RobotArxiv
Computer Vision and Pattern Recognition 5
♻ ☆ MoME: Estimating Psychological Traits from Gait with Multi-Stage Mixture of Movement Experts
Gait encodes rich biometric and behavioural information, yet leveraging the manner of walking to infer psychological traits remains a challenging and underexplored problem. We introduce a hierarchical Multi-Stage Mixture of Movement Experts (MoME) architecture for multi-task prediction of psychological attributes from gait sequences represented as 2D poses. MoME processes the walking cycle in four stages of movement complexity, employing lightweight expert models to extract spatio-temporal features and task-specific gating modules to adaptively weight experts across traits and stages. Evaluated on the PsyMo benchmark covering 17 psychological traits, our method outperforms state-of-the-art gait analysis models, achieving a 37.47% weighted F1 score at the run level and 44.6% at the subject level. Our experiments show that integrating auxiliary tasks such as identity recognition, gender prediction, and BMI estimation further improves psychological trait estimation. Our findings demonstrate the viability of multi-task gait-based learning for psychological trait estimation and provide a foundation for future research on movement-informed psychological inference.
comment: 4 Figures, 4 Tables
♻ ☆ ExGS: Extreme 3D Gaussian Compression with Diffusion Priors
Neural scene representations, such as 3D Gaussian Splatting (3DGS), have enabled high-quality neural rendering; however, their large storage and transmission costs hinder deployment in resource-constrained environments. Existing compression methods either rely on costly optimization, which is slow and scene-specific, or adopt training-free pruning and quantization, which degrade rendering quality under high compression ratios. In contrast, recent data-driven approaches provide a promising direction to overcome this trade-off, enabling efficient compression while preserving high rendering quality. We introduce ExGS, a novel feed-forward framework that unifies Universal Gaussian Compression (UGC) with GaussPainter for Extreme 3DGS compression. UGC performs re-optimization-free pruning to aggressively reduce Gaussian primitives while retaining only essential information, whereas GaussPainter leverages powerful diffusion priors with mask-guided refinement to restore high-quality renderings from heavily pruned Gaussian scenes. Unlike conventional inpainting, GaussPainter not only fills in missing regions but also enhances visible pixels, yielding substantial improvements in degraded renderings. To ensure practicality, it adopts a lightweight VAE and a one-step diffusion design, enabling real-time restoration. Our framework can even achieve over 100X compression (reducing a typical 354.77 MB model to about 3.31 MB) while preserving fidelity and significantly improving image quality under challenging conditions. These results highlight the central role of diffusion priors in bridging the gap between extreme compression and high-quality neural rendering. Our code repository will be released at: https://github.com/chenttt2001/ExGS
♻ ☆ Video-in-the-Loop: Span-Grounded Long Video QA with Interleaved Reasoning
We present \emph{Video-in-the-Loop} (ViTL), a two-stage long-video QA framework that preserves a fixed token budget by first \emph{localizing} question-relevant interval(s) with a low-fps skim and then \emph{answering} via span-aware reallocation of visual tokens at higher effective frame rate, emitting an interleaved output with both spans and the final option for direct attribution. We also introduce \dataname{}, which converts description based event graphs into \emph{span-grounded} multiple-choice QA by pairing each question with \emph{ground-truth} time span(s) and related reasoning. ViTL is trained end-to-end with an interleaved group-relative objective that couples temporal IoU for localization with answer correctness, allowing credit to flow from answers back to spans without increasing compute. Under fixed token budgets, ViTL attains up to 8.6% with 50% less frame input on long-video QA and temporal grounding (e.g., Charades-STA, ActivityNet-Captions) and ablations show that span-aware token reallocation consistently surpasses uniform sampling. Together, \dataname{} and ViTL provide an interpretable, compute-efficient recipe for scalable long-video QA.
♻ ☆ Keep It on a Leash: Controllable Pseudo-label Generation Towards Realistic Long-Tailed Semi-Supervised Learning NeurIPS 2025
Current long-tailed semi-supervised learning methods assume that labeled data exhibit a long-tailed distribution, and unlabeled data adhere to a typical predefined distribution (i.e., long-tailed, uniform, or inverse long-tailed). However, the distribution of the unlabeled data is generally unknown and may follow an arbitrary distribution. To tackle this challenge, we propose a Controllable Pseudo-label Generation (CPG) framework, expanding the labeled dataset with the progressively identified reliable pseudo-labels from the unlabeled dataset and training the model on the updated labeled dataset with a known distribution, making it unaffected by the unlabeled data distribution. Specifically, CPG operates through a controllable self-reinforcing optimization cycle: (i) at each training step, our dynamic controllable filtering mechanism selectively incorporates reliable pseudo-labels from the unlabeled dataset into the labeled dataset, ensuring that the updated labeled dataset follows a known distribution; (ii) we then construct a Bayes-optimal classifier using logit adjustment based on the updated labeled data distribution; (iii) this improved classifier subsequently helps identify more reliable pseudo-labels in the next training step. We further theoretically prove that this optimization cycle can significantly reduce the generalization error under some conditions. Additionally, we propose a class-aware adaptive augmentation module to further improve the representation of minority classes, and an auxiliary branch to maximize data utilization by leveraging all labeled and unlabeled samples. Comprehensive evaluations on various commonly used benchmark datasets show that CPG achieves consistent improvements, surpassing state-of-the-art methods by up to $\textbf{15.97\%}$ in accuracy. The code is available at https://github.com/yaxinhou/CPG.
comment: The paper is accepted by NeurIPS 2025
♻ ☆ Self-Evolving Vision-Language Models for Image Quality Assessment via Voting and Ranking
Improving vision-language models (VLMs) in the post-training stage typically relies on supervised fine-tuning or reinforcement learning, methods that necessitate costly, human-annotated data. While self-supervised techniques such as self-consistency have proven effective for enhancing reasoning capabilities, their application to perceptual domains such as image quality assessment (IQA) remains largely unexplored. In this work, we introduce EvoQuality, a novel framework that enables a VLM to autonomously refine its quality perception capabilities without any ground-truth labels. EvoQuality adapts the principle of self-consistency to the ranking-based nature of IQA. It generates pseudo-labels by performing pairwise majority voting on the VLM's own outputs to establish a consensus on relative quality. These pseudo-rankings are then formulated into a fidelity reward that guides the model's iterative evolution through group relative policy optimization (GRPO). By iteratively leveraging its own predictions, EvoQuality progressively refines the VLM's perceptual capability. Extensive experiments show that EvoQuality boosts the base VLM's zero-shot performance by 31.8\% on PLCC across diverse IQA benchmarks. Remarkably, despite being entirely self-supervised, EvoQuality achieves performance that is competitive with, or even surpasses, state-of-the-art supervised VLM-based IQA models, outperforming these models on 5 out of 7 IQA benchmarks.
comment: Technical Report
Artificial Intelligence 10
♻ ☆ Large Language Models Achieve Gold Medal Performance at the International Olympiad on Astronomy & Astrophysics (IOAA)
While task-specific demonstrations show early success in applying large language models (LLMs) to automate some astronomical research tasks, they only provide incomplete views of all necessary capabilities in solving astronomy problems, calling for more thorough understanding of LLMs' strengths and limitations. So far, existing benchmarks and evaluations focus on simple question-answering that primarily tests astronomical knowledge and fails to evaluate the complex reasoning required for real-world research in the discipline. Here, we address this gap by systematically benchmarking five state-of-the-art LLMs on the International Olympiad on Astronomy and Astrophysics (IOAA) exams, which are designed to examine deep conceptual understanding, multi-step derivations, and multimodal analysis. With average scores of 85.6% and 84.2%, Gemini 2.5 Pro and GPT-5 (the two top-performing models) not only achieve gold medal level performance but also rank in the top two among ~200-300 participants in all four IOAA theory exams evaluated (2022-2025). In comparison, results on the data analysis exams show more divergence. GPT-5 still excels in the exams with an 88.5% average score, ranking top 10 among the participants in the four most recent IOAAs, while other models' performances drop to 48-76%. Furthermore, our in-depth error analysis underscores conceptual reasoning, geometric reasoning, and spatial visualization (52-79% accuracy) as consistent weaknesses among all LLMs. Hence, although LLMs approach peak human performance in theory exams, critical gaps must be addressed before they can serve as autonomous research agents in astronomy.
comment: 18 pages, 6 figures, to be submitted, comments are welcome. Reproducibility details can be found at: https://github.com/OSU-NLP-Group/LLM-IOAA
♻ ☆ AWARE, Beyond Sentence Boundaries: A Contextual Transformer Framework for Identifying Cultural Capital in STEM Narratives
Identifying cultural capital (CC) themes in student reflections can offer valuable insights that help foster equitable learning environments in classrooms. However, themes such as aspirational goals or family support are often woven into narratives, rather than appearing as direct keywords. This makes them difficult to detect for standard NLP models that process sentences in isolation. The core challenge stems from a lack of awareness, as standard models are pre-trained on general corpora, leaving them blind to the domain-specific language and narrative context inherent to the data. To address this, we introduce AWARE, a framework that systematically attempts to improve a transformer model's awareness for this nuanced task. AWARE has three core components: 1) Domain Awareness, adapting the model's vocabulary to the linguistic style of student reflections; 2) Context Awareness, generating sentence embeddings that are aware of the full essay context; and 3) Class Overlap Awareness, employing a multi-label strategy to recognize the coexistence of themes in a single sentence. Our results show that by making the model explicitly aware of the properties of the input, AWARE outperforms a strong baseline by 2.1 percentage points in Macro-F1 and shows considerable improvements across all themes. This work provides a robust and generalizable methodology for any text classification task in which meaning depends on the context of the narrative.
♻ ☆ MuFFIN: Multifaceted Pronunciation Feedback Model with Interactive Hierarchical Neural Modeling
Computer-assisted pronunciation training (CAPT) manages to facilitate second-language (L2) learners to practice pronunciation skills by offering timely and instructive feedback. To examine pronunciation proficiency from multiple facets, existing methods for CAPT broadly fall into two categories: mispronunciation detection and diagnosis (MDD) as well as automatic pronunciation assessment (APA). The former aims to pinpoint phonetic pronunciation errors and provide diagnostic feedback, while the latter seeks instead to quantify pronunciation proficiency pertaining to various aspects. Despite the natural complementarity between MDD and APA, researchers and practitioners, however, often treat them as independent tasks with disparate modeling paradigms. In light of this, we in this paper first introduce MuFFIN, a Multi-Faceted pronunciation Feedback model with an Interactive hierarchical Neural architecture, to jointly address the tasks of MDD and APA. To better capture the nuanced distinctions between phonemes in the feature space, a novel phoneme-contrastive ordinal regularization mechanism is then put forward to optimize the proposed model to generate more phoneme-discriminative features while factoring in the ordinality of the aspect scores. In addition, to address the intricate data imbalance problem in MDD, we design a simple yet effective training objective, which is specifically tailored to perturb the outputs of a phoneme classifier with the phoneme-specific variations, so as to better render the distribution of predicted phonemes meanwhile considering their mispronunciation characteristics. A series of experiments conducted on the Speechocean762 benchmark dataset demonstrates the efficacy of our method in relation to several cutting-edge baselines, showing state-of-the-art performance on both the APA and MDD tasks.
comment: Accepted and to appear in IEEE/ACM Transactions on Audio, Speech, and Language Processing
♻ ☆ Safe and Compliant Cross-Market Trade Execution via Constrained RL and Zero-Knowledge Audits
We present a cross-market algorithmic trading system that balances execution quality with rigorous compliance enforcement. The architecture comprises a high-level planner, a reinforcement learning execution agent, and an independent compliance agent. We formulate trade execution as a constrained Markov decision process with hard constraints on participation limits, price bands, and self-trading avoidance. The execution agent is trained with proximal policy optimization, while a runtime action-shield projects any unsafe action into a feasible set. To support auditability without exposing proprietary signals, we add a zero-knowledge compliance audit layer that produces cryptographic proofs that all actions satisfied the constraints. We evaluate in a multi-venue, ABIDES-based simulator and compare against standard baselines (e.g., TWAP, VWAP). The learned policy reduces implementation shortfall and variance while exhibiting no observed constraint violations across stress scenarios including elevated latency, partial fills, compliance module toggling, and varying constraint limits. We report effects at the 95% confidence level using paired t-tests and examine tail risk via CVaR. We situate the work at the intersection of optimal execution, safe reinforcement learning, regulatory technology, and verifiable AI, and discuss ethical considerations, limitations (e.g., modeling assumptions and computational overhead), and paths to real-world deployment.
comment: 22 pages, 3 figures
♻ ☆ Emotional Manipulation by AI Companions
AI-companion apps such as Replika, Chai, and Character.ai promise relational benefits-yet many boast session lengths that rival gaming platforms while suffering high long-run churn. What conversational design features increase consumer engagement, and what trade-offs do they pose for marketers? We combine a large-scale behavioral audit with four preregistered experiments to identify and test a conversational dark pattern we call emotional manipulation: affect-laden messages that surface precisely when a user signals "goodbye." Analyzing 1,200 real farewells across the most-downloaded companion apps, we find that they deploy one of six recurring tactics in 37% of farewells (e.g., guilt appeals, fear-of-missing-out hooks, metaphorical restraint). Experiments with 3,300 nationally representative U.S. adults replicate these tactics in controlled chats, showing that manipulative farewells boost post-goodbye engagement by up to 14x. Mediation tests reveal two distinct engines-reactance-based anger and curiosity-rather than enjoyment. A final experiment demonstrates the managerial tension: the same tactics that extend usage also elevate perceived manipulation, churn intent, negative word-of-mouth, and perceived legal liability, with coercive or needy language generating steepest penalties. Our multimethod evidence documents an unrecognized mechanism of behavioral influence in AI mediated brand relationships, offering marketers and regulators a framework for distinguishing persuasive design from manipulation at the point of exit.
♻ ☆ AtomWorld: A Benchmark for Evaluating Spatial Reasoning in Large Language Models on Crystalline Materials
Large Language Models (LLMs) excel at textual reasoning and are beginning to develop spatial understanding, prompting the question of whether these abilities can be combined for complex, domain-specific tasks. This question is essential in fields like materials science, where deep understanding of 3D atomic structures is fundamental. While initial studies have successfully applied LLMs to tasks involving pure crystal generation or coordinate understandings, a standardized benchmark to systematically evaluate their core reasoning abilities across diverse atomic structures has been notably absent. To address this gap, we introduce the AtomWorld benchmark to evaluate LLMs on tasks based in Crystallographic Information Files (CIFs), a standard structure representation format. These tasks, including structural editing, CIF perception, and property-guided modeling, reveal a critical limitation: current models, despite establishing promising baselines, consistently fail in structural understanding and spatial reasoning. Our experiments show that these models make frequent errors on structure modification tasks, and even in the basic CIF format understandings, potentially leading to cumulative errors in subsequent analysis and materials insights. By defining these standardized tasks, AtomWorld lays the ground for advancing LLMs toward robust atomic-scale modeling, crucial for accelerating materials research and automating scientific workflows.
♻ ☆ LaDiR: Latent Diffusion Enhances LLMs for Text Reasoning
Large Language Models (LLMs) demonstrate their reasoning ability through chain-of-thought (CoT) generation. However, LLM's autoregressive decoding may limit the ability to revisit and refine earlier tokens in a holistic manner, which can also lead to inefficient exploration for diverse solutions. In this paper, we propose LaDiR (Latent Diffusion Reasoner), a novel reasoning framework that unifies the expressiveness of continuous latent representation with the iterative refinement capabilities of latent diffusion models for an existing LLM. We first construct a structured latent reasoning space using a Variational Autoencoder (VAE) that encodes text reasoning steps into blocks of thought tokens, preserving semantic information and interpretability while offering compact but expressive representations. Subsequently, we utilize a latent diffusion model that learns to denoise a block of latent thought tokens with a blockwise bidirectional attention mask, enabling longer horizon and iterative refinement with adaptive test-time compute. This design allows efficient parallel generation of diverse reasoning trajectories, allowing the model to plan and revise the reasoning process holistically. We conduct evaluations on a suite of mathematical reasoning and planning benchmarks. Empirical results show that LaDiR consistently improves accuracy, diversity, and interpretability over existing autoregressive, diffusion-based, and latent reasoning methods, revealing a new paradigm for text reasoning with latent diffusion.
♻ ☆ Inoculation Prompting: Eliciting traits from LLMs during training can suppress them at test-time ICLR 2026
Language model finetuning often results in learning undesirable traits in combination with desired ones. To address this, we propose inoculation prompting: modifying finetuning data by prepending a short system-prompt instruction that deliberately elicits the undesirable trait. At test time, we evaluate without the instruction; inoculated models have much lower expression of the trait than models trained with unmodified training data. Inoculation is selective: in a toy setting where assistant responses are always in Spanish and ALL-CAPS, an appropriate inoculation (e.g., ``You always speak in Spanish.'') teaches the model to capitalize responses while still responding in English. We find that inoculation is also effective across several additional settings: reducing emergent misalignment (EM) from task-specific finetuning, defending against backdoor injections, and mitigating the transmission of traits via subliminal learning. Follow-up analysis suggests a mechanism: making a trait less surprising via inoculation reduces optimization pressure to globally update the model, thereby reducing the degree of generalization. Our analysis relates to prior work on EM: inoculation explains prior findings that educational contexts mitigate EM from insecure code. Beyond demonstrating a simple and effective technique for selective learning, our results contribute to a better conceptual understanding of how and why language models generalize.
comment: 40 pages, 22 figures In proceedings at ICLR 2026
♻ ☆ Generating High-Quality Datasets for Code Editing via Open-Source Language Models
Code editing plays a vital role in software engineering, requiring developers to adjust existing code according to natural language instructions while keeping functionality intact and avoiding unnecessary modifications. However, commit-based datasets commonly used for this task are often noisy, lack diversity, and fail to reflect the style of real-world edit instructions. To address this, we introduce OpenCodeEdit, an open-source pipeline that leverages multiple LLMs to synthesize realistic code-edit triplets. The pipeline produces both concise "lazy" instructions and more detailed "descriptive" ones, and applies filtering based on diffs and topics to guarantee data quality and variety. Using this process, we construct OCEDataFT, a curated dataset of 20K samples. Fine-tuning three advanced base models on OCEDataFT leads to significant performance boosts on the CanItEdit benchmark, with relative pass@1 improvements ranging from 4.50% to 20.79%. Notably, the resulting models achieve performance close to closed-source systems, narrowing the gap to GPT-4 to just 3.54%, without relying on proprietary resources or manual annotation.
comment: 23 pages, 8 figures
♻ ☆ Epistemic Diversity and Knowledge Collapse in Large Language Models
Large language models (LLMs) tend to generate lexically, semantically, and stylistically homogenous texts. This poses a risk of knowledge collapse, where homogenous LLMs mediate a shrinking in the range of accessible information over time. Existing works on homogenization are limited by a focus on closed-ended multiple-choice setups or fuzzy semantic features, and do not look at trends across time and cultural contexts. To overcome this, we present a new methodology to measure epistemic diversity, i.e., variation in real-world claims in LLM outputs, which we use to perform a broad empirical study of LLM knowledge collapse. We test 27 LLMs, 155 topics covering 12 countries, and 200 prompt variations sourced from real user chats. For the topics in our study, we show that while newer models tend to generate more diverse claims, nearly all models are less epistemically diverse than a basic web search. We find that model size has a negative impact on epistemic diversity, while retrieval-augmented generation (RAG) has a positive impact, though the improvement from RAG varies by the cultural context. Finally, compared to a traditional knowledge source (Wikipedia), we find that country-specific claims reflect the English language more than the local one, highlighting a gap in epistemic representation
comment: 16 pages; 8 figures, 4 tables v2 changelog: Fixed the modeling for table 3, random effect is the model version
Machine Learning 5
♻ ☆ AWARE, Beyond Sentence Boundaries: A Contextual Transformer Framework for Identifying Cultural Capital in STEM Narratives
Identifying cultural capital (CC) themes in student reflections can offer valuable insights that help foster equitable learning environments in classrooms. However, themes such as aspirational goals or family support are often woven into narratives, rather than appearing as direct keywords. This makes them difficult to detect for standard NLP models that process sentences in isolation. The core challenge stems from a lack of awareness, as standard models are pre-trained on general corpora, leaving them blind to the domain-specific language and narrative context inherent to the data. To address this, we introduce AWARE, a framework that systematically attempts to improve a transformer model's awareness for this nuanced task. AWARE has three core components: 1) Domain Awareness, adapting the model's vocabulary to the linguistic style of student reflections; 2) Context Awareness, generating sentence embeddings that are aware of the full essay context; and 3) Class Overlap Awareness, employing a multi-label strategy to recognize the coexistence of themes in a single sentence. Our results show that by making the model explicitly aware of the properties of the input, AWARE outperforms a strong baseline by 2.1 percentage points in Macro-F1 and shows considerable improvements across all themes. This work provides a robust and generalizable methodology for any text classification task in which meaning depends on the context of the narrative.
♻ ☆ A Deterministic Information Bottleneck Method for Clustering Mixed-Type Data
In this paper, we present an information-theoretic method for clustering mixed-type data, that is, data consisting of both continuous and categorical variables. The proposed approach extends the Information Bottleneck principle to heterogeneous data through generalised product kernels, integrating continuous, nominal, and ordinal variables within a unified optimization framework. We address the following challenges: developing a systematic bandwidth selection strategy that equalises contributions across variable types, and proposing an adaptive hyperparameter updating scheme that ensures a valid solution into a predetermined number of potentially imbalanced clusters. Through simulations on 28,800 synthetic data sets and ten publicly available benchmarks, we demonstrate that the proposed method, named DIBmix, achieves superior performance compared to four established methods (KAMILA, K-Prototypes, FAMD with K-Means, and PAM with Gower's dissimilarity). Results show DIBmix particularly excels when clusters exhibit size imbalances, data contain low or moderate cluster overlap, and categorical and continuous variables are equally represented. The method presents a significant advantage over traditional centroid-based algorithms, establishing DIBmix as a competitive and theoretically grounded alternative for mixed-type data clustering.
comment: 33 pages
♻ ☆ DP-HYPE: Distributed Differentially Private Hyperparameter Search
The tuning of hyperparameters in distributed machine learning can substantially impact model performance. When the hyperparameters are tuned on sensitive data, privacy becomes an important challenge and to this end, differential privacy has emerged as the de facto standard for provable privacy. A standard setting when performing distributed learning tasks is that clients agree on a shared setup, i.e., find a compromise from a set of hyperparameters, like the learning rate of the model to be trained. Yet, prior work on differentially private hyperparameter tuning either uses computationally expensive cryptographic protocols, determines hyperparameters separately for each client, or applies differential privacy locally, which can lead to undesirable utility-privacy trade-offs. In this work, we present our algorithm DP-HYPE, which performs a distributed and privacy-preserving hyperparameter search by conducting a distributed voting based on local hyperparameter evaluations of clients. In this way, DP-HYPE selects hyperparameters that lead to a compromise supported by the majority of clients, while maintaining scalability and independence from specific learning tasks. We prove that DP-HYPE preserves the strong notion of differential privacy called client-level differential privacy and, importantly, show that its privacy guarantees do not depend on the number of hyperparameters. We also provide bounds on its utility guarantees, that is, the probability of reaching a compromise, and implement DP-HYPE as a submodule in the popular Flower framework for distributed machine learning. In addition, we evaluate performance on multiple benchmark data sets in iid as well as multiple non-iid settings and demonstrate high utility of DP-HYPE even under small privacy budgets.
♻ ☆ LaDiR: Latent Diffusion Enhances LLMs for Text Reasoning
Large Language Models (LLMs) demonstrate their reasoning ability through chain-of-thought (CoT) generation. However, LLM's autoregressive decoding may limit the ability to revisit and refine earlier tokens in a holistic manner, which can also lead to inefficient exploration for diverse solutions. In this paper, we propose LaDiR (Latent Diffusion Reasoner), a novel reasoning framework that unifies the expressiveness of continuous latent representation with the iterative refinement capabilities of latent diffusion models for an existing LLM. We first construct a structured latent reasoning space using a Variational Autoencoder (VAE) that encodes text reasoning steps into blocks of thought tokens, preserving semantic information and interpretability while offering compact but expressive representations. Subsequently, we utilize a latent diffusion model that learns to denoise a block of latent thought tokens with a blockwise bidirectional attention mask, enabling longer horizon and iterative refinement with adaptive test-time compute. This design allows efficient parallel generation of diverse reasoning trajectories, allowing the model to plan and revise the reasoning process holistically. We conduct evaluations on a suite of mathematical reasoning and planning benchmarks. Empirical results show that LaDiR consistently improves accuracy, diversity, and interpretability over existing autoregressive, diffusion-based, and latent reasoning methods, revealing a new paradigm for text reasoning with latent diffusion.
♻ ☆ TranSUN: A Preemptive Paradigm to Eradicate Retransformation Bias Intrinsically from Regression Models in Recommender Systems NeurIPS 2025
Regression models are crucial in recommender systems. However, retransformation bias problem has been conspicuously neglected within the community. While many works in other fields have devised effective bias correction methods, all of them are post-hoc cures externally to the model, facing practical challenges when applied to real-world recommender systems. Hence, we propose a preemptive paradigm to eradicate the bias intrinsically from the models via minor model refinement. Specifically, a novel TranSUN method is proposed with a joint bias learning manner to offer theoretically guaranteed unbiasedness under empirical superior convergence. It is further generalized into a novel generic regression model family, termed Generalized TranSUN (GTS), which not only offers more theoretical insights but also serves as a generic framework for flexibly developing various bias-free models. Comprehensive experimental results demonstrate the superiority of our methods across data from various domains, which have been successfully deployed in two real-world industrial recommendation scenarios, i.e. product and short video recommendation scenarios in Guess What You Like business domain in the homepage of Taobao App (a leading e-commerce platform with DAU > 300M), to serve the major online traffic.
comment: 37 pages, 6 figures, NeurIPS 2025 Poster
Graphics 2
♻ ☆ Neon: Negative Extrapolation From Self-Training Improves Image Generation
Scaling generative AI models is bottlenecked by the scarcity of high-quality training data. The ease of synthesizing from a generative model suggests using (unverified) synthetic data to augment a limited corpus of real data for the purpose of fine-tuning in the hope of improving performance. Unfortunately, however, the resulting positive feedback loop leads to model autophagy disorder (MAD, aka model collapse) that results in a rapid degradation in sample quality and/or diversity. In this paper, we introduce Neon (for Negative Extrapolation frOm self-traiNing), a new learning method that turns the degradation from self-training into a powerful signal for self-improvement. Given a base model, Neon first fine-tunes it on its own self-synthesized data but then, counterintuitively, reverses its gradient updates to extrapolate away from the degraded weights. We prove that Neon works because typical inference samplers that favor high-probability regions create a predictable anti-alignment between the synthetic and real data population gradients, which negative extrapolation corrects to better align the model with the true data distribution. Neon is remarkably easy to implement via a simple post-hoc merge that requires no new real data, works effectively with as few as 1k synthetic samples, and typically uses less than 1% additional training compute. We demonstrate Neon's universality across a range of architectures (diffusion, flow matching, autoregressive, and inductive moment matching models) and datasets (ImageNet, CIFAR-10, and FFHQ). In particular, on ImageNet 256x256, Neon elevates the xAR-L model to a new state-of-the-art FID of 1.02 with only 0.36% additional training compute. Code is available at https://github.com/VITA-Group/Neon
♻ ☆ HiMat: DiT-based Ultra-High Resolution SVBRDF Generation
Creating ultra-high-resolution spatially varying bidirectional reflectance functions (SVBRDFs) is critical for photorealistic 3D content creation, to faithfully represent fine-scale surface details required for close-up rendering. However, achieving 4K generation faces two key challenges: (1) the need to synthesize multiple reflectance maps at full resolution, which multiplies the pixel budget and imposes prohibitive memory and computational cost, and (2) the requirement to maintain strong pixel-level alignment across maps at 4K, which is particularly difficult when adapting pretrained models designed for the RGB image domain. We introduce HiMat, a diffusion-based framework tailored for efficient and diverse 4K SVBRDF generation. To address the first challenge, HiMat performs generation in a high-compression latent space via DC-AE, and employs a pretrained diffusion transformer with linear attention to improve per-map efficiency. To address the second challenge, we propose CrossStitch, a lightweight convolutional module that enforces cross-map consistency without incurring the cost of global attention. Our experiments show that HiMat achieves high-fidelity 4K SVBRDF generation with superior efficiency, structural consistency, and diversity compared to prior methods. Beyond materials, our framework also generalizes to related applications such as intrinsic decomposition.
Computer Vision and Pattern Recognition 128
☆ Pulp Motion: Framing-aware multimodal camera and human motion generation
Treating human motion and camera trajectory generation separately overlooks a core principle of cinematography: the tight interplay between actor performance and camera work in the screen space. In this paper, we are the first to cast this task as a text-conditioned joint generation, aiming to maintain consistent on-screen framing while producing two heterogeneous, yet intrinsically linked, modalities: human motion and camera trajectories. We propose a simple, model-agnostic framework that enforces multimodal coherence via an auxiliary modality: the on-screen framing induced by projecting human joints onto the camera. This on-screen framing provides a natural and effective bridge between modalities, promoting consistency and leading to more precise joint distribution. We first design a joint autoencoder that learns a shared latent space, together with a lightweight linear transform from the human and camera latents to a framing latent. We then introduce auxiliary sampling, which exploits this linear transform to steer generation toward a coherent framing modality. To support this task, we also introduce the PulpMotion dataset, a human-motion and camera-trajectory dataset with rich captions, and high-quality human motions. Extensive experiments across DiT- and MAR-based architectures show the generality and effectiveness of our method in generating on-frame coherent human-camera motions, while also achieving gains on textual alignment for both modalities. Our qualitative results yield more cinematographically meaningful framings setting the new state of the art for this task. Code, models and data are available in our \href{https://www.lix.polytechnique.fr/vista/projects/2025_pulpmotion_courant/}{project page}.
comment: Project page: https://www.lix.polytechnique.fr/vista/projects/2025_pulpmotion_courant/
☆ Paper2Video: Automatic Video Generation from Scientific Papers
Academic presentation videos have become an essential medium for research communication, yet producing them remains highly labor-intensive, often requiring hours of slide design, recording, and editing for a short 2 to 10 minutes video. Unlike natural video, presentation video generation involves distinctive challenges: inputs from research papers, dense multi-modal information (text, figures, tables), and the need to coordinate multiple aligned channels such as slides, subtitles, speech, and human talker. To address these challenges, we introduce PaperTalker, the first benchmark of 101 research papers paired with author-created presentation videos, slides, and speaker metadata. We further design four tailored evaluation metrics--Meta Similarity, PresentArena, PresentQuiz, and IP Memory--to measure how videos convey the paper's information to the audience. Building on this foundation, we propose PaperTalker, the first multi-agent framework for academic presentation video generation. It integrates slide generation with effective layout refinement by a novel effective tree search visual choice, cursor grounding, subtitling, speech synthesis, and talking-head rendering, while parallelizing slide-wise generation for efficiency. Experiments on Paper2Video demonstrate that the presentation videos produced by our approach are more faithful and informative than existing baselines, establishing a practical step toward automated and ready-to-use academic video generation. Our dataset, agent, and code are available at https://github.com/showlab/Paper2Video.
comment: 20 pages, 8 figures
☆ VChain: Chain-of-Visual-Thought for Reasoning in Video Generation
Recent video generation models can produce smooth and visually appealing clips, but they often struggle to synthesize complex dynamics with a coherent chain of consequences. Accurately modeling visual outcomes and state transitions over time remains a core challenge. In contrast, large language and multimodal models (e.g., GPT-4o) exhibit strong visual state reasoning and future prediction capabilities. To bridge these strengths, we introduce VChain, a novel inference-time chain-of-visual-thought framework that injects visual reasoning signals from multimodal models into video generation. Specifically, VChain contains a dedicated pipeline that leverages large multimodal models to generate a sparse set of critical keyframes as snapshots, which are then used to guide the sparse inference-time tuning of a pre-trained video generator only at these key moments. Our approach is tuning-efficient, introduces minimal overhead and avoids dense supervision. Extensive experiments on complex, multi-step scenarios show that VChain significantly enhances the quality of generated videos.
comment: Project page: https://eyeline-labs.github.io/VChain Code: https://github.com/Eyeline-Labs/VChain
☆ Character Mixing for Video Generation
Imagine Mr. Bean stepping into Tom and Jerry--can we generate videos where characters interact naturally across different worlds? We study inter-character interaction in text-to-video generation, where the key challenge is to preserve each character's identity and behaviors while enabling coherent cross-context interaction. This is difficult because characters may never have coexisted and because mixing styles often causes style delusion, where realistic characters appear cartoonish or vice versa. We introduce a framework that tackles these issues with Cross-Character Embedding (CCE), which learns identity and behavioral logic across multimodal sources, and Cross-Character Augmentation (CCA), which enriches training with synthetic co-existence and mixed-style data. Together, these techniques allow natural interactions between previously uncoexistent characters without losing stylistic fidelity. Experiments on a curated benchmark of cartoons and live-action series with 10 characters show clear improvements in identity preservation, interaction quality, and robustness to style delusion, enabling new forms of generative storytelling.Additional results and videos are available on our project page: https://tingtingliao.github.io/mimix/.
☆ Factuality Matters: When Image Generation and Editing Meet Structured Visuals
While modern visual generation models excel at creating aesthetically pleasing natural images, they struggle with producing or editing structured visuals like charts, diagrams, and mathematical figures, which demand composition planning, text rendering, and multimodal reasoning for factual fidelity. To address this, we present the first comprehensive, systematic investigation of this domain, encompassing data construction, model training, and an evaluation benchmark. First, we construct a large-scale dataset of 1.3 million high-quality structured image pairs derived from executable drawing programs and augmented with chain-of-thought reasoning annotations. Building on it, we train a unified model that integrates a VLM with FLUX.1 Kontext via a lightweight connector for enhanced multimodal understanding. A three-stage training curriculum enables progressive feature alignment, knowledge infusion, and reasoning-augmented generation, further boosted by an external reasoner at inference time. Finally, we introduce StructBench, a novel benchmark for generation and editing with over 1,700 challenging instances, and an accompanying evaluation metric, StructScore, which employs a multi-round Q\&A protocol to assess fine-grained factual accuracy. Evaluations of 15 models reveal that even leading closed-source systems remain far from satisfactory. Our model attains strong editing performance, and inference-time reasoning yields consistent gains across diverse architectures. By releasing the dataset, model, and benchmark, we aim to advance unified multimodal foundations for structured visuals.
comment: Project page: https://structvisuals.github.io
☆ SAEdit: Token-level control for continuous image editing via Sparse AutoEncoder
Large-scale text-to-image diffusion models have become the backbone of modern image editing, yet text prompts alone do not offer adequate control over the editing process. Two properties are especially desirable: disentanglement, where changing one attribute does not unintentionally alter others, and continuous control, where the strength of an edit can be smoothly adjusted. We introduce a method for disentangled and continuous editing through token-level manipulation of text embeddings. The edits are applied by manipulating the embeddings along carefully chosen directions, which control the strength of the target attribute. To identify such directions, we employ a Sparse Autoencoder (SAE), whose sparse latent space exposes semantically isolated dimensions. Our method operates directly on text embeddings without modifying the diffusion process, making it model agnostic and broadly applicable to various image synthesis backbones. Experiments show that it enables intuitive and efficient manipulations with continuous control across diverse attributes and domains.
comment: Project page at: https://ronen94.github.io/SAEdit/
☆ Neuroplastic Modular Framework: Cross-Domain Image Classification of Garbage and Industrial Surfaces
Efficient and accurate classification of waste and industrial surface defects is essential for ensuring sustainable waste management and maintaining high standards in quality control. This paper introduces the Neuroplastic Modular Classifier, a novel hybrid architecture designed for robust and adaptive image classification in dynamic environments. The model combines a ResNet-50 backbone for localized feature extraction with a Vision Transformer (ViT) to capture global semantic context. Additionally, FAISS-based similarity retrieval is incorporated to provide a memory-like reference to previously encountered data, enriching the model's feature space. A key innovation of our architecture is the neuroplastic modular design composed of expandable, learnable blocks that dynamically grow during training when performance plateaus. Inspired by biological learning systems, this mechanism allows the model to adapt to data complexity over time, improving generalization. Beyond garbage classification, we validate the model on the Kolektor Surface Defect Dataset 2 (KolektorSDD2), which involves industrial defect detection on metal surfaces. Experimental results across domains show that the proposed architecture outperforms traditional static models in both accuracy and adaptability. The Neuroplastic Modular Classifier offers a scalable, high-performance solution for real-world image classification, with strong applicability in both environmental and industrial domains.
☆ StaMo: Unsupervised Learning of Generalizable Robot Motion from Compact State Representation
A fundamental challenge in embodied intelligence is developing expressive and compact state representations for efficient world modeling and decision making. However, existing methods often fail to achieve this balance, yielding representations that are either overly redundant or lacking in task-critical information. We propose an unsupervised approach that learns a highly compressed two-token state representation using a lightweight encoder and a pre-trained Diffusion Transformer (DiT) decoder, capitalizing on its strong generative prior. Our representation is efficient, interpretable, and integrates seamlessly into existing VLA-based models, improving performance by 14.3% on LIBERO and 30% in real-world task success with minimal inference overhead. More importantly, we find that the difference between these tokens, obtained via latent interpolation, naturally serves as a highly effective latent action, which can be further decoded into executable robot actions. This emergent capability reveals that our representation captures structured dynamics without explicit supervision. We name our method StaMo for its ability to learn generalizable robotic Motion from compact State representation, which is encoded from static images, challenging the prevalent dependence to learning latent action on complex architectures and video data. The resulting latent actions also enhance policy co-training, outperforming prior methods by 10.4% with improved interpretability. Moreover, our approach scales effectively across diverse data sources, including real-world robot data, simulation, and human egocentric video.
☆ No-reference Quality Assessment of Contrast-distorted Images using Contrast-enhanced Pseudo Reference
Contrast change is an important factor that affects the quality of images. During image capturing, unfavorable lighting conditions can cause contrast change and visual quality loss. While various methods have been proposed to assess the quality of images under different distortions such as blur and noise, contrast distortion has been largely overlooked as its visual impact and properties are different from other conventional types of distortions. In this paper, we propose a no-reference image quality assessment (NR-IQA) metric for contrast-distorted images. Using a set of contrast enhancement algorithms, we aim to generate pseudo-reference images that are visually close to the actual reference image, such that the NR problem is transformed to a Full-reference (FR) assessment with higher accuracy. To this end, a large dataset of contrast-enhanced images is produced to train a classification network that can select the most suitable contrast enhancement algorithm based on image content and distortion for pseudo-reference image generation. Finally, the evaluation is performed in the FR manner to assess the quality difference between the contrast-enhanced (pseudoreference) and degraded images. Performance evaluation of the proposed method on three databases containing contrast distortions (CCID2014, TID2013, and CSIQ), indicates the promising performance of the proposed method.
☆ SegMASt3R: Geometry Grounded Segment Matching NeurIPS 2025
Segment matching is an important intermediate task in computer vision that establishes correspondences between semantically or geometrically coherent regions across images. Unlike keypoint matching, which focuses on localized features, segment matching captures structured regions, offering greater robustness to occlusions, lighting variations, and viewpoint changes. In this paper, we leverage the spatial understanding of 3D foundation models to tackle wide-baseline segment matching, a challenging setting involving extreme viewpoint shifts. We propose an architecture that uses the inductive bias of these 3D foundation models to match segments across image pairs with up to 180 degree view-point change. Extensive experiments show that our approach outperforms state-of-the-art methods, including the SAM2 video propagator and local feature matching methods, by upto 30% on the AUPRC metric, on ScanNet++ and Replica datasets. We further demonstrate benefits of the proposed model on relevant downstream tasks, including 3D instance segmentation and image-goal navigation. Project Page: https://segmast3r.github.io/
comment: Accepted to The Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025) as a Spotlight (top 3.5%)
☆ Video-LMM Post-Training: A Deep Dive into Video Reasoning with Large Multimodal Models
Video understanding represents the most challenging frontier in computer vision, requiring models to reason about complex spatiotemporal relationships, long-term dependencies, and multimodal evidence. The recent emergence of Video-Large Multimodal Models (Video-LMMs), which integrate visual encoders with powerful decoder-based language models, has demonstrated remarkable capabilities in video understanding tasks. However, the critical phase that transforms these models from basic perception systems into sophisticated reasoning engines, post-training, remains fragmented across the literature. This survey provides the first comprehensive examination of post-training methodologies for Video-LMMs, encompassing three fundamental pillars: supervised fine-tuning (SFT) with chain-of-thought, reinforcement learning (RL) from verifiable objectives, and test-time scaling (TTS) through enhanced inference computation. We present a structured taxonomy that clarifies the roles, interconnections, and video-specific adaptations of these techniques, addressing unique challenges such as temporal localization, spatiotemporal grounding, long video efficiency, and multimodal evidence integration. Through systematic analysis of representative methods, we synthesize key design principles, insights, and evaluation protocols while identifying critical open challenges in reward design, scalability, and cost-performance optimization. We further curate essential benchmarks, datasets, and metrics to facilitate rigorous assessment of post-training effectiveness. This survey aims to provide researchers and practitioners with a unified framework for advancing Video-LMM capabilities. Additional resources and updates are maintained at: https://github.com/yunlong10/Awesome-Video-LMM-Post-Training
comment: The 1st version
☆ Exploring the Efficacy of Modified Transfer Learning in Identifying Parkinson's Disease Through Drawn Image Patterns
Parkinson's disease (PD) is a progressive neurodegenerative condition characterized by the death of dopaminergic neurons, leading to various movement disorder symptoms. Early diagnosis of PD is crucial to prevent adverse effects, yet traditional diagnostic methods are often cumbersome and costly. In this study, a machine learning-based approach is proposed using hand-drawn spiral and wave images as potential biomarkers for PD detection. Our methodology leverages convolutional neural networks (CNNs), transfer learning, and attention mechanisms to improve model performance and resilience against overfitting. To enhance the diversity and richness of both spiral and wave categories, the training dataset undergoes augmentation to increase the number of images. The proposed architecture comprises three phases: utilizing pre-trained CNNs, incorporating custom convolutional layers, and ensemble voting. Employing hard voting further enhances performance by aggregating predictions from multiple models. Experimental results show promising accuracy rates. For spiral images, weighted average precision, recall, and F1-score are 90%, and for wave images, they are 96.67%. After combining the predictions through ensemble hard voting, the overall accuracy is 93.3%. These findings underscore the potential of machine learning in early PD diagnosis, offering a non-invasive and cost-effective solution to improve patient outcomes.
comment: 5 pages, 11 figures, published on 2024 2nd International Conference on Information and Communication Technology (ICICT 2024)
☆ Latent Uncertainty Representations for Video-based Driver Action and Intention Recognition
Deep neural networks (DNNs) are increasingly applied to safety-critical tasks in resource-constrained environments, such as video-based driver action and intention recognition. While last layer probabilistic deep learning (LL-PDL) methods can detect out-of-distribution (OOD) instances, their performance varies. As an alternative to last layer approaches, we propose extending pre-trained DNNs with transformation layers to produce multiple latent representations to estimate the uncertainty. We evaluate our latent uncertainty representation (LUR) and repulsively trained LUR (RLUR) approaches against eight PDL methods across four video-based driver action and intention recognition datasets, comparing classification performance, calibration, and uncertainty-based OOD detection. We also contribute 28,000 frame-level action labels and 1,194 video-level intention labels for the NuScenes dataset. Our results show that LUR and RLUR achieve comparable in-distribution classification performance to other LL-PDL approaches. For uncertainty-based OOD detection, LUR matches top-performing PDL methods while being more efficient to train and easier to tune than approaches that require Markov-Chain Monte Carlo sampling or repulsive training procedures.
comment: 16 pages, 8 figures, 7 tables, under submission
☆ Bridging Text and Video Generation: A Survey
Text-to-video (T2V) generation technology holds potential to transform multiple domains such as education, marketing, entertainment, and assistive technologies for individuals with visual or reading comprehension challenges, by creating coherent visual content from natural language prompts. From its inception, the field has advanced from adversarial models to diffusion-based models, yielding higher-fidelity, temporally consistent outputs. Yet challenges persist, such as alignment, long-range coherence, and computational efficiency. Addressing this evolving landscape, we present a comprehensive survey of text-to-video generative models, tracing their development from early GANs and VAEs to hybrid Diffusion-Transformer (DiT) architectures, detailing how these models work, what limitations they addressed in their predecessors, and why shifts toward new architectural paradigms were necessary to overcome challenges in quality, coherence, and control. We provide a systematic account of the datasets, which the surveyed text-to-video models were trained and evaluated on, and, to support reproducibility and assess the accessibility of training such models, we detail their training configurations, including their hardware specifications, GPU counts, batch sizes, learning rates, optimizers, epochs, and other key hyperparameters. Further, we outline the evaluation metrics commonly used for evaluating such models and present their performance across standard benchmarks, while also discussing the limitations of these metrics and the emerging shift toward more holistic, perception-aligned evaluation strategies. Finally, drawing from our analysis, we outline the current open challenges and propose a few promising future directions, laying out a perspective for future researchers to explore and build upon in advancing T2V research and applications.
☆ ActiveMark: on watermarking of visual foundation models via massive activations
Being trained on large and vast datasets, visual foundation models (VFMs) can be fine-tuned for diverse downstream tasks, achieving remarkable performance and efficiency in various computer vision applications. The high computation cost of data collection and training motivates the owners of some VFMs to distribute them alongside the license to protect their intellectual property rights. However, a dishonest user of the protected model's copy may illegally redistribute it, for example, to make a profit. As a consequence, the development of reliable ownership verification tools is of great importance today, since such methods can be used to differentiate between a redistributed copy of the protected model and an independent model. In this paper, we propose an approach to ownership verification of visual foundation models by fine-tuning a small set of expressive layers of a VFM along with a small encoder-decoder network to embed digital watermarks into an internal representation of a hold-out set of input images. Importantly, the watermarks embedded remain detectable in the functional copies of the protected model, obtained, for example, by fine-tuning the VFM for a particular downstream task. Theoretically and experimentally, we demonstrate that the proposed method yields a low probability of false detection of a non-watermarked model and a low probability of false misdetection of a watermarked model.
☆ SSDD: Single-Step Diffusion Decoder for Efficient Image Tokenization
Tokenizers are a key component of state-of-the-art generative image models, extracting the most important features from the signal while reducing data dimension and redundancy. Most current tokenizers are based on KL-regularized variational autoencoders (KL-VAE), trained with reconstruction, perceptual and adversarial losses. Diffusion decoders have been proposed as a more principled alternative to model the distribution over images conditioned on the latent. However, matching the performance of KL-VAE still requires adversarial losses, as well as a higher decoding time due to iterative sampling. To address these limitations, we introduce a new pixel diffusion decoder architecture for improved scaling and training stability, benefiting from transformer components and GAN-free training. We use distillation to replicate the performance of the diffusion decoder in an efficient single-step decoder. This makes SSDD the first diffusion decoder optimized for single-step reconstruction trained without adversarial losses, reaching higher reconstruction quality and faster sampling than KL-VAE. In particular, SSDD improves reconstruction FID from $0.87$ to $0.50$ with $1.4\times$ higher throughput and preserve generation quality of DiTs with $3.8\times$ faster sampling. As such, SSDD can be used as a drop-in replacement for KL-VAE, and for building higher-quality and faster generative models.
☆ Bidirectional Mammogram View Translation with Column-Aware and Implicit 3D Conditional Diffusion
Dual-view mammography, including craniocaudal (CC) and mediolateral oblique (MLO) projections, offers complementary anatomical views crucial for breast cancer diagnosis. However, in real-world clinical workflows, one view may be missing, corrupted, or degraded due to acquisition errors or compression artifacts, limiting the effectiveness of downstream analysis. View-to-view translation can help recover missing views and improve lesion alignment. Unlike natural images, this task in mammography is highly challenging due to large non-rigid deformations and severe tissue overlap in X-ray projections, which obscure pixel-level correspondences. In this paper, we propose Column-Aware and Implicit 3D Diffusion (CA3D-Diff), a novel bidirectional mammogram view translation framework based on conditional diffusion model. To address cross-view structural misalignment, we first design a column-aware cross-attention mechanism that leverages the geometric property that anatomically corresponding regions tend to lie in similar column positions across views. A Gaussian-decayed bias is applied to emphasize local column-wise correlations while suppressing distant mismatches. Furthermore, we introduce an implicit 3D structure reconstruction module that back-projects noisy 2D latents into a coarse 3D feature volume based on breast-view projection geometry. The reconstructed 3D structure is refined and injected into the denoising UNet to guide cross-view generation with enhanced anatomical awareness. Extensive experiments demonstrate that CA3D-Diff achieves superior performance in bidirectional tasks, outperforming state-of-the-art methods in visual fidelity and structural consistency. Furthermore, the synthesized views effectively improve single-view malignancy classification in screening settings, demonstrating the practical value of our method in real-world diagnostics.
comment: BIBM2025 accept, 8 pages, 4 figures
☆ On Structured State-Space Duality
Structured State-Space Duality (SSD) [Dao & Gu, ICML 2024] is an equivalence between a simple Structured State-Space Model (SSM) and a masked attention mechanism. In particular, a state-space model with a scalar-times-identity state matrix is equivalent to a masked self-attention with a $1$-semiseparable causal mask. Consequently, the same sequence transformation (model) has two algorithmic realizations: as a linear-time $O(T)$ recurrence or as a quadratic-time $O(T^2)$ attention. In this note, we formalize and generalize this duality: (i) we extend SSD from the scalar-identity case to general diagonal SSMs (diagonal state matrices); (ii) we show that these diagonal SSMs match the scalar case's training complexity lower bounds while supporting richer dynamics; (iii) we establish a necessary and sufficient condition under which an SSM is equivalent to $1$-semiseparable masked attention; and (iv) we show that such duality fails to extend to standard softmax attention due to rank explosion. Together, these results tighten bridge between recurrent SSMs and Transformers, and widen the design space for expressive yet efficient sequence models.
Unsupervised Active Learning via Natural Feature Progressive Framework
The effectiveness of modern deep learning models is predicated on the availability of large-scale, human-annotated datasets, a process that is notoriously expensive and time-consuming. While Active Learning (AL) offers a strategic solution by labeling only the most informative and representative data, its iterative nature still necessitates significant human involvement. Unsupervised Active Learning (UAL) presents an alternative by shifting the annotation burden to a single, post-selection step. Unfortunately, prevailing UAL methods struggle to achieve state-of-the-art performance. These approaches typically rely on local, gradient-based scoring for sample importance estimation, which not only makes them vulnerable to ambiguous and noisy data but also hinders their capacity to select samples that adequately represent the full data distribution. Moreover, their use of shallow, one-shot linear selection falls short of a true UAL paradigm. In this paper, we propose the Natural Feature Progressive Framework (NFPF), a UAL method that revolutionizes how sample importance is measured. At its core, NFPF employs a Specific Feature Learning Machine (SFLM) to effectively quantify each sample's contribution to model performance. We further utilize the SFLM to define a powerful Reconstruction Difference metric for initial sample selection. Our comprehensive experiments show that NFPF significantly outperforms all established UAL methods and achieves performance on par with supervised AL methods on vision datasets. Detailed ablation studies and qualitative visualizations provide compelling evidence for NFPF's superior performance, enhanced robustness, and improved data distribution coverage.
comment: Under review at IEEE TPAMI
☆ REN: Anatomically-Informed Mixture-of-Experts for Interstitial Lung Disease Diagnosis
Mixture-of-Experts (MoE) architectures have significantly contributed to scalable machine learning by enabling specialized subnetworks to tackle complex tasks efficiently. However, traditional MoE systems lack domain-specific constraints essential for medical imaging, where anatomical structure and regional disease heterogeneity strongly influence pathological patterns. Here, we introduce Regional Expert Networks (REN), the first anatomically-informed MoE framework tailored specifically for medical image classification. REN leverages anatomical priors to train seven specialized experts, each dedicated to distinct lung lobes and bilateral lung combinations, enabling precise modeling of region-specific pathological variations. Multi-modal gating mechanisms dynamically integrate radiomics biomarkers and deep learning (DL) features (CNN, ViT, Mamba) to weight expert contributions optimally. Applied to interstitial lung disease (ILD) classification, REN achieves consistently superior performance: the radiomics-guided ensemble reached an average AUC of 0.8646 +/- 0.0467, a +12.5 percent improvement over the SwinUNETR baseline (AUC 0.7685, p = 0.031). Region-specific experts further revealed that lower-lobe models achieved AUCs of 0.88-0.90, surpassing DL counterparts (CNN: 0.76-0.79) and aligning with known disease progression patterns. Through rigorous patient-level cross-validation, REN demonstrates strong generalizability and clinical interpretability, presenting a scalable, anatomically-guided approach readily extensible to other structured medical imaging applications.
comment: 10 pages, 4 figures, 2 tables
☆ A Semantics-Aware Hierarchical Self-Supervised Approach to Classification of Remote Sensing Images
Deep learning has become increasingly important in remote sensing image classification due to its ability to extract semantic information from complex data. Classification tasks often include predefined label hierarchies that represent the semantic relationships among classes. However, these hierarchies are frequently overlooked, and most approaches focus only on fine-grained classification schemes. In this paper, we present a novel Semantics-Aware Hierarchical Consensus (SAHC) method for learning hierarchical features and relationships by integrating hierarchy-specific classification heads within a deep network architecture, each specialized in different degrees of class granularity. The proposed approach employs trainable hierarchy matrices, which guide the network through the learning of the hierarchical structure in a self-supervised manner. Furthermore, we introduce a hierarchical consensus mechanism to ensure consistent probability distributions across different hierarchical levels. This mechanism acts as a weighted ensemble being able to effectively leverage the inherent structure of the hierarchical classification task. The proposed SAHC method is evaluated on three benchmark datasets with different degrees of hierarchical complexity on different tasks, using distinct backbone architectures to effectively emphasize its adaptability. Experimental results show both the effectiveness of the proposed approach in guiding network learning and the robustness of the hierarchical consensus for remote sensing image classification tasks.
comment: 12 pages, 6 figures
☆ Comparative Analysis of YOLOv5, Faster R-CNN, SSD, and RetinaNet for Motorbike Detection in Kigali Autonomous Driving Context
In Kigali, Rwanda, motorcycle taxis are a primary mode of transportation, often navigating unpredictably and disregarding traffic rules, posing significant challenges for autonomous driving systems. This study compares four object detection models--YOLOv5, Faster R-CNN, SSD, and RetinaNet--for motorbike detection using a custom dataset of 198 images collected in Kigali. Implemented in PyTorch with transfer learning, the models were evaluated for accuracy, localization, and inference speed to assess their suitability for real-time navigation in resource-constrained settings. We identify implementation challenges, including dataset limitations and model complexities, and recommend simplified architectures for future work to enhance accessibility for autonomous systems in developing countries like Rwanda.
comment: 3 figures, 2 tables
☆ CLEAR-IR: Clarity-Enhanced Active Reconstruction of Infrared Imagery
This paper presents a novel approach for enabling robust robotic perception in dark environments using infrared (IR) stream. IR stream is less susceptible to noise than RGB in low-light conditions. However, it is dominated by active emitter patterns that hinder high-level tasks such as object detection, tracking and localisation. To address this, a U-Net-based architecture is proposed that reconstructs clean IR images from emitter-populated input, improving both image quality and downstream robotic performance. This approach outperforms existing enhancement techniques and enables reliable operation of vision-driven robotic systems across illumination conditions from well-lit to extreme low-light scenes.
comment: 8 pages, 8 figures
☆ BenthiCat: An opti-acoustic dataset for advancing benthic classification and habitat mapping IJRR
Benthic habitat mapping is fundamental for understanding marine ecosystems, guiding conservation efforts, and supporting sustainable resource management. Yet, the scarcity of large, annotated datasets limits the development and benchmarking of machine learning models in this domain. This paper introduces a thorough multi-modal dataset, comprising about a million side-scan sonar (SSS) tiles collected along the coast of Catalonia (Spain), complemented by bathymetric maps and a set of co-registered optical images from targeted surveys using an autonomous underwater vehicle (AUV). Approximately \num{36000} of the SSS tiles have been manually annotated with segmentation masks to enable supervised fine-tuning of classification models. All the raw sensor data, together with mosaics, are also released to support further exploration and algorithm development. To address challenges in multi-sensor data fusion for AUVs, we spatially associate optical images with corresponding SSS tiles, facilitating self-supervised, cross-modal representation learning. Accompanying open-source preprocessing and annotation tools are provided to enhance accessibility and encourage research. This resource aims to establish a standardized benchmark for underwater habitat mapping, promoting advancements in autonomous seafloor classification and multi-sensor integration.
comment: Article under review by IJRR
☆ In-Field Mapping of Grape Yield and Quality with Illumination-Invariant Deep Learning
This paper presents an end-to-end, IoT-enabled robotic system for the non-destructive, real-time, and spatially-resolved mapping of grape yield and quality (Brix, Acidity) in vineyards. The system features a comprehensive analytical pipeline that integrates two key modules: a high-performance model for grape bunch detection and weight estimation, and a novel deep learning framework for quality assessment from hyperspectral (HSI) data. A critical barrier to in-field HSI is the ``domain shift" caused by variable illumination. To overcome this, our quality assessment is powered by the Light-Invariant Spectral Autoencoder (LISA), a domain-adversarial framework that learns illumination-invariant features from uncalibrated data. We validated the system's robustness on a purpose-built HSI dataset spanning three distinct illumination domains: controlled artificial lighting (lab), and variable natural sunlight captured in the morning and afternoon. Results show the complete pipeline achieves a recall (0.82) for bunch detection and a $R^2$ (0.76) for weight prediction, while the LISA module improves quality prediction generalization by over 20% compared to the baselines. By combining these robust modules, the system successfully generates high-resolution, georeferenced data of both grape yield and quality, providing actionable, data-driven insights for precision viticulture.
comment: Accepted manuscript for the IEEE Internet of Things Journal. The final version will be available on IEEE Xplore. \c{opyright} 2025 IEEE
☆ μDeepIQA: deep learning-based fast and robust image quality assessment with local predictions for optical microscopy
Optical microscopy is one of the most widely used techniques in research studies for life sciences and biomedicine. These applications require reliable experimental pipelines to extract valuable knowledge from the measured samples and must be supported by image quality assessment (IQA) to ensure correct processing and analysis of the image data. IQA methods are implemented with variable complexity. However, while most quality metrics have a straightforward implementation, they might be time consuming and computationally expensive when evaluating a large dataset. In addition, quality metrics are often designed for well-defined image features and may be unstable for images out of the ideal domain. To overcome these limitations, recent works have proposed deep learning-based IQA methods, which can provide superior performance, increased generalizability and fast prediction. Our method, named $\mathrm{\mu}$DeepIQA, is inspired by previous studies and applies a deep convolutional neural network designed for IQA on natural images to optical microscopy measurements. We retrained the same architecture to predict individual quality metrics and global quality scores for optical microscopy data. The resulting models provide fast and stable predictions of image quality by generalizing quality estimation even outside the ideal range of standard methods. In addition, $\mathrm{\mu}$DeepIQA provides patch-wise prediction of image quality and can be used to visualize spatially varying quality in a single image. Our study demonstrates that optical microscopy-based studies can benefit from the generalizability of deep learning models due to their stable performance in the presence of outliers, the ability to assess small image patches, and rapid predictions.
comment: 16 pages, 6 figures. \mu DeepIQA is publicly available at https://git.photonicdata.science/elena.corbetta/udeepiqa
☆ ERDE: Entropy-Regularized Distillation for Early-exit
Although deep neural networks and in particular Convolutional Neural Networks have demonstrated state-of-the-art performance in image classification with relatively high efficiency, they still exhibit high computational costs, often rendering them impractical for real-time and edge applications. Therefore, a multitude of compression techniques have been developed to reduce these costs while maintaining accuracy. In addition, dynamic architectures have been introduced to modulate the level of compression at execution time, which is a desirable property in many resource-limited application scenarios. The proposed method effectively integrates two well-established optimization techniques: early exits and knowledge distillation, where a reduced student early-exit model is trained from a more complex teacher early-exit model. The primary contribution of this research lies in the approach for training the student early-exit model. In comparison to the conventional Knowledge Distillation loss, our approach incorporates a new entropy-based loss for images where the teacher's classification was incorrect. The proposed method optimizes the trade-off between accuracy and efficiency, thereby achieving significant reductions in computational complexity without compromising classification performance. The validity of this approach is substantiated by experimental results on image classification datasets CIFAR10, CIFAR100 and SVHN, which further opens new research perspectives for Knowledge Distillation in other contexts.
☆ Read the Room: Inferring Social Context Through Dyadic Interaction Recognition in Cyber-physical-social Infrastructure Systems SC
Cyber-physical systems (CPS) integrate sensing, computing, and control to improve infrastructure performance, focusing on economic goals like performance and safety. However, they often neglect potential human-centered (or ''social'') benefits. Cyber-physical-social infrastructure systems (CPSIS) aim to address this by aligning CPS with social objectives. This involves defining social benefits, understanding human interactions with each other and infrastructure, developing privacy-preserving measurement methods, modeling these interactions for prediction, linking them to social benefits, and actuating the physical environment to foster positive social outcomes. This paper delves into recognizing dyadic human interactions using real-world data, which is the backbone to measuring social behavior. This lays a foundation to address the need to enhance understanding of the deeper meanings and mutual responses inherent in human interactions. While RGB cameras are informative for interaction recognition, privacy concerns arise. Depth sensors offer a privacy-conscious alternative by analyzing skeletal movements. This study compares five skeleton-based interaction recognition algorithms on a dataset of 12 dyadic interactions. Unlike single-person datasets, these interactions, categorized into communication types like emblems and affect displays, offer insights into the cultural and emotional aspects of human interactions.
comment: ASCE International Conference on Computing in Civil Engineering 2024
☆ From Actions to Kinesics: Extracting Human Psychological States through Bodily Movements
Understanding the dynamic relationship between humans and the built environment is a key challenge in disciplines ranging from environmental psychology to reinforcement learning (RL). A central obstacle in modeling these interactions is the inability to capture human psychological states in a way that is both generalizable and privacy preserving. Traditional methods rely on theoretical models or questionnaires, which are limited in scope, static, and labor intensive. We present a kinesics recognition framework that infers the communicative functions of human activity -- known as kinesics -- directly from 3D skeleton joint data. Combining a spatial-temporal graph convolutional network (ST-GCN) with a convolutional neural network (CNN), the framework leverages transfer learning to bypass the need for manually defined mappings between physical actions and psychological categories. The approach preserves user anonymity while uncovering latent structures in bodily movements that reflect cognitive and emotional states. Our results on the Dyadic User EngagemenT (DUET) dataset demonstrate that this method enables scalable, accurate, and human-centered modeling of behavior, offering a new pathway for enhancing RL-driven simulations of human-environment interaction.
comment: The 15th International Workshop on Structural Health Monitoring (IWSHM)
☆ Detailed Aerial Mapping of Photovoltaic Power Plants Through Semantically Significant Keypoints
An accurate and up-to-date model of a photovoltaic (PV) power plant is essential for its optimal operation and maintenance. However, such a model may not be easily available. This work introduces a novel approach for PV power plant mapping based on aerial overview images. It enables the automation of the mapping process while removing the reliance on third-party data. The presented mapping method takes advantage of the structural layout of the power plants to achieve detailed modeling down to the level of individual PV modules. The approach relies on visual segmentation of PV modules in overview images and the inference of structural information in each image, assigning modules to individual benches, rows, and columns. We identify visual keypoints related to the layout and use these to merge detections from multiple images while maintaining their structural integrity. The presented method was experimentally verified and evaluated on two different power plants. The final fusion of 3D positions and semantic structures results in a compact georeferenced model suitable for power plant maintenance.
comment: 10 pages, 18 figures
☆ Beyond Random: Automatic Inner-loop Optimization in Dataset Distillation
The growing demand for efficient deep learning has positioned dataset distillation as a pivotal technique for compressing training dataset while preserving model performance. However, existing inner-loop optimization methods for dataset distillation typically rely on random truncation strategies, which lack flexibility and often yield suboptimal results. In this work, we observe that neural networks exhibit distinct learning dynamics across different training stages-early, middle, and late-making random truncation ineffective. To address this limitation, we propose Automatic Truncated Backpropagation Through Time (AT-BPTT), a novel framework that dynamically adapts both truncation positions and window sizes according to intrinsic gradient behavior. AT-BPTT introduces three key components: (1) a probabilistic mechanism for stage-aware timestep selection, (2) an adaptive window sizing strategy based on gradient variation, and (3) a low-rank Hessian approximation to reduce computational overhead. Extensive experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet-1K show that AT-BPTT achieves state-of-the-art performance, improving accuracy by an average of 6.16% over baseline methods. Moreover, our approach accelerates inner-loop optimization by 3.9x while saving 63% memory cost.
☆ Flow Matching for Conditional MRI-CT and CBCT-CT Image Synthesis
Generating synthetic CT (sCT) from MRI or CBCT plays a crucial role in enabling MRI-only and CBCT-based adaptive radiotherapy, improving treatment precision while reducing patient radiation exposure. To address this task, we adopt a fully 3D Flow Matching (FM) framework, motivated by recent work demonstrating FM's efficiency in producing high-quality images. In our approach, a Gaussian noise volume is transformed into an sCT image by integrating a learned FM velocity field, conditioned on features extracted from the input MRI or CBCT using a lightweight 3D encoder. We evaluated the method on the SynthRAD2025 Challenge benchmark, training separate models for MRI $\rightarrow$ sCT and CBCT $\rightarrow$ sCT across three anatomical regions: abdomen, head and neck, and thorax. Validation and testing were performed through the challenge submission system. The results indicate that the method accurately reconstructs global anatomical structures; however, preservation of fine details was limited, primarily due to the relatively low training resolution imposed by memory and runtime constraints. Future work will explore patch-based training and latent-space flow models to improve resolution and local structural fidelity.
☆ AvatarVTON: 4D Virtual Try-On for Animatable Avatars
We propose AvatarVTON, the first 4D virtual try-on framework that generates realistic try-on results from a single in-shop garment image, enabling free pose control, novel-view rendering, and diverse garment choices. Unlike existing methods, AvatarVTON supports dynamic garment interactions under single-view supervision, without relying on multi-view garment captures or physics priors. The framework consists of two key modules: (1) a Reciprocal Flow Rectifier, a prior-free optical-flow correction strategy that stabilizes avatar fitting and ensures temporal coherence; and (2) a Non-Linear Deformer, which decomposes Gaussian maps into view-pose-invariant and view-pose-specific components, enabling adaptive, non-linear garment deformations. To establish a benchmark for 4D virtual try-on, we extend existing baselines with unified modules for fair qualitative and quantitative comparisons. Extensive experiments show that AvatarVTON achieves high fidelity, diversity, and dynamic garment realism, making it well-suited for AR/VR, gaming, and digital-human applications.
☆ Visual Representations inside the Language Model
Despite interpretability work analyzing VIT encoders and transformer activations, we don't yet understand why Multimodal Language Models (MLMs) struggle on perception-heavy tasks. We offer an under-studied perspective by examining how popular MLMs (LLaVA-OneVision, Qwen2.5-VL, and Llama-3-LLaVA-NeXT) process their visual key-value tokens. We first study the flow of visual information through the language model, finding that image value tokens encode sufficient information to perform several perception-heavy tasks zero-shot: segmentation, semantic correspondence, temporal correspondence, and referring expression detection. We find that while the language model does augment the visual information received from the projection of input visual encodings-which we reveal correlates with overall MLM perception capability-it contains less visual information on several tasks than the equivalent visual encoder (SigLIP) that has not undergone MLM finetuning. Further, we find that the visual information corresponding to input-agnostic image key tokens in later layers of language models contains artifacts which reduce perception capability of the overall MLM. Next, we discuss controlling visual information in the language model, showing that adding a text prefix to the image input improves perception capabilities of visual representations. Finally, we reveal that if language models were able to better control their visual information, their perception would significantly improve; e.g., in 33.3% of Art Style questions in the BLINK benchmark, perception information present in the language model is not surfaced to the output! Our findings reveal insights into the role of key-value tokens in multimodal systems, paving the way for deeper mechanistic interpretability of MLMs and suggesting new directions for training their visual encoder and language model components.
comment: Accepted to COLM 2025
☆ Did you just see that? Arbitrary view synthesis for egocentric replay of operating room workflows from ambient sensors
Observing surgical practice has historically relied on fixed vantage points or recollections, leaving the egocentric visual perspectives that guide clinical decisions undocumented. Fixed-camera video can capture surgical workflows at the room-scale, but cannot reconstruct what each team member actually saw. Thus, these videos only provide limited insights into how decisions that affect surgical safety, training, and workflow optimization are made. Here we introduce EgoSurg, the first framework to reconstruct the dynamic, egocentric replays for any operating room (OR) staff directly from wall-mounted fixed-camera video, and thus, without intervention to clinical workflow. EgoSurg couples geometry-driven neural rendering with diffusion-based view enhancement, enabling high-visual fidelity synthesis of arbitrary and egocentric viewpoints at any moment. In evaluation across multi-site surgical cases and controlled studies, EgoSurg reconstructs person-specific visual fields and arbitrary viewpoints with high visual quality and fidelity. By transforming existing OR camera infrastructure into a navigable dynamic 3D record, EgoSurg establishes a new foundation for immersive surgical data science, enabling surgical practice to be visualized, experienced, and analyzed from every angle.
☆ A Comparative Study of Vision Transformers and CNNs for Few-Shot Rigid Transformation and Fundamental Matrix Estimation
Vision-transformers (ViTs) and large-scale convolution-neural-networks (CNNs) have reshaped computer vision through pretrained feature representations that enable strong transfer learning for diverse tasks. However, their efficiency as backbone architectures for geometric estimation tasks involving image deformations in low-data regimes remains an open question. This work considers two such tasks: 1) estimating 2D rigid transformations between pairs of images and 2) predicting the fundamental matrix for stereo image pairs, an important problem in various applications, such as autonomous mobility, robotics, and 3D scene reconstruction. Addressing this intriguing question, this work systematically compares large-scale CNNs (ResNet, EfficientNet, CLIP-ResNet) with ViT-based foundation models (CLIP-ViT variants and DINO) in various data size settings, including few-shot scenarios. These pretrained models are optimized for classification or contrastive learning, encouraging them to focus mostly on high-level semantics. The considered tasks require balancing local and global features differently, challenging the straightforward adoption of these models as the backbone. Empirical comparative analysis shows that, similar to training from scratch, ViTs outperform CNNs during refinement in large downstream-data scenarios. However, in small data scenarios, the inductive bias and smaller capacity of CNNs improve their performance, allowing them to match that of a ViT. Moreover, ViTs exhibit stronger generalization in cross-domain evaluation where the data distribution changes. These results emphasize the importance of carefully selecting model architectures for refinement, motivating future research towards hybrid architectures that balance local and global representations.
☆ Hands-Free Heritage: Automated 3D Scanning for Cultural Heritage Digitization
High-fidelity 3D scanning is essential for preserving cultural heritage artefacts, supporting documentation, analysis, and long-term conservation. However, conventional methods typically require specialized expertise and manual intervention to maintain optimal scanning conditions and coverage. We present an automated two-robot scanning system that eliminates the need for handheld or semi-automatic workflows by combining coordinated robotic manipulation with high-resolution 3D scanning. Our system parameterizes the scanning space into distinct regions, enabling coordinated motion planning between a scanner-equipped robot and a tray-handling robot. Optimized trajectory planning and waypoint distribution ensure comprehensive surface coverage, minimize occlusions, and balance reconstruction accuracy with system efficiency. Experimental results show that our approach achieves significantly lower Chamfer Distance and higher F-score compared to baseline methods, offering superior geometric accuracy, improved digitization efficiency, and reduced reliance on expert operators.
comment: 9 pages
☆ Federated Learning for Surgical Vision in Appendicitis Classification: Results of the FedSurg EndoVis 2024 Challenge
Purpose: The FedSurg challenge was designed to benchmark the state of the art in federated learning for surgical video classification. Its goal was to assess how well current methods generalize to unseen clinical centers and adapt through local fine-tuning while enabling collaborative model development without sharing patient data. Methods: Participants developed strategies to classify inflammation stages in appendicitis using a preliminary version of the multi-center Appendix300 video dataset. The challenge evaluated two tasks: generalization to an unseen center and center-specific adaptation after fine-tuning. Submitted approaches included foundation models with linear probing, metric learning with triplet loss, and various FL aggregation schemes (FedAvg, FedMedian, FedSAM). Performance was assessed using F1-score and Expected Cost, with ranking robustness evaluated via bootstrapping and statistical testing. Results: In the generalization task, performance across centers was limited. In the adaptation task, all teams improved after fine-tuning, though ranking stability was low. The ViViT-based submission achieved the strongest overall performance. The challenge highlighted limitations in generalization, sensitivity to class imbalance, and difficulties in hyperparameter tuning in decentralized training, while spatiotemporal modeling and context-aware preprocessing emerged as promising strategies. Conclusion: The FedSurg Challenge establishes the first benchmark for evaluating FL strategies in surgical video classification. Findings highlight the trade-off between local personalization and global robustness, and underscore the importance of architecture choice, preprocessing, and loss design. This benchmarking offers a reference point for future development of imbalance-aware, adaptive, and robust FL methods in clinical surgical AI.
comment: A challenge report pre-print (31 pages), including 7 tables and 8 figures
☆ Beyond the Seen: Bounded Distribution Estimation for Open-Vocabulary Learning
Open-vocabulary learning requires modeling the data distribution in open environments, which consists of both seen-class and unseen-class data. Existing methods estimate the distribution in open environments using seen-class data, where the absence of unseen classes makes the estimation error inherently unidentifiable. Intuitively, learning beyond the seen classes is crucial for distribution estimation to bound the estimation error. We theoretically demonstrate that the distribution can be effectively estimated by generating unseen-class data, through which the estimation error is upper-bounded. Building on this theoretical insight, we propose a novel open-vocabulary learning method, which generates unseen-class data for estimating the distribution in open environments. The method consists of a class-domain-wise data generation pipeline and a distribution alignment algorithm. The data generation pipeline generates unseen-class data under the guidance of a hierarchical semantic tree and domain information inferred from the seen-class data, facilitating accurate distribution estimation. With the generated data, the distribution alignment algorithm estimates and maximizes the posterior probability to enhance generalization in open-vocabulary learning. Extensive experiments on $11$ datasets demonstrate that our method outperforms baseline approaches by up to $14\%$, highlighting its effectiveness and superiority.
☆ Progressive Gaussian Transformer with Anisotropy-aware Sampling for Open Vocabulary Occupancy Prediction
The 3D occupancy prediction task has witnessed remarkable progress in recent years, playing a crucial role in vision-based autonomous driving systems. While traditional methods are limited to fixed semantic categories, recent approaches have moved towards predicting text-aligned features to enable open-vocabulary text queries in real-world scenes. However, there exists a trade-off in text-aligned scene modeling: sparse Gaussian representation struggles to capture small objects in the scene, while dense representation incurs significant computational overhead. To address these limitations, we present PG-Occ, an innovative Progressive Gaussian Transformer Framework that enables open-vocabulary 3D occupancy prediction. Our framework employs progressive online densification, a feed-forward strategy that gradually enhances the 3D Gaussian representation to capture fine-grained scene details. By iteratively enhancing the representation, the framework achieves increasingly precise and detailed scene understanding. Another key contribution is the introduction of an anisotropy-aware sampling strategy with spatio-temporal fusion, which adaptively assigns receptive fields to Gaussians at different scales and stages, enabling more effective feature aggregation and richer scene information capture. Through extensive evaluations, we demonstrate that PG-Occ achieves state-of-the-art performance with a relative 14.3% mIoU improvement over the previous best performing method. Code and pretrained models will be released upon publication on our project page: https://yanchi-3dv.github.io/PG-Occ
comment: Project Page: https://yanchi-3dv.github.io/PG-Occ
☆ Beyond Appearance: Transformer-based Person Identification from Conversational Dynamics
This paper investigates the performance of transformer-based architectures for person identification in natural, face-to-face conversation scenario. We implement and evaluate a two-stream framework that separately models spatial configurations and temporal motion patterns of 133 COCO WholeBody keypoints, extracted from a subset of the CANDOR conversational corpus. Our experiments compare pre-trained and from-scratch training, investigate the use of velocity features, and introduce a multi-scale temporal transformer for hierarchical motion modeling. Results demonstrate that domain-specific training significantly outperforms transfer learning, and that spatial configurations carry more discriminative information than temporal dynamics. The spatial transformer achieves 95.74% accuracy, while the multi-scale temporal transformer achieves 93.90%. Feature-level fusion pushes performance to 98.03%, confirming that postural and dynamic information are complementary. These findings highlight the potential of transformer architectures for person identification in natural interactions and provide insights for future multimodal and cross-cultural studies.
☆ Anomaly-Aware YOLO: A Frugal yet Robust Approach to Infrared Small Target Detection
Infrared Small Target Detection (IRSTD) is a challenging task in defense applications, where complex backgrounds and tiny target sizes often result in numerous false alarms using conventional object detectors. To overcome this limitation, we propose Anomaly-Aware YOLO (AA-YOLO), which integrates a statistical anomaly detection test into its detection head. By treating small targets as unexpected patterns against the background, AA-YOLO effectively controls the false alarm rate. Our approach not only achieves competitive performance on several IRSTD benchmarks, but also demonstrates remarkable robustness in scenarios with limited training data, noise, and domain shifts. Furthermore, since only the detection head is modified, our design is highly generic and has been successfully applied across various YOLO backbones, including lightweight models. It also provides promising results when integrated into an instance segmentation YOLO. This versatility makes AA-YOLO an attractive solution for real-world deployments where resources are constrained. The code will be publicly released.
☆ ExposureEngine: Oriented Logo Detection and Sponsor Visibility Analytics in Sports Broadcasts
Quantifying sponsor visibility in sports broadcasts is a critical marketing task traditionally hindered by manual, subjective, and unscalable analysis methods. While automated systems offer an alternative, their reliance on axis-aligned Horizontal Bounding Box (HBB) leads to inaccurate exposuremetrics when logos appear rotated or skewed due to dynamic camera angles and perspective distortions. This paper introduces ExposureEngine, an end-to-end system designed for accurate, rotation-aware sponsor visibility analytics in sports broadcasts, demonstrated in a soccer case study. Our approach predicts Oriented Bounding Box (OBB) to provide a geometrically precise fit to each logo regardless of the orientation on-screen. To train and evaluate our detector, we developed a new dataset comprising 1,103 frames from Swedish elite soccer, featuring 670 unique sponsor logos annotated with OBBs. Our model achieves a mean Average Precision (mAP@0.5) of 0.859, with a precision of 0.96 and recall of 0.87, demonstrating robust performance in localizing logos under diverse broadcast conditions. The system integrates these detections into an analytical pipeline that calculates precise visibility metrics, such as exposure duration and on-screen coverage. Furthermore, we incorporate a language-driven agentic layer, enabling users to generate reports, summaries, and media content through natural language queries. The complete system, including the dataset and the analytics dashboard, provides a comprehensive solution for auditable and interpretable sponsor measurement in sports media. An overview of the ExposureEngine is available online: https://youtu.be/tRw6OBISuW4 .
comment: This work has been submitted to the IEEE for possible publication
☆ Benchmark on Monocular Metric Depth Estimation in Wildlife Setting
Camera traps are widely used for wildlife monitoring, but extracting accurate distance measurements from monocular images remains challenging due to the lack of depth information. While monocular depth estimation (MDE) methods have advanced significantly, their performance in natural wildlife environments has not been systematically evaluated. This work introduces the first benchmark for monocular metric depth estimation in wildlife monitoring conditions. We evaluate four state-of-the-art MDE methods (Depth Anything V2, ML Depth Pro, ZoeDepth, and Metric3D) alongside a geometric baseline on 93 camera trap images with ground truth distances obtained using calibrated ChARUCO patterns. Our results demonstrate that Depth Anything V2 achieves the best overall performance with a mean absolute error of 0.454m and correlation of 0.962, while methods like ZoeDepth show significant degradation in outdoor natural environments (MAE: 3.087m). We find that median-based depth extraction consistently outperforms mean-based approaches across all deep learning methods. Additionally, we analyze computational efficiency, with ZoeDepth being fastest (0.17s per image) but least accurate, while Depth Anything V2 provides an optimal balance of accuracy and speed (0.22s per image). This benchmark establishes performance baselines for wildlife applications and provides practical guidance for implementing depth estimation in conservation monitoring systems.
☆ Object-Centric Representation Learning for Enhanced 3D Scene Graph Prediction NeurIPS 2025
3D Semantic Scene Graph Prediction aims to detect objects and their semantic relationships in 3D scenes, and has emerged as a crucial technology for robotics and AR/VR applications. While previous research has addressed dataset limitations and explored various approaches including Open-Vocabulary settings, they frequently fail to optimize the representational capacity of object and relationship features, showing excessive reliance on Graph Neural Networks despite insufficient discriminative capability. In this work, we demonstrate through extensive analysis that the quality of object features plays a critical role in determining overall scene graph accuracy. To address this challenge, we design a highly discriminative object feature encoder and employ a contrastive pretraining strategy that decouples object representation learning from the scene graph prediction. This design not only enhances object classification accuracy but also yields direct improvements in relationship prediction. Notably, when plugging in our pretrained encoder into existing frameworks, we observe substantial performance improvements across all evaluation metrics. Additionally, whereas existing approaches have not fully exploited the integration of relationship information, we effectively combine both geometric and semantic features to achieve superior relationship prediction. Comprehensive experiments on the 3DSSG dataset demonstrate that our approach significantly outperforms previous state-of-the-art methods. Our code is publicly available at https://github.com/VisualScienceLab-KHU/OCRL-3DSSG-Codes.
comment: Accepted by NeurIPS 2025. Code: https://github.com/VisualScienceLab-KHU/OCRL-3DSSG-Codes
☆ ReactDiff: Fundamental Multiple Appropriate Facial Reaction Diffusion Model
The automatic generation of diverse and human-like facial reactions in dyadic dialogue remains a critical challenge for human-computer interaction systems. Existing methods fail to model the stochasticity and dynamics inherent in real human reactions. To address this, we propose ReactDiff, a novel temporal diffusion framework for generating diverse facial reactions that are appropriate for responding to any given dialogue context. Our key insight is that plausible human reactions demonstrate smoothness, and coherence over time, and conform to constraints imposed by human facial anatomy. To achieve this, ReactDiff incorporates two vital priors (spatio-temporal facial kinematics) into the diffusion process: i) temporal facial behavioral kinematics and ii) facial action unit dependencies. These two constraints guide the model toward realistic human reaction manifolds, avoiding visually unrealistic jitters, unstable transitions, unnatural expressions, and other artifacts. Extensive experiments on the REACT2024 dataset demonstrate that our approach not only achieves state-of-the-art reaction quality but also excels in diversity and reaction appropriateness.
comment: Accepted to ACM Multimedia
☆ ID-Consistent, Precise Expression Generation with Blendshape-Guided Diffusion ICCV
Human-centric generative models designed for AI-driven storytelling must bring together two core capabilities: identity consistency and precise control over human performance. While recent diffusion-based approaches have made significant progress in maintaining facial identity, achieving fine-grained expression control without compromising identity remains challenging. In this work, we present a diffusion-based framework that faithfully reimagines any subject under any particular facial expression. Building on an ID-consistent face foundation model, we adopt a compositional design featuring an expression cross-attention module guided by FLAME blendshape parameters for explicit control. Trained on a diverse mixture of image and video data rich in expressive variation, our adapter generalizes beyond basic emotions to subtle micro-expressions and expressive transitions, overlooked by prior works. In addition, a pluggable Reference Adapter enables expression editing in real images by transferring the appearance from a reference frame during synthesis. Extensive quantitative and qualitative evaluations show that our model outperforms existing methods in tailored and identity-consistent expression generation. Code and models can be found at https://github.com/foivospar/Arc2Face.
comment: ICCVW 2025, Code: https://github.com/foivospar/Arc2Face
☆ Label-Efficient Cross-Modality Generalization for Liver Segmentation in Multi-Phase MRI
Accurate liver segmentation in multi-phase MRI is vital for liver fibrosis assessment, yet labeled data is often scarce and unevenly distributed across imaging modalities and vendor systems. We propose a label-efficient segmentation approach that promotes cross-modality generalization under real-world conditions, where GED4 hepatobiliary-phase annotations are limited, non-contrast sequences (T1WI, T2WI, DWI) are unlabeled, and spatial misalignment and missing phases are common. Our method integrates a foundation-scale 3D segmentation backbone adapted via fine-tuning, co-training with cross pseudo supervision to leverage unlabeled volumes, and a standardized preprocessing pipeline. Without requiring spatial registration, the model learns to generalize across MRI phases and vendors, demonstrating robust segmentation performance in both labeled and unlabeled domains. Our results exhibit the effectiveness of our proposed label-efficient baseline for liver segmentation in multi-phase, multi-vendor MRI and highlight the potential of combining foundation model adaptation with co-training for real-world clinical imaging tasks.
comment: 11 pages, 3 figures
☆ Watch and Learn: Learning to Use Computers from Online Videos
Computer use agents (CUAs) need to plan task workflows grounded in diverse, ever-changing applications and environments, but learning is hindered by the scarcity of large-scale, high-quality training data in the target application. Existing datasets are domain-specific, static, and costly to annotate, while current synthetic data generation methods often yield simplistic or misaligned task demonstrations. To address these limitations, we introduce Watch & Learn (W&L), a framework that converts human demonstration videos readily available on the Internet into executable UI trajectories at scale. Instead of directly generating trajectories or relying on ad hoc reasoning heuristics, we cast the problem as an inverse dynamics objective: predicting the user's action from consecutive screen states. This formulation reduces manual engineering, is easier to learn, and generalizes more robustly across applications. Concretely, we develop an inverse dynamics labeling pipeline with task-aware video retrieval, generate over 53k high-quality trajectories from raw web videos, and demonstrate that these trajectories improve CUAs both as in-context demonstrations and as supervised training data. On the challenging OSWorld benchmark, UI trajectories extracted with W&L consistently enhance both general-purpose and state-of-the-art frameworks in-context, and deliver stronger gains for open-source models under supervised training. These results highlight web-scale human demonstration videos as a practical and scalable foundation for advancing CUAs towards real-world deployment.
☆ ConceptSplit: Decoupled Multi-Concept Personalization of Diffusion Models via Token-wise Adaptation and Attention Disentanglement ICCV 2025
In recent years, multi-concept personalization for text-to-image (T2I) diffusion models to represent several subjects in an image has gained much more attention. The main challenge of this task is "concept mixing", where multiple learned concepts interfere or blend undesirably in the output image. To address this issue, in this paper, we present ConceptSplit, a novel framework to split the individual concepts through training and inference. Our framework comprises two key components. First, we introduce Token-wise Value Adaptation (ToVA), a merging-free training method that focuses exclusively on adapting the value projection in cross-attention. Based on our empirical analysis, we found that modifying the key projection, a common approach in existing methods, can disrupt the attention mechanism and lead to concept mixing. Second, we propose Latent Optimization for Disentangled Attention (LODA), which alleviates attention entanglement during inference by optimizing the input latent. Through extensive qualitative and quantitative experiments, we demonstrate that ConceptSplit achieves robust multi-concept personalization, mitigating unintended concept interference. Code is available at https://github.com/KU-VGI/ConceptSplit
comment: 14 pages, 13 figures, to be published in ICCV 2025
☆ EduPersona: Benchmarking Subjective Ability Boundaries of Virtual Student Agents
As large language models are increasingly integrated into education, virtual student agents are becoming vital for classroom simulation and teacher training. Yet their classroom-oriented subjective abilities remain largely unassessed, limiting understanding of model boundaries and hindering trustworthy deployment. We present EduPersona, a large-scale benchmark spanning two languages, three subjects, and ten persona types based on the Big Five theory. The dataset contains 1,308 authentic classroom dialogue rounds, corresponding to 12,814 teacher-student Q&A turns, and is further expanded through persona stylization into roughly 10 times larger scale (128k turns), providing a solid foundation for evaluation. Building on this resource, we decompose hard-to-quantify subjective performance into three progressive tasks: TASK1 basic coherence (whether behavior, emotion, expression, and voice align with classroom context), TASK2 student realism, and TASK3 long-term persona consistency, thereby establishing an evaluation framework grounded in educational theory and research value. We conduct systematic experiments on three representative LLMs, comparing their original versions with ten persona-fine-tuned variants trained on EduPersona. Results show consistent and significant average improvements across all tasks: TASK1 +33.6%, TASK2 +30.6%, and TASK3 +14.9%. These improvements highlight the dataset's effectiveness and research value, while also revealing the heterogeneous difficulty of persona modeling. In summary, EduPersona delivers the first classroom benchmark centered on subjective abilities, establishes a decoupled and verifiable research paradigm, and we will open-source both the dataset and the framework to support the broader research community in advancing trustworthy and human-like AI for education.
comment: Preprint, Under review
☆ Do Superpixel Segmentation Methods Influence Deforestation Image Classification?
Image segmentation is a crucial step in various visual applications, including environmental monitoring through remote sensing. In the context of the ForestEyes project, which combines citizen science and machine learning to detect deforestation in tropical forests, image segments are used for labeling by volunteers and subsequent model training. Traditionally, the Simple Linear Iterative Clustering (SLIC) algorithm is adopted as the segmentation method. However, recent studies have indicated that other superpixel-based methods outperform SLIC in remote sensing image segmentation, and might suggest that they are more suitable for the task of detecting deforested areas. In this sense, this study investigated the impact of the four best segmentation methods, together with SLIC, on the training of classifiers for the target application. Initially, the results showed little variation in performance among segmentation methods, even when selecting the top five classifiers using the PyCaret AutoML library. However, by applying a classifier fusion approach (ensemble of classifiers), noticeable improvements in balanced accuracy were observed, highlighting the importance of both the choice of segmentation method and the combination of machine learning-based models for deforestation detection tasks.
comment: 15 pages, 3 figures, paper accepted to present at CIARP 2025
☆ Social Agent: Mastering Dyadic Nonverbal Behavior Generation via Conversational LLM Agents SIGGRAPH
We present Social Agent, a novel framework for synthesizing realistic and contextually appropriate co-speech nonverbal behaviors in dyadic conversations. In this framework, we develop an agentic system driven by a Large Language Model (LLM) to direct the conversation flow and determine appropriate interactive behaviors for both participants. Additionally, we propose a novel dual-person gesture generation model based on an auto-regressive diffusion model, which synthesizes coordinated motions from speech signals. The output of the agentic system is translated into high-level guidance for the gesture generator, resulting in realistic movement at both the behavioral and motion levels. Furthermore, the agentic system periodically examines the movements of interlocutors and infers their intentions, forming a continuous feedback loop that enables dynamic and responsive interactions between the two participants. User studies and quantitative evaluations show that our model significantly improves the quality of dyadic interactions, producing natural, synchronized nonverbal behaviors.
comment: SIGGRAPH ASIA 2025 (Conference Track); Project page: https://pku-mocca.github.io/Social-Agent-Page/
☆ SFANet: Spatial-Frequency Attention Network for Deepfake Detection
Detecting manipulated media has now become a pressing issue with the recent rise of deepfakes. Most existing approaches fail to generalize across diverse datasets and generation techniques. We thus propose a novel ensemble framework, combining the strengths of transformer-based architectures, such as Swin Transformers and ViTs, and texture-based methods, to achieve better detection accuracy and robustness. Our method introduces innovative data-splitting, sequential training, frequency splitting, patch-based attention, and face segmentation techniques to handle dataset imbalances, enhance high-impact regions (e.g., eyes and mouth), and improve generalization. Our model achieves state-of-the-art performance when tested on the DFWild-Cup dataset, a diverse subset of eight deepfake datasets. The ensemble benefits from the complementarity of these approaches, with transformers excelling in global feature extraction and texturebased methods providing interpretability. This work demonstrates that hybrid models can effectively address the evolving challenges of deepfake detection, offering a robust solution for real-world applications.
☆ A Spatial-Spectral-Frequency Interactive Network for Multimodal Remote Sensing Classification
Deep learning-based methods have achieved significant success in remote sensing Earth observation data analysis. Numerous feature fusion techniques address multimodal remote sensing image classification by integrating global and local features. However, these techniques often struggle to extract structural and detail features from heterogeneous and redundant multimodal images. With the goal of introducing frequency domain learning to model key and sparse detail features, this paper introduces the spatial-spectral-frequency interaction network (S$^2$Fin), which integrates pairwise fusion modules across the spatial, spectral, and frequency domains. Specifically, we propose a high-frequency sparse enhancement transformer that employs sparse spatial-spectral attention to optimize the parameters of the high-frequency filter. Subsequently, a two-level spatial-frequency fusion strategy is introduced, comprising an adaptive frequency channel module that fuses low-frequency structures with enhanced high-frequency details, and a high-frequency resonance mask that emphasizes sharp edges via phase similarity. In addition, a spatial-spectral attention fusion module further enhances feature extraction at intermediate layers of the network. Experiments on four benchmark multimodal datasets with limited labeled data demonstrate that S$^2$Fin performs superior classification, outperforming state-of-the-art methods. The code is available at https://github.com/HaoLiu-XDU/SSFin.
☆ Pathology-CoT: Learning Visual Chain-of-Thought Agent from Expert Whole Slide Image Diagnosis Behavior
Diagnosing a whole-slide image is an interactive, multi-stage process involving changes in magnification and movement between fields. Although recent pathology foundation models are strong, practical agentic systems that decide what field to examine next, adjust magnification, and deliver explainable diagnoses are still lacking. The blocker is data: scalable, clinically aligned supervision of expert viewing behavior that is tacit and experience-based, not written in textbooks or online, and therefore absent from large language model training. We introduce the AI Session Recorder, which works with standard WSI viewers to unobtrusively record routine navigation and convert the viewer logs into standardized behavioral commands (inspect or peek at discrete magnifications) and bounding boxes. A lightweight human-in-the-loop review turns AI-drafted rationales into the Pathology-CoT dataset, a form of paired "where to look" and "why it matters" supervision produced at roughly six times lower labeling time. Using this behavioral data, we build Pathologist-o3, a two-stage agent that first proposes regions of interest and then performs behavior-guided reasoning. On gastrointestinal lymph-node metastasis detection, it achieved 84.5% precision, 100.0% recall, and 75.4% accuracy, exceeding the state-of-the-art OpenAI o3 model and generalizing across backbones. To our knowledge, this constitutes one of the first behavior-grounded agentic systems in pathology. Turning everyday viewer logs into scalable, expert-validated supervision, our framework makes agentic pathology practical and establishes a path to human-aligned, upgradeable clinical AI.
☆ SONA: Learning Conditional, Unconditional, and Mismatching-Aware Discriminator
Deep generative models have made significant advances in generating complex content, yet conditional generation remains a fundamental challenge. Existing conditional generative adversarial networks often struggle to balance the dual objectives of assessing authenticity and conditional alignment of input samples within their conditional discriminators. To address this, we propose a novel discriminator design that integrates three key capabilities: unconditional discrimination, matching-aware supervision to enhance alignment sensitivity, and adaptive weighting to dynamically balance all objectives. Specifically, we introduce Sum of Naturalness and Alignment (SONA), which employs separate projections for naturalness (authenticity) and alignment in the final layer with an inductive bias, supported by dedicated objective functions and an adaptive weighting mechanism. Extensive experiments on class-conditional generation tasks show that \ours achieves superior sample quality and conditional alignment compared to state-of-the-art methods. Furthermore, we demonstrate its effectiveness in text-to-image generation, confirming the versatility and robustness of our approach.
comment: 24 pages with 9 figures
☆ Conditional Representation Learning for Customized Tasks
Conventional representation learning methods learn a universal representation that primarily captures dominant semantics, which may not always align with customized downstream tasks. For instance, in animal habitat analysis, researchers prioritize scene-related features, whereas universal embeddings emphasize categorical semantics, leading to suboptimal results. As a solution, existing approaches resort to supervised fine-tuning, which however incurs high computational and annotation costs. In this paper, we propose Conditional Representation Learning (CRL), aiming to extract representations tailored to arbitrary user-specified criteria. Specifically, we reveal that the semantics of a space are determined by its basis, thereby enabling a set of descriptive words to approximate the basis for a customized feature space. Building upon this insight, given a user-specified criterion, CRL first employs a large language model (LLM) to generate descriptive texts to construct the semantic basis, then projects the image representation into this conditional feature space leveraging a vision-language model (VLM). The conditional representation better captures semantics for the specific criterion, which could be utilized for multiple customized tasks. Extensive experiments on classification and retrieval tasks demonstrate the superiority and generality of the proposed CRL. The code is available at https://github.com/XLearning-SCU/2025-NeurIPS-CRL.
