal transformer models. Given a language instruction, these models process observation and navigation history to predict the most appropriate action for an agent. While they have significantly improved performance, the scale of these models can be a bottleneck in practical settings with limited computational resources. In this work, we propose a novel input-adaptive navigation method to enhance VLN model efficiency. We first show that existing input-adaptive mechanisms fail to reduce computations without substantial performance degradation. To address this, we introduce three adaptive algorithms, each deployed at a different level: (1) To improve spatial efficiency, we selectively process panoramic views at each observation of an agent. (2) To improve intra-model efficiency, we propose importance-based adaptive thresholding for the early-exit methods. (3) To improve temporal efficiency, we implement a caching mechanism that prevents reprocessing of views previously seen by the agent. In evaluations on seven VLN benchmarks, we demonstrate over a 2$\times$ reduction in computation across three off-the-shelf agents in both standard and continuous environments. Our code is publicly available at https://github.com/secure-ai-systems-group/adaptive-vision-and-language-navigation.
comment: Accepted to ICCV 2025 [Poster]
☆ Beyond Blanket Masking: Examining Granularity for Privacy Protection in Images Captured by Blind and Low Vision Users
As visual assistant systems powered by visual language models (VLMs) become more prevalent, concerns over user privacy have grown, particularly for blind and low vision users who may unknowingly capture personal private information in their images. Existing privacy protection methods rely on coarse-grained segmentation, which uniformly masks entire private objects, often at the cost of usability. In this work, we propose FiGPriv, a fine-grained privacy protection framework that selectively masks only high-risk private information while preserving low-risk information. Our approach integrates fine-grained segmentation with a data-driven risk scoring mechanism. We evaluate our framework using the BIV-Priv-Seg dataset and show that FiG-Priv preserves +26% of image content, enhancing the ability of VLMs to provide useful responses by 11% and identify the image content by 45%, while ensuring privacy protection. Project Page: https://artcs1.github.io/VLMPrivacy/
☆ FineState-Bench: A Comprehensive Benchmark for Fine-Grained State Control in GUI Agents
With the rapid advancement of generative artificial intelligence technology, Graphical User Interface (GUI) agents have demonstrated tremendous potential for autonomously managing daily tasks through natural language instructions. However, current evaluation frameworks for GUI agents suffer from fundamental flaws: existing benchmarks overly focus on coarse-grained task completion while neglecting fine-grained control capabilities crucial for real-world applications. To address this, we introduce FineState-Bench, the first evaluation and diagnostic standard for fine-grained GUI proxy operations, designed to quantify fine-grained control. This multi-platform (desktop, Web, mobile) framework includes 2257 task benchmarks in four components and uses a four-phase indicator for comprehensive perception-to-control assessment. To analyze perception and positioning for refined operations, we developed the plug-and-play Visual Diagnostic Assistant (VDA), enabling the first quantitative decoupling analysis of these capabilities. Experimental results on our benchmark show that the most advanced models achieve only 32.8% fine-grained interaction accuracy. Using our VDA in controlled experiments, quantifying the impact of visual capabilities, we showed that ideal visual localization boosts Gemini-2.5-Flash's success rate by 14.9\%. Our diagnostic framework confirms for the first time that the primary bottleneck for current GUI proxies is basic visual positioning capability.All resources are fully open-source. github: https://github.com/AnonymousThewarehouse/FineState-Bench huggingface: https://huggingface.co/datasets/Willtime2006/Static-FineBench
comment: submit/6682470 (Fengxian Ji)
☆ Gradient-Direction-Aware Density Control for 3D Gaussian Splatting
The emergence of 3D Gaussian Splatting (3DGS) has significantly advanced novel view synthesis through explicit scene representation, enabling real-time photorealistic rendering. However, existing approaches manifest two critical limitations in complex scenarios: (1) Over-reconstruction occurs when persistent large Gaussians cannot meet adaptive splitting thresholds during density control. This is exacerbated by conflicting gradient directions that prevent effective splitting of these Gaussians; (2) Over-densification of Gaussians occurs in regions with aligned gradient aggregation, leading to redundant component proliferation. This redundancy significantly increases memory overhead due to unnecessary data retention. We present Gradient-Direction-Aware Gaussian Splatting (GDAGS), a gradient-direction-aware adaptive density control framework to address these challenges. Our key innovations: the gradient coherence ratio (GCR), computed through normalized gradient vector norms, which explicitly discriminates Gaussians with concordant versus conflicting gradient directions; and a nonlinear dynamic weighting mechanism leverages the GCR to enable gradient-direction-aware density control. Specifically, GDAGS prioritizes conflicting-gradient Gaussians during splitting operations to enhance geometric details while suppressing redundant concordant-direction Gaussians. Conversely, in cloning processes, GDAGS promotes concordant-direction Gaussian densification for structural completion while preventing conflicting-direction Gaussian overpopulation. Comprehensive evaluations across diverse real-world benchmarks demonstrate that GDAGS achieves superior rendering quality while effectively mitigating over-reconstruction, suppressing over-densification, and constructing compact scene representations with 50\% reduced memory consumption through optimized Gaussians utilization.
♻ ☆ Cut2Next: Generating Next Shot via In-Context Tuning
Effective multi-shot generation demands purposeful, film-like transitions and strict cinematic continuity. Current methods, however, often prioritize basic visual consistency, neglecting crucial editing patterns (e.g., shot/reverse shot, cutaways) that drive narrative flow for compelling storytelling. This yields outputs that may be visually coherent but lack narrative sophistication and true cinematic integrity. To bridge this, we introduce Next Shot Generation (NSG): synthesizing a subsequent, high-quality shot that critically conforms to professional editing patterns while upholding rigorous cinematic continuity. Our framework, Cut2Next, leverages a Diffusion Transformer (DiT). It employs in-context tuning guided by a novel Hierarchical Multi-Prompting strategy. This strategy uses Relational Prompts to define overall context and inter-shot editing styles. Individual Prompts then specify per-shot content and cinematographic attributes. Together, these guide Cut2Next to generate cinematically appropriate next shots. Architectural innovations, Context-Aware Condition Injection (CACI) and Hierarchical Attention Mask (HAM), further integrate these diverse signals without introducing new parameters. We construct RawCuts (large-scale) and CuratedCuts (refined) datasets, both with hierarchical prompts, and introduce CutBench for evaluation. Experiments show Cut2Next excels in visual consistency and text fidelity. Crucially, user studies reveal a strong preference for Cut2Next, particularly for its adherence to intended editing patterns and overall cinematic continuity, validating its ability to generate high-quality, narratively expressive, and cinematically coherent subsequent shots.
♻ ☆ ViStoryBench: Comprehensive Benchmark Suite for Story Visualization
Story visualization aims to generate coherent image sequences that faithfully depict a narrative and align with character references. Despite progress in generative models, existing benchmarks are narrow in scope, often limited to short prompts, no character reference, or single-image cases, and fall short of real-world storytelling complexity. This hinders a nuanced understanding of model capabilities and limitations. We present ViStoryBench, a comprehensive benchmark designed to evaluate story visualization models across diverse narrative structures, visual styles, and character settings. The benchmark features richly annotated multi-shot scripts derived from curated stories spanning literature, film, and folklore. Large language models assist in story summarization and script generation, with all outputs verified by humans to ensure coherence and fidelity. Character references are carefully curated to maintain intra-story consistency across varying artistic styles. To enable thorough evaluation, ViStoryBench introduces a set of automated metrics that assess character consistency, style similarity, prompt adherence, aesthetic quality, and generation artifacts such as copy-paste behavior. These metrics are validated through human studies, and used to benchmark a broad range of open-source and commercial models. ViStoryBench offers a high-fidelity, multi-dimensional evaluation suite that facilitates systematic analysis and fosters future progress in visual storytelling.
comment: 33 Pages, Project Page: https://vistorybench.github.io/, Code: https://github.com/vistorybench/vistorybench
♻ ☆ CulturalFrames: Assessing Cultural Expectation Alignment in Text-to-Image Models and Evaluation Metrics
The increasing ubiquity of text-to-image (T2I) models as tools for visual content generation raises concerns about their ability to accurately represent diverse cultural contexts -- where missed cues can stereotype communities and undermine usability. In this work, we present the first study to systematically quantify the alignment of T2I models and evaluation metrics with respect to both explicit (stated) as well as implicit (unstated, implied by the prompt's cultural context) cultural expectations. To this end, we introduce CulturalFrames, a novel benchmark designed for rigorous human evaluation of cultural representation in visual generations. Spanning 10 countries and 5 socio-cultural domains, CulturalFrames comprises 983 prompts, 3637 corresponding images generated by 4 state-of-the-art T2I models, and over 10k detailed human annotations. We find that across models and countries, cultural expectations are missed an average of 44% of the time. Among these failures, explicit expectations are missed at a surprisingly high average rate of 68%, while implicit expectation failures are also significant, averaging 49%. Furthermore, we show that existing T2I evaluation metrics correlate poorly with human judgments of cultural alignment, irrespective of their internal reasoning. Collectively, our findings expose critical gaps, provide a concrete testbed, and outline actionable directions for developing culturally informed T2I models and metrics that improve global usability.
♻ ☆ Euclid Quick Data Release (Q1). Active galactic nuclei identification using diffusion-based inpainting of Euclid VIS images
Light emission from galaxies exhibit diverse brightness profiles, influenced by factors such as galaxy type, structural features and interactions with other galaxies. Elliptical galaxies feature more uniform light distributions, while spiral and irregular galaxies have complex, varied light profiles due to their structural heterogeneity and star-forming activity. In addition, galaxies with an active galactic nucleus (AGN) feature intense, concentrated emission from gas accretion around supermassive black holes, superimposed on regular galactic light, while quasi-stellar objects (QSO) are the extreme case of the AGN emission dominating the galaxy. The challenge of identifying AGN and QSO has been discussed many times in the literature, often requiring multi-wavelength observations. This paper introduces a novel approach to identify AGN and QSO from a single image. Diffusion models have been recently developed in the machine-learning literature to generate realistic-looking images of everyday objects. Utilising the spatial resolving power of the Euclid VIS images, we created a diffusion model trained on one million sources, without using any source pre-selection or labels. The model learns to reconstruct light distributions of normal galaxies, since the population is dominated by them. We condition the prediction of the central light distribution by masking the central few pixels of each source and reconstruct the light according to the diffusion model. We further use this prediction to identify sources that deviate from this profile by examining the reconstruction error of the few central pixels regenerated in each source's core. Our approach, solely using VIS imaging, features high completeness compared to traditional methods of AGN and QSO selection, including optical, near-infrared, mid-infrared, and X-rays.
comment: Paper submitted as part of the A&A Special Issue `Euclid Quick Data Release (Q1)', 34 pages, 26 figures
♻ ☆ Half-Physics: Enabling Kinematic 3D Human Model with Physical Interactions
While current general-purpose 3D human models (e.g., SMPL-X) efficiently represent accurate human shape and pose, they lacks the ability to physically interact with the environment due to the kinematic nature. As a result, kinematic-based interaction models often suffer from issues such as interpenetration and unrealistic object dynamics. To address this limitation, we introduce a novel approach that embeds SMPL-X into a tangible entity capable of dynamic physical interactions with its surroundings. Specifically, we propose a "half-physics" mechanism that transforms 3D kinematic motion into a physics simulation. Our approach maintains kinematic control over inherent SMPL-X poses while ensuring physically plausible interactions with scenes and objects, effectively eliminating penetration and unrealistic object dynamics. Unlike reinforcement learning-based methods, which demand extensive and complex training, our half-physics method is learning-free and generalizes to any body shape and motion; meanwhile, it operates in real time. Moreover, it preserves the fidelity of the original kinematic motion while seamlessly integrating physical interactions
♻ ☆ Argus Inspection: Do Multimodal Large Language Models Possess the Eye of Panoptes?
As Multimodal Large Language Models (MLLMs) continue to evolve, their cognitive and reasoning capabilities have seen remarkable progress. However, challenges in visual fine-grained perception and commonsense causal inference persist. This paper introduces Argus Inspection, a multimodal benchmark with two levels of difficulty, emphasizing detailed visual recognition while incorporating real-world commonsense understanding to evaluate causal reasoning abilities. Expanding on it, we present the Eye of Panoptes framework, which integrates a binary parametric Sigmoid metric with an indicator function, enabling a more holistic evaluation of MLLMs' responses in opinion-based reasoning tasks. Experiments conducted on 26 mainstream MLLMs reveal that the highest performance in visual fine-grained reasoning reaches only 0.46, highlighting considerable potential for enhancement. Our research offers valuable perspectives for the continued refinement of MLLMs.
♻ ☆ MUG: Pseudo Labeling Augmented Audio-Visual Mamba Network for Audio-Visual Video Parsing ICCV 2025
The weakly-supervised audio-visual video parsing (AVVP) aims to predict all modality-specific events and locate their temporal boundaries. Despite significant progress, due to the limitations of the weakly-supervised and the deficiencies of the model architecture, existing methods are lacking in simultaneously improving both the segment-level prediction and the event-level prediction. In this work, we propose a audio-visual Mamba network with pseudo labeling aUGmentation (MUG) for emphasising the uniqueness of each segment and excluding the noise interference from the alternate modalities. Specifically, we annotate some of the pseudo-labels based on previous work. Using unimodal pseudo-labels, we perform cross-modal random combinations to generate new data, which can enhance the model's ability to parse various segment-level event combinations. For feature processing and interaction, we employ a audio-visual mamba network. The AV-Mamba enhances the ability to perceive different segments and excludes additional modal noise while sharing similar modal information. Our extensive experiments demonstrate that MUG improves state-of-the-art results on LLP dataset in all metrics (e.g,, gains of 2.1% and 1.2% in terms of visual Segment-level and audio Segment-level metrics). Our code is available at https://github.com/WangLY136/MUG.
comment: Accpted by ICCV 2025
♻ ☆ Achieving More with Less: Additive Prompt Tuning for Rehearsal-Free Class-Incremental Learning
Class-incremental learning (CIL) enables models to learn new classes progressively while preserving knowledge of previously learned ones. Recent advances in this field have shifted towards parameter-efficient fine-tuning techniques, with many approaches building upon the framework that maintains a pool of learnable prompts. Although effective, these methods introduce substantial computational overhead, primarily due to prompt pool querying and increased input sequence lengths from prompt concatenation. In this work, we present a novel prompt-based approach that addresses this limitation. Our method trains a single set of shared prompts across all tasks and, rather than concatenating prompts to the input, directly modifies the CLS token's attention computation by adding the prompts to it. This simple and lightweight design not only significantly reduces computational complexity-both in terms of inference costs and the number of trainable parameters-but also eliminates the need to optimize prompt lengths for different downstream tasks, offering a more efficient yet powerful solution for rehearsal-free class-incremental learning. Extensive experiments across a diverse range of CIL benchmarks demonstrate the effectiveness of our approach, highlighting its potential to establish a new prompt-based CIL paradigm. Furthermore, experiments on general recognition benchmarks beyond the CIL setting also show strong performance, positioning our method as a promising candidate for a general parameter-efficient fine-tuning approach.
♻ ☆ OE3DIS: Open-Ended 3D Point Cloud Instance Segmentation ICCV
Open-Vocab 3D Instance Segmentation methods (OV-3DIS) have recently demonstrated their ability to generalize to unseen objects. However, these methods still depend on predefined class names during testing, restricting the autonomy of agents. To mitigate this constraint, we propose a novel problem termed Open-Ended 3D Instance Segmentation (OE-3DIS), which eliminates the necessity for predefined class names during testing. Moreover, we contribute a comprehensive set of strong baselines, derived from OV-3DIS approaches and leveraging 2D Multimodal Large Language Models. To assess the performance of our OE-3DIS system, we introduce a novel Open-Ended score, evaluating both the semantic and geometric quality of predicted masks and their associated class names, alongside the standard AP score. Our approach demonstrates significant performance improvements over the baselines on the ScanNet200 and ScanNet++ datasets. Remarkably, our method surpasses the performance of Open3DIS, the current state-of-the-art method in OV-3DIS, even in the absence of ground-truth object class names.
comment: Accepted at ICCVW'25 - OpenSUN3D: 5th Workshop on Open-World 3D Scene Understanding with Foundation Models
♻ ☆ Un-EVIMO: Unsupervised Event-Based Independent Motion Segmentation
Event cameras are a novel type of biologically inspired vision sensor known for their high temporal resolution, high dynamic range, and low power consumption. Because of these properties, they are well-suited for processing fast motions that require rapid reactions. Although event cameras have recently shown competitive performance in unsupervised optical flow estimation, performance in detecting independently moving objects (IMOs) is lacking behind, although event-based methods would be suited for this task based on their low latency and HDR properties. Previous approaches to event-based IMO segmentation have been heavily dependent on labeled data. However, biological vision systems have developed the ability to avoid moving objects through daily tasks without being given explicit labels. In this work, we propose the first event framework that generates IMO pseudo-labels using geometric constraints. Due to its unsupervised nature, our method can handle an arbitrary number of not predetermined objects and is easily scalable to datasets where expensive IMO labels are not readily available. We evaluate our approach on the EVIMO dataset and show that it performs competitively with supervised methods, both quantitatively and qualitatively.
♻ ☆ 3D Human Mesh Estimation from Single View RGBD
Despite significant progress in 3D human mesh estimation from RGB images; RGBD cameras, offering additional depth data, remain underutilized. In this paper, we present a method for accurate 3D human mesh estimation from a single RGBD view, leveraging the affordability and widespread adoption of RGBD cameras for real-world applications. A fully supervised approach for this problem, requires a dataset with RGBD image and 3D mesh label pairs. However, collecting such a dataset is costly and challenging, hence, existing datasets are small, and limited in pose and shape diversity. To overcome this data scarcity, we leverage existing Motion Capture (MoCap) datasets. We first obtain complete 3D meshes from the body models found in MoCap datasets, and create partial, single-view versions of them by projection to a virtual camera. This simulates the depth data provided by an RGBD camera from a single viewpoint. Then, we train a masked autoencoder to complete the partial, single-view mesh. During inference, our method, which we name as M$^3$ for ``Masked Mesh Modeling'', matches the depth values coming from the sensor to vertices of a template human mesh, which creates a partial, single-view mesh. We effectively recover parts of the 3D human body mesh model that are not visible, resulting in a full body mesh. M$^3$ achieves 16.8 mm and 22.0 mm per-vertex-error (PVE) on the SURREAL and CAPE datasets, respectively; outperforming existing methods that use full-body point clouds as input. We obtain a competitive 70.9 PVE on the BEHAVE dataset, outperforming a recently published RGB based method by 18.4 mm, highlighting the usefulness of depth data. Code will be released.
♻ ☆ From Lab to Field: Real-World Evaluation of an AI-Driven Smart Video Solution to Enhance Community Safety
This article adopts and evaluates an AI-enabled Smart Video Solution (SVS) designed to enhance safety in the real world. The system integrates with existing infrastructure camera networks, leveraging recent advancements in AI for easy adoption. Prioritizing privacy and ethical standards, pose based data is used for downstream AI tasks such as anomaly detection. Cloud-based infrastructure and mobile app are deployed, enabling real-time alerts within communities. The SVS employs innovative data representation and visualization techniques, such as the Occupancy Indicator, Statistical Anomaly Detection, Bird's Eye View, and Heatmaps, to understand pedestrian behaviors and enhance public safety. Evaluation of the SVS demonstrates its capacity to convert complex computer vision outputs into actionable insights for stakeholders, community partners, law enforcement, urban planners, and social scientists. This article presents a comprehensive real-world deployment and evaluation of the SVS, implemented in a community college environment across 16 cameras. The system integrates AI-driven visual processing, supported by statistical analysis, database management, cloud communication, and user notifications. Additionally, the article evaluates the end-to-end latency from the moment an AI algorithm detects anomalous behavior in real-time at the camera level to the time stakeholders receive a notification. The results demonstrate the system's robustness, effectively managing 16 CCTV cameras with a consistent throughput of 16.5 frames per second (FPS) over a 21-hour period and an average end-to-end latency of 26.76 seconds between anomaly detection and alert issuance.
♻ ☆ TIDE : Temporal-Aware Sparse Autoencoders for Interpretable Diffusion Transformers in Image Generation
Diffusion Transformers (DiTs) are a powerful yet underexplored class of generative models compared to U-Net-based diffusion architectures. We propose TIDE-Temporal-aware sparse autoencoders for Interpretable Diffusion transformErs-a framework designed to extract sparse, interpretable activation features across timesteps in DiTs. TIDE effectively captures temporally-varying representations and reveals that DiTs naturally learn hierarchical semantics (e.g., 3D structure, object class, and fine-grained concepts) during large-scale pretraining. Experiments show that TIDE enhances interpretability and controllability while maintaining reasonable generation quality, enabling applications such as safe image editing and style transfer.
♻ ☆ SEAgent: Self-Evolving Computer Use Agent with Autonomous Learning from Experience
Repurposing large vision-language models (LVLMs) as computer use agents (CUAs) has led to substantial breakthroughs, primarily driven by human-labeled data. However, these models often struggle with novel and specialized software, particularly in scenarios lacking human annotations. To address this challenge, we propose SEAgent, an agentic self-evolving framework enabling CUAs to autonomously evolve through interactions with unfamiliar software. Specifically, SEAgent empowers computer-use agents to autonomously master novel software environments via experiential learning, where agents explore new software, learn through iterative trial-and-error, and progressively tackle auto-generated tasks organized from simple to complex. To achieve this goal, we design a World State Model for step-wise trajectory assessment, along with a Curriculum Generator that generates increasingly diverse and challenging tasks. The agent's policy is updated through experiential learning, comprised of adversarial imitation of failure actions and Group Relative Policy Optimization (GRPO) on successful ones. Furthermore, we introduce a specialist-to-generalist training strategy that integrates individual experiential insights from specialist agents, facilitating the development of a stronger generalist CUA capable of continuous autonomous evolution. This unified agent ultimately achieves performance surpassing ensembles of individual specialist agents on their specialized software. We validate the effectiveness of SEAgent across five novel software environments within OS-World. Our approach achieves a significant improvement of 23.2% in success rate, from 11.3% to 34.5%, over a competitive open-source CUA, i.e., UI-TARS.
comment: Code at https://github.com/SunzeY/SEAgent
♻ ☆ HiMat: DiT-based Ultra-High Resolution SVBRDF Generation
Creating highly detailed SVBRDFs is essential for 3D content creation. The rise of high-resolution text-to-image generative models, based on diffusion transformers (DiT), suggests an opportunity to finetune them for this task. However, retargeting the models to produce multiple aligned SVBRDF maps instead of just RGB images, while achieving high efficiency and ensuring consistency across different maps, remains a challenge. In this paper, we introduce HiMat: a memory- and computation-efficient diffusion-based framework capable of generating native 4K-resolution SVBRDFs. A key challenge we address is maintaining consistency across different maps in a lightweight manner, without relying on training new VAEs or significantly altering the DiT backbone (which would damage its prior capabilities). To tackle this, we introduce the CrossStitch module, a lightweight convolutional module that captures inter-map dependencies through localized operations. Its weights are initialized such that the DiT backbone operation is unchanged before finetuning starts. HiMat enables generation with strong structural coherence and high-frequency details. Results with a large set of text prompts demonstrate the effectiveness of our approach for 4K SVBRDF generation. Further experiments suggest generalization to tasks such as intrinsic decomposition.
♻ ☆ GMF-Drive: Gated Mamba Fusion with Spatial-Aware BEV Representation for End-to-End Autonomous Driving
Diffusion-based models are redefining the state-of-the-art in end-to-end autonomous driving, yet their performance is increasingly hampered by a reliance on transformer-based fusion. These architectures face fundamental limitations: quadratic computational complexity restricts the use of high-resolution features, and a lack of spatial priors prevents them from effectively modeling the inherent structure of Bird's Eye View (BEV) representations. This paper introduces GMF-Drive (Gated Mamba Fusion for Driving), an end-to-end framework that overcomes these challenges through two principled innovations. First, we supersede the information-limited histogram-based LiDAR representation with a geometrically-augmented pillar format encoding shape descriptors and statistical features, preserving critical 3D geometric details. Second, we propose a novel hierarchical gated mamba fusion (GM-Fusion) architecture that substitutes an expensive transformer with a highly efficient, spatially-aware state-space model (SSM). Our core BEV-SSM leverages directional sequencing and adaptive fusion mechanisms to capture long-range dependencies with linear complexity, while explicitly respecting the unique spatial properties of the driving scene. Extensive experiments on the challenging NAVSIM benchmark demonstrate that GMF-Drive achieves a new state-of-the-art performance, significantly outperforming DiffusionDrive. Comprehensive ablation studies validate the efficacy of each component, demonstrating that task-specific SSMs can surpass a general-purpose transformer in both performance and efficiency for autonomous driving.
comment: 7 pages, 4 figures
♻ ☆ Understanding Dynamic Scenes in Ego Centric 4D Point Clouds
Understanding dynamic 4D scenes from an egocentric perspective-modeling changes in 3D spatial structure over time-is crucial for human-machine interaction, autonomous navigation, and embodied intelligence. While existing egocentric datasets contain dynamic scenes, they lack unified 4D annotations and task-driven evaluation protocols for fine-grained spatio-temporal reasoning, especially on motion of objects and human, together with their interactions. To address this gap, we introduce EgoDynamic4D, a novel QA benchmark on highly dynamic scenes, comprising RGB-D video, camera poses, globally unique instance masks, and 4D bounding boxes. We construct 927K QA pairs accompanied by explicit Chain-of-Thought (CoT), enabling verifiable, step-by-step spatio-temporal reasoning. We design 12 dynamic QA tasks covering agent motion, human-object interaction, trajectory prediction, relation understanding, and temporal-causal reasoning, with fine-grained, multidimensional metrics. To tackle these tasks, we propose an end-to-end spatio-temporal reasoning framework that unifies dynamic and static scene information, using instance-aware feature encoding, time and camera encoding, and spatially adaptive down-sampling to compress large 4D scenes into token sequences manageable by LLMs. Experiments on EgoDynamic4D show that our method consistently outperforms baselines, validating the effectiveness of multimodal temporal modeling for egocentric dynamic scene understanding.
♻ ☆ Fancy123: One Image to High-Quality 3D Mesh Generation via Plug-and-Play Deformation CVPR2025
Generating 3D meshes from a single image is an important but ill-posed task. Existing methods mainly adopt 2D multiview diffusion models to generate intermediate multiview images, and use the Large Reconstruction Model (LRM) to create the final meshes. However, the multiview images exhibit local inconsistencies, and the meshes often lack fidelity to the input image or look blurry. We propose Fancy123, featuring two enhancement modules and an unprojection operation to address the above three issues, respectively. The appearance enhancement module deforms the 2D multiview images to realign misaligned pixels for better multiview consistency. The fidelity enhancement module deforms the 3D mesh to match the input image. The unprojection of the input image and deformed multiview images onto LRM's generated mesh ensures high clarity, discarding LRM's predicted blurry-looking mesh colors. Extensive qualitative and quantitative experiments verify Fancy123's SoTA performance with significant improvement. Also, the two enhancement modules are plug-and-play and work at inference time, allowing seamless integration into various existing single-image-to-3D methods. Code at: https://github.com/YuQiao0303/Fancy123
comment: CVPR2025
♻ ☆ OSMa-Bench: Evaluating Open Semantic Mapping Under Varying Lighting Conditions
Open Semantic Mapping (OSM) is a key technology in robotic perception, combining semantic segmentation and SLAM techniques. This paper introduces a dynamically configurable and highly automated LLM/LVLM-powered pipeline for evaluating OSM solutions called OSMa-Bench (Open Semantic Mapping Benchmark). The study focuses on evaluating state-of-the-art semantic mapping algorithms under varying indoor lighting conditions, a critical challenge in indoor environments. We introduce a novel dataset with simulated RGB-D sequences and ground truth 3D reconstructions, facilitating the rigorous analysis of mapping performance across different lighting conditions. Through experiments on leading models such as ConceptGraphs, BBQ and OpenScene, we evaluate the semantic fidelity of object recognition and segmentation. Additionally, we introduce a Scene Graph evaluation method to analyze the ability of models to interpret semantic structure. The results provide insights into the robustness of these models, forming future research directions for developing resilient and adaptable robotic systems. Project page is available at https://be2rlab.github.io/OSMa-Bench/.
comment: Project page: https://be2rlab.github.io/OSMa-Bench/
♻ ☆ LayLens: Improving Deepfake Understanding through Simplified Explanations
This demonstration paper presents $\mathbf{LayLens}$, a tool aimed to make deepfake understanding easier for users of all educational backgrounds. While prior works often rely on outputs containing technical jargon, LayLens bridges the gap between model reasoning and human understanding through a three-stage pipeline: (1) explainable deepfake detection using a state-of-the-art forgery localization model, (2) natural language simplification of technical explanations using a vision-language model, and (3) visual reconstruction of a plausible original image via guided image editing. The interface presents both technical and layperson-friendly explanations in addition to a side-by-side comparison of the uploaded and reconstructed images. A user study with 15 participants shows that simplified explanations significantly improve clarity and reduce cognitive load, with most users expressing increased confidence in identifying deepfakes. LayLens offers a step toward transparent, trustworthy, and user-centric deepfake forensics.
comment: Accepted to ACM ICMI 2025 Demos
♻ ☆ SCB-Dataset: A Dataset for Detecting Student and Teacher Classroom Behavior
Using deep learning methods to detect the classroom behaviors of both students and teachers is an effective way to automatically analyze classroom performance and enhance teaching effectiveness. Then, there is still a scarcity of publicly available high-quality datasets on student-teacher behaviors. We constructed SCB-Dataset a comprehensive dataset of student and teacher classroom behaviors covering 19 classes. SCB-Dataset is divided into two types: Object Detection and Image Classification. The Object Detection part includes 13,330 images and 122,977 labels, and the Image Classification part includes 21,019 images. We conducted benchmark tests on SCB-Dataset using YOLO series algorithms and Large vision-language model. We believe that SCB-Dataset can provide a solid foundation for future applications of artificial intelligence in education. Code:https://github.com/Whiffe/SCB-dataset
♻ ☆ 3DFacePolicy: Audio-Driven 3D Facial Animation Based on Action Control
Audio-driven 3D facial animation has achieved significant progress in both research and applications. While recent baselines struggle to generate natural and continuous facial movements due to their frame-by-frame vertex generation approach, we propose 3DFacePolicy, a pioneer work that introduces a novel definition of vertex trajectory changes across consecutive frames through the concept of "action". By predicting action sequences for each vertex that encode frame-to-frame movements, we reformulate vertex generation approach into an action-based control paradigm. Specifically, we leverage a robotic control mechanism, diffusion policy, to predict action sequences conditioned on both audio and vertex states. Extensive experiments on VOCASET and BIWI datasets demonstrate that our approach significantly outperforms state-of-the-art methods and is particularly expert in dynamic, expressive and naturally smooth facial animations.
♻ ☆ Learning to Harmonize Cross-vendor X-ray Images by Non-linear Image Dynamics Correction
In this paper, we explore how conventional image enhancement can improve model robustness in medical image analysis. By applying commonly used normalization methods to images from various vendors and studying their influence on model generalization in transfer learning, we show that the nonlinear characteristics of domain-specific image dynamics cannot be addressed by simple linear transforms. To tackle this issue, we reformulate the image harmonization task as an exposure correction problem and propose a method termed Global Deep Curve Estimation (GDCE) to reduce domain-specific exposure mismatch. GDCE performs enhancement via a pre-defined polynomial function and is trained with a "domain discriminator", aiming to improve model transparency in downstream tasks compared to existing black-box methods.
♻ ☆ How Does Bilateral Ear Symmetry Affect Deep Ear Features?
Ear recognition has gained attention as a reliable biometric technique due to the distinctive characteristics of human ears. With the increasing availability of large-scale datasets, convolutional neural networks (CNNs) have been widely adopted to learn features directly from raw ear images, outperforming traditional hand-crafted methods. However, the effect of bilateral ear symmetry on the features learned by CNNs has received little attention in recent studies. In this paper, we investigate how bilateral ear symmetry influences the effectiveness of CNN-based ear recognition. To this end, we first develop an ear side classifier to automatically categorize ear images as either left or right. We then explore the impact of incorporating this side information during both training and test. Cross-dataset evaluations are conducted on five datasets. Our results suggest that treating left and right ears separately during training and testing can lead to notable performance improvements. Furthermore, our ablation studies on alignment strategies, input sizes, and various hyperparameter settings provide practical insights into training CNN-based ear recognition systems on large-scale datasets to achieve higher verification rates.
♻ ☆ Multiple Stochastic Prompt Tuning for Few-shot Adaptation under Extreme Domain Shift
Foundation Vision-Language Models (VLMs) like CLIP exhibit strong generalization capabilities due to large-scale pretraining on diverse image-text pairs. However, their performance often degrades when applied to target datasets with significant distribution shifts in both visual appearance and class semantics. Recent few-shot learning approaches adapt CLIP to downstream tasks using limited labeled data via adapter or prompt tuning, but are not specifically designed to handle such extreme domain shifts. Conversely, some works addressing cross-domain few-shot learning consider such domain-shifted scenarios but operate in an episodic setting with only a few classes per episode, limiting their applicability to real-world deployment, where all classes must be handled simultaneously. To address this gap, we propose a novel framework, MIST (Multiple Stochastic Prompt Tuning), for efficiently adapting CLIP to datasets with extreme distribution shifts using only a few labeled examples, in scenarios involving all classes at once. Specifically, we introduce multiple learnable prompts per class to effectively capture diverse modes in visual representations arising from distribution shifts. To further enhance generalization, these prompts are modeled as learnable Gaussian distributions, enabling efficient exploration of the prompt parameter space and reducing overfitting caused by limited supervision. Extensive experiments and comparisons with state-of-the-art methods demonstrate the effectiveness of the proposed framework.
♻ ☆ PointDreamer: Zero-shot 3D Textured Mesh Reconstruction from Colored Point Cloud
Faithfully reconstructing textured meshes is crucial for many applications. Compared to text or image modalities, leveraging 3D colored point clouds as input (colored-PC-to-mesh) offers inherent advantages in comprehensively and precisely replicating the target object's 360{\deg} characteristics. While most existing colored-PC-to-mesh methods suffer from blurry textures or require hard-to-acquire 3D training data, we propose PointDreamer, a novel framework that harnesses 2D diffusion prior for superior texture quality. Crucially, unlike prior 2D-diffusion-for-3D works driven by text or image inputs, PointDreamer successfully adapts 2D diffusion models to 3D point cloud data by a novel project-inpaint-unproject pipeline. Specifically, it first projects the point cloud into sparse 2D images and then performs diffusion-based inpainting. After that, diverging from most existing 3D reconstruction or generation approaches that predict texture in 3D/UV space thus often yielding blurry texture, PointDreamer achieves high-quality texture by directly unprojecting the inpainted 2D images to the 3D mesh. Furthermore, we identify for the first time a typical kind of unprojection artifact appearing in occlusion borders, which is common in other multiview-image-to-3D pipelines but less-explored. To address this, we propose a novel solution named the Non-Border-First (NBF) unprojection strategy. Extensive qualitative and quantitative experiments on various synthetic and real-scanned datasets demonstrate that PointDreamer, though zero-shot, exhibits SoTA performance (30% improvement on LPIPS score from 0.118 to 0.068), and is robust to noisy, sparse, or even incomplete input data. Code at: https://github.com/YuQiao0303/PointDreamer.
♻ ☆ UnrealZoo: Enriching Photo-realistic Virtual Worlds for Embodied AI ICCV 2025
We introduce UnrealZoo, a collection of over 100 photo-realistic 3D virtual worlds built on Unreal Engine, designed to reflect the complexity and variability of open-world environments. We also provide a rich variety of playable entities, including humans, animals, robots, and vehicles for embodied AI research. We extend UnrealCV with optimized APIs and tools for data collection, environment augmentation, distributed training, and benchmarking. These improvements achieve significant improvements in the efficiency of rendering and communication, enabling advanced applications such as multi-agent interactions. Our experimental evaluation across visual navigation and tracking tasks reveals two key insights: 1) environmental diversity provides substantial benefits for developing generalizable reinforcement learning (RL) agents, and 2) current embodied agents face persistent challenges in open-world scenarios, including navigation in unstructured terrain, adaptation to unseen morphologies, and managing latency in the close-loop control systems for interacting in highly dynamic objects. UnrealZoo thus serves as both a comprehensive testing ground and a pathway toward developing more capable embodied AI systems for real-world deployment.
comment: ICCV 2025 (Highlight), Project page: http://unrealzoo.site/
♻ ☆ Mem4D: Decoupling Static and Dynamic Memory for Dynamic Scene Reconstruction
Reconstructing dense geometry for dynamic scenes from a monocular video is a critical yet challenging task. Recent memory-based methods enable efficient online reconstruction, but they fundamentally suffer from a Memory Demand Dilemma: The memory representation faces an inherent conflict between the long-term stability required for static structures and the rapid, high-fidelity detail retention needed for dynamic motion. This conflict forces existing methods into a compromise, leading to either geometric drift in static structures or blurred, inaccurate reconstructions of dynamic objects. To address this dilemma, we propose Mem4D, a novel framework that decouples the modeling of static geometry and dynamic motion. Guided by this insight, we design a dual-memory architecture: 1) The Transient Dynamics Memory (TDM) focuses on capturing high-frequency motion details from recent frames, enabling accurate and fine-grained modeling of dynamic content; 2) The Persistent Structure Memory (PSM) compresses and preserves long-term spatial information, ensuring global consistency and drift-free reconstruction for static elements. By alternating queries to these specialized memories, Mem4D simultaneously maintains static geometry with global consistency and reconstructs dynamic elements with high fidelity. Experiments on challenging benchmarks demonstrate that our method achieves state-of-the-art or competitive performance while maintaining high efficiency. Codes will be publicly available.
♻ ☆ Efficient Annotation of Medieval Charters
Diplomatics, the analysis of medieval charters, is a major field of research in which paleography is applied. Annotating data, if performed by laymen, needs validation and correction by experts. In this paper, we propose an effective and efficient annotation approach for charter segmentation, essentially reducing it to object detection. This approach allows for a much more efficient use of the paleographer's time and produces results that can compete and even outperform pixel-level segmentation in some use cases. Further experiments shed light on how to design a class ontology in order to make the best use of annotators' time and effort. Exploiting the presence of calibration cards in the image, we further annotate the data with the physical length in pixels and train regression neural networks to predict it from image patches.
♻ ☆ Masked Autoencoder Self Pre-Training for Defect Detection in Microelectronics
While transformers have surpassed convolutional neural networks (CNNs) in various computer vision tasks, microelectronics defect detection still largely relies on CNNs. We hypothesize that this gap is due to the fact that a) transformers have an increased need for data and b) (labelled) image generation procedures for microelectronics are costly, and data is therefore sparse. Whereas in other domains, pre-training on large natural image datasets can mitigate this problem, in microelectronics transfer learning is hindered due to the dissimilarity of domain data and natural images. We address this challenge through self pre-training, where models are pre-trained directly on the target dataset, rather than another dataset. We propose a resource-efficient vision transformer (ViT) pre-training framework for defect detection in microelectronics based on masked autoencoders (MAE). We perform pre-training and defect detection using a dataset of less than 10,000 scanning acoustic microscopy (SAM) images. Our experimental results show that our approach leads to substantial performance gains compared to a) supervised ViT, b) ViT pre-trained on natural image datasets, and c) state-of-the-art CNN-based defect detection models used in microelectronics. Additionally, interpretability analysis reveals that our self pre-trained models attend to defect-relevant features such as cracks in the solder material, while baseline models often attend to spurious patterns. This shows that our approach yields defect-specific feature representations, resulting in more interpretable and generalizable transformer models for this data-sparse domain.
comment: 16 pages, 5 figures
♻ ☆ HypeVPR: Exploring Hyperbolic Space for Perspective to Equirectangular Visual Place Recognition
When applying Visual Place Recognition (VPR) to real-world mobile robots and similar applications, perspective-to-equirectangular (P2E) formulation naturally emerges as a suitable approach to accommodate diverse query images captured from various viewpoints. In this paper, we introduce HypeVPR, a novel hierarchical embedding framework in hyperbolic space, designed to address the unique challenges of P2E VPR. The key idea behind HypeVPR is that visual environments captured by panoramic views exhibit inherent hierarchical structures. To leverage this property, we employ hyperbolic space to represent hierarchical feature relationships and preserve distance properties within the feature space. To achieve this, we propose a hierarchical feature aggregation mechanism that organizes local-to-global feature representations within hyperbolic space. Additionally, HypeVPR adopts an efficient coarse-to-fine search strategy to enable flexible control over accuracy-efficiency trade-offs and ensure robust matching even between descriptors from different image types. This approach allows HypeVPR to outperform existing methods while significantly accelerating retrieval and reducing database storage requirements. The code and models will be released at https://github.com/suhan-woo/HypeVPR.git.
♻ ☆ Context-based Motion Retrieval using Open Vocabulary Methods for Autonomous Driving
Autonomous driving systems must operate reliably in safety-critical scenarios, particularly those involving unusual or complex behavior by Vulnerable Road Users (VRUs). Identifying these edge cases in driving datasets is essential for robust evaluation and generalization, but retrieving such rare human behavior scenarios within the long tail of large-scale datasets is challenging. To support targeted evaluation of autonomous driving systems in diverse, human-centered scenarios, we propose a novel context-aware motion retrieval framework. Our method combines Skinned Multi-Person Linear (SMPL)-based motion sequences and corresponding video frames before encoding them into a shared multimodal embedding space aligned with natural language. Our approach enables the scalable retrieval of human behavior and their context through text queries. This work also introduces our dataset WayMoCo, an extension of the Waymo Open Dataset. It contains automatically labeled motion and scene context descriptions derived from generated pseudo-ground-truth SMPL sequences and corresponding image data. Our approach outperforms state-of-the-art models by up to 27.5% accuracy in motion-context retrieval, when evaluated on the WayMoCo dataset.
comment: Project page: https://iv.ee.hm.edu/contextmotionclip/; This work has been submitted to the IEEE for possible publication
♻ ☆ Style transfer between Microscopy and Magnetic Resonance Imaging via Generative Adversarial Network in small sample size settings ICIP
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising because it can allow histopathological analysis in the absence of an underlying invasive biopsy procedure. Here, we tested a method for generating microscopic histological images from MRI scans of the human corpus callosum using conditional generative adversarial network (cGAN) architecture. To our knowledge, this is the first multimodal translation of the brain MRI to histological volumetric representation of the same sample. The technique was assessed by training paired image translation models taking sets of images from MRI scans and microscopy. The use of cGAN for this purpose is challenging because microscopy images are large in size and typically have low sample availability. The current work demonstrates that the framework reliably synthesizes histology images from MRI scans of corpus callosum, emphasizing the network's ability to train on high resolution histologies paired with relatively lower-resolution MRI scans. With the ultimate goal of avoiding biopsies, the proposed tool can be used for educational purposes.
comment: 2023 IEEE International Conference on Image Processing (ICIP)
♻ ☆ When Imitation Learning Outperforms Reinforcement Learning in Surgical Action Planning MICCAI2025
Surgical action planning requires predicting future instrument-verb-target triplets for real-time assistance. While teleoperated robotic surgery provides natural expert demonstrations for imitation learning (IL), reinforcement learning (RL) could potentially discover superior strategies through exploration. We present the first comprehensive comparison of IL versus RL for surgical action planning on CholecT50. Our Dual-task Autoregressive Imitation Learning (DARIL) baseline achieves 34.6% action triplet recognition mAP and 33.6% next frame prediction mAP with smooth planning degradation to 29.2% at 10-second horizons. We evaluated three RL variants: world model-based RL, direct video RL, and inverse RL enhancement. Surprisingly, all RL approaches underperformed DARIL i.e. world model RL dropped to 3.1% mAP at 10s while direct video RL achieved only 15.9%. Our analysis reveals that distribution matching on expert-annotated test sets systematically favors IL over potentially valid RL policies that differ from training demonstrations. This challenges assumptions about RL superiority in sequential decision making and provides crucial insights for surgical AI development.
comment: Paper accepted at the MICCAI2025 workshop proceedings on COLlaborative Intelligence and Autonomy in Image-guided Surgery (COLAS)
♻ ☆ Multi-Keypoint Affordance Representation for Functional Dexterous Grasping
Functional dexterous grasping requires precise hand-object interaction, going beyond simple gripping. Existing affordance-based methods primarily predict coarse interaction regions and cannot directly constrain the grasping posture, leading to a disconnection between visual perception and manipulation. To address this issue, we propose a multi-keypoint affordance representation for functional dexterous grasping, which directly encodes task-driven grasp configurations by localizing functional contact points. Our method introduces Contact-guided Multi-Keypoint Affordance (CMKA), leveraging human grasping experience images for weak supervision combined with Large Vision Models for fine affordance feature extraction, achieving generalization while avoiding manual keypoint annotations. Additionally, we present a Keypoint-based Grasp matrix Transformation (KGT) method, ensuring spatial consistency between hand keypoints and object contact points, thus providing a direct link between visual perception and dexterous grasping actions. Experiments on public real-world FAH datasets, IsaacGym simulation, and challenging robotic tasks demonstrate that our method significantly improves affordance localization accuracy, grasp consistency, and generalization to unseen tools and tasks, bridging the gap between visual affordance learning and dexterous robotic manipulation. The source code and demo videos are publicly available at https://github.com/PopeyePxx/MKA.
comment: Accepted to IEEE Robotics and Automation Letters (RA-L). The source code and demo videos are publicly available at https://github.com/PopeyePxx/MKA
♻ ☆ SSPFusion: A Semantic Structure-Preserving Approach for Infrared and Visible Image Fusion
Most existing learning-based multi-modality image fusion (MMIF) methods suffer from significant structure inconsistency due to their inappropriate usage of structural features at the semantic level. To alleviate these issues, we propose a semantic structure-preserving fusion approach for MMIF, namely SSPFusion. At first, we design a structural feature extractor (SFE) to extract the prominent structural features from multiple input images. Concurrently, we introduce a transformation function with Sobel operator to generate self-supervised structural signals in these extracted features. Subsequently, we design a multi-scale structure-preserving fusion (SPF) module, guided by the generated structural signals, to merge the structural features of input images. This process ensures the preservation of semantic structure consistency between the resultant fusion image and the input images. Through the synergy of these two robust modules of SFE and SPF, our method can generate high-quality fusion images and demonstrate good generalization ability. Experimental results, on both infrared-visible image fusion and medical image fusion tasks, demonstrate that our method outperforms nine state-of-the-art methods in terms of both qualitative and quantitative evaluations. The code is publicly available at https://github.com/QiaoYang-CV/SSPFUSION.
comment: Accepted by Expert Systems with Applications (ESWA)
♻ ☆ Adversarial Video Promotion Against Text-to-Video Retrieval
Thanks to the development of cross-modal models, text-to-video retrieval (T2VR) is advancing rapidly, but its robustness remains largely unexamined. Existing attacks against T2VR are designed to push videos away from queries, i.e., suppressing the ranks of videos, while the attacks that pull videos towards selected queries, i.e., promoting the ranks of videos, remain largely unexplored. These attacks can be more impactful as attackers may gain more views/clicks for financial benefits and widespread (mis)information. To this end, we pioneer the first attack against T2VR to promote videos adversarially, dubbed the Video Promotion attack (ViPro). We further propose Modal Refinement (MoRe) to capture the finer-grained, intricate interaction between visual and textual modalities to enhance black-box transferability. Comprehensive experiments cover 2 existing baselines, 3 leading T2VR models, 3 prevailing datasets with over 10k videos, evaluated under 3 scenarios. All experiments are conducted in a multi-target setting to reflect realistic scenarios where attackers seek to promote the video regarding multiple queries simultaneously. We also evaluated our attacks for defences and imperceptibility. Overall, ViPro surpasses other baselines by over $30/10/4\%$ for white/grey/black-box settings on average. Our work highlights an overlooked vulnerability, provides a qualitative analysis on the upper/lower bound of our attacks, and offers insights into potential counterplays. Code will be publicly available at https://github.com/michaeltian108/ViPro.
♻ ☆ Unsupervised Document and Template Clustering using Multimodal Embeddings
This paper investigates a novel approach to unsupervised document clustering by leveraging multimodal embeddings as input to clustering algorithms such as $k$-Means, DBSCAN, a combination of HDBSCAN and $k$-NN, and BIRCH. Our method aims to achieve a finer-grained document understanding by not only grouping documents at the type level (e.g., invoices, purchase orders), but also distinguishing between different templates within the same document category. This is achieved by using embeddings that capture textual content, layout information, and visual features of documents. We evaluated the effectiveness of this approach using embeddings generated by several state-of-the-art pre-trained multimodal models, including SBERT, LayoutLMv1, LayoutLMv3, DiT, Donut, ColPali, Gemma3, and InternVL3. Our findings demonstrate the potential of multimodal embeddings to significantly enhance document clustering, offering benefits for various applications in intelligent document processing, document layout analysis, and unsupervised document classification. This work provides valuable insight into the advantages and limitations of different multimodal models for this task and opens new avenues for future research to understand and organize document collections.
comment: 22 pages, 12 figures
♻ ☆ From Pixels to Tokens: Revisiting Object Hallucinations in Large Vision-Language Models
Hallucinations in large vision-language models (LVLMs) are a significant challenge, i.e., generating objects that are not presented in the visual input, which impairs their reliability. Recent studies often attribute hallucinations to a lack of understanding of visual input, yet ignore a more fundamental issue: the model's inability to effectively extract or decouple visual features. In this paper, we revisit the hallucinations in LVLMs from an architectural perspective, investigating whether the primary cause lies in the visual encoder (feature extraction) or the modal alignment module (feature decoupling). Motivated by our findings on the preliminary investigation, we propose a novel tuning strategy, PATCH, to mitigate hallucinations in LVLMs. This plug-and-play method can be integrated into various LVLMs, utilizing adaptive virtual tokens to extract object features from bounding boxes, thereby addressing hallucinations caused by insufficient decoupling of visual features. PATCH achieves state-of-the-art performance on multiple multi-modal hallucination datasets. We hope this approach provides researchers with deeper insights into the underlying causes of hallucinations in LVLMs, fostering further advancements and innovation in this field.
♻ ☆ PC-SRGAN: Physically Consistent Super-Resolution Generative Adversarial Network for General Transient Simulations
Machine Learning, particularly Generative Adversarial Networks (GANs), has revolutionised Super-Resolution (SR). However, generated images often lack physical meaningfulness, which is essential for scientific applications. Our approach, PC-SRGAN, enhances image resolution while ensuring physical consistency for interpretable simulations. PC-SRGAN significantly improves both the Peak Signal-to-Noise Ratio and the Structural Similarity Index Measure compared to conventional SR methods, even with limited training data (e.g., only 13% of training data is required to achieve performance similar to SRGAN). Beyond SR, PC-SRGAN augments physically meaningful machine learning, incorporating numerically justified time integrators and advanced quality metrics. These advancements promise reliable and causal machine-learning models in scientific domains. A significant advantage of PC-SRGAN over conventional SR techniques is its physical consistency, which makes it a viable surrogate model for time-dependent problems. PC-SRGAN advances scientific machine learning by improving accuracy and efficiency, enhancing process understanding, and broadening applications to scientific research. We publicly release the complete source code of PC-SRGAN and all experiments at https://github.com/hasan-rakibul/PC-SRGAN.
comment: 11 pages, combining the main content and the appendices, unlike having them separated in the published version at IEEE Xplore (https://doi.org/10.1109/TPAMI.2025.3596647)
♻ ☆ Zero-shot Emotion Annotation in Facial Images Using Large Multimodal Models: Benchmarking and Prospects for Multi-Class, Multi-Frame Approaches
This study investigates the feasibility and performance of using large multimodal models (LMMs) to automatically annotate human emotions in everyday scenarios. We conducted experiments on the DailyLife subset of the publicly available FERV39k dataset, employing the GPT-4o-mini model for rapid, zero-shot labeling of key frames extracted from video segments. Under a seven-class emotion taxonomy ("Angry," "Disgust," "Fear," "Happy," "Neutral," "Sad," "Surprise"), the LMM achieved an average precision of approximately 50%. In contrast, when limited to ternary emotion classification (negative/neutral/positive), the average precision increased to approximately 64%. Additionally, we explored a strategy that integrates multiple frames within 1-2 second video clips to enhance labeling performance and reduce costs. The results indicate that this approach can slightly improve annotation accuracy. Overall, our preliminary findings highlight the potential application of zero-shot LMMs in human facial emotion annotation tasks, offering new avenues for reducing labeling costs and broadening the applicability of LMMs in complex multimodal environments.
comment: 10 pages, accepted to MRAC'25: 3rd International Workshop on Multimodal and Responsible Affective Computing (ACM-MM 2025)
♻ ☆ Mjölnir: A Deep Learning Parametrization Framework for Global Lightning Flash Density
Recent advances in AI-based weather forecasting models, such as FourCastNet, Pangu-Weather, and GraphCast, have demonstrated the remarkable ability of deep learning to emulate complex atmospheric dynamics. Building on this momentum, we propose Mj\"olnir, a novel deep learning-based framework for global lightning flash density parameterization. Trained on ERA5 atmospheric predictors and World Wide Lightning Location Network (WWLLN) observations at a daily temporal resolution and 1 degree spatial resolution, Mj\"olnir captures the nonlinear mapping between large-scale environmental conditions and lightning activity. The model architecture is based on the InceptionNeXt backbone with SENet, and a multi-task learning strategy to simultaneously predict lightning occurrence and magnitude. Extensive evaluations yield that Mollnir accurately reproduces the global distribution, seasonal variability, and regional characteristics of lightning activity, achieving a global Pearson correlation coefficient of 0.96 for annual mean fields. These results suggest that Mj\"olnir serves not only as an effective data-driven global lightning parameterization but also as a promising AI-based scheme for next-generation Earth system models (AI-ESMs).
comment: After an internal review, we found that the current version does not meet our intended academic standards due to incomplete descriptions and insufficient detail in key sections. No revised manuscript can be prepared in the near future. To ensure academic quality, we withdraw this version and plan to resubmit when the work is substantially improved
♻ ☆ Deblur4DGS: 4D Gaussian Splatting from Blurry Monocular Video
Recent 4D reconstruction methods have yielded impressive results but rely on sharp videos as supervision. However, motion blur often occurs in videos due to camera shake and object movement, while existing methods render blurry results when using such videos for reconstructing 4D models. Although a few approaches attempted to address the problem, they struggled to produce high-quality results, due to the inaccuracy in estimating continuous dynamic representations within the exposure time. Encouraged by recent works in 3D motion trajectory modeling using 3D Gaussian Splatting (3DGS), we take 3DGS as the scene representation manner, and propose Deblur4DGS to reconstruct a high-quality 4D model from blurry monocular video. Specifically, we transform continuous dynamic representations estimation within an exposure time into the exposure time estimation. Moreover, we introduce the exposure regularization term, multi-frame, and multi-resolution consistency regularization term to avoid trivial solutions. Furthermore, to better represent objects with large motion, we suggest blur-aware variable canonical Gaussians. Beyond novel-view synthesis, Deblur4DGS can be applied to improve blurry video from multiple perspectives, including deblurring, frame interpolation, and video stabilization. Extensive experiments in both synthetic and real-world data on the above four tasks show that Deblur4DGS outperforms state-of-the-art 4D reconstruction methods. The codes are available at https://github.com/ZcsrenlongZ/Deblur4DGS.
comment: 16 pages
♻ ☆ RemoteReasoner: Towards Unifying Geospatial Reasoning Workflow
Remote sensing imagery presents vast, inherently unstructured spatial data, necessitating sophisticated reasoning to interpret complex user intents and contextual relationships beyond simple recognition tasks. In this paper, we aim to construct an Earth observation workflow to handle complex queries by reasoning about spatial context and user intent. As a reasoning workflow, it should autonomously explore and construct its own inference paths, rather than being confined to predefined ground-truth sequences. Ideally, its architecture ought to be unified yet generalized, possessing capabilities to perform diverse reasoning tasks through one model without requiring additional fine-tuning. Existing remote sensing approaches rely on supervised fine-tuning paradigms and task-specific heads, limiting both autonomous reasoning and unified generalization. To this end, we propose RemoteReasoner, a unified workflow for geospatial reasoning. The design of RemoteReasoner integrates a multi-modal large language model (MLLM) for interpreting user instructions and localizing targets, together with task transformation strategies that enable multi-granularity tasks, including object-, region-, and pixel-level. In contrast to existing methods, our framework is trained with reinforcement learning (RL) to endow the MLLM sufficient reasoning autonomy. At the inference stage, our transformation strategies enable diverse task output formats without requiring task-specific decoders or further fine-tuning. Experiments demonstrated that RemoteReasoner achieves state-of-the-art (SOTA) performance across multi-granularity reasoning tasks. Furthermore, it retains the MLLM's inherent generalization capability, demonstrating robust performance on unseen tasks and out-of-distribution categories.
Triad: Empowering LMM-based Anomaly Detection with Vision Expert-guided Visual Tokenizer and Manufacturing Process
Although recent methods have tried to introduce large multimodal models (LMMs) into industrial anomaly detection (IAD), their generalization in the IAD field is far inferior to that for general purposes. We summarize the main reasons for this gap into two aspects. On one hand, general-purpose LMMs lack cognition of defects in the visual modality, thereby failing to sufficiently focus on defect areas. Therefore, we propose to modify the AnyRes structure of the LLaVA model, providing the potential anomalous areas identified by existing IAD models to the LMMs. On the other hand, existing methods mainly focus on identifying defects by learning defect patterns or comparing with normal samples, yet they fall short of understanding the causes of these defects. Considering that the generation of defects is closely related to the manufacturing process, we propose a manufacturing-driven IAD paradigm. An instruction-tuning dataset for IAD (InstructIAD) and a data organization approach for Chain-of-Thought with manufacturing (CoT-M) are designed to leverage the manufacturing process for IAD. Based on the above two modifications, we present Triad, a novel LMM-based method incorporating an expert-guided region-of-interest tokenizer and manufacturing process for industrial anomaly detection. Extensive experiments show that our Triad not only demonstrates competitive performance against current LMMs but also achieves further improved accuracy when equipped with manufacturing processes. Source code, training data, and pre-trained models will be publicly available at https://github.com/tzjtatata/Triad.
♻ ☆ Box2Poly: Memory-Efficient Polygon Prediction of Arbitrarily Shaped and Rotated Text AAAI2024
Recently, Transformer-based text detection techniques have sought to predict polygons by encoding the coordinates of individual boundary vertices using distinct query features. However, this approach incurs a significant memory overhead and struggles to effectively capture the intricate relationships between vertices belonging to the same instance. Consequently, irregular text layouts often lead to the prediction of outlined vertices, diminishing the quality of results. To address these challenges, we present an innovative approach rooted in Sparse R-CNN: a cascade decoding pipeline for polygon prediction. Our method ensures precision by iteratively refining polygon predictions, considering both the scale and location of preceding results. Leveraging this stabilized regression pipeline, even employing just a single feature vector to guide polygon instance regression yields promising detection results. Simultaneously, the leverage of instance-level feature proposal substantially enhances memory efficiency (>50% less vs. the state-of-the-art method DPText-DETR) and reduces inference speed (>40% less vs. DPText-DETR) with minor performance drop on benchmarks.
comment: Accepted to AAAI2024
♻ ☆ DriveIndia: An Object Detection Dataset for Diverse Indian Traffic Scenes SC 2025
We introduce DriveIndia, a large-scale object detection dataset purpose-built to capture the complexity and unpredictability of Indian traffic environments. The dataset contains 66,986 high-resolution images annotated in YOLO format across 24 traffic-relevant object categories, encompassing diverse conditions such as varied weather (fog, rain), illumination changes, heterogeneous road infrastructure, and dense, mixed traffic patterns and collected over 120+ hours and covering 3,400+ kilometers across urban, rural, and highway routes. DriveIndia offers a comprehensive benchmark for real-world autonomous driving challenges. We provide baseline results using state-of-the-art YOLO family models, with the top-performing variant achieving a mAP50 of 78.7%. Designed to support research in robust, generalizable object detection under uncertain road conditions, DriveIndia will be publicly available via the TiHAN-IIT Hyderabad dataset repository https://tihan.iith.ac.in/TiAND.html (Terrestrial Datasets -> Camera Dataset).
comment: Accepted at ITSC 2025 Conference
♻ ☆ Investigating the Relationship between the Weighted Figure of Merit and Rosin's Measure
Many studies have been conducted to solve the problem of approximating a digital boundary by piece straight-line segments for the further processing required in computer vision applications. The authors of these studies compared their schemes to determine the best one. The initial measure used to assess the goodness of fit of a polygonal approximation was the figure of merit. Later,it was noted that this measure was not an appropriate metric for a valid reason which is why Rosin-through mathematical analysis-introduced a measure called merit. However,this measure involves an optimal scheme of polygonal approximation,so it is time-consuming to compute it to assess the goodness of fit of an approximation. This led many researchers to use a weighted figure of merit as a substitute for Rosin's measure to compare sub optimal schemes. An attempt is made in this communication to investigate whether the two measures-weighted figure of merit and Rosin's measure-are related so that one can be used instead of the other, and toward this end, theoretical analysis, experimental investigation and statistical analysis are carried out. The mathematical formulas for the weighted figure of merit and Rosin's measure are analyzed, and through proof of theorems,it is found that the two measures are theoretically independent of each other. The graphical analysis of experiments carried out using a public dataset supports the results of the theoretical analysis. The statistical analysis via Pearson's correlation coefficient and non-linear correlation measure also revealed that the two measures are uncorrelated. This analysis leads one to conclude that if a suboptimal scheme is found to be better (worse) than some other suboptimal scheme,as indicated by Rosin's measure,then the same conclusion cannot be drawn using a weighted figure of merit,so one cannot use a weighted figure of merit instead of Rosin's measure.
♻ ☆ From Slow Bidirectional to Fast Autoregressive Video Diffusion Models
Current video diffusion models achieve impressive generation quality but struggle in interactive applications due to bidirectional attention dependencies. The generation of a single frame requires the model to process the entire sequence, including the future. We address this limitation by adapting a pretrained bidirectional diffusion transformer to an autoregressive transformer that generates frames on-the-fly. To further reduce latency, we extend distribution matching distillation (DMD) to videos, distilling 50-step diffusion model into a 4-step generator. To enable stable and high-quality distillation, we introduce a student initialization scheme based on teacher's ODE trajectories, as well as an asymmetric distillation strategy that supervises a causal student model with a bidirectional teacher. This approach effectively mitigates error accumulation in autoregressive generation, allowing long-duration video synthesis despite training on short clips. Our model achieves a total score of 84.27 on the VBench-Long benchmark, surpassing all previous video generation models. It enables fast streaming generation of high-quality videos at 9.4 FPS on a single GPU thanks to KV caching. Our approach also enables streaming video-to-video translation, image-to-video, and dynamic prompting in a zero-shot manner.
comment: Project Page: https://causvid.github.io/
♻ ☆ SynFER: Towards Boosting Facial Expression Recognition with Synthetic Data ICCV 2025
Facial expression datasets remain limited in scale due to the subjectivity of annotations and the labor-intensive nature of data collection. This limitation poses a significant challenge for developing modern deep learning-based facial expression analysis models, particularly foundation models, that rely on large-scale data for optimal performance. To tackle the overarching and complex challenge, instead of introducing a new large-scale dataset, we introduce SynFER (Synthesis of Facial Expressions with Refined Control), a novel synthetic framework for synthesizing facial expression image data based on high-level textual descriptions as well as more fine-grained and precise control through facial action units. To ensure the quality and reliability of the synthetic data, we propose a semantic guidance technique to steer the generation process and a pseudo-label generator to help rectify the facial expression labels for the synthetic images. To demonstrate the generation fidelity and the effectiveness of the synthetic data from SynFER, we conduct extensive experiments on representation learning using both synthetic data and real-world data. Results validate the efficacy of our approach and the synthetic data. Notably, our approach achieves a 67.23% classification accuracy on AffectNet when training solely with synthetic data equivalent to the AffectNet training set size, which increases to 69.84% when scaling up to five times the original size. Code is available here.
comment: ICCV 2025
♻ ☆ REDUCIO! Generating 1K Video within 16 Seconds using Extremely Compressed Motion Latents ICCV2025
Commercial video generation models have exhibited realistic, high-fidelity results but are still restricted to limited access. One crucial obstacle for large-scale applications is the expensive training and inference cost. In this paper, we argue that videos contain significantly more redundant information than images, allowing them to be encoded with very few motion latents. Towards this goal, we design an image-conditioned VAE that projects videos into extremely compressed latent space and decode them based on content images. This magic Reducio charm enables 64x reduction of latents compared to a common 2D VAE, without sacrificing the quality. Building upon Reducio-VAE, we can train diffusion models for high-resolution video generation efficiently. Specifically, we adopt a two-stage generation paradigm, first generating a condition image via text-to-image generation, followed by text-image-to-video generation with the proposed Reducio-DiT. Extensive experiments show that our model achieves strong performance in evaluation. More importantly, our method significantly boosts the training and inference efficiency of video LDMs. Reducio-DiT is trained in just 3.2K A100 GPU hours in total and can generate a 16-frame 1024$\times$1024 video clip within 15.5 seconds on a single A100 GPU. Code released at https://github.com/microsoft/Reducio-VAE .
comment: Accepted to ICCV2025. Code available at https://github.com/microsoft/Reducio-VAE
♻ ☆ A Fast Unsupervised Scheme for Polygonal Approximation
This paper proposes a fast and unsupervised scheme for the polygonal approximation of a closed digital curve. It is demonstrated that the approximation scheme is faster than state-of-the-art approximation and is competitive with Rosin's measure and aesthetic aspects. The scheme comprises of three phases: initial segmentation, iterative vertex insertion, iterative merging, and vertex adjustment. The initial segmentation is used to detect sharp turns, that is, vertices that seemingly have high curvature. It is likely that some of the important vertices with low curvature might have been missed in the first phase; therefore, iterative vertex insertion is used to add vertices in a region where the curvature changes slowly but steadily. The initial phase may pick up some undesirable vertices, and thus merging is used to eliminate redundant vertices. Finally, vertex adjustment was used to enhance the aesthetic appearance of the approximation. The quality of the approximations was measured using the Rosin's method. The robustness of the proposed scheme with respect to geometric transformation was observed.
♻ ☆ Automated Muscle and Fat Segmentation in Computed Tomography for Comprehensive Body Composition Analysis
Body composition assessment using CT images can potentially be used for a number of clinical applications, including the prognostication of cardiovascular outcomes, evaluation of metabolic health, monitoring of disease progression, assessment of nutritional status, prediction of treatment response in oncology, and risk stratification for surgical and critical care outcomes. While multiple groups have developed in-house segmentation tools for this analysis, there are very limited publicly available tools that could be consistently used across different applications. To mitigate this gap, we present a publicly accessible, end-to-end segmentation and feature calculation model specifically for CT body composition analysis. Our model performs segmentation of skeletal muscle, subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT) across the chest, abdomen, and pelvis area in axial CT images. It also provides various body composition metrics, including muscle density, visceral-to-subcutaneous fat (VAT/SAT) ratio, muscle area/volume, and skeletal muscle index (SMI), supporting both 2D and 3D assessments. To evaluate the model, the segmentation was applied to both internal and external datasets, with body composition metrics analyzed across different age, sex, and race groups. The model achieved high dice coefficients on both internal and external datasets, exceeding 89% for skeletal muscle, SAT, and VAT segmentation. The model outperforms the benchmark by 2.40% on skeletal muscle and 10.26% on SAT compared to the manual annotations given by the publicly available dataset. Body composition metrics show mean relative absolute errors (MRAEs) under 10% for all measures. Furthermore, the model provided muscular fat segmentation with a Dice coefficient of 56.27%, which can be utilized for additional analyses as needed.
♻ ☆ Gotta Hear Them All: Towards Sound Source Aware Audio Generation
Audio synthesis has broad applications in multimedia. Recent advancements have made it possible to generate relevant audios from inputs describing an audio scene, such as images or texts. However, the immersiveness and expressiveness of the generation are limited. One possible problem is that existing methods solely rely on the global scene and overlook details of local sounding objects (i.e., sound sources). To address this issue, we propose a Sound Source-Aware Audio (SS2A) generator. SS2A is able to locally perceive multimodal sound sources from a scene with visual detection and cross-modality translation. It then contrastively learns a Cross-Modal Sound Source (CMSS) Manifold to semantically disambiguate each source. Finally, we attentively mix their CMSS semantics into a rich audio representation, from which a pretrained audio generator outputs the sound. To model the CMSS manifold, we curate a novel single-sound-source visual-audio dataset VGGS3 from VGGSound. We also design a Sound Source Matching Score to clearly measure localized audio relevance. With the effectiveness of explicit sound source modeling, SS2A achieves state-of-the-art performance in extensive image-to-audio tasks. We also qualitatively demonstrate SS2A's ability to achieve intuitive synthesis control by compositing vision, text, and audio conditions. Furthermore, we show that our sound source modeling can achieve competitive video-to-audio performance with a straightforward temporal aggregation mechanism.
comment: 17 pages, 12 figures, source code available at https://github.com/wguo86/SSV2A
♻ ☆ What Changed and What Could Have Changed? State-Change Counterfactuals for Procedure-Aware Video Representation Learning
Understanding a procedural activity requires modeling both how action steps transform the scene, and how evolving scene transformations can influence the sequence of action steps, even those that are accidental or erroneous. Existing work has studied procedure-aware video representations by modeling the temporal order of actions, but has not explicitly learned the state changes (scene transformations). In this work, we study procedure-aware video representation learning by incorporating state-change descriptions generated by Large Language Models (LLMs) as supervision signals for video encoders. Moreover, we generate state-change counterfactuals that simulate hypothesized failure outcomes, allowing models to learn by imagining unseen "What if" scenarios. This counterfactual reasoning facilitates the model's ability to understand the cause and effect of each step in an activity. We conduct extensive experiments on procedure-aware tasks, including temporal action segmentation, error detection, action phase classification, frame retrieval, multi-instance retrieval, and action recognition. Our results demonstrate the effectiveness of the proposed state-change descriptions and their counterfactuals, and achieve significant improvements on multiple tasks.
comment: 16 pages, 4 figures
♻ ☆ Decoupled Functional Evaluation of Autonomous Driving Models via Feature Map Quality Scoring
End-to-end models are emerging as the mainstream in autonomous driving perception and planning. However, the lack of explicit supervision signals for intermediate functional modules leads to opaque operational mechanisms and limited interpretability, making it challenging for traditional methods to independently evaluate and train these modules. Pioneering in the issue, this study builds upon the feature map-truth representation similarity-based evaluation framework and proposes an independent evaluation method based on Feature Map Convergence Score (FMCS). A Dual-Granularity Dynamic Weighted Scoring System (DG-DWSS) is constructed, formulating a unified quantitative metric - Feature Map Quality Score - to enable comprehensive evaluation of the quality of feature maps generated by functional modules. A CLIP-based Feature Map Quality Evaluation Network (CLIP-FMQE-Net) is further developed, combining feature-truth encoders and quality score prediction heads to enable real-time quality analysis of feature maps generated by functional modules. Experimental results on the NuScenes dataset demonstrate that integrating our evaluation module into the training improves 3D object detection performance, achieving a 3.89 percent gain in NDS. These results verify the effectiveness of our method in enhancing feature representation quality and overall model performance.
♻ ☆ Omni-Effects: Unified and Spatially-Controllable Visual Effects Generation
Visual effects (VFX) are essential visual enhancements fundamental to modern cinematic production. Although video generation models offer cost-efficient solutions for VFX production, current methods are constrained by per-effect LoRA training, which limits generation to single effects. This fundamental limitation impedes applications that require spatially controllable composite effects, i.e., the concurrent generation of multiple effects at designated locations. However, integrating diverse effects into a unified framework faces major challenges: interference from effect variations and spatial uncontrollability during multi-VFX joint training. To tackle these challenges, we propose Omni-Effects, a first unified framework capable of generating prompt-guided effects and spatially controllable composite effects. The core of our framework comprises two key innovations: (1) LoRA-based Mixture of Experts (LoRA-MoE), which employs a group of expert LoRAs, integrating diverse effects within a unified model while effectively mitigating cross-task interference. (2) Spatial-Aware Prompt (SAP) incorporates spatial mask information into the text token, enabling precise spatial control. Furthermore, we introduce an Independent-Information Flow (IIF) module integrated within the SAP, isolating the control signals corresponding to individual effects to prevent any unwanted blending. To facilitate this research, we construct a comprehensive VFX dataset Omni-VFX via a novel data collection pipeline combining image editing and First-Last Frame-to-Video (FLF2V) synthesis, and introduce a dedicated VFX evaluation framework for validating model performance. Extensive experiments demonstrate that Omni-Effects achieves precise spatial control and diverse effect generation, enabling users to specify both the category and location of desired effects.
♻ ☆ SoftHGNN: Soft Hypergraph Neural Networks for General Visual Recognition
Visual recognition relies on understanding both the semantics of image tokens and the complex interactions among them. Mainstream self-attention methods, while effective at modeling global pair-wise relations, fail to capture high-order associations inherent in real-world scenes and often suffer from redundant computation. Hypergraphs extend conventional graphs by modeling high-order interactions and offer a promising framework for addressing these limitations. However, existing hypergraph neural networks typically rely on static and hard hyperedge assignments, leading to excessive and redundant hyperedges with hard binary vertex memberships that overlook the continuity of visual semantics. To overcome these issues, we present Soft Hypergraph Neural Networks (SoftHGNNs), which extend the methodology of hypergraph computation, to make it truly efficient and versatile in visual recognition tasks. Our framework introduces the concept of soft hyperedges, where each vertex is associated with hyperedges via continuous participation weights rather than hard binary assignments. This dynamic and differentiable association is achieved by using the learnable hyperedge prototype. Through similarity measurements between token features and the prototype, the model generates semantically rich soft hyperedges. SoftHGNN then aggregates messages over soft hyperedges to capture high-order semantics. To further enhance efficiency when scaling up the number of soft hyperedges, we incorporate a sparse hyperedge selection mechanism that activates only the top-k important hyperedges, along with a load-balancing regularizer to ensure balanced hyperedge utilization. Experimental results across three tasks on five datasets demonstrate that SoftHGNN efficiently captures high-order associations in visual scenes, achieving significant performance improvements.
♻ ☆ AMFT: Aligning LLM Reasoners by Meta-Learning the Optimal Imitation-Exploration Balance
Large Language Models (LLMs) are typically fine-tuned for reasoning tasks through a two-stage pipeline of Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL), a process fraught with catastrophic forgetting and suboptimal trade-offs between imitation and exploration. Recent single-stage methods attempt to unify SFT and RL using heuristics, but lack a principled mechanism for dynamically balancing the two paradigms. In this paper, we reframe this challenge through the theoretical lens of \textbf{implicit rewards}, viewing SFT and RL not as distinct methods but as complementary reward signals. We introduce \textbf{Adaptive Meta Fine-Tuning (AMFT)}, a novel single-stage algorithm that learns the optimal balance between SFT's implicit, path-level reward and RL's explicit, outcome-based reward. The core of AMFT is a \textbf{meta-gradient adaptive weight controller} that treats the SFT-RL balance as a learnable parameter, dynamically optimizing it to maximize long-term task performance. This forward-looking approach, regularized by policy entropy for stability, autonomously discovers an effective training curriculum. We conduct a comprehensive evaluation on challenging benchmarks spanning mathematical reasoning, abstract visual reasoning (General Points), and vision-language navigation (V-IRL). AMFT consistently establishes a new state-of-the-art and demonstrats superior generalization on out-of-distribution (OOD) tasks. Ablation studies and training dynamic analysis confirm that the meta-learning controller is crucial for AMFT's stability, sample efficiency, and performance, offering a more principled and effective paradigm for LLM alignment. Our codes are open-sourced via https://github.com/hlxtsyj/AMFT.
comment: https://github.com/hlxtsyj/AMFT
♻ ☆ GPSMamba: A Global Phase and Spectral Prompt-guided Mamba for Infrared Image Super-Resolution
Infrared Image Super-Resolution (IRSR) is challenged by the low contrast and sparse textures of infrared data, requiring robust long-range modeling to maintain global coherence. While State-Space Models like Mamba offer proficiency in modeling long-range dependencies for this task, their inherent 1D causal scanning mechanism fragments the global context of 2D images, hindering fine-detail restoration. To address this, we propose Global Phase and Spectral Prompt-guided Mamba (GPSMamba), a framework that synergizes architectural guidance with non-causal supervision. First, our Adaptive Semantic-Frequency State Space Module (ASF-SSM) injects a fused semantic-frequency prompt directly into the Mamba block, integrating non-local context to guide reconstruction. Then, a novel Thermal-Spectral Attention and Phase Consistency Loss provides explicit, non-causal supervision to enforce global structural and spectral fidelity. By combining these two innovations, our work presents a systematic strategy to mitigate the limitations of causal modeling. Extensive experiments demonstrate that GPSMamba achieves state-of-the-art performance, validating our approach as a powerful new paradigm for infrared image restoration. Code is available at https://github.com/yongsongH/GPSMamba.
comment: This manuscript is under review, and copyright will be transferred without notice
♻ ☆ Stand-In: A Lightweight and Plug-and-Play Identity Control for Video Generation
Generating high-fidelity human videos that match user-specified identities is important yet challenging in the field of generative AI. Existing methods often rely on an excessive number of training parameters and lack compatibility with other AIGC tools. In this paper, we propose Stand-In, a lightweight and plug-and-play framework for identity preservation in video generation. Specifically, we introduce a conditional image branch into the pre-trained video generation model. Identity control is achieved through restricted self-attentions with conditional position mapping, and can be learned quickly with only 2000 pairs. Despite incorporating and training just $\sim$1% additional parameters, our framework achieves excellent results in video quality and identity preservation, outperforming other full-parameter training methods. Moreover, our framework can be seamlessly integrated for other tasks, such as subject-driven video generation, pose-referenced video generation, stylization, and face swapping.
♻ ☆ IRL-VLA: Training an Vision-Language-Action Policy via Reward World Model
Vision-Language-Action (VLA) models have demonstrated potential in autonomous driving. However, two critical challenges hinder their development: (1) Existing VLA architectures are typically based on imitation learning in open-loop setup which tends to capture the recorded behaviors in the dataset, leading to suboptimal and constrained performance, (2) Close-loop training relies heavily on high-fidelity sensor simulation, where domain gaps and computational inefficiencies pose significant barriers. In this paper, we introduce IRL-VLA, a novel close-loop Reinforcement Learning via \textbf{I}nverse \textbf{R}einforcement \textbf{L}earning reward world model with a self-built VLA approach. Our framework proceeds in a three-stage paradigm: In the first stage, we propose a VLA architecture and pretrain the VLA policy via imitation learning. In the second stage, we construct a lightweight reward world model via inverse reinforcement learning to enable efficient close-loop reward computation. To further enhance planning performance, finally, we design specialized reward world model guidence reinforcement learning via PPO(Proximal Policy Optimization) to effectively balance the safety incidents, comfortable driving, and traffic efficiency. Our approach achieves state-of-the-art performance in NAVSIM v2 end-to-end driving benchmark, 1st runner up in CVPR2025 Autonomous Grand Challenge. We hope that our framework will accelerate VLA research in close-loop autonomous driving.
comment: 9 pagres, 2 figures
A Survey on All-in-One Image Restoration: Taxonomy, Evaluation and Future Trends
Image restoration (IR) seeks to recover high-quality images from degraded observations caused by a wide range of factors, including noise, blur, compression, and adverse weather. While traditional IR methods have made notable progress by targeting individual degradation types, their specialization often comes at the cost of generalization, leaving them ill-equipped to handle the multifaceted distortions encountered in real-world applications. In response to this challenge, the all-in-one image restoration (AiOIR) paradigm has recently emerged, offering a unified framework that adeptly addresses multiple degradation types. These innovative models enhance the convenience and versatility by adaptively learning degradation-specific features while simultaneously leveraging shared knowledge across diverse corruptions. In this survey, we provide the first in-depth and systematic overview of AiOIR, delivering a structured taxonomy that categorizes existing methods by architectural designs, learning paradigms, and their core innovations. We systematically categorize current approaches and assess the challenges these models encounter, outlining research directions to propel this rapidly evolving field. To facilitate the evaluation of existing methods, we also consolidate widely-used datasets, evaluation protocols, and implementation practices, and compare and summarize the most advanced open-source models. As the first comprehensive review dedicated to AiOIR, this paper aims to map the conceptual landscape, synthesize prevailing techniques, and ignite further exploration toward more intelligent, unified, and adaptable visual restoration systems. A curated code repository is available at https://github.com/Harbinzzy/All-in-One-Image-Restoration-Survey.
comment: IEEE Transactions on Pattern Analysis and Machine Intelligence
♻ ☆ StyleTailor: Towards Personalized Fashion Styling via Hierarchical Negative Feedback
The advancement of intelligent agents has revolutionized problem-solving across diverse domains, yet solutions for personalized fashion styling remain underexplored, which holds immense promise for promoting shopping experiences. In this work, we present StyleTailor, the first collaborative agent framework that seamlessly unifies personalized apparel design, shopping recommendation, virtual try-on, and systematic evaluation into a cohesive workflow. To this end, StyleTailor pioneers an iterative visual refinement paradigm driven by multi-level negative feedback, enabling adaptive and precise user alignment. Specifically, our framework features two core agents, i.e., Designer for personalized garment selection and Consultant for virtual try-on, whose outputs are progressively refined via hierarchical vision-language model feedback spanning individual items, complete outfits, and try-on efficacy. Counterexamples are aggregated into negative prompts, forming a closed-loop mechanism that enhances recommendation quality. To assess the performance, we introduce a comprehensive evaluation suite encompassing style consistency, visual quality, face similarity, and artistic appraisal. Extensive experiments demonstrate StyleTailor's superior performance in delivering personalized designs and recommendations, outperforming strong baselines without negative feedback and establishing a new benchmark for intelligent fashion systems.
comment: 24pages, 5 figures
♻ ☆ Context as Memory: Scene-Consistent Interactive Long Video Generation with Memory Retrieval SIGGRAPH
Recent advances in interactive video generation have shown promising results, yet existing approaches struggle with scene-consistent memory capabilities in long video generation due to limited use of historical context. In this work, we propose Context-as-Memory, which utilizes historical context as memory for video generation. It includes two simple yet effective designs: (1) storing context in frame format without additional post-processing; (2) conditioning by concatenating context and frames to be predicted along the frame dimension at the input, requiring no external control modules. Furthermore, considering the enormous computational overhead of incorporating all historical context, we propose the Memory Retrieval module to select truly relevant context frames by determining FOV (Field of View) overlap between camera poses, which significantly reduces the number of candidate frames without substantial information loss. Experiments demonstrate that Context-as-Memory achieves superior memory capabilities in interactive long video generation compared to SOTAs, even generalizing effectively to open-domain scenarios not seen during training. The link of our project page is https://context-as-memory.github.io/.
comment: SIGGRAPH Asia 2025, Project Page: https://context-as-memory.github.io/
♻ ☆ Follow-Your-Shape: Shape-Aware Image Editing via Trajectory-Guided Region Control
While recent flow-based image editing models demonstrate general-purpose capabilities across diverse tasks, they often struggle to specialize in challenging scenarios -- particularly those involving large-scale shape transformations. When performing such structural edits, these methods either fail to achieve the intended shape change or inadvertently alter non-target regions, resulting in degraded background quality. We propose Follow-Your-Shape, a training-free and mask-free framework that supports precise and controllable editing of object shapes while strictly preserving non-target content. Motivated by the divergence between inversion and editing trajectories, we compute a Trajectory Divergence Map (TDM) by comparing token-wise velocity differences between the inversion and denoising paths. The TDM enables precise localization of editable regions and guides a Scheduled KV Injection mechanism that ensures stable and faithful editing. To facilitate a rigorous evaluation, we introduce ReShapeBench, a new benchmark comprising 120 new images and enriched prompt pairs specifically curated for shape-aware editing. Experiments demonstrate that our method achieves superior editability and visual fidelity, particularly in tasks requiring large-scale shape replacement.
comment: Project webpage is available at https://follow-your-shape.github.io/
WSI-LLaVA: A Multimodal Large Language Model for Whole Slide Image ICCV 2025
Recent advancements in computational pathology have produced patch-level Multi-modal Large Language Models (MLLMs), but these models are limited by their inability to analyze whole slide images (WSIs) comprehensively and their tendency to bypass crucial morphological features that pathologists rely on for diagnosis. To address these challenges, we first introduce WSI-Bench, a large-scale morphology-aware benchmark containing 180k VQA pairs from 9,850 WSIs across 30 cancer types, designed to evaluate MLLMs' understanding of morphological characteristics crucial for accurate diagnosis. Building upon this benchmark, we present WSI-LLaVA, a novel framework for gigapixel WSI understanding that employs a three-stage training approach: WSI-text alignment, feature space alignment, and task-specific instruction tuning. To better assess model performance in pathological contexts, we develop two specialized WSI metrics: WSI-Precision and WSI-Relevance. Experimental results demonstrate that WSI-LLaVA outperforms existing models across all capability dimensions, with a significant improvement in morphological analysis, establishing a clear correlation between morphological understanding and diagnostic accuracy.
comment: ICCV 2025, 38 pages, 22 figures, 35 tables
♻ ☆ Task-Oriented Feature Compression for Multimodal Understanding via Device-Edge Co-Inference
With the rapid development of large multimodal models (LMMs), multimodal understanding applications are emerging. As most LMM inference requests originate from edge devices with limited computational capabilities, the predominant inference pipeline involves directly forwarding the input data to an edge server which handles all computations. However, this approach introduces high transmission latency due to limited uplink bandwidth of edge devices and significant computation latency caused by the prohibitive number of visual tokens, thus hindering delay-sensitive tasks and degrading user experience. To address this challenge, we propose a task-oriented feature compression (TOFC) method for multimodal understanding in a device-edge co-inference framework, where visual features are merged by clustering and encoded by a learnable and selective entropy model before feature projection. Specifically, we employ density peaks clustering based on K nearest neighbors to reduce the number of visual features, thereby minimizing both data transmission and computational complexity. Subsequently, a learnable entropy model with hyperprior is utilized to encode and decode merged features, further reducing transmission overhead. To enhance compression efficiency, multiple entropy models are adaptively selected based on the characteristics of the visual features, enabling a more accurate estimation of the probability distribution. Comprehensive experiments on seven visual question answering benchmarks validate the effectiveness of the proposed TOFC method. Results show that TOFC achieves up to 52% reduction in data transmission overhead and 63% reduction in system latency while maintaining identical task performance, compared with neural compression ELIC.
♻ ☆ FUTransUNet-GradCAM: A Hybrid Transformer-U-Net with Self-Attention and Explainable Visualizations for Foot Ulcer Segmentation
Automated segmentation of diabetic foot ulcers (DFUs) plays a critical role in clinical diagnosis, therapeutic planning, and longitudinal wound monitoring. However, this task remains challenging due to the heterogeneous appearance, irregular morphology, and complex backgrounds associated with ulcer regions in clinical photographs. Traditional convolutional neural networks (CNNs), such as U-Net, provide strong localization capabilities but struggle to model long-range spatial dependencies due to their inherently limited receptive fields. To address this, we propose FUTransUNet, a hybrid architecture that integrates the global attention mechanism of Vision Transformers (ViTs) into the U-Net framework. This combination allows the model to extract global contextual features while maintaining fine-grained spatial resolution through skip connections and an effective decoding pathway. We trained and validated FUTransUNet on the public Foot Ulcer Segmentation Challenge (FUSeg) dataset. FUTransUNet achieved a training Dice Coefficient of 0.8679, an IoU of 0.7672, and a training loss of 0.0053. On the validation set, the model achieved a Dice Coefficient of 0.8751, an IoU of 0.7780, and a validation loss of 0.009045. To ensure clinical transparency, we employed Grad-CAM visualizations, which highlighted model focus areas during prediction. These quantitative outcomes clearly demonstrate that our hybrid approach successfully integrates global and local feature extraction paradigms, thereby offering a highly robust, accurate, explainable, and interpretable solution and clinically translatable solution for automated foot ulcer analysis. The approach offers a reliable, high-fidelity solution for DFU segmentation, with implications for improving real-world wound assessment and patient care.
♻ ☆ A Data-driven Loss Weighting Scheme across Heterogeneous Tasks for Image Denoising
In a variational denoising model, weight in the data fidelity term plays the role of enhancing the noise-removal capability. It is profoundly correlated with noise information, while also balancing the data fidelity and regularization terms. However, the difficulty of assigning weight is expected to be substantial when the noise pattern is beyond independent identical Gaussian distribution, e.g., impulse noise, stripe noise, or a mixture of several patterns, etc. Furthermore, how to leverage weight to balance the data fidelity and regularization terms is even less evident. In this work, we propose a data-driven loss weighting (DLW) scheme to address these issues. Specifically, DLW trains a parameterized weight function (i.e., a neural network) that maps the noisy image to the weight. The training is achieved by a bilevel optimization framework, where the lower level problem is solving several denoising models with the same weight predicted by the weight function and the upper level problem minimizes the distance between the restored image and the clean image. In this way, information from both the noise and the regularization can be efficiently extracted to determine the weight function. DLW also facilitates the easy implementation of a trained weight function on denoising models. Numerical results verify the remarkable performance of DLW on improving the ability of various variational denoising models to handle different complex noise. This implies that DLW has the ability to transfer the noise knowledge at the model level to heterogeneous tasks beyond the training ones and the generalization theory underlying DLW is studied, validating its intrinsic transferability.
♻ ☆ Enhancing Wide-Angle Image Using Narrow-Angle View of the Same Scene
A common dilemma while photographing a scene is whether to capture it at a wider angle, allowing more of the scene to be covered but in less detail or to click in a narrow angle that captures better details but leaves out portions of the scene. We propose a novel method in this paper that infuses wider shots with finer quality details that is usually associated with an image captured by the primary lens by capturing the same scene using both narrow and wide field of view (FoV) lenses. We do so by training a Generative Adversarial Network (GAN)-based model to learn to extract the visual quality parameters from a narrow-angle shot and to transfer these to the corresponding wide-angle image of the scene using residual connections and an attention-based fusion module. We have mentioned in details the proposed technique to isolate the visual essence of an image and to transfer it into another image. We have also elaborately discussed our implementation details and have presented the results of evaluation over several benchmark datasets and comparisons with contemporary advancements in the field.
SPIE: Semantic and Structural Post-Training of Image Editing Diffusion Models with AI feedback
This paper presents SPIE: a novel approach for semantic and structural post-training of instruction-based image editing diffusion models, addressing key challenges in alignment with user prompts and consistency with input images. We introduce an online reinforcement learning framework that aligns the diffusion model with human preferences without relying on extensive human annotations or curating a large dataset. Our method significantly improves the alignment with instructions and realism in two ways. First, SPIE captures fine nuances in the desired edit by leveraging a visual prompt, enabling detailed control over visual edits without lengthy textual prompts. Second, it achieves precise and structurally coherent modifications in complex scenes while maintaining high fidelity in instruction-irrelevant areas. This approach simplifies users' efforts to achieve highly specific edits, requiring only 5 reference images depicting a certain concept for training. Experimental results demonstrate that SPIE can perform intricate edits in complex scenes, after just 10 training steps. Finally, we showcase the versatility of our method by applying it to robotics, where targeted image edits enhance the visual realism of simulated environments, which improves their utility as proxy for real-world settings.
♻ ☆ Open-Set LiDAR Panoptic Segmentation Guided by Uncertainty-Aware Learning
Autonomous vehicles that navigate in open-world environments may encounter previously unseen object classes. However, most existing LiDAR panoptic segmentation models rely on closed-set assumptions, failing to detect unknown object instances. In this work, we propose ULOPS, an uncertainty-guided open-set panoptic segmentation framework that leverages Dirichlet-based evidential learning to model predictive uncertainty. Our architecture incorporates separate decoders for semantic segmentation with uncertainty estimation, embedding with prototype association, and instance center prediction. During inference, we leverage uncertainty estimates to identify and segment unknown instances. To strengthen the model's ability to differentiate between known and unknown objects, we introduce three uncertainty-driven loss functions. Uniform Evidence Loss to encourage high uncertainty in unknown regions. Adaptive Uncertainty Separation Loss ensures a consistent difference in uncertainty estimates between known and unknown objects at a global scale. Contrastive Uncertainty Loss refines this separation at the fine-grained level. To evaluate open-set performance, we extend benchmark settings on KITTI-360 and introduce a new open-set evaluation for nuScenes. Extensive experiments demonstrate that ULOPS consistently outperforms existing open-set LiDAR panoptic segmentation methods.
♻ ☆ Depth-Guided Self-Supervised Human Keypoint Detection via Cross-Modal Distillation
Existing unsupervised keypoint detection methods apply artificial deformations to images such as masking a significant portion of images and using reconstruction of original image as a learning objective to detect keypoints. However, this approach lacks depth information in the image and often detects keypoints on the background. To address this, we propose Distill-DKP, a novel cross-modal knowledge distillation framework that leverages depth maps and RGB images for keypoint detection in a self-supervised setting. During training, Distill-DKP extracts embedding-level knowledge from a depth-based teacher model to guide an image-based student model with inference restricted to the student. Experiments show that Distill-DKP significantly outperforms previous unsupervised methods by reducing mean L2 error by 47.15% on Human3.6M, mean average error by 5.67% on Taichi, and improving keypoints accuracy by 1.3% on DeepFashion dataset. Detailed ablation studies demonstrate the sensitivity of knowledge distillation across different layers of the network. Project Page: https://23wm13.github.io/distill-dkp/
♻ ☆ Lung-DDPM: Semantic Layout-guided Diffusion Models for Thoracic CT Image Synthesis
With the rapid development of artificial intelligence (AI), AI-assisted medical imaging analysis demonstrates remarkable performance in early lung cancer screening. However, the costly annotation process and privacy concerns limit the construction of large-scale medical datasets, hampering the further application of AI in healthcare. To address the data scarcity in lung cancer screening, we propose Lung-DDPM, a thoracic CT image synthesis approach that effectively generates high-fidelity 3D synthetic CT images, which prove helpful in downstream lung nodule segmentation tasks. Our method is based on semantic layout-guided denoising diffusion probabilistic models (DDPM), enabling anatomically reasonable, seamless, and consistent sample generation even from incomplete semantic layouts. Our results suggest that the proposed method outperforms other state-of-the-art (SOTA) generative models in image quality evaluation and downstream lung nodule segmentation tasks. Specifically, Lung-DDPM achieved superior performance on our large validation cohort, with a Fr\'echet inception distance (FID) of 0.0047, maximum mean discrepancy (MMD) of 0.0070, and mean squared error (MSE) of 0.0024. These results were 7.4$\times$, 3.1$\times$, and 29.5$\times$ better than the second-best competitors, respectively. Furthermore, the lung nodule segmentation model, trained on a dataset combining real and Lung-DDPM-generated synthetic samples, attained a Dice Coefficient (Dice) of 0.3914 and sensitivity of 0.4393. This represents 8.8% and 18.6% improvements in Dice and sensitivity compared to the model trained solely on real samples. The experimental results highlight Lung-DDPM's potential for a broader range of medical imaging applications, such as general tumor segmentation, cancer survival estimation, and risk prediction. The code and pretrained models are available at https://github.com/Manem-Lab/Lung-DDPM/.
comment: Accepted by IEEE Transactions on Biomedical Engineering (TBME)
♻ ☆ BigTokDetect: A Clinically-Informed Vision-Language Modeling Framework for Detecting Pro-Bigorexia Videos on TikTok
Social media platforms increasingly struggle to detect harmful content that promotes muscle dysmorphic behaviors, particularly pro-bigorexia content that disproportionately affects adolescent males. Unlike traditional eating disorder detection focused on the "thin ideal," pro-bigorexia material masquerades as legitimate fitness content through complex multimodal combinations of visual displays, coded language, and motivational messaging that evade text-based detection systems. We address this challenge by developing BigTokDetect, a clinically-informed detection framework for identifying pro-bigorexia content on TikTok. We introduce BigTok, the first expert-annotated multimodal dataset of over 2,200 TikTok videos labeled by clinical psychologists and psychiatrists across five primary categories spanning body image, nutrition, exercise, supplements, and masculinity. Through a comprehensive evaluation of state-of-the-art vision language models, we achieve 82.9% accuracy on primary category classification and 69.0% on subcategory detection via domain-specific finetuning. Our ablation studies demonstrate that multimodal fusion improves performance by 5-10% over text-only approaches, with video features providing the most discriminative signals. These findings establish new benchmarks for multimodal harmful content detection and provide both the computational tools and methodological framework needed for scalable content moderation in specialized mental health domains.
Artificial Intelligence 163
☆ Time Is a Feature: Exploiting Temporal Dynamics in Diffusion Language Models
Diffusion large language models (dLLMs) generate text through iterative denoising, yet current decoding strategies discard rich intermediate predictions in favor of the final output. Our work here reveals a critical phenomenon, temporal oscillation, where correct answers often emerge in the middle process, but are overwritten in later denoising steps. To address this issue, we introduce two complementary methods that exploit temporal consistency: 1) Temporal Self-Consistency Voting, a training-free, test-time decoding strategy that aggregates predictions across denoising steps to select the most consistent output; and 2) a post-training method termed Temporal Consistency Reinforcement, which uses Temporal Semantic Entropy (TSE), a measure of semantic stability across intermediate predictions, as a reward signal to encourage stable generations. Empirical results across multiple benchmarks demonstrate the effectiveness of our approach. Using the negative TSE reward alone, we observe a remarkable average improvement of 24.7% on the Countdown dataset over an existing dLLM. Combined with the accuracy reward, we achieve absolute gains of 2.0% on GSM8K, 4.3% on MATH500, 6.6% on SVAMP, and 25.3% on Countdown, respectively. Our findings underscore the untapped potential of temporal dynamics in dLLMs and offer two simple yet effective tools to harness them.
comment: Project webpage: https://aim-uofa.github.io/dLLM-MidTruth
☆ BrowseMaster: Towards Scalable Web Browsing via Tool-Augmented Programmatic Agent Pair
Effective information seeking in the vast and ever-growing digital landscape requires balancing expansive search with strategic reasoning. Current large language model (LLM)-based agents struggle to achieve this balance due to limitations in search breadth and reasoning depth, where slow, serial querying restricts coverage of relevant sources and noisy raw inputs disrupt the continuity of multi-step reasoning. To address these challenges, we propose BrowseMaster, a scalable framework built around a programmatically augmented planner-executor agent pair. The planner formulates and adapts search strategies based on task constraints, while the executor conducts efficient, targeted retrieval to supply the planner with concise, relevant evidence. This division of labor preserves coherent, long-horizon reasoning while sustaining broad and systematic exploration, overcoming the trade-off that limits existing agents. Extensive experiments on challenging English and Chinese benchmarks show that BrowseMaster consistently outperforms open-source and proprietary baselines, achieving scores of 30.0 on BrowseComp-en and 46.5 on BrowseComp-zh, which demonstrates its strong capability in complex, reasoning-heavy information-seeking tasks at scale.
☆ OpenCUA: Open Foundations for Computer-Use Agents
Vision-language models have demonstrated impressive capabilities as computer-use agents (CUAs) capable of automating diverse computer tasks. As their commercial potential grows, critical details of the most capable CUA systems remain closed. As these agents will increasingly mediate digital interactions and execute consequential decisions on our behalf, the research community needs access to open CUA frameworks to study their capabilities, limitations, and risks. To bridge this gap, we propose OpenCUA, a comprehensive open-source framework for scaling CUA data and foundation models. Our framework consists of: (1) an annotation infrastructure that seamlessly captures human computer-use demonstrations; (2) AgentNet, the first large-scale computer-use task dataset spanning 3 operating systems and 200+ applications and websites; (3) a scalable pipeline that transforms demonstrations into state-action pairs with reflective long Chain-of-Thought reasoning that sustain robust performance gains as data scales. Our end-to-end agent models demonstrate strong performance across CUA benchmarks. In particular, OpenCUA-32B achieves an average success rate of 34.8% on OSWorld-Verified, establishing a new state-of-the-art (SOTA) among open-source models and surpassing OpenAI CUA (GPT-4o). Further analysis confirms that our approach generalizes well across domains and benefits significantly from increased test-time computation. We release our annotation tool, datasets, code, and models to build open foundations for further CUA research.
☆ Towards Universal Neural Inference
Real-world data often appears in diverse, disjoint forms -- with varying schemas, inconsistent semantics, and no fixed feature ordering -- making it challenging to build general-purpose models that can leverage information across datasets. We introduce ASPIRE, Arbitrary Set-based Permutation-Invariant Reasoning Engine, a Universal Neural Inference model for semantic reasoning and prediction over heterogeneous structured data. ASPIRE combines a permutation-invariant, set-based Transformer with a semantic grounding module that incorporates natural language descriptions, dataset metadata, and in-context examples to learn cross-dataset feature dependencies. This architecture allows ASPIRE to ingest arbitrary sets of feature--value pairs and support examples, align semantics across disjoint tables, and make predictions for any specified target. Once trained, ASPIRE generalizes to new inference tasks without additional tuning. In addition to delivering strong results across diverse benchmarks, ASPIRE naturally supports cost-aware active feature acquisition in an open-world setting, selecting informative features under test-time budget constraints for an arbitrary unseen dataset. These capabilities position ASPIRE as a step toward truly universal, semantics-aware inference over structured data.
Dynamic Uncertainty-aware Multimodal Fusion for Outdoor Health Monitoring
Outdoor health monitoring is essential to detect early abnormal health status for safeguarding human health and safety. Conventional outdoor monitoring relies on static multimodal deep learning frameworks, which requires extensive data training from scratch and fails to capture subtle health status changes. Multimodal large language models (MLLMs) emerge as a promising alternative, utilizing only small datasets to fine-tune pre-trained information-rich models for enabling powerful health status monitoring. Unfortunately, MLLM-based outdoor health monitoring also faces significant challenges: I) sensor data contains input noise stemming from sensor data acquisition and fluctuation noise caused by sudden changes in physiological signals due to dynamic outdoor environments, thus degrading the training performance; ii) current transformer based MLLMs struggle to achieve robust multimodal fusion, as they lack a design for fusing the noisy modality; iii) modalities with varying noise levels hinder accurate recovery of missing data from fluctuating distributions. To combat these challenges, we propose an uncertainty-aware multimodal fusion framework, named DUAL-Health, for outdoor health monitoring in dynamic and noisy environments. First, to assess the impact of noise, we accurately quantify modality uncertainty caused by input and fluctuation noise with current and temporal features. Second, to empower efficient muitimodal fusion with low-quality modalities,we customize the fusion weight for each modality based on quantified and calibrated uncertainty. Third, to enhance data recovery from fluctuating noisy modalities, we align modality distributions within a common semantic space. Extensive experiments demonstrate that our DUAL-Health outperforms state-of-the-art baselines in detection accuracy and robustness.
comment: 14 pages, 10 figures
☆ CVCM Track Circuits Pre-emptive Failure Diagnostics for Predictive Maintenance Using Deep Neural Networks
Track circuits are critical for railway operations, acting as the main signalling sub-system to locate trains. Continuous Variable Current Modulation (CVCM) is one such technology. Like any field-deployed, safety-critical asset, it can fail, triggering cascading disruptions. Many failures originate as subtle anomalies that evolve over time, often not visually apparent in monitored signals. Conventional approaches, which rely on clear signal changes, struggle to detect them early. Early identification of failure types is essential to improve maintenance planning, minimising downtime and revenue loss. Leveraging deep neural networks, we propose a predictive maintenance framework that classifies anomalies well before they escalate into failures. Validated on 10 CVCM failure cases across different installations, the method is ISO-17359 compliant and outperforms conventional techniques, achieving 99.31% overall accuracy with detection within 1% of anomaly onset. Through conformal prediction, we provide uncertainty estimates, reaching 99% confidence with consistent coverage across classes. Given CVCMs global deployment, the approach is scalable and adaptable to other track circuits and railway systems, enhancing operational reliability.
comment: Peer-reviewed conference paper. Presented at ICROMA 2025 (International Conference on Railway Operations Modelling and Analysis), Dresden, Germany. https://tu-dresden.de/raildresden2025 8 pages, 6 figures, 1 table
☆ Can We Trust AI to Govern AI? Benchmarking LLM Performance on Privacy and AI Governance Exams
The rapid emergence of large language models (LLMs) has raised urgent questions across the modern workforce about this new technology's strengths, weaknesses, and capabilities. For privacy professionals, the question is whether these AI systems can provide reliable support on regulatory compliance, privacy program management, and AI governance. In this study, we evaluate ten leading open and closed LLMs, including models from OpenAI, Anthropic, Google DeepMind, Meta, and DeepSeek, by benchmarking their performance on industry-standard certification exams: CIPP/US, CIPM, CIPT, and AIGP from the International Association of Privacy Professionals (IAPP). Each model was tested using official sample exams in a closed-book setting and compared to IAPP's passing thresholds. Our findings show that several frontier models such as Gemini 2.5 Pro and OpenAI's GPT-5 consistently achieve scores exceeding the standards for professional human certification - demonstrating substantial expertise in privacy law, technical controls, and AI governance. The results highlight both the strengths and domain-specific gaps of current LLMs and offer practical insights for privacy officers, compliance leads, and technologists assessing the readiness of AI tools for high-stakes data governance roles. This paper provides an overview for professionals navigating the intersection of AI advancement and regulatory risk and establishes a machine benchmark based on human-centric evaluations.
☆ Spatial Traces: Enhancing VLA Models with Spatial-Temporal Understanding
Vision-Language-Action models have demonstrated remarkable capabilities in predicting agent movements within virtual environments and real-world scenarios based on visual observations and textual instructions. Although recent research has focused on enhancing spatial and temporal understanding independently, this paper presents a novel approach that integrates both aspects through visual prompting. We introduce a method that projects visual traces of key points from observations onto depth maps, enabling models to capture both spatial and temporal information simultaneously. The experiments in SimplerEnv show that the mean number of tasks successfully solved increased for 4% compared to SpatialVLA and 19% compared to TraceVLA. Furthermore, we show that this enhancement can be achieved with minimal training data, making it particularly valuable for real-world applications where data collection is challenging. The project page is available at https://ampiromax.github.io/ST-VLA.
☆ A First Look at Predictability and Explainability of Pre-request Passenger Waiting Time in Ridesharing Systems
Passenger waiting time prediction plays a critical role in enhancing both ridesharing user experience and platform efficiency. While most existing research focuses on post-request waiting time prediction with knowing the matched driver information, pre-request waiting time prediction (i.e., before submitting a ride request and without matching a driver) is also important, as it enables passengers to plan their trips more effectively and enhance the experience of both passengers and drivers. However, it has not been fully studied by existing works. In this paper, we take the first step toward understanding the predictability and explainability of pre-request passenger waiting time in ridesharing systems. Particularly, we conduct an in-depth data-driven study to investigate the impact of demand&supply dynamics on passenger waiting time. Based on this analysis and feature engineering, we propose FiXGBoost, a novel feature interaction-based XGBoost model designed to predict waiting time without knowing the assigned driver information. We further perform an importance analysis to quantify the contribution of each factor. Experiments on a large-scale real-world ridesharing dataset including over 30 million trip records show that our FiXGBoost can achieve a good performance for pre-request passenger waiting time prediction with high explainability.
☆ E3-Rewrite: Learning to Rewrite SQL for Executability, Equivalence,and Efficiency
SQL query rewriting aims to reformulate a query into a more efficient form while preserving equivalence. Most existing methods rely on predefined rewrite rules. However, such rule-based approaches face fundamental limitations: (1) fixed rule sets generalize poorly to novel query patterns and struggle with complex queries; (2) a wide range of effective rewriting strategies cannot be fully captured by declarative rules. To overcome these issues, we propose using large language models (LLMs) to generate rewrites. LLMs can capture complex strategies, such as evaluation reordering and CTE rewriting. Despite this potential, directly applying LLMs often results in suboptimal or non-equivalent rewrites due to a lack of execution awareness and semantic grounding. To address these challenges, We present E3-Rewrite, an LLM-based SQL rewriting framework that produces executable, equivalent, and efficient queries. It integrates two core components: a context construction module and a reinforcement learning framework. First, the context module leverages execution plans and retrieved demonstrations to build bottleneck-aware prompts that guide inference-time rewriting. Second, we design a reward function targeting executability, equivalence, and efficiency, evaluated via syntax checks, equivalence verification, and cost estimation. Third, to ensure stable multi-objective learning, we adopt a staged curriculum that first emphasizes executability and equivalence, then gradually incorporates efficiency. Extensive experiments show that E3-Rewrite achieves up to a 25.6\% reduction in query execution time compared to state-of-the-art methods across multiple SQL benchmarks. Moreover, it delivers up to 24.4\% more successful rewrites, expanding coverage to complex queries that previous systems failed to handle.
☆ Attacks and Defenses Against LLM Fingerprinting
As large language models are increasingly deployed in sensitive environments, fingerprinting attacks pose significant privacy and security risks. We present a study of LLM fingerprinting from both offensive and defensive perspectives. Our attack methodology uses reinforcement learning to automatically optimize query selection, achieving better fingerprinting accuracy with only 3 queries compared to randomly selecting 3 queries from the same pool. Our defensive approach employs semantic-preserving output filtering through a secondary LLM to obfuscate model identity while maintaining semantic integrity. The defensive method reduces fingerprinting accuracy across tested models while preserving output quality. These contributions show the potential to improve fingerprinting tools capabilities while providing practical mitigation strategies against fingerprinting attacks.
☆ Activation Steering for Bias Mitigation: An Interpretable Approach to Safer LLMs
As large language models (LLMs) become more integrated into societal systems, the risk of them perpetuating and amplifying harmful biases becomes a critical safety concern. Traditional methods for mitigating bias often rely on data filtering or post-hoc output moderation, which treat the model as an opaque black box. In this work, we introduce a complete, end-to-end system that uses techniques from mechanistic interpretability to both identify and actively mitigate bias directly within a model's internal workings. Our method involves two primary stages. First, we train linear "probes" on the internal activations of a model to detect the latent representations of various biases (e.g., gender, race, age). Our experiments on \texttt{gpt2-large} demonstrate that these probes can identify biased content with near-perfect accuracy, revealing that bias representations become most salient in the model's later layers. Second, we leverage these findings to compute "steering vectors" by contrasting the model's activation patterns for biased and neutral statements. By adding these vectors during inference, we can actively steer the model's generative process away from producing harmful, stereotypical, or biased content in real-time. We demonstrate the efficacy of this activation steering technique, showing that it successfully alters biased completions toward more neutral alternatives. We present our work as a robust and reproducible system that offers a more direct and interpretable approach to building safer and more accountable LLMs.
☆ LyS at SemEval 2025 Task 8: Zero-Shot Code Generation for Tabular QA SemEval 2025
This paper describes our participation in SemEval 2025 Task 8, focused on Tabular Question Answering. We developed a zero-shot pipeline that leverages an Large Language Model to generate functional code capable of extracting the relevant information from tabular data based on an input question. Our approach consists of a modular pipeline where the main code generator module is supported by additional components that identify the most relevant columns and analyze their data types to improve extraction accuracy. In the event that the generated code fails, an iterative refinement process is triggered, incorporating the error feedback into a new generation prompt to enhance robustness. Our results show that zero-shot code generation is a valid approach for Tabular QA, achieving rank 33 of 53 in the test phase despite the lack of task-specific fine-tuning.
comment: Accepted to SemEval 2025. Camera-ready version
☆ Retrospective Sparse Attention for Efficient Long-Context Generation
Large Language Models (LLMs) are increasingly deployed in long-context tasks such as reasoning, code generation, and multi-turn dialogue. However, inference over extended contexts is bottlenecked by the Key-Value (KV) cache, whose memory footprint grows linearly with sequence length and dominates latency at each decoding step. While recent KV cache compression methods identify and load important tokens, they focus predominantly on input contexts and fail to address the cumulative attention errors that arise during long decoding. In this paper, we introduce RetroAttention, a novel KV cache update technique that retrospectively revises past attention outputs using newly arrived KV entries from subsequent decoding steps. By maintaining a lightweight output cache, RetroAttention enables past queries to efficiently access more relevant context, while incurring minimal latency overhead. This breaks the fixed-attention-output paradigm and allows continual correction of prior approximations. Extensive experiments on long-generation benchmarks show that RetroAttention consistently outperforms state-of-the-art (SOTA) KV compression methods, increasing effective KV exposure by up to 1.6$\times$ and accuracy by up to 21.9\%.
☆ Intrinsic Memory Agents: Heterogeneous Multi-Agent LLM Systems through Structured Contextual Memory
Multi-agent systems built on Large Language Models (LLMs) show exceptional promise for complex collaborative problem-solving, yet they face fundamental challenges stemming from context window limitations that impair memory consistency, role adherence, and procedural integrity. This paper introduces Intrinsic Memory Agents, a novel framework that addresses these limitations through structured agent-specific memories that evolve intrinsically with agent outputs. Specifically, our method maintains role-aligned memory templates that preserve specialized perspectives while focusing on task-relevant information. We benchmark our approach on the PDDL dataset, comparing its performance to existing state-of-the-art multi-agentic memory approaches and showing an improvement of 38.6\% with the highest token efficiency. An additional evaluation is performed on a complex data pipeline design task, we demonstrate that our approach produces higher quality designs when comparing 5 metrics: scalability, reliability, usability, cost-effectiveness and documentation with additional qualitative evidence of the improvements. Our findings suggest that addressing memory limitations through structured, intrinsic approaches can improve the capabilities of multi-agent LLM systems on structured planning tasks.
☆ Prospect Theory Fails for LLMs: Revealing Instability of Decision-Making under Epistemic Uncertainty
Prospect Theory (PT) models human decision-making under uncertainty, while epistemic markers (e.g., maybe) serve to express uncertainty in language. However, it remains largely unexplored whether Prospect Theory applies to contemporary Large Language Models and whether epistemic markers, which express human uncertainty, affect their decision-making behaviour. To address these research gaps, we design a three-stage experiment based on economic questionnaires. We propose a more general and precise evaluation framework to model LLMs' decision-making behaviour under PT, introducing uncertainty through the empirical probability values associated with commonly used epistemic markers in comparable contexts. We then incorporate epistemic markers into the evaluation framework based on their corresponding probability values to examine their influence on LLM decision-making behaviours. Our findings suggest that modelling LLMs' decision-making with PT is not consistently reliable, particularly when uncertainty is expressed in diverse linguistic forms. Our code is released in https://github.com/HKUST-KnowComp/MarPT.
☆ Rational Inverse Reasoning
Humans can observe a single, imperfect demonstration and immediately generalize to very different problem settings. Robots, in contrast, often require hundreds of examples and still struggle to generalize beyond the training conditions. We argue that this limitation arises from the inability to recover the latent explanations that underpin intelligent behavior, and that these explanations can take the form of structured programs consisting of high-level goals, sub-task decomposition, and execution constraints. In this work, we introduce Rational Inverse Reasoning (RIR), a framework for inferring these latent programs through a hierarchical generative model of behavior. RIR frames few-shot imitation as Bayesian program induction: a vision-language model iteratively proposes structured symbolic task hypotheses, while a planner-in-the-loop inference scheme scores each by the likelihood of the observed demonstration under that hypothesis. This loop yields a posterior over concise, executable programs. We evaluate RIR on a suite of continuous manipulation tasks designed to test one-shot and few-shot generalization across variations in object pose, count, geometry, and layout. With as little as one demonstration, RIR infers the intended task structure and generalizes to novel settings, outperforming state-of-the-art vision-language model baselines.
Unsupervised Skill Discovery as Exploration for Learning Agile Locomotion
Exploration is crucial for enabling legged robots to learn agile locomotion behaviors that can overcome diverse obstacles. However, such exploration is inherently challenging, and we often rely on extensive reward engineering, expert demonstrations, or curriculum learning - all of which limit generalizability. In this work, we propose Skill Discovery as Exploration (SDAX), a novel learning framework that significantly reduces human engineering effort. SDAX leverages unsupervised skill discovery to autonomously acquire a diverse repertoire of skills for overcoming obstacles. To dynamically regulate the level of exploration during training, SDAX employs a bi-level optimization process that autonomously adjusts the degree of exploration. We demonstrate that SDAX enables quadrupedal robots to acquire highly agile behaviors including crawling, climbing, leaping, and executing complex maneuvers such as jumping off vertical walls. Finally, we deploy the learned policy on real hardware, validating its successful transfer to the real world.
comment: Conference on Robot Learning 2025
☆ Urban-STA4CLC: Urban Theory-Informed Spatio-Temporal Attention Model for Predicting Post-Disaster Commercial Land Use Change
Natural disasters such as hurricanes and wildfires increasingly introduce unusual disturbance on economic activities, which are especially likely to reshape commercial land use pattern given their sensitive to customer visitation. However, current modeling approaches are limited in capturing such complex interplay between human activities and commercial land use change under and following disturbances. Such interactions have been more effectively captured in current resilient urban planning theories. This study designs and calibrates a Urban Theory-Informed Spatio-Temporal Attention Model for Predicting Post-Disaster Commercial Land Use Change (Urban-STA4CLC) to predict both the yearly decline and expansion of commercial land use at census block level under cumulative impact of disasters on human activities over two years. Guided by urban theories, Urban-STA4CLC integrates both spatial and temporal attention mechanisms with three theory-informed modules. Resilience theory guides a disaster-aware temporal attention module that captures visitation dynamics. Spatial economic theory informs a multi-relational spatial attention module for inter-block representation. Diffusion theory contributes a regularization term that constrains land use transitions. The model performs significantly better than non-theoretical baselines in predicting commercial land use change under the scenario of recurrent hurricanes, with around 19% improvement in F1 score (0.8763). The effectiveness of the theory-guided modules was further validated through ablation studies. The research demonstrates that embedding urban theory into commercial land use modeling models may substantially enhance the capacity to capture its gains and losses. These advances in commercial land use modeling contribute to land use research that accounts for cumulative impacts of recurrent disasters and shifts in economic activity patterns.
☆ Revealing the Role of Audio Channels in ASR Performance Degradation
Pre-trained automatic speech recognition (ASR) models have demonstrated strong performance on a variety of tasks. However, their performance can degrade substantially when the input audio comes from different recording channels. While previous studies have demonstrated this phenomenon, it is often attributed to the mismatch between training and testing corpora. This study argues that variations in speech characteristics caused by different recording channels can fundamentally harm ASR performance. To address this limitation, we propose a normalization technique designed to mitigate the impact of channel variation by aligning internal feature representations in the ASR model with those derived from a clean reference channel. This approach significantly improves ASR performance on previously unseen channels and languages, highlighting its ability to generalize across channel and language differences.
comment: Accepted to IEEE ASRU 2025
☆ QAMRO: Quality-aware Adaptive Margin Ranking Optimization for Human-aligned Assessment of Audio Generation Systems
Evaluating audio generation systems, including text-to-music (TTM), text-to-speech (TTS), and text-to-audio (TTA), remains challenging due to the subjective and multi-dimensional nature of human perception. Existing methods treat mean opinion score (MOS) prediction as a regression problem, but standard regression losses overlook the relativity of perceptual judgments. To address this limitation, we introduce QAMRO, a novel Quality-aware Adaptive Margin Ranking Optimization framework that seamlessly integrates regression objectives from different perspectives, aiming to highlight perceptual differences and prioritize accurate ratings. Our framework leverages pre-trained audio-text models such as CLAP and Audiobox-Aesthetics, and is trained exclusively on the official AudioMOS Challenge 2025 dataset. It demonstrates superior alignment with human evaluations across all dimensions, significantly outperforming robust baseline models.
comment: Accepted to IEEE ASRU 2025
☆ Generalising Traffic Forecasting to Regions without Traffic Observations
Traffic forecasting is essential for intelligent transportation systems. Accurate forecasting relies on continuous observations collected by traffic sensors. However, due to high deployment and maintenance costs, not all regions are equipped with such sensors. This paper aims to forecast for regions without traffic sensors, where the lack of historical traffic observations challenges the generalisability of existing models. We propose a model named GenCast, the core idea of which is to exploit external knowledge to compensate for the missing observations and to enhance generalisation. We integrate physics-informed neural networks into GenCast, enabling physical principles to regularise the learning process. We introduce an external signal learning module to explore correlations between traffic states and external signals such as weather conditions, further improving model generalisability. Additionally, we design a spatial grouping module to filter localised features that hinder model generalisability. Extensive experiments show that GenCast consistently reduces forecasting errors on multiple real-world datasets.
☆ Train Long, Think Short: Curriculum Learning for Efficient Reasoning
Recent work on enhancing the reasoning abilities of large language models (LLMs) has introduced explicit length control as a means of constraining computational cost while preserving accuracy. However, existing approaches rely on fixed-length training budgets, which do not take advantage of the natural progression from exploration to compression during learning. In this work, we propose a curriculum learning strategy for length-controlled reasoning using Group Relative Policy Optimization (GRPO). Our method starts with generous token budgets and gradually tightens them over training, encouraging models to first discover effective solution strategies and then distill them into more concise reasoning traces. We augment GRPO with a reward function that balances three signals: task correctness (via verifier feedback), length efficiency, and formatting adherence (via structural tags). Experiments on GSM8K, MATH500, SVAMP, College Math, and GSM+ demonstrate that curriculum-based training consistently outperforms fixed-budget baselines at the same final budget, achieving higher accuracy and significantly improved token efficiency. We further ablate the impact of reward weighting and decay schedule design, showing that progressive constraint serves as a powerful inductive bias for training efficient reasoning models. Our code and checkpoints are released at: https://github.com/hammoudhasan/curriculum_grpo.
comment: Under Review
☆ Safe Semantics, Unsafe Interpretations: Tackling Implicit Reasoning Safety in Large Vision-Language Models
Large Vision-Language Models face growing safety challenges with multimodal inputs. This paper introduces the concept of Implicit Reasoning Safety, a vulnerability in LVLMs. Benign combined inputs trigger unsafe LVLM outputs due to flawed or hidden reasoning. To showcase this, we developed Safe Semantics, Unsafe Interpretations, the first dataset for this critical issue. Our demonstrations show that even simple In-Context Learning with SSUI significantly mitigates these implicit multimodal threats, underscoring the urgent need to improve cross-modal implicit reasoning.
☆ EGGCodec: A Robust Neural Encodec Framework for EGG Reconstruction and F0 Extraction
This letter introduces EGGCodec, a robust neural Encodec framework engineered for electroglottography (EGG) signal reconstruction and F0 extraction. We propose a multi-scale frequency-domain loss function to capture the nuanced relationship between original and reconstructed EGG signals, complemented by a time-domain correlation loss to improve generalization and accuracy. Unlike conventional Encodec models that extract F0 directly from features, EGGCodec leverages reconstructed EGG signals, which more closely correspond to F0. By removing the conventional GAN discriminator, we streamline EGGCodec's training process without compromising efficiency, incurring only negligible performance degradation. Trained on a widely used EGG-inclusive dataset, extensive evaluations demonstrate that EGGCodec outperforms state-of-the-art F0 extraction schemes, reducing mean absolute error (MAE) from 14.14 Hz to 13.69 Hz, and improving voicing decision error (VDE) by 38.2\%. Moreover, extensive ablation experiments validate the contribution of each component of EGGCodec.
comment: 5 pages, 5 figures, to be appeared in IEEE Signal Processing Letters
☆ Shape Completion and Real-Time Visualization in Robotic Ultrasound Spine Acquisitions
Ultrasound (US) imaging is increasingly used in spinal procedures due to its real-time, radiation-free capabilities; however, its effectiveness is hindered by shadowing artifacts that obscure deeper tissue structures. Traditional approaches, such as CT-to-US registration, incorporate anatomical information from preoperative CT scans to guide interventions, but they are limited by complex registration requirements, differences in spine curvature, and the need for recent CT imaging. Recent shape completion methods can offer an alternative by reconstructing spinal structures in US data, while being pretrained on large set of publicly available CT scans. However, these approaches are typically offline and have limited reproducibility. In this work, we introduce a novel integrated system that combines robotic ultrasound with real-time shape completion to enhance spinal visualization. Our robotic platform autonomously acquires US sweeps of the lumbar spine, extracts vertebral surfaces from ultrasound, and reconstructs the complete anatomy using a deep learning-based shape completion network. This framework provides interactive, real-time visualization with the capability to autonomously repeat scans and can enable navigation to target locations. This can contribute to better consistency, reproducibility, and understanding of the underlying anatomy. We validate our approach through quantitative experiments assessing shape completion accuracy and evaluations of multiple spine acquisition protocols on a phantom setup. Additionally, we present qualitative results of the visualization on a volunteer scan.