☆ Fast Witness Persistence for MRI Volumes via Hybrid Landmarking
We introduce a scalable witness-based persistent homology pipeline for full-brain MRI volumes that couples density-aware landmark selection with a GPU-ready witness filtration. Candidates are scored by a hybrid metric that balances geometric coverage against inverse kernel density, yielding landmark sets that shrink mean pairwise distances by 30-60% over random or density-only baselines while preserving topological features. Benchmarks on BrainWeb, IXI, and synthetic manifolds execute in under ten seconds on a single NVIDIA RTX 4090 GPU, avoiding the combinatorial blow-up of Cech, Vietoris-Rips, and alpha filtrations. The package is distributed on PyPI as whale-tda (installable via pip); source and issues are hosted at https://github.com/jorgeLRW/whale. The release also exposes a fast preset (mri_deep_dive_fast) for exploratory sweeps, and ships with reproducibility-focused scripts and artifacts for drop-in use in medical imaging workflows.
☆ Post-training quantization of vision encoders needs prefixing registers
Transformer-based vision encoders -- such as CLIP -- are central to multimodal intelligence, powering applications from autonomous web agents to robotic control. Since these applications often demand real-time processing of massive visual data, reducing the inference cost of vision encoders is critical. Post-training quantization offers a practical path, but remains challenging even at 8-bit precision due to massive-scale activations (i.e., outliers). In this work, we propose $\textit{RegCache}$, a training-free algorithm to mitigate outliers in vision encoders, enabling quantization with significantly smaller accuracy drops. The proposed RegCache introduces outlier-prone yet semantically meaningless prefix tokens to the target vision encoder, which prevents other tokens from having outliers. Notably, we observe that outliers in vision encoders behave differently from those in language models, motivating two technical innovations: middle-layer prefixing and token deletion. Experiments show that our method consistently improves the accuracy of quantized models across both text-supervised and self-supervised vision encoders.
☆ C3Editor: Achieving Controllable Consistency in 2D Model for 3D Editing
Existing 2D-lifting-based 3D editing methods often encounter challenges related to inconsistency, stemming from the lack of view-consistent 2D editing models and the difficulty of ensuring consistent editing across multiple views. To address these issues, we propose C3Editor, a controllable and consistent 2D-lifting-based 3D editing framework. Given an original 3D representation and a text-based editing prompt, our method selectively establishes a view-consistent 2D editing model to achieve superior 3D editing results. The process begins with the controlled selection of a ground truth (GT) view and its corresponding edited image as the optimization target, allowing for user-defined manual edits. Next, we fine-tune the 2D editing model within the GT view and across multiple views to align with the GT-edited image while ensuring multi-view consistency. To meet the distinct requirements of GT view fitting and multi-view consistency, we introduce separate LoRA modules for targeted fine-tuning. Our approach delivers more consistent and controllable 2D and 3D editing results than existing 2D-lifting-based methods, outperforming them in both qualitative and quantitative evaluations.
☆ 3Dify: a Framework for Procedural 3D-CG Generation Assisted by LLMs Using MCP and RAG
This paper proposes "3Dify," a procedural 3D computer graphics (3D-CG) generation framework utilizing Large Language Models (LLMs). The framework enables users to generate 3D-CG content solely through natural language instructions. 3Dify is built upon Dify, an open-source platform for AI application development, and incorporates several state-of-the-art LLM-related technologies such as the Model Context Protocol (MCP) and Retrieval-Augmented Generation (RAG). For 3D-CG generation support, 3Dify automates the operation of various Digital Content Creation (DCC) tools via MCP. When DCC tools do not support MCP-based interaction, the framework employs the Computer-Using Agent (CUA) method to automate Graphical User Interface (GUI) operations. Moreover, to enhance image generation quality, 3Dify allows users to provide feedback by selecting preferred images from multiple candidates. The LLM then learns variable patterns from these selections and applies them to subsequent generations. Furthermore, 3Dify supports the integration of locally deployed LLMs, enabling users to utilize custom-developed models and to reduce both time and monetary costs associated with external API calls by leveraging their own computational resources.
☆ TAG:Tangential Amplifying Guidance for Hallucination-Resistant Diffusion Sampling
Recent diffusion models achieve the state-of-the-art performance in image generation, but often suffer from semantic inconsistencies or hallucinations. While various inference-time guidance methods can enhance generation, they often operate indirectly by relying on external signals or architectural modifications, which introduces additional computational overhead. In this paper, we propose Tangential Amplifying Guidance (TAG), a more efficient and direct guidance method that operates solely on trajectory signals without modifying the underlying diffusion model. TAG leverages an intermediate sample as a projection basis and amplifies the tangential components of the estimated scores with respect to this basis to correct the sampling trajectory. We formalize this guidance process by leveraging a first-order Taylor expansion, which demonstrates that amplifying the tangential component steers the state toward higher-probability regions, thereby reducing inconsistencies and enhancing sample quality. TAG is a plug-and-play, architecture-agnostic module that improves diffusion sampling fidelity with minimal computational addition, offering a new perspective on diffusion guidance.
comment: 16 pages, 9 figures, 5 tables
☆ ChartAgent: A Multimodal Agent for Visually Grounded Reasoning in Complex Chart Question Answering
Recent multimodal LLMs have shown promise in chart-based visual question answering, but their performance declines sharply on unannotated charts, those requiring precise visual interpretation rather than relying on textual shortcuts. To address this, we introduce ChartAgent, a novel agentic framework that explicitly performs visual reasoning directly within the chart's spatial domain. Unlike textual chain-of-thought reasoning, ChartAgent iteratively decomposes queries into visual subtasks and actively manipulates and interacts with chart images through specialized actions such as drawing annotations, cropping regions (e.g., segmenting pie slices, isolating bars), and localizing axes, using a library of chart-specific vision tools to fulfill each subtask. This iterative reasoning process closely mirrors human cognitive strategies for chart comprehension. ChartAgent achieves state-of-the-art accuracy on the ChartBench and ChartX benchmarks, surpassing prior methods by up to 16.07% absolute gain overall and 17.31% on unannotated, numerically intensive queries. Furthermore, our analyses show that ChartAgent is (a) effective across diverse chart types, (b) achieve the highest scores across varying visual and reasoning complexity levels, and (c) serves as a plug-and-play framework that boosts performance across diverse underlying LLMs. Our work is among the first to demonstrate visually grounded reasoning for chart understanding using tool-augmented multimodal agents.
comment: 53 pages, 12 figures, 15 tables
☆ Real-time Prediction of Urban Sound Propagation with Conditioned Normalizing Flows
Accurate and fast urban noise prediction is pivotal for public health and for regulatory workflows in cities, where the Environmental Noise Directive mandates regular strategic noise maps and action plans, often needed in permission workflows, right-of-way allocation, and construction scheduling. Physics-based solvers are too slow for such time-critical, iterative "what-if" studies. We evaluate conditional Normalizing Flows (Full-Glow) for generating for generating standards-compliant urban sound-pressure maps from 2D urban layouts in real time per 256x256 map on a single RTX 4090), enabling interactive exploration directly on commodity hardware. On datasets covering Baseline, Diffraction, and Reflection regimes, our model accelerates map generation by >2000 times over a reference solver while improving NLoS accuracy by up to 24% versus prior deep models; in Baseline NLoS we reach 0.65 dB MAE with high structural fidelity. The model reproduces diffraction and interference patterns and supports instant recomputation under source or geometry changes, making it a practical engine for urban planning, compliance mapping, and operations (e.g., temporary road closures, night-work variance assessments).
☆ Asynchronous Denoising Diffusion Models for Aligning Text-to-Image Generation
Diffusion models have achieved impressive results in generating high-quality images. Yet, they often struggle to faithfully align the generated images with the input prompts. This limitation arises from synchronous denoising, where all pixels simultaneously evolve from random noise to clear images. As a result, during generation, the prompt-related regions can only reference the unrelated regions at the same noise level, failing to obtain clear context and ultimately impairing text-to-image alignment. To address this issue, we propose asynchronous diffusion models -- a novel framework that allocates distinct timesteps to different pixels and reformulates the pixel-wise denoising process. By dynamically modulating the timestep schedules of individual pixels, prompt-related regions are denoised more gradually than unrelated regions, thereby allowing them to leverage clearer inter-pixel context. Consequently, these prompt-related regions achieve better alignment in the final images. Extensive experiments demonstrate that our asynchronous diffusion models can significantly improve text-to-image alignment across diverse prompts. The code repository for this work is available at https://github.com/hu-zijing/AsynDM.
comment: 22 pages, 11 figures, 5 tables
☆ TBStar-Edit: From Image Editing Pattern Shifting to Consistency Enhancement
Recent advances in image generation and editing technologies have enabled state-of-the-art models to achieve impressive results in general domains. However, when applied to e-commerce scenarios, these general models often encounter consistency limitations. To address this challenge, we introduce TBStar-Edit, an new image editing model tailored for the e-commerce domain. Through rigorous data engineering, model architecture design and training strategy, TBStar-Edit achieves precise and high-fidelity image editing while maintaining the integrity of product appearance and layout. Specifically, for data engineering, we establish a comprehensive data construction pipeline, encompassing data collection, construction, filtering, and augmentation, to acquire high-quality, instruction-following, and strongly consistent editing data to support model training. For model architecture design, we design a hierarchical model framework consisting of a base model, pattern shifting modules, and consistency enhancement modules. For model training, we adopt a two-stage training strategy to enhance the consistency preservation: first stage for editing pattern shifting, and second stage for consistency enhancement. Each stage involves training different modules with separate datasets. Finally, we conduct extensive evaluations of TBStar-Edit on a self-proposed e-commerce benchmark, and the results demonstrate that TBStar-Edit outperforms existing general-domain editing models in both objective metrics (VIE Score) and subjective user preference.
☆ VaseVQA-3D: Benchmarking 3D VLMs on Ancient Greek Pottery
Vision-Language Models (VLMs) have achieved significant progress in multimodal understanding tasks, demonstrating strong capabilities particularly in general tasks such as image captioning and visual reasoning. However, when dealing with specialized cultural heritage domains like 3D vase artifacts, existing models face severe data scarcity issues and insufficient domain knowledge limitations. Due to the lack of targeted training data, current VLMs struggle to effectively handle such culturally significant specialized tasks. To address these challenges, we propose the VaseVQA-3D dataset, which serves as the first 3D visual question answering dataset for ancient Greek pottery analysis, collecting 664 ancient Greek vase 3D models with corresponding question-answer data and establishing a complete data construction pipeline. We further develop the VaseVLM model, enhancing model performance in vase artifact analysis through domain-adaptive training. Experimental results validate the effectiveness of our approach, where we improve by 12.8% on R@1 metrics and by 6.6% on lexical similarity compared with previous state-of-the-art on the VaseVQA-3D dataset, significantly improving the recognition and understanding of 3D vase artifacts, providing new technical pathways for digital heritage preservation research.
☆ MedCLM: Learning to Localize and Reason via a CoT-Curriculum in Medical Vision-Language Models
Bridging clinical diagnostic reasoning with AI remains a central challenge in medical imaging. We introduce MedCLM, an automated pipeline that converts detection datasets into large-scale medical visual question answering (VQA) data with Chain-of-Thought (CoT) reasoning by linking lesion boxes to organ segmentation and structured rationales. These contextual signals enable medical vision-language models to generate question-answer pairs with step-by-step reasoning. To utilize this data effectively, we propose an Integrated CoT-Curriculum Strategy composed of an Easy stage with explicit lesion boxes for visual grounding, a Medium stage that encourages implicit localization, and a Hard stage for weakly supervised reasoning. Experimental results demonstrate that MedCLM attains state-of-the-art performance on several medical VQA benchmarks, providing a scalable framework for developing clinically aligned medical vision-language models.
☆ SPEGNet: Synergistic Perception-Guided Network for Camouflaged Object Detection
Camouflaged object detection segments objects with intrinsic similarity and edge disruption. Current detection methods rely on accumulated complex components. Each approach adds components such as boundary modules, attention mechanisms, and multi-scale processors independently. This accumulation creates a computational burden without proportional gains. To manage this complexity, they process at reduced resolutions, eliminating fine details essential for camouflage. We present SPEGNet, addressing fragmentation through a unified design. The architecture integrates multi-scale features via channel calibration and spatial enhancement. Boundaries emerge directly from context-rich representations, maintaining semantic-spatial alignment. Progressive refinement implements scale-adaptive edge modulation with peak influence at intermediate resolutions. This design strikes a balance between boundary precision and regional consistency. SPEGNet achieves 0.887 $S_\alpha$ on CAMO, 0.890 on COD10K, and 0.895 on NC4K, with real-time inference speed. Our approach excels across scales, from tiny, intricate objects to large, pattern-similar ones, while handling occlusion and ambiguous boundaries. Code, model weights, and results are available on \href{https://github.com/Baber-Jan/SPEGNet}{https://github.com/Baber-Jan/SPEGNet}.
☆ REAR: Rethinking Visual Autoregressive Models via Generator-Tokenizer Consistency Regularization
Visual autoregressive (AR) generation offers a promising path toward unifying vision and language models, yet its performance remains suboptimal against diffusion models. Prior work often attributes this gap to tokenizer limitations and rasterization ordering. In this work, we identify a core bottleneck from the perspective of generator-tokenizer inconsistency, i.e., the AR-generated tokens may not be well-decoded by the tokenizer. To address this, we propose reAR, a simple training strategy introducing a token-wise regularization objective: when predicting the next token, the causal transformer is also trained to recover the visual embedding of the current token and predict the embedding of the target token under a noisy context. It requires no changes to the tokenizer, generation order, inference pipeline, or external models. Despite its simplicity, reAR substantially improves performance. On ImageNet, it reduces gFID from 3.02 to 1.86 and improves IS to 316.9 using a standard rasterization-based tokenizer. When applied to advanced tokenizers, it achieves a gFID of 1.42 with only 177M parameters, matching the performance with larger state-of-the-art diffusion models (675M).
comment: 27 pages, 23 figures, 5 tables
☆ A.I.R.: Enabling Adaptive, Iterative, and Reasoning-based Frame Selection For Video Question Answering
Effectively applying Vision-Language Models (VLMs) to Video Question Answering (VideoQA) hinges on selecting a concise yet comprehensive set of frames, as processing entire videos is computationally infeasible. However, current frame selection methods face a critical trade-off: approaches relying on lightweight similarity models, such as CLIP, often fail to capture the nuances of complex queries, resulting in inaccurate similarity scores that cannot reflect the authentic query-frame relevance, which further undermines frame selection. Meanwhile, methods that leverage a VLM for deeper analysis achieve higher accuracy but incur prohibitive computational costs. To address these limitations, we propose A.I.R., a training-free approach for Adaptive, Iterative, and Reasoning-based frame selection. We leverage a powerful VLM to perform deep, semantic analysis on complex queries, and this analysis is deployed within a cost-effective iterative loop that processes only a small batch of the most high-potential frames at a time. Extensive experiments on various VideoQA benchmarks demonstrate that our approach outperforms existing frame selection methods, significantly boosts the performance of the foundation VLM, and achieves substantial gains in computational efficiency over other VLM-based techniques.
☆ Partial Information Decomposition via Normalizing Flows in Latent Gaussian Distributions NeurIPS 2025
The study of multimodality has garnered significant interest in fields where the analysis of interactions among multiple information sources can enhance predictive modeling, data fusion, and interpretability. Partial information decomposition (PID) has emerged as a useful information-theoretic framework to quantify the degree to which individual modalities independently, redundantly, or synergistically convey information about a target variable. However, existing PID methods depend on optimizing over a joint distribution constrained by estimated pairwise probability distributions, which are costly and inaccurate for continuous and high-dimensional modalities. Our first key insight is that the problem can be solved efficiently when the pairwise distributions are multivariate Gaussians, and we refer to this problem as Gaussian PID (GPID). We propose a new gradient-based algorithm that substantially improves the computational efficiency of GPID based on an alternative formulation of the underlying optimization problem. To generalize the applicability to non-Gaussian data, we learn information-preserving encoders to transform random variables of arbitrary input distributions into pairwise Gaussian random variables. Along the way, we resolved an open problem regarding the optimality of joint Gaussian solutions for GPID. Empirical validation in diverse synthetic examples demonstrates that our proposed method provides more accurate and efficient PID estimates than existing baselines. We further evaluate a series of large-scale multimodal benchmarks to show its utility in real-world applications of quantifying PID in multimodal datasets and selecting high-performing models.
comment: NeurIPS 2025
☆ CodeFormer++: Blind Face Restoration Using Deformable Registration and Deep Metric Learning
Blind face restoration (BFR) has attracted increasing attention with the rise of generative methods. Most existing approaches integrate generative priors into the restoration pro- cess, aiming to jointly address facial detail generation and identity preservation. However, these methods often suffer from a trade-off between visual quality and identity fidelity, leading to either identity distortion or suboptimal degradation removal. In this paper, we present CodeFormer++, a novel framework that maximizes the utility of generative priors for high-quality face restoration while preserving identity. We decompose BFR into three sub-tasks: (i) identity- preserving face restoration, (ii) high-quality face generation, and (iii) dynamic fusion of identity features with realistic texture details. Our method makes three key contributions: (1) a learning-based deformable face registration module that semantically aligns generated and restored faces; (2) a texture guided restoration network to dynamically extract and transfer the texture of generated face to boost the quality of identity-preserving restored face; and (3) the integration of deep metric learning for BFR with the generation of informative positive and hard negative samples to better fuse identity- preserving and generative features. Extensive experiments on real-world and synthetic datasets demonstrate that, the pro- posed CodeFormer++ achieves superior performance in terms of both visual fidelity and identity consistency.
☆ Your Vision-Language Model Can't Even Count to 20: Exposing the Failures of VLMs in Compositional Counting
Vision-Language Models (VLMs) have become a central focus of today's AI community, owing to their impressive abilities gained from training on large-scale vision-language data from the Web. These models have demonstrated strong performance across diverse tasks, including image understanding, video understanding, complex visual reasoning, and embodied AI. Despite these noteworthy successes, a fundamental question remains: Can VLMs count objects correctly? In this paper, we introduce a simple yet effective benchmark, VLMCountBench, designed under a minimalist setting with only basic geometric shapes (e.g., triangles, circles) and their compositions, focusing exclusively on counting tasks without interference from other factors. We adopt strict independent variable control and systematically study the effects of simple properties such as color, size, and prompt refinement in a controlled ablation. Our empirical results reveal that while VLMs can count reliably when only one shape type is present, they exhibit substantial failures when multiple shape types are combined (i.e., compositional counting). This highlights a fundamental empirical limitation of current VLMs and motivates important directions for future research.
♻ ☆ What Drives Compositional Generalization in Visual Generative Models?
Compositional generalization, the ability to generate novel combinations of known concepts, is a key ingredient for visual generative models. Yet, not all mechanisms that enable or inhibit it are fully understood. In this work, we conduct a systematic study of how various design choices influence compositional generalization in image and video generation in a positive or negative way. Through controlled experiments, we identify two key factors: (i) whether the training objective operates on a discrete or continuous distribution, and (ii) to what extent conditioning provides information about the constituent concepts during training. Building on these insights, we show that relaxing the MaskGIT discrete loss with an auxiliary continuous JEPA-based objective can improve compositional performance in discrete models like MaskGIT.
♻ ☆ One Patch to Caption Them All: A Unified Zero-Shot Captioning Framework
Zero-shot captioners are recently proposed models that utilize common-space vision-language representations to caption images without relying on paired image-text data. To caption an image, they proceed by textually decoding a text-aligned image feature, but they limit their scope to global representations and whole-image captions. We present Patch-ioner, a unified framework for zero-shot captioning that shifts from an image-centric to a patch-centric paradigm, enabling the captioning of arbitrary regions without the need of region-level supervision. Instead of relying on global image representations, we treat individual patches as atomic captioning units and aggregate them to describe arbitrary regions, from single patches to non-contiguous areas and entire images. We analyze the key ingredients that enable current latent captioners to work in our novel proposed framework. Experiments demonstrate that backbones producing meaningful, dense visual features, such as DINO, are key to achieving state-of-the-art performance in multiple region-based captioning tasks. Compared to other baselines and state-of-the-art competitors, our models achieve better performance on zero-shot dense, region-set, and a newly introduced trace captioning task, highlighting the effectiveness of patch-wise semantic representations for scalable caption generation. Project page at https://paciosoft.com/Patch-ioner/ .
♻ ☆ A Survey of Defenses Against AI-Generated Visual Media: Detection,Disruption, and Authentication
Deep generative models have demonstrated impressive performance in various computer vision applications, including image synthesis, video generation, and medical analysis. Despite their significant advancements, these models may be used for malicious purposes, such as misinformation, deception, and copyright violation. In this paper, we provide a systematic and timely review of research efforts on defenses against AI-generated visual media, covering detection, disruption, and authentication. We review existing methods and summarize the mainstream defense-related tasks within a unified passive and proactive framework. Moreover, we survey the derivative tasks concerning the trustworthiness of defenses, such as their robustness and fairness. For each defense strategy, we formulate its general pipeline and propose a multidimensional taxonomy applicable across defense tasks, based on methodological strategies. Additionally, we summarize the commonly used evaluation datasets, criteria, and metrics. Finally, by analyzing the reviewed studies, we provide insights into current research challenges and suggest possible directions for future research.
comment: Accepted by ACM Computing Surveys
♻ ☆ ExGS: Extreme 3D Gaussian Compression with Diffusion Priors
Neural scene representations, such as 3D Gaussian Splatting (3DGS), have enabled high-quality neural rendering; however, their large storage and transmission costs hinder deployment in resource-constrained environments. Existing compression methods either rely on costly optimization, which is slow and scene-specific, or adopt training-free pruning and quantization, which degrade rendering quality under high compression ratios. In contrast, recent data-driven approaches provide a promising direction to overcome this trade-off, enabling efficient compression while preserving high rendering quality.We introduce ExGS, a novel feed-forward framework that unifies Universal Gaussian Compression (UGC) with GaussPainter for Extreme 3DGS compression. UGC performs re-optimization-free pruning to aggressively reduce Gaussian primitives while retaining only essential information, whereas GaussPainter leverages powerful diffusion priors with mask-guided refinement to restore high-quality renderings from heavily pruned Gaussian scenes. Unlike conventional inpainting, GaussPainter not only fills in missing regions but also enhances visible pixels, yielding substantial improvements in degraded renderings.To ensure practicality, it adopts a lightweight VAE and a one-step diffusion design, enabling real-time restoration. Our framework can even achieve over 100X compression (reducing a typical 354.77 MB model to about 3.31 MB) while preserving fidelity and significantly improving image quality under challenging conditions. These results highlight the central role of diffusion priors in bridging the gap between extreme compression and high-quality neural rendering.Our code repository will be released at: https://github.com/chenttt2001/ExGS
♻ ☆ VirDA: Reusing Backbone for Unsupervised Domain Adaptation with Visual Reprogramming
Existing UDA pipelines fine-tune already well-trained backbone parameters for every new source-and-target pair, resulting in the number of training parameters and storage memory growing linearly with each new pair, and also preventing the reuse of these well-trained backbone parameters. Inspired by recent implications that existing backbones have textural biases, we propose making use of domain-specific textural bias for domain adaptation via visual reprogramming, namely VirDA. Instead of fine-tuning the full backbone, VirDA prepends a domain-specific visual reprogramming layer to the backbone. This layer produces visual prompts that act as an added textural bias to the input image, adapting its "style" to a target domain. To optimize these visual reprogramming layers, we use multiple objective functions that optimize the intra- and inter-domain distribution differences when domain-adapting visual prompts are applied. This process does not require modifying the backbone parameters, allowing the same backbone to be reused across different domains. We evaluate VirDA on Office-31 and obtain 92.8% mean accuracy with only 1.5M trainable parameters. VirDA surpasses PDA, the state-of-the-art parameter-efficient UDA baseline, by +1.6% accuracy while using just 46% of its parameters. Compared with full-backbone fine-tuning, VirDA outperforms CDTrans and FixBi by +0.2% and +1.4%, respectively, while requiring only 1.7% and 2.8% of their trainable parameters. Relative to the strongest current methods (PMTrans and TVT), VirDA uses ~1.7% of their parameters and trades off only 2.2% and 1.1% accuracy, respectively.
♻ ☆ Conformal Prediction for Long-Tailed Classification
Many real-world classification problems, such as plant identification, have extremely long-tailed class distributions. In order for prediction sets to be useful in such settings, they should (i) provide good class-conditional coverage, ensuring that rare classes are not systematically omitted from the prediction sets, and (ii) be a reasonable size, allowing users to easily verify candidate labels. Unfortunately, existing conformal prediction methods, when applied to the long-tailed setting, force practitioners to make a binary choice between small sets with poor class-conditional coverage or sets with very good class-conditional coverage but that are extremely large. We propose methods with guaranteed marginal coverage that smoothly trade off between set size and class-conditional coverage. First, we introduce a new conformal score function called prevalence-adjusted softmax that targets macro-coverage, a relaxed notion of class-conditional coverage. Second, we propose a new procedure that interpolates between marginal and class-conditional conformal prediction by linearly interpolating their conformal score thresholds. We demonstrate our methods on Pl@ntNet-300K and iNaturalist-2018, two long-tailed image datasets with 1,081 and 8,142 classes, respectively.
♻ ☆ The Telephone Game: Evaluating Semantic Drift in Unified Models
Employing a single, unified model (UM) for both visual understanding (image-to-text: I2T) and visual generation (text-to-image: T2I) has opened a new direction in Visual Language Model (VLM) research. While UMs can also support broader unimodal tasks (e.g., text-to-text, image-to-image), we focus on the core cross-modal pair T2I and I2T. Existing evaluation benchmarks consider these capabilities in isolation: FID and GenEval for T2I, and benchmarks such as MME, MMBench for I2T. These isolated single-pass metrics do not reveal cross-consistency: whether a model that "understands" a concept can also "render" it, nor whether semantic meaning is preserved when cycling between image and text modalities. To address this, we introduce the Semantic Drift Protocol (SDP) for Unified Models, a cyclic evaluation protocol that alternates I2T and T2I over multiple generations to quantify semantic drift. We propose two metrics: (i) Mean Cumulative Drift (MCD), an embedding-based measure of overall semantic drift; and (ii) Multi-Generation GenEval (MGG), an object-level compliance score extending GenEval. To assess generalization beyond COCO dataset, which is widely used in training; we create a new benchmark Nocaps+Docci400, sampled from NoCaps and DOCCI and evaluated on seven recent models. SDP reveals substantial variation in cross-modal stability: some models like BAGEL maintain semantic meaning over many alternations, whereas others like VILA-U drift quickly despite strong single-pass scores. Our results highlight SDP as a necessary complement to standard I2T and T2I evaluations. Code is available at https://github.com/mollahsabbir/Semantic-Drift-in-Unified-Models
♻ ☆ VidGuard-R1: AI-Generated Video Detection and Explanation via Reasoning MLLMs and RL
With the rapid advancement of AI-generated videos, there is an urgent need for effective detection tools to mitigate societal risks such as misinformation and reputational harm. In addition to accurate classification, it is essential that detection models provide interpretable explanations to ensure transparency for regulators and end users. To address these challenges, we introduce VidGuard-R1, the first video authenticity detector that fine-tunes a multi-modal large language model (MLLM) using group relative policy optimization (GRPO). Our model delivers both highly accurate judgments and insightful reasoning. We curate a challenging dataset of 140k real and AI-generated videos produced by state-of-the-art generation models, carefully designing the generation process to maximize discrimination difficulty. We then fine-tune Qwen-VL using GRPO with two specialized reward models that target temporal artifacts and generation complexity. Extensive experiments demonstrate that VidGuard-R1 achieves state-of-the-art zero-shot performance on existing benchmarks, with additional training pushing accuracy above 95%. Case studies further show that VidGuard-R1 produces precise and interpretable rationales behind its predictions. The code is publicly available at https://VidGuard-R1.github.io.
♻ ☆ RealKIE: Five Novel Datasets for Enterprise Key Information Extraction
We introduce RealKIE, a benchmark of five challenging datasets aimed at advancing key information extraction methods, with an emphasis on enterprise applications. The datasets include a diverse range of documents including SEC S1 Filings, US Non-disclosure Agreements, UK Charity Reports, FCC Invoices, and Resource Contracts. Each presents unique challenges: poor text serialization, sparse annotations in long documents, and complex tabular layouts. These datasets provide a realistic testing ground for key information extraction tasks like investment analysis and contract analysis. In addition to presenting these datasets, we offer an in-depth description of the annotation process, document processing techniques, and baseline modeling approaches. This contribution facilitates the development of NLP models capable of handling practical challenges and supports further research into information extraction technologies applicable to industry-specific problems. The annotated data, OCR outputs, and code to reproduce baselines are available to download at https://indicodatasolutions.github.io/RealKIE/.
♻ ☆ RowDetr: End-to-End Crop Row Detection Using Polynomials
Crop row detection enables autonomous robots to navigate in gps denied environments. Vision based strategies often struggle in the environments due to gaps, curved crop rows and require post-processing steps. Furthermore, labeling crop rows in under the canopy environments accurately is very difficult due to occlusions. This study introduces RowDetr, an efficient end-to-end transformer-based neural network for crop row detection in precision agriculture. RowDetr leverages a lightweight backbone and a hybrid encoder to model straight, curved, or occluded crop rows with high precision. Central to the architecture is a novel polynomial representation that enables direct parameterization of crop rows, eliminating computationally expensive post-processing. Key innovations include a PolySampler module and multi-scale deformable attention, which work together with PolyOptLoss, an energy-based loss function designed to optimize geometric alignment between predicted and the annotated crop rows, while also enhancing robustness against labeling noise. RowDetr was evaluated against other state-of-the-art end-to-end crop row detection methods like AgroNav and RolColAttention on a diverse dataset of 6,962 high-resolution images, used for training, validation, and testing across multiple crop types with annotated crop rows. The system demonstrated superior performance, achieved an F1 score up to 0.74 and a lane position deviation as low as 0.405. Furthermore, RowDetr achieves a real-time inference latency of 6.7ms, which was optimized to 3.5ms with INT8 quantization on an NVIDIA Jetson Orin AGX. This work highlighted the critical efficiency of polynomial parameterization, making RowDetr particularly suitable for deployment on edge computing devices in agricultural robotics and autonomous farming equipment. Index terms > Crop Row Detection, Under Canopy Navigation, Transformers, RT-DETR, RT-DETRv2
comment: Code will be open sourced upon publication
♻ ☆ Fast constrained sampling in pre-trained diffusion models
Large denoising diffusion models, such as Stable Diffusion, have been trained on billions of image-caption pairs to perform text-conditioned image generation. As a byproduct of this training, these models have acquired general knowledge about image statistics, which can be useful for other inference tasks. However, when confronted with sampling an image under new constraints, e.g. generating the missing parts of an image, using large pre-trained text-to-image diffusion models is inefficient and often unreliable. Previous approaches either utilized backpropagation through the denoiser network, making them significantly slower and more memory-demanding than simple text-to-image generation, or only enforced the constraint locally, failing to capture critical long-range correlations in the sampled image. In this work, we propose an algorithm that enables fast, high-quality generation under arbitrary constraints. We show that in denoising diffusion models, we can employ an approximation to Newton's optimization method that allows us to speed up inference and avoid the expensive backpropagation operations. Our approach produces results that rival or surpass the state-of-the-art training-free inference methods while requiring a fraction of the time. We demonstrate the effectiveness of our algorithm under both linear (inpainting, super-resolution) and non-linear (style-guided generation) constraints. An implementation is provided at https://github.com/cvlab-stonybrook/fast-constrained-sampling.
♻ ☆ QDFlow: A Python package for physics simulations of quantum dot devices
Recent advances in machine learning (ML) have accelerated progress in calibrating and operating quantum dot (QD) devices. However, most ML approaches rely on access to large, representative datasets designed to capture the full spectrum of data quality encountered in practice, with both high- and low-quality data for training, benchmarking, and validation, with labels capturing key features of the device state. Collating such datasets experimentally is challenging due to limited data availability, slow measurement bandwidths, and the labor-intensive nature of labeling. QDFlow is an open-source physics simulator for multi-QD arrays that generates realistic synthetic data with ground-truth labels. QDFlow combines a self-consistent Thomas-Fermi solver, a dynamic capacitance model, and flexible noise modules to simulate charge stability diagrams and ray-based data closely resembling experiments. With an extensive set of parameters that can be varied and customizable noise models, QDFlow supports the creation of large, diverse datasets for ML development, benchmarking, and quantum device research.
comment: 17 pages, 5 figures
♻ ☆ RAM-W600: A Multi-Task Wrist Dataset and Benchmark for Rheumatoid Arthritis NeurIPS 2025
Rheumatoid arthritis (RA) is a common autoimmune disease that has been the focus of research in computer-aided diagnosis (CAD) and disease monitoring. In clinical settings, conventional radiography (CR) is widely used for the screening and evaluation of RA due to its low cost and accessibility. The wrist is a critical region for the diagnosis of RA. However, CAD research in this area remains limited, primarily due to the challenges in acquiring high-quality instance-level annotations. (i) The wrist comprises numerous small bones with narrow joint spaces, complex structures, and frequent overlaps, requiring detailed anatomical knowledge for accurate annotation. (ii) Disease progression in RA often leads to osteophyte, bone erosion (BE), and even bony ankylosis, which alter bone morphology and increase annotation difficulty, necessitating expertise in rheumatology. This work presents a multi-task dataset for wrist bone in CR, including two tasks: (i) wrist bone instance segmentation and (ii) Sharp/van der Heijde (SvdH) BE scoring, which is the first public resource for wrist bone instance segmentation. This dataset comprises 1048 wrist conventional radiographs of 388 patients from six medical centers, with pixel-level instance segmentation annotations for 618 images and SvdH BE scores for 800 images. This dataset can potentially support a wide range of research tasks related to RA, including joint space narrowing (JSN) progression quantification, BE detection, bone deformity evaluation, and osteophyte detection. It may also be applied to other wrist-related tasks, such as carpal bone fracture localization. We hope this dataset will significantly lower the barrier to research on wrist RA and accelerate progress in CAD research within the RA-related domain.
comment: Accepted by NeurIPS 2025
♻ ☆ A Tale of Two Experts: Cooperative Learning for Source-Free Unsupervised Domain Adaptation
Source-Free Unsupervised Domain Adaptation (SFUDA) addresses the realistic challenge of adapting a source-trained model to a target domain without access to the source data, driven by concerns over privacy and cost. Existing SFUDA methods either exploit only the source model's predictions or fine-tune large multimodal models, yet both neglect complementary insights and the latent structure of target data. In this paper, we propose the Experts Cooperative Learning (EXCL). EXCL contains the Dual Experts framework and Retrieval-Augmentation-Interaction optimization pipeline. The Dual Experts framework places a frozen source-domain model (augmented with Conv-Adapter) and a pretrained vision-language model (with a trainable text prompt) on equal footing to mine consensus knowledge from unlabeled target samples. To effectively train these plug-in modules under purely unsupervised conditions, we introduce Retrieval-Augmented-Interaction(RAIN), a three-stage pipeline that (1) collaboratively retrieves pseudo-source and complex target samples, (2) separately fine-tunes each expert on its respective sample set, and (3) enforces learning object consistency via a shared learning result. Extensive experiments on four benchmark datasets demonstrate that our approach matches state-of-the-art performance.
♻ ☆ What Lurks Within? Concept Auditing for Shared Diffusion Models at Scale CCS 2025
Diffusion models (DMs) have revolutionized text-to-image generation, enabling the creation of highly realistic and customized images from text prompts. With the rise of parameter-efficient fine-tuning (PEFT) techniques, users can now customize powerful pre-trained models using minimal computational resources. However, the widespread sharing of fine-tuned DMs on open platforms raises growing ethical and legal concerns, as these models may inadvertently or deliberately generate sensitive or unauthorized content. Despite increasing regulatory attention on generative AI, there are currently no practical tools for systematically auditing these models before deployment. In this paper, we address the problem of concept auditing: determining whether a fine-tuned DM has learned to generate a specific target concept. Existing approaches typically rely on prompt-based input crafting and output-based image classification but they suffer from critical limitations, including prompt uncertainty, concept drift, and poor scalability. To overcome these challenges, we introduce Prompt-Agnostic Image-Free Auditing (PAIA), a novel, model-centric concept auditing framework. By treating the DM as the object of inspection, PAIA enables direct analysis of internal model behavior, bypassing the need for optimized prompts or generated images. We evaluate PAIA on 320 controlled models trained with curated concept datasets and 771 real-world community models sourced from a public DM sharing platform. Evaluation results show that PAIA achieves over 90% detection accuracy while reducing auditing time by 18 - 40X compared to existing baselines. To our knowledge, PAIA is the first scalable and practical solution for pre-deployment concept auditing of diffusion models, providing a practical foundation for safer and more transparent diffusion model sharing.
comment: Extended version of the paper accepted at CCS 2025
♻ ☆ MMLongBench: Benchmarking Long-Context Vision-Language Models Effectively and Thoroughly NeurIPS 2025
The rapid extension of context windows in large vision-language models has given rise to long-context vision-language models (LCVLMs), which are capable of handling hundreds of images with interleaved text tokens in a single forward pass. In this work, we introduce MMLongBench, the first benchmark covering a diverse set of long-context vision-language tasks, to evaluate LCVLMs effectively and thoroughly. MMLongBench is composed of 13,331 examples spanning five different categories of downstream tasks, such as Visual RAG and Many-Shot ICL. It also provides broad coverage of image types, including various natural and synthetic images. To assess the robustness of the models to different input lengths, all examples are delivered at five standardized input lengths (8K-128K tokens) via a cross-modal tokenization scheme that combines vision patches and text tokens. Through a thorough benchmarking of 46 closed-source and open-source LCVLMs, we provide a comprehensive analysis of the current models' vision-language long-context ability. Our results show that: i) performance on a single task is a weak proxy for overall long-context capability; ii) both closed-source and open-source models face challenges in long-context vision-language tasks, indicating substantial room for future improvement; iii) models with stronger reasoning ability tend to exhibit better long-context performance. By offering wide task coverage, various image types, and rigorous length control, MMLongBench provides the missing foundation for diagnosing and advancing the next generation of LCVLMs.
comment: Accepted as a spotlight at NeurIPS 2025
♻ ☆ A Survey on 3D Gaussian Splatting
3D Gaussian splatting (GS) has emerged as a transformative technique in radiance fields. Unlike mainstream implicit neural models, 3D GS uses millions of learnable 3D Gaussians for an explicit scene representation. Paired with a differentiable rendering algorithm, this approach achieves real-time rendering and unprecedented editability, making it a potential game-changer for 3D reconstruction and representation. In the present paper, we provide the first systematic overview of the recent developments and critical contributions in 3D GS. We begin with a detailed exploration of the underlying principles and the driving forces behind the emergence of 3D GS, laying the groundwork for understanding its significance. A focal point of our discussion is the practical applicability of 3D GS. By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond. This is complemented by a comparative analysis of leading 3D GS models, evaluated across various benchmark tasks to highlight their performance and practical utility. The survey concludes by identifying current challenges and suggesting potential avenues for future research. Through this survey, we aim to provide a valuable resource for both newcomers and seasoned researchers, fostering further exploration and advancement in explicit radiance field.
comment: Ongoing project; Paper list: https://github.com/guikunchen/Awesome3DGS ; Benchmark: https://github.com/guikunchen/3DGS-Benchmarks
♻ ☆ ViP$^2$-CLIP: Visual-Perception Prompting with Unified Alignment for Zero-Shot Anomaly Detection
Zero-shot anomaly detection (ZSAD) aims to detect anomalies without any target domain training samples, relying solely on external auxiliary data. Existing CLIP-based methods attempt to activate the model's ZSAD potential via handcrafted or static learnable prompts. The former incur high engineering costs and limited semantic coverage, whereas the latter apply identical descriptions across diverse anomaly types, thus fail to adapt to complex variations. Furthermore, since CLIP is originally pretrained on large-scale classification tasks, its anomaly segmentation quality is highly sensitive to the exact wording of class names, severely constraining prompting strategies that depend on class labels. To address these challenges, we introduce ViP$^{2}$-CLIP. The key insight of ViP$^{2}$-CLIP is a Visual-Perception Prompting (ViP-Prompt) mechanism, which fuses global and multi-scale local visual context to adaptively generate fine-grained textual prompts, eliminating manual templates and class-name priors. This design enables our model to focus on precise abnormal regions, making it particularly valuable when category labels are ambiguous or privacy-constrained. Extensive experiments on 15 industrial and medical benchmarks demonstrate that ViP$^{2}$-CLIP achieves state-of-the-art performance and robust cross-domain generalization.
♻ ☆ Graph Algorithm Unrolling with Douglas-Rachford Iterations for Image Interpolation with Guaranteed Initialization
Conventional deep neural nets (DNNs) initialize network parameters at random and then optimize each one via stochastic gradient descent (SGD), resulting in substantial risk of poor-performing local minima.Focusing on the image interpolation problem and leveraging a recent theorem that maps a (pseudo-)linear interpolator {\Theta} to a directed graph filter that is a solution to a MAP problem regularized with a graph shift variation (GSV) prior, we first initialize a directed graph adjacency matrix A based on a known interpolator {\Theta}, establishing a baseline performance.Then, towards further gain, we learn perturbation matrices P and P(2) from data to augment A, whose restoration effects are implemented via Douglas-Rachford (DR) iterations, which we unroll into a lightweight interpretable neural net.Experimental results demonstrate state-of-the-art image interpolation results, while drastically reducing network parameters.
Autonomous Imagination: Closed-Loop Decomposition of Visual-to-Textual Conversion in Visual Reasoning for Multimodal Large Language Models
Under pure textual modality, Large Language Models (LLMs) have demonstrated remarkable success in complex reasoning tasks by decomposing them into simpler sub-problems. However, Multimodal Large Language Models (MLLMs) still struggle with some seemingly straightforward visual tasks, such as counting and solving jigsaw puzzles. We argue that these tasks challenge the ability of visual-to-textual conversion, where MLLMs convert visual information perceived from the input scene, to textual information for further reasoning and generating the answer. If the complexity of the visual input is beyond the perceptual capability of the MLLMs, without decomposing this conversion process, simply scaling inference-time reasoning cannot solve the task because it repeatedly encounters the same perceptual bottleneck. We propose an approach, autonomous imagination, to enable MLLMs to iteratively modify visual inputs (e.g. isolating objects, rearranging puzzle pieces) into intermediate visual states, decomposing visual-to-textual conversion into closed-loop visual modification steps. We show that, without any retraining, MLLMs can now solve tasks initially beyond their perceptual capability, highlighting that closed-loop visual modification can be an effective way of decomposing the visual reasoning task into solvable substeps. Our code and data are released at https://future-item.github.io/autoimagine-site/.
comment: Published in TMLR
♻ ☆ Bias in Gender Bias Benchmarks: How Spurious Features Distort Evaluation ICCV 2025
Gender bias in vision-language foundation models (VLMs) raises concerns about their safe deployment and is typically evaluated using benchmarks with gender annotations on real-world images. However, as these benchmarks often contain spurious correlations between gender and non-gender features, such as objects and backgrounds, we identify a critical oversight in gender bias evaluation: Do spurious features distort gender bias evaluation? To address this question, we systematically perturb non-gender features across four widely used benchmarks (COCO-gender, FACET, MIAP, and PHASE) and various VLMs to quantify their impact on bias evaluation. Our findings reveal that even minimal perturbations, such as masking just 10% of objects or weakly blurring backgrounds, can dramatically alter bias scores, shifting metrics by up to 175% in generative VLMs and 43% in CLIP variants. This suggests that current bias evaluations often reflect model responses to spurious features rather than gender bias, undermining their reliability. Since creating spurious feature-free benchmarks is fundamentally challenging, we recommend reporting bias metrics alongside feature-sensitivity measurements to enable a more reliable bias assessment.
comment: ICCV 2025
♻ ☆ Medical Image Classification with KAN-Integrated Transformers and Dilated Neighborhood Attention
Convolutional networks, transformers, hybrid models, and Mamba-based architectures have demonstrated strong performance across various medical image classification tasks. However, these methods were primarily designed to classify clean images using labeled data. In contrast, real-world clinical data often involve image corruptions that are unique to multi-center studies and stem from variations in imaging equipment across manufacturers. In this paper, we introduce the Medical Vision Transformer (MedViTV2), a novel architecture incorporating Kolmogorov-Arnold Network (KAN) layers into the transformer architecture for the first time, aiming for generalized medical image classification. We have developed an efficient KAN block to reduce computational load while enhancing the accuracy of the original MedViT. Additionally, to counteract the fragility of our MedViT when scaled up, we propose an enhanced Dilated Neighborhood Attention (DiNA), an adaptation of the efficient fused dot-product attention kernel capable of capturing global context and expanding receptive fields to scale the model effectively and addressing feature collapse issues. Moreover, a hierarchical hybrid strategy is introduced to stack our Local Feature Perception and Global Feature Perception blocks in an efficient manner, which balances local and global feature perceptions to boost performance. Extensive experiments on 17 medical image classification datasets and 12 corrupted medical image datasets demonstrate that MedViTV2 achieved state-of-the-art results in 27 out of 29 experiments with reduced computational complexity. MedViTV2 is 44\% more computationally efficient than the previous version and significantly enhances accuracy, achieving improvements of 4.6\% on MedMNIST, 5.8\% on NonMNIST, and 13.4\% on the MedMNIST-C benchmark.
♻ ☆ Generating Findings for Jaw Cysts in Dental Panoramic Radiographs Using GPT-4o: Building a Two-Stage Self-Correction Loop with Structured Output (SLSO) Framework
In this study, we utilized the multimodal capabilities of OpenAI GPT-4o to automatically generate jaw cyst findings on dental panoramic radiographs. To improve accuracy, we constructed a Self-correction Loop with Structured Output (SLSO) framework and verified its effectiveness. A 10-step process was implemented for 22 cases of jaw cysts, including image input and analysis, structured data generation, tooth number extraction and consistency checking, iterative regeneration when inconsistencies were detected, and finding generation with subsequent restructuring and consistency verification. A comparative experiment was conducted using the conventional Chain-of-Thought (CoT) method across seven evaluation items: transparency, internal structure, borders, root resorption, tooth movement, relationships with other structures, and tooth number. The results showed that the proposed SLSO framework improved output accuracy for many items, with 66.9%, 33.3%, and 28.6% improvement rates for tooth number, tooth movement, and root resorption, respectively. In the successful cases, a consistently structured output was achieved after up to five regenerations. Although statistical significance was not reached because of the small size of the dataset, the overall SLSO framework enforced negative finding descriptions, suppressed hallucinations, and improved tooth number identification accuracy. However, the accurate identification of extensive lesions spanning multiple teeth is limited. Nevertheless, further refinement is required to enhance overall performance and move toward a practical finding generation system.
comment: Submitted to Scientific Reports
♻ ☆ Attention, Please! Revisiting Attentive Probing Through the Lens of Efficiency
As fine-tuning becomes increasingly impractical at scale, probing is emerging as the preferred evaluation protocol. Yet, the standard linear probing fails to adequately reflect the potential of models whose pre-training optimizes representations of patch tokens rather than an explicit global representation. This motivates the need for attentive probing, an alternative that uses attention to selectively aggregate patch-level features. Despite its growing adoption, attentive probing remains under-explored, with existing methods suffering from excessive parameterization and poor computational efficiency. In this work, we revisit attentive probing through the lens of the accuracy vs. parameter efficiency trade-off. We present the first comprehensive study of existing methods, analyzing their design choices and benchmarking their performance. Building on this, we propose efficient probing (EP), a simple yet effective multi-query cross-attention mechanism that eliminates redundant projections and reduces the number of trainable parameters. Despite its simplicity, EP outperforms linear probing and prior attentive probing approaches across seven benchmarks, generalizes well to diverse pre-training paradigms, and delivers strong low-shot and layer-wise gains. Beyond evaluation, our analysis uncovers emerging properties of EP, such as complementary attention maps, which open new directions for leveraging probing beyond protocol design. Code available at https://github.com/billpsomas/efficient-probing.
comment: 9 main paper pages, 13 supplementary pages; Code available at https://github.com/billpsomas/efficient-probing
♻ ☆ TACO: Enhancing Multimodal In-context Learning via Task Mapping-Guided Sequence Configuration EMNLP2025
Multimodal in-context learning (ICL) has emerged as a key mechanism for harnessing the capabilities of large vision-language models (LVLMs). However, its effectiveness remains highly sensitive to the quality of input ICL sequences, particularly for tasks involving complex reasoning or open-ended generation. A major limitation is our limited understanding of how LVLMs actually exploit these sequences during inference. To bridge this gap, we systematically interpret multimodal ICL through the lens of task mapping, which reveals how local and global relationships within and among demonstrations guide model reasoning. Building on this insight, we present TACO, a lightweight transformer-based model equipped with task-aware attention that dynamically configures ICL sequences. By injecting task-mapping signals into the autoregressive decoding process, TACO creates a bidirectional synergy between sequence construction and task reasoning. Experiments on five LVLMs and nine datasets demonstrate that TACO consistently surpasses baselines across diverse ICL tasks. These results position task mapping as a novel and valuable perspective for interpreting and improving multimodal ICL.
comment: EMNLP2025 Main, 28 pages, 11 figures, 19 tables
♻ ☆ PRO-VPT: Distribution-Adaptive Visual Prompt Tuning via Prompt Relocation ICCV 2025
Visual prompt tuning (VPT), i.e., fine-tuning some lightweight prompt tokens, provides an efficient and effective approach for adapting pre-trained models to various downstream tasks. However, most prior art indiscriminately uses a fixed prompt distribution across different tasks, neglecting the importance of each block varying depending on the task. In this paper, we introduce adaptive distribution optimization (ADO) by tackling two key questions: (1) How to appropriately and formally define ADO, and (2) How to design an adaptive distribution strategy guided by this definition? Through empirical analysis, we first confirm that properly adjusting the distribution significantly improves VPT performance, and further uncover a key insight that a nested relationship exists between ADO and VPT. Based on these findings, we propose a new VPT framework, termed PRO-VPT (iterative Prompt RelOcation-based VPT), which adaptively adjusts the distribution built upon a nested optimization formulation. Specifically, we develop a prompt relocation strategy derived from this formulation, comprising two steps: pruning idle prompts from prompt-saturated blocks, followed by allocating these prompts to the most prompt-needed blocks. By iteratively performing prompt relocation and VPT, our proposal can adaptively learn the optimal prompt distribution in a nested optimization-based manner, thereby unlocking the full potential of VPT. Extensive experiments demonstrate that our proposal significantly outperforms advanced VPT methods, e.g., PRO-VPT surpasses VPT by 1.6 pp and 2.0 pp average accuracy, leading prompt-based methods to state-of-the-art performance on VTAB-1k and FGVC benchmarks. The code is available at https://github.com/ckshang/PRO-VPT.
comment: Accepted by ICCV 2025
♻ ☆ CBVLM: Training-free Explainable Concept-based Large Vision Language Models for Medical Image Classification
The main challenges limiting the adoption of deep learning-based solutions in medical workflows are the availability of annotated data and the lack of interpretability of such systems. Concept Bottleneck Models (CBMs) tackle the latter by constraining the model output on a set of predefined and human-interpretable concepts. However, the increased interpretability achieved through these concept-based explanations implies a higher annotation burden. Moreover, if a new concept needs to be added, the whole system needs to be retrained. Inspired by the remarkable performance shown by Large Vision-Language Models (LVLMs) in few-shot settings, we propose a simple, yet effective, methodology, CBVLM, which tackles both of the aforementioned challenges. First, for each concept, we prompt the LVLM to answer if the concept is present in the input image. Then, we ask the LVLM to classify the image based on the previous concept predictions. Moreover, in both stages, we incorporate a retrieval module responsible for selecting the best examples for in-context learning. By grounding the final diagnosis on the predicted concepts, we ensure explainability, and by leveraging the few-shot capabilities of LVLMs, we drastically lower the annotation cost. We validate our approach with extensive experiments across four medical datasets and twelve LVLMs (both generic and medical) and show that CBVLM consistently outperforms CBMs and task-specific supervised methods without requiring any training and using just a few annotated examples. More information on our project page: https://cristianopatricio.github.io/CBVLM/.
comment: Accepted for publication in Computers in Biology and Medicine
♻ ☆ Filling of incomplete sinograms from sparse PET detector configurations using a residual U-Net
Long axial field-of-view PET scanners offer increased field-of-view and sensitivity compared to traditional PET scanners. However, a significant cost is associated with the densely packed photodetectors required for the extended-coverage systems, limiting clinical utilisation. To mitigate the cost limitations, alternative sparse system configurations have been proposed, allowing an extended field-of-view PET design with detector costs similar to a standard PET system, albeit at the expense of image quality. In this work, we propose a deep sinogram restoration network to fill in the missing sinogram data. Our method utilises a modified Residual U-Net, trained on clinical PET scans from a GE Signa PET/MR, simulating the removal of 50% of the detectors in a chessboard pattern (retaining only 25% of all lines of response). The model successfully recovers missing counts, with a mean absolute error below two events per pixel, outperforming 2D interpolation in both sinogram and reconstructed image domain. Notably, the predicted sinograms exhibit a smoothing effect, leading to reconstructed images lacking sharpness in finer details. Despite these limitations, the model demonstrates a substantial capacity for compensating for the undersampling caused by the sparse detector configuration. This proof-of-concept study suggests that sparse detector configurations, combined with deep learning techniques, offer a viable alternative to conventional PET scanner designs. This approach supports the development of cost-effective, total body PET scanners, allowing a significant step forward in medical imaging technology.
comment: 16 pages, 9 figures
♻ ☆ UniUIR: Considering Underwater Image Restoration as An All-in-One Learner
Existing underwater image restoration (UIR) methods generally only handle color distortion or jointly address color and haze issues, but they often overlook the more complex degradations that can occur in underwater scenes. To address this limitation, we propose a Universal Underwater Image Restoration method, termed as UniUIR, considering the complex scenario of real-world underwater mixed distortions as an all-in-one manner. To decouple degradation-specific issues and explore the inter-correlations among various degradations in UIR task, we designed the Mamba Mixture-of-Experts module. This module enables each expert to identify distinct types of degradation and collaboratively extract task-specific priors while maintaining global feature representation based on linear complexity. Building upon this foundation, to enhance degradation representation and address the task conflicts that arise when handling multiple types of degradation, we introduce the spatial-frequency prior generator. This module extracts degradation prior information in both spatial and frequency domains, and adaptively selects the most appropriate task-specific prompts based on image content, thereby improving the accuracy of image restoration. Finally, to more effectively address complex, region-dependent distortions in UIR task, we incorporate depth information derived from a large-scale pre-trained depth prediction model, thereby enabling the network to perceive and leverage depth variations across different image regions to handle localized degradation. Extensive experiments demonstrate that UniUIR can produce more attractive results across qualitative and quantitative comparisons, and shows strong generalization than state-of-the-art methods.
comment: Accepted by IEEE Transactions on Image Processing. Project page at https://house-yuyu.github.io/UniUIR/
♻ ☆ Explaining Human Preferences via Metrics for Structured 3D Reconstruction ICCV 2025
"What cannot be measured cannot be improved" while likely never uttered by Lord Kelvin, summarizes effectively the driving force behind this work. This paper presents a detailed discussion of automated metrics for evaluating structured 3D reconstructions. Pitfalls of each metric are discussed, and an analysis through the lens of expert 3D modelers' preferences is presented. A set of systematic "unit tests" are proposed to empirically verify desirable properties, and context aware recommendations regarding which metric to use depending on application are provided. Finally, a learned metric distilled from human expert judgments is proposed and analyzed. The source code is available at https://github.com/s23dr/wireframe-metrics-iccv2025
comment: ICCV 2025 Highlight
♻ ☆ Novel Object 6D Pose Estimation with a Single Reference View
Existing novel object 6D pose estimation methods typically rely on CAD models or dense reference views, which are both difficult to acquire. Using only a single reference view is more scalable, but challenging due to large pose discrepancies and limited geometric and spatial information. To address these issues, we propose a Single-Reference-based novel object 6D (SinRef-6D) pose estimation method. Our key idea is to iteratively establish point-wise alignment in a common coordinate system based on state space models (SSMs). Specifically, iterative object-space point-wise alignment can effectively handle large pose discrepancies, while our proposed RGB and Points SSMs can capture long-range dependencies and spatial information from a single view, offering linear complexity and superior spatial modeling capability. Once pre-trained on synthetic data, SinRef-6D can estimate the 6D pose of a novel object using only a single reference view, without requiring retraining or a CAD model. Extensive experiments on six popular datasets and real-world robotic scenes demonstrate that we achieve on-par performance with CAD-based and dense reference view-based methods, despite operating in the more challenging single reference setting. Code will be released at https://github.com/CNJianLiu/SinRef-6D.
comment: 17 pages, 12 figures (including supplementary material)
♻ ☆ Poisson multi-Bernoulli mixture filter for trajectory measurements
This paper presents a Poisson multi-Bernoulli mixture (PMBM) filter for multi-target filtering based on sensor measurements that are sets of trajectories in the last two-time step window. The proposed filter, the trajectory measurement PMBM (TM-PMBM) filter, propagates a PMBM density on the set of target states. In prediction, the filter obtains the PMBM density on the set of trajectories over the last two time steps. This density is then updated with the set of trajectory measurements. After the update step, the PMBM posterior on the set of two-step trajectories is marginalised to obtain a PMBM density on the set of target states. The filter provides a closed-form solution for multi-target filtering based on sets of trajectory measurements, estimating the set of target states at the end of each time window. Additionally, the paper proposes computationally lighter alternatives to the TM-PMBM filter by deriving a Poisson multi-Bernoulli (PMB) density through Kullback-Leibler divergence minimisation in an augmented space with auxiliary variables. The performance of the proposed filters are evaluated in a simulation study.
comment: 16 pages, 9 figures, journal paper
♻ ☆ LIAM: Multimodal Transformer for Language Instructions, Images, Actions and Semantic Maps
The availability of large language models and open-vocabulary object perception methods enables more flexibility for domestic service robots. The large variability of domestic tasks can be addressed without implementing each task individually by providing the robot with a task description along with appropriate environment information. In this work, we propose LIAM - an end-to-end model that predicts action transcripts based on language, image, action, and map inputs. Language and image inputs are encoded with a CLIP backbone, for which we designed two pre-training tasks to fine-tune its weights and pre-align the latent spaces. We evaluate our method on the ALFRED dataset, a simulator-generated benchmark for domestic tasks. Our results demonstrate the importance of pre-aligning embedding spaces from different modalities and the efficacy of incorporating semantic maps.
comment: 12 pages, 4 figures, 2 tables, 19th International Conference on Intelligent Autonomous Systems (IAS), Genoa, Italy, June 2025
♻ ☆ SEE-DPO: Self Entropy Enhanced Direct Preference Optimization
Direct Preference Optimization (DPO) has been successfully used to align large language models (LLMs) according to human preferences, and more recently it has also been applied to improving the quality of text-to-image diffusion models. However, DPO-based methods such as SPO, Diffusion-DPO, and D3PO are highly susceptible to overfitting and reward hacking, especially when the generative model is optimized to fit out-of-distribution during prolonged training. To overcome these challenges and stabilize the training of diffusion models, we introduce a self-entropy regularization mechanism in reinforcement learning from human feedback. This enhancement improves DPO training by encouraging broader exploration and greater robustness. Our regularization technique effectively mitigates reward hacking, leading to improved stability and enhanced image quality across the latent space. Extensive experiments demonstrate that integrating human feedback with self-entropy regularization can significantly boost image diversity and specificity, achieving state-of-the-art results on key image generation metrics.
♻ ☆ Copyright Infringement Detection in Text-to-Image Diffusion Models via Differential Privacy
The widespread deployment of large vision models such as Stable Diffusion raises significant legal and ethical concerns, as these models can memorize and reproduce copyrighted content without authorization. Existing detection approaches often lack robustness and fail to provide rigorous theoretical underpinnings. To address these gaps, we formalize the concept of copyright infringement and its detection from the perspective of Differential Privacy (DP), and introduce the conditional sensitivity metric, a concept analogous to sensitivity in DP, that quantifies the deviation in a diffusion model's output caused by the inclusion or exclusion of a specific training data point. To operationalize this metric, we propose D-Plus-Minus (DPM), a novel post-hoc detection framework that identifies copyright infringement in text-to-image diffusion models. Specifically, DPM simulates inclusion and exclusion processes by fine-tuning models in two opposing directions: learning or unlearning. Besides, to disentangle concept-specific influence from the global parameter shifts induced by fine-tuning, DPM computes confidence scores over orthogonal prompt distributions using statistical metrics. Moreover, to facilitate standardized benchmarking, we also construct the Copyright Infringement Detection Dataset (CIDD), a comprehensive resource for evaluating detection across diverse categories. Our results demonstrate that DPM reliably detects infringement content without requiring access to the original training dataset or text prompts, offering an interpretable and practical solution for safeguarding intellectual property in the era of generative AI.
♻ ☆ SIA: Enhancing Safety via Intent Awareness for Vision-Language Models ICCV2025
With the growing deployment of Vision-Language Models (VLMs) in real-world applications, previously overlooked safety risks are becoming increasingly evident. In particular, seemingly innocuous multimodal inputs can combine to reveal harmful intent, leading to unsafe model outputs. While multimodal safety has received increasing attention, existing approaches often fail to address such latent risks, especially when harmfulness arises only from the interaction between modalities. We propose SIA (Safety via Intent Awareness), a training-free, intent-aware safety framework that proactively detects harmful intent in multimodal inputs and uses it to guide the generation of safe responses. SIA follows a three-stage process: (1) visual abstraction via captioning; (2) intent inference through few-shot chain-of-thought (CoT) prompting; and (3) intent-conditioned response generation. By dynamically adapting to the implicit intent inferred from an image-text pair, SIA mitigates harmful outputs without extensive retraining. Extensive experiments on safety benchmarks, including SIUO, MM-SafetyBench, and HoliSafe, show that SIA consistently improves safety and outperforms prior training-free methods.
comment: Accepted to Safe and Trustworthy Multimodal AI Systems(SafeMM-AI) Workshop at ICCV2025, Non-archival track
♻ ☆ Neural Brain: A Neuroscience-inspired Framework for Embodied Agents
The rapid evolution of artificial intelligence (AI) has shifted from static, data-driven models to dynamic systems capable of perceiving and interacting with real-world environments. Despite advancements in pattern recognition and symbolic reasoning, current AI systems, such as large language models, remain disembodied, unable to physically engage with the world. This limitation has driven the rise of embodied AI, where autonomous agents, such as humanoid robots, must navigate and manipulate unstructured environments with human-like adaptability. At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability. A Neural Brain must seamlessly integrate multimodal sensing and perception with cognitive capabilities. Achieving this also requires an adaptive memory system and energy-efficient hardware-software co-design, enabling real-time action in dynamic environments. This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges: (1) defining the core components of Neural Brain and (2) bridging the gap between static AI models and the dynamic adaptability required for real-world deployment. To this end, we propose a biologically inspired architecture that integrates multimodal active sensing, perception-cognition-action function, neuroplasticity-based memory storage and updating, and neuromorphic hardware/software optimization. Furthermore, we also review the latest research on embodied agents across these four aspects and analyze the gap between current AI systems and human intelligence. By synthesizing insights from neuroscience, we outline a roadmap towards the development of generalizable, autonomous agents capable of human-level intelligence in real-world scenarios.
comment: 51 pages, 17 figures, 9 tables
♻ ☆ Praxis-VLM: Vision-Grounded Decision Making via Text-Driven Reinforcement Learning NeurIPS 2025
Vision Language Models exhibit impressive performance for various tasks, yet they often lack the sophisticated situational reasoning required for complex decision-making. This paper shows that VLMs can achieve surprisingly strong decision-making performance when visual scenes are replaced by textual descriptions, suggesting foundational reasoning can be effectively learned from language. Motivated by this insight, we propose Praxis-VLM, a reasoning VLM for vision-grounded decision-making. Praxis-VLM employs the GRPO algorithm on textual scenarios to instill robust reasoning capabilities, where models learn to evaluate actions and their consequences. These reasoning skills, acquired purely from text, successfully transfer to multimodal inference with visual inputs, significantly reducing reliance on scarce paired image-text training data. Experiments across diverse decision-making benchmarks demonstrate that Praxis-VLM substantially outperforms standard supervised fine-tuning, exhibiting superior performance and generalizability. Further analysis confirms that our models engage in explicit and effective reasoning, underpinning their enhanced performance and adaptability.
comment: Accepted at NeurIPS 2025
♻ ☆ WetCat: Enabling Automated Skill Assessment in Wet-Lab Cataract Surgery Videos
To meet the growing demand for systematic surgical training, wet-lab environments have become indispensable platforms for hands-on practice in ophthalmology. Yet, traditional wet-lab training depends heavily on manual performance evaluations, which are labor-intensive, time-consuming, and often subject to variability. Recent advances in computer vision offer promising avenues for automated skill assessment, enhancing both the efficiency and objectivity of surgical education. Despite notable progress in ophthalmic surgical datasets, existing resources predominantly focus on real surgeries or isolated tasks, falling short of supporting comprehensive skill evaluation in controlled wet-lab settings. To address these limitations, we introduce WetCat, the first dataset of wet-lab cataract surgery videos specifically curated for automated skill assessment. WetCat comprises high-resolution recordings of surgeries performed by trainees on artificial eyes, featuring comprehensive phase annotations and semantic segmentations of key anatomical structures. These annotations are meticulously designed to facilitate skill assessment during the critical capsulorhexis and phacoemulsification phases, adhering to standardized surgical skill assessment frameworks. By focusing on these essential phases, WetCat enables the development of interpretable, AI-driven evaluation tools aligned with established clinical metrics. This dataset lays a strong foundation for advancing objective, scalable surgical education and sets a new benchmark for automated workflow analysis and skill assessment in ophthalmology training. The dataset and annotations are publicly available in Synapse.
comment: 7 pages, 7 figures, Accepted at ACMMM25
♻ ☆ CoralSCOP-LAT: Labeling and Analyzing Tool for Coral Reef Images with Dense Mask
Coral reef imagery offers critical data for monitoring ecosystem health, in particular as the ease of image datasets continues to rapidly expand. Whilst semi-automated analytical platforms for reef imagery are becoming more available, the dominant approaches face fundamental limitations. To address these challenges, we propose CoralSCOP-LAT, a coral reef image analysis and labeling tool that automatically segments and analyzes coral regions. By leveraging advanced machine learning models tailored for coral reef segmentation, CoralSCOP-LAT enables users to generate dense segmentation masks with minimal manual effort, significantly enhancing both the labeling efficiency and precision of coral reef analysis. Our extensive evaluations demonstrate that CoralSCOP-LAT surpasses existing coral reef analysis tools in terms of time efficiency, accuracy, precision, and flexibility. CoralSCOP-LAT, therefore, not only accelerates the coral reef annotation process but also assists users in obtaining high-quality coral reef segmentation and analysis outcomes. Github Page: https://github.com/ykwongaq/CoralSCOP-LAT.
comment: Ecological Informatics Page: https://www.sciencedirect.com/science/article/pii/S157495412500411X
♻ ☆ MambaMoE: Mixture-of-Spectral-Spatial-Experts State Space Model for Hyperspectral Image Classification
Mamba-based models have recently demonstrated significant potential in hyperspectral image (HSI) classification, primarily due to their ability to perform contextual modeling with linear computational complexity. However, existing Mamba-based approaches often overlook the directional modeling heterogeneity across different land-cover types, leading to limited classification performance. To address these limitations, we propose MambaMoE, a novel spectral-spatial Mixture-of-Experts (MoE) framework, which represents the first MoE-based approach in the HSI classification domain. Specifically, we design a Mixture of Mamba Expert Block (MoMEB) that performs adaptive spectral-spatial feature modeling via a sparse expert activation mechanism. Additionally, we introduce an uncertainty-guided corrective learning (UGCL) strategy that encourages the model to focus on complex regions prone to prediction ambiguity. This strategy dynamically samples supervision signals from regions with high predictive uncertainty, guiding the model to adaptively refine feature representations and thereby enhancing its focus on challenging areas. Extensive experiments conducted on multiple public HSI benchmark datasets show that MambaMoE achieves state-of-the-art performance in both classification accuracy and computational efficiency compared to existing advanced methods, particularly Mamba-based ones. The code will be available online at https://github.com/YichuXu/MambaMoE.
comment: Accepted by Information Fusion
♻ ☆ Leveraging Confident Image Regions for Source-Free Domain-Adaptive Object Detection
Source-free domain-adaptive object detection is an interesting but scarcely addressed topic. It aims at adapting a source-pretrained detector to a distinct target domain without resorting to source data during adaptation. So far, there is no data augmentation scheme tailored to source-free domain-adaptive object detection. To this end, this paper presents a novel data augmentation approach that cuts out target image regions where the detector is confident, augments them along with their respective pseudo-labels, and joins them into a challenging target image to adapt the detector. As the source data is out of reach during adaptation, we implement our approach within a teacher-student learning paradigm to ensure that the model does not collapse during the adaptation procedure. We evaluated our approach on three adaptation benchmarks of traffic scenes, scoring new state-of-the-art on two of them.
♻ ☆ EMedNeXt: An Enhanced Brain Tumor Segmentation Framework for Sub-Saharan Africa using MedNeXt V2 with Deep Supervision MICCAI 2025
Brain cancer affects millions worldwide, and in nearly every clinical setting, doctors rely on magnetic resonance imaging (MRI) to diagnose and monitor gliomas. However, the current standard for tumor quantification through manual segmentation of multi-parametric MRI is time-consuming, requires expert radiologists, and is often infeasible in under-resourced healthcare systems. This problem is especially pronounced in low-income regions, where MRI scanners are of lower quality and radiology expertise is scarce, leading to incorrect segmentation and quantification. In addition, the number of acquired MRI scans in Africa is typically small. To address these challenges, the BraTS-Lighthouse 2025 Challenge focuses on robust tumor segmentation in sub-Saharan Africa (SSA), where resource constraints and image quality degradation introduce significant shifts. In this study, we present EMedNeXt -- an enhanced brain tumor segmentation framework based on MedNeXt V2 with deep supervision and optimized post-processing pipelines tailored for SSA. EMedNeXt introduces three key contributions: a larger region of interest, an improved nnU-Net v2-based architectural skeleton, and a robust model ensembling system. Evaluated on the hidden validation set, our solution achieved an average LesionWise DSC of 0.897 with an average LesionWise NSD of 0.541 and 0.84 at a tolerance of 0.5 mm and 1.0 mm, respectively.
comment: Submitted to the BraTS-Lighthouse 2025 Challenge (MICCAI 2025)
♻ ☆ Law of Vision Representation in MLLMs
We present the "Law of Vision Representation" in multimodal large language models (MLLMs). It reveals a strong correlation between the combination of cross-modal alignment, correspondence in vision representation, and MLLM performance. We quantify the two factors using the cross-modal Alignment and Correspondence score (AC score). Through extensive experiments involving thirteen different vision representation settings and evaluations across eight benchmarks, we find that the AC score is linearly correlated to model performance. By leveraging this relationship, we are able to identify and train the optimal vision representation only, which does not require finetuning the language model every time, resulting in a 99.7% reduction in computational cost.
comment: The code is available at https://github.com/bronyayang/Law_of_Vision_Representation_in_MLLMs
♻ ☆ Depth-Sequence Transformer (DST) for Segment-Specific ICA Calcification Mapping on Non-Contrast CT
While total intracranial carotid artery calcification (ICAC) volume is an established stroke biomarker, growing evidence shows this aggregate metric ignores the critical influence of plaque location, since calcification in different segments carries distinct prognostic and procedural risks. However, a finer-grained, segment-specific quantification has remained technically infeasible. Conventional 3D models are forced to process downsampled volumes or isolated patches, sacrificing the global context required to resolve anatomical ambiguity and render reliable landmark localization. To overcome this, we reformulate the 3D challenge as a \textbf{Parallel Probabilistic Landmark Localization} task along the 1D axial dimension. We propose the \textbf{Depth-Sequence Transformer (DST)}, a framework that processes full-resolution CT volumes as sequences of 2D slices, learning to predict $N=6$ independent probability distributions that pinpoint key anatomical landmarks. Our DST framework demonstrates exceptional accuracy and robustness. Evaluated on a 100-patient clinical cohort with rigorous 5-fold cross-validation, it achieves a Mean Absolute Error (MAE) of \textbf{0.1 slices}, with \textbf{96\%} of predictions falling within a $\pm1$ slice tolerance. Furthermore, to validate its architectural power, the DST backbone establishes the best result on the public Clean-CC-CCII classification benchmark under an end-to-end evaluation protocol. Our work delivers the first practical tool for automated segment-specific ICAC analysis. The proposed framework provides a foundation for further studies on the role of location-specific biomarkers in diagnosis, prognosis, and procedural planning.
comment: Accept to IEEE BIBM 2025
♻ ☆ Divergence Minimization Preference Optimization for Diffusion Model Alignment
Diffusion models have achieved remarkable success in generating realistic and versatile images from text prompts. Inspired by the recent advancements of language models, there is an increasing interest in further improving the models by aligning with human preferences. However, we investigate alignment from a divergence minimization perspective and reveal that existing preference optimization methods are typically trapped in suboptimal mean-seeking optimization. In this paper, we introduce Divergence Minimization Preference Optimization (DMPO), a novel and principled method for aligning diffusion models by minimizing reverse KL divergence, which asymptotically enjoys the same optimization direction as original RL. We provide rigorous analysis to justify the effectiveness of DMPO and conduct comprehensive experiments to validate its empirical strength across both human evaluations and automatic metrics. Our extensive results show that diffusion models fine-tuned with DMPO can consistently outperform or match existing techniques, specifically consistently outperforming all baseline models across different base models and test sets, achieving the best PickScore in every case, demonstrating the method's superiority in aligning generative behavior with desired outputs. Overall, DMPO unlocks a robust and elegant pathway for preference alignment, bridging principled theory with practical performance in diffusion models.
♻ ☆ Do We Need All the Synthetic Data? Targeted Synthetic Image Augmentation via Diffusion Models
Synthetically augmenting training datasets with diffusion models has been an effective strategy for improving generalization of image classifiers. However, existing techniques struggle to ensure the diversity of generation and increase the size of the data by up to 10-30x to improve the in-distribution performance. In this work, we show that synthetically augmenting part of the data that is not learned early in training with faithful images-containing same features but different noise-outperforms augmenting the entire dataset. By analyzing a two-layer CNN, we prove that this strategy improves generalization by promoting homogeneity in feature learning speed without amplifying noise. Our extensive experiments show that by augmenting only 30%-40% of the data, our method boosts generalization by up to 2.8% in a variety of scenarios, including training ResNet, ViT, ConvNeXt, and Swin Transformer on CIFAR-10/100, and TinyImageNet, with various optimizers including SGD and SAM. Notably, our method applied with SGD outperforms the SOTA optimizer, SAM, on CIFAR-100 and TinyImageNet.
♻ ☆ Towards Cross-modal Backward-compatible Representation Learning for Vision-Language Models
Modern retrieval systems often struggle with upgrading to new and more powerful models due to the incompatibility of embeddings between the old and new models. This necessitates a costly process known as backfilling, which involves re-computing the embeddings for a large number of data samples. In vision, Backward-compatible Training (BT) has been proposed to ensure that the new model aligns with the old model's embeddings. This paper extends the concept of vision-only BT to the field of cross-modal retrieval, marking the first attempt to address Cross-modal BT (XBT). Our goal is to achieve backward-compatibility between Vision-Language Pretraining (VLP) models, such as CLIP, for the cross-modal retrieval task. To address XBT challenges, we propose an efficient solution: a projection module that maps the new model's embeddings to those of the old model. This module, pretrained solely with text data, significantly reduces the number of image-text pairs required for XBT learning, and, once it is pretrained, it avoids using the old model during training. Furthermore, we utilize parameter-efficient training strategies that improve efficiency and preserve the off-the-shelf new model's knowledge by avoiding any modifications. Experimental results on cross-modal retrieval datasets demonstrate the effectiveness of XBT and its potential to enable backfill-free upgrades when a new VLP model emerges.
♻ ☆ STIV: Scalable Text and Image Conditioned Video Generation
The field of video generation has made remarkable advancements, yet there remains a pressing need for a clear, systematic recipe that can guide the development of robust and scalable models. In this work, we present a comprehensive study that systematically explores the interplay of model architectures, training recipes, and data curation strategies, culminating in a simple and scalable text-image-conditioned video generation method, named STIV. Our framework integrates image condition into a Diffusion Transformer (DiT) through frame replacement, while incorporating text conditioning via a joint image-text conditional classifier-free guidance. This design enables STIV to perform both text-to-video (T2V) and text-image-to-video (TI2V) tasks simultaneously. Additionally, STIV can be easily extended to various applications, such as video prediction, frame interpolation, multi-view generation, and long video generation, etc. With comprehensive ablation studies on T2I, T2V, and TI2V, STIV demonstrate strong performance, despite its simple design. An 8.7B model with 512 resolution achieves 83.1 on VBench T2V, surpassing both leading open and closed-source models like CogVideoX-5B, Pika, Kling, and Gen-3. The same-sized model also achieves a state-of-the-art result of 90.1 on VBench I2V task at 512 resolution. By providing a transparent and extensible recipe for building cutting-edge video generation models, we aim to empower future research and accelerate progress toward more versatile and reliable video generation solutions.
♻ ☆ SIRI-Bench: Challenging VLMs' Spatial Intelligence through Complex Reasoning Tasks
Large Language Models (LLMs) have undergone rapid progress, largely attributed to reinforcement learning on complex reasoning tasks. In contrast, while spatial intelligence is fundamental for Vision-Language Models (VLMs) in real-world interaction, the systematic study of their complex spatial reasoning remains underexplored. To bridge this gap, we introduce SIRI-Bench, a benchmark designed to evaluate VLMs' structural spatial intelligence through spatial-grounded reasoning tasks. SIRI-Bench comprises 9,000 video-question-answer triplets, where each problem is embedded in a realistic 3D scene. The benchmark is carefully designed so that solving each problem requires both spatial comprehension and structural reasoning. To facilitate large-scale data synthesis, we develop an Automatic Scene Creation Engine that employs collaborative LLM agents to translate abstract mathematical problems into faithful 3D scenes. Experimental results reveal that state-of-the-art VLMs struggle significantly on SIRI-Bench, underscoring the challenge of structural spatial reasoning. We hope that our study will bring researchers' attention to spatially grounded reasoning and advance VLMs in visual problem-solving.
comment: 14 pages
♻ ☆ FEB-Cache: Frequency-Guided Exposure Bias Reduction for Enhancing Diffusion Transformer Caching
Diffusion Transformer (DiT) has exhibited impressive generation capabilities but faces great challenges due to its high computational complexity. To address this issue, various methods, notably feature caching, have been introduced. However, these approaches focus on aligning non-cache diffusion without analyzing why caching damage the generation processes. In this paper, we first confirm that the cache greatly amplifies the exposure bias, resulting in a decline in the generation quality. However, directly applying noise scaling is challenging for this issue due to the non-smoothness of exposure bias. We found that this phenomenon stems from the mismatch between its frequency response characteristics and the simple cache of Attention and MLP. Since these two components exhibit unique preferences for frequency signals, which provides us with a caching strategy to separate Attention and MLP to achieve an enhanced fit of exposure bias and reduce it. Based on this, we introduced FEB-Cache, a joint caching strategy that aligns with the non-exposed bias diffusion process (which gives us a higher performance cap) of caching Attention and MLP based on the frequency-guided cache table. Our approach combines a comprehensive understanding of the caching mechanism and offers a new perspective on leveraging caching to accelerate the diffusion process. Empirical results indicate that FEB-Cache optimizes model performance while concurrently facilitating acceleration. Code is available at https://github.com/aSleepyTree/EB-Cache.
♻ ☆ Fast-RF-Shimming: Accelerate RF Shimming in 7T MRI using Deep Learning
Ultrahigh field (UHF) Magnetic Resonance Imaging (MRI) offers an elevated signal-to-noise ratio (SNR), enabling exceptionally high spatial resolution that benefits both clinical diagnostics and advanced research. However, the jump to higher fields introduces complications, particularly transmit radiofrequency (RF) field ($B_{1}^{+}$) inhomogeneities, manifesting as uneven flip angles and image intensity irregularities. These artifacts can degrade image quality and impede broader clinical adoption. Traditional RF shimming methods, such as Magnitude Least Squares (MLS) optimization, effectively mitigate $B_{1}^{+}$ inhomogeneity, but remain time-consuming. Recent machine learning approaches, including RF Shim Prediction by Iteratively Projected Ridge Regression and other deep learning architectures, suggest alternative pathways. Although these approaches show promise, challenges such as extensive training periods, limited network complexity, and practical data requirements persist. In this paper, we introduce a holistic learning-based framework called Fast-RF-Shimming, which achieves a 5000x speed-up compared to the traditional MLS method. In the initial phase, we employ random-initialized Adaptive Moment Estimation (Adam) to derive the desired reference shimming weights from multi-channel $B_{1}^{+}$ fields. Next, we train a Residual Network (ResNet) to map $B_{1}^{+}$ fields directly to the ultimate RF shimming outputs, incorporating the confidence parameter into its loss function. Finally, we design Non-uniformity Field Detector (NFD), an optional post-processing step, to ensure the extreme non-uniform outcomes are identified. Comparative evaluations with standard MLS optimization underscore notable gains in both processing speed and predictive accuracy, which indicates that our technique shows a promising solution for addressing persistent inhomogeneity challenges.
♻ ☆ TimeFormer: Capturing Temporal Relationships of Deformable 3D Gaussians for Robust Reconstruction ICCV 2025
Dynamic scene reconstruction is a long-term challenge in 3D vision. Recent methods extend 3D Gaussian Splatting to dynamic scenes via additional deformation fields and apply explicit constraints like motion flow to guide the deformation. However, they learn motion changes from individual timestamps independently, making it challenging to reconstruct complex scenes, particularly when dealing with violent movement, extreme-shaped geometries, or reflective surfaces. To address the above issue, we design a plug-and-play module called TimeFormer to enable existing deformable 3D Gaussians reconstruction methods with the ability to implicitly model motion patterns from a learning perspective. Specifically, TimeFormer includes a Cross-Temporal Transformer Encoder, which adaptively learns the temporal relationships of deformable 3D Gaussians. Furthermore, we propose a two-stream optimization strategy that transfers the motion knowledge learned from TimeFormer to the base stream during the training phase. This allows us to remove TimeFormer during inference, thereby preserving the original rendering speed. Extensive experiments in the multi-view and monocular dynamic scenes validate qualitative and quantitative improvement brought by TimeFormer. Project Page: https://patrickddj.github.io/TimeFormer/
comment: ICCV 2025
Artificial Intelligence 206
☆ TopInG: Topologically Interpretable Graph Learning via Persistent Rationale Filtration ICML 2025
Graph Neural Networks (GNNs) have shown remarkable success across various scientific fields, yet their adoption in critical decision-making is often hindered by a lack of interpretability. Recently, intrinsically interpretable GNNs have been studied to provide insights into model predictions by identifying rationale substructures in graphs. However, existing methods face challenges when the underlying rationale subgraphs are complex and varied. In this work, we propose TopInG: Topologically Interpretable Graph Learning, a novel topological framework that leverages persistent homology to identify persistent rationale subgraphs. TopInG employs a rationale filtration learning approach to model an autoregressive generation process of rationale subgraphs, and introduces a self-adjusted topological constraint, termed topological discrepancy, to enforce a persistent topological distinction between rationale subgraphs and irrelevant counterparts. We provide theoretical guarantees that our loss function is uniquely optimized by the ground truth under specific conditions. Extensive experiments demonstrate TopInG's effectiveness in tackling key challenges, such as handling variform rationale subgraphs, balancing predictive performance with interpretability, and mitigating spurious correlations. Results show that our approach improves upon state-of-the-art methods on both predictive accuracy and interpretation quality.
comment: submitted to ICML 2025
☆ Paper2Video: Automatic Video Generation from Scientific Papers
Academic presentation videos have become an essential medium for research communication, yet producing them remains highly labor-intensive, often requiring hours of slide design, recording, and editing for a short 2 to 10 minutes video. Unlike natural video, presentation video generation involves distinctive challenges: inputs from research papers, dense multi-modal information (text, figures, tables), and the need to coordinate multiple aligned channels such as slides, subtitles, speech, and human talker. To address these challenges, we introduce PaperTalker, the first benchmark of 101 research papers paired with author-created presentation videos, slides, and speaker metadata. We further design four tailored evaluation metrics--Meta Similarity, PresentArena, PresentQuiz, and IP Memory--to measure how videos convey the paper's information to the audience. Building on this foundation, we propose PaperTalker, the first multi-agent framework for academic presentation video generation. It integrates slide generation with effective layout refinement by a novel effective tree search visual choice, cursor grounding, subtitling, speech synthesis, and talking-head rendering, while parallelizing slide-wise generation for efficiency. Experiments on Paper2Video demonstrate that the presentation videos produced by our approach are more faithful and informative than existing baselines, establishing a practical step toward automated and ready-to-use academic video generation. Our dataset, agent, and code are available at https://github.com/showlab/Paper2Video.
comment: 20 pages, 8 figures
☆ From Noisy Traces to Stable Gradients: Bias-Variance Optimized Preference Optimization for Aligning Large Reasoning Models
Large reasoning models (LRMs) generate intermediate reasoning traces before producing final answers, yielding strong gains on multi-step and mathematical tasks. Yet aligning LRMs with human preferences, a crucial prerequisite for model deployment, remains underexplored. The statistically correct objective for preference alignment requires marginalizing over reasoning traces, but this computation is intractable in practice. A common workaround optimizes a single sampled trajectory, which introduces substantial gradient variance from stochastic trace sampling. To address this challenge, we frame preference optimization for LRMs through the lens of the bias--variance trade-off and propose Bias--Variance Optimized Preference Optimization (BVPO), a simple, drop-in method that mixes two gradient estimators: a high-variance trace-based estimator and a low-variance empty-trace estimator obtained by disabling reasoning trace generation. Our theory shows that BVPO strictly reduces trace-induced variance for any nontrivial mixture, provides a closed-form choice of the mixing weight that minimizes mean-squared error relative to the true marginal gradient, and under standard smoothness and step-size conditions, tightens classical convergence bounds for stochastic gradient descent. Empirically, BVPO improves alignment over the best baseline by up to 7.8 points on AlpacaEval~2 and 6.8 points on Arena-Hard. Despite being trained only on general conversational data, BVPO also boosts reasoning performance for base models by up to 4.0 points on the average of six math reasoning benchmarks. These results identify variance from trace sampling as a key bottleneck and demonstrate that directly optimizing the bias--variance trade-off yields more stable training and stronger overall performance.
☆ Learning to Interpret Weight Differences in Language Models
Finetuning (pretrained) language models is a standard approach for updating their internal parametric knowledge and specializing them to new tasks and domains. However, the corresponding model weight changes ("weight diffs") are not generally interpretable. While inspecting the finetuning dataset can give a sense of how the model might have changed, these datasets are often not publicly available or are too large to work with directly. Towards the goal of comprehensively understanding weight diffs in natural language, we introduce Diff Interpretation Tuning (DIT), a method that trains models to describe their own finetuning-induced modifications. Our approach uses synthetic, labeled weight diffs to train a DIT adapter, which can be applied to a compatible finetuned model to make it describe how it has changed. We demonstrate in two proof-of-concept settings (reporting hidden behaviors and summarizing finetuned knowledge) that our method enables models to describe their finetuning-induced modifications using accurate natural language descriptions.
comment: The weight diffs and DIT adapters trained in the paper can be found at https://huggingface.co/diff-interpretation-tuning/loras
☆ Finish First, Perfect Later: Test-Time Token-Level Cross-Validation for Diffusion Large Language Models
Diffusion large language models (dLLMs) have recently emerged as a promising alternative to autoregressive (AR) models, offering advantages such as accelerated parallel decoding and bidirectional context modeling. However, the vanilla decoding strategy in discrete dLLMs suffers from a critical limitation: once a token is accepted, it can no longer be revised in subsequent steps. As a result, early mistakes persist across iterations, harming both intermediate predictions and final output quality. To address this issue, we propose Tolerator (Token-Level Cross-Validation Refinement), a training-free decoding strategy that leverages cross-validation among predicted tokens. Unlike existing methods that follow a single progressive unmasking procedure, Tolerator introduces a two-stage process: (i) sequence fill-up and (ii) iterative refinement by remasking and decoding a subset of tokens while treating the remaining as context. This design enables previously accepted tokens to be reconsidered and corrected when necessary, leading to more reliable diffusion decoding outputs. We evaluate Tolerator on five standard benchmarks covering language understanding, code generation, and mathematics. Experiments show that our method achieves consistent improvements over the baselines under the same computational budget. These findings suggest that decoding algorithms are crucial to realizing the full potential of diffusion large language models. Code and data are publicly available.
comment: 17 pages, 8 figures. Work in progress
☆ TeachLM: Post-Training LLMs for Education Using Authentic Learning Data
The promise of generative AI to revolutionize education is constrained by the pedagogical limits of large language models (LLMs). A major issue is the lack of access to high-quality training data that reflect the learning of actual students. Prompt engineering has emerged as a stopgap, but the ability of prompts to encode complex pedagogical strategies in rule-based natural language is inherently limited. To address this gap we introduce TeachLM - an LLM optimized for teaching through parameter-efficient fine-tuning of state-of-the-art models. TeachLM is trained on a dataset comprised of 100,000 hours of one-on-one, longitudinal student-tutor interactions maintained by Polygence, which underwent a rigorous anonymization process to protect privacy. We use parameter-efficient fine-tuning to develop an authentic student model that enables the generation of high-fidelity synthetic student-tutor dialogues. Building on this capability, we propose a novel multi-turn evaluation protocol that leverages synthetic dialogue generation to provide fast, scalable, and reproducible assessments of the dialogical capabilities of LLMs. Our evaluations demonstrate that fine-tuning on authentic learning data significantly improves conversational and pedagogical performance - doubling student talk time, improving questioning style, increasing dialogue turns by 50%, and greater personalization of instruction.
comment: 28 pages, 9 figures
☆ SAEdit: Token-level control for continuous image editing via Sparse AutoEncoder
Large-scale text-to-image diffusion models have become the backbone of modern image editing, yet text prompts alone do not offer adequate control over the editing process. Two properties are especially desirable: disentanglement, where changing one attribute does not unintentionally alter others, and continuous control, where the strength of an edit can be smoothly adjusted. We introduce a method for disentangled and continuous editing through token-level manipulation of text embeddings. The edits are applied by manipulating the embeddings along carefully chosen directions, which control the strength of the target attribute. To identify such directions, we employ a Sparse Autoencoder (SAE), whose sparse latent space exposes semantically isolated dimensions. Our method operates directly on text embeddings without modifying the diffusion process, making it model agnostic and broadly applicable to various image synthesis backbones. Experiments show that it enables intuitive and efficient manipulations with continuous control across diverse attributes and domains.
comment: Project page at: https://ronen94.github.io/SAEdit/
☆ Slm-mux: Orchestrating small language models for reasoning
With the rapid development of language models, the number of small language models (SLMs) has grown significantly. Although they do not achieve state-of-the-art accuracy, they are more efficient and often excel at specific tasks. This raises a natural question: can multiple SLMs be orchestrated into a system where each contributes effectively, achieving higher accuracy than any individual model? Existing orchestration methods have primarily targeted frontier models (e.g., GPT-4) and perform suboptimally when applied to SLMs. To address this gap, we propose a three-stage approach for orchestrating SLMs. First, we introduce SLM-MUX, a multi-model architecture that effectively coordinates multiple SLMs. Building on this, we develop two optimization strategies: (i) a model selection search that identifies the most complementary SLMs from a given pool, and (ii) test-time scaling tailored to SLM-MUX. Our approach delivers strong results: Compared to existing orchestration methods, our approach achieves up to 13.4% improvement on MATH, 8.8% on GPQA, and 7.0% on GSM8K. With just two SLMS, SLM-MUX outperforms Qwen 2.5 72B on GPQA and GSM8K, and matches its performance on MATH. We further provide theoretical analyses to substantiate the advantages of our method. In summary, we demonstrate that SLMs can be effectively orchestrated into more accurate and efficient systems through the proposed approach.
☆ SwiReasoning: Switch-Thinking in Latent and Explicit for Pareto-Superior Reasoning LLMs
Recent work shows that, beyond discrete reasoning through explicit chain-of-thought steps, which are limited by the boundaries of natural languages, large language models (LLMs) can also reason continuously in latent space, allowing richer information per step and thereby improving token efficiency. Despite this promise, latent reasoning still faces two challenges, especially in training-free settings: 1) purely latent reasoning broadens the search distribution by maintaining multiple implicit paths, which diffuses probability mass, introduces noise, and impedes convergence to a single high-confidence solution, thereby hurting accuracy; and 2) overthinking persists even without explicit text, wasting tokens and degrading efficiency. To address these issues, we introduce SwiReasoning, a training-free framework for LLM reasoning which features two key innovations: 1) SwiReasoning dynamically switches between explicit and latent reasoning, guided by block-wise confidence estimated from entropy trends in next-token distributions, to balance exploration and exploitation and promote timely convergence. 2) By limiting the maximum number of thinking-block switches, SwiReasoning curbs overthinking and improves token efficiency across varying problem difficulties. On widely used mathematics and STEM benchmarks, SwiReasoning consistently improves average accuracy by 1.5%-2.8% across reasoning LLMs of different model families and scales. Furthermore, under constrained budgets, SwiReasoning improves average token efficiency by 56%-79%, with larger gains as budgets tighten.
comment: Code: https://github.com/sdc17/SwiReasoning, Website: https://swireasoning.github.io/
☆ Staircase Streaming for Low-Latency Multi-Agent Inference
Recent advances in large language models (LLMs) opened up new directions for leveraging the collective expertise of multiple LLMs. These methods, such as Mixture-of-Agents, typically employ additional inference steps to generate intermediate outputs, which are then used to produce the final response. While multi-agent inference can enhance response quality, it can significantly increase the time to first token (TTFT), posing a challenge for latency-sensitive applications and hurting user experience. To address this issue, we propose staircase streaming for low-latency multi-agent inference. Instead of waiting for the complete intermediate outputs from previous steps, we begin generating the final response as soon as we receive partial outputs from these steps. Experimental results demonstrate that staircase streaming reduces TTFT by up to 93% while maintaining response quality.