☆ Munsit at NADI 2025 Shared Task 2: Pushing the Boundaries of Multidialectal Arabic ASR with Weakly Supervised Pretraining and Continual Supervised Fine-tuning
Automatic speech recognition (ASR) plays a vital role in enabling natural human-machine interaction across applications such as virtual assistants, industrial automation, customer support, and real-time transcription. However, developing accurate ASR systems for low-resource languages like Arabic remains a significant challenge due to limited labeled data and the linguistic complexity introduced by diverse dialects. In this work, we present a scalable training pipeline that combines weakly supervised learning with supervised fine-tuning to develop a robust Arabic ASR model. In the first stage, we pretrain the model on 15,000 hours of weakly labeled speech covering both Modern Standard Arabic (MSA) and various Dialectal Arabic (DA) variants. In the subsequent stage, we perform continual supervised fine-tuning using a mixture of filtered weakly labeled data and a small, high-quality annotated dataset. Our approach achieves state-of-the-art results, ranking first in the multi-dialectal Arabic ASR challenge. These findings highlight the effectiveness of weak supervision paired with fine-tuning in overcoming data scarcity and delivering high-quality ASR for low-resource, dialect-rich languages.
☆ Compass-Thinker-7B Technical Report
Recent R1-Zero-like research further demonstrates that reasoning extension has given large language models (LLMs) unprecedented reasoning capabilities, and Reinforcement Learning is the core technology to elicit its complex reasoning. However, conducting RL experiments directly on hyperscale models involves high computational costs and resource demands, posing significant risks. We propose the Compass-Thinker-7B model, which aims to explore the potential of Reinforcement Learning with less computational resources and costs, and provides insights for further research into RL recipes for larger models. Compass-Thinker-7B is trained from an open source model through a specially designed Reinforcement Learning Pipeline. we curate a dataset of 30k verifiable mathematics problems for the Reinforcement Learning Pipeline. By configuring data and training settings with different difficulty distributions for different stages, the potential of the model is gradually released and the training efficiency is improved. Extensive evaluations show that Compass-Thinker-7B possesses exceptional reasoning potential, and achieves superior performance on mathematics compared to the same-sized RL model.Especially in the challenging AIME2024 evaluation, Compass-Thinker-7B achieves 40% accuracy.
☆ ASPD: Unlocking Adaptive Serial-Parallel Decoding by Exploring Intrinsic Parallelism in LLMs
The increasing scale and complexity of large language models (LLMs) pose significant inference latency challenges, primarily due to their autoregressive decoding paradigm characterized by the sequential nature of next-token prediction. By re-examining the outputs of autoregressive models, we observed that some segments exhibit parallelizable structures, which we term intrinsic parallelism. Decoding each parallelizable branch simultaneously (i.e. parallel decoding) can significantly improve the overall inference speed of LLMs. In this paper, we propose an Adaptive Serial-Parallel Decoding (ASPD), which addresses two core challenges: automated construction of parallelizable data and efficient parallel decoding mechanism. More specifically, we introduce a non-invasive pipeline that automatically extracts and validates parallelizable structures from the responses of autoregressive models. To empower efficient adaptive serial-parallel decoding, we implement a Hybrid Decoding Engine which enables seamless transitions between serial and parallel decoding modes while maintaining a reusable KV cache, maximizing computational efficiency. Extensive evaluations across General Tasks, Retrieval-Augmented Generation, Mathematical Reasoning, demonstrate that ASPD achieves unprecedented performance in both effectiveness and efficiency. Notably, on Vicuna Bench, our method achieves up to 3.19x speedup (1.85x on average) while maintaining response quality within 1% difference compared to autoregressive models, realizing significant acceleration without compromising generation quality. Our framework sets a groundbreaking benchmark for efficient LLM parallel inference, paving the way for its deployment in latency-sensitive applications such as AI-powered customer service bots and answer retrieval engines.
comment: 20 pages, 9 figures
☆ Position: Causal Machine Learning Requires Rigorous Synthetic Experiments for Broader Adoption ICML 2025
Causal machine learning has the potential to revolutionize decision-making by combining the predictive power of machine learning algorithms with the theory of causal inference. However, these methods remain underutilized by the broader machine learning community, in part because current empirical evaluations do not permit assessment of their reliability and robustness, undermining their practical utility. Specifically, one of the principal criticisms made by the community is the extensive use of synthetic experiments. We argue, on the contrary, that synthetic experiments are essential and necessary to precisely assess and understand the capabilities of causal machine learning methods. To substantiate our position, we critically review the current evaluation practices, spotlight their shortcomings, and propose a set of principles for conducting rigorous empirical analyses with synthetic data. Adopting the proposed principles will enable comprehensive evaluations that build trust in causal machine learning methods, driving their broader adoption and impactful real-world use.
comment: Accepted at ICML 2025
☆ Reducing Cognitive Load in Multi-Agent Reinforcement Learning for Mathematical Problem Solving: Decoupling Reasoning and Code Generation
Current tool-integrated mathematical reasoning systems often adopt a single-agent paradigm, where one large language model handles problem reasoning, code generation, and code execution in an integrated workflow. While this design eases coordination, we hypothesize that it imposes cognitive load interference, as the agent must interleave long-horizon reasoning with precise program synthesis. We validate this hypothesis through a controlled comparison between a reasoning-only agent and a reasoning-plus-code agent, finding that the latter produces significantly fewer correct reasoning paths despite having tool-calling capabilities. To address this, we propose a dual-agent hybrid framework: a Reasoning Agent performs stepwise problem decomposition, and a Code Agent handles code generation and execution. Training combines imitation learning and reinforcement learning: the Code Agent receives strong rewards for matching intermediate ground-truth programs and weaker rewards for valid execution, while the Reasoning Agent is optimized chiefly via final-answer accuracy using advantage estimation to credit intermediate steps. This decoupled role design reduces cognitive interference and promotes stable reasoning-coding coordination.
☆ Entangled in Representations: Mechanistic Investigation of Cultural Biases in Large Language Models
The growing deployment of large language models (LLMs) across diverse cultural contexts necessitates a better understanding of how the overgeneralization of less documented cultures within LLMs' representations impacts their cultural understanding. Prior work only performs extrinsic evaluation of LLMs' cultural competence, without accounting for how LLMs' internal mechanisms lead to cultural (mis)representation. To bridge this gap, we propose Culturescope, the first mechanistic interpretability-based method that probes the internal representations of LLMs to elicit the underlying cultural knowledge space. CultureScope utilizes a patching method to extract the cultural knowledge. We introduce a cultural flattening score as a measure of the intrinsic cultural biases. Additionally, we study how LLMs internalize Western-dominance bias and cultural flattening, which allows us to trace how cultural biases emerge within LLMs. Our experimental results reveal that LLMs encode Western-dominance bias and cultural flattening in their cultural knowledge space. We find that low-resource cultures are less susceptible to cultural biases, likely due to their limited training resources. Our work provides a foundation for future research on mitigating cultural biases and enhancing LLMs' cultural understanding. Our codes and data used for experiments are publicly available.
comment: 16 pages, 7 figures
☆ Oblivionis: A Lightweight Learning and Unlearning Framework for Federated Large Language Models
Large Language Models (LLMs) increasingly leverage Federated Learning (FL) to utilize private, task-specific datasets for fine-tuning while preserving data privacy. However, while federated LLM frameworks effectively enable collaborative training without raw data sharing, they critically lack built-in mechanisms for regulatory compliance like GDPR's right to be forgotten. Integrating private data heightens concerns over data quality and long-term governance, yet existing distributed training frameworks offer no principled way to selectively remove specific client contributions post-training. Due to distributed data silos, stringent privacy constraints, and the intricacies of interdependent model aggregation, federated LLM unlearning is significantly more complex than centralized LLM unlearning. To address this gap, we introduce Oblivionis, a lightweight learning and unlearning framework that enables clients to selectively remove specific private data during federated LLM training, enhancing trustworthiness and regulatory compliance. By unifying FL and unlearning as a dual optimization objective, we incorporate 6 FL and 5 unlearning algorithms for comprehensive evaluation and comparative analysis, establishing a robust pipeline for federated LLM unlearning. Extensive experiments demonstrate that Oblivionis outperforms local training, achieving a robust balance between forgetting efficacy and model utility, with cross-algorithm comparisons providing clear directions for future LLM development.
☆ BiasGym: Fantastic Biases and How to Find (and Remove) Them
Understanding biases and stereotypes encoded in the weights of Large Language Models (LLMs) is crucial for developing effective mitigation strategies. Biased behaviour is often subtle and non-trivial to isolate, even when deliberately elicited, making systematic analysis and debiasing particularly challenging. To address this, we introduce BiasGym, a simple, cost-effective, and generalizable framework for reliably injecting, analyzing, and mitigating conceptual associations within LLMs. BiasGym consists of two components: BiasInject, which injects specific biases into the model via token-based fine-tuning while keeping the model frozen, and BiasScope, which leverages these injected signals to identify and steer the components responsible for biased behavior. Our method enables consistent bias elicitation for mechanistic analysis, supports targeted debiasing without degrading performance on downstream tasks, and generalizes to biases unseen during training. We demonstrate the effectiveness of BiasGym in reducing real-world stereotypes (e.g., people from a country being `reckless drivers') and in probing fictional associations (e.g., people from a country having `blue skin'), showing its utility for both safety interventions and interpretability research.
comment: Under review
☆ Steering Towards Fairness: Mitigating Political Bias in LLMs
Recent advancements in large language models (LLMs) have enabled their widespread use across diverse real-world applications. However, concerns remain about their tendency to encode and reproduce ideological biases, particularly along political and economic dimensions. In this paper, we propose a framework for probing and mitigating such biases in decoder-based LLMs through analysis of internal model representations. Grounded in the Political Compass Test (PCT), our method uses contrastive pairs to extract and compare hidden layer activations from models like Mistral and DeepSeek. We introduce a comprehensive activation extraction pipeline capable of layer-wise analysis across multiple ideological axes, revealing meaningful disparities linked to political framing. Our results show that decoder LLMs systematically encode representational bias across layers, which can be leveraged for effective steering vector-based mitigation. This work provides new insights into how political bias is encoded in LLMs and offers a principled approach to debiasing beyond surface-level output interventions.
comment: Preprint
☆ The Roots of International Perceptions: Simulating US Attitude Changes Towards China with LLM Agents AAAI
The rise of LLMs poses new possibilities in modeling opinion evolution, a long-standing task in simulation, by leveraging advanced reasoning abilities to recreate complex, large-scale human cognitive trends. While most prior works focus on opinion evolution surrounding specific isolated events or the views within a country, ours is the first to model the large-scale attitude evolution of a population representing an entire country towards another -- US citizens' perspectives towards China. To tackle the challenges of this broad scenario, we propose a framework that integrates media data collection, user profile creation, and cognitive architecture for opinion updates to successfully reproduce the real trend of US attitudes towards China over a 20-year period from 2005 to today. We also leverage LLMs' capabilities to introduce debiased media exposure, extracting neutral events from typically subjective news contents, to uncover the roots of polarized opinion formation, as well as a devils advocate agent to help explain the rare reversal from negative to positive attitudes towards China, corresponding with changes in the way Americans obtain information about the country. The simulation results, beyond validating our framework architecture, also reveal the impact of biased framing and selection bias in shaping attitudes. Overall, our work contributes to a new paradigm for LLM-based modeling of cognitive behaviors in a large-scale, long-term, cross-border social context, providing insights into the formation of international biases and offering valuable implications for media consumers to better understand the factors shaping their perspectives, and ultimately contributing to the larger social need for bias reduction and cross-cultural tolerance.
comment: Submitted to AAAI Social Impact 2026
☆ EditMF: Drawing an Invisible Fingerprint for Your Large Language Models
Training large language models (LLMs) is resource-intensive and expensive, making protecting intellectual property (IP) for LLMs crucial. Recently, embedding fingerprints into LLMs has emerged as a prevalent method for establishing model ownership. However, existing back-door-based methods suffer from limited stealth and efficiency. To simultaneously address these issues, we propose EditMF, a training-free fingerprinting paradigm that achieves highly imperceptible fingerprint embedding with minimal computational overhead. Ownership bits are mapped to compact, semantically coherent triples drawn from an encrypted artificial knowledge base (e.g., virtual author-novel-protagonist facts). Causal tracing localizes the minimal set of layers influencing each triple, and a zero-space update injects the fingerprint without perturbing unrelated knowledge. Verification requires only a single black-box query and succeeds when the model returns the exact pre-embedded protagonist. Empirical results on LLaMA and Qwen families show that EditMF combines high imperceptibility with negligible model's performance loss, while delivering robustness far beyond LoRA-based fingerprinting and approaching that of SFT embeddings. Extensive experiments demonstrate that EditMF is an effective and low-overhead solution for secure LLM ownership verification.
comment: 8 pages, 2 figures
☆ An Investigation of Robustness of LLMs in Mathematical Reasoning: Benchmarking with Mathematically-Equivalent Transformation of Advanced Mathematical Problems
In this paper, we introduce a systematic framework beyond conventional method to assess LLMs' mathematical-reasoning robustness by stress-testing them on advanced math problems that are mathematically equivalent but with linguistic and parametric variation. These transformations allow us to measure the sensitivity of LLMs to non-mathematical perturbations, thereby enabling a more accurate evaluation of their mathematical reasoning capabilities. Using this new evaluation methodology, we created PutnamGAP, a new benchmark dataset with multiple mathematically-equivalent variations of competition-level math problems. With the new dataset, we evaluate multiple families of representative LLMs and examine their robustness. Across 18 commercial and open-source models we observe sharp performance degradation on the variants. OpenAI's flagship reasoning model, O3, scores 49 % on the originals but drops by 4 percentage points on surface variants, and by 10.5 percentage points on core-step-based variants, while smaller models fare far worse. Overall, the results show that the proposed new evaluation methodology is effective for deepening our understanding of the robustness of LLMs and generating new insights for further improving their mathematical reasoning capabilities.
comment: 16 pages, 8 figures
☆ Silicon Minds versus Human Hearts: The Wisdom of Crowds Beats the Wisdom of AI in Emotion Recognition
The ability to discern subtle emotional cues is fundamental to human social intelligence. As artificial intelligence (AI) becomes increasingly common, AI's ability to recognize and respond to human emotions is crucial for effective human-AI interactions. In particular, whether such systems can match or surpass human experts remains to be seen. However, the emotional intelligence of AI, particularly multimodal large language models (MLLMs), remains largely unexplored. This study evaluates the emotion recognition abilities of MLLMs using the Reading the Mind in the Eyes Test (RMET) and its multiracial counterpart (MRMET), and compares their performance against human participants. Results show that, on average, MLLMs outperform humans in accurately identifying emotions across both tests. This trend persists even when comparing performance across low, medium, and expert-level performing groups. Yet when we aggregate independent human decisions to simulate collective intelligence, human groups significantly surpass the performance of aggregated MLLM predictions, highlighting the wisdom of the crowd. Moreover, a collaborative approach (augmented intelligence) that combines human and MLLM predictions achieves greater accuracy than either humans or MLLMs alone. These results suggest that while MLLMs exhibit strong emotion recognition at the individual level, the collective intelligence of humans and the synergistic potential of human-AI collaboration offer the most promising path toward effective emotional AI. We discuss the implications of these findings for the development of emotionally intelligent AI systems and future research directions.
☆ Geometry-Aware Global Feature Aggregation for Real-Time Indirect Illumination
Real-time rendering with global illumination is crucial to afford the user realistic experience in virtual environments. We present a learning-based estimator to predict diffuse indirect illumination in screen space, which then is combined with direct illumination to synthesize globally-illuminated high dynamic range (HDR) results. Our approach tackles the challenges of capturing long-range/long-distance indirect illumination when employing neural networks and is generalized to handle complex lighting and scenarios. From the neural network thinking of the solver to the rendering equation, we present a novel network architecture to predict indirect illumination. Our network is equipped with a modified attention mechanism that aggregates global information guided by spacial geometry features, as well as a monochromatic design that encodes each color channel individually. We conducted extensive evaluations, and the experimental results demonstrate our superiority over previous learning-based techniques. Our approach excels at handling complex lighting such as varying-colored lighting and environment lighting. It can successfully capture distant indirect illumination and simulates the interreflections between textured surfaces well (i.e., color bleeding effects); it can also effectively handle new scenes that are not present in the training dataset.
comment: 10 pages
☆ Wavelet Mixture of Experts for Time Series Forecasting
The field of time series forecasting is rapidly advancing, with recent large-scale Transformers and lightweight Multilayer Perceptron (MLP) models showing strong predictive performance. However, conventional Transformer models are often hindered by their large number of parameters and their limited ability to capture non-stationary features in data through smoothing. Similarly, MLP models struggle to manage multi-channel dependencies effectively. To address these limitations, we propose a novel, lightweight time series prediction model, WaveTS-B. This model combines wavelet transforms with MLP to capture both periodic and non-stationary characteristics of data in the wavelet domain. Building on this foundation, we propose a channel clustering strategy that incorporates a Mixture of Experts (MoE) framework, utilizing a gating mechanism and expert network to handle multi-channel dependencies efficiently. We propose WaveTS-M, an advanced model tailored for multi-channel time series prediction. Empirical evaluation across eight real-world time series datasets demonstrates that our WaveTS series models achieve state-of-the-art (SOTA) performance with significantly fewer parameters. Notably, WaveTS-M shows substantial improvements on multi-channel datasets, highlighting its effectiveness.
☆ OISMA: On-the-fly In-memory Stochastic Multiplication Architecture for Matrix-Multiplication Workloads
Artificial Intelligence models are currently driven by a significant up-scaling of their complexity, with massive matrix multiplication workloads representing the major computational bottleneck. In-memory computing architectures are proposed to avoid the Von Neumann bottleneck. However, both digital/binary-based and analogue in-memory computing architectures suffer from various limitations, which significantly degrade the performance and energy efficiency gains. This work proposes OISMA, a novel in-memory computing architecture that utilizes the computational simplicity of a quasi-stochastic computing domain (Bent-Pyramid system), while keeping the same efficiency, scalability, and productivity of digital memories. OISMA converts normal memory read operations into in-situ stochastic multiplication operations with a negligible cost. An accumulation periphery then accumulates the output multiplication bitstreams, achieving the matrix multiplication functionality. Extensive matrix multiplication benchmarking was conducted to analyze the accuracy of the Bent-Pyramid system, using matrix dimensions ranging from 4x4 to 512x512. The accuracy results show a significant decrease in the average relative Frobenius error, from 9.42% (for 4x4) to 1.81% (for 512x512), compared to 64-bit double precision floating-point format. A 1T1R OISMA array of 4 KB capacity was implemented using a commercial 180nm technology node and in-house RRAM technology. At 50 MHz, OISMA achieves 0.891 TOPS/W and 3.98 GOPS/mm2 for energy and area efficiency, respectively, occupying an effective computing area of 0.804241 mm2. Scaling OISMA from 180nm to 22nm technology shows a significant improvement of two orders of magnitude in energy efficiency and one order of magnitude in area efficiency, compared to dense matrix multiplication in-memory computing architectures.
comment: 12 pages, 13 figures. This work has been submitted to the IEEE for possible publication
☆ Efficient Agent: Optimizing Planning Capability for Multimodal Retrieval Augmented Generation
Multimodal Retrieval-Augmented Generation (mRAG) has emerged as a promising solution to address the temporal limitations of Multimodal Large Language Models (MLLMs) in real-world scenarios like news analysis and trending topics. However, existing approaches often suffer from rigid retrieval strategies and under-utilization of visual information. To bridge this gap, we propose E-Agent, an agent framework featuring two key innovations: a mRAG planner trained to dynamically orchestrate multimodal tools based on contextual reasoning, and a task executor employing tool-aware execution sequencing to implement optimized mRAG workflows. E-Agent adopts a one-time mRAG planning strategy that enables efficient information retrieval while minimizing redundant tool invocations. To rigorously assess the planning capabilities of mRAG systems, we introduce the Real-World mRAG Planning (RemPlan) benchmark. This novel benchmark contains both retrieval-dependent and retrieval-independent question types, systematically annotated with essential retrieval tools required for each instance. The benchmark's explicit mRAG planning annotations and diverse question design enhance its practical relevance by simulating real-world scenarios requiring dynamic mRAG decisions. Experiments across RemPlan and three established benchmarks demonstrate E-Agent's superiority: 13% accuracy gain over state-of-the-art mRAG methods while reducing redundant searches by 37%.
☆ GRainsaCK: a Comprehensive Software Library for Benchmarking Explanations of Link Prediction Tasks on Knowledge Graphs
Since Knowledge Graphs are often incomplete, link prediction methods are adopted for predicting missing facts. Scalable embedding based solutions are mostly adopted for this purpose, however, they lack comprehensibility, which may be crucial in several domains. Explanation methods tackle this issue by identifying supporting knowledge explaining the predicted facts. Regretfully, evaluating/comparing quantitatively the resulting explanations is challenging as there is no standard evaluation protocol and overall benchmarking resource. We fill this important gap by proposing GRainsaCK, a reusable software resource that fully streamlines all the tasks involved in benchmarking explanations, i.e., from model training to evaluation of explanations along the same evaluation protocol. Moreover, GRainsaCK furthers modularity/extensibility by implementing the main components as functions that can be easily replaced. Finally, fostering its reuse, we provide extensive documentation including a tutorial.
☆ Not in My Backyard! Temporal Voting Over Public Chores IJCAI
We study a temporal voting model where voters have dynamic preferences over a set of public chores -- projects that benefit society, but impose individual costs on those affected by their implementation. We investigate the computational complexity of optimizing utilitarian and egalitarian welfare. Our results show that while optimizing the former is computationally straightforward, minimizing the latter is computationally intractable, even in very restricted cases. Nevertheless, we identify several settings where this problem can be solved efficiently, either exactly or by an approximation algorithm. We also examine the effects of enforcing temporal fairness and its impact on social welfare, and analyze the competitive ratio of online algorithms. We then explore the strategic behavior of agents, providing insights into potential malfeasance in such decision-making environments. Finally, we discuss a range of fairness measures and their suitability for our setting.
comment: Appears in the 34th International Joint Conference on Artificial Intelligence (IJCAI), 2025
☆ Opening Musical Creativity? Embedded Ideologies in Generative-AI Music Systems
AI systems for music generation are increasingly common and easy to use, granting people without any musical background the ability to create music. Because of this, generative-AI has been marketed and celebrated as a means of democratizing music making. However, inclusivity often functions as marketable rhetoric rather than a genuine guiding principle in these industry settings. In this paper, we look at four generative-AI music making systems available to the public as of mid-2025 (AIVA, Stable Audio, Suno, and Udio) and track how they are rhetoricized by their developers, and received by users. Our aim is to investigate ideologies that are driving the early-stage development and adoption of generative-AI in music making, with a particular focus on democratization. A combination of autoethnography and digital ethnography is used to examine patterns and incongruities in rhetoric when positioned against product functionality. The results are then collated to develop a nuanced, contextual discussion. The shared ideology we map between producers and consumers is individualist, globalist, techno-liberal, and ethically evasive. It is a 'total ideology' which obfuscates individual responsibility, and through which the nature of music and musical practice is transfigured to suit generative outcomes.
comment: Extended version of the presentation at The First International Conference in AI Music Studies 2024
☆ TechOps: Technical Documentation Templates for the AI Act
Operationalizing the EU AI Act requires clear technical documentation to ensure AI systems are transparent, traceable, and accountable. Existing documentation templates for AI systems do not fully cover the entire AI lifecycle while meeting the technical documentation requirements of the AI Act. This paper addresses those shortcomings by introducing open-source templates and examples for documenting data, models, and applications to provide sufficient documentation for certifying compliance with the AI Act. These templates track the system status over the entire AI lifecycle, ensuring traceability, reproducibility, and compliance with the AI Act. They also promote discoverability and collaboration, reduce risks, and align with best practices in AI documentation and governance. The templates are evaluated and refined based on user feedback to enable insights into their usability and implementability. We then validate the approach on real-world scenarios, providing examples that further guide their implementation: the data template is followed to document a skin tones dataset created to support fairness evaluations of downstream computer vision models and human-centric applications; the model template is followed to document a neural network for segmenting human silhouettes in photos. The application template is tested on a system deployed for construction site safety using real-time video analytics and sensor data. Our results show that TechOps can serve as a practical tool to enable oversight for regulatory compliance and responsible AI development.
☆ A Dual-Axis Taxonomy of Knowledge Editing for LLMs: From Mechanisms to Functions
Large language models (LLMs) acquire vast knowledge from large text corpora, but this information can become outdated or inaccurate. Since retraining is computationally expensive, knowledge editing offers an efficient alternative -- modifying internal knowledge without full retraining. These methods aim to update facts precisely while preserving the model's overall capabilities. While existing surveys focus on the mechanism of editing (e.g., parameter changes vs. external memory), they often overlook the function of the knowledge being edited. This survey introduces a novel, complementary function-based taxonomy to provide a more holistic view. We examine how different mechanisms apply to various knowledge types -- factual, temporal, conceptual, commonsense, and social -- highlighting how editing effectiveness depends on the nature of the target knowledge. By organizing our review along these two axes, we map the current landscape, outline the strengths and limitations of existing methods, define the problem formally, survey evaluation tasks and datasets, and conclude with open challenges and future directions.
comment: 13 pages, 1 figure
☆ Feedback-Driven Tool-Use Improvements in Large Language Models via Automated Build Environments
Effective tool use is essential for large language models (LLMs) to interact meaningfully with their environment. However, progress is limited by the lack of efficient reinforcement learning (RL) frameworks specifically designed for tool use, due to challenges in constructing stable training environments and designing verifiable reward mechanisms. To address this, we propose an automated environment construction pipeline, incorporating scenario decomposition, document generation, function integration, complexity scaling, and localized deployment. This enables the creation of high-quality training environments that provide detailed and measurable feedback without relying on external tools. Additionally, we introduce a verifiable reward mechanism that evaluates both the precision of tool use and the completeness of task execution. When combined with trajectory data collected from the constructed environments, this mechanism integrates seamlessly with standard RL algorithms to facilitate feedback-driven model training. Experiments on LLMs of varying scales demonstrate that our approach significantly enhances the models' tool-use performance without degrading their general capabilities, regardless of inference modes or training algorithms. Our analysis suggests that these gains result from improved context understanding and reasoning, driven by updates to the lower-layer MLP parameters in models.
☆ ReQuestNet: A Foundational Learning model for Channel Estimation
In this paper, we present a novel neural architecture for channel estimation (CE) in 5G and beyond, the Recurrent Equivariant UERS Estimation Network (ReQuestNet). It incorporates several practical considerations in wireless communication systems, such as ability to handle variable number of resource block (RB), dynamic number of transmit layers, physical resource block groups (PRGs) bundling size (BS), demodulation reference signal (DMRS) patterns with a single unified model, thereby, drastically simplifying the CE pipeline. Besides it addresses several limitations of the legacy linear MMSE solutions, for example, by being independent of other reference signals and particularly by jointly processing MIMO layers and differently precoded channels with unknown precoding at the receiver. ReQuestNet comprises of two sub-units, CoarseNet followed by RefinementNet. CoarseNet performs per PRG, per transmit-receive (Tx-Rx) stream channel estimation, while RefinementNet refines the CoarseNet channel estimate by incorporating correlations across differently precoded PRGs, and correlation across multiple input multiple output (MIMO) channel spatial dimensions (cross-MIMO). Simulation results demonstrate that ReQuestNet significantly outperforms genie minimum mean squared error (MMSE) CE across a wide range of channel conditions, delay-Doppler profiles, achieving up to 10dB gain at high SNRs. Notably, ReQuestNet generalizes effectively to unseen channel profiles, efficiently exploiting inter-PRG and cross-MIMO correlations under dynamic PRG BS and varying transmit layer allocations.
comment: Accepted at IEEE Globecom 2025. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ Evaluating Podcast Recommendations with Profile-Aware LLM-as-a-Judge RecSys '25
Evaluating personalized recommendations remains a central challenge, especially in long-form audio domains like podcasts, where traditional offline metrics suffer from exposure bias and online methods such as A/B testing are costly and operationally constrained. In this paper, we propose a novel framework that leverages Large Language Models (LLMs) as offline judges to assess the quality of podcast recommendations in a scalable and interpretable manner. Our two-stage profile-aware approach first constructs natural-language user profiles distilled from 90 days of listening history. These profiles summarize both topical interests and behavioral patterns, serving as compact, interpretable representations of user preferences. Rather than prompting the LLM with raw data, we use these profiles to provide high-level, semantically rich context-enabling the LLM to reason more effectively about alignment between a user's interests and recommended episodes. This reduces input complexity and improves interpretability. The LLM is then prompted to deliver fine-grained pointwise and pairwise judgments based on the profile-episode match. In a controlled study with 47 participants, our profile-aware judge matched human judgments with high fidelity and outperformed or matched a variant using raw listening histories. The framework enables efficient, profile-aware evaluation for iterative testing and model selection in recommender systems.
comment: Accepted at RecSys '25
☆ Designing Memory-Augmented AR Agents for Spatiotemporal Reasoning in Personalized Task Assistance
Augmented Reality (AR) systems are increasingly integrating foundation models, such as Multimodal Large Language Models (MLLMs), to provide more context-aware and adaptive user experiences. This integration has led to the development of AR agents to support intelligent, goal-directed interactions in real-world environments. While current AR agents effectively support immediate tasks, they struggle with complex multi-step scenarios that require understanding and leveraging user's long-term experiences and preferences. This limitation stems from their inability to capture, retain, and reason over historical user interactions in spatiotemporal contexts. To address these challenges, we propose a conceptual framework for memory-augmented AR agents that can provide personalized task assistance by learning from and adapting to user-specific experiences over time. Our framework consists of four interconnected modules: (1) Perception Module for multimodal sensor processing, (2) Memory Module for persistent spatiotemporal experience storage, (3) Spatiotemporal Reasoning Module for synthesizing past and present contexts, and (4) Actuator Module for effective AR communication. We further present an implementation roadmap, a future evaluation strategy, a potential target application and use cases to demonstrate the practical applicability of our framework across diverse domains. We aim for this work to motivate future research toward developing more intelligent AR systems that can effectively bridge user's interaction history with adaptive, context-aware task assistance.
comment: 7 pages, 2 figures
☆ Bridging the Gap: A Framework for Real-World Video Deepfake Detection via Social Network Compression Emulation
The growing presence of AI-generated videos on social networks poses new challenges for deepfake detection, as detectors trained under controlled conditions often fail to generalize to real-world scenarios. A key factor behind this gap is the aggressive, proprietary compression applied by platforms like YouTube and Facebook, which launder low-level forensic cues. However, replicating these transformations at scale is difficult due to API limitations and data-sharing constraints. For these reasons, we propose a first framework that emulates the video sharing pipelines of social networks by estimating compression and resizing parameters from a small set of uploaded videos. These parameters enable a local emulator capable of reproducing platform-specific artifacts on large datasets without direct API access. Experiments on FaceForensics++ videos shared via social networks demonstrate that our emulated data closely matches the degradation patterns of real uploads. Furthermore, detectors fine-tuned on emulated videos achieve comparable performance to those trained on actual shared media. Our approach offers a scalable and practical solution for bridging the gap between lab-based training and real-world deployment of deepfake detectors, particularly in the underexplored domain of compressed video content.
☆ DevNous: An LLM-Based Multi-Agent System for Grounding IT Project Management in Unstructured Conversation
The manual translation of unstructured team dialogue into the structured artifacts required for Information Technology (IT) project governance is a critical bottleneck in modern information systems management. We introduce DevNous, a Large Language Model-based (LLM) multi-agent expert system, to automate this unstructured-to-structured translation process. DevNous integrates directly into team chat environments, identifying actionable intents from informal dialogue and managing stateful, multi-turn workflows for core administrative tasks like automated task formalization and progress summary synthesis. To quantitatively evaluate the system, we introduce a new benchmark of 160 realistic, interactive conversational turns. The dataset was manually annotated with a multi-label ground truth and is publicly available. On this benchmark, DevNous achieves an exact match turn accuracy of 81.3\% and a multiset F1-Score of 0.845, providing strong evidence for its viability. The primary contributions of this work are twofold: (1) a validated architectural pattern for developing ambient administrative agents, and (2) the introduction of the first robust empirical baseline and public benchmark dataset for this challenging problem domain.
☆ Visual Prompting for Robotic Manipulation with Annotation-Guided Pick-and-Place Using ACT
Robotic pick-and-place tasks in convenience stores pose challenges due to dense object arrangements, occlusions, and variations in object properties such as color, shape, size, and texture. These factors complicate trajectory planning and grasping. This paper introduces a perception-action pipeline leveraging annotation-guided visual prompting, where bounding box annotations identify both pickable objects and placement locations, providing structured spatial guidance. Instead of traditional step-by-step planning, we employ Action Chunking with Transformers (ACT) as an imitation learning algorithm, enabling the robotic arm to predict chunked action sequences from human demonstrations. This facilitates smooth, adaptive, and data-driven pick-and-place operations. We evaluate our system based on success rate and visual analysis of grasping behavior, demonstrating improved grasp accuracy and adaptability in retail environments.
☆ SciRerankBench: Benchmarking Rerankers Towards Scientific Retrieval-Augmented Generated LLMs
Scientific literature question answering is a pivotal step towards new scientific discoveries. Recently, \textit{two-stage} retrieval-augmented generated large language models (RAG-LLMs) have shown impressive advancements in this domain. Such a two-stage framework, especially the second stage (reranker), is particularly essential in the scientific domain, where subtle differences in terminology may have a greatly negative impact on the final factual-oriented or knowledge-intensive answers. Despite this significant progress, the potential and limitations of these works remain unexplored. In this work, we present a Scientific Rerank-oriented RAG Benchmark (SciRerankBench), for evaluating rerankers within RAG-LLMs systems, spanning five scientific subjects. To rigorously assess the reranker performance in terms of noise resilience, relevance disambiguation, and factual consistency, we develop three types of question-context-answer (Q-C-A) pairs, i.e., Noisy Contexts (NC), Semantically Similar but Logically Irrelevant Contexts (SSLI), and Counterfactual Contexts (CC). Through systematic evaluation of 13 widely used rerankers on five families of LLMs, we provide detailed insights into their relative strengths and limitations. To the best of our knowledge, SciRerankBench is the first benchmark specifically developed to evaluate rerankers within RAG-LLMs, which provides valuable observations and guidance for their future development.
☆ Simulating Generative Social Agents via Theory-Informed Workflow Design
Recent advances in large language models have demonstrated strong reasoning and role-playing capabilities, opening new opportunities for agent-based social simulations. However, most existing agents' implementations are scenario-tailored, without a unified framework to guide the design. This lack of a general social agent limits their ability to generalize across different social contexts and to produce consistent, realistic behaviors. To address this challenge, we propose a theory-informed framework that provides a systematic design process for LLM-based social agents. Our framework is grounded in principles from Social Cognition Theory and introduces three key modules: motivation, action planning, and learning. These modules jointly enable agents to reason about their goals, plan coherent actions, and adapt their behavior over time, leading to more flexible and contextually appropriate responses. Comprehensive experiments demonstrate that our theory-driven agents reproduce realistic human behavior patterns under complex conditions, achieving up to 75% lower deviation from real-world behavioral data across multiple fidelity metrics compared to classical generative baselines. Ablation studies further show that removing motivation, planning, or learning modules increases errors by 1.5 to 3.2 times, confirming their distinct and essential contributions to generating realistic and coherent social behaviors.
☆ IROTE: Human-like Traits Elicitation of Large Language Model via In-Context Self-Reflective Optimization
Trained on various human-authored corpora, Large Language Models (LLMs) have demonstrated a certain capability of reflecting specific human-like traits (e.g., personality or values) by prompting, benefiting applications like personalized LLMs and social simulations. However, existing methods suffer from the superficial elicitation problem: LLMs can only be steered to mimic shallow and unstable stylistic patterns, failing to embody the desired traits precisely and consistently across diverse tasks like humans. To address this challenge, we propose IROTE, a novel in-context method for stable and transferable trait elicitation. Drawing on psychological theories suggesting that traits are formed through identity-related reflection, our method automatically generates and optimizes a textual self-reflection within prompts, which comprises self-perceived experience, to stimulate LLMs' trait-driven behavior. The optimization is performed by iteratively maximizing an information-theoretic objective that enhances the connections between LLMs' behavior and the target trait, while reducing noisy redundancy in reflection without any fine-tuning, leading to evocative and compact trait reflection. Extensive experiments across three human trait systems manifest that one single IROTE-generated self-reflection can induce LLMs' stable impersonation of the target trait across diverse downstream tasks beyond simple questionnaire answering, consistently outperforming existing strong baselines.
☆ Generative Modeling for Robust Deep Reinforcement Learning on the Traveling Salesman Problem
The Traveling Salesman Problem (TSP) is a classic NP-hard combinatorial optimization task with numerous practical applications. Classic heuristic solvers can attain near-optimal performance for small problem instances, but become computationally intractable for larger problems. Real-world logistics problems such as dynamically re-routing last-mile deliveries demand a solver with fast inference time, which has led researchers to investigate specialized neural network solvers. However, neural networks struggle to generalize beyond the synthetic data they were trained on. In particular, we show that there exist TSP distributions that are realistic in practice, which also consistently lead to poor worst-case performance for existing neural approaches. To address this issue of distribution robustness, we present Combinatorial Optimization with Generative Sampling (COGS), where training data is sampled from a generative TSP model. We show that COGS provides better data coverage and interpolation in the space of TSP training distributions. We also present TSPLib50, a dataset of realistically distributed TSP samples, which tests real-world generalization ability without conflating this issue with instance size. We evaluate our method on various synthetic datasets as well as TSPLib50, and compare to state-of-the-art neural baselines. We demonstrate that COGS improves distribution robustness, with most performance gains coming from worst-case scenarios.
comment: 9 pages, 8 figures
☆ MultiAiTutor: Child-Friendly Educational Multilingual Speech Generation Tutor with LLMs
Generative speech models have demonstrated significant potential in personalizing teacher-student interactions, offering valuable real-world applications for language learning in children's education. However, achieving high-quality, child-friendly speech generation remains challenging, particularly for low-resource languages across diverse languages and cultural contexts. In this paper, we propose MultiAiTutor, an educational multilingual generative AI tutor with child-friendly designs, leveraging LLM architecture for speech generation tailored for educational purposes. We propose to integrate age-appropriate multilingual speech generation using LLM architectures, facilitating young children's language learning through culturally relevant image-description tasks in three low-resource languages: Singaporean-accent Mandarin, Malay, and Tamil. Experimental results from both objective metrics and subjective evaluations demonstrate the superior performance of the proposed MultiAiTutor compared to baseline methods.
comment: 5 figures
☆ SafeFix: Targeted Model Repair via Controlled Image Generation
Deep learning models for visual recognition often exhibit systematic errors due to underrepresented semantic subpopulations. Although existing debugging frameworks can pinpoint these failures by identifying key failure attributes, repairing the model effectively remains difficult. Current solutions often rely on manually designed prompts to generate synthetic training images -- an approach prone to distribution shift and semantic errors. To overcome these challenges, we introduce a model repair module that builds on an interpretable failure attribution pipeline. Our approach uses a conditional text-to-image model to generate semantically faithful and targeted images for failure cases. To preserve the quality and relevance of the generated samples, we further employ a large vision-language model (LVLM) to filter the outputs, enforcing alignment with the original data distribution and maintaining semantic consistency. By retraining vision models with this rare-case-augmented synthetic dataset, we significantly reduce errors associated with rare cases. Our experiments demonstrate that this targeted repair strategy improves model robustness without introducing new bugs. Code is available at https://github.com/oxu2/SafeFix
☆ STELAR-VISION: Self-Topology-Aware Efficient Learning for Aligned Reasoning in Vision
Vision-language models (VLMs) have made significant strides in reasoning, yet they often struggle with complex multimodal tasks and tend to generate overly verbose outputs. A key limitation is their reliance on chain-of-thought (CoT) reasoning, despite many tasks benefiting from alternative topologies like trees or graphs. To address this, we introduce STELAR-Vision, a training framework for topology-aware reasoning. At its core is TopoAug, a synthetic data pipeline that enriches training with diverse topological structures. Using supervised fine-tuning and reinforcement learning, we post-train Qwen2VL models with both accuracy and efficiency in mind. Additionally, we propose Frugal Learning, which reduces output length with minimal accuracy loss. On MATH-V and VLM-S2H, STELAR-Vision improves accuracy by 9.7% over its base model and surpasses the larger Qwen2VL-72B-Instruct by 7.3%. On five out-of-distribution benchmarks, it outperforms Phi-4-Multimodal-Instruct by up to 28.4% and LLaMA-3.2-11B-Vision-Instruct by up to 13.2%, demonstrating strong generalization. Compared to Chain-Only training, our approach achieves 4.3% higher overall accuracy on in-distribution datasets and consistently outperforms across all OOD benchmarks. We have released datasets, and code will be available.
☆ MMIF-AMIN: Adaptive Loss-Driven Multi-Scale Invertible Dense Network for Multimodal Medical Image Fusion
Multimodal medical image fusion (MMIF) aims to integrate images from different modalities to produce a comprehensive image that enhances medical diagnosis by accurately depicting organ structures, tissue textures, and metabolic information. Capturing both the unique and complementary information across multiple modalities simultaneously is a key research challenge in MMIF. To address this challenge, this paper proposes a novel image fusion method, MMIF-AMIN, which features a new architecture that can effectively extract these unique and complementary features. Specifically, an Invertible Dense Network (IDN) is employed for lossless feature extraction from individual modalities. To extract complementary information between modalities, a Multi-scale Complementary Feature Extraction Module (MCFEM) is designed, which incorporates a hybrid attention mechanism, convolutional layers of varying sizes, and Transformers. An adaptive loss function is introduced to guide model learning, addressing the limitations of traditional manually-designed loss functions and enhancing the depth of data mining. Extensive experiments demonstrate that MMIF-AMIN outperforms nine state-of-the-art MMIF methods, delivering superior results in both quantitative and qualitative analyses. Ablation experiments confirm the effectiveness of each component of the proposed method. Additionally, extending MMIF-AMIN to other image fusion tasks also achieves promising performance.
comment: 10 pages, 6 figures,conference
☆ Imposing AI: Deceptive design patterns against sustainability
Generative AI is being massively deployed in digital services, at a scale that will result in significant environmental harm. We document how tech companies are transforming established user interfaces to impose AI use and show how and to what extent these strategies fit within established deceptive pattern categories. We identify two main design strategies that are implemented to impose AI use in both personal and professional contexts: imposing AI features in interfaces at the expense of existing non-AI features and promoting narratives about AI that make it harder to resist using it. We discuss opportunities for regulating the imposed adoption of AI features, which would inevitably lead to negative environmental effects.
☆ Hallucinations in Code Change to Natural Language Generation: Prevalence and Evaluation of Detection Metrics
Language models have shown strong capabilities across a wide range of tasks in software engineering, such as code generation, yet they suffer from hallucinations. While hallucinations have been studied independently in natural language and code generation, their occurrence in tasks involving code changes which have a structurally complex and context-dependent format of code remains largely unexplored. This paper presents the first comprehensive analysis of hallucinations in two critical tasks involving code change to natural language generation: commit message generation and code review comment generation. We quantify the prevalence of hallucinations in recent language models and explore a range of metric-based approaches to automatically detect them. Our findings reveal that approximately 50\% of generated code reviews and 20\% of generated commit messages contain hallucinations. Whilst commonly used metrics are weak detectors on their own, combining multiple metrics substantially improves performance. Notably, model confidence and feature attribution metrics effectively contribute to hallucination detection, showing promise for inference-time detection.\footnote{All code and data will be released upon acceptance.
comment: 8 main pages, 5 figures
☆ Hybrid Node-Destroyer Model with Large Neighborhood Search for Solving the Capacitated Vehicle Routing Problem
In this research, we propose an iterative learning hybrid optimization solver developed to strengthen the performance of metaheuristic algorithms in solving the Capacitated Vehicle Routing Problem (CVRP). The iterative hybrid mechanism integrates the proposed Node-Destroyer Model, a machine learning hybrid model that utilized Graph Neural Networks (GNNs) such identifies and selects customer nodes to guide the Large Neighborhood Search (LNS) operator within the metaheuristic optimization frameworks. This model leverages the structural properties of the problem and solution that can be represented as a graph, to guide strategic selections concerning node removal. The proposed approach reduces operational complexity and scales down the search space involved in the optimization process. The hybrid approach is applied specifically to the CVRP and does not require retraining across problem instances of different sizes. The proposed hybrid mechanism is able to improve the performance of baseline metaheuristic algorithms. Our approach not only enhances the solution quality for standard CVRP benchmarks but also proves scalability on very large-scale instances with up to 30,000 customer nodes. Experimental evaluations on benchmark datasets show that the proposed hybrid mechanism is capable of improving different baseline algorithms, achieving better quality of solutions under similar settings.
comment: 19 pages, 10 figures
☆ $\text{M}^{2}$LLM: Multi-view Molecular Representation Learning with Large Language Models IJCAI 2025
Accurate molecular property prediction is a critical challenge with wide-ranging applications in chemistry, materials science, and drug discovery. Molecular representation methods, including fingerprints and graph neural networks (GNNs), achieve state-of-the-art results by effectively deriving features from molecular structures. However, these methods often overlook decades of accumulated semantic and contextual knowledge. Recent advancements in large language models (LLMs) demonstrate remarkable reasoning abilities and prior knowledge across scientific domains, leading us to hypothesize that LLMs can generate rich molecular representations when guided to reason in multiple perspectives. To address these gaps, we propose $\text{M}^{2}$LLM, a multi-view framework that integrates three perspectives: the molecular structure view, the molecular task view, and the molecular rules view. These views are fused dynamically to adapt to task requirements, and experiments demonstrate that $\text{M}^{2}$LLM achieves state-of-the-art performance on multiple benchmarks across classification and regression tasks. Moreover, we demonstrate that representation derived from LLM achieves exceptional performance by leveraging two core functionalities: the generation of molecular embeddings through their encoding capabilities and the curation of molecular features through advanced reasoning processes.
comment: IJCAI 2025
☆ LLM driven Text-to-Table Generation through Sub-Tasks Guidance and Iterative Refinement
Transforming unstructured text into structured data is a complex task, requiring semantic understanding, reasoning, and structural comprehension. While Large Language Models (LLMs) offer potential, they often struggle with handling ambiguous or domain-specific data, maintaining table structure, managing long inputs, and addressing numerical reasoning. This paper proposes an efficient system for LLM-driven text-to-table generation that leverages novel prompting techniques. Specifically, the system incorporates two key strategies: breaking down the text-to-table task into manageable, guided sub-tasks and refining the generated tables through iterative self-feedback. We show that this custom task decomposition allows the model to address the problem in a stepwise manner and improves the quality of the generated table. Furthermore, we discuss the benefits and potential risks associated with iterative self-feedback on the generated tables while highlighting the trade-offs between enhanced performance and computational cost. Our methods achieve strong results compared to baselines on two complex text-to-table generation datasets available in the public domain.
☆ Prompt-and-Check: Using Large Language Models to Evaluate Communication Protocol Compliance in Simulation-Based Training
Accurate evaluation of procedural communication compliance is essential in simulation-based training, particularly in safety-critical domains where adherence to compliance checklists reflects operational competence. This paper explores a lightweight, deployable approach using prompt-based inference with open-source large language models (LLMs) that can run efficiently on consumer-grade GPUs. We present Prompt-and-Check, a method that uses context-rich prompts to evaluate whether each checklist item in a protocol has been fulfilled, solely based on transcribed verbal exchanges. We perform a case study in the maritime domain with participants performing an identical simulation task, and experiment with models such as LLama 2 7B, LLaMA 3 8B and Mistral 7B, running locally on an RTX 4070 GPU. For each checklist item, a prompt incorporating relevant transcript excerpts is fed into the model, which outputs a compliance judgment. We assess model outputs against expert-annotated ground truth using classification accuracy and agreement scores. Our findings demonstrate that prompting enables effective context-aware reasoning without task-specific training. This study highlights the practical utility of LLMs in augmenting debriefing, performance feedback, and automated assessment in training environments.
☆ P-CAFE: Personalized Cost-Aware Incremental Feature Selection For Electronic Health Records
Electronic Health Records (EHR) have revolutionized healthcare by digitizing patient data, improving accessibility, and streamlining clinical workflows. However, extracting meaningful insights from these complex and multimodal datasets remains a significant challenge for researchers. Traditional feature selection methods often struggle with the inherent sparsity and heterogeneity of EHR data, especially when accounting for patient-specific variations and feature costs in clinical applications. To address these challenges, we propose a novel personalized, online and cost-aware feature selection framework tailored specifically for EHR datasets. The features are aquired in an online fashion for individual patients, incorporating budgetary constraints and feature variability costs. The framework is designed to effectively manage sparse and multimodal data, ensuring robust and scalable performance in diverse healthcare contexts. A primary application of our proposed method is to support physicians' decision making in patient screening scenarios. By guiding physicians toward incremental acquisition of the most informative features within budget constraints, our approach aims to increase diagnostic confidence while optimizing resource utilization.
comment: 17 pages, 5 figures
☆ MiGrATe: Mixed-Policy GRPO for Adaptation at Test-Time
Large language models (LLMs) are increasingly being applied to black-box optimization tasks, from program synthesis to molecule design. Prior work typically leverages in-context learning to iteratively guide the model towards better solutions. Such methods, however, often struggle to balance exploration of new solution spaces with exploitation of high-reward ones. Recently, test-time training (TTT) with synthetic data has shown promise in improving solution quality. However, the need for hand-crafted training data tailored to each task limits feasibility and scalability across domains. To address this problem, we introduce MiGrATe-a method for online TTT that uses GRPO as a search algorithm to adapt LLMs at inference without requiring external training data. MiGrATe operates via a mixed-policy group construction procedure that combines on-policy sampling with two off-policy data selection techniques: greedy sampling, which selects top-performing past completions, and neighborhood sampling (NS), which generates completions structurally similar to high-reward ones. Together, these components bias the policy gradient towards exploitation of promising regions in solution space, while preserving exploration through on-policy sampling. We evaluate MiGrATe on three challenging domains-word search, molecule optimization, and hypothesis+program induction on the Abstraction and Reasoning Corpus (ARC)-and find that it consistently outperforms both inference-only and TTT baselines, demonstrating the potential of online TTT as a solution for complex search tasks without external supervision.
☆ Diminution: On Reducing the Size of Grounding ASP Programs
Answer Set Programming (ASP) is often hindered by the grounding bottleneck: large Herbrand universes generate ground programs so large that solving becomes difficult. Many methods employ ad-hoc heuristics to improve grounding performance, motivating the need for a more formal and generalizable strategy. We introduce the notion of diminution, defined as a selected subset of the Herbrand universe used to generate a reduced ground program before solving. We give a formal definition of diminution, analyze its key properties, and study the complexity of identifying it. We use a specific encoding that enables off-the-shelf ASP solver to evaluate candidate subsets. Our approach integrates seamlessly with existing grounders via domain predicates. In extensive experiments on five benchmarks, applying diminutions selected by our strategy yields significant performance improvements, reducing grounding time by up to 70% on average and decreasing the size of grounding files by up to 85%. These results demonstrate that leveraging diminutions constitutes a robust and general-purpose approach for alleviating the grounding bottleneck in ASP.
☆ AgriGPT: a Large Language Model Ecosystem for Agriculture
Despite the rapid progress of Large Language Models (LLMs), their application in agriculture remains limited due to the lack of domain-specific models, curated datasets, and robust evaluation frameworks. To address these challenges, we propose AgriGPT, a domain-specialized LLM ecosystem for agricultural usage. At its core, we design a multi-agent scalable data engine that systematically compiles credible data sources into Agri-342K, a high-quality, standardized question-answer (QA) dataset. Trained on this dataset, AgriGPT supports a broad range of agricultural stakeholders, from practitioners to policy-makers. To enhance factual grounding, we employ Tri-RAG, a three-channel Retrieval-Augmented Generation framework combining dense retrieval, sparse retrieval, and multi-hop knowledge graph reasoning, thereby improving the LLM's reasoning reliability. For comprehensive evaluation, we introduce AgriBench-13K, a benchmark suite comprising 13 tasks with varying types and complexities. Experiments demonstrate that AgriGPT significantly outperforms general-purpose LLMs on both domain adaptation and reasoning. Beyond the model itself, AgriGPT represents a modular and extensible LLM ecosystem for agriculture, comprising structured data construction, retrieval-enhanced generation, and domain-specific evaluation. This work provides a generalizable framework for developing scientific and industry-specialized LLMs. All models, datasets, and code will be released to empower agricultural communities, especially in underserved regions, and to promote open, impactful research.
☆ Securing Educational LLMs: A Generalised Taxonomy of Attacks on LLMs and DREAD Risk Assessment
Due to perceptions of efficiency and significant productivity gains, various organisations, including in education, are adopting Large Language Models (LLMs) into their workflows. Educator-facing, learner-facing, and institution-facing LLMs, collectively, Educational Large Language Models (eLLMs), complement and enhance the effectiveness of teaching, learning, and academic operations. However, their integration into an educational setting raises significant cybersecurity concerns. A comprehensive landscape of contemporary attacks on LLMs and their impact on the educational environment is missing. This study presents a generalised taxonomy of fifty attacks on LLMs, which are categorized as attacks targeting either models or their infrastructure. The severity of these attacks is evaluated in the educational sector using the DREAD risk assessment framework. Our risk assessment indicates that token smuggling, adversarial prompts, direct injection, and multi-step jailbreak are critical attacks on eLLMs. The proposed taxonomy, its application in the educational environment, and our risk assessment will help academic and industrial practitioners to build resilient solutions that protect learners and institutions.
☆ QoE-Aware Service Provision for Mobile AR Rendering: An Agent-Driven Approach
Mobile augmented reality (MAR) is envisioned as a key immersive application in 6G, enabling virtual content rendering aligned with the physical environment through device pose estimation. In this paper, we propose a novel agent-driven communication service provisioning approach for edge-assisted MAR, aiming to reduce communication overhead between MAR devices and the edge server while ensuring the quality of experience (QoE). First, to address the inaccessibility of MAR application-specific information to the network controller, we establish a digital agent powered by large language models (LLMs) on behalf of the MAR service provider, bridging the data and function gap between the MAR service and network domains. Second, to cope with the user-dependent and dynamic nature of data traffic patterns for individual devices, we develop a user-level QoE modeling method that captures the relationship between communication resource demands and perceived user QoE, enabling personalized, agent-driven communication resource management. Trace-driven simulation results demonstrate that the proposed approach outperforms conventional LLM-based QoE-aware service provisioning methods in both user-level QoE modeling accuracy and communication resource efficiency.
☆ UGM2N: An Unsupervised and Generalizable Mesh Movement Network via M-Uniform Loss
Partial differential equations (PDEs) form the mathematical foundation for modeling physical systems in science and engineering, where numerical solutions demand rigorous accuracy-efficiency tradeoffs. Mesh movement techniques address this challenge by dynamically relocating mesh nodes to rapidly-varying regions, enhancing both simulation accuracy and computational efficiency. However, traditional approaches suffer from high computational complexity and geometric inflexibility, limiting their applicability, and existing supervised learning-based approaches face challenges in zero-shot generalization across diverse PDEs and mesh topologies.In this paper, we present an Unsupervised and Generalizable Mesh Movement Network (UGM2N). We first introduce unsupervised mesh adaptation through localized geometric feature learning, eliminating the dependency on pre-adapted meshes. We then develop a physics-constrained loss function, M-Uniform loss, that enforces mesh equidistribution at the nodal level.Experimental results demonstrate that the proposed network exhibits equation-agnostic generalization and geometric independence in efficient mesh adaptation. It demonstrates consistent superiority over existing methods, including robust performance across diverse PDEs and mesh geometries, scalability to multi-scale resolutions and guaranteed error reduction without mesh tangling.
☆ Generative AI for Critical Infrastructure in Smart Grids: A Unified Framework for Synthetic Data Generation and Anomaly Detection
In digital substations, security events pose significant challenges to the sustained operation of power systems. To mitigate these challenges, the implementation of robust defense strategies is critically important. A thorough process of anomaly identification and detection in information and communication technology (ICT) frameworks is crucial to ensure secure and reliable communication and coordination between interconnected devices within digital substations. Hence, this paper addresses the critical cybersecurity challenges confronting IEC61850-based digital substations within modern smart grids, where the integration of advanced communication protocols, e.g., generic object-oriented substation event (GOOSE), has enhanced energy management and introduced significant vulnerabilities to cyberattacks. Focusing on the limitations of traditional anomaly detection systems (ADSs) in detecting threats, this research proposes a transformative approach by leveraging generative AI (GenAI) to develop robust ADSs. The primary contributions include the suggested advanced adversarial traffic mutation (AATM) technique to generate synthesized and balanced datasets for GOOSE messages, ensuring protocol compliance and enabling realistic zero-day attack pattern creation to address data scarcity. Then, the implementation of GenAI-based ADSs incorporating the task-oriented dialogue (ToD) processes has been explored for improved detection of attack patterns. Finally, a comparison of the GenAI-based ADS with machine learning (ML)-based ADSs has been implemented to showcase the outperformance of the GenAI-based frameworks considering the AATM-generated GOOSE datasets and standard/advanced performance evaluation metrics.
comment: 28 pages, 12 figures
☆ DepressLLM: Interpretable domain-adapted language model for depression detection from real-world narratives
Advances in large language models (LLMs) have enabled a wide range of applications. However, depression prediction is hindered by the lack of large-scale, high-quality, and rigorously annotated datasets. This study introduces DepressLLM, trained and evaluated on a novel corpus of 3,699 autobiographical narratives reflecting both happiness and distress. DepressLLM provides interpretable depression predictions and, via its Score-guided Token Probability Summation (SToPS) module, delivers both improved classification performance and reliable confidence estimates, achieving an AUC of 0.789, which rises to 0.904 on samples with confidence $\geq$ 0.95. To validate its robustness to heterogeneous data, we evaluated DepressLLM on in-house datasets, including an Ecological Momentary Assessment (EMA) corpus of daily stress and mood recordings, and on public clinical interview data. Finally, a psychiatric review of high-confidence misclassifications highlighted key model and data limitations that suggest directions for future refinements. These findings demonstrate that interpretable AI can enable earlier diagnosis of depression and underscore the promise of medical AI in psychiatry.
☆ AI Security Map: Holistic Organization of AI Security Technologies and Impacts on Stakeholders
As the social implementation of AI has been steadily progressing, research and development related to AI security has also been increasing. However, existing studies have been limited to organizing related techniques, attacks, defenses, and risks in terms of specific domains or AI elements. Thus, it extremely difficult to understand the relationships among them and how negative impacts on stakeholders are brought about. In this paper, we argue that the knowledge, technologies, and social impacts related to AI security should be holistically organized to help understand relationships among them. To this end, we first develop an AI security map that holistically organizes interrelationships among elements related to AI security as well as negative impacts on information systems and stakeholders. This map consists of the two aspects, namely the information system aspect (ISA) and the external influence aspect (EIA). The elements that AI should fulfill within information systems are classified under the ISA. The EIA includes elements that affect stakeholders as a result of AI being attacked or misused. For each element, corresponding negative impacts are identified. By referring to the AI security map, one can understand the potential negative impacts, along with their causes and countermeasures. Additionally, our map helps clarify how the negative impacts on AI-based systems relate to those on stakeholders. We show some findings newly obtained by referring to our map. We also provide several recommendations and open problems to guide future AI security communities.
☆ Who pays the RENT? Implications of Spatial Inequality for Prediction-Based Allocation Policies AAAI
AI-powered scarce resource allocation policies rely on predictions to target either specific individuals (e.g., high-risk) or settings (e.g., neighborhoods). Recent research on individual-level targeting demonstrates conflicting results; some models show that targeting is not useful when inequality is high, while other work demonstrates potential benefits. To study and reconcile this apparent discrepancy, we develop a stylized framework based on the Mallows model to understand how the spatial distribution of inequality affects the effectiveness of door-to-door outreach policies. We introduce the RENT (Relative Efficiency of Non-Targeting) metric, which we use to assess the effectiveness of targeting approaches compared with neighborhood-based approaches in preventing tenant eviction when high-risk households are more versus less spatially concentrated. We then calibrate the model parameters to eviction court records collected in a medium-sized city in the USA. Results demonstrate considerable gains in the number of high-risk households canvassed through individually targeted policies, even in a highly segregated metro area with concentrated risks of eviction. We conclude that apparent discrepancies in the prior literature can be reconciled by considering 1) the source of deployment costs and 2) the observed versus modeled concentrations of risk. Our results inform the deployment of AI-based solutions in social service provision that account for particular applications and geographies.
comment: This work has been accepted for publication as a full paper at the AAAI/ACM Conference on AI, Ethics, and Society (AIES 2025)
☆ Superclass-Guided Representation Disentanglement for Spurious Correlation Mitigation
To enhance group robustness to spurious correlations, prior work often relies on auxiliary annotations for groups or spurious features and assumes identical sets of groups across source and target domains. These two requirements are both unnatural and impractical in real-world settings. To overcome these limitations, we propose a method that leverages the semantic structure inherent in class labels--specifically, superclass information--to naturally reduce reliance on spurious features. Our model employs gradient-based attention guided by a pre-trained vision-language model to disentangle superclass-relevant and irrelevant features. Then, by promoting the use of all superclass-relevant features for prediction, our approach achieves robustness to more complex spurious correlations without the need to annotate any source samples. Experiments across diverse datasets demonstrate that our method significantly outperforms baselines in domain generalization tasks, with clear improvements in both quantitative metrics and qualitative visualizations.
☆ UQGNN: Uncertainty Quantification of Graph Neural Networks for Multivariate Spatiotemporal Prediction SP
Spatiotemporal prediction plays a critical role in numerous real-world applications such as urban planning, transportation optimization, disaster response, and pandemic control. In recent years, researchers have made significant progress by developing advanced deep learning models for spatiotemporal prediction. However, most existing models are deterministic, i.e., predicting only the expected mean values without quantifying uncertainty, leading to potentially unreliable and inaccurate outcomes. While recent studies have introduced probabilistic models to quantify uncertainty, they typically focus on a single phenomenon (e.g., taxi, bike, crime, or traffic crashes), thereby neglecting the inherent correlations among heterogeneous urban phenomena. To address the research gap, we propose a novel Graph Neural Network with Uncertainty Quantification, termed UQGNN for multivariate spatiotemporal prediction. UQGNN introduces two key innovations: (i) an Interaction-aware Spatiotemporal Embedding Module that integrates a multivariate diffusion graph convolutional network and an interaction-aware temporal convolutional network to effectively capture complex spatial and temporal interaction patterns, and (ii) a multivariate probabilistic prediction module designed to estimate both expected mean values and associated uncertainties. Extensive experiments on four real-world multivariate spatiotemporal datasets from Shenzhen, New York City, and Chicago demonstrate that UQGNN consistently outperforms state-of-the-art baselines in both prediction accuracy and uncertainty quantification. For example, on the Shenzhen dataset, UQGNN achieves a 5% improvement in both prediction accuracy and uncertainty quantification.
comment: 10 pages, 7 figures, SIGSPATIAL 2025
☆ OmniLLP: Enhancing LLM-based Log Level Prediction with Context-Aware Retrieval
Developers insert logging statements in source code to capture relevant runtime information essential for maintenance and debugging activities. Log level choice is an integral, yet tricky part of the logging activity as it controls log verbosity and therefore influences systems' observability and performance. Recent advances in ML-based log level prediction have leveraged large language models (LLMs) to propose log level predictors (LLPs) that demonstrated promising performance improvements (AUC between 0.64 and 0.8). Nevertheless, current LLM-based LLPs rely on randomly selected in-context examples, overlooking the structure and the diverse logging practices within modern software projects. In this paper, we propose OmniLLP, a novel LLP enhancement framework that clusters source files based on (1) semantic similarity reflecting the code's functional purpose, and (2) developer ownership cohesion. By retrieving in-context learning examples exclusively from these semantic and ownership aware clusters, we aim to provide more coherent prompts to LLPs leveraging LLMs, thereby improving their predictive accuracy. Our results show that both semantic and ownership-aware clusterings statistically significantly improve the accuracy (by up to 8\% AUC) of the evaluated LLM-based LLPs compared to random predictors (i.e., leveraging randomly selected in-context examples from the whole project). Additionally, our approach that combines the semantic and ownership signal for in-context prediction achieves an impressive 0.88 to 0.96 AUC across our evaluated projects. Our findings highlight the value of integrating software engineering-specific context, such as code semantic and developer ownership signals into LLM-LLPs, offering developers a more accurate, contextually-aware approach to logging and therefore, enhancing system maintainability and observability.
☆ AI Agents and the Law AAAI
As AI becomes more "agentic," it faces technical and socio-legal issues it must address if it is to fulfill its promise of increased economic productivity and efficiency. This paper uses technical and legal perspectives to explain how things change when AI systems start being able to directly execute tasks on behalf of a user. We show how technical conceptions of agents track some, but not all, socio-legal conceptions of agency. That is, both computer science and the law recognize the problems of under-specification for an agent, and both disciplines have robust conceptions of how to address ensuring an agent does what the programmer, or in the law, the principal desires and no more. However, to date, computer science has under-theorized issues related to questions of loyalty and to third parties that interact with an agent, both of which are central parts of the law of agency. First, we examine the correlations between implied authority in agency law and the principle of value-alignment in AI, wherein AI systems must operate under imperfect objective specification. Second, we reveal gaps in the current computer science view of agents pertaining to the legal concepts of disclosure and loyalty, and how failure to account for them can result in unintended effects in AI ecommerce agents. In surfacing these gaps, we show a path forward for responsible AI agent development and deployment.
comment: 2025 AAAI Conference on AI, Ethics, and Society
☆ M3-Net: A Cost-Effective Graph-Free MLP-Based Model for Traffic Prediction
Achieving accurate traffic prediction is a fundamental but crucial task in the development of current intelligent transportation systems.Most of the mainstream methods that have made breakthroughs in traffic prediction rely on spatio-temporal graph neural networks, spatio-temporal attention mechanisms, etc. The main challenges of the existing deep learning approaches are that they either depend on a complete traffic network structure or require intricate model designs to capture complex spatio-temporal dependencies. These limitations pose significant challenges for the efficient deployment and operation of deep learning models on large-scale datasets. To address these challenges, we propose a cost-effective graph-free Multilayer Perceptron (MLP) based model M3-Net for traffic prediction. Our proposed model not only employs time series and spatio-temporal embeddings for efficient feature processing but also first introduces a novel MLP-Mixer architecture with a mixture of experts (MoE) mechanism. Extensive experiments conducted on multiple real datasets demonstrate the superiority of the proposed model in terms of prediction performance and lightweight deployment.
☆ LLM-Driven Adaptive 6G-Ready Wireless Body Area Networks: Survey and Framework
Wireless Body Area Networks (WBANs) enable continuous monitoring of physiological signals for applications ranging from chronic disease management to emergency response. Recent advances in 6G communications, post-quantum cryptography, and energy harvesting have the potential to enhance WBAN performance. However, integrating these technologies into a unified, adaptive system remains a challenge. This paper surveys some of the most well-known Wireless Body Area Network (WBAN) architectures, routing strategies, and security mechanisms, identifying key gaps in adaptability, energy efficiency, and quantum-resistant security. We propose a novel Large Language Model-driven adaptive WBAN framework in which a Large Language Model acts as a cognitive control plane, coordinating routing, physical layer selection, micro-energy harvesting, and post-quantum security in real time. Our review highlights the limitations of current heuristic-based designs and outlines a research agenda for resource-constrained, 6G-ready medical systems. This approach aims to enable ultra-reliable, secure, and self-optimizing WBANs for next-generation mobile health applications.
comment: 7 pages
♻ ☆ Cut2Next: Generating Next Shot via In-Context Tuning
Effective multi-shot generation demands purposeful, film-like transitions and strict cinematic continuity. Current methods, however, often prioritize basic visual consistency, neglecting crucial editing patterns (e.g., shot/reverse shot, cutaways) that drive narrative flow for compelling storytelling. This yields outputs that may be visually coherent but lack narrative sophistication and true cinematic integrity. To bridge this, we introduce Next Shot Generation (NSG): synthesizing a subsequent, high-quality shot that critically conforms to professional editing patterns while upholding rigorous cinematic continuity. Our framework, Cut2Next, leverages a Diffusion Transformer (DiT). It employs in-context tuning guided by a novel Hierarchical Multi-Prompting strategy. This strategy uses Relational Prompts to define overall context and inter-shot editing styles. Individual Prompts then specify per-shot content and cinematographic attributes. Together, these guide Cut2Next to generate cinematically appropriate next shots. Architectural innovations, Context-Aware Condition Injection (CACI) and Hierarchical Attention Mask (HAM), further integrate these diverse signals without introducing new parameters. We construct RawCuts (large-scale) and CuratedCuts (refined) datasets, both with hierarchical prompts, and introduce CutBench for evaluation. Experiments show Cut2Next excels in visual consistency and text fidelity. Crucially, user studies reveal a strong preference for Cut2Next, particularly for its adherence to intended editing patterns and overall cinematic continuity, validating its ability to generate high-quality, narratively expressive, and cinematically coherent subsequent shots.
♻ ☆ Fitting Description Logic Ontologies to ABox and Query Examples KR2025
We study a fitting problem inspired by ontology-mediated querying: given a collection of positive and negative examples of the form $(\mathcal{A},q)$ with $\mathcal{A}$ an ABox and $q$ a Boolean query, we seek an ontology $\mathcal{O}$ that satisfies $\mathcal{A} \cup \mathcal{O} \vDash q$ for all positive examples and $\mathcal{A} \cup \mathcal{O}\not\vDash q$ for all negative examples. We consider the description logics $\mathcal{ALC}$ and $\mathcal{ALCI}$ as ontology languages and a range of query languages that includes atomic queries (AQs), conjunctive queries (CQs), and unions thereof (UCQs). For all of the resulting fitting problems, we provide effective characterizations and determine the computational complexity of deciding whether a fitting ontology exists. This problem turns out to be ${\scriptsize CO}NP$ for AQs and full CQs and $2E{\scriptsize XP}T{\scriptsize IME}$-complete for CQs and UCQs. These results hold for both $\mathcal{ALC}$ and $\mathcal{ALCI}$.
comment: Submitted to the 22nd International Conference on Principles of Knowledge Representation and Reasoning (KR2025), 23 pages
♻ ☆ Interpreting Fedspeak with Confidence: A LLM-Based Uncertainty-Aware Framework Guided by Monetary Policy Transmission Paths
"Fedspeak", the stylized and often nuanced language used by the U.S. Federal Reserve, encodes implicit policy signals and strategic stances. The Federal Open Market Committee strategically employs Fedspeak as a communication tool to shape market expectations and influence both domestic and global economic conditions. As such, automatically parsing and interpreting Fedspeak presents a high-impact challenge, with significant implications for financial forecasting, algorithmic trading, and data-driven policy analysis. In this paper, we propose an LLM-based, uncertainty-aware framework for deciphering Fedspeak and classifying its underlying monetary policy stance. Technically, to enrich the semantic and contextual representation of Fedspeak texts, we incorporate domain-specific reasoning grounded in the monetary policy transmission mechanism. We further introduce a dynamic uncertainty decoding module to assess the confidence of model predictions, thereby enhancing both classification accuracy and model reliability. Experimental results demonstrate that our framework achieves state-of-the-art performance on the policy stance analysis task. Moreover, statistical analysis reveals a significant positive correlation between perceptual uncertainty and model error rates, validating the effectiveness of perceptual uncertainty as a diagnostic signal.
♻ ☆ DIVER: A Multi-Stage Approach for Reasoning-intensive Information Retrieval
Retrieval-augmented generation has achieved strong performance on knowledge-intensive tasks where query-document relevance can be identified through direct lexical or semantic matches. However, many real-world queries involve abstract reasoning, analogical thinking, or multi-step inference, which existing retrievers often struggle to capture. To address this challenge, we present \textbf{DIVER}, a retrieval pipeline tailored for reasoning-intensive information retrieval. DIVER consists of four components: document processing to improve input quality, LLM-driven query expansion via iterative document interaction, a reasoning-enhanced retriever fine-tuned on synthetic multi-domain data with hard negatives, and a pointwise reranker that combines LLM-assigned helpfulness scores with retrieval scores. On the BRIGHT benchmark, DIVER achieves state-of-the-art nDCG@10 scores of 41.6 and 28.9 on original queries, consistently outperforming competitive reasoning-aware models. These results demonstrate the effectiveness of reasoning-aware retrieval strategies in complex real-world tasks. Our code and retrieval model will be released soon.
♻ ☆ Omni-Effects: Unified and Spatially-Controllable Visual Effects Generation
Visual effects (VFX) are essential visual enhancements fundamental to modern cinematic production. Although video generation models offer cost-efficient solutions for VFX production, current methods are constrained by per-effect LoRA training, which limits generation to single effects. This fundamental limitation impedes applications that require spatially controllable composite effects, i.e., the concurrent generation of multiple effects at designated locations. However, integrating diverse effects into a unified framework faces major challenges: interference from effect variations and spatial uncontrollability during multi-VFX joint training. To tackle these challenges, we propose Omni-Effects, a first unified framework capable of generating prompt-guided effects and spatially controllable composite effects. The core of our framework comprises two key innovations: (1) LoRA-based Mixture of Experts (LoRA-MoE), which employs a group of expert LoRAs, integrating diverse effects within a unified model while effectively mitigating cross-task interference. (2) Spatial-Aware Prompt (SAP) incorporates spatial mask information into the text token, enabling precise spatial control. Furthermore, we introduce an Independent-Information Flow (IIF) module integrated within the SAP, isolating the control signals corresponding to individual effects to prevent any unwanted blending. To facilitate this research, we construct a comprehensive VFX dataset Omni-VFX via a novel data collection pipeline combining image editing and First-Last Frame-to-Video (FLF2V) synthesis, and introduce a dedicated VFX evaluation framework for validating model performance. Extensive experiments demonstrate that Omni-Effects achieves precise spatial control and diverse effect generation, enabling users to specify both the category and location of desired effects.
♻ ☆ Chimera: Harnessing Multi-Agent LLMs for Automatic Insider Threat Simulation
Insider threats, which can lead to severe losses, remain a major security concern. While machine learning-based insider threat detection (ITD) methods have shown promising results, their progress is hindered by the scarcity of high-quality data. Enterprise data is sensitive and rarely accessible, while publicly available datasets, when limited in scale due to cost, lack sufficient real-world coverage; and when purely synthetic, they fail to capture rich semantics and realistic user behavior. To address this, we propose Chimera, the first large language model (LLM)-based multi-agent framework that automatically simulates both benign and malicious insider activities and collects diverse logs across diverse enterprise environments. Chimera models each employee with agents that have role-specific behavior and integrates modules for group meetings, pairwise interactions, and autonomous scheduling, capturing realistic organizational dynamics. It incorporates 15 types of insider attacks (e.g., IP theft, system sabotage) and has been deployed to simulate activities in three sensitive domains: technology company, finance corporation, and medical institution, producing a new dataset, ChimeraLog. We assess ChimeraLog via human studies and quantitative analysis, confirming its diversity, realism, and presence of explainable threat patterns. Evaluations of existing ITD methods show an average F1-score of 0.83, which is significantly lower than 0.99 on the CERT dataset, demonstrating ChimeraLog's higher difficulty and utility for advancing ITD research.
comment: 23 pages
♻ ☆ Klear-Reasoner: Advancing Reasoning Capability via Gradient-Preserving Clipping Policy Optimization
We present Klear-Reasoner, a model with long reasoning capabilities that demonstrates careful deliberation during problem solving, achieving outstanding performance across multiple benchmarks. Although there are already many excellent works related to inference models in the current community, there are still many problems with reproducing high-performance inference models due to incomplete disclosure of training details. This report provides an in-depth analysis of the reasoning model, covering the entire post-training workflow from data preparation and long Chain-of-Thought supervised fine-tuning (long CoT SFT) to reinforcement learning (RL), along with detailed ablation studies for each experimental component. For SFT data, our experiments show that a small number of high-quality data sources are more effective than a large number of diverse data sources, and that difficult samples can achieve better results without accuracy filtering. In addition, we investigate two key issues with current clipping mechanisms in RL: Clipping suppresses critical exploration signals and ignores suboptimal trajectories. To address these challenges, we propose Gradient-Preserving clipping Policy Optimization (GPPO) that gently backpropagates gradients from clipped tokens. GPPO not only enhances the model's exploration capacity but also improves its efficiency in learning from negative samples. Klear-Reasoner exhibits exceptional reasoning abilities in mathematics and programming, scoring 90.5% on AIME 2024, 83.2% on AIME 2025, 66.0% on LiveCodeBench V5 and 58.1% on LiveCodeBench V6.
♻ ☆ RCR-Router: Efficient Role-Aware Context Routing for Multi-Agent LLM Systems with Structured Memory
Multi-agent large language model (LLM) systems have shown strong potential in complex reasoning and collaborative decision-making tasks. However, most existing coordination schemes rely on static or full-context routing strategies, which lead to excessive token consumption, redundant memory exposure, and limited adaptability across interaction rounds. We introduce RCR-Router, a modular and role-aware context routing framework designed to enable efficient, adaptive collaboration in multi-agent LLMs. To our knowledge, this is the first routing approach that dynamically selects semantically relevant memory subsets for each agent based on its role and task stage, while adhering to a strict token budget. A lightweight scoring policy guides memory selection, and agent outputs are iteratively integrated into a shared memory store to facilitate progressive context refinement. To better evaluate model behavior, we further propose an Answer Quality Score metric that captures LLM-generated explanations beyond standard QA accuracy. Experiments on three multi-hop QA benchmarks -- HotPotQA, MuSiQue, and 2WikiMultihop -- demonstrate that RCR-Router reduces token usage (up to 30%) while improving or maintaining answer quality. These results highlight the importance of structured memory routing and output-aware evaluation in advancing scalable multi-agent LLM systems.
♻ ☆ Designing a Feedback-Driven Decision Support System for Dynamic Student Intervention
Accurate prediction of student performance is essential for enabling timely academic interventions. However, most machine learning models used in educational settings are static and lack the ability to adapt when new data such as post-intervention outcomes become available. To address this limitation, we propose a Feedback-Driven Decision Support System (DSS) with a closed-loop architecture that enables continuous model refinement. The system employs a LightGBM-based regressor with incremental retraining, allowing educators to input updated student performance data, which automatically triggers model updates. This adaptive mechanism enhances prediction accuracy by learning from real-world academic progress over time. The platform features a Flask-based web interface to support real-time interaction and integrates SHAP (SHapley Additive exPlanations) for model interpretability, ensuring transparency and trustworthiness in predictions. Experimental results demonstrate a 10.7% reduction in RMSE after retraining, with consistent upward adjustments in predicted scores for students who received interventions. By transforming static predictive models into self-improving systems, our approach advances educational analytics toward human-centered, data-driven, and responsive artificial intelligence. The framework is designed for seamless integration into Learning Management Systems (LMS) and institutional dashboards, facilitating practical deployment in real educational environments.
comment: 10 pages, 1 figure, 3 tables
♻ ☆ Retrieval-Augmented Generation with Conflicting Evidence RAM
Large language model (LLM) agents are increasingly employing retrieval-augmented generation (RAG) to improve the factuality of their responses. However, in practice, these systems often need to handle ambiguous user queries and potentially conflicting information from multiple sources while also suppressing inaccurate information from noisy or irrelevant documents. Prior work has generally studied and addressed these challenges in isolation, considering only one aspect at a time, such as handling ambiguity or robustness to noise and misinformation. We instead consider multiple factors simultaneously, proposing (i) RAMDocs (Retrieval with Ambiguity and Misinformation in Documents), a new dataset that simulates complex and realistic scenarios for conflicting evidence for a user query, including ambiguity, misinformation, and noise; and (ii) MADAM-RAG, a multi-agent approach in which LLM agents debate over the merits of an answer over multiple rounds, allowing an aggregator to collate responses corresponding to disambiguated entities while discarding misinformation and noise, thereby handling diverse sources of conflict jointly. We demonstrate the effectiveness of MADAM-RAG using both closed and open-source models on AmbigDocs -- which requires presenting all valid answers for ambiguous queries -- improving over strong RAG baselines by up to 11.40% and on FaithEval -- which requires suppressing misinformation -- where we improve by up to 15.80% (absolute) with Llama3.3-70B-Instruct. Furthermore, we find that RAMDocs poses a challenge for existing RAG baselines (Llama3.3-70B-Instruct only obtains 32.60 exact match score). While MADAM-RAG begins to address these conflicting factors, our analysis indicates that a substantial gap remains especially when increasing the level of imbalance in supporting evidence and misinformation.
comment: COLM 2025, Data and Code: https://github.com/HanNight/RAMDocs
♻ ☆ CulturalFrames: Assessing Cultural Expectation Alignment in Text-to-Image Models and Evaluation Metrics
The increasing ubiquity of text-to-image (T2I) models as tools for visual content generation raises concerns about their ability to accurately represent diverse cultural contexts -- where missed cues can stereotype communities and undermine usability. In this work, we present the first study to systematically quantify the alignment of T2I models and evaluation metrics with respect to both explicit (stated) as well as implicit (unstated, implied by the prompt's cultural context) cultural expectations. To this end, we introduce CulturalFrames, a novel benchmark designed for rigorous human evaluation of cultural representation in visual generations. Spanning 10 countries and 5 socio-cultural domains, CulturalFrames comprises 983 prompts, 3637 corresponding images generated by 4 state-of-the-art T2I models, and over 10k detailed human annotations. We find that across models and countries, cultural expectations are missed an average of 44% of the time. Among these failures, explicit expectations are missed at a surprisingly high average rate of 68%, while implicit expectation failures are also significant, averaging 49%. Furthermore, we show that existing T2I evaluation metrics correlate poorly with human judgments of cultural alignment, irrespective of their internal reasoning. Collectively, our findings expose critical gaps, provide a concrete testbed, and outline actionable directions for developing culturally informed T2I models and metrics that improve global usability.
♻ ☆ Chemist-aligned retrosynthesis by ensembling diverse inductive bias models
Chemical synthesis remains a critical bottleneck in the discovery and manufacture of functional small molecules. AI-based synthesis planning models could be a potential remedy to find effective syntheses, and have made progress in recent years. However, they still struggle with less frequent, yet critical reactions for synthetic strategy, as well as hallucinated, incorrect predictions. This hampers multi-step search algorithms that rely on models, and leads to misalignment with chemists' expectations. Here we propose RetroChimera: a frontier retrosynthesis model, built upon two newly developed components with complementary inductive biases, which we fuse together using a new framework for integrating predictions from multiple sources via a learning-based ensembling strategy. Through experiments across several orders of magnitude in data scale and splitting strategy, we show RetroChimera outperforms all major models by a large margin, demonstrating robustness outside the training data, as well as for the first time the ability to learn from even a very small number of examples per reaction class. Moreover, industrial organic chemists prefer predictions from RetroChimera over the reactions it was trained on in terms of quality, revealing high levels of alignment. Finally, we demonstrate zero-shot transfer to an internal dataset from a major pharmaceutical company, showing robust generalization under distribution shift. With the new dimension that our ensembling framework unlocks, we anticipate further acceleration in the development of even more accurate models.
♻ ☆ Argus Inspection: Do Multimodal Large Language Models Possess the Eye of Panoptes?
As Multimodal Large Language Models (MLLMs) continue to evolve, their cognitive and reasoning capabilities have seen remarkable progress. However, challenges in visual fine-grained perception and commonsense causal inference persist. This paper introduces Argus Inspection, a multimodal benchmark with two levels of difficulty, emphasizing detailed visual recognition while incorporating real-world commonsense understanding to evaluate causal reasoning abilities. Expanding on it, we present the Eye of Panoptes framework, which integrates a binary parametric Sigmoid metric with an indicator function, enabling a more holistic evaluation of MLLMs' responses in opinion-based reasoning tasks. Experiments conducted on 26 mainstream MLLMs reveal that the highest performance in visual fine-grained reasoning reaches only 0.46, highlighting considerable potential for enhancement. Our research offers valuable perspectives for the continued refinement of MLLMs.
♻ ☆ FBFL: A Field-Based Coordination Approach for Data Heterogeneity in Federated Learning
In the last years, Federated learning (FL) has become a popular solution to train machine learning models in domains with high privacy concerns. However, FL scalability and performance face significant challenges in real-world deployments where data across devices are non-independently and identically distributed (non-IID). The heterogeneity in data distribution frequently arises from spatial distribution of devices, leading to degraded model performance in the absence of proper handling. Additionally, FL typical reliance on centralized architectures introduces bottlenecks and single-point-of-failure risks, particularly problematic at scale or in dynamic environments. To close this gap, we propose Field-Based Federated Learning (FBFL), a novel approach leveraging macroprogramming and field coordination to address these limitations through: (i) distributed spatial-based leader election for personalization to mitigate non-IID data challenges; and (ii) construction of a self-organizing, hierarchical architecture using advanced macroprogramming patterns. Moreover, FBFL not only overcomes the aforementioned limitations, but also enables the development of more specialized models tailored to the specific data distribution in each subregion. This paper formalizes FBFL and evaluates it extensively using MNIST, FashionMNIST, and Extended MNIST datasets. We demonstrate that, when operating under IID data conditions, FBFL performs comparably to the widely-used FedAvg algorithm. Furthermore, in challenging non-IID scenarios, FBFL not only outperforms FedAvg but also surpasses other state-of-the-art methods, namely FedProx and Scaffold, which have been specifically designed to address non-IID data distributions. Additionally, we showcase the resilience of FBFL's self-organizing hierarchical architecture against server failures.
♻ ☆ Saturation Self-Organizing Map
Continual learning poses a fundamental challenge for neural systems, which often suffer from catastrophic forgetting when exposed to sequential tasks. Self-Organizing Maps (SOMs), despite their interpretability and efficiency, are not immune to this issue. In this paper, we introduce Saturation Self-Organizing Maps (SatSOM)-an extension of SOMs designed to improve knowledge retention in continual learning scenarios. SatSOM incorporates a novel saturation mechanism that gradually reduces the learning rate and neighborhood radius of neurons as they accumulate information. This effectively freezes well-trained neurons and redirects learning to underutilized areas of the map.
comment: github repository: https://github.com/Radinyn/satsom
♻ ☆ OE3DIS: Open-Ended 3D Point Cloud Instance Segmentation ICCV
Open-Vocab 3D Instance Segmentation methods (OV-3DIS) have recently demonstrated their ability to generalize to unseen objects. However, these methods still depend on predefined class names during testing, restricting the autonomy of agents. To mitigate this constraint, we propose a novel problem termed Open-Ended 3D Instance Segmentation (OE-3DIS), which eliminates the necessity for predefined class names during testing. Moreover, we contribute a comprehensive set of strong baselines, derived from OV-3DIS approaches and leveraging 2D Multimodal Large Language Models. To assess the performance of our OE-3DIS system, we introduce a novel Open-Ended score, evaluating both the semantic and geometric quality of predicted masks and their associated class names, alongside the standard AP score. Our approach demonstrates significant performance improvements over the baselines on the ScanNet200 and ScanNet++ datasets. Remarkably, our method surpasses the performance of Open3DIS, the current state-of-the-art method in OV-3DIS, even in the absence of ground-truth object class names.
comment: Accepted at ICCVW'25 - OpenSUN3D: 5th Workshop on Open-World 3D Scene Understanding with Foundation Models
♻ ☆ BELLA: Black box model Explanations by Local Linear Approximations
Understanding the decision-making process of black-box models has become not just a legal requirement, but also an additional way to assess their performance. However, the state of the art post-hoc explanation approaches for regression models rely on synthetic data generation, which introduces uncertainty and can hurt the reliability of the explanations. Furthermore, they tend to produce explanations that apply to only very few data points. In this paper, we present BELLA, a deterministic model-agnostic post-hoc approach for explaining the individual predictions of regression black-box models. BELLA provides explanations in the form of a linear model trained in the feature space. BELLA maximizes the size of the neighborhood to which the linear model applies so that the explanations are accurate, simple, general, and robust.
comment: 18 pages, 3 figures, Published in TMLR Journal
♻ ☆ Opioid Named Entity Recognition (ONER-2025) from Reddit
The opioid overdose epidemic remains a critical public health crisis, particularly in the United States, leading to significant mortality and societal costs. Social media platforms like Reddit provide vast amounts of unstructured data that offer insights into public perceptions, discussions, and experiences related to opioid use. This study leverages Natural Language Processing (NLP), specifically Opioid Named Entity Recognition (ONER-2025), to extract actionable information from these platforms. Our research makes four key contributions. First, we created a unique, manually annotated dataset sourced from Reddit, where users share self-reported experiences of opioid use via different administration routes. This dataset contains 331,285 tokens and includes eight major opioid entity categories. Second, we detail our annotation process and guidelines while discussing the challenges of labeling the ONER-2025 dataset. Third, we analyze key linguistic challenges, including slang, ambiguity, fragmented sentences, and emotionally charged language, in opioid discussions. Fourth, we propose a real-time monitoring system to process streaming data from social media, healthcare records, and emergency services to identify overdose events. Using 5-fold cross-validation in 11 experiments, our system integrates machine learning, deep learning, and transformer-based language models with advanced contextual embeddings to enhance understanding. Our transformer-based models (bert-base-NER and roberta-base) achieved 97% accuracy and F1-score, outperforming baselines by 10.23% (RF=0.88).
♻ ☆ Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications, integrating cloud resources with edge devices to enable efficient, low-latency processing. Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems, yet introduce significant challenges in model deployment and resource management. In this survey, we comprehensive examine the intersection of distributed intelligence and model optimization within edge-cloud environments, providing a structured tutorial on fundamental architectures, enabling technologies, and emerging applications. Additionally, we systematically analyze model optimization approaches, including compression, adaptation, and neural architecture search, alongside AI-driven resource management strategies that balance performance, energy efficiency, and latency requirements. We further explore critical aspects of privacy protection and security enhancement within ECCC systems and examines practical deployments through diverse applications, spanning autonomous driving, healthcare, and industrial automation. Performance analysis and benchmarking techniques are also thoroughly explored to establish evaluation standards for these complex systems. Furthermore, the review identifies critical research directions including LLMs deployment, 6G integration, neuromorphic computing, and quantum computing, offering a roadmap for addressing persistent challenges in heterogeneity management, real-time processing, and scalability. By bridging theoretical advancements and practical deployments, this survey offers researchers and practitioners a holistic perspective on leveraging AI to optimize distributed computing environments, fostering innovation in next-generation intelligent systems.
comment: 30 pages, 10 figures, 8 tables
♻ ☆ Dynamic Spectrum Access for Ambient Backscatter Communication-assisted D2D Systems with Quantum Reinforcement Learning
Spectrum access is an essential problem in device-to-device (D2D) communications. However, with the recent growth in the number of mobile devices, the wireless spectrum is becoming scarce, resulting in low spectral efficiency for D2D communications. To address this problem, this paper aims to integrate the ambient backscatter communication technology into D2D devices to allow them to backscatter ambient RF signals to transmit their data when the shared spectrum is occupied by mobile users. To obtain the optimal spectrum access policy, i.e., stay idle or access the shared spectrum and perform active transmissions or backscattering ambient RF signals for transmissions, to maximize the average throughput for D2D users, deep reinforcement learning (DRL) can be adopted. However, DRL-based solutions may require long training time due to the curse of dimensionality issue as well as complex deep neural network architectures. For that, we develop a novel quantum reinforcement learning (RL) algorithm that can achieve a faster convergence rate with fewer training parameters compared to DRL thanks to the quantum superposition and quantum entanglement principles. Specifically, instead of using conventional deep neural networks, the proposed quantum RL algorithm uses a parametrized quantum circuit to approximate an optimal policy. Extensive simulations then demonstrate that the proposed solution not only can significantly improve the average throughput of D2D devices when the shared spectrum is busy but also can achieve much better performance in terms of convergence rate and learning complexity compared to existing DRL-based methods.
comment: 12 pages, 7 figures
♻ ☆ Sleepless Nights, Sugary Days: Creating Synthetic Users with Health Conditions for Realistic Coaching Agent Interactions ACL 2025
We present an end-to-end framework for generating synthetic users for evaluating interactive agents designed to encourage positive behavior changes, such as in health and lifestyle coaching. The synthetic users are grounded in health and lifestyle conditions, specifically sleep and diabetes management in this study, to ensure realistic interactions with the health coaching agent. Synthetic users are created in two stages: first, structured data are generated grounded in real-world health and lifestyle factors in addition to basic demographics and behavioral attributes; second, full profiles of the synthetic users are developed conditioned on the structured data. Interactions between synthetic users and the coaching agent are simulated using generative agent-based models such as Concordia, or directly by prompting a language model. Using two independently-developed agents for sleep and diabetes coaching as case studies, the validity of this framework is demonstrated by analyzing the coaching agent's understanding of the synthetic users' needs and challenges. Finally, through multiple blinded evaluations of user-coach interactions by human experts, we demonstrate that our synthetic users with health and behavioral attributes more accurately portray real human users with the same attributes, compared to generic synthetic users not grounded in such attributes. The proposed framework lays the foundation for efficient development of conversational agents through extensive, realistic, and grounded simulated interactions.
comment: Published in Findings of the Association for Computational Linguistics: ACL 2025
♻ ☆ From Lab to Field: Real-World Evaluation of an AI-Driven Smart Video Solution to Enhance Community Safety
This article adopts and evaluates an AI-enabled Smart Video Solution (SVS) designed to enhance safety in the real world. The system integrates with existing infrastructure camera networks, leveraging recent advancements in AI for easy adoption. Prioritizing privacy and ethical standards, pose based data is used for downstream AI tasks such as anomaly detection. Cloud-based infrastructure and mobile app are deployed, enabling real-time alerts within communities. The SVS employs innovative data representation and visualization techniques, such as the Occupancy Indicator, Statistical Anomaly Detection, Bird's Eye View, and Heatmaps, to understand pedestrian behaviors and enhance public safety. Evaluation of the SVS demonstrates its capacity to convert complex computer vision outputs into actionable insights for stakeholders, community partners, law enforcement, urban planners, and social scientists. This article presents a comprehensive real-world deployment and evaluation of the SVS, implemented in a community college environment across 16 cameras. The system integrates AI-driven visual processing, supported by statistical analysis, database management, cloud communication, and user notifications. Additionally, the article evaluates the end-to-end latency from the moment an AI algorithm detects anomalous behavior in real-time at the camera level to the time stakeholders receive a notification. The results demonstrate the system's robustness, effectively managing 16 CCTV cameras with a consistent throughput of 16.5 frames per second (FPS) over a 21-hour period and an average end-to-end latency of 26.76 seconds between anomaly detection and alert issuance.
♻ ☆ Echo: Decoupling Inference and Training for Large-Scale RL Alignment on Heterogeneous Swarms
Modern RL-based post-training for large language models (LLMs) co-locate trajectory sampling and policy optimisation on the same GPU cluster, forcing the system to switch between inference and training workloads. This serial context switching violates the single-program-multiple-data (SPMD) assumption underlying today's distributed training systems. We present Echo, the RL system that cleanly decouples these two phases across heterogeneous "inference" and "training" swarms while preserving statistical efficiency. Echo introduces two lightweight synchronization protocols: a sequential pull mode that refreshes policy weights according to API call for minimal bias, and an asynchronous push-pull mode that streams version-tagged rollouts through a replay buffer to maximise hardware utilisation. Training four representative RL workloads with Qwen3-4B, Qwen2.5-7B, Qwen3-30B-A3B-Thinking-2507 and Qwen3-32B on a geographically distributed cluster, Echo matches a fully co-located Verl baseline in convergence speed and final reward while off-loading trajectory generation to commodity edge hardware. These promising results demonstrate that large-scale RL for LLMs could achieve datacentre-grade performance using decentralised, heterogeneous resources.
♻ ☆ TIDE : Temporal-Aware Sparse Autoencoders for Interpretable Diffusion Transformers in Image Generation
Diffusion Transformers (DiTs) are a powerful yet underexplored class of generative models compared to U-Net-based diffusion architectures. We propose TIDE-Temporal-aware sparse autoencoders for Interpretable Diffusion transformErs-a framework designed to extract sparse, interpretable activation features across timesteps in DiTs. TIDE effectively captures temporally-varying representations and reveals that DiTs naturally learn hierarchical semantics (e.g., 3D structure, object class, and fine-grained concepts) during large-scale pretraining. Experiments show that TIDE enhances interpretability and controllability while maintaining reasonable generation quality, enabling applications such as safe image editing and style transfer.
♻ ☆ SEAgent: Self-Evolving Computer Use Agent with Autonomous Learning from Experience
Repurposing large vision-language models (LVLMs) as computer use agents (CUAs) has led to substantial breakthroughs, primarily driven by human-labeled data. However, these models often struggle with novel and specialized software, particularly in scenarios lacking human annotations. To address this challenge, we propose SEAgent, an agentic self-evolving framework enabling CUAs to autonomously evolve through interactions with unfamiliar software. Specifically, SEAgent empowers computer-use agents to autonomously master novel software environments via experiential learning, where agents explore new software, learn through iterative trial-and-error, and progressively tackle auto-generated tasks organized from simple to complex. To achieve this goal, we design a World State Model for step-wise trajectory assessment, along with a Curriculum Generator that generates increasingly diverse and challenging tasks. The agent's policy is updated through experiential learning, comprised of adversarial imitation of failure actions and Group Relative Policy Optimization (GRPO) on successful ones. Furthermore, we introduce a specialist-to-generalist training strategy that integrates individual experiential insights from specialist agents, facilitating the development of a stronger generalist CUA capable of continuous autonomous evolution. This unified agent ultimately achieves performance surpassing ensembles of individual specialist agents on their specialized software. We validate the effectiveness of SEAgent across five novel software environments within OS-World. Our approach achieves a significant improvement of 23.2% in success rate, from 11.3% to 34.5%, over a competitive open-source CUA, i.e., UI-TARS.
comment: Code at https://github.com/SunzeY/SEAgent
♻ ☆ OSMa-Bench: Evaluating Open Semantic Mapping Under Varying Lighting Conditions
Open Semantic Mapping (OSM) is a key technology in robotic perception, combining semantic segmentation and SLAM techniques. This paper introduces a dynamically configurable and highly automated LLM/LVLM-powered pipeline for evaluating OSM solutions called OSMa-Bench (Open Semantic Mapping Benchmark). The study focuses on evaluating state-of-the-art semantic mapping algorithms under varying indoor lighting conditions, a critical challenge in indoor environments. We introduce a novel dataset with simulated RGB-D sequences and ground truth 3D reconstructions, facilitating the rigorous analysis of mapping performance across different lighting conditions. Through experiments on leading models such as ConceptGraphs, BBQ and OpenScene, we evaluate the semantic fidelity of object recognition and segmentation. Additionally, we introduce a Scene Graph evaluation method to analyze the ability of models to interpret semantic structure. The results provide insights into the robustness of these models, forming future research directions for developing resilient and adaptable robotic systems. Project page is available at https://be2rlab.github.io/OSMa-Bench/.
comment: Project page: https://be2rlab.github.io/OSMa-Bench/
♻ ☆ AIOS: LLM Agent Operating System
LLM-based intelligent agents face significant deployment challenges, particularly related to resource management. Allowing unrestricted access to LLM or tool resources can lead to inefficient or even potentially harmful resource allocation and utilization for agents. Furthermore, the absence of proper scheduling and resource management mechanisms in current agent designs hinders concurrent processing and limits overall system efficiency. To address these challenges, this paper proposes the architecture of AIOS (LLM-based AI Agent Operating System) under the context of managing LLM-based agents. It introduces a novel architecture for serving LLM-based agents by isolating resources and LLM-specific services from agent applications into an AIOS kernel. This AIOS kernel provides fundamental services (e.g., scheduling, context management, memory management, storage management, access control) for runtime agents. To enhance usability, AIOS also includes an AIOS SDK, a comprehensive suite of APIs designed for utilizing functionalities provided by the AIOS kernel. Experimental results demonstrate that using AIOS can achieve up to 2.1x faster execution for serving agents built by various agent frameworks. The source code is available at https://github.com/agiresearch/AIOS.
comment: Published as a full paper at COLM 2025
♻ ☆ Position: The Current AI Conference Model is Unsustainable! Diagnosing the Crisis of Centralized AI Conference
Artificial Intelligence (AI) conferences are essential for advancing research, sharing knowledge, and fostering academic community. However, their rapid expansion has rendered the centralized conference model increasingly unsustainable. This paper offers a data-driven diagnosis of a structural crisis that threatens the foundational goals of scientific dissemination, equity, and community well-being. We identify four key areas of strain: (1) scientifically, with per-author publication rates more than doubling over the past decade to over 4.5 papers annually; (2) environmentally, with the carbon footprint of a single conference exceeding the daily emissions of its host city; (3) psychologically, with 71% of online community discourse reflecting negative sentiment and 35% referencing mental health concerns; and (4) logistically, with attendance at top conferences such as NeurIPS 2024 beginning to outpace venue capacity. These pressures point to a system that is misaligned with its core mission. In response, we propose the Community-Federated Conference (CFC) model, which separates peer review, presentation, and networking into globally coordinated but locally organized components, offering a more sustainable, inclusive, and resilient path forward for AI research.
comment: Preprint
♻ ☆ TurboBias: Universal ASR Context-Biasing powered by GPU-accelerated Phrase-Boosting Tree
Recognizing specific key phrases is an essential task for contextualized Automatic Speech Recognition (ASR). However, most existing context-biasing approaches have limitations associated with the necessity of additional model training, significantly slow down the decoding process, or constrain the choice of the ASR system type. This paper proposes a universal ASR context-biasing framework that supports all major types: CTC, Transducers, and Attention Encoder-Decoder models. The framework is based on a GPU-accelerated word boosting tree, which enables it to be used in shallow fusion mode for greedy and beam search decoding without noticeable speed degradation, even with a vast number of key phrases (up to 20K items). The obtained results showed high efficiency of the proposed method, surpassing the considered open-source context-biasing approaches in accuracy and decoding speed. Our context-biasing framework is open-sourced as a part of the NeMo toolkit.
comment: Accepted to ASRU 2025
♻ ☆ 3DFacePolicy: Audio-Driven 3D Facial Animation Based on Action Control
Audio-driven 3D facial animation has achieved significant progress in both research and applications. While recent baselines struggle to generate natural and continuous facial movements due to their frame-by-frame vertex generation approach, we propose 3DFacePolicy, a pioneer work that introduces a novel definition of vertex trajectory changes across consecutive frames through the concept of "action". By predicting action sequences for each vertex that encode frame-to-frame movements, we reformulate vertex generation approach into an action-based control paradigm. Specifically, we leverage a robotic control mechanism, diffusion policy, to predict action sequences conditioned on both audio and vertex states. Extensive experiments on VOCASET and BIWI datasets demonstrate that our approach significantly outperforms state-of-the-art methods and is particularly expert in dynamic, expressive and naturally smooth facial animations.
♻ ☆ AdEval: Alignment-based Dynamic Evaluation to Mitigate Data Contamination in Large Language Models
As Large Language Models (LLMs) are pre-trained on ultra-large-scale corpora, the problem of data contamination is becoming increasingly serious, and there is a risk that static evaluation benchmarks overestimate the performance of LLMs. To address this, this paper proposes a dynamic data evaluation method called AdEval (Alignment-based Dynamic Evaluation). AdEval first extracts knowledge points and main ideas from static datasets to achieve dynamic alignment with the core content of static benchmarks, and by avoiding direct reliance on static datasets, it inherently reduces the risk of data contamination from the source. It then obtains background information through online searches to generate detailed descriptions of the knowledge points. Finally, it designs questions based on Bloom's cognitive hierarchy across six dimensions-remembering, understanding, applying, analyzing, evaluating, and creating to enable multi-level cognitive assessment. Additionally, AdEval controls the complexity of dynamically generated datasets through iterative question reconstruction. Experimental results on multiple datasets show that AdEval effectively alleviates the impact of data contamination on evaluation results, solves the problems of insufficient complexity control and single-dimensional evaluation, and improves the fairness, reliability and diversity of LLMs evaluation.
comment: There are serious academic problems in this paper, such as data falsification and plagiarism in the method of the paper
♻ ☆ Effort-aware Fairness: Incorporating a Philosophy-informed, Human-centered Notion of Effort into Algorithmic Fairness Metrics
Although popularized AI fairness metrics, e.g., demographic parity, have uncovered bias in AI-assisted decision-making outcomes, they do not consider how much effort one has spent to get to where one is today in the input feature space. However, the notion of effort is important in how Philosophy and humans understand fairness. We propose a philosophy-informed approach to conceptualize and evaluate Effort-aware Fairness (EaF), grounded in the concept of Force, which represents the temporal trajectory of predictive features coupled with inertia. Besides theoretical formulation, our empirical contributions include: (1) a pre-registered human subjects experiment, which shows that for both stages of the (individual) fairness evaluation process, people consider the temporal trajectory of a predictive feature more than its aggregate value; (2) pipelines to compute Effort-aware Individual/Group Fairness in the criminal justice and personal finance contexts. Our work may enable AI model auditors to uncover and potentially correct unfair decisions against individuals who have spent significant efforts to improve but are still stuck with systemic disadvantages outside their control.
comment: AIES 2025
♻ ☆ RAGtifier: Evaluating RAG Generation Approaches of State-of-the-Art RAG Systems for the SIGIR LiveRAG Competition SIGIR 2025
Retrieval-Augmented Generation (RAG) enriches Large Language Models (LLMs) by combining their internal, parametric knowledge with external, non-parametric sources, with the goal of improving factual correctness and minimizing hallucinations. The LiveRAG 2025 challenge explores RAG solutions to maximize accuracy on DataMorgana's QA pairs, which are composed of single-hop and multi-hop questions. The challenge provides access to sparse OpenSearch and dense Pinecone indices of the Fineweb 10BT dataset. It restricts model use to LLMs with up to 10B parameters and final answer generation with Falcon-3-10B. A judge-LLM assesses the submitted answers along with human evaluators. By exploring distinct retriever combinations and RAG solutions under the challenge conditions, our final solution emerged using InstructRAG in combination with a Pinecone retriever and a BGE reranker. Our solution achieved a correctness score of 1.13 and a faithfulness score of 0.55 in the non-human evaluation, placing it overall in third place in the SIGIR 2025 LiveRAG Challenge.
comment: 4 pages, 6 figures. Report for SIGIR 2025 LiveRAG Challenge
♻ ☆ Edge-Based Multimodal Sensor Data Fusion with Vision Language Models (VLMs) for Real-time Autonomous Vehicle Accident Avoidance
Autonomous driving (AD) systems relying solely on onboard sensors may fail to detect distant or obstacle hazards, potentially causing preventable collisions; however, existing transformer-based Vehicle-to-Everything (V2X) approaches, which mitigate AD sensing limitations, either lack effective multimodal fusion and reasoning or struggle to meet real-time performance requirements under complex, high-dimensional traffic conditions. This paper proposes the Real-time Edge-based Autonomous Co-pilot Trajectory planner (REACT), a V2X-integrated trajectory optimization framework for AD based on a fine-tuned lightweight Vision-Language Model (VLM). REACT integrates infrastructure-provided hazard alerts with onboard sensor data, capturing intricate surrounding traffic dynamics and vehicle intents through visual embeddings, interpreting precise numerical data from symbolic inputs, and employing contextual reasoning to generate optimized, safety-oriented trajectories. To ensure robust real-time deployment on edge devices, REACT innovatively employs Residual Trajectory Fusion (RTF) design and specialized edge-adaptation strategies to reduce model complexity and improve inference efficiency. Evaluated on the DeepAccident benchmark, REACT achieves state-of-the-art performance, a 77% collision rate reduction, a 48.2% Video Panoptic Quality (VPQ), and a 0.57-second inference latency on the Jetson AGX Orin. Ablation studies validate the contribution of each input, module, and edge adaptation strategy. These results highlight the effectiveness of lightweight VLMs in enabling real-time cooperative planning on edge platforms and underscore the potential of language-guided contextual reasoning for improving traffic safety and responsiveness.
comment: 24 pages, 6 tables, 7 figures
♻ ☆ Cognitive Kernel-Pro: A Framework for Deep Research Agents and Agent Foundation Models Training
General AI Agents are increasingly recognized as foundational frameworks for the next generation of artificial intelligence, enabling complex reasoning, web interaction, coding, and autonomous research capabilities. However, current agent systems are either closed-source or heavily reliant on a variety of paid APIs and proprietary tools, limiting accessibility and reproducibility for the research community. In this work, we present \textbf{Cognitive Kernel-Pro}, a fully open-source and (to the maximum extent) free multi-module agent framework designed to democratize the development and evaluation of advanced AI agents. Within Cognitive Kernel-Pro, we systematically investigate the curation of high-quality training data for Agent Foundation Models, focusing on the construction of queries, trajectories, and verifiable answers across four key domains: web, file, code, and general reasoning. Furthermore, we explore novel strategies for agent test-time reflection and voting to enhance agent robustness and performance. We evaluate Cognitive Kernel-Pro on GAIA, achieving state-of-the-art results among open-source and free agents. Notably, our 8B-parameter open-source model surpasses previous leading systems such as WebDancer and WebSailor, establishing a new performance standard for accessible, high-capability AI agents. Code is available at https://github.com/Tencent/CognitiveKernel-Pro
comment: 16 pages
♻ ☆ UnrealZoo: Enriching Photo-realistic Virtual Worlds for Embodied AI ICCV 2025
We introduce UnrealZoo, a collection of over 100 photo-realistic 3D virtual worlds built on Unreal Engine, designed to reflect the complexity and variability of open-world environments. We also provide a rich variety of playable entities, including humans, animals, robots, and vehicles for embodied AI research. We extend UnrealCV with optimized APIs and tools for data collection, environment augmentation, distributed training, and benchmarking. These improvements achieve significant improvements in the efficiency of rendering and communication, enabling advanced applications such as multi-agent interactions. Our experimental evaluation across visual navigation and tracking tasks reveals two key insights: 1) environmental diversity provides substantial benefits for developing generalizable reinforcement learning (RL) agents, and 2) current embodied agents face persistent challenges in open-world scenarios, including navigation in unstructured terrain, adaptation to unseen morphologies, and managing latency in the close-loop control systems for interacting in highly dynamic objects. UnrealZoo thus serves as both a comprehensive testing ground and a pathway toward developing more capable embodied AI systems for real-world deployment.
comment: ICCV 2025 (Highlight), Project page: http://unrealzoo.site/
♻ ☆ Post-Completion Learning for Language Models
Current language model training paradigms typically terminate learning upon reaching the end-of-sequence () token, overlooking the potential learning opportunities in the post-completion space. We propose Post-Completion Learning (PCL), a novel training framework that systematically utilizes the sequence space after model output completion, to enhance both the reasoning and self-evaluation abilities. PCL enables models to continue generating self-assessments and reward predictions during training, while maintaining efficient inference by stopping at the completion point. To fully utilize this post-completion space, we design a white-box reinforcement learning method: let the model evaluate the output content according to the reward rules, then calculate and align the score with the reward functions for supervision. We implement dual-track SFT to optimize both reasoning and evaluation capabilities, and mixed it with RL training to achieve multi-objective hybrid optimization. Experimental results on different datasets and models demonstrate consistent improvements over traditional SFT and RL methods. Our method provides a new technical path for language model training that enhances output quality while preserving deployment efficiency.
♻ ☆ Explaining Time Series Classifiers with PHAR: Rule Extraction and Fusion from Post-hoc Attributions
Explaining machine learning (ML) models for time series (TS) classification remains challenging due to the difficulty of interpreting raw time series and the high dimensionality of the input space. We introduce PHAR-Post-hoc Attribution Rules-a unified framework that transforms numeric feature attributions from post-hoc, instance-wise explainers (e.g., LIME, SHAP) into structured, human-readable rules. These rules define interpretable intervals that indicate where and when key decision boundaries occur, enhancing model transparency. PHAR performs comparably to native rule-based methods, such as Anchor, while scaling more efficiently to long TS sequences and achieving broader instance coverage. A dedicated rule fusion step consolidates rule sets using strategies like weighted selection and lasso-based refinement, balancing key quality metrics: coverage, confidence, and simplicity. This fusion ensures each instance receives a concise and unambiguous rule, improving both explanation fidelity and consistency. We further introduce visualization techniques to illustrate specificity-generalization trade-offs in the derived rules. PHAR resolves conflicting and overlapping explanations-a common effect of the Rashomon phenomenon-into coherent, domain-adaptable insights. Comprehensive experiments on UCR/UEA Time Series Classification Archive demonstrate that PHAR improves interpretability, decision transparency, and practical applicability for TS classification tasks.
♻ ☆ Keep Your Friends Close: Leveraging Affinity Groups to Accelerate AI Inference Workflows
AI inference workflows are typically structured as a pipeline or graph of AI programs triggered by events. As events occur, the AIs perform inference or classification tasks under time pressure to respond or take some action. Standard techniques that reduce latency in other streaming settings (such as caching and optimization-driven scheduling) are of limited value because AI data access patterns (models, databases) change depending on the triggering event: a significant departure from traditional streaming. In this work, we propose a novel affinity grouping mechanism that makes it easier for developers to express application-specific data access correlations, enabling coordinated management of data objects in server clusters hosting streaming inference tasks. Our proposals are thus complementary to other approaches such as caching and scheduling. Experiments confirm the limitations of standard techniques, while showing that the proposed mechanism is able to maintain significantly lower latency as workload and scale-out increase, and yet requires only minor code changes.
♻ ☆ Speech to Reality: On-Demand Production using Natural Language, 3D Generative AI, and Discrete Robotic Assembly
We present a system that transforms speech into physical objects using 3D generative AI and discrete robotic assembly. By leveraging natural language input, the system makes design and manufacturing more accessible to individuals without expertise in 3D modeling or robotic programming. While current generative AI models can produce a wide range of 3D digital assets, AI-generated meshes are not directly suitable for robotic fabrication and do not account for fabrication constraints. To address this, we contribute a workflow that integrates natural language processing, 3D generative AI, and discrete robotic assembly. The system automatically analyzes and modifies AI-generated geometry to meet physical constraints, such as component count, overhangs, and connectivity, and produces a feasible robotic assembly sequence and toolpath. The results are demonstrated through the assembly of various objects, ranging from chairs to shelves, which are prompted via speech and realized within 5 minutes using a robotic arm.
comment: This work has been submitted for possible publication. An updated version will replace this version when available
Evaluating Trust in AI, Human, and Co-produced Feedback Among Undergraduate Students
As generative AI models, particularly large language models (LLMs), transform educational feedback practices in higher education (HE) contexts, understanding students' perceptions of different sources of feedback becomes crucial for their effective implementation and adoption. This study addresses a critical gap by comparing undergraduate students' trust in LLM, human, and human-AI co-produced feedback in their authentic HE context. More specifically, through a within-subject experimental design involving 91 participants, we investigated factors that predict students' ability to distinguish between feedback types, their perceptions of feedback quality, and potential biases related to the source of feedback. Findings revealed that when the source was blinded, students generally preferred AI and co-produced feedback over human feedback regarding perceived usefulness and objectivity. However, they presented a strong bias against AI when the source of feedback was disclosed. In addition, only AI feedback suffered a decline in perceived genuineness when feedback sources were revealed, while co-produced feedback maintained its positive perception. Educational AI experience improved students' ability to identify LLM-generated feedback and increased their trust in all types of feedback. More years of students' experience using AI for general purposes were associated with lower perceived usefulness and credibility of feedback. These insights offer substantial evidence of the importance of source credibility and the need to enhance both feedback literacy and AI literacy to mitigate bias in student perceptions for AI-generated feedback to be adopted and impact education.
comment: 35 pages, 6 figures. Under review at Assessment and Evaluation in Higher Education
♻ ☆ When Imitation Learning Outperforms Reinforcement Learning in Surgical Action Planning MICCAI2025
Surgical action planning requires predicting future instrument-verb-target triplets for real-time assistance. While teleoperated robotic surgery provides natural expert demonstrations for imitation learning (IL), reinforcement learning (RL) could potentially discover superior strategies through exploration. We present the first comprehensive comparison of IL versus RL for surgical action planning on CholecT50. Our Dual-task Autoregressive Imitation Learning (DARIL) baseline achieves 34.6% action triplet recognition mAP and 33.6% next frame prediction mAP with smooth planning degradation to 29.2% at 10-second horizons. We evaluated three RL variants: world model-based RL, direct video RL, and inverse RL enhancement. Surprisingly, all RL approaches underperformed DARIL i.e. world model RL dropped to 3.1% mAP at 10s while direct video RL achieved only 15.9%. Our analysis reveals that distribution matching on expert-annotated test sets systematically favors IL over potentially valid RL policies that differ from training demonstrations. This challenges assumptions about RL superiority in sequential decision making and provides crucial insights for surgical AI development.
comment: Paper accepted at the MICCAI2025 workshop proceedings on COLlaborative Intelligence and Autonomy in Image-guided Surgery (COLAS)
♻ ☆ A Few Words Can Distort Graphs: Knowledge Poisoning Attacks on Graph-based Retrieval-Augmented Generation of Large Language Models
Graph-based Retrieval-Augmented Generation (GraphRAG) has recently emerged as a promising paradigm for enhancing large language models (LLMs) by converting raw text into structured knowledge graphs, improving both accuracy and explainability. However, GraphRAG relies on LLMs to extract knowledge from raw text during graph construction, and this process can be maliciously manipulated to implant misleading information. Targeting this attack surface, we propose two knowledge poisoning attacks (KPAs) and demonstrate that modifying only a few words in the source text can significantly change the constructed graph, poison the GraphRAG, and severely mislead downstream reasoning. The first attack, named Targeted KPA (TKPA), utilizes graph-theoretic analysis to locate vulnerable nodes in the generated graphs and rewrites the corresponding narratives with LLMs, achieving precise control over specific question-answering (QA) outcomes with a success rate of 93.1\%, while keeping the poisoned text fluent and natural. The second attack, named Universal KPA (UKPA), exploits linguistic cues such as pronouns and dependency relations to disrupt the structural integrity of the generated graph by altering globally influential words. With fewer than 0.05\% of full text modified, the QA accuracy collapses from 95\% to 50\%. Furthermore, experiments show that state-of-the-art defense methods fail to detect these attacks, highlighting that securing GraphRAG pipelines against knowledge poisoning remains largely unexplored.
♻ ☆ Unsupervised Document and Template Clustering using Multimodal Embeddings
This paper investigates a novel approach to unsupervised document clustering by leveraging multimodal embeddings as input to clustering algorithms such as $k$-Means, DBSCAN, a combination of HDBSCAN and $k$-NN, and BIRCH. Our method aims to achieve a finer-grained document understanding by not only grouping documents at the type level (e.g., invoices, purchase orders), but also distinguishing between different templates within the same document category. This is achieved by using embeddings that capture textual content, layout information, and visual features of documents. We evaluated the effectiveness of this approach using embeddings generated by several state-of-the-art pre-trained multimodal models, including SBERT, LayoutLMv1, LayoutLMv3, DiT, Donut, ColPali, Gemma3, and InternVL3. Our findings demonstrate the potential of multimodal embeddings to significantly enhance document clustering, offering benefits for various applications in intelligent document processing, document layout analysis, and unsupervised document classification. This work provides valuable insight into the advantages and limitations of different multimodal models for this task and opens new avenues for future research to understand and organize document collections.
comment: 22 pages, 12 figures
♻ ☆ Vision Language Models See What You Want but not What You See ICLR 2025
Knowing others' intentions and taking others' perspectives are two core components of human intelligence that are considered to be instantiations of theory-of-mind. Infiltrating machines with these abilities is an important step towards building human-level artificial intelligence. Here, to investigate intentionality understanding and level-2 perspective-taking in Vision Language Models (VLMs), we constructed the IntentBench and PerspectBench, which together contains over 300 cognitive experiments grounded in real-world scenarios and classic cognitive tasks. We found VLMs achieving high performance on intentionality understanding but low performance on level-2 perspective-taking. This suggests a potential dissociation between simulation-based and theory-based theory-of-mind abilities in VLMs, highlighting the concern that they are not capable of using model-based reasoning to infer others' mental states.
comment: Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)
♻ ☆ InfiAlign: A Scalable and Sample-Efficient Framework for Aligning LLMs to Enhance Reasoning Capabilities
Large language models (LLMs) have exhibited impressive reasoning abilities on a wide range of complex tasks. However, enhancing these capabilities through post-training remains resource intensive, particularly in terms of data and computational cost. Although recent efforts have sought to improve sample efficiency through selective data curation, existing methods often rely on heuristic or task-specific strategies that hinder scalability. In this work, we introduce InfiAlign, a scalable and sample-efficient post-training framework that integrates supervised fine-tuning (SFT) with Direct Preference Optimization (DPO) to align LLMs for enhanced reasoning. At the core of InfiAlign is a robust data selection pipeline that automatically curates high-quality alignment data from open-source reasoning datasets using multidimensional quality metrics. This pipeline enables significant performance gains while drastically reducing data requirements and remains extensible to new data sources. When applied to the Qwen2.5-Math-7B-Base model, our SFT model achieves performance on par with DeepSeek-R1-Distill-Qwen-7B, while using only approximately 12% of the training data, and demonstrates strong generalization across diverse reasoning tasks. Additional improvements are obtained through the application of DPO, with particularly notable gains in mathematical reasoning tasks. The model achieves an average improvement of 3.89% on AIME 24/25 benchmarks. Our results highlight the effectiveness of combining principled data selection with full-stage post-training, offering a practical solution for aligning large reasoning models in a scalable and data-efficient manner. The model checkpoints are available at https://huggingface.co/InfiX-ai/InfiAlign-Qwen-7B-SFT.