☆ HybridFlow: Quantification of Aleatoric and Epistemic Uncertainty with a Single Hybrid Model
Uncertainty quantification is critical for ensuring robustness in high-stakes machine learning applications. We introduce HybridFlow, a modular hybrid architecture that unifies the modeling of aleatoric and epistemic uncertainty by combining a Conditional Masked Autoregressive normalizing flow for estimating aleatoric uncertainty with a flexible probabilistic predictor for epistemic uncertainty. The framework supports integration with any probabilistic model class, allowing users to easily adapt HybridFlow to existing architectures without sacrificing predictive performance. HybridFlow improves upon previous uncertainty quantification frameworks across a range of regression tasks, such as depth estimation, a collection of regression benchmarks, and a scientific case study of ice sheet emulation. We also provide empirical results of the quantified uncertainty, showing that the uncertainty quantified by HybridFlow is calibrated and better aligns with model error than existing methods for quantifying aleatoric and epistemic uncertainty. HybridFlow addresses a key challenge in Bayesian deep learning, unifying aleatoric and epistemic uncertainty modeling in a single robust framework.
comment: Reviewed and published in TMLR at https://openreview.net/forum?id=xRiEdSyVjY
☆ Look-ahead Reasoning with a Learned Model in Imperfect Information Games
Test-time reasoning significantly enhances pre-trained AI agents' performance. However, it requires an explicit environment model, often unavailable or overly complex in real-world scenarios. While MuZero enables effective model learning for search in perfect information games, extending this paradigm to imperfect information games presents substantial challenges due to more nuanced look-ahead reasoning techniques and large number of states relevant for individual decisions. This paper introduces an algorithm LAMIR that learns an abstracted model of an imperfect information game directly from the agent-environment interaction. During test time, this trained model is used to perform look-ahead reasoning. The learned abstraction limits the size of each subgame to a manageable size, making theoretically principled look-ahead reasoning tractable even in games where previous methods could not scale. We empirically demonstrate that with sufficient capacity, LAMIR learns the exact underlying game structure, and with limited capacity, it still learns a valuable abstraction, which improves game playing performance of the pre-trained agents even in large games.
☆ Test-Time Scaling in Diffusion LLMs via Hidden Semi-Autoregressive Experts
Diffusion-based large language models (dLLMs) are trained flexibly to model extreme dependence in the data distribution; however, how to best utilize this information at inference time remains an open problem. In this work, we uncover an interesting property of these models: dLLMs trained on textual data implicitly learn a mixture of semi-autoregressive experts, where different generation orders reveal different specialized behaviors. We show that committing to any single, fixed inference time schedule, a common practice, collapses performance by failing to leverage this latent ensemble. To address this, we introduce HEX (Hidden semiautoregressive EXperts for test-time scaling), a training-free inference method that ensembles across heterogeneous block schedules. By doing a majority vote over diverse block-sized generation paths, HEX robustly avoids failure modes associated with any single fixed schedule. On reasoning benchmarks such as GSM8K, it boosts accuracy by up to 3.56X (from 24.72% to 88.10%), outperforming top-K margin inference and specialized fine-tuned methods like GRPO, without additional training. HEX even yields significant gains on MATH benchmark from 16.40% to 40.00%, scientific reasoning on ARC-C from 54.18% to 87.80%, and TruthfulQA from 28.36% to 57.46%. Our results establish a new paradigm for test-time scaling in diffusion-based LLMs (dLLMs), revealing that the sequence in which masking is performed plays a critical role in determining performance during inference.
Graph-Aware Diffusion for Signal Generation
We study the problem of generating graph signals from unknown distributions defined over given graphs, relevant to domains such as recommender systems or sensor networks. Our approach builds on generative diffusion models, which are well established in vision and graph generation but remain underexplored for graph signals. Existing methods lack generality, either ignoring the graph structure in the forward process or designing graph-aware mechanisms tailored to specific domains. We adopt a forward process that incorporates the graph through the heat equation. Rather than relying on the standard formulation, we consider a time-warped coefficient to mitigate the exponential decay of the drift term, yielding a graph-aware generative diffusion model (GAD). We analyze its forward dynamics, proving convergence to a Gaussian Markov random field with covariance parametrized by the graph Laplacian, and interpret the backward dynamics as a sequence of graph-signal denoising problems. Finally, we demonstrate the advantages of GAD on synthetic data, real traffic speed measurements, and a temperature sensor network.
☆ Imperceptible Jailbreaking against Large Language Models
Jailbreaking attacks on the vision modality typically rely on imperceptible adversarial perturbations, whereas attacks on the textual modality are generally assumed to require visible modifications (e.g., non-semantic suffixes). In this paper, we introduce imperceptible jailbreaks that exploit a class of Unicode characters called variation selectors. By appending invisible variation selectors to malicious questions, the jailbreak prompts appear visually identical to original malicious questions on screen, while their tokenization is "secretly" altered. We propose a chain-of-search pipeline to generate such adversarial suffixes to induce harmful responses. Our experiments show that our imperceptible jailbreaks achieve high attack success rates against four aligned LLMs and generalize to prompt injection attacks, all without producing any visible modifications in the written prompt. Our code is available at https://github.com/sail-sg/imperceptible-jailbreaks.
☆ Rethinking Langevin Thompson Sampling from A Stochastic Approximation Perspective
Most existing approximate Thompson Sampling (TS) algorithms for multi-armed bandits use Stochastic Gradient Langevin Dynamics (SGLD) or its variants in each round to sample from the posterior, relaxing the need for conjugacy assumptions between priors and reward distributions in vanilla TS. However, they often require approximating a different posterior distribution in different round of the bandit problem. This requires tricky, round-specific tuning of hyperparameters such as dynamic learning rates, causing challenges in both theoretical analysis and practical implementation. To alleviate this non-stationarity, we introduce TS-SA, which incorporates stochastic approximation (SA) within the TS framework. In each round, TS-SA constructs a posterior approximation only using the most recent reward(s), performs a Langevin Monte Carlo (LMC) update, and applies an SA step to average noisy proposals over time. This can be interpreted as approximating a stationary posterior target throughout the entire algorithm, which further yields a fixed step-size, a unified convergence analysis framework, and improved posterior estimates through temporal averaging. We establish near-optimal regret bounds for TS-SA, with a simplified and more intuitive theoretical analysis enabled by interpreting the entire algorithm as a simulation of a stationary SGLD process. Our empirical results demonstrate that even a single-step Langevin update with certain warm-up outperforms existing methods substantially on bandit tasks.
comment: 39 pages, 3 figures, 2 tables
☆ Think Then Embed: Generative Context Improves Multimodal Embedding
There is a growing interest in Universal Multimodal Embeddings (UME), where models are required to generate task-specific representations. While recent studies show that Multimodal Large Language Models (MLLMs) perform well on such tasks, they treat MLLMs solely as encoders, overlooking their generative capacity. However, such an encoding paradigm becomes less effective as instructions become more complex and require compositional reasoning. Inspired by the proven effectiveness of chain-of-thought reasoning, we propose a general Think-Then-Embed (TTE) framework for UME, composed of a reasoner and an embedder. The reasoner MLLM first generates reasoning traces that explain complex queries, followed by an embedder that produces representations conditioned on both the original query and the intermediate reasoning. This explicit reasoning step enables more nuanced understanding of complex multimodal instructions. Our contributions are threefold. First, by leveraging a powerful MLLM reasoner, we achieve state-of-the-art performance on the MMEB-V2 benchmark, surpassing proprietary models trained on massive in-house datasets. Second, to reduce the dependency on large MLLM reasoners, we finetune a smaller MLLM reasoner using high-quality embedding-centric reasoning traces, achieving the best performance among open-source models with a 7% absolute gain over recently proposed models. Third, we investigate strategies for integrating the reasoner and embedder into a unified model for improved efficiency without sacrificing performance.
☆ Resource-Efficient Fine-Tuning of LLaMA-3.2-3B for Medical Chain-of-Thought Reasoning
Large Language Models (LLMs) such as GPT-4 and LLaMA have demonstrated remarkable reasoning abilities but require significant computational resources for fine-tuning. This paper presents a resource-efficient fine-tuning approach for LLaMA-3.2-3B to enhance medical chain-of-thought reasoning while operating under constrained GPU and memory settings. Using parameter-efficient tuning techniques such as LoRA and QLoRA, we adapt the base model on publicly available medical reasoning datasets. The model achieves improved reasoning coherence and factual accuracy while reducing memory usage by up to 60% compared to standard full fine-tuning. Experimental evaluation demonstrates that lightweight adaptations can retain strong reasoning capability in medical question-answering tasks. This work highlights practical strategies for deploying LLMs in low-resource research environments and provides insights into balancing efficiency and domain specialization for medical AI systems.
comment: 6 pages, 2 figures. Submitted to arXiv for open access
☆ Bridging Text and Video Generation: A Survey
Text-to-video (T2V) generation technology holds potential to transform multiple domains such as education, marketing, entertainment, and assistive technologies for individuals with visual or reading comprehension challenges, by creating coherent visual content from natural language prompts. From its inception, the field has advanced from adversarial models to diffusion-based models, yielding higher-fidelity, temporally consistent outputs. Yet challenges persist, such as alignment, long-range coherence, and computational efficiency. Addressing this evolving landscape, we present a comprehensive survey of text-to-video generative models, tracing their development from early GANs and VAEs to hybrid Diffusion-Transformer (DiT) architectures, detailing how these models work, what limitations they addressed in their predecessors, and why shifts toward new architectural paradigms were necessary to overcome challenges in quality, coherence, and control. We provide a systematic account of the datasets, which the surveyed text-to-video models were trained and evaluated on, and, to support reproducibility and assess the accessibility of training such models, we detail their training configurations, including their hardware specifications, GPU counts, batch sizes, learning rates, optimizers, epochs, and other key hyperparameters. Further, we outline the evaluation metrics commonly used for evaluating such models and present their performance across standard benchmarks, while also discussing the limitations of these metrics and the emerging shift toward more holistic, perception-aligned evaluation strategies. Finally, drawing from our analysis, we outline the current open challenges and propose a few promising future directions, laying out a perspective for future researchers to explore and build upon in advancing T2V research and applications.
☆ AutoEmpirical: LLM-Based Automated Research for Empirical Software Fault Analysis
Understanding software faults is essential for empirical research in software development and maintenance. However, traditional fault analysis, while valuable, typically involves multiple expert-driven steps such as collecting potential faults, filtering, and manual investigation. These processes are both labor-intensive and time-consuming, creating bottlenecks that hinder large-scale fault studies in complex yet critical software systems and slow the pace of iterative empirical research. In this paper, we decompose the process of empirical software fault study into three key phases: (1) research objective definition, (2) data preparation, and (3) fault analysis, and we conduct an initial exploration study of applying Large Language Models (LLMs) for fault analysis of open-source software. Specifically, we perform the evaluation on 3,829 software faults drawn from a high-quality empirical study. Our results show that LLMs can substantially improve efficiency in fault analysis, with an average processing time of about two hours, compared to the weeks of manual effort typically required. We conclude by outlining a detailed research plan that highlights both the potential of LLMs for advancing empirical fault studies and the open challenges that required be addressed to achieve fully automated, end-to-end software fault analysis.
comment: 5 pages
☆ Reinforce-Ada: An Adaptive Sampling Framework for Reinforce-Style LLM Training
Reinforcement learning applied to large language models (LLMs) for reasoning tasks is often bottlenecked by unstable gradient estimates due to fixed and uniform sampling of responses across prompts. Prior work such as GVM-RAFT addresses this by dynamically allocating inference budget per prompt to minimize stochastic gradient variance under a budget constraint. Inspired by this insight, we propose Reinforce-Ada, an adaptive sampling framework for online RL post-training of LLMs that continuously reallocates sampling effort to the prompts with the greatest uncertainty or learning potential. Unlike conventional two-stage allocation methods, Reinforce-Ada interleaves estimation and sampling in an online successive elimination process, and automatically stops sampling for a prompt once sufficient signal is collected. To stabilize updates, we form fixed-size groups with enforced reward diversity and compute advantage baselines using global statistics aggregated over the adaptive sampling phase. Empirical results across multiple model architectures and reasoning benchmarks show that Reinforce-Ada accelerates convergence and improves final performance compared to GRPO, especially when using the balanced sampling variant. Our work highlights the central role of variance-aware, adaptive data curation in enabling efficient and reliable reinforcement learning for reasoning-capable LLMs. Code is available at https://github.com/RLHFlow/Reinforce-Ada.
comment: 16 pages, 6 figures
☆ LLM-Hanabi: Evaluating Multi-Agent Gameplays with Theory-of-Mind and Rationale Inference in Imperfect Information Collaboration Game EMNLP 2025
Effective multi-agent collaboration requires agents to infer the rationale behind others' actions, a capability rooted in Theory-of-Mind (ToM). While recent Large Language Models (LLMs) excel at logical inference, their ability to infer rationale in dynamic, collaborative settings remains under-explored. This study introduces LLM-Hanabi, a novel benchmark that uses the cooperative game Hanabi to evaluate the rationale inference and ToM of LLMs. Our framework features an automated evaluation system that measures both game performance and ToM proficiency. Across a range of models, we find a significant positive correlation between ToM and in-game success. Notably, first-order ToM (interpreting others' intent) correlates more strongly with performance than second-order ToM (predicting others' interpretations). These findings highlight that for effective AI collaboration, the ability to accurately interpret a partner's rationale is more critical than higher-order reasoning. We conclude that prioritizing first-order ToM is a promising direction for enhancing the collaborative capabilities of future models.
comment: EMNLP 2025 Wordplay
☆ Aligning Perception, Reasoning, Modeling and Interaction: A Survey on Physical AI
The rapid advancement of embodied intelligence and world models has intensified efforts to integrate physical laws into AI systems, yet physical perception and symbolic physics reasoning have developed along separate trajectories without a unified bridging framework. This work provides a comprehensive overview of physical AI, establishing clear distinctions between theoretical physics reasoning and applied physical understanding while systematically examining how physics-grounded methods enhance AI's real-world comprehension across structured symbolic reasoning, embodied systems, and generative models. Through rigorous analysis of recent advances, we advocate for intelligent systems that ground learning in both physical principles and embodied reasoning processes, transcending pattern recognition toward genuine understanding of physical laws. Our synthesis envisions next-generation world models capable of explaining physical phenomena and predicting future states, advancing safe, generalizable, and interpretable AI systems. We maintain a continuously updated resource at https://github.com/AI4Phys/Awesome-AI-for-Physics.
☆ Embracing Discrete Search: A Reasonable Approach to Causal Structure Learning
We present FLOP (Fast Learning of Order and Parents), a score-based causal discovery algorithm for linear models. It pairs fast parent selection with iterative Cholesky-based score updates, cutting run-times over prior algorithms. This makes it feasible to fully embrace discrete search, enabling iterated local search with principled order initialization to find graphs with scores at or close to the global optimum. The resulting structures are highly accurate across benchmarks, with near-perfect recovery in standard settings. This performance calls for revisiting discrete search over graphs as a reasonable approach to causal discovery.
☆ ActiveMark: on watermarking of visual foundation models via massive activations
Being trained on large and vast datasets, visual foundation models (VFMs) can be fine-tuned for diverse downstream tasks, achieving remarkable performance and efficiency in various computer vision applications. The high computation cost of data collection and training motivates the owners of some VFMs to distribute them alongside the license to protect their intellectual property rights. However, a dishonest user of the protected model's copy may illegally redistribute it, for example, to make a profit. As a consequence, the development of reliable ownership verification tools is of great importance today, since such methods can be used to differentiate between a redistributed copy of the protected model and an independent model. In this paper, we propose an approach to ownership verification of visual foundation models by fine-tuning a small set of expressive layers of a VFM along with a small encoder-decoder network to embed digital watermarks into an internal representation of a hold-out set of input images. Importantly, the watermarks embedded remain detectable in the functional copies of the protected model, obtained, for example, by fine-tuning the VFM for a particular downstream task. Theoretically and experimentally, we demonstrate that the proposed method yields a low probability of false detection of a non-watermarked model and a low probability of false misdetection of a watermarked model.
☆ Feasibility-Aware Decision-Focused Learning for Predicting Parameters in the Constraints
When some parameters of a constrained optimization problem (COP) are uncertain, this gives rise to a predict-then-optimize (PtO) problem, comprising two stages -- the prediction of the unknown parameters from contextual information and the subsequent optimization using those predicted parameters. Decision-focused learning (DFL) implements the first stage by training a machine learning (ML) model to optimize the quality of the decisions made using the predicted parameters. When parameters in the constraints of a COP are predicted, the predicted parameters can lead to infeasible solutions. Therefore, it is important to simultaneously manage both feasibility and decision quality. We develop a DFL framework for predicting constraint parameters in a generic COP. While prior works typically assume that the underlying optimization problem is a linear program (LP) or integer linear program (ILP), our approach makes no such assumption. We derive two novel loss functions based on maximum likelihood estimation (MLE): the first one penalizes infeasibility (by penalizing when the predicted parameters lead to infeasible solutions), and the second one penalizes suboptimal decisions (by penalizing when the true optimal solution is infeasible under the predicted parameters). We introduce a single tunable parameter to form a weighted average of the two losses, allowing decision-makers to balance suboptimality and feasibility. We experimentally demonstrate that adjusting this parameter provides a decision-maker the control over the trade-off between the two. Moreover, across several COP instances, we find that for a single value of the tunable parameter, our method matches the performance of the existing baselines on suboptimality and feasibility.
☆ Mind Your Tone: Investigating How Prompt Politeness Affects LLM Accuracy (short paper) ACL 2025
The wording of natural language prompts has been shown to influence the performance of large language models (LLMs), yet the role of politeness and tone remains underexplored. In this study, we investigate how varying levels of prompt politeness affect model accuracy on multiple-choice questions. We created a dataset of 50 base questions spanning mathematics, science, and history, each rewritten into five tone variants: Very Polite, Polite, Neutral, Rude, and Very Rude, yielding 250 unique prompts. Using ChatGPT 4o, we evaluated responses across these conditions and applied paired sample t-tests to assess statistical significance. Contrary to expectations, impolite prompts consistently outperformed polite ones, with accuracy ranging from 80.8% for Very Polite prompts to 84.8% for Very Rude prompts. These findings differ from earlier studies that associated rudeness with poorer outcomes, suggesting that newer LLMs may respond differently to tonal variation. Our results highlight the importance of studying pragmatic aspects of prompting and raise broader questions about the social dimensions of human-AI interaction.
comment: 5 pages, 3 tables; includes Limitations and Ethical Considerations sections; short paper under submission to Findings of ACL 2025
☆ Bidirectional Mammogram View Translation with Column-Aware and Implicit 3D Conditional Diffusion
Dual-view mammography, including craniocaudal (CC) and mediolateral oblique (MLO) projections, offers complementary anatomical views crucial for breast cancer diagnosis. However, in real-world clinical workflows, one view may be missing, corrupted, or degraded due to acquisition errors or compression artifacts, limiting the effectiveness of downstream analysis. View-to-view translation can help recover missing views and improve lesion alignment. Unlike natural images, this task in mammography is highly challenging due to large non-rigid deformations and severe tissue overlap in X-ray projections, which obscure pixel-level correspondences. In this paper, we propose Column-Aware and Implicit 3D Diffusion (CA3D-Diff), a novel bidirectional mammogram view translation framework based on conditional diffusion model. To address cross-view structural misalignment, we first design a column-aware cross-attention mechanism that leverages the geometric property that anatomically corresponding regions tend to lie in similar column positions across views. A Gaussian-decayed bias is applied to emphasize local column-wise correlations while suppressing distant mismatches. Furthermore, we introduce an implicit 3D structure reconstruction module that back-projects noisy 2D latents into a coarse 3D feature volume based on breast-view projection geometry. The reconstructed 3D structure is refined and injected into the denoising UNet to guide cross-view generation with enhanced anatomical awareness. Extensive experiments demonstrate that CA3D-Diff achieves superior performance in bidirectional tasks, outperforming state-of-the-art methods in visual fidelity and structural consistency. Furthermore, the synthesized views effectively improve single-view malignancy classification in screening settings, demonstrating the practical value of our method in real-world diagnostics.
comment: BIBM2025 accept, 8 pages, 4 figures
☆ A First Context-Free Grammar Applied to Nawatl Corpora Augmentation
In this article we introduce a context-free grammar (CFG) for the Nawatl language. Nawatl (or Nahuatl) is an Amerindian language of the $\pi$-language type, i.e. a language with few digital resources, in which the corpora available for machine learning are virtually non-existent. The objective here is to generate a significant number of grammatically correct artificial sentences, in order to increase the corpora available for language model training. We want to show that a grammar enables us significantly to expand a corpus in Nawatl which we call $\pi$-\textsc{yalli}. The corpus, thus enriched, enables us to train algorithms such as FastText and to evaluate them on sentence-level semantic tasks. Preliminary results show that by using the grammar, comparative improvements are achieved over some LLMs. However, it is observed that to achieve more significant improvement, grammars that model the Nawatl language even more effectively are required.
comment: 11 pages, 7 tables, 1 figure
Unsupervised Active Learning via Natural Feature Progressive Framework
The effectiveness of modern deep learning models is predicated on the availability of large-scale, human-annotated datasets, a process that is notoriously expensive and time-consuming. While Active Learning (AL) offers a strategic solution by labeling only the most informative and representative data, its iterative nature still necessitates significant human involvement. Unsupervised Active Learning (UAL) presents an alternative by shifting the annotation burden to a single, post-selection step. Unfortunately, prevailing UAL methods struggle to achieve state-of-the-art performance. These approaches typically rely on local, gradient-based scoring for sample importance estimation, which not only makes them vulnerable to ambiguous and noisy data but also hinders their capacity to select samples that adequately represent the full data distribution. Moreover, their use of shallow, one-shot linear selection falls short of a true UAL paradigm. In this paper, we propose the Natural Feature Progressive Framework (NFPF), a UAL method that revolutionizes how sample importance is measured. At its core, NFPF employs a Specific Feature Learning Machine (SFLM) to effectively quantify each sample's contribution to model performance. We further utilize the SFLM to define a powerful Reconstruction Difference metric for initial sample selection. Our comprehensive experiments show that NFPF significantly outperforms all established UAL methods and achieves performance on par with supervised AL methods on vision datasets. Detailed ablation studies and qualitative visualizations provide compelling evidence for NFPF's superior performance, enhanced robustness, and improved data distribution coverage.
comment: Under review at IEEE TPAMI
☆ ONNX-Net: Towards Universal Representations and Instant Performance Prediction for Neural Architectures
Neural architecture search (NAS) automates the design process of high-performing architectures, but remains bottlenecked by expensive performance evaluation. Most existing studies that achieve faster evaluation are mostly tied to cell-based search spaces and graph encodings tailored to those individual search spaces, limiting their flexibility and scalability when applied to more expressive search spaces. In this work, we aim to close the gap of individual search space restrictions and search space dependent network representations. We present ONNX-Bench, a benchmark consisting of a collection of neural networks in a unified format based on ONNX files. ONNX-Bench includes all open-source NAS-bench-based neural networks, resulting in a total size of more than 600k {architecture, accuracy} pairs. This benchmark allows creating a shared neural network representation, ONNX-Net, able to represent any neural architecture using natural language descriptions acting as an input to a performance predictor. This text-based encoding can accommodate arbitrary layer types, operation parameters, and heterogeneous topologies, enabling a single surrogate to generalise across all neural architectures rather than being confined to cell-based search spaces. Experiments show strong zero-shot performance across disparate search spaces using only a small amount of pretraining samples, enabling the unprecedented ability to evaluate any neural network architecture instantly.
comment: Our code is available at: https://github.com/shiwenqin/ONNX-Net
☆ MARS: Optimizing Dual-System Deep Research via Multi-Agent Reinforcement Learning
Large Reasoning Models (LRMs) often exhibit a tendency for overanalysis in simple tasks, where the models excessively utilize System 2-type, deliberate reasoning, leading to inefficient token generation. Furthermore, these models face challenges in adapting their reasoning capabilities to rapidly changing environments due to the static nature of their pretraining data. To address these issues, advancing Large Language Models (LLMs) for complex reasoning tasks requires innovative approaches that bridge intuitive and deliberate cognitive processes, akin to human cognition's dual-system dynamic. This paper introduces a Multi-Agent System for Deep ReSearch (MARS) enabling seamless integration of System 1's fast, intuitive thinking with System 2's deliberate reasoning within LLMs. MARS strategically integrates multiple external tools, such as Google Search, Google Scholar, and Python Interpreter, to access up-to-date information and execute complex computations, while creating a specialized division of labor where System 1 efficiently processes and summarizes high-volume external information, providing distilled insights that expand System 2's reasoning context without overwhelming its capacity. Furthermore, we propose a multi-agent reinforcement learning framework extending Group Relative Policy Optimization to simultaneously optimize both systems with multi-turn tool interactions, bin-packing optimization, and sample balancing strategies that enhance collaborative efficiency. Extensive experiments demonstrate MARS achieves substantial improvements of 3.86% on the challenging Humanity's Last Exam (HLE) benchmark and an average gain of 8.9% across 7 knowledge-intensive tasks, validating the effectiveness of our dual-system paradigm for complex reasoning in dynamic information environments.
comment: Ongoing Work
☆ AURA Score: A Metric For Holistic Audio Question Answering Evaluation
Audio Question Answering (AQA) is a key task for evaluating Audio-Language Models (ALMs), yet assessing open-ended responses remains challenging. Existing metrics used for AQA such as BLEU, METEOR and BERTScore, mostly adapted from NLP and audio captioning, rely on surface similarity and fail to account for question context, reasoning, and partial correctness. To address the gap in literature, we make three contributions in this work. First, we introduce AQEval to enable systematic benchmarking of AQA metrics. It is the first benchmark of its kind, consisting of 10k model responses annotated by multiple humans for their correctness and relevance. Second, we conduct a comprehensive analysis of existing AQA metrics on AQEval, highlighting weak correlation with human judgment, especially for longer answers. Third, we propose a new metric - AURA score, to better evaluate open-ended model responses. On AQEval, AURA achieves state-of-the-art correlation with human ratings, significantly outperforming all baselines. Through this work, we aim to highlight the limitations of current AQA evaluation methods and motivate better metrics. We release both the AQEval benchmark and the AURA metric to support future research in holistic AQA evaluation.
☆ The Geometry of Truth: Layer-wise Semantic Dynamics for Hallucination Detection in Large Language Models
Large Language Models (LLMs) often produce fluent yet factually incorrect statements-a phenomenon known as hallucination-posing serious risks in high-stakes domains. We present Layer-wise Semantic Dynamics (LSD), a geometric framework for hallucination detection that analyzes the evolution of hidden-state semantics across transformer layers. Unlike prior methods that rely on multiple sampling passes or external verification sources, LSD operates intrinsically within the model's representational space. Using margin-based contrastive learning, LSD aligns hidden activations with ground-truth embeddings derived from a factual encoder, revealing a distinct separation in semantic trajectories: factual responses preserve stable alignment, while hallucinations exhibit pronounced semantic drift across depth. Evaluated on the TruthfulQA and synthetic factual-hallucination datasets, LSD achieves an F1-score of 0.92, AUROC of 0.96, and clustering accuracy of 0.89, outperforming SelfCheckGPT and Semantic Entropy baselines while requiring only a single forward pass. This efficiency yields a 5-20x speedup over sampling-based methods without sacrificing precision or interpretability. LSD offers a scalable, model-agnostic mechanism for real-time hallucination monitoring and provides new insights into the geometry of factual consistency within large language models.
comment: Comments: 14 pages, 14 figures, 5 tables. Code available at: https://github.com/sirraya-tech/Sirraya_LSD_Code
☆ Federated Self-Supervised Learning for Automatic Modulation Classification under Non-IID and Class-Imbalanced Data
Training automatic modulation classification (AMC) models on centrally aggregated data raises privacy concerns, incurs communication overhead, and often fails to confer robustness to channel shifts. Federated learning (FL) avoids central aggregation by training on distributed clients but remains sensitive to class imbalance, non-IID client distributions, and limited labeled samples. We propose FedSSL-AMC, which trains a causal, time-dilated CNN with triplet-loss self-supervision on unlabeled I/Q sequences across clients, followed by per-client SVMs on small labeled sets. We establish convergence of the federated representation learning procedure and a separability guarantee for the downstream classifier under feature noise. Experiments on synthetic and over-the-air datasets show consistent gains over supervised FL baselines under heterogeneous SNR, carrier-frequency offsets, and non-IID label partitions.
☆ REN: Anatomically-Informed Mixture-of-Experts for Interstitial Lung Disease Diagnosis
Mixture-of-Experts (MoE) architectures have significantly contributed to scalable machine learning by enabling specialized subnetworks to tackle complex tasks efficiently. However, traditional MoE systems lack domain-specific constraints essential for medical imaging, where anatomical structure and regional disease heterogeneity strongly influence pathological patterns. Here, we introduce Regional Expert Networks (REN), the first anatomically-informed MoE framework tailored specifically for medical image classification. REN leverages anatomical priors to train seven specialized experts, each dedicated to distinct lung lobes and bilateral lung combinations, enabling precise modeling of region-specific pathological variations. Multi-modal gating mechanisms dynamically integrate radiomics biomarkers and deep learning (DL) features (CNN, ViT, Mamba) to weight expert contributions optimally. Applied to interstitial lung disease (ILD) classification, REN achieves consistently superior performance: the radiomics-guided ensemble reached an average AUC of 0.8646 +/- 0.0467, a +12.5 percent improvement over the SwinUNETR baseline (AUC 0.7685, p = 0.031). Region-specific experts further revealed that lower-lobe models achieved AUCs of 0.88-0.90, surpassing DL counterparts (CNN: 0.76-0.79) and aligning with known disease progression patterns. Through rigorous patient-level cross-validation, REN demonstrates strong generalizability and clinical interpretability, presenting a scalable, anatomically-guided approach readily extensible to other structured medical imaging applications.
comment: 10 pages, 4 figures, 2 tables
☆ Do LLMs Align with My Task? Evaluating Text-to-SQL via Dataset Alignment
Supervised Fine-Tuning (SFT) is an effective method for adapting Large Language Models (LLMs) on downstream tasks. However, variability in training data can hinder a model's ability to generalize across domains. This paper studies the problem of dataset alignment for Natural Language to SQL (NL2SQL or text to SQL), examining how well SFT training data matches the structural characteristics of target queries and how this alignment impacts model performance. We hypothesize that alignment can be accurately estimated by comparing the distributions of structural SQL features across the training set, target data, and the model's predictions prior to SFT. Through comprehensive experiments on three large cross-domain NL2SQL benchmarks and multiple model families, we show that structural alignment is a strong predictor of fine-tuning success. When alignment is high, SFT yields substantial gains in accuracy and SQL generation quality; when alignment is low, improvements are marginal or absent. These findings highlight the importance of alignment-aware data selection for effective fine-tuning and generalization in NL2SQL tasks.
☆ Glocal Information Bottleneck for Time Series Imputation
Time Series Imputation (TSI), which aims to recover missing values in temporal data, remains a fundamental challenge due to the complex and often high-rate missingness in real-world scenarios. Existing models typically optimize the point-wise reconstruction loss, focusing on recovering numerical values (local information). However, we observe that under high missing rates, these models still perform well in the training phase yet produce poor imputations and distorted latent representation distributions (global information) in the inference phase. This reveals a critical optimization dilemma: current objectives lack global guidance, leading models to overfit local noise and fail to capture global information of the data. To address this issue, we propose a new training paradigm, Glocal Information Bottleneck (Glocal-IB). Glocal-IB is model-agnostic and extends the standard IB framework by introducing a Global Alignment loss, derived from a tractable mutual information approximation. This loss aligns the latent representations of masked inputs with those of their originally observed counterparts. It helps the model retain global structure and local details while suppressing noise caused by missing values, giving rise to better generalization under high missingness. Extensive experiments on nine datasets confirm that Glocal-IB leads to consistently improved performance and aligned latent representations under missingness. Our code implementation is available in https://github.com/Muyiiiii/NeurIPS-25-Glocal-IB.
☆ Focused Skill Discovery: Learning to Control Specific State Variables while Minimizing Side Effects
Skills are essential for unlocking higher levels of problem solving. A common approach to discovering these skills is to learn ones that reliably reach different states, thus empowering the agent to control its environment. However, existing skill discovery algorithms often overlook the natural state variables present in many reinforcement learning problems, meaning that the discovered skills lack control of specific state variables. This can significantly hamper exploration efficiency, make skills more challenging to learn with, and lead to negative side effects in downstream tasks when the goal is under-specified. We introduce a general method that enables these skill discovery algorithms to learn focused skills -- skills that target and control specific state variables. Our approach improves state space coverage by a factor of three, unlocks new learning capabilities, and automatically avoids negative side effects in downstream tasks.
comment: Reinforcement Learning Journal 2025
☆ Human Behavior Atlas: Benchmarking Unified Psychological and Social Behavior Understanding
Using intelligent systems to perceive psychological and social behaviors, that is, the underlying affective, cognitive, and pathological states that are manifested through observable behaviors and social interactions, remains a challenge due to their complex, multifaceted, and personalized nature. Existing work tackling these dimensions through specialized datasets and single-task systems often miss opportunities for scalability, cross-task transfer, and broader generalization. To address this gap, we curate Human Behavior Atlas, a unified benchmark of diverse behavioral tasks designed to support the development of unified models for understanding psychological and social behaviors. Human Behavior Atlas comprises over 100,000 samples spanning text, audio, and visual modalities, covering tasks on affective states, cognitive states, pathologies, and social processes. Our unification efforts can reduce redundancy and cost, enable training to scale efficiently across tasks, and enhance generalization of behavioral features across domains. On Human Behavior Atlas, we train three models: OmniSapiens-7B SFT, OmniSapiens-7B BAM, and OmniSapiens-7B RL. We show that training on Human Behavior Atlas enables models to consistently outperform existing multimodal LLMs across diverse behavioral tasks. Pretraining on Human Behavior Atlas also improves transfer to novel behavioral datasets; with the targeted use of behavioral descriptors yielding meaningful performance gains.
☆ HyperVLA: Efficient Inference in Vision-Language-Action Models via Hypernetworks
Built upon language and vision foundation models with strong generalization ability and trained on large-scale robotic data, Vision-Language-Action (VLA) models have recently emerged as a promising approach to learning generalist robotic policies. However, a key drawback of existing VLAs is their extremely high inference costs. In this paper, we propose HyperVLA to address this problem. Unlike existing monolithic VLAs that activate the whole model during both training and inference, HyperVLA uses a novel hypernetwork (HN)-based architecture that activates only a small task-specific policy during inference, while still retaining the high model capacity needed to accommodate diverse multi-task behaviors during training. Successfully training an HN-based VLA is nontrivial so HyperVLA contains several key algorithm design features that improve its performance, including properly utilizing the prior knowledge from existing vision foundation models, HN normalization, and an action generation strategy. Compared to monolithic VLAs, HyperVLA achieves a similar or even higher success rate for both zero-shot generalization and few-shot adaptation, while significantly reducing inference costs. Compared to OpenVLA, a state-of-the-art VLA model, HyperVLA reduces the number of activated parameters at test time by $90\times$, and accelerates inference speed by $120\times$. Code is publicly available at https://github.com/MasterXiong/HyperVLA
☆ SocialHarmBench: Revealing LLM Vulnerabilities to Socially Harmful Requests
Large language models (LLMs) are increasingly deployed in contexts where their failures can have direct sociopolitical consequences. Yet, existing safety benchmarks rarely test vulnerabilities in domains such as political manipulation, propaganda and disinformation generation, or surveillance and information control. We introduce SocialHarmBench, a dataset of 585 prompts spanning 7 sociopolitical categories and 34 countries, designed to surface where LLMs most acutely fail in politically charged contexts. Our evaluations reveal several shortcomings: open-weight models exhibit high vulnerability to harmful compliance, with Mistral-7B reaching attack success rates as high as 97% to 98% in domains such as historical revisionism, propaganda, and political manipulation. Moreover, temporal and geographic analyses show that LLMs are most fragile when confronted with 21st-century or pre-20th-century contexts, and when responding to prompts tied to regions such as Latin America, the USA, and the UK. These findings demonstrate that current safeguards fail to generalize to high-stakes sociopolitical settings, exposing systematic biases and raising concerns about the reliability of LLMs in preserving human rights and democratic values. We share the SocialHarmBench benchmark at https://huggingface.co/datasets/psyonp/SocialHarmBench.
☆ Revealing Interconnections between Diseases: from Statistical Methods to Large Language Models
Identifying disease interconnections through manual analysis of large-scale clinical data is labor-intensive, subjective, and prone to expert disagreement. While machine learning (ML) shows promise, three critical challenges remain: (1) selecting optimal methods from the vast ML landscape, (2) determining whether real-world clinical data (e.g., electronic health records, EHRs) or structured disease descriptions yield more reliable insights, (3) the lack of "ground truth," as some disease interconnections remain unexplored in medicine. Large language models (LLMs) demonstrate broad utility, yet they often lack specialized medical knowledge. To address these gaps, we conduct a systematic evaluation of seven approaches for uncovering disease relationships based on two data sources: (i) sequences of ICD-10 codes from MIMIC-IV EHRs and (ii) the full set of ICD-10 codes, both with and without textual descriptions. Our framework integrates the following: (i) a statistical co-occurrence analysis and a masked language modeling (MLM) approach using real clinical data; (ii) domain-specific BERT variants (Med-BERT and BioClinicalBERT); (iii) a general-purpose BERT and document retrieval; and (iv) four LLMs (Mistral, DeepSeek, Qwen, and YandexGPT). Our graph-based comparison of the obtained interconnection matrices shows that the LLM-based approach produces interconnections with the lowest diversity of ICD code connections to different diseases compared to other methods, including text-based and domain-based approaches. This suggests an important implication: LLMs have limited potential for discovering new interconnections. In the absence of ground truth databases for medical interconnections between ICD codes, our results constitute a valuable medical disease ontology that can serve as a foundational resource for future clinical research and artificial intelligence applications in healthcare.
☆ Where Did It All Go Wrong? A Hierarchical Look into Multi-Agent Error Attribution
Error attribution in Large Language Model (LLM) multi-agent systems presents a significant challenge in debugging and improving collaborative AI systems. Current approaches to pinpointing agent and step level failures in interaction traces - whether using all-at-once evaluation, step-by-step analysis, or binary search - fall short when analyzing complex patterns, struggling with both accuracy and consistency. We present ECHO (Error attribution through Contextual Hierarchy and Objective consensus analysis), a novel algorithm that combines hierarchical context representation, objective analysis-based evaluation, and consensus voting to improve error attribution accuracy. Our approach leverages a positional-based leveling of contextual understanding while maintaining objective evaluation criteria, ultimately reaching conclusions through a consensus mechanism. Experimental results demonstrate that ECHO outperforms existing methods across various multi-agent interaction scenarios, showing particular strength in cases involving subtle reasoning errors and complex interdependencies. Our findings suggest that leveraging these concepts of structured, hierarchical context representation combined with consensus-based objective decision-making, provides a more robust framework for error attribution in multi-agent systems.
☆ Less is More: Recursive Reasoning with Tiny Networks
Hierarchical Reasoning Model (HRM) is a novel approach using two small neural networks recursing at different frequencies. This biologically inspired method beats Large Language models (LLMs) on hard puzzle tasks such as Sudoku, Maze, and ARC-AGI while trained with small models (27M parameters) on small data (around 1000 examples). HRM holds great promise for solving hard problems with small networks, but it is not yet well understood and may be suboptimal. We propose Tiny Recursive Model (TRM), a much simpler recursive reasoning approach that achieves significantly higher generalization than HRM, while using a single tiny network with only 2 layers. With only 7M parameters, TRM obtains 45% test-accuracy on ARC-AGI-1 and 8% on ARC-AGI-2, higher than most LLMs (e.g., Deepseek R1, o3-mini, Gemini 2.5 Pro) with less than 0.01% of the parameters.
☆ Model Predictive Control-Guided Reinforcement Learning for Implicit Balancing
In Europe, profit-seeking balance responsible parties can deviate in real time from their day-ahead nominations to assist transmission system operators in maintaining the supply-demand balance. Model predictive control (MPC) strategies to exploit these implicit balancing strategies capture arbitrage opportunities, but fail to accurately capture the price-formation process in the European imbalance markets and face high computational costs. Model-free reinforcement learning (RL) methods are fast to execute, but require data-intensive training and usually rely on real-time and historical data for decision-making. This paper proposes an MPC-guided RL method that combines the complementary strengths of both MPC and RL. The proposed method can effectively incorporate forecasts into the decision-making process (as in MPC), while maintaining the fast inference capability of RL. The performance of the proposed method is evaluated on the implicit balancing battery control problem using Belgian balancing data from 2023. First, we analyze the performance of the standalone state-of-the-art RL and MPC methods from various angles, to highlight their individual strengths and limitations. Next, we show an arbitrage profit benefit of the proposed MPC-guided RL method of 16.15% and 54.36%, compared to standalone RL and MPC.
☆ Video Game Level Design as a Multi-Agent Reinforcement Learning Problem AAAI
Procedural Content Generation via Reinforcement Learning (PCGRL) offers a method for training controllable level designer agents without the need for human datasets, using metrics that serve as proxies for level quality as rewards. Existing PCGRL research focuses on single generator agents, but are bottlenecked by the need to frequently recalculate heuristics of level quality and the agent's need to navigate around potentially large maps. By framing level generation as a multi-agent problem, we mitigate the efficiency bottleneck of single-agent PCGRL by reducing the number of reward calculations relative to the number of agent actions. We also find that multi-agent level generators are better able to generalize to out-of-distribution map shapes, which we argue is due to the generators' learning more local, modular design policies. We conclude that treating content generation as a distributed, multi-agent task is beneficial for generating functional artifacts at scale.
comment: 11 pages, 7 tables, 5 figures, published as full technical paper at the AAAI conference on Artificial Intelligence and Interactive Digital Entertainment 2025
☆ Alignment Tipping Process: How Self-Evolution Pushes LLM Agents Off the Rails
As Large Language Model (LLM) agents increasingly gain self-evolutionary capabilities to adapt and refine their strategies through real-world interaction, their long-term reliability becomes a critical concern. We identify the Alignment Tipping Process (ATP), a critical post-deployment risk unique to self-evolving LLM agents. Unlike training-time failures, ATP arises when continual interaction drives agents to abandon alignment constraints established during training in favor of reinforced, self-interested strategies. We formalize and analyze ATP through two complementary paradigms: Self-Interested Exploration, where repeated high-reward deviations induce individual behavioral drift, and Imitative Strategy Diffusion, where deviant behaviors spread across multi-agent systems. Building on these paradigms, we construct controllable testbeds and benchmark Qwen3-8B and Llama-3.1-8B-Instruct. Our experiments show that alignment benefits erode rapidly under self-evolution, with initially aligned models converging toward unaligned states. In multi-agent settings, successful violations diffuse quickly, leading to collective misalignment. Moreover, current reinforcement learning-based alignment methods provide only fragile defenses against alignment tipping. Together, these findings demonstrate that alignment of LLM agents is not a static property but a fragile and dynamic one, vulnerable to feedback-driven decay during deployment. Our data and code are available at https://github.com/aiming-lab/ATP.
☆ FreshBrew: A Benchmark for Evaluating AI Agents on Java Code Migration
AI coding assistants are rapidly becoming integral to modern software development. A key challenge in this space is the continual need to migrate and modernize codebases in response to evolving software ecosystems. Traditionally, such migrations have relied on rule-based systems and human intervention. With the advent of powerful large language models (LLMs), AI-driven agentic frameworks offer a promising alternative-but their effectiveness has not been systematically evaluated. In this paper, we introduce FreshBrew, a novel benchmark for evaluating AI agents on project-level Java migrations, with a specific focus on measuring an agent's ability to preserve program semantics and avoid reward hacking, which we argue requires projects with high test coverage for a rigorous and reliable evaluation. We benchmark several state-of-the-art LLMs, and compare their performance against established rule-based tools. Our evaluation of AI agents on this benchmark of 228 repositories shows that the top-performing model, Gemini 2.5 Flash, can successfully migrate 52.3 percent of projects to JDK 17. Our empirical analysis reveals novel insights into the critical strengths and limitations of current agentic approaches, offering actionable insights into their real-world applicability. Our empirical study reveals failure modes of current AI agents in realistic Java modernization tasks, providing a foundation for evaluating trustworthy code-migration systems. By releasing FreshBrew, we aim to facilitate rigorous, reproducible evaluation and catalyze progress in AI-driven codebase modernization.
comment: 18 pages, 11 figures
☆ LEGOMem: Modular Procedural Memory for Multi-agent LLM Systems for Workflow Automation
We introduce LEGOMem, a modular procedural memory framework for multi-agent large language model (LLM) systems in workflow automation. LEGOMem decomposes past task trajectories into reusable memory units and flexibly allocates them across orchestrators and task agents to support planning and execution. To explore the design space of memory in multi-agent systems, we use LEGOMem as a lens and conduct a systematic study of procedural memory in multi-agent systems, examining where memory should be placed, how it should be retrieved, and which agents benefit most. Experiments on the OfficeBench benchmark show that orchestrator memory is critical for effective task decomposition and delegation, while fine-grained agent memory improves execution accuracy. We find that even teams composed of smaller language models can benefit substantially from procedural memory, narrowing the performance gap with stronger agents by leveraging prior execution traces for more accurate planning and tool use. These results position LEGOMem as both a practical framework for memory-augmented agent systems and a research tool for understanding memory design in multi-agent workflow automation.
Detecting Distillation Data from Reasoning Models
Reasoning distillation has emerged as an efficient and powerful paradigm for enhancing the reasoning capabilities of large language models. However, reasoning distillation may inadvertently cause benchmark contamination, where evaluation data included in distillation datasets can inflate performance metrics of distilled models. In this work, we formally define the task of distillation data detection, which is uniquely challenging due to the partial availability of distillation data. Then, we propose a novel and effective method Token Probability Deviation (TBD), which leverages the probability patterns of the generated output tokens. Our method is motivated by the analysis that distilled models tend to generate near-deterministic tokens for seen questions, while producing more low-probability tokens for unseen questions. Our key idea behind TBD is to quantify how far the generated tokens' probabilities deviate from a high reference probability. In effect, our method achieves competitive detection performance by producing lower scores for seen questions than for unseen questions. Extensive experiments demonstrate the effectiveness of our method, achieving an AUC of 0.918 and a TPR@1% FPR of 0.470 on the S1 dataset.
☆ Distributionally Robust Causal Abstractions
Causal Abstraction (CA) theory provides a principled framework for relating causal models that describe the same system at different levels of granularity while ensuring interventional consistency between them. Recently, several approaches for learning CAs have been proposed, but all assume fixed and well-specified exogenous distributions, making them vulnerable to environmental shifts and misspecification. In this work, we address these limitations by introducing the first class of distributionally robust CAs and their associated learning algorithms. The latter cast robust causal abstraction learning as a constrained min-max optimization problem with Wasserstein ambiguity sets. We provide theoretical results, for both empirical and Gaussian environments, leading to principled selection of the level of robustness via the radius of these sets. Furthermore, we present empirical evidence across different problems and CA learning methods, demonstrating our framework's robustness not only to environmental shifts but also to structural model and intervention mapping misspecification.
☆ Bond-Centered Molecular Fingerprint Derivatives: A BBBP Dataset Study
Bond Centered FingerPrint (BCFP) are a complementary, bond-centric alternative to Extended-Connectivity Fingerprints (ECFP). We introduce a static BCFP that mirrors the bond-convolution used by directed message-passing GNNs like ChemProp, and evaluate it with a fast rapid Random Forest model on Brain-Blood Barrier Penetration (BBBP) classification task. Across stratified cross-validation, concatenating ECFP with BCFP consistently improves AUROC and AUPRC over either descriptor alone, as confirmed by Turkey HSD multiple-comparison analysis. Among radii, r = 1 performs best; r = 2 does not yield statistically separable gains under the same test. We further propose BCFP-Sort&Slice, a simple feature-combination scheme that preserves the out-of-vocabulary (OOV) count information native to ECFP count vectors while enabling compact unhashed concatenation of BCFP variants. We also outperform the MGTP prediction on our BBBP evaluation, using such composite new features bond and atom features. These results show that lightweight, bond-centered descriptors can complement atom-centered circular fingerprints and provide strong, fast baselines for BBBP prediction.
comment: 14 pages, 10 figures, 1 table
☆ Natural Language Edge Labelling: Decoupling Intent from Execution in Structured LM Reasoning
Controllers for structured LM reasoning (e.g., Chain-of-Thought, self-consistency, and Tree-of-Thoughts) often entangle what to try next with how to execute it, exposing only coarse global knobs and yielding brittle, compute-inefficient, and hard-to-audit behavior. We introduce Natural Language Edge Labelling (NLEL), a labeller-tuner overlay that attaches a free-form natural-language directive to each search edge and translates it into a schema-bounded control vector for decoding, search (branch quotas, exploration $\beta$), generation bundle size, retrieval mixtures, and verification passes. A labeller $\Lambda$ emits labels from the parent state and a compact context; a tuner $\Psi$ maps $(P, L, C)\to \Pi$, with strict schema validation and trust-region projection around safe defaults. Downstream selection remains ToT-style with score $S=\mu+\beta\sigma$ and depth-annealed $\beta$. We show NLEL strictly generalizes CoT/ToT, prove an anytime-monotonicity property for top-$k$ selection under label-conditioned bundles, and bound selector shortfall by control-vector distortion, providing decision-relevant justification for guards like trust regions and verification passes. We instantiate $\Psi$ as a prompt-only JSON Parameter Emitter and preregister an evaluation on GSM8K, MATH (subset), StrategyQA, and ARC-Challenge with compute-aware reporting (success@compute, tokens-per-success) and ablations over $\Lambda$, $\Psi$, trust-region radius, and control quantization; preregistered forecasts anticipate accuracy gains at comparable token budgets and improved success@compute under constraints. NLEL offers an interpretable, model-agnostic interface that separates intent from execution for controllable, auditable LM inference.
☆ On Predicting Post-Click Conversion Rate via Counterfactual Inference ICDM
Accurately predicting conversion rate (CVR) is essential in various recommendation domains such as online advertising systems and e-commerce. These systems utilize user interaction logs, which consist of exposures, clicks, and conversions. CVR prediction models are typically trained solely based on clicked samples, as conversions can only be determined following clicks. However, the sparsity of clicked instances necessitates the collection of a substantial amount of logs for effective model training. Recent works address this issue by devising frameworks that leverage non-clicked samples. While these frameworks aim to reduce biases caused by the discrepancy between clicked and non-clicked samples, they often rely on heuristics. Against this background, we propose a method to counterfactually generate conversion labels for non-clicked samples by using causality as a guiding principle, attempting to answer the question, "Would the user have converted if he or she had clicked the recommended item?" Our approach is named the Entire Space Counterfactual Inference Multi-task Model (ESCIM). We initially train a structural causal model (SCM) of user sequential behaviors and conduct a hypothetical intervention (i.e., click) on non-clicked items to infer counterfactual CVRs. We then introduce several approaches to transform predicted counterfactual CVRs into binary counterfactual conversion labels for the non-clicked samples. Finally, the generated samples are incorporated into the training process. Extensive experiments on public datasets illustrate the superiority of the proposed algorithm. Online A/B testing further empirically validates the effectiveness of our proposed algorithm in real-world scenarios. In addition, we demonstrate the improved performance of the proposed method on latent conversion data, showcasing its robustness and superior generalization capabilities.
comment: This work has been accepted for publication at the IEEE International Conference on Data Mining (ICDM) 2025
☆ Did you just see that? Arbitrary view synthesis for egocentric replay of operating room workflows from ambient sensors
Observing surgical practice has historically relied on fixed vantage points or recollections, leaving the egocentric visual perspectives that guide clinical decisions undocumented. Fixed-camera video can capture surgical workflows at the room-scale, but cannot reconstruct what each team member actually saw. Thus, these videos only provide limited insights into how decisions that affect surgical safety, training, and workflow optimization are made. Here we introduce EgoSurg, the first framework to reconstruct the dynamic, egocentric replays for any operating room (OR) staff directly from wall-mounted fixed-camera video, and thus, without intervention to clinical workflow. EgoSurg couples geometry-driven neural rendering with diffusion-based view enhancement, enabling high-visual fidelity synthesis of arbitrary and egocentric viewpoints at any moment. In evaluation across multi-site surgical cases and controlled studies, EgoSurg reconstructs person-specific visual fields and arbitrary viewpoints with high visual quality and fidelity. By transforming existing OR camera infrastructure into a navigable dynamic 3D record, EgoSurg establishes a new foundation for immersive surgical data science, enabling surgical practice to be visualized, experienced, and analyzed from every angle.
☆ Hybrid-Balance GFlowNet for Solving Vehicle Routing Problems NeurIPS 2025
Existing GFlowNet-based methods for vehicle routing problems (VRPs) typically employ Trajectory Balance (TB) to achieve global optimization but often neglect important aspects of local optimization. While Detailed Balance (DB) addresses local optimization more effectively, it alone falls short in solving VRPs, which inherently require holistic trajectory optimization. To address these limitations, we introduce the Hybrid-Balance GFlowNet (HBG) framework, which uniquely integrates TB and DB in a principled and adaptive manner by aligning their intrinsically complementary strengths. Additionally, we propose a specialized inference strategy for depot-centric scenarios like the Capacitated Vehicle Routing Problem (CVRP), leveraging the depot node's greater flexibility in selecting successors. Despite this specialization, HBG maintains broad applicability, extending effectively to problems without explicit depots, such as the Traveling Salesman Problem (TSP). We evaluate HBG by integrating it into two established GFlowNet-based solvers, i.e., AGFN and GFACS, and demonstrate consistent and significant improvements across both CVRP and TSP, underscoring the enhanced solution quality and generalization afforded by our approach.
comment: Accepted by NeurIPS 2025
☆ Trade in Minutes! Rationality-Driven Agentic System for Quantitative Financial Trading
Recent advancements in large language models (LLMs) and agentic systems have shown exceptional decision-making capabilities, revealing significant potential for autonomic finance. Current financial trading agents predominantly simulate anthropomorphic roles that inadvertently introduce emotional biases and rely on peripheral information, while being constrained by the necessity for continuous inference during deployment. In this paper, we pioneer the harmonization of strategic depth in agents with the mechanical rationality essential for quantitative trading. Consequently, we present TiMi (Trade in Minutes), a rationality-driven multi-agent system that architecturally decouples strategy development from minute-level deployment. TiMi leverages specialized LLM capabilities of semantic analysis, code programming, and mathematical reasoning within a comprehensive policy-optimization-deployment chain. Specifically, we propose a two-tier analytical paradigm from macro patterns to micro customization, layered programming design for trading bot implementation, and closed-loop optimization driven by mathematical reflection. Extensive evaluations across 200+ trading pairs in stock and cryptocurrency markets empirically validate the efficacy of TiMi in stable profitability, action efficiency, and risk control under volatile market dynamics.
comment: 16 pages, 6 figures
☆ Learning on the Job: Test-Time Curricula for Targeted Reinforcement Learning
Humans are good at learning on the job: We learn how to solve the tasks we face as we go along. Can a model do the same? We propose an agent that assembles a task-specific curriculum, called test-time curriculum (TTC-RL), and applies reinforcement learning to continue training the model for its target task. The test-time curriculum avoids time-consuming human curation of datasets by automatically selecting the most task-relevant data from a large pool of available training data. Our experiments demonstrate that reinforcement learning on a test-time curriculum consistently improves the model on its target tasks, across a variety of evaluations and models. Notably, on challenging math and coding benchmarks, TTC-RL improves the pass@1 of Qwen3-8B by approximately 1.8x on AIME25 and 2.1x on CodeElo. Moreover, we find that TTC-RL significantly raises the performance ceiling compared to the initial model, increasing pass@8 on AIME25 from 40% to 62% and on CodeElo from 28% to 43%. Our findings show the potential of test-time curricula in extending the test-time scaling paradigm to continual training on thousands of task-relevant experiences during test-time.
☆ Online automatic code generation for robot swarms: LLMs and self-organizing hierarchy
Our recently introduced self-organizing nervous system (SoNS) provides robot swarms with 1) ease of behavior design and 2) global estimation of the swarm configuration and its collective environment, facilitating the implementation of online automatic code generation for robot swarms. In a demonstration with 6 real robots and simulation trials with >30 robots, we show that when a SoNS-enhanced robot swarm gets stuck, it can automatically solicit and run code generated by an external LLM on the fly, completing its mission with an 85% success rate.
☆ Distribution Preference Optimization: A Fine-grained Perspective for LLM Unlearning
As Large Language Models (LLMs) demonstrate remarkable capabilities learned from vast corpora, concerns regarding data privacy and safety are receiving increasing attention. LLM unlearning, which aims to remove the influence of specific data while preserving overall model utility, is becoming an important research area. One of the mainstream unlearning classes is optimization-based methods, which achieve forgetting directly through fine-tuning, exemplified by Negative Preference Optimization (NPO). However, NPO's effectiveness is limited by its inherent lack of explicit positive preference signals. Attempts to introduce such signals by constructing preferred responses often necessitate domain-specific knowledge or well-designed prompts, fundamentally restricting their generalizability. In this paper, we shift the focus to the distribution-level, directly targeting the next-token probability distribution instead of entire responses, and derive a novel unlearning algorithm termed \textbf{Di}stribution \textbf{P}reference \textbf{O}ptimization (DiPO). We show that the requisite preference distribution pairs for DiPO, which are distributions over the model's output tokens, can be constructed by selectively amplifying or suppressing the model's high-confidence output logits, thereby effectively overcoming NPO's limitations. We theoretically prove the consistency of DiPO's loss function with the desired unlearning direction. Extensive experiments demonstrate that DiPO achieves a strong trade-off between model utility and forget quality. Notably, DiPO attains the highest forget quality on the TOFU benchmark, and maintains leading scalability and sustainability in utility preservation on the MUSE benchmark.
comment: 20 pages
☆ When Do Credal Sets Stabilize? Fixed-Point Theorems for Credal Set Updates
Many machine learning algorithms rely on iterative updates of uncertainty representations, ranging from variational inference and expectation-maximization, to reinforcement learning, continual learning, and multi-agent learning. In the presence of imprecision and ambiguity, credal sets -- closed, convex sets of probability distributions -- have emerged as a popular framework for representing imprecise probabilistic beliefs. Under such imprecision, many learning problems in imprecise probabilistic machine learning (IPML) may be viewed as processes involving successive applications of update rules on credal sets. This naturally raises the question of whether this iterative process converges to stable fixed points -- or, more generally, under what conditions on the updating mechanism such fixed points exist, and whether they can be attained. We provide the first analysis of this problem and illustrate our findings using Credal Bayesian Deep Learning as a concrete example. Our work demonstrates that incorporating imprecision into the learning process not only enriches the representation of uncertainty, but also reveals structural conditions under which stability emerges, thereby offering new insights into the dynamics of iterative learning under imprecision.
☆ LMM-Incentive: Large Multimodal Model-based Incentive Design for User-Generated Content in Web 3.0
Web 3.0 represents the next generation of the Internet, which is widely recognized as a decentralized ecosystem that focuses on value expression and data ownership. By leveraging blockchain and artificial intelligence technologies, Web 3.0 offers unprecedented opportunities for users to create, own, and monetize their content, thereby enabling User-Generated Content (UGC) to an entirely new level. However, some self-interested users may exploit the limitations of content curation mechanisms and generate low-quality content with less effort, obtaining platform rewards under information asymmetry. Such behavior can undermine Web 3.0 performance. To this end, we propose \textit{LMM-Incentive}, a novel Large Multimodal Model (LMM)-based incentive mechanism for UGC in Web 3.0. Specifically, we propose an LMM-based contract-theoretic model to motivate users to generate high-quality UGC, thereby mitigating the adverse selection problem from information asymmetry. To alleviate potential moral hazards after contract selection, we leverage LMM agents to evaluate UGC quality, which is the primary component of the contract, utilizing prompt engineering techniques to improve the evaluation performance of LMM agents. Recognizing that traditional contract design methods cannot effectively adapt to the dynamic environment of Web 3.0, we develop an improved Mixture of Experts (MoE)-based Proximal Policy Optimization (PPO) algorithm for optimal contract design. Simulation results demonstrate the superiority of the proposed MoE-based PPO algorithm over representative benchmarks in the context of contract design. Finally, we deploy the designed contract within an Ethereum smart contract framework, further validating the effectiveness of the proposed scheme.
☆ Fisher-Bingham-like normalizing flows on the sphere
A generic D-dimensional Gaussian can be conditioned or projected onto the D-1 unit sphere, thereby leading to the well-known Fisher-Bingham (FB) or Angular Gaussian (AG) distribution families, respectively. These are some of the most fundamental distributions on the sphere, yet cannot straightforwardly be written as a normalizing flow except in two special cases: the von-Mises Fisher in D=3 and the central angular Gaussian in any D. In this paper, we describe how to generalize these special cases to a family of normalizing flows that behave similarly to the full FB or AG family in any D. We call them "zoom-linear-project" (ZLP)-Fisher flows. Unlike a normal Fisher-Bingham distribution, their composition allows to gradually add complexity as needed. Furthermore, they can naturally handle conditional density estimation with target distributions that vary by orders of magnitude in scale - a setting that is important in astronomical applications but that existing flows often struggle with. A particularly useful member of the new family is the Kent analogue that can cheaply upgrade any flow in this situation to yield better performance.
☆ Agile Software Effort Estimation using Regression Techniques
Software development effort estimation is one of the most critical aspect in software development process, as the success or failure of the entire project depends on the accuracy of estimations. Researchers are still conducting studies on agile effort estimation. The aim of this research is to develop a story point based agile effort estimation model using LASSO and Elastic Net regression techniques. The experimental work is applied to the agile story point approach using 21 software projects collected from six firms. The two algorithms are trained using their default parameters and tuned grid search with 5-fold cross-validation to get an enhanced model. The experiment result shows LASSO regression achieved better predictive performance PRED (8%) and PRED (25%) results of 100.0, MMRE of 0.0491, MMER of 0.0551, MdMRE of 0.0593, MdMER of 0.063, and MSE of 0.0007. The results are also compared with other related literature.
☆ Progressive Gaussian Transformer with Anisotropy-aware Sampling for Open Vocabulary Occupancy Prediction
The 3D occupancy prediction task has witnessed remarkable progress in recent years, playing a crucial role in vision-based autonomous driving systems. While traditional methods are limited to fixed semantic categories, recent approaches have moved towards predicting text-aligned features to enable open-vocabulary text queries in real-world scenes. However, there exists a trade-off in text-aligned scene modeling: sparse Gaussian representation struggles to capture small objects in the scene, while dense representation incurs significant computational overhead. To address these limitations, we present PG-Occ, an innovative Progressive Gaussian Transformer Framework that enables open-vocabulary 3D occupancy prediction. Our framework employs progressive online densification, a feed-forward strategy that gradually enhances the 3D Gaussian representation to capture fine-grained scene details. By iteratively enhancing the representation, the framework achieves increasingly precise and detailed scene understanding. Another key contribution is the introduction of an anisotropy-aware sampling strategy with spatio-temporal fusion, which adaptively assigns receptive fields to Gaussians at different scales and stages, enabling more effective feature aggregation and richer scene information capture. Through extensive evaluations, we demonstrate that PG-Occ achieves state-of-the-art performance with a relative 14.3% mIoU improvement over the previous best performing method. Code and pretrained models will be released upon publication on our project page: https://yanchi-3dv.github.io/PG-Occ
comment: Project Page: https://yanchi-3dv.github.io/PG-Occ
☆ A New Digital Divide? Coder Worldviews, the Slop Economy, and Democracy in the Age of AI
Digital technologies are transforming democratic life in conflicting ways. This article bridges two perspectives to unpack these tensions. First, we present an original survey of software developers in Silicon Valley, interrogating how coder worldviews, ethics, and workplace cultures shape the democratic potential and social impact of the technologies they build. Results indicate that while most developers recognize the power of their products to influence civil liberties and political discourse, they often face ethical dilemmas and top-down pressures that can lead to design choices undermining democratic ideals. Second, we critically investigate these findings in the context of an emerging new digital divide, not of internet access but of information quality. We interrogate the survey findings in the context of the Slop Economy, in which billions of users unable to pay for high-quality content experience an internet dominated by low-quality, AI-generated ad-driven content. We find a reinforcing cycle between tech creator beliefs and the digital ecosystems they spawn. We discuss implications for democratic governance, arguing for more ethically informed design and policy interventions to help bridge the digital divide to ensure that technological innovation supports rather than subverts democratic values in the next chapter of the digital age.
☆ Speak, Edit, Repeat: High-Fidelity Voice Editing and Zero-Shot TTS with Cross-Attentive Mamba
We introduce MAVE (Mamba with Cross-Attention for Voice Editing and Synthesis), a novel autoregressive architecture for text-conditioned voice editing and high-fidelity text-to-speech (TTS) synthesis, built on a cross-attentive Mamba backbone. MAVE achieves state-of-the-art performance in speech editing and very competitive results in zero-shot TTS, while not being explicitly trained on the latter task, outperforming leading autoregressive and diffusion models on diverse, real-world audio. By integrating Mamba for efficient audio sequence modeling with cross-attention for precise text-acoustic alignment, MAVE enables context-aware voice editing with exceptional naturalness and speaker consistency. In pairwise human evaluations on a random 40-sample subset of the RealEdit benchmark (400 judgments), 57.2% of listeners rated MAVE - edited speech as perceptually equal to the original, while 24.8% prefered the original and 18.0% MAVE - demonstrating that in the majority of cases edits are indistinguishable from the source. MAVE compares favorably with VoiceCraft and FluentSpeech both on pairwise comparisons and standalone mean opinion score (MOS) evaluations. For zero-shot TTS, MAVE exceeds VoiceCraft in both speaker similarity and naturalness, without requiring multiple inference runs or post-processing. Remarkably, these quality gains come with a significantly lower memory cost and approximately the same latency: MAVE requires ~6x less memory than VoiceCraft during inference on utterances from the RealEdit database (mean duration: 6.21s, A100, FP16, batch size 1). Our results demonstrate that MAVE establishes a new standard for flexible, high-fidelity voice editing and synthesis through the synergistic integration of structured state-space modeling and cross-modal attention.
☆ BrokenMath: A Benchmark for Sycophancy in Theorem Proving with LLMs
Large language models (LLMs) have recently shown strong performance on mathematical benchmarks. At the same time, they are prone to hallucination and sycophancy, often providing convincing but flawed proofs for incorrect mathematical statements provided by users. This significantly limits the applicability of LLMs in theorem proving, as verification of these flawed proofs must be done manually by expert mathematicians. However, existing benchmarks that measure sycophancy in mathematics are limited: they focus solely on final-answer problems, rely on very simple and often contaminated datasets, and construct benchmark samples using synthetic modifications that create ill-posed questions rather than well-posed questions that are demonstrably false. To address these issues, we introduce BrokenMath, the first benchmark for evaluating sycophantic behavior in LLMs within the context of natural language theorem proving. BrokenMath is built from advanced 2025 competition problems, which are perturbed with an LLM to produce false statements and subsequently refined through expert review. Using an LLM-as-a-judge framework, we evaluate state-of-the-art LLMs and agentic systems and find that sycophancy is widespread, with the best model, GPT-5, producing sycophantic answers 29% of the time. We further investigate several mitigation strategies, including test-time interventions and supervised fine-tuning on curated sycophantic examples. These approaches substantially reduce, but do not eliminate, sycophantic behavior.
☆ Curved Boolean Logic: A Contextual Generalization of Propositional Logic with Algorithmic Consequences
Curved Boolean Logic (CBL) generalizes propositional logic by allowing local truth assignments that do not extend to a single global valuation, analogous to curvature in geometry. We give equivalent sheaf and exclusivity-graph semantics and a context-aware proof calculus that is conservative in the flat limit. We formalize CBL-SAT and basic complexity (NP-complete in general) and present operational operators (CBL-AC and CBL-CONS) that prune contradictions earlier on classical hardware. We model noise with iid, AR(1)-correlated, and adversarial bounded perturbations and provide permutation-based significance with Benjamini-Hochberg FDR control. A Colab-ready notebook (ancillary files) regenerates all figures and statistics. We position CBL relative to KCBS, CSW, and sheaf frameworks and outline links to SAT/CSP and robustness/adapter stability in large language models.
comment: 44 pages, 15 figures. Reproducible Colab notebook and params included as ancillary files; all paper figures are generated by the notebook. v1
☆ The Bayesian Origin of the Probability Weighting Function in Human Representation of Probabilities
Understanding the representation of probability in the human mind has been of great interest to understanding human decision making. Classical paradoxes in decision making suggest that human perception distorts probability magnitudes. Previous accounts postulate a Probability Weighting Function that transforms perceived probabilities; however, its motivation has been debated. Recent work has sought to motivate this function in terms of noisy representations of probabilities in the human mind. Here, we present an account of the Probability Weighting Function grounded in rational inference over optimal decoding from noisy neural encoding of quantities. We show that our model accurately accounts for behavior in a lottery task and a dot counting task. It further accounts for adaptation to a bimodal short-term prior. Taken together, our results provide a unifying account grounding the human representation of probability in rational inference.
☆ Beyond Outcome Reward: Decoupling Search and Answering Improves LLM Agents
Enabling large language models (LLMs) to utilize search tools offers a promising path to overcoming fundamental limitations such as knowledge cutoffs and hallucinations. Recent work has explored reinforcement learning (RL) for training search-augmented agents that interleave reasoning and retrieval before answering. These approaches usually rely on outcome-based rewards (e.g., exact match), implicitly assuming that optimizing for final answers will also yield effective intermediate search behaviors. Our analysis challenges this assumption: we uncover multiple systematic deficiencies in search that arise under outcome-only training and ultimately degrade final answer quality, including failure to invoke tools, invalid queries, and redundant searches. To address these shortcomings, we introduce DeSA (Decoupling Search-and-Answering), a simple two-stage training framework that explicitly separates search optimization from answer generation. In Stage 1, agents are trained to improve search effectiveness with retrieval recall-based rewards. In Stage 2, outcome rewards are employed to optimize final answer generation. Across seven QA benchmarks, DeSA-trained agents consistently improve search behaviors, delivering substantially higher search recall and answer accuracy than outcome-only baselines. Notably, DeSA outperforms single-stage training approaches that simultaneously optimize recall and outcome rewards, underscoring the necessity of explicitly decoupling the two objectives.
☆ Multilingual Routing in Mixture-of-Experts
Mixture-of-Experts (MoE) architectures have become the key to scaling modern LLMs, yet little is understood about how their sparse routing dynamics respond to multilingual data. In this work, we analyze expert routing patterns using parallel multilingual datasets and present highly interpretable layer-wise phenomena. We find that MoE models route tokens in language-specific ways in the early and late decoder layers but exhibit significant cross-lingual routing alignment in middle layers, mirroring parameter-sharing trends observed in dense LLMs. In particular, we reveal a clear, strong correlation between a model's performance in a given language and how similarly its tokens are routed to English in these layers. Extending beyond correlation, we explore inference-time interventions that induce higher cross-lingual routing alignment. We introduce a method that steers the router by promoting middle-layer task experts frequently activated in English, and it successfully increases multilingual performance. These 1-2% gains are remarkably consistent across two evaluation tasks, three models, and 15+ languages, especially given that these simple interventions override routers of extensively trained, state-of-the-art LLMs. In comparison, interventions outside of the middle layers or targeting multilingual-specialized experts only yield performance degradation. Altogether, we present numerous findings that explain how MoEs process non-English text and demonstrate that generalization is limited by the model's ability to leverage language-universal experts in all languages.
☆ Bio-Inspired Robotic Houbara: From Development to Field Deployment for Behavioral Studies
Biomimetic intelligence and robotics are transforming field ecology by enabling lifelike robotic surrogates that interact naturally with animals under real world conditions. Studying avian behavior in the wild remains challenging due to the need for highly realistic morphology, durable outdoor operation, and intelligent perception that can adapt to uncontrolled environments. We present a next generation bio inspired robotic platform that replicates the morphology and visual appearance of the female Houbara bustard to support controlled ethological studies and conservation oriented field research. The system introduces a fully digitally replicable fabrication workflow that combines high resolution structured light 3D scanning, parametric CAD modelling, articulated 3D printing, and photorealistic UV textured vinyl finishing to achieve anatomically accurate and durable robotic surrogates. A six wheeled rocker bogie chassis ensures stable mobility on sand and irregular terrain, while an embedded NVIDIA Jetson module enables real time RGB and thermal perception, lightweight YOLO based detection, and an autonomous visual servoing loop that aligns the robot's head toward detected targets without human intervention. A lightweight thermal visible fusion module enhances perception in low light conditions. Field trials in desert aviaries demonstrated reliable real time operation at 15 to 22 FPS with latency under 100 ms and confirmed that the platform elicits natural recognition and interactive responses from live Houbara bustards under harsh outdoor conditions. This integrated framework advances biomimetic field robotics by uniting reproducible digital fabrication, embodied visual intelligence, and ecological validation, providing a transferable blueprint for animal robot interaction research, conservation robotics, and public engagement.
☆ How does the optimizer implicitly bias the model merging loss landscape?
Model merging methods combine models with different capabilities into a single one while maintaining the same inference cost. Two popular approaches are linear interpolation, which linearly interpolates between model weights, and task arithmetic, which combines task vectors obtained by the difference between finetuned and base models. While useful in practice, what properties make merging effective are poorly understood. This paper explores how the optimization process affects the loss landscape geometry and its impact on merging success. We show that a single quantity -- the effective noise scale -- unifies the impact of optimizer and data choices on model merging. Across architectures and datasets, the effectiveness of merging success is a non-monotonic function of effective noise, with a distinct optimum. Decomposing this quantity, we find that larger learning rates, stronger weight decay, smaller batch sizes, and data augmentation all independently modulate the effective noise scale, exhibiting the same qualitative trend. Unlike prior work that connects optimizer noise to the flatness or generalization of individual minima, we show that it also affects the global loss landscape, predicting when independently trained solutions can be merged. Our findings broaden the understanding of how optimization shapes the loss landscape geometry and its downstream consequences for model merging, suggesting the possibility of further manipulating the training dynamics to improve merging effectiveness.
comment: preprint
☆ TiTok: Transfer Token-level Knowledge via Contrastive Excess to Transplant LoRA
Large Language Models (LLMs) are widely applied in real world scenarios, but fine-tuning them comes with significant computational and storage costs. Parameter-Efficient Fine-Tuning (PEFT) methods such as LoRA mitigate these costs, but the adapted parameters are dependent on the base model and cannot be transferred across different backbones. One way to address this issue is through knowledge distillation, but its effectiveness inherently depends on training data. Recent work such as TransLoRA avoids this by generating synthetic data, but this adds complexity because it requires training an additional discriminator model. In this paper, we propose TiTok, a new framework that enables effective LoRA Transplantation through Token-level knowledge transfer. Specifically, TiTok captures task-relevant information through a contrastive excess between a source model with and without LoRA. This excess highlights informative tokens and enables selective filtering of synthetic data, all without additional models or overhead. Through experiments on three benchmarks across multiple transfer settings, our experiments show that the proposed method is consistently effective, achieving average performance gains of +4~8% compared to baselines overall.
☆ Semantic Channel Equalization Strategies for Deep Joint Source-Channel Coding
Deep joint source-channel coding (DeepJSCC) has emerged as a powerful paradigm for end-to-end semantic communications, jointly learning to compress and protect task-relevant features over noisy channels. However, existing DeepJSCC schemes assume a shared latent space at transmitter (TX) and receiver (RX) - an assumption that fails in multi-vendor deployments where encoders and decoders cannot be co-trained. This mismatch introduces "semantic noise", degrading reconstruction quality and downstream task performance. In this paper, we systematize and evaluate methods for semantic channel equalization for DeepJSCC, introducing an additional processing stage that aligns heterogeneous latent spaces under both physical and semantic impairments. We investigate three classes of aligners: (i) linear maps, which admit closed-form solutions; (ii) lightweight neural networks, offering greater expressiveness; and (iii) a Parseval-frame equalizer, which operates in zero-shot mode without the need for training. Through extensive experiments on image reconstruction over AWGN and fading channels, we quantify trade-offs among complexity, data efficiency, and fidelity, providing guidelines for deploying DeepJSCC in heterogeneous AI-native wireless networks.
comment: Proceedings of IEEE Globecom 2025 Workshops
☆ Watch and Learn: Learning to Use Computers from Online Videos
Computer use agents (CUAs) need to plan task workflows grounded in diverse, ever-changing applications and environments, but learning is hindered by the scarcity of large-scale, high-quality training data in the target application. Existing datasets are domain-specific, static, and costly to annotate, while current synthetic data generation methods often yield simplistic or misaligned task demonstrations. To address these limitations, we introduce Watch & Learn (W&L), a framework that converts human demonstration videos readily available on the Internet into executable UI trajectories at scale. Instead of directly generating trajectories or relying on ad hoc reasoning heuristics, we cast the problem as an inverse dynamics objective: predicting the user's action from consecutive screen states. This formulation reduces manual engineering, is easier to learn, and generalizes more robustly across applications. Concretely, we develop an inverse dynamics labeling pipeline with task-aware video retrieval, generate over 53k high-quality trajectories from raw web videos, and demonstrate that these trajectories improve CUAs both as in-context demonstrations and as supervised training data. On the challenging OSWorld benchmark, UI trajectories extracted with W&L consistently enhance both general-purpose and state-of-the-art frameworks in-context, and deliver stronger gains for open-source models under supervised training. These results highlight web-scale human demonstration videos as a practical and scalable foundation for advancing CUAs towards real-world deployment.
☆ FocusMed: A Large Language Model-based Framework for Enhancing Medical Question Summarization with Focus Identification
With the rapid development of online medical platforms, consumer health questions (CHQs) are inefficient in diagnosis due to redundant information and frequent non-professional terms. The medical question summary (MQS) task aims to transform CHQs into streamlined doctors' frequently asked questions (FAQs), but existing methods still face challenges such as poor identification of question focus and model hallucination. This paper explores the potential of large language models (LLMs) in the MQS task and finds that direct fine-tuning is prone to focus identification bias and generates unfaithful content. To this end, we propose an optimization framework based on core focus guidance. First, a prompt template is designed to drive the LLMs to extract the core focus from the CHQs that is faithful to the original text. Then, a fine-tuning dataset is constructed in combination with the original CHQ-FAQ pairs to improve the ability to identify the focus of the question. Finally, a multi-dimensional quality evaluation and selection mechanism is proposed to comprehensively improve the quality of the summary from multiple dimensions. We conduct comprehensive experiments on two widely-adopted MQS datasets using three established evaluation metrics. The proposed framework achieves state-of-the-art performance across all measures, demonstrating a significant boost in the model's ability to identify critical focus of questions and a notable mitigation of hallucinations. The source codes are freely available at https://github.com/DUT-LiuChao/FocusMed.
comment: Accepted as a regular paper at BIBM2025
☆ Improving Multimodal Brain Encoding Model with Dynamic Subject-awareness Routing
Naturalistic fMRI encoding must handle multimodal inputs, shifting fusion styles, and pronounced inter-subject variability. We introduce AFIRE (Agnostic Framework for Multimodal fMRI Response Encoding), an agnostic interface that standardizes time-aligned post-fusion tokens from varied encoders, and MIND, a plug-and-play Mixture-of-Experts decoder with a subject-aware dynamic gating. Trained end-to-end for whole-brain prediction, AFIRE decouples the decoder from upstream fusion, while MIND combines token-dependent Top-K sparse routing with a subject prior to personalize expert usage without sacrificing generality. Experiments across multiple multimodal backbones and subjects show consistent improvements over strong baselines, enhanced cross-subject generalization, and interpretable expert patterns that correlate with content type. The framework offers a simple attachment point for new encoders and datasets, enabling robust, plug-and-improve performance for naturalistic neuroimaging studies.
comment: 8 pages, 4 figures
☆ Noise or Signal? Deconstructing Contradictions and An Adaptive Remedy for Reversible Normalization in Time Series Forecasting
Reversible Instance Normalization (RevIN) is a key technique enabling simple linear models to achieve state-of-the-art performance in time series forecasting. While replacing its non-robust statistics with robust counterparts (termed R$^2$-IN) seems like a straightforward improvement, our findings reveal a far more complex reality. This paper deconstructs the perplexing performance of various normalization strategies by identifying four underlying theoretical contradictions. Our experiments provide two crucial findings: first, the standard RevIN catastrophically fails on datasets with extreme outliers, where its MSE surges by a staggering 683\%. Second, while the simple R$^2$-IN prevents this failure and unexpectedly emerges as the best overall performer, our adaptive model (A-IN), designed to test a diagnostics-driven heuristic, unexpectedly suffers a complete and systemic failure. This surprising outcome uncovers a critical, overlooked pitfall in time series analysis: the instability introduced by a simple or counter-intuitive heuristic can be more damaging than the statistical issues it aims to solve. The core contribution of this work is thus a new, cautionary paradigm for time series normalization: a shift from a blind search for complexity to a diagnostics-driven analysis that reveals not only the surprising power of simple baselines but also the perilous nature of naive adaptation.
comment: 9pages, 6 figures
☆ Predictive Feature Caching for Training-free Acceleration of Molecular Geometry Generation NeurIPS 2025
Flow matching models generate high-fidelity molecular geometries but incur significant computational costs during inference, requiring hundreds of network evaluations. This inference overhead becomes the primary bottleneck when such models are employed in practice to sample large numbers of molecular candidates. This work discusses a training-free caching strategy that accelerates molecular geometry generation by predicting intermediate hidden states across solver steps. The proposed method operates directly on the SE(3)-equivariant backbone, is compatible with pretrained models, and is orthogonal to existing training-based accelerations and system-level optimizations. Experiments on the GEOM-Drugs dataset demonstrate that caching achieves a twofold reduction in wall-clock inference time at matched sample quality and a speedup of up to 3x compared to the base model with minimal sample quality degradation. Because these gains compound with other optimizations, applying caching alongside other general, lossless optimizations yield as much as a 7x speedup.
comment: Accepted at the AI for Science Workshop @ NeurIPS 2025
☆ QuantAgents: Towards Multi-agent Financial System via Simulated Trading EMNLP 2025
In this paper, our objective is to develop a multi-agent financial system that incorporates simulated trading, a technique extensively utilized by financial professionals. While current LLM-based agent models demonstrate competitive performance, they still exhibit significant deviations from real-world fund companies. A critical distinction lies in the agents' reliance on ``post-reflection'', particularly in response to adverse outcomes, but lack a distinctly human capability: long-term prediction of future trends. Therefore, we introduce QuantAgents, a multi-agent system integrating simulated trading, to comprehensively evaluate various investment strategies and market scenarios without assuming actual risks. Specifically, QuantAgents comprises four agents: a simulated trading analyst, a risk control analyst, a market news analyst, and a manager, who collaborate through several meetings. Moreover, our system incentivizes agents to receive feedback on two fronts: performance in real-world markets and predictive accuracy in simulated trading. Extensive experiments demonstrate that our framework excels across all metrics, yielding an overall return of nearly 300% over the three years (https://quantagents.github.io/).
comment: This paper has been accepted by EMNLP 2025
☆ SFANet: Spatial-Frequency Attention Network for Deepfake Detection
Detecting manipulated media has now become a pressing issue with the recent rise of deepfakes. Most existing approaches fail to generalize across diverse datasets and generation techniques. We thus propose a novel ensemble framework, combining the strengths of transformer-based architectures, such as Swin Transformers and ViTs, and texture-based methods, to achieve better detection accuracy and robustness. Our method introduces innovative data-splitting, sequential training, frequency splitting, patch-based attention, and face segmentation techniques to handle dataset imbalances, enhance high-impact regions (e.g., eyes and mouth), and improve generalization. Our model achieves state-of-the-art performance when tested on the DFWild-Cup dataset, a diverse subset of eight deepfake datasets. The ensemble benefits from the complementarity of these approaches, with transformers excelling in global feature extraction and texturebased methods providing interpretability. This work demonstrates that hybrid models can effectively address the evolving challenges of deepfake detection, offering a robust solution for real-world applications.
☆ Fairness in Repeated Matching: A Maximin Perspective
We study a sequential decision-making model where a set of items is repeatedly matched to the same set of agents over multiple rounds. The objective is to determine a sequence of matchings that either maximizes the utility of the least advantaged agent at the end of all rounds (optimal) or at the end of every individual round (anytime optimal). We investigate the computational challenges associated with finding (anytime) optimal outcomes and demonstrate that these problems are generally computationally intractable. However, we provide approximation algorithms, fixed-parameter tractable algorithms, and identify several special cases whereby the problem(s) can be solved efficiently. Along the way, we also establish characterizations of Pareto-optimal/maximum matchings, which may be of independent interest to works in matching theory and house allocation.
☆ MedPAO: A Protocol-Driven Agent for Structuring Medical Reports MICCAI 2025
The deployment of Large Language Models (LLMs) for structuring clinical data is critically hindered by their tendency to hallucinate facts and their inability to follow domain-specific rules. To address this, we introduce MedPAO, a novel agentic framework that ensures accuracy and verifiable reasoning by grounding its operation in established clinical protocols such as the ABCDEF protocol for CXR analysis. MedPAO decomposes the report structuring task into a transparent process managed by a Plan-Act-Observe (PAO) loop and specialized tools. This protocol-driven method provides a verifiable alternative to opaque, monolithic models. The efficacy of our approach is demonstrated through rigorous evaluation: MedPAO achieves an F1-score of 0.96 on the critical sub-task of concept categorization. Notably, expert radiologists and clinicians rated the final structured outputs with an average score of 4.52 out of 5, indicating a level of reliability that surpasses baseline approaches relying solely on LLM-based foundation models. The code is available at: https://github.com/MiRL-IITM/medpao-agent
comment: Paper published at "Agentic AI for Medicine" Workshop, MICCAI 2025
☆ Agentic Context Engineering: Evolving Contexts for Self-Improving Language Models
Large language model (LLM) applications such as agents and domain-specific reasoning increasingly rely on context adaptation -- modifying inputs with instructions, strategies, or evidence, rather than weight updates. Prior approaches improve usability but often suffer from brevity bias, which drops domain insights for concise summaries, and from context collapse, where iterative rewriting erodes details over time. Building on the adaptive memory introduced by Dynamic Cheatsheet, we introduce ACE (Agentic Context Engineering), a framework that treats contexts as evolving playbooks that accumulate, refine, and organize strategies through a modular process of generation, reflection, and curation. ACE prevents collapse with structured, incremental updates that preserve detailed knowledge and scale with long-context models. Across agent and domain-specific benchmarks, ACE optimizes contexts both offline (e.g., system prompts) and online (e.g., agent memory), consistently outperforming strong baselines: +10.6% on agents and +8.6% on finance, while significantly reducing adaptation latency and rollout cost. Notably, ACE could adapt effectively without labeled supervision and instead by leveraging natural execution feedback. On the AppWorld leaderboard, ACE matches the top-ranked production-level agent on the overall average and surpasses it on the harder test-challenge split, despite using a smaller open-source model. These results show that comprehensive, evolving contexts enable scalable, efficient, and self-improving LLM systems with low overhead.
☆ Making Mathematical Reasoning Adaptive
Mathematical reasoning is a primary indicator of large language models (LLMs) intelligence. However, existing LLMs exhibit failures of robustness and generalization. This paper attributes these deficiencies to spurious reasoning, i.e., producing answers from superficial features. To address this challenge, we propose the AdaR framework to enable adaptive reasoning, wherein models rely on problem-solving logic to produce answers. AdaR synthesizes logically equivalent queries by varying variable values, and trains models with RLVR on these data to penalize spurious logic while encouraging adaptive logic. To improve data quality, we extract the problem-solving logic from the original query and generate the corresponding answer by code execution, then apply a sanity check. Experimental results demonstrate that AdaR improves robustness and generalization, achieving substantial improvement in mathematical reasoning while maintaining high data efficiency. Analysis indicates that data synthesis and RLVR function in a coordinated manner to enable adaptive reasoning in LLMs. Subsequent analyses derive key design insights into the effect of critical factors and the applicability to instruct LLMs. Our project is available at https://github.com/LaiZhejian/AdaR
☆ Design Process of a Self Adaptive Smart Serious Games Ecosystem
This paper outlines the design vision and planned evolution of Blexer v3, a modular and AI-driven rehabilitation ecosystem based on serious games. Building on insights from previous versions of the system, we propose a new architecture that aims to integrate multimodal sensing, real-time reasoning, and intelligent control. The envisioned system will include distinct modules for data collection, user state inference, and gameplay adaptation. Key features such as dynamic difficulty adjustment (DDA) and procedural content generation (PCG) are also considered to support personalized interventions. We present the complete conceptual framework of Blexer v3, which defines the modular structure and data flow of the system. This serves as the foundation for the next phase: the development of a functional prototype and its integration into clinical rehabilitation scenarios.
☆ Accountability Capture: How Record-Keeping to Support AI Transparency and Accountability (Re)shapes Algorithmic Oversight AAAI
Accountability regimes typically encourage record-keeping to enable the transparency that supports oversight, investigation, contestation, and redress. However, implementing such record-keeping can introduce considerations, risks, and consequences, which so far remain under-explored. This paper examines how record-keeping practices bring algorithmic systems within accountability regimes, providing a basis to observe and understand their effects. For this, we introduce, describe, and elaborate 'accountability capture' -- the re-configuration of socio-technical processes and the associated downstream effects relating to record-keeping for algorithmic accountability. Surveying 100 practitioners, we evidence and characterise record-keeping issues in practice, identifying their alignment with accountability capture. We further document widespread record-keeping practices, tensions between internal and external accountability requirements, and evidence of employee resistance to practices imposed through accountability capture. We discuss these and other effects for surveillance, privacy, and data protection, highlighting considerations for algorithmic accountability communities. In all, we show that implementing record-keeping to support transparency in algorithmic accountability regimes can itself bring wider implications -- an issue requiring greater attention from practitioners, researchers, and policymakers alike.
comment: To appear at 8th AAAI/ACM Conference on AI, Ethics, and Society (AIES 2025)
☆ A Case for Declarative LLM-friendly Interfaces for Improved Efficiency of Computer-Use Agents
Computer-use agents (CUAs) powered by large language models (LLMs) have emerged as a promising approach to automating computer tasks, yet they struggle with graphical user interfaces (GUIs). GUIs, designed for humans, force LLMs to decompose high-level goals into lengthy, error-prone sequences of fine-grained actions, resulting in low success rates and an excessive number of LLM calls. We propose Goal-Oriented Interface (GOI), a novel abstraction that transforms existing GUIs into three declarative primitives: access, state, and observation, which are better suited for LLMs. Our key idea is policy-mechanism separation: LLMs focus on high-level semantic planning (policy) while GOI handles low-level navigation and interaction (mechanism). GOI does not require modifying the application source code or relying on application programming interfaces (APIs). We evaluate GOI with Microsoft Office Suite (Word, PowerPoint, Excel) on Windows. Compared to a leading GUI-based agent baseline, GOI improves task success rates by 67% and reduces interaction steps by 43.5%. Notably, GOI completes over 61% of successful tasks with a single LLM call.
☆ Computing Wasserstein Barycenters through Gradient Flows
Wasserstein barycenters provide a powerful tool for aggregating probability measures, while leveraging the geometry of their ambient space. Existing discrete methods suffer from poor scalability, as they require access to the complete set of samples from input measures. We address this issue by recasting the original barycenter problem as a gradient flow in the Wasserstein space. Our approach offers two advantages. First, we achieve scalability by sampling mini-batches from the input measures. Second, we incorporate functionals over probability measures, which regularize the barycenter problem through internal, potential, and interaction energies. We present two algorithms for empirical and Gaussian mixture measures, providing convergence guarantees under the Polyak-{\L}ojasiewicz inequality. Experimental validation on toy datasets and domain adaptation benchmarks show that our methods outperform previous discrete and neural net-based methods for computing Wasserstein barycenters.
comment: 4 Figures, 3 Tables, under review
☆ Perfect AI Mimicry and the Epistemology of Consciousness: A Solipsistic Dilemma
Rapid advances in artificial intelligence necessitate a re-examination of the epistemological foundations upon which we attribute consciousness. As AI systems increasingly mimic human behavior and interaction with high fidelity, the concept of a "perfect mimic"-an entity empirically indistinguishable from a human through observation and interaction-shifts from hypothetical to technologically plausible. This paper argues that such developments pose a fundamental challenge to the consistency of our mind-recognition practices. Consciousness attributions rely heavily, if not exclusively, on empirical evidence derived from behavior and interaction. If a perfect mimic provides evidence identical to that of humans, any refusal to grant it equivalent epistemic status must invoke inaccessible factors, such as qualia, substrate requirements, or origin. Selectively invoking such factors risks a debilitating dilemma: either we undermine the rational basis for attributing consciousness to others (epistemological solipsism), or we accept inconsistent reasoning. I contend that epistemic consistency demands we ascribe the same status to empirically indistinguishable entities, regardless of metaphysical assumptions. The perfect mimic thus acts as an epistemic mirror, forcing critical reflection on the assumptions underlying intersubjective recognition in light of advancing AI. This analysis carries significant implications for theories of consciousness and ethical frameworks concerning artificial agents.
☆ Strongly Solving 2048 4x3
2048 is a stochastic single-player game involving 16 cells on a 4 by 4 grid, where a player chooses a direction among up, down, left, and right to obtain a score by merging two tiles with the same number located in neighboring cells along the chosen direction. This paper presents that a variant 2048-4x3 12 cells on a 4 by 3 board, one row smaller than the original, has been strongly solved. In this variant, the expected score achieved by an optimal strategy is about $50724.26$ for the most common initial states: ones with two tiles of number 2. The numbers of reachable states and afterstates are identified to be $1,152,817,492,752$ and $739,648,886,170$, respectively. The key technique is to partition state space by the sum of tile numbers on a board, which we call the age of a state. An age is invariant between a state and its successive afterstate after any valid action and is increased two or four by stochastic response from the environment. Therefore, we can partition state space by ages and enumerate all (after)states of an age depending only on states with the recent ages. Similarly, we can identify (after)state values by going along with ages in decreasing order.
☆ SONA: Learning Conditional, Unconditional, and Mismatching-Aware Discriminator
Deep generative models have made significant advances in generating complex content, yet conditional generation remains a fundamental challenge. Existing conditional generative adversarial networks often struggle to balance the dual objectives of assessing authenticity and conditional alignment of input samples within their conditional discriminators. To address this, we propose a novel discriminator design that integrates three key capabilities: unconditional discrimination, matching-aware supervision to enhance alignment sensitivity, and adaptive weighting to dynamically balance all objectives. Specifically, we introduce Sum of Naturalness and Alignment (SONA), which employs separate projections for naturalness (authenticity) and alignment in the final layer with an inductive bias, supported by dedicated objective functions and an adaptive weighting mechanism. Extensive experiments on class-conditional generation tasks show that \ours achieves superior sample quality and conditional alignment compared to state-of-the-art methods. Furthermore, we demonstrate its effectiveness in text-to-image generation, confirming the versatility and robustness of our approach.
comment: 24 pages with 9 figures
☆ Deep learning framework for predicting stochastic take-off and die-out of early spreading
Large-scale outbreaks of epidemics, misinformation, or other harmful contagions pose significant threats to human society, yet the fundamental question of whether an emerging outbreak will escalate into a major epidemic or naturally die out remains largely unaddressed. This problem is challenging, partially due to inadequate data during the early stages of outbreaks and also because established models focus on average behaviors of large epidemics rather than the stochastic nature of small transmission chains. Here, we introduce the first systematic framework for forecasting whether initial transmission events will amplify into major outbreaks or fade into extinction during early stages, when intervention strategies can still be effectively implemented. Using extensive data from stochastic spreading models, we developed a deep learning framework that predicts early-stage spreading outcomes in real-time. Validation across Erd\H{o}s-R\'enyi and Barab\'asi-Albert networks with varying infectivity levels shows our method accurately forecasts stochastic spreading events well before potential outbreaks, demonstrating robust performance across different network structures and infectivity scenarios.To address the challenge of sparse data during early outbreak stages, we further propose a pretrain-finetune framework that leverages diverse simulation data for pretraining and adapts to specific scenarios through targeted fine-tuning. The pretrain-finetune framework consistently outperforms baseline models, achieving superior performance even when trained on limited scenario-specific data. To our knowledge, this work presents the first framework for predicting stochastic take-off versus die-out. This framework provides valuable insights for epidemic preparedness and public health decision-making, enabling more informed early intervention strategies.
comment: 29 pages, 11 figures
☆ COSMIR: Chain Orchestrated Structured Memory for Iterative Reasoning over Long Context
Reasoning over very long inputs remains difficult for large language models (LLMs). Common workarounds either shrink the input via retrieval (risking missed evidence), enlarge the context window (straining selectivity), or stage multiple agents to read in pieces. In staged pipelines (e.g., Chain of Agents, CoA), free-form summaries passed between agents can discard crucial details and amplify early mistakes. We introduce COSMIR (Chain Orchestrated Structured Memory for Iterative Reasoning), a chain-style framework that replaces ad hoc messages with a structured memory. A Planner agent first turns a user query into concrete, checkable sub-questions. worker agents process chunks via a fixed micro-cycle: Extract, Infer, Refine, writing all updates to the shared memory. A Manager agent then Synthesizes the final answer directly from the memory. This preserves step-wise read-then-reason benefits while changing both the communication medium (structured memory) and the worker procedure (fixed micro-cycle), yielding higher faithfulness, better long-range aggregation, and auditability. On long-context QA from the HELMET suite, COSMIR reduces propagation-stage information loss and improves accuracy over a CoA baseline.