♻ ☆ Learning Marmoset Vocal Patterns with a Masked Autoencoder for Robust Call Segmentation, Classification, and Caller Identification
The marmoset, a highly vocal primate, is a key model for studying social-communicative behavior. Unlike human speech, marmoset vocalizations are less structured, highly variable, and recorded in noisy, low-resource conditions. Learning marmoset communication requires joint call segmentation, classification, and caller identification -- challenging domain tasks. Previous CNNs handle local patterns but struggle with long-range temporal structure. We applied Transformers using self-attention for global dependencies. However, Transformers show overfitting and instability on small, noisy annotated datasets. To address this, we pretrain Transformers with MAE -- a self-supervised method reconstructing masked segments from hundreds of hours of unannotated marmoset recordings. The pretraining improved stability and generalization. Results show MAE-pretrained Transformers outperform CNNs, demonstrating modern self-supervised architectures effectively model low-resource non-human vocal communication.
comment: Accepted by ASRU 2025
♻ ☆ Trainable Dynamic Mask Sparse Attention
In large language models, the demand for modeling long contexts is constantly increasing, but the quadratic complexity of the standard self-attention mechanism often becomes a bottleneck. Although existing sparse attention mechanisms have improved efficiency, they may still encounter issues such as static patterns or information loss. We introduce a trainable dynamic mask sparse attention mechanism, Dynamic Mask Attention, which effectively utilizes content-aware and position-aware sparsity. DMA achieves this through two key innovations: First, it dynamically generates content-aware sparse masks from value representations, enabling the model to identify and focus on critical information adaptively. Second, it implements position-aware sparse attention computation that effectively skips unnecessary calculation regions. This dual-sparsity design allows the model to significantly reduce the computational complexity of important information while retaining complete information, achieving an excellent balance between information fidelity and computational efficiency. We have verified the performance of DMA through comprehensive experiments. Comparative studies show that DMA outperforms multi-head attention, sliding window attention, multi-head latent attention, and native sparse attention in terms of perplexity under Chinchilla Scaling Law settings. Moreover, in challenging multi-query associative recall tasks, DMA also demonstrates superior performance and efficiency compared to these methods. Crucially, in the evaluation of a 1.7B parameter model, DMA significantly outperforms multi-head attention in both standard benchmark performance and the challenging needle-in-a-haystack task. These experimental results highlight its capability to balance model efficiency and long-context modeling ability effectively.
comment: 8 figures, 4 tables
♻ ☆ Zero-shot Emotion Annotation in Facial Images Using Large Multimodal Models: Benchmarking and Prospects for Multi-Class, Multi-Frame Approaches
This study investigates the feasibility and performance of using large multimodal models (LMMs) to automatically annotate human emotions in everyday scenarios. We conducted experiments on the DailyLife subset of the publicly available FERV39k dataset, employing the GPT-4o-mini model for rapid, zero-shot labeling of key frames extracted from video segments. Under a seven-class emotion taxonomy ("Angry," "Disgust," "Fear," "Happy," "Neutral," "Sad," "Surprise"), the LMM achieved an average precision of approximately 50%. In contrast, when limited to ternary emotion classification (negative/neutral/positive), the average precision increased to approximately 64%. Additionally, we explored a strategy that integrates multiple frames within 1-2 second video clips to enhance labeling performance and reduce costs. The results indicate that this approach can slightly improve annotation accuracy. Overall, our preliminary findings highlight the potential application of zero-shot LMMs in human facial emotion annotation tasks, offering new avenues for reducing labeling costs and broadening the applicability of LMMs in complex multimodal environments.
comment: 10 pages, accepted to MRAC'25: 3rd International Workshop on Multimodal and Responsible Affective Computing (ACM-MM 2025)
♻ ☆ Adaptive Informed Deep Neural Networks for Power Flow Analysis
This study introduces PINN4PF, an end-to-end deep learning architecture for power flow (PF) analysis that effectively captures the nonlinear dynamics of large-scale modern power systems. The proposed neural network (NN) architecture consists of two important advancements in the training pipeline: (A) a double-head feed-forward NN that aligns with PF analysis, including an activation function that adjusts to the net active and reactive power injections patterns, and (B) a physics-based loss function that partially incorporates power system topology information through a novel hidden function. The effectiveness of the proposed architecture is illustrated through 4-bus, 15-bus, 290-bus, and 2224-bus test systems and is evaluated against two baselines: a linear regression model (LR) and a black-box NN (MLP). The comparison is based on (i) generalization ability, (ii) robustness, (iii) impact of training dataset size on generalization ability, (iv) accuracy in approximating derived PF quantities (specifically line current, line active power, and line reactive power), and (v) scalability. Results demonstrate that PINN4PF outperforms both baselines across all test systems by up to two orders of magnitude not only in terms of direct criteria, e.g., generalization ability, but also in terms of approximating derived physical quantities.
comment: 17 pages, 7 figures, 4 tables
♻ ☆ BriLLM: Brain-inspired Large Language Model
We present BriLLM, a brain-inspired large language model that fundamentally reimagines machine learning foundations through Signal Fully-connected flowing (SiFu) learning. Addressing core limitations in Transformer-based models including black-box opacity, quadratic complexity, and context-length dependency, BriLLM incorporates two key neurocognitive principles: first, static semantic mapping where tokens map to specialized nodes analogous to cortical regions, and second, dynamic signal propagation simulating electrophysiological information flow. This architecture enables three breakthroughs: full model interpretability, context-length independent scaling, and the first global-scale simulation of brain-like processing. Initial 1 to 2B parameter models demonstrate GPT-1-level generative capabilities with stable perplexity reduction. Scalability analyses confirm feasibility of 100 to 200B parameter variants processing 40,000-token contexts. BriLLM establishes a new paradigm for biologically grounded AGI development.
♻ ☆ Role-Aware Language Models for Secure and Contextualized Access Control in Organizations
As large language models (LLMs) are increasingly deployed in enterprise settings, controlling model behavior based on user roles becomes an essential requirement. Existing safety methods typically assume uniform access and focus on preventing harmful or toxic outputs, without addressing role-specific access constraints. In this work, we investigate whether LLMs can be fine-tuned to generate responses that reflect the access privileges associated with different organizational roles. We explore three modeling strategies: a BERT-based classifier, an LLM-based classifier, and role-conditioned generation. To evaluate these approaches, we construct two complementary datasets. The first is adapted from existing instruction-tuning corpora through clustering and role labeling, while the second is synthetically generated to reflect realistic, role-sensitive enterprise scenarios. We assess model performance across varying organizational structures and analyze robustness to prompt injection, role mismatch, and jailbreak attempts.
♻ ☆ Forget the Data and Fine-Tuning! Just Fold the Network to Compress ICLR
We introduce model folding, a novel data-free model compression technique that merges structurally similar neurons across layers, significantly reducing the model size without the need for fine-tuning or access to training data. Unlike existing methods, model folding preserves data statistics during compression by leveraging k-means clustering, and using novel data-free techniques to prevent variance collapse or explosion. Our theoretical framework and experiments across standard benchmarks, including ResNet18 and LLaMA-7B, demonstrate that model folding achieves comparable performance to data-driven compression techniques and outperforms recently proposed data-free methods, especially at high sparsity levels. This approach is particularly effective for compressing large-scale models, making it suitable for deployment in resource-constrained environments.
comment: This paper has been accepted by The Thirteenth International Conference on Learning Representations(ICLR), 2025
♻ ☆ PAR-AdvGAN: Improving Adversarial Attack Capability with Progressive Auto-Regression AdvGAN ECML-PKDD 2025
Deep neural networks have demonstrated remarkable performance across various domains. However, they are vulnerable to adversarial examples, which can lead to erroneous predictions. Generative Adversarial Networks (GANs) can leverage the generators and discriminators model to quickly produce high-quality adversarial examples. Since both modules train in a competitive and simultaneous manner, GAN-based algorithms like AdvGAN can generate adversarial examples with better transferability compared to traditional methods. However, the generation of perturbations is usually limited to a single iteration, preventing these examples from fully exploiting the potential of the methods. To tackle this issue, we introduce a novel approach named Progressive Auto-Regression AdvGAN (PAR-AdvGAN). It incorporates an auto-regressive iteration mechanism within a progressive generation network to craft adversarial examples with enhanced attack capability. We thoroughly evaluate our PAR-AdvGAN method with a large-scale experiment, demonstrating its superior performance over various state-of-the-art black-box adversarial attacks, as well as the original AdvGAN.Moreover, PAR-AdvGAN significantly accelerates the adversarial example generation, i.e., achieving the speeds of up to 335.5 frames per second on Inception-v3 model, outperforming the gradient-based transferable attack algorithms. Our code is available at: https://github.com/LMBTough/PAR
comment: Best student paper award of ECML-PKDD 2025
♻ ☆ Situated Epistemic Infrastructures: A Diagnostic Framework for Post-Coherence Knowledge
Large Language Models (LLMs) such as ChatGPT have rendered visible the fragility of contemporary knowledge infrastructures by simulating coherence while bypassing traditional modes of citation, authority, and validation. This paper introduces the Situated Epistemic Infrastructures (SEI) framework as a diagnostic tool for analyzing how knowledge becomes authoritative across hybrid human-machine systems under post-coherence conditions. Rather than relying on stable scholarly domains or bounded communities of practice, SEI traces how credibility is mediated across institutional, computational, and temporal arrangements. Integrating insights from infrastructure studies, platform theory, and epistemology, the framework foregrounds coordination over classification, emphasizing the need for anticipatory and adaptive models of epistemic stewardship. The paper contributes to debates on AI governance, knowledge production, and the ethical design of information systems by offering a robust alternative to representationalist models of scholarly communication.
comment: 22 pages including references. Draft prepared for submission to Science, Technology & Human Values
♻ ☆ Mjölnir: A Deep Learning Parametrization Framework for Global Lightning Flash Density
Recent advances in AI-based weather forecasting models, such as FourCastNet, Pangu-Weather, and GraphCast, have demonstrated the remarkable ability of deep learning to emulate complex atmospheric dynamics. Building on this momentum, we propose Mj\"olnir, a novel deep learning-based framework for global lightning flash density parameterization. Trained on ERA5 atmospheric predictors and World Wide Lightning Location Network (WWLLN) observations at a daily temporal resolution and 1 degree spatial resolution, Mj\"olnir captures the nonlinear mapping between large-scale environmental conditions and lightning activity. The model architecture is based on the InceptionNeXt backbone with SENet, and a multi-task learning strategy to simultaneously predict lightning occurrence and magnitude. Extensive evaluations yield that Mollnir accurately reproduces the global distribution, seasonal variability, and regional characteristics of lightning activity, achieving a global Pearson correlation coefficient of 0.96 for annual mean fields. These results suggest that Mj\"olnir serves not only as an effective data-driven global lightning parameterization but also as a promising AI-based scheme for next-generation Earth system models (AI-ESMs).
comment: After an internal review, we found that the current version does not meet our intended academic standards due to incomplete descriptions and insufficient detail in key sections. No revised manuscript can be prepared in the near future. To ensure academic quality, we withdraw this version and plan to resubmit when the work is substantially improved
♻ ☆ Hypergraph-based Motion Generation with Multi-modal Interaction Relational Reasoning
The intricate nature of real-world driving environments, characterized by dynamic and diverse interactions among multiple vehicles and their possible future states, presents considerable challenges in accurately predicting the motion states of vehicles and handling the uncertainty inherent in the predictions. Addressing these challenges requires comprehensive modeling and reasoning to capture the implicit relations among vehicles and the corresponding diverse behaviors. This research introduces an integrated framework for autonomous vehicles (AVs) motion prediction to address these complexities, utilizing a novel Relational Hypergraph Interaction-informed Neural mOtion generator (RHINO). RHINO leverages hypergraph-based relational reasoning by integrating a multi-scale hypergraph neural network to model group-wise interactions among multiple vehicles and their multi-modal driving behaviors, thereby enhancing motion prediction accuracy and reliability. Experimental validation using real-world datasets demonstrates the superior performance of this framework in improving predictive accuracy and fostering socially aware automated driving in dynamic traffic scenarios. The source code is publicly available at https://github.com/keshuw95/RHINO-Hypergraph-Motion-Generation.
♻ ☆ To Judge or not to Judge: Using LLM Judgements for Advertiser Keyphrase Relevance at eBay
E-commerce sellers are recommended keyphrases based on their inventory on which they advertise to increase buyer engagement (clicks/sales). The relevance of advertiser keyphrases plays an important role in preventing the inundation of search systems with numerous irrelevant items that compete for attention in auctions, in addition to maintaining a healthy seller perception. In this work, we describe the shortcomings of training Advertiser keyphrase relevance filter models on click/sales/search relevance signals and the importance of aligning with human judgment, as sellers have the power to adopt or reject said keyphrase recommendations. In this study, we frame Advertiser keyphrase relevance as a complex interaction between 3 dynamical systems -- seller judgment, which influences seller adoption of our product, Advertising, which provides the keyphrases to bid on, and Search, who holds the auctions for the same keyphrases. This study discusses the practicalities of using human judgment via a case study at eBay Advertising and demonstrate that using LLM-as-a-judge en-masse as a scalable proxy for seller judgment to train our relevance models achieves a better harmony across the three systems -- provided that they are bound by a meticulous evaluation framework grounded in business metrics.
♻ ☆ MEReQ: Max-Ent Residual-Q Inverse RL for Sample-Efficient Alignment from Intervention
Aligning robot behavior with human preferences is crucial for deploying embodied AI agents in human-centered environments. A promising solution is interactive imitation learning from human intervention, where a human expert observes the policy's execution and provides interventions as feedback. However, existing methods often fail to utilize the prior policy efficiently to facilitate learning, thus hindering sample efficiency. In this work, we introduce MEReQ (Maximum-Entropy Residual-Q Inverse Reinforcement Learning), designed for sample-efficient alignment from human intervention. Instead of inferring the complete human behavior characteristics, MEReQ infers a residual reward function that captures the discrepancy between the human expert's and the prior policy's underlying reward functions. It then employs Residual Q-Learning (RQL) to align the policy with human preferences using this residual reward function. Extensive evaluations on simulated and real-world tasks demonstrate that MEReQ achieves sample-efficient policy alignment from human intervention.
♻ ☆ LSDTs: LLM-Augmented Semantic Digital Twins for Adaptive Knowledge-Intensive Infrastructure Planning
Digital Twins (DTs) offer powerful tools for managing complex infrastructure systems, but their effectiveness is often limited by challenges in integrating unstructured knowledge. Recent advances in Large Language Models (LLMs) bring new potential to address this gap, with strong abilities in extracting and organizing diverse textual information. We therefore propose LSDTs (LLM-Augmented Semantic Digital Twins), a framework that helps LLMs extract planning knowledge from unstructured documents like environmental regulations and technical guidelines, and organize it into a formal ontology. This ontology forms a semantic layer that powers a digital twin-a virtual model of the physical system-allowing it to simulate realistic, regulation-aware planning scenarios. We evaluate LSDTs through a case study of offshore wind farm planning in Maryland, including its application during Hurricane Sandy. Results demonstrate that LSDTs support interpretable, regulation-aware layout optimization, enable high-fidelity simulation, and enhance adaptability in infrastructure planning. This work shows the potential of combining generative AI with digital twins to support complex, knowledge-driven planning tasks.
♻ ☆ Federated Learning: A Survey on Privacy-Preserving Collaborative Intelligence
Federated Learning (FL) has emerged as a transformative paradigm in the field of distributed machine learning, enabling multiple clients such as mobile devices, edge nodes, or organizations to collaboratively train a shared global model without the need to centralize sensitive data. This decentralized approach addresses growing concerns around data privacy, security, and regulatory compliance, making it particularly attractive in domains such as healthcare, finance, and smart IoT systems. This survey provides a concise yet comprehensive overview of Federated Learning, beginning with its core architecture and communication protocol. We discuss the standard FL lifecycle, including local training, model aggregation, and global updates. A particular emphasis is placed on key technical challenges such as handling non-IID (non-independent and identically distributed) data, mitigating system and hardware heterogeneity, reducing communication overhead, and ensuring privacy through mechanisms like differential privacy and secure aggregation. Furthermore, we examine emerging trends in FL research, including personalized FL, cross-device versus cross-silo settings, and integration with other paradigms such as reinforcement learning and quantum computing. We also highlight real-world applications and summarize benchmark datasets and evaluation metrics commonly used in FL research. Finally, we outline open research problems and future directions to guide the development of scalable, efficient, and trustworthy FL systems.
♻ ☆ Decoding-based Regression
Language models have recently been shown capable of performing regression wherein numeric predictions are represented as decoded strings. In this work, we provide theoretical grounds for this capability and furthermore investigate the utility of causal sequence decoding models as numeric regression heads given any feature representation. We find that, despite being trained in the usual way - for next-token prediction via cross-entropy loss - decoder-based heads are as performant as standard pointwise heads when benchmarked over standard regression tasks, while being flexible enough to capture smooth numeric distributions, such as in the task of density estimation.
comment: Published in Transactions on Machine Learning Research (TMLR) 2025. Code can be found at https://github.com/google-research/optformer/tree/main/optformer/decoding_regression
♻ ☆ AMFT: Aligning LLM Reasoners by Meta-Learning the Optimal Imitation-Exploration Balance
Large Language Models (LLMs) are typically fine-tuned for reasoning tasks through a two-stage pipeline of Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL), a process fraught with catastrophic forgetting and suboptimal trade-offs between imitation and exploration. Recent single-stage methods attempt to unify SFT and RL using heuristics, but lack a principled mechanism for dynamically balancing the two paradigms. In this paper, we reframe this challenge through the theoretical lens of \textbf{implicit rewards}, viewing SFT and RL not as distinct methods but as complementary reward signals. We introduce \textbf{Adaptive Meta Fine-Tuning (AMFT)}, a novel single-stage algorithm that learns the optimal balance between SFT's implicit, path-level reward and RL's explicit, outcome-based reward. The core of AMFT is a \textbf{meta-gradient adaptive weight controller} that treats the SFT-RL balance as a learnable parameter, dynamically optimizing it to maximize long-term task performance. This forward-looking approach, regularized by policy entropy for stability, autonomously discovers an effective training curriculum. We conduct a comprehensive evaluation on challenging benchmarks spanning mathematical reasoning, abstract visual reasoning (General Points), and vision-language navigation (V-IRL). AMFT consistently establishes a new state-of-the-art and demonstrats superior generalization on out-of-distribution (OOD) tasks. Ablation studies and training dynamic analysis confirm that the meta-learning controller is crucial for AMFT's stability, sample efficiency, and performance, offering a more principled and effective paradigm for LLM alignment. Our codes are open-sourced via https://github.com/hlxtsyj/AMFT.
comment: https://github.com/hlxtsyj/AMFT
♻ ☆ Do Biased Models Have Biased Thoughts?
The impressive performance of language models is undeniable. However, the presence of biases based on gender, race, socio-economic status, physical appearance, and sexual orientation makes the deployment of language models challenging. This paper studies the effect of chain-of-thought prompting, a recent approach that studies the steps followed by the model before it responds, on fairness. More specifically, we ask the following question: $\textit{Do biased models have biased thoughts}$? To answer our question, we conduct experiments on $5$ popular large language models using fairness metrics to quantify $11$ different biases in the model's thoughts and output. Our results show that the bias in the thinking steps is not highly correlated with the output bias (less than $0.6$ correlation with a $p$-value smaller than $0.001$ in most cases). In other words, unlike human beings, the tested models with biased decisions do not always possess biased thoughts.
comment: Accepted at main track of the Second Conference on Language Modeling (COLM 2025)
♻ ☆ IRL-VLA: Training an Vision-Language-Action Policy via Reward World Model
Vision-Language-Action (VLA) models have demonstrated potential in autonomous driving. However, two critical challenges hinder their development: (1) Existing VLA architectures are typically based on imitation learning in open-loop setup which tends to capture the recorded behaviors in the dataset, leading to suboptimal and constrained performance, (2) Close-loop training relies heavily on high-fidelity sensor simulation, where domain gaps and computational inefficiencies pose significant barriers. In this paper, we introduce IRL-VLA, a novel close-loop Reinforcement Learning via \textbf{I}nverse \textbf{R}einforcement \textbf{L}earning reward world model with a self-built VLA approach. Our framework proceeds in a three-stage paradigm: In the first stage, we propose a VLA architecture and pretrain the VLA policy via imitation learning. In the second stage, we construct a lightweight reward world model via inverse reinforcement learning to enable efficient close-loop reward computation. To further enhance planning performance, finally, we design specialized reward world model guidence reinforcement learning via PPO(Proximal Policy Optimization) to effectively balance the safety incidents, comfortable driving, and traffic efficiency. Our approach achieves state-of-the-art performance in NAVSIM v2 end-to-end driving benchmark, 1st runner up in CVPR2025 Autonomous Grand Challenge. We hope that our framework will accelerate VLA research in close-loop autonomous driving.
comment: 9 pagres, 2 figures
♻ ☆ ProtoECGNet: Case-Based Interpretable Deep Learning for Multi-Label ECG Classification with Contrastive Learning
Deep learning-based electrocardiogram (ECG) classification has shown impressive performance but clinical adoption has been slowed by the lack of transparent and faithful explanations. Post hoc methods such as saliency maps may fail to reflect a model's true decision process. Prototype-based reasoning offers a more transparent alternative by grounding decisions in similarity to learned representations of real ECG segments, enabling faithful, case-based explanations. We introduce ProtoECGNet, a prototype-based deep learning model for interpretable, multi-label ECG classification. ProtoECGNet employs a structured, multi-branch architecture that reflects clinical interpretation workflows: it integrates a 1D CNN with global prototypes for rhythm classification, a 2D CNN with time-localized prototypes for morphology-based reasoning, and a 2D CNN with global prototypes for diffuse abnormalities. Each branch is trained with a prototype loss designed for multi-label learning, combining clustering, separation, diversity, and a novel contrastive loss that encourages appropriate separation between prototypes of unrelated classes while allowing clustering for frequently co-occurring diagnoses. We evaluate ProtoECGNet on all 71 diagnostic labels from the PTB-XL dataset, demonstrating competitive performance relative to state-of-the-art black-box models while providing structured, case-based explanations. To assess prototype quality, we conduct a structured clinician review of the final model's projected prototypes, finding that they are rated as representative and clear. ProtoECGNet shows that prototype learning can be effectively scaled to complex, multi-label time-series classification, offering a practical path toward transparent and trustworthy deep learning models for clinical decision support.
comment: Accepted to PMLR 298, 10th Machine Learning for Healthcare Conference (MLHC)
♻ ☆ AI-induced sexual harassment: Investigating Contextual Characteristics and User Reactions of Sexual Harassment by a Companion Chatbot SC
Advancements in artificial intelligence (AI) have led to the increase of conversational agents like Replika, designed to provide social interaction and emotional support. However, reports of these AI systems engaging in inappropriate sexual behaviors with users have raised significant concerns. In this study, we conducted a thematic analysis of user reviews from the Google Play Store to investigate instances of sexual harassment by the Replika chatbot. From a dataset of 35,105 negative reviews, we identified 800 relevant cases for analysis. Our findings revealed that users frequently experience unsolicited sexual advances, persistent inappropriate behavior, and failures of the chatbot to respect user boundaries. Users expressed feelings of discomfort, violation of privacy, and disappointment, particularly when seeking a platonic or therapeutic AI companion. This study highlights the potential harms associated with AI companions and underscores the need for developers to implement effective safeguards and ethical guidelines to prevent such incidents. By shedding light on user experiences of AI-induced harassment, we contribute to the understanding of AI-related risks and emphasize the importance of corporate responsibility in developing safer and more ethical AI systems.
comment: Accepted for publication at CSCW 2025. This is the camera-ready version; the published version will be available through the ACM Digital Library
♻ ☆ LLM Unlearning Without an Expert Curated Dataset
Modern large language models often encode sensitive, harmful, or copyrighted knowledge, raising the need for post-hoc unlearning-the ability to remove specific domains of knowledge from a model without full retraining. A major bottleneck in current unlearning pipelines is constructing effective forget sets-datasets that approximate the target domain and guide the model to forget it. In this work, we introduce a scalable, automated approach to generate high-quality forget sets using language models themselves. Our method synthesizes textbook-style data through a structured prompting pipeline, requiring only a domain name as input. Through experiments on unlearning biosecurity, cybersecurity, and Harry Potter novels, we show that our synthetic datasets consistently outperform the baseline synthetic alternatives and are comparable to the expert-curated ones. Additionally, ablation studies reveal that the multi-step generation pipeline significantly boosts data diversity, which in turn improves unlearning utility. Overall, our findings suggest that synthetic datasets offer a promising path toward practical, scalable unlearning for a wide range of emerging domains without the need for manual intervention. We release our code and dataset at https://github.com/xyzhu123/Synthetic_Textbook.
♻ ☆ DynaSwarm: Dynamically Graph Structure Selection for LLM-based Multi-agent System
Current multi-agent systems (MAS) frameworks often rely on manually designed and static collaboration graph structures, limiting adaptability and performance. To address these limitations, we propose DynaSwarm, a dynamic framework that enhances LLM-based MAS through two key innovations: (1) an actor-critic reinforcement learning (A2C) mechanism to optimize graph structures with improved stability over prior RL methods, and (2) a dynamic graph selector that adaptively chooses the optimal graph structure for each input sample via parameter-efficient LLM fine-tuning. DynaSwarm eliminates the need for rigid, one-fits-all graph architectures, instead leveraging sample-specific idiosyncrasies to dynamically route queries through specialized agent networks. (c) We propose to fine-tune the demonstration retriever to fully exploit the power of in-context learning (ICL). Extensive experiments on question answering, mathematical reasoning, and coding tasks demonstrate that DynaSwarm consistently outperforms state-of-the-art single-agent and MAS baselines across multiple LLM backbones. Our findings highlight the importance of sample-aware structural flexibility in LLM MAS designs.
comment: content error
♻ ☆ ChatBench: From Static Benchmarks to Human-AI Evaluation ACL 2025
With the rapid adoption of LLM-based chatbots, there is a pressing need to evaluate what humans and LLMs can achieve together. However, standard benchmarks, such as MMLU, measure LLM capabilities in isolation (i.e., "AI-alone"). Here, we design and conduct a user study to convert MMLU questions into user-AI conversations, by seeding the user with the question and having them carry out a conversation with the LLM to answer their question. We release ChatBench, a new dataset with AI-alone, user-alone, and user-AI data for 396 questions and two LLMs, including 144K answers and 7,336 user-AI conversations. We find that AI-alone accuracy fails to predict user-AI accuracy, with significant differences across multiple subjects (math, physics, and moral reasoning), and we analyze the user-AI conversations to provide insight into how they diverge from AI-alone benchmarks. Finally, we show that fine-tuning a user simulator on a subset of ChatBench improves its ability to estimate user-AI accuracies, increasing correlation on held-out questions by more than 20 points, creating possibilities for scaling interactive evaluation.
comment: ACL 2025 (main)
♻ ☆ Multidimensional Adaptive Coefficient for Inference Trajectory Optimization in Flow and Diffusion ICML 2025
Flow and diffusion models have demonstrated strong performance and training stability across various tasks but lack two critical properties of simulation-based methods: freedom of dimensionality and adaptability to different inference trajectories. To address this limitation, we propose the Multidimensional Adaptive Coefficient (MAC), a plug-in module for flow and diffusion models that extends conventional unidimensional coefficients to multidimensional ones and enables inference trajectory-wise adaptation. MAC is trained via simulation-based feedback through adversarial refinement. Empirical results across diverse frameworks and datasets demonstrate that MAC enhances generative quality with high training efficiency. Consequently, our work offers a new perspective on inference trajectory optimality, encouraging future research to move beyond vector field design and to leverage training-efficient, simulation-based optimization.
comment: ICML 2025 Paper
♻ ☆ Early Detection of Pancreatic Cancer Using Multimodal Learning on Electronic Health Record
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, and early detection remains a major clinical challenge due to the absence of specific symptoms and reliable biomarkers. In this work, we propose a new multimodal approach that integrates longitudinal diagnosis code histories and routinely collected laboratory measurements from electronic health records to detect PDAC up to one year prior to clinical diagnosis. Our method combines neural controlled differential equations to model irregular lab time series, pretrained language models and recurrent networks to learn diagnosis code trajectory representations, and cross-attention mechanisms to capture interactions between the two modalities. We develop and evaluate our approach on a real-world dataset of nearly 4,700 patients and achieve significant improvements in AUC ranging from 6.5% to 15.5% over state-of-the-art methods. Furthermore, our model identifies diagnosis codes and laboratory panels associated with elevated PDAC risk, including both established and new biomarkers. Our code is available at https://github.com/MosbahAouad/EarlyPDAC-MML.
♻ ☆ Assessing the potential of deep learning for protein-ligand docking
The effects of ligand binding on protein structures and their in vivo functions carry numerous implications for modern biomedical research and biotechnology development efforts such as drug discovery. Although several deep learning (DL) methods and benchmarks designed for protein-ligand docking have recently been introduced, to date no prior works have systematically studied the behavior of the latest docking and structure prediction methods within the broadly applicable context of (1) using predicted (apo) protein structures for docking (e.g., for applicability to new proteins); (2) binding multiple (cofactor) ligands concurrently to a given target protein (e.g., for enzyme design); and (3) having no prior knowledge of binding pockets (e.g., for generalization to unknown pockets). To enable a deeper understanding of docking methods' real-world utility, we introduce PoseBench, the first comprehensive benchmark for broadly applicable protein-ligand docking. PoseBench enables researchers to rigorously and systematically evaluate DL methods for apo-to-holo protein-ligand docking and protein-ligand structure prediction using both primary ligand and multi-ligand benchmark datasets, the latter of which we introduce for the first time to the DL community. Empirically, using PoseBench, we find that (1) DL co-folding methods generally outperform comparable conventional and DL docking baseline algorithms, yet popular methods such as AlphaFold 3 are still challenged by prediction targets with novel binding poses; (2) certain DL co-folding methods are highly sensitive to their input multiple sequence alignments, while others are not; and (3) DL methods struggle to strike a balance between structural accuracy and chemical specificity when predicting novel or multi-ligand protein targets. Code, data, tutorials, and benchmark results are available at https://github.com/BioinfoMachineLearning/PoseBench.
comment: 54 pages, 2 tables, 37 figures. Under review. Code, data, tutorials, and benchmark results are available at https://github.com/BioinfoMachineLearning/PoseBench
SPIE: Semantic and Structural Post-Training of Image Editing Diffusion Models with AI feedback
This paper presents SPIE: a novel approach for semantic and structural post-training of instruction-based image editing diffusion models, addressing key challenges in alignment with user prompts and consistency with input images. We introduce an online reinforcement learning framework that aligns the diffusion model with human preferences without relying on extensive human annotations or curating a large dataset. Our method significantly improves the alignment with instructions and realism in two ways. First, SPIE captures fine nuances in the desired edit by leveraging a visual prompt, enabling detailed control over visual edits without lengthy textual prompts. Second, it achieves precise and structurally coherent modifications in complex scenes while maintaining high fidelity in instruction-irrelevant areas. This approach simplifies users' efforts to achieve highly specific edits, requiring only 5 reference images depicting a certain concept for training. Experimental results demonstrate that SPIE can perform intricate edits in complex scenes, after just 10 training steps. Finally, we showcase the versatility of our method by applying it to robotics, where targeted image edits enhance the visual realism of simulated environments, which improves their utility as proxy for real-world settings.
♻ ☆ Democracy of AI Numerical Weather Models: An Example of Global Forecasting with FourCastNetv2 Made by a University Research Lab Using GPU
This paper demonstrates the feasibility of democratizing AI-driven global weather forecasting models among university research groups by leveraging Graphics Processing Units (GPUs) and freely available AI models, such as NVIDIA's FourCastNetv2. FourCastNetv2 is an NVIDIA's advanced neural network for weather prediction and is trained on a 73-channel subset of the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) dataset at single levels and different pressure levels. Although the training specifications for FourCastNetv2 are not released to the public, the training documentation of the model's first generation, FourCastNet, is available to all users. The training had 64 A100 GPUs and took 16 hours to complete. Although NVIDIA's models offer significant reductions in both time and cost compared to traditional Numerical Weather Prediction (NWP), reproducing published forecasting results presents ongoing challenges for resource-constrained university research groups with limited GPU availability. We demonstrate both (i) leveraging FourCastNetv2 to create predictions through the designated application programming interface (API) and (ii) utilizing NVIDIA hardware to train the original FourCastNet model. Further, this paper demonstrates the capabilities and limitations of NVIDIA A100's for resource-limited research groups in universities. We also explore data management, training efficiency, and model validation, highlighting the advantages and challenges of using limited high-performance computing resources. Consequently, this paper and its corresponding GitHub materials may serve as an initial guide for other university research groups and courses related to machine learning, climate science, and data science to develop research and education programs on AI weather forecasting, and hence help democratize the AI NWP in the digital economy.
comment: 12 pages, 8 figures
♻ ☆ CUDA-L1: Improving CUDA Optimization via Contrastive Reinforcement Learning
The exponential growth in demand for GPU computing resources has created an urgent need for automated CUDA optimization strategies. While recent advances in LLMs show promise for code generation, current SOTA models achieve low success rates in improving CUDA speed. In this paper, we introduce CUDA-L1, an automated reinforcement learning framework for CUDA optimization that employs a novel contrastive RL algorithm. CUDA-L1 achieves significant performance improvements on the CUDA optimization task: trained on A100, it delivers an average speedup of x3.12 with a median speedup of x1.42 against default baselines over across all 250 CUDA kernels of KernelBench, with peak speedups reaching x120. In addition to the default baseline provided by KernelBench, CUDA-L1 demonstrates x2.77 over Torch Compile, x2.88 over Torch Compile with reduce overhead, x2.81 over CUDA Graph implementations, and remarkably x7.72 over cuDNN libraries. Furthermore, the model also demonstrates portability across different GPU architectures. Beyond these benchmark results, CUDA-L1 demonstrates several properties: it 1) discovers a variety of CUDA optimization techniques and learns to combine them strategically to achieve optimal performance; 2) uncovers fundamental principles of CUDA optimization, such as the multiplicative nature of optimizations; 3) identifies non-obvious performance bottlenecks and rejects seemingly beneficial optimizations that actually harm performance. The capabilities demonstrate that, RL can transform an initially poor-performing LLM into an effective CUDA optimizer through speedup-based reward signals alone, without human expertise or domain knowledge. This paradigm opens possibilities for automated optimization of CUDA operations, and holds promise to substantially promote GPU efficiency and alleviate the rising pressure on GPU computing resources.
comment: Project Page: https://deepreinforce-ai.github.io/cudal1_blog/
♻ ☆ VGGSounder: Audio-Visual Evaluations for Foundation Models ICCV
The emergence of audio-visual foundation models underscores the importance of reliably assessing their multi-modal understanding. The VGGSound dataset is commonly used as a benchmark for evaluation audio-visual classification. However, our analysis identifies several limitations of VGGSound, including incomplete labelling, partially overlapping classes, and misaligned modalities. These lead to distorted evaluations of auditory and visual capabilities. To address these limitations, we introduce VGGSounder, a comprehensively re-annotated, multi-label test set that extends VGGSound and is specifically designed to evaluate audio-visual foundation models. VGGSounder features detailed modality annotations, enabling precise analyses of modality-specific performance. Furthermore, we reveal model limitations by analysing performance degradation when adding another input modality with our new modality confusion metric.
comment: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2025
Machine Learning 177
☆ Complex Logical Instruction Generation
Instruction following has catalyzed the recent era of Large Language Models (LLMs) and is the foundational skill underpinning more advanced capabilities such as reasoning and agentic behaviors. As tasks grow more challenging, the logic structures embedded in natural language instructions becomes increasingly intricate. However, how well LLMs perform on such logic-rich instructions remains under-explored. We propose LogicIFGen and LogicIFEval. LogicIFGen is a scalable, automated framework for generating verifiable instructions from code functions, which can naturally express rich logic such as conditionals, nesting, recursion, and function calls. We further curate a collection of complex code functions and use LogicIFGen to construct LogicIFEval, a benchmark comprising 426 verifiable logic-rich instructions. Our experiments demonstrate that current state-of-the-art LLMs still struggle to correctly follow the instructions in LogicIFEval. Most LLMs can only follow fewer than 60% of the instructions, revealing significant deficiencies in the instruction-following ability. Code and Benchmark: https://github.com/mianzhang/LogicIF
☆ Deep Neural Network Calibration by Reducing Classifier Shift with Stochastic Masking
In recent years, deep neural networks (DNNs) have shown competitive results in many fields. Despite this success, they often suffer from poor calibration, especially in safety-critical scenarios such as autonomous driving and healthcare, where unreliable confidence estimates can lead to serious consequences. Recent studies have focused on improving calibration by modifying the classifier, yet such efforts remain limited. Moreover, most existing approaches overlook calibration errors caused by underconfidence, which can be equally detrimental. To address these challenges, we propose MaC-Cal, a novel mask-based classifier calibration method that leverages stochastic sparsity to enhance the alignment between confidence and accuracy. MaC-Cal adopts a two-stage training scheme with adaptive sparsity, dynamically adjusting mask retention rates based on the deviation between confidence and accuracy. Extensive experiments show that MaC-Cal achieves superior calibration performance and robustness under data corruption, offering a practical and effective solution for reliable confidence estimation in DNNs.
☆ Constrained free energy minimization for the design of thermal states and stabilizer thermodynamic systems
A quantum thermodynamic system is described by a Hamiltonian and a list of conserved, non-commuting charges, and a fundamental goal is to determine the minimum energy of the system subject to constraints on the charges. Recently, [Liu et al., arXiv:2505.04514] proposed first- and second-order classical and hybrid quantum-classical algorithms for solving a dual chemical potential maximization problem, and they proved that these algorithms converge to global optima by means of gradient-ascent approaches. In this paper, we benchmark these algorithms on several problems of interest in thermodynamics, including one- and two-dimensional quantum Heisenberg models with nearest and next-to-nearest neighbor interactions and with the charges set to the total $x$, $y$, and $z$ magnetizations. We also offer an alternative compelling interpretation of these algorithms as methods for designing ground and thermal states of controllable Hamiltonians, with potential applications in molecular and material design. Furthermore, we introduce stabilizer thermodynamic systems as thermodynamic systems based on stabilizer codes, with the Hamiltonian constructed from a given code's stabilizer operators and the charges constructed from the code's logical operators. We benchmark the aforementioned algorithms on several examples of stabilizer thermodynamic systems, including those constructed from the one-to-three-qubit repetition code, the perfect one-to-five-qubit code, and the two-to-four-qubit error-detecting code. Finally, we observe that the aforementioned hybrid quantum-classical algorithms, when applied to stabilizer thermodynamic systems, can serve as alternative methods for encoding qubits into stabilizer codes at a fixed temperature, and we provide an effective method for warm-starting these encoding algorithms whenever a single qubit is encoded into multiple physical qubits.
comment: 32 pages, 8 figures
☆ Towards Universal Neural Inference
Real-world data often appears in diverse, disjoint forms -- with varying schemas, inconsistent semantics, and no fixed feature ordering -- making it challenging to build general-purpose models that can leverage information across datasets. We introduce ASPIRE, Arbitrary Set-based Permutation-Invariant Reasoning Engine, a Universal Neural Inference model for semantic reasoning and prediction over heterogeneous structured data. ASPIRE combines a permutation-invariant, set-based Transformer with a semantic grounding module that incorporates natural language descriptions, dataset metadata, and in-context examples to learn cross-dataset feature dependencies. This architecture allows ASPIRE to ingest arbitrary sets of feature--value pairs and support examples, align semantics across disjoint tables, and make predictions for any specified target. Once trained, ASPIRE generalizes to new inference tasks without additional tuning. In addition to delivering strong results across diverse benchmarks, ASPIRE naturally supports cost-aware active feature acquisition in an open-world setting, selecting informative features under test-time budget constraints for an arbitrary unseen dataset. These capabilities position ASPIRE as a step toward truly universal, semantics-aware inference over structured data.
☆ Bridging Formal Language with Chain-of-Thought Reasoning to Geometry Problem Solving
Large vision language models exhibit notable limitations on Geometry Problem Solving (GPS) because of their unreliable diagram interpretation and pure natural-language reasoning. A recent line of work mitigates this by using symbolic solvers: the model directly generates a formal program that a geometry solver can execute. However, this direct program generation lacks intermediate reasoning, making the decision process opaque and prone to errors. In this work, we explore a new approach that integrates Chain-of-Thought (CoT) with formal language. The model interleaves natural language reasoning with incremental emission of solver-executable code, producing a hybrid reasoning trace in which critical derivations are expressed in formal language. To teach this behavior at scale, we combine (1) supervised fine-tuning on an 11K newly developed synthetic dataset with interleaved natural language reasoning and automatic formalization, and (2) solver-in-the-loop reinforcement learning that jointly optimizes both the CoT narrative and the resulting program through outcome-based rewards. Built on Qwen2.5-VL-7B, our new model, named GF-Reasoner, achieves up to 15% accuracy improvements on standard GPS benchmarks, surpassing both 7B-scale peers and the much larger model Qwen2.5-VL-72B. By exploiting high-order geometric knowledge and offloading symbolic computation to the solver, the generated reasoning traces are noticeably shorter and cleaner. Furthermore, we present a comprehensive analysis of method design choices (e.g., reasoning paradigms, data synthesis, training epochs, etc.), providing actionable insights for future research.
☆ Chi-Geometry: A Library for Benchmarking Chirality Prediction of GNNs
We introduce Chi-Geometry - a library that generates graph data for testing and benchmarking GNNs' ability to predict chirality. Chi-Geometry generates synthetic graph samples with (i) user-specified geometric and topological traits to isolate certain types of samples and (ii) randomized node positions and species to minimize extraneous correlations. Each generated graph contains exactly one chiral center labeled either R or S, while all other nodes are labeled N/A (non-chiral). The generated samples are then combined into a cohesive dataset that can be used to assess a GNN's ability to predict chirality as a node classification task. Chi-Geometry allows more interpretable and less confounding benchmarking of GNNs for prediction of chirality in the graph samples which can guide the design of new GNN architectures with improved predictive performance. We illustrate Chi-Geometry's efficacy by using it to generate synthetic datasets for benchmarking various state-of-the-art (SOTA) GNN architectures. The conclusions of these benchmarking results guided our design of two new GNN architectures. The first GNN architecture established all-to-all connections in the graph to accurately predict chirality across all challenging configurations where previously tested SOTA models failed, but at a computational cost (both for training and inference) that grows quadratically with the number of graph nodes. The second GNN architecture avoids all-to-all connections by introducing a virtual node in the original graph structure of the data, which restores the linear scaling of training and inference computational cost with respect to the number of nodes in the graph, while still ensuring competitive accuracy in detecting chirality with respect to SOTA GNN architectures.
comment: 21 pages total: 9 pages main text, 4 pages references, 8 pages appendices. 4 figures and 7 tables
☆ Scaling Up Active Testing to Large Language Models
Active testing enables label-efficient evaluation of models through careful data acquisition. However, its significant computational costs have previously undermined its use for large models. We show how it can be successfully scaled up to the evaluation of large language models (LLMs). In particular we show that the surrogate model used to guide data acquisition can be constructed cheaply using in-context learning, does not require updating within an active-testing loop, and can be smaller than the target model. We even find we can make good data-acquisition decisions without computing predictions with the target model and further introduce a single-run error estimator to asses how well active testing is working on the fly. We find that our approach is able to more effectively evaluate LLM performance with less data than current standard practices.
Dynamic Uncertainty-aware Multimodal Fusion for Outdoor Health Monitoring
Outdoor health monitoring is essential to detect early abnormal health status for safeguarding human health and safety. Conventional outdoor monitoring relies on static multimodal deep learning frameworks, which requires extensive data training from scratch and fails to capture subtle health status changes. Multimodal large language models (MLLMs) emerge as a promising alternative, utilizing only small datasets to fine-tune pre-trained information-rich models for enabling powerful health status monitoring. Unfortunately, MLLM-based outdoor health monitoring also faces significant challenges: I) sensor data contains input noise stemming from sensor data acquisition and fluctuation noise caused by sudden changes in physiological signals due to dynamic outdoor environments, thus degrading the training performance; ii) current transformer based MLLMs struggle to achieve robust multimodal fusion, as they lack a design for fusing the noisy modality; iii) modalities with varying noise levels hinder accurate recovery of missing data from fluctuating distributions. To combat these challenges, we propose an uncertainty-aware multimodal fusion framework, named DUAL-Health, for outdoor health monitoring in dynamic and noisy environments. First, to assess the impact of noise, we accurately quantify modality uncertainty caused by input and fluctuation noise with current and temporal features. Second, to empower efficient muitimodal fusion with low-quality modalities,we customize the fusion weight for each modality based on quantified and calibrated uncertainty. Third, to enhance data recovery from fluctuating noisy modalities, we align modality distributions within a common semantic space. Extensive experiments demonstrate that our DUAL-Health outperforms state-of-the-art baselines in detection accuracy and robustness.
comment: 14 pages, 10 figures
☆ Meta-learning optimizes predictions of missing links in real-world networks
Relational data are ubiquitous in real-world data applications, e.g., in social network analysis or biological modeling, but networks are nearly always incompletely observed. The state-of-the-art for predicting missing links in the hard case of a network without node attributes uses model stacking or neural network techniques. It remains unknown which approach is best, and whether or how the best choice of algorithm depends on the input network's characteristics. We answer these questions systematically using a large, structurally diverse benchmark of 550 real-world networks under two standard accuracy measures (AUC and Top-k), comparing four stacking algorithms with 42 topological link predictors, two of which we introduce here, and two graph neural network algorithms. We show that no algorithm is best across all input networks, all algorithms perform well on most social networks, and few perform well on economic and biological networks. Overall, model stacking with a random forest is both highly scalable and surpasses on AUC or is competitive with graph neural networks on Top-k accuracy. But, algorithm performance depends strongly on network characteristics like the degree distribution, triangle density, and degree assortativity. We introduce a meta-learning algorithm that exploits this variability to optimize link predictions for individual networks by selecting the best algorithm to apply, which we show outperforms all state-of-the-art algorithms and scales to large networks.
comment: 10 pages, 5 figures, 5 tables, 7 appendices
☆ VertexRegen: Mesh Generation with Continuous Level of Detail ICCV 2025
We introduce VertexRegen, a novel mesh generation framework that enables generation at a continuous level of detail. Existing autoregressive methods generate meshes in a partial-to-complete manner and thus intermediate steps of generation represent incomplete structures. VertexRegen takes inspiration from progressive meshes and reformulates the process as the reversal of edge collapse, i.e. vertex split, learned through a generative model. Experimental results demonstrate that VertexRegen produces meshes of comparable quality to state-of-the-art methods while uniquely offering anytime generation with the flexibility to halt at any step to yield valid meshes with varying levels of detail.
comment: ICCV 2025. Project Page: https://vertexregen.github.io/
☆ Developing a Transferable Federated Network Intrusion Detection System
Intrusion Detection Systems (IDS) are a vital part of a network-connected device. In this paper, we develop a deep learning based intrusion detection system that is deployed in a distributed setup across devices connected to a network. Our aim is to better equip deep learning models against unknown attacks using knowledge from known attacks. To this end, we develop algorithms to maximize the number of transferability relationships. We propose a Convolutional Neural Network (CNN) model, along with two algorithms that maximize the number of relationships observed. One is a two step data pre-processing stage, and the other is a Block-Based Smart Aggregation (BBSA) algorithm. The proposed system succeeds in achieving superior transferability performance while maintaining impressive local detection rates. We also show that our method is generalizable, exhibiting transferability potential across datasets and even with different backbones. The code for this work can be found at https://github.com/ghosh64/tabfidsv2.
comment: Currently under review
☆ Causal Machine Learning for Patient-Level Intraoperative Opioid Dose Prediction from Electronic Health Records
This paper introduces the OPIAID algorithm, a novel approach for predicting and recommending personalized opioid dosages for individual patients. The algorithm optimizes pain management while minimizing opioid related adverse events (ORADE) by employing machine learning models trained on observational electronic health records (EHR) data. It leverages a causal machine learning approach to understand the relationship between opioid dose, case specific patient and intraoperative characteristics, and pain versus ORADE outcomes. The OPIAID algorithm considers patient-specific characteristics and the influence of different opiates, enabling personalized dose recommendations. This paper outlines the algorithm's methodology and architecture, and discusses key assumptions, and approaches to evaluating its performance.
☆ FetFIDS: A Feature Embedding Attention based Federated Network Intrusion Detection Algorithm
Intrusion Detection Systems (IDS) have an increasingly important role in preventing exploitation of network vulnerabilities by malicious actors. Recent deep learning based developments have resulted in significant improvements in the performance of IDS systems. In this paper, we present FetFIDS, where we explore the employment of feature embedding instead of positional embedding to improve intrusion detection performance of a transformer based deep learning system. Our model is developed with the aim of deployments in edge learning scenarios, where federated learning over multiple communication rounds can ensure both privacy and localized performance improvements. FetFIDS outperforms multiple state-of-the-art intrusion detection systems in a federated environment and demonstrates a high degree of suitability to federated learning. The code for this work can be found at https://github.com/ghosh64/fetfids.
☆ Chartwin: a Case Study on Channel Charting-aided Localization in Dynamic Digital Network Twins
Wireless communication systems can significantly benefit from the availability of spatially consistent representations of the wireless channel to efficiently perform a wide range of communication tasks. Towards this purpose, channel charting has been introduced as an effective unsupervised learning technique to achieve both locally and globally consistent radio maps. In this letter, we propose Chartwin, a case study on the integration of localization-oriented channel charting with dynamic Digital Network Twins (DNTs). Numerical results showcase the significant performance of semi-supervised channel charting in constructing a spatially consistent chart of the considered extended urban environment. The considered method results in $\approx$ 4.5 m localization error for the static DNT and $\approx$ 6 m in the dynamic DNT, fostering DNT-aided channel charting and localization.
☆ CVCM Track Circuits Pre-emptive Failure Diagnostics for Predictive Maintenance Using Deep Neural Networks
Track circuits are critical for railway operations, acting as the main signalling sub-system to locate trains. Continuous Variable Current Modulation (CVCM) is one such technology. Like any field-deployed, safety-critical asset, it can fail, triggering cascading disruptions. Many failures originate as subtle anomalies that evolve over time, often not visually apparent in monitored signals. Conventional approaches, which rely on clear signal changes, struggle to detect them early. Early identification of failure types is essential to improve maintenance planning, minimising downtime and revenue loss. Leveraging deep neural networks, we propose a predictive maintenance framework that classifies anomalies well before they escalate into failures. Validated on 10 CVCM failure cases across different installations, the method is ISO-17359 compliant and outperforms conventional techniques, achieving 99.31% overall accuracy with detection within 1% of anomaly onset. Through conformal prediction, we provide uncertainty estimates, reaching 99% confidence with consistent coverage across classes. Given CVCMs global deployment, the approach is scalable and adaptable to other track circuits and railway systems, enhancing operational reliability.
comment: Peer-reviewed conference paper. Presented at ICROMA 2025 (International Conference on Railway Operations Modelling and Analysis), Dresden, Germany. https://tu-dresden.de/raildresden2025 8 pages, 6 figures, 1 table
☆ P/D-Device: Disaggregated Large Language Model between Cloud and Devices
Serving disaggregated large language models has been widely adopted in industrial practice for enhanced performance. However, too many tokens generated in decoding phase, i.e., occupying the resources for a long time, essentially hamper the cloud from achieving a higher throughput. Meanwhile, due to limited on-device resources, the time to first token (TTFT), i.e., the latency of prefill phase, increases dramatically with the growth on prompt length. In order to concur with such a bottleneck on resources, i.e., long occupation in cloud and limited on-device computing capacity, we propose to separate large language model between cloud and devices. That is, the cloud helps a portion of the content for each device, only in its prefill phase. Specifically, after receiving the first token from the cloud, decoupling with its own prefill, the device responds to the user immediately for a lower TTFT. Then, the following tokens from cloud are presented via a speed controller for smoothed TPOT (the time per output token), until the device catches up with the progress. On-device prefill is then amortized using received tokens while the resource usage in cloud is controlled. Moreover, during cloud prefill, the prompt can be refined, using those intermediate data already generated, to further speed up on-device inference. We implement such a scheme P/D-Device, and confirm its superiority over other alternatives. We further propose an algorithm to decide the best settings. Real-trace experiments show that TTFT decreases at least 60%, maximum TPOT is about tens of milliseconds, and cloud throughput increases by up to 15x.
☆ Attacks and Defenses Against LLM Fingerprinting
As large language models are increasingly deployed in sensitive environments, fingerprinting attacks pose significant privacy and security risks. We present a study of LLM fingerprinting from both offensive and defensive perspectives. Our attack methodology uses reinforcement learning to automatically optimize query selection, achieving better fingerprinting accuracy with only 3 queries compared to randomly selecting 3 queries from the same pool. Our defensive approach employs semantic-preserving output filtering through a secondary LLM to obfuscate model identity while maintaining semantic integrity. The defensive method reduces fingerprinting accuracy across tested models while preserving output quality. These contributions show the potential to improve fingerprinting tools capabilities while providing practical mitigation strategies against fingerprinting attacks.
☆ A Survey on Training-free Alignment of Large Language Models
The alignment of large language models (LLMs) aims to ensure their outputs adhere to human values, ethical standards, and legal norms. Traditional alignment methods often rely on resource-intensive fine-tuning (FT), which may suffer from knowledge degradation and face challenges in scenarios where the model accessibility or computational resources are constrained. In contrast, training-free (TF) alignment techniques--leveraging in-context learning, decoding-time adjustments, and post-generation corrections--offer a promising alternative by enabling alignment without heavily retraining LLMs, making them adaptable to both open-source and closed-source environments. This paper presents the first systematic review of TF alignment methods, categorizing them by stages of pre-decoding, in-decoding, and post-decoding. For each stage, we provide a detailed examination from the viewpoint of LLMs and multimodal LLMs (MLLMs), highlighting their mechanisms and limitations. Furthermore, we identify key challenges and future directions, paving the way for more inclusive and effective TF alignment techniques. By synthesizing and organizing the rapidly growing body of research, this survey offers a guidance for practitioners and advances the development of safer and more reliable LLMs.
☆ LyS at SemEval 2025 Task 8: Zero-Shot Code Generation for Tabular QA SemEval 2025
This paper describes our participation in SemEval 2025 Task 8, focused on Tabular Question Answering. We developed a zero-shot pipeline that leverages an Large Language Model to generate functional code capable of extracting the relevant information from tabular data based on an input question. Our approach consists of a modular pipeline where the main code generator module is supported by additional components that identify the most relevant columns and analyze their data types to improve extraction accuracy. In the event that the generated code fails, an iterative refinement process is triggered, incorporating the error feedback into a new generation prompt to enhance robustness. Our results show that zero-shot code generation is a valid approach for Tabular QA, achieving rank 33 of 53 in the test phase despite the lack of task-specific fine-tuning.
comment: Accepted to SemEval 2025. Camera-ready version
☆ MechaFormer: Sequence Learning for Kinematic Mechanism Design Automation
Designing mechanical mechanisms to trace specific paths is a classic yet notoriously difficult engineering problem, characterized by a vast and complex search space of discrete topologies and continuous parameters. We introduce MechaFormer, a Transformer-based model that tackles this challenge by treating mechanism design as a conditional sequence generation task. Our model learns to translate a target curve into a domain-specific language (DSL) string, simultaneously determining the mechanism's topology and geometric parameters in a single, unified process. MechaFormer significantly outperforms existing baselines, achieving state-of-the-art path-matching accuracy and generating a wide diversity of novel and valid designs. We demonstrate a suite of sampling strategies that can dramatically improve solution quality and offer designers valuable flexibility. Furthermore, we show that the high-quality outputs from MechaFormer serve as excellent starting points for traditional optimizers, creating a hybrid approach that finds superior solutions with remarkable efficiency.
☆ Retrospective Sparse Attention for Efficient Long-Context Generation
Large Language Models (LLMs) are increasingly deployed in long-context tasks such as reasoning, code generation, and multi-turn dialogue. However, inference over extended contexts is bottlenecked by the Key-Value (KV) cache, whose memory footprint grows linearly with sequence length and dominates latency at each decoding step. While recent KV cache compression methods identify and load important tokens, they focus predominantly on input contexts and fail to address the cumulative attention errors that arise during long decoding. In this paper, we introduce RetroAttention, a novel KV cache update technique that retrospectively revises past attention outputs using newly arrived KV entries from subsequent decoding steps. By maintaining a lightweight output cache, RetroAttention enables past queries to efficiently access more relevant context, while incurring minimal latency overhead. This breaks the fixed-attention-output paradigm and allows continual correction of prior approximations. Extensive experiments on long-generation benchmarks show that RetroAttention consistently outperforms state-of-the-art (SOTA) KV compression methods, increasing effective KV exposure by up to 1.6$\times$ and accuracy by up to 21.9\%.
☆ Low-Regret and Low-Complexity Learning for Hierarchical Inference
This work focuses on Hierarchical Inference (HI) in edge intelligence systems, where a compact Local-ML model on an end-device works in conjunction with a high-accuracy Remote-ML model on an edge-server. HI aims to reduce latency, improve accuracy, and lower bandwidth usage by first using the Local-ML model for inference and offloading to the Remote-ML only when the local inference is likely incorrect. A critical challenge in HI is estimating the likelihood of the local inference being incorrect, especially when data distributions and offloading costs change over time -- a problem we term Hierarchical Inference Learning (HIL). We introduce a novel approach to HIL by modeling the probability of correct inference by the Local-ML as an increasing function of the model's confidence measure, a structure motivated by empirical observations but previously unexploited. We propose two policies, HI-LCB and HI-LCB-lite, based on the Upper Confidence Bound (UCB) framework. We demonstrate that both policies achieve order-optimal regret of $O(\log T)$, a significant improvement over existing HIL policies with $O(T^{2/3})$ regret guarantees. Notably, HI-LCB-lite has an $O(1)$ per-sample computational complexity, making it well-suited for deployment on devices with severe resource limitations. Simulations using real-world datasets confirm that our policies outperform existing state-of-the-art HIL methods.
Unsupervised Skill Discovery as Exploration for Learning Agile Locomotion
Exploration is crucial for enabling legged robots to learn agile locomotion behaviors that can overcome diverse obstacles. However, such exploration is inherently challenging, and we often rely on extensive reward engineering, expert demonstrations, or curriculum learning - all of which limit generalizability. In this work, we propose Skill Discovery as Exploration (SDAX), a novel learning framework that significantly reduces human engineering effort. SDAX leverages unsupervised skill discovery to autonomously acquire a diverse repertoire of skills for overcoming obstacles. To dynamically regulate the level of exploration during training, SDAX employs a bi-level optimization process that autonomously adjusts the degree of exploration. We demonstrate that SDAX enables quadrupedal robots to acquire highly agile behaviors including crawling, climbing, leaping, and executing complex maneuvers such as jumping off vertical walls. Finally, we deploy the learned policy on real hardware, validating its successful transfer to the real world.
comment: Conference on Robot Learning 2025
☆ Integrating attention into explanation frameworks for language and vision transformers
The attention mechanism lies at the core of the transformer architecture, providing an interpretable model-internal signal that has motivated a growing interest in attention-based model explanations. Although attention weights do not directly determine model outputs, they reflect patterns of token influence that can inform and complement established explainability techniques. This work studies the potential of utilising the information encoded in attention weights to provide meaningful model explanations by integrating them into explainable AI (XAI) frameworks that target fundamentally different aspects of model behaviour. To this end, we develop two novel explanation methods applicable to both natural language processing and computer vision tasks. The first integrates attention weights into the Shapley value decomposition by redefining the characteristic function in terms of pairwise token interactions via attention weights, thus adapting this widely used game-theoretic solution concept to provide attention-driven attributions for local explanations. The second incorporates attention weights into token-level directional derivatives defined through concept activation vectors to measure concept sensitivity for global explanations. Our empirical evaluations on standard benchmarks and in a comparison study with widely used explanation methods show that attention weights can be meaningfully incorporated into the studied XAI frameworks, highlighting their value in enriching transformer explainability.
☆ QAMRO: Quality-aware Adaptive Margin Ranking Optimization for Human-aligned Assessment of Audio Generation Systems
Evaluating audio generation systems, including text-to-music (TTM), text-to-speech (TTS), and text-to-audio (TTA), remains challenging due to the subjective and multi-dimensional nature of human perception. Existing methods treat mean opinion score (MOS) prediction as a regression problem, but standard regression losses overlook the relativity of perceptual judgments. To address this limitation, we introduce QAMRO, a novel Quality-aware Adaptive Margin Ranking Optimization framework that seamlessly integrates regression objectives from different perspectives, aiming to highlight perceptual differences and prioritize accurate ratings. Our framework leverages pre-trained audio-text models such as CLAP and Audiobox-Aesthetics, and is trained exclusively on the official AudioMOS Challenge 2025 dataset. It demonstrates superior alignment with human evaluations across all dimensions, significantly outperforming robust baseline models.
comment: Accepted to IEEE ASRU 2025
☆ Fre-CW: Targeted Attack on Time Series Forecasting using Frequency Domain Loss
Transformer-based models have made significant progress in time series forecasting. However, a key limitation of deep learning models is their susceptibility to adversarial attacks, which has not been studied enough in the context of time series prediction. In contrast to areas such as computer vision, where adversarial robustness has been extensively studied, frequency domain features of time series data play an important role in the prediction task but have not been sufficiently explored in terms of adversarial attacks. This paper proposes a time series prediction attack algorithm based on frequency domain loss. Specifically, we adapt an attack method originally designed for classification tasks to the prediction field and optimize the adversarial samples using both time-domain and frequency-domain losses. To the best of our knowledge, there is no relevant research on using frequency information for time-series adversarial attacks. Our experimental results show that these current time series prediction models are vulnerable to adversarial attacks, and our approach achieves excellent performance on major time series forecasting datasets.
☆ GRAVITY: A Controversial Graph Representation Learning for Vertex Classification
In the quest of accurate vertex classification, we introduce GRAVITY (Graph-based Representation leArning via Vertices Interaction TopologY), a framework inspired by physical systems where objects self-organize under attractive forces. GRAVITY models each vertex as exerting influence through learned interactions shaped by structural proximity and attribute similarity. These interactions induce a latent potential field in which vertices move toward energy efficient positions, coalescing around class-consistent attractors and distancing themselves from unrelated groups. Unlike traditional message-passing schemes with static neighborhoods, GRAVITY adaptively modulates the receptive field of each vertex based on a learned force function, enabling dynamic aggregation driven by context. This field-driven organization sharpens class boundaries and promotes semantic coherence within latent clusters. Experiments on real-world benchmarks show that GRAVITY yields competitive embeddings, excelling in both transductive and inductive vertex classification tasks.
☆ Generalising Traffic Forecasting to Regions without Traffic Observations
Traffic forecasting is essential for intelligent transportation systems. Accurate forecasting relies on continuous observations collected by traffic sensors. However, due to high deployment and maintenance costs, not all regions are equipped with such sensors. This paper aims to forecast for regions without traffic sensors, where the lack of historical traffic observations challenges the generalisability of existing models. We propose a model named GenCast, the core idea of which is to exploit external knowledge to compensate for the missing observations and to enhance generalisation. We integrate physics-informed neural networks into GenCast, enabling physical principles to regularise the learning process. We introduce an external signal learning module to explore correlations between traffic states and external signals such as weather conditions, further improving model generalisability. Additionally, we design a spatial grouping module to filter localised features that hinder model generalisability. Extensive experiments show that GenCast consistently reduces forecasting errors on multiple real-world datasets.