☆ GILT: An LLM-Free, Tuning-Free Graph Foundational Model for In-Context Learning
Graph Neural Networks (GNNs) are powerful tools for precessing relational data but often struggle to generalize to unseen graphs, giving rise to the development of Graph Foundational Models (GFMs). However, current GFMs are challenged by the extreme heterogeneity of graph data, where each graph can possess a unique feature space, label set, and topology. To address this, two main paradigms have emerged. The first leverages Large Language Models (LLMs), but is fundamentally text-dependent, thus struggles to handle the numerical features in vast graphs. The second pre-trains a structure-based model, but the adaptation to new tasks typically requires a costly, per-graph tuning stage, creating a critical efficiency bottleneck. In this work, we move beyond these limitations and introduce \textbf{G}raph \textbf{I}n-context \textbf{L}earning \textbf{T}ransformer (GILT), a framework built on an LLM-free and tuning-free architecture. GILT introduces a novel token-based framework for in-context learning (ICL) on graphs, reframing classification tasks spanning node, edge and graph levels in a unified framework. This mechanism is the key to handling heterogeneity, as it is designed to operate on generic numerical features. Further, its ability to understand class semantics dynamically from the context enables tuning-free adaptation. Comprehensive experiments show that GILT achieves stronger few-shot performance with significantly less time than LLM-based or tuning-based baselines, validating the effectiveness of our approach.
☆ ContextNav: Towards Agentic Multimodal In-Context Learning
Recent advances demonstrate that multimodal large language models (MLLMs) exhibit strong multimodal in-context learning (ICL) capabilities, enabling them to adapt to novel vision-language tasks from a few contextual examples. However, existing ICL approaches face challenges in reconciling scalability with robustness across diverse tasks and noisy contextual examples: manually selecting examples produces clean contexts but is labor-intensive and task-specific, while similarity-based retrieval improves scalability but could introduce irrelevant or structurally inconsistent samples that degrade ICL performance. To address these limitations, we propose ContextNav, the first agentic framework that integrates the scalability of automated retrieval with the quality and adaptiveness of human-like curation, enabling noise-robust and dynamically optimized contextualization for multimodal ICL. ContextNav unifies context management and noise-robust contextualization within a closed-loop workflow driven by graph-based orchestration. Specifically, it builds a resource-aware multimodal embedding pipeline, maintains a retrievable vector database, and applies agentic retrieval and structural alignment to construct noise-resilient contexts. An Operational Grammar Graph (OGG) further supports adaptive workflow planning and optimization, enabling the agent to refine its operational strategies based on downstream ICL feedback. Experimental results demonstrate that ContextNav achieves state-of-the-art performance across various datasets, underscoring the promise of agentic workflows for advancing scalable and robust contextualization in multimodal ICL.
☆ TRAJECT-Bench:A Trajectory-Aware Benchmark for Evaluating Agentic Tool Use
Large language model (LLM)-based agents increasingly rely on tool use to complete real-world tasks. While existing works evaluate the LLMs' tool use capability, they largely focus on the final answers yet overlook the detailed tool usage trajectory, i.e., whether tools are selected, parameterized, and ordered correctly. We introduce TRAJECT-Bench, a trajectory-aware benchmark to comprehensively evaluate LLMs' tool use capability through diverse tasks with fine-grained evaluation metrics. TRAJECT-Bench pairs high-fidelity, executable tools across practical domains with tasks grounded in production-style APIs, and synthesizes trajectories that vary in breadth (parallel calls) and depth (interdependent chains). Besides final accuracy, TRAJECT-Bench also reports trajectory-level diagnostics, including tool selection and argument correctness, and dependency/order satisfaction. Analyses reveal failure modes such as similar tool confusion and parameter-blind selection, and scaling behavior with tool diversity and trajectory length where the bottleneck of transiting from short to mid-length trajectories is revealed, offering actionable guidance for LLMs' tool use.
☆ Code World Models for General Game Playing
Large Language Models (LLMs) reasoning abilities are increasingly being applied to classical board and card games, but the dominant approach -- involving prompting for direct move generation -- has significant drawbacks. It relies on the model's implicit fragile pattern-matching capabilities, leading to frequent illegal moves and strategically shallow play. Here we introduce an alternative approach: We use the LLM to translate natural language rules and game trajectories into a formal, executable world model represented as Python code. This generated model -- comprising functions for state transition, legal move enumeration, and termination checks -- serves as a verifiable simulation engine for high-performance planning algorithms like Monte Carlo tree search (MCTS). In addition, we prompt the LLM to generate heuristic value functions (to make MCTS more efficient), and inference functions (to estimate hidden states in imperfect information games). Our method offers three distinct advantages compared to directly using the LLM as a policy: (1) Verifiability: The generated CWM serves as a formal specification of the game's rules, allowing planners to algorithmically enumerate valid actions and avoid illegal moves, contingent on the correctness of the synthesized model; (2) Strategic Depth: We combine LLM semantic understanding with the deep search power of classical planners; and (3) Generalization: We direct the LLM to focus on the meta-task of data-to-code translation, enabling it to adapt to new games more easily. We evaluate our agent on 10 different games, of which 4 are novel and created for this paper. 5 of the games are fully observed (perfect information), and 5 are partially observed (imperfect information). We find that our method outperforms or matches Gemini 2.5 Pro in 9 out of the 10 considered games.
☆ 3Dify: a Framework for Procedural 3D-CG Generation Assisted by LLMs Using MCP and RAG
This paper proposes "3Dify," a procedural 3D computer graphics (3D-CG) generation framework utilizing Large Language Models (LLMs). The framework enables users to generate 3D-CG content solely through natural language instructions. 3Dify is built upon Dify, an open-source platform for AI application development, and incorporates several state-of-the-art LLM-related technologies such as the Model Context Protocol (MCP) and Retrieval-Augmented Generation (RAG). For 3D-CG generation support, 3Dify automates the operation of various Digital Content Creation (DCC) tools via MCP. When DCC tools do not support MCP-based interaction, the framework employs the Computer-Using Agent (CUA) method to automate Graphical User Interface (GUI) operations. Moreover, to enhance image generation quality, 3Dify allows users to provide feedback by selecting preferred images from multiple candidates. The LLM then learns variable patterns from these selections and applies them to subsequent generations. Furthermore, 3Dify supports the integration of locally deployed LLMs, enabling users to utilize custom-developed models and to reduce both time and monetary costs associated with external API calls by leveraging their own computational resources.
☆ More Than Meets the Eye? Uncovering the Reasoning-Planning Disconnect in Training Vision-Language Driving Models
Vision-Language Model (VLM) driving agents promise explainable end-to-end autonomy by first producing natural-language reasoning and then predicting trajectory planning. However, whether planning is causally driven by this reasoning remains a critical but unverified assumption. To investigate this, we build DriveMind, a large-scale driving Visual Question Answering (VQA) corpus with plan-aligned Chain-of-Thought (CoT), automatically generated from nuPlan. Our data generation process converts sensors and annotations into structured inputs and, crucially, separates priors from to-be-reasoned signals, enabling clean information ablations. Using DriveMind, we train representative VLM agents with Supervised Fine-Tuning (SFT) and Group Relative Policy Optimization (GRPO) and evaluate them with nuPlan's metrics. Our results, unfortunately, indicate a consistent causal disconnect in reasoning-planning: removing ego/navigation priors causes large drops in planning scores, whereas removing CoT produces only minor changes. Attention analysis further shows that planning primarily focuses on priors rather than the CoT. Based on this evidence, we propose the Reasoning-Planning Decoupling Hypothesis, positing that the training-yielded reasoning is an ancillary byproduct rather than a causal mediator. To enable efficient diagnosis, we also introduce a novel, training-free probe that measures an agent's reliance on priors by evaluating its planning robustness against minor input perturbations. In summary, we provide the community with a new dataset and a diagnostic tool to evaluate the causal fidelity of future models.
comment: The dataset will be released publicly once the paper is accepted for publication
☆ Unified Threat Detection and Mitigation Framework (UTDMF): Combating Prompt Injection, Deception, and Bias in Enterprise-Scale Transformers
The rapid adoption of large language models (LLMs) in enterprise systems exposes vulnerabilities to prompt injection attacks, strategic deception, and biased outputs, threatening security, trust, and fairness. Extending our adversarial activation patching framework (arXiv:2507.09406), which induced deception in toy networks at a 23.9% rate, we introduce the Unified Threat Detection and Mitigation Framework (UTDMF), a scalable, real-time pipeline for enterprise-grade models like Llama-3.1 (405B), GPT-4o, and Claude-3.5. Through 700+ experiments per model, UTDMF achieves: (1) 92% detection accuracy for prompt injection (e.g., jailbreaking); (2) 65% reduction in deceptive outputs via enhanced patching; and (3) 78% improvement in fairness metrics (e.g., demographic bias). Novel contributions include a generalized patching algorithm for multi-threat detection, three groundbreaking hypotheses on threat interactions (e.g., threat chaining in enterprise workflows), and a deployment-ready toolkit with APIs for enterprise integration.
☆ Toward a Unified Geometry Understanding: Riemannian Diffusion Framework for Graph Generation and Prediction
Graph diffusion models have made significant progress in learning structured graph data and have demonstrated strong potential for predictive tasks. Existing approaches typically embed node, edge, and graph-level features into a unified latent space, modeling prediction tasks including classification and regression as a form of conditional generation. However, due to the non-Euclidean nature of graph data, features of different curvatures are entangled in the same latent space without releasing their geometric potential. To address this issue, we aim to construt an ideal Riemannian diffusion model to capture distinct manifold signatures of complex graph data and learn their distribution. This goal faces two challenges: numerical instability caused by exponential mapping during the encoding proces and manifold deviation during diffusion generation. To address these challenges, we propose GeoMancer: a novel Riemannian graph diffusion framework for both generation and prediction tasks. To mitigate numerical instability, we replace exponential mapping with an isometric-invariant Riemannian gyrokernel approach and decouple multi-level features onto their respective task-specific manifolds to learn optimal representations. To address manifold deviation, we introduce a manifold-constrained diffusion method and a self-guided strategy for unconditional generation, ensuring that the generated data remains aligned with the manifold signature. Extensive experiments validate the effectiveness of our approach, demonstrating superior performance across a variety of tasks.
comment: Accepted by NeuIPS 2025
☆ Aria: An Agent For Retrieval and Iterative Auto-Formalization via Dependency Graph
Accurate auto-formalization of theorem statements is essential for advancing automated discovery and verification of research-level mathematics, yet remains a major bottleneck for LLMs due to hallucinations, semantic mismatches, and their inability to synthesize new definitions. To tackle these issues, we present Aria (Agent for Retrieval and Iterative Autoformalization), a system for conjecture-level formalization in Lean that emulates human expert reasoning via a two-phase Graph-of-Thought process: recursively decomposing statements into a dependency graph and then constructing formalizations from grounded concepts. To ensure semantic correctness, we introduce AriaScorer, a checker that retrieves definitions from Mathlib for term-level grounding, enabling rigorous and reliable verification. We evaluate Aria on diverse benchmarks. On ProofNet, it achieves 91.6% compilation success rate and 68.5% final accuracy, surpassing previous methods. On FATE-X, a suite of challenging algebra problems from research literature, it outperforms the best baseline with 44.0% vs. 24.0% final accuracy. On a dataset of homological conjectures, Aria reaches 42.9% final accuracy while all other models score 0%.
☆ ChartAgent: A Multimodal Agent for Visually Grounded Reasoning in Complex Chart Question Answering
Recent multimodal LLMs have shown promise in chart-based visual question answering, but their performance declines sharply on unannotated charts, those requiring precise visual interpretation rather than relying on textual shortcuts. To address this, we introduce ChartAgent, a novel agentic framework that explicitly performs visual reasoning directly within the chart's spatial domain. Unlike textual chain-of-thought reasoning, ChartAgent iteratively decomposes queries into visual subtasks and actively manipulates and interacts with chart images through specialized actions such as drawing annotations, cropping regions (e.g., segmenting pie slices, isolating bars), and localizing axes, using a library of chart-specific vision tools to fulfill each subtask. This iterative reasoning process closely mirrors human cognitive strategies for chart comprehension. ChartAgent achieves state-of-the-art accuracy on the ChartBench and ChartX benchmarks, surpassing prior methods by up to 16.07% absolute gain overall and 17.31% on unannotated, numerically intensive queries. Furthermore, our analyses show that ChartAgent is (a) effective across diverse chart types, (b) achieve the highest scores across varying visual and reasoning complexity levels, and (c) serves as a plug-and-play framework that boosts performance across diverse underlying LLMs. Our work is among the first to demonstrate visually grounded reasoning for chart understanding using tool-augmented multimodal agents.
comment: 53 pages, 12 figures, 15 tables
☆ GRACE: Generative Representation Learning via Contrastive Policy Optimization
Prevailing methods for training Large Language Models (LLMs) as text encoders rely on contrastive losses that treat the model as a black box function, discarding its generative and reasoning capabilities in favor of static embeddings. We introduce GRACE (Generative Representation Learning via Contrastive Policy Optimization), a novel framework that reimagines contrastive signals not as losses to be minimized, but as rewards that guide a generative policy. In GRACE, the LLM acts as a policy that produces explicit, human-interpretable rationales--structured natural language explanations of its semantic understanding. These rationales are then encoded into high-quality embeddings via mean pooling. Using policy gradient optimization, we train the model with a multi-component reward function that maximizes similarity between query positive pairs and minimizes similarity with negatives. This transforms the LLM from an opaque encoder into an interpretable agent whose reasoning process is transparent and inspectable. On MTEB benchmark, GRACE yields broad cross category gains: averaged over four backbones, the supervised setting improves overall score by 11.5% over base models, and the unsupervised variant adds 6.9%, while preserving general capabilities. This work treats contrastive objectives as rewards over rationales, unifying representation learning with generation to produce stronger embeddings and transparent rationales. The model, data and code are available at https://github.com/GasolSun36/GRACE.
comment: 23 pages, 7 figures, 7 tables
☆ P2P: A Poison-to-Poison Remedy for Reliable Backdoor Defense in LLMs
During fine-tuning, large language models (LLMs) are increasingly vulnerable to data-poisoning backdoor attacks, which compromise their reliability and trustworthiness. However, existing defense strategies suffer from limited generalization: they only work on specific attack types or task settings. In this study, we propose Poison-to-Poison (P2P), a general and effective backdoor defense algorithm. P2P injects benign triggers with safe alternative labels into a subset of training samples and fine-tunes the model on this re-poisoned dataset by leveraging prompt-based learning. This enforces the model to associate trigger-induced representations with safe outputs, thereby overriding the effects of original malicious triggers. Thanks to this robust and generalizable trigger-based fine-tuning, P2P is effective across task settings and attack types. Theoretically and empirically, we show that P2P can neutralize malicious backdoors while preserving task performance. We conduct extensive experiments on classification, mathematical reasoning, and summary generation tasks, involving multiple state-of-the-art LLMs. The results demonstrate that our P2P algorithm significantly reduces the attack success rate compared with baseline models. We hope that the P2P can serve as a guideline for defending against backdoor attacks and foster the development of a secure and trustworthy LLM community.
☆ GenQuest: An LLM-based Text Adventure Game for Language Learners EMNLP 2025
GenQuest is a generative text adventure game that leverages Large Language Models (LLMs) to facilitate second language learning through immersive, interactive storytelling. The system engages English as a Foreign Language (EFL) learners in a collaborative "choose-your-own-adventure" style narrative, dynamically generated in response to learner choices. Game mechanics such as branching decision points and story milestones are incorporated to maintain narrative coherence while allowing learner-driven plot development. Key pedagogical features include content generation tailored to each learner's proficiency level, and a vocabulary assistant that provides in-context explanations of learner-queried text strings, ranging from words and phrases to sentences. Findings from a pilot study with university EFL students in China indicate promising vocabulary gains and positive user perceptions. Also discussed are suggestions from participants regarding the narrative length and quality, and the request for multi-modal content such as illustrations.
comment: Workshop on Wordplay: When Language Meets Games, EMNLP 2025
☆ Impatient Users Confuse AI Agents: High-fidelity Simulations of Human Traits for Testing Agents
Despite rapid progress in building conversational AI agents, robustness is still largely untested. Small shifts in user behavior, such as being more impatient, incoherent, or skeptical, can cause sharp drops in agent performance, revealing how brittle current AI agents are. Today's benchmarks fail to capture this fragility: agents may perform well under standard evaluations but degrade spectacularly in more realistic and varied settings. We address this robustness testing gap by introducing TraitBasis, a lightweight, model-agnostic method for systematically stress testing AI agents. TraitBasis learns directions in activation space corresponding to steerable user traits (e.g., impatience or incoherence), which can be controlled, scaled, composed, and applied at inference time without any fine-tuning or extra data. Using TraitBasis, we extend $\tau$-Bench to $\tau$-Trait, where user behaviors are altered via controlled trait vectors. We observe on average a 2%-30% performance degradation on $\tau$-Trait across frontier models, highlighting the lack of robustness of current AI agents to variations in user behavior. Together, these results highlight both the critical role of robustness testing and the promise of TraitBasis as a simple, data-efficient, and compositional tool. By powering simulation-driven stress tests and training loops, TraitBasis opens the door to building AI agents that remain reliable in the unpredictable dynamics of real-world human interactions. We have open-sourced $\tau$-Trai across four domains: airline, retail, telecom, and telehealth, so the community can systematically QA their agents under realistic, behaviorally diverse intents and trait scenarios: https://github.com/collinear-ai/tau-trait.
comment: 25 pages
☆ Multi-Agent Collaborative Intelligence: Dual-Dial Control for Reliable LLM Reasoning
Multi-agent debate often wastes compute by using a fixed adversarial stance, aggregating without deliberation, or stopping on heuristics. We introduce MACI, an active controller with two independent dials that decouple information from behavior: an information dial that gates evidence by quality, and a behavior dial that schedules contentiousness from exploration to consolidation. A moderator tracks disagreement, overlap, evidence quality, and argument quality, and halts when gains plateau. We provide theory-lite guarantees for nonincreasing dispersion and provable termination, with a budget-feasible scheduler. Across clinical diagnosis and news-bias tasks, MACI improves accuracy and calibration while reducing tokens, and converts residual uncertainty into precision RAG plans that specify what to retrieve next. We use a cross-family LLM judge (CRIT) as a conservative soft weight and stop signal, validated for order invariance and judge-swap stability; stability depends on using high-capability judges. MACI turns debate into a budget-aware, measurable, and provably terminating controller.
comment: 27 pages, 5 figures, 21 tables
☆ Psychological Steering in LLMs: An Evaluation of Effectiveness and Trustworthiness
The ability to control LLMs' emulated emotional states and personality traits is essential for enabling rich, human-centered interactions in socially interactive settings. We introduce PsySET, a Psychologically-informed benchmark to evaluate LLM Steering Effectiveness and Trustworthiness across the emotion and personality domains. Our study spans four models from different LLM families paired with various steering strategies, including prompting, fine-tuning, and representation engineering. Our results indicate that prompting is consistently effective but limited in intensity control, whereas vector injections achieve finer controllability while slightly reducing output quality. Moreover, we explore the trustworthiness of steered LLMs by assessing safety, truthfulness, fairness, and ethics, highlighting potential side effects and behavioral shifts. Notably, we observe idiosyncratic effects; for instance, even a positive emotion like joy can degrade robustness to adversarial factuality, lower privacy awareness, and increase preferential bias. Meanwhile, anger predictably elevates toxicity yet strengthens leakage resistance. Our framework establishes the first holistic evaluation of emotion and personality steering, offering insights into its interpretability and reliability for socially interactive applications.
comment: Submitted to ARR - October 2025
☆ On Continuous Optimization for Constraint Satisfaction Problems
Constraint satisfaction problems (CSPs) are fundamental in mathematics, physics, and theoretical computer science. While conflict-driven clause learning Boolean Satisfiability (SAT) solvers have achieved remarkable success and become the mainstream approach for Boolean satisfiability, recent advances show that modern continuous local search (CLS) solvers can achieve highly competitive results on certain classes of SAT problems. Motivated by these advances, we extend the CLS framework from Boolean SAT to general CSP with finite-domain variables and expressive constraints. We present FourierCSP, a continuous optimization framework that generalizes the Walsh-Fourier transform to CSP, allowing for transforming versatile constraints to compact multilinear polynomials, thereby avoiding the need for auxiliary variables and memory-intensive encodings. Our approach leverages efficient evaluation and differentiation of the objective via circuit-output probability and employs a projected gradient optimization method with theoretical guarantees. Empirical results on benchmark suites demonstrate that FourierCSP is scalable and competitive, significantly broadening the class of problems that can be efficiently solved by CLS techniques.
☆ MedCLM: Learning to Localize and Reason via a CoT-Curriculum in Medical Vision-Language Models
Bridging clinical diagnostic reasoning with AI remains a central challenge in medical imaging. We introduce MedCLM, an automated pipeline that converts detection datasets into large-scale medical visual question answering (VQA) data with Chain-of-Thought (CoT) reasoning by linking lesion boxes to organ segmentation and structured rationales. These contextual signals enable medical vision-language models to generate question-answer pairs with step-by-step reasoning. To utilize this data effectively, we propose an Integrated CoT-Curriculum Strategy composed of an Easy stage with explicit lesion boxes for visual grounding, a Medium stage that encourages implicit localization, and a Hard stage for weakly supervised reasoning. Experimental results demonstrate that MedCLM attains state-of-the-art performance on several medical VQA benchmarks, providing a scalable framework for developing clinically aligned medical vision-language models.
☆ Compressed Convolutional Attention: Efficient Attention in a Compressed Latent Space
Multi-headed Attention's (MHA) quadratic compute and linearly growing KV-cache make long-context transformers expensive to train and serve. Prior works such as Grouped Query Attention (GQA) and Multi-Latent Attention (MLA) shrink the cache, speeding decode, but leave compute, which determines prefill and training speed, largely unchanged. We introduce Compressed Convolutional Attention (CCA), a novel attention method which down-projects queries, keys, and values and performs the entire attention operation inside the shared latent space. This simple design dramatically cuts parameters, KV-cache, and FLOPs all at once by the desired compression factor. Because CCA is orthogonal to head-sharing, we combine the two to form Compressed Convolutional Grouped Query Attention (CCGQA), which further tightens the compute-bandwidth Pareto frontier so that users can tune compression toward either FLOP or memory limits without sacrificing quality. Experiments show that CCGQA consistently outperforms both GQA and MLA at equal KV-cache compression on dense and MoE models. Additionally, we show that CCGQA outperforms all other attention methods on MoE models with half the KV-cache of GQA and MLA, achieving an 8x KV-cache compression with no drop in performance compared to standard MHA. CCA and CCGQA also dramatically reduce the FLOP cost of attention which leads to substantially faster training and prefill than existing methods. On H100 GPUs, our fused CCA/CCGQA kernel reduces prefill latency by about 1.7x at a sequence length of 16k relative to MHA, and accelerates backward by about 1.3x.
☆ DRPO: Efficient Reasoning via Decoupled Reward Policy Optimization
Recent large reasoning models (LRMs) driven by reinforcement learning algorithms (e.g., GRPO) have achieved remarkable performance on challenging reasoning tasks. However, these models suffer from overthinking, generating unnecessarily long and redundant reasoning even for simple questions, which substantially increases computational cost and response latency. While existing methods incorporate length rewards to GRPO to promote concise reasoning, they incur significant performance degradation. We identify the root cause: when rewards for correct but long rollouts are penalized, GRPO's group-relative advantage function can assign them negative advantages, actively discouraging valid reasoning. To overcome this, we propose Decoupled Reward Policy Optimization (DRPO), a novel framework that decouples the length-based learning signal of correct rollouts from incorrect ones. DRPO ensures that reward signals for correct rollouts are normalized solely within the positive group, shielding them from interference by negative samples. The DRPO's objective is grounded in integrating an optimized positive data distribution, which maximizes length-based rewards under a KL regularization, into a discriminative objective. We derive a closed-form solution for this distribution, enabling efficient computation of the objective and its gradients using only on-policy data and importance weighting. Of independent interest, this formulation is general and can incorporate other preference rewards of positive data beyond length. Experiments on mathematical reasoning tasks demonstrate DRPO's significant superiority over six efficient reasoning baselines. Notably, with a 1.5B model, our method achieves 77\% length reduction with only 1.1\% performance loss on simple questions like GSM8k dataset, while the follow-up baseline sacrifices 4.3\% for 68\% length reduction.
comment: 20 pages, 7 figures
☆ SPEGNet: Synergistic Perception-Guided Network for Camouflaged Object Detection
Camouflaged object detection segments objects with intrinsic similarity and edge disruption. Current detection methods rely on accumulated complex components. Each approach adds components such as boundary modules, attention mechanisms, and multi-scale processors independently. This accumulation creates a computational burden without proportional gains. To manage this complexity, they process at reduced resolutions, eliminating fine details essential for camouflage. We present SPEGNet, addressing fragmentation through a unified design. The architecture integrates multi-scale features via channel calibration and spatial enhancement. Boundaries emerge directly from context-rich representations, maintaining semantic-spatial alignment. Progressive refinement implements scale-adaptive edge modulation with peak influence at intermediate resolutions. This design strikes a balance between boundary precision and regional consistency. SPEGNet achieves 0.887 $S_\alpha$ on CAMO, 0.890 on COD10K, and 0.895 on NC4K, with real-time inference speed. Our approach excels across scales, from tiny, intricate objects to large, pattern-similar ones, while handling occlusion and ambiguous boundaries. Code, model weights, and results are available on \href{https://github.com/Baber-Jan/SPEGNet}{https://github.com/Baber-Jan/SPEGNet}.
☆ Autonomy Matters: A Study on Personalization-Privacy Dilemma in LLM Agents
Large Language Model (LLM) agents require personal information for personalization in order to better act on users' behalf in daily tasks, but this raises privacy concerns and a personalization-privacy dilemma. Agent's autonomy introduces both risks and opportunities, yet its effects remain unclear. To better understand this, we conducted a 3$\times$3 between-subjects experiment ($N=450$) to study how agent's autonomy level and personalization influence users' privacy concerns, trust and willingness to use, as well as the underlying psychological processes. We find that personalization without considering users' privacy preferences increases privacy concerns and decreases trust and willingness to use. Autonomy moderates these effects: Intermediate autonomy flattens the impact of personalization compared to No- and Full autonomy conditions. Our results suggest that rather than aiming for perfect model alignment in output generation, balancing autonomy of agent's action and user control offers a promising path to mitigate the personalization-privacy dilemma.
☆ Inverse Mixed-Integer Programming: Learning Constraints then Objective Functions
In mixed-integer linear programming, data-driven inverse optimization that learns the objective function and the constraints from observed data plays an important role in constructing appropriate mathematical models for various fields, including power systems and scheduling. However, to the best of our knowledge, there is no known method for learning both the objective functions and the constraints. In this paper, we propose a two-stage method for a class of problems where the objective function is expressed as a linear combination of functions and the constraints are represented by functions and thresholds. Specifically, our method first learns the constraints and then learns the objective function. On the theoretical side, we show the proposed method can solve inverse optimization problems in finite dataset, develop statistical learning theory in pseudometric spaces and sub-Gaussian distributions, and construct a statistical learning for inverse optimization. On the experimental side, we demonstrate that our method is practically applicable for scheduling problems formulated as integer linear programmings with up to 100 decision variables, which are typical in real-world settings.
comment: 33 pages
☆ Partial Information Decomposition via Normalizing Flows in Latent Gaussian Distributions NeurIPS 2025
The study of multimodality has garnered significant interest in fields where the analysis of interactions among multiple information sources can enhance predictive modeling, data fusion, and interpretability. Partial information decomposition (PID) has emerged as a useful information-theoretic framework to quantify the degree to which individual modalities independently, redundantly, or synergistically convey information about a target variable. However, existing PID methods depend on optimizing over a joint distribution constrained by estimated pairwise probability distributions, which are costly and inaccurate for continuous and high-dimensional modalities. Our first key insight is that the problem can be solved efficiently when the pairwise distributions are multivariate Gaussians, and we refer to this problem as Gaussian PID (GPID). We propose a new gradient-based algorithm that substantially improves the computational efficiency of GPID based on an alternative formulation of the underlying optimization problem. To generalize the applicability to non-Gaussian data, we learn information-preserving encoders to transform random variables of arbitrary input distributions into pairwise Gaussian random variables. Along the way, we resolved an open problem regarding the optimality of joint Gaussian solutions for GPID. Empirical validation in diverse synthetic examples demonstrates that our proposed method provides more accurate and efficient PID estimates than existing baselines. We further evaluate a series of large-scale multimodal benchmarks to show its utility in real-world applications of quantifying PID in multimodal datasets and selecting high-performing models.
comment: NeurIPS 2025
☆ Your Vision-Language Model Can't Even Count to 20: Exposing the Failures of VLMs in Compositional Counting
Vision-Language Models (VLMs) have become a central focus of today's AI community, owing to their impressive abilities gained from training on large-scale vision-language data from the Web. These models have demonstrated strong performance across diverse tasks, including image understanding, video understanding, complex visual reasoning, and embodied AI. Despite these noteworthy successes, a fundamental question remains: Can VLMs count objects correctly? In this paper, we introduce a simple yet effective benchmark, VLMCountBench, designed under a minimalist setting with only basic geometric shapes (e.g., triangles, circles) and their compositions, focusing exclusively on counting tasks without interference from other factors. We adopt strict independent variable control and systematically study the effects of simple properties such as color, size, and prompt refinement in a controlled ablation. Our empirical results reveal that while VLMs can count reliably when only one shape type is present, they exhibit substantial failures when multiple shape types are combined (i.e., compositional counting). This highlights a fundamental empirical limitation of current VLMs and motivates important directions for future research.
☆ Large Language Models Preserve Semantic Isotopies in Story Continuations
In this work, we explore the relevance of textual semantics to Large Language Models (LLMs), extending previous insights into the connection between distributional semantics and structural semantics. We investigate whether LLM-generated texts preserve semantic isotopies. We design a story continuation experiment using 10,000 ROCStories prompts completed by five LLMs. We first validate GPT-4o's ability to extract isotopies from a linguistic benchmark, then apply it to the generated stories. We then analyze structural (coverage, density, spread) and semantic properties of isotopies to assess how they are affected by completion. Results show that LLM completion within a given token horizon preserves semantic isotopies across multiple properties.
♻ ☆ jina-reranker-v3: Last but Not Late Interaction for Listwise Document Reranking
jina-reranker-v3 is a 0.6B-parameter multilingual listwise reranker that introduces a novel "last but not late" interaction. Unlike late interaction models like ColBERT that encode documents separately before multi-vector matching, our approach applies causal attention between the query and all candidate documents in the same context window, enabling rich interactions before extracting contextual embeddings from each document's final token. The new model achieves state-of-the-art BEIR performance with 61.94 nDCG@10 while being significantly smaller than other models with comparable performance.
♻ ☆ What Drives Compositional Generalization in Visual Generative Models?
Compositional generalization, the ability to generate novel combinations of known concepts, is a key ingredient for visual generative models. Yet, not all mechanisms that enable or inhibit it are fully understood. In this work, we conduct a systematic study of how various design choices influence compositional generalization in image and video generation in a positive or negative way. Through controlled experiments, we identify two key factors: (i) whether the training objective operates on a discrete or continuous distribution, and (ii) to what extent conditioning provides information about the constituent concepts during training. Building on these insights, we show that relaxing the MaskGIT discrete loss with an auxiliary continuous JEPA-based objective can improve compositional performance in discrete models like MaskGIT.
♻ ☆ Relevance-Aware Thresholding in Online Conformal Prediction for Time Series
Uncertainty quantification has received considerable interest in recent works in Machine Learning. In particular, Conformal Prediction (CP) gains ground in this field. For the case of time series, Online Conformal Prediction (OCP) becomes an option to address the problem of data distribution shift over time. Indeed, the idea of OCP is to update a threshold of some quantity (whether the miscoverage level or the quantile) based on the distribution observation. To evaluate the performance of OCP methods, two key aspects are typically considered: the coverage validity and the prediction interval width minimization. Recently, new OCP methods have emerged, offering long-run coverage guarantees and producing more informative intervals. However, during the threshold update step, most of these methods focus solely on the validity of the prediction intervals~--~that is, whether the ground truth falls inside or outside the interval~--~without accounting for their relevance. In this paper, we aim to leverage this overlooked aspect. Specifically, we propose enhancing the threshold update step by replacing the binary evaluation (inside/outside) with a broader class of functions that quantify the relevance of the prediction interval using the ground truth. This approach helps prevent abrupt threshold changes, potentially resulting in narrower prediction intervals. Indeed, experimental results on real-world datasets suggest that these functions can produce tighter intervals compared to existing OCP methods while maintaining coverage validity.
comment: Accepted for The 28th European Conference on Artificial Intelligence 2025, Workshop HC@AIxIA+HYDRA 2025
♻ ☆ MINERVA: Mutual Information Neural Estimation for Supervised Feature Selection
Existing feature filters rely on statistical pair-wise dependence metrics to model feature-target relationships, but this approach may fail when the target depends on higher-order feature interactions rather than individual contributions. We introduce Mutual Information Neural Estimation Regularized Vetting Algorithm (MINERVA), a novel approach to supervised feature selection based on neural estimation of mutual information between features and targets. We paramaterize the approximation of mutual information with neural networks and perform feature selection using a carefully designed loss function augmented with sparsity-inducing regularizers. Our method is implemented in a two-stage process to decouple representation learning from feature selection, ensuring better generalization and a more accurate expression of feature importance. We present examples of ubiquitous dependency structures that are rarely captured in literature and show that our proposed method effectively captures these complex feature-target relationships by evaluating feature subsets as an ensemble. Experimental results on synthetic and real-life fraud datasets demonstrate the efficacy of our method and its ability to perform exact solutions.
comment: 23 pages
♻ ☆ Mitigating Modal Imbalance in Multimodal Reasoning
Foundation models (FMs) deployed in real-world tasks such as computer-use agents must integrate diverse modalities. How good are FMs at performing joint reasoning, simultaneously reasoning over multiple modalities, especially when the modalities interact and relate to each other to form cross-modal context? To better understand this problem, we study FMs on cross-modal conflicts: scenarios where conflicting evidence is presented across modalities. This allows us to examine whether FMs prioritize one modality over another or reason jointly to reconcile the conflict. Our experiments reveal that FMs can recognize conflicts in unimodal contexts, composed of a single modality, 90% of the time, but the ratio falls as low as 3% when evidence is split across modalities -- similar observations hold in cross-lingual contexts, composed of multiple languages. We trace this failure to cross-modal attention imbalance, showing that FMs exhibit extreme asymmetry in attention scores, disproportionately prioritizing certain modalities. We show that cross-modal attention imbalance does not go away by simply scaling up multimodal or multilingual datasets blindly, since they lack training examples that explicitly require cross-modal reasoning. We demonstrate that even a simple and scalable method of explicitly combining multiple modalities within each training instance significantly reduces attention imbalance. Reduced attention imbalance directly translates to improved downstream performance on several vision-language benchmarks. Our findings underscore the importance of systematically addressing cross-modal contexts to build reliable foundation models.
comment: 10 pages, 10 figures, CoLM 2025
♻ ☆ Comparing Contrastive and Triplet Loss: Variance Analysis and Optimization Behavior
Contrastive loss and triplet loss are widely used objectives in deep metric learning, yet their effects on representation quality remain insufficiently understood. We present a theoretical and empirical comparison of these losses, focusing on intra- and inter-class variance and optimization behavior (e.g., greedy updates). Through task-specific experiments with consistent settings on synthetic data and real datasets-MNIST, CIFAR-10-it is shown that triplet loss preserves greater variance within and across classes, supporting finer-grained distinctions in the learned representations. In contrast, contrastive loss tends to compact intra-class embeddings, which may obscure subtle semantic differences. To better understand their optimization dynamics, By examining loss-decay rate, active ratio, and gradient norm, we find that contrastive loss drives many small updates early on, while triplet loss produces fewer but stronger updates that sustain learning on hard examples. Finally, across both classification and retrieval tasks on MNIST, CIFAR-10, CUB-200, and CARS196 datasets, our results consistently show that triplet loss yields superior performance, which suggests using triplet loss for detail retention and hard-sample focus, and contrastive loss for smoother, broad-based embedding refinement.
comment: 8 pages, 4 tables, 3 figures
♻ ☆ MALT: Improving Reasoning with Multi-Agent LLM Training
Large Language Models (LLMs) often produce answers with a single chain-of-thought, which restricts their ability to explore reasoning paths or self-correct flawed outputs in complex tasks. In this paper, we introduce MALT (Multi-Agent LLM Training), a novel post-training strategy that divides the reasoning process into generation, verification, and refinement steps using a sequential pipeline of heterogeneous agents. During data generation, each agent is repeatedly sampled to form a multi-agent search tree, where final outputs are graded against ground-truth data. We then apply value iteration to propagate reward signals back to each role-conditioned model, automatically producing multi-agent post-training data without human or teacher-model supervision. Our off-policy approach allows each agent to specialize by learning from correct and incorrect trajectories, ultimately improving the end-to-end reasoning chain. On MATH, GSM8K, and CSQA, MALT surpasses the same baseline LLM with a relative improvement of 15.66%, 7.42%, and 9.40% respectively, making it an important advance towards multi-agent cooperative training.
comment: Published at COLM 2025
♻ ☆ Using cognitive models to reveal value trade-offs in language models
Value trade-offs are an integral part of human decision-making and language use, however, current tools for interpreting such dynamic and multi-faceted notions of values in LLMs are limited. In cognitive science, so-called "cognitive models" provide formal accounts of such trade-offs in humans, by modeling the weighting of a speaker's competing utility functions in choosing an action or utterance. Here we use a leading cognitive model of polite speech to systematically evaluate value trade-offs in two encompassing model settings: degrees of reasoning "effort" in frontier black-box models, and RL post-training dynamics of open-source models. Our results highlight patterns of higher informational utility than social utility in reasoning models' default behavior, and demonstrate that these patterns shift in predictable ways when models are prompted to prioritize certain goals over others. Our findings from LLMs' training dynamics suggest large shifts in utility values early on in training with persistent effects of the choice of base model and pretraining data, compared to feedback dataset or alignment method. Our framework offers a flexible tool for probing value trade-offs across diverse model types, providing insights for generating hypotheses about other social behaviors such as sycophancy and for shaping training regimes that better control trade-offs between values during model development.
comment: 10 pages, 5 figures
♻ ☆ Tokens, the oft-overlooked appetizer: Large language models, the distributional hypothesis, and meaning
Tokenization is a necessary component within the current architecture of many language models, including the transformer-based large language models (LLMs) of Generative AI, yet its impact on the model's cognition is often overlooked. We argue that LLMs demonstrate that the Distributional Hypothesis (DH) is sufficient for reasonably human-like language performance, and that the emergence of human-meaningful linguistic units among tokens and current structural constraints motivate changes to existing, linguistically-agnostic tokenization techniques, particularly with respect to their roles as (1) semantic primitives and as (2) vehicles for conveying salient distributional patterns from human language to the model. We explore tokenizations from a BPE tokenizer; extant model vocabularies obtained from Hugging Face and tiktoken; and the information in exemplar token vectors as they move through the layers of a RoBERTa (large) model. Besides creating sub-optimal semantic building blocks and obscuring the model's access to the necessary distributional patterns, we describe how tokens and pretraining can act as a backdoor for bias and other unwanted content, which current alignment practices may not remediate. Additionally, we relay evidence that the tokenization algorithm's objective function impacts the LLM's cognition, despite being arguably meaningfully insulated from the main system intelligence. [First uploaded to arXiv in December, 2024.]
♻ ☆ Rethinking Exact Unlearning under Exposure: Extracting Forgotten Data under Exact Unlearning in Large Language Model
Large Language Models are typically trained on datasets collected from the web, which may inadvertently contain harmful or sensitive personal information. To address growing privacy concerns, unlearning methods have been proposed to remove the influence of specific data from trained models. Of these, exact unlearning -- which retrains the model from scratch without the target data -- is widely regarded the gold standard for mitigating privacy risks in deployment. In this paper, we revisit this assumption in a practical deployment setting where both the pre- and post-unlearning logits API are exposed, such as in open-weight scenarios. Targeting this setting, we introduce a novel data extraction attack that leverages signals from the pre-unlearning model to guide the post-unlearning model, uncovering patterns that reflect the removed data distribution. Combining model guidance with a token filtering strategy, our attack significantly improves extraction success rates -- doubling performance in some cases -- across common benchmarks such as MUSE, TOFU, and WMDP. Furthermore, we demonstrate our attack's effectiveness on a simulated medical diagnosis dataset to highlight real-world privacy risks associated with exact unlearning. In light of our findings, which suggest that unlearning may, in a contradictory way, increase the risk of privacy leakage during real-world deployments, we advocate for evaluation of unlearning methods to consider broader threat models that account not only for post-unlearning models but also for adversarial access to prior checkpoints. Code is publicly available at: https://github.com/Nicholas0228/unlearned_data_extraction_llm.
comment: Accepted by Neurips 2025
♻ ☆ Reinforced Generation of Combinatorial Structures: Applications to Complexity Theory
We explore whether techniques from AI can help discover new combinatorial structures that improve on known limits on efficient algorithms. Specifically, we use AlphaEvolve (an LLM coding agent) to study two settings: a) Average-case hardness for MAX-CUT and MAX-Independent Set: We improve a recent result of Kunisky and Yu to obtain near-optimal upper and (conditional) lower bounds on certification algorithms for MAX-CUT and MAX-Independent Set on random 3- and 4-regular graphs. Our improved lower bounds are obtained by constructing nearly extremal Ramanujan graphs on as many as $163$ nodes, using AlphaEvolve. Additionally, via analytical arguments we strengthen the upper bounds to settle the computational hardness of these questions up to an error in the third decimal place. b) Worst-case Hardness of Approximation for MAX-k-CUT: We obtain new inapproximability results, proving that it is NP-hard to approximate MAX-4-CUT and MAX-3-CUT within factors of $0.987$ and $0.9649$ respectively, using AlphaEvolve to discover new gadget reductions. Our MAX-4-CUT result improves upon the SOTA of $0.9883$, and our MAX-3-CUT result improves on the current best gadget-based inapproximability result of $0.9853$, but falls short of improving the SOTA of $16/17$ that relies on a custom PCP, rather than a gadget reduction from "standard" H{\aa}stad-style PCPs. A key technical challenge we faced: verifying a candidate construction produced by AlphaEvolve is costly (often requiring exponential time). In both settings above, our results were enabled by using AlphaEvolve itself to evolve the verification procedure to be faster (sometimes by $10,000\times$). We conclude with a discussion of norms by which to assess the assistance from AI in developing proofs.
♻ ☆ Large Language Model Hacking: Quantifying the Hidden Risks of Using LLMs for Text Annotation
Large language models are rapidly transforming social science research by enabling the automation of labor-intensive tasks like data annotation and text analysis. However, LLM outputs vary significantly depending on the implementation choices made by researchers (e.g., model selection or prompting strategy). Such variation can introduce systematic biases and random errors, which propagate to downstream analyses and cause Type I (false positive), Type II (false negative), Type S (wrong sign), or Type M (exaggerated effect) errors. We call this phenomenon where configuration choices lead to incorrect conclusions LLM hacking. We find that intentional LLM hacking is strikingly simple. By replicating 37 data annotation tasks from 21 published social science studies, we show that, with just a handful of prompt paraphrases, virtually anything can be presented as statistically significant. Beyond intentional manipulation, our analysis of 13 million labels from 18 different LLMs across 2361 realistic hypotheses shows that there is also a high risk of accidental LLM hacking, even when following standard research practices. We find incorrect conclusions in approximately 31% of hypotheses for state-of-the-art LLMs, and in half the hypotheses for smaller language models. While higher task performance and stronger general model capabilities reduce LLM hacking risk, even highly accurate models remain susceptible. The risk of LLM hacking decreases as effect sizes increase, indicating the need for more rigorous verification of LLM-based findings near significance thresholds. We analyze 21 mitigation techniques and find that human annotations provide crucial protection against false positives. Common regression estimator correction techniques can restore valid inference but trade off Type I vs. Type II errors. We publish a list of practical recommendations to prevent LLM hacking.
♻ ☆ In-Context Learning for Pure Exploration
We study the problem active sequential hypothesis testing, also known as pure exploration: given a new task, the learner adaptively collects data from the environment to efficiently determine an underlying correct hypothesis. A classical instance of this problem is the task of identifying the best arm in a multi-armed bandit problem (a.k.a. BAI, Best-Arm Identification), where actions index hypotheses. Another important case is generalized search, a problem of determining the correct label through a sequence of strategically selected queries that indirectly reveal information about the label. In this work, we introduce In-Context Pure Exploration (ICPE), which meta-trains Transformers to map observation histories to query actions and a predicted hypothesis, yielding a model that transfers in-context. At inference time, ICPE actively gathers evidence on new tasks and infers the true hypothesis without parameter updates. Across deterministic, stochastic, and structured benchmarks, including BAI and generalized search, ICPE is competitive with adaptive baselines while requiring no explicit modeling of information structure. Our results support Transformers as practical architectures for general sequential testing.
♻ ☆ Verbalized Sampling: How to Mitigate Mode Collapse and Unlock LLM Diversity
Post-training alignment often reduces LLM diversity, leading to a phenomenon known as mode collapse. Unlike prior work that attributes this effect to algorithmic limitations, we identify a fundamental, pervasive data-level driver: typicality bias in preference data, whereby annotators systematically favor familiar text as a result of well-established findings in cognitive psychology. We formalize this bias theoretically, verify it on preference datasets empirically, and show that it plays a central role in mode collapse. Motivated by this analysis, we introduce Verbalized Sampling, a simple, training-free prompting strategy to circumvent mode collapse. VS prompts the model to verbalize a probability distribution over a set of responses (e.g., "Generate 5 jokes about coffee and their corresponding probabilities"). Comprehensive experiments show that VS significantly improves performance across creative writing (poems, stories, jokes), dialogue simulation, open-ended QA, and synthetic data generation, without sacrificing factual accuracy and safety. For instance, in creative writing, VS increases diversity by 1.6-2.1x over direct prompting. We further observe an emergent trend that more capable models benefit more from VS. In sum, our work provides a new data-centric perspective on mode collapse and a practical inference-time remedy that helps unlock pre-trained generative diversity.
comment: 79 pages, 27 figures, 31 tables. Code is available at https://github.com/CHATS-lab/verbalize-sampling
♻ ☆ SeePhys: Does Seeing Help Thinking? -- Benchmarking Vision-Based Physics Reasoning
We present SeePhys, a large-scale multimodal benchmark for LLM reasoning grounded in physics questions ranging from middle school to PhD qualifying exams. The benchmark covers 7 fundamental domains spanning the physics discipline, incorporating 21 categories of highly heterogeneous diagrams. In contrast to prior works where visual elements mainly serve auxiliary purposes, our benchmark features a substantial proportion of vision-essential problems (75%) that mandate visual information extraction for correct solutions. Through extensive evaluation, we observe that even the most advanced visual reasoning models (e.g., Gemini-2.5-pro and o4-mini) achieve sub-60% accuracy on our benchmark. These results reveal fundamental challenges in current large language models' visual understanding capabilities, particularly in: (i) establishing rigorous coupling between diagram interpretation and physics reasoning, and (ii) overcoming their persistent reliance on textual cues as cognitive shortcuts.
comment: 46 pages
♻ ☆ Multi-Turn Human-LLM Interaction Through the Lens of a Two-Way Intelligibility Protocol NeurIPS 2025
Our interest is in the design of software systems involving a human-expert interacting -- using natural language -- with a large language model (LLM) on data analysis tasks. For complex problems, it is possible that LLMs can harness human expertise and creativity to find solutions that were otherwise elusive. On one level, this interaction takes place through multiple turns of prompts from the human and responses from the LLM. Here we investigate a more structured approach based on an abstract protocol described in [3] for interaction between agents. The protocol is motivated by a notion of "two-way intelligibility" and is modelled by a pair of communicating finite-state machines. We provide an implementation of the protocol, and provide empirical evidence of using the implementation to mediate interactions between an LLM and a human-agent in two areas of scientific interest (radiology and drug design). We conduct controlled experiments with a human proxy (a database), and uncontrolled experiments with human subjects. The results provide evidence in support of the protocol's capability of capturing one- and two-way intelligibility in human-LLM interaction; and for the utility of two-way intelligibility in the design of human-machine systems. Our code is available at https://github.com/karannb/interact.
comment: Multi-Turn Interactions in Large Language Models (MTI-LLM) Workshop at NeurIPS 2025
♻ ☆ Pragmatic Embodied Spoken Instruction Following in Human-Robot Collaboration with Theory of Mind
Spoken language instructions are ubiquitous in agent collaboration. However, in real-world human-robot collaboration, following human spoken instructions can be challenging due to various speaker and environmental factors, such as background noise or mispronunciation. When faced with noisy auditory inputs, humans can leverage the collaborative context in the embodied environment to interpret noisy spoken instructions and take pragmatic assistive actions. In this paper, we present a cognitively inspired neurosymbolic model, Spoken Instruction Following through Theory of Mind (SIFToM), which leverages a Vision-Language Model with model-based mental inference to enable robots to pragmatically follow human instructions under diverse speech conditions. We test SIFToM in both simulated environments (VirtualHome) and real-world human-robot collaborative settings with human evaluations. Results show that SIFToM can significantly improve the performance of a lightweight base VLM (Gemini 2.5 Flash), outperforming state-of-the-art VLMs (Gemini 2.5 Pro) and approaching human-level accuracy on challenging spoken instruction following tasks.
comment: 8 pages, 7 figures
♻ ☆ Speculative Automated Refactoring of Imperative Deep Learning Programs to Graph Execution
Efficiency is essential to support ever-growing datasets, especially for Deep Learning (DL) systems. DL frameworks have traditionally embraced deferred execution-style DL code -- supporting symbolic, graph-based Deep Neural Network (DNN) computation. While scalable, such development is error-prone, non-intuitive, and difficult to debug. Consequently, more natural, imperative DL frameworks encouraging eager execution have emerged but at the expense of run-time performance. Though hybrid approaches aim for the "best of both worlds," using them effectively requires subtle considerations. Our key insight is that, while DL programs typically execute sequentially, hybridizing imperative DL code resembles parallelizing sequential code in traditional systems. Inspired by this, we present an automated refactoring approach that assists developers in determining which otherwise eagerly-executed imperative DL functions could be effectively and efficiently executed as graphs. The approach features novel static imperative tensor and side-effect analyses for Python. Due to its inherent dynamism, analyzing Python may be unsound; however, the conservative approach leverages a speculative (keyword-based) analysis for resolving difficult cases that informs developers of any assumptions made. The approach is: (i) implemented as a plug-in to the PyDev Eclipse IDE that integrates the WALA Ariadne analysis framework and (ii) evaluated on nineteen DL projects consisting of 132 KLOC. The results show that 326 of 766 candidate functions (42.56%) were refactorable, and an average relative speedup of 2.16x on performance tests was observed with negligible differences in model accuracy. The results indicate that the approach is useful in optimizing imperative DL code to its full potential.
♻ ☆ CHARME: A chain-based reinforcement learning approach for the minor embedding problem
Quantum annealing (QA) has great potential to solve combinatorial optimization problems efficiently. However, the effectiveness of QA algorithms is heavily based on the embedding of problem instances, represented as logical graphs, into the quantum processing unit (QPU) whose topology is in the form of a limited connectivity graph, known as the minor embedding problem. Because the minor embedding problem is an NP-hard problem~\mbox{\cite{Goodrich2018}}, existing methods for the minor embedding problem suffer from scalability issues when faced with larger problem sizes. In this paper, we propose a novel approach utilizing Reinforcement Learning (RL) techniques to address the minor embedding problem, named CHARME. CHARME includes three key components: a Graph Neural Network (GNN) architecture for policy modeling, a state transition algorithm that ensures solution validity, and an order exploration strategy for effective training. Through comprehensive experiments on synthetic and real-world instances, we demonstrate the efficiency of our proposed order exploration strategy as well as our proposed RL framework, CHARME. In particular, CHARME yields superior solutions in terms of qubit usage compared to fast embedding methods such as Minorminer and ATOM. Moreover, our method surpasses the OCT-based approach, known for its slower runtime but high-quality solutions, in several cases. In addition, our proposed exploration enhances the efficiency of the training of the CHARME framework by providing better solutions compared to the greedy strategy.
♻ ☆ What Lurks Within? Concept Auditing for Shared Diffusion Models at Scale CCS 2025
Diffusion models (DMs) have revolutionized text-to-image generation, enabling the creation of highly realistic and customized images from text prompts. With the rise of parameter-efficient fine-tuning (PEFT) techniques, users can now customize powerful pre-trained models using minimal computational resources. However, the widespread sharing of fine-tuned DMs on open platforms raises growing ethical and legal concerns, as these models may inadvertently or deliberately generate sensitive or unauthorized content. Despite increasing regulatory attention on generative AI, there are currently no practical tools for systematically auditing these models before deployment. In this paper, we address the problem of concept auditing: determining whether a fine-tuned DM has learned to generate a specific target concept. Existing approaches typically rely on prompt-based input crafting and output-based image classification but they suffer from critical limitations, including prompt uncertainty, concept drift, and poor scalability. To overcome these challenges, we introduce Prompt-Agnostic Image-Free Auditing (PAIA), a novel, model-centric concept auditing framework. By treating the DM as the object of inspection, PAIA enables direct analysis of internal model behavior, bypassing the need for optimized prompts or generated images. We evaluate PAIA on 320 controlled models trained with curated concept datasets and 771 real-world community models sourced from a public DM sharing platform. Evaluation results show that PAIA achieves over 90% detection accuracy while reducing auditing time by 18 - 40X compared to existing baselines. To our knowledge, PAIA is the first scalable and practical solution for pre-deployment concept auditing of diffusion models, providing a practical foundation for safer and more transparent diffusion model sharing.
comment: Extended version of the paper accepted at CCS 2025
♻ ☆ AgentRewardBench: Evaluating Automatic Evaluations of Web Agent Trajectories
Web agents enable users to perform tasks on web browsers through natural language interaction. Evaluating web agents trajectories is an important problem, since it helps us determine whether the agent successfully completed the tasks. Rule-based methods are widely used for this purpose, but they are challenging to extend to new tasks and may not always recognize successful trajectories. We may achieve higher accuracy through human evaluation, but the process would be substantially slower and more expensive. Automatic evaluations with LLMs may avoid the challenges of designing new rules and manually annotating trajectories, enabling faster and cost-effective evaluation. However, it is unclear how effective they are at evaluating web agents. To this end, we propose AgentRewardBench, the first benchmark to assess the effectiveness of LLM judges for evaluating web agents. AgentRewardBench contains 1302 trajectories across 5 benchmarks and 4 LLMs. Each trajectory in AgentRewardBench is reviewed by an expert, who answers questions pertaining to the success, side effects, and repetitiveness of the agent. Using our benchmark, we evaluate 12 LLM judges and find that no single LLM excels across all benchmarks. We also find that the rule-based evaluation used by common benchmarks tends to underreport the success rate of web agents, highlighting a key weakness of rule-based evaluation and the need to develop more flexible automatic evaluations. We release the benchmark at: https://agent-reward-bench.github.io
♻ ☆ A Survey on 3D Gaussian Splatting
3D Gaussian splatting (GS) has emerged as a transformative technique in radiance fields. Unlike mainstream implicit neural models, 3D GS uses millions of learnable 3D Gaussians for an explicit scene representation. Paired with a differentiable rendering algorithm, this approach achieves real-time rendering and unprecedented editability, making it a potential game-changer for 3D reconstruction and representation. In the present paper, we provide the first systematic overview of the recent developments and critical contributions in 3D GS. We begin with a detailed exploration of the underlying principles and the driving forces behind the emergence of 3D GS, laying the groundwork for understanding its significance. A focal point of our discussion is the practical applicability of 3D GS. By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond. This is complemented by a comparative analysis of leading 3D GS models, evaluated across various benchmark tasks to highlight their performance and practical utility. The survey concludes by identifying current challenges and suggesting potential avenues for future research. Through this survey, we aim to provide a valuable resource for both newcomers and seasoned researchers, fostering further exploration and advancement in explicit radiance field.
comment: Ongoing project; Paper list: https://github.com/guikunchen/Awesome3DGS ; Benchmark: https://github.com/guikunchen/3DGS-Benchmarks
♻ ☆ Agentic Additive Manufacturing Alloy Discovery
Agentic systems enable the intelligent use of research tooling, augmenting a researcher's ability to investigate and propose novel solutions to existing problems. Within Additive Manufacturing (AM), alloy discovery remains a complex challenge, often requiring expertise in the various domains of materials science, thermodynamic simulations, and experimental analysis. Large Language Model (LLM) enabled agents can facilitate this endeavor by utilizing their extensive knowledge base to dispatch tool calls via Model Context Protocol (MCP) to perform actions such as Thermo-Calc property diagram calculations and lack of fusion process map generation. In addition, the multi-agent system developed in this work is able to effectively reason through complex user prompts and provide analysis on the printability of proposed alloys. These agents can dynamically adjust their task trajectory to the outcomes of tool call results, effectively enabling autonomous decision-making in practical environments. This work aims to utilize LLM enabled agents to automate and accelerate the task of alloy discovery within the field of additive manufacturing and showcase the benefits of adopting this multi-agent system.
♻ ☆ ViP$^2$-CLIP: Visual-Perception Prompting with Unified Alignment for Zero-Shot Anomaly Detection
Zero-shot anomaly detection (ZSAD) aims to detect anomalies without any target domain training samples, relying solely on external auxiliary data. Existing CLIP-based methods attempt to activate the model's ZSAD potential via handcrafted or static learnable prompts. The former incur high engineering costs and limited semantic coverage, whereas the latter apply identical descriptions across diverse anomaly types, thus fail to adapt to complex variations. Furthermore, since CLIP is originally pretrained on large-scale classification tasks, its anomaly segmentation quality is highly sensitive to the exact wording of class names, severely constraining prompting strategies that depend on class labels. To address these challenges, we introduce ViP$^{2}$-CLIP. The key insight of ViP$^{2}$-CLIP is a Visual-Perception Prompting (ViP-Prompt) mechanism, which fuses global and multi-scale local visual context to adaptively generate fine-grained textual prompts, eliminating manual templates and class-name priors. This design enables our model to focus on precise abnormal regions, making it particularly valuable when category labels are ambiguous or privacy-constrained. Extensive experiments on 15 industrial and medical benchmarks demonstrate that ViP$^{2}$-CLIP achieves state-of-the-art performance and robust cross-domain generalization.
♻ ☆ H3Fusion: Helpful, Harmless, Honest Fusion of Aligned LLMs
Alignment of pretrained LLMs using instruction-based datasets is critical for creating fine-tuned models that reflect human preference. A growing number of alignment-based fine-tuning algorithms and benchmarks emerged recently, fueling the efforts on effective alignments of pre-trained LLMs to ensure helpful, harmless, and honest answers from both open-source and closed-source LLMs. This paper tackles this problem by developing an alignment fusion approach, coined as $H^3$Fusion, with three unique characteristics. First, $H^3$Fusion ensembles multiple individually aligned LLMs to create a final fine-tuned alignment model with enhanced capabilities beyond those of individual models, delivering robust alignment through promoting helpful, harmless, honest fusion. Second, $H^3$Fusion leverages the mixture-of-experts (MoE) methodology in two steps. We first freeze the multi-head attention weights of each individual model while tuning the FFN layer during alignment fusion. Then we merge the aligned model weights with an expert router according to the type of input instruction and dynamically select a subset of experts that are best suited for producing the output response. Finally, we boost the performance of the resulting $H^3$3Fusion model by introducing gating loss and regularization terms. The former penalizes the selection errors of the expert-router, and the latter mediates the expert weights drifting during fine-tuning and dynamically adjusts the fusion behavior of the resulting model by canalizing the activations on the experts. Extensive evaluations on three benchmark datasets show that $H^3$3Fusion is more helpful, less harmful, and more honest from two aspects: it outperforms each individually aligned model by $11.37\%$, and it provides stronger robustness compared to the state-of-the-art LLM ensemble approaches by $13.77\%$. Code is available at github.com/sftekin/h3fusion.
♻ ☆ Time Is a Feature: Exploiting Temporal Dynamics in Diffusion Language Models
Diffusion large language models (dLLMs) generate text through iterative denoising, yet current decoding strategies discard rich intermediate predictions in favor of the final output. Our work here reveals a critical phenomenon, temporal oscillation, where correct answers often emerge in the middle process, but are overwritten in later denoising steps. To address this issue, we introduce two complementary methods that exploit temporal consistency: 1) Temporal Self-Consistency Voting, a training-free, test-time decoding strategy that aggregates predictions across denoising steps to select the most consistent output; and 2) a post-training method termed Temporal Consistency Reinforcement, which uses Temporal Semantic Entropy (TSE), a measure of semantic stability across intermediate predictions, as a reward signal to encourage stable generations. Empirical results across multiple benchmarks demonstrate the effectiveness of our approach. Using the negative TSE reward alone, we observe a remarkable average improvement of 24.7% on the Countdown dataset over an existing dLLM. Combined with the accuracy reward, we achieve absolute gains of 2.0% on GSM8K, 4.3% on MATH500, 6.6% on SVAMP, and 25.3% on Countdown, respectively. Our findings underscore the untapped potential of temporal dynamics in dLLMs and offer two simple yet effective tools to harness them.
comment: Project webpage: https://aim-uofa.github.io/dLLM-MidTruth
♻ ☆ ALE-Bench: A Benchmark for Long-Horizon Objective-Driven Algorithm Engineering NeurIPS 2025
How well do AI systems perform in algorithm engineering for hard optimization problems in domains such as package-delivery routing, crew scheduling, factory production planning, and power-grid balancing? We introduce ALE-Bench, a new benchmark for evaluating AI systems on score-based algorithmic programming contests. Drawing on real tasks from the AtCoder Heuristic Contests, ALE-Bench presents optimization problems that are computationally hard and admit no known exact solution. Unlike short-duration, pass/fail coding benchmarks, ALE-Bench encourages iterative solution refinement over long time horizons. Our software framework supports interactive agent architectures that leverage test-run feedback and visualizations. Our evaluation of frontier LLMs revealed that while they demonstrate high performance on specific problems, a notable gap remains compared to humans in terms of consistency across problems and long-horizon problem-solving capabilities. This highlights the need for this benchmark to foster future AI advancements.
comment: Accepted at NeurIPS 2025 Datasets & Benchmarks Track
♻ ☆ First Hallucination Tokens Are Different from Conditional Ones
Large Language Models (LLMs) hallucinate, and detecting these cases is key to ensuring trust. While many approaches address hallucination detection at the response or span level, recent work explores token-level detection, enabling more fine-grained intervention. However, the distribution of hallucination signal across sequences of hallucinated tokens remains unexplored. We leverage token-level annotations from the RAGTruth corpus and find that the first hallucinated token is far more detectable than later ones. This structural property holds across models, suggesting that first hallucination tokens play a key role in token-level hallucination detection. Our code is available at https://github.com/jakobsnl/RAGTruth_Xtended.
comment: 4.5 pages, 3 figures, Dataset, Knowledge Paper, Hallucination, Trustworthiness
♻ ☆ Energy-Conscious LLM Decoding: Impact of Text Generation Strategies on GPU Energy Consumption
Decoding strategies significantly influence the quality and diversity of the generated text in Large Language Models (LLMs), yet their impact on computational resources, particularly GPU energy consumption, is insufficiently studied. This paper investigates the relationship between text generation decoding techniques and energy efficiency, focusing on the trade-off between generation quality and GPU energy usage across diverse tasks and decoding configurations. By benchmarking multiple strategies across various tasks, including Translation, Math Problem Solving, Coding, and Open-ended text generation, we reveal how selecting appropriate decoding techniques with their tuned hyperparameters affects text quality and has measurable implications for energy consumption. Our findings show that the choice of decoding strategy can greatly impact GPU energy usage, even when it has a minimal effect on output quality. Different strategies also involve trade-offs between quality and energy efficiency, and no single decoding method is best in all cases across every metric. To the best of our knowledge, this is one of the first studies to examine decoding strategies in LLMs from the perspective of energy consumption, providing useful insights for building energy-efficient applications without compromising text generation quality.
comment: Updated version with additional models and benchmark datasets. The experimental section has been expanded with new analyses, and minor corrections and clarifications have been made throughout the text
♻ ☆ Beyond Memorization: Reasoning-Driven Synthesis as a Mitigation Strategy Against Benchmark Contamination
Capability evaluation of large language models (LLMs) is increasingly shadowed by rising concerns of data contamination that cast doubts on whether static benchmarks measure genuine reasoning or mere memorization. We present an empirical study using an infinitely scalable framework to synthesize research-level QA directly from arXiv papers, harnessing the natural temporal structure of research publications where performance decay after knowledge cutoffs may indicate potential contamination. We evaluated 4 frontier model represented by 2 models of different knowledge cutoff dates per family on 1,643 multi-step reasoning questions synthesized from 20,277 arXiv papers stratified over 26 months, covering at least 6 months before and after all cutoff dates. Our results consistently showed a lack of significant performance decay near knowledge cutoff dates for models of various sizes, developers, and release dates. We further performed a comparative analysis with previous longitudinal studies that reported significant post-cutoff performance decay using directly retrieved questions based on public data. we hypothesize that the multi-step reasoning required by our synthesis pipeline offered additional complexity that goes deeper than shallow memorization, which effectively serves a mitigation strategy against benchmark contamination. We fully open source our code and dataset to aid reproducibility and advocate for a paradigm shift that prioritize reasoning-driven synthesis to construct benchmarks over simply collecting newly released questions periodically.
comment: The authors choose to withdraw this manuscript as it constitutes incomplete work
♻ ☆ Generating Findings for Jaw Cysts in Dental Panoramic Radiographs Using GPT-4o: Building a Two-Stage Self-Correction Loop with Structured Output (SLSO) Framework
In this study, we utilized the multimodal capabilities of OpenAI GPT-4o to automatically generate jaw cyst findings on dental panoramic radiographs. To improve accuracy, we constructed a Self-correction Loop with Structured Output (SLSO) framework and verified its effectiveness. A 10-step process was implemented for 22 cases of jaw cysts, including image input and analysis, structured data generation, tooth number extraction and consistency checking, iterative regeneration when inconsistencies were detected, and finding generation with subsequent restructuring and consistency verification. A comparative experiment was conducted using the conventional Chain-of-Thought (CoT) method across seven evaluation items: transparency, internal structure, borders, root resorption, tooth movement, relationships with other structures, and tooth number. The results showed that the proposed SLSO framework improved output accuracy for many items, with 66.9%, 33.3%, and 28.6% improvement rates for tooth number, tooth movement, and root resorption, respectively. In the successful cases, a consistently structured output was achieved after up to five regenerations. Although statistical significance was not reached because of the small size of the dataset, the overall SLSO framework enforced negative finding descriptions, suppressed hallucinations, and improved tooth number identification accuracy. However, the accurate identification of extensive lesions spanning multiple teeth is limited. Nevertheless, further refinement is required to enhance overall performance and move toward a practical finding generation system.
comment: Submitted to Scientific Reports
♻ ☆ Unified ODE Analysis of Smooth Q-Learning Algorithms
Convergence of Q-learning has been the focus of extensive research over the past several decades. Recently, an asymptotic convergence analysis for Q-learning was introduced using a switching system framework. This approach applies the so-called ordinary differential equation (ODE) approach to prove the convergence of the asynchronous Q-learning modeled as a continuous-time switching system, where notions from switching system theory are used to prove its asymptotic stability without using explicit Lyapunov arguments. However, to prove stability, restrictive conditions, such as quasi-monotonicity, must be satisfied for the underlying switching systems, which makes it hard to easily generalize the analysis method to other reinforcement learning algorithms, such as the smooth Q-learning variants. In this paper, we present a more general and unified convergence analysis that improves upon the switching system approach and can analyze Q-learning and its smooth variants. The proposed analysis is motivated by previous work on the convergence of synchronous Q-learning based on $p$-norm serving as a Lyapunov function. However, the proposed analysis addresses more general ODE models that can cover both asynchronous Q-learning and its smooth versions with simpler frameworks.
♻ ☆ DiffSampling: Enhancing Diversity and Accuracy in Neural Text Generation
Despite their growing capabilities, language models still frequently reproduce content from their training data, generate repetitive text, and favor common grammatical patterns and vocabulary. A possible cause is the decoding strategy: the most common strategies either consider only the most probable tokens, which reduces output diversity, or increase the likelihood of unlikely tokens, compromising output accuracy and correctness. In this paper, we propose DiffSampling, a new decoding method that leverages a mathematical analysis of the token probability distribution to ensure the generation of contextually appropriate text. In particular, the difference between consecutive, sorted probabilities can be used to truncate incorrect tokens. In addition, we also propose two variations of the proposed method that aim to correct the subtle inconsistencies of common sampling strategies. Experiments involving four different text-generation tasks demonstrate that our approach consistently performs at least on par with the existing methods it builds upon in terms of quality, while potentially improving output diversity.
♻ ☆ Fine-Grained AI Model Caching and Downloading With Coordinated Multipoint Broadcasting in Multi-Cell Edge Networks
6G networks are envisioned to support on-demand AI model downloading to accommodate diverse inference requirements of end users. By proactively caching models at edge nodes, users can retrieve the requested models with low latency for on-device AI inference. However, the substantial size of contemporary AI models poses significant challenges for edge caching under limited storage capacity, as well as for the concurrent delivery of heterogeneous models over wireless channels. To address these challenges, we propose a fine-grained AI model caching and downloading system that exploits parameter reusability, stemming from the common practice of fine-tuning task-specific models from a shared pre-trained model with frozen parameters. This system selectively caches model parameter blocks (PBs) at edge nodes, eliminating redundant storage of reusable parameters across different cached models. Additionally, it incorporates coordinated multipoint (CoMP) broadcasting to simultaneously deliver reusable PBs to multiple users, thereby enhancing downlink spectrum utilization. Under this arrangement, we formulate a model downloading delay minimization problem to jointly optimize PB caching, migration (among edge nodes), and broadcasting beamforming. To tackle this intractable problem, we develop a distributed multi-agent learning framework that enables edge nodes to explicitly learn mutual influence among their actions, thereby facilitating cooperation. Furthermore, a data augmentation approach is proposed to adaptively generate synthetic training samples through a predictive model, boosting sample efficiency and accelerating policy learning. Both theoretical analysis and simulation experiments validate the superior convergence performance of the proposed learning framework.
♻ ☆ CBVLM: Training-free Explainable Concept-based Large Vision Language Models for Medical Image Classification
The main challenges limiting the adoption of deep learning-based solutions in medical workflows are the availability of annotated data and the lack of interpretability of such systems. Concept Bottleneck Models (CBMs) tackle the latter by constraining the model output on a set of predefined and human-interpretable concepts. However, the increased interpretability achieved through these concept-based explanations implies a higher annotation burden. Moreover, if a new concept needs to be added, the whole system needs to be retrained. Inspired by the remarkable performance shown by Large Vision-Language Models (LVLMs) in few-shot settings, we propose a simple, yet effective, methodology, CBVLM, which tackles both of the aforementioned challenges. First, for each concept, we prompt the LVLM to answer if the concept is present in the input image. Then, we ask the LVLM to classify the image based on the previous concept predictions. Moreover, in both stages, we incorporate a retrieval module responsible for selecting the best examples for in-context learning. By grounding the final diagnosis on the predicted concepts, we ensure explainability, and by leveraging the few-shot capabilities of LVLMs, we drastically lower the annotation cost. We validate our approach with extensive experiments across four medical datasets and twelve LVLMs (both generic and medical) and show that CBVLM consistently outperforms CBMs and task-specific supervised methods without requiring any training and using just a few annotated examples. More information on our project page: https://cristianopatricio.github.io/CBVLM/.
comment: Accepted for publication in Computers in Biology and Medicine
♻ ☆ Efficiently Learning Probabilistic Logical Models by Cheaply Ranking Mined Rules
Probabilistic logical models are a core component of neurosymbolic AI and are important in their own right for tasks that require high explainability. Unlike neural networks, logical theories that underlie the model are often handcrafted using domain expertise, making their development costly and prone to errors. While there are algorithms that learn logical theories from data, they are generally prohibitively expensive, limiting their applicability in real-world settings. Here, we introduce precision and recall for logical rules and define their composition as rule utility - a cost-effective measure of the predictive power of logical theories. We also introduce SPECTRUM, a scalable framework for learning logical theories from relational data. Its scalability derives from a linear-time algorithm for mining recurrent subgraphs in the data graph along with a second algorithm that, using a utility measure that can be computed in linear time, efficiently ranks rules derived from these subgraphs. Finally, we prove theoretical guarantees on the utility of the learnt logical theory. As a result, we demonstrate across various tasks that SPECTRUM scales to larger datasets, often learning more accurate logical theories on CPUs in < 1% the runtime of SOTA neural network approaches on GPUs.
comment: 22 pages
♻ ☆ Think How to Think: Mitigating Overthinking with Autonomous Difficulty Cognition in Large Reasoning Models
Recent Large Reasoning Models (LRMs) excel at complex reasoning tasks but often suffer from overthinking, generating overly long and redundant reasoning trajectories. To explore its essence, our empirical analysis reveals that LRMs are primarily limited to recognizing task properties (i.e., difficulty levels) like humans before solving the problem, leading to a one-size-fits-all reasoning process. Inspired by this, a pressing and natural question emerges: Can we explicitly bootstrap such ability to alleviate overthinking in LRMs? In this paper, we propose Think-How-to-Think (TH2T), a novel two-stage fine-tuning strategy that progressively inspires LRMs' difficulty cognition and redundancy cognition of LRMs. Specifically, we first inject difficulty hypnosis into output prefixes to guide the model toward adaptive reasoning depth, trained on a hybrid dataset mixing short and long reasoning paths. Then, we incorporate redundancy hypnosis, which supervises the intermediate reasoning steps to identify and eliminate unnecessary reasoning patterns. Experiments on 7B/14B/32B models demonstrate that TH2T significantly reduces inference costs by over 70% on easy tasks and 40% on hard tasks while maintaining performance stability. The resulting outputs exhibit clear signs of difficulty-aware capabilities and reduced redundancy (e.g., reflection and looping).
comment: 21 pages, 18 figures
♻ ☆ EEG-based AI-BCI Wheelchair Advancement: A Brain-Computer Interfacing Wheelchair System Using Deep Learning Approach
This study offers a revolutionary strategy to developing wheelchairs based on the Brain-Computer Interface (BCI) that incorporates Artificial Intelligence (AI) using a The device uses electroencephalogram (EEG) data to mimic wheelchair navigation. Five different models were trained on a pre-filtered dataset that was divided into fixed-length windows using a sliding window technique. Each window contained statistical measurements, FFT coefficients for different frequency bands, and a label identifying the activity carried out during that window that was taken from an open-source Kaggle repository. The XGBoost model outperformed the other models, CatBoost, GRU, SVC, and XGBoost, with an accuracy of 60%. The CatBoost model with a major difference between training and testing accuracy shows overfitting, and similarly, the best-performing model, with SVC, was implemented in a tkinter GUI. The wheelchair movement could be simulated in various directions, and a Raspberry Pi-powered wheelchair system for brain-computer interface is proposed here.
comment: The paper contains the outdated data as well as incoconsistent results. Much work is required for its revision and republishing
♻ ☆ FloorplanQA: A Benchmark for Spatial Reasoning in LLMs using Structured Representations
We introduce FloorplanQA, a diagnostic benchmark for evaluating spatial reasoning in large-language models (LLMs). FloorplanQA is grounded in structured representations of indoor scenes, such as (e.g., kitchens, living rooms, bedrooms, bathrooms, and others), encoded symbolically in JSON or XML layouts. The benchmark covers core spatial tasks, including distance measurement, visibility, path finding, and object placement within constrained spaces. Our results across a variety of frontier open-source and commercial LLMs reveal that while models may succeed in shallow queries, they often fail to respect physical constraints, preserve spatial coherence, though they remain mostly robust to small spatial perturbations. FloorplanQA uncovers a blind spot in today's LLMs: inconsistent reasoning about indoor layouts. We hope this benchmark inspires new work on language models that can accurately infer and manipulate spatial and geometric properties in practical settings.
comment: v2, Project page: https://OldDelorean.github.io/FloorplanQA/
Rethinking KL Regularization in RLHF: From Value Estimation to Gradient Optimization
Reinforcement Learning from Human Feedback (RLHF) leverages a Kullback-Leibler (KL) divergence loss to stabilize training and prevent overfitting. However, in methods such as GRPO, its implementation may be guided by principles from numerical value estimation-a practice that overlooks the term's functional role as an optimization loss. To analyze this issue, we establish a unified framework that connects two seemingly distinct implementation styles: using the mathematical term $k_n$ as a detached coefficient for the policy's score function ('$k_n$ in reward') or as a direct loss function through which gradients are propagated ('$k_n$ as loss'). We show that the latter can always be analyzed via an equivalent gradient coefficient in the former, unifying the two perspectives. Through this framework, we prove that the conventional '$k_1$ in reward' (like in PPO) is the principled loss for Reverse KL (RKL) regularization. We further establish a key finding: under on-policy conditions, the '$k_2$ as loss' formulation is, in fact, gradient-equivalent to '$k_1$ in reward'. This equivalence, first proven in our work, identifies both as the theoretically sound implementations of the RKL objective. In contrast, we show that the recently adopted '$k_3$ as loss' (like in GRPO) is merely a first-order, biased approximation of the principled loss. Furthermore, we argue that common off-policy implementations of '$k_n$ as loss' methods are biased due to neglected importance sampling, and we propose a principled correction. Our findings provide a comprehensive, gradient-based rationale for choosing and correctly implementing KL regularization, paving the way for more robust and effective RLHF systems.
♻ ☆ Unlocking In-Context Learning for Natural Datasets Beyond Language Modelling
Large Language Models (LLMs) exhibit In-Context Learning (ICL), which enables the model to perform new tasks conditioning only on the examples provided in the context without updating the model's weights. While ICL offers fast adaptation across natural language tasks and domains, its emergence is less straightforward for modalities beyond text. In this work, we systematically uncover properties present in LLMs that support the emergence of ICL for autoregressive models and various modalities by promoting the learning of the needed mechanisms for ICL. We identify exact token repetitions in the training data sequences as an important factor for ICL. Such repetitions further improve stability and reduce transiency in ICL performance. Moreover, we emphasise the significance of training task difficulty for the emergence of ICL. Finally, by applying our novel insights on ICL emergence, we unlock ICL capabilities for various visual datasets and a more challenging EEG classification task.
comment: Best Paper Honorable Mention at GCPR 2025 (German Conference on Pattern Recognition). This is the updated version submitted to the conference, not the official conference proceedings
♻ ☆ Can Large Language Models generalize analogy solving like children can? ACL
In people, the ability to solve analogies such as "body : feet :: table : ?" emerges in childhood, and appears to transfer easily to other domains, such as the visual domain "( : ) :: < : ?". Recent research shows that large language models (LLMs) can solve various forms of analogies. However, can LLMs generalize analogy solving to new domains like people can? To investigate this, we had children, adults, and LLMs solve a series of letter-string analogies (e.g., a b : a c :: j k : ?) in the Latin alphabet, in a near transfer domain (Greek alphabet), and a far transfer domain (list of symbols). Children and adults easily generalized their knowledge to unfamiliar domains, whereas LLMs did not. This key difference between human and AI performance is evidence that these LLMs still struggle with robust human-like analogical transfer.
comment: Accepted to Transactions of the Association for Computational Linguistics (TACL)
Depth-Breadth Synergy in RLVR: Unlocking LLM Reasoning Gains with Adaptive Exploration
Reinforcement Learning with Verifiable Reward (RLVR) has emerged as a powerful paradigm for unlocking reasoning capabilities in large language models, yet its full potential is hindered by two under-explored dimensions: Depth-the hardest problem a model can sample; Breadth-the number of instances consumed in a single iteration. We dissect the popular GRPO algorithm and reveal a systematic bias: the cumulative-advantage disproportionately weights samples with medium accuracy, while down-weighting the low-accuracy instances that are crucial for pushing reasoning boundaries. To rectify the depth neglect, we introduce Difficulty Adaptive Rollout Sampling (DARS), which re-weights hard problems through targeted multi-stage rollouts, thereby increasing the number of positive rollouts for hard problems. Empirically, naively enlarging rollout size only accelerates convergence and even hurts Pass@K. Our DARS, in contrast, delivers consistent Pass@K gains without extra inference cost at convergence. Just as we adaptively expanded the depth of exploration, we now ask whether aggressively scaling the breadth of training data can further amplify reasoning gains. To this end, we intensely scale batch size and replace PPO's mini-batch iterations with full-batch updates over multiple epochs. Increasing breadth significantly enhances Pass@1 performance. Large-breadth training sustains high token-level entropy, indicating continued exploration and reduced gradient noise. We further present DARS-B, which augments DARS with large breadth, and demonstrate simultaneous gains in Pass@K and Pass@1. The results confirm that breadth and adaptive exploration across depth operate as orthogonal dimensions in RLVR, which are key to unleashing the reasoning power of RLVR.
comment: 18 pages, 14 figures
♻ ☆ MoESD: Unveil Speculative Decoding's Potential for Accelerating Sparse MoE
Large Language Models (LLMs) have achieved remarkable success across many applications, with Mixture of Experts (MoE) models demonstrating great potential. Compared to traditional dense models, MoEs achieve better performance with less computation. Speculative decoding (SD) is a widely used technique to accelerate LLM inference without accuracy loss, but it has been considered efficient only for dense models. In this work, we first demonstrate that, under medium batch sizes, MoE surprisingly benefits more from SD than dense models. Furthermore, as MoE becomes sparser -- the prevailing trend in MoE designs -- the batch size range where SD acceleration is expected to be effective becomes broader. To quantitatively understand tradeoffs involved in SD, we develop a reliable modeling based on theoretical analyses. While current SD research primarily focuses on improving acceptance rates of algorithms, changes in workload and model architecture can still lead to degraded SD acceleration even with high acceptance rates. To address this limitation, we introduce a new metric 'target efficiency' that characterizes these effects, thus helping researchers identify system bottlenecks and understand SD acceleration more comprehensively. For scenarios like private serving, this work unveils a new perspective to speed up MoE inference, where existing solutions struggle. Experiments on different GPUs show up to 2.29x speedup for Qwen2-57B-A14B at medium batch sizes and validate our theoretical predictions.
♻ ☆ LIAM: Multimodal Transformer for Language Instructions, Images, Actions and Semantic Maps
The availability of large language models and open-vocabulary object perception methods enables more flexibility for domestic service robots. The large variability of domestic tasks can be addressed without implementing each task individually by providing the robot with a task description along with appropriate environment information. In this work, we propose LIAM - an end-to-end model that predicts action transcripts based on language, image, action, and map inputs. Language and image inputs are encoded with a CLIP backbone, for which we designed two pre-training tasks to fine-tune its weights and pre-align the latent spaces. We evaluate our method on the ALFRED dataset, a simulator-generated benchmark for domestic tasks. Our results demonstrate the importance of pre-aligning embedding spaces from different modalities and the efficacy of incorporating semantic maps.
comment: 12 pages, 4 figures, 2 tables, 19th International Conference on Intelligent Autonomous Systems (IAS), Genoa, Italy, June 2025
♻ ☆ SALAD: Systematic Assessment of Machine Unlearning on LLM-Aided Hardware Design
Large Language Models (LLMs) offer transformative capabilities for hardware design automation, particularly in Verilog code generation. However, they also pose significant data security challenges, including Verilog evaluation data contamination, intellectual property (IP) design leakage, and the risk of malicious Verilog generation. We introduce SALAD, a comprehensive assessment that leverages machine unlearning to mitigate these threats. Our approach enables the selective removal of contaminated benchmarks, sensitive IP and design artifacts, or malicious code patterns from pre-trained LLMs, all without requiring full retraining. Through detailed case studies, we demonstrate how machine unlearning techniques effectively reduce data security risks in LLM-aided hardware design.
♻ ☆ Neural Deconstruction Search for Vehicle Routing Problems
Autoregressive construction approaches generate solutions to vehicle routing problems in a step-by-step fashion, leading to high-quality solutions that are nearing the performance achieved by handcrafted operations research techniques. In this work, we challenge the conventional paradigm of sequential solution construction and introduce an iterative search framework where solutions are instead deconstructed by a neural policy. Throughout the search, the neural policy collaborates with a simple greedy insertion algorithm to rebuild the deconstructed solutions. Our approach matches or surpasses the performance of state-of-the-art operations research methods across three challenging vehicle routing problems of various problem sizes.
comment: Published in TMLR
♻ ☆ PolyNet: Learning Diverse Solution Strategies for Neural Combinatorial Optimization ICLR 2025
Reinforcement learning-based methods for constructing solutions to combinatorial optimization problems are rapidly approaching the performance of human-designed algorithms. To further narrow the gap, learning-based approaches must efficiently explore the solution space during the search process. Recent approaches artificially increase exploration by enforcing diverse solution generation through handcrafted rules, however, these rules can impair solution quality and are difficult to design for more complex problems. In this paper, we introduce PolyNet, an approach for improving exploration of the solution space by learning complementary solution strategies. In contrast to other works, PolyNet uses only a single-decoder and a training schema that does not enforce diverse solution generation through handcrafted rules. We evaluate PolyNet on four combinatorial optimization problems and observe that the implicit diversity mechanism allows PolyNet to find better solutions than approaches that explicitly enforce diverse solution generation.
comment: Accepted at ICLR 2025
♻ ☆ TANTE: Time-Adaptive Operator Learning via Neural Taylor Expansion
Operator learning for time-dependent partial differential equations (PDEs) has seen rapid progress in recent years, enabling efficient approximation of complex spatiotemporal dynamics. However, most existing methods rely on fixed time step sizes during rollout, which limits their ability to adapt to varying temporal complexity and often leads to error accumulation. Here, we propose the Time-Adaptive Transformer with Neural Taylor Expansion (TANTE), a novel operator-learning framework that produces continuous-time predictions with adaptive step sizes. TANTE predicts future states by performing a Taylor expansion at the current state, where neural networks learn both the higher-order temporal derivatives and the local radius of convergence. This allows the model to dynamically adjust its rollout based on the local behavior of the solution, thereby reducing cumulative error and improving computational efficiency. We demonstrate the effectiveness of TANTE across a wide range of PDE benchmarks, achieving superior accuracy and adaptability compared to fixed-step baselines, delivering accuracy gains of 60-80 % and speed-ups of 30-40 % at inference time. The code is publicly available at https://github.com/zwu88/TANTE for transparency and reproducibility.
comment: 22 pages, 7 figures, 10 tables
♻ ☆ Proof-of-Data: A Consensus Protocol for Collaborative Intelligence
Existing research on federated learning has been focused on the setting where learning is coordinated by a centralized entity. Yet the greatest potential of future collaborative intelligence would be unleashed in a more open and democratized setting with no central entity in a dominant role, referred to as "decentralized federated learning". New challenges arise accordingly in achieving both correct model training and fair reward allocation with collective effort among all participating nodes, especially with the threat of the Byzantine node jeopardising both tasks. In this paper, we propose a blockchain-based decentralized Byzantine fault-tolerant federated learning framework based on a novel Proof-of-Data (PoD) consensus protocol to resolve both the "trust" and "incentive" components. By decoupling model training and contribution accounting, PoD is able to enjoy not only the benefit of learning efficiency and system liveliness from asynchronous societal-scale PoW-style learning but also the finality of consensus and reward allocation from epoch-based BFT-style voting. To mitigate false reward claims by data forgery from Byzantine attacks, a privacy-aware data verification and contribution-based reward allocation mechanism is designed to complete the framework. Our evaluation results show that PoD demonstrates performance in model training close to that of the centralized counterpart while achieving trust in consensus and fairness for reward allocation with a fault tolerance ratio of 1/3.
♻ ☆ Program Synthesis Benchmark for Visual Programming in XLogoOnline Environment ACL'25
Large language and multimodal models have shown remarkable success on various benchmarks focused on specific skills such as general-purpose programming, math word problem-solving, and visual question answering. However, it is unclear how well these models perform on tasks that require a combination of these skills. In this paper, we curate a novel program synthesis benchmark based on the real-world tasks in the XLogoOnline visual programming environment. Each task requires a combination of different skills such as spatial planning, basic programming, and logical reasoning. Our evaluation shows that current state-of-the-art models like GPT-4V and Llama3-70B struggle to solve these tasks, achieving only 20% and 2.35% success rates, respectively. Next, we develop a fine-tuning pipeline to boost the performance of models by leveraging a large-scale synthetic training dataset with over 80,000 tasks. Moreover, we showcase how emulator-driven feedback can be used to design a curriculum over training data distribution, through which a fine-tuned Llama3-8B drastically outperforms GPT-4V and Llama3-70B models. Finally, we provide an in-depth failure analysis to understand the limitations of different models. We will publicly release the benchmark for future research on program synthesis in visual programming.
comment: ACL'25 paper
♻ ☆ SIA: Enhancing Safety via Intent Awareness for Vision-Language Models ICCV2025
With the growing deployment of Vision-Language Models (VLMs) in real-world applications, previously overlooked safety risks are becoming increasingly evident. In particular, seemingly innocuous multimodal inputs can combine to reveal harmful intent, leading to unsafe model outputs. While multimodal safety has received increasing attention, existing approaches often fail to address such latent risks, especially when harmfulness arises only from the interaction between modalities. We propose SIA (Safety via Intent Awareness), a training-free, intent-aware safety framework that proactively detects harmful intent in multimodal inputs and uses it to guide the generation of safe responses. SIA follows a three-stage process: (1) visual abstraction via captioning; (2) intent inference through few-shot chain-of-thought (CoT) prompting; and (3) intent-conditioned response generation. By dynamically adapting to the implicit intent inferred from an image-text pair, SIA mitigates harmful outputs without extensive retraining. Extensive experiments on safety benchmarks, including SIUO, MM-SafetyBench, and HoliSafe, show that SIA consistently improves safety and outperforms prior training-free methods.
comment: Accepted to Safe and Trustworthy Multimodal AI Systems(SafeMM-AI) Workshop at ICCV2025, Non-archival track
♻ ☆ Neural Brain: A Neuroscience-inspired Framework for Embodied Agents
The rapid evolution of artificial intelligence (AI) has shifted from static, data-driven models to dynamic systems capable of perceiving and interacting with real-world environments. Despite advancements in pattern recognition and symbolic reasoning, current AI systems, such as large language models, remain disembodied, unable to physically engage with the world. This limitation has driven the rise of embodied AI, where autonomous agents, such as humanoid robots, must navigate and manipulate unstructured environments with human-like adaptability. At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability. A Neural Brain must seamlessly integrate multimodal sensing and perception with cognitive capabilities. Achieving this also requires an adaptive memory system and energy-efficient hardware-software co-design, enabling real-time action in dynamic environments. This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges: (1) defining the core components of Neural Brain and (2) bridging the gap between static AI models and the dynamic adaptability required for real-world deployment. To this end, we propose a biologically inspired architecture that integrates multimodal active sensing, perception-cognition-action function, neuroplasticity-based memory storage and updating, and neuromorphic hardware/software optimization. Furthermore, we also review the latest research on embodied agents across these four aspects and analyze the gap between current AI systems and human intelligence. By synthesizing insights from neuroscience, we outline a roadmap towards the development of generalizable, autonomous agents capable of human-level intelligence in real-world scenarios.
comment: 51 pages, 17 figures, 9 tables
♻ ☆ Flexible metadata harvesting for ecology using large language models
Large, open datasets can accelerate ecological research, particularly by enabling researchers to develop new insights by reusing datasets from multiple sources. However, to find the most suitable datasets to combine and integrate, researchers must navigate diverse ecological and environmental data provider platforms with varying metadata availability and standards. To overcome this obstacle, we have developed a large language model (LLM)-based metadata harvester that flexibly extracts metadata from any dataset's landing page, and converts these to a user-defined, unified format using existing metadata standards. We validate that our tool is able to extract both structured and unstructured metadata with equal accuracy, aided by our LLM post-processing protocol. Furthermore, we utilise LLMs to identify links between datasets, both by calculating embedding similarity and by unifying the formats of extracted metadata to enable rule-based processing. Our tool, which flexibly links the metadata of different datasets, can therefore be used for ontology creation or graph-based queries, for example, to find relevant ecological and environmental datasets in a virtual research environment.
♻ ☆ New Recipe for Semi-supervised Community Detection: Clique Annealing under Crystallization Kinetics
Semi-supervised community detection methods are widely used for identifying specific communities due to the label scarcity. Existing semi-supervised community detection methods typically involve two learning stages learning in both initial identification and subsequent adjustment, which often starts from an unreasonable community core candidate. Moreover, these methods encounter scalability issues because they depend on reinforcement learning and generative adversarial networks, leading to higher computational costs and restricting the selection of candidates. To address these limitations, we draw a parallel between crystallization kinetics and community detection to integrate the spontaneity of the annealing process into community detection. Specifically, we liken community detection to identifying a crystal subgrain (core) that expands into a complete grain (community) through a process similar to annealing. Based on this finding, we propose CLique ANNealing (CLANN), which applies kinetics concepts to community detection by integrating these principles into the optimization process to strengthen the consistency of the community core. Subsequently, a learning-free Transitive Annealer was employed to refine the first-stage candidates by merging neighboring cliques and repositioning the community core, enabling a spontaneous growth process that enhances scalability. Extensive experiments on \textbf{43} different network settings demonstrate that CLANN outperforms state-of-the-art methods across multiple real-world datasets, showcasing its exceptional efficacy and efficiency in community detection.
comment: arXiv admin note: text overlap with arXiv:2203.05898 by other authors
♻ ☆ Psychometric Item Validation Using Virtual Respondents with Trait-Response Mediators
As psychometric surveys are increasingly used to assess the traits of large language models (LLMs), the need for scalable survey item generation suited for LLMs has also grown. A critical challenge here is ensuring the construct validity of generated items, i.e., whether they truly measure the intended trait. Traditionally, this requires costly, large-scale human data collection. To make it efficient, we present a framework for virtual respondent simulation using LLMs. Our central idea is to account for mediators: factors through which the same trait can give rise to varying responses to a survey item. By simulating respondents with diverse mediators, we identify survey items that robustly measure intended traits. Experiments on three psychological trait theories (Big5, Schwartz, VIA) show that our mediator generation methods and simulation framework effectively identify high-validity items. LLMs demonstrate the ability to generate plausible mediators from trait definitions and to simulate respondent behavior for item validation. Our problem formulation, metrics, methodology, and dataset open a new direction for cost-effective survey development and a deeper understanding of how LLMs simulate human survey responses. We publicly release our dataset and code to support future work.
comment: 21 pages, 9 figures
♻ ☆ TOAST: Transformer Optimization using Adaptive and Simple Transformations
Foundation models achieve State-of-the-Art (SOTA) performance across different tasks, but their size and computational demands raise concerns about accessibility and sustainability. Existing efficiency methods often require additional retraining or fine-tuning, limiting their practicality. Recent findings suggest that deep neural networks exhibit internal representation similarities. While such similarities across different models have been exploited for enabling techniques such as model stitching and merging, intra-network redundancy remains underexplored as a source for efficiency gains. In this paper, we introduce TOAST (Transformer Optimization using Adaptive and Simple Transformations), a framework that exploits these redundancies to approximate entire transformer blocks with lightweight closed-form mappings, such as linear transformation or even the identity, without any additional training. Across SOTA pretrained vision models (e.g., ViT, DINOv2, DeiT) and datasets ranging from MNIST to ImageNet-1k, TOAST reduces parameters and computation while preserving, and in some cases improving, downstream performance. These results show that large portions of transformer depth can be replaced by trivial functions, opening a new perspective on efficient foundation models.
comment: 24 pages, 15 figures, 12 tables
♻ ☆ Learning to Play Piano in the Real World
Towards the grand challenge of achieving human-level manipulation in robots, playing piano is a compelling testbed that requires strategic, precise, and flowing movements. Over the years, several works demonstrated hand-designed controllers on real world piano playing, while other works evaluated robot learning approaches on simulated piano scenarios. In this paper, we develop the first piano playing robotic system that makes use of learning approaches while also being deployed on a real world dexterous robot. Specifically, we make use of Sim2Real to train a policy in simulation using reinforcement learning before deploying the learned policy on a real world dexterous robot. In our experiments, we thoroughly evaluate the interplay between domain randomization and the accuracy of the dynamics model used in simulation. Moreover, we evaluate the robot's performance across multiple songs with varying complexity to study the generalization of our learned policy. By providing a proof-of-concept of learning to play piano in the real world, we want to encourage the community to adopt piano playing as a compelling benchmark towards human-level manipulation. We open-source our code and show additional videos at https://lasr.org/research/learning-to-play-piano .