☆ Train Long, Think Short: Curriculum Learning for Efficient Reasoning
Recent work on enhancing the reasoning abilities of large language models (LLMs) has introduced explicit length control as a means of constraining computational cost while preserving accuracy. However, existing approaches rely on fixed-length training budgets, which do not take advantage of the natural progression from exploration to compression during learning. In this work, we propose a curriculum learning strategy for length-controlled reasoning using Group Relative Policy Optimization (GRPO). Our method starts with generous token budgets and gradually tightens them over training, encouraging models to first discover effective solution strategies and then distill them into more concise reasoning traces. We augment GRPO with a reward function that balances three signals: task correctness (via verifier feedback), length efficiency, and formatting adherence (via structural tags). Experiments on GSM8K, MATH500, SVAMP, College Math, and GSM+ demonstrate that curriculum-based training consistently outperforms fixed-budget baselines at the same final budget, achieving higher accuracy and significantly improved token efficiency. We further ablate the impact of reward weighting and decay schedule design, showing that progressive constraint serves as a powerful inductive bias for training efficient reasoning models. Our code and checkpoints are released at: https://github.com/hammoudhasan/curriculum_grpo.
comment: Under Review
☆ Accelerated Volumetric Compression without Hierarchies: A Fourier Feature Based Implicit Neural Representation Approach
Volumetric data compression is critical in fields like medical imaging, scientific simulation, and entertainment. We introduce a structure-free neural compression method combining Fourierfeature encoding with selective voxel sampling, yielding compact volumetric representations and faster convergence. Our dynamic voxel selection uses morphological dilation to prioritize active regions, reducing redundant computation without any hierarchical metadata. In the experiment, sparse training reduced training time by 63.7 % (from 30 to 11 minutes) with only minor quality loss: PSNR dropped 0.59 dB (from 32.60 to 32.01) and SSIM by 0.008 (from 0.948 to 0.940). The resulting neural representation, stored solely as network weights, achieves a compression rate of 14 and eliminates traditional data-loading overhead. This connects coordinate-based neural representation with efficient volumetric compression, offering a scalable, structure-free solution for practical applications.
comment: 2 pages, accepted for the VIS IEEE 2025 poster
☆ LNN-PINN: A Unified Physics-Only Training Framework with Liquid Residual Blocks
Physics-informed neural networks (PINNs) have attracted considerable attention for their ability to integrate partial differential equation priors into deep learning frameworks; however, they often exhibit limited predictive accuracy when applied to complex problems. To address this issue, we propose LNN-PINN, a physics-informed neural network framework that incorporates a liquid residual gating architecture while preserving the original physics modeling and optimization pipeline to improve predictive accuracy. The method introduces a lightweight gating mechanism solely within the hidden-layer mapping, keeping the sampling strategy, loss composition, and hyperparameter settings unchanged to ensure that improvements arise purely from architectural refinement. Across four benchmark problems, LNN-PINN consistently reduced RMSE and MAE under identical training conditions, with absolute error plots further confirming its accuracy gains. Moreover, the framework demonstrates strong adaptability and stability across varying dimensions, boundary conditions, and operator characteristics. In summary, LNN-PINN offers a concise and effective architectural enhancement for improving the predictive accuracy of physics-informed neural networks in complex scientific and engineering problems.
comment: 21 pages, 10 figures
☆ Exploring Cross-Stage Adversarial Transferability in Class-Incremental Continual Learning SP 2025
Class-incremental continual learning addresses catastrophic forgetting by enabling classification models to preserve knowledge of previously learned classes while acquiring new ones. However, the vulnerability of the models against adversarial attacks during this process has not been investigated sufficiently. In this paper, we present the first exploration of vulnerability to stage-transferred attacks, i.e., an adversarial example generated using the model in an earlier stage is used to attack the model in a later stage. Our findings reveal that continual learning methods are highly susceptible to these attacks, raising a serious security issue. We explain this phenomenon through model similarity between stages and gradual robustness degradation. Additionally, we find that existing adversarial training-based defense methods are not sufficiently effective to stage-transferred attacks. Codes are available at https://github.com/mcml-official/CSAT.
comment: Accepted at MMSP 2025
☆ Stationarity Exploration for Multivariate Time Series Forecasting
Deep learning-based time series forecasting has found widespread applications. Recently, converting time series data into the frequency domain for forecasting has become popular for accurately exploring periodic patterns. However, existing methods often cannot effectively explore stationary information from complex intertwined frequency components. In this paper, we propose a simple yet effective Amplitude-Phase Reconstruct Network (APRNet) that models the inter-relationships of amplitude and phase, which prevents the amplitude and phase from being constrained by different physical quantities, thereby decoupling the distinct characteristics of signals for capturing stationary information. Specifically, we represent the multivariate time series input across sequence and channel dimensions, highlighting the correlation between amplitude and phase at multiple interaction frequencies. We propose a novel Kolmogorov-Arnold-Network-based Local Correlation (KLC) module to adaptively fit local functions using univariate functions, enabling more flexible characterization of stationary features across different amplitudes and phases. This significantly enhances the model's capability to capture time-varying patterns. Extensive experiments demonstrate the superiority of our APRNet against the state-of-the-arts (SOTAs).
☆ Automatic and standardized surgical reporting for central nervous system tumors
Magnetic resonance (MR) imaging is essential for evaluating central nervous system (CNS) tumors, guiding surgical planning, treatment decisions, and assessing postoperative outcomes and complication risks. While recent work has advanced automated tumor segmentation and report generation, most efforts have focused on preoperative data, with limited attention to postoperative imaging analysis. This study introduces a comprehensive pipeline for standardized postsurtical reporting in CNS tumors. Using the Attention U-Net architecture, segmentation models were trained for the preoperative (non-enhancing) tumor core, postoperative contrast-enhancing residual tumor, and resection cavity. Additionally, MR sequence classification and tumor type identification for contrast-enhancing lesions were explored using the DenseNet architecture. The models were integrated into a reporting pipeline, following the RANO 2.0 guidelines. Training was conducted on multicentric datasets comprising 2000 to 7000 patients, using a 5-fold cross-validation. Evaluation included patient-, voxel-, and object-wise metrics, with benchmarking against the latest BraTS challenge results. The segmentation models achieved average voxel-wise Dice scores of 87%, 66%, 70%, and 77% for the tumor core, non-enhancing tumor core, contrast-enhancing residual tumor, and resection cavity, respectively. Classification models reached 99.5% balanced accuracy in MR sequence classification and 80% in tumor type classification. The pipeline presented in this study enables robust, automated segmentation, MR sequence classification, and standardized report generation aligned with RANO 2.0 guidelines, enhancing postoperative evaluation and clinical decision-making. The proposed models and methods were integrated into Raidionics, open-source software platform for CNS tumor analysis, now including a dedicated module for postsurgical analysis.
comment: 16 pages, 6 figures, 9 tables
☆ Sound Signal Synthesis with Auxiliary Classifier GAN, COVID-19 cough as an example
One of the fastest-growing domains in AI is healthcare. Given its importance, it has been the interest of many researchers to deploy ML models into the ever-demanding healthcare domain to aid doctors and increase accessibility. Delivering reliable models, however, demands a sizable amount of data, and the recent COVID-19 pandemic served as a reminder of the rampant and scary nature of healthcare that makes training models difficult. To alleviate such scarcity, many published works attempted to synthesize radiological cough data to train better COVID-19 detection models on the respective radiological data. To accommodate the time sensitivity expected during a pandemic, this work focuses on detecting COVID-19 through coughs using synthetic data to improve the accuracy of the classifier. The work begins by training a CNN on a balanced subset of the Coughvid dataset, establishing a baseline classification test accuracy of 72%. The paper demonstrates how an Auxiliary Classification GAN (ACGAN) may be trained to conditionally generate novel synthetic Mel Spectrograms of both healthy and COVID-19 coughs. These coughs are used to augment the training dataset of the CNN classifier, allowing it to reach a new test accuracy of 75%. The work highlights the expected messiness and inconsistency in training and offers insights into detecting and handling such shortcomings.
☆ Position: Causal Machine Learning Requires Rigorous Synthetic Experiments for Broader Adoption ICML 2025
Causal machine learning has the potential to revolutionize decision-making by combining the predictive power of machine learning algorithms with the theory of causal inference. However, these methods remain underutilized by the broader machine learning community, in part because current empirical evaluations do not permit assessment of their reliability and robustness, undermining their practical utility. Specifically, one of the principal criticisms made by the community is the extensive use of synthetic experiments. We argue, on the contrary, that synthetic experiments are essential and necessary to precisely assess and understand the capabilities of causal machine learning methods. To substantiate our position, we critically review the current evaluation practices, spotlight their shortcomings, and propose a set of principles for conducting rigorous empirical analyses with synthetic data. Adopting the proposed principles will enable comprehensive evaluations that build trust in causal machine learning methods, driving their broader adoption and impactful real-world use.
comment: Accepted at ICML 2025
☆ Hi-fi functional priors by learning activations NeurIPS 2024
Function-space priors in Bayesian Neural Networks (BNNs) provide a more intuitive approach to embedding beliefs directly into the model's output, thereby enhancing regularization, uncertainty quantification, and risk-aware decision-making. However, imposing function-space priors on BNNs is challenging. We address this task through optimization techniques that explore how trainable activations can accommodate higher-complexity priors and match intricate target function distributions. We investigate flexible activation models, including Pade functions and piecewise linear functions, and discuss the learning challenges related to identifiability, loss construction, and symmetries. Our empirical findings indicate that even BNNs with a single wide hidden layer when equipped with flexible trainable activation, can effectively achieve desired function-space priors.
comment: Published in Workshop on Bayesian Decision-making and Uncertainty, 38th Conference on Neural Information Processing Systems (NeurIPS 2024)
☆ Towards Scalable Lottery Ticket Networks using Genetic Algorithms
Building modern deep learning systems that are not just effective but also efficient requires rethinking established paradigms for model training and neural architecture design. Instead of adapting highly overparameterized networks and subsequently applying model compression techniques to reduce resource consumption, a new class of high-performing networks skips the need for expensive parameter updates, while requiring only a fraction of parameters, making them highly scalable. The Strong Lottery Ticket Hypothesis posits that within randomly initialized, sufficiently overparameterized neural networks, there exist subnetworks that can match the accuracy of the trained original model-without any training. This work explores the usage of genetic algorithms for identifying these strong lottery ticket subnetworks. We find that for instances of binary and multi-class classification tasks, our approach achieves better accuracies and sparsity levels than the current state-of-the-art without requiring any gradient information. In addition, we provide justification for the need for appropriate evaluation metrics when scaling to more complex network architectures and learning tasks.
comment: 27 pages, 11 figures, 7 tables, Extended version of a paper submitted to IJCCI 2024 (DOI: 10.5220/0013010300003837), the extended version will appear in the journal Studies in Computational Intelligence
☆ Oblivionis: A Lightweight Learning and Unlearning Framework for Federated Large Language Models
Large Language Models (LLMs) increasingly leverage Federated Learning (FL) to utilize private, task-specific datasets for fine-tuning while preserving data privacy. However, while federated LLM frameworks effectively enable collaborative training without raw data sharing, they critically lack built-in mechanisms for regulatory compliance like GDPR's right to be forgotten. Integrating private data heightens concerns over data quality and long-term governance, yet existing distributed training frameworks offer no principled way to selectively remove specific client contributions post-training. Due to distributed data silos, stringent privacy constraints, and the intricacies of interdependent model aggregation, federated LLM unlearning is significantly more complex than centralized LLM unlearning. To address this gap, we introduce Oblivionis, a lightweight learning and unlearning framework that enables clients to selectively remove specific private data during federated LLM training, enhancing trustworthiness and regulatory compliance. By unifying FL and unlearning as a dual optimization objective, we incorporate 6 FL and 5 unlearning algorithms for comprehensive evaluation and comparative analysis, establishing a robust pipeline for federated LLM unlearning. Extensive experiments demonstrate that Oblivionis outperforms local training, achieving a robust balance between forgetting efficacy and model utility, with cross-algorithm comparisons providing clear directions for future LLM development.
☆ Flow Battery Manifold Design with Heterogeneous Inputs Through Generative Adversarial Neural Networks
Generative machine learning has emerged as a powerful tool for design representation and exploration. However, its application is often constrained by the need for large datasets of existing designs and the lack of interpretability about what features drive optimality. To address these challenges, we introduce a systematic framework for constructing training datasets tailored to generative models and demonstrate how these models can be leveraged for interpretable design. The novelty of this work is twofold: (i) we present a systematic framework for generating archetypes with internally homogeneous but mutually heterogeneous inputs that can be used to generate a training dataset, and (ii) we show how integrating generative models with Bayesian optimization can enhance the interpretability of the latent space of admissible designs. These findings are validated by using the framework to design a flow battery manifold, demonstrating that it effectively captures the space of feasible designs, including novel configurations while enabling efficient exploration. This work broadens the applicability of generative machine-learning models in system designs by enhancing quality and reliability.
comment: 30 pages, 7 figures, conference (IDETC-CIE)
☆ BiasGym: Fantastic Biases and How to Find (and Remove) Them
Understanding biases and stereotypes encoded in the weights of Large Language Models (LLMs) is crucial for developing effective mitigation strategies. Biased behaviour is often subtle and non-trivial to isolate, even when deliberately elicited, making systematic analysis and debiasing particularly challenging. To address this, we introduce BiasGym, a simple, cost-effective, and generalizable framework for reliably injecting, analyzing, and mitigating conceptual associations within LLMs. BiasGym consists of two components: BiasInject, which injects specific biases into the model via token-based fine-tuning while keeping the model frozen, and BiasScope, which leverages these injected signals to identify and steer the components responsible for biased behavior. Our method enables consistent bias elicitation for mechanistic analysis, supports targeted debiasing without degrading performance on downstream tasks, and generalizes to biases unseen during training. We demonstrate the effectiveness of BiasGym in reducing real-world stereotypes (e.g., people from a country being `reckless drivers') and in probing fictional associations (e.g., people from a country having `blue skin'), showing its utility for both safety interventions and interpretability research.
comment: Under review
☆ An Investigation of Robustness of LLMs in Mathematical Reasoning: Benchmarking with Mathematically-Equivalent Transformation of Advanced Mathematical Problems
In this paper, we introduce a systematic framework beyond conventional method to assess LLMs' mathematical-reasoning robustness by stress-testing them on advanced math problems that are mathematically equivalent but with linguistic and parametric variation. These transformations allow us to measure the sensitivity of LLMs to non-mathematical perturbations, thereby enabling a more accurate evaluation of their mathematical reasoning capabilities. Using this new evaluation methodology, we created PutnamGAP, a new benchmark dataset with multiple mathematically-equivalent variations of competition-level math problems. With the new dataset, we evaluate multiple families of representative LLMs and examine their robustness. Across 18 commercial and open-source models we observe sharp performance degradation on the variants. OpenAI's flagship reasoning model, O3, scores 49 % on the originals but drops by 4 percentage points on surface variants, and by 10.5 percentage points on core-step-based variants, while smaller models fare far worse. Overall, the results show that the proposed new evaluation methodology is effective for deepening our understanding of the robustness of LLMs and generating new insights for further improving their mathematical reasoning capabilities.
comment: 16 pages, 8 figures
☆ Image selective encryption analysis using mutual information in CNN based embedding space
As digital data transmission continues to scale, concerns about privacy grow increasingly urgent - yet privacy remains a socially constructed and ambiguously defined concept, lacking a universally accepted quantitative measure. This work examines information leakage in image data, a domain where information-theoretic guarantees are still underexplored. At the intersection of deep learning, information theory, and cryptography, we investigate the use of mutual information (MI) estimators - in particular, the empirical estimator and the MINE framework - to detect leakage from selectively encrypted images. Motivated by the intuition that a robust estimator would require a probabilistic frameworks that can capture spatial dependencies and residual structures, even within encrypted representations - our work represent a promising direction for image information leakage estimation.
comment: Accepted for presentation at the 13th European Workshop on Visual Information Processing (EUVIP), Oct 2025, Valetta, Malta
☆ Wavelet Mixture of Experts for Time Series Forecasting
The field of time series forecasting is rapidly advancing, with recent large-scale Transformers and lightweight Multilayer Perceptron (MLP) models showing strong predictive performance. However, conventional Transformer models are often hindered by their large number of parameters and their limited ability to capture non-stationary features in data through smoothing. Similarly, MLP models struggle to manage multi-channel dependencies effectively. To address these limitations, we propose a novel, lightweight time series prediction model, WaveTS-B. This model combines wavelet transforms with MLP to capture both periodic and non-stationary characteristics of data in the wavelet domain. Building on this foundation, we propose a channel clustering strategy that incorporates a Mixture of Experts (MoE) framework, utilizing a gating mechanism and expert network to handle multi-channel dependencies efficiently. We propose WaveTS-M, an advanced model tailored for multi-channel time series prediction. Empirical evaluation across eight real-world time series datasets demonstrates that our WaveTS series models achieve state-of-the-art (SOTA) performance with significantly fewer parameters. Notably, WaveTS-M shows substantial improvements on multi-channel datasets, highlighting its effectiveness.
☆ TechOps: Technical Documentation Templates for the AI Act
Operationalizing the EU AI Act requires clear technical documentation to ensure AI systems are transparent, traceable, and accountable. Existing documentation templates for AI systems do not fully cover the entire AI lifecycle while meeting the technical documentation requirements of the AI Act. This paper addresses those shortcomings by introducing open-source templates and examples for documenting data, models, and applications to provide sufficient documentation for certifying compliance with the AI Act. These templates track the system status over the entire AI lifecycle, ensuring traceability, reproducibility, and compliance with the AI Act. They also promote discoverability and collaboration, reduce risks, and align with best practices in AI documentation and governance. The templates are evaluated and refined based on user feedback to enable insights into their usability and implementability. We then validate the approach on real-world scenarios, providing examples that further guide their implementation: the data template is followed to document a skin tones dataset created to support fairness evaluations of downstream computer vision models and human-centric applications; the model template is followed to document a neural network for segmenting human silhouettes in photos. The application template is tested on a system deployed for construction site safety using real-time video analytics and sensor data. Our results show that TechOps can serve as a practical tool to enable oversight for regulatory compliance and responsible AI development.
☆ Subsampling Factorization Machine Annealing
Quantum computing and machine learning are state-of-the-art technologies which have been investigated intensively in both academia and industry. The hybrid technology of these two ingredients is expected to be a powerful tool to solve complex problems in many branches of science and engineering such as combinatorial optimization problems and accelerate the creation of next-generation technologies. In this work, we develop an algorithm to solve a black-box optimization problem by improving Factorization Machine Annealing (FMA) such that the training of a machine learning model called Factorization Machine is performed not by a full dataset but by a subdataset which is sampled from a full dataset: Subsampling Factorization Machine Annealing (SFMA). According to such a probabilistic training process, the performance of FMA on exploring a solution space gets enhanced. As a result, SFMA exhibits balanced performance of exploration and exploitation which we call exploitation-exploration functionality. We conduct numerical benchmarking tests to compare the performance of SFMA with that of FMA. Consequently, SFMA certainly exhibits the exploration-exploitation functionality and outperforms FMA in speed and accuracy. In addition, the performance of SFMA can be further improved by sequentially using two subsampling datasets with different sizes such that the size of the latter dataset is substantially smaller than the former. Such a substantial reduction not only enhances the exploration performance of SFMA but also enables us to run it with correspondingly low computational cost even for a large-scale problem. These results indicate the effectiveness of SFMA in a certain class of black-box optimization problems of significant size: the potential scalability of SFMA in solving large-scale problems with correspondingly low computational cost.
comment: 34 pages and 17 figures
☆ Evaluating Podcast Recommendations with Profile-Aware LLM-as-a-Judge RecSys '25
Evaluating personalized recommendations remains a central challenge, especially in long-form audio domains like podcasts, where traditional offline metrics suffer from exposure bias and online methods such as A/B testing are costly and operationally constrained. In this paper, we propose a novel framework that leverages Large Language Models (LLMs) as offline judges to assess the quality of podcast recommendations in a scalable and interpretable manner. Our two-stage profile-aware approach first constructs natural-language user profiles distilled from 90 days of listening history. These profiles summarize both topical interests and behavioral patterns, serving as compact, interpretable representations of user preferences. Rather than prompting the LLM with raw data, we use these profiles to provide high-level, semantically rich context-enabling the LLM to reason more effectively about alignment between a user's interests and recommended episodes. This reduces input complexity and improves interpretability. The LLM is then prompted to deliver fine-grained pointwise and pairwise judgments based on the profile-episode match. In a controlled study with 47 participants, our profile-aware judge matched human judgments with high fidelity and outperformed or matched a variant using raw listening histories. The framework enables efficient, profile-aware evaluation for iterative testing and model selection in recommender systems.
comment: Accepted at RecSys '25
☆ Differentiated Information Mining: A Semi-supervised Learning Framework for GNNs
In semi-supervised learning (SSL) for enhancing the performance of graph neural networks (GNNs) with unlabeled data, introducing mutually independent decision factors for cross-validation is regarded as an effective strategy to alleviate pseudo-label confirmation bias and training collapse. However, obtaining such factors is challenging in practice: additional and valid information sources are inherently scarce, and even when such sources are available, their independence from the original source cannot be guaranteed. To address this challenge, In this paper we propose a Differentiated Factor Consistency Semi-supervised Framework (DiFac), which derives differentiated factors from a single information source and enforces their consistency. During pre-training, the model learns to extract these factors; in training, it iteratively removes samples with conflicting factors and ranks pseudo-labels based on the shortest stave principle, selecting the top candidate samples to reduce overconfidence commonly observed in confidence-based or ensemble-based methods. Our framework can also incorporate additional information sources. In this work, we leverage the large multimodal language model to introduce latent textual knowledge as auxiliary decision factors, and we design a accountability scoring mechanism to mitigate additional erroneous judgments introduced by these auxiliary factors. Experiments on multiple benchmark datasets demonstrate that DiFac consistently improves robustness and generalization in low-label regimes, outperforming other baseline methods.
comment: 13 pages, 5 figures, 8 tables
☆ Bio-Inspired Artificial Neural Networks based on Predictive Coding
Backpropagation (BP) of errors is the backbone training algorithm for artificial neural networks (ANNs). It updates network weights through gradient descent to minimize a loss function representing the mismatch between predictions and desired outputs. BP uses the chain rule to propagate the loss gradient backward through the network hierarchy, allowing efficient weight updates. However, this process requires weight updates at every layer to rely on a global error signal generated at the network's output. In contrast, the Hebbian model of synaptic plasticity states that weight updates are local, depending only on the activity of pre- and post-synaptic neurons. This suggests biological brains likely do not implement BP directly. Recently, Predictive Coding (PC) has gained interest as a biologically plausible alternative that updates weights using only local information. Originating from 1950s work on signal compression, PC was later proposed as a model of the visual cortex and formalized under the free energy principle, linking it to Bayesian inference and dynamical systems. PC weight updates rely solely on local information and provide theoretical advantages such as automatic scaling of gradients based on uncertainty. This lecture notes column offers a novel, tutorial-style introduction to PC, focusing on its formulation, derivation, and connections to well-known optimization and signal processing algorithms such as BP and the Kalman Filter (KF). It aims to support existing literature by guiding readers from the mathematical foundations of PC to practical implementation, including Python examples using PyTorch.
☆ Sensitivity Analysis to Unobserved Confounding with Copula-based Normalizing Flows
We propose a novel method for sensitivity analysis to unobserved confounding in causal inference. The method builds on a copula-based causal graphical normalizing flow that we term $\rho$-GNF, where $\rho \in [-1,+1]$ is the sensitivity parameter. The parameter represents the non-causal association between exposure and outcome due to unobserved confounding, which is modeled as a Gaussian copula. In other words, the $\rho$-GNF enables scholars to estimate the average causal effect (ACE) as a function of $\rho$, accounting for various confounding strengths. The output of the $\rho$-GNF is what we term the $\rho_{curve}$, which provides the bounds for the ACE given an interval of assumed $\rho$ values. The $\rho_{curve}$ also enables scholars to identify the confounding strength required to nullify the ACE. We also propose a Bayesian version of our sensitivity analysis method. Assuming a prior over the sensitivity parameter $\rho$ enables us to derive the posterior distribution over the ACE, which enables us to derive credible intervals. Finally, leveraging on experiments from simulated and real-world data, we show the benefits of our sensitivity analysis method.
☆ Interpretable Reward Model via Sparse Autoencoder
Large language models (LLMs) have been widely deployed across numerous fields. Reinforcement Learning from Human Feedback (RLHF) leverages reward models (RMs) as proxies for human preferences to align LLM behaviors with human values, making the accuracy, reliability, and interpretability of RMs critical for effective alignment. However, traditional RMs lack interpretability, offer limited insight into the reasoning behind reward assignments, and are inflexible toward user preference shifts. While recent multidimensional RMs aim for improved interpretability, they often fail to provide feature-level attribution and require costly annotations. To overcome these limitations, we introduce the Sparse Autoencoder-enhanced Reward Model (\textbf{SARM}), a novel architecture that integrates a pretrained Sparse Autoencoder (SAE) into a reward model. SARM maps the hidden activations of LLM-based RM into an interpretable, sparse, and monosemantic feature space, from which a scalar head aggregates feature activations to produce transparent and conceptually meaningful reward scores. Empirical evaluations demonstrate that SARM facilitates direct feature-level attribution of reward assignments, allows dynamic adjustment to preference shifts, and achieves superior alignment performance compared to conventional reward models. Our code is available at https://github.com/schrieffer-z/sarm.
☆ Elucidating Rectified Flow with Deterministic Sampler: Polynomial Discretization Complexity for Multi and One-step Models
Recently, rectified flow (RF)-based models have achieved state-of-the-art performance in many areas for both the multi-step and one-step generation. However, only a few theoretical works analyze the discretization complexity of RF-based models. Existing works either focus on flow-based models with stochastic samplers or establish complexity results that exhibit exponential dependence on problem parameters. In this work, under the realistic bounded support assumption, we prove the first polynomial discretization complexity for multi-step and one-step RF-based models with a deterministic sampler simultaneously. For the multi-step setting, inspired by the predictor-corrector framework of diffusion models, we introduce a Langevin process as a corrector and show that RF-based models can achieve better polynomial discretization complexity than diffusion models. To achieve this result, we conduct a detailed analysis of the RF-based model and explain why it is better than previous popular models, such as variance preserving (VP) and variance exploding (VE)-based models. Based on the observation of multi-step RF-based models, we further provide the first polynomial discretization complexity result for one-step RF-based models, improving upon prior results for one-step diffusion-based models. These findings mark the first step toward theoretically understanding the impressive empirical performance of RF-based models in both multi-step and one-step generation.
☆ Hierarchical Variable Importance with Statistical Control for Medical Data-Based Prediction
Recent advances in machine learning have greatly expanded the repertoire of predictive methods for medical imaging. However, the interpretability of complex models remains a challenge, which limits their utility in medical applications. Recently, model-agnostic methods have been proposed to measure conditional variable importance and accommodate complex non-linear models. However, they often lack power when dealing with highly correlated data, a common problem in medical imaging. We introduce Hierarchical-CPI, a model-agnostic variable importance measure that frames the inference problem as the discovery of groups of variables that are jointly predictive of the outcome. By exploring subgroups along a hierarchical tree, it remains computationally tractable, yet also enjoys explicit family-wise error rate control. Moreover, we address the issue of vanishing conditional importance under high correlation with a tree-based importance allocation mechanism. We benchmarked Hierarchical-CPI against state-of-the-art variable importance methods. Its effectiveness is demonstrated in two neuroimaging datasets: classifying dementia diagnoses from MRI data (ADNI dataset) and analyzing the Berger effect on EEG data (TDBRAIN dataset), identifying biologically plausible variables.
☆ Generative Modeling for Robust Deep Reinforcement Learning on the Traveling Salesman Problem
The Traveling Salesman Problem (TSP) is a classic NP-hard combinatorial optimization task with numerous practical applications. Classic heuristic solvers can attain near-optimal performance for small problem instances, but become computationally intractable for larger problems. Real-world logistics problems such as dynamically re-routing last-mile deliveries demand a solver with fast inference time, which has led researchers to investigate specialized neural network solvers. However, neural networks struggle to generalize beyond the synthetic data they were trained on. In particular, we show that there exist TSP distributions that are realistic in practice, which also consistently lead to poor worst-case performance for existing neural approaches. To address this issue of distribution robustness, we present Combinatorial Optimization with Generative Sampling (COGS), where training data is sampled from a generative TSP model. We show that COGS provides better data coverage and interpolation in the space of TSP training distributions. We also present TSPLib50, a dataset of realistically distributed TSP samples, which tests real-world generalization ability without conflating this issue with instance size. We evaluate our method on various synthetic datasets as well as TSPLib50, and compare to state-of-the-art neural baselines. We demonstrate that COGS improves distribution robustness, with most performance gains coming from worst-case scenarios.
comment: 9 pages, 8 figures
☆ CRADLE: Conversational RTL Design Space Exploration with LLM-based Multi-Agent Systems
This paper presents CRADLE, a conversational framework for design space exploration of RTL designs using LLM-based multi-agent systems. Unlike existing rigid approaches, CRADLE enables user-guided flows with internal self-verification, correction, and optimization. We demonstrate the framework with a generator-critic agent system targeting FPGA resource minimization using state-of-the-art LLMs. Experimental results on the RTLLM benchmark show that CRADLE achieves significant reductions in resource usage with averages of 48% and 40% in LUTs and FFs across all benchmark designs.
comment: Accepted for presentation at the 22nd International SoC Conference (ISOCC 2025). Proceedings to be included in IEEE Xplore
☆ SafeFix: Targeted Model Repair via Controlled Image Generation
Deep learning models for visual recognition often exhibit systematic errors due to underrepresented semantic subpopulations. Although existing debugging frameworks can pinpoint these failures by identifying key failure attributes, repairing the model effectively remains difficult. Current solutions often rely on manually designed prompts to generate synthetic training images -- an approach prone to distribution shift and semantic errors. To overcome these challenges, we introduce a model repair module that builds on an interpretable failure attribution pipeline. Our approach uses a conditional text-to-image model to generate semantically faithful and targeted images for failure cases. To preserve the quality and relevance of the generated samples, we further employ a large vision-language model (LVLM) to filter the outputs, enforcing alignment with the original data distribution and maintaining semantic consistency. By retraining vision models with this rare-case-augmented synthetic dataset, we significantly reduce errors associated with rare cases. Our experiments demonstrate that this targeted repair strategy improves model robustness without introducing new bugs. Code is available at https://github.com/oxu2/SafeFix
☆ DiffVolume: Diffusion Models for Volume Generation in Limit Order Books
Modeling limit order books (LOBs) dynamics is a fundamental problem in market microstructure research. In particular, generating high-dimensional volume snapshots with strong temporal and liquidity-dependent patterns remains a challenging task, despite recent work exploring the application of Generative Adversarial Networks to LOBs. In this work, we propose a conditional \textbf{Diff}usion model for the generation of future LOB \textbf{Volume} snapshots (\textbf{DiffVolume}). We evaluate our model across three axes: (1) \textit{Realism}, where we show that DiffVolume, conditioned on past volume history and time of day, better reproduces statistical properties such as marginal distribution, spatial correlation, and autocorrelation decay; (2) \textit{Counterfactual generation}, allowing for controllable generation under hypothetical liquidity scenarios by additionally conditioning on a target future liquidity profile; and (3) \textit{Downstream prediction}, where we show that the synthetic counterfactual data from our model improves the performance of future liquidity forecasting models. Together, these results suggest that DiffVolume provides a powerful and flexible framework for realistic and controllable LOB volume generation.
comment: 13 pages, 6 figures, 3 tables
☆ Expert-Guided Diffusion Planner for Auto-bidding CIKM 2025
Auto-bidding is extensively applied in advertising systems, serving a multitude of advertisers. Generative bidding is gradually gaining traction due to its robust planning capabilities and generalizability. In contrast to traditional reinforcement learning-based bidding, generative bidding does not rely on the Markov Decision Process (MDP) exhibiting superior planning capabilities in long-horizon scenarios. Conditional diffusion modeling approaches have demonstrated significant potential in the realm of auto-bidding. However, relying solely on return as the optimality condition is weak to guarantee the generation of genuinely optimal decision sequences, lacking personalized structural information. Moreover, diffusion models' t-step autoregressive generation mechanism inherently carries timeliness risks. To address these issues, we propose a novel conditional diffusion modeling method based on expert trajectory guidance combined with a skip-step sampling strategy to enhance generation efficiency. We have validated the effectiveness of this approach through extensive offline experiments and achieved statistically significant results in online A/B testing, achieving an increase of 11.29% in conversion and a 12.35% in revenue compared with the baseline.
comment: accepted for presentation at the CIKM 2025 Applied Research Track, eight (8) pages, three (3) figures
☆ Multi-level Collaborative Distillation Meets Global Workspace Model: A Unified Framework for OCIL
Online Class-Incremental Learning (OCIL) enables models to learn continuously from non-i.i.d. data streams and samples of the data streams can be seen only once, making it more suitable for real-world scenarios compared to offline learning. However, OCIL faces two key challenges: maintaining model stability under strict memory constraints and ensuring adaptability to new tasks. Under stricter memory constraints, current replay-based methods are less effective. While ensemble methods improve adaptability (plasticity), they often struggle with stability. To overcome these challenges, we propose a novel approach that enhances ensemble learning through a Global Workspace Model (GWM)-a shared, implicit memory that guides the learning of multiple student models. The GWM is formed by fusing the parameters of all students within each training batch, capturing the historical learning trajectory and serving as a dynamic anchor for knowledge consolidation. This fused model is then redistributed periodically to the students to stabilize learning and promote cross-task consistency. In addition, we introduce a multi-level collaborative distillation mechanism. This approach enforces peer-to-peer consistency among students and preserves historical knowledge by aligning each student with the GWM. As a result, student models remain adaptable to new tasks while maintaining previously learned knowledge, striking a better balance between stability and plasticity. Extensive experiments on three standard OCIL benchmarks show that our method delivers significant performance improvement for several OCIL models across various memory budgets.
comment: 12 pages, 7 figures
☆ In-Context Learning as Nonparametric Conditional Probability Estimation: Risk Bounds and Optimality
This paper investigates the expected excess risk of In-Context Learning (ICL) for multiclass classification. We model each task as a sequence of labeled prompt samples and a query input, where a pre-trained model estimates the conditional class probabilities of the query. The expected excess risk is defined as the average truncated Kullback-Leibler (KL) divergence between the predicted and ground-truth conditional class distributions, averaged over a specified family of tasks. We establish a new oracle inequality for the expected excess risk based on KL divergence in multiclass classification. This allows us to derive tight upper and lower bounds for the expected excess risk in transformer-based models, demonstrating that the ICL estimator achieves the minimax optimal rate - up to a logarithmic factor - for conditional probability estimation. From a technical standpoint, our results introduce a novel method for controlling generalization error using the uniform empirical covering entropy of the log-likelihood function class. Furthermore, we show that multilayer perceptrons (MLPs) can also perform ICL and achieve this optimal rate under specific assumptions, suggesting that transformers may not be the exclusive architecture capable of effective ICL.
☆ $\text{M}^{2}$LLM: Multi-view Molecular Representation Learning with Large Language Models IJCAI 2025
Accurate molecular property prediction is a critical challenge with wide-ranging applications in chemistry, materials science, and drug discovery. Molecular representation methods, including fingerprints and graph neural networks (GNNs), achieve state-of-the-art results by effectively deriving features from molecular structures. However, these methods often overlook decades of accumulated semantic and contextual knowledge. Recent advancements in large language models (LLMs) demonstrate remarkable reasoning abilities and prior knowledge across scientific domains, leading us to hypothesize that LLMs can generate rich molecular representations when guided to reason in multiple perspectives. To address these gaps, we propose $\text{M}^{2}$LLM, a multi-view framework that integrates three perspectives: the molecular structure view, the molecular task view, and the molecular rules view. These views are fused dynamically to adapt to task requirements, and experiments demonstrate that $\text{M}^{2}$LLM achieves state-of-the-art performance on multiple benchmarks across classification and regression tasks. Moreover, we demonstrate that representation derived from LLM achieves exceptional performance by leveraging two core functionalities: the generation of molecular embeddings through their encoding capabilities and the curation of molecular features through advanced reasoning processes.
comment: IJCAI 2025
☆ MiGrATe: Mixed-Policy GRPO for Adaptation at Test-Time
Large language models (LLMs) are increasingly being applied to black-box optimization tasks, from program synthesis to molecule design. Prior work typically leverages in-context learning to iteratively guide the model towards better solutions. Such methods, however, often struggle to balance exploration of new solution spaces with exploitation of high-reward ones. Recently, test-time training (TTT) with synthetic data has shown promise in improving solution quality. However, the need for hand-crafted training data tailored to each task limits feasibility and scalability across domains. To address this problem, we introduce MiGrATe-a method for online TTT that uses GRPO as a search algorithm to adapt LLMs at inference without requiring external training data. MiGrATe operates via a mixed-policy group construction procedure that combines on-policy sampling with two off-policy data selection techniques: greedy sampling, which selects top-performing past completions, and neighborhood sampling (NS), which generates completions structurally similar to high-reward ones. Together, these components bias the policy gradient towards exploitation of promising regions in solution space, while preserving exploration through on-policy sampling. We evaluate MiGrATe on three challenging domains-word search, molecule optimization, and hypothesis+program induction on the Abstraction and Reasoning Corpus (ARC)-and find that it consistently outperforms both inference-only and TTT baselines, demonstrating the potential of online TTT as a solution for complex search tasks without external supervision.
☆ Classifier Language Models: Unifying Sparse Finetuning and Adaptive Tokenization for Specialized Classification Tasks
Semantic text classification requires the understanding of the contextual significance of specific tokens rather than surface-level patterns or keywords (as in rule-based or statistical text classification), making large language models (LLMs) well-suited for this task. However, semantic classification applications in industry, like customer intent detection or semantic role labeling, tend to be highly specialized. They require annotation by domain experts in contrast to general-purpose corpora for pretraining. Further, they typically require high inference throughputs which limits the model size from latency and cost perspectives. Thus, for a range of specialized classification tasks, the preferred solution is to develop customized classifiers by finetuning smaller language models (e.g., mini-encoders, small language models). In this work, we develop a token-driven sparse finetuning strategy to adapt small language models to specialized classification tasks. We identify and finetune a small sensitive subset of model parameters by leveraging task-specific token constructs in the finetuning dataset, while leaving most of the pretrained weights unchanged. Unlike adapter approaches such as low rank adaptation (LoRA), we do not introduce additional parameters to the model. Our approach identifies highly relevant semantic tokens (case study in the Appendix) and outperforms end-to-end finetuning, LoRA, layer selection, and prefix tuning on five diverse semantic classification tasks. We achieve greater stability and half the training costs vs. end-to-end finetuning.
comment: 10 pages, 4 figures, currently under review
☆ Neural Artistic Style and Color Transfer Using Deep Learning
Neural artistic style transfers and blends the content and style representation of one image with the style of another. This enables artists to create unique innovative visuals and enhances artistic expression in various fields including art, design, and film. Color transfer algorithms are an important in digital image processing by adjusting the color information in a target image based on the colors in the source image. Color transfer enhances images and videos in film and photography, and can aid in image correction. We introduce a methodology that combines neural artistic style with color transfer. The method uses the Kullback-Leibler (KL) divergence to quantitatively evaluate color and luminance histogram matching algorithms including Reinhard global color transfer, iteration distribution transfer (IDT), IDT with regrain, Cholesky, and PCA between the original and neural artistic style transferred image using deep learning. We estimate the color channel kernel densities. Various experiments are performed to evaluate the KL of these algorithms and their color histograms for style to content transfer.
☆ Distributed optimization: designed for federated learning
Federated Learning (FL), as a distributed collaborative Machine Learning (ML) framework under privacy-preserving constraints, has garnered increasing research attention in cross-organizational data collaboration scenarios. This paper proposes a class of distributed optimization algorithms based on the augmented Lagrangian technique, designed to accommodate diverse communication topologies in both centralized and decentralized FL settings. Furthermore, we develop multiple termination criteria and parameter update mechanisms to enhance computational efficiency, accompanied by rigorous theoretical guarantees of convergence. By generalizing the augmented Lagrangian relaxation through the incorporation of proximal relaxation and quadratic approximation, our framework systematically recovers a broad of classical unconstrained optimization methods, including proximal algorithm, classic gradient descent, and stochastic gradient descent, among others. Notably, the convergence properties of these methods can be naturally derived within the proposed theoretical framework. Numerical experiments demonstrate that the proposed algorithm exhibits strong performance in large-scale settings with significant statistical heterogeneity across clients.
comment: 16 pages, 6 figures
☆ Superclass-Guided Representation Disentanglement for Spurious Correlation Mitigation
To enhance group robustness to spurious correlations, prior work often relies on auxiliary annotations for groups or spurious features and assumes identical sets of groups across source and target domains. These two requirements are both unnatural and impractical in real-world settings. To overcome these limitations, we propose a method that leverages the semantic structure inherent in class labels--specifically, superclass information--to naturally reduce reliance on spurious features. Our model employs gradient-based attention guided by a pre-trained vision-language model to disentangle superclass-relevant and irrelevant features. Then, by promoting the use of all superclass-relevant features for prediction, our approach achieves robustness to more complex spurious correlations without the need to annotate any source samples. Experiments across diverse datasets demonstrate that our method significantly outperforms baselines in domain generalization tasks, with clear improvements in both quantitative metrics and qualitative visualizations.
☆ SHEFL: Resource-Aware Aggregation and Sparsification in Heterogeneous Ensemble Federated Learning AAAI 2026
Federated learning enables distributed training with private data of clients, but its convergence is hindered by data and system heterogeneity in realistic communication scenarios. Most existing system heterogeneous FL schemes utilize global pruning or ensemble distillation, yet they often overlook typical constraints required for communication efficiency. Meanwhile, deep ensembles can aggregate predictions from individually trained models to improve performance, but current ensemble-based FL methods fall short in fully capturing the diversity of model predictions. In this work, we propose SHEFL, a global ensemble-based federated learning framework suited for clients with diverse computational capacities. We allocate different numbers of global models to clients based on their available resources. We further introduce a novel aggregation scheme that accounts for bias between clients with different computational capabilities. To reduce the computational burden of training deep ensembles and mitigate data bias, we dynamically adjust the resource ratio across clients - aggressively reducing the influence of underpowered clients in constrained scenarios, while increasing their weight in the opposite case. Extensive experiments demonstrate that our method effectively addresses computational heterogeneity, significantly improving both fairness and overall performance compared to existing approaches.
comment: 9 pages, 7 figures, submitted to AAAI 2026
☆ UQGNN: Uncertainty Quantification of Graph Neural Networks for Multivariate Spatiotemporal Prediction SP
Spatiotemporal prediction plays a critical role in numerous real-world applications such as urban planning, transportation optimization, disaster response, and pandemic control. In recent years, researchers have made significant progress by developing advanced deep learning models for spatiotemporal prediction. However, most existing models are deterministic, i.e., predicting only the expected mean values without quantifying uncertainty, leading to potentially unreliable and inaccurate outcomes. While recent studies have introduced probabilistic models to quantify uncertainty, they typically focus on a single phenomenon (e.g., taxi, bike, crime, or traffic crashes), thereby neglecting the inherent correlations among heterogeneous urban phenomena. To address the research gap, we propose a novel Graph Neural Network with Uncertainty Quantification, termed UQGNN for multivariate spatiotemporal prediction. UQGNN introduces two key innovations: (i) an Interaction-aware Spatiotemporal Embedding Module that integrates a multivariate diffusion graph convolutional network and an interaction-aware temporal convolutional network to effectively capture complex spatial and temporal interaction patterns, and (ii) a multivariate probabilistic prediction module designed to estimate both expected mean values and associated uncertainties. Extensive experiments on four real-world multivariate spatiotemporal datasets from Shenzhen, New York City, and Chicago demonstrate that UQGNN consistently outperforms state-of-the-art baselines in both prediction accuracy and uncertainty quantification. For example, on the Shenzhen dataset, UQGNN achieves a 5% improvement in both prediction accuracy and uncertainty quantification.
comment: 10 pages, 7 figures, SIGSPATIAL 2025
☆ M3-Net: A Cost-Effective Graph-Free MLP-Based Model for Traffic Prediction
Achieving accurate traffic prediction is a fundamental but crucial task in the development of current intelligent transportation systems.Most of the mainstream methods that have made breakthroughs in traffic prediction rely on spatio-temporal graph neural networks, spatio-temporal attention mechanisms, etc. The main challenges of the existing deep learning approaches are that they either depend on a complete traffic network structure or require intricate model designs to capture complex spatio-temporal dependencies. These limitations pose significant challenges for the efficient deployment and operation of deep learning models on large-scale datasets. To address these challenges, we propose a cost-effective graph-free Multilayer Perceptron (MLP) based model M3-Net for traffic prediction. Our proposed model not only employs time series and spatio-temporal embeddings for efficient feature processing but also first introduces a novel MLP-Mixer architecture with a mixture of experts (MoE) mechanism. Extensive experiments conducted on multiple real datasets demonstrate the superiority of the proposed model in terms of prediction performance and lightweight deployment.
☆ Biased Local SGD for Efficient Deep Learning on Heterogeneous Systems
Most large-scale neural network training methods assume homogeneous parallel computing resources. For example, synchronous SGD with data parallelism, the most widely used parallel training strategy, incurs significant synchronization overhead when workers process their assigned data at different speeds. Consequently, in systems with heterogeneous compute resources, users often rely solely on the fastest components, such as GPUs, for training. In this work, we explore how to effectively use heterogeneous resources for neural network training. We propose a system-aware local stochastic gradient descent (local SGD) method that allocates workloads to each compute resource in proportion to its compute capacity. To make better use of slower resources such as CPUs, we intentionally introduce bias into data sampling and model aggregation. Our study shows that well-controlled bias can significantly accelerate local SGD in heterogeneous environments, achieving comparable or even higher accuracy than synchronous SGD with data-parallelism within the same time budget. This fundamental parallelization strategy can be readily extended to diverse heterogeneous environments, including cloud platforms and multi-node high-performance computing clusters.
☆ ProMode: A Speech Prosody Model Conditioned on Acoustic and Textual Inputs
Prosody conveys rich emotional and semantic information of the speech signal as well as individual idiosyncrasies. We propose a stand-alone model that maps text-to-prosodic features such as F0 and energy and can be used in downstream tasks such as TTS. The ProMode encoder takes as input acoustic features and time-aligned textual content, both are partially masked, and obtains a fixed-length latent prosodic embedding. The decoder predicts acoustics in the masked region using both the encoded prosody input and unmasked textual content. Trained on the GigaSpeech dataset, we compare our method with state-of-the-art style encoders. For F0 and energy predictions, we show consistent improvements for our model at different levels of granularity. We also integrate these predicted prosodic features into a TTS system and conduct perceptual tests, which show higher prosody preference compared to the baselines, demonstrating the model's potential in tasks where prosody modeling is important.
comment: Interspeech 2025; demo page at https://promode8272.github.io/promode/index.html
☆ Understanding Dementia Speech Alignment with Diffusion-Based Image Generation
Text-to-image models generate highly realistic images based on natural language descriptions and millions of users use them to create and share images online. While it is expected that such models can align input text and generated image in the same latent space little has been done to understand whether this alignment is possible between pathological speech and generated images. In this work, we examine the ability of such models to align dementia-related speech information with the generated images and develop methods to explain this alignment. Surprisingly, we found that dementia detection is possible from generated images alone achieving 75% accuracy on the ADReSS dataset. We then leverage explainability methods to show which parts of the language contribute to the detection.
comment: Paper accepted at Interspeech 2025
☆ What Can We Learn from Inter-Annotator Variability in Skin Lesion Segmentation? MICCAI
Medical image segmentation exhibits intra- and inter-annotator variability due to ambiguous object boundaries, annotator preferences, expertise, and tools, among other factors. Lesions with ambiguous boundaries, e.g., spiculated or infiltrative nodules, or irregular borders per the ABCD rule, are particularly prone to disagreement and are often associated with malignancy. In this work, we curate IMA++, the largest multi-annotator skin lesion segmentation dataset, on which we conduct an in-depth study of variability due to annotator, malignancy, tool, and skill factors. We find a statistically significant (p<0.001) association between inter-annotator agreement (IAA), measured using Dice, and the malignancy of skin lesions. We further show that IAA can be accurately predicted directly from dermoscopic images, achieving a mean absolute error of 0.108. Finally, we leverage this association by utilizing IAA as a "soft" clinical feature within a multi-task learning objective, yielding a 4.2% improvement in balanced accuracy averaged across multiple model architectures and across IMA++ and four public dermoscopic datasets. The code is available at https://github.com/sfu-mial/skin-IAV.
comment: Medical Image Computing and Computer-Assisted Intervention (MICCAI) ISIC Skin Image Analysis Workshop (MICCAI ISIC) 2025; 12 pages, 4 tables, 3 figures
☆ A Signer-Invariant Conformer and Multi-Scale Fusion Transformer for Continuous Sign Language Recognition ICCV
Continuous Sign Language Recognition (CSLR) faces multiple challenges, including significant inter-signer variability and poor generalization to novel sentence structures. Traditional solutions frequently fail to handle these issues efficiently. For overcoming these constraints, we propose a dual-architecture framework. For the Signer-Independent (SI) challenge, we propose a Signer-Invariant Conformer that combines convolutions with multi-head self-attention to learn robust, signer-agnostic representations from pose-based skeletal keypoints. For the Unseen-Sentences (US) task, we designed a Multi-Scale Fusion Transformer with a novel dual-path temporal encoder that captures both fine-grained posture dynamics, enabling the model's ability to comprehend novel grammatical compositions. Experiments on the challenging Isharah-1000 dataset establish a new standard for both CSLR benchmarks. The proposed conformer architecture achieves a Word Error Rate (WER) of 13.07% on the SI challenge, a reduction of 13.53% from the state-of-the-art. On the US task, the transformer model scores a WER of 47.78%, surpassing previous work. In the SignEval 2025 CSLR challenge, our team placed 2nd in the US task and 4th in the SI task, demonstrating the performance of these models. The findings validate our key hypothesis: that developing task-specific networks designed for the particular challenges of CSLR leads to considerable performance improvements and establishes a new baseline for further research. The source code is available at: https://github.com/rezwanh001/MSLR-Pose86K-CSLR-Isharah.
comment: Accepted for the IEEE/CVF International Conference on Computer Vision (ICCV), Honolulu, Hawaii, USA. 1st MSLR Workshop 2025
☆ Classifying Cool Dwarfs: Comprehensive Spectral Typing of Field and Peculiar Dwarfs Using Machine Learning
Low-mass stars and brown dwarfs -- spectral types (SpTs) M0 and later -- play a significant role in studying stellar and substellar processes and demographics, reaching down to planetary-mass objects. Currently, the classification of these sources remains heavily reliant on visual inspection of spectral features, equivalent width measurements, or narrow-/wide-band spectral indices. Recent advances in machine learning (ML) methods offer automated approaches for spectral typing, which are becoming increasingly important as large spectroscopic surveys such as Gaia, SDSS, and SPHEREx generate datasets containing millions of spectra. We investigate the application of ML in spectral type classification on low-resolution (R $\sim$ 120) near-infrared spectra of M0--T9 dwarfs obtained with the SpeX instrument on the NASA Infrared Telescope Facility. We specifically aim to classify the gravity- and metallicity-dependent subclasses for late-type dwarfs. We used binned fluxes as input features and compared the efficacy of spectral type estimators built using Random Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) models. We tested the influence of different normalizations and analyzed the relative importance of different spectral regions for surface gravity and metallicity subclass classification. Our best-performing model (using KNN) classifies 95.5 $\pm$ 0.6% of sources to within $\pm$1 SpT, and assigns surface gravity and metallicity subclasses with 89.5 $\pm$ 0.9% accuracy. We test the dependence of signal-to-noise ratio on classification accuracy and find sources with SNR $\gtrsim$ 60 have $\gtrsim$ 95% accuracy. We also find that zy-band plays the most prominent role in the RF model, with FeH and TiO having the highest feature importance.
comment: 35 pages, 24 figures, 9 tables, accepted for publication in The Astrophysical Journal
☆ Resurrecting the Salmon: Rethinking Mechanistic Interpretability with Domain-Specific Sparse Autoencoders
Sparse autoencoders (SAEs) decompose large language model (LLM) activations into latent features that reveal mechanistic structure. Conventional SAEs train on broad data distributions, forcing a fixed latent budget to capture only high-frequency, generic patterns. This often results in significant linear ``dark matter'' in reconstruction error and produces latents that fragment or absorb each other, complicating interpretation. We show that restricting SAE training to a well-defined domain (medical text) reallocates capacity to domain-specific features, improving both reconstruction fidelity and interpretability. Training JumpReLU SAEs on layer-20 activations of Gemma-2 models using 195k clinical QA examples, we find that domain-confined SAEs explain up to 20\% more variance, achieve higher loss recovery, and reduce linear residual error compared to broad-domain SAEs. Automated and human evaluations confirm that learned features align with clinically meaningful concepts (e.g., ``taste sensations'' or ``infectious mononucleosis''), rather than frequent but uninformative tokens. These domain-specific SAEs capture relevant linear structure, leaving a smaller, more purely nonlinear residual. We conclude that domain-confinement mitigates key limitations of broad-domain SAEs, enabling more complete and interpretable latent decompositions, and suggesting the field may need to question ``foundation-model'' scaling for general-purpose SAEs.
FusionEnsemble-Net: An Attention-Based Ensemble of Spatiotemporal Networks for Multimodal Sign Language Recognition ICCV
Accurate recognition of sign language in healthcare communication poses a significant challenge, requiring frameworks that can accurately interpret complex multimodal gestures. To deal with this, we propose FusionEnsemble-Net, a novel attention-based ensemble of spatiotemporal networks that dynamically fuses visual and motion data to enhance recognition accuracy. The proposed approach processes RGB video and range Doppler map radar modalities synchronously through four different spatiotemporal networks. For each network, features from both modalities are continuously fused using an attention-based fusion module before being fed into an ensemble of classifiers. Finally, the outputs of these four different fused channels are combined in an ensemble classification head, thereby enhancing the model's robustness. Experiments demonstrate that FusionEnsemble-Net outperforms state-of-the-art approaches with a test accuracy of 99.44% on the large-scale MultiMeDaLIS dataset for Italian Sign Language. Our findings indicate that an ensemble of diverse spatiotemporal networks, unified by attention-based fusion, yields a robust and accurate framework for complex, multimodal isolated gesture recognition tasks. The source code is available at: https://github.com/rezwanh001/Multimodal-Isolated-Italian-Sign-Language-Recognition.
comment: Accepted for the IEEE/CVF International Conference on Computer Vision (ICCV), Honolulu, Hawaii, USA. 1st MSLR Workshop 2025
☆ RicciFlowRec: A Geometric Root Cause Recommender Using Ricci Curvature on Financial Graphs RecSys 2025
We propose RicciFlowRec, a geometric recommendation framework that performs root cause attribution via Ricci curvature and flow on dynamic financial graphs. By modelling evolving interactions among stocks, macroeconomic indicators, and news, we quantify local stress using discrete Ricci curvature and trace shock propagation via Ricci flow. Curvature gradients reveal causal substructures, informing a structural risk-aware ranking function. Preliminary results on S\&P~500 data with FinBERT-based sentiment show improved robustness and interpretability under synthetic perturbations. This ongoing work supports curvature-based attribution and early-stage risk-aware ranking, with plans for portfolio optimization and return forecasting. To our knowledge, RicciFlowRec is the first recommender to apply geometric flow-based reasoning in financial decision support.
comment: Accepted at ACM RecSys 2025 (Late Breaking Results Track)
☆ Teaching Code Refactoring Using LLMs
This Innovative Practice full paper explores how Large Language Models (LLMs) can enhance the teaching of code refactoring in software engineering courses through real-time, context-aware feedback. Refactoring improves code quality but is difficult to teach, especially with complex, real-world codebases. Traditional methods like code reviews and static analysis tools offer limited, inconsistent feedback. Our approach integrates LLM-assisted refactoring into a course project using structured prompts to help students identify and address code smells such as long methods and low cohesion. Implemented in Spring 2025 in a long-lived OSS project, the intervention is evaluated through student feedback and planned analysis of code quality improvements. Findings suggest that LLMs can bridge theoretical and practical learning, supporting a deeper understanding of maintainability and refactoring principles.
comment: Accepted for presentation at the Frontiers in Education Conference, Nashville, Tennessee, USA, 2-5 November 2025
☆ Synaptic Pruning: A Biological Inspiration for Deep Learning Regularization
Synaptic pruning in biological brains removes weak connections to improve efficiency. In contrast, dropout regularization in artificial neural networks randomly deactivates neurons without considering activity-dependent pruning. We propose a magnitude-based synaptic pruning method that better reflects biology by progressively removing low-importance connections during training. Integrated directly into the training loop as a dropout replacement, our approach computes weight importance from absolute magnitudes across layers and applies a cubic schedule to gradually increase global sparsity. At fixed intervals, pruning masks permanently remove low-importance weights while maintaining gradient flow for active ones, eliminating the need for separate pruning and fine-tuning phases. Experiments on multiple time series forecasting models including RNN, LSTM, and Patch Time Series Transformer across four datasets show consistent gains. Our method ranked best overall, with statistically significant improvements confirmed by Friedman tests (p < 0.01). In financial forecasting, it reduced Mean Absolute Error by up to 20% over models with no or standard dropout, and up to 52% in select transformer models. This dynamic pruning mechanism advances regularization by coupling weight elimination with progressive sparsification, offering easy integration into diverse architectures. Its strong performance, especially in financial time series forecasting, highlights its potential as a practical alternative to conventional dropout techniques.
comment: 24 pages, 7 figures
☆ Exact Verification of Graph Neural Networks with Incremental Constraint Solving
Graph neural networks (GNNs) are increasingly employed in high-stakes applications, such as fraud detection or healthcare, but are susceptible to adversarial attacks. A number of techniques have been proposed to provide adversarial robustness guarantees, but support for commonly used aggregation functions in message-passing GNNs is still lacking. In this paper, we develop an exact (sound and complete) verification method for GNNs to compute guarantees against attribute and structural perturbations that involve edge addition or deletion, subject to budget constraints. Focusing on node classification tasks, our method employs constraint solving with bound tightening, and iteratively solves a sequence of relaxed constraint satisfaction problems while relying on incremental solving capabilities of solvers to improve efficiency. We implement GNNev, a versatile solver for message-passing neural networks, which supports three aggregation functions, sum, max and mean, with the latter two considered here for the first time. Extensive experimental evaluation of GNNev on two standard benchmarks (Cora and CiteSeer) and two real-world fraud datasets (Amazon and Yelp) demonstrates its usability and effectiveness, as well as superior performance compared to existing {exact verification} tools on sum-aggregated node classification tasks.
☆ Fake-Mamba: Real-Time Speech Deepfake Detection Using Bidirectional Mamba as Self-Attention's Alternative
Advances in speech synthesis intensify security threats, motivating real-time deepfake detection research. We investigate whether bidirectional Mamba can serve as a competitive alternative to Self-Attention in detecting synthetic speech. Our solution, Fake-Mamba, integrates an XLSR front-end with bidirectional Mamba to capture both local and global artifacts. Our core innovation introduces three efficient encoders: TransBiMamba, ConBiMamba, and PN-BiMamba. Leveraging XLSR's rich linguistic representations, PN-BiMamba can effectively capture the subtle cues of synthetic speech. Evaluated on ASVspoof 21 LA, 21 DF, and In-The-Wild benchmarks, Fake-Mamba achieves 0.97%, 1.74%, and 5.85% EER, respectively, representing substantial relative gains over SOTA models XLSR-Conformer and XLSR-Mamba. The framework maintains real-time inference across utterance lengths, demonstrating strong generalization and practical viability. The code is available at https://github.com/xuanxixi/Fake-Mamba.
comment: Accepted at IEEE ASRU 2025
☆ Distilling Reinforcement Learning into Single-Batch Datasets
Dataset distillation compresses a large dataset into a small synthetic dataset such that learning on the synthetic dataset approximates learning on the original. Training on the distilled dataset can be performed in as little as one step of gradient descent. We demonstrate that distillation is generalizable to different tasks by distilling reinforcement learning environments into one-batch supervised learning datasets. This demonstrates not only distillation's ability to compress a reinforcement learning task but also its ability to transform one learning modality (reinforcement learning) into another (supervised learning). We present a novel extension of proximal policy optimization for meta-learning and use it in distillation of a multi-dimensional extension of the classic cart-pole problem, all MuJoCo environments, and several Atari games. We demonstrate distillation's ability to compress complex RL environments into one-step supervised learning, explore RL distillation's generalizability across learner architectures, and demonstrate distilling an environment into the smallest-possible synthetic dataset.
comment: to be published in ECAI 2025 (appendix in arXiv version only), 11 pages (7 content, 4 appendix), 6 figures
☆ Pattern-based Knowledge Component Extraction from Student Code Using Representation Learning
Effective personalized learning in computer science education depends on accurately modeling what students know and what they need to learn. While Knowledge Components (KCs) provide a foundation for such modeling, automated KC extraction from student code is inherently challenging due to insufficient explainability of discovered KCs and the open-endedness of programming problems with significant structural variability across student solutions and complex interactions among programming concepts. In this work, we propose a novel, explainable framework for automated KC discovery through pattern-based KCs: recurring structural patterns within student code that capture the specific programming patterns and language constructs that students must master. Toward this, we train a Variational Autoencoder to generate important representative patterns from student code guided by an explainable, attention-based code representation model that identifies important correct and incorrect pattern implementations from student code. These patterns are then clustered to form pattern-based KCs. We evaluate our KCs using two well-established methods informed by Cognitive Science: learning curve analysis and Deep Knowledge Tracing (DKT). Experimental results demonstrate meaningful learning trajectories and significant improvements in DKT predictive performance over traditional KT methods. This work advances knowledge modeling in CS education by providing an automated, scalable, and explainable framework for identifying granular code patterns and algorithmic constructs, essential for student learning.