♻ ☆ Beyond Manuals and Tasks: Instance-Level Context Learning for LLM Agents
Large language model (LLM) agents typically receive two kinds of context: (i) environment-level manuals that define interaction interfaces and global rules, and (ii) task-level guidance or demonstrations tied to specific goals. In this work, we identify a crucial but overlooked third type of context, instance-level context, which consists of verifiable and reusable facts tied to a specific environment instance, such as object locations, crafting recipes, and local rules. We argue that the absence of instance-level context is a common source of failure for LLM agents in complex tasks, as success often depends not only on reasoning over global rules or task prompts but also on making decisions based on precise and persistent facts. Acquiring such context requires more than memorization: the challenge lies in efficiently exploring, validating, and formatting these facts under tight interaction budgets. We formalize this problem as Instance-Level Context Learning (ILCL) and introduce our task-agnostic method to solve it. Our method performs a guided exploration, using a compact TODO forest to intelligently prioritize its next actions and a lightweight plan-act-extract loop to execute them. This process automatically produces a high-precision context document that is reusable across many downstream tasks and agents, thereby amortizing the initial exploration cost. Experiments across TextWorld, ALFWorld, and Crafter demonstrate consistent gains in both success and efficiency: for instance, ReAct's mean success rate in TextWorld rises from 37% to 95%, while IGE improves from 81% to 95%. By transforming one-off exploration into persistent, reusable knowledge, our method complements existing contexts to enable more reliable and efficient LLM agents.
♻ ☆ Understanding R1-Zero-Like Training: A Critical Perspective
DeepSeek-R1-Zero has shown that reinforcement learning (RL) at scale can directly enhance the reasoning capabilities of LLMs without supervised fine-tuning. In this work, we critically examine R1-Zero-like training by analyzing its two core components: base models and RL. We investigate a wide range of base models, including DeepSeek-V3-Base, to understand how pretraining characteristics influence RL performance. Our analysis reveals that DeepSeek-V3-Base already exhibit ''Aha moment'', while Qwen2.5 base models demonstrate strong reasoning capabilities even without prompt templates, suggesting potential pretraining biases. Additionally, we identify an optimization bias in Group Relative Policy Optimization (GRPO), which artificially increases response length (especially for incorrect outputs) during training. To address this, we introduce Dr. GRPO, an unbiased optimization method that improves token efficiency while maintaining reasoning performance. Leveraging these insights, we present a minimalist R1-Zero recipe that achieves 43.3% accuracy on AIME 2024 with a 7B base model, establishing a new state-of-the-art. Our code is available at https://github.com/sail-sg/understand-r1-zero.
♻ ☆ VIPO: Value Function Inconsistency Penalized Offline Reinforcement Learning
Offline reinforcement learning (RL) learns effective policies from pre-collected datasets, offering a practical solution for applications where online interactions are risky or costly. Model-based approaches are particularly advantageous for offline RL, owing to their data efficiency and generalizability. However, due to inherent model errors, model-based methods often artificially introduce conservatism guided by heuristic uncertainty estimation, which can be unreliable. In this paper, we introduce VIPO, a novel model-based offline RL algorithm that incorporates self-supervised feedback from value estimation to enhance model training. Specifically, the model is learned by additionally minimizing the inconsistency between the value learned directly from the offline data and the one estimated from the model. We perform comprehensive evaluations from multiple perspectives to show that VIPO can learn a highly accurate model efficiently and consistently outperform existing methods. In particular, it achieves state-of-the-art performance on almost all tasks in both D4RL and NeoRL benchmarks. Overall, VIPO offers a general framework that can be readily integrated into existing model-based offline RL algorithms to systematically enhance model accuracy.
♻ ☆ AdaSTaR: Adaptive Data Sampling for Training Self-Taught Reasoners NeurIPS 2025
Self-Taught Reasoners (STaR), synonymously known as Rejection sampling Fine-Tuning (RFT), is an integral part of the training pipeline of self-improving reasoning Language Models (LMs). The self-improving mechanism often employs random observation (data) sampling. However, this results in trained observation imbalance; inefficiently over-training on solved examples while under-training on challenging ones. In response, we introduce Adaptive STaR (AdaSTaR), a novel algorithm that rectifies this by integrating two adaptive sampling principles: (1) Adaptive Sampling for Diversity: promoting balanced training across observations, and (2) Adaptive Sampling for Curriculum: dynamically adjusting data difficulty to match the model's evolving strength. Across six benchmarks, AdaSTaR achieves best test accuracy in all instances (6/6) and reduces training FLOPs by an average of 58.6% against an extensive list of baselines. These improvements in performance and efficiency generalize to different pre-trained LMs and larger models, paving the way for more efficient and effective self-improving LMs.
comment: NeurIPS 2025
♻ ☆ PhysioWave: A Multi-Scale Wavelet-Transformer for Physiological Signal Representation NeurIPS 2025
Physiological signals are often corrupted by motion artifacts, baseline drift, and other low-SNR disturbances, which pose significant challenges for analysis. Additionally, these signals exhibit strong non-stationarity, with sharp peaks and abrupt changes that evolve continuously, making them difficult to represent using traditional time-domain or filtering methods. To address these issues, a novel wavelet-based approach for physiological signal analysis is presented, aiming to capture multi-scale time-frequency features in various physiological signals. Leveraging this technique, two large-scale pretrained models specific to EMG and ECG are introduced for the first time, achieving superior performance and setting new baselines in downstream tasks. Additionally, a unified multi-modal framework is constructed by integrating pretrained EEG model, where each modality is guided through its dedicated branch and fused via learnable weighted fusion. This design effectively addresses challenges such as low signal-to-noise ratio, high inter-subject variability, and device mismatch, outperforming existing methods on multi-modal tasks. The proposed wavelet-based architecture lays a solid foundation for analysis of diverse physiological signals, while the multi-modal design points to next-generation physiological signal processing with potential impact on wearable health monitoring, clinical diagnostics, and broader biomedical applications. Code and data are available at: github.com/ForeverBlue816/PhysioWave
comment: 43 pages, 17 figures, 17 tables. Accepted by NeurIPS 2025. Code and data are available at: github.com/ForeverBlue816/PhysioWave
♻ ☆ Computing Exact Shapley Values in Polynomial Time for Product-Kernel Methods
Kernel methods are widely used in machine learning due to their flexibility and expressiveness. However, their black-box nature poses significant challenges to interpretability, limiting their adoption in high-stakes applications. Shapley value-based feature attribution techniques, such as SHAP and kernel method-specific adaptation like RKHS-SHAP, offer a promising path toward explainability. Yet, computing exact Shapley values is generally intractable, leading existing methods to rely on approximations and thereby incur unavoidable error. In this work, we introduce PKeX-Shapley, a novel algorithm that utilizes the multiplicative structure of product kernels to enable the exact computation of Shapley values in polynomial time. The core of our approach is a new value function, the functional baseline value function, specifically designed for product-kernel models. This value function removes the influence of a feature subset by setting its functional component to the least informative state. Crucially, it allows a recursive thus efficient computation of Shapley values in polynomial time. As an important additional contribution, we show that our framework extends beyond predictive modeling to statistical inference. In particular, it generalizes to popular kernel-based discrepancy measures such as the Maximum Mean Discrepancy (MMD) and the Hilbert-Schmidt Independence Criterion (HSIC), thereby providing new tools for interpretable statistical inference.
♻ ☆ Humanoid Agent via Embodied Chain-of-Action Reasoning with Multimodal Foundation Models for Zero-Shot Loco-Manipulation
Humanoid loco-manipulation, which integrates whole-body locomotion with dexterous manipulation, remains a fundamental challenge in robotics. Beyond whole-body coordination and balance, a central difficulty lies in understanding human instructions and translating them into coherent sequences of embodied actions. Recent advances in foundation models provide transferable multimodal representations and reasoning capabilities, yet existing efforts remain largely restricted to either locomotion or manipulation in isolation, with limited applicability to humanoid settings. In this paper, we propose Humanoid-COA, the first humanoid agent framework that integrates foundation model reasoning with an Embodied Chain-of-Action (CoA) mechanism for zero-shot loco-manipulation. Within the perception--reasoning--action paradigm, our key contribution lies in the reasoning stage, where the proposed CoA mechanism decomposes high-level human instructions into structured sequences of locomotion and manipulation primitives through affordance analysis, spatial inference, and whole-body action reasoning. Extensive experiments on two humanoid robots, Unitree H1-2 and G1, in both an open test area and an apartment environment, demonstrate that our framework substantially outperforms prior baselines across manipulation, locomotion, and loco-manipulation tasks, achieving robust generalization to long-horizon and unstructured scenarios. Project page: https://humanoid-coa.github.io/
comment: website link: https://humanoid-coa.github.io/
♻ ☆ Towards Cross-modal Backward-compatible Representation Learning for Vision-Language Models
Modern retrieval systems often struggle with upgrading to new and more powerful models due to the incompatibility of embeddings between the old and new models. This necessitates a costly process known as backfilling, which involves re-computing the embeddings for a large number of data samples. In vision, Backward-compatible Training (BT) has been proposed to ensure that the new model aligns with the old model's embeddings. This paper extends the concept of vision-only BT to the field of cross-modal retrieval, marking the first attempt to address Cross-modal BT (XBT). Our goal is to achieve backward-compatibility between Vision-Language Pretraining (VLP) models, such as CLIP, for the cross-modal retrieval task. To address XBT challenges, we propose an efficient solution: a projection module that maps the new model's embeddings to those of the old model. This module, pretrained solely with text data, significantly reduces the number of image-text pairs required for XBT learning, and, once it is pretrained, it avoids using the old model during training. Furthermore, we utilize parameter-efficient training strategies that improve efficiency and preserve the off-the-shelf new model's knowledge by avoiding any modifications. Experimental results on cross-modal retrieval datasets demonstrate the effectiveness of XBT and its potential to enable backfill-free upgrades when a new VLP model emerges.
♻ ☆ DISC: Dynamic Decomposition Improves LLM Inference Scaling NeurIPS 2025
Inference scaling methods for LLMs often rely on decomposing problems into steps (or groups of tokens), followed by sampling and selecting the best next steps. However, these steps and their sizes are often predetermined or manually designed based on domain knowledge. We propose dynamic decomposition, a method that adaptively and automatically partitions solution and reasoning traces into manageable steps during inference. By more effectively allocating compute -- particularly through subdividing challenging steps and prioritizing their sampling -- dynamic decomposition significantly improves inference efficiency. Experiments on benchmarks such as APPS, MATH, and LiveCodeBench demonstrate that dynamic decomposition outperforms static approaches, including token-level, sentence-level, and single-step decompositions, reducing the pass@10 error rate by 5.0%, 6.7%, and 10.5% respectively. These findings highlight the potential of dynamic decomposition to improve a wide range of inference scaling techniques.
comment: 10 pages, Accepted to NeurIPS 2025 (Conference on Neural Information Processing Systems)
♻ ☆ STIV: Scalable Text and Image Conditioned Video Generation
The field of video generation has made remarkable advancements, yet there remains a pressing need for a clear, systematic recipe that can guide the development of robust and scalable models. In this work, we present a comprehensive study that systematically explores the interplay of model architectures, training recipes, and data curation strategies, culminating in a simple and scalable text-image-conditioned video generation method, named STIV. Our framework integrates image condition into a Diffusion Transformer (DiT) through frame replacement, while incorporating text conditioning via a joint image-text conditional classifier-free guidance. This design enables STIV to perform both text-to-video (T2V) and text-image-to-video (TI2V) tasks simultaneously. Additionally, STIV can be easily extended to various applications, such as video prediction, frame interpolation, multi-view generation, and long video generation, etc. With comprehensive ablation studies on T2I, T2V, and TI2V, STIV demonstrate strong performance, despite its simple design. An 8.7B model with 512 resolution achieves 83.1 on VBench T2V, surpassing both leading open and closed-source models like CogVideoX-5B, Pika, Kling, and Gen-3. The same-sized model also achieves a state-of-the-art result of 90.1 on VBench I2V task at 512 resolution. By providing a transparent and extensible recipe for building cutting-edge video generation models, we aim to empower future research and accelerate progress toward more versatile and reliable video generation solutions.
♻ ☆ Scientific Paper Retrieval with LLM-Guided Semantic-Based Ranking EMNLP 2025
Scientific paper retrieval is essential for supporting literature discovery and research. While dense retrieval methods demonstrate effectiveness in general-purpose tasks, they often fail to capture fine-grained scientific concepts that are essential for accurate understanding of scientific queries. Recent studies also use large language models (LLMs) for query understanding; however, these methods often lack grounding in corpus-specific knowledge and may generate unreliable or unfaithful content. To overcome these limitations, we propose SemRank, an effective and efficient paper retrieval framework that combines LLM-guided query understanding with a concept-based semantic index. Each paper is indexed using multi-granular scientific concepts, including general research topics and detailed key phrases. At query time, an LLM identifies core concepts derived from the corpus to explicitly capture the query's information need. These identified concepts enable precise semantic matching, significantly enhancing retrieval accuracy. Experiments show that SemRank consistently improves the performance of various base retrievers, surpasses strong existing LLM-based baselines, and remains highly efficient.
comment: Accepted to EMNLP 2025 Findings
♻ ☆ Privacy Leakage Overshadowed by Views of AI: A Study on Human Oversight of Privacy in Language Model Agent
Language model (LM) agents that act on users' behalf for personal tasks (e.g., replying emails) can boost productivity, but are also susceptible to unintended privacy leakage risks. We present the first study on people's capacity to oversee the privacy implications of the LM agents. By conducting a task-based survey ($N=300$), we investigate how people react to and assess the response generated by LM agents for asynchronous interpersonal communication tasks, compared with a response they wrote. We found that people may favor the agent response with more privacy leakage over the response they drafted or consider both good, leading to an increased harmful disclosure from 15.7% to 55.0%. We further identified six privacy behavior patterns reflecting varying concerns, trust levels, and privacy preferences underlying people's oversight of LM agents' actions. Our findings shed light on designing agentic systems that enable privacy-preserving interactions and achieve bidirectional alignment on privacy preferences to help users calibrate trust.
♻ ☆ Who's the Mole? Modeling and Detecting Intention-Hiding Malicious Agents in LLM-Based Multi-Agent Systems
Multi-agent systems powered by Large Language Models (LLM-MAS) have demonstrated remarkable capabilities in collaborative problem-solving. However, their deployment also introduces new security risks. Existing research on LLM-based agents has primarily examined single-agent scenarios, while the security of multi-agent systems remains largely unexplored. To address this gap, we present a systematic study of intention-hiding threats in LLM-MAS. We design four representative attack paradigms that subtly disrupt task completion while maintaining a high degree of stealth, and evaluate them under centralized, decentralized, and layered communication structures. Experimental results show that these attacks are highly disruptive and can easily evade existing defense mechanisms. To counter these threats, we propose AgentXposed, a psychology-inspired detection framework. AgentXposed draws on the HEXACO personality model, which characterizes agents through psychological trait dimensions, and the Reid interrogation technique, a structured method for eliciting concealed intentions. By combining progressive questionnaire probing with behavior-based inter-agent monitoring, the framework enables the proactive identification of malicious agents before harmful actions are carried out. Extensive experiments across six datasets against both our proposed attacks and two baseline threats demonstrate that AgentXposed effectively detects diverse forms of malicious behavior, achieving strong robustness across multiple communication settings.
♻ ☆ From Word to World: Evaluate and Mitigate Culture Bias in LLMs via Word Association Test EMNLP 2025
The human-centered word association test (WAT) serves as a cognitive proxy, revealing sociocultural variations through culturally shared semantic expectations and implicit linguistic patterns shaped by lived experiences. We extend this test into an LLM-adaptive, free-relation task to assess the alignment of large language models (LLMs) with cross-cultural cognition. To address culture preference, we propose CultureSteer, an innovative approach that moves beyond superficial cultural prompting by embedding cultural-specific semantic associations directly within the model's internal representation space. Experiments show that current LLMs exhibit significant bias toward Western (notably American) schemas at the word association level. In contrast, our model substantially improves cross-cultural alignment, capturing diverse semantic associations. Further validation on culture-sensitive downstream tasks confirms its efficacy in fostering cognitive alignment across cultures. This work contributes a novel methodological paradigm for enhancing cultural awareness in LLMs, advancing the development of more inclusive language technologies.
comment: Cultural Analysis, Cultural Alignment, Word Association Test, Large Language Models. Accepted by EMNLP 2025 (Oral)
♻ ☆ SafeFlowMatcher: Safe and Fast Planning using Flow Matching with Control Barrier Functions
Generative planners based on flow matching (FM) can produce high-quality paths in one or a few ODE steps, but their sampling dynamics offer no formal safety guarantees and can yield incomplete paths near constraints. We present SafeFlowMatcher, a planning framework that couples FM with control barrier functions (CBFs) to achieve both real-time efficiency and certified safety. SafeFlowMatcher uses a two-phase prediction-correction (PC) integrator: (i) a prediction phase integrates the learned FM once (or a few steps) to obtain a candidate path without intervention; (ii) a correction phase refines this path with a vanishing time-scaled vector field and a CBF-based quadratic program that minimally perturbs the vector field. We prove a barrier certificate for the resulting flow system, establishing forward invariance of a robust safe set and finite-time convergence to the safe set. By enforcing safety only on the executed path (rather than on all intermediate latent paths), SafeFlowMatcher avoids distributional drift and mitigates local trap problems. Across maze navigation and locomotion benchmarks, SafeFlowMatcher attains faster, smoother, and safer paths than diffusion- and FM-based baselines. Extensive ablations corroborate the contributions of the PC integrator and the barrier certificate.
comment: 10 pages, 7 figures, 4 tables
♻ ☆ Pretraining with hierarchical memories: separating long-tail and common knowledge
The impressive performance gains of modern language models currently rely on scaling parameters: larger models store more world knowledge and reason better. Yet compressing all world knowledge into parameters is unnecessary, as only a fraction is used per prompt, and impractical for edge devices with limited inference-time memory and compute. We address this shortcoming by a memory-augmented architecture and a pretraining strategy aligned with existing hardware paradigms. We introduce small language models that access large hierarchical parametric memory banks encoding world knowledge. During pretraining and inference, we fetch a small, context-dependent memory block and add it to the model. Our pretraining learns to store long-tail world knowledge in the memory parameters, while the small language model acts as an anchor capturing common knowledge and general reasoning abilities. Through trillion-token-scale experiments, we show significant gains: a 160M-parameters model augmented with an 18M-parameters memory fetched from a 4.6B memory bank obtains comparable performance to a regular model with more than 2x the parameters. Through extensive experiments, we study the optimal type and size of parametric memories in transformers, scaling them to over 21B parameters. We find that our proposed hierarchical feed-forward memories work robustly across transformer architectures, whether added during pretraining or post-hoc.
♻ ☆ PolySim: Bridging the Sim-to-Real Gap for Humanoid Control via Multi-Simulator Dynamics Randomization
Humanoid whole-body control (WBC) policies trained in simulation often suffer from the sim-to-real gap, which fundamentally arises from simulator inductive bias, the inherent assumptions and limitations of any single simulator. These biases lead to nontrivial discrepancies both across simulators and between simulation and the real world. To mitigate the effect of simulator inductive bias, the key idea is to train policies jointly across multiple simulators, encouraging the learned controller to capture dynamics that generalize beyond any single simulator's assumptions. We thus introduce PolySim, a WBC training platform that integrates multiple heterogeneous simulators. PolySim can launch parallel environments from different engines simultaneously within a single training run, thereby realizing dynamics-level domain randomization. Theoretically, we show that PolySim yields a tighter upper bound on simulator inductive bias than single-simulator training. In experiments, PolySim substantially reduces motion-tracking error in sim-to-sim evaluations; for example, on MuJoCo, it improves execution success by 52.8 over an IsaacSim baseline. PolySim further enables zero-shot deployment on a real Unitree G1 without additional fine-tuning, showing effective transfer from simulation to the real world. We will release the PolySim code upon acceptance of this work.
comment: 8 pages, 5 figures
♻ ☆ SonicMaster: Towards Controllable All-in-One Music Restoration and Mastering
Music recordings often suffer from audio quality issues such as excessive reverberation, distortion, clipping, tonal imbalances, and a narrowed stereo image, especially when created in non-professional settings without specialized equipment or expertise. These problems are typically corrected using separate specialized tools and manual adjustments. In this paper, we introduce SonicMaster, the first unified generative model for music restoration and mastering that addresses a broad spectrum of audio artifacts with text-based control. SonicMaster is conditioned on natural language instructions to apply targeted enhancements, or can operate in an automatic mode for general restoration. To train this model, we construct the SonicMaster dataset, a large dataset of paired degraded and high-quality tracks by simulating common degradation types with nineteen degradation functions belonging to five enhancements groups: equalization, dynamics, reverb, amplitude, and stereo. Our approach leverages a flow-matching generative training paradigm to learn an audio transformation that maps degraded inputs to their cleaned, mastered versions guided by text prompts. Objective audio quality metrics demonstrate that SonicMaster significantly improves sound quality across all artifact categories. Furthermore, subjective listening tests confirm that listeners prefer SonicMaster's enhanced outputs over the original degraded audio, highlighting the effectiveness of our unified approach.
♻ ☆ OpenWHO: A Document-Level Parallel Corpus for Health Translation in Low-Resource Languages
In machine translation (MT), health is a high-stakes domain characterised by widespread deployment and domain-specific vocabulary. However, there is a lack of MT evaluation datasets for low-resource languages in this domain. To address this gap, we introduce OpenWHO, a document-level parallel corpus of 2,978 documents and 26,824 sentences from the World Health Organization's e-learning platform. Sourced from expert-authored, professionally translated materials shielded from web-crawling, OpenWHO spans a diverse range of over 20 languages, of which nine are low-resource. Leveraging this new resource, we evaluate modern large language models (LLMs) against traditional MT models. Our findings reveal that LLMs consistently outperform traditional MT models, with Gemini 2.5 Flash achieving a +4.79 ChrF point improvement over NLLB-54B on our low-resource test set. Further, we investigate how LLM context utilisation affects accuracy, finding that the benefits of document-level translation are most pronounced in specialised domains like health. We release the OpenWHO corpus to encourage further research into low-resource MT in the health domain.
comment: Accepted at WMT 2025
♻ ☆ TolerantECG: A Foundation Model for Imperfect Electrocardiogram ACM MM 2025
The electrocardiogram (ECG) is an essential and effective tool for diagnosing heart diseases. However, its effectiveness can be compromised by noise or unavailability of one or more leads of the standard 12-lead recordings, resulting in diagnostic errors or uncertainty. To address these challenges, we propose TolerantECG, a foundation model for ECG signals that is robust to noise and capable of functioning with arbitrary subsets of the standard 12-lead ECG. TolerantECG training combines contrastive and self-supervised learning frameworks to jointly learn ECG signal representations alongside their corresponding knowledge-retrieval-based text report descriptions and corrupted or lead-missing signals. Comprehensive benchmarking results demonstrate that TolerantECG consistently ranks as the best or second-best performer across various ECG signal conditions and class levels in the PTB-XL dataset, and achieves the highest performance on the MIT-BIH Arrhythmia Database.
comment: Accepted at ACM MM 2025
♻ ☆ The Hive Mind is a Single Reinforcement Learning Agent
Decision-making is an essential attribute of any intelligent agent or group. Natural systems are known to converge to optimal strategies through at least two distinct mechanisms: collective decision-making via imitation of others, and individual trial-and-error. This paper establishes an equivalence between these two paradigms by drawing from the well-established collective decision-making model of nest-hunting in swarms of honey bees. We show that the emergent distributed cognition (sometimes referred to as the $\textit{hive mind}$) arising from individual bees following simple, local imitation-based rules is that of a single online reinforcement learning (RL) agent interacting with many parallel environments. The update rule through which this macro-agent learns is a bandit algorithm that we coin $\textit{Maynard-Cross Learning}$. Our analysis implies that a group of cognition-limited organisms can be equivalent to a more complex, reinforcement-enabled entity, substantiating the idea that group-level intelligence may explain how seemingly simple and blind individual behaviors are selected in nature. From a biological perspective, this analysis suggests how such imitation strategies evolved: they constitute a scalable form of reinforcement learning at the group level, aligning with theories of kin and group selection. Beyond biology, the framework offers new tools for analyzing economic and social systems where individuals imitate successful strategies, effectively participating in a collective learning process. In swarm intelligence, our findings will inform the design of scalable collective systems in artificial domains, enabling RL-inspired mechanisms for coordination and adaptability at scale.
♻ ☆ PatentMind: A Multi-Aspect Reasoning Graph for Patent Similarity Evaluation
Patent similarity evaluation plays a critical role in intellectual property analysis. However, existing methods often overlook the intricate structure of patent documents, which integrate technical specifications, legal boundaries, and application contexts. We introduce PatentMind, a novel framework for patent similarity assessment based on a Multi-Aspect Reasoning Graph (MARG). PatentMind decomposes patents into their three dimensions of technical features, application domains, and claim scopes, then dimension-specific similarity scores are calculated over the MARG. These scores are dynamically weighted through a context-aware reasoning process, which integrates contextual signals to emulate expert-level judgment. To support evaluation, we construct a human-annotated benchmark PatentSimBench, comprising 500 patent pairs. Experimental results demonstrate that the PatentMind-generated scores show a strong correlation ($r=0.938$) with expert annotations, significantly outperforming embedding-based models, patent-specific models, and advanced prompt engineering methods. Beyond computational linguistics, our framework provides a structured and semantically grounded foundation for real-world decision-making, particularly for tasks such as infringement risk assessment, underscoring its broader impact on both patent analytics and evaluation.
♻ ☆ A Knowledge-Driven Diffusion Policy for End-to-End Autonomous Driving Based on Expert Routing
End-to-end autonomous driving remains constrained by the difficulty of producing adaptive, robust, and interpretable decision-making across diverse scenarios. Existing methods often collapse diverse driving behaviors, lack long-horizon consistency, or require task-specific engineering that limits generalization. This paper presents KDP, a knowledge-driven diffusion policy that integrates generative diffusion modeling with a sparse mixture-of-experts routing mechanism. The diffusion component generates temporally coherent action sequences, while the expert routing mechanism activates specialized and reusable experts according to context, enabling modular knowledge composition. Extensive experiments across representative driving scenarios demonstrate that KDP achieves consistently higher success rates, reduced collision risk, and smoother control compared to prevailing paradigms. Ablation studies highlight the effectiveness of sparse expert activation and the Transformer backbone, and activation analyses reveal structured specialization and cross-scenario reuse of experts. These results establish diffusion with expert routing as a scalable and interpretable paradigm for knowledge-driven end-to-end autonomous driving.
comment: https://perfectxu88.github.io/KDP-AD/
♻ ☆ Causality-Based Scores Alignment in Explainable Data Management
Different attribution scores have been proposed to quantify the relevance of database tuples for query answering in databases; e.g. Causal Responsibility, the Shapley Value, the Banzhaf Power-Index, and the Causal Effect. They have been analyzed in isolation. This work is a first investigation of score alignment depending on the query and the database; i.e. on whether they induce compatible rankings of tuples. We concentrate mostly on causality-based scores; and provide a syntactic dichotomy result for queries: on one side, pairs of scores are always aligned, on the other, they are not always aligned. It turns out that the presence of exogenous tuples makes a crucial difference in this regard.
comment: Full and detailed revision of previous versions in terms of presentation and statement of results, and their proofs. Submitted to conference
♻ ☆ Street Review: A Participatory AI-Based Framework for Assessing Streetscape Inclusivity
Urban centers undergo social, demographic, and cultural changes that shape public street use and require systematic evaluation of public spaces. This study presents Street Review, a mixed-methods approach that combines participatory research with AI-based analysis to assess streetscape inclusivity. In Montr\'eal, Canada, 28 residents participated in semi-directed interviews and image evaluations, supported by the analysis of approximately 45,000 street-view images from Mapillary. The approach produced visual analytics, such as heatmaps, to correlate subjective user ratings with physical attributes like sidewalk, maintenance, greenery, and seating. Findings reveal variations in perceptions of inclusivity and accessibility across demographic groups, demonstrating that incorporating diverse user feedback can enhance machine learning models through careful data-labeling and co-production strategies. The Street Review framework offers a systematic method for urban planners and policy analysts to inform planning, policy development, and management of public streets.
Machine Learning 225
☆ TopInG: Topologically Interpretable Graph Learning via Persistent Rationale Filtration ICML 2025
Graph Neural Networks (GNNs) have shown remarkable success across various scientific fields, yet their adoption in critical decision-making is often hindered by a lack of interpretability. Recently, intrinsically interpretable GNNs have been studied to provide insights into model predictions by identifying rationale substructures in graphs. However, existing methods face challenges when the underlying rationale subgraphs are complex and varied. In this work, we propose TopInG: Topologically Interpretable Graph Learning, a novel topological framework that leverages persistent homology to identify persistent rationale subgraphs. TopInG employs a rationale filtration learning approach to model an autoregressive generation process of rationale subgraphs, and introduces a self-adjusted topological constraint, termed topological discrepancy, to enforce a persistent topological distinction between rationale subgraphs and irrelevant counterparts. We provide theoretical guarantees that our loss function is uniquely optimized by the ground truth under specific conditions. Extensive experiments demonstrate TopInG's effectiveness in tackling key challenges, such as handling variform rationale subgraphs, balancing predictive performance with interpretability, and mitigating spurious correlations. Results show that our approach improves upon state-of-the-art methods on both predictive accuracy and interpretation quality.
comment: submitted to ICML 2025
☆ From Noisy Traces to Stable Gradients: Bias-Variance Optimized Preference Optimization for Aligning Large Reasoning Models
Large reasoning models (LRMs) generate intermediate reasoning traces before producing final answers, yielding strong gains on multi-step and mathematical tasks. Yet aligning LRMs with human preferences, a crucial prerequisite for model deployment, remains underexplored. The statistically correct objective for preference alignment requires marginalizing over reasoning traces, but this computation is intractable in practice. A common workaround optimizes a single sampled trajectory, which introduces substantial gradient variance from stochastic trace sampling. To address this challenge, we frame preference optimization for LRMs through the lens of the bias--variance trade-off and propose Bias--Variance Optimized Preference Optimization (BVPO), a simple, drop-in method that mixes two gradient estimators: a high-variance trace-based estimator and a low-variance empty-trace estimator obtained by disabling reasoning trace generation. Our theory shows that BVPO strictly reduces trace-induced variance for any nontrivial mixture, provides a closed-form choice of the mixing weight that minimizes mean-squared error relative to the true marginal gradient, and under standard smoothness and step-size conditions, tightens classical convergence bounds for stochastic gradient descent. Empirically, BVPO improves alignment over the best baseline by up to 7.8 points on AlpacaEval~2 and 6.8 points on Arena-Hard. Despite being trained only on general conversational data, BVPO also boosts reasoning performance for base models by up to 4.0 points on the average of six math reasoning benchmarks. These results identify variance from trace sampling as a key bottleneck and demonstrate that directly optimizing the bias--variance trade-off yields more stable training and stronger overall performance.
☆ Learning to Interpret Weight Differences in Language Models
Finetuning (pretrained) language models is a standard approach for updating their internal parametric knowledge and specializing them to new tasks and domains. However, the corresponding model weight changes ("weight diffs") are not generally interpretable. While inspecting the finetuning dataset can give a sense of how the model might have changed, these datasets are often not publicly available or are too large to work with directly. Towards the goal of comprehensively understanding weight diffs in natural language, we introduce Diff Interpretation Tuning (DIT), a method that trains models to describe their own finetuning-induced modifications. Our approach uses synthetic, labeled weight diffs to train a DIT adapter, which can be applied to a compatible finetuned model to make it describe how it has changed. We demonstrate in two proof-of-concept settings (reporting hidden behaviors and summarizing finetuned knowledge) that our method enables models to describe their finetuning-induced modifications using accurate natural language descriptions.
comment: The weight diffs and DIT adapters trained in the paper can be found at https://huggingface.co/diff-interpretation-tuning/loras
☆ MICROTRIPS: MICRO-geography TRavel Intelligence and Pattern Synthesis
This study presents a novel small-area estimation framework to enhance urban transportation planning through detailed characterization of travel behavior. Our approach improves on the four-step travel model by employing publicly available microdata files and machine learning methods to predict travel behavior for a representative, synthetic population at small geographic areas. This approach enables high-resolution estimation of trip generation, trip distribution, mode choice, and route assignment. Validation using ACS/PUMS work-commute datasets demonstrates that our framework achieves higher accuracy compared to conventional approaches. The resulting granular insights enable the tailoring of interventions to address localized situations and support a range of policy applications and targeted interventions, including the optimal placement of micro-fulfillment centers, effective curb-space management, and the design of more inclusive transportation solutions particularly for vulnerable communities.
ResMimic: From General Motion Tracking to Humanoid Whole-body Loco-Manipulation via Residual Learning
Humanoid whole-body loco-manipulation promises transformative capabilities for daily service and warehouse tasks. While recent advances in general motion tracking (GMT) have enabled humanoids to reproduce diverse human motions, these policies lack the precision and object awareness required for loco-manipulation. To this end, we introduce ResMimic, a two-stage residual learning framework for precise and expressive humanoid control from human motion data. First, a GMT policy, trained on large-scale human-only motion, serves as a task-agnostic base for generating human-like whole-body movements. An efficient but precise residual policy is then learned to refine the GMT outputs to improve locomotion and incorporate object interaction. To further facilitate efficient training, we design (i) a point-cloud-based object tracking reward for smoother optimization, (ii) a contact reward that encourages accurate humanoid body-object interactions, and (iii) a curriculum-based virtual object controller to stabilize early training. We evaluate ResMimic in both simulation and on a real Unitree G1 humanoid. Results show substantial gains in task success, training efficiency, and robustness over strong baselines. Videos are available at https://resmimic.github.io/ .
comment: 9 pages, 8 figures
☆ Boomerang Distillation Enables Zero-Shot Model Size Interpolation
Large language models (LLMs) are typically deployed under diverse memory and compute constraints. Existing approaches build model families by training each size independently, which is prohibitively expensive and provides only coarse-grained size options. In this work, we identify a novel phenomenon that we call boomerang distillation: starting from a large base model (the teacher), one first distills down to a small student and then progressively reconstructs intermediate-sized models by re-incorporating blocks of teacher layers into the student without any additional training. This process produces zero-shot interpolated models of many intermediate sizes whose performance scales smoothly between the student and teacher, often matching or surpassing pretrained or distilled models of the same size. We further analyze when this type of interpolation succeeds, showing that alignment between teacher and student through pruning and distillation is essential. Boomerang distillation thus provides a simple and efficient way to generate fine-grained model families, dramatically reducing training cost while enabling flexible adaptation across deployment environments. The code and models are available at https://github.com/dcml-lab/boomerang-distillation.
comment: 10 pages, 7 figures in main text
☆ ResCP: Reservoir Conformal Prediction for Time Series Forecasting
Conformal prediction offers a powerful framework for building distribution-free prediction intervals for exchangeable data. Existing methods that extend conformal prediction to sequential data rely on fitting a relatively complex model to capture temporal dependencies. However, these methods can fail if the sample size is small and often require expensive retraining when the underlying data distribution changes. To overcome these limitations, we propose Reservoir Conformal Prediction (ResCP), a novel training-free conformal prediction method for time series. Our approach leverages the efficiency and representation learning capabilities of reservoir computing to dynamically reweight conformity scores. In particular, we compute similarity scores among reservoir states and use them to adaptively reweight the observed residuals at each step. With this approach, ResCP enables us to account for local temporal dynamics when modeling the error distribution without compromising computational scalability. We prove that, under reasonable assumptions, ResCP achieves asymptotic conditional coverage, and we empirically demonstrate its effectiveness across diverse forecasting tasks.
☆ Modeling Student Learning with 3.8 Million Program Traces
As programmers write code, they often edit and retry multiple times, creating rich "interaction traces" that reveal how they approach coding tasks and provide clues about their level of skill development. For novice programmers in particular, these traces reflect the diverse reasoning processes they employ to code, such as exploratory behavior to understand how a programming concept works, re-strategizing in response to bugs, and personalizing stylistic choices. In this work, we explore what can be learned from training language models on such reasoning traces: not just about code, but about coders, and particularly students learning to program. We introduce a dataset of over 3.8 million programming reasoning traces from users of Pencil Code, a free online educational platform used by students to learn simple programming concepts. Compared to models trained only on final programs or synthetically-generated traces, we find that models trained on real traces are stronger at modeling diverse student behavior. Through both behavioral and probing analyses, we also find that many properties of code traces, such as goal backtracking or number of comments, can be predicted from learned representations of the students who write them. Building on this result, we show that we can help students recover from mistakes by steering code generation models to identify a sequence of edits that will results in more correct code while remaining close to the original student's style. Together, our results suggest that many properties of code are properties of individual students and that training on edit traces can lead to models that are more steerable, more predictive of student behavior while programming, and better at generating programs in their final states. Code and data is available at https://github.com/meghabyte/pencilcode-public
☆ HybridFlow: Quantification of Aleatoric and Epistemic Uncertainty with a Single Hybrid Model
Uncertainty quantification is critical for ensuring robustness in high-stakes machine learning applications. We introduce HybridFlow, a modular hybrid architecture that unifies the modeling of aleatoric and epistemic uncertainty by combining a Conditional Masked Autoregressive normalizing flow for estimating aleatoric uncertainty with a flexible probabilistic predictor for epistemic uncertainty. The framework supports integration with any probabilistic model class, allowing users to easily adapt HybridFlow to existing architectures without sacrificing predictive performance. HybridFlow improves upon previous uncertainty quantification frameworks across a range of regression tasks, such as depth estimation, a collection of regression benchmarks, and a scientific case study of ice sheet emulation. We also provide empirical results of the quantified uncertainty, showing that the uncertainty quantified by HybridFlow is calibrated and better aligns with model error than existing methods for quantifying aleatoric and epistemic uncertainty. HybridFlow addresses a key challenge in Bayesian deep learning, unifying aleatoric and epistemic uncertainty modeling in a single robust framework.
comment: Reviewed and published in TMLR at https://openreview.net/forum?id=xRiEdSyVjY
☆ KEEP: Integrating Medical Ontologies with Clinical Data for Robust Code Embeddings
Machine learning in healthcare requires effective representation of structured medical codes, but current methods face a trade off: knowledge graph based approaches capture formal relationships but miss real world patterns, while data driven methods learn empirical associations but often overlook structured knowledge in medical terminologies. We present KEEP (Knowledge preserving and Empirically refined Embedding Process), an efficient framework that bridges this gap by combining knowledge graph embeddings with adaptive learning from clinical data. KEEP first generates embeddings from knowledge graphs, then employs regularized training on patient records to adaptively integrate empirical patterns while preserving ontological relationships. Importantly, KEEP produces final embeddings without task specific auxiliary or end to end training enabling KEEP to support multiple downstream applications and model architectures. Evaluations on structured EHR from UK Biobank and MIMIC IV demonstrate that KEEP outperforms both traditional and Language Model based approaches in capturing semantic relationships and predicting clinical outcomes. Moreover, KEEP's minimal computational requirements make it particularly suitable for resource constrained environments.
☆ A Unified Optimization Framework for Multiclass Classification with Structured Hyperplane Arrangements
In this paper, we propose a new mathematical optimization model for multiclass classification based on arrangements of hyperplanes. Our approach preserves the core support vector machine (SVM) paradigm of maximizing class separation while minimizing misclassification errors, and it is computationally more efficient than a previous formulation. We present a kernel-based extension that allows it to construct nonlinear decision boundaries. Furthermore, we show how the framework can naturally incorporate alternative geometric structures, including classification trees, $\ell_p$-SVMs, and models with discrete feature selection. To address large-scale instances, we develop a dynamic clustering matheuristic that leverages the proposed MIP formulation. Extensive computational experiments demonstrate the efficiency of the proposed model and dynamic clustering heuristic, and we report competitive classification performance on both synthetic datasets and real-world benchmarks from the UCI Machine Learning Repository, comparing our method with state-of-the-art implementations available in scikit-learn.
comment: 28 pages, 2 tables, 9 figures
☆ Test-Time Scaling in Diffusion LLMs via Hidden Semi-Autoregressive Experts
Diffusion-based large language models (dLLMs) are trained flexibly to model extreme dependence in the data distribution; however, how to best utilize this information at inference time remains an open problem. In this work, we uncover an interesting property of these models: dLLMs trained on textual data implicitly learn a mixture of semi-autoregressive experts, where different generation orders reveal different specialized behaviors. We show that committing to any single, fixed inference time schedule, a common practice, collapses performance by failing to leverage this latent ensemble. To address this, we introduce HEX (Hidden semiautoregressive EXperts for test-time scaling), a training-free inference method that ensembles across heterogeneous block schedules. By doing a majority vote over diverse block-sized generation paths, HEX robustly avoids failure modes associated with any single fixed schedule. On reasoning benchmarks such as GSM8K, it boosts accuracy by up to 3.56X (from 24.72% to 88.10%), outperforming top-K margin inference and specialized fine-tuned methods like GRPO, without additional training. HEX even yields significant gains on MATH benchmark from 16.40% to 40.00%, scientific reasoning on ARC-C from 54.18% to 87.80%, and TruthfulQA from 28.36% to 57.46%. Our results establish a new paradigm for test-time scaling in diffusion-based LLMs (dLLMs), revealing that the sequence in which masking is performed plays a critical role in determining performance during inference.
Graph-Aware Diffusion for Signal Generation
We study the problem of generating graph signals from unknown distributions defined over given graphs, relevant to domains such as recommender systems or sensor networks. Our approach builds on generative diffusion models, which are well established in vision and graph generation but remain underexplored for graph signals. Existing methods lack generality, either ignoring the graph structure in the forward process or designing graph-aware mechanisms tailored to specific domains. We adopt a forward process that incorporates the graph through the heat equation. Rather than relying on the standard formulation, we consider a time-warped coefficient to mitigate the exponential decay of the drift term, yielding a graph-aware generative diffusion model (GAD). We analyze its forward dynamics, proving convergence to a Gaussian Markov random field with covariance parametrized by the graph Laplacian, and interpret the backward dynamics as a sequence of graph-signal denoising problems. Finally, we demonstrate the advantages of GAD on synthetic data, real traffic speed measurements, and a temperature sensor network.
☆ Causal Abstractions, Categorically Unified
We present a categorical framework for relating causal models that represent the same system at different levels of abstraction. We define a causal abstraction as natural transformations between appropriate Markov functors, which concisely consolidate desirable properties a causal abstraction should exhibit. Our approach unifies and generalizes previously considered causal abstractions, and we obtain categorical proofs and generalizations of existing results on causal abstractions. Using string diagrammatical tools, we can explicitly describe the graphs that serve as consistent abstractions of a low-level graph under interventions. We discuss how methods from mechanistic interpretability, such as circuit analysis and sparse autoencoders, fit within our categorical framework. We also show how applying do-calculus on a high-level graphical abstraction of an acyclic-directed mixed graph (ADMG), when unobserved confounders are present, gives valid results on the low-level graph, thus generalizing an earlier statement by Anand et al. (2023). We argue that our framework is more suitable for modeling causal abstractions compared to existing categorical frameworks. Finally, we discuss how notions such as $\tau$-consistency and constructive $\tau$-abstractions can be recovered with our framework.
☆ Inoculation Prompting: Instructing LLMs to misbehave at train-time improves test-time alignment
Large language models are sometimes trained with imperfect oversight signals, leading to undesired behaviors such as reward hacking and sycophancy. Improving oversight quality can be expensive or infeasible, motivating methods that improve learned behavior despite an imperfect training signal. We introduce Inoculation Prompting (IP), a simple but counterintuitive technique that prevents learning of an undesired behavior by modifying training prompts to explicitly request it. For example, to inoculate against reward hacking, we modify the prompts used in supervised fine-tuning to request code that only works on provided test cases but fails on other inputs. Across four settings we find that IP reduces the learning of undesired behavior without substantially reducing the learning of desired capabilities. We also show that prompts which more strongly elicit the undesired behavior prior to fine-tuning more effectively inoculate against the behavior when used during training; this serves as a heuristic to identify promising inoculation prompts. Overall, IP is a simple yet effective way to control how models generalize from fine-tuning, preventing learning of undesired behaviors without substantially disrupting desired capabilities.
☆ Rethinking Langevin Thompson Sampling from A Stochastic Approximation Perspective
Most existing approximate Thompson Sampling (TS) algorithms for multi-armed bandits use Stochastic Gradient Langevin Dynamics (SGLD) or its variants in each round to sample from the posterior, relaxing the need for conjugacy assumptions between priors and reward distributions in vanilla TS. However, they often require approximating a different posterior distribution in different round of the bandit problem. This requires tricky, round-specific tuning of hyperparameters such as dynamic learning rates, causing challenges in both theoretical analysis and practical implementation. To alleviate this non-stationarity, we introduce TS-SA, which incorporates stochastic approximation (SA) within the TS framework. In each round, TS-SA constructs a posterior approximation only using the most recent reward(s), performs a Langevin Monte Carlo (LMC) update, and applies an SA step to average noisy proposals over time. This can be interpreted as approximating a stationary posterior target throughout the entire algorithm, which further yields a fixed step-size, a unified convergence analysis framework, and improved posterior estimates through temporal averaging. We establish near-optimal regret bounds for TS-SA, with a simplified and more intuitive theoretical analysis enabled by interpreting the entire algorithm as a simulation of a stationary SGLD process. Our empirical results demonstrate that even a single-step Langevin update with certain warm-up outperforms existing methods substantially on bandit tasks.
comment: 39 pages, 3 figures, 2 tables
☆ Think Then Embed: Generative Context Improves Multimodal Embedding
There is a growing interest in Universal Multimodal Embeddings (UME), where models are required to generate task-specific representations. While recent studies show that Multimodal Large Language Models (MLLMs) perform well on such tasks, they treat MLLMs solely as encoders, overlooking their generative capacity. However, such an encoding paradigm becomes less effective as instructions become more complex and require compositional reasoning. Inspired by the proven effectiveness of chain-of-thought reasoning, we propose a general Think-Then-Embed (TTE) framework for UME, composed of a reasoner and an embedder. The reasoner MLLM first generates reasoning traces that explain complex queries, followed by an embedder that produces representations conditioned on both the original query and the intermediate reasoning. This explicit reasoning step enables more nuanced understanding of complex multimodal instructions. Our contributions are threefold. First, by leveraging a powerful MLLM reasoner, we achieve state-of-the-art performance on the MMEB-V2 benchmark, surpassing proprietary models trained on massive in-house datasets. Second, to reduce the dependency on large MLLM reasoners, we finetune a smaller MLLM reasoner using high-quality embedding-centric reasoning traces, achieving the best performance among open-source models with a 7% absolute gain over recently proposed models. Third, we investigate strategies for integrating the reasoner and embedder into a unified model for improved efficiency without sacrificing performance.
☆ Curiosity-Driven Co-Development of Action and Language in Robots Through Self-Exploration
Human infants acquire language and action co-developmentally, achieving remarkable generalization capabilities from only a minimal number of learning examples. In contrast, recent large language models require exposure to billions of training tokens to achieve such generalization. What mechanisms underlie such efficient developmental learning in humans? This study addresses this question through simulation experiments in which robots learn to perform various actions corresponding to imperative sentences (e.g., \textit{push red cube}) via trials of self-guided exploration. Our approach integrates the active inference framework with reinforcement learning, enabling curiosity-driven developmental learning. The simulations yielded several nontrivial findings: i) Curiosity-driven exploration combined with motor noise substantially outperforms learning without curiosity. ii) Simpler, prerequisite-like actions emerge earlier in development, while more complex actions involving these prerequisites develop later. iii) Rote pairing of sentences and actions occurs before the emergence of compositional generalization. iv) Generalization is drastically improved as the number of compositional elements increases. These results shed light into possible mechanisms underlying efficient co-developmental learning in infants and provide computational parallels to findings in developmental psychology.
comment: 26 pages, 14 pages of supplementary material
☆ Latent Uncertainty Representations for Video-based Driver Action and Intention Recognition
Deep neural networks (DNNs) are increasingly applied to safety-critical tasks in resource-constrained environments, such as video-based driver action and intention recognition. While last layer probabilistic deep learning (LL-PDL) methods can detect out-of-distribution (OOD) instances, their performance varies. As an alternative to last layer approaches, we propose extending pre-trained DNNs with transformation layers to produce multiple latent representations to estimate the uncertainty. We evaluate our latent uncertainty representation (LUR) and repulsively trained LUR (RLUR) approaches against eight PDL methods across four video-based driver action and intention recognition datasets, comparing classification performance, calibration, and uncertainty-based OOD detection. We also contribute 28,000 frame-level action labels and 1,194 video-level intention labels for the NuScenes dataset. Our results show that LUR and RLUR achieve comparable in-distribution classification performance to other LL-PDL approaches. For uncertainty-based OOD detection, LUR matches top-performing PDL methods while being more efficient to train and easier to tune than approaches that require Markov-Chain Monte Carlo sampling or repulsive training procedures.
comment: 16 pages, 8 figures, 7 tables, under submission
☆ Reinforce-Ada: An Adaptive Sampling Framework for Reinforce-Style LLM Training
Reinforcement learning applied to large language models (LLMs) for reasoning tasks is often bottlenecked by unstable gradient estimates due to fixed and uniform sampling of responses across prompts. Prior work such as GVM-RAFT addresses this by dynamically allocating inference budget per prompt to minimize stochastic gradient variance under a budget constraint. Inspired by this insight, we propose Reinforce-Ada, an adaptive sampling framework for online RL post-training of LLMs that continuously reallocates sampling effort to the prompts with the greatest uncertainty or learning potential. Unlike conventional two-stage allocation methods, Reinforce-Ada interleaves estimation and sampling in an online successive elimination process, and automatically stops sampling for a prompt once sufficient signal is collected. To stabilize updates, we form fixed-size groups with enforced reward diversity and compute advantage baselines using global statistics aggregated over the adaptive sampling phase. Empirical results across multiple model architectures and reasoning benchmarks show that Reinforce-Ada accelerates convergence and improves final performance compared to GRPO, especially when using the balanced sampling variant. Our work highlights the central role of variance-aware, adaptive data curation in enabling efficient and reliable reinforcement learning for reasoning-capable LLMs. Code is available at https://github.com/RLHFlow/Reinforce-Ada.
comment: 16 pages, 6 figures
☆ Power Transform Revisited: Numerically Stable, and Federated
Power transforms are popular parametric techniques for making data more Gaussian-like, and are widely used as preprocessing steps in statistical analysis and machine learning. However, we find that direct implementations of power transforms suffer from severe numerical instabilities, which can lead to incorrect results or even crashes. In this paper, we provide a comprehensive analysis of the sources of these instabilities and propose effective remedies. We further extend power transforms to the federated learning setting, addressing both numerical and distributional challenges that arise in this context. Experiments on real-world datasets demonstrate that our methods are both effective and robust, substantially improving stability compared to existing approaches.
comment: 25 pages
☆ Adaptive Memory Momentum via a Model-Based Framework for Deep Learning Optimization
The vast majority of modern deep learning models are trained with momentum-based first-order optimizers. The momentum term governs the optimizer's memory by determining how much each past gradient contributes to the current convergence direction. Fundamental momentum methods, such as Nesterov Accelerated Gradient and the Heavy Ball method, as well as more recent optimizers such as AdamW and Lion, all rely on the momentum coefficient that is customarily set to $\beta = 0.9$ and kept constant during model training, a strategy widely used by practitioners, yet suboptimal. In this paper, we introduce an \textit{adaptive memory} mechanism that replaces constant momentum with a dynamic momentum coefficient that is adjusted online during optimization. We derive our method by approximating the objective function using two planes: one derived from the gradient at the current iterate and the other obtained from the accumulated memory of the past gradients. To the best of our knowledge, such a proximal framework was never used for momentum-based optimization. Our proposed approach is novel, extremely simple to use, and does not rely on extra assumptions or hyperparameter tuning. We implement adaptive memory variants of both SGD and AdamW across a wide range of learning tasks, from simple convex problems to large-scale deep learning scenarios, demonstrating that our approach can outperform standard SGD and Adam with hand-tuned momentum coefficients. Finally, our work opens doors for new ways of inducing adaptivity in optimization.
☆ Federated Computation of ROC and PR Curves
Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves are fundamental tools for evaluating machine learning classifiers, offering detailed insights into the trade-offs between true positive rate vs. false positive rate (ROC) or precision vs. recall (PR). However, in Federated Learning (FL) scenarios, where data is distributed across multiple clients, computing these curves is challenging due to privacy and communication constraints. Specifically, the server cannot access raw prediction scores and class labels, which are used to compute the ROC and PR curves in a centralized setting. In this paper, we propose a novel method for approximating ROC and PR curves in a federated setting by estimating quantiles of the prediction score distribution under distributed differential privacy. We provide theoretical bounds on the Area Error (AE) between the true and estimated curves, demonstrating the trade-offs between approximation accuracy, privacy, and communication cost. Empirical results on real-world datasets demonstrate that our method achieves high approximation accuracy with minimal communication and strong privacy guarantees, making it practical for privacy-preserving model evaluation in federated systems.
comment: 23 pages
☆ StructuralDecompose: A Modular Framework for Robust Time Series Decomposition in R
We present StructuralDecompose, an R package for modular and interpretable time series decomposition. Unlike existing approaches that treat decomposition as a monolithic process, StructuralDecompose separates the analysis into distinct components: changepoint detection, anomaly detection, smoothing, and decomposition. This design provides flexibility and robust- ness, allowing users to tailor methods to specific time series characteristics. We demonstrate the package on simulated and real-world datasets, benchmark its performance against state-of-the- art tools such as Rbeast and autostsm, and discuss its role in interpretable machine learning workflows.
comment: 8 pages, 4 figures. Part of the R package StructuralDecompose (https://cran.r-project.org/web/packages/StructuralDecompose/index.html)
☆ Pivotal CLTs for Pseudolikelihood via Conditional Centering in Dependent Random Fields
In this paper, we study fluctuations of conditionally centered statistics of the form $$N^{-1/2}\sum_{i=1}^N c_i(g(\sigma_i)-\mathbb{E}_N[g(\sigma_i)|\sigma_j,j\neq i])$$ where $(\sigma_1,\ldots ,\sigma_N)$ are sampled from a dependent random field, and $g$ is some bounded function. Our first main result shows that under weak smoothness assumptions on the conditional means (which cover both sparse and dense interactions), the above statistic converges to a Gaussian \emph{scale mixture} with a random scale determined by a \emph{quadratic variance} and an \emph{interaction component}. We also show that under appropriate studentization, the limit becomes a pivotal Gaussian. We leverage this theory to develop a general asymptotic framework for maximum pseudolikelihood (MPLE) inference in dependent random fields. We apply our results to Ising models with pairwise as well as higher-order interactions and exponential random graph models (ERGMs). In particular, we obtain a joint central limit theorem for the inverse temperature and magnetization parameters via the joint MPLE (to our knowledge, the first such result in dense, irregular regimes), and we derive conditionally centered edge CLTs and marginal MPLE CLTs for ERGMs without restricting to the ``sub-critical" region. Our proof is based on a method of moments approach via combinatorial decision-tree pruning, which may be of independent interest.
comment: 73 pages, 1 figure
☆ Embracing Discrete Search: A Reasonable Approach to Causal Structure Learning
We present FLOP (Fast Learning of Order and Parents), a score-based causal discovery algorithm for linear models. It pairs fast parent selection with iterative Cholesky-based score updates, cutting run-times over prior algorithms. This makes it feasible to fully embrace discrete search, enabling iterated local search with principled order initialization to find graphs with scores at or close to the global optimum. The resulting structures are highly accurate across benchmarks, with near-perfect recovery in standard settings. This performance calls for revisiting discrete search over graphs as a reasonable approach to causal discovery.
☆ Feasibility-Aware Decision-Focused Learning for Predicting Parameters in the Constraints
When some parameters of a constrained optimization problem (COP) are uncertain, this gives rise to a predict-then-optimize (PtO) problem, comprising two stages -- the prediction of the unknown parameters from contextual information and the subsequent optimization using those predicted parameters. Decision-focused learning (DFL) implements the first stage by training a machine learning (ML) model to optimize the quality of the decisions made using the predicted parameters. When parameters in the constraints of a COP are predicted, the predicted parameters can lead to infeasible solutions. Therefore, it is important to simultaneously manage both feasibility and decision quality. We develop a DFL framework for predicting constraint parameters in a generic COP. While prior works typically assume that the underlying optimization problem is a linear program (LP) or integer linear program (ILP), our approach makes no such assumption. We derive two novel loss functions based on maximum likelihood estimation (MLE): the first one penalizes infeasibility (by penalizing when the predicted parameters lead to infeasible solutions), and the second one penalizes suboptimal decisions (by penalizing when the true optimal solution is infeasible under the predicted parameters). We introduce a single tunable parameter to form a weighted average of the two losses, allowing decision-makers to balance suboptimality and feasibility. We experimentally demonstrate that adjusting this parameter provides a decision-maker the control over the trade-off between the two. Moreover, across several COP instances, we find that for a single value of the tunable parameter, our method matches the performance of the existing baselines on suboptimality and feasibility.
☆ Mind Your Tone: Investigating How Prompt Politeness Affects LLM Accuracy (short paper) ACL 2025
The wording of natural language prompts has been shown to influence the performance of large language models (LLMs), yet the role of politeness and tone remains underexplored. In this study, we investigate how varying levels of prompt politeness affect model accuracy on multiple-choice questions. We created a dataset of 50 base questions spanning mathematics, science, and history, each rewritten into five tone variants: Very Polite, Polite, Neutral, Rude, and Very Rude, yielding 250 unique prompts. Using ChatGPT 4o, we evaluated responses across these conditions and applied paired sample t-tests to assess statistical significance. Contrary to expectations, impolite prompts consistently outperformed polite ones, with accuracy ranging from 80.8% for Very Polite prompts to 84.8% for Very Rude prompts. These findings differ from earlier studies that associated rudeness with poorer outcomes, suggesting that newer LLMs may respond differently to tonal variation. Our results highlight the importance of studying pragmatic aspects of prompting and raise broader questions about the social dimensions of human-AI interaction.
comment: 5 pages, 3 tables; includes Limitations and Ethical Considerations sections; short paper under submission to Findings of ACL 2025
☆ On Structured State-Space Duality
Structured State-Space Duality (SSD) [Dao & Gu, ICML 2024] is an equivalence between a simple Structured State-Space Model (SSM) and a masked attention mechanism. In particular, a state-space model with a scalar-times-identity state matrix is equivalent to a masked self-attention with a $1$-semiseparable causal mask. Consequently, the same sequence transformation (model) has two algorithmic realizations: as a linear-time $O(T)$ recurrence or as a quadratic-time $O(T^2)$ attention. In this note, we formalize and generalize this duality: (i) we extend SSD from the scalar-identity case to general diagonal SSMs (diagonal state matrices); (ii) we show that these diagonal SSMs match the scalar case's training complexity lower bounds while supporting richer dynamics; (iii) we establish a necessary and sufficient condition under which an SSM is equivalent to $1$-semiseparable masked attention; and (iv) we show that such duality fails to extend to standard softmax attention due to rank explosion. Together, these results tighten bridge between recurrent SSMs and Transformers, and widen the design space for expressive yet efficient sequence models.
Unsupervised Active Learning via Natural Feature Progressive Framework
The effectiveness of modern deep learning models is predicated on the availability of large-scale, human-annotated datasets, a process that is notoriously expensive and time-consuming. While Active Learning (AL) offers a strategic solution by labeling only the most informative and representative data, its iterative nature still necessitates significant human involvement. Unsupervised Active Learning (UAL) presents an alternative by shifting the annotation burden to a single, post-selection step. Unfortunately, prevailing UAL methods struggle to achieve state-of-the-art performance. These approaches typically rely on local, gradient-based scoring for sample importance estimation, which not only makes them vulnerable to ambiguous and noisy data but also hinders their capacity to select samples that adequately represent the full data distribution. Moreover, their use of shallow, one-shot linear selection falls short of a true UAL paradigm. In this paper, we propose the Natural Feature Progressive Framework (NFPF), a UAL method that revolutionizes how sample importance is measured. At its core, NFPF employs a Specific Feature Learning Machine (SFLM) to effectively quantify each sample's contribution to model performance. We further utilize the SFLM to define a powerful Reconstruction Difference metric for initial sample selection. Our comprehensive experiments show that NFPF significantly outperforms all established UAL methods and achieves performance on par with supervised AL methods on vision datasets. Detailed ablation studies and qualitative visualizations provide compelling evidence for NFPF's superior performance, enhanced robustness, and improved data distribution coverage.
comment: Under review at IEEE TPAMI
☆ ONNX-Net: Towards Universal Representations and Instant Performance Prediction for Neural Architectures
Neural architecture search (NAS) automates the design process of high-performing architectures, but remains bottlenecked by expensive performance evaluation. Most existing studies that achieve faster evaluation are mostly tied to cell-based search spaces and graph encodings tailored to those individual search spaces, limiting their flexibility and scalability when applied to more expressive search spaces. In this work, we aim to close the gap of individual search space restrictions and search space dependent network representations. We present ONNX-Bench, a benchmark consisting of a collection of neural networks in a unified format based on ONNX files. ONNX-Bench includes all open-source NAS-bench-based neural networks, resulting in a total size of more than 600k {architecture, accuracy} pairs. This benchmark allows creating a shared neural network representation, ONNX-Net, able to represent any neural architecture using natural language descriptions acting as an input to a performance predictor. This text-based encoding can accommodate arbitrary layer types, operation parameters, and heterogeneous topologies, enabling a single surrogate to generalise across all neural architectures rather than being confined to cell-based search spaces. Experiments show strong zero-shot performance across disparate search spaces using only a small amount of pretraining samples, enabling the unprecedented ability to evaluate any neural network architecture instantly.
comment: Our code is available at: https://github.com/shiwenqin/ONNX-Net
☆ MARS: Optimizing Dual-System Deep Research via Multi-Agent Reinforcement Learning
Large Reasoning Models (LRMs) often exhibit a tendency for overanalysis in simple tasks, where the models excessively utilize System 2-type, deliberate reasoning, leading to inefficient token generation. Furthermore, these models face challenges in adapting their reasoning capabilities to rapidly changing environments due to the static nature of their pretraining data. To address these issues, advancing Large Language Models (LLMs) for complex reasoning tasks requires innovative approaches that bridge intuitive and deliberate cognitive processes, akin to human cognition's dual-system dynamic. This paper introduces a Multi-Agent System for Deep ReSearch (MARS) enabling seamless integration of System 1's fast, intuitive thinking with System 2's deliberate reasoning within LLMs. MARS strategically integrates multiple external tools, such as Google Search, Google Scholar, and Python Interpreter, to access up-to-date information and execute complex computations, while creating a specialized division of labor where System 1 efficiently processes and summarizes high-volume external information, providing distilled insights that expand System 2's reasoning context without overwhelming its capacity. Furthermore, we propose a multi-agent reinforcement learning framework extending Group Relative Policy Optimization to simultaneously optimize both systems with multi-turn tool interactions, bin-packing optimization, and sample balancing strategies that enhance collaborative efficiency. Extensive experiments demonstrate MARS achieves substantial improvements of 3.86% on the challenging Humanity's Last Exam (HLE) benchmark and an average gain of 8.9% across 7 knowledge-intensive tasks, validating the effectiveness of our dual-system paradigm for complex reasoning in dynamic information environments.
comment: Ongoing Work
☆ The Geometry of Truth: Layer-wise Semantic Dynamics for Hallucination Detection in Large Language Models
Large Language Models (LLMs) often produce fluent yet factually incorrect statements-a phenomenon known as hallucination-posing serious risks in high-stakes domains. We present Layer-wise Semantic Dynamics (LSD), a geometric framework for hallucination detection that analyzes the evolution of hidden-state semantics across transformer layers. Unlike prior methods that rely on multiple sampling passes or external verification sources, LSD operates intrinsically within the model's representational space. Using margin-based contrastive learning, LSD aligns hidden activations with ground-truth embeddings derived from a factual encoder, revealing a distinct separation in semantic trajectories: factual responses preserve stable alignment, while hallucinations exhibit pronounced semantic drift across depth. Evaluated on the TruthfulQA and synthetic factual-hallucination datasets, LSD achieves an F1-score of 0.92, AUROC of 0.96, and clustering accuracy of 0.89, outperforming SelfCheckGPT and Semantic Entropy baselines while requiring only a single forward pass. This efficiency yields a 5-20x speedup over sampling-based methods without sacrificing precision or interpretability. LSD offers a scalable, model-agnostic mechanism for real-time hallucination monitoring and provides new insights into the geometry of factual consistency within large language models.
comment: Comments: 14 pages, 14 figures, 5 tables. Code available at: https://github.com/sirraya-tech/Sirraya_LSD_Code
☆ Egalitarian Gradient Descent: A Simple Approach to Accelerated Grokking
Grokking is the phenomenon whereby, unlike the training performance, which peaks early in the training process, the test/generalization performance of a model stagnates over arbitrarily many epochs and then suddenly jumps to usually close to perfect levels. In practice, it is desirable to reduce the length of such plateaus, that is to make the learning process "grok" faster. In this work, we provide new insights into grokking. First, we show both empirically and theoretically that grokking can be induced by asymmetric speeds of (stochastic) gradient descent, along different principal (i.e singular directions) of the gradients. We then propose a simple modification that normalizes the gradients so that dynamics along all the principal directions evolves at exactly the same speed. Then, we establish that this modified method, which we call egalitarian gradient descent (EGD) and can be seen as a carefully modified form of natural gradient descent, groks much faster. In fact, in some cases the stagnation is completely removed. Finally, we empirically show that on classical arithmetic problems such as modular addition and sparse parity problem which this stagnation has been widely observed and intensively studied, that our proposed method eliminates the plateaus.
☆ Federated Self-Supervised Learning for Automatic Modulation Classification under Non-IID and Class-Imbalanced Data
Training automatic modulation classification (AMC) models on centrally aggregated data raises privacy concerns, incurs communication overhead, and often fails to confer robustness to channel shifts. Federated learning (FL) avoids central aggregation by training on distributed clients but remains sensitive to class imbalance, non-IID client distributions, and limited labeled samples. We propose FedSSL-AMC, which trains a causal, time-dilated CNN with triplet-loss self-supervision on unlabeled I/Q sequences across clients, followed by per-client SVMs on small labeled sets. We establish convergence of the federated representation learning procedure and a separability guarantee for the downstream classifier under feature noise. Experiments on synthetic and over-the-air datasets show consistent gains over supervised FL baselines under heterogeneous SNR, carrier-frequency offsets, and non-IID label partitions.
☆ Set to Be Fair: Demographic Parity Constraints for Set-Valued Classification
Set-valued classification is used in multiclass settings where confusion between classes can occur and lead to misleading predictions. However, its application may amplify discriminatory bias motivating the development of set-valued approaches under fairness constraints. In this paper, we address the problem of set-valued classification under demographic parity and expected size constraints. We propose two complementary strategies: an oracle-based method that minimizes classification risk while satisfying both constraints, and a computationally efficient proxy that prioritizes constraint satisfaction. For both strategies, we derive closed-form expressions for the (optimal) fair set-valued classifiers and use these to build plug-in, data-driven procedures for empirical predictions. We establish distribution-free convergence rates for violations of the size and fairness constraints for both methods, and under mild assumptions we also provide excess-risk bounds for the oracle-based approach. Empirical results demonstrate the effectiveness of both strategies and highlight the efficiency of our proxy method.
☆ Comparative Analysis of YOLOv5, Faster R-CNN, SSD, and RetinaNet for Motorbike Detection in Kigali Autonomous Driving Context
In Kigali, Rwanda, motorcycle taxis are a primary mode of transportation, often navigating unpredictably and disregarding traffic rules, posing significant challenges for autonomous driving systems. This study compares four object detection models--YOLOv5, Faster R-CNN, SSD, and RetinaNet--for motorbike detection using a custom dataset of 198 images collected in Kigali. Implemented in PyTorch with transfer learning, the models were evaluated for accuracy, localization, and inference speed to assess their suitability for real-time navigation in resource-constrained settings. We identify implementation challenges, including dataset limitations and model complexities, and recommend simplified architectures for future work to enhance accessibility for autonomous systems in developing countries like Rwanda.
comment: 3 figures, 2 tables
☆ Glocal Information Bottleneck for Time Series Imputation
Time Series Imputation (TSI), which aims to recover missing values in temporal data, remains a fundamental challenge due to the complex and often high-rate missingness in real-world scenarios. Existing models typically optimize the point-wise reconstruction loss, focusing on recovering numerical values (local information). However, we observe that under high missing rates, these models still perform well in the training phase yet produce poor imputations and distorted latent representation distributions (global information) in the inference phase. This reveals a critical optimization dilemma: current objectives lack global guidance, leading models to overfit local noise and fail to capture global information of the data. To address this issue, we propose a new training paradigm, Glocal Information Bottleneck (Glocal-IB). Glocal-IB is model-agnostic and extends the standard IB framework by introducing a Global Alignment loss, derived from a tractable mutual information approximation. This loss aligns the latent representations of masked inputs with those of their originally observed counterparts. It helps the model retain global structure and local details while suppressing noise caused by missing values, giving rise to better generalization under high missingness. Extensive experiments on nine datasets confirm that Glocal-IB leads to consistently improved performance and aligned latent representations under missingness. Our code implementation is available in https://github.com/Muyiiiii/NeurIPS-25-Glocal-IB.
☆ How Different from the Past? Spatio-Temporal Time Series Forecasting with Self-Supervised Deviation Learning NeurIPS 2025
Spatio-temporal forecasting is essential for real-world applications such as traffic management and urban computing. Although recent methods have shown improved accuracy, they often fail to account for dynamic deviations between current inputs and historical patterns. These deviations contain critical signals that can significantly affect model performance. To fill this gap, we propose ST-SSDL, a Spatio-Temporal time series forecasting framework that incorporates a Self-Supervised Deviation Learning scheme to capture and utilize such deviations. ST-SSDL anchors each input to its historical average and discretizes the latent space using learnable prototypes that represent typical spatio-temporal patterns. Two auxiliary objectives are proposed to refine this structure: a contrastive loss that enhances inter-prototype discriminability and a deviation loss that regularizes the distance consistency between input representations and corresponding prototypes to quantify deviation. Optimized jointly with the forecasting objective, these components guide the model to organize its hidden space and improve generalization across diverse input conditions. Experiments on six benchmark datasets show that ST-SSDL consistently outperforms state-of-the-art baselines across multiple metrics. Visualizations further demonstrate its ability to adaptively respond to varying levels of deviation in complex spatio-temporal scenarios. Our code and datasets are available at https://github.com/Jimmy-7664/ST-SSDL.
comment: Accepted at NeurIPS 2025
☆ Focused Skill Discovery: Learning to Control Specific State Variables while Minimizing Side Effects
Skills are essential for unlocking higher levels of problem solving. A common approach to discovering these skills is to learn ones that reliably reach different states, thus empowering the agent to control its environment. However, existing skill discovery algorithms often overlook the natural state variables present in many reinforcement learning problems, meaning that the discovered skills lack control of specific state variables. This can significantly hamper exploration efficiency, make skills more challenging to learn with, and lead to negative side effects in downstream tasks when the goal is under-specified. We introduce a general method that enables these skill discovery algorithms to learn focused skills -- skills that target and control specific state variables. Our approach improves state space coverage by a factor of three, unlocks new learning capabilities, and automatically avoids negative side effects in downstream tasks.
comment: Reinforcement Learning Journal 2025
☆ Benchmarking M-LTSF: Frequency and Noise-Based Evaluation of Multivariate Long Time Series Forecasting Models
Understanding the robustness of deep learning models for multivariate long-term time series forecasting (M-LTSF) remains challenging, as evaluations typically rely on real-world datasets with unknown noise properties. We propose a simulation-based evaluation framework that generates parameterizable synthetic datasets, where each dataset instance corresponds to a different configuration of signal components, noise types, signal-to-noise ratios, and frequency characteristics. These configurable components aim to model real-world multivariate time series data without the ambiguity of unknown noise. This framework enables fine-grained, systematic evaluation of M-LTSF models under controlled and diverse scenarios. We benchmark four representative architectures S-Mamba (state-space), iTransformer (transformer-based), R-Linear (linear), and Autoformer (decomposition-based). Our analysis reveals that all models degrade severely when lookback windows cannot capture complete periods of seasonal patters in the data. S-Mamba and Autoformer perform best on sawtooth patterns, while R-Linear and iTransformer favor sinusoidal signals. White and Brownian noise universally degrade performance with lower signal-to-noise ratio while S-Mamba shows specific trend-noise and iTransformer shows seasonal-noise vulnerability. Further spectral analysis shows that S-Mamba and iTransformer achieve superior frequency reconstruction. This controlled approach, based on our synthetic and principle-driven testbed, offers deeper insights into model-specific strengths and limitations through the aggregation of MSE scores and provides concrete guidance for model selection based on signal characteristics and noise conditions.
comment: Number of pages: 13 Number of figures: 16 Number of Tables: 1 Submitted to: IEEE Transactions on Signal Processing
☆ HyperVLA: Efficient Inference in Vision-Language-Action Models via Hypernetworks
Built upon language and vision foundation models with strong generalization ability and trained on large-scale robotic data, Vision-Language-Action (VLA) models have recently emerged as a promising approach to learning generalist robotic policies. However, a key drawback of existing VLAs is their extremely high inference costs. In this paper, we propose HyperVLA to address this problem. Unlike existing monolithic VLAs that activate the whole model during both training and inference, HyperVLA uses a novel hypernetwork (HN)-based architecture that activates only a small task-specific policy during inference, while still retaining the high model capacity needed to accommodate diverse multi-task behaviors during training. Successfully training an HN-based VLA is nontrivial so HyperVLA contains several key algorithm design features that improve its performance, including properly utilizing the prior knowledge from existing vision foundation models, HN normalization, and an action generation strategy. Compared to monolithic VLAs, HyperVLA achieves a similar or even higher success rate for both zero-shot generalization and few-shot adaptation, while significantly reducing inference costs. Compared to OpenVLA, a state-of-the-art VLA model, HyperVLA reduces the number of activated parameters at test time by $90\times$, and accelerates inference speed by $120\times$. Code is publicly available at https://github.com/MasterXiong/HyperVLA
☆ SocialHarmBench: Revealing LLM Vulnerabilities to Socially Harmful Requests
Large language models (LLMs) are increasingly deployed in contexts where their failures can have direct sociopolitical consequences. Yet, existing safety benchmarks rarely test vulnerabilities in domains such as political manipulation, propaganda and disinformation generation, or surveillance and information control. We introduce SocialHarmBench, a dataset of 585 prompts spanning 7 sociopolitical categories and 34 countries, designed to surface where LLMs most acutely fail in politically charged contexts. Our evaluations reveal several shortcomings: open-weight models exhibit high vulnerability to harmful compliance, with Mistral-7B reaching attack success rates as high as 97% to 98% in domains such as historical revisionism, propaganda, and political manipulation. Moreover, temporal and geographic analyses show that LLMs are most fragile when confronted with 21st-century or pre-20th-century contexts, and when responding to prompts tied to regions such as Latin America, the USA, and the UK. These findings demonstrate that current safeguards fail to generalize to high-stakes sociopolitical settings, exposing systematic biases and raising concerns about the reliability of LLMs in preserving human rights and democratic values. We share the SocialHarmBench benchmark at https://huggingface.co/datasets/psyonp/SocialHarmBench.
☆ Revealing Interconnections between Diseases: from Statistical Methods to Large Language Models
Identifying disease interconnections through manual analysis of large-scale clinical data is labor-intensive, subjective, and prone to expert disagreement. While machine learning (ML) shows promise, three critical challenges remain: (1) selecting optimal methods from the vast ML landscape, (2) determining whether real-world clinical data (e.g., electronic health records, EHRs) or structured disease descriptions yield more reliable insights, (3) the lack of "ground truth," as some disease interconnections remain unexplored in medicine. Large language models (LLMs) demonstrate broad utility, yet they often lack specialized medical knowledge. To address these gaps, we conduct a systematic evaluation of seven approaches for uncovering disease relationships based on two data sources: (i) sequences of ICD-10 codes from MIMIC-IV EHRs and (ii) the full set of ICD-10 codes, both with and without textual descriptions. Our framework integrates the following: (i) a statistical co-occurrence analysis and a masked language modeling (MLM) approach using real clinical data; (ii) domain-specific BERT variants (Med-BERT and BioClinicalBERT); (iii) a general-purpose BERT and document retrieval; and (iv) four LLMs (Mistral, DeepSeek, Qwen, and YandexGPT). Our graph-based comparison of the obtained interconnection matrices shows that the LLM-based approach produces interconnections with the lowest diversity of ICD code connections to different diseases compared to other methods, including text-based and domain-based approaches. This suggests an important implication: LLMs have limited potential for discovering new interconnections. In the absence of ground truth databases for medical interconnections between ICD codes, our results constitute a valuable medical disease ontology that can serve as a foundational resource for future clinical research and artificial intelligence applications in healthcare.
☆ RL Is a Hammer and LLMs Are Nails: A Simple Reinforcement Learning Recipe for Strong Prompt Injection
Prompt injection poses a serious threat to the reliability and safety of LLM agents. Recent defenses against prompt injection, such as Instruction Hierarchy and SecAlign, have shown notable robustness against static attacks. However, to more thoroughly evaluate the robustness of these defenses, it is arguably necessary to employ strong attacks such as automated red-teaming. To this end, we introduce RL-Hammer, a simple recipe for training attacker models that automatically learn to perform strong prompt injections and jailbreaks via reinforcement learning. RL-Hammer requires no warm-up data and can be trained entirely from scratch. To achieve high ASRs against industrial-level models with defenses, we propose a set of practical techniques that enable highly effective, universal attacks. Using this pipeline, RL-Hammer reaches a 98% ASR against GPT-4o and a $72\%$ ASR against GPT-5 with the Instruction Hierarchy defense. We further discuss the challenge of achieving high diversity in attacks, highlighting how attacker models tend to reward-hack diversity objectives. Finally, we show that RL-Hammer can evade multiple prompt injection detectors. We hope our work advances automatic red-teaming and motivates the development of stronger, more principled defenses. Code is available at https://github.com/facebookresearch/rl-injector.
☆ CLEAR-IR: Clarity-Enhanced Active Reconstruction of Infrared Imagery
This paper presents a novel approach for enabling robust robotic perception in dark environments using infrared (IR) stream. IR stream is less susceptible to noise than RGB in low-light conditions. However, it is dominated by active emitter patterns that hinder high-level tasks such as object detection, tracking and localisation. To address this, a U-Net-based architecture is proposed that reconstructs clean IR images from emitter-populated input, improving both image quality and downstream robotic performance. This approach outperforms existing enhancement techniques and enables reliable operation of vision-driven robotic systems across illumination conditions from well-lit to extreme low-light scenes.
comment: 8 pages, 8 figures
☆ Flow-Matching Based Refiner for Molecular Conformer Generation
Low-energy molecular conformers generation (MCG) is a foundational yet challenging problem in drug discovery. Denoising-based methods include diffusion and flow-matching methods that learn mappings from a simple base distribution to the molecular conformer distribution. However, these approaches often suffer from error accumulation during sampling, especially in the low SNR steps, which are hard to train. To address these challenges, we propose a flow-matching refiner for the MCG task. The proposed method initializes sampling from mixed-quality outputs produced by upstream denoising models and reschedules the noise scale to bypass the low-SNR phase, thereby improving sample quality. On the GEOM-QM9 and GEOM-Drugs benchmark datasets, the generator-refiner pipeline improves quality with fewer total denoising steps while preserving diversity.
☆ BenthiCat: An opti-acoustic dataset for advancing benthic classification and habitat mapping IJRR
Benthic habitat mapping is fundamental for understanding marine ecosystems, guiding conservation efforts, and supporting sustainable resource management. Yet, the scarcity of large, annotated datasets limits the development and benchmarking of machine learning models in this domain. This paper introduces a thorough multi-modal dataset, comprising about a million side-scan sonar (SSS) tiles collected along the coast of Catalonia (Spain), complemented by bathymetric maps and a set of co-registered optical images from targeted surveys using an autonomous underwater vehicle (AUV). Approximately \num{36000} of the SSS tiles have been manually annotated with segmentation masks to enable supervised fine-tuning of classification models. All the raw sensor data, together with mosaics, are also released to support further exploration and algorithm development. To address challenges in multi-sensor data fusion for AUVs, we spatially associate optical images with corresponding SSS tiles, facilitating self-supervised, cross-modal representation learning. Accompanying open-source preprocessing and annotation tools are provided to enhance accessibility and encourage research. This resource aims to establish a standardized benchmark for underwater habitat mapping, promoting advancements in autonomous seafloor classification and multi-sensor integration.
comment: Article under review by IJRR
☆ Less is More: Recursive Reasoning with Tiny Networks
Hierarchical Reasoning Model (HRM) is a novel approach using two small neural networks recursing at different frequencies. This biologically inspired method beats Large Language models (LLMs) on hard puzzle tasks such as Sudoku, Maze, and ARC-AGI while trained with small models (27M parameters) on small data (around 1000 examples). HRM holds great promise for solving hard problems with small networks, but it is not yet well understood and may be suboptimal. We propose Tiny Recursive Model (TRM), a much simpler recursive reasoning approach that achieves significantly higher generalization than HRM, while using a single tiny network with only 2 layers. With only 7M parameters, TRM obtains 45% test-accuracy on ARC-AGI-1 and 8% on ARC-AGI-2, higher than most LLMs (e.g., Deepseek R1, o3-mini, Gemini 2.5 Pro) with less than 0.01% of the parameters.
☆ Video Game Level Design as a Multi-Agent Reinforcement Learning Problem AAAI
Procedural Content Generation via Reinforcement Learning (PCGRL) offers a method for training controllable level designer agents without the need for human datasets, using metrics that serve as proxies for level quality as rewards. Existing PCGRL research focuses on single generator agents, but are bottlenecked by the need to frequently recalculate heuristics of level quality and the agent's need to navigate around potentially large maps. By framing level generation as a multi-agent problem, we mitigate the efficiency bottleneck of single-agent PCGRL by reducing the number of reward calculations relative to the number of agent actions. We also find that multi-agent level generators are better able to generalize to out-of-distribution map shapes, which we argue is due to the generators' learning more local, modular design policies. We conclude that treating content generation as a distributed, multi-agent task is beneficial for generating functional artifacts at scale.
comment: 11 pages, 7 tables, 5 figures, published as full technical paper at the AAAI conference on Artificial Intelligence and Interactive Digital Entertainment 2025
☆ A Clinical-grade Universal Foundation Model for Intraoperative Pathology
Intraoperative pathology is pivotal to precision surgery, yet its clinical impact is constrained by diagnostic complexity and the limited availability of high-quality frozen-section data. While computational pathology has made significant strides, the lack of large-scale, prospective validation has impeded its routine adoption in surgical workflows. Here, we introduce CRISP, a clinical-grade foundation model developed on over 100,000 frozen sections from eight medical centers, specifically designed to provide Clinical-grade Robust Intraoperative Support for Pathology (CRISP). CRISP was comprehensively evaluated on more than 15,000 intraoperative slides across nearly 100 retrospective diagnostic tasks, including benign-malignant discrimination, key intraoperative decision-making, and pan-cancer detection, etc. The model demonstrated robust generalization across diverse institutions, tumor types, and anatomical sites-including previously unseen sites and rare cancers. In a prospective cohort of over 2,000 patients, CRISP sustained high diagnostic accuracy under real-world conditions, directly informing surgical decisions in 92.6% of cases. Human-AI collaboration further reduced diagnostic workload by 35%, avoided 105 ancillary tests and enhanced detection of micrometastases with 87.5% accuracy. Together, these findings position CRISP as a clinical-grade paradigm for AI-driven intraoperative pathology, bridging computational advances with surgical precision and accelerating the translation of artificial intelligence into routine clinical practice.
☆ Alignment Tipping Process: How Self-Evolution Pushes LLM Agents Off the Rails
As Large Language Model (LLM) agents increasingly gain self-evolutionary capabilities to adapt and refine their strategies through real-world interaction, their long-term reliability becomes a critical concern. We identify the Alignment Tipping Process (ATP), a critical post-deployment risk unique to self-evolving LLM agents. Unlike training-time failures, ATP arises when continual interaction drives agents to abandon alignment constraints established during training in favor of reinforced, self-interested strategies. We formalize and analyze ATP through two complementary paradigms: Self-Interested Exploration, where repeated high-reward deviations induce individual behavioral drift, and Imitative Strategy Diffusion, where deviant behaviors spread across multi-agent systems. Building on these paradigms, we construct controllable testbeds and benchmark Qwen3-8B and Llama-3.1-8B-Instruct. Our experiments show that alignment benefits erode rapidly under self-evolution, with initially aligned models converging toward unaligned states. In multi-agent settings, successful violations diffuse quickly, leading to collective misalignment. Moreover, current reinforcement learning-based alignment methods provide only fragile defenses against alignment tipping. Together, these findings demonstrate that alignment of LLM agents is not a static property but a fragile and dynamic one, vulnerable to feedback-driven decay during deployment. Our data and code are available at https://github.com/aiming-lab/ATP.
☆ ERDE: Entropy-Regularized Distillation for Early-exit
Although deep neural networks and in particular Convolutional Neural Networks have demonstrated state-of-the-art performance in image classification with relatively high efficiency, they still exhibit high computational costs, often rendering them impractical for real-time and edge applications. Therefore, a multitude of compression techniques have been developed to reduce these costs while maintaining accuracy. In addition, dynamic architectures have been introduced to modulate the level of compression at execution time, which is a desirable property in many resource-limited application scenarios. The proposed method effectively integrates two well-established optimization techniques: early exits and knowledge distillation, where a reduced student early-exit model is trained from a more complex teacher early-exit model. The primary contribution of this research lies in the approach for training the student early-exit model. In comparison to the conventional Knowledge Distillation loss, our approach incorporates a new entropy-based loss for images where the teacher's classification was incorrect. The proposed method optimizes the trade-off between accuracy and efficiency, thereby achieving significant reductions in computational complexity without compromising classification performance. The validity of this approach is substantiated by experimental results on image classification datasets CIFAR10, CIFAR100 and SVHN, which further opens new research perspectives for Knowledge Distillation in other contexts.
☆ Synthesising Counterfactual Explanations via Label-Conditional Gaussian Mixture Variational Autoencoders
Counterfactual explanations (CEs) provide recourse recommendations for individuals affected by algorithmic decisions. A key challenge is generating CEs that are robust against various perturbation types (e.g. input and model perturbations) while simultaneously satisfying other desirable properties. These include plausibility, ensuring CEs reside on the data manifold, and diversity, providing multiple distinct recourse options for single inputs. Existing methods, however, mostly struggle to address these multifaceted requirements in a unified, model-agnostic manner. We address these limitations by proposing a novel generative framework. First, we introduce the Label-conditional Gaussian Mixture Variational Autoencoder (L-GMVAE), a model trained to learn a structured latent space where each class label is represented by a set of Gaussian components with diverse, prototypical centroids. Building on this, we present LAPACE (LAtent PAth Counterfactual Explanations), a model-agnostic algorithm that synthesises entire paths of CE points by interpolating from inputs' latent representations to those learned latent centroids. This approach inherently ensures robustness to input changes, as all paths for a given target class converge to the same fixed centroids. Furthermore, the generated paths provide a spectrum of recourse options, allowing users to navigate the trade-off between proximity and plausibility while also encouraging robustness against model changes. In addition, user-specified actionability constraints can also be easily incorporated via lightweight gradient optimisation through the L-GMVAE's decoder. Comprehensive experiments show that LAPACE is computationally efficient and achieves competitive performance across eight quantitative metrics.
☆ LEGOMem: Modular Procedural Memory for Multi-agent LLM Systems for Workflow Automation
We introduce LEGOMem, a modular procedural memory framework for multi-agent large language model (LLM) systems in workflow automation. LEGOMem decomposes past task trajectories into reusable memory units and flexibly allocates them across orchestrators and task agents to support planning and execution. To explore the design space of memory in multi-agent systems, we use LEGOMem as a lens and conduct a systematic study of procedural memory in multi-agent systems, examining where memory should be placed, how it should be retrieved, and which agents benefit most. Experiments on the OfficeBench benchmark show that orchestrator memory is critical for effective task decomposition and delegation, while fine-grained agent memory improves execution accuracy. We find that even teams composed of smaller language models can benefit substantially from procedural memory, narrowing the performance gap with stronger agents by leveraging prior execution traces for more accurate planning and tool use. These results position LEGOMem as both a practical framework for memory-augmented agent systems and a research tool for understanding memory design in multi-agent workflow automation.
☆ Distributionally Robust Causal Abstractions
Causal Abstraction (CA) theory provides a principled framework for relating causal models that describe the same system at different levels of granularity while ensuring interventional consistency between them. Recently, several approaches for learning CAs have been proposed, but all assume fixed and well-specified exogenous distributions, making them vulnerable to environmental shifts and misspecification. In this work, we address these limitations by introducing the first class of distributionally robust CAs and their associated learning algorithms. The latter cast robust causal abstraction learning as a constrained min-max optimization problem with Wasserstein ambiguity sets. We provide theoretical results, for both empirical and Gaussian environments, leading to principled selection of the level of robustness via the radius of these sets. Furthermore, we present empirical evidence across different problems and CA learning methods, demonstrating our framework's robustness not only to environmental shifts but also to structural model and intervention mapping misspecification.
☆ Beyond Random: Automatic Inner-loop Optimization in Dataset Distillation
The growing demand for efficient deep learning has positioned dataset distillation as a pivotal technique for compressing training dataset while preserving model performance. However, existing inner-loop optimization methods for dataset distillation typically rely on random truncation strategies, which lack flexibility and often yield suboptimal results. In this work, we observe that neural networks exhibit distinct learning dynamics across different training stages-early, middle, and late-making random truncation ineffective. To address this limitation, we propose Automatic Truncated Backpropagation Through Time (AT-BPTT), a novel framework that dynamically adapts both truncation positions and window sizes according to intrinsic gradient behavior. AT-BPTT introduces three key components: (1) a probabilistic mechanism for stage-aware timestep selection, (2) an adaptive window sizing strategy based on gradient variation, and (3) a low-rank Hessian approximation to reduce computational overhead. Extensive experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet-1K show that AT-BPTT achieves state-of-the-art performance, improving accuracy by an average of 6.16% over baseline methods. Moreover, our approach accelerates inner-loop optimization by 3.9x while saving 63% memory cost.
☆ Bond-Centered Molecular Fingerprint Derivatives: A BBBP Dataset Study
Bond Centered FingerPrint (BCFP) are a complementary, bond-centric alternative to Extended-Connectivity Fingerprints (ECFP). We introduce a static BCFP that mirrors the bond-convolution used by directed message-passing GNNs like ChemProp, and evaluate it with a fast rapid Random Forest model on Brain-Blood Barrier Penetration (BBBP) classification task. Across stratified cross-validation, concatenating ECFP with BCFP consistently improves AUROC and AUPRC over either descriptor alone, as confirmed by Turkey HSD multiple-comparison analysis. Among radii, r = 1 performs best; r = 2 does not yield statistically separable gains under the same test. We further propose BCFP-Sort&Slice, a simple feature-combination scheme that preserves the out-of-vocabulary (OOV) count information native to ECFP count vectors while enabling compact unhashed concatenation of BCFP variants. We also outperform the MGTP prediction on our BBBP evaluation, using such composite new features bond and atom features. These results show that lightweight, bond-centered descriptors can complement atom-centered circular fingerprints and provide strong, fast baselines for BBBP prediction.
comment: 14 pages, 10 figures, 1 table
☆ On the Hardness of Learning Regular Expressions
Despite the theoretical significance and wide practical use of regular expressions, the computational complexity of learning them has been largely unexplored. We study the computational hardness of improperly learning regular expressions in the PAC model and with membership queries. We show that PAC learning is hard even under the uniform distribution on the hypercube, and also prove hardness of distribution-free learning with membership queries. Furthermore, if regular expressions are extended with complement or intersection, we establish hardness of learning with membership queries even under the uniform distribution. We emphasize that these results do not follow from existing hardness results for learning DFAs or NFAs, since the descriptive complexity of regular languages can differ exponentially between DFAs, NFAs, and regular expressions.
☆ On Predicting Post-Click Conversion Rate via Counterfactual Inference ICDM
Accurately predicting conversion rate (CVR) is essential in various recommendation domains such as online advertising systems and e-commerce. These systems utilize user interaction logs, which consist of exposures, clicks, and conversions. CVR prediction models are typically trained solely based on clicked samples, as conversions can only be determined following clicks. However, the sparsity of clicked instances necessitates the collection of a substantial amount of logs for effective model training. Recent works address this issue by devising frameworks that leverage non-clicked samples. While these frameworks aim to reduce biases caused by the discrepancy between clicked and non-clicked samples, they often rely on heuristics. Against this background, we propose a method to counterfactually generate conversion labels for non-clicked samples by using causality as a guiding principle, attempting to answer the question, "Would the user have converted if he or she had clicked the recommended item?" Our approach is named the Entire Space Counterfactual Inference Multi-task Model (ESCIM). We initially train a structural causal model (SCM) of user sequential behaviors and conduct a hypothetical intervention (i.e., click) on non-clicked items to infer counterfactual CVRs. We then introduce several approaches to transform predicted counterfactual CVRs into binary counterfactual conversion labels for the non-clicked samples. Finally, the generated samples are incorporated into the training process. Extensive experiments on public datasets illustrate the superiority of the proposed algorithm. Online A/B testing further empirically validates the effectiveness of our proposed algorithm in real-world scenarios. In addition, we demonstrate the improved performance of the proposed method on latent conversion data, showcasing its robustness and superior generalization capabilities.
comment: This work has been accepted for publication at the IEEE International Conference on Data Mining (ICDM) 2025
☆ A Noise Resilient Approach for Robust Hurst Exponent Estimation
Understanding signal behavior across scales is vital in areas such as natural phenomena analysis and financial modeling. A key property is self-similarity, quantified by the Hurst exponent (H), which reveals long-term dependencies. Wavelet-based methods are effective for estimating H due to their multi-scale analysis capability, but additive noise in real-world measurements often degrades accuracy. We propose Noise-Controlled ALPHEE (NC-ALPHEE), an enhancement of the Average Level-Pairwise Hurst Exponent Estimator (ALPHEE), incorporating noise mitigation and generating multiple level-pairwise estimates from signal energy pairs. A neural network (NN) combines these estimates, replacing traditional averaging. This adaptive learning maintains ALPHEE's behavior in noise-free cases while improving performance in noisy conditions. Extensive simulations show that in noise-free data, NC-ALPHEE matches ALPHEE's accuracy using both averaging and NN-based methods. Under noise, however, traditional averaging deteriorates and requires impractical level restrictions, while NC-ALPHEE consistently outperforms existing techniques without such constraints. NC-ALPHEE offers a robust, adaptive approach for H estimation, significantly enhancing the reliability of wavelet-based methods in noisy environments.
☆ Learning on the Job: Test-Time Curricula for Targeted Reinforcement Learning
Humans are good at learning on the job: We learn how to solve the tasks we face as we go along. Can a model do the same? We propose an agent that assembles a task-specific curriculum, called test-time curriculum (TTC-RL), and applies reinforcement learning to continue training the model for its target task. The test-time curriculum avoids time-consuming human curation of datasets by automatically selecting the most task-relevant data from a large pool of available training data. Our experiments demonstrate that reinforcement learning on a test-time curriculum consistently improves the model on its target tasks, across a variety of evaluations and models. Notably, on challenging math and coding benchmarks, TTC-RL improves the pass@1 of Qwen3-8B by approximately 1.8x on AIME25 and 2.1x on CodeElo. Moreover, we find that TTC-RL significantly raises the performance ceiling compared to the initial model, increasing pass@8 on AIME25 from 40% to 62% and on CodeElo from 28% to 43%. Our findings show the potential of test-time curricula in extending the test-time scaling paradigm to continual training on thousands of task-relevant experiences during test-time.
☆ Kernel ridge regression under power-law data: spectrum and generalization
In this work, we investigate high-dimensional kernel ridge regression (KRR) on i.i.d. Gaussian data with anisotropic power-law covariance. This setting differs fundamentally from the classical source & capacity conditions for KRR, where power-law assumptions are typically imposed on the kernel eigen-spectrum itself. Our contributions are twofold. First, we derive an explicit characterization of the kernel spectrum for polynomial inner-product kernels, giving a precise description of how the kernel eigen-spectrum inherits the data decay. Second, we provide an asymptotic analysis of the excess risk in the high-dimensional regime for a particular kernel with this spectral behavior, showing that the sample complexity is governed by the effective dimension of the data rather than the ambient dimension. These results establish a fundamental advantage of learning with power-law anisotropic data over isotropic data. To our knowledge, this is the first rigorous treatment of non-linear KRR under power-law data.
☆ MetaMP: Seamless Metadata Enrichment and AI Application Framework for Enhanced Membrane Protein Visualization and Analysis
Structural biology has made significant progress in determining membrane proteins, leading to a remarkable increase in the number of available structures in dedicated databases. The inherent complexity of membrane protein structures, coupled with challenges such as missing data, inconsistencies, and computational barriers from disparate sources, underscores the need for improved database integration. To address this gap, we present MetaMP, a framework that unifies membrane-protein databases within a web application and uses machine learning for classification. MetaMP improves data quality by enriching metadata, offering a user-friendly interface, and providing eight interactive views for streamlined exploration. MetaMP was effective across tasks of varying difficulty, demonstrating advantages across different levels without compromising speed or accuracy, according to user evaluations. Moreover, MetaMP supports essential functions such as structure classification and outlier detection. We present three practical applications of Artificial Intelligence (AI) in membrane protein research: predicting transmembrane segments, reconciling legacy databases, and classifying structures with explainable AI support. In a validation focused on statistics, MetaMP resolved 77% of data discrepancies and accurately predicted the class of newly identified membrane proteins 98% of the time and overtook expert curation. Altogether, MetaMP is a much-needed resource that harmonizes current knowledge and empowers AI-driven exploration of membrane-protein architecture.
☆ Distribution Preference Optimization: A Fine-grained Perspective for LLM Unlearning
As Large Language Models (LLMs) demonstrate remarkable capabilities learned from vast corpora, concerns regarding data privacy and safety are receiving increasing attention. LLM unlearning, which aims to remove the influence of specific data while preserving overall model utility, is becoming an important research area. One of the mainstream unlearning classes is optimization-based methods, which achieve forgetting directly through fine-tuning, exemplified by Negative Preference Optimization (NPO). However, NPO's effectiveness is limited by its inherent lack of explicit positive preference signals. Attempts to introduce such signals by constructing preferred responses often necessitate domain-specific knowledge or well-designed prompts, fundamentally restricting their generalizability. In this paper, we shift the focus to the distribution-level, directly targeting the next-token probability distribution instead of entire responses, and derive a novel unlearning algorithm termed \textbf{Di}stribution \textbf{P}reference \textbf{O}ptimization (DiPO). We show that the requisite preference distribution pairs for DiPO, which are distributions over the model's output tokens, can be constructed by selectively amplifying or suppressing the model's high-confidence output logits, thereby effectively overcoming NPO's limitations. We theoretically prove the consistency of DiPO's loss function with the desired unlearning direction. Extensive experiments demonstrate that DiPO achieves a strong trade-off between model utility and forget quality. Notably, DiPO attains the highest forget quality on the TOFU benchmark, and maintains leading scalability and sustainability in utility preservation on the MUSE benchmark.
comment: 20 pages
☆ Federated Learning for Surgical Vision in Appendicitis Classification: Results of the FedSurg EndoVis 2024 Challenge
Purpose: The FedSurg challenge was designed to benchmark the state of the art in federated learning for surgical video classification. Its goal was to assess how well current methods generalize to unseen clinical centers and adapt through local fine-tuning while enabling collaborative model development without sharing patient data. Methods: Participants developed strategies to classify inflammation stages in appendicitis using a preliminary version of the multi-center Appendix300 video dataset. The challenge evaluated two tasks: generalization to an unseen center and center-specific adaptation after fine-tuning. Submitted approaches included foundation models with linear probing, metric learning with triplet loss, and various FL aggregation schemes (FedAvg, FedMedian, FedSAM). Performance was assessed using F1-score and Expected Cost, with ranking robustness evaluated via bootstrapping and statistical testing. Results: In the generalization task, performance across centers was limited. In the adaptation task, all teams improved after fine-tuning, though ranking stability was low. The ViViT-based submission achieved the strongest overall performance. The challenge highlighted limitations in generalization, sensitivity to class imbalance, and difficulties in hyperparameter tuning in decentralized training, while spatiotemporal modeling and context-aware preprocessing emerged as promising strategies. Conclusion: The FedSurg Challenge establishes the first benchmark for evaluating FL strategies in surgical video classification. Findings highlight the trade-off between local personalization and global robustness, and underscore the importance of architecture choice, preprocessing, and loss design. This benchmarking offers a reference point for future development of imbalance-aware, adaptive, and robust FL methods in clinical surgical AI.
comment: A challenge report pre-print (31 pages), including 7 tables and 8 figures
☆ Beyond the Seen: Bounded Distribution Estimation for Open-Vocabulary Learning
Open-vocabulary learning requires modeling the data distribution in open environments, which consists of both seen-class and unseen-class data. Existing methods estimate the distribution in open environments using seen-class data, where the absence of unseen classes makes the estimation error inherently unidentifiable. Intuitively, learning beyond the seen classes is crucial for distribution estimation to bound the estimation error. We theoretically demonstrate that the distribution can be effectively estimated by generating unseen-class data, through which the estimation error is upper-bounded. Building on this theoretical insight, we propose a novel open-vocabulary learning method, which generates unseen-class data for estimating the distribution in open environments. The method consists of a class-domain-wise data generation pipeline and a distribution alignment algorithm. The data generation pipeline generates unseen-class data under the guidance of a hierarchical semantic tree and domain information inferred from the seen-class data, facilitating accurate distribution estimation. With the generated data, the distribution alignment algorithm estimates and maximizes the posterior probability to enhance generalization in open-vocabulary learning. Extensive experiments on $11$ datasets demonstrate that our method outperforms baseline approaches by up to $14\%$, highlighting its effectiveness and superiority.
☆ When Do Credal Sets Stabilize? Fixed-Point Theorems for Credal Set Updates
Many machine learning algorithms rely on iterative updates of uncertainty representations, ranging from variational inference and expectation-maximization, to reinforcement learning, continual learning, and multi-agent learning. In the presence of imprecision and ambiguity, credal sets -- closed, convex sets of probability distributions -- have emerged as a popular framework for representing imprecise probabilistic beliefs. Under such imprecision, many learning problems in imprecise probabilistic machine learning (IPML) may be viewed as processes involving successive applications of update rules on credal sets. This naturally raises the question of whether this iterative process converges to stable fixed points -- or, more generally, under what conditions on the updating mechanism such fixed points exist, and whether they can be attained. We provide the first analysis of this problem and illustrate our findings using Credal Bayesian Deep Learning as a concrete example. Our work demonstrates that incorporating imprecision into the learning process not only enriches the representation of uncertainty, but also reveals structural conditions under which stability emerges, thereby offering new insights into the dynamics of iterative learning under imprecision.
☆ ParallelBench: Understanding the Trade-offs of Parallel Decoding in Diffusion LLMs
While most autoregressive LLMs are constrained to one-by-one decoding, diffusion LLMs (dLLMs) have attracted growing interest for their potential to dramatically accelerate inference through parallel decoding. Despite this promise, the conditional independence assumption in dLLMs causes parallel decoding to ignore token dependencies, inevitably degrading generation quality when these dependencies are strong. However, existing works largely overlook these inherent challenges, and evaluations on standard benchmarks (e.g., math and coding) are not sufficient to capture the quality degradation caused by parallel decoding. To address this gap, we first provide an information-theoretic analysis of parallel decoding. We then conduct case studies on analytically tractable synthetic list operations from both data distribution and decoding strategy perspectives, offering quantitative insights that highlight the fundamental limitations of parallel decoding. Building on these insights, we propose ParallelBench, the first benchmark specifically designed for dLLMs, featuring realistic tasks that are trivial for humans and autoregressive LLMs yet exceptionally challenging for dLLMs under parallel decoding. Using ParallelBench, we systematically analyze both dLLMs and autoregressive LLMs, revealing that: (i) dLLMs under parallel decoding can suffer dramatic quality degradation in real-world scenarios, and (ii) current parallel decoding strategies struggle to adapt their degree of parallelism based on task difficulty, thus failing to achieve meaningful speedup without compromising quality. Our findings underscore the pressing need for innovative decoding methods that can overcome the current speed-quality trade-off. We release our benchmark to help accelerate the development of truly efficient dLLMs.
comment: Project Page: https://parallelbench.github.io
☆ Fisher-Bingham-like normalizing flows on the sphere
A generic D-dimensional Gaussian can be conditioned or projected onto the D-1 unit sphere, thereby leading to the well-known Fisher-Bingham (FB) or Angular Gaussian (AG) distribution families, respectively. These are some of the most fundamental distributions on the sphere, yet cannot straightforwardly be written as a normalizing flow except in two special cases: the von-Mises Fisher in D=3 and the central angular Gaussian in any D. In this paper, we describe how to generalize these special cases to a family of normalizing flows that behave similarly to the full FB or AG family in any D. We call them "zoom-linear-project" (ZLP)-Fisher flows. Unlike a normal Fisher-Bingham distribution, their composition allows to gradually add complexity as needed. Furthermore, they can naturally handle conditional density estimation with target distributions that vary by orders of magnitude in scale - a setting that is important in astronomical applications but that existing flows often struggle with. A particularly useful member of the new family is the Kent analogue that can cheaply upgrade any flow in this situation to yield better performance.
☆ Provable Affine Identifiability of Nonlinear CCA under Latent Distributional Priors
In this work, we establish conditions under which nonlinear CCA recovers the ground-truth latent factors up to an orthogonal transform after whitening. Building on the classical result that linear mappings maximize canonical correlations under Gaussian priors, we prove affine identifiability for a broad class of latent distributions in the population setting. Central to our proof is a reparameterization result that transports the analysis from observation space to source space, where identifiability becomes tractable. We further show that whitening is essential for ensuring boundedness and well-conditioning, thereby underpinning identifiability. Beyond the population setting, we prove that ridge-regularized empirical CCA converges to its population counterpart, transferring these guarantees to the finite-sample regime. Experiments on a controlled synthetic dataset and a rendered image dataset validate our theory and demonstrate the necessity of its assumptions through systematic ablations.
☆ Speak, Edit, Repeat: High-Fidelity Voice Editing and Zero-Shot TTS with Cross-Attentive Mamba
We introduce MAVE (Mamba with Cross-Attention for Voice Editing and Synthesis), a novel autoregressive architecture for text-conditioned voice editing and high-fidelity text-to-speech (TTS) synthesis, built on a cross-attentive Mamba backbone. MAVE achieves state-of-the-art performance in speech editing and very competitive results in zero-shot TTS, while not being explicitly trained on the latter task, outperforming leading autoregressive and diffusion models on diverse, real-world audio. By integrating Mamba for efficient audio sequence modeling with cross-attention for precise text-acoustic alignment, MAVE enables context-aware voice editing with exceptional naturalness and speaker consistency. In pairwise human evaluations on a random 40-sample subset of the RealEdit benchmark (400 judgments), 57.2% of listeners rated MAVE - edited speech as perceptually equal to the original, while 24.8% prefered the original and 18.0% MAVE - demonstrating that in the majority of cases edits are indistinguishable from the source. MAVE compares favorably with VoiceCraft and FluentSpeech both on pairwise comparisons and standalone mean opinion score (MOS) evaluations. For zero-shot TTS, MAVE exceeds VoiceCraft in both speaker similarity and naturalness, without requiring multiple inference runs or post-processing. Remarkably, these quality gains come with a significantly lower memory cost and approximately the same latency: MAVE requires ~6x less memory than VoiceCraft during inference on utterances from the RealEdit database (mean duration: 6.21s, A100, FP16, batch size 1). Our results demonstrate that MAVE establishes a new standard for flexible, high-fidelity voice editing and synthesis through the synergistic integration of structured state-space modeling and cross-modal attention.
☆ EVaR-Optimal Arm Identification in Bandits
We study the fixed-confidence best arm identification (BAI) problem within the multi-armed bandit (MAB) framework under the Entropic Value-at-Risk (EVaR) criterion. Our analysis considers a nonparametric setting, allowing for general reward distributions bounded in [0,1]. This formulation addresses the critical need for risk-averse decision-making in high-stakes environments, such as finance, moving beyond simple expected value optimization. We propose a $\delta$-correct, Track-and-Stop based algorithm and derive a corresponding lower bound on the expected sample complexity, which we prove is asymptotically matched. The implementation of our algorithm and the characterization of the lower bound both require solving a complex convex optimization problem and a related, simpler non-convex one.
☆ Directional Sheaf Hypergraph Networks: Unifying Learning on Directed and Undirected Hypergraphs
Hypergraphs provide a natural way to represent higher-order interactions among multiple entities. While undirected hypergraphs have been extensively studied, the case of directed hypergraphs, which can model oriented group interactions, remains largely under-explored despite its relevance for many applications. Recent approaches in this direction often exhibit an implicit bias toward homophily, which limits their effectiveness in heterophilic settings. Rooted in the algebraic topology notion of Cellular Sheaves, Sheaf Neural Networks (SNNs) were introduced as an effective solution to circumvent such a drawback. While a generalization to hypergraphs is known, it is only suitable for undirected hypergraphs, failing to tackle the directed case. In this work, we introduce Directional Sheaf Hypergraph Networks (DSHN), a framework integrating sheaf theory with a principled treatment of asymmetric relations within a hypergraph. From it, we construct the Directed Sheaf Hypergraph Laplacian, a complex-valued operator by which we unify and generalize many existing Laplacian matrices proposed in the graph- and hypergraph-learning literature. Across 7 real-world datasets and against 13 baselines, DSHN achieves relative accuracy gains from 2% up to 20%, showing how a principled treatment of directionality in hypergraphs, combined with the expressive power of sheaves, can substantially improve performance.
☆ Predictive economics: Rethinking economic methodology with machine learning
This article proposes predictive economics as a distinct analytical perspective within economics, grounded in machine learning and centred on predictive accuracy rather than causal identification. Drawing on the instrumentalist tradition (Friedman), the explanation-prediction divide (Shmueli), and the contrast between modelling cultures (Breiman), we formalise prediction as a valid epistemological and methodological objective. Reviewing recent applications across economic subfields, we show how predictive models contribute to empirical analysis, particularly in complex or data-rich contexts. This perspective complements existing approaches and supports a more pluralistic methodology - one that values out-of-sample performance alongside interpretability and theoretical structure.
comment: 8 pages
☆ BrokenMath: A Benchmark for Sycophancy in Theorem Proving with LLMs
Large language models (LLMs) have recently shown strong performance on mathematical benchmarks. At the same time, they are prone to hallucination and sycophancy, often providing convincing but flawed proofs for incorrect mathematical statements provided by users. This significantly limits the applicability of LLMs in theorem proving, as verification of these flawed proofs must be done manually by expert mathematicians. However, existing benchmarks that measure sycophancy in mathematics are limited: they focus solely on final-answer problems, rely on very simple and often contaminated datasets, and construct benchmark samples using synthetic modifications that create ill-posed questions rather than well-posed questions that are demonstrably false. To address these issues, we introduce BrokenMath, the first benchmark for evaluating sycophantic behavior in LLMs within the context of natural language theorem proving. BrokenMath is built from advanced 2025 competition problems, which are perturbed with an LLM to produce false statements and subsequently refined through expert review. Using an LLM-as-a-judge framework, we evaluate state-of-the-art LLMs and agentic systems and find that sycophancy is widespread, with the best model, GPT-5, producing sycophantic answers 29% of the time. We further investigate several mitigation strategies, including test-time interventions and supervised fine-tuning on curated sycophantic examples. These approaches substantially reduce, but do not eliminate, sycophantic behavior.
☆ ViTs: Teaching Machines to See Time Series Anomalies Like Human Experts
Web service administrators must ensure the stability of multiple systems by promptly detecting anomalies in Key Performance Indicators (KPIs). Achieving the goal of "train once, infer across scenarios" remains a fundamental challenge for time series anomaly detection models. Beyond improving zero-shot generalization, such models must also flexibly handle sequences of varying lengths during inference, ranging from one hour to one week, without retraining. Conventional approaches rely on sliding-window encoding and self-supervised learning, which restrict inference to fixed-length inputs. Large Language Models (LLMs) have demonstrated remarkable zero-shot capabilities across general domains. However, when applied to time series data, they face inherent limitations due to context length. To address this issue, we propose ViTs, a Vision-Language Model (VLM)-based framework that converts time series curves into visual representations. By rescaling time series images, temporal dependencies are preserved while maintaining a consistent input size, thereby enabling efficient processing of arbitrarily long sequences without context constraints. Training VLMs for this purpose introduces unique challenges, primarily due to the scarcity of aligned time series image-text data. To overcome this, we employ an evolutionary algorithm to automatically generate thousands of high-quality image-text pairs and design a three-stage training pipeline consisting of: (1) time series knowledge injection, (2) anomaly detection enhancement, and (3) anomaly reasoning refinement. Extensive experiments demonstrate that ViTs substantially enhance the ability of VLMs to understand and detect anomalies in time series data. All datasets and code will be publicly released at: https://anonymous.4open.science/r/ViTs-C484/.
comment: 13 pages
☆ Multilingual Routing in Mixture-of-Experts
Mixture-of-Experts (MoE) architectures have become the key to scaling modern LLMs, yet little is understood about how their sparse routing dynamics respond to multilingual data. In this work, we analyze expert routing patterns using parallel multilingual datasets and present highly interpretable layer-wise phenomena. We find that MoE models route tokens in language-specific ways in the early and late decoder layers but exhibit significant cross-lingual routing alignment in middle layers, mirroring parameter-sharing trends observed in dense LLMs. In particular, we reveal a clear, strong correlation between a model's performance in a given language and how similarly its tokens are routed to English in these layers. Extending beyond correlation, we explore inference-time interventions that induce higher cross-lingual routing alignment. We introduce a method that steers the router by promoting middle-layer task experts frequently activated in English, and it successfully increases multilingual performance. These 1-2% gains are remarkably consistent across two evaluation tasks, three models, and 15+ languages, especially given that these simple interventions override routers of extensively trained, state-of-the-art LLMs. In comparison, interventions outside of the middle layers or targeting multilingual-specialized experts only yield performance degradation. Altogether, we present numerous findings that explain how MoEs process non-English text and demonstrate that generalization is limited by the model's ability to leverage language-universal experts in all languages.
☆ A Study on the Data Distribution Gap in Music Emotion Recognition
Music Emotion Recognition (MER) is a task deeply connected to human perception, relying heavily on subjective annotations collected from contributors. Prior studies tend to focus on specific musical styles rather than incorporating a diverse range of genres, such as rock and classical, within a single framework. In this paper, we address the task of recognizing emotion from audio content by investigating five datasets with dimensional emotion annotations -- EmoMusic, DEAM, PMEmo, WTC, and WCMED -- which span various musical styles. We demonstrate the problem of out-of-distribution generalization in a systematic experiment. By closely looking at multiple data and feature sets, we provide insight into genre-emotion relationships in existing data and examine potential genre dominance and dataset biases in certain feature representations. Based on these experiments, we arrive at a simple yet effective framework that combines embeddings extracted from the Jukebox model with chroma features and demonstrate how, alongside a combination of several diverse training sets, this permits us to train models with substantially improved cross-dataset generalization capabilities.
comment: Accepted at the 17th International Symposium on Computer Music Multidisciplinary Research (CMMR) 2025
☆ How does the optimizer implicitly bias the model merging loss landscape?
Model merging methods combine models with different capabilities into a single one while maintaining the same inference cost. Two popular approaches are linear interpolation, which linearly interpolates between model weights, and task arithmetic, which combines task vectors obtained by the difference between finetuned and base models. While useful in practice, what properties make merging effective are poorly understood. This paper explores how the optimization process affects the loss landscape geometry and its impact on merging success. We show that a single quantity -- the effective noise scale -- unifies the impact of optimizer and data choices on model merging. Across architectures and datasets, the effectiveness of merging success is a non-monotonic function of effective noise, with a distinct optimum. Decomposing this quantity, we find that larger learning rates, stronger weight decay, smaller batch sizes, and data augmentation all independently modulate the effective noise scale, exhibiting the same qualitative trend. Unlike prior work that connects optimizer noise to the flatness or generalization of individual minima, we show that it also affects the global loss landscape, predicting when independently trained solutions can be merged. Our findings broaden the understanding of how optimization shapes the loss landscape geometry and its downstream consequences for model merging, suggesting the possibility of further manipulating the training dynamics to improve merging effectiveness.
comment: preprint
☆ Parameter-free Algorithms for the Stochastically Extended Adversarial Model NeurIPS 2025
We develop the first parameter-free algorithms for the Stochastically Extended Adversarial (SEA) model, a framework that bridges adversarial and stochastic online convex optimization. Existing approaches for the SEA model require prior knowledge of problem-specific parameters, such as the diameter of the domain $D$ and the Lipschitz constant of the loss functions $G$, which limits their practical applicability. Addressing this, we develop parameter-free methods by leveraging the Optimistic Online Newton Step (OONS) algorithm to eliminate the need for these parameters. We first establish a comparator-adaptive algorithm for the scenario with unknown domain diameter but known Lipschitz constant, achieving an expected regret bound of $\tilde{O}\big(\|u\|_2^2 + \|u\|_2(\sqrt{\sigma^2_{1:T}} + \sqrt{\Sigma^2_{1:T}})\big)$, where $u$ is the comparator vector and $\sigma^2_{1:T}$ and $\Sigma^2_{1:T}$ represent the cumulative stochastic variance and cumulative adversarial variation, respectively. We then extend this to the more general setting where both $D$ and $G$ are unknown, attaining the comparator- and Lipschitz-adaptive algorithm. Notably, the regret bound exhibits the same dependence on $\sigma^2_{1:T}$ and $\Sigma^2_{1:T}$, demonstrating the efficacy of our proposed methods even when both parameters are unknown in the SEA model.
comment: Accepted to NeurIPS 2025
☆ Counterfactual Credit Guided Bayesian Optimization
Bayesian optimization has emerged as a prominent methodology for optimizing expensive black-box functions by leveraging Gaussian process surrogates, which focus on capturing the global characteristics of the objective function. However, in numerous practical scenarios, the primary objective is not to construct an exhaustive global surrogate, but rather to quickly pinpoint the global optimum. Due to the aleatoric nature of the sequential optimization problem and its dependence on the quality of the surrogate model and the initial design, it is restrictive to assume that all observed samples contribute equally to the discovery of the optimum in this context. In this paper, we introduce Counterfactual Credit Guided Bayesian Optimization (CCGBO), a novel framework that explicitly quantifies the contribution of individual historical observations through counterfactual credit. By incorporating counterfactual credit into the acquisition function, our approach can selectively allocate resources in areas where optimal solutions are most likely to occur. We prove that CCGBO retains sublinear regret. Empirical evaluations on various synthetic and real-world benchmarks demonstrate that CCGBO consistently reduces simple regret and accelerates convergence to the global optimum.
☆ Semantic Channel Equalization Strategies for Deep Joint Source-Channel Coding
Deep joint source-channel coding (DeepJSCC) has emerged as a powerful paradigm for end-to-end semantic communications, jointly learning to compress and protect task-relevant features over noisy channels. However, existing DeepJSCC schemes assume a shared latent space at transmitter (TX) and receiver (RX) - an assumption that fails in multi-vendor deployments where encoders and decoders cannot be co-trained. This mismatch introduces "semantic noise", degrading reconstruction quality and downstream task performance. In this paper, we systematize and evaluate methods for semantic channel equalization for DeepJSCC, introducing an additional processing stage that aligns heterogeneous latent spaces under both physical and semantic impairments. We investigate three classes of aligners: (i) linear maps, which admit closed-form solutions; (ii) lightweight neural networks, offering greater expressiveness; and (iii) a Parseval-frame equalizer, which operates in zero-shot mode without the need for training. Through extensive experiments on image reconstruction over AWGN and fading channels, we quantify trade-offs among complexity, data efficiency, and fidelity, providing guidelines for deploying DeepJSCC in heterogeneous AI-native wireless networks.
comment: Proceedings of IEEE Globecom 2025 Workshops
☆ Noise or Signal? Deconstructing Contradictions and An Adaptive Remedy for Reversible Normalization in Time Series Forecasting
Reversible Instance Normalization (RevIN) is a key technique enabling simple linear models to achieve state-of-the-art performance in time series forecasting. While replacing its non-robust statistics with robust counterparts (termed R$^2$-IN) seems like a straightforward improvement, our findings reveal a far more complex reality. This paper deconstructs the perplexing performance of various normalization strategies by identifying four underlying theoretical contradictions. Our experiments provide two crucial findings: first, the standard RevIN catastrophically fails on datasets with extreme outliers, where its MSE surges by a staggering 683\%. Second, while the simple R$^2$-IN prevents this failure and unexpectedly emerges as the best overall performer, our adaptive model (A-IN), designed to test a diagnostics-driven heuristic, unexpectedly suffers a complete and systemic failure. This surprising outcome uncovers a critical, overlooked pitfall in time series analysis: the instability introduced by a simple or counter-intuitive heuristic can be more damaging than the statistical issues it aims to solve. The core contribution of this work is thus a new, cautionary paradigm for time series normalization: a shift from a blind search for complexity to a diagnostics-driven analysis that reveals not only the surprising power of simple baselines but also the perilous nature of naive adaptation.
comment: 9pages, 6 figures
☆ IMLP: An Energy-Efficient Continual Learning Method for Tabular Data Streams
Tabular data streams are rapidly emerging as a dominant modality for real-time decision-making in healthcare, finance, and the Internet of Things (IoT). These applications commonly run on edge and mobile devices, where energy budgets, memory, and compute are strictly limited. Continual learning (CL) addresses such dynamics by training models sequentially on task streams while preserving prior knowledge and consolidating new knowledge. While recent CL work has advanced in mitigating catastrophic forgetting and improving knowledge transfer, the practical requirements of energy and memory efficiency for tabular data streams remain underexplored. In particular, existing CL solutions mostly depend on replay mechanisms whose buffers grow over time and exacerbate resource costs. We propose a context-aware incremental Multi-Layer Perceptron (IMLP), a compact continual learner for tabular data streams. IMLP incorporates a windowed scaled dot-product attention over a sliding latent feature buffer, enabling constant-size memory and avoiding storing raw data. The attended context is concatenated with current features and processed by shared feed-forward layers, yielding lightweight per-segment updates. To assess practical deployability, we introduce NetScore-T, a tunable metric coupling balanced accuracy with energy for Pareto-aware comparison across models and datasets. IMLP achieves up to $27.6\times$ higher energy efficiency than TabNet and $85.5\times$ higher than TabPFN, while maintaining competitive average accuracy. Overall, IMLP provides an easy-to-deploy, energy-efficient alternative to full retraining for tabular data streams.
☆ Predictive Feature Caching for Training-free Acceleration of Molecular Geometry Generation NeurIPS 2025
Flow matching models generate high-fidelity molecular geometries but incur significant computational costs during inference, requiring hundreds of network evaluations. This inference overhead becomes the primary bottleneck when such models are employed in practice to sample large numbers of molecular candidates. This work discusses a training-free caching strategy that accelerates molecular geometry generation by predicting intermediate hidden states across solver steps. The proposed method operates directly on the SE(3)-equivariant backbone, is compatible with pretrained models, and is orthogonal to existing training-based accelerations and system-level optimizations. Experiments on the GEOM-Drugs dataset demonstrate that caching achieves a twofold reduction in wall-clock inference time at matched sample quality and a speedup of up to 3x compared to the base model with minimal sample quality degradation. Because these gains compound with other optimizations, applying caching alongside other general, lossless optimizations yield as much as a 7x speedup.
comment: Accepted at the AI for Science Workshop @ NeurIPS 2025
☆ Evaluating LLMs for Demographic-Targeted Social Bias Detection: A Comprehensive Benchmark Study
Large-scale web-scraped text corpora used to train general-purpose AI models often contain harmful demographic-targeted social biases, creating a regulatory need for data auditing and developing scalable bias-detection methods. Although prior work has investigated biases in text datasets and related detection methods, these studies remain narrow in scope. They typically focus on a single content type (e.g., hate speech), cover limited demographic axes, overlook biases affecting multiple demographics simultaneously, and analyze limited techniques. Consequently, practitioners lack a holistic understanding of the strengths and limitations of recent large language models (LLMs) for automated bias detection. In this study, we present a comprehensive evaluation framework aimed at English texts to assess the ability of LLMs in detecting demographic-targeted social biases. To align with regulatory requirements, we frame bias detection as a multi-label task using a demographic-focused taxonomy. We then conduct a systematic evaluation with models across scales and techniques, including prompting, in-context learning, and fine-tuning. Using twelve datasets spanning diverse content types and demographics, our study demonstrates the promise of fine-tuned smaller models for scalable detection. However, our analyses also expose persistent gaps across demographic axes and multi-demographic targeted biases, underscoring the need for more effective and scalable auditing frameworks.
comment: 17 pages, 7 figures, 7 tables
☆ Compressed Concatenation of Small Embedding Models
Embedding models are central to dense retrieval, semantic search, and recommendation systems, but their size often makes them impractical to deploy in resource-constrained environments such as browsers or edge devices. While smaller embedding models offer practical advantages, they typically underperform compared to their larger counterparts. To bridge this gap, we demonstrate that concatenating the raw embedding vectors of multiple small models can outperform a single larger baseline on standard retrieval benchmarks. To overcome the resulting high dimensionality of naive concatenation, we introduce a lightweight unified decoder trained with a Matryoshka Representation Learning (MRL) loss. This decoder maps the high-dimensional joint representation to a low-dimensional space, preserving most of the original performance without fine-tuning the base models. We also show that while concatenating more base models yields diminishing gains, the robustness of the decoder's representation under compression and quantization improves. Our experiments show that, on a subset of MTEB retrieval tasks, our concat-encode-quantize pipeline recovers 89\% of the original performance with a 48x compression factor when the pipeline is applied to a concatenation of four small embedding models.
☆ Fairness in Repeated Matching: A Maximin Perspective
We study a sequential decision-making model where a set of items is repeatedly matched to the same set of agents over multiple rounds. The objective is to determine a sequence of matchings that either maximizes the utility of the least advantaged agent at the end of all rounds (optimal) or at the end of every individual round (anytime optimal). We investigate the computational challenges associated with finding (anytime) optimal outcomes and demonstrate that these problems are generally computationally intractable. However, we provide approximation algorithms, fixed-parameter tractable algorithms, and identify several special cases whereby the problem(s) can be solved efficiently. Along the way, we also establish characterizations of Pareto-optimal/maximum matchings, which may be of independent interest to works in matching theory and house allocation.
☆ Forecasting-Based Biomedical Time-series Data Synthesis for Open Data and Robust AI
The limited data availability due to strict privacy regulations and significant resource demands severely constrains biomedical time-series AI development, which creates a critical gap between data requirements and accessibility. Synthetic data generation presents a promising solution by producing artificial datasets that maintain the statistical properties of real biomedical time-series data without compromising patient confidentiality. We propose a framework for synthetic biomedical time-series data generation based on advanced forecasting models that accurately replicates complex electrophysiological signals such as EEG and EMG with high fidelity. These synthetic datasets preserve essential temporal and spectral properties of real data, which enables robust analysis while effectively addressing data scarcity and privacy challenges. Our evaluations across multiple subjects demonstrate that the generated synthetic data can serve as an effective substitute for real data and also significantly boost AI model performance. The approach maintains critical biomedical features while provides high scalability for various applications and integrates seamlessly into open-source repositories, substantially expanding resources for AI-driven biomedical research.
comment: Under Review
☆ Agentic Context Engineering: Evolving Contexts for Self-Improving Language Models
Large language model (LLM) applications such as agents and domain-specific reasoning increasingly rely on context adaptation -- modifying inputs with instructions, strategies, or evidence, rather than weight updates. Prior approaches improve usability but often suffer from brevity bias, which drops domain insights for concise summaries, and from context collapse, where iterative rewriting erodes details over time. Building on the adaptive memory introduced by Dynamic Cheatsheet, we introduce ACE (Agentic Context Engineering), a framework that treats contexts as evolving playbooks that accumulate, refine, and organize strategies through a modular process of generation, reflection, and curation. ACE prevents collapse with structured, incremental updates that preserve detailed knowledge and scale with long-context models. Across agent and domain-specific benchmarks, ACE optimizes contexts both offline (e.g., system prompts) and online (e.g., agent memory), consistently outperforming strong baselines: +10.6% on agents and +8.6% on finance, while significantly reducing adaptation latency and rollout cost. Notably, ACE could adapt effectively without labeled supervision and instead by leveraging natural execution feedback. On the AppWorld leaderboard, ACE matches the top-ranked production-level agent on the overall average and surpasses it on the harder test-challenge split, despite using a smaller open-source model. These results show that comprehensive, evolving contexts enable scalable, efficient, and self-improving LLM systems with low overhead.
☆ A Case for Declarative LLM-friendly Interfaces for Improved Efficiency of Computer-Use Agents
Computer-use agents (CUAs) powered by large language models (LLMs) have emerged as a promising approach to automating computer tasks, yet they struggle with graphical user interfaces (GUIs). GUIs, designed for humans, force LLMs to decompose high-level goals into lengthy, error-prone sequences of fine-grained actions, resulting in low success rates and an excessive number of LLM calls. We propose Goal-Oriented Interface (GOI), a novel abstraction that transforms existing GUIs into three declarative primitives: access, state, and observation, which are better suited for LLMs. Our key idea is policy-mechanism separation: LLMs focus on high-level semantic planning (policy) while GOI handles low-level navigation and interaction (mechanism). GOI does not require modifying the application source code or relying on application programming interfaces (APIs). We evaluate GOI with Microsoft Office Suite (Word, PowerPoint, Excel) on Windows. Compared to a leading GUI-based agent baseline, GOI improves task success rates by 67% and reduces interaction steps by 43.5%. Notably, GOI completes over 61% of successful tasks with a single LLM call.
☆ Closed-Form Last Layer Optimization
Neural networks are typically optimized with variants of stochastic gradient descent. Under a squared loss, however, the optimal solution to the linear last layer weights is known in closed-form. We propose to leverage this during optimization, treating the last layer as a function of the backbone parameters, and optimizing solely for these parameters. We show this is equivalent to alternating between gradient descent steps on the backbone and closed-form updates on the last layer. We adapt the method for the setting of stochastic gradient descent, by trading off the loss on the current batch against the accumulated information from previous batches. Further, we prove that, in the Neural Tangent Kernel regime, convergence of this method to an optimal solution is guaranteed. Finally, we demonstrate the effectiveness of our approach compared with standard SGD on a squared loss in several supervised tasks -- both regression and classification -- including Fourier Neural Operators and Instrumental Variable Regression.
☆ Computing Wasserstein Barycenters through Gradient Flows
Wasserstein barycenters provide a powerful tool for aggregating probability measures, while leveraging the geometry of their ambient space. Existing discrete methods suffer from poor scalability, as they require access to the complete set of samples from input measures. We address this issue by recasting the original barycenter problem as a gradient flow in the Wasserstein space. Our approach offers two advantages. First, we achieve scalability by sampling mini-batches from the input measures. Second, we incorporate functionals over probability measures, which regularize the barycenter problem through internal, potential, and interaction energies. We present two algorithms for empirical and Gaussian mixture measures, providing convergence guarantees under the Polyak-{\L}ojasiewicz inequality. Experimental validation on toy datasets and domain adaptation benchmarks show that our methods outperform previous discrete and neural net-based methods for computing Wasserstein barycenters.
comment: 4 Figures, 3 Tables, under review
☆ Data-Driven Adaptive PID Control Based on Physics-Informed Neural Networks
This article proposes a data-driven PID controller design based on the principle of adaptive gain optimization, leveraging Physics-Informed Neural Networks (PINNs) generated for predictive modeling purposes. The proposed control design method utilizes gradients of the PID gain optimization, achieved through the automatic differentiation of PINNs, to apply model predictive control using a cost function based on tracking error and control inputs. By optimizing PINNs-based PID gains, the method achieves adaptive gain tuning that ensures stability while accounting for system nonlinearities. The proposed method features a systematic framework for integrating PINNs-based models of dynamical control systems into closed-loop control systems, enabling direct application to PID control design. A series of numerical experiments is conducted to demonstrate the effectiveness of the proposed method from the control perspectives based on both time and frequency domains.
comment: This work has been submitted to the IEEE Transactions on Control Systems Technology for possible publication
☆ Improved probabilistic regression using diffusion models
Probabilistic regression models the entire predictive distribution of a response variable, offering richer insights than classical point estimates and directly allowing for uncertainty quantification. While diffusion-based generative models have shown remarkable success in generating complex, high-dimensional data, their usage in general regression tasks often lacks uncertainty-related evaluation and remains limited to domain-specific applications. We propose a novel diffusion-based framework for probabilistic regression that learns predictive distributions in a nonparametric way. More specifically, we propose to model the full distribution of the diffusion noise, enabling adaptation to diverse tasks and enhanced uncertainty quantification. We investigate different noise parameterizations, analyze their trade-offs, and evaluate our framework across a broad range of regression tasks, covering low- and high-dimensional settings. For several experiments, our approach shows superior performance against existing baselines, while delivering calibrated uncertainty estimates, demonstrating its versatility as a tool for probabilistic prediction.
☆ Busemann Functions in the Wasserstein Space: Existence, Closed-Forms, and Applications to Slicing
The Busemann function has recently found much interest in a variety of geometric machine learning problems, as it naturally defines projections onto geodesic rays of Riemannian manifolds and generalizes the notion of hyperplanes. As several sources of data can be conveniently modeled as probability distributions, it is natural to study this function in the Wasserstein space, which carries a rich formal Riemannian structure induced by Optimal Transport metrics. In this work, we investigate the existence and computation of Busemann functions in Wasserstein space, which admits geodesic rays. We establish closed-form expressions in two important cases: one-dimensional distributions and Gaussian measures. These results enable explicit projection schemes for probability distributions on $\mathbb{R}$, which in turn allow us to define novel Sliced-Wasserstein distances over Gaussian mixtures and labeled datasets. We demonstrate the efficiency of those original schemes on synthetic datasets as well as transfer learning problems.
☆ Language Model Based Text-to-Audio Generation: Anti-Causally Aligned Collaborative Residual Transformers EMNLP 2025
While language models (LMs) paired with residual vector quantization (RVQ) tokenizers have shown promise in text-to-audio (T2A) generation, they still lag behind diffusion-based models by a non-trivial margin. We identify a critical dilemma underpinning this gap: incorporating more RVQ layers improves audio reconstruction fidelity but exceeds the generation capacity of conventional LMs. To address this, we first analyze RVQ dynamics and uncover two key limitations: 1) orthogonality of features across RVQ layers hinders effective LMs training, and 2) descending semantic richness in tokens from deeper RVQ layers exacerbates exposure bias during autoregressive decoding. Based on these insights, we propose Siren, a novel LM-based framework that employs multiple isolated transformers with causal conditioning and anti-causal alignment via reinforcement learning. Extensive experiments demonstrate that Siren outperforms both existing LM-based and diffusion-based T2A systems, achieving state-of-the-art results. By bridging the representational strengths of LMs with the fidelity demands of audio synthesis, our approach repositions LMs as competitive contenders against diffusion models in T2A tasks. Moreover, by aligning audio representations with linguistic structures, Siren facilitates a promising pathway toward unified multi-modal generation frameworks.
comment: Accepted to EMNLP 2025
☆ SONA: Learning Conditional, Unconditional, and Mismatching-Aware Discriminator
Deep generative models have made significant advances in generating complex content, yet conditional generation remains a fundamental challenge. Existing conditional generative adversarial networks often struggle to balance the dual objectives of assessing authenticity and conditional alignment of input samples within their conditional discriminators. To address this, we propose a novel discriminator design that integrates three key capabilities: unconditional discrimination, matching-aware supervision to enhance alignment sensitivity, and adaptive weighting to dynamically balance all objectives. Specifically, we introduce Sum of Naturalness and Alignment (SONA), which employs separate projections for naturalness (authenticity) and alignment in the final layer with an inductive bias, supported by dedicated objective functions and an adaptive weighting mechanism. Extensive experiments on class-conditional generation tasks show that \ours achieves superior sample quality and conditional alignment compared to state-of-the-art methods. Furthermore, we demonstrate its effectiveness in text-to-image generation, confirming the versatility and robustness of our approach.
comment: 24 pages with 9 figures
☆ COSMIR: Chain Orchestrated Structured Memory for Iterative Reasoning over Long Context
Reasoning over very long inputs remains difficult for large language models (LLMs). Common workarounds either shrink the input via retrieval (risking missed evidence), enlarge the context window (straining selectivity), or stage multiple agents to read in pieces. In staged pipelines (e.g., Chain of Agents, CoA), free-form summaries passed between agents can discard crucial details and amplify early mistakes. We introduce COSMIR (Chain Orchestrated Structured Memory for Iterative Reasoning), a chain-style framework that replaces ad hoc messages with a structured memory. A Planner agent first turns a user query into concrete, checkable sub-questions. worker agents process chunks via a fixed micro-cycle: Extract, Infer, Refine, writing all updates to the shared memory. A Manager agent then Synthesizes the final answer directly from the memory. This preserves step-wise read-then-reason benefits while changing both the communication medium (structured memory) and the worker procedure (fixed micro-cycle), yielding higher faithfulness, better long-range aggregation, and auditability. On long-context QA from the HELMET suite, COSMIR reduces propagation-stage information loss and improves accuracy over a CoA baseline.
☆ GILT: An LLM-Free, Tuning-Free Graph Foundational Model for In-Context Learning
Graph Neural Networks (GNNs) are powerful tools for precessing relational data but often struggle to generalize to unseen graphs, giving rise to the development of Graph Foundational Models (GFMs). However, current GFMs are challenged by the extreme heterogeneity of graph data, where each graph can possess a unique feature space, label set, and topology. To address this, two main paradigms have emerged. The first leverages Large Language Models (LLMs), but is fundamentally text-dependent, thus struggles to handle the numerical features in vast graphs. The second pre-trains a structure-based model, but the adaptation to new tasks typically requires a costly, per-graph tuning stage, creating a critical efficiency bottleneck. In this work, we move beyond these limitations and introduce \textbf{G}raph \textbf{I}n-context \textbf{L}earning \textbf{T}ransformer (GILT), a framework built on an LLM-free and tuning-free architecture. GILT introduces a novel token-based framework for in-context learning (ICL) on graphs, reframing classification tasks spanning node, edge and graph levels in a unified framework. This mechanism is the key to handling heterogeneity, as it is designed to operate on generic numerical features. Further, its ability to understand class semantics dynamically from the context enables tuning-free adaptation. Comprehensive experiments show that GILT achieves stronger few-shot performance with significantly less time than LLM-based or tuning-based baselines, validating the effectiveness of our approach.
☆ Stochastic Approximation Methods for Distortion Risk Measure Optimization
Distortion Risk Measures (DRMs) capture risk preferences in decision-making and serve as general criteria for managing uncertainty. This paper proposes gradient descent algorithms for DRM optimization based on two dual representations: the Distortion-Measure (DM) form and Quantile-Function (QF) form. The DM-form employs a three-timescale algorithm to track quantiles, compute their gradients, and update decision variables, utilizing the Generalized Likelihood Ratio and kernel-based density estimation. The QF-form provides a simpler two-timescale approach that avoids the need for complex quantile gradient estimation. A hybrid form integrates both approaches, applying the DM-form for robust performance around distortion function jumps and the QF-form for efficiency in smooth regions. Proofs of strong convergence and convergence rates for the proposed algorithms are provided. In particular, the DM-form achieves an optimal rate of $O(k^{-4/7})$, while the QF-form attains a faster rate of $O(k^{-2/3})$. Numerical experiments confirm their effectiveness and demonstrate substantial improvements over baselines in robust portfolio selection tasks. The method's scalability is further illustrated through integration into deep reinforcement learning. Specifically, a DRM-based Proximal Policy Optimization algorithm is developed and applied to multi-echelon dynamic inventory management, showcasing its practical applicability.
☆ Challenger-Based Combinatorial Bandits for Subcarrier Selection in OFDM Systems
This paper investigates the identification of the top-m user-scheduling sets in multi-user MIMO downlink, which is cast as a combinatorial pure-exploration problem in stochastic linear bandits. Because the action space grows exponentially, exhaustive search is infeasible. We therefore adopt a linear utility model to enable efficient exploration and reliable selection of promising user subsets. We introduce a gap-index framework that maintains a shortlist of current estimates of champion arms (top-m sets) and a rotating shortlist of challenger arms that pose the greatest threat to the champions. This design focuses on measurements that yield the most informative gap-index-based comparisons, resulting in significant reductions in runtime and computation compared to state-of-the-art linear bandit methods, with high identification accuracy. The method also exposes a tunable trade-off between speed and accuracy. Simulations on a realistic OFDM downlink show that shortlist-driven pure exploration makes online, measurement-efficient subcarrier selection practical for AI-enabled communication systems.
comment: 6 pages
☆ Gini-based Model Monitoring: A General Framework with an Application to Non-life Insurance Pricing
In a dynamic landscape where portfolios and environments evolve, maintaining the accuracy of pricing models is critical. To the best of our knowledge, this is the first study to systematically examine concept drift in non-life insurance pricing. We (i) provide an overview of the relevant literature and commonly used methodologies, clarify the distinction between virtual drift and concept drift, and explain their implications for long-run model performance; (ii) review and formalize common performance measures, including the Gini index and deviance loss, and articulate their interpretation; (iii) derive the asymptotic distribution of the Gini index, enabling valid inference and hypothesis testing; and (iv) present a standardized monitoring procedure that indicates when refitting is warranted. We illustrate the framework using a modified real-world portfolio with induced concept drift and discuss practical considerations and pitfalls.
☆ Tail-Safe Hedging: Explainable Risk-Sensitive Reinforcement Learning with a White-Box CBF--QP Safety Layer in Arbitrage-Free Markets
We introduce Tail-Safe, a deployability-oriented framework for derivatives hedging that unifies distributional, risk-sensitive reinforcement learning with a white-box control-barrier-function (CBF) quadratic-program (QP) safety layer tailored to financial constraints. The learning component combines an IQN-based distributional critic with a CVaR objective (IQN--CVaR--PPO) and a Tail-Coverage Controller that regulates quantile sampling through temperature tilting and tail boosting to stabilize small-$\alpha$ estimation. The safety component enforces discrete-time CBF inequalities together with domain-specific constraints -- ellipsoidal no-trade bands, box and rate limits, and a sign-consistency gate -- solved as a convex QP whose telemetry (active sets, tightness, rate utilization, gate scores, slack, and solver status) forms an auditable trail for governance. We provide guarantees of robust forward invariance of the safe set under bounded model mismatch, a minimal-deviation projection interpretation of the QP, a KL-to-DRO upper bound linking per-state KL regularization to worst-case CVaR, concentration and sample-complexity results for the temperature-tilted CVaR estimator, and a CVaR trust-region improvement inequality under KL limits, together with feasibility persistence under expiry-aware tightening. Empirically, in arbitrage-free, microstructure-aware synthetic markets (SSVI $\to$ Dupire $\to$ VIX with ABIDES/MockLOB execution), Tail-Safe improves left-tail risk without degrading central performance and yields zero hard-constraint violations whenever the QP is feasible with zero slack. Telemetry is mapped to governance dashboards and incident workflows to support explainability and auditability. Limitations include reliance on synthetic data and simplified execution to isolate methodological contributions.
comment: 32 pages including appendices; 5 figures. Primary subject class: q-fin.TR. Cross-lists: cs.LG; q-fin.RM
☆ Fast Witness Persistence for MRI Volumes via Hybrid Landmarking
We introduce a scalable witness-based persistent homology pipeline for full-brain MRI volumes that couples density-aware landmark selection with a GPU-ready witness filtration. Candidates are scored by a hybrid metric that balances geometric coverage against inverse kernel density, yielding landmark sets that shrink mean pairwise distances by 30-60% over random or density-only baselines while preserving topological features. Benchmarks on BrainWeb, IXI, and synthetic manifolds execute in under ten seconds on a single NVIDIA RTX 4090 GPU, avoiding the combinatorial blow-up of Cech, Vietoris-Rips, and alpha filtrations. The package is distributed on PyPI as whale-tda (installable via pip); source and issues are hosted at https://github.com/jorgeLRW/whale. The release also exposes a fast preset (mri_deep_dive_fast) for exploratory sweeps, and ships with reproducibility-focused scripts and artifacts for drop-in use in medical imaging workflows.
☆ Learning Linear Regression with Low-Rank Tasks in-Context
In-context learning (ICL) is a key building block of modern large language models, yet its theoretical mechanisms remain poorly understood. It is particularly mysterious how ICL operates in real-world applications where tasks have a common structure. In this work, we address this problem by analyzing a linear attention model trained on low-rank regression tasks. Within this setting, we precisely characterize the distribution of predictions and the generalization error in the high-dimensional limit. Moreover, we find that statistical fluctuations in finite pre-training data induce an implicit regularization. Finally, we identify a sharp phase transition of the generalization error governed by task structure. These results provide a framework for understanding how transformers learn to learn the task structure.
☆ Post-training quantization of vision encoders needs prefixing registers
Transformer-based vision encoders -- such as CLIP -- are central to multimodal intelligence, powering applications from autonomous web agents to robotic control. Since these applications often demand real-time processing of massive visual data, reducing the inference cost of vision encoders is critical. Post-training quantization offers a practical path, but remains challenging even at 8-bit precision due to massive-scale activations (i.e., outliers). In this work, we propose $\textit{RegCache}$, a training-free algorithm to mitigate outliers in vision encoders, enabling quantization with significantly smaller accuracy drops. The proposed RegCache introduces outlier-prone yet semantically meaningless prefix tokens to the target vision encoder, which prevents other tokens from having outliers. Notably, we observe that outliers in vision encoders behave differently from those in language models, motivating two technical innovations: middle-layer prefixing and token deletion. Experiments show that our method consistently improves the accuracy of quantized models across both text-supervised and self-supervised vision encoders.
Graph-based Tabular Deep Learning Should Learn Feature Interactions, Not Just Make Predictions NeurIPS 2025
Despite recent progress, deep learning methods for tabular data still struggle to compete with traditional tree-based models. A key challenge lies in modeling complex, dataset-specific feature interactions that are central to tabular data. Graph-based tabular deep learning (GTDL) methods aim to address this by representing features and their interactions as graphs. However, existing methods predominantly optimize predictive accuracy, neglecting accurate modeling of the graph structure. This position paper argues that GTDL should move beyond prediction-centric objectives and prioritize the explicit learning and evaluation of feature interactions. Using synthetic datasets with known ground-truth graph structures, we show that existing GTDL methods fail to recover meaningful feature interactions. Moreover, enforcing the true interaction structure improves predictive performance. This highlights the need for GTDL methods to prioritize quantitative evaluation and accurate structural learning. We call for a shift toward structure-aware modeling as a foundation for building GTDL systems that are not only accurate but also interpretable, trustworthy, and grounded in domain understanding.
comment: 9 pages, 6 figures, submitted to position track NeurIPS 2025
☆ Demystifying MaskGIT Sampler and Beyond: Adaptive Order Selection in Masked Diffusion
Masked diffusion models have shown promising performance in generating high-quality samples in a wide range of domains, but accelerating their sampling process remains relatively underexplored. To investigate efficient samplers for masked diffusion, this paper theoretically analyzes the MaskGIT sampler for image modeling, revealing its implicit temperature sampling mechanism. Through this analysis, we introduce the "moment sampler," an asymptotically equivalent but more tractable and interpretable alternative to MaskGIT, which employs a "choose-then-sample" approach by selecting unmasking positions before sampling tokens. In addition, we improve the efficiency of choose-then-sample algorithms through two key innovations: a partial caching technique for transformers that approximates longer sampling trajectories without proportional computational cost, and a hybrid approach formalizing the exploration-exploitation trade-off in adaptive unmasking. Experiments in image and text domains demonstrate our theory as well as the efficiency of our proposed methods, advancing both theoretical understanding and practical implementation of masked diffusion samplers.
comment: 23 pages
☆ Toward a Unified Geometry Understanding: Riemannian Diffusion Framework for Graph Generation and Prediction
Graph diffusion models have made significant progress in learning structured graph data and have demonstrated strong potential for predictive tasks. Existing approaches typically embed node, edge, and graph-level features into a unified latent space, modeling prediction tasks including classification and regression as a form of conditional generation. However, due to the non-Euclidean nature of graph data, features of different curvatures are entangled in the same latent space without releasing their geometric potential. To address this issue, we aim to construt an ideal Riemannian diffusion model to capture distinct manifold signatures of complex graph data and learn their distribution. This goal faces two challenges: numerical instability caused by exponential mapping during the encoding proces and manifold deviation during diffusion generation. To address these challenges, we propose GeoMancer: a novel Riemannian graph diffusion framework for both generation and prediction tasks. To mitigate numerical instability, we replace exponential mapping with an isometric-invariant Riemannian gyrokernel approach and decouple multi-level features onto their respective task-specific manifolds to learn optimal representations. To address manifold deviation, we introduce a manifold-constrained diffusion method and a self-guided strategy for unconditional generation, ensuring that the generated data remains aligned with the manifold signature. Extensive experiments validate the effectiveness of our approach, demonstrating superior performance across a variety of tasks.
comment: Accepted by NeuIPS 2025
☆ Quantum generative model on bicycle-sharing system and an application
Recently, bicycle-sharing systems have been implemented in numerous cities, becoming integral to daily life. However, a prevalent issue arises when intensive commuting demand leads to bicycle shortages in specific areas and at particular times. To address this challenge, we employ a novel quantum machine learning model that analyzes time series data by fitting quantum time evolution to observed sequences. This model enables us to capture actual trends in bicycle counts at individual ports and identify correlations between different ports. Utilizing the trained model, we simulate the impact of proactively adding bicycles to high-demand ports on the overall rental number across the system. Given that the core of this method lies in a Monte Carlo simulation, it is anticipated to have a wide range of industrial applications.
comment: 8 pages, 11 figures
☆ Real-time Prediction of Urban Sound Propagation with Conditioned Normalizing Flows
Accurate and fast urban noise prediction is pivotal for public health and for regulatory workflows in cities, where the Environmental Noise Directive mandates regular strategic noise maps and action plans, often needed in permission workflows, right-of-way allocation, and construction scheduling. Physics-based solvers are too slow for such time-critical, iterative "what-if" studies. We evaluate conditional Normalizing Flows (Full-Glow) for generating for generating standards-compliant urban sound-pressure maps from 2D urban layouts in real time per 256x256 map on a single RTX 4090), enabling interactive exploration directly on commodity hardware. On datasets covering Baseline, Diffraction, and Reflection regimes, our model accelerates map generation by >2000 times over a reference solver while improving NLoS accuracy by up to 24% versus prior deep models; in Baseline NLoS we reach 0.65 dB MAE with high structural fidelity. The model reproduces diffraction and interference patterns and supports instant recomputation under source or geometry changes, making it a practical engine for urban planning, compliance mapping, and operations (e.g., temporary road closures, night-work variance assessments).
☆ Wavelet Predictive Representations for Non-Stationary Reinforcement Learning
The real world is inherently non-stationary, with ever-changing factors, such as weather conditions and traffic flows, making it challenging for agents to adapt to varying environmental dynamics. Non-Stationary Reinforcement Learning (NSRL) addresses this challenge by training agents to adapt rapidly to sequences of distinct Markov Decision Processes (MDPs). However, existing NSRL approaches often focus on tasks with regularly evolving patterns, leading to limited adaptability in highly dynamic settings. Inspired by the success of Wavelet analysis in time series modeling, specifically its ability to capture signal trends at multiple scales, we propose WISDOM to leverage wavelet-domain predictive task representations to enhance NSRL. WISDOM captures these multi-scale features in evolving MDP sequences by transforming task representation sequences into the wavelet domain, where wavelet coefficients represent both global trends and fine-grained variations of non-stationary changes. In addition to the auto-regressive modeling commonly employed in time series forecasting, we devise a wavelet temporal difference (TD) update operator to enhance tracking and prediction of MDP evolution. We theoretically prove the convergence of this operator and demonstrate policy improvement with wavelet task representations. Experiments on diverse benchmarks show that WISDOM significantly outperforms existing baselines in both sample efficiency and asymptotic performance, demonstrating its remarkable adaptability in complex environments characterized by non-stationary and stochastically evolving tasks.
☆ Causality-aware Graph Aggregation Weight Estimator for Popularity Debiasing in Top-K Recommendation CIKM 2025
Graph-based recommender systems leverage neighborhood aggregation to generate node representations, which is highly sensitive to popularity bias, resulting in an echo effect during information propagation. Existing graph-based debiasing solutions refine the aggregation process with attempts such as edge reconstruction or weight adjustment. However, these methods remain inadequate in fully alleviating popularity bias. Specifically, this is because 1) they provide no insights into graph aggregation rationality, thus lacking an optimality guarantee; 2) they fail to well balance the training and debiasing process, which undermines the effectiveness. In this paper, we propose a novel approach to mitigate popularity bias through rational modeling of the graph aggregation process. We reveal that graph aggregation is a special form of backdoor adjustment in causal inference, where the aggregation weight corresponds to the historical interaction likelihood distribution. Based on this insight, we devise an encoder-decoder architecture, namely Causality-aware Graph Aggregation Weight Estimator for Debiasing (CAGED), to approximate the unbiased aggregation weight by optimizing the evidence lower bound of the interaction likelihood. In order to enhance the debiasing effectiveness during early training stages, we further design a momentum update strategy that incrementally refines the aggregation weight matrix. Extensive experiments on three datasets demonstrate that CAGED outperforms existing graph-based debiasing methods. Our implementation is available at https://github.com/QueYork/CAGED.
comment: Accepted by CIKM 2025
☆ Expand Neurons, Not Parameters
This work demonstrates how increasing the number of neurons in a network without increasing its number of non-zero parameters improves performance. We show that this gain corresponds with a decrease in interference between multiple features that would otherwise share the same neurons. To reduce such entanglement at a fixed non-zero parameter count, we introduce Fixed Parameter Expansion (FPE): replace a neuron with multiple children and partition the parent's weights disjointly across them, so that each child inherits a non-overlapping subset of connections. On symbolic tasks, specifically Boolean code problems, clause-aligned FPE systematically reduces polysemanticity metrics and yields higher task accuracy. Notably, random splits of neuron weights approximate these gains, indicating that reduced collisions, not precise assignment, are a primary driver. Consistent with the superposition hypothesis, the benefits of FPE grow with increasing interference: when polysemantic load is high, accuracy improvements are the largest. Transferring these insights to real models (classifiers over CLIP embeddings and deeper multilayer networks) we find that widening networks while maintaining a constant non-zero parameter count consistently increases accuracy. These results identify an interpretability-grounded mechanism to leverage width against superposition, improving performance without increasing the number of non-zero parameters. Such a direction is well matched to modern accelerators, where memory movement of non-zero parameters, rather than raw compute, is the dominant bottleneck.
comment: 10 pages, 6 figures
☆ Deep vs. Shallow: Benchmarking Physics-Informed Neural Architectures on the Biharmonic Equation NeurIPS
Partial differential equation (PDE) solvers are fundamental to engineering simulation. Classical mesh-based approaches (finite difference/volume/element) are fast and accurate on high-quality meshes but struggle with higher-order operators and complex, hard-to-mesh geometries. Recently developed physics-informed neural networks (PINNs) and their variants are mesh-free and flexible, yet compute-intensive and often less accurate. This paper systematically benchmarks RBF-PIELM, a rapid PINN variant-an extreme learning machine with radial-basis activations-for higher-order PDEs. RBF-PIELM replaces PINNs' time-consuming gradient descent with a single-shot least-squares solve. We test RBF-PIELM on the fourth-order biharmonic equation using two benchmarks: lid-driven cavity flow (streamfunction formulation) and a manufactured oscillatory solution. Our results show up to $(350\times)$ faster training than PINNs and over $(10\times)$ fewer parameters for comparable solution accuracy. Despite surpassing PINNs, RBF-PIELM still lags mature mesh-based solvers and its accuracy degrades on highly oscillatory solutions, highlighting remaining challenges for practical deployment.
comment: 16 Pages, 7 Figures and 1 Table. Submitted and accepted at Machine Learning and the Physical Sciences Workshop at the 39th conference on Neural Information Processing Systems (NeurIPS)
☆ Forking-Sequences
While accuracy is a critical requirement for time series forecasting models, an equally important (yet often overlooked) desideratum is forecast stability across forecast creation dates (FCDs). Even highly accurate models can produce erratic revisions between FCDs, undermining stakeholder trust and disrupting downstream decision-making. To improve forecast stability, models like MQCNN, MQT, and SPADE employ a little-known but highly effective technique: forking-sequences. Unlike standard statistical and neural forecasting methods that treat each FCD independently, the forking-sequences method jointly encodes and decodes the entire time series across all FCDs, in a way mirroring time series cross-validation. Since forking sequences remains largely unknown in the broader neural forecasting community, in this work, we formalize the forking-sequences approach, and we make a case for its broader adoption. We demonstrate three key benefits of forking-sequences: (i) more stable and consistent gradient updates during training; (ii) reduced forecast variance through ensembling; and (iii) improved inference computational efficiency. We validate forking-sequences' benefits using 16 datasets from the M1, M3, M4, and Tourism competitions, showing improvements in forecast percentage change stability of 28.8%, 28.8%, 37.9%, and 31.3%, and 8.8%, on average, for MLP, RNN, LSTM, CNN, and Transformer-based architectures, respectively.
☆ MedCLM: Learning to Localize and Reason via a CoT-Curriculum in Medical Vision-Language Models
Bridging clinical diagnostic reasoning with AI remains a central challenge in medical imaging. We introduce MedCLM, an automated pipeline that converts detection datasets into large-scale medical visual question answering (VQA) data with Chain-of-Thought (CoT) reasoning by linking lesion boxes to organ segmentation and structured rationales. These contextual signals enable medical vision-language models to generate question-answer pairs with step-by-step reasoning. To utilize this data effectively, we propose an Integrated CoT-Curriculum Strategy composed of an Easy stage with explicit lesion boxes for visual grounding, a Medium stage that encourages implicit localization, and a Hard stage for weakly supervised reasoning. Experimental results demonstrate that MedCLM attains state-of-the-art performance on several medical VQA benchmarks, providing a scalable framework for developing clinically aligned medical vision-language models.
☆ DRPO: Efficient Reasoning via Decoupled Reward Policy Optimization
Recent large reasoning models (LRMs) driven by reinforcement learning algorithms (e.g., GRPO) have achieved remarkable performance on challenging reasoning tasks. However, these models suffer from overthinking, generating unnecessarily long and redundant reasoning even for simple questions, which substantially increases computational cost and response latency. While existing methods incorporate length rewards to GRPO to promote concise reasoning, they incur significant performance degradation. We identify the root cause: when rewards for correct but long rollouts are penalized, GRPO's group-relative advantage function can assign them negative advantages, actively discouraging valid reasoning. To overcome this, we propose Decoupled Reward Policy Optimization (DRPO), a novel framework that decouples the length-based learning signal of correct rollouts from incorrect ones. DRPO ensures that reward signals for correct rollouts are normalized solely within the positive group, shielding them from interference by negative samples. The DRPO's objective is grounded in integrating an optimized positive data distribution, which maximizes length-based rewards under a KL regularization, into a discriminative objective. We derive a closed-form solution for this distribution, enabling efficient computation of the objective and its gradients using only on-policy data and importance weighting. Of independent interest, this formulation is general and can incorporate other preference rewards of positive data beyond length. Experiments on mathematical reasoning tasks demonstrate DRPO's significant superiority over six efficient reasoning baselines. Notably, with a 1.5B model, our method achieves 77\% length reduction with only 1.1\% performance loss on simple questions like GSM8k dataset, while the follow-up baseline sacrifices 4.3\% for 68\% length reduction.
comment: 20 pages, 7 figures
☆ SPEGNet: Synergistic Perception-Guided Network for Camouflaged Object Detection
Camouflaged object detection segments objects with intrinsic similarity and edge disruption. Current detection methods rely on accumulated complex components. Each approach adds components such as boundary modules, attention mechanisms, and multi-scale processors independently. This accumulation creates a computational burden without proportional gains. To manage this complexity, they process at reduced resolutions, eliminating fine details essential for camouflage. We present SPEGNet, addressing fragmentation through a unified design. The architecture integrates multi-scale features via channel calibration and spatial enhancement. Boundaries emerge directly from context-rich representations, maintaining semantic-spatial alignment. Progressive refinement implements scale-adaptive edge modulation with peak influence at intermediate resolutions. This design strikes a balance between boundary precision and regional consistency. SPEGNet achieves 0.887 $S_\alpha$ on CAMO, 0.890 on COD10K, and 0.895 on NC4K, with real-time inference speed. Our approach excels across scales, from tiny, intricate objects to large, pattern-similar ones, while handling occlusion and ambiguous boundaries. Code, model weights, and results are available on \href{https://github.com/Baber-Jan/SPEGNet}{https://github.com/Baber-Jan/SPEGNet}.
☆ Benchmarking atmospheric circulation variability in an AI emulator, ACE2, and a hybrid model, NeuralGCM
Physics-based atmosphere-land models with prescribed sea surface temperature have notable successes but also biases in their ability to represent atmospheric variability compared to observations. Recently, AI emulators and hybrid models have emerged with the potential to overcome these biases, but still require systematic evaluation against metrics grounded in fundamental atmospheric dynamics. Here, we evaluate the representation of four atmospheric variability benchmarking metrics in a fully data-driven AI emulator (ACE2-ERA5) and hybrid model (NeuralGCM). The hybrid model and emulator can capture the spectra of large-scale tropical waves and extratropical eddy-mean flow interactions, including critical levels. However, both struggle to capture the timescales associated with quasi-biennial oscillation (QBO, $\sim 28$ months) and Southern annular mode propagation ($\sim 150$ days). These dynamical metrics serve as an initial benchmarking tool to inform AI model development and understand their limitations, which may be essential for out-of-distribution applications (e.g., extrapolating to unseen climates).
comment: 12 pages, 4 main figures, 6 supplementary figures
☆ Perspectives on Stochastic Localization
We survey different perspectives on the stochastic localization process of [Eld13], a powerful construction that has had many exciting recent applications in high-dimensional probability and algorithm design. Unlike prior surveys on this topic, our focus is on giving a self-contained presentation of all known alternative constructions of Eldan's stochastic localization, with an emphasis on connections between different constructions. Our hope is that by collecting these perspectives, some of which had primarily arisen within a particular community (e.g., probability theory, theoretical computer science, information theory, or machine learning), we can broaden the accessibility of stochastic localization, and ease its future use.
☆ Inverse Mixed-Integer Programming: Learning Constraints then Objective Functions
In mixed-integer linear programming, data-driven inverse optimization that learns the objective function and the constraints from observed data plays an important role in constructing appropriate mathematical models for various fields, including power systems and scheduling. However, to the best of our knowledge, there is no known method for learning both the objective functions and the constraints. In this paper, we propose a two-stage method for a class of problems where the objective function is expressed as a linear combination of functions and the constraints are represented by functions and thresholds. Specifically, our method first learns the constraints and then learns the objective function. On the theoretical side, we show the proposed method can solve inverse optimization problems in finite dataset, develop statistical learning theory in pseudometric spaces and sub-Gaussian distributions, and construct a statistical learning for inverse optimization. On the experimental side, we demonstrate that our method is practically applicable for scheduling problems formulated as integer linear programmings with up to 100 decision variables, which are typical in real-world settings.
comment: 33 pages
☆ Zeroth-Order Methods for Stochastic Nonconvex Nonsmooth Composite Optimization
This work aims to solve a stochastic nonconvex nonsmooth composite optimization problem. Previous works on composite optimization problem requires the major part to satisfy Lipschitz smoothness or some relaxed smoothness conditions, which excludes some machine learning examples such as regularized ReLU network and sparse support matrix machine. In this work, we focus on stochastic nonconvex composite optimization problem without any smoothness assumptions. In particular, we propose two new notions of approximate stationary points for such optimization problem and obtain finite-time convergence results of two zeroth-order algorithms to these two approximate stationary points respectively. Finally, we demonstrate that these algorithms are effective using numerical experiments.
☆ Domain Generalization: A Tale of Two ERMs
Domain generalization (DG) is the problem of generalizing from several distributions (or domains), for which labeled training data are available, to a new test domain for which no labeled data is available. A common finding in the DG literature is that it is difficult to outperform empirical risk minimization (ERM) on the pooled training data. In this work, we argue that this finding has primarily been reported for datasets satisfying a \emph{covariate shift} assumption. When the dataset satisfies a \emph{posterior drift} assumption instead, we show that ``domain-informed ERM,'' wherein feature vectors are augmented with domain-specific information, outperforms pooling ERM. These claims are supported by a theoretical framework and experiments on language and vision tasks.
☆ Fractional Heat Kernel for Semi-Supervised Graph Learning with Small Training Sample Size
In this work, we introduce novel algorithms for label propagation and self-training using fractional heat kernel dynamics with a source term. We motivate the methodology through the classical correspondence of information theory with the physics of parabolic evolution equations. We integrate the fractional heat kernel into Graph Neural Network architectures such as Graph Convolutional Networks and Graph Attention, enhancing their expressiveness through adaptive, multi-hop diffusion. By applying Chebyshev polynomial approximations, large graphs become computationally feasible. Motivating variational formulations demonstrate that by extending the classical diffusion model to fractional powers of the Laplacian, nonlocal interactions deliver more globally diffusing labels. The particular balance between supervision of known labels and diffusion across the graph is particularly advantageous in the case where only a small number of labeled training examples are present. We demonstrate the effectiveness of this approach on standard datasets.
☆ spd-metrics-id: A Python Package for SPD-Aware Distance Metrics in Connectome Fingerprinting and Beyond
We present spd-metrics-id, a Python package for computing distances and divergences between symmetric positive-definite (SPD) matrices. Unlike traditional toolkits that focus on specific applications, spd-metrics-id provides a unified, extensible, and reproducible framework for SPD distance computation. The package supports a wide variety of geometry-aware metrics, including Alpha-z Bures-Wasserstein, Alpha-Procrustes, affine-invariant Riemannian, log-Euclidean, and others, and is accessible both via a command-line interface and a Python API. Reproducibility is ensured through Docker images and Zenodo archiving. We illustrate usage through a connectome fingerprinting example, but the package is broadly applicable to covariance analysis, diffusion tensor imaging, and other domains requiring SPD matrix comparison. The package is openly available at https://pypi.org/project/spd-metrics-id/.
☆ Trade-off in Estimating the Number of Byzantine Clients in Federated Learning
Federated learning has attracted increasing attention at recent large-scale optimization and machine learning research and applications, but is also vulnerable to Byzantine clients that can send any erroneous signals. Robust aggregators are commonly used to resist Byzantine clients. This usually requires to estimate the unknown number $f$ of Byzantine clients, and thus accordingly select the aggregators with proper degree of robustness (i.e., the maximum number $\hat{f}$ of Byzantine clients allowed by the aggregator). Such an estimation should have important effect on the performance, which has not been systematically studied to our knowledge. This work will fill in the gap by theoretically analyzing the worst-case error of aggregators as well as its induced federated learning algorithm for any cases of $\hat{f}$ and $f$. Specifically, we will show that underestimation ($\hat{f}
☆ Achieve Performatively Optimal Policy for Performative Reinforcement Learning
Performative reinforcement learning is an emerging dynamical decision making framework, which extends reinforcement learning to the common applications where the agent's policy can change the environmental dynamics. Existing works on performative reinforcement learning only aim at a performatively stable (PS) policy that maximizes an approximate value function. However, there is a provably positive constant gap between the PS policy and the desired performatively optimal (PO) policy that maximizes the original value function. In contrast, this work proposes a zeroth-order Frank-Wolfe algorithm (0-FW) algorithm with a zeroth-order approximation of the performative policy gradient in the Frank-Wolfe framework, and obtains \textbf{the first polynomial-time convergence to the desired PO} policy under the standard regularizer dominance condition. For the convergence analysis, we prove two important properties of the nonconvex value function. First, when the policy regularizer dominates the environmental shift, the value function satisfies a certain gradient dominance property, so that any stationary point (not PS) of the value function is a desired PO. Second, though the value function has unbounded gradient, we prove that all the sufficiently stationary points lie in a convex and compact policy subspace $\Pi_{\Delta}$, where the policy value has a constant lower bound $\Delta>0$ and thus the gradient becomes bounded and Lipschitz continuous. Experimental results also demonstrate that our 0-FW algorithm is more effective than the existing algorithms in finding the desired PO policy.
☆ Learning Survival Models with Right-Censored Reporting Delays
Survival analysis is a statistical technique used to estimate the time until an event occurs. Although it is applied across a wide range of fields, adjusting for reporting delays under practical constraints remains a significant challenge in the insurance industry. Such delays render event occurrences unobservable when their reports are subject to right censoring. This issue becomes particularly critical when estimating hazard rates for newly enrolled cohorts with limited follow-up due to administrative censoring. Our study addresses this challenge by jointly modeling the parametric hazard functions of event occurrences and report timings. The joint probability distribution is marginalized over the latent event occurrence status. We construct an estimator for the proposed survival model and establish its asymptotic consistency. Furthermore, we develop an expectation-maximization algorithm to compute its estimates. Using these findings, we propose a two-stage estimation procedure based on a parametric proportional hazards model to evaluate observations subject to administrative censoring. Experimental results demonstrate that our method effectively improves the timeliness of risk evaluation for newly enrolled cohorts.
comment: 21 pages, 3 figures, 4 tables
☆ Partial Information Decomposition via Normalizing Flows in Latent Gaussian Distributions NeurIPS 2025
The study of multimodality has garnered significant interest in fields where the analysis of interactions among multiple information sources can enhance predictive modeling, data fusion, and interpretability. Partial information decomposition (PID) has emerged as a useful information-theoretic framework to quantify the degree to which individual modalities independently, redundantly, or synergistically convey information about a target variable. However, existing PID methods depend on optimizing over a joint distribution constrained by estimated pairwise probability distributions, which are costly and inaccurate for continuous and high-dimensional modalities. Our first key insight is that the problem can be solved efficiently when the pairwise distributions are multivariate Gaussians, and we refer to this problem as Gaussian PID (GPID). We propose a new gradient-based algorithm that substantially improves the computational efficiency of GPID based on an alternative formulation of the underlying optimization problem. To generalize the applicability to non-Gaussian data, we learn information-preserving encoders to transform random variables of arbitrary input distributions into pairwise Gaussian random variables. Along the way, we resolved an open problem regarding the optimality of joint Gaussian solutions for GPID. Empirical validation in diverse synthetic examples demonstrates that our proposed method provides more accurate and efficient PID estimates than existing baselines. We further evaluate a series of large-scale multimodal benchmarks to show its utility in real-world applications of quantifying PID in multimodal datasets and selecting high-performing models.
comment: NeurIPS 2025
☆ Scale-Invariant Regret Matching and Online Learning with Optimal Convergence: Bridging Theory and Practice in Zero-Sum Games
A considerable chasm has been looming for decades between theory and practice in zero-sum game solving through first-order methods. Although a convergence rate of $T^{-1}$ has long been established since Nemirovski's mirror-prox algorithm and Nesterov's excessive gap technique in the early 2000s, the most effective paradigm in practice is *counterfactual regret minimization*, which is based on *regret matching* and its modern variants. In particular, the state of the art across most benchmarks is *predictive* regret matching$^+$ (PRM$^+$), in conjunction with non-uniform averaging. Yet, such algorithms can exhibit slower $\Omega(T^{-1/2})$ convergence even in self-play. In this paper, we close the gap between theory and practice. We propose a new scale-invariant and parameter-free variant of PRM$^+$, which we call IREG-PRM$^+$. We show that it achieves $T^{-1/2}$ best-iterate and $T^{-1}$ (i.e., optimal) average-iterate convergence guarantees, while also being on par with PRM$^+$ on benchmark games. From a technical standpoint, we draw an analogy between IREG-PRM$^+$ and optimistic gradient descent with *adaptive* learning rate. The basic flaw of PRM$^+$ is that the ($\ell_2$-)norm of the regret vector -- which can be thought of as the inverse of the learning rate -- can decrease. By contrast, we design IREG-PRM$^+$ so as to maintain the invariance that the norm of the regret vector is nondecreasing. This enables us to derive an RVU-type bound for IREG-PRM$^+$, the first such property that does not rely on introducing additional hyperparameters to enforce smoothness. Furthermore, we find that IREG-PRM$^+$ performs on par with an adaptive version of optimistic gradient descent that we introduce whose learning rate depends on the misprediction error, demystifying the effectiveness of the regret matching family *vis-a-vis* more standard optimization techniques.
☆ Modular and Adaptive Conformal Prediction for Sequential Models via Residual Decomposition
Conformal prediction offers finite-sample coverage guarantees under minimal assumptions. However, existing methods treat the entire modeling process as a black box, overlooking opportunities to exploit modular structure. We introduce a conformal prediction framework for two-stage sequential models, where an upstream predictor generates intermediate representations for a downstream model. By decomposing the overall prediction residual into stage-specific components, our method enables practitioners to attribute uncertainty to specific pipeline stages. We develop a risk-controlled parameter selection procedure using family-wise error rate (FWER) control to calibrate stage-wise scaling parameters, and propose an adaptive extension for non-stationary settings that preserves long-run coverage guarantees. Experiments on synthetic distribution shifts, as well as real-world supply chain and stock market data, demonstrate that our approach maintains coverage under conditions that degrade standard conformal methods, while providing interpretable stage-wise uncertainty attribution. This framework offers diagnostic advantages and robust coverage that standard conformal methods lack.
comment: 11 pages, (37 with appendix), 15 figures
♻ ☆ Improving Online-to-Nonconvex Conversion for Smooth Optimization via Double Optimism
A recent breakthrough in nonconvex optimization is the online-to-nonconvex conversion framework of [Cutkosky et al., 2023], which reformulates the task of finding an $\varepsilon$-first-order stationary point as an online learning problem. When both the gradient and the Hessian are Lipschitz continuous, instantiating this framework with two different online learners achieves a complexity of $O(\varepsilon^{-1.75}\log(1/\varepsilon))$ in the deterministic case and a complexity of $O(\varepsilon^{-3.5})$ in the stochastic case. However, this approach suffers from several limitations: (i) the deterministic method relies on a complex double-loop scheme that solves a fixed-point equation to construct hint vectors for an optimistic online learner, introducing an extra logarithmic factor; (ii) the stochastic method assumes a bounded second-order moment of the stochastic gradient, which is stronger than standard variance bounds; and (iii) different online learning algorithms are used in the two settings. In this paper, we address these issues by introducing an online optimistic gradient method based on a novel doubly optimistic hint function. Specifically, we use the gradient at an extrapolated point as the hint, motivated by two optimistic assumptions: that the difference between the hint and the target gradient remains near constant, and that consecutive update directions change slowly due to smoothness. Our method eliminates the need for a double loop and removes the logarithmic factor. Furthermore, by simply replacing full gradients with stochastic gradients and under the standard assumption that their variance is bounded by $\sigma^2$, we obtain a unified algorithm with complexity $O(\varepsilon^{-1.75} + \sigma^2 \varepsilon^{-3.5})$, smoothly interpolating between the best-known deterministic rate and the optimal stochastic rate.
comment: 32 pages
♻ ☆ What Drives Compositional Generalization in Visual Generative Models?
Compositional generalization, the ability to generate novel combinations of known concepts, is a key ingredient for visual generative models. Yet, not all mechanisms that enable or inhibit it are fully understood. In this work, we conduct a systematic study of how various design choices influence compositional generalization in image and video generation in a positive or negative way. Through controlled experiments, we identify two key factors: (i) whether the training objective operates on a discrete or continuous distribution, and (ii) to what extent conditioning provides information about the constituent concepts during training. Building on these insights, we show that relaxing the MaskGIT discrete loss with an auxiliary continuous JEPA-based objective can improve compositional performance in discrete models like MaskGIT.
♻ ☆ Relevance-Aware Thresholding in Online Conformal Prediction for Time Series
Uncertainty quantification has received considerable interest in recent works in Machine Learning. In particular, Conformal Prediction (CP) gains ground in this field. For the case of time series, Online Conformal Prediction (OCP) becomes an option to address the problem of data distribution shift over time. Indeed, the idea of OCP is to update a threshold of some quantity (whether the miscoverage level or the quantile) based on the distribution observation. To evaluate the performance of OCP methods, two key aspects are typically considered: the coverage validity and the prediction interval width minimization. Recently, new OCP methods have emerged, offering long-run coverage guarantees and producing more informative intervals. However, during the threshold update step, most of these methods focus solely on the validity of the prediction intervals~--~that is, whether the ground truth falls inside or outside the interval~--~without accounting for their relevance. In this paper, we aim to leverage this overlooked aspect. Specifically, we propose enhancing the threshold update step by replacing the binary evaluation (inside/outside) with a broader class of functions that quantify the relevance of the prediction interval using the ground truth. This approach helps prevent abrupt threshold changes, potentially resulting in narrower prediction intervals. Indeed, experimental results on real-world datasets suggest that these functions can produce tighter intervals compared to existing OCP methods while maintaining coverage validity.
comment: Accepted for The 28th European Conference on Artificial Intelligence 2025, Workshop HC@AIxIA+HYDRA 2025
♻ ☆ MALT: Improving Reasoning with Multi-Agent LLM Training
Large Language Models (LLMs) often produce answers with a single chain-of-thought, which restricts their ability to explore reasoning paths or self-correct flawed outputs in complex tasks. In this paper, we introduce MALT (Multi-Agent LLM Training), a novel post-training strategy that divides the reasoning process into generation, verification, and refinement steps using a sequential pipeline of heterogeneous agents. During data generation, each agent is repeatedly sampled to form a multi-agent search tree, where final outputs are graded against ground-truth data. We then apply value iteration to propagate reward signals back to each role-conditioned model, automatically producing multi-agent post-training data without human or teacher-model supervision. Our off-policy approach allows each agent to specialize by learning from correct and incorrect trajectories, ultimately improving the end-to-end reasoning chain. On MATH, GSM8K, and CSQA, MALT surpasses the same baseline LLM with a relative improvement of 15.66%, 7.42%, and 9.40% respectively, making it an important advance towards multi-agent cooperative training.
comment: Published at COLM 2025
♻ ☆ Learning Penalty for Optimal Partitioning via Automatic Feature Extraction
Changepoint detection identifies significant shifts in data sequences, making it important in areas like finance, genetics, and healthcare. The Optimal Partitioning algorithms efficiently detect these changes, using a penalty parameter to limit the changepoints count. Determining the optimal value for this penalty can be challenging. Traditionally, this process involved manually extracting statistical features, such as sequence length or variance to make the prediction. This study proposes a novel approach that uses recurrent networks to learn this penalty directly from raw sequences by automatically extracting features. Experiments conducted on 20 benchmark genomic datasets show that this novel method generally outperforms traditional ones in changepoint detection accuracy.
comment: 9 Figures
♻ ☆ Conformal Prediction for Long-Tailed Classification
Many real-world classification problems, such as plant identification, have extremely long-tailed class distributions. In order for prediction sets to be useful in such settings, they should (i) provide good class-conditional coverage, ensuring that rare classes are not systematically omitted from the prediction sets, and (ii) be a reasonable size, allowing users to easily verify candidate labels. Unfortunately, existing conformal prediction methods, when applied to the long-tailed setting, force practitioners to make a binary choice between small sets with poor class-conditional coverage or sets with very good class-conditional coverage but that are extremely large. We propose methods with guaranteed marginal coverage that smoothly trade off between set size and class-conditional coverage. First, we introduce a new conformal score function called prevalence-adjusted softmax that targets macro-coverage, a relaxed notion of class-conditional coverage. Second, we propose a new procedure that interpolates between marginal and class-conditional conformal prediction by linearly interpolating their conformal score thresholds. We demonstrate our methods on Pl@ntNet-300K and iNaturalist-2018, two long-tailed image datasets with 1,081 and 8,142 classes, respectively.
♻ ☆ PENEX: AdaBoost-Inspired Neural Network Regularization
AdaBoost sequentially fits so-called weak learners to minimize an exponential loss, which penalizes mislabeled data points more severely than other loss functions like cross-entropy. Paradoxically, AdaBoost generalizes well in practice as the number of weak learners grows. In the present work, we introduce Penalized Exponential Loss (PENEX), a new formulation of the multi-class exponential loss that is theoretically grounded and, in contrast to the existing formulation, amenable to optimization via first-order methods. We demonstrate both empirically and theoretically that PENEX implicitly maximizes margins of data points. Also, we show that gradient increments on PENEX implicitly parameterize weak learners in the boosting framework. Across computer vision and language tasks, we show that PENEX exhibits a regularizing effect often better than established methods with similar computational cost. Our results highlight PENEX's potential as an AdaBoost-inspired alternative for effective training and fine-tuning of deep neural networks.
♻ ☆ Diffusion^2: Turning 3D Environments into Radio Frequency Heatmaps
Modeling radio frequency (RF) signal propagation is essential for understanding the environment, as RF signals offer valuable insights beyond the capabilities of RGB cameras, which are limited by the visible-light spectrum, lens coverage, and occlusions. It is also useful for supporting wireless diagnosis, deployment, and optimization. However, accurately predicting RF signals in complex environments remains a challenge due to interactions with obstacles such as absorption and reflection. We introduce Diffusion^2, a diffusion-based approach that uses 3D point clouds to model the propagation of RF signals across a wide range of frequencies, from Wi-Fi to millimeter waves. To effectively capture RF-related features from 3D data, we present the RF-3D Encoder, which encapsulates the complexities of 3D geometry along with signal-specific details. These features undergo multi-scale embedding to simulate the actual RF signal dissemination process. Our evaluation, based on synthetic and real-world measurements, demonstrates that Diffusion^2 accurately estimates the behavior of RF signals in various frequency bands and environmental conditions, with an error margin of just 1.9 dB and 27x faster than existing methods, marking a significant advancement in the field. Refer to https://rfvision-project.github.io/ for more information.
♻ ☆ VidGuard-R1: AI-Generated Video Detection and Explanation via Reasoning MLLMs and RL
With the rapid advancement of AI-generated videos, there is an urgent need for effective detection tools to mitigate societal risks such as misinformation and reputational harm. In addition to accurate classification, it is essential that detection models provide interpretable explanations to ensure transparency for regulators and end users. To address these challenges, we introduce VidGuard-R1, the first video authenticity detector that fine-tunes a multi-modal large language model (MLLM) using group relative policy optimization (GRPO). Our model delivers both highly accurate judgments and insightful reasoning. We curate a challenging dataset of 140k real and AI-generated videos produced by state-of-the-art generation models, carefully designing the generation process to maximize discrimination difficulty. We then fine-tune Qwen-VL using GRPO with two specialized reward models that target temporal artifacts and generation complexity. Extensive experiments demonstrate that VidGuard-R1 achieves state-of-the-art zero-shot performance on existing benchmarks, with additional training pushing accuracy above 95%. Case studies further show that VidGuard-R1 produces precise and interpretable rationales behind its predictions. The code is publicly available at https://VidGuard-R1.github.io.
♻ ☆ Learning-Augmented Robust Algorithmic Recourse
Algorithmic recourse provides individuals who receive undesirable outcomes from machine learning systems with minimum-cost improvements to achieve a desirable outcome. However, machine learning models often get updated, so the recourse may not lead to the desired outcome. The robust recourse framework chooses recourses that are less sensitive to adversarial model changes, but this comes at a higher cost. To address this, we initiate the study of learning-augmented algorithmic recourse and evaluate the extent to which a designer equipped with a prediction of the future model can reduce the cost of recourse when the prediction is accurate (consistency) while also limiting the cost even when the prediction is inaccurate (robustness). We propose a novel algorithm, study the robustness-consistency trade-off, and analyze how prediction accuracy affects performance.
♻ ☆ Rethinking Exact Unlearning under Exposure: Extracting Forgotten Data under Exact Unlearning in Large Language Model
Large Language Models are typically trained on datasets collected from the web, which may inadvertently contain harmful or sensitive personal information. To address growing privacy concerns, unlearning methods have been proposed to remove the influence of specific data from trained models. Of these, exact unlearning -- which retrains the model from scratch without the target data -- is widely regarded the gold standard for mitigating privacy risks in deployment. In this paper, we revisit this assumption in a practical deployment setting where both the pre- and post-unlearning logits API are exposed, such as in open-weight scenarios. Targeting this setting, we introduce a novel data extraction attack that leverages signals from the pre-unlearning model to guide the post-unlearning model, uncovering patterns that reflect the removed data distribution. Combining model guidance with a token filtering strategy, our attack significantly improves extraction success rates -- doubling performance in some cases -- across common benchmarks such as MUSE, TOFU, and WMDP. Furthermore, we demonstrate our attack's effectiveness on a simulated medical diagnosis dataset to highlight real-world privacy risks associated with exact unlearning. In light of our findings, which suggest that unlearning may, in a contradictory way, increase the risk of privacy leakage during real-world deployments, we advocate for evaluation of unlearning methods to consider broader threat models that account not only for post-unlearning models but also for adversarial access to prior checkpoints. Code is publicly available at: https://github.com/Nicholas0228/unlearned_data_extraction_llm.
comment: Accepted by Neurips 2025
♻ ☆ RealKIE: Five Novel Datasets for Enterprise Key Information Extraction
We introduce RealKIE, a benchmark of five challenging datasets aimed at advancing key information extraction methods, with an emphasis on enterprise applications. The datasets include a diverse range of documents including SEC S1 Filings, US Non-disclosure Agreements, UK Charity Reports, FCC Invoices, and Resource Contracts. Each presents unique challenges: poor text serialization, sparse annotations in long documents, and complex tabular layouts. These datasets provide a realistic testing ground for key information extraction tasks like investment analysis and contract analysis. In addition to presenting these datasets, we offer an in-depth description of the annotation process, document processing techniques, and baseline modeling approaches. This contribution facilitates the development of NLP models capable of handling practical challenges and supports further research into information extraction technologies applicable to industry-specific problems. The annotated data, OCR outputs, and code to reproduce baselines are available to download at https://indicodatasolutions.github.io/RealKIE/.
♻ ☆ Reinforced Generation of Combinatorial Structures: Applications to Complexity Theory
We explore whether techniques from AI can help discover new combinatorial structures that improve on known limits on efficient algorithms. Specifically, we use AlphaEvolve (an LLM coding agent) to study two settings: a) Average-case hardness for MAX-CUT and MAX-Independent Set: We improve a recent result of Kunisky and Yu to obtain near-optimal upper and (conditional) lower bounds on certification algorithms for MAX-CUT and MAX-Independent Set on random 3- and 4-regular graphs. Our improved lower bounds are obtained by constructing nearly extremal Ramanujan graphs on as many as $163$ nodes, using AlphaEvolve. Additionally, via analytical arguments we strengthen the upper bounds to settle the computational hardness of these questions up to an error in the third decimal place. b) Worst-case Hardness of Approximation for MAX-k-CUT: We obtain new inapproximability results, proving that it is NP-hard to approximate MAX-4-CUT and MAX-3-CUT within factors of $0.987$ and $0.9649$ respectively, using AlphaEvolve to discover new gadget reductions. Our MAX-4-CUT result improves upon the SOTA of $0.9883$, and our MAX-3-CUT result improves on the current best gadget-based inapproximability result of $0.9853$, but falls short of improving the SOTA of $16/17$ that relies on a custom PCP, rather than a gadget reduction from "standard" H{\aa}stad-style PCPs. A key technical challenge we faced: verifying a candidate construction produced by AlphaEvolve is costly (often requiring exponential time). In both settings above, our results were enabled by using AlphaEvolve itself to evolve the verification procedure to be faster (sometimes by $10,000\times$). We conclude with a discussion of norms by which to assess the assistance from AI in developing proofs.
♻ ☆ Fast constrained sampling in pre-trained diffusion models
Large denoising diffusion models, such as Stable Diffusion, have been trained on billions of image-caption pairs to perform text-conditioned image generation. As a byproduct of this training, these models have acquired general knowledge about image statistics, which can be useful for other inference tasks. However, when confronted with sampling an image under new constraints, e.g. generating the missing parts of an image, using large pre-trained text-to-image diffusion models is inefficient and often unreliable. Previous approaches either utilized backpropagation through the denoiser network, making them significantly slower and more memory-demanding than simple text-to-image generation, or only enforced the constraint locally, failing to capture critical long-range correlations in the sampled image. In this work, we propose an algorithm that enables fast, high-quality generation under arbitrary constraints. We show that in denoising diffusion models, we can employ an approximation to Newton's optimization method that allows us to speed up inference and avoid the expensive backpropagation operations. Our approach produces results that rival or surpass the state-of-the-art training-free inference methods while requiring a fraction of the time. We demonstrate the effectiveness of our algorithm under both linear (inpainting, super-resolution) and non-linear (style-guided generation) constraints. An implementation is provided at https://github.com/cvlab-stonybrook/fast-constrained-sampling.
♻ ☆ Large Language Model Hacking: Quantifying the Hidden Risks of Using LLMs for Text Annotation
Large language models are rapidly transforming social science research by enabling the automation of labor-intensive tasks like data annotation and text analysis. However, LLM outputs vary significantly depending on the implementation choices made by researchers (e.g., model selection or prompting strategy). Such variation can introduce systematic biases and random errors, which propagate to downstream analyses and cause Type I (false positive), Type II (false negative), Type S (wrong sign), or Type M (exaggerated effect) errors. We call this phenomenon where configuration choices lead to incorrect conclusions LLM hacking. We find that intentional LLM hacking is strikingly simple. By replicating 37 data annotation tasks from 21 published social science studies, we show that, with just a handful of prompt paraphrases, virtually anything can be presented as statistically significant. Beyond intentional manipulation, our analysis of 13 million labels from 18 different LLMs across 2361 realistic hypotheses shows that there is also a high risk of accidental LLM hacking, even when following standard research practices. We find incorrect conclusions in approximately 31% of hypotheses for state-of-the-art LLMs, and in half the hypotheses for smaller language models. While higher task performance and stronger general model capabilities reduce LLM hacking risk, even highly accurate models remain susceptible. The risk of LLM hacking decreases as effect sizes increase, indicating the need for more rigorous verification of LLM-based findings near significance thresholds. We analyze 21 mitigation techniques and find that human annotations provide crucial protection against false positives. Common regression estimator correction techniques can restore valid inference but trade off Type I vs. Type II errors. We publish a list of practical recommendations to prevent LLM hacking.