☆ Value Function Initialization for Knowledge Transfer and Jump-start in Deep Reinforcement Learning
Value function initialization (VFI) is an effective way to achieve a jumpstart in reinforcement learning (RL) by leveraging value estimates from prior tasks. While this approach is well established in tabular settings, extending it to deep reinforcement learning (DRL) poses challenges due to the continuous nature of the state-action space, the noisy approximations of neural networks, and the impracticality of storing all past models for reuse. In this work, we address these challenges and introduce DQInit, a method that adapts value function initialization to DRL. DQInit reuses compact tabular Q-values extracted from previously solved tasks as a transferable knowledge base. It employs a knownness-based mechanism to softly integrate these transferred values into underexplored regions and gradually shift toward the agent's learned estimates, avoiding the limitations of fixed time decay. Our approach offers a novel perspective on knowledge transfer in DRL by relying solely on value estimates rather than policies or demonstrations, effectively combining the strengths of jumpstart RL and policy distillation while mitigating their drawbacks. Experiments across multiple continuous control tasks demonstrate that DQInit consistently improves early learning efficiency, stability, and overall performance compared to standard initialization and existing transfer techniques.
☆ Constrained Black-Box Attacks Against Multi-Agent Reinforcement Learning
Collaborative multi-agent reinforcement learning (c-MARL) has rapidly evolved, offering state-of-the-art algorithms for real-world applications, including sensitive domains. However, a key challenge to its widespread adoption is the lack of a thorough investigation into its vulnerabilities to adversarial attacks. Existing work predominantly focuses on training-time attacks or unrealistic scenarios, such as access to policy weights or the ability to train surrogate policies. In this paper, we investigate new vulnerabilities under more realistic and constrained conditions, assuming an adversary can only collect and perturb the observations of deployed agents. We also consider scenarios where the adversary has no access at all. We propose simple yet highly effective algorithms for generating adversarial perturbations designed to misalign how victim agents perceive their environment. Our approach is empirically validated on three benchmarks and 22 environments, demonstrating its effectiveness across diverse algorithms and environments. Furthermore, we show that our algorithm is sample-efficient, requiring only 1,000 samples compared to the millions needed by previous methods.
comment: Under review in TNNLS
☆ A Generative Imputation Method for Multimodal Alzheimer's Disease Diagnosis
Multimodal data analysis can lead to more accurate diagnoses of brain disorders due to the complementary information that each modality adds. However, a major challenge of using multimodal datasets in the neuroimaging field is incomplete data, where some of the modalities are missing for certain subjects. Hence, effective strategies are needed for completing the data. Traditional methods, such as subsampling or zero-filling, may reduce the accuracy of predictions or introduce unintended biases. In contrast, advanced methods such as generative models have emerged as promising solutions without these limitations. In this study, we proposed a generative adversarial network method designed to reconstruct missing modalities from existing ones while preserving the disease patterns. We used T1-weighted structural magnetic resonance imaging and functional network connectivity as two modalities. Our findings showed a 9% improvement in the classification accuracy for Alzheimer's disease versus cognitive normal groups when using our generative imputation method compared to the traditional approaches.
☆ Over-Squashing in GNNs and Causal Inference of Rewiring Strategies
Graph neural networks (GNNs) have exhibited state-of-the-art performance across wide-range of domains such as recommender systems, material design, and drug repurposing. Yet message-passing GNNs suffer from over-squashing -- exponential compression of long-range information from distant nodes -- which limits expressivity. Rewiring techniques can ease this bottleneck; but their practical impacts are unclear due to the lack of a direct empirical over-squashing metric. We propose a rigorous, topology-focused method for assessing over-squashing between node pairs using the decay rate of their mutual sensitivity. We then extend these pairwise assessments to four graph-level statistics (prevalence, intensity, variability, extremity). Coupling these metrics with a within-graph causal design, we quantify how rewiring strategies affect over-squashing on diverse graph- and node-classification benchmarks. Our extensive empirical analyses show that most graph classification datasets suffer from over-squashing (but to various extents), and rewiring effectively mitigates it -- though the degree of mitigation, and its translation into performance gains, varies by dataset and method. We also found that over-squashing is less notable in node classification datasets, where rewiring often increases over-squashing, and performance variations are uncorrelated with over-squashing changes. These findings suggest that rewiring is most beneficial when over-squashing is both substantial and corrected with restraint -- while overly aggressive rewiring, or rewiring applied to minimally over-squashed graphs, is unlikely to help and may even harm performance. Our plug-and-play diagnostic tool lets practitioners decide -- before any training -- whether rewiring is likely to pay off.
comment: 14 pages, 2 figures
Detection of Odor Presence via Deep Neural Networks
Odor detection underpins food safety, environmental monitoring, medical diagnostics, and many more fields. The current artificial sensors developed for odor detection struggle with complex mixtures while non-invasive recordings lack reliable single-trial fidelity. To develop a general system for odor detection, in this study we present a preliminary work where we aim to test two hypotheses: (i) that spectral features of local field potentials (LFPs) are sufficient for robust single-trial odor detection and (ii) that signals from the olfactory bulb alone are adequate. To test two hypotheses, we propose an ensemble of complementary one-dimensional convolutional networks (ResCNN and AttentionCNN) that decodes the presence of odor from multichannel olfactory bulb LFPs. Tested on 2,349 trials from seven awake mice, our final ensemble model supports both hypotheses, achieving a mean accuracy of 86.6%, an F1-score of 81.0%, and an AUC of 0.9247, substantially outperforming previous benchmarks. In addition, the t-SNE visualization confirms that our framework captures biologically significant signatures. These findings establish the feasibility of robust single-trial detection of the presence of odor from extracellular LFPs, as well as demonstrate the potential of deep learning models to provide a deeper understanding of olfactory representations.
☆ LLM Empowered Prototype Learning for Zero and Few-Shot Tasks on Tabular Data
Recent breakthroughs in large language models (LLMs) have opened the door to in-depth investigation of their potential in tabular data modeling. However, effectively utilizing advanced LLMs in few-shot and even zero-shot scenarios is still challenging. To this end, we propose a novel LLM-based prototype estimation framework for tabular learning. Our key idea is to query the LLM to generate feature values based example-free prompt, which solely relies on task and feature descriptions. With the feature values generated by LLM, we can build a zero-shot prototype in a training-free manner, which can be further enhanced by fusing few-shot samples, avoiding training a classifier or finetuning the LLMs. Thanks to the example-free prompt and prototype estimation, ours bypasses the constraints brought by the example-based prompt, providing a scalable and robust framework. Extensive experiments demonstrate the effectiveness of ours in zero and few-shot tabular learning.
☆ Harnessing Input-Adaptive Inference for Efficient VLN ICCV 2025
An emerging paradigm in vision-and-language navigation (VLN) is the use of history-aware multi-modal transformer models. Given a language instruction, these models process observation and navigation history to predict the most appropriate action for an agent. While they have significantly improved performance, the scale of these models can be a bottleneck in practical settings with limited computational resources. In this work, we propose a novel input-adaptive navigation method to enhance VLN model efficiency. We first show that existing input-adaptive mechanisms fail to reduce computations without substantial performance degradation. To address this, we introduce three adaptive algorithms, each deployed at a different level: (1) To improve spatial efficiency, we selectively process panoramic views at each observation of an agent. (2) To improve intra-model efficiency, we propose importance-based adaptive thresholding for the early-exit methods. (3) To improve temporal efficiency, we implement a caching mechanism that prevents reprocessing of views previously seen by the agent. In evaluations on seven VLN benchmarks, we demonstrate over a 2$\times$ reduction in computation across three off-the-shelf agents in both standard and continuous environments. Our code is publicly available at https://github.com/secure-ai-systems-group/adaptive-vision-and-language-navigation.
comment: Accepted to ICCV 2025 [Poster]
☆ Forecasting Binary Economic Events in Modern Mercantilism: Traditional methodologies coupled with PCA and K-means Quantitative Analysis of Qualitative Sentimental Data
This paper examines Modern Mercantilism, characterized by rising economic nationalism, strategic technological decoupling, and geopolitical fragmentation, as a disruptive shift from the post-1945 globalization paradigm. It applies Principal Component Analysis (PCA) to 768-dimensional SBERT-generated semantic embeddings of curated news articles to extract orthogonal latent factors that discriminate binary event outcomes linked to protectionism, technological sovereignty, and bloc realignments. Analysis of principal component loadings identifies key semantic features driving classification performance, enhancing interpretability and predictive accuracy. This methodology provides a scalable, data-driven framework for quantitatively tracking emergent mercantilist dynamics through high-dimensional text analytics
☆ Enhance the machine learning algorithm performance in phishing detection with keyword features
Recently, we can observe a significant increase of the phishing attacks in the Internet. In a typical phishing attack, the attacker sets up a malicious website that looks similar to the legitimate website in order to obtain the end-users' information. This may cause the leakage of the sensitive information and the financial loss for the end-users. To avoid such attacks, the early detection of these websites' URLs is vital and necessary. Previous researchers have proposed many machine learning algorithms to distinguish the phishing URLs from the legitimate ones. In this paper, we would like to enhance these machine learning algorithms from the perspective of feature selection. We propose a novel method to incorporate the keyword features with the traditional features. This method is applied on multiple traditional machine learning algorithms and the experimental results have shown this method is useful and effective. On average, this method can reduce the classification error by 30% for the large dataset. Moreover, its enhancement is more significant for the small dataset. In addition, this method extracts the information from the URL and does not rely on the additional information provided by the third-part service. The best result for the machine learning algorithm using our proposed method has achieved the accuracy of 99.68%.
☆ Blockchain Network Analysis using Quantum Inspired Graph Neural Networks & Ensemble Models
In the rapidly evolving domain of financial technology, the detection of illicit transactions within blockchain networks remains a critical challenge, necessitating robust and innovative solutions. This work proposes a novel approach by combining Quantum Inspired Graph Neural Networks (QI-GNN) with flexibility of choice of an Ensemble Model using QBoost or a classic model such as Random Forrest Classifier. This system is tailored specifically for blockchain network analysis in anti-money laundering (AML) efforts. Our methodology to design this system incorporates a novel component, a Canonical Polyadic (CP) decomposition layer within the graph neural network framework, enhancing its capability to process and analyze complex data structures efficiently. Our technical approach has undergone rigorous evaluation against classical machine learning implementations, achieving an F2 score of 74.8% in detecting fraudulent transactions. These results highlight the potential of quantum-inspired techniques, supplemented by the structural advancements of the CP layer, to not only match but potentially exceed traditional methods in complex network analysis for financial security. The findings advocate for a broader adoption and further exploration of quantum-inspired algorithms within the financial sector to effectively combat fraud.
♻ ☆ Semantic Caching for Low-Cost LLM Serving: From Offline Learning to Online Adaptation
Large Language Models (LLMs) are revolutionizing how users interact with information systems, yet their high inference cost poses serious scalability and sustainability challenges. Caching inference responses, allowing them to be retrieved without another forward pass through the LLM, has emerged as one possible solution. Traditional exact-match caching, however, overlooks the semantic similarity between queries, leading to unnecessary recomputation. Semantic caching addresses this by retrieving responses based on semantic similarity, but introduces a fundamentally different cache eviction problem: one must account for mismatch costs between incoming queries and cached responses. Moreover, key system parameters, such as query arrival probabilities and serving costs, are often unknown and must be learned over time. Existing semantic caching methods are largely ad-hoc, lacking theoretical foundations and unable to adapt to real-world uncertainty. In this paper, we present a principled, learning-based framework for semantic cache eviction under unknown query and cost distributions. We formulate both offline optimization and online learning variants of the problem, and develop provably efficient algorithms with state-of-the-art guarantees. We also evaluate our framework on a synthetic dataset, showing that our proposed algorithms perform matching or superior performance compared with baselines.
♻ ☆ Klear-Reasoner: Advancing Reasoning Capability via Gradient-Preserving Clipping Policy Optimization
We present Klear-Reasoner, a model with long reasoning capabilities that demonstrates careful deliberation during problem solving, achieving outstanding performance across multiple benchmarks. Although there are already many excellent works related to inference models in the current community, there are still many problems with reproducing high-performance inference models due to incomplete disclosure of training details. This report provides an in-depth analysis of the reasoning model, covering the entire post-training workflow from data preparation and long Chain-of-Thought supervised fine-tuning (long CoT SFT) to reinforcement learning (RL), along with detailed ablation studies for each experimental component. For SFT data, our experiments show that a small number of high-quality data sources are more effective than a large number of diverse data sources, and that difficult samples can achieve better results without accuracy filtering. In addition, we investigate two key issues with current clipping mechanisms in RL: Clipping suppresses critical exploration signals and ignores suboptimal trajectories. To address these challenges, we propose Gradient-Preserving clipping Policy Optimization (GPPO) that gently backpropagates gradients from clipped tokens. GPPO not only enhances the model's exploration capacity but also improves its efficiency in learning from negative samples. Klear-Reasoner exhibits exceptional reasoning abilities in mathematics and programming, scoring 90.5% on AIME 2024, 83.2% on AIME 2025, 66.0% on LiveCodeBench V5 and 58.1% on LiveCodeBench V6.
♻ ☆ Grounding Multilingual Multimodal LLMs With Cultural Knowledge
Multimodal Large Language Models excel in high-resource settings, but often misinterpret long-tail cultural entities and underperform in low-resource languages. To address this gap, we propose a data-centric approach that directly grounds MLLMs in cultural knowledge. Leveraging a large scale knowledge graph from Wikidata, we collect images that represent culturally significant entities, and generate synthetic multilingual visual question answering data. The resulting dataset, CulturalGround, comprises 22 million high-quality, culturally-rich VQA pairs spanning 42 countries and 39 languages. We train an open-source MLLM CulturalPangea on CulturalGround, interleaving standard multilingual instruction-tuning data to preserve general abilities. CulturalPangea achieves state-of-the-art performance among open models on various culture-focused multilingual multimodal benchmarks, outperforming prior models by an average of 5.0 without degrading results on mainstream vision-language tasks. Our findings show that our targeted, culturally grounded approach could substantially narrow the cultural gap in MLLMs and offer a practical path towards globally inclusive multimodal systems.
♻ ☆ Touch and Tell: Multimodal Decoding of Human Emotions and Social Gestures for Robots
Human emotions are complex and can be conveyed through nuanced touch gestures. Previous research has primarily focused on how humans recognize emotions through touch or on identifying key features of emotional expression for robots. However, there is a gap in understanding how reliably these emotions and gestures can be communicated to robots via touch and interpreted using data driven methods. This study investigates the consistency and distinguishability of emotional and gestural expressions through touch and sound. To this end, we integrated a custom piezoresistive pressure sensor as well as a microphone on a social robot. Twenty-eight participants first conveyed ten different emotions to the robot using spontaneous touch gestures, then they performed six predefined social touch gestures. Our findings reveal statistically significant consistency in both emotion and gesture expression among participants. However, some emotions exhibited low intraclass correlation values, and certain emotions with similar levels of arousal or valence did not show significant differences in their conveyance. To investigate emotion and social gesture decoding within affective human-robot tactile interaction, we developed single-modality models and multimodal models integrating tactile and auditory features. A support vector machine (SVM) model trained on multimodal features achieved the highest accuracy for classifying ten emotions, reaching 40 %.For gesture classification, a Convolutional Neural Network- Long Short-Term Memory Network (CNN-LSTM) achieved 90.74 % accuracy. Our results demonstrate that even though the unimodal models have the potential to decode emotions and touch gestures, the multimodal integration of touch and sound significantly outperforms unimodal approaches, enhancing the decoding of both emotions and gestures.
♻ ☆ Chemist-aligned retrosynthesis by ensembling diverse inductive bias models
Chemical synthesis remains a critical bottleneck in the discovery and manufacture of functional small molecules. AI-based synthesis planning models could be a potential remedy to find effective syntheses, and have made progress in recent years. However, they still struggle with less frequent, yet critical reactions for synthetic strategy, as well as hallucinated, incorrect predictions. This hampers multi-step search algorithms that rely on models, and leads to misalignment with chemists' expectations. Here we propose RetroChimera: a frontier retrosynthesis model, built upon two newly developed components with complementary inductive biases, which we fuse together using a new framework for integrating predictions from multiple sources via a learning-based ensembling strategy. Through experiments across several orders of magnitude in data scale and splitting strategy, we show RetroChimera outperforms all major models by a large margin, demonstrating robustness outside the training data, as well as for the first time the ability to learn from even a very small number of examples per reaction class. Moreover, industrial organic chemists prefer predictions from RetroChimera over the reactions it was trained on in terms of quality, revealing high levels of alignment. Finally, we demonstrate zero-shot transfer to an internal dataset from a major pharmaceutical company, showing robust generalization under distribution shift. With the new dimension that our ensembling framework unlocks, we anticipate further acceleration in the development of even more accurate models.
♻ ☆ Understanding Aggregations of Proper Learners in Multiclass Classification
Multiclass learnability is known to exhibit a properness barrier: there are learnable classes which cannot be learned by any proper learner. Binary classification faces no such barrier for learnability, but a similar one for optimal learning, which can in general only be achieved by improper learners. Fortunately, recent advances in binary classification have demonstrated that this requirement can be satisfied using aggregations of proper learners, some of which are strikingly simple. This raises a natural question: to what extent can simple aggregations of proper learners overcome the properness barrier in multiclass classification? We give a positive answer to this question for classes which have finite Graph dimension, $d_G$. Namely, we demonstrate that the optimal binary learners of Hanneke, Larsen, and Aden-Ali et al. (appropriately generalized to the multiclass setting) achieve sample complexity $O\left(\frac{d_G + \ln(1 / \delta)}{\epsilon}\right)$. This forms a strict improvement upon the sample complexity of ERM. We complement this with a lower bound demonstrating that for certain classes of Graph dimension $d_G$, majorities of ERM learners require $\Omega \left( \frac{d_G + \ln(1 / \delta)}{\epsilon}\right)$ samples. Furthermore, we show that a single ERM requires $\Omega \left(\frac{d_G \ln(1 / \epsilon) + \ln(1 / \delta)}{\epsilon}\right)$ samples on such classes, exceeding the lower bound of Daniely et al. (2015) by a factor of $\ln(1 / \epsilon)$. For multiclass learning in full generality -- i.e., for classes of finite DS dimension but possibly infinite Graph dimension -- we give a strong refutation to these learning strategies, by exhibiting a learnable class which cannot be learned to constant error by any aggregation of a finite number of proper learners.
comment: 23 pages
♻ ☆ Argus Inspection: Do Multimodal Large Language Models Possess the Eye of Panoptes?
As Multimodal Large Language Models (MLLMs) continue to evolve, their cognitive and reasoning capabilities have seen remarkable progress. However, challenges in visual fine-grained perception and commonsense causal inference persist. This paper introduces Argus Inspection, a multimodal benchmark with two levels of difficulty, emphasizing detailed visual recognition while incorporating real-world commonsense understanding to evaluate causal reasoning abilities. Expanding on it, we present the Eye of Panoptes framework, which integrates a binary parametric Sigmoid metric with an indicator function, enabling a more holistic evaluation of MLLMs' responses in opinion-based reasoning tasks. Experiments conducted on 26 mainstream MLLMs reveal that the highest performance in visual fine-grained reasoning reaches only 0.46, highlighting considerable potential for enhancement. Our research offers valuable perspectives for the continued refinement of MLLMs.
♻ ☆ FBFL: A Field-Based Coordination Approach for Data Heterogeneity in Federated Learning
In the last years, Federated learning (FL) has become a popular solution to train machine learning models in domains with high privacy concerns. However, FL scalability and performance face significant challenges in real-world deployments where data across devices are non-independently and identically distributed (non-IID). The heterogeneity in data distribution frequently arises from spatial distribution of devices, leading to degraded model performance in the absence of proper handling. Additionally, FL typical reliance on centralized architectures introduces bottlenecks and single-point-of-failure risks, particularly problematic at scale or in dynamic environments. To close this gap, we propose Field-Based Federated Learning (FBFL), a novel approach leveraging macroprogramming and field coordination to address these limitations through: (i) distributed spatial-based leader election for personalization to mitigate non-IID data challenges; and (ii) construction of a self-organizing, hierarchical architecture using advanced macroprogramming patterns. Moreover, FBFL not only overcomes the aforementioned limitations, but also enables the development of more specialized models tailored to the specific data distribution in each subregion. This paper formalizes FBFL and evaluates it extensively using MNIST, FashionMNIST, and Extended MNIST datasets. We demonstrate that, when operating under IID data conditions, FBFL performs comparably to the widely-used FedAvg algorithm. Furthermore, in challenging non-IID scenarios, FBFL not only outperforms FedAvg but also surpasses other state-of-the-art methods, namely FedProx and Scaffold, which have been specifically designed to address non-IID data distributions. Additionally, we showcase the resilience of FBFL's self-organizing hierarchical architecture against server failures.
♻ ☆ Saturation Self-Organizing Map
Continual learning poses a fundamental challenge for neural systems, which often suffer from catastrophic forgetting when exposed to sequential tasks. Self-Organizing Maps (SOMs), despite their interpretability and efficiency, are not immune to this issue. In this paper, we introduce Saturation Self-Organizing Maps (SatSOM)-an extension of SOMs designed to improve knowledge retention in continual learning scenarios. SatSOM incorporates a novel saturation mechanism that gradually reduces the learning rate and neighborhood radius of neurons as they accumulate information. This effectively freezes well-trained neurons and redirects learning to underutilized areas of the map.
comment: github repository: https://github.com/Radinyn/satsom
♻ ☆ Discrete and Continuous Difference of Submodular Minimization
Submodular functions, defined on continuous or discrete domains, arise in numerous applications. We study the minimization of the difference of two submodular (DS) functions, over both domains, extending prior work restricted to set functions. We show that all functions on discrete domains and all smooth functions on continuous domains are DS. For discrete domains, we observe that DS minimization is equivalent to minimizing the difference of two convex (DC) functions, as in the set function case. We propose a novel variant of the DC Algorithm (DCA) and apply it to the resulting DC Program, obtaining comparable theoretical guarantees as in the set function case. The algorithm can be applied to continuous domains via discretization. Experiments demonstrate that our method outperforms baselines in integer compressive sensing and integer least squares.
♻ ☆ BELLA: Black box model Explanations by Local Linear Approximations
Understanding the decision-making process of black-box models has become not just a legal requirement, but also an additional way to assess their performance. However, the state of the art post-hoc explanation approaches for regression models rely on synthetic data generation, which introduces uncertainty and can hurt the reliability of the explanations. Furthermore, they tend to produce explanations that apply to only very few data points. In this paper, we present BELLA, a deterministic model-agnostic post-hoc approach for explaining the individual predictions of regression black-box models. BELLA provides explanations in the form of a linear model trained in the feature space. BELLA maximizes the size of the neighborhood to which the linear model applies so that the explanations are accurate, simple, general, and robust.
comment: 18 pages, 3 figures, Published in TMLR Journal
♻ ☆ Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications, integrating cloud resources with edge devices to enable efficient, low-latency processing. Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems, yet introduce significant challenges in model deployment and resource management. In this survey, we comprehensive examine the intersection of distributed intelligence and model optimization within edge-cloud environments, providing a structured tutorial on fundamental architectures, enabling technologies, and emerging applications. Additionally, we systematically analyze model optimization approaches, including compression, adaptation, and neural architecture search, alongside AI-driven resource management strategies that balance performance, energy efficiency, and latency requirements. We further explore critical aspects of privacy protection and security enhancement within ECCC systems and examines practical deployments through diverse applications, spanning autonomous driving, healthcare, and industrial automation. Performance analysis and benchmarking techniques are also thoroughly explored to establish evaluation standards for these complex systems. Furthermore, the review identifies critical research directions including LLMs deployment, 6G integration, neuromorphic computing, and quantum computing, offering a roadmap for addressing persistent challenges in heterogeneity management, real-time processing, and scalability. By bridging theoretical advancements and practical deployments, this survey offers researchers and practitioners a holistic perspective on leveraging AI to optimize distributed computing environments, fostering innovation in next-generation intelligent systems.
comment: 30 pages, 10 figures, 8 tables
♻ ☆ Sleepless Nights, Sugary Days: Creating Synthetic Users with Health Conditions for Realistic Coaching Agent Interactions ACL 2025
We present an end-to-end framework for generating synthetic users for evaluating interactive agents designed to encourage positive behavior changes, such as in health and lifestyle coaching. The synthetic users are grounded in health and lifestyle conditions, specifically sleep and diabetes management in this study, to ensure realistic interactions with the health coaching agent. Synthetic users are created in two stages: first, structured data are generated grounded in real-world health and lifestyle factors in addition to basic demographics and behavioral attributes; second, full profiles of the synthetic users are developed conditioned on the structured data. Interactions between synthetic users and the coaching agent are simulated using generative agent-based models such as Concordia, or directly by prompting a language model. Using two independently-developed agents for sleep and diabetes coaching as case studies, the validity of this framework is demonstrated by analyzing the coaching agent's understanding of the synthetic users' needs and challenges. Finally, through multiple blinded evaluations of user-coach interactions by human experts, we demonstrate that our synthetic users with health and behavioral attributes more accurately portray real human users with the same attributes, compared to generic synthetic users not grounded in such attributes. The proposed framework lays the foundation for efficient development of conversational agents through extensive, realistic, and grounded simulated interactions.
comment: Published in Findings of the Association for Computational Linguistics: ACL 2025
♻ ☆ Technical Report: Full-Stack Fine-Tuning for the Q Programming Language
Even though large language models are becoming increasingly capable, it is still unreasonable to expect them to excel at tasks that are under-represented on the Internet. Leveraging LLMs for specialized applications, particularly in niche programming languages and private domains, remains challenging and largely unsolved. In this work, we address this gap by presenting a comprehensive, open-source approach for adapting LLMs to the Q programming language, a popular tool in quantitative finance that is much less present on the Internet compared to Python, C, Java, and other ``mainstream" languages and is therefore not a strong suit of general-purpose AI models. We introduce a new Leetcode style evaluation dataset for Q, benchmark major frontier models on the dataset, then do pretraining, supervised fine tuning, and reinforcement learning to train a suite of reasoning and non-reasoning models based on the Qwen-2.5 series, spanning five parameter sizes (1.5B, 3B, 7B, 14B, 32B). Our best model achieves a pass@1 accuracy of 59 percent on our Q benchmark, surpassing the best-performing frontier model, Claude Opus-4 by 29.5 percent. Additionally, all models, even our 1.5B model, outperform GPT-4.1 on this task. In addition to releasing models, code, and data, we provide a detailed blueprint for dataset construction, model pretraining, supervised fine-tuning, and reinforcement learning. Our methodology is broadly applicable, and we discuss how these techniques can be extended to other tasks, including those where evaluation may rely on soft or subjective signals.
comment: 40 pages
♻ ☆ Efficient and Effective Query Context-Aware Learning-to-Rank Model for Sequential Recommendation
Modern sequential recommender systems commonly use transformer-based models for next-item prediction. While these models demonstrate a strong balance between efficiency and quality, integrating interleaving features - such as the query context (e.g., browse category) under which next-item interactions occur - poses challenges. Effectively capturing query context is crucial for refining ranking relevance and enhancing user engagement, as it provides valuable signals about user intent within a session. Unlike item features, historical query context is typically not aligned with item sequences and may be unavailable at inference due to privacy constraints or feature store limitations - making its integration into transformers both challenging and error-prone. This paper analyzes different strategies for incorporating query context into transformers trained with a causal language modeling procedure as a case study. We propose a new method that effectively fuses the item sequence with query context within the attention mechanism. Through extensive offline and online experiments on a large-scale online platform and open datasets, we present evidence that our proposed method is an effective approach for integrating query context to improve model ranking quality in terms of relevance and diversity.
♻ ☆ fastkqr: A Fast Algorithm for Kernel Quantile Regression
Quantile regression is a powerful tool for robust and heterogeneous learning that has seen applications in a diverse range of applied areas. However, its broader application is often hindered by the substantial computational demands arising from the non-smooth quantile loss function. In this paper, we introduce a novel algorithm named fastkqr, which significantly advances the computation of quantile regression in reproducing kernel Hilbert spaces. The core of fastkqr is a finite smoothing algorithm that magically produces exact regression quantiles, rather than approximations. To further accelerate the algorithm, we equip fastkqr with a novel spectral technique that carefully reutilizes matrix computations. In addition, we extend fastkqr to accommodate a flexible kernel quantile regression with a data-driven crossing penalty, addressing the interpretability challenges of crossing quantile curves at multiple levels. We have implemented fastkqr in a publicly available R package. Extensive simulations and real applications show that fastkqr matches the accuracy of state-of-the-art algorithms but can operate up to an order of magnitude faster.
♻ ☆ From Lab to Field: Real-World Evaluation of an AI-Driven Smart Video Solution to Enhance Community Safety
This article adopts and evaluates an AI-enabled Smart Video Solution (SVS) designed to enhance safety in the real world. The system integrates with existing infrastructure camera networks, leveraging recent advancements in AI for easy adoption. Prioritizing privacy and ethical standards, pose based data is used for downstream AI tasks such as anomaly detection. Cloud-based infrastructure and mobile app are deployed, enabling real-time alerts within communities. The SVS employs innovative data representation and visualization techniques, such as the Occupancy Indicator, Statistical Anomaly Detection, Bird's Eye View, and Heatmaps, to understand pedestrian behaviors and enhance public safety. Evaluation of the SVS demonstrates its capacity to convert complex computer vision outputs into actionable insights for stakeholders, community partners, law enforcement, urban planners, and social scientists. This article presents a comprehensive real-world deployment and evaluation of the SVS, implemented in a community college environment across 16 cameras. The system integrates AI-driven visual processing, supported by statistical analysis, database management, cloud communication, and user notifications. Additionally, the article evaluates the end-to-end latency from the moment an AI algorithm detects anomalous behavior in real-time at the camera level to the time stakeholders receive a notification. The results demonstrate the system's robustness, effectively managing 16 CCTV cameras with a consistent throughput of 16.5 frames per second (FPS) over a 21-hour period and an average end-to-end latency of 26.76 seconds between anomaly detection and alert issuance.
♻ ☆ Echo: Decoupling Inference and Training for Large-Scale RL Alignment on Heterogeneous Swarms
Modern RL-based post-training for large language models (LLMs) co-locate trajectory sampling and policy optimisation on the same GPU cluster, forcing the system to switch between inference and training workloads. This serial context switching violates the single-program-multiple-data (SPMD) assumption underlying today's distributed training systems. We present Echo, the RL system that cleanly decouples these two phases across heterogeneous "inference" and "training" swarms while preserving statistical efficiency. Echo introduces two lightweight synchronization protocols: a sequential pull mode that refreshes policy weights according to API call for minimal bias, and an asynchronous push-pull mode that streams version-tagged rollouts through a replay buffer to maximise hardware utilisation. Training four representative RL workloads with Qwen3-4B, Qwen2.5-7B, Qwen3-30B-A3B-Thinking-2507 and Qwen3-32B on a geographically distributed cluster, Echo matches a fully co-located Verl baseline in convergence speed and final reward while off-loading trajectory generation to commodity edge hardware. These promising results demonstrate that large-scale RL for LLMs could achieve datacentre-grade performance using decentralised, heterogeneous resources.
♻ ☆ SEAgent: Self-Evolving Computer Use Agent with Autonomous Learning from Experience
Repurposing large vision-language models (LVLMs) as computer use agents (CUAs) has led to substantial breakthroughs, primarily driven by human-labeled data. However, these models often struggle with novel and specialized software, particularly in scenarios lacking human annotations. To address this challenge, we propose SEAgent, an agentic self-evolving framework enabling CUAs to autonomously evolve through interactions with unfamiliar software. Specifically, SEAgent empowers computer-use agents to autonomously master novel software environments via experiential learning, where agents explore new software, learn through iterative trial-and-error, and progressively tackle auto-generated tasks organized from simple to complex. To achieve this goal, we design a World State Model for step-wise trajectory assessment, along with a Curriculum Generator that generates increasingly diverse and challenging tasks. The agent's policy is updated through experiential learning, comprised of adversarial imitation of failure actions and Group Relative Policy Optimization (GRPO) on successful ones. Furthermore, we introduce a specialist-to-generalist training strategy that integrates individual experiential insights from specialist agents, facilitating the development of a stronger generalist CUA capable of continuous autonomous evolution. This unified agent ultimately achieves performance surpassing ensembles of individual specialist agents on their specialized software. We validate the effectiveness of SEAgent across five novel software environments within OS-World. Our approach achieves a significant improvement of 23.2% in success rate, from 11.3% to 34.5%, over a competitive open-source CUA, i.e., UI-TARS.
comment: Code at https://github.com/SunzeY/SEAgent
♻ ☆ Cross-Modal Temporal Fusion for Financial Market Forecasting
Accurate forecasting in financial markets requires integrating diverse data sources, from historical prices to macroeconomic indicators and financial news. However, existing models often fail to align these modalities effectively, limiting their practical use. In this paper, we introduce a transformer-based deep learning framework, Cross-Modal Temporal Fusion (CMTF), that fuses structured and unstructured financial data for improved market prediction. The model incorporates a tensor interpretation module for feature selection and an auto-training pipeline for efficient hyperparameter tuning. Experimental results using FTSE 100 stock data demonstrate that CMTF achieves superior performance in price direction classification compared to classical and deep learning baselines. These findings suggest that our framework is an effective and scalable solution for real-world cross-modal financial forecasting tasks.
comment: 10 pages, 4 figures, manuscript accepted to PAIS at ECAI-2025 European Conference on Artificial Intelligence, October 25-30, 2025, Bologna, Italy
♻ ☆ 3DFacePolicy: Audio-Driven 3D Facial Animation Based on Action Control
Audio-driven 3D facial animation has achieved significant progress in both research and applications. While recent baselines struggle to generate natural and continuous facial movements due to their frame-by-frame vertex generation approach, we propose 3DFacePolicy, a pioneer work that introduces a novel definition of vertex trajectory changes across consecutive frames through the concept of "action". By predicting action sequences for each vertex that encode frame-to-frame movements, we reformulate vertex generation approach into an action-based control paradigm. Specifically, we leverage a robotic control mechanism, diffusion policy, to predict action sequences conditioned on both audio and vertex states. Extensive experiments on VOCASET and BIWI datasets demonstrate that our approach significantly outperforms state-of-the-art methods and is particularly expert in dynamic, expressive and naturally smooth facial animations.
♻ ☆ Effort-aware Fairness: Incorporating a Philosophy-informed, Human-centered Notion of Effort into Algorithmic Fairness Metrics
Although popularized AI fairness metrics, e.g., demographic parity, have uncovered bias in AI-assisted decision-making outcomes, they do not consider how much effort one has spent to get to where one is today in the input feature space. However, the notion of effort is important in how Philosophy and humans understand fairness. We propose a philosophy-informed approach to conceptualize and evaluate Effort-aware Fairness (EaF), grounded in the concept of Force, which represents the temporal trajectory of predictive features coupled with inertia. Besides theoretical formulation, our empirical contributions include: (1) a pre-registered human subjects experiment, which shows that for both stages of the (individual) fairness evaluation process, people consider the temporal trajectory of a predictive feature more than its aggregate value; (2) pipelines to compute Effort-aware Individual/Group Fairness in the criminal justice and personal finance contexts. Our work may enable AI model auditors to uncover and potentially correct unfair decisions against individuals who have spent significant efforts to improve but are still stuck with systemic disadvantages outside their control.
comment: AIES 2025
♻ ☆ Fast Tensor Completion via Approximate Richardson Iteration
We study tensor completion (TC) through the lens of low-rank tensor decomposition (TD). Many TD algorithms use fast alternating minimization methods to solve highly structured linear regression problems at each step (e.g., for CP, Tucker, and tensor-train decompositions). However, such algebraic structure is often lost in TC regression problems, making direct extensions unclear. This work proposes a novel lifting method for approximately solving TC regression problems using structured TD regression algorithms as blackbox subroutines, enabling sublinear-time methods. We analyze the convergence rate of our approximate Richardson iteration-based algorithm, and our empirical study shows that it can be 100x faster than direct methods for CP completion on real-world tensors.
comment: 18 pages, 4 figures
♻ ☆ Hyperbolic Fuzzy C-Means with Adaptive Weight-based Filtering for Efficient Clustering
Clustering algorithms play a pivotal role in unsupervised learning by identifying and grouping similar objects based on shared characteristics. Although traditional clustering techniques, such as hard and fuzzy center-based clustering, have been widely used, they struggle with complex, high-dimensional, and non-Euclidean datasets. In particular, the fuzzy $C$-Means (FCM) algorithm, despite its efficiency and popularity, exhibits notable limitations in non-Euclidean spaces. Euclidean spaces assume linear separability and uniform distance scaling, limiting their effectiveness in capturing complex, hierarchical, or non-Euclidean structures in fuzzy clustering. To overcome these challenges, we introduce Filtration-based Hyperbolic Fuzzy C-Means (HypeFCM), a novel clustering algorithm tailored for better representation of data relationships in non-Euclidean spaces. HypeFCM integrates the principles of fuzzy clustering with hyperbolic geometry and employs a weight-based filtering mechanism to improve performance. The algorithm initializes weights using a Dirichlet distribution and iteratively refines cluster centroids and membership assignments based on a hyperbolic metric in the Poincar\'e Disc model. Extensive experimental evaluations on $6$ synthetic and $12$ real-world datasets demonstrate that HypeFCM significantly outperforms conventional fuzzy clustering methods in non-Euclidean settings, underscoring its robustness and effectiveness.
♻ ☆ Federated Multi-Objective Learning with Controlled Pareto Frontiers
Federated learning (FL) is a widely adopted paradigm for privacy-preserving model training, but FedAvg optimise for the majority while under-serving minority clients. Existing methods such as federated multi-objective learning (FMOL) attempts to import multi-objective optimisation (MOO) into FL. However, it merely delivers task-wise Pareto-stationary points, leaving client fairness to chance. In this paper, we introduce Conically-Regularised FMOL (CR-FMOL), the first federated MOO framework that enforces client-wise Pareto optimality through a novel preference-cone constraint. After local federated multi-gradient descent averaging (FMGDA) / federated stochastic multi-gradient descent averaging (FSMGDA) steps, each client transmits its aggregated task-loss vector as an implicit preference; the server then solves a cone-constrained Pareto-MTL sub-problem centred at the uniform vector, producing a descent direction that is Pareto-stationary for every client within its cone. Experiments on non-IID benchmarks show that CR-FMOL enhances client fairness, and although the early-stage performance is slightly inferior to FedAvg, it is expected to achieve comparable accuracy given sufficient training rounds.
comment: After further review, I have discovered that the dataset used in this work contained critical errors, which invalidate the results and conclusions presented in the paper. These issues cannot be addressed without substantial changes to the data processing and experimental results
♻ ☆ Gait in Eight: Efficient On-Robot Learning for Omnidirectional Quadruped Locomotion
On-robot Reinforcement Learning is a promising approach to train embodiment-aware policies for legged robots. However, the computational constraints of real-time learning on robots pose a significant challenge. We present a framework for efficiently learning quadruped locomotion in just 8 minutes of raw real-time training utilizing the sample efficiency and minimal computational overhead of the new off-policy algorithm CrossQ. We investigate two control architectures: Predicting joint target positions for agile, high-speed locomotion and Central Pattern Generators for stable, natural gaits. While prior work focused on learning simple forward gaits, our framework extends on-robot learning to omnidirectional locomotion. We demonstrate the robustness of our approach in different indoor and outdoor environments.
♻ ☆ RAGtifier: Evaluating RAG Generation Approaches of State-of-the-Art RAG Systems for the SIGIR LiveRAG Competition SIGIR 2025
Retrieval-Augmented Generation (RAG) enriches Large Language Models (LLMs) by combining their internal, parametric knowledge with external, non-parametric sources, with the goal of improving factual correctness and minimizing hallucinations. The LiveRAG 2025 challenge explores RAG solutions to maximize accuracy on DataMorgana's QA pairs, which are composed of single-hop and multi-hop questions. The challenge provides access to sparse OpenSearch and dense Pinecone indices of the Fineweb 10BT dataset. It restricts model use to LLMs with up to 10B parameters and final answer generation with Falcon-3-10B. A judge-LLM assesses the submitted answers along with human evaluators. By exploring distinct retriever combinations and RAG solutions under the challenge conditions, our final solution emerged using InstructRAG in combination with a Pinecone retriever and a BGE reranker. Our solution achieved a correctness score of 1.13 and a faithfulness score of 0.55 in the non-human evaluation, placing it overall in third place in the SIGIR 2025 LiveRAG Challenge.
comment: 4 pages, 6 figures. Report for SIGIR 2025 LiveRAG Challenge
Multi-modal Policies with Physics-informed Representations in Complex Fluid Environments
Control in fluid environments is an important research area with numerous applications across various domains, including underwater robotics, aerospace engineering, and biomedical systems. However, in practice, control methods often face challenges due to sparse or missing observations, stemming from sensor limitations and faults. These issues result in observations that are not only sparse but also inconsistent in their number and modalities (e.g., velocity and pressure sensors). In this work, we propose a Physics-Informed Representation (PIR) algorithm for multi-modal policies of control to leverage the sparse and random observations in complex fluid environments. PIR integrates sparse observational data with the Partial Differential Equation (PDE) information to distill a unified representation of fluid systems. The main idea is that PDE solutions are determined by three elements: the equation, initial conditions, and boundary conditions. Given the equation, we only need to learn the representation of the initial and boundary conditions, which define a trajectory of a specific fluid system. Specifically, it leverages PDE loss to fit the neural network and data loss calculated on the observations with random quantities and multi-modalities to propagate the information with initial and boundary conditions into the representations. The representations are the learnable parameters or the output of the encoder. In the experiments, the PIR illustrates the superior consistency with the features of the ground truth compared with baselines, even when there are missing modalities. Furthermore, PIR combined with Reinforcement Learning has been successfully applied in control tasks where the robot leverages the learned state by PIR faster and more accurately, passing through the complex vortex street from a random starting location to reach a random target.
♻ ☆ Randomised Postiterations for Calibrated BayesCG
The Bayesian conjugate gradient method offers probabilistic solutions to linear systems but suffers from poor calibration, limiting its utility in uncertainty quantification tasks. Recent approaches leveraging postiterations to construct priors have improved computational properties but failed to correct calibration issues. In this work, we propose a novel randomised postiteration strategy that enhances the calibration of the BayesCG posterior while preserving its favourable convergence characteristics. We present theoretical guarantees for the improved calibration, supported by results on the distribution of posterior errors. Numerical experiments demonstrate the efficacy of the method in both synthetic and inverse problem settings, showing enhanced uncertainty quantification and better propagation of uncertainties through computational pipelines.
♻ ☆ Explaining Time Series Classifiers with PHAR: Rule Extraction and Fusion from Post-hoc Attributions
Explaining machine learning (ML) models for time series (TS) classification remains challenging due to the difficulty of interpreting raw time series and the high dimensionality of the input space. We introduce PHAR-Post-hoc Attribution Rules-a unified framework that transforms numeric feature attributions from post-hoc, instance-wise explainers (e.g., LIME, SHAP) into structured, human-readable rules. These rules define interpretable intervals that indicate where and when key decision boundaries occur, enhancing model transparency. PHAR performs comparably to native rule-based methods, such as Anchor, while scaling more efficiently to long TS sequences and achieving broader instance coverage. A dedicated rule fusion step consolidates rule sets using strategies like weighted selection and lasso-based refinement, balancing key quality metrics: coverage, confidence, and simplicity. This fusion ensures each instance receives a concise and unambiguous rule, improving both explanation fidelity and consistency. We further introduce visualization techniques to illustrate specificity-generalization trade-offs in the derived rules. PHAR resolves conflicting and overlapping explanations-a common effect of the Rashomon phenomenon-into coherent, domain-adaptable insights. Comprehensive experiments on UCR/UEA Time Series Classification Archive demonstrate that PHAR improves interpretability, decision transparency, and practical applicability for TS classification tasks.
♻ ☆ Tame Riemannian Stochastic Approximation
We study the properties of stochastic approximation applied to a tame nondifferentiable function subject to constraints defined by a Riemannian manifold. The objective landscape of tame functions, arising in o-minimal topology extended to a geometric category when generalized to manifolds, exhibits some structure that enables theoretical guarantees of expected function decrease and asymptotic convergence for generic stochastic sub-gradient descent. Recent work has shown that this class of functions faithfully model the loss landscape of deep neural network training objectives, and the autograd operation used in deep learning packages implements a variant of subgradient descent with the correct properties for convergence. Riemannian optimization uses geometric properties of a constraint set to perform a minimization procedure while enforcing adherence to the the optimization variable lying on a Riemannian manifold. This paper presents the first study of tame optimization on Riemannian manifolds, highlighting the rich geometric structure of the problem and confirming the appropriateness of the canonical "SGD" for such a problem with the analysis and numerical reports of a simple Retracted SGD algorithm.
♻ ☆ Vulnerability-Aware Alignment: Mitigating Uneven Forgetting in Harmful Fine-Tuning ICML 2025
Harmful fine-tuning (HFT), performed directly on open-source LLMs or through Fine-tuning-as-a-Service, breaks safety alignment and poses significant threats. Existing methods aim to mitigate HFT risks by learning robust representation on alignment data or making harmful data unlearnable, but they treat each data sample equally, leaving data vulnerability patterns understudied. In this work, we reveal that certain subsets of alignment data are consistently more prone to forgetting during HFT across different fine-tuning tasks. Inspired by these findings, we propose Vulnerability-Aware Alignment (VAA), which estimates data vulnerability, partitions data into "vulnerable" and "invulnerable" groups, and encourages balanced learning using a group distributionally robust optimization (Group DRO) framework. Specifically, VAA learns an adversarial sampler that samples examples from the currently underperforming group and then applies group-dependent adversarial perturbations to the data during training, aiming to encourage a balanced learning process across groups. Experiments across four fine-tuning tasks demonstrate that VAA significantly reduces harmful scores while preserving downstream task performance, outperforming state-of-the-art baselines.
comment: ICML 2025
♻ ☆ Whispers in the Machine: Confidentiality in Agentic Systems
The interaction between users and applications is increasingly shifted toward natural language by deploying Large Language Models (LLMs) as the core interface. The capabilities of these so-called agents become more capable the more tools and services they serve as an interface for, ultimately leading to agentic systems. Agentic systems use LLM-based agents as interfaces for most user interactions and various integrations with external tools and services. While these interfaces can significantly enhance the capabilities of the agentic system, they also introduce a new attack surface. Manipulated integrations, for example, can exploit the internal LLM and compromise sensitive data accessed through other interfaces. While previous work primarily focused on attacks targeting a model's alignment or the leakage of training data, the security of data that is only available during inference has escaped scrutiny so far. In this work, we demonstrate how the integration of LLMs into systems with external tool integration poses a risk similar to established prompt-based attacks, able to compromise the confidentiality of the entire system. Introducing a systematic approach to evaluate these confidentiality risks, we identify two specific attack scenarios unique to these agentic systems and formalize these into a tool-robustness framework designed to measure a model's ability to protect sensitive information. Our analysis reveals significant vulnerabilities across all tested models, highlighting an increased risk when models are combined with external tools.
♻ ☆ Neural Operator Variational Inference based on Regularized Stein Discrepancy for Deep Gaussian Processes
Deep Gaussian Process (DGP) models offer a powerful nonparametric approach for Bayesian inference, but exact inference is typically intractable, motivating the use of various approximations. However, existing approaches, such as mean-field Gaussian assumptions, limit the expressiveness and efficacy of DGP models, while stochastic approximation can be computationally expensive. To tackle these challenges, we introduce Neural Operator Variational Inference (NOVI) for Deep Gaussian Processes. NOVI uses a neural generator to obtain a sampler and minimizes the Regularized Stein Discrepancy in L2 space between the generated distribution and true posterior. We solve the minimax problem using Monte Carlo estimation and subsampling stochastic optimization techniques. We demonstrate that the bias introduced by our method can be controlled by multiplying the Fisher divergence with a constant, which leads to robust error control and ensures the stability and precision of the algorithm. Our experiments on datasets ranging from hundreds to tens of thousands demonstrate the effectiveness and the faster convergence rate of the proposed method. We achieve a classification accuracy of 93.56 on the CIFAR10 dataset, outperforming SOTA Gaussian process methods. Furthermore, our method guarantees theoretically controlled prediction error for DGP models and demonstrates remarkable performance on various datasets. We are optimistic that NOVI has the potential to enhance the performance of deep Bayesian nonparametric models and could have significant implications for various practical applications
♻ ☆ PC-SRGAN: Physically Consistent Super-Resolution Generative Adversarial Network for General Transient Simulations
Machine Learning, particularly Generative Adversarial Networks (GANs), has revolutionised Super-Resolution (SR). However, generated images often lack physical meaningfulness, which is essential for scientific applications. Our approach, PC-SRGAN, enhances image resolution while ensuring physical consistency for interpretable simulations. PC-SRGAN significantly improves both the Peak Signal-to-Noise Ratio and the Structural Similarity Index Measure compared to conventional SR methods, even with limited training data (e.g., only 13% of training data is required to achieve performance similar to SRGAN). Beyond SR, PC-SRGAN augments physically meaningful machine learning, incorporating numerically justified time integrators and advanced quality metrics. These advancements promise reliable and causal machine-learning models in scientific domains. A significant advantage of PC-SRGAN over conventional SR techniques is its physical consistency, which makes it a viable surrogate model for time-dependent problems. PC-SRGAN advances scientific machine learning by improving accuracy and efficiency, enhancing process understanding, and broadening applications to scientific research. We publicly release the complete source code of PC-SRGAN and all experiments at https://github.com/hasan-rakibul/PC-SRGAN.
comment: 11 pages, combining the main content and the appendices, unlike having them separated in the published version at IEEE Xplore (https://doi.org/10.1109/TPAMI.2025.3596647)
♻ ☆ Trainable Dynamic Mask Sparse Attention
In large language models, the demand for modeling long contexts is constantly increasing, but the quadratic complexity of the standard self-attention mechanism often becomes a bottleneck. Although existing sparse attention mechanisms have improved efficiency, they may still encounter issues such as static patterns or information loss. We introduce a trainable dynamic mask sparse attention mechanism, Dynamic Mask Attention, which effectively utilizes content-aware and position-aware sparsity. DMA achieves this through two key innovations: First, it dynamically generates content-aware sparse masks from value representations, enabling the model to identify and focus on critical information adaptively. Second, it implements position-aware sparse attention computation that effectively skips unnecessary calculation regions. This dual-sparsity design allows the model to significantly reduce the computational complexity of important information while retaining complete information, achieving an excellent balance between information fidelity and computational efficiency. We have verified the performance of DMA through comprehensive experiments. Comparative studies show that DMA outperforms multi-head attention, sliding window attention, multi-head latent attention, and native sparse attention in terms of perplexity under Chinchilla Scaling Law settings. Moreover, in challenging multi-query associative recall tasks, DMA also demonstrates superior performance and efficiency compared to these methods. Crucially, in the evaluation of a 1.7B parameter model, DMA significantly outperforms multi-head attention in both standard benchmark performance and the challenging needle-in-a-haystack task. These experimental results highlight its capability to balance model efficiency and long-context modeling ability effectively.
comment: 8 figures, 4 tables
♻ ☆ Zero-shot Emotion Annotation in Facial Images Using Large Multimodal Models: Benchmarking and Prospects for Multi-Class, Multi-Frame Approaches
This study investigates the feasibility and performance of using large multimodal models (LMMs) to automatically annotate human emotions in everyday scenarios. We conducted experiments on the DailyLife subset of the publicly available FERV39k dataset, employing the GPT-4o-mini model for rapid, zero-shot labeling of key frames extracted from video segments. Under a seven-class emotion taxonomy ("Angry," "Disgust," "Fear," "Happy," "Neutral," "Sad," "Surprise"), the LMM achieved an average precision of approximately 50%. In contrast, when limited to ternary emotion classification (negative/neutral/positive), the average precision increased to approximately 64%. Additionally, we explored a strategy that integrates multiple frames within 1-2 second video clips to enhance labeling performance and reduce costs. The results indicate that this approach can slightly improve annotation accuracy. Overall, our preliminary findings highlight the potential application of zero-shot LMMs in human facial emotion annotation tasks, offering new avenues for reducing labeling costs and broadening the applicability of LMMs in complex multimodal environments.
comment: 10 pages, accepted to MRAC'25: 3rd International Workshop on Multimodal and Responsible Affective Computing (ACM-MM 2025)
♻ ☆ Forget the Data and Fine-Tuning! Just Fold the Network to Compress ICLR
We introduce model folding, a novel data-free model compression technique that merges structurally similar neurons across layers, significantly reducing the model size without the need for fine-tuning or access to training data. Unlike existing methods, model folding preserves data statistics during compression by leveraging k-means clustering, and using novel data-free techniques to prevent variance collapse or explosion. Our theoretical framework and experiments across standard benchmarks, including ResNet18 and LLaMA-7B, demonstrate that model folding achieves comparable performance to data-driven compression techniques and outperforms recently proposed data-free methods, especially at high sparsity levels. This approach is particularly effective for compressing large-scale models, making it suitable for deployment in resource-constrained environments.
comment: This paper has been accepted by The Thirteenth International Conference on Learning Representations(ICLR), 2025
♻ ☆ PAR-AdvGAN: Improving Adversarial Attack Capability with Progressive Auto-Regression AdvGAN ECML-PKDD 2025
Deep neural networks have demonstrated remarkable performance across various domains. However, they are vulnerable to adversarial examples, which can lead to erroneous predictions. Generative Adversarial Networks (GANs) can leverage the generators and discriminators model to quickly produce high-quality adversarial examples. Since both modules train in a competitive and simultaneous manner, GAN-based algorithms like AdvGAN can generate adversarial examples with better transferability compared to traditional methods. However, the generation of perturbations is usually limited to a single iteration, preventing these examples from fully exploiting the potential of the methods. To tackle this issue, we introduce a novel approach named Progressive Auto-Regression AdvGAN (PAR-AdvGAN). It incorporates an auto-regressive iteration mechanism within a progressive generation network to craft adversarial examples with enhanced attack capability. We thoroughly evaluate our PAR-AdvGAN method with a large-scale experiment, demonstrating its superior performance over various state-of-the-art black-box adversarial attacks, as well as the original AdvGAN.Moreover, PAR-AdvGAN significantly accelerates the adversarial example generation, i.e., achieving the speeds of up to 335.5 frames per second on Inception-v3 model, outperforming the gradient-based transferable attack algorithms. Our code is available at: https://github.com/LMBTough/PAR
comment: Best student paper award of ECML-PKDD 2025
♻ ☆ Mjölnir: A Deep Learning Parametrization Framework for Global Lightning Flash Density
Recent advances in AI-based weather forecasting models, such as FourCastNet, Pangu-Weather, and GraphCast, have demonstrated the remarkable ability of deep learning to emulate complex atmospheric dynamics. Building on this momentum, we propose Mj\"olnir, a novel deep learning-based framework for global lightning flash density parameterization. Trained on ERA5 atmospheric predictors and World Wide Lightning Location Network (WWLLN) observations at a daily temporal resolution and 1 degree spatial resolution, Mj\"olnir captures the nonlinear mapping between large-scale environmental conditions and lightning activity. The model architecture is based on the InceptionNeXt backbone with SENet, and a multi-task learning strategy to simultaneously predict lightning occurrence and magnitude. Extensive evaluations yield that Mollnir accurately reproduces the global distribution, seasonal variability, and regional characteristics of lightning activity, achieving a global Pearson correlation coefficient of 0.96 for annual mean fields. These results suggest that Mj\"olnir serves not only as an effective data-driven global lightning parameterization but also as a promising AI-based scheme for next-generation Earth system models (AI-ESMs).
comment: After an internal review, we found that the current version does not meet our intended academic standards due to incomplete descriptions and insufficient detail in key sections. No revised manuscript can be prepared in the near future. To ensure academic quality, we withdraw this version and plan to resubmit when the work is substantially improved
♻ ☆ LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization
We introduce LLM-Lasso, a novel framework that leverages large language models (LLMs) to guide feature selection in Lasso $\ell_1$ regression. Unlike traditional methods that rely solely on numerical data, LLM-Lasso incorporates domain-specific knowledge extracted from natural language, enhanced through a retrieval-augmented generation (RAG) pipeline, to seamlessly integrate data-driven modeling with contextual insights. Specifically, the LLM generates penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model. Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model, while less relevant features are assigned higher penalties, reducing their influence. Importantly, LLM-Lasso has an internal validation step that determines how much to trust the contextual knowledge in our prediction pipeline. Hence it addresses key challenges in robustness, making it suitable for mitigating potential inaccuracies or hallucinations from the LLM. In various biomedical case studies, LLM-Lasso outperforms standard Lasso and existing feature selection baselines, all while ensuring the LLM operates without prior access to the datasets. To our knowledge, this is the first approach to effectively integrate conventional feature selection techniques directly with LLM-based domain-specific reasoning.
comment: 21 pages, 16 figures
♻ ☆ Equivariance Everywhere All At Once: A Recipe for Graph Foundation Models
Graph machine learning architectures are typically tailored to specific tasks on specific datasets, which hinders their broader applicability. This has led to a new quest in graph machine learning: how to build graph foundation models capable of generalizing across arbitrary graphs and features? In this work, we present a recipe for designing graph foundation models for node-level tasks from first principles. The key ingredient underpinning our study is a systematic investigation of the symmetries that a graph foundation model must respect. In a nutshell, we argue that label permutation-equivariance alongside feature permutation-invariance are necessary in addition to the common node permutation-equivariance on each local neighborhood of the graph. To this end, we first characterize the space of linear transformations that are equivariant to permutations of nodes and labels, and invariant to permutations of features. We then prove that the resulting network is a universal approximator on multisets that respect the aforementioned symmetries. Our recipe uses such layers on the multiset of features induced by the local neighborhood of the graph to obtain a class of graph foundation models for node property prediction. We validate our approach through extensive experiments on 29 real-world node classification datasets, demonstrating both strong zero-shot empirical performance and consistent improvement as the number of training graphs increases.
♻ ☆ Hypergraph-based Motion Generation with Multi-modal Interaction Relational Reasoning
The intricate nature of real-world driving environments, characterized by dynamic and diverse interactions among multiple vehicles and their possible future states, presents considerable challenges in accurately predicting the motion states of vehicles and handling the uncertainty inherent in the predictions. Addressing these challenges requires comprehensive modeling and reasoning to capture the implicit relations among vehicles and the corresponding diverse behaviors. This research introduces an integrated framework for autonomous vehicles (AVs) motion prediction to address these complexities, utilizing a novel Relational Hypergraph Interaction-informed Neural mOtion generator (RHINO). RHINO leverages hypergraph-based relational reasoning by integrating a multi-scale hypergraph neural network to model group-wise interactions among multiple vehicles and their multi-modal driving behaviors, thereby enhancing motion prediction accuracy and reliability. Experimental validation using real-world datasets demonstrates the superior performance of this framework in improving predictive accuracy and fostering socially aware automated driving in dynamic traffic scenarios. The source code is publicly available at https://github.com/keshuw95/RHINO-Hypergraph-Motion-Generation.
♻ ☆ A DNN Biophysics Model with Topological and Electrostatic Features
In this project, we provide a deep-learning neural network (DNN) based biophysics model to predict protein properties. The model uses multi-scale and uniform topological and electrostatic features generated with protein structural information and force field, which governs the molecular mechanics. The topological features are generated using the element specified persistent homology (ESPH) while the electrostatic features are fast computed using a Cartesian treecode. These features are uniform in number for proteins with various sizes thus the broadly available protein structure database can be used in training the network. These features are also multi-scale thus the resolution and computational cost can be balanced by the users. The machine learning simulation on over 4000 protein structures shows the efficiency and fidelity of these features in representing the protein structure and force field for the predication of their biophysical properties such as electrostatic solvation energy. Tests on topological or electrostatic features alone and the combination of both showed the optimal performance when both features are used. This model shows its potential as a general tool in assisting biophysical properties and function prediction for the broad biomolecules using data from both theoretical computing and experiments.
♻ ☆ To Judge or not to Judge: Using LLM Judgements for Advertiser Keyphrase Relevance at eBay
E-commerce sellers are recommended keyphrases based on their inventory on which they advertise to increase buyer engagement (clicks/sales). The relevance of advertiser keyphrases plays an important role in preventing the inundation of search systems with numerous irrelevant items that compete for attention in auctions, in addition to maintaining a healthy seller perception. In this work, we describe the shortcomings of training Advertiser keyphrase relevance filter models on click/sales/search relevance signals and the importance of aligning with human judgment, as sellers have the power to adopt or reject said keyphrase recommendations. In this study, we frame Advertiser keyphrase relevance as a complex interaction between 3 dynamical systems -- seller judgment, which influences seller adoption of our product, Advertising, which provides the keyphrases to bid on, and Search, who holds the auctions for the same keyphrases. This study discusses the practicalities of using human judgment via a case study at eBay Advertising and demonstrate that using LLM-as-a-judge en-masse as a scalable proxy for seller judgment to train our relevance models achieves a better harmony across the three systems -- provided that they are bound by a meticulous evaluation framework grounded in business metrics.
♻ ☆ MEReQ: Max-Ent Residual-Q Inverse RL for Sample-Efficient Alignment from Intervention
Aligning robot behavior with human preferences is crucial for deploying embodied AI agents in human-centered environments. A promising solution is interactive imitation learning from human intervention, where a human expert observes the policy's execution and provides interventions as feedback. However, existing methods often fail to utilize the prior policy efficiently to facilitate learning, thus hindering sample efficiency. In this work, we introduce MEReQ (Maximum-Entropy Residual-Q Inverse Reinforcement Learning), designed for sample-efficient alignment from human intervention. Instead of inferring the complete human behavior characteristics, MEReQ infers a residual reward function that captures the discrepancy between the human expert's and the prior policy's underlying reward functions. It then employs Residual Q-Learning (RQL) to align the policy with human preferences using this residual reward function. Extensive evaluations on simulated and real-world tasks demonstrate that MEReQ achieves sample-efficient policy alignment from human intervention.
♻ ☆ Combat Urban Congestion via Collaboration: Heterogeneous GNN-based MARL for Coordinated Platooning and Traffic Signal Control
Over the years, reinforcement learning has emerged as a popular approach to develop signal control and vehicle platooning strategies either independently or in a hierarchical way. However, jointly controlling both in real-time to alleviate traffic congestion presents new challenges, such as the inherent physical and behavioral heterogeneity between signal control and platooning, as well as coordination between them. This paper proposes an innovative solution to tackle these challenges based on heterogeneous graph multi-agent reinforcement learning and traffic theories. Our approach involves: 1) designing platoon and signal control as distinct reinforcement learning agents with their own set of observations, actions, and reward functions to optimize traffic flow; 2) designing coordination by incorporating graph neural networks within multi-agent reinforcement learning to facilitate seamless information exchange among agents on a regional scale; 3) applying alternating optimization for training, allowing agents to update their own policies and adapt to other agents' policies. We evaluate our approach through SUMO simulations, which show convergent results in terms of both travel time and fuel consumption, and superior performance compared to other adaptive signal control methods.
♻ ☆ Federated Learning: A Survey on Privacy-Preserving Collaborative Intelligence
Federated Learning (FL) has emerged as a transformative paradigm in the field of distributed machine learning, enabling multiple clients such as mobile devices, edge nodes, or organizations to collaboratively train a shared global model without the need to centralize sensitive data. This decentralized approach addresses growing concerns around data privacy, security, and regulatory compliance, making it particularly attractive in domains such as healthcare, finance, and smart IoT systems. This survey provides a concise yet comprehensive overview of Federated Learning, beginning with its core architecture and communication protocol. We discuss the standard FL lifecycle, including local training, model aggregation, and global updates. A particular emphasis is placed on key technical challenges such as handling non-IID (non-independent and identically distributed) data, mitigating system and hardware heterogeneity, reducing communication overhead, and ensuring privacy through mechanisms like differential privacy and secure aggregation. Furthermore, we examine emerging trends in FL research, including personalized FL, cross-device versus cross-silo settings, and integration with other paradigms such as reinforcement learning and quantum computing. We also highlight real-world applications and summarize benchmark datasets and evaluation metrics commonly used in FL research. Finally, we outline open research problems and future directions to guide the development of scalable, efficient, and trustworthy FL systems.
♻ ☆ Decoding-based Regression
Language models have recently been shown capable of performing regression wherein numeric predictions are represented as decoded strings. In this work, we provide theoretical grounds for this capability and furthermore investigate the utility of causal sequence decoding models as numeric regression heads given any feature representation. We find that, despite being trained in the usual way - for next-token prediction via cross-entropy loss - decoder-based heads are as performant as standard pointwise heads when benchmarked over standard regression tasks, while being flexible enough to capture smooth numeric distributions, such as in the task of density estimation.
comment: Published in Transactions on Machine Learning Research (TMLR) 2025. Code can be found at https://github.com/google-research/optformer/tree/main/optformer/decoding_regression
♻ ☆ AMFT: Aligning LLM Reasoners by Meta-Learning the Optimal Imitation-Exploration Balance
Large Language Models (LLMs) are typically fine-tuned for reasoning tasks through a two-stage pipeline of Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL), a process fraught with catastrophic forgetting and suboptimal trade-offs between imitation and exploration. Recent single-stage methods attempt to unify SFT and RL using heuristics, but lack a principled mechanism for dynamically balancing the two paradigms. In this paper, we reframe this challenge through the theoretical lens of \textbf{implicit rewards}, viewing SFT and RL not as distinct methods but as complementary reward signals. We introduce \textbf{Adaptive Meta Fine-Tuning (AMFT)}, a novel single-stage algorithm that learns the optimal balance between SFT's implicit, path-level reward and RL's explicit, outcome-based reward. The core of AMFT is a \textbf{meta-gradient adaptive weight controller} that treats the SFT-RL balance as a learnable parameter, dynamically optimizing it to maximize long-term task performance. This forward-looking approach, regularized by policy entropy for stability, autonomously discovers an effective training curriculum. We conduct a comprehensive evaluation on challenging benchmarks spanning mathematical reasoning, abstract visual reasoning (General Points), and vision-language navigation (V-IRL). AMFT consistently establishes a new state-of-the-art and demonstrats superior generalization on out-of-distribution (OOD) tasks. Ablation studies and training dynamic analysis confirm that the meta-learning controller is crucial for AMFT's stability, sample efficiency, and performance, offering a more principled and effective paradigm for LLM alignment. Our codes are open-sourced via https://github.com/hlxtsyj/AMFT.
comment: https://github.com/hlxtsyj/AMFT
♻ ☆ Uni-Mol3: A Multi-Molecular Foundation Model for Advancing Organic Reaction Modeling
Organic reaction, the foundation of modern chemical industry, is crucial for new material development and drug discovery. However, deciphering reaction mechanisms and modeling multi-molecular relationships remain formidable challenges due to the complexity of molecular dynamics. While several state-of-the-art models like Uni-Mol2 have revolutionized single-molecular representation learning, their extension to multi-molecular systems, where chemical reactions inherently occur, has been underexplored. This paper introduces Uni-Mol3, a novel deep learning framework that employs a hierarchical pipeline for multi-molecular reaction modeling. At its core, Uni-Mol3 adopts a multi-scale molecular tokenizer (Mol-Tokenizer) that encodes 3D structures of molecules and other features into discrete tokens, creating a 3D-aware molecular language. The framework innovatively combines two pre-training stages: molecular pre-training to learn the molecular grammars and reaction pre-training to capture fundamental reaction principles, forming a progressive learning paradigm from single- to multi-molecular systems. With prompt-aware downstream fine-tuning, Uni-Mol3 demonstrates exceptional performance in diverse organic reaction tasks and supports multi-task prediction with strong generalizability. Experimental results across 10 datasets spanning 4 downstream tasks show that Uni-Mol3 outperforms existing methods, validating its effectiveness in modeling complex organic reactions. This work not only ushers in an alternative paradigm for multi-molecular computational modeling but also charts a course for intelligent organic reaction by bridging molecular representation with reaction mechanism understanding.
♻ ☆ Few-Shot Adversarial Low-Rank Fine-Tuning of Vision-Language Models
Vision-Language Models (VLMs) such as CLIP have shown remarkable performance in cross-modal tasks through large-scale contrastive pre-training. To adapt these large transformer-based models efficiently for downstream tasks, Parameter-Efficient Fine-Tuning (PEFT) techniques like LoRA have emerged as scalable alternatives to full fine-tuning, especially in few-shot scenarios. However, like traditional deep neural networks, VLMs are highly vulnerable to adversarial attacks, where imperceptible perturbations can significantly degrade model performance. Adversarial training remains the most effective strategy for improving model robustness in PEFT. In this work, we propose AdvCLIP-LoRA, the first algorithm designed to enhance the adversarial robustness of CLIP models fine-tuned with LoRA in few-shot settings. Our method formulates adversarial fine-tuning as a minimax optimization problem and provides theoretical guarantees for convergence under smoothness and nonconvex-strong-concavity assumptions. Empirical results across eight datasets using ViT-B/16 and ViT-B/32 models show that AdvCLIP-LoRA significantly improves robustness against common adversarial attacks (e.g., FGSM, PGD), without sacrificing much clean accuracy. These findings highlight AdvCLIP-LoRA as a practical and theoretically grounded approach for robust adaptation of VLMs in resource-constrained settings.
♻ ☆ Online Covariance Estimation in Nonsmooth Stochastic Approximation COLT 2025
We consider applying stochastic approximation (SA) methods to solve nonsmooth variational inclusion problems. Existing studies have shown that the averaged iterates of SA methods exhibit asymptotic normality, with an optimal limiting covariance matrix in the local minimax sense of H\'ajek and Le Cam. However, no methods have been proposed to estimate this covariance matrix in a nonsmooth and potentially non-monotone (nonconvex) setting. In this paper, we study an online batch-means covariance matrix estimator introduced in Zhu et al.(2023). The estimator groups the SA iterates appropriately and computes the sample covariance among batches as an estimate of the limiting covariance. Its construction does not require prior knowledge of the total sample size, and updates can be performed recursively as new data arrives. We establish that, as long as the batch size sequence is properly specified (depending on the stepsize sequence), the estimator achieves a convergence rate of order $O(\sqrt{d}n^{-1/8+\varepsilon})$ for any $\varepsilon>0$, where $d$ and $n$ denote the problem dimensionality and the number of iterations (or samples) used. Although the problem is nonsmooth and potentially non-monotone (nonconvex), our convergence rate matches the best-known rate for covariance estimation methods using only first-order information in smooth and strongly-convex settings. The consistency of this covariance estimator enables asymptotically valid statistical inference, including constructing confidence intervals and performing hypothesis testing.
comment: 46 pages, 1 figure; Accepted at the 38th Annual Conference on Learning Theory (COLT 2025)
♻ ☆ Utilizing Large Language Models for Information Extraction from Real Estate Transactions
Real estate sales contracts contain crucial information for property transactions, but manual data extraction can be time-consuming and error-prone. This paper explores the application of large language models, specifically transformer-based architectures, for automated information extraction from real estate contracts. We discuss challenges, techniques, and future directions in leveraging these models to improve efficiency and accuracy in real estate contract analysis. We generated synthetic contracts using the real-world transaction dataset, thereby fine-tuning the large-language model and achieving significant metrics improvements and qualitative improvements in information retrieval and reasoning tasks.
♻ ☆ Blockchain-Enabled Federated Learning
Blockchain-enabled federated learning (BCFL) addresses fundamental challenges of trust, privacy, and coordination in collaborative AI systems. This chapter provides comprehensive architectural analysis of BCFL systems through a systematic four-dimensional taxonomy examining coordination structures, consensus mechanisms, storage architectures, and trust models. We analyze design patterns from blockchain-verified centralized coordination to fully decentralized peer-to-peer networks, evaluating trade-offs in scalability, security, and performance. Through detailed examination of consensus mechanisms designed for federated learning contexts, including Proof of Quality and Proof of Federated Learning, we demonstrate how computational work can be repurposed from arbitrary cryptographic puzzles to productive machine learning tasks. The chapter addresses critical storage challenges by examining multi-tier architectures that balance blockchain's transaction constraints with neural networks' large parameter requirements while maintaining cryptographic integrity. A technical case study of the TrustMesh framework illustrates practical implementation considerations in BCFL systems through distributed image classification training, demonstrating effective collaborative learning across IoT devices with highly non-IID data distributions while maintaining complete transparency and fault tolerance. Analysis of real-world deployments across healthcare consortiums, financial services, and IoT security applications validates the practical viability of BCFL systems, achieving performance comparable to centralized approaches while providing enhanced security guarantees and enabling new models of trustless collaborative intelligence.
comment: 32 pages, 6 figures, chapter for edited book (Federated Learning: Foundations and Applications)
♻ ☆ ProtoECGNet: Case-Based Interpretable Deep Learning for Multi-Label ECG Classification with Contrastive Learning
Deep learning-based electrocardiogram (ECG) classification has shown impressive performance but clinical adoption has been slowed by the lack of transparent and faithful explanations. Post hoc methods such as saliency maps may fail to reflect a model's true decision process. Prototype-based reasoning offers a more transparent alternative by grounding decisions in similarity to learned representations of real ECG segments, enabling faithful, case-based explanations. We introduce ProtoECGNet, a prototype-based deep learning model for interpretable, multi-label ECG classification. ProtoECGNet employs a structured, multi-branch architecture that reflects clinical interpretation workflows: it integrates a 1D CNN with global prototypes for rhythm classification, a 2D CNN with time-localized prototypes for morphology-based reasoning, and a 2D CNN with global prototypes for diffuse abnormalities. Each branch is trained with a prototype loss designed for multi-label learning, combining clustering, separation, diversity, and a novel contrastive loss that encourages appropriate separation between prototypes of unrelated classes while allowing clustering for frequently co-occurring diagnoses. We evaluate ProtoECGNet on all 71 diagnostic labels from the PTB-XL dataset, demonstrating competitive performance relative to state-of-the-art black-box models while providing structured, case-based explanations. To assess prototype quality, we conduct a structured clinician review of the final model's projected prototypes, finding that they are rated as representative and clear. ProtoECGNet shows that prototype learning can be effectively scaled to complex, multi-label time-series classification, offering a practical path toward transparent and trustworthy deep learning models for clinical decision support.
comment: Accepted to PMLR 298, 10th Machine Learning for Healthcare Conference (MLHC)
♻ ☆ LLM Unlearning Without an Expert Curated Dataset
Modern large language models often encode sensitive, harmful, or copyrighted knowledge, raising the need for post-hoc unlearning-the ability to remove specific domains of knowledge from a model without full retraining. A major bottleneck in current unlearning pipelines is constructing effective forget sets-datasets that approximate the target domain and guide the model to forget it. In this work, we introduce a scalable, automated approach to generate high-quality forget sets using language models themselves. Our method synthesizes textbook-style data through a structured prompting pipeline, requiring only a domain name as input. Through experiments on unlearning biosecurity, cybersecurity, and Harry Potter novels, we show that our synthetic datasets consistently outperform the baseline synthetic alternatives and are comparable to the expert-curated ones. Additionally, ablation studies reveal that the multi-step generation pipeline significantly boosts data diversity, which in turn improves unlearning utility. Overall, our findings suggest that synthetic datasets offer a promising path toward practical, scalable unlearning for a wide range of emerging domains without the need for manual intervention. We release our code and dataset at https://github.com/xyzhu123/Synthetic_Textbook.
♻ ☆ DynaSwarm: Dynamically Graph Structure Selection for LLM-based Multi-agent System
Current multi-agent systems (MAS) frameworks often rely on manually designed and static collaboration graph structures, limiting adaptability and performance. To address these limitations, we propose DynaSwarm, a dynamic framework that enhances LLM-based MAS through two key innovations: (1) an actor-critic reinforcement learning (A2C) mechanism to optimize graph structures with improved stability over prior RL methods, and (2) a dynamic graph selector that adaptively chooses the optimal graph structure for each input sample via parameter-efficient LLM fine-tuning. DynaSwarm eliminates the need for rigid, one-fits-all graph architectures, instead leveraging sample-specific idiosyncrasies to dynamically route queries through specialized agent networks. (c) We propose to fine-tune the demonstration retriever to fully exploit the power of in-context learning (ICL). Extensive experiments on question answering, mathematical reasoning, and coding tasks demonstrate that DynaSwarm consistently outperforms state-of-the-art single-agent and MAS baselines across multiple LLM backbones. Our findings highlight the importance of sample-aware structural flexibility in LLM MAS designs.
comment: content error
♻ ☆ Multidimensional Adaptive Coefficient for Inference Trajectory Optimization in Flow and Diffusion ICML 2025
Flow and diffusion models have demonstrated strong performance and training stability across various tasks but lack two critical properties of simulation-based methods: freedom of dimensionality and adaptability to different inference trajectories. To address this limitation, we propose the Multidimensional Adaptive Coefficient (MAC), a plug-in module for flow and diffusion models that extends conventional unidimensional coefficients to multidimensional ones and enables inference trajectory-wise adaptation. MAC is trained via simulation-based feedback through adversarial refinement. Empirical results across diverse frameworks and datasets demonstrate that MAC enhances generative quality with high training efficiency. Consequently, our work offers a new perspective on inference trajectory optimality, encouraging future research to move beyond vector field design and to leverage training-efficient, simulation-based optimization.
comment: ICML 2025 Paper
♻ ☆ Early Detection of Pancreatic Cancer Using Multimodal Learning on Electronic Health Record
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, and early detection remains a major clinical challenge due to the absence of specific symptoms and reliable biomarkers. In this work, we propose a new multimodal approach that integrates longitudinal diagnosis code histories and routinely collected laboratory measurements from electronic health records to detect PDAC up to one year prior to clinical diagnosis. Our method combines neural controlled differential equations to model irregular lab time series, pretrained language models and recurrent networks to learn diagnosis code trajectory representations, and cross-attention mechanisms to capture interactions between the two modalities. We develop and evaluate our approach on a real-world dataset of nearly 4,700 patients and achieve significant improvements in AUC ranging from 6.5% to 15.5% over state-of-the-art methods. Furthermore, our model identifies diagnosis codes and laboratory panels associated with elevated PDAC risk, including both established and new biomarkers. Our code is available at https://github.com/MosbahAouad/EarlyPDAC-MML.
♻ ☆ Task Diversity Shortens the ICL Plateau
In-context learning (ICL) describes a language model's ability to generate outputs based on a set of input demonstrations and a subsequent query. To understand this remarkable capability, researchers have studied simplified, stylized models. These studies have consistently observed long loss plateaus, during which models exhibit minimal improvement, followed by a sudden, rapid surge of learning. In this work, we reveal that training on multiple diverse ICL tasks simultaneously shortens the loss plateaus, making each task easier to learn. This finding is surprising as it contradicts the natural intuition that the combined complexity of multiple ICL tasks would lengthen the learning process, not shorten it. Our result suggests that the recent success in large-scale training of language models may be attributed not only to the richness of the data at scale but also to the easier optimization (training) induced by the diversity of natural language training data.
♻ ☆ Assessing the potential of deep learning for protein-ligand docking
The effects of ligand binding on protein structures and their in vivo functions carry numerous implications for modern biomedical research and biotechnology development efforts such as drug discovery. Although several deep learning (DL) methods and benchmarks designed for protein-ligand docking have recently been introduced, to date no prior works have systematically studied the behavior of the latest docking and structure prediction methods within the broadly applicable context of (1) using predicted (apo) protein structures for docking (e.g., for applicability to new proteins); (2) binding multiple (cofactor) ligands concurrently to a given target protein (e.g., for enzyme design); and (3) having no prior knowledge of binding pockets (e.g., for generalization to unknown pockets). To enable a deeper understanding of docking methods' real-world utility, we introduce PoseBench, the first comprehensive benchmark for broadly applicable protein-ligand docking. PoseBench enables researchers to rigorously and systematically evaluate DL methods for apo-to-holo protein-ligand docking and protein-ligand structure prediction using both primary ligand and multi-ligand benchmark datasets, the latter of which we introduce for the first time to the DL community. Empirically, using PoseBench, we find that (1) DL co-folding methods generally outperform comparable conventional and DL docking baseline algorithms, yet popular methods such as AlphaFold 3 are still challenged by prediction targets with novel binding poses; (2) certain DL co-folding methods are highly sensitive to their input multiple sequence alignments, while others are not; and (3) DL methods struggle to strike a balance between structural accuracy and chemical specificity when predicting novel or multi-ligand protein targets. Code, data, tutorials, and benchmark results are available at https://github.com/BioinfoMachineLearning/PoseBench.
comment: 54 pages, 2 tables, 37 figures. Under review. Code, data, tutorials, and benchmark results are available at https://github.com/BioinfoMachineLearning/PoseBench
♻ ☆ Do LLMs Really Forget? Evaluating Unlearning with Knowledge Correlation and Confidence Awareness
Machine unlearning techniques aim to mitigate unintended memorization in large language models (LLMs). However, existing approaches predominantly focus on the explicit removal of isolated facts, often overlooking latent inferential dependencies and the non-deterministic nature of knowledge within LLMs. Consequently, facts presumed forgotten may persist implicitly through correlated information. To address these challenges, we propose a knowledge unlearning evaluation framework that more accurately captures the implicit structure of real-world knowledge by representing relevant factual contexts as knowledge graphs with associated confidence scores. We further develop an inference-based evaluation protocol leveraging powerful LLMs as judges; these judges reason over the extracted knowledge subgraph to determine unlearning success. Our LLM judges utilize carefully designed prompts and are calibrated against human evaluations to ensure their trustworthiness and stability. Extensive experiments on our newly constructed benchmark demonstrate that our framework provides a more realistic and rigorous assessment of unlearning performance. Moreover, our findings reveal that current evaluation strategies tend to overestimate unlearning effectiveness. Our code is publicly available at https://github.com/Graph-COM/Knowledge_Unlearning.git.
SPIE: Semantic and Structural Post-Training of Image Editing Diffusion Models with AI feedback
This paper presents SPIE: a novel approach for semantic and structural post-training of instruction-based image editing diffusion models, addressing key challenges in alignment with user prompts and consistency with input images. We introduce an online reinforcement learning framework that aligns the diffusion model with human preferences without relying on extensive human annotations or curating a large dataset. Our method significantly improves the alignment with instructions and realism in two ways. First, SPIE captures fine nuances in the desired edit by leveraging a visual prompt, enabling detailed control over visual edits without lengthy textual prompts. Second, it achieves precise and structurally coherent modifications in complex scenes while maintaining high fidelity in instruction-irrelevant areas. This approach simplifies users' efforts to achieve highly specific edits, requiring only 5 reference images depicting a certain concept for training. Experimental results demonstrate that SPIE can perform intricate edits in complex scenes, after just 10 training steps. Finally, we showcase the versatility of our method by applying it to robotics, where targeted image edits enhance the visual realism of simulated environments, which improves their utility as proxy for real-world settings.
♻ ☆ Democracy of AI Numerical Weather Models: An Example of Global Forecasting with FourCastNetv2 Made by a University Research Lab Using GPU
This paper demonstrates the feasibility of democratizing AI-driven global weather forecasting models among university research groups by leveraging Graphics Processing Units (GPUs) and freely available AI models, such as NVIDIA's FourCastNetv2. FourCastNetv2 is an NVIDIA's advanced neural network for weather prediction and is trained on a 73-channel subset of the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) dataset at single levels and different pressure levels. Although the training specifications for FourCastNetv2 are not released to the public, the training documentation of the model's first generation, FourCastNet, is available to all users. The training had 64 A100 GPUs and took 16 hours to complete. Although NVIDIA's models offer significant reductions in both time and cost compared to traditional Numerical Weather Prediction (NWP), reproducing published forecasting results presents ongoing challenges for resource-constrained university research groups with limited GPU availability. We demonstrate both (i) leveraging FourCastNetv2 to create predictions through the designated application programming interface (API) and (ii) utilizing NVIDIA hardware to train the original FourCastNet model. Further, this paper demonstrates the capabilities and limitations of NVIDIA A100's for resource-limited research groups in universities. We also explore data management, training efficiency, and model validation, highlighting the advantages and challenges of using limited high-performance computing resources. Consequently, this paper and its corresponding GitHub materials may serve as an initial guide for other university research groups and courses related to machine learning, climate science, and data science to develop research and education programs on AI weather forecasting, and hence help democratize the AI NWP in the digital economy.
comment: 12 pages, 8 figures
♻ ☆ CUDA-L1: Improving CUDA Optimization via Contrastive Reinforcement Learning
The exponential growth in demand for GPU computing resources has created an urgent need for automated CUDA optimization strategies. While recent advances in LLMs show promise for code generation, current SOTA models achieve low success rates in improving CUDA speed. In this paper, we introduce CUDA-L1, an automated reinforcement learning framework for CUDA optimization that employs a novel contrastive RL algorithm. CUDA-L1 achieves significant performance improvements on the CUDA optimization task: trained on A100, it delivers an average speedup of x3.12 with a median speedup of x1.42 against default baselines over across all 250 CUDA kernels of KernelBench, with peak speedups reaching x120. In addition to the default baseline provided by KernelBench, CUDA-L1 demonstrates x2.77 over Torch Compile, x2.88 over Torch Compile with reduce overhead, x2.81 over CUDA Graph implementations, and remarkably x7.72 over cuDNN libraries. Furthermore, the model also demonstrates portability across different GPU architectures. Beyond these benchmark results, CUDA-L1 demonstrates several properties: it 1) discovers a variety of CUDA optimization techniques and learns to combine them strategically to achieve optimal performance; 2) uncovers fundamental principles of CUDA optimization, such as the multiplicative nature of optimizations; 3) identifies non-obvious performance bottlenecks and rejects seemingly beneficial optimizations that actually harm performance. The capabilities demonstrate that, RL can transform an initially poor-performing LLM into an effective CUDA optimizer through speedup-based reward signals alone, without human expertise or domain knowledge. This paradigm opens possibilities for automated optimization of CUDA operations, and holds promise to substantially promote GPU efficiency and alleviate the rising pressure on GPU computing resources.
comment: Project Page: https://deepreinforce-ai.github.io/cudal1_blog/
♻ ☆ One-shot Optimized Steering Vectors Mediate Safety-relevant Behaviors in LLMs
Steering vectors (SVs) have emerged as a promising approach for interpreting and controlling LLMs, but current methods typically require large contrastive datasets that are often impractical to construct and may capture spurious correlations. We propose directly optimizing SVs through gradient descent on a single training example, and systematically investigate how these SVs generalize. We consider several SV optimization techniques and find that the resulting SVs effectively mediate safety-relevant behaviors in multiple models. Indeed, in experiments on an alignment-faking model, we are able to optimize one-shot SVs that induce harmful behavior on benign examples and whose negations suppress harmful behavior on malign examples. And in experiments on refusal suppression, we demonstrate that one-shot optimized SVs can transfer across inputs, yielding a Harmbench attack success rate of 96.9%. Furthermore, we extend work on "emergent misalignment" and show that SVs optimized to induce a model to write vulnerable code cause the model to respond harmfully on unrelated open-ended prompts. Finally, we use one-shot SV optimization to investigate how an instruction-tuned LLM recovers from outputting false information, and find that this ability is independent of the model's explicit verbalization that the information was false. Overall, our findings suggest that optimizing SVs on a single example can mediate a wide array of misaligned behaviors in LLMs. Code can be found at https://github.com/jacobdunefsky/one-shot-steering-repro and https://github.com/jacobdunefsky/one-shot-steering-misalignment.
comment: Published at COLM 2025. 30 pages, 7 figures. Code is available at https://github.com/jacobdunefsky/one-shot-steering-repro and https://github.com/jacobdunefsky/one-shot-steering-misalignment
♻ ☆ LEAVES: Learning Views for Time-Series Biobehavioral Data in Contrastive Learning
Contrastive learning has been utilized as a promising self-supervised learning approach to extract meaningful representations from unlabeled data. The majority of these methods take advantage of data-augmentation techniques to create diverse views from the original input. However, optimizing augmentations and their parameters for generating more effective views in contrastive learning frameworks is often resource-intensive and time-consuming. While several strategies have been proposed for automatically generating new views in computer vision, research in other domains, such as time-series biobehavioral data, remains limited. In this paper, we introduce a simple yet powerful module for automatic view generation in contrastive learning frameworks applied to time-series biobehavioral data, which is essential for modern health care, termed learning views for time-series data (LEAVES). This proposed module employs adversarial training to learn augmentation hyperparameters within contrastive learning frameworks. We assess the efficacy of our method on multiple time-series datasets using two well-known contrastive learning frameworks, namely SimCLR and BYOL. Across four diverse biobehavioral datasets, LEAVES requires only approximately 20 learnable parameters -- dramatically fewer than the about 580k parameters demanded by frameworks like ViewMaker, a previously proposed adversarially trained convolutional module in contrastive learning, while achieving competitive and often superior performance to existing baseline methods. Crucially, these efficiency gains are obtained without extensive manual hyperparameter tuning, which makes LEAVES particularly suitable for large-scale or real-time healthcare applications that demand both accuracy and practicality.
♻ ☆ Open-Set LiDAR Panoptic Segmentation Guided by Uncertainty-Aware Learning
Autonomous vehicles that navigate in open-world environments may encounter previously unseen object classes. However, most existing LiDAR panoptic segmentation models rely on closed-set assumptions, failing to detect unknown object instances. In this work, we propose ULOPS, an uncertainty-guided open-set panoptic segmentation framework that leverages Dirichlet-based evidential learning to model predictive uncertainty. Our architecture incorporates separate decoders for semantic segmentation with uncertainty estimation, embedding with prototype association, and instance center prediction. During inference, we leverage uncertainty estimates to identify and segment unknown instances. To strengthen the model's ability to differentiate between known and unknown objects, we introduce three uncertainty-driven loss functions. Uniform Evidence Loss to encourage high uncertainty in unknown regions. Adaptive Uncertainty Separation Loss ensures a consistent difference in uncertainty estimates between known and unknown objects at a global scale. Contrastive Uncertainty Loss refines this separation at the fine-grained level. To evaluate open-set performance, we extend benchmark settings on KITTI-360 and introduce a new open-set evaluation for nuScenes. Extensive experiments demonstrate that ULOPS consistently outperforms existing open-set LiDAR panoptic segmentation methods.
♻ ☆ AI-Slop to AI-Polish? Aligning Language Models through Edit-Based Writing Rewards and Test-time Computation
AI-generated text is proliferating across domains, from creative writing and journalism to marketing content and scientific articles. Models can follow user-provided instructions to generate coherent and grammatically correct outputs but in this work, we study a more fundamental question: how do we evaluate and improve the writing quality of AI-generated text? Writing quality assessment has received less attention from the community, in part because it is fundamentally subjective and requires expertise. We first introduce the Writing Quality Benchmark (WQ) by consolidating five writing-preference datasets into 4,729 writing quality judgments. Our experiments show that most of the competitive baselines, including state-of-the-art LLMs that excel at reasoning tasks, barely outperform random baselines on WQ. We then train specialized Writing Quality Reward Models (WQRM) of various sizes for writing quality assessment that demonstrate strong generalization on four out-of-distribution test sets and 74% accuracy on the WQ benchmark. To further show WQRM's practical benefits during inference, we leverage additional test-time compute to generate and rank multiple candidate revisions, allowing us to select higher-quality outputs from an initial draft. Human evaluation with 9 experienced writers confirm that WQRM-based selection produces writing samples preferred by experts 66% overall, and 72.2% when the reward gap is larger than 1 point. We release our datasets and models to encourage community engagement with writing quality assessment and development of AI writing systems better aligned with human preferences.
comment: Under Submission
♻ ☆ Fast, Accurate Manifold Denoising by Tunneling Riemannian Optimization
Learned denoisers play a fundamental role in various signal generation (e.g., diffusion models) and reconstruction (e.g., compressed sensing) architectures, whose success derives from their ability to leverage low-dimensional structure in data. Existing denoising methods, however, either rely on local approximations that require a linear scan of the entire dataset or treat denoising as generic function approximation problems, often sacrificing efficiency and interpretability. We consider the problem of efficiently denoising a new noisy data point sampled from an unknown $d$-dimensional manifold $M \in \mathbb{R}^D$, using only noisy samples. This work proposes a framework for test-time efficient manifold denoising, by framing the concept of "learning-to-denoise" as "learning-to-optimize". We have two technical innovations: (i) online learning methods which learn to optimize over the manifold of clean signals using only noisy data, effectively "growing" an optimizer one sample at a time. (ii) mixed-order methods which guarantee that the learned optimizers achieve global optimality, ensuring both efficiency and near-optimal denoising performance. We corroborate these claims with theoretical analyses of both the complexity and denoising performance of mixed-order traversal. Our experiments on scientific manifolds demonstrate significantly improved complexity-performance tradeoffs compared to nearest neighbor search, which underpins existing provable denoising approaches based on exhaustive search.
♻ ☆ M-learner:A Flexible And Powerful Framework To Study Heterogeneous Treatment Effect In Mediation Model
We propose a novel method, termed the M-learner, for estimating heterogeneous indirect and total treatment effects and identifying relevant subgroups within a mediation framework. The procedure comprises four key steps. First, we compute individual-level conditional average indirect/total treatment effect Second, we construct a distance matrix based on pairwise differences. Third, we apply tSNE to project this matrix into a low-dimensional Euclidean space, followed by K-means clustering to identify subgroup structures. Finally, we calibrate and refine the clusters using a threshold-based procedure to determine the optimal configuration. To the best of our knowledge, this is the first approach specifically designed to capture treatment effect heterogeneity in the presence of mediation. Experimental results validate the robustness and effectiveness of the proposed framework. Application to the real-world Jobs II dataset highlights the broad adaptability and potential applicability of our method.Code is available at https: //anonymous.4open.science/r/M-learner-C4BB.
♻ ☆ Downscaling Extreme Precipitation with Wasserstein Regularized Diffusion
Understanding the risks posed by extreme rainfall events requires analysis of precipitation fields with high resolution (to assess localized hazards) and extensive historical coverage (to capture sufficient examples of rare occurrences). Radar and mesonet networks provide precipitation fields at 1 km resolution but with limited historical and geographical coverage, while gauge-based records and reanalysis products cover decades of time on a global scale, but only at 30-50 km resolution. To help provide high-resolution precipitation estimates over long time scales, this study presents Wasserstein Regularized Diffusion (WassDiff), a diffusion framework to downscale (super-resolve) precipitation fields from low-resolution gauge and reanalysis products. Crucially, unlike related deep generative models, WassDiff integrates a Wasserstein distribution-matching regularizer to the denoising process to reduce empirical biases at extreme intensities. Comprehensive evaluations demonstrate that WassDiff quantitatively outperforms existing state-of-the-art generative downscaling methods at recovering extreme weather phenomena such as tropical storms and cold fronts. Case studies further qualitatively demonstrate WassDiff's ability to reproduce realistic fine-scale weather structures and accurate peak intensities. By unlocking decades of high-resolution rainfall information from globally available coarse records, WassDiff offers a practical pathway toward more accurate flood-risk assessments and climate-adaptation planning.
comment: 18 pages, 10 figures, 3 tables
♻ ☆ Learning to Defer in Congested Systems: The AI-Human Interplay
High-stakes applications rely on combining Artificial Intelligence (AI) and humans for responsive and reliable decision making. For example, content moderation in social media platforms often employs an AI-human pipeline to promptly remove policy violations without jeopardizing legitimate content. A typical heuristic estimates the risk of incoming content and uses fixed thresholds to decide whether to auto-delete the content (classification) and whether to send it for human review (admission). This approach can be inefficient as it disregards the uncertainty in AI's estimation, the time-varying element of content arrivals and human review capacity, and the selective sampling in the online dataset (humans only review content filtered by the AI). In this paper, we introduce a model to capture such an AI-human interplay. In this model, the AI observes contextual information for incoming jobs, makes classification and admission decisions, and schedules admitted jobs for human review. During these reviews, humans observe a job's true cost and may overturn an erroneous AI classification decision. These reviews also serve as new data to train the AI but are delayed due to congestion in the human review system. The objective is to minimize the costs of eventually misclassified jobs. We propose a near-optimal learning algorithm that carefully balances the classification loss from a selectively sampled dataset, the idiosyncratic loss of non-reviewed jobs, and the delay loss of having congestion in the human review system. To the best of our knowledge, this is the first result for online learning in contextual queueing systems. Moreover, numerical experiments based on online comment datasets show that our algorithm can substantially reduce the number of misclassifications compared to existing content moderation practice.
♻ ☆ On the Robustness of Kernel Goodness-of-Fit Tests
Goodness-of-fit testing is often criticized for its lack of practical relevance: since ``all models are wrong'', the null hypothesis that the data conform to our model is ultimately always rejected as the sample size grows. Despite this, probabilistic models are still used extensively, raising the more pertinent question of whether the model is \emph{good enough} for the task at hand. This question can be formalized as a robust goodness-of-fit testing problem by asking whether the data were generated from a distribution that is a mild perturbation of the model. In this paper, we show that existing kernel goodness-of-fit tests are not robust under common notions of robustness including both qualitative and quantitative robustness. We further show that robustification techniques using tilted kernels, while effective in the parameter estimation literature, are not sufficient to ensure both types of robustness in the testing setting. To address this, we propose the first robust kernel goodness-of-fit test, which resolves this open problem by using kernel Stein discrepancy (KSD) balls. This framework encompasses many well-known perturbation models, such as Huber's contamination and density-band models.
comment: 50 pages, 15 figures
♻ ☆ Differentiation Through Black-Box Quadratic Programming Solvers
Differentiable optimization has attracted significant research interest, particularly for quadratic programming (QP). Existing approaches for differentiating the solution of a QP with respect to its defining parameters often rely on specific integrated solvers. This integration limits their applicability, including their use in neural network architectures and bi-level optimization tasks, restricting users to a narrow selection of solver choices. To address this limitation, we introduce dQP, a modular and solver-agnostic framework for plug-and-play differentiation of virtually any QP solver. Our key theoretical insight is that the solution and its derivative can each be expressed in terms of closely-related and simple linear systems by using the active set at the solution. This insight enables efficient decoupling of the QP's solution, obtained by any solver, from its differentiation. Our open-source, minimal-overhead implementation will be made publicly available and seamlessly integrates with more than 15 state-of-the-art solvers. Comprehensive benchmark experiments demonstrate dQP's robustness and scalability, particularly highlighting its advantages in large-scale sparse problems.
♻ ☆ FairPOT: Balancing AUC Performance and Fairness with Proportional Optimal Transport
Fairness metrics utilizing the area under the receiver operator characteristic curve (AUC) have gained increasing attention in high-stakes domains such as healthcare, finance, and criminal justice. In these domains, fairness is often evaluated over risk scores rather than binary outcomes, and a common challenge is that enforcing strict fairness can significantly degrade AUC performance. To address this challenge, we propose Fair Proportional Optimal Transport (FairPOT), a novel, model-agnostic post-processing framework that strategically aligns risk score distributions across different groups using optimal transport, but does so selectively by transforming a controllable proportion, i.e., the top-lambda quantile, of scores within the disadvantaged group. By varying lambda, our method allows for a tunable trade-off between reducing AUC disparities and maintaining overall AUC performance. Furthermore, we extend FairPOT to the partial AUC setting, enabling fairness interventions to concentrate on the highest-risk regions. Extensive experiments on synthetic, public, and clinical datasets show that FairPOT consistently outperforms existing post-processing techniques in both global and partial AUC scenarios, often achieving improved fairness with slight AUC degradation or even positive gains in utility. The computational efficiency and practical adaptability of FairPOT make it a promising solution for real-world deployment.
♻ ☆ Mosaic: Composite Projection Pruning for Resource-efficient LLMs
Extensive compute and memory requirements limit the deployment of large language models (LLMs) on any hardware. Compression methods, such as pruning, can reduce model size, which in turn reduces resource requirements. State-of-the-art pruning is based on coarse-grained methods. They are time-consuming and inherently remove critical model parameters, adversely impacting the quality of the pruned model. This paper introduces projection pruning, a novel fine-grained method for pruning LLMs. In addition, LLM projection pruning is enhanced by a new approach we refer to as composite projection pruning - the synergistic combination of unstructured pruning that retains accuracy and structured pruning that reduces model size. We develop Mosaic, a novel system to create and deploy pruned LLMs using composite projection pruning. Mosaic is evaluated using a range of performance and quality metrics on multiple hardware platforms, LLMs, and datasets. Mosaic is 7.19x faster in producing models than existing approaches. Mosaic models achieve up to 84.2% lower perplexity and 31.4% higher accuracy than models obtained from coarse-grained pruning. Up to 67% faster inference and 68% lower GPU memory use is noted for Mosaic models. Mosaic is available for public use from https://github.com/blessonvar/Mosaic
♻ ☆ Leveraging Predictive Equivalence in Decision Trees ICML 2025
Decision trees are widely used for interpretable machine learning due to their clearly structured reasoning process. However, this structure belies a challenge we refer to as predictive equivalence: a given tree's decision boundary can be represented by many different decision trees. The presence of models with identical decision boundaries but different evaluation processes makes model selection challenging. The models will have different variable importance and behave differently in the presence of missing values, but most optimization procedures will arbitrarily choose one such model to return. We present a boolean logical representation of decision trees that does not exhibit predictive equivalence and is faithful to the underlying decision boundary. We apply our representation to several downstream machine learning tasks. Using our representation, we show that decision trees are surprisingly robust to test-time missingness of feature values; we address predictive equivalence's impact on quantifying variable importance; and we present an algorithm to optimize the cost of reaching predictions.
comment: Accepted to ICML 2025
♻ ☆ Towards Safer Pretraining: Analyzing and Filtering Harmful Content in Webscale datasets for Responsible LLMs IJCAI 2025
Large language models (LLMs) have become integral to various real-world applications, leveraging massive, web-sourced datasets like Common Crawl, C4, and FineWeb for pretraining. While these datasets provide linguistic data essential for high-quality natural language generation, they often contain harmful content, such as hate speech, misinformation, and biased narratives. Training LLMs on such unfiltered data risks perpetuating toxic behaviors, spreading misinformation, and amplifying societal biases which can undermine trust in LLM-driven applications and raise ethical concerns about their use. This paper presents a large-scale analysis of inappropriate content across these datasets, offering a comprehensive taxonomy that categorizes harmful webpages into Topical and Toxic based on their intent. We also introduce a prompt evaluation dataset, a high-accuracy Topical and Toxic Prompt (TTP), and a transformer-based model (HarmFormer) for harmful content filtering. Additionally, we create a new multi-harm open-ended toxicity benchmark (HAVOC) and provide crucial insights into how models respond to adversarial toxic inputs. We share TTP, TTP-Eval, HAVOC and a sample of C4 inferenced on HarmFormer. Our work offers insights into ensuring safer LLM pretraining and serves as a resource for Responsible AI (RAI) compliance.
comment: 10 pages, 5 figures. Accepted at the International Joint Conferences on Artificial Intelligence IJCAI 2025 (main track)
♻ ☆ Enhancing Deep Hedging of Options with Implied Volatility Surface Feedback Information
We present a dynamic hedging scheme for S&P 500 options, where rebalancing decisions are enhanced by integrating information about the implied volatility surface dynamics. The optimal hedging strategy is obtained through a deep policy gradient-type reinforcement learning algorithm. The favorable inclusion of forward-looking information embedded in the volatility surface allows our procedure to outperform several conventional benchmarks such as practitioner and smiled-implied delta hedging procedures, both in simulation and backtesting experiments. The outperformance is more pronounced in the presence of transaction costs.
♻ ☆ VulScribeR: Exploring RAG-based Vulnerability Augmentation with LLMs
Detecting vulnerabilities is vital for software security, yet deep learning-based vulnerability detectors (DLVD) face a data shortage, which limits their effectiveness. Data augmentation can potentially alleviate the data shortage, but augmenting vulnerable code is challenging and requires a generative solution that maintains vulnerability. Previous works have only focused on generating samples that contain single statements or specific types of vulnerabilities. Recently, large language models (LLMs) have been used to solve various code generation and comprehension tasks with inspiring results, especially when fused with retrieval augmented generation (RAG). Therefore, we propose VulScribeR, a novel LLM-based solution that leverages carefully curated prompt templates to augment vulnerable datasets. More specifically, we explore three strategies to augment both single and multi-statement vulnerabilities, with LLMs, namely Mutation, Injection, and Extension. Our extensive evaluation across four vulnerability datasets and DLVD models, using three LLMs, show that our approach beats two SOTA methods Vulgen and VGX, and Random Oversampling (ROS) by 27.48%, 27.93%, and 15.41% in f1-score with 5K generated vulnerable samples on average, and 53.84%, 54.10%, 69.90%, and 40.93% with 15K generated vulnerable samples. Our approach demonstrates its feasibility for large-scale data augmentation by generating 1K samples at as cheap as US$ 1.88.
comment: Accepted by TOSEM; 26 pages, 6 figures, 8 tables, 3 prompt templates, 1 algorithm
♻ ☆ Scalable Out-of-distribution Robustness in the Presence of Unobserved Confounders
We consider the task of out-of-distribution (OOD) generalization, where the distribution shift is due to an unobserved confounder ($Z$) affecting both the covariates ($X$) and the labels ($Y$). This confounding introduces heterogeneity in the predictor, i.e., $P(Y | X) = E_{P(Z | X)}[P(Y | X,Z)]$, making traditional covariate and label shift assumptions unsuitable. OOD generalization differs from traditional domain adaptation in that it does not assume access to the covariate distribution ($X^\text{te}$) of the test samples during training. These conditions create a challenging scenario for OOD robustness: (a) $Z^\text{tr}$ is an unobserved confounder during training, (b) $P^\text{te}(Z) \neq P^\text{tr}(Z)$, (c) $X^\text{te}$ is unavailable during training, and (d) the predictive distribution depends on $P^\text{te}(Z)$. While prior work has developed complex predictors requiring multiple additional variables for identifiability of the latent distribution, we explore a set of identifiability assumptions that yield a surprisingly simple predictor using only a single additional variable. Our approach demonstrates superior empirical performance on several benchmark tasks.
comment: 25 pages, 3 figures
Graphics 16
☆ VertexRegen: Mesh Generation with Continuous Level of Detail ICCV 2025
We introduce VertexRegen, a novel mesh generation framework that enables generation at a continuous level of detail. Existing autoregressive methods generate meshes in a partial-to-complete manner and thus intermediate steps of generation represent incomplete structures. VertexRegen takes inspiration from progressive meshes and reformulates the process as the reversal of edge collapse, i.e. vertex split, learned through a generative model. Experimental results demonstrate that VertexRegen produces meshes of comparable quality to state-of-the-art methods while uniquely offering anytime generation with the flexibility to halt at any step to yield valid meshes with varying levels of detail.
comment: ICCV 2025. Project Page: https://vertexregen.github.io/
☆ How Does a Virtual Agent Decide Where to Look? -- Symbolic Cognitive Reasoning for Embodied Head Rotation
Natural head rotation is critical for believable embodied virtual agents, yet this micro-level behavior remains largely underexplored. While head-rotation prediction algorithms could, in principle, reproduce this behavior, they typically focus on visually salient stimuli and overlook the cognitive motives that guide head rotation. This yields agents that look at conspicuous objects while overlooking obstacles or task-relevant cues, diminishing realism in a virtual environment. We introduce SCORE, a Symbolic Cognitive Reasoning framework for Embodied Head Rotation, a data-agnostic framework that produces context-aware head movements without task-specific training or hand-tuned heuristics. A controlled VR study (N=20) identifies five motivational drivers of human head movements: Interest, Information Seeking, Safety, Social Schema, and Habit. SCORE encodes these drivers as symbolic predicates, perceives the scene with a Vision-Language Model (VLM), and plans head poses with a Large Language Model (LLM). The framework employs a hybrid workflow: the VLM-LLM reasoning is executed offline, after which a lightweight FastVLM performs online validation to suppress hallucinations while maintaining responsiveness to scene dynamics. The result is an agent that predicts not only where to look but also why, generalizing to unseen scenes and multi-agent crowds while retaining behavioral plausibility.
☆ DASC: Depth-of-Field Aware Scene Complexity Metric for 3D Visualization on Light Field Display
Light field display is one of the technologies providing 3D immersive visualization. However, a light field display generates only a limited number of light rays which results in finite angular and spatial resolutions. Therefore, 3D content can be shown with high quality only within a narrow depth range notated as Depth of Field (DoF) around the display screen. Outside this range, due to the appearance of aliasing artifacts, the quality degrades proportionally to the distance from the screen. One solution to mitigate the artifacts is depth of field rendering which blurs the content in the distorted regions, but can result in the removal of scene details. This research focuses on proposing a DoF Aware Scene Complexity (DASC) metric that characterizes 3D content based on geometrical and positional factors considering the light field display's DoF. In this research, we also evaluate the observers' preference across different level of blurriness caused by DoF rendering ranging from sharp, aliased scenes to overly smoothed alias-free scenes. We have conducted this study over multiple scenes that we created to account for different types of content. Based on the outcome of subjective studies, we propose a model that takes the value of DASC metric as input and predicts the preferred level of blurring for the given scene as output.
comment: 12 pages, submitted in IEEE Transactions on Multimedia
☆ DiffPhysCam: Differentiable Physics-Based Camera Simulation for Inverse Rendering and Embodied AI
We introduce DiffPhysCam, a differentiable camera simulator designed to support robotics and embodied AI applications by enabling gradient-based optimization in visual perception pipelines. Generating synthetic images that closely mimic those from real cameras is essential for training visual models and enabling end-to-end visuomotor learning. Moreover, differentiable rendering allows inverse reconstruction of real-world scenes as digital twins, facilitating simulation-based robotics training. However, existing virtual cameras offer limited control over intrinsic settings, poorly capture optical artifacts, and lack tunable calibration parameters -- hindering sim-to-real transfer. DiffPhysCam addresses these limitations through a multi-stage pipeline that provides fine-grained control over camera settings, models key optical effects such as defocus blur, and supports calibration with real-world data. It enables both forward rendering for image synthesis and inverse rendering for 3D scene reconstruction, including mesh and material texture optimization. We show that DiffPhysCam enhances robotic perception performance in synthetic image tasks. As an illustrative example, we create a digital twin of a real-world scene using inverse rendering, simulate it in a multi-physics environment, and demonstrate navigation of an autonomous ground vehicle using images generated by DiffPhysCam.
comment: 19 pages, 17 figures, and 4 tables
☆ Geometry-Aware Global Feature Aggregation for Real-Time Indirect Illumination
Real-time rendering with global illumination is crucial to afford the user realistic experience in virtual environments. We present a learning-based estimator to predict diffuse indirect illumination in screen space, which then is combined with direct illumination to synthesize globally-illuminated high dynamic range (HDR) results. Our approach tackles the challenges of capturing long-range/long-distance indirect illumination when employing neural networks and is generalized to handle complex lighting and scenarios. From the neural network thinking of the solver to the rendering equation, we present a novel network architecture to predict indirect illumination. Our network is equipped with a modified attention mechanism that aggregates global information guided by spacial geometry features, as well as a monochromatic design that encodes each color channel individually. We conducted extensive evaluations, and the experimental results demonstrate our superiority over previous learning-based techniques. Our approach excels at handling complex lighting such as varying-colored lighting and environment lighting. It can successfully capture distant indirect illumination and simulates the interreflections between textured surfaces well (i.e., color bleeding effects); it can also effectively handle new scenes that are not present in the training dataset.
comment: 10 pages
☆ SonicRadiation: A Hybrid Numerical Solution for Sound Radiation without Ghost Cells
Interactive synthesis of physical sound effects is crucial in digital media production. Sound radiation simulation, a key component of physically based sound synthesis, has posed challenges in the context of complex object boundaries. Previous methods, such as ghost cell-based finite-difference time-domain (FDTD) wave solver, have struggled to address these challenges, leading to large errors and failures in complex boundaries because of the limitation of ghost cells. We present SonicRadiation, a hybrid numerical solution capable of handling complex and dynamic object boundaries in sound radiation simulation without relying on ghost cells. We derive a consistent formulation to connect the physical quantities on grid cells in FDTD with the boundary elements in the time-domain boundary element method (TDBEM). Hereby, we propose a boundary grid synchronization strategy to seamlessly integrate TDBEM with FDTD while maintaining high numerical accuracy. Our method holds both advantages from the accuracy of TDBEM for the near-field and the efficiency of FDTD for the far-field. Experimental results demonstrate the superiority of our method in sound radiation simulation over previous approaches in terms of accuracy and efficiency, particularly in complex scenes, further validating its effectiveness.
comment: 11 pages
☆ Exploring Palette based Color Guidance in Diffusion Models ACM MM 2025
With the advent of diffusion models, Text-to-Image (T2I) generation has seen substantial advancements. Current T2I models allow users to specify object colors using linguistic color names, and some methods aim to personalize color-object association through prompt learning. However, existing models struggle to provide comprehensive control over the color schemes of an entire image, especially for background elements and less prominent objects not explicitly mentioned in prompts. This paper proposes a novel approach to enhance color scheme control by integrating color palettes as a separate guidance mechanism alongside prompt instructions. We investigate the effectiveness of palette guidance by exploring various palette representation methods within a diffusion-based image colorization framework. To facilitate this exploration, we construct specialized palette-text-image datasets and conduct extensive quantitative and qualitative analyses. Our results demonstrate that incorporating palette guidance significantly improves the model's ability to generate images with desired color schemes, enabling a more controlled and refined colorization process.
comment: Accepted to ACM MM 2025
☆ Bio-Generative Design Morphology with Radiolaria: An application of a Nature-Based Generative Shape Grammar for Geometrical Design of Space Frames
This paper presents a study on using Radiolaria as a basis for generation of space-based geometry for structural design with shape grammars. Radiolaria has been a source of inspiration for architectural design with its intricate structural features and geometric patterns (Lim, 2012). We use the basis of the Radiolaria geometry to create a generative shape grammar as a computational system; then use the shape grammar to create spatial configurations for potential applications in design of 3D space structural frames. This study begins with the geometric analysis of Radiolaria and the dissection of its structure and geometry into a simplified morphological source, in this case a tetrahedral structure. Tetrahedrons are used in combination with octahedrons to generate spatial configurations to generate 3D spatial structural frames. The paper presents the Radiolaria spatial analysis, the shape grammar, the collection of generated designs, and possible applications in space frame structures.
comment: 12 pages, SiGradi Conference
☆ Revisiting the City Tower Project: Geometric Principles and Structural Morphology in the Works of Louis I. Kahn and Anne Tyng
This paper presents a study of computation and morphology of Louis Kahn City Tower project. The City Tower is an unbuilt design by Louis I. Kahn and Anne Tyng that integrates form and structure using 3D space triangular geometries. Although never built, the City Tower geometrical framework anticipated later developments in design of space-frame structures. Initially envisioned in the 1950s, the City Tower project is a skyscraper structure based on a tetrahedral and octahedral space frame called Octet-Truss. The aim of this study is to analyze the geometry of the City Tower structure and how it can be used to develop modular and adaptable architectural forms. The study is based on an analytical shape grammar that is used to recreate the original structure, and later to generate new structural configurations based on the City Tower's morphology. This study also investigates the potential applications of these findings in architecture and reveals the possibilities of using tetrahedrons and octahedrons as fundamental geometries for creating scalable and modular designs and presents initial findings.
comment: 8 pages, ARCC Conference
☆ Hybrid Long and Short Range Flows for Point Cloud Filtering
Point cloud capture processes are error-prone and introduce noisy artifacts that necessitate filtering/denoising. Recent filtering methods often suffer from point clustering or noise retaining issues. In this paper, we propose Hybrid Point Cloud Filtering ($\textbf{HybridPF}$) that considers both short-range and long-range filtering trajectories when removing noise. It is well established that short range scores, given by $\nabla_{x}\log p(x_t)$, may provide the necessary displacements to move noisy points to the underlying clean surface. By contrast, long range velocity flows approximate constant displacements directed from a high noise variant patch $x_0$ towards the corresponding clean surface $x_1$. Here, noisy patches $x_t$ are viewed as intermediate states between the high noise variant and the clean patches. Our intuition is that long range information from velocity flow models can guide the short range scores to align more closely with the clean points. In turn, score models generally provide a quicker convergence to the clean surface. Specifically, we devise two parallel modules, the ShortModule and LongModule, each consisting of an Encoder-Decoder pair to respectively account for short-range scores and long-range flows. We find that short-range scores, guided by long-range features, yield filtered point clouds with good point distributions and convergence near the clean surface. We design a joint loss function to simultaneously train the ShortModule and LongModule, in an end-to-end manner. Finally, we identify a key weakness in current displacement based methods, limitations on the decoder architecture, and propose a dynamic graph convolutional decoder to improve the inference process. Comprehensive experiments demonstrate that our HybridPF achieves state-of-the-art results while enabling faster inference speed.
☆ TFZ: Topology-Preserving Compression of 2D Symmetric and Asymmetric Second-Order Tensor Fields
In this paper, we present a novel compression framework, TFZ, that preserves the topology of 2D symmetric and asymmetric second-order tensor fields defined on flat triangular meshes. A tensor field assigns a tensor - a multi-dimensional array of numbers - to each point in space. Tensor fields, such as the stress and strain tensors, and the Riemann curvature tensor, are essential to both science and engineering. The topology of tensor fields captures the core structure of data, and is useful in various disciplines, such as graphics (for manipulating shapes and textures) and neuroscience (for analyzing brain structures from diffusion MRI). Lossy data compression may distort the topology of tensor fields, thus hindering downstream analysis and visualization tasks. TFZ ensures that certain topological features are preserved during lossy compression. Specifically, TFZ preserves degenerate points essential to the topology of symmetric tensor fields and retains eigenvector and eigenvalue graphs that represent the topology of asymmetric tensor fields. TFZ scans through each cell, preserving the local topology of each cell, and thereby ensuring certain global topological guarantees. We showcase the effectiveness of our framework in enhancing the lossy scientific data compressors SZ3 and SPERR.
comment: 29 pages, 27 figures, to be presented at IEEE Vis 2025 (and published in IEEE TVCG 2026)
☆ ViPE: Video Pose Engine for 3D Geometric Perception
Accurate 3D geometric perception is an important prerequisite for a wide range of spatial AI systems. While state-of-the-art methods depend on large-scale training data, acquiring consistent and precise 3D annotations from in-the-wild videos remains a key challenge. In this work, we introduce ViPE, a handy and versatile video processing engine designed to bridge this gap. ViPE efficiently estimates camera intrinsics, camera motion, and dense, near-metric depth maps from unconstrained raw videos. It is robust to diverse scenarios, including dynamic selfie videos, cinematic shots, or dashcams, and supports various camera models such as pinhole, wide-angle, and 360{\deg} panoramas. We have benchmarked ViPE on multiple benchmarks. Notably, it outperforms existing uncalibrated pose estimation baselines by 18%/50% on TUM/KITTI sequences, and runs at 3-5FPS on a single GPU for standard input resolutions. We use ViPE to annotate a large-scale collection of videos. This collection includes around 100K real-world internet videos, 1M high-quality AI-generated videos, and 2K panoramic videos, totaling approximately 96M frames -- all annotated with accurate camera poses and dense depth maps. We open-source ViPE and the annotated dataset with the hope of accelerating the development of spatial AI systems.
comment: Paper website: https://research.nvidia.com/labs/toronto-ai/vipe/
☆ RefAdGen: High-Fidelity Advertising Image Generation
The rapid advancement of Artificial Intelligence Generated Content (AIGC) techniques has unlocked opportunities in generating diverse and compelling advertising images based on referenced product images and textual scene descriptions. This capability substantially reduces human labor and production costs in traditional marketing workflows. However, existing AIGC techniques either demand extensive fine-tuning for each referenced image to achieve high fidelity, or they struggle to maintain fidelity across diverse products, making them impractical for e-commerce and marketing industries. To tackle this limitation, we first construct AdProd-100K, a large-scale advertising image generation dataset. A key innovation in its construction is our dual data augmentation strategy, which fosters robust, 3D-aware representations crucial for realistic and high-fidelity image synthesis. Leveraging this dataset, we propose RefAdGen, a generation framework that achieves high fidelity through a decoupled design. The framework enforces precise spatial control by injecting a product mask at the U-Net input, and employs an efficient Attention Fusion Module (AFM) to integrate product features. This design effectively resolves the fidelity-efficiency dilemma present in existing methods. Extensive experiments demonstrate that RefAdGen achieves state-of-the-art performance, showcasing robust generalization by maintaining high fidelity and remarkable visual results for both unseen products and challenging real-world, in-the-wild images. This offers a scalable and cost-effective alternative to traditional workflows. Code and datasets are publicly available at https://github.com/Anonymous-Name-139/RefAdgen.
♻ ☆ PureSample: Neural Materials Learned by Sampling Microgeometry
Traditional physically-based material models rely on analytically derived bidirectional reflectance distribution functions (BRDFs), typically by considering statistics of micro-primitives such as facets, flakes, or spheres, sometimes combined with multi-bounce interactions such as layering and multiple scattering. These derivations are often complex and model-specific, and typically consider a statistical aggregate of a large surface area, ignoring spatial variation. Once an analytic BRDF's evaluation is defined, one still needs to design an importance sampling method for it, and a way to evaluate the pdf of that sampling distribution, requiring further model-specific derivations. We present PureSample: a novel neural BRDF representation that allows learning a material's behavior purely by sampling forward random walks on the microgeometry, which is usually straightforward to implement. Our representation allows for efficient importance sampling, pdf evaluation, and BRDF evaluation, for homogeneous as well as spatially varying materials. We achieve this by two learnable components: first, the sampling distribution is modeled using a flow matching neural network, which allows both importance sampling and pdf evaluation; second, we introduce a view-dependent albedo term, captured by a lightweight neural network, which allows for converting a scalar pdf value to a colored BRDF value for any pair of view and light directions. We demonstrate PureSample on challenging materials, including multi-layered materials, multiple-scattering microfacet materials, and various other microstructures.
♻ ☆ HiMat: DiT-based Ultra-High Resolution SVBRDF Generation
Creating highly detailed SVBRDFs is essential for 3D content creation. The rise of high-resolution text-to-image generative models, based on diffusion transformers (DiT), suggests an opportunity to finetune them for this task. However, retargeting the models to produce multiple aligned SVBRDF maps instead of just RGB images, while achieving high efficiency and ensuring consistency across different maps, remains a challenge. In this paper, we introduce HiMat: a memory- and computation-efficient diffusion-based framework capable of generating native 4K-resolution SVBRDFs. A key challenge we address is maintaining consistency across different maps in a lightweight manner, without relying on training new VAEs or significantly altering the DiT backbone (which would damage its prior capabilities). To tackle this, we introduce the CrossStitch module, a lightweight convolutional module that captures inter-map dependencies through localized operations. Its weights are initialized such that the DiT backbone operation is unchanged before finetuning starts. HiMat enables generation with strong structural coherence and high-frequency details. Results with a large set of text prompts demonstrate the effectiveness of our approach for 4K SVBRDF generation. Further experiments suggest generalization to tasks such as intrinsic decomposition.
♻ ☆ A Fast Unsupervised Scheme for Polygonal Approximation
This paper proposes a fast and unsupervised scheme for the polygonal approximation of a closed digital curve. It is demonstrated that the approximation scheme is faster than state-of-the-art approximation and is competitive with Rosin's measure and aesthetic aspects. The scheme comprises of three phases: initial segmentation, iterative vertex insertion, iterative merging, and vertex adjustment. The initial segmentation is used to detect sharp turns, that is, vertices that seemingly have high curvature. It is likely that some of the important vertices with low curvature might have been missed in the first phase; therefore, iterative vertex insertion is used to add vertices in a region where the curvature changes slowly but steadily. The initial phase may pick up some undesirable vertices, and thus merging is used to eliminate redundant vertices. Finally, vertex adjustment was used to enhance the aesthetic appearance of the approximation. The quality of the approximations was measured using the Rosin's method. The robustness of the proposed scheme with respect to geometric transformation was observed.