♻ ☆ In-Context Learning for Pure Exploration
We study the problem active sequential hypothesis testing, also known as pure exploration: given a new task, the learner adaptively collects data from the environment to efficiently determine an underlying correct hypothesis. A classical instance of this problem is the task of identifying the best arm in a multi-armed bandit problem (a.k.a. BAI, Best-Arm Identification), where actions index hypotheses. Another important case is generalized search, a problem of determining the correct label through a sequence of strategically selected queries that indirectly reveal information about the label. In this work, we introduce In-Context Pure Exploration (ICPE), which meta-trains Transformers to map observation histories to query actions and a predicted hypothesis, yielding a model that transfers in-context. At inference time, ICPE actively gathers evidence on new tasks and infers the true hypothesis without parameter updates. Across deterministic, stochastic, and structured benchmarks, including BAI and generalized search, ICPE is competitive with adaptive baselines while requiring no explicit modeling of information structure. Our results support Transformers as practical architectures for general sequential testing.
♻ ☆ Cooperative Decentralized Backdoor Attacks on Vertical Federated Learning
Federated learning (FL) is vulnerable to backdoor attacks, where adversaries alter model behavior on target classification labels by embedding triggers into data samples. While these attacks have received considerable attention in horizontal FL, they are less understood for vertical FL (VFL), where devices hold different features of the samples, and only the server holds the labels. In this work, we propose a novel backdoor attack on VFL which (i) does not rely on gradient information from the server and (ii) considers potential collusion among multiple adversaries for sample selection and trigger embedding. Our label inference model augments variational autoencoders with metric learning, which adversaries can train locally. A consensus process over the adversary graph topology determines which datapoints to poison. We further propose methods for trigger splitting across the adversaries, with an intensity-based implantation scheme skewing the server towards the trigger. Our convergence analysis reveals the impact of backdoor perturbations on VFL indicated by a stationarity gap for the trained model, which we verify empirically as well. We conduct experiments comparing our attack with recent backdoor VFL approaches, finding that ours obtains significantly higher success rates for the same main task performance despite not using server information. Additionally, our results verify the impact of collusion on attack performance.
comment: This paper is currently under review in the IEEE/ACM Transactions on Networking Special Issue on AI and Networking
♻ ☆ QDFlow: A Python package for physics simulations of quantum dot devices
Recent advances in machine learning (ML) have accelerated progress in calibrating and operating quantum dot (QD) devices. However, most ML approaches rely on access to large, representative datasets designed to capture the full spectrum of data quality encountered in practice, with both high- and low-quality data for training, benchmarking, and validation, with labels capturing key features of the device state. Collating such datasets experimentally is challenging due to limited data availability, slow measurement bandwidths, and the labor-intensive nature of labeling. QDFlow is an open-source physics simulator for multi-QD arrays that generates realistic synthetic data with ground-truth labels. QDFlow combines a self-consistent Thomas-Fermi solver, a dynamic capacitance model, and flexible noise modules to simulate charge stability diagrams and ray-based data closely resembling experiments. With an extensive set of parameters that can be varied and customizable noise models, QDFlow supports the creation of large, diverse datasets for ML development, benchmarking, and quantum device research.
comment: 17 pages, 5 figures
♻ ☆ Data-Driven Performance Guarantees for Classical and Learned Optimizers
We introduce a data-driven approach to analyze the performance of continuous optimization algorithms using generalization guarantees from statistical learning theory. We study classical and learned optimizers to solve families of parametric optimization problems. We build generalization guarantees for classical optimizers, using a sample convergence bound, and for learned optimizers, using the Probably Approximately Correct (PAC)-Bayes framework. To train learned optimizers, we use a gradient-based algorithm to directly minimize the PAC-Bayes upper bound. Numerical experiments in signal processing, control, and meta-learning showcase the ability of our framework to provide strong generalization guarantees for both classical and learned optimizers given a fixed budget of iterations. For classical optimizers, our bounds are much tighter than those that worst-case guarantees provide. For learned optimizers, our bounds outperform the empirical outcomes observed in their non-learned counterparts.
♻ ☆ Critical Points of Random Neural Networks
This work investigates the expected number of critical points of random neural networks with different activation functions as the depth increases in the infinite-width limit. Under suitable regularity conditions, we derive precise asymptotic formulas for the expected number of critical points of fixed index and those exceeding a given threshold. Our analysis reveals three distinct regimes depending on the value of the first derivative of the covariance evaluated at 1: the expected number of critical points may converge, grow polynomially, or grow exponentially with depth. The theoretical predictions are supported by numerical experiments. Moreover, we provide numerical evidence suggesting that, when the regularity condition is not satisfied (e.g. for neural networks with ReLU as activation function), the number of critical points increases as the map resolution increases, indicating a potential divergence in the number of critical points.
♻ ☆ Physics-informed Value Learner for Offline Goal-Conditioned Reinforcement Learning
Offline Goal-Conditioned Reinforcement Learning (GCRL) holds great promise for domains such as autonomous navigation and locomotion, where collecting interactive data is costly and unsafe. However, it remains challenging in practice due to the need to learn from datasets with limited coverage of the state-action space and to generalize across long-horizon tasks. To improve on these challenges, we propose a \emph{Physics-informed (Pi)} regularized loss for value learning, derived from the Eikonal Partial Differential Equation (PDE) and which induces a geometric inductive bias in the learned value function. Unlike generic gradient penalties that are primarily used to stabilize training, our formulation is grounded in continuous-time optimal control and encourages value functions to align with cost-to-go structures. The proposed regularizer is broadly compatible with temporal-difference-based value learning and can be integrated into existing Offline GCRL algorithms. When combined with Hierarchical Implicit Q-Learning (HIQL), the resulting method, Eikonal-regularized HIQL (Eik-HIQL), yields significant improvements in both performance and generalization, with pronounced gains in stitching regimes and large-scale navigation tasks.
♻ ☆ Another look at inference after prediction
From structural biology to epidemiology, predictions from machine learning (ML) models increasingly complement costly gold-standard data to enable faster, more affordable, and scalable scientific inquiry. In response, prediction-based (PB) inference has emerged to accommodate statistical analysis using a large volume of predictions together with a small amount of gold-standard data. The goals of PB inference are two-fold: (i) to mitigate bias from errors in predictions and (ii) to improve efficiency relative to classical inference using only the gold-standard data. While early PB inference methods focused on bias, their ability to enhance efficiency remains a focus of ongoing research. We revisit a foundational PB inference method and show that a simple modification can be applied to guarantee provable improvements in efficiency. In doing so, we establish new connections between augmented inverse probability weighted estimators (AIPW) and several recently proposed PB inference methods with a similar focus. The utility of our proposal, which leverages prediction-based outcomes to enhance efficiency, is demonstrated through extensive simulation studies and an application to real data from the UK Biobank. Further, we contextualize PB inference by drawing connections to historical literature from economics and statistics, highlighting how classic methods directly inform this contemporary problem.
♻ ☆ Multi-Turn Human-LLM Interaction Through the Lens of a Two-Way Intelligibility Protocol NeurIPS 2025
Our interest is in the design of software systems involving a human-expert interacting -- using natural language -- with a large language model (LLM) on data analysis tasks. For complex problems, it is possible that LLMs can harness human expertise and creativity to find solutions that were otherwise elusive. On one level, this interaction takes place through multiple turns of prompts from the human and responses from the LLM. Here we investigate a more structured approach based on an abstract protocol described in [3] for interaction between agents. The protocol is motivated by a notion of "two-way intelligibility" and is modelled by a pair of communicating finite-state machines. We provide an implementation of the protocol, and provide empirical evidence of using the implementation to mediate interactions between an LLM and a human-agent in two areas of scientific interest (radiology and drug design). We conduct controlled experiments with a human proxy (a database), and uncontrolled experiments with human subjects. The results provide evidence in support of the protocol's capability of capturing one- and two-way intelligibility in human-LLM interaction; and for the utility of two-way intelligibility in the design of human-machine systems. Our code is available at https://github.com/karannb/interact.
comment: Multi-Turn Interactions in Large Language Models (MTI-LLM) Workshop at NeurIPS 2025
♻ ☆ CHARME: A chain-based reinforcement learning approach for the minor embedding problem
Quantum annealing (QA) has great potential to solve combinatorial optimization problems efficiently. However, the effectiveness of QA algorithms is heavily based on the embedding of problem instances, represented as logical graphs, into the quantum processing unit (QPU) whose topology is in the form of a limited connectivity graph, known as the minor embedding problem. Because the minor embedding problem is an NP-hard problem~\mbox{\cite{Goodrich2018}}, existing methods for the minor embedding problem suffer from scalability issues when faced with larger problem sizes. In this paper, we propose a novel approach utilizing Reinforcement Learning (RL) techniques to address the minor embedding problem, named CHARME. CHARME includes three key components: a Graph Neural Network (GNN) architecture for policy modeling, a state transition algorithm that ensures solution validity, and an order exploration strategy for effective training. Through comprehensive experiments on synthetic and real-world instances, we demonstrate the efficiency of our proposed order exploration strategy as well as our proposed RL framework, CHARME. In particular, CHARME yields superior solutions in terms of qubit usage compared to fast embedding methods such as Minorminer and ATOM. Moreover, our method surpasses the OCT-based approach, known for its slower runtime but high-quality solutions, in several cases. In addition, our proposed exploration enhances the efficiency of the training of the CHARME framework by providing better solutions compared to the greedy strategy.
♻ ☆ What Lurks Within? Concept Auditing for Shared Diffusion Models at Scale CCS 2025
Diffusion models (DMs) have revolutionized text-to-image generation, enabling the creation of highly realistic and customized images from text prompts. With the rise of parameter-efficient fine-tuning (PEFT) techniques, users can now customize powerful pre-trained models using minimal computational resources. However, the widespread sharing of fine-tuned DMs on open platforms raises growing ethical and legal concerns, as these models may inadvertently or deliberately generate sensitive or unauthorized content. Despite increasing regulatory attention on generative AI, there are currently no practical tools for systematically auditing these models before deployment. In this paper, we address the problem of concept auditing: determining whether a fine-tuned DM has learned to generate a specific target concept. Existing approaches typically rely on prompt-based input crafting and output-based image classification but they suffer from critical limitations, including prompt uncertainty, concept drift, and poor scalability. To overcome these challenges, we introduce Prompt-Agnostic Image-Free Auditing (PAIA), a novel, model-centric concept auditing framework. By treating the DM as the object of inspection, PAIA enables direct analysis of internal model behavior, bypassing the need for optimized prompts or generated images. We evaluate PAIA on 320 controlled models trained with curated concept datasets and 771 real-world community models sourced from a public DM sharing platform. Evaluation results show that PAIA achieves over 90% detection accuracy while reducing auditing time by 18 - 40X compared to existing baselines. To our knowledge, PAIA is the first scalable and practical solution for pre-deployment concept auditing of diffusion models, providing a practical foundation for safer and more transparent diffusion model sharing.
comment: Extended version of the paper accepted at CCS 2025
♻ ☆ AgentRewardBench: Evaluating Automatic Evaluations of Web Agent Trajectories
Web agents enable users to perform tasks on web browsers through natural language interaction. Evaluating web agents trajectories is an important problem, since it helps us determine whether the agent successfully completed the tasks. Rule-based methods are widely used for this purpose, but they are challenging to extend to new tasks and may not always recognize successful trajectories. We may achieve higher accuracy through human evaluation, but the process would be substantially slower and more expensive. Automatic evaluations with LLMs may avoid the challenges of designing new rules and manually annotating trajectories, enabling faster and cost-effective evaluation. However, it is unclear how effective they are at evaluating web agents. To this end, we propose AgentRewardBench, the first benchmark to assess the effectiveness of LLM judges for evaluating web agents. AgentRewardBench contains 1302 trajectories across 5 benchmarks and 4 LLMs. Each trajectory in AgentRewardBench is reviewed by an expert, who answers questions pertaining to the success, side effects, and repetitiveness of the agent. Using our benchmark, we evaluate 12 LLM judges and find that no single LLM excels across all benchmarks. We also find that the rule-based evaluation used by common benchmarks tends to underreport the success rate of web agents, highlighting a key weakness of rule-based evaluation and the need to develop more flexible automatic evaluations. We release the benchmark at: https://agent-reward-bench.github.io
♻ ☆ Agentic Additive Manufacturing Alloy Discovery
Agentic systems enable the intelligent use of research tooling, augmenting a researcher's ability to investigate and propose novel solutions to existing problems. Within Additive Manufacturing (AM), alloy discovery remains a complex challenge, often requiring expertise in the various domains of materials science, thermodynamic simulations, and experimental analysis. Large Language Model (LLM) enabled agents can facilitate this endeavor by utilizing their extensive knowledge base to dispatch tool calls via Model Context Protocol (MCP) to perform actions such as Thermo-Calc property diagram calculations and lack of fusion process map generation. In addition, the multi-agent system developed in this work is able to effectively reason through complex user prompts and provide analysis on the printability of proposed alloys. These agents can dynamically adjust their task trajectory to the outcomes of tool call results, effectively enabling autonomous decision-making in practical environments. This work aims to utilize LLM enabled agents to automate and accelerate the task of alloy discovery within the field of additive manufacturing and showcase the benefits of adopting this multi-agent system.
♻ ☆ H3Fusion: Helpful, Harmless, Honest Fusion of Aligned LLMs
Alignment of pretrained LLMs using instruction-based datasets is critical for creating fine-tuned models that reflect human preference. A growing number of alignment-based fine-tuning algorithms and benchmarks emerged recently, fueling the efforts on effective alignments of pre-trained LLMs to ensure helpful, harmless, and honest answers from both open-source and closed-source LLMs. This paper tackles this problem by developing an alignment fusion approach, coined as $H^3$Fusion, with three unique characteristics. First, $H^3$Fusion ensembles multiple individually aligned LLMs to create a final fine-tuned alignment model with enhanced capabilities beyond those of individual models, delivering robust alignment through promoting helpful, harmless, honest fusion. Second, $H^3$Fusion leverages the mixture-of-experts (MoE) methodology in two steps. We first freeze the multi-head attention weights of each individual model while tuning the FFN layer during alignment fusion. Then we merge the aligned model weights with an expert router according to the type of input instruction and dynamically select a subset of experts that are best suited for producing the output response. Finally, we boost the performance of the resulting $H^3$3Fusion model by introducing gating loss and regularization terms. The former penalizes the selection errors of the expert-router, and the latter mediates the expert weights drifting during fine-tuning and dynamically adjusts the fusion behavior of the resulting model by canalizing the activations on the experts. Extensive evaluations on three benchmark datasets show that $H^3$3Fusion is more helpful, less harmful, and more honest from two aspects: it outperforms each individually aligned model by $11.37\%$, and it provides stronger robustness compared to the state-of-the-art LLM ensemble approaches by $13.77\%$. Code is available at github.com/sftekin/h3fusion.
♻ ☆ Summaries as Centroids for Interpretable and Scalable Text Clustering
We introduce k-NLPmeans and k-LLMmeans, text-clustering variants of k-means that periodically replace numeric centroids with textual summaries. The key idea, summary-as-centroid, retains k-means assignments in embedding space while producing human-readable, auditable cluster prototypes. The method is LLM-optional: k-NLPmeans uses lightweight, deterministic summarizers, enabling offline, low-cost, and stable operation; k-LLMmeans is a drop-in upgrade that uses an LLM for summaries under a fixed per-iteration budget whose cost does not grow with dataset size. We also present a mini-batch extension for real-time clustering of streaming text. Across diverse datasets, embedding models, and summarization strategies, our approach consistently outperforms classical baselines and approaches the accuracy of recent LLM-based clustering-without extensive LLM calls. Finally, we provide a case study on sequential text streams and release a StackExchange-derived benchmark for evaluating streaming text clustering.
♻ ☆ Asynchronous Federated Stochastic Optimization for Heterogeneous Objectives Under Arbitrary Delays
Federated learning (FL) was recently proposed to securely train models with data held over multiple locations (``clients'') under the coordination of a central server. Prolonged training times caused by slow clients may hinder the performance of FL; while asynchronous communication is a promising solution, highly heterogeneous client response times under non-IID local data may introduce significant bias to the global model, particularly in client-driven setups where sampling is infeasible. To address this issue, we propose \underline{A}synch\underline{R}onous \underline{E}xact \underline{A}veraging (\textsc{AREA}), a stochastic (sub)gradient method that leverages asynchrony for scalability and uses client-side memory to correct the bias induced by uneven participation, without client sampling or prior knowledge of client latencies. \textsc{AREA} communicates model residuals rather than gradient estimates, reducing exposure to gradient inversion, and is compatible with secure aggregation. Under standard assumptions and unbounded, heterogeneous delays with finite mean, AREA achieves optimal convergence rates: $\mathcal{O}(1/K)$ in the strongly convex, smooth regime and $\mathcal{O}(1/\sqrt{K})$ in the convex, nonsmooth regime. For strongly convex, smooth objectives, we demonstrate theoretically and empirically that AREA accommodates larger step sizes than existing methods, enabling fast convergence without adversely impacting model generalization. In the convex, nonsmooth setting, to our knowledge we are the first to obtain rates that scale with the average client update frequency rather than the minimum or maximum, indicating increased robustness to outliers.
♻ ☆ The Syntax and Semantics of einsum
In 2011, einsum was introduced to NumPy as a practical and convenient notation for tensor expressions in machine learning, quantum circuit simulation, and other fields. It has since been implemented in additional Python frameworks such as PyTorch and TensorFlow, as well as in other programming languages such as Julia. Despite its practical success, the einsum notation still lacks a solid theoretical basis, and is not unified across the different frameworks, limiting opportunities for formal reasoning and systematic optimization. In this work, we discuss the terminology of tensor expressions and provide a formal definition of the einsum language. Based on this definition, we formalize and prove important equivalence rules for tensor expressions and highlight their relevance in practical applications.
comment: 21 pages, 1 figure. Includes formal definitions, proofs of algebraic properties, and nesting/denesting rules for the einsum notation
♻ ☆ Impact of Dataset Properties on Membership Inference Vulnerability of Deep Transfer Learning NeurIPS 2025
Membership inference attacks (MIAs) are used to test practical privacy of machine learning models. MIAs complement formal guarantees from differential privacy (DP) under a more realistic adversary model. We analyse MIA vulnerability of fine-tuned neural networks both empirically and theoretically, the latter using a simplified model of fine-tuning. We show that the vulnerability of non-DP models when measured as the attacker advantage at a fixed false positive rate reduces according to a simple power law as the number of examples per class increases. A similar power-law applies even for the most vulnerable points, but the dataset size needed for adequate protection of the most vulnerable points is very large.
comment: Accepted to NeurIPS 2025; 47 pages, 13 figures
♻ ☆ First Hallucination Tokens Are Different from Conditional Ones
Large Language Models (LLMs) hallucinate, and detecting these cases is key to ensuring trust. While many approaches address hallucination detection at the response or span level, recent work explores token-level detection, enabling more fine-grained intervention. However, the distribution of hallucination signal across sequences of hallucinated tokens remains unexplored. We leverage token-level annotations from the RAGTruth corpus and find that the first hallucinated token is far more detectable than later ones. This structural property holds across models, suggesting that first hallucination tokens play a key role in token-level hallucination detection. Our code is available at https://github.com/jakobsnl/RAGTruth_Xtended.
comment: 4.5 pages, 3 figures, Dataset, Knowledge Paper, Hallucination, Trustworthiness
♻ ☆ Unified ODE Analysis of Smooth Q-Learning Algorithms
Convergence of Q-learning has been the focus of extensive research over the past several decades. Recently, an asymptotic convergence analysis for Q-learning was introduced using a switching system framework. This approach applies the so-called ordinary differential equation (ODE) approach to prove the convergence of the asynchronous Q-learning modeled as a continuous-time switching system, where notions from switching system theory are used to prove its asymptotic stability without using explicit Lyapunov arguments. However, to prove stability, restrictive conditions, such as quasi-monotonicity, must be satisfied for the underlying switching systems, which makes it hard to easily generalize the analysis method to other reinforcement learning algorithms, such as the smooth Q-learning variants. In this paper, we present a more general and unified convergence analysis that improves upon the switching system approach and can analyze Q-learning and its smooth variants. The proposed analysis is motivated by previous work on the convergence of synchronous Q-learning based on $p$-norm serving as a Lyapunov function. However, the proposed analysis addresses more general ODE models that can cover both asynchronous Q-learning and its smooth versions with simpler frameworks.
♻ ☆ PRO-VPT: Distribution-Adaptive Visual Prompt Tuning via Prompt Relocation ICCV 2025
Visual prompt tuning (VPT), i.e., fine-tuning some lightweight prompt tokens, provides an efficient and effective approach for adapting pre-trained models to various downstream tasks. However, most prior art indiscriminately uses a fixed prompt distribution across different tasks, neglecting the importance of each block varying depending on the task. In this paper, we introduce adaptive distribution optimization (ADO) by tackling two key questions: (1) How to appropriately and formally define ADO, and (2) How to design an adaptive distribution strategy guided by this definition? Through empirical analysis, we first confirm that properly adjusting the distribution significantly improves VPT performance, and further uncover a key insight that a nested relationship exists between ADO and VPT. Based on these findings, we propose a new VPT framework, termed PRO-VPT (iterative Prompt RelOcation-based VPT), which adaptively adjusts the distribution built upon a nested optimization formulation. Specifically, we develop a prompt relocation strategy derived from this formulation, comprising two steps: pruning idle prompts from prompt-saturated blocks, followed by allocating these prompts to the most prompt-needed blocks. By iteratively performing prompt relocation and VPT, our proposal can adaptively learn the optimal prompt distribution in a nested optimization-based manner, thereby unlocking the full potential of VPT. Extensive experiments demonstrate that our proposal significantly outperforms advanced VPT methods, e.g., PRO-VPT surpasses VPT by 1.6 pp and 2.0 pp average accuracy, leading prompt-based methods to state-of-the-art performance on VTAB-1k and FGVC benchmarks. The code is available at https://github.com/ckshang/PRO-VPT.
comment: Accepted by ICCV 2025
♻ ☆ DiffSampling: Enhancing Diversity and Accuracy in Neural Text Generation
Despite their growing capabilities, language models still frequently reproduce content from their training data, generate repetitive text, and favor common grammatical patterns and vocabulary. A possible cause is the decoding strategy: the most common strategies either consider only the most probable tokens, which reduces output diversity, or increase the likelihood of unlikely tokens, compromising output accuracy and correctness. In this paper, we propose DiffSampling, a new decoding method that leverages a mathematical analysis of the token probability distribution to ensure the generation of contextually appropriate text. In particular, the difference between consecutive, sorted probabilities can be used to truncate incorrect tokens. In addition, we also propose two variations of the proposed method that aim to correct the subtle inconsistencies of common sampling strategies. Experiments involving four different text-generation tasks demonstrate that our approach consistently performs at least on par with the existing methods it builds upon in terms of quality, while potentially improving output diversity.
♻ ☆ Joint Diffusion models in Continual Learning
In this work, we introduce JDCL - a new method for continual learning with generative rehearsal based on joint diffusion models. Neural networks suffer from catastrophic forgetting defined as abrupt loss in the model's performance when retrained with additional data coming from a different distribution. Generative-replay-based continual learning methods try to mitigate this issue by retraining a model with a combination of new and rehearsal data sampled from a generative model. In this work, we propose to extend this idea by combining a continually trained classifier with a diffusion-based generative model into a single - jointly optimized neural network. We show that such shared parametrization, combined with the knowledge distillation technique allows for stable adaptation to new tasks without catastrophic forgetting. We evaluate our approach on several benchmarks, where it outperforms recent state-of-the-art generative replay techniques. Additionally, we extend our method to the semi-supervised continual learning setup, where it outperforms competing buffer-based replay techniques, and evaluate, in a self-supervised manner, the quality of trained representations.
♻ ☆ Fine-Grained AI Model Caching and Downloading With Coordinated Multipoint Broadcasting in Multi-Cell Edge Networks
6G networks are envisioned to support on-demand AI model downloading to accommodate diverse inference requirements of end users. By proactively caching models at edge nodes, users can retrieve the requested models with low latency for on-device AI inference. However, the substantial size of contemporary AI models poses significant challenges for edge caching under limited storage capacity, as well as for the concurrent delivery of heterogeneous models over wireless channels. To address these challenges, we propose a fine-grained AI model caching and downloading system that exploits parameter reusability, stemming from the common practice of fine-tuning task-specific models from a shared pre-trained model with frozen parameters. This system selectively caches model parameter blocks (PBs) at edge nodes, eliminating redundant storage of reusable parameters across different cached models. Additionally, it incorporates coordinated multipoint (CoMP) broadcasting to simultaneously deliver reusable PBs to multiple users, thereby enhancing downlink spectrum utilization. Under this arrangement, we formulate a model downloading delay minimization problem to jointly optimize PB caching, migration (among edge nodes), and broadcasting beamforming. To tackle this intractable problem, we develop a distributed multi-agent learning framework that enables edge nodes to explicitly learn mutual influence among their actions, thereby facilitating cooperation. Furthermore, a data augmentation approach is proposed to adaptively generate synthetic training samples through a predictive model, boosting sample efficiency and accelerating policy learning. Both theoretical analysis and simulation experiments validate the superior convergence performance of the proposed learning framework.
♻ ☆ Distributional Inverse Reinforcement Learning
We propose a distributional framework for offline Inverse Reinforcement Learning (IRL) that jointly models uncertainty over reward functions and full distributions of returns. Unlike conventional IRL approaches that recover a deterministic reward estimate or match only expected returns, our method captures richer structure in expert behavior, particularly in learning the reward distribution, by minimizing first-order stochastic dominance (FSD) violations and thus integrating distortion risk measures (DRMs) into policy learning, enabling the recovery of both reward distributions and distribution-aware policies. This formulation is well-suited for behavior analysis and risk-aware imitation learning. Empirical results on synthetic benchmarks, real-world neurobehavioral data, and MuJoCo control tasks demonstrate that our method recovers expressive reward representations and achieves state-of-the-art imitation performance.
♻ ☆ TRA: Better Length Generalisation with Threshold Relative Attention
Transformers struggle with length generalisation, displaying poor performance even on basic tasks. We test whether these limitations can be explained through two key failures of the self-attention mechanism. The first is the inability to fully remove irrelevant information. The second is tied to position, even if the dot product between a key and query is highly negative (i.e. an irrelevant key) learned positional biases may unintentionally up-weight such information - dangerous when distances become out of distribution. Put together, these two failure cases lead to compounding generalisation difficulties. We test whether they can be mitigated through the combination of a) selective sparsity - completely removing irrelevant keys from the attention softmax and b) contextualised relative distance - distance is only considered as between the query and the keys that matter. We show how refactoring the attention mechanism with these two mitigations in place can substantially improve the generalisation capabilities of decoder only transformers.
♻ ☆ Silent Tokens, Loud Effects: Padding in LLMs NeurIPS 2025
Padding tokens are widely used in large language models (LLMs) to equalize sequence lengths during batched inference. While they should be fully masked, implementation errors can cause them to influence computation, and the extent of this influence is not well understood. We systematically study this effect across three open-source model families (Llama, Gemma, Qwen), inserting controlled amounts of padding and evaluating outcomes along four axes: activations, generation quality, bias, and safety. Even small amounts of padding shift hidden representations, degrade quality in smaller models, alter bias in unpredictable ways, and weaken safety guardrails. These findings demonstrate that padding is not a harmless detail but a robustness risk that must be carefully handled in deployment.
comment: Accepted to NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling
Rethinking KL Regularization in RLHF: From Value Estimation to Gradient Optimization
Reinforcement Learning from Human Feedback (RLHF) leverages a Kullback-Leibler (KL) divergence loss to stabilize training and prevent overfitting. However, in methods such as GRPO, its implementation may be guided by principles from numerical value estimation-a practice that overlooks the term's functional role as an optimization loss. To analyze this issue, we establish a unified framework that connects two seemingly distinct implementation styles: using the mathematical term $k_n$ as a detached coefficient for the policy's score function ('$k_n$ in reward') or as a direct loss function through which gradients are propagated ('$k_n$ as loss'). We show that the latter can always be analyzed via an equivalent gradient coefficient in the former, unifying the two perspectives. Through this framework, we prove that the conventional '$k_1$ in reward' (like in PPO) is the principled loss for Reverse KL (RKL) regularization. We further establish a key finding: under on-policy conditions, the '$k_2$ as loss' formulation is, in fact, gradient-equivalent to '$k_1$ in reward'. This equivalence, first proven in our work, identifies both as the theoretically sound implementations of the RKL objective. In contrast, we show that the recently adopted '$k_3$ as loss' (like in GRPO) is merely a first-order, biased approximation of the principled loss. Furthermore, we argue that common off-policy implementations of '$k_n$ as loss' methods are biased due to neglected importance sampling, and we propose a principled correction. Our findings provide a comprehensive, gradient-based rationale for choosing and correctly implementing KL regularization, paving the way for more robust and effective RLHF systems.
♻ ☆ Low Resource Audio Codec Challenge Baseline Systems
The Low-Resource Audio Codec (LRAC) Challenge aims to advance neural audio coding for deployment in resource-constrained environments. The first edition focuses on low-resource neural speech codecs that must operate reliably under everyday noise and reverberation, while satisfying strict constraints on computational complexity, latency, and bitrate. Track 1 targets transparency codecs, which aim to preserve the perceptual transparency of input speech under mild noise and reverberation. Track 2 addresses enhancement codecs, which combine coding and compression with denoising and dereverberation. This paper presents the official baseline systems for both tracks in the 2025 LRAC Challenge. The baselines are convolutional neural codec models with Residual Vector Quantization, trained end-to-end using a combination of adversarial and reconstruction objectives. We detail the data filtering and augmentation strategies, model architectures, optimization procedures, and checkpoint selection criteria.
comment: Low-Resource Audio Codec Challenge 2025
♻ ☆ Unlocking In-Context Learning for Natural Datasets Beyond Language Modelling
Large Language Models (LLMs) exhibit In-Context Learning (ICL), which enables the model to perform new tasks conditioning only on the examples provided in the context without updating the model's weights. While ICL offers fast adaptation across natural language tasks and domains, its emergence is less straightforward for modalities beyond text. In this work, we systematically uncover properties present in LLMs that support the emergence of ICL for autoregressive models and various modalities by promoting the learning of the needed mechanisms for ICL. We identify exact token repetitions in the training data sequences as an important factor for ICL. Such repetitions further improve stability and reduce transiency in ICL performance. Moreover, we emphasise the significance of training task difficulty for the emergence of ICL. Finally, by applying our novel insights on ICL emergence, we unlock ICL capabilities for various visual datasets and a more challenging EEG classification task.
comment: Best Paper Honorable Mention at GCPR 2025 (German Conference on Pattern Recognition). This is the updated version submitted to the conference, not the official conference proceedings
♻ ☆ RhoDARTS: Differentiable Quantum Architecture Search with Density Matrix Simulations
Variational Quantum Algorithms (VQAs) are a promising approach to leverage Noisy Intermediate-Scale Quantum (NISQ) computers. However, choosing optimal quantum circuits that efficiently solve a given VQA problem is a non-trivial task. Quantum Architecture Search (QAS) algorithms enable automatic generation of quantum circuits tailored to the provided problem. Existing QAS approaches typically adapt classical neural architecture search techniques, training machine learning models to sample relevant circuits, but often overlook the inherent quantum nature of the circuits they produce. By reformulating QAS from a quantum perspective, we propose a sampling-free differentiable QAS algorithm that models the search process as the evolution of a quantum mixed state, which emerges from the search space of quantum circuits. The mixed state formulation also enables our method to incorporate generic noise models, for example the depolarizing channel, which cannot be modeled by state vector simulation. We validate our method by finding circuits for state initialization and Hamiltonian optimization tasks, namely the variational quantum eigensolver and the unweighted max-cut problems. We show our approach to be comparable to, if not outperform, existing QAS techniques while requiring significantly fewer quantum simulations during training, and also show improved robustness levels to noise.
comment: 27 pages, 19 figures
♻ ☆ Frame-based Equivariant Diffusion Models for 3D Molecular Generation
Recent methods for molecular generation face a trade-off: they either enforce strict equivariance with costly architectures or relax it to gain scalability and flexibility. We propose a frame-based diffusion paradigm that achieves deterministic E(3)-equivariance while decoupling symmetry handling from the backbone. Building on this paradigm, we investigate three variants: Global Frame Diffusion (GFD), which assigns a shared molecular frame; Local Frame Diffusion (LFD), which constructs node-specific frames and benefits from additional alignment constraints; and Invariant Frame Diffusion (IFD), which relies on pre-canonicalized invariant representations. To enhance expressivity, we further utilize EdgeDiT, a Diffusion Transformer with edge-aware attention. On the QM9 dataset, GFD with EdgeDiT achieves state-of-the-art performance, with a test NLL of -137.97 at standard scale and -141.85 at double scale, alongside atom stability of 98.98%, and molecular stability of 90.51%. These results surpass all equivariant baselines while maintaining high validity and uniqueness and nearly 2x faster sampling compared to EDM. Altogether, our study establishes frame-based diffusion as a scalable, flexible, and physically grounded paradigm for molecular generation, highlighting the critical role of global structure preservation.
Depth-Breadth Synergy in RLVR: Unlocking LLM Reasoning Gains with Adaptive Exploration
Reinforcement Learning with Verifiable Reward (RLVR) has emerged as a powerful paradigm for unlocking reasoning capabilities in large language models, yet its full potential is hindered by two under-explored dimensions: Depth-the hardest problem a model can sample; Breadth-the number of instances consumed in a single iteration. We dissect the popular GRPO algorithm and reveal a systematic bias: the cumulative-advantage disproportionately weights samples with medium accuracy, while down-weighting the low-accuracy instances that are crucial for pushing reasoning boundaries. To rectify the depth neglect, we introduce Difficulty Adaptive Rollout Sampling (DARS), which re-weights hard problems through targeted multi-stage rollouts, thereby increasing the number of positive rollouts for hard problems. Empirically, naively enlarging rollout size only accelerates convergence and even hurts Pass@K. Our DARS, in contrast, delivers consistent Pass@K gains without extra inference cost at convergence. Just as we adaptively expanded the depth of exploration, we now ask whether aggressively scaling the breadth of training data can further amplify reasoning gains. To this end, we intensely scale batch size and replace PPO's mini-batch iterations with full-batch updates over multiple epochs. Increasing breadth significantly enhances Pass@1 performance. Large-breadth training sustains high token-level entropy, indicating continued exploration and reduced gradient noise. We further present DARS-B, which augments DARS with large breadth, and demonstrate simultaneous gains in Pass@K and Pass@1. The results confirm that breadth and adaptive exploration across depth operate as orthogonal dimensions in RLVR, which are key to unleashing the reasoning power of RLVR.
comment: 18 pages, 14 figures
♻ ☆ MoESD: Unveil Speculative Decoding's Potential for Accelerating Sparse MoE
Large Language Models (LLMs) have achieved remarkable success across many applications, with Mixture of Experts (MoE) models demonstrating great potential. Compared to traditional dense models, MoEs achieve better performance with less computation. Speculative decoding (SD) is a widely used technique to accelerate LLM inference without accuracy loss, but it has been considered efficient only for dense models. In this work, we first demonstrate that, under medium batch sizes, MoE surprisingly benefits more from SD than dense models. Furthermore, as MoE becomes sparser -- the prevailing trend in MoE designs -- the batch size range where SD acceleration is expected to be effective becomes broader. To quantitatively understand tradeoffs involved in SD, we develop a reliable modeling based on theoretical analyses. While current SD research primarily focuses on improving acceptance rates of algorithms, changes in workload and model architecture can still lead to degraded SD acceleration even with high acceptance rates. To address this limitation, we introduce a new metric 'target efficiency' that characterizes these effects, thus helping researchers identify system bottlenecks and understand SD acceleration more comprehensively. For scenarios like private serving, this work unveils a new perspective to speed up MoE inference, where existing solutions struggle. Experiments on different GPUs show up to 2.29x speedup for Qwen2-57B-A14B at medium batch sizes and validate our theoretical predictions.
♻ ☆ SALAD: Systematic Assessment of Machine Unlearning on LLM-Aided Hardware Design
Large Language Models (LLMs) offer transformative capabilities for hardware design automation, particularly in Verilog code generation. However, they also pose significant data security challenges, including Verilog evaluation data contamination, intellectual property (IP) design leakage, and the risk of malicious Verilog generation. We introduce SALAD, a comprehensive assessment that leverages machine unlearning to mitigate these threats. Our approach enables the selective removal of contaminated benchmarks, sensitive IP and design artifacts, or malicious code patterns from pre-trained LLMs, all without requiring full retraining. Through detailed case studies, we demonstrate how machine unlearning techniques effectively reduce data security risks in LLM-aided hardware design.
♻ ☆ Neural Deconstruction Search for Vehicle Routing Problems
Autoregressive construction approaches generate solutions to vehicle routing problems in a step-by-step fashion, leading to high-quality solutions that are nearing the performance achieved by handcrafted operations research techniques. In this work, we challenge the conventional paradigm of sequential solution construction and introduce an iterative search framework where solutions are instead deconstructed by a neural policy. Throughout the search, the neural policy collaborates with a simple greedy insertion algorithm to rebuild the deconstructed solutions. Our approach matches or surpasses the performance of state-of-the-art operations research methods across three challenging vehicle routing problems of various problem sizes.
comment: Published in TMLR
♻ ☆ PolyNet: Learning Diverse Solution Strategies for Neural Combinatorial Optimization ICLR 2025
Reinforcement learning-based methods for constructing solutions to combinatorial optimization problems are rapidly approaching the performance of human-designed algorithms. To further narrow the gap, learning-based approaches must efficiently explore the solution space during the search process. Recent approaches artificially increase exploration by enforcing diverse solution generation through handcrafted rules, however, these rules can impair solution quality and are difficult to design for more complex problems. In this paper, we introduce PolyNet, an approach for improving exploration of the solution space by learning complementary solution strategies. In contrast to other works, PolyNet uses only a single-decoder and a training schema that does not enforce diverse solution generation through handcrafted rules. We evaluate PolyNet on four combinatorial optimization problems and observe that the implicit diversity mechanism allows PolyNet to find better solutions than approaches that explicitly enforce diverse solution generation.
comment: Accepted at ICLR 2025
♻ ☆ TANTE: Time-Adaptive Operator Learning via Neural Taylor Expansion
Operator learning for time-dependent partial differential equations (PDEs) has seen rapid progress in recent years, enabling efficient approximation of complex spatiotemporal dynamics. However, most existing methods rely on fixed time step sizes during rollout, which limits their ability to adapt to varying temporal complexity and often leads to error accumulation. Here, we propose the Time-Adaptive Transformer with Neural Taylor Expansion (TANTE), a novel operator-learning framework that produces continuous-time predictions with adaptive step sizes. TANTE predicts future states by performing a Taylor expansion at the current state, where neural networks learn both the higher-order temporal derivatives and the local radius of convergence. This allows the model to dynamically adjust its rollout based on the local behavior of the solution, thereby reducing cumulative error and improving computational efficiency. We demonstrate the effectiveness of TANTE across a wide range of PDE benchmarks, achieving superior accuracy and adaptability compared to fixed-step baselines, delivering accuracy gains of 60-80 % and speed-ups of 30-40 % at inference time. The code is publicly available at https://github.com/zwu88/TANTE for transparency and reproducibility.
comment: 22 pages, 7 figures, 10 tables
♻ ☆ Optimal Bound for PCA with Outliers using Higher-Degree Voronoi Diagrams
In this paper, we introduce new algorithms for Principal Component Analysis (PCA) with outliers. Utilizing techniques from computational geometry, specifically higher-degree Voronoi diagrams, we navigate to the optimal subspace for PCA even in the presence of outliers. This approach achieves an optimal solution with a time complexity of $n^{d+\mathcal{O}(1)}\text{poly}(n,d)$. Additionally, we present a randomized algorithm with a complexity of $2^{\mathcal{O}(r(d-r))} \times \text{poly}(n, d)$. This algorithm samples subspaces characterized in terms of a Grassmannian manifold. By employing such sampling method, we ensure a high likelihood of capturing the optimal subspace, with the success probability $(1 - \delta)^T$. Where $\delta$ represents the probability that a sampled subspace does not contain the optimal solution, and $T$ is the number of subspaces sampled, proportional to $2^{r(d-r)}$. Our use of higher-degree Voronoi diagrams and Grassmannian based sampling offers a clearer conceptual pathway and practical advantages, particularly in handling large datasets or higher-dimensional settings.
♻ ☆ SEE-DPO: Self Entropy Enhanced Direct Preference Optimization
Direct Preference Optimization (DPO) has been successfully used to align large language models (LLMs) according to human preferences, and more recently it has also been applied to improving the quality of text-to-image diffusion models. However, DPO-based methods such as SPO, Diffusion-DPO, and D3PO are highly susceptible to overfitting and reward hacking, especially when the generative model is optimized to fit out-of-distribution during prolonged training. To overcome these challenges and stabilize the training of diffusion models, we introduce a self-entropy regularization mechanism in reinforcement learning from human feedback. This enhancement improves DPO training by encouraging broader exploration and greater robustness. Our regularization technique effectively mitigates reward hacking, leading to improved stability and enhanced image quality across the latent space. Extensive experiments demonstrate that integrating human feedback with self-entropy regularization can significantly boost image diversity and specificity, achieving state-of-the-art results on key image generation metrics.
♻ ☆ Analyzing Uncertainty Quantification in Statistical and Deep Learning Models for Probabilistic Electricity Price Forecasting
Precise probabilistic forecasts are fundamental for energy risk management, and there is a wide range of both statistical and machine learning models for this purpose. Inherent to these probabilistic models is some form of uncertainty quantification. However, most models do not capture the full extent of uncertainty, which arises not only from the data itself but also from model and distributional choices. In this study, we examine uncertainty quantification in state-of-the-art statistical and deep learning probabilistic forecasting models for electricity price forecasting in the German market. In particular, we consider deep distributional neural networks (DDNNs) and augment them with an ensemble approach, Monte Carlo (MC) dropout, and conformal prediction to account for model uncertainty. Additionally, we consider the LASSO-estimated autoregressive (LEAR) approach combined with quantile regression averaging (QRA), generalized autoregressive conditional heteroskedasticity (GARCH), and conformal prediction. Across a range of performance metrics, we find that the LEAR-based models perform well in terms of probabilistic forecasting, irrespective of the uncertainty quantification method. Furthermore, we find that DDNNs benefit from incorporating both data and model uncertainty, improving both point and probabilistic forecasting. Uncertainty itself appears to be best captured by the models using conformal prediction. Overall, our extensive study shows that all models under consideration perform competitively. However, their relative performance depends on the choice of metrics for point and probabilistic forecasting.
♻ ☆ TOAST: Transformer Optimization using Adaptive and Simple Transformations
Foundation models achieve State-of-the-Art (SOTA) performance across different tasks, but their size and computational demands raise concerns about accessibility and sustainability. Existing efficiency methods often require additional retraining or fine-tuning, limiting their practicality. Recent findings suggest that deep neural networks exhibit internal representation similarities. While such similarities across different models have been exploited for enabling techniques such as model stitching and merging, intra-network redundancy remains underexplored as a source for efficiency gains. In this paper, we introduce TOAST (Transformer Optimization using Adaptive and Simple Transformations), a framework that exploits these redundancies to approximate entire transformer blocks with lightweight closed-form mappings, such as linear transformation or even the identity, without any additional training. Across SOTA pretrained vision models (e.g., ViT, DINOv2, DeiT) and datasets ranging from MNIST to ImageNet-1k, TOAST reduces parameters and computation while preserving, and in some cases improving, downstream performance. These results show that large portions of transformer depth can be replaced by trivial functions, opening a new perspective on efficient foundation models.
comment: 24 pages, 15 figures, 12 tables
♻ ☆ Learning to Play Piano in the Real World
Towards the grand challenge of achieving human-level manipulation in robots, playing piano is a compelling testbed that requires strategic, precise, and flowing movements. Over the years, several works demonstrated hand-designed controllers on real world piano playing, while other works evaluated robot learning approaches on simulated piano scenarios. In this paper, we develop the first piano playing robotic system that makes use of learning approaches while also being deployed on a real world dexterous robot. Specifically, we make use of Sim2Real to train a policy in simulation using reinforcement learning before deploying the learned policy on a real world dexterous robot. In our experiments, we thoroughly evaluate the interplay between domain randomization and the accuracy of the dynamics model used in simulation. Moreover, we evaluate the robot's performance across multiple songs with varying complexity to study the generalization of our learned policy. By providing a proof-of-concept of learning to play piano in the real world, we want to encourage the community to adopt piano playing as a compelling benchmark towards human-level manipulation. We open-source our code and show additional videos at https://lasr.org/research/learning-to-play-piano .
♻ ☆ MINERVA: Mutual Information Neural Estimation for Supervised Feature Selection
Existing feature filters rely on statistical pair-wise dependence metrics to model feature-target relationships, but this approach may fail when the target depends on higher-order feature interactions rather than individual contributions. We introduce Mutual Information Neural Estimation Regularized Vetting Algorithm (MINERVA), a novel approach to supervised feature selection based on neural estimation of mutual information between features and targets. We paramaterize the approximation of mutual information with neural networks and perform feature selection using a carefully designed loss function augmented with sparsity-inducing regularizers. Our method is implemented in a two-stage process to decouple representation learning from feature selection, ensuring better generalization and a more accurate expression of feature importance. We present examples of ubiquitous dependency structures that are rarely captured in literature and show that our proposed method effectively captures these complex feature-target relationships by evaluating feature subsets as an ensemble. Experimental results on synthetic and real-life fraud datasets demonstrate the efficacy of our method and its ability to perform exact solutions.
comment: 23 pages
♻ ☆ Understanding R1-Zero-Like Training: A Critical Perspective
DeepSeek-R1-Zero has shown that reinforcement learning (RL) at scale can directly enhance the reasoning capabilities of LLMs without supervised fine-tuning. In this work, we critically examine R1-Zero-like training by analyzing its two core components: base models and RL. We investigate a wide range of base models, including DeepSeek-V3-Base, to understand how pretraining characteristics influence RL performance. Our analysis reveals that DeepSeek-V3-Base already exhibit ''Aha moment'', while Qwen2.5 base models demonstrate strong reasoning capabilities even without prompt templates, suggesting potential pretraining biases. Additionally, we identify an optimization bias in Group Relative Policy Optimization (GRPO), which artificially increases response length (especially for incorrect outputs) during training. To address this, we introduce Dr. GRPO, an unbiased optimization method that improves token efficiency while maintaining reasoning performance. Leveraging these insights, we present a minimalist R1-Zero recipe that achieves 43.3% accuracy on AIME 2024 with a 7B base model, establishing a new state-of-the-art. Our code is available at https://github.com/sail-sg/understand-r1-zero.
♻ ☆ Federated Continual Learning Goes Online: Uncertainty-Aware Memory Management for Vision Tasks and Beyond ICLR 2025
Given the ability to model more realistic and dynamic problems, Federated Continual Learning (FCL) has been increasingly investigated recently. A well-known problem encountered in this setting is the so-called catastrophic forgetting, for which the learning model is inclined to focus on more recent tasks while forgetting the previously learned knowledge. The majority of the current approaches in FCL propose generative-based solutions to solve said problem. However, this setting requires multiple training epochs over the data, implying an offline setting where datasets are stored locally and remain unchanged over time. Furthermore, the proposed solutions are tailored for vision tasks solely. To overcome these limitations, we propose a new approach to deal with different modalities in the online scenario where new data arrive in streams of mini-batches that can only be processed once. To solve catastrophic forgetting, we propose an uncertainty-aware memory-based approach. Specifically, we suggest using an estimator based on the Bregman Information (BI) to compute the model's variance at the sample level. Through measures of predictive uncertainty, we retrieve samples with specific characteristics, and - by retraining the model on such samples - we demonstrate the potential of this approach to reduce the forgetting effect in realistic settings while maintaining data confidentiality and competitive communication efficiency compared to state-of-the-art approaches.
comment: Accepted at ICLR 2025: https://openreview.net/forum?id=f65RuQgVlp
♻ ☆ Spurious Privacy Leakage in Neural Networks
Neural networks trained on real-world data often exhibit biases while simultaneously being vulnerable to privacy attacks aimed at extracting sensitive information. Despite extensive research on each problem individually, their intersection remains poorly understood. In this work, we investigate the privacy impact of spurious correlation bias. We introduce \emph{spurious privacy leakage}, a phenomenon in which spurious groups are significantly more vulnerable to privacy attacks than non-spurious groups. We observe that privacy disparity between groups increases in tasks with simpler objectives (e.g. fewer classes) due to spurious features. Counterintuitively, we demonstrate that spurious robust methods, designed to reduce spurious bias, fail to mitigate privacy disparity. Our analysis reveals that this occurs because robust methods can reduce reliance on spurious features for prediction, but do not prevent their memorization during training. Finally, we systematically compare the privacy of different model architectures trained with spurious data, demonstrating that, contrary to previous work, architectural choice can affect privacy evaluation.
comment: published in TMLR
♻ ☆ VIPO: Value Function Inconsistency Penalized Offline Reinforcement Learning
Offline reinforcement learning (RL) learns effective policies from pre-collected datasets, offering a practical solution for applications where online interactions are risky or costly. Model-based approaches are particularly advantageous for offline RL, owing to their data efficiency and generalizability. However, due to inherent model errors, model-based methods often artificially introduce conservatism guided by heuristic uncertainty estimation, which can be unreliable. In this paper, we introduce VIPO, a novel model-based offline RL algorithm that incorporates self-supervised feedback from value estimation to enhance model training. Specifically, the model is learned by additionally minimizing the inconsistency between the value learned directly from the offline data and the one estimated from the model. We perform comprehensive evaluations from multiple perspectives to show that VIPO can learn a highly accurate model efficiently and consistently outperform existing methods. In particular, it achieves state-of-the-art performance on almost all tasks in both D4RL and NeoRL benchmarks. Overall, VIPO offers a general framework that can be readily integrated into existing model-based offline RL algorithms to systematically enhance model accuracy.
♻ ☆ Can We Infer Confidential Properties of Training Data from LLMs?
Large language models (LLMs) are increasingly fine-tuned on domain-specific datasets to support applications in fields such as healthcare, finance, and law. These fine-tuning datasets often have sensitive and confidential dataset-level properties -- such as patient demographics or disease prevalence -- that are not intended to be revealed. While prior work has studied property inference attacks on discriminative models (e.g., image classification models) and generative models (e.g., GANs for image data), it remains unclear if such attacks transfer to LLMs. In this work, we introduce PropInfer, a benchmark task for evaluating property inference in LLMs under two fine-tuning paradigms: question-answering and chat-completion. Built on the ChatDoctor dataset, our benchmark includes a range of property types and task configurations. We further propose two tailored attacks: a prompt-based generation attack and a shadow-model attack leveraging word frequency signals. Empirical evaluations across multiple pretrained LLMs show the success of our attacks, revealing a previously unrecognized vulnerability in LLMs.
♻ ☆ Taming OOD Actions for Offline Reinforcement Learning: An Advantage-Based Approach
Offline reinforcement learning (RL) learns policies from fixed datasets without online interactions, but suffers from distribution shift, causing inaccurate evaluation and overestimation of out-of-distribution (OOD) actions. Existing methods counter this by conservatively discouraging all OOD actions, which limits generalization. We propose Advantage-based Diffusion Actor-Critic (ADAC), which evaluates OOD actions via an advantage-like function and uses it to modulate the Q-function update discriminatively. Our key insight is that the (state) value function is generally learned more reliably than the action-value function; we thus use the next-state value to indirectly assess each action. We develop a PointMaze environment to clearly visualize that advantage modulation effectively selects superior OOD actions while discouraging inferior ones. Moreover, extensive experiments on the D4RL benchmark show that ADAC achieves state-of-the-art performance, with especially strong gains on challenging tasks.
♻ ☆ Sampling-aware Adversarial Attacks Against Large Language Models
To guarantee safe and robust deployment of large language models (LLMs) at scale, it is critical to accurately assess their adversarial robustness. Existing adversarial attacks typically target harmful responses in single-point greedy generations, overlooking the inherently stochastic nature of LLMs and overestimating robustness. We show that for the goal of eliciting harmful responses, repeated sampling of model outputs during the attack complements prompt optimization and serves as a strong and efficient attack vector. By casting attacks as a resource allocation problem between optimization and sampling, we determine compute-optimal trade-offs and show that integrating sampling into existing attacks boosts success rates by up to 37\% and improves efficiency by up to two orders of magnitude. We further analyze how distributions of output harmfulness evolve during an adversarial attack, discovering that many common optimization strategies have little effect on output harmfulness. Finally, we introduce a label-free proof-of-concept objective based on entropy maximization, demonstrating how our sampling-aware perspective enables new optimization targets. Overall, our findings establish the importance of sampling in attacks to accurately assess and strengthen LLM safety at scale.
♻ ☆ Mamba base PKD for efficient knowledge compression
Deep neural networks (DNNs) have remarkably succeeded in various image processing tasks. However, their large size and computational complexity present significant challenges for deploying them in resource-constrained environments. This paper presents an innovative approach for integrating Mamba Architecture within a Progressive Knowledge Distillation (PKD) process to address the challenge of reducing model complexity while maintaining accuracy in image classification tasks. The proposed framework distills a large teacher model into progressively smaller student models, designed using Mamba blocks. Each student model is trained using Selective-State-Space Models (S-SSM) within the Mamba blocks, focusing on important input aspects while reducing computational complexity. The work's preliminary experiments use MNIST and CIFAR-10 as datasets to demonstrate the effectiveness of this approach. For MNIST, the teacher model achieves 98% accuracy. A set of seven student models as a group retained 63% of the teacher's FLOPs, approximating the teacher's performance with 98% accuracy. The weak student used only 1% of the teacher's FLOPs and maintained 72% accuracy. Similarly, for CIFAR-10, the students achieved 1% less accuracy compared to the teacher, with the small student retaining 5% of the teacher's FLOPs to achieve 50% accuracy. These results confirm the flexibility and scalability of Mamba Architecture, which can be integrated into PKD, succeeding in the process of finding students as weak learners. The framework provides a solution for deploying complex neural networks in real-time applications with a reduction in computational cost.
comment: A preliminary version of this work was presented as a short poster titled "Mamba-PKD: A Framework for Efficient and Scalable Model Compression in Image Classification" at The 40th ACM/SIGAPP Symposium on Applied Computing https://doi.org/10.1145/3672608.3707887
♻ ☆ AdaSTaR: Adaptive Data Sampling for Training Self-Taught Reasoners NeurIPS 2025
Self-Taught Reasoners (STaR), synonymously known as Rejection sampling Fine-Tuning (RFT), is an integral part of the training pipeline of self-improving reasoning Language Models (LMs). The self-improving mechanism often employs random observation (data) sampling. However, this results in trained observation imbalance; inefficiently over-training on solved examples while under-training on challenging ones. In response, we introduce Adaptive STaR (AdaSTaR), a novel algorithm that rectifies this by integrating two adaptive sampling principles: (1) Adaptive Sampling for Diversity: promoting balanced training across observations, and (2) Adaptive Sampling for Curriculum: dynamically adjusting data difficulty to match the model's evolving strength. Across six benchmarks, AdaSTaR achieves best test accuracy in all instances (6/6) and reduces training FLOPs by an average of 58.6% against an extensive list of baselines. These improvements in performance and efficiency generalize to different pre-trained LMs and larger models, paving the way for more efficient and effective self-improving LMs.
comment: NeurIPS 2025
♻ ☆ FLOWR.root: A flow matching based foundation model for joint multi-purpose structure-aware 3D ligand generation and affinity prediction
We present FLOWR:root, an equivariant flow-matching model for pocket-aware 3D ligand generation with joint binding affinity prediction and confidence estimation. The model supports de novo generation, pharmacophore-conditional sampling, fragment elaboration, and multi-endpoint affinity prediction (pIC50, pKi, pKd, pEC50). Training combines large-scale ligand libraries with mixed-fidelity protein-ligand complexes, followed by refinement on curated co-crystal datasets and parameter-efficient finetuning for project-specific adaptation. FLOWR:root achieves state-of-the-art performance in unconditional 3D molecule generation and pocket-conditional ligand design, producing geometrically realistic, low-strain structures. The integrated affinity prediction module demonstrates superior accuracy on the SPINDR test set and outperforms recent models on the Schrodinger FEP+/OpenFE benchmark with substantial speed advantages. As a foundation model, FLOWR:root requires finetuning on project-specific datasets to account for unseen structure-activity landscapes, yielding strong correlation with experimental data. Joint generation and affinity prediction enable inference-time scaling through importance sampling, steering molecular design toward higher-affinity compounds. Case studies validate this: selective CK2$\alpha$ ligand generation against CLK3 shows significant correlation between predicted and quantum-mechanical binding energies, while ER$\alpha$ and TYK2 scaffold elaboration demonstrates strong agreement with QM calculations. By integrating structure-aware generation, affinity estimation, and property-guided sampling, FLOWR:root provides a comprehensive foundation for structure-based drug design spanning hit identification through lead optimization.
♻ ☆ PhysioWave: A Multi-Scale Wavelet-Transformer for Physiological Signal Representation NeurIPS 2025
Physiological signals are often corrupted by motion artifacts, baseline drift, and other low-SNR disturbances, which pose significant challenges for analysis. Additionally, these signals exhibit strong non-stationarity, with sharp peaks and abrupt changes that evolve continuously, making them difficult to represent using traditional time-domain or filtering methods. To address these issues, a novel wavelet-based approach for physiological signal analysis is presented, aiming to capture multi-scale time-frequency features in various physiological signals. Leveraging this technique, two large-scale pretrained models specific to EMG and ECG are introduced for the first time, achieving superior performance and setting new baselines in downstream tasks. Additionally, a unified multi-modal framework is constructed by integrating pretrained EEG model, where each modality is guided through its dedicated branch and fused via learnable weighted fusion. This design effectively addresses challenges such as low signal-to-noise ratio, high inter-subject variability, and device mismatch, outperforming existing methods on multi-modal tasks. The proposed wavelet-based architecture lays a solid foundation for analysis of diverse physiological signals, while the multi-modal design points to next-generation physiological signal processing with potential impact on wearable health monitoring, clinical diagnostics, and broader biomedical applications. Code and data are available at: github.com/ForeverBlue816/PhysioWave
comment: 43 pages, 17 figures, 17 tables. Accepted by NeurIPS 2025. Code and data are available at: github.com/ForeverBlue816/PhysioWave
♻ ☆ Divergence Minimization Preference Optimization for Diffusion Model Alignment
Diffusion models have achieved remarkable success in generating realistic and versatile images from text prompts. Inspired by the recent advancements of language models, there is an increasing interest in further improving the models by aligning with human preferences. However, we investigate alignment from a divergence minimization perspective and reveal that existing preference optimization methods are typically trapped in suboptimal mean-seeking optimization. In this paper, we introduce Divergence Minimization Preference Optimization (DMPO), a novel and principled method for aligning diffusion models by minimizing reverse KL divergence, which asymptotically enjoys the same optimization direction as original RL. We provide rigorous analysis to justify the effectiveness of DMPO and conduct comprehensive experiments to validate its empirical strength across both human evaluations and automatic metrics. Our extensive results show that diffusion models fine-tuned with DMPO can consistently outperform or match existing techniques, specifically consistently outperforming all baseline models across different base models and test sets, achieving the best PickScore in every case, demonstrating the method's superiority in aligning generative behavior with desired outputs. Overall, DMPO unlocks a robust and elegant pathway for preference alignment, bridging principled theory with practical performance in diffusion models.
♻ ☆ Do We Need All the Synthetic Data? Targeted Synthetic Image Augmentation via Diffusion Models
Synthetically augmenting training datasets with diffusion models has been an effective strategy for improving generalization of image classifiers. However, existing techniques struggle to ensure the diversity of generation and increase the size of the data by up to 10-30x to improve the in-distribution performance. In this work, we show that synthetically augmenting part of the data that is not learned early in training with faithful images-containing same features but different noise-outperforms augmenting the entire dataset. By analyzing a two-layer CNN, we prove that this strategy improves generalization by promoting homogeneity in feature learning speed without amplifying noise. Our extensive experiments show that by augmenting only 30%-40% of the data, our method boosts generalization by up to 2.8% in a variety of scenarios, including training ResNet, ViT, ConvNeXt, and Swin Transformer on CIFAR-10/100, and TinyImageNet, with various optimizers including SGD and SAM. Notably, our method applied with SGD outperforms the SOTA optimizer, SAM, on CIFAR-100 and TinyImageNet.
♻ ☆ Computing Exact Shapley Values in Polynomial Time for Product-Kernel Methods
Kernel methods are widely used in machine learning due to their flexibility and expressiveness. However, their black-box nature poses significant challenges to interpretability, limiting their adoption in high-stakes applications. Shapley value-based feature attribution techniques, such as SHAP and kernel method-specific adaptation like RKHS-SHAP, offer a promising path toward explainability. Yet, computing exact Shapley values is generally intractable, leading existing methods to rely on approximations and thereby incur unavoidable error. In this work, we introduce PKeX-Shapley, a novel algorithm that utilizes the multiplicative structure of product kernels to enable the exact computation of Shapley values in polynomial time. The core of our approach is a new value function, the functional baseline value function, specifically designed for product-kernel models. This value function removes the influence of a feature subset by setting its functional component to the least informative state. Crucially, it allows a recursive thus efficient computation of Shapley values in polynomial time. As an important additional contribution, we show that our framework extends beyond predictive modeling to statistical inference. In particular, it generalizes to popular kernel-based discrepancy measures such as the Maximum Mean Discrepancy (MMD) and the Hilbert-Schmidt Independence Criterion (HSIC), thereby providing new tools for interpretable statistical inference.
♻ ☆ DISC: Dynamic Decomposition Improves LLM Inference Scaling NeurIPS 2025
Inference scaling methods for LLMs often rely on decomposing problems into steps (or groups of tokens), followed by sampling and selecting the best next steps. However, these steps and their sizes are often predetermined or manually designed based on domain knowledge. We propose dynamic decomposition, a method that adaptively and automatically partitions solution and reasoning traces into manageable steps during inference. By more effectively allocating compute -- particularly through subdividing challenging steps and prioritizing their sampling -- dynamic decomposition significantly improves inference efficiency. Experiments on benchmarks such as APPS, MATH, and LiveCodeBench demonstrate that dynamic decomposition outperforms static approaches, including token-level, sentence-level, and single-step decompositions, reducing the pass@10 error rate by 5.0%, 6.7%, and 10.5% respectively. These findings highlight the potential of dynamic decomposition to improve a wide range of inference scaling techniques.
comment: 10 pages, Accepted to NeurIPS 2025 (Conference on Neural Information Processing Systems)
♻ ☆ VITA: Variational Pretraining of Transformers for Climate-Robust Crop Yield Forecasting
Accurate crop yield forecasting is essential for global food security. However, current AI models systematically underperform when yields deviate from historical trends. We attribute this to the lack of rich, physically grounded datasets directly linking atmospheric states to yields. To address this, we introduce VITA (Variational Inference Transformer for Asymmetric data), a variational pretraining framework that learns representations from large satellite-based weather datasets and transfers to the ground-based limited measurements available for yield prediction. VITA is trained using detailed meteorological variables as proxy targets during pretraining and learns to predict latent atmospheric states under a seasonality-aware sinusoidal prior. This allows the model to be fine-tuned using limited weather statistics during deployment. Applied to 763 counties in the U.S. Corn Belt, VITA achieves state-of-the-art performance in predicting corn and soybean yields across all evaluation scenarios, particularly during extreme years, with statistically significant improvements (paired t-test, $p < 0.0001$). Importantly, VITA outperforms prior frameworks like GNN-RNN without soil data, and bigger foundational models (e.g., Chronos-Bolt) with less compute, making it practical for real-world use--especially in data-scarce regions. This work highlights how domain-aware AI design can overcome data limitations and support resilient agricultural forecasting in a changing climate.
♻ ☆ Inference-Time Scaling of Diffusion Language Models with Particle Gibbs Sampling
Discrete diffusion models have recently emerged as strong alternatives to autoregressive language models, matching their performance through large-scale training. However, inference-time control remains relatively underexplored. In this work, we study how to steer generation toward desired rewards without retraining the models. Prior methods typically resample or filter within a single denoising trajectory, optimizing rewards step-by-step without trajectory-level refinement. We introduce particle Gibbs sampling for diffusion language models (PG-DLM), a novel inference-time algorithm enabling trajectory-level refinement while preserving generation perplexity under reward optimization. PG-DLM constructs a Markov chain over full denoising trajectories and applies a conditional sequential Monte Carlo kernel to resample them. We derive theoretical guarantees for convergence, including asymptotic consistency and variance bounds. Within this framework, we further analyze trade-offs across four key axes for inference-time scaling under fixed budgets: iterations, samples, denoising steps, and reward estimation. Our analysis shows scaling iterations achieves the best reward-perplexity trade-off. Empirically, PG-DLM consistently outperforms prior methods using MDLM and LLaDA-8B as base models across a wide range of compute budgets for reward-guided generation tasks including toxicity and sentiment control as well as linguistic acceptability.
♻ ☆ Comparing Contrastive and Triplet Loss: Variance Analysis and Optimization Behavior
Contrastive loss and triplet loss are widely used objectives in deep metric learning, yet their effects on representation quality remain insufficiently understood. We present a theoretical and empirical comparison of these losses, focusing on intra- and inter-class variance and optimization behavior (e.g., greedy updates). Through task-specific experiments with consistent settings on synthetic data and real datasets-MNIST, CIFAR-10-it is shown that triplet loss preserves greater variance within and across classes, supporting finer-grained distinctions in the learned representations. In contrast, contrastive loss tends to compact intra-class embeddings, which may obscure subtle semantic differences. To better understand their optimization dynamics, By examining loss-decay rate, active ratio, and gradient norm, we find that contrastive loss drives many small updates early on, while triplet loss produces fewer but stronger updates that sustain learning on hard examples. Finally, across both classification and retrieval tasks on MNIST, CIFAR-10, CUB-200, and CARS196 datasets, our results consistently show that triplet loss yields superior performance, which suggests using triplet loss for detail retention and hard-sample focus, and contrastive loss for smoother, broad-based embedding refinement.
comment: 8 pages, 4 tables, 3 figures
♻ ☆ STIV: Scalable Text and Image Conditioned Video Generation
The field of video generation has made remarkable advancements, yet there remains a pressing need for a clear, systematic recipe that can guide the development of robust and scalable models. In this work, we present a comprehensive study that systematically explores the interplay of model architectures, training recipes, and data curation strategies, culminating in a simple and scalable text-image-conditioned video generation method, named STIV. Our framework integrates image condition into a Diffusion Transformer (DiT) through frame replacement, while incorporating text conditioning via a joint image-text conditional classifier-free guidance. This design enables STIV to perform both text-to-video (T2V) and text-image-to-video (TI2V) tasks simultaneously. Additionally, STIV can be easily extended to various applications, such as video prediction, frame interpolation, multi-view generation, and long video generation, etc. With comprehensive ablation studies on T2I, T2V, and TI2V, STIV demonstrate strong performance, despite its simple design. An 8.7B model with 512 resolution achieves 83.1 on VBench T2V, surpassing both leading open and closed-source models like CogVideoX-5B, Pika, Kling, and Gen-3. The same-sized model also achieves a state-of-the-art result of 90.1 on VBench I2V task at 512 resolution. By providing a transparent and extensible recipe for building cutting-edge video generation models, we aim to empower future research and accelerate progress toward more versatile and reliable video generation solutions.
♻ ☆ FEB-Cache: Frequency-Guided Exposure Bias Reduction for Enhancing Diffusion Transformer Caching
Diffusion Transformer (DiT) has exhibited impressive generation capabilities but faces great challenges due to its high computational complexity. To address this issue, various methods, notably feature caching, have been introduced. However, these approaches focus on aligning non-cache diffusion without analyzing why caching damage the generation processes. In this paper, we first confirm that the cache greatly amplifies the exposure bias, resulting in a decline in the generation quality. However, directly applying noise scaling is challenging for this issue due to the non-smoothness of exposure bias. We found that this phenomenon stems from the mismatch between its frequency response characteristics and the simple cache of Attention and MLP. Since these two components exhibit unique preferences for frequency signals, which provides us with a caching strategy to separate Attention and MLP to achieve an enhanced fit of exposure bias and reduce it. Based on this, we introduced FEB-Cache, a joint caching strategy that aligns with the non-exposed bias diffusion process (which gives us a higher performance cap) of caching Attention and MLP based on the frequency-guided cache table. Our approach combines a comprehensive understanding of the caching mechanism and offers a new perspective on leveraging caching to accelerate the diffusion process. Empirical results indicate that FEB-Cache optimizes model performance while concurrently facilitating acceleration. Code is available at https://github.com/aSleepyTree/EB-Cache.
♻ ☆ Pretraining with hierarchical memories: separating long-tail and common knowledge
The impressive performance gains of modern language models currently rely on scaling parameters: larger models store more world knowledge and reason better. Yet compressing all world knowledge into parameters is unnecessary, as only a fraction is used per prompt, and impractical for edge devices with limited inference-time memory and compute. We address this shortcoming by a memory-augmented architecture and a pretraining strategy aligned with existing hardware paradigms. We introduce small language models that access large hierarchical parametric memory banks encoding world knowledge. During pretraining and inference, we fetch a small, context-dependent memory block and add it to the model. Our pretraining learns to store long-tail world knowledge in the memory parameters, while the small language model acts as an anchor capturing common knowledge and general reasoning abilities. Through trillion-token-scale experiments, we show significant gains: a 160M-parameters model augmented with an 18M-parameters memory fetched from a 4.6B memory bank obtains comparable performance to a regular model with more than 2x the parameters. Through extensive experiments, we study the optimal type and size of parametric memories in transformers, scaling them to over 21B parameters. We find that our proposed hierarchical feed-forward memories work robustly across transformer architectures, whether added during pretraining or post-hoc.
♻ ☆ Chasing Moving Targets with Online Self-Play Reinforcement Learning for Safer Language Models
Conventional language model (LM) safety alignment relies on a reactive, disjoint procedure: attackers exploit a static model, followed by defensive fine-tuning to patch exposed vulnerabilities. This sequential approach creates a mismatch -- attackers overfit to obsolete defenses, while defenders perpetually lag behind emerging threats. To address this, we propose Self-RedTeam, an online self-play reinforcement learning algorithm where an attacker and defender agent co-evolve through continuous interaction. We cast safety alignment as a two-player zero-sum game, where a single model alternates between attacker and defender roles -- generating adversarial prompts and safeguarding against them -- while a reward LM adjudicates outcomes. This enables dynamic co-adaptation. Grounded in the game-theoretic framework of zero-sum games, we establish a theoretical safety guarantee which motivates the design of our method: if self-play converges to a Nash Equilibrium, the defender will reliably produce safe responses to any adversarial input. Empirically, Self-RedTeam uncovers more diverse attacks (+21.8% SBERT) compared to attackers trained against static defenders and achieves higher robustness on safety benchmarks (e.g., +65.5% on WildJailBreak) than defenders trained against static attackers. We further propose hidden Chain-of-Thought, allowing agents to plan privately, which boosts adversarial diversity and reduces over-refusals. Our results motivate a shift from reactive patching to proactive co-evolution in LM safety training, enabling scalable, autonomous, and robust self-improvement of LMs via multi-agent reinforcement learning (MARL).
♻ ☆ Fitted value iteration methods for bicausal optimal transport
We develop a fitted value iteration (FVI) method to compute bicausal optimal transport (OT) where couplings have an adapted structure. Based on the dynamic programming formulation, FVI adopts a function class to approximate the value functions in bicausal OT. Under the concentrability condition and approximate completeness assumption, we prove the sample complexity using (local) Rademacher complexity. Furthermore, we demonstrate that multilayer neural networks with appropriate structures satisfy the crucial assumptions required in sample complexity proofs. Numerical experiments reveal that FVI outperforms linear programming and adapted Sinkhorn methods in scalability as the time horizon increases, while still maintaining acceptable accuracy.
comment: Final version
♻ ☆ Owen Sampling Accelerates Contribution Estimation in Federated Learning
Federated Learning (FL) aggregates information from multiple clients to train a shared global model without exposing raw data. Accurately estimating each client's contribution is essential not just for fair rewards, but for selecting the most useful clients so the global model converges faster. The Shapley value is a principled choice, yet exact computation scales exponentially with the number of clients, making it infeasible for large federations. We propose FedOwen, an efficient framework that uses Owen sampling to approximate Shapley values under the same total evaluation budget as existing methods while keeping the approximation error small. In addition, FedOwen uses an adaptive client selection strategy that balances exploiting high-value clients with exploring under-sampled ones, reducing bias and uncovering rare but informative data. Under a fixed valuation cost, FedOwen achieves up to 23 percent higher final accuracy within the same number of communication rounds compared to state-of-the-art baselines on non-IID benchmarks.
comment: ECAI 2025 camera-ready; 8 pages + appendix; code link inside
♻ ☆ Conformalized Generative Bayesian Imaging: An Uncertainty Quantification Framework for Computational Imaging
Uncertainty quantification plays an important role in achieving trustworthy and reliable learning-based computational imaging. Recent advances in generative modeling and Bayesian neural networks have enabled the development of uncertainty-aware image reconstruction methods. Current generative model-based methods seek to quantify the inherent (aleatoric) uncertainty on the underlying image for given measurements by learning to sample from the posterior distribution of the underlying image. On the other hand, Bayesian neural network-based approaches aim to quantify the model (epistemic) uncertainty on the parameters of a deep neural network-based reconstruction method by approximating the posterior distribution of those parameters. Unfortunately, an ongoing need for an inversion method that can jointly quantify complex aleatoric uncertainty and epistemic uncertainty patterns still persists. In this paper, we present a scalable framework that can quantify both aleatoric and epistemic uncertainties. The proposed framework accepts an existing generative model-based posterior sampling method as an input and introduces an epistemic uncertainty quantification capability through Bayesian neural networks with latent variables and deep ensembling. Furthermore, by leveraging the conformal prediction methodology, the proposed framework can be easily calibrated to ensure rigorous uncertainty quantification. We evaluated the proposed framework on magnetic resonance imaging, computed tomography, and image inpainting problems and showed that the epistemic and aleatoric uncertainty estimates produced by the proposed framework display the characteristic features of true epistemic and aleatoric uncertainties. Furthermore, our results demonstrated that the use of conformal prediction on top of the proposed framework enables marginal coverage guarantees consistent with frequentist principles.
comment: 24 pages, 10 figures, preprint
♻ ☆ Machine Learning for Inverse Problems and Data Assimilation
The aim of these notes is to demonstrate the potential for ideas in machine learning to impact on the fields of inverse problems and data assimilation. The perspective is one that is primarily aimed at researchers from inverse problems and/or data assimilation who wish to see a mathematical presentation of machine learning as it pertains to their fields. As a by-product, we include a succinct mathematical treatment of various fundamental underpinning topics in machine learning, and adjacent areas of (computational) mathematics.
comment: 305 pages
♻ ☆ TolerantECG: A Foundation Model for Imperfect Electrocardiogram ACM MM 2025
The electrocardiogram (ECG) is an essential and effective tool for diagnosing heart diseases. However, its effectiveness can be compromised by noise or unavailability of one or more leads of the standard 12-lead recordings, resulting in diagnostic errors or uncertainty. To address these challenges, we propose TolerantECG, a foundation model for ECG signals that is robust to noise and capable of functioning with arbitrary subsets of the standard 12-lead ECG. TolerantECG training combines contrastive and self-supervised learning frameworks to jointly learn ECG signal representations alongside their corresponding knowledge-retrieval-based text report descriptions and corrupted or lead-missing signals. Comprehensive benchmarking results demonstrate that TolerantECG consistently ranks as the best or second-best performer across various ECG signal conditions and class levels in the PTB-XL dataset, and achieves the highest performance on the MIT-BIH Arrhythmia Database.
comment: Accepted at ACM MM 2025
♻ ☆ On-Demand Growth of Semiconductor Heterostructures Guided by Physics-Informed Machine Learning
Developing tailored semiconductor heterostructures on demand represents a critical capability for addressing the escalating performance demands in electronic and optoelectronic devices. However, traditional fabrication methods remain constrained by simulation-based design and iterative trial-and-error optimization. Here, we introduce SemiEpi, a self-driving platform designed for molecular beam epitaxy (MBE) to perform multi-step semiconductor heterostructure growth through in-situ monitoring and on-the-fly feedback control. By integrating standard MBE reactors, physics-informed machine learning (ML) models, and parameter initialization, SemiEpi identifies optimal initial conditions and proposes experiments for heterostructure growth, eliminating the need for extensive expertise in MBE processes. As a proof of concept, we demonstrate the optimization of high-density InAs quantum dot (QD) growth with a target emission wavelength of 1240 nm, showcasing the power of SemiEpi. We achieve a QD density of 5 x 10^10 cm^-2, a 1.6-fold increase in photoluminescence (PL) intensity, and a reduced full width at half maximum (FWHM) of 29.13 meV, leveraging in-situ reflective high-energy electron diffraction monitoring with feedback control for adjusting growth temperatures. Taken together, our results highlight the potential of ML-guided systems to address challenges in multi-step heterostructure growth, facilitate the development of a hardware-independent framework, and enhance process repeatability and stability, even without exhaustive knowledge of growth parameters.
comment: 5 figures
♻ ☆ From Restless to Contextual: A Thresholding Bandit Reformulation For Finite-horizon Performance
This paper addresses the poor finite-horizon performance of existing online \emph{restless bandit} (RB) algorithms, which stems from the prohibitive sample complexity of learning a full \emph{Markov decision process} (MDP) for each agent. We argue that superior finite-horizon performance requires \emph{rapid convergence} to a \emph{high-quality} policy. Thus motivated, we introduce a reformulation of online RBs as a \emph{budgeted thresholding contextual bandit}, which simplifies the learning problem by encoding long-term state transitions into a scalar reward. We prove the first non-asymptotic optimality of an oracle policy for a simplified finite-horizon setting. We propose a practical learning policy under a heterogeneous-agent, multi-state setting, and show that it achieves a sublinear regret, achieving \emph{faster convergence} than existing methods. This directly translates to higher cumulative reward, as empirically validated by significant gains over state-of-the-art algorithms in large-scale heterogeneous environments. Our work provides a new pathway for achieving practical, sample-efficient learning in finite-horizon RBs.
♻ ☆ Directional Convergence, Benign Overfitting of Gradient Descent in leaky ReLU two-layer Neural Networks
In this paper, we study benign overfitting of fixed width leaky ReLU two-layer neural network classifiers trained on mixture data via gradient descent. We provide both, upper and lower classification error bounds, and discover a phase transition in the bound as a function of signal strength. The lower bound leads to a characterization of cases when benign overfitting provably fails even if directional convergence occurs. Our analysis allows us to considerably relax the distributional assumptions that are made in existing work on benign overfitting of leaky ReLU two-layer neural network classifiers. We can allow for non-sub-Gaussian data and do not require near orthogonality. Our results are derived by establishing directional convergence of the network parameters and studying classification error bounds for the convergent direction. Previously, directional convergence in (leaky) ReLU neural networks was established only for gradient flow. By first establishing directional convergence, we are able to study benign overfitting of fixed width leaky ReLU two-layer neural network classifiers in a much wider range of scenarios than was done before.
comment: 40 pages, New results added
♻ ☆ Vector Copula Variational Inference and Dependent Block Posterior Approximations
The key to VI is the selection of a tractable density to approximate the Bayesian posterior. For large and complex models a common choice is to assume independence between multivariate blocks in a partition of the parameter space. While this simplifies the problem it can reduce accuracy. This paper proposes using vector copulas to capture dependence between the blocks parsimoniously. Tailored multivariate marginals are constructed using learnable transport maps. We call the resulting joint distribution a ``dependent block posterior'' approximation. Vector copula models are suggested that make tractable and flexible variational approximations. They allow for differing marginals, numbers of blocks, block sizes and forms of between block dependence. They also allow for solution of the variational optimization using efficient stochastic gradient methods. The approach is demonstrated using four different statistical models and 16 datasets which have posteriors that are challenging to approximate. This includes models that use global-local shrinkage priors for regularization, and hierarchical models for smoothing and heteroscedastic time series. In all cases, our method produces more accurate posterior approximations than benchmark VI methods that either assume block independence or factor-based dependence, at limited additional computational cost. A python package implementing the method is available on GitHub at https://github.com/YuFuOliver/VCVI_Rep_PyPackage.
♻ ☆ Emergence of Superposition: Unveiling the Training Dynamics of Chain of Continuous Thought
Previous work shows that the chain of continuous thought (continuous CoT) improves the reasoning capability of large language models (LLMs) by enabling implicit parallel thinking, and a subsequent work provided theoretical insight by showing that a two-layer transformer equipped with continuous CoT can efficiently solve directed graph reachability by maintaining a superposition of multiple reasoning traces in the continuous thought. However, it remains unclear how the superposition mechanism is naturally learned from gradient-based training methods. To fill this gap, we theoretically analyze the training dynamics of a simplified two-layer transformer on the directed graph reachability problem to unveil how the superposition mechanism emerges during training in two training stages -- (i) a thought-generation stage that autoregressively expands the continuous thought, and (ii) a prediction stage that converts the thought into the final answer. Our analysis reveals that during training using continuous thought, the index-matching logit, an important quantity which reflects the strength of the model's local search ability, will first increase and then remain bounded under mild assumptions. The bounded index-matching logit effectively balances exploration and exploitation during the reasoning process: the model will exploit local problem structures to identify plausible search traces, and assign comparable weights to multiple such traces to explore when it is uncertain about which solution is correct, which results in superposition. Our experimental results tracking the growth of logits further validate our theory.
comment: 29 pages, 5 figures
♻ ☆ Understanding and Improving Shampoo and SOAP via Kullback-Leibler Minimization
Shampoo and its efficient variant, SOAP, employ structured second-moment estimations and have shown strong performance for training neural networks (NNs). In practice, however, Shampoo typically requires step-size grafting with Adam to be competitive, and SOAP mitigates this by applying Adam in Shampoo's eigenbasis -- at the cost of additional memory overhead from Adam in both methods. Prior analyses have largely relied on the Frobenius norm to motivate these estimation schemes. We instead recast their estimation procedures as covariance estimation under Kullback-Leibler (KL) divergence minimization, revealing a previously overlooked theoretical limitation and motivating principled redesigns. Building on this perspective, we develop $\textbf{KL-Shampoo}$ and $\textbf{KL-SOAP}$, practical schemes that match or exceed the performance of Shampoo and SOAP in NN pre-training while achieving SOAP-level per-iteration runtime. Notably, KL-Shampoo does not rely on Adam to attain competitive performance, eliminating the memory overhead introduced by Adam. Across our experiments, KL-Shampoo consistently outperforms SOAP, Shampoo, and even KL-SOAP, establishing the KL-based approach as a compelling foundation for designing structured methods in NN optimization.
comment: technical report, working in progress
Robotics 42
ResMimic: From General Motion Tracking to Humanoid Whole-body Loco-Manipulation via Residual Learning
Humanoid whole-body loco-manipulation promises transformative capabilities for daily service and warehouse tasks. While recent advances in general motion tracking (GMT) have enabled humanoids to reproduce diverse human motions, these policies lack the precision and object awareness required for loco-manipulation. To this end, we introduce ResMimic, a two-stage residual learning framework for precise and expressive humanoid control from human motion data. First, a GMT policy, trained on large-scale human-only motion, serves as a task-agnostic base for generating human-like whole-body movements. An efficient but precise residual policy is then learned to refine the GMT outputs to improve locomotion and incorporate object interaction. To further facilitate efficient training, we design (i) a point-cloud-based object tracking reward for smoother optimization, (ii) a contact reward that encourages accurate humanoid body-object interactions, and (iii) a curriculum-based virtual object controller to stabilize early training. We evaluate ResMimic in both simulation and on a real Unitree G1 humanoid. Results show substantial gains in task success, training efficiency, and robustness over strong baselines. Videos are available at https://resmimic.github.io/ .
comment: 9 pages, 8 figures
☆ Automaton Constrained Q-Learning NeurIPS 2025
Real-world robotic tasks often require agents to achieve sequences of goals while respecting time-varying safety constraints. However, standard Reinforcement Learning (RL) paradigms are fundamentally limited in these settings. A natural approach to these problems is to combine RL with Linear-time Temporal Logic (LTL), a formal language for specifying complex, temporally extended tasks and safety constraints. Yet, existing RL methods for LTL objectives exhibit poor empirical performance in complex and continuous environments. As a result, no scalable methods support both temporally ordered goals and safety simultaneously, making them ill-suited for realistic robotics scenarios. We propose Automaton Constrained Q-Learning (ACQL), an algorithm that addresses this gap by combining goal-conditioned value learning with automaton-guided reinforcement. ACQL supports most LTL task specifications and leverages their automaton representation to explicitly encode stage-wise goal progression and both stationary and non-stationary safety constraints. We show that ACQL outperforms existing methods across a range of continuous control tasks, including cases where prior methods fail to satisfy either goal-reaching or safety constraints. We further validate its real-world applicability by deploying ACQL on a 6-DOF robotic arm performing a goal-reaching task in a cluttered, cabinet-like space with safety constraints. Our results demonstrate that ACQL is a robust and scalable solution for learning robotic behaviors according to rich temporal specifications.
comment: 9 pages, 4 figures, 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ StaMo: Unsupervised Learning of Generalizable Robot Motion from Compact State Representation
A fundamental challenge in embodied intelligence is developing expressive and compact state representations for efficient world modeling and decision making. However, existing methods often fail to achieve this balance, yielding representations that are either overly redundant or lacking in task-critical information. We propose an unsupervised approach that learns a highly compressed two-token state representation using a lightweight encoder and a pre-trained Diffusion Transformer (DiT) decoder, capitalizing on its strong generative prior. Our representation is efficient, interpretable, and integrates seamlessly into existing VLA-based models, improving performance by 14.3% on LIBERO and 30% in real-world task success with minimal inference overhead. More importantly, we find that the difference between these tokens, obtained via latent interpolation, naturally serves as a highly effective latent action, which can be further decoded into executable robot actions. This emergent capability reveals that our representation captures structured dynamics without explicit supervision. We name our method StaMo for its ability to learn generalizable robotic Motion from compact State representation, which is encoded from static images, challenging the prevalent dependence to learning latent action on complex architectures and video data. The resulting latent actions also enhance policy co-training, outperforming prior methods by 10.4% with improved interpretability. Moreover, our approach scales effectively across diverse data sources, including real-world robot data, simulation, and human egocentric video.
☆ Walking, Rolling, and Beyond: First-Principles and RL Locomotion on a TARS-Inspired Robot RAS
Robotic locomotion research typically draws from biologically inspired leg designs, yet many human-engineered settings can benefit from non-anthropomorphic forms. TARS3D translates the block-shaped 'TARS' robot from Interstellar into a 0.25 m, 0.99 kg research platform with seven actuated degrees of freedom. The film shows two primary gaits: a bipedal-like walk and a high-speed rolling mode. For TARS3D, we build reduced-order models for each, derive closed-form limit-cycle conditions, and validate the predictions on hardware. Experiments confirm that the robot respects its +/-150 degree hip limits, alternates left-right contacts without interference, and maintains an eight-step hybrid limit cycle in rolling mode. Because each telescopic leg provides four contact corners, the rolling gait is modeled as an eight-spoke double rimless wheel. The robot's telescopic leg redundancy implies a far richer gait repertoire than the two limit cycles treated analytically. So, we used deep reinforcement learning (DRL) in simulation to search the unexplored space. We observed that the learned policy can recover the analytic gaits under the right priors and discover novel behaviors as well. Our findings show that TARS3D's fiction-inspired bio-transcending morphology can realize multiple previously unexplored locomotion modes and that further learning-driven search is likely to reveal more. This combination of analytic synthesis and reinforcement learning opens a promising pathway for multimodal robotics.
comment: 6 pages, 10 figures. Presented at IEEE-RAS International Conference on Humanoid Robots (Humanoids) 2025
☆ Efficient Navigation in Unknown Indoor Environments with Vision-Language Models
We present a novel high-level planning framework that leverages vision-language models (VLMs) to improve autonomous navigation in unknown indoor environments with many dead ends. Traditional exploration methods often take inefficient routes due to limited global reasoning and reliance on local heuristics. In contrast, our approach enables a VLM to reason directly about an occupancy map in a zero-shot manner, selecting subgoals that are likely to lead to more efficient paths. At each planning step, we convert a 3D occupancy grid into a partial 2D map of the environment, and generate candidate subgoals. Each subgoal is then evaluated and ranked against other candidates by the model. We integrate this planning scheme into DYNUS \cite{kondo2025dynus}, a state-of-the-art trajectory planner, and demonstrate improved navigation efficiency in simulation. The VLM infers structural patterns (e.g., rooms, corridors) from incomplete maps and balances the need to make progress toward a goal against the risk of entering unknown space. This reduces common greedy failures (e.g., detouring into small rooms) and achieves about 10\% shorter paths on average.
comment: 8 pages, 4 figures
☆ HyperVLA: Efficient Inference in Vision-Language-Action Models via Hypernetworks
Built upon language and vision foundation models with strong generalization ability and trained on large-scale robotic data, Vision-Language-Action (VLA) models have recently emerged as a promising approach to learning generalist robotic policies. However, a key drawback of existing VLAs is their extremely high inference costs. In this paper, we propose HyperVLA to address this problem. Unlike existing monolithic VLAs that activate the whole model during both training and inference, HyperVLA uses a novel hypernetwork (HN)-based architecture that activates only a small task-specific policy during inference, while still retaining the high model capacity needed to accommodate diverse multi-task behaviors during training. Successfully training an HN-based VLA is nontrivial so HyperVLA contains several key algorithm design features that improve its performance, including properly utilizing the prior knowledge from existing vision foundation models, HN normalization, and an action generation strategy. Compared to monolithic VLAs, HyperVLA achieves a similar or even higher success rate for both zero-shot generalization and few-shot adaptation, while significantly reducing inference costs. Compared to OpenVLA, a state-of-the-art VLA model, HyperVLA reduces the number of activated parameters at test time by $90\times$, and accelerates inference speed by $120\times$. Code is publicly available at https://github.com/MasterXiong/HyperVLA
☆ CLEAR-IR: Clarity-Enhanced Active Reconstruction of Infrared Imagery
This paper presents a novel approach for enabling robust robotic perception in dark environments using infrared (IR) stream. IR stream is less susceptible to noise than RGB in low-light conditions. However, it is dominated by active emitter patterns that hinder high-level tasks such as object detection, tracking and localisation. To address this, a U-Net-based architecture is proposed that reconstructs clean IR images from emitter-populated input, improving both image quality and downstream robotic performance. This approach outperforms existing enhancement techniques and enables reliable operation of vision-driven robotic systems across illumination conditions from well-lit to extreme low-light scenes.
comment: 8 pages, 8 figures
☆ TAG-K: Tail-Averaged Greedy Kaczmarz for Computationally Efficient and Performant Online Inertial Parameter Estimation
Accurate online inertial parameter estimation is essential for adaptive robotic control, enabling real-time adjustment to payload changes, environmental interactions, and system wear. Traditional methods such as Recursive Least Squares (RLS) and the Kalman Filter (KF) often struggle to track abrupt parameter shifts or incur high computational costs, limiting their effectiveness in dynamic environments and for computationally constrained robotic systems. As such, we introduce TAG-K, a lightweight extension of the Kaczmarz method that combines greedy randomized row selection for rapid convergence with tail averaging for robustness under noise and inconsistency. This design enables fast, stable parameter adaptation while retaining the low per-iteration complexity inherent to the Kaczmarz framework. We evaluate TAG-K in synthetic benchmarks and quadrotor tracking tasks against RLS, KF, and other Kaczmarz variants. TAG-K achieves 1.5x-1.9x faster solve times on laptop-class CPUs and 4.8x-20.7x faster solve times on embedded microcontrollers. More importantly, these speedups are paired with improved resilience to measurement noise and a 25% reduction in estimation error, leading to nearly 2x better end-to-end tracking performance.
☆ Efficient Probabilistic Planning with Maximum-Coverage Distributionally Robust Backward Reachable Trees
This paper presents a new multi-query motion planning algorithm for linear Gaussian systems with the goal of reaching a Euclidean ball with high probability. We develop a new formulation for ball-shaped ambiguity sets of Gaussian distributions and leverage it to develop a distributionally robust belief roadmap construction algorithm. This algorithm synthe- sizes robust controllers which are certified to be safe for maximal size ball-shaped ambiguity sets of Gaussian distributions. Our algorithm achieves better coverage than the maximal coverage algorithm for planning over Gaussian distributions [1], and we identify mild conditions under which our algorithm achieves strictly better coverage. For the special case of no process noise or state constraints, we formally prove that our algorithm achieves maximal coverage. In addition, we present a second multi-query motion planning algorithm for linear Gaussian systems with the goal of reaching a region parameterized by the Minkowski sum of an ellipsoid and a Euclidean ball with high probability. This algorithm plans over ellipsoidal sets of maximal size ball-shaped ambiguity sets of Gaussian distributions, and provably achieves equal or better coverage than the best-known algorithm for planning over ellipsoidal ambiguity sets of Gaussian distributions [2]. We demonstrate the efficacy of both methods in a wide range of conditions via extensive simulation experiments.
☆ Online automatic code generation for robot swarms: LLMs and self-organizing hierarchy
Our recently introduced self-organizing nervous system (SoNS) provides robot swarms with 1) ease of behavior design and 2) global estimation of the swarm configuration and its collective environment, facilitating the implementation of online automatic code generation for robot swarms. In a demonstration with 6 real robots and simulation trials with >30 robots, we show that when a SoNS-enhanced robot swarm gets stuck, it can automatically solicit and run code generated by an external LLM on the fly, completing its mission with an 85% success rate.
☆ Performance-guided Task-specific Optimization for Multirotor Design
This paper introduces a methodology for task-specific design optimization of multirotor Micro Aerial Vehicles. By leveraging reinforcement learning, Bayesian optimization, and covariance matrix adaptation evolution strategy, we optimize aerial robot designs guided exclusively by their closed-loop performance in a considered task. Our approach systematically explores the design space of motor pose configurations while ensuring manufacturability constraints and minimal aerodynamic interference. Results demonstrate that optimized designs achieve superior performance compared to conventional multirotor configurations in agile waypoint navigation tasks, including against fully actuated designs from the literature. We build and test one of the optimized designs in the real world to validate the sim2real transferability of our approach.
☆ Building Gradient by Gradient: Decentralised Energy Functions for Bimanual Robot Assembly
There are many challenges in bimanual assembly, including high-level sequencing, multi-robot coordination, and low-level, contact-rich operations such as component mating. Task and motion planning (TAMP) methods, while effective in this domain, may be prohibitively slow to converge when adapting to disturbances that require new task sequencing and optimisation. These events are common during tight-tolerance assembly, where difficult-to-model dynamics such as friction or deformation require rapid replanning and reattempts. Moreover, defining explicit task sequences for assembly can be cumbersome, limiting flexibility when task replanning is required. To simplify this planning, we introduce a decentralised gradient-based framework that uses a piecewise continuous energy function through the automatic composition of adaptive potential functions. This approach generates sub-goals using only myopic optimisation, rather than long-horizon planning. It demonstrates effectiveness at solving long-horizon tasks due to the structure and adaptivity of the energy function. We show that our approach scales to physical bimanual assembly tasks for constructing tight-tolerance assemblies. In these experiments, we discover that our gradient-based rapid replanning framework generates automatic retries, coordinated motions and autonomous handovers in an emergent fashion.
comment: 8 pages, 6 figures, 1 table
☆ Bio-Inspired Robotic Houbara: From Development to Field Deployment for Behavioral Studies
Biomimetic intelligence and robotics are transforming field ecology by enabling lifelike robotic surrogates that interact naturally with animals under real world conditions. Studying avian behavior in the wild remains challenging due to the need for highly realistic morphology, durable outdoor operation, and intelligent perception that can adapt to uncontrolled environments. We present a next generation bio inspired robotic platform that replicates the morphology and visual appearance of the female Houbara bustard to support controlled ethological studies and conservation oriented field research. The system introduces a fully digitally replicable fabrication workflow that combines high resolution structured light 3D scanning, parametric CAD modelling, articulated 3D printing, and photorealistic UV textured vinyl finishing to achieve anatomically accurate and durable robotic surrogates. A six wheeled rocker bogie chassis ensures stable mobility on sand and irregular terrain, while an embedded NVIDIA Jetson module enables real time RGB and thermal perception, lightweight YOLO based detection, and an autonomous visual servoing loop that aligns the robot's head toward detected targets without human intervention. A lightweight thermal visible fusion module enhances perception in low light conditions. Field trials in desert aviaries demonstrated reliable real time operation at 15 to 22 FPS with latency under 100 ms and confirmed that the platform elicits natural recognition and interactive responses from live Houbara bustards under harsh outdoor conditions. This integrated framework advances biomimetic field robotics by uniting reproducible digital fabrication, embodied visual intelligence, and ecological validation, providing a transferable blueprint for animal robot interaction research, conservation robotics, and public engagement.
☆ Learning a Shape-adaptive Assist-as-needed Rehabilitation Policy from Therapist-informed Input
Therapist-in-the-loop robotic rehabilitation has shown great promise in enhancing rehabilitation outcomes by integrating the strengths of therapists and robotic systems. However, its broader adoption remains limited due to insufficient safe interaction and limited adaptation capability. This article proposes a novel telerobotics-mediated framework that enables therapists to intuitively and safely deliver assist-as-needed~(AAN) therapy based on two primary contributions. First, our framework encodes the therapist-informed corrective force into via-points in a latent space, allowing the therapist to provide only minimal assistance while encouraging patient maintaining own motion preferences. Second, a shape-adaptive ANN rehabilitation policy is learned to partially and progressively deform the reference trajectory for movement therapy based on encoded patient motion preferences and therapist-informed via-points. The effectiveness of the proposed shape-adaptive AAN strategy was validated on a telerobotic rehabilitation system using two representative tasks. The results demonstrate its practicality for remote AAN therapy and its superiority over two state-of-the-art methods in reducing corrective force and improving movement smoothness.
☆ OKVIS2-X: Open Keyframe-based Visual-Inertial SLAM Configurable with Dense Depth or LiDAR, and GNSS
To empower mobile robots with usable maps as well as highest state estimation accuracy and robustness, we present OKVIS2-X: a state-of-the-art multi-sensor Simultaneous Localization and Mapping (SLAM) system building dense volumetric occupancy maps, while scalable to large environments and operating in realtime. Our unified SLAM framework seamlessly integrates different sensor modalities: visual, inertial, measured or learned depth, LiDAR and Global Navigation Satellite System (GNSS) measurements. Unlike most state-of-the-art SLAM systems, we advocate using dense volumetric map representations when leveraging depth or range-sensing capabilities. We employ an efficient submapping strategy that allows our system to scale to large environments, showcased in sequences of up to 9 kilometers. OKVIS2-X enhances its accuracy and robustness by tightly-coupling the estimator and submaps through map alignment factors. Our system provides globally consistent maps, directly usable for autonomous navigation. To further improve the accuracy of OKVIS2-X, we also incorporate the option of performing online calibration of camera extrinsics. Our system achieves the highest trajectory accuracy in EuRoC against state-of-the-art alternatives, outperforms all competitors in the Hilti22 VI-only benchmark, while also proving competitive in the LiDAR version, and showcases state of the art accuracy in the diverse and large-scale sequences from the VBR dataset.
comment: IEEE Transactions on Robotics (T-RO) - Special Issue: Visual SLAM
☆ MobRT: A Digital Twin-Based Framework for Scalable Learning in Mobile Manipulation
Recent advances in robotics have been largely driven by imitation learning, which depends critically on large-scale, high-quality demonstration data. However, collecting such data remains a significant challenge-particularly for mobile manipulators, which must coordinate base locomotion and arm manipulation in high-dimensional, dynamic, and partially observable environments. Consequently, most existing research remains focused on simpler tabletop scenarios, leaving mobile manipulation relatively underexplored. To bridge this gap, we present \textit{MobRT}, a digital twin-based framework designed to simulate two primary categories of complex, whole-body tasks: interaction with articulated objects (e.g., opening doors and drawers) and mobile-base pick-and-place operations. \textit{MobRT} autonomously generates diverse and realistic demonstrations through the integration of virtual kinematic control and whole-body motion planning, enabling coherent and physically consistent execution. We evaluate the quality of \textit{MobRT}-generated data across multiple baseline algorithms, establishing a comprehensive benchmark and demonstrating a strong correlation between task success and the number of generated trajectories. Experiments integrating both simulated and real-world demonstrations confirm that our approach markedly improves policy generalization and performance, achieving robust results in both simulated and real-world environments.
☆ Everything-Grasping (EG) Gripper: A Universal Gripper with Synergistic Suction-Grasping Capabilities for Cross-Scale and Cross-State Manipulation
Grasping objects across vastly different sizes and physical states-including both solids and liquids-with a single robotic gripper remains a fundamental challenge in soft robotics. We present the Everything-Grasping (EG) Gripper, a soft end-effector that synergistically integrates distributed surface suction with internal granular jamming, enabling cross-scale and cross-state manipulation without requiring airtight sealing at the contact interface with target objects. The EG Gripper can handle objects with surface areas ranging from sub-millimeter scale 0.2 mm2 (glass bead) to over 62,000 mm2 (A4 sized paper and woven bag), enabling manipulation of objects nearly 3,500X smaller and 88X larger than its own contact area (approximated at 707 mm2 for a 30 mm-diameter base). We further introduce a tactile sensing framework that combines liquid detection and pressure-based suction feedback, enabling real-time differentiation between solid and liquid targets. Guided by the actile-Inferred Grasping Mode Selection (TIGMS) algorithm, the gripper autonomously selects grasping modes based on distributed pressure and voltage signals. Experiments across diverse tasks-including underwater grasping, fragile object handling, and liquid capture-demonstrate robust and repeatable performance. To our knowledge, this is the first soft gripper to reliably grasp both solid and liquid objects across scales using a unified compliant architecture.
comment: 19 pages, 10 figures, journal
☆ More Than Meets the Eye? Uncovering the Reasoning-Planning Disconnect in Training Vision-Language Driving Models
Vision-Language Model (VLM) driving agents promise explainable end-to-end autonomy by first producing natural-language reasoning and then predicting trajectory planning. However, whether planning is causally driven by this reasoning remains a critical but unverified assumption. To investigate this, we build DriveMind, a large-scale driving Visual Question Answering (VQA) corpus with plan-aligned Chain-of-Thought (CoT), automatically generated from nuPlan. Our data generation process converts sensors and annotations into structured inputs and, crucially, separates priors from to-be-reasoned signals, enabling clean information ablations. Using DriveMind, we train representative VLM agents with Supervised Fine-Tuning (SFT) and Group Relative Policy Optimization (GRPO) and evaluate them with nuPlan's metrics. Our results, unfortunately, indicate a consistent causal disconnect in reasoning-planning: removing ego/navigation priors causes large drops in planning scores, whereas removing CoT produces only minor changes. Attention analysis further shows that planning primarily focuses on priors rather than the CoT. Based on this evidence, we propose the Reasoning-Planning Decoupling Hypothesis, positing that the training-yielded reasoning is an ancillary byproduct rather than a causal mediator. To enable efficient diagnosis, we also introduce a novel, training-free probe that measures an agent's reliance on priors by evaluating its planning robustness against minor input perturbations. In summary, we provide the community with a new dataset and a diagnostic tool to evaluate the causal fidelity of future models.
comment: The dataset will be released publicly once the paper is accepted for publication
☆ Velocity-Form Data-Enabled Predictive Control of Soft Robots under Unknown External Payloads
Data-driven control methods such as data-enabled predictive control (DeePC) have shown strong potential in efficient control of soft robots without explicit parametric models. However, in object manipulation tasks, unknown external payloads and disturbances can significantly alter the system dynamics and behavior, leading to offset error and degraded control performance. In this paper, we present a novel velocity-form DeePC framework that achieves robust and optimal control of soft robots under unknown payloads. The proposed framework leverages input-output data in an incremental representation to mitigate performance degradation induced by unknown payloads, eliminating the need for weighted datasets or disturbance estimators. We validate the method experimentally on a planar soft robot and demonstrate its superior performance compared to standard DeePC in scenarios involving unknown payloads.
☆ PAD-TRO: Projection-Augmented Diffusion for Direct Trajectory Optimization
Recently, diffusion models have gained popularity and attention in trajectory optimization due to their capability of modeling multi-modal probability distributions. However, addressing nonlinear equality constraints, i.e, dynamic feasi- bility, remains a great challenge in diffusion-based trajectory optimization. Recent diffusion-based trajectory optimization frameworks rely on a single-shooting style approach where the denoised control sequence is applied to forward propagate the dynamical system, which cannot explicitly enforce constraints on the states and frequently leads to sub-optimal solutions. In this work, we propose a novel direct trajectory optimization approach via model-based diffusion, which directly generates a sequence of states. To ensure dynamic feasibility, we propose a gradient-free projection mechanism that is incorporated into the reverse diffusion process. Our results show that, compared to a recent state-of-the-art baseline, our approach leads to zero dynamic feasibility error and approximately 4x higher success rate in a quadrotor waypoint navigation scenario involving dense static obstacles.
♻ ☆ RowDetr: End-to-End Crop Row Detection Using Polynomials
Crop row detection enables autonomous robots to navigate in gps denied environments. Vision based strategies often struggle in the environments due to gaps, curved crop rows and require post-processing steps. Furthermore, labeling crop rows in under the canopy environments accurately is very difficult due to occlusions. This study introduces RowDetr, an efficient end-to-end transformer-based neural network for crop row detection in precision agriculture. RowDetr leverages a lightweight backbone and a hybrid encoder to model straight, curved, or occluded crop rows with high precision. Central to the architecture is a novel polynomial representation that enables direct parameterization of crop rows, eliminating computationally expensive post-processing. Key innovations include a PolySampler module and multi-scale deformable attention, which work together with PolyOptLoss, an energy-based loss function designed to optimize geometric alignment between predicted and the annotated crop rows, while also enhancing robustness against labeling noise. RowDetr was evaluated against other state-of-the-art end-to-end crop row detection methods like AgroNav and RolColAttention on a diverse dataset of 6,962 high-resolution images, used for training, validation, and testing across multiple crop types with annotated crop rows. The system demonstrated superior performance, achieved an F1 score up to 0.74 and a lane position deviation as low as 0.405. Furthermore, RowDetr achieves a real-time inference latency of 6.7ms, which was optimized to 3.5ms with INT8 quantization on an NVIDIA Jetson Orin AGX. This work highlighted the critical efficiency of polynomial parameterization, making RowDetr particularly suitable for deployment on edge computing devices in agricultural robotics and autonomous farming equipment. Index terms > Crop Row Detection, Under Canopy Navigation, Transformers, RT-DETR, RT-DETRv2
comment: Code will be open sourced upon publication
♻ ☆ ReLI: A Language-Agnostic Approach to Human-Robot Interaction
Adapting autonomous agents for real-world industrial, domestic, and other daily tasks is currently gaining momentum. However, in global or cross-lingual application contexts, ensuring effective interaction with the environment and executing unrestricted human-specified tasks regardless of the language remains an unsolved problem. To address this, we propose ReLI, a language-agnostic approach that enables autonomous agents to converse naturally, semantically reason about their environment, and perform downstream tasks, regardless of the task instruction's modality or linguistic origin. First, we ground large-scale pre-trained foundation models and transform them into language-to-action models that can directly provide common-sense reasoning and high-level robot control through natural, free-flow conversational interactions. Further, we perform cross-lingual adaptation of the models to ensure that ReLI generalises across the global languages. To demonstrate ReLI's robustness, we conducted extensive experiments on various short- and long-horizon tasks, including zero- and few-shot spatial navigation, scene information retrieval, and query-oriented tasks. We benchmarked the performance on $140$ languages involving $70K+$ multi-turn conversations. On average, ReLI achieved over $90\%\pm0.2$ accuracy in cross-lingual instruction parsing and task execution success. These results demonstrate its potential to advance natural human-agent interaction in the real world while championing inclusive and linguistic diversity. Demos and resources will be public at: https://linusnep.github.io/ReLI/.
♻ ☆ Pragmatic Embodied Spoken Instruction Following in Human-Robot Collaboration with Theory of Mind
Spoken language instructions are ubiquitous in agent collaboration. However, in real-world human-robot collaboration, following human spoken instructions can be challenging due to various speaker and environmental factors, such as background noise or mispronunciation. When faced with noisy auditory inputs, humans can leverage the collaborative context in the embodied environment to interpret noisy spoken instructions and take pragmatic assistive actions. In this paper, we present a cognitively inspired neurosymbolic model, Spoken Instruction Following through Theory of Mind (SIFToM), which leverages a Vision-Language Model with model-based mental inference to enable robots to pragmatically follow human instructions under diverse speech conditions. We test SIFToM in both simulated environments (VirtualHome) and real-world human-robot collaborative settings with human evaluations. Results show that SIFToM can significantly improve the performance of a lightweight base VLM (Gemini 2.5 Flash), outperforming state-of-the-art VLMs (Gemini 2.5 Pro) and approaching human-level accuracy on challenging spoken instruction following tasks.
comment: 8 pages, 7 figures
♻ ☆ HeLoM: Hierarchical Learning for Whole-Body Loco-Manipulation in Hexapod Robot
Robots in real-world environments are often required to move/manipulate objects comparable in weight to their own bodies. Compared to grasping and carrying, pushing provides a more straightforward and efficient non-prehensile manipulation strategy, avoiding complex grasp design while leveraging direct contact to regulate an object's pose. Achieving effective pushing, however, demands both sufficient manipulation forces and the ability to maintain stability, which is particularly challenging when dealing with heavy or irregular objects. To address these challenges, we propose HeLoM, a learning-based hierarchical whole-body manipulation framework for a hexapod robot that exploits coordinated multi-limb control. Inspired by the cooperative strategies of multi-legged insects, our framework leverages redundant contact points and high degrees of freedom to enable dynamic redistribution of contact forces. HeLoM's high-level planner plans pushing behaviors and target object poses, while its low-level controller maintains locomotion stability and generates dynamically consistent joint actions. Our policies trained in simulation are directly deployed on real robots without additional fine-tuning. This design allows the robot to maintain balance while exerting continuous and controllable pushing forces through coordinated foreleg interaction and supportive hind-leg propulsion. We validate the effectiveness of HeLoM through both simulation and real-world experiments. Results show that our framework can stably push boxes of varying sizes and unknown physical properties to designated goal poses in the real world.
♻ ☆ KiVi: Kinesthetic-Visuospatial Integration for Dynamic and Safe Egocentric Legged Locomotion
Vision-based locomotion has shown great promise in enabling legged robots to perceive and adapt to complex environments. However, visual information is inherently fragile, being vulnerable to occlusions, reflections, and lighting changes, which often cause instability in locomotion. Inspired by animal sensorimotor integration, we propose KiVi, a Kinesthetic-Visuospatial integration framework, where kinesthetics encodes proprioceptive sensing of body motion and visuospatial reasoning captures visual perception of surrounding terrain. Specifically, KiVi separates these pathways, leveraging proprioception as a stable backbone while selectively incorporating vision for terrain awareness and obstacle avoidance. This modality-balanced, yet integrative design, combined with memory-enhanced attention, allows the robot to robustly interpret visual cues while maintaining fallback stability through proprioception. Extensive experiments show that our method enables quadruped robots to stably traverse diverse terrains and operate reliably in unstructured outdoor environments, remaining robust to out-of-distribution (OOD) visual noise and occlusion unseen during training, thereby highlighting its effectiveness and applicability to real-world legged locomotion.
♻ ☆ Novel Object 6D Pose Estimation with a Single Reference View
Existing novel object 6D pose estimation methods typically rely on CAD models or dense reference views, which are both difficult to acquire. Using only a single reference view is more scalable, but challenging due to large pose discrepancies and limited geometric and spatial information. To address these issues, we propose a Single-Reference-based novel object 6D (SinRef-6D) pose estimation method. Our key idea is to iteratively establish point-wise alignment in a common coordinate system based on state space models (SSMs). Specifically, iterative object-space point-wise alignment can effectively handle large pose discrepancies, while our proposed RGB and Points SSMs can capture long-range dependencies and spatial information from a single view, offering linear complexity and superior spatial modeling capability. Once pre-trained on synthetic data, SinRef-6D can estimate the 6D pose of a novel object using only a single reference view, without requiring retraining or a CAD model. Extensive experiments on six popular datasets and real-world robotic scenes demonstrate that we achieve on-par performance with CAD-based and dense reference view-based methods, despite operating in the more challenging single reference setting. Code will be released at https://github.com/CNJianLiu/SinRef-6D.
comment: 17 pages, 12 figures (including supplementary material)
♻ ☆ LIAM: Multimodal Transformer for Language Instructions, Images, Actions and Semantic Maps
The availability of large language models and open-vocabulary object perception methods enables more flexibility for domestic service robots. The large variability of domestic tasks can be addressed without implementing each task individually by providing the robot with a task description along with appropriate environment information. In this work, we propose LIAM - an end-to-end model that predicts action transcripts based on language, image, action, and map inputs. Language and image inputs are encoded with a CLIP backbone, for which we designed two pre-training tasks to fine-tune its weights and pre-align the latent spaces. We evaluate our method on the ALFRED dataset, a simulator-generated benchmark for domestic tasks. Our results demonstrate the importance of pre-aligning embedding spaces from different modalities and the efficacy of incorporating semantic maps.
comment: 12 pages, 4 figures, 2 tables, 19th International Conference on Intelligent Autonomous Systems (IAS), Genoa, Italy, June 2025
♻ ☆ Tele-rehabilitation with online skill transfer and adaptation in $\mathbb{R}^3 \times \mathit{S}^3$
This paper proposes a tele-teaching framework for the domain of robot-assisted tele-rehabilitation. The system connects two robotic manipulators on therapist and patient side via bilateral teleoperation, enabling a therapist to remotely demonstrate rehabilitation exercises that are executed by the patient-side robot. A 6-DoF Dynamical Movement Primitives formulation is employed to jointly encode translational and rotational motions in $\mathbb{R}^3 \times \mathit{S}^3$ space, ensuring accurate trajectory reproduction. The framework supports smooth transitions between therapist-led guidance and patient passive training, while allowing adaptive adjustment of motion. Experiments with 7-DoF manipulators demonstrate the feasibility of the approach, highlighting its potential for personalized and remotely supervised rehabilitation.
♻ ☆ Digital-physical testbed for ship autonomy studies in the Marine Cybernetics Laboratory basin
The algorithms developed for Maritime Autonomous Surface Ships (MASS) are often challenging to test on actual vessels due to high operational costs and safety considerations. Simulations offer a cost-effective alternative and eliminate risks, but they may not accurately represent real-world dynamics for the given tasks. Utilizing small-scale model ships and robotic vessels in conjunction with a laboratory basin provides an accessible testing environment for the early stages of validation processes. However, designing and developing a model vessel for a single test can be costly and cumbersome, and researchers often lack access to such infrastructure. To address these challenges and enable streamlined testing, we have developed an in-house testbed that facilitates the development, testing, verification, and validation of MASS algorithms in a digital-physical laboratory. This infrastructure includes a set of small-scale model vessels, a simulation environment for each vessel, a comprehensive testbed environment, and a digital twin in Unity. With this, we aim to establish a full design and verification pipeline that starts with high-fidelity simulation models of each model vessel, to the model-scale testing in the laboratory basin, allowing possibilities for moving towards semi-fullscale validation with R/V milliAmpere1 and full-scale validation with R/V Gunnerus. In this work, we present our progress on the development of this testbed environment and its components, demonstrating its effectiveness in enabling ship guidance, navigation, and control (GNC), including autonomy.
♻ ☆ Neural Brain: A Neuroscience-inspired Framework for Embodied Agents
The rapid evolution of artificial intelligence (AI) has shifted from static, data-driven models to dynamic systems capable of perceiving and interacting with real-world environments. Despite advancements in pattern recognition and symbolic reasoning, current AI systems, such as large language models, remain disembodied, unable to physically engage with the world. This limitation has driven the rise of embodied AI, where autonomous agents, such as humanoid robots, must navigate and manipulate unstructured environments with human-like adaptability. At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability. A Neural Brain must seamlessly integrate multimodal sensing and perception with cognitive capabilities. Achieving this also requires an adaptive memory system and energy-efficient hardware-software co-design, enabling real-time action in dynamic environments. This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges: (1) defining the core components of Neural Brain and (2) bridging the gap between static AI models and the dynamic adaptability required for real-world deployment. To this end, we propose a biologically inspired architecture that integrates multimodal active sensing, perception-cognition-action function, neuroplasticity-based memory storage and updating, and neuromorphic hardware/software optimization. Furthermore, we also review the latest research on embodied agents across these four aspects and analyze the gap between current AI systems and human intelligence. By synthesizing insights from neuroscience, we outline a roadmap towards the development of generalizable, autonomous agents capable of human-level intelligence in real-world scenarios.
comment: 51 pages, 17 figures, 9 tables
♻ ☆ Learning to Play Piano in the Real World
Towards the grand challenge of achieving human-level manipulation in robots, playing piano is a compelling testbed that requires strategic, precise, and flowing movements. Over the years, several works demonstrated hand-designed controllers on real world piano playing, while other works evaluated robot learning approaches on simulated piano scenarios. In this paper, we develop the first piano playing robotic system that makes use of learning approaches while also being deployed on a real world dexterous robot. Specifically, we make use of Sim2Real to train a policy in simulation using reinforcement learning before deploying the learned policy on a real world dexterous robot. In our experiments, we thoroughly evaluate the interplay between domain randomization and the accuracy of the dynamics model used in simulation. Moreover, we evaluate the robot's performance across multiple songs with varying complexity to study the generalization of our learned policy. By providing a proof-of-concept of learning to play piano in the real world, we want to encourage the community to adopt piano playing as a compelling benchmark towards human-level manipulation. We open-source our code and show additional videos at https://lasr.org/research/learning-to-play-piano .
♻ ☆ A Hierarchical Control Architecture for Space Robots in On-Orbit Servicing Operations
In-Orbit Servicing and Active Debris Removal require advanced robotic capabilities for capturing and detumbling uncooperative targets. This work presents a hierarchical control framework for autonomous robotic capture of tumbling objects in space. A simulation environment is developed, incorporating sloshing dynamics of the chaser, a rarely studied effect in space robotics. The proposed controller combines an inner Lyapunov-based robust control loop for multi-body dynamics with an outer loop addressing an extended inverse kinematics problem. Simulation results show improved robustness and adaptability compared to existing control schemes.
♻ ☆ NDOB-Based Control of a UAV with Delta-Arm Considering Manipulator Dynamics
Aerial Manipulators (AMs) provide a versatile platform for various applications, including 3D printing, architecture, and aerial grasping missions. However, their operational speed is often sacrificed to uphold precision. Existing control strategies for AMs often regard the manipulator as a disturbance and employ robust control methods to mitigate its influence. This research focuses on elevating the precision of the end-effector and enhancing the agility of aerial manipulator movements. We present a composite control scheme to address these challenges. Initially, a Nonlinear Disturbance Observer (NDOB) is utilized to compensate for internal coupling effects and external disturbances. Subsequently, manipulator dynamics are processed through a high pass filter to facilitate agile movements. By integrating the proposed control method into a fully autonomous delta-arm-based AM system, we substantiate the controller's efficacy through extensive real-world experiments. The outcomes illustrate that the end-effector can achieve accuracy at the millimeter level.
comment: 7 pages,6 figures
♻ ☆ BiDexHand: Design and Evaluation of an Open-Source 16-DoF Biomimetic Dexterous Hand ICRA 2025
Achieving human-level dexterity in robotic hands remains a fundamental challenge for enabling versatile manipulation across diverse applications. This extended abstract presents BiDexHand, a cable-driven biomimetic robotic hand that combines human-like dexterity with accessible and efficient mechanical design. The robotic hand features 16 independently actuated degrees of freedom and 5 mechanically coupled joints through novel phalange designs that replicate natural finger motion. Performance validation demonstrated success across all 33 grasp types in the GRASP Taxonomy, 9 of 11 positions in the Kapandji thumb opposition test, a measured fingertip force of 2.14\,N, and the capability to lift a 10\,lb weight. As an open-source platform supporting multiple control modes including vision-based teleoperation, BiDexHand aims to democratize access to advanced manipulation capabilities for the broader robotics research community.
comment: ICRA 2025 Dexterity Workshop, Spotlight Presentation
♻ ☆ Humanoid Agent via Embodied Chain-of-Action Reasoning with Multimodal Foundation Models for Zero-Shot Loco-Manipulation
Humanoid loco-manipulation, which integrates whole-body locomotion with dexterous manipulation, remains a fundamental challenge in robotics. Beyond whole-body coordination and balance, a central difficulty lies in understanding human instructions and translating them into coherent sequences of embodied actions. Recent advances in foundation models provide transferable multimodal representations and reasoning capabilities, yet existing efforts remain largely restricted to either locomotion or manipulation in isolation, with limited applicability to humanoid settings. In this paper, we propose Humanoid-COA, the first humanoid agent framework that integrates foundation model reasoning with an Embodied Chain-of-Action (CoA) mechanism for zero-shot loco-manipulation. Within the perception--reasoning--action paradigm, our key contribution lies in the reasoning stage, where the proposed CoA mechanism decomposes high-level human instructions into structured sequences of locomotion and manipulation primitives through affordance analysis, spatial inference, and whole-body action reasoning. Extensive experiments on two humanoid robots, Unitree H1-2 and G1, in both an open test area and an apartment environment, demonstrate that our framework substantially outperforms prior baselines across manipulation, locomotion, and loco-manipulation tasks, achieving robust generalization to long-horizon and unstructured scenarios. Project page: https://humanoid-coa.github.io/
comment: website link: https://humanoid-coa.github.io/
♻ ☆ ToddlerBot: Open-Source ML-Compatible Humanoid Platform for Loco-Manipulation
Learning-based robotics research driven by data demands a new approach to robot hardware design-one that serves as both a platform for policy execution and a tool for embodied data collection to train policies. We introduce ToddlerBot, a low-cost, open-source humanoid robot platform designed for scalable policy learning and research in robotics and AI. ToddlerBot enables seamless acquisition of high-quality simulation and real-world data. The plug-and-play zero-point calibration and transferable motor system identification ensure a high-fidelity digital twin, enabling zero-shot policy transfer from simulation to the real world. A user-friendly teleoperation interface facilitates streamlined real-world data collection for learning motor skills from human demonstrations. Utilizing its data collection ability and anthropomorphic design, ToddlerBot is an ideal platform to perform whole-body loco-manipulation. Additionally, ToddlerBot's compact size (0.56m, 3.4kg) ensures safe operation in real-world environments. Reproducibility is achieved with an entirely 3D-printed, open-source design and commercially available components, keeping the total cost under 6,000 USD. Comprehensive documentation allows assembly and maintenance with basic technical expertise, as validated by a successful independent replication of the system. We demonstrate ToddlerBot's capabilities through arm span, payload, endurance tests, loco-manipulation tasks, and a collaborative long-horizon scenario where two robots tidy a toy session together. By advancing ML-compatibility, capability, and reproducibility, ToddlerBot provides a robust platform for scalable learning and dynamic policy execution in robotics research.
comment: Project website: https://toddlerbot.github.io/
♻ ☆ SafeFlowMatcher: Safe and Fast Planning using Flow Matching with Control Barrier Functions
Generative planners based on flow matching (FM) can produce high-quality paths in one or a few ODE steps, but their sampling dynamics offer no formal safety guarantees and can yield incomplete paths near constraints. We present SafeFlowMatcher, a planning framework that couples FM with control barrier functions (CBFs) to achieve both real-time efficiency and certified safety. SafeFlowMatcher uses a two-phase prediction-correction (PC) integrator: (i) a prediction phase integrates the learned FM once (or a few steps) to obtain a candidate path without intervention; (ii) a correction phase refines this path with a vanishing time-scaled vector field and a CBF-based quadratic program that minimally perturbs the vector field. We prove a barrier certificate for the resulting flow system, establishing forward invariance of a robust safe set and finite-time convergence to the safe set. By enforcing safety only on the executed path (rather than on all intermediate latent paths), SafeFlowMatcher avoids distributional drift and mitigates local trap problems. Across maze navigation and locomotion benchmarks, SafeFlowMatcher attains faster, smoother, and safer paths than diffusion- and FM-based baselines. Extensive ablations corroborate the contributions of the PC integrator and the barrier certificate.
comment: 10 pages, 7 figures, 4 tables
♻ ☆ In-Hand Manipulation of Articulated Tools with Dexterous Robot Hands with Sim-to-Real Transfer
Reinforcement learning (RL) and sim-to-real transfer have advanced robotic manipulation of rigid objects. Yet, policies remain brittle when applied to articulated mechanisms due to contact-rich dynamics and under-modeled joint phenomena such as friction, stiction, backlash, and clearances. We address this challenge through dexterous in-hand manipulation of articulated tools using a robotic hand with reduced articulation and kinematic redundancy relative to the human hand. Our controller augments a simulation-trained base policy with a sensor-driven refinement learned from hardware demonstrations, conditioning on proprioception and target articulation states while fusing whole-hand tactile and force feedback with the policy's internal action intent via cross-attention-based integration. This design enables online adaptation to instance-specific articulation properties, stabilizes contact interactions, regulates internal forces, and coordinates coupled-link motion under perturbations. We validate our approach across a diversity of real-world examples, including scissors, pliers, minimally invasive surgical tools, and staplers. We achieve robust transfer from simulation to hardware, improved disturbance resilience, and generalization to previously unseen articulated tools, thereby reducing reliance on precise physical modeling in contact-rich settings.
♻ ☆ PolySim: Bridging the Sim-to-Real Gap for Humanoid Control via Multi-Simulator Dynamics Randomization
Humanoid whole-body control (WBC) policies trained in simulation often suffer from the sim-to-real gap, which fundamentally arises from simulator inductive bias, the inherent assumptions and limitations of any single simulator. These biases lead to nontrivial discrepancies both across simulators and between simulation and the real world. To mitigate the effect of simulator inductive bias, the key idea is to train policies jointly across multiple simulators, encouraging the learned controller to capture dynamics that generalize beyond any single simulator's assumptions. We thus introduce PolySim, a WBC training platform that integrates multiple heterogeneous simulators. PolySim can launch parallel environments from different engines simultaneously within a single training run, thereby realizing dynamics-level domain randomization. Theoretically, we show that PolySim yields a tighter upper bound on simulator inductive bias than single-simulator training. In experiments, PolySim substantially reduces motion-tracking error in sim-to-sim evaluations; for example, on MuJoCo, it improves execution success by 52.8 over an IsaacSim baseline. PolySim further enables zero-shot deployment on a real Unitree G1 without additional fine-tuning, showing effective transfer from simulation to the real world. We will release the PolySim code upon acceptance of this work.
comment: 8 pages, 5 figures
♻ ☆ Code Generation and Conic Constraints for Model-Predictive Control on Microcontrollers with Conic-TinyMPC
Model-predictive control (MPC) is a powerful framework for controlling dynamic systems under constraints, but it remains challenging to deploy on resource-constrained platforms, especially for problems involving conic constraints. To address this, we extend recent work developing fast, structure-exploiting, cached ADMM solvers for embedded applications, to provide support for second-order cones, as well as C++ code generation from Python, MATLAB, and Julia for easy deployment. Microcontroller benchmarks show that our solver provides up to a two-order-of-magnitude speedup, ranging from 10.6x to 142.7x, over state-of-the-art embedded solvers on QP and SOCP problems, and enables us to fit order-of-magnitude larger problems in memory. We validate our solver's deployed performance through simulation and hardware experiments, including conically-constrained trajectory tracking on a 27g Crazyflie quadrotor. To get started with Conic-TinyMPC, visit our documentation, examples, and the open-source codebase at https://tinympc.org.
comment: First three authors contributed equally
♻ ☆ Learning Closed-Loop Parametric Nash Equilibria of Multi-Agent Collaborative Field Coverage
Multi-agent reinforcement learning is a challenging and active field of research due to the inherent nonstationary property and coupling between agents. A popular approach to modeling the multi-agent interactions underlying the multi-agent RL problem is the Markov Game. There is a special type of Markov Game, termed Markov Potential Game, which allows us to reduce the Markov Game to a single-objective optimal control problem where the objective function is a potential function. In this work, we prove that a multi-agent collaborative field coverage problem, which is found in many engineering applications, can be formulated as a Markov Potential Game, and we can learn a parameterized closed-loop Nash Equilibrium by solving an equivalent single-objective optimal control problem. As a result, our algorithm is 10x faster during training compared to a game-theoretic baseline and converges faster during policy execution.
comment: Updated license
♻ ☆ A Knowledge-Driven Diffusion Policy for End-to-End Autonomous Driving Based on Expert Routing
End-to-end autonomous driving remains constrained by the difficulty of producing adaptive, robust, and interpretable decision-making across diverse scenarios. Existing methods often collapse diverse driving behaviors, lack long-horizon consistency, or require task-specific engineering that limits generalization. This paper presents KDP, a knowledge-driven diffusion policy that integrates generative diffusion modeling with a sparse mixture-of-experts routing mechanism. The diffusion component generates temporally coherent action sequences, while the expert routing mechanism activates specialized and reusable experts according to context, enabling modular knowledge composition. Extensive experiments across representative driving scenarios demonstrate that KDP achieves consistently higher success rates, reduced collision risk, and smoother control compared to prevailing paradigms. Ablation studies highlight the effectiveness of sparse expert activation and the Transformer backbone, and activation analyses reveal structured specialization and cross-scenario reuse of experts. These results establish diffusion with expert routing as a scalable and interpretable paradigm for knowledge-driven end-to-end autonomous driving.
comment: https://perfectxu88.github.io/KDP-AD/
Graphics 7
☆ Pulp Motion: Framing-aware multimodal camera and human motion generation
Treating human motion and camera trajectory generation separately overlooks a core principle of cinematography: the tight interplay between actor performance and camera work in the screen space. In this paper, we are the first to cast this task as a text-conditioned joint generation, aiming to maintain consistent on-screen framing while producing two heterogeneous, yet intrinsically linked, modalities: human motion and camera trajectories. We propose a simple, model-agnostic framework that enforces multimodal coherence via an auxiliary modality: the on-screen framing induced by projecting human joints onto the camera. This on-screen framing provides a natural and effective bridge between modalities, promoting consistency and leading to more precise joint distribution. We first design a joint autoencoder that learns a shared latent space, together with a lightweight linear transform from the human and camera latents to a framing latent. We then introduce auxiliary sampling, which exploits this linear transform to steer generation toward a coherent framing modality. To support this task, we also introduce the PulpMotion dataset, a human-motion and camera-trajectory dataset with rich captions, and high-quality human motions. Extensive experiments across DiT- and MAR-based architectures show the generality and effectiveness of our method in generating on-frame coherent human-camera motions, while also achieving gains on textual alignment for both modalities. Our qualitative results yield more cinematographically meaningful framings setting the new state of the art for this task. Code, models and data are available in our \href{https://www.lix.polytechnique.fr/vista/projects/2025_pulpmotion_courant/}{project page}.
comment: Project page: https://www.lix.polytechnique.fr/vista/projects/2025_pulpmotion_courant/
☆ SAEdit: Token-level control for continuous image editing via Sparse AutoEncoder
Large-scale text-to-image diffusion models have become the backbone of modern image editing, yet text prompts alone do not offer adequate control over the editing process. Two properties are especially desirable: disentanglement, where changing one attribute does not unintentionally alter others, and continuous control, where the strength of an edit can be smoothly adjusted. We introduce a method for disentangled and continuous editing through token-level manipulation of text embeddings. The edits are applied by manipulating the embeddings along carefully chosen directions, which control the strength of the target attribute. To identify such directions, we employ a Sparse Autoencoder (SAE), whose sparse latent space exposes semantically isolated dimensions. Our method operates directly on text embeddings without modifying the diffusion process, making it model agnostic and broadly applicable to various image synthesis backbones. Experiments show that it enables intuitive and efficient manipulations with continuous control across diverse attributes and domains.
comment: Project page at: https://ronen94.github.io/SAEdit/
☆ Bridging Text and Video Generation: A Survey
Text-to-video (T2V) generation technology holds potential to transform multiple domains such as education, marketing, entertainment, and assistive technologies for individuals with visual or reading comprehension challenges, by creating coherent visual content from natural language prompts. From its inception, the field has advanced from adversarial models to diffusion-based models, yielding higher-fidelity, temporally consistent outputs. Yet challenges persist, such as alignment, long-range coherence, and computational efficiency. Addressing this evolving landscape, we present a comprehensive survey of text-to-video generative models, tracing their development from early GANs and VAEs to hybrid Diffusion-Transformer (DiT) architectures, detailing how these models work, what limitations they addressed in their predecessors, and why shifts toward new architectural paradigms were necessary to overcome challenges in quality, coherence, and control. We provide a systematic account of the datasets, which the surveyed text-to-video models were trained and evaluated on, and, to support reproducibility and assess the accessibility of training such models, we detail their training configurations, including their hardware specifications, GPU counts, batch sizes, learning rates, optimizers, epochs, and other key hyperparameters. Further, we outline the evaluation metrics commonly used for evaluating such models and present their performance across standard benchmarks, while also discussing the limitations of these metrics and the emerging shift toward more holistic, perception-aligned evaluation strategies. Finally, drawing from our analysis, we outline the current open challenges and propose a few promising future directions, laying out a perspective for future researchers to explore and build upon in advancing T2V research and applications.
☆ Social Agent: Mastering Dyadic Nonverbal Behavior Generation via Conversational LLM Agents SIGGRAPH
We present Social Agent, a novel framework for synthesizing realistic and contextually appropriate co-speech nonverbal behaviors in dyadic conversations. In this framework, we develop an agentic system driven by a Large Language Model (LLM) to direct the conversation flow and determine appropriate interactive behaviors for both participants. Additionally, we propose a novel dual-person gesture generation model based on an auto-regressive diffusion model, which synthesizes coordinated motions from speech signals. The output of the agentic system is translated into high-level guidance for the gesture generator, resulting in realistic movement at both the behavioral and motion levels. Furthermore, the agentic system periodically examines the movements of interlocutors and infers their intentions, forming a continuous feedback loop that enables dynamic and responsive interactions between the two participants. User studies and quantitative evaluations show that our model significantly improves the quality of dyadic interactions, producing natural, synchronized nonverbal behaviors.
comment: SIGGRAPH ASIA 2025 (Conference Track); Project page: https://pku-mocca.github.io/Social-Agent-Page/
☆ C3Editor: Achieving Controllable Consistency in 2D Model for 3D Editing
Existing 2D-lifting-based 3D editing methods often encounter challenges related to inconsistency, stemming from the lack of view-consistent 2D editing models and the difficulty of ensuring consistent editing across multiple views. To address these issues, we propose C3Editor, a controllable and consistent 2D-lifting-based 3D editing framework. Given an original 3D representation and a text-based editing prompt, our method selectively establishes a view-consistent 2D editing model to achieve superior 3D editing results. The process begins with the controlled selection of a ground truth (GT) view and its corresponding edited image as the optimization target, allowing for user-defined manual edits. Next, we fine-tune the 2D editing model within the GT view and across multiple views to align with the GT-edited image while ensuring multi-view consistency. To meet the distinct requirements of GT view fitting and multi-view consistency, we introduce separate LoRA modules for targeted fine-tuning. Our approach delivers more consistent and controllable 2D and 3D editing results than existing 2D-lifting-based methods, outperforming them in both qualitative and quantitative evaluations.
☆ 3Dify: a Framework for Procedural 3D-CG Generation Assisted by LLMs Using MCP and RAG
This paper proposes "3Dify," a procedural 3D computer graphics (3D-CG) generation framework utilizing Large Language Models (LLMs). The framework enables users to generate 3D-CG content solely through natural language instructions. 3Dify is built upon Dify, an open-source platform for AI application development, and incorporates several state-of-the-art LLM-related technologies such as the Model Context Protocol (MCP) and Retrieval-Augmented Generation (RAG). For 3D-CG generation support, 3Dify automates the operation of various Digital Content Creation (DCC) tools via MCP. When DCC tools do not support MCP-based interaction, the framework employs the Computer-Using Agent (CUA) method to automate Graphical User Interface (GUI) operations. Moreover, to enhance image generation quality, 3Dify allows users to provide feedback by selecting preferred images from multiple candidates. The LLM then learns variable patterns from these selections and applies them to subsequent generations. Furthermore, 3Dify supports the integration of locally deployed LLMs, enabling users to utilize custom-developed models and to reduce both time and monetary costs associated with external API calls by leveraging their own computational resources.
♻ ☆ A Survey on 3D Gaussian Splatting
3D Gaussian splatting (GS) has emerged as a transformative technique in radiance fields. Unlike mainstream implicit neural models, 3D GS uses millions of learnable 3D Gaussians for an explicit scene representation. Paired with a differentiable rendering algorithm, this approach achieves real-time rendering and unprecedented editability, making it a potential game-changer for 3D reconstruction and representation. In the present paper, we provide the first systematic overview of the recent developments and critical contributions in 3D GS. We begin with a detailed exploration of the underlying principles and the driving forces behind the emergence of 3D GS, laying the groundwork for understanding its significance. A focal point of our discussion is the practical applicability of 3D GS. By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond. This is complemented by a comparative analysis of leading 3D GS models, evaluated across various benchmark tasks to highlight their performance and practical utility. The survey concludes by identifying current challenges and suggesting potential avenues for future research. Through this survey, we aim to provide a valuable resource for both newcomers and seasoned researchers, fostering further exploration and advancement in explicit radiance field.
comment: Ongoing project; Paper list: https://github.com/guikunchen/Awesome3DGS ; Benchmark: https://github.com/guikunchen/3DGS-Benchmarks
Graphics 4
Mixture of Contexts for Long Video Generation
Long video generation is fundamentally a long context memory problem: models must retain and retrieve salient events across a long range without collapsing or drifting. However, scaling diffusion transformers to generate long-context videos is fundamentally limited by the quadratic cost of self-attention, which makes memory and computation intractable and difficult to optimize for long sequences. We recast long-context video generation as an internal information retrieval task and propose a simple, learnable sparse attention routing module, Mixture of Contexts (MoC), as an effective long-term memory retrieval engine. In MoC, each query dynamically selects a few informative chunks plus mandatory anchors (caption, local windows) to attend to, with causal routing that prevents loop closures. As we scale the data and gradually sparsify the routing, the model allocates compute to salient history, preserving identities, actions, and scenes over minutes of content. Efficiency follows as a byproduct of retrieval (near-linear scaling), which enables practical training and synthesis, and the emergence of memory and consistency at the scale of minutes.
comment: Project page: https://primecai.github.io/moc/
♻ ☆ CHOICE: Coordinated Human-Object Interaction in Cluttered Environments for Pick-and-Place Actions
Animating human-scene interactions such as pick-and-place tasks in cluttered, complex layouts is a challenging task, with objects of a wide variation of geometries and articulation under scenarios with various obstacles. The main difficulty lies in the sparsity of the motion data compared to the wide variation of the objects and environments as well as the poor availability of transition motions between different tasks, increasing the complexity of the generalization to arbitrary conditions. To cope with this issue, we develop a system that tackles the interaction synthesis problem as a hierarchical goal-driven task. Firstly, we develop a bimanual scheduler that plans a set of keyframes for simultaneously controlling the two hands to efficiently achieve the pick-and-place task from an abstract goal signal such as the target object selected by the user. Next, we develop a neural implicit planner that generates guidance hand trajectories under diverse object shape/types and obstacle layouts. Finally, we propose a linear dynamic model for our DeepPhase controller that incorporates a Kalman filter to enable smooth transitions in the frequency domain, resulting in a more realistic and effective multi-objective control of the character.Our system can produce a wide range of natural pick-and-place movements with respect to the geometry of objects, the articulation of containers and the layout of the objects in the scene.
comment: ACM Transaction on Graphics 2025;21 pages, 15 figures; Webpage: https://lujintaozju.github.io/publications/CHOICE/
♻ ☆ TCDiff++: An End-to-end Trajectory-Controllable Diffusion Model for Harmonious Music-Driven Group Choreography
Music-driven dance generation has garnered significant attention due to its wide range of industrial applications, particularly in the creation of group choreography. During the group dance generation process, however, most existing methods still face three primary issues: multi-dancer collisions, single-dancer foot sliding and abrupt swapping in the generation of long group dance. In this paper, we propose TCDiff++, a music-driven end-to-end framework designed to generate harmonious group dance. Specifically, to mitigate multi-dancer collisions, we utilize a dancer positioning embedding to encode temporal and identity information. Additionally, we incorporate a distance-consistency loss to ensure that inter-dancer distances remain within plausible ranges. To address the issue of single-dancer foot sliding, we introduce a swap mode embedding to indicate dancer swapping patterns and design a Footwork Adaptor to refine raw motion, thereby minimizing foot sliding. For long group dance generation, we present a long group diffusion sampling strategy that reduces abrupt position shifts by injecting positional information into the noisy input. Furthermore, we integrate a Sequence Decoder layer to enhance the model's ability to selectively process long sequences. Extensive experiments demonstrate that our TCDiff++ achieves state-of-the-art performance, particularly in long-duration scenarios, ensuring high-quality and coherent group dance generation.
♻ ☆ WonderHuman: Hallucinating Unseen Parts in Dynamic 3D Human Reconstruction
In this paper, we present WonderHuman to reconstruct dynamic human avatars from a monocular video for high-fidelity novel view synthesis. Previous dynamic human avatar reconstruction methods typically require the input video to have full coverage of the observed human body. However, in daily practice, one typically has access to limited viewpoints, such as monocular front-view videos, making it a cumbersome task for previous methods to reconstruct the unseen parts of the human avatar. To tackle the issue, we present WonderHuman, which leverages 2D generative diffusion model priors to achieve high-quality, photorealistic reconstructions of dynamic human avatars from monocular videos, including accurate rendering of unseen body parts. Our approach introduces a Dual-Space Optimization technique, applying Score Distillation Sampling (SDS) in both canonical and observation spaces to ensure visual consistency and enhance realism in dynamic human reconstruction. Additionally, we present a View Selection strategy and Pose Feature Injection to enforce the consistency between SDS predictions and observed data, ensuring pose-dependent effects and higher fidelity in the reconstructed avatar. In the experiments, our method achieves SOTA performance in producing photorealistic renderings from the given monocular video, particularly for those challenging unseen parts. The project page and source code can be found at https://wyiguanw.github.io/WonderHuman/.
Robotics 26
☆ Reliable and Scalable Robot Policy Evaluation with Imperfect Simulators
Rapid progress in imitation learning, foundation models, and large-scale datasets has led to robot manipulation policies that generalize to a wide-range of tasks and environments. However, rigorous evaluation of these policies remains a challenge. Typically in practice, robot policies are often evaluated on a small number of hardware trials without any statistical assurances. We present SureSim, a framework to augment large-scale simulation with relatively small-scale real-world testing to provide reliable inferences on the real-world performance of a policy. Our key idea is to formalize the problem of combining real and simulation evaluations as a prediction-powered inference problem, in which a small number of paired real and simulation evaluations are used to rectify bias in large-scale simulation. We then leverage non-asymptotic mean estimation algorithms to provide confidence intervals on mean policy performance. Using physics-based simulation, we evaluate both diffusion policy and multi-task fine-tuned \(\pi_0\) on a joint distribution of objects and initial conditions, and find that our approach saves over \(20-25\%\) of hardware evaluation effort to achieve similar bounds on policy performance.
☆ Stability-Aware Retargeting for Humanoid Multi-Contact Teleoperation
Teleoperation is a powerful method to generate reference motions and enable humanoid robots to perform a broad range of tasks. However, teleoperation becomes challenging when using hand contacts and non-coplanar surfaces, often leading to motor torque saturation or loss of stability through slipping. We propose a centroidal stability-based retargeting method that dynamically adjusts contact points and posture during teleoperation to enhance stability in these difficult scenarios. Central to our approach is an efficient analytical calculation of the stability margin gradient. This gradient is used to identify scenarios for which stability is highly sensitive to teleoperation setpoints and inform the local adjustment of these setpoints. We validate the framework in simulation and hardware by teleoperating manipulation tasks on a humanoid, demonstrating increased stability margins. We also demonstrate empirically that higher stability margins correlate with improved impulse resilience and joint torque margin.
☆ RAP: 3D Rasterization Augmented End-to-End Planning
Imitation learning for end-to-end driving trains policies only on expert demonstrations. Once deployed in a closed loop, such policies lack recovery data: small mistakes cannot be corrected and quickly compound into failures. A promising direction is to generate alternative viewpoints and trajectories beyond the logged path. Prior work explores photorealistic digital twins via neural rendering or game engines, but these methods are prohibitively slow and costly, and thus mainly used for evaluation. In this work, we argue that photorealism is unnecessary for training end-to-end planners. What matters is semantic fidelity and scalability: driving depends on geometry and dynamics, not textures or lighting. Motivated by this, we propose 3D Rasterization, which replaces costly rendering with lightweight rasterization of annotated primitives, enabling augmentations such as counterfactual recovery maneuvers and cross-agent view synthesis. To transfer these synthetic views effectively to real-world deployment, we introduce a Raster-to-Real feature-space alignment that bridges the sim-to-real gap. Together, these components form Rasterization Augmented Planning (RAP), a scalable data augmentation pipeline for planning. RAP achieves state-of-the-art closed-loop robustness and long-tail generalization, ranking first on four major benchmarks: NAVSIM v1/v2, Waymo Open Dataset Vision-based E2E Driving, and Bench2Drive. Our results show that lightweight rasterization with feature alignment suffices to scale E2E training, offering a practical alternative to photorealistic rendering. Project page: https://alan-lanfeng.github.io/RAP/.
☆ A KL-regularization framework for learning to plan with adaptive priors
Effective exploration remains a central challenge in model-based reinforcement learning (MBRL), particularly in high-dimensional continuous control tasks where sample efficiency is crucial. A prominent line of recent work leverages learned policies as proposal distributions for Model-Predictive Path Integral (MPPI) planning. Initial approaches update the sampling policy independently of the planner distribution, typically maximizing a learned value function with deterministic policy gradient and entropy regularization. However, because the states encountered during training depend on the MPPI planner, aligning the sampling policy with the planner improves the accuracy of value estimation and long-term performance. To this end, recent methods update the sampling policy by minimizing KL divergence to the planner distribution or by introducing planner-guided regularization into the policy update. In this work, we unify these MPPI-based reinforcement learning methods under a single framework by introducing Policy Optimization-Model Predictive Control (PO-MPC), a family of KL-regularized MBRL methods that integrate the planner's action distribution as a prior in policy optimization. By aligning the learned policy with the planner's behavior, PO-MPC allows more flexibility in the policy updates to trade off Return maximization and KL divergence minimization. We clarify how prior approaches emerge as special cases of this family, and we explore previously unstudied variations. Our experiments show that these extended configurations yield significant performance improvements, advancing the state of the art in MPPI-based RL.
comment: Preprint
☆ Integrated Planning and Control on Manifolds: Factor Graph Representation and Toolkit
Model predictive control (MPC) faces significant limitations when applied to systems evolving on nonlinear manifolds, such as robotic attitude dynamics and constrained motion planning, where traditional Euclidean formulations struggle with singularities, over-parameterization, and poor convergence. To overcome these challenges, this paper introduces FactorMPC, a factor-graph based MPC toolkit that unifies system dynamics, constraints, and objectives into a modular, user-friendly, and efficient optimization structure. Our approach natively supports manifold-valued states with Gaussian uncertainties modeled in tangent spaces. By exploiting the sparsity and probabilistic structure of factor graphs, the toolkit achieves real-time performance even for high-dimensional systems with complex constraints. The velocity-extended on-manifold control barrier function (CBF)-based obstacle avoidance factors are designed for safety-critical applications. By bridging graphical models with safety-critical MPC, our work offers a scalable and geometrically consistent framework for integrated planning and control. The simulations and experimental results on the quadrotor demonstrate superior trajectory tracking and obstacle avoidance performance compared to baseline methods. To foster research reproducibility, we have provided open-source implementation offering plug-and-play factors.
☆ ContextVLA: Vision-Language-Action Model with Amortized Multi-Frame Context
Leveraging temporal context is crucial for success in partially observable robotic tasks. However, prior work in behavior cloning has demonstrated inconsistent performance gains when using multi-frame observations. In this paper, we introduce ContextVLA, a policy model that robustly improves robotic task performance by effectively leveraging multi-frame observations. Our approach is motivated by the key observation that Vision-Language-Action models (VLA), i.e., policy models built upon a Vision-Language Model (VLM), more effectively utilize multi-frame observations for action generation. This suggests that VLMs' inherent temporal understanding capability enables them to extract more meaningful context from multi-frame observations. However, the high dimensionality of video inputs introduces significant computational overhead, making VLA training and inference inefficient. To address this, ContextVLA compresses past observations into a single context token, allowing the policy to efficiently leverage temporal context for action generation. Our experiments show that ContextVLA consistently improves over single-frame VLAs and achieves the benefits of full multi-frame training but with reduced training and inference times.
comment: Project page: https://huiwon-jang.github.io/contextvla
Flexible Locomotion Learning with Diffusion Model Predictive Control
Legged locomotion demands controllers that are both robust and adaptable, while remaining compatible with task and safety considerations. However, model-free reinforcement learning (RL) methods often yield a fixed policy that can be difficult to adapt to new behaviors at test time. In contrast, Model Predictive Control (MPC) provides a natural approach to flexible behavior synthesis by incorporating different objectives and constraints directly into its optimization process. However, classical MPC relies on accurate dynamics models, which are often difficult to obtain in complex environments and typically require simplifying assumptions. We present Diffusion-MPC, which leverages a learned generative diffusion model as an approximate dynamics prior for planning, enabling flexible test-time adaptation through reward and constraint based optimization. Diffusion-MPC jointly predicts future states and actions; at each reverse step, we incorporate reward planning and impose constraint projection, yielding trajectories that satisfy task objectives while remaining within physical limits. To obtain a planning model that adapts beyond imitation pretraining, we introduce an interactive training algorithm for diffusion based planner: we execute our reward-and-constraint planner in environment, then filter and reweight the collected trajectories by their realized returns before updating the denoiser. Our design enables strong test-time adaptability, allowing the planner to adjust to new reward specifications without retraining. We validate Diffusion-MPC on real world, demonstrating strong locomotion and flexible adaptation.
comment: 9 pages, 8 figures
☆ Zenbo Patrol: A Social Assistive Robot Based on Multimodal Deep Learning for Real-time Illegal Parking Recognition and Notification
In the study, the social robot act as a patrol to recognize and notify illegal parking in real-time. Dual-model pipeline method and large multimodal model were compared, and the GPT-4o multimodal model was adopted in license plate recognition without preprocessing. For moving smoothly on a flat ground, the robot navigated in a simulated parking lot in the experiments. The robot changes angle view of the camera automatically to capture the images around with the format of license plate number. From the captured images of the robot, the numbers on the plate are recognized through the GPT-4o model, and identifies legality of the numbers. When an illegal parking is detected, the robot sends Line messages to the system manager immediately. The contribution of the work is that a novel multimodal deep learning method has validated with high accuracy in license plate recognition, and a social assistive robot is also provided for solving problems in a real scenario, and can be applied in an indoor parking lot.
☆ Using Robotics to Improve Transcatheter Edge-to-Edge Repair of the Mitral Valve
Transcatheter valve repair presents significant challenges due to the mechanical limitations and steep learning curve associated with manual catheter systems. This paper investigates the use of robotics to facilitate transcatheter procedures in the context of mitral valve edge-to-edge repair. The complex handle-based control of a clinical repair device is replaced by intuitive robotic joint-based control via a game controller. Manual versus robotic performance is analyzed by decomposing the overall device delivery task into motion-specific steps and comparing capabilities on a step-by-step basis in a phantom model of the heart and vasculature. Metrics include procedure duration and clip placement accuracy. Results demonstrate that the robotic system can reduce procedural time and motion errors while also improving accuracy of clip placement. These findings suggest that robotic assistance can address key limitations of manual systems, offering a more reliable and user-friendly platform for complex transcatheter procedures.
comment: 7 pages, 9 figures
☆ VBM-NET: Visual Base Pose Learning for Mobile Manipulation using Equivariant TransporterNet and GNNs
In Mobile Manipulation, selecting an optimal mobile base pose is essential for successful object grasping. Previous works have addressed this problem either through classical planning methods or by learning state-based policies. They assume access to reliable state information, such as the precise object poses and environment models. In this work, we study base pose planning directly from top-down orthographic projections of the scene, which provide a global overview of the scene while preserving spatial structure. We propose VBM-NET, a learning-based method for base pose selection using such top-down orthographic projections. We use equivariant TransporterNet to exploit spatial symmetries and efficiently learn candidate base poses for grasping. Further, we use graph neural networks to represent a varying number of candidate base poses and use Reinforcement Learning to determine the optimal base pose among them. We show that VBM-NET can produce comparable solutions to the classical methods in significantly less computation time. Furthermore, we validate sim-to-real transfer by successfully deploying a policy trained in simulation to real-world mobile manipulation.
☆ Learning to Capture Rocks using an Excavator: A Reinforcement Learning Approach with Guiding Reward Formulation
Rock capturing with standard excavator buckets is a challenging task typically requiring the expertise of skilled operators. Unlike soil digging, it involves manipulating large, irregular rocks in unstructured environments where complex contact interactions with granular material make model-based control impractical. Existing autonomous excavation methods focus mainly on continuous media or rely on specialized grippers, limiting their applicability to real-world construction sites. This paper introduces a fully data-driven control framework for rock capturing that eliminates the need for explicit modeling of rock or soil properties. A model-free reinforcement learning agent is trained in the AGX Dynamics simulator using the Proximal Policy Optimization (PPO) algorithm and a guiding reward formulation. The learned policy outputs joint velocity commands directly to the boom, arm, and bucket of a CAT365 excavator model. Robustness is enhanced through extensive domain randomization of rock geometry, density, and mass, as well as the initial configurations of the bucket, rock, and goal position. To the best of our knowledge, this is the first study to develop and evaluate an RL-based controller for the rock capturing task. Experimental results show that the policy generalizes well to unseen rocks and varying soil conditions, achieving high success rates comparable to those of human participants while maintaining machine stability. These findings demonstrate the feasibility of learning-based excavation strategies for discrete object manipulation without requiring specialized hardware or detailed material models.
☆ HEHA: Hierarchical Planning for Heterogeneous Multi-Robot Exploration of Unknown Environments
This paper considers the path planning problem for autonomous exploration of an unknown environment using multiple heterogeneous robots such as drones, wheeled, and legged robots, which have different capabilities to traverse complex terrains. A key challenge there is to intelligently allocate the robots to the unknown areas to be explored and determine the visiting order of those spaces subject to traversablity constraints, which leads to a large scale constrained optimization problem that needs to be quickly and iteratively solved every time when new space are explored. To address the challenge, we propose HEHA (Hierarchical Exploration with Heterogeneous Agents) by leveraging a recent hierarchical method that decompose the exploration into global planning and local planning. The major contribution in HEHA is its global planning, where we propose a new routing algorithm PEAF (Partial Anytime Focal search) that can quickly find bounded sub-optimal solutions to minimize the maximum path length among the agents subject to traversability constraints. Additionally, the local planner in HEHA also considers heterogeneity to avoid repeated and duplicated exploration among the robots. The experimental results show that, our HEHA can reduce up to 30% of the exploration time than the baselines.
comment: 5 Figures
☆ From Shadow to Light: Toward Safe and Efficient Policy Learning Across MPC, DeePC, RL, and LLM Agents
One of the main challenges in modern control applications, particularly in robot and vehicle motion control, is achieving accurate, fast, and safe movement. To address this, optimal control policies have been developed to enforce safety while ensuring high performance. Since basic first-principles models of real systems are often available, model-based controllers are widely used. Model predictive control (MPC) is a leading approach that optimizes performance while explicitly handling safety constraints. However, obtaining accurate models for complex systems is difficult, which motivates data-driven alternatives. ML-based MPC leverages learned models to reduce reliance on hand-crafted dynamics, while reinforcement learning (RL) can learn near-optimal policies directly from interaction data. Data-enabled predictive control (DeePC) goes further by bypassing modeling altogether, directly learning safe policies from raw input-output data. Recently, large language model (LLM) agents have also emerged, translating natural language instructions into structured formulations of optimal control problems. Despite these advances, data-driven policies face significant limitations. They often suffer from slow response times, high computational demands, and large memory needs, making them less practical for real-world systems with fast dynamics, limited onboard computing, or strict memory constraints. To address this, various technique, such as reduced-order modeling, function-approximated policy learning, and convex relaxations, have been proposed to reduce computational complexity. In this paper, we present eight such approaches and demonstrate their effectiveness across real-world applications, including robotic arms, soft robots, and vehicle motion control.
☆ Feedback Matters: Augmenting Autonomous Dissection with Visual and Topological Feedback
Autonomous surgical systems must adapt to highly dynamic environments where tissue properties and visual cues evolve rapidly. Central to such adaptability is feedback: the ability to sense, interpret, and respond to changes during execution. While feedback mechanisms have been explored in surgical robotics, ranging from tool and tissue tracking to error detection, existing methods remain limited in handling the topological and perceptual challenges of tissue dissection. In this work, we propose a feedback-enabled framework for autonomous tissue dissection that explicitly reasons about topological changes from endoscopic images after each dissection action. This structured feedback guides subsequent actions, enabling the system to localize dissection progress and adapt policies online. To improve the reliability of such feedback, we introduce visibility metrics that quantify tissue exposure and formulate optimal controller designs that actively manipulate tissue to maximize visibility. Finally, we integrate these feedback mechanisms with both planning-based and learning-based dissection methods, and demonstrate experimentally that they significantly enhance autonomy, reduce errors, and improve robustness in complex surgical scenarios.
☆ SITCOM: Scaling Inference-Time COMpute for VLAs NeurIPS 2025
Learning robust robotic control policies remains a major challenge due to the high cost of collecting labeled data, limited generalization to unseen environments, and difficulties in planning over long horizons. While Vision-Language-Action (VLA) models offer a promising solution by grounding natural language instructions into single-step control commands, they often lack mechanisms for lookahead and struggle with compounding errors in dynamic tasks. In this project, we introduce Scaling Inference-Time COMpute for VLAs (SITCOM), a framework that augments any pretrained VLA with model-based rollouts and reward-based trajectory selection, inspired by Model Predictive Control algorithm. SITCOM leverages a learned dynamics model to simulate multi-step action rollouts to select the best candidate plan for real-world execution, transforming one-shot VLAs into robust long-horizon planners. We develop an efficient transformer-based dynamics model trained on large-scale BridgeV2 data and fine-tuned on SIMPLER environments to bridge the Real2Sim gap, and score candidate rollouts using rewards from simulator. Through comprehensive evaluation across multiple tasks and settings in the SIMPLER environment, we demonstrate that SITCOM when combined with a good reward function can significantly improve task completion rate from 48% to 72% using trained dynamics model.
comment: Accepted at the NeurIPS 2025 Workshop on Space in Vision, Language, and Embodied AI (SpaVLE). *Equal contribution
♻ ☆ Learning Geometry-Aware Nonprehensile Pushing and Pulling with Dexterous Hands
Nonprehensile manipulation, such as pushing and pulling, enables robots to move, align, or reposition objects that may be difficult to grasp due to their geometry, size, or relationship to the robot or the environment. Much of the existing work in nonprehensile manipulation relies on parallel-jaw grippers or tools such as rods and spatulas. In contrast, multi-fingered dexterous hands offer richer contact modes and versatility for handling diverse objects to provide stable support over the objects, which compensates for the difficulty of modeling the dynamics of nonprehensile manipulation. Therefore, we propose Geometry-aware Dexterous Pushing and Pulling (GD2P) for nonprehensile manipulation with dexterous robotic hands. We study pushing and pulling by framing the problem as synthesizing and learning pre-contact dexterous hand poses that lead to effective manipulation. We generate diverse hand poses via contact-guided sampling, filter them using physics simulation, and train a diffusion model conditioned on object geometry to predict viable poses. At test time, we sample hand poses and use standard motion planners to select and execute pushing and pulling actions. We perform 840 real-world experiments with an Allegro Hand, comparing our method to baselines. The results indicate that GD2P offers a scalable route for training dexterous nonprehensile manipulation policies. We further demonstrate GD2P on a LEAP Hand, highlighting its applicability to different hand morphologies. Our pre-trained models and dataset, including 1.3 million hand poses across 2.3k objects, will be open-source to facilitate further research. Our project website is available at: geodex2p.github.io.
comment: Typos corrected
♻ ☆ A Benchmarking Study of Vision-Based Robotic Grasping Algorithms: A Comparative Analysis
We present a benchmarking study of vision-based robotic grasping algorithms and provide a comparative analysis. In particular, we compare two machine-learning-based and two analytical algorithms using an existing benchmarking protocol from the literature and determine the algorithms strengths and weaknesses under different experimental conditions. These conditions include variations in lighting, background textures, cameras with different noise levels, and grippers. We also run analogous experiments in simulations and with real robots and present the discrepancies. Some experiments are also run in two different laboratories using the same protocols to further analyze the repeatability of our results. We believe that this study, comprising 5040 experiments, provides important insights into the role and challenges of systematic experimentation in robotic manipulation and guides the development of new algorithms by considering the factors that could impact the performance. The experiment recordings and our benchmarking software are publicly available.
comment: Accepted in IEEE Robotics and Automation Magazine 2025. Previously this version with slight modifications appeared as arXiv:2503.11163, which was submitted as a new work by accident. We have requested for removal of arXiv:2503.11163 from the other account, while simultaneously submitting this version as a revision to arXiv:2307.11622. We are stressing that this submission is intentional
♻ ☆ CHOICE: Coordinated Human-Object Interaction in Cluttered Environments for Pick-and-Place Actions
Animating human-scene interactions such as pick-and-place tasks in cluttered, complex layouts is a challenging task, with objects of a wide variation of geometries and articulation under scenarios with various obstacles. The main difficulty lies in the sparsity of the motion data compared to the wide variation of the objects and environments as well as the poor availability of transition motions between different tasks, increasing the complexity of the generalization to arbitrary conditions. To cope with this issue, we develop a system that tackles the interaction synthesis problem as a hierarchical goal-driven task. Firstly, we develop a bimanual scheduler that plans a set of keyframes for simultaneously controlling the two hands to efficiently achieve the pick-and-place task from an abstract goal signal such as the target object selected by the user. Next, we develop a neural implicit planner that generates guidance hand trajectories under diverse object shape/types and obstacle layouts. Finally, we propose a linear dynamic model for our DeepPhase controller that incorporates a Kalman filter to enable smooth transitions in the frequency domain, resulting in a more realistic and effective multi-objective control of the character.Our system can produce a wide range of natural pick-and-place movements with respect to the geometry of objects, the articulation of containers and the layout of the objects in the scene.
comment: ACM Transaction on Graphics 2025;21 pages, 15 figures; Webpage: https://lujintaozju.github.io/publications/CHOICE/
♻ ☆ Time-Optimized Safe Navigation in Unstructured Environments through Learning Based Depth Completion
Quadrotors hold significant promise for several applications such as agriculture, search and rescue, and infrastructure inspection. Achieving autonomous operation requires systems to navigate safely through complex and unfamiliar environments. This level of autonomy is particularly challenging due to the complexity of such environments and the need for real-time decision making especially for platforms constrained by size, weight, and power (SWaP), which limits flight time and precludes the use of bulky sensors like Light Detection and Ranging (LiDAR) for mapping. Furthermore, computing globally optimal, collision-free paths and translating them into time-optimized, safe trajectories in real time adds significant computational complexity. To address these challenges, we present a fully onboard, real-time navigation system that relies solely on lightweight onboard sensors. Our system constructs a dense 3D map of the environment using a novel visual depth estimation approach that fuses stereo and monocular learning-based depth, yielding longer-range, denser, and less noisy depth maps than conventional stereo methods. Building on this map, we introduce a novel planning and trajectory generation framework capable of rapidly computing time-optimal global trajectories. As the map is incrementally updated with new depth information, our system continuously refines the trajectory to maintain safety and optimality. Both our planner and trajectory generator outperforms state-of-the-art methods in terms of computational efficiency and guarantee obstacle-free trajectories. We validate our system through robust autonomous flight experiments in diverse indoor and outdoor environments, demonstrating its effectiveness for safe navigation in previously unknown settings.
♻ ☆ INGRID: Intelligent Generative Robotic Design Using Large Language Models
The integration of large language models (LLMs) into robotic systems has accelerated progress in embodied artificial intelligence, yet current approaches remain constrained by existing robotic architectures, particularly serial mechanisms. This hardware dependency fundamentally limits the scope of robotic intelligence. Here, we present INGRID (Intelligent Generative Robotic Design), a framework that enables the automated design of parallel robotic mechanisms through deep integration with reciprocal screw theory and kinematic synthesis methods. We decompose the design challenge into four progressive tasks: constraint analysis, kinematic joint generation, chain construction, and complete mechanism design. INGRID demonstrates the ability to generate novel parallel mechanisms with both fixed and variable mobility, discovering kinematic configurations not previously documented in the literature. We validate our approach through three case studies demonstrating how INGRID assists users in designing task-specific parallel robots based on desired mobility requirements. By bridging the gap between mechanism theory and machine learning, INGRID enables researchers without specialized robotics training to create custom parallel mechanisms, thereby decoupling advances in robotic intelligence from hardware constraints. This work establishes a foundation for mechanism intelligence, where AI systems actively design robotic hardware, potentially transforming the development of embodied AI systems.
comment: We are revising it
♻ ☆ Viewpoint-Agnostic Manipulation Policies with Strategic Vantage Selection
Since vision-based manipulation policies are typically trained from data gathered from a single viewpoint, their performance drops when the view changes during deployment. Naively aggregating demonstrations from numerous random views is not only costly but also known to destabilize learning, as excessive visual diversity acts as noise. We present Vantage, a viewpoint selection framework to fine-tune any pre-trained policy on a small, strategically set of camera poses to induce viewpoint-agnostic behavior. Instead of relying on costly brute-force search over viewpoints, Vantage formulates camera placement as an information gain optimization problem in a continuous space. This approach balances exploration of novel poses with exploitation of promising ones, while also providing theoretical guarantees about convergence and robustness. Across manipulation tasks and policy families, Vantage consistently improves success under viewpoint shifts compared to fixed, grid, or random data selection strategies with only a handful of fine-tuning steps. Experiments conducted on simulated and real-world setups show that Vantage increases the task success rate by 25% for diffusion policies, and yields robust gains in dynamic-camera settings.
♻ ☆ Training-free Task-oriented Grasp Generation
This paper presents a training-free pipeline for task-oriented grasp generation that combines pre-trained grasp generation models with vision-language models (VLMs). Unlike traditional approaches that focus solely on stable grasps, our method incorporates task-specific requirements by leveraging the semantic reasoning capabilities of VLMs. We evaluate five querying strategies, each utilizing different visual representations of candidate grasps, and demonstrate significant improvements over a baseline method in both grasp success and task compliance rates, with absolute gains of up to 36.9\% in overall success rate. Our results underline the potential of VLMs to enhance task-oriented manipulation, providing insights for future research in robotic grasping and human-robot interaction.
comment: Jiaming Wang, Diwen Liu, and Jizhuo Chen contributed equally
♻ ☆ Humanoid Policy ~ Human Policy
Training manipulation policies for humanoid robots with diverse data enhances their robustness and generalization across tasks and platforms. However, learning solely from robot demonstrations is labor-intensive, requiring expensive tele-operated data collection which is difficult to scale. This paper investigates a more scalable data source, egocentric human demonstrations, to serve as cross-embodiment training data for robot learning. We mitigate the embodiment gap between humanoids and humans from both the data and modeling perspectives. We collect an egocentric task-oriented dataset (PH2D) that is directly aligned with humanoid manipulation demonstrations. We then train a human-humanoid behavior policy, which we term Human Action Transformer (HAT). The state-action space of HAT is unified for both humans and humanoid robots and can be differentiably retargeted to robot actions. Co-trained with smaller-scale robot data, HAT directly models humanoid robots and humans as different embodiments without additional supervision. We show that human data improves both generalization and robustness of HAT with significantly better data collection efficiency. Code and data: https://human-as-robot.github.io/
comment: Code and data: https://human-as-robot.github.io/
♻ ☆ ShapeICP: Iterative Category-level Object Pose and Shape Estimation from Depth
Category-level object pose and shape estimation from a single depth image has recently drawn research attention due to its potential utility for tasks such as robotics manipulation. The task is particularly challenging because the three unknowns, object pose, object shape, and model-to-measurement correspondences, are compounded together, but only a single view of depth measurements is provided. Most of the prior work heavily relies on data-driven approaches to obtain solutions to at least one of the unknowns, and typically two, risking generalization failures if not designed and trained carefully. The shape representations used in the prior work also mainly focus on point clouds and signed distance fields (SDFs). In stark contrast to the prior work, we approach the problem using an iterative estimation method that does not require learning from pose-annotated data. Moreover, we construct and adopt a novel mesh-based object active shape model (ASM), which additionally maintains vertex connectivity compared to the commonly used point-based object ASM. Our algorithm, ShapeICP, is based on the iterative closest point (ICP) algorithm but is equipped with additional features for the category-level pose and shape estimation task. Although not using pose-annotated data, ShapeICP surpasses many data-driven approaches that rely on pose data for training, opening up a new solution space for researchers to consider.
♻ ☆ Universal Adversarial Perturbation Attacks On Modern Behavior Cloning Policies
Learning from Demonstration (LfD) algorithms have shown promising results in robotic manipulation tasks, but their vulnerability to offline universal perturbation attacks remains underexplored. This paper presents a comprehensive study of adversarial attacks on both classic and recently proposed algorithms, including Behavior Cloning (BC), LSTM-GMM, Implicit Behavior Cloning (IBC), Diffusion Policy (DP), and Vector-Quantizied Behavior Transformer (VQ-BET). We study the vulnerability of these methods to universal adversarial perturbations. Our experiments on several simulated robotic manipulation tasks reveal that most of the current methods are highly vulnerable to adversarial perturbations. We also show that these attacks are often transferable across algorithms, architectures, and tasks, raising concerning security vulnerabilities to black-box attacks. To the best of our knowledge, we are the first to present a systematic study of the vulnerabilities of different LfD algorithms to both white-box and black-box attacks. Our findings highlight the vulnerabilities of modern BC algorithms, paving the way for future work in addressing such limitations.
♻ ☆ Rough Stochastic Pontryagin Maximum Principle and an Indirect Shooting Method
We derive first-order Pontryagin optimality conditions for stochastic optimal control with deterministic controls for systems modeled by rough differential equations (RDE) driven by Gaussian rough paths. This Pontryagin Maximum Principle (PMP) applies to systems following stochastic differential equations (SDE) driven by Brownian motion, yet it does not rely on forward-backward SDEs and involves the same Hamiltonian as the deterministic PMP. The proof consists of first deriving various integrable error bounds for solutions to nonlinear and linear RDEs by leveraging recent results on Gaussian rough paths. The PMP then follows using standard techniques based on needle-like variations. As an application, we propose the first indirect shooting method for nonlinear stochastic optimal control and show that it converges 10x faster than a direct method on a stabilization task.
comment: Revisions to the presentation and proofs
Computer Vision and Pattern Recognition 81
☆ MorphoSim: An Interactive, Controllable, and Editable Language-guided 4D World Simulator
World models that support controllable and editable spatiotemporal environments are valuable for robotics, enabling scalable training data, repro ducible evaluation, and flexible task design. While recent text-to-video models generate realistic dynam ics, they are constrained to 2D views and offer limited interaction. We introduce MorphoSim, a language guided framework that generates 4D scenes with multi-view consistency and object-level controls. From natural language instructions, MorphoSim produces dynamic environments where objects can be directed, recolored, or removed, and scenes can be observed from arbitrary viewpoints. The framework integrates trajectory-guided generation with feature field dis tillation, allowing edits to be applied interactively without full re-generation. Experiments show that Mor phoSim maintains high scene fidelity while enabling controllability and editability. The code is available at https://github.com/eric-ai-lab/Morph4D.
☆ Adaptive double-phase Rudin--Osher--Fatemi denoising model
We propose a new image denoising model based on a variable-growth total variation regularization of double-phase type with adaptive weight. It is designed to reduce staircasing with respect to the classical Rudin--Osher--Fatemi model, while preserving the edges of the image in a similar fashion. We implement the model and test its performance on synthetic and natural images in 1D and 2D over a range of noise levels.
comment: 21 pages, 18 figures, supplementary material available at: https://github.com/wojciechgorny/double-phase-ROF-model/
☆ The method of the approximate inverse for limited-angle CT
Limited-angle computerized tomography stands for one of the most difficult challenges in imaging. Although it opens the way to faster data acquisition in industry and less dangerous scans in medicine, standard approaches, such as the filtered backprojection (FBP) algorithm or the widely used total-variation functional, often produce various artefacts that hinder the diagnosis. With the rise of deep learning, many modern techniques have proven themselves successful in removing such artefacts but at the cost of large datasets. In this paper, we propose a new model-driven approach based on the method of the approximate inverse, which could serve as new starting point for learning strategies in the future. In contrast to FBP-type approaches, our reconstruction step consists in evaluating linear functionals on the measured data using reconstruction kernels that are precomputed as solution of an auxiliary problem. With this problem being uniquely solvable, the derived limited-angle reconstruction kernel (LARK) is able to fully reconstruct the object without the well-known streak artefacts, even for large limited angles. However, it inherits severe ill-conditioning which leads to a different kind of artefacts arising from the singular functions of the limited-angle Radon transform. The problem becomes particularly challenging when working on semi-discrete (real or analytical) measurements. We develop a general regularization strategy, named constrained limited-angle reconstruction kernel (CLARK), by combining spectral filter, the method of the approximate inverse and custom edge-preserving denoising in order to stabilize the whole process. We further derive and interpret error estimates for the application on real, i.e. semi-discrete, data and we validate our approach on synthetic and real data.
☆ Diffusion^2: Dual Diffusion Model with Uncertainty-Aware Adaptive Noise for Momentary Trajectory Prediction
Accurate pedestrian trajectory prediction is crucial for ensuring safety and efficiency in autonomous driving and human-robot interaction scenarios. Earlier studies primarily utilized sufficient observational data to predict future trajectories. However, in real-world scenarios, such as pedestrians suddenly emerging from blind spots, sufficient observational data is often unavailable (i.e. momentary trajectory), making accurate prediction challenging and increasing the risk of traffic accidents. Therefore, advancing research on pedestrian trajectory prediction under extreme scenarios is critical for enhancing traffic safety. In this work, we propose a novel framework termed Diffusion^2, tailored for momentary trajectory prediction. Diffusion^2 consists of two sequentially connected diffusion models: one for backward prediction, which generates unobserved historical trajectories, and the other for forward prediction, which forecasts future trajectories. Given that the generated unobserved historical trajectories may introduce additional noise, we propose a dual-head parameterization mechanism to estimate their aleatoric uncertainty and design a temporally adaptive noise module that dynamically modulates the noise scale in the forward diffusion process. Empirically, Diffusion^2 sets a new state-of-the-art in momentary trajectory prediction on ETH/UCY and Stanford Drone datasets.
comment: 13 pages, 7 figures, 3 tables
☆ RAP: 3D Rasterization Augmented End-to-End Planning
Imitation learning for end-to-end driving trains policies only on expert demonstrations. Once deployed in a closed loop, such policies lack recovery data: small mistakes cannot be corrected and quickly compound into failures. A promising direction is to generate alternative viewpoints and trajectories beyond the logged path. Prior work explores photorealistic digital twins via neural rendering or game engines, but these methods are prohibitively slow and costly, and thus mainly used for evaluation. In this work, we argue that photorealism is unnecessary for training end-to-end planners. What matters is semantic fidelity and scalability: driving depends on geometry and dynamics, not textures or lighting. Motivated by this, we propose 3D Rasterization, which replaces costly rendering with lightweight rasterization of annotated primitives, enabling augmentations such as counterfactual recovery maneuvers and cross-agent view synthesis. To transfer these synthetic views effectively to real-world deployment, we introduce a Raster-to-Real feature-space alignment that bridges the sim-to-real gap. Together, these components form Rasterization Augmented Planning (RAP), a scalable data augmentation pipeline for planning. RAP achieves state-of-the-art closed-loop robustness and long-tail generalization, ranking first on four major benchmarks: NAVSIM v1/v2, Waymo Open Dataset Vision-based E2E Driving, and Bench2Drive. Our results show that lightweight rasterization with feature alignment suffices to scale E2E training, offering a practical alternative to photorealistic rendering. Project page: https://alan-lanfeng.github.io/RAP/.
☆ DoRAN: Stabilizing Weight-Decomposed Low-Rank Adaptation via Noise Injection and Auxiliary Networks
Parameter-efficient fine-tuning (PEFT) methods have become the standard paradigm for adapting large-scale models. Among these techniques, Weight-Decomposed Low-Rank Adaptation (DoRA) has been shown to improve both the learning capacity and training stability of the vanilla Low-Rank Adaptation (LoRA) method by explicitly decomposing pre-trained weights into magnitude and directional components. In this work, we propose DoRAN, a new variant of DoRA designed to further stabilize training and boost the sample efficiency of DoRA. Our approach includes two key stages: (i) injecting noise into the denominator of DoRA's weight decomposition, which serves as an adaptive regularizer to mitigate instabilities; and (ii) replacing static low-rank matrices with auxiliary networks that generate them dynamically, enabling parameter coupling across layers and yielding better sample efficiency in both theory and practice. Comprehensive experiments on vision and language benchmarks show that DoRAN consistently outperforms LoRA, DoRA, and other PEFT baselines. These results underscore the effectiveness of combining stabilization through noise-based regularization with network-based parameter generation, offering a promising direction for robust and efficient fine-tuning of foundation models.
comment: Nghiem T. Diep, Hien Dang, and Tuan Truong contributed equally to this work
☆ GenAR: Next-Scale Autoregressive Generation for Spatial Gene Expression Prediction
Spatial Transcriptomics (ST) offers spatially resolved gene expression but remains costly. Predicting expression directly from widely available Hematoxylin and Eosin (H&E) stained images presents a cost-effective alternative. However, most computational approaches (i) predict each gene independently, overlooking co-expression structure, and (ii) cast the task as continuous regression despite expression being discrete counts. This mismatch can yield biologically implausible outputs and complicate downstream analyses. We introduce GenAR, a multi-scale autoregressive framework that refines predictions from coarse to fine. GenAR clusters genes into hierarchical groups to expose cross-gene dependencies, models expression as codebook-free discrete token generation to directly predict raw counts, and conditions decoding on fused histological and spatial embeddings. From an information-theoretic perspective, the discrete formulation avoids log-induced biases and the coarse-to-fine factorization aligns with a principled conditional decomposition. Extensive experimental results on four Spatial Transcriptomics datasets across different tissue types demonstrate that GenAR achieves state-of-the-art performance, offering potential implications for precision medicine and cost-effective molecular profiling. Code is publicly available at https://github.com/oyjr/genar.
☆ CARE-PD: A Multi-Site Anonymized Clinical Dataset for Parkinson's Disease Gait Assessment NeurIPS 2025
Objective gait assessment in Parkinson's Disease (PD) is limited by the absence of large, diverse, and clinically annotated motion datasets. We introduce CARE-PD, the largest publicly available archive of 3D mesh gait data for PD, and the first multi-site collection spanning 9 cohorts from 8 clinical centers. All recordings (RGB video or motion capture) are converted into anonymized SMPL meshes via a harmonized preprocessing pipeline. CARE-PD supports two key benchmarks: supervised clinical score prediction (estimating Unified Parkinson's Disease Rating Scale, UPDRS, gait scores) and unsupervised motion pretext tasks (2D-to-3D keypoint lifting and full-body 3D reconstruction). Clinical prediction is evaluated under four generalization protocols: within-dataset, cross-dataset, leave-one-dataset-out, and multi-dataset in-domain adaptation. To assess clinical relevance, we compare state-of-the-art motion encoders with a traditional gait-feature baseline, finding that encoders consistently outperform handcrafted features. Pretraining on CARE-PD reduces MPJPE (from 60.8mm to 7.5mm) and boosts PD severity macro-F1 by 17 percentage points, underscoring the value of clinically curated, diverse training data. CARE-PD and all benchmark code are released for non-commercial research at https://neurips2025.care-pd.ca/.
comment: Accepted at the Thirty-Ninth Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ ChronoEdit: Towards Temporal Reasoning for Image Editing and World Simulation
Recent advances in large generative models have significantly advanced image editing and in-context image generation, yet a critical gap remains in ensuring physical consistency, where edited objects must remain coherent. This capability is especially vital for world simulation related tasks. In this paper, we present ChronoEdit, a framework that reframes image editing as a video generation problem. First, ChronoEdit treats the input and edited images as the first and last frames of a video, allowing it to leverage large pretrained video generative models that capture not only object appearance but also the implicit physics of motion and interaction through learned temporal consistency. Second, ChronoEdit introduces a temporal reasoning stage that explicitly performs editing at inference time. Under this setting, the target frame is jointly denoised with reasoning tokens to imagine a plausible editing trajectory that constrains the solution space to physically viable transformations. The reasoning tokens are then dropped after a few steps to avoid the high computational cost of rendering a full video. To validate ChronoEdit, we introduce PBench-Edit, a new benchmark of image-prompt pairs for contexts that require physical consistency, and demonstrate that ChronoEdit surpasses state-of-the-art baselines in both visual fidelity and physical plausibility. Code and models for both the 14B and 2B variants of ChronoEdit will be released on the project page: https://research.nvidia.com/labs/toronto-ai/chronoedit
comment: Project Page: https://research.nvidia.com/labs/toronto-ai/chronoedit
☆ Flexible and Efficient Spatio-Temporal Transformer for Sequential Visual Place Recognition
Sequential Visual Place Recognition (Seq-VPR) leverages transformers to capture spatio-temporal features effectively; however, existing approaches prioritize performance at the expense of flexibility and efficiency. In practice, a transformer-based Seq-VPR model should be flexible to the number of frames per sequence (seq-length), deliver fast inference, and have low memory usage to meet real-time constraints. To our knowledge, no existing transformer-based Seq-VPR method achieves both flexibility and efficiency. To address this gap, we propose Adapt-STformer, a Seq-VPR method built around our novel Recurrent Deformable Transformer Encoder (Recurrent-DTE), which uses an iterative recurrent mechanism to fuse information from multiple sequential frames. This design naturally supports variable seq-lengths, fast inference, and low memory usage. Experiments on the Nordland, Oxford, and NuScenes datasets show that Adapt-STformer boosts recall by up to 17% while reducing sequence extraction time by 36% and lowering memory usage by 35% compared to the second-best baseline.
comment: 8 pages, 6 figures
☆ Concept-Based Masking: A Patch-Agnostic Defense Against Adversarial Patch Attacks
Adversarial patch attacks pose a practical threat to deep learning models by forcing targeted misclassifications through localized perturbations, often realized in the physical world. Existing defenses typically assume prior knowledge of patch size or location, limiting their applicability. In this work, we propose a patch-agnostic defense that leverages concept-based explanations to identify and suppress the most influential concept activation vectors, thereby neutralizing patch effects without explicit detection. Evaluated on Imagenette with a ResNet-50, our method achieves higher robust and clean accuracy than the state-of-the-art PatchCleanser, while maintaining strong performance across varying patch sizes and locations. Our results highlight the promise of combining interpretability with robustness and suggest concept-driven defenses as a scalable strategy for securing machine learning models against adversarial patch attacks.
comment: neurips workshop
☆ The best performance in the CARE 2025 -- Liver Task (LiSeg-Contrast): Contrast-Aware Semi-Supervised Segmentation with Domain Generalization and Test-Time Adaptation
Accurate liver segmentation from contrast-enhanced MRI is essential for diagnosis, treatment planning, and disease monitoring. However, it remains challenging due to limited annotated data, heterogeneous enhancement protocols, and significant domain shifts across scanners and institutions. Traditional image-to-image translation frameworks have made great progress in domain generalization, but their application is not straightforward. For example, Pix2Pix requires image registration, and cycle-GAN cannot be integrated seamlessly into segmentation pipelines. Meanwhile, these methods are originally used to deal with cross-modality scenarios, and often introduce structural distortions and suffer from unstable training, which may pose drawbacks in our single-modality scenario. To address these challenges, we propose CoSSeg-TTA, a compact segmentation framework for the GED4 (Gd-EOB-DTPA enhanced hepatobiliary phase MRI) modality built upon nnU-Netv2 and enhanced with a semi-supervised mean teacher scheme to exploit large amounts of unlabeled volumes. A domain adaptation module, incorporating a randomized histogram-based style appearance transfer function and a trainable contrast-aware network, enriches domain diversity and mitigates cross-center variability. Furthermore, a continual test-time adaptation strategy is employed to improve robustness during inference. Extensive experiments demonstrate that our framework consistently outperforms the nnU-Netv2 baseline, achieving superior Dice score and Hausdorff Distance while exhibiting strong generalization to unseen domains under low-annotation conditions.
comment: 11 pages, 3 figures
☆ Scaling Sequence-to-Sequence Generative Neural Rendering
We present Kaleido, a family of generative models designed for photorealistic, unified object- and scene-level neural rendering. Kaleido operates on the principle that 3D can be regarded as a specialised sub-domain of video, expressed purely as a sequence-to-sequence image synthesis task. Through a systemic study of scaling sequence-to-sequence generative neural rendering, we introduce key architectural innovations that enable our model to: i) perform generative view synthesis without explicit 3D representations; ii) generate any number of 6-DoF target views conditioned on any number of reference views via a masked autoregressive framework; and iii) seamlessly unify 3D and video modelling within a single decoder-only rectified flow transformer. Within this unified framework, Kaleido leverages large-scale video data for pre-training, which significantly improves spatial consistency and reduces reliance on scarce, camera-labelled 3D datasets -- all without any architectural modifications. Kaleido sets a new state-of-the-art on a range of view synthesis benchmarks. Its zero-shot performance substantially outperforms other generative methods in few-view settings, and, for the first time, matches the quality of per-scene optimisation methods in many-view settings.
comment: Project Page: https://shikun.io/projects/kaleido
Detection of retinal diseases using an accelerated reused convolutional network
Convolutional neural networks are continually evolving, with some efforts aimed at improving accuracy, others at increasing speed, and some at enhancing accessibility. Improving accessibility broadens the application of neural networks across a wider range of tasks, including the detection of eye diseases. Early diagnosis of eye diseases and consulting an ophthalmologist can prevent many vision disorders. Given the importance of this issue, various datasets have been collected from the cornea to facilitate the process of making neural network models. However, most of the methods introduced in the past are computationally complex. In this study, we tried to increase the accessibility of deep neural network models. We did this at the most fundamental level, specifically by redesigning and optimizing the convolutional layers. By doing so, we created a new general model that incorporates our novel convolutional layer named ArConv layers. Thanks to the efficient performance of this new layer, the model has suitable complexity for use in mobile phones and can perform the task of diagnosing the presence of disease with high accuracy. The final model we present contains only 1.3 million parameters. In comparison to the MobileNetV2 model, which has 2.2 million parameters, our model demonstrated better accuracy when trained and evaluated on the RfMiD dataset under identical conditions, achieving an accuracy of 0.9328 versus 0.9266 on the RfMiD test set.
☆ A Recursive Pyramidal Algorithm for Solving the Image Registration Problem
The problem of image registration is finding a transformation that aligns two images, such that the corresponding points are in the same location. This paper introduces a simple, end-to-end trainable algorithm that is implementable in a few lines of Python code. The approach is shown to work with very little training data and training time, while achieving accurate results in some settings. An example application to stereo vision was trained from 74 images on a 19x15 input window. With just a dozen lines of Python code this algorithm excels in brevity and may serve as a good start in related scenarios with limitations to training data, training time or code complexity.
Zoom-In to Sort AI-Generated Images Out
The rapid growth of AI-generated imagery has blurred the boundary between real and synthetic content, raising critical concerns for digital integrity. Vision-language models (VLMs) offer interpretability through explanations but often fail to detect subtle artifacts in high-quality synthetic images. We propose ZoomIn, a two-stage forensic framework that improves both accuracy and interpretability. Mimicking human visual inspection, ZoomIn first scans an image to locate suspicious regions and then performs a focused analysis on these zoomed-in areas to deliver a grounded verdict. To support training, we introduce MagniFake, a dataset of 20,000 real and high-quality synthetic images annotated with bounding boxes and forensic explanations, generated through an automated VLM-based pipeline. Our method achieves 96.39% accuracy with robust generalization, while providing human-understandable explanations grounded in visual evidence.
comment: 9 pages, 6 images (19 pages, 11 figures including appendix)
☆ MASC: Boosting Autoregressive Image Generation with a Manifold-Aligned Semantic Clustering
Autoregressive (AR) models have shown great promise in image generation, yet they face a fundamental inefficiency stemming from their core component: a vast, unstructured vocabulary of visual tokens. This conventional approach treats tokens as a flat vocabulary, disregarding the intrinsic structure of the token embedding space where proximity often correlates with semantic similarity. This oversight results in a highly complex prediction task, which hinders training efficiency and limits final generation quality. To resolve this, we propose Manifold-Aligned Semantic Clustering (MASC), a principled framework that constructs a hierarchical semantic tree directly from the codebook's intrinsic structure. MASC employs a novel geometry-aware distance metric and a density-driven agglomerative construction to model the underlying manifold of the token embeddings. By transforming the flat, high-dimensional prediction task into a structured, hierarchical one, MASC introduces a beneficial inductive bias that significantly simplifies the learning problem for the AR model. MASC is designed as a plug-and-play module, and our extensive experiments validate its effectiveness: it accelerates training by up to 57% and significantly improves generation quality, reducing the FID of LlamaGen-XL from 2.87 to 2.58. MASC elevates existing AR frameworks to be highly competitive with state-of-the-art methods, establishing that structuring the prediction space is as crucial as architectural innovation for scalable generative modeling.
☆ World-To-Image: Grounding Text-to-Image Generation with Agent-Driven World Knowledge
While text-to-image (T2I) models can synthesize high-quality images, their performance degrades significantly when prompted with novel or out-of-distribution (OOD) entities due to inherent knowledge cutoffs. We introduce World-To-Image, a novel framework that bridges this gap by empowering T2I generation with agent-driven world knowledge. We design an agent that dynamically searches the web to retrieve images for concepts unknown to the base model. This information is then used to perform multimodal prompt optimization, steering powerful generative backbones toward an accurate synthesis. Critically, our evaluation goes beyond traditional metrics, utilizing modern assessments like LLMGrader and ImageReward to measure true semantic fidelity. Our experiments show that World-To-Image substantially outperforms state-of-the-art methods in both semantic alignment and visual aesthetics, achieving +8.1% improvement in accuracy-to-prompt on our curated NICE benchmark. Our framework achieves these results with high efficiency in less than three iterations, paving the way for T2I systems that can better reflect the ever-changing real world. Our demo code is available here\footnote{https://github.com/mhson-kyle/World-To-Image}.
☆ Let Features Decide Their Own Solvers: Hybrid Feature Caching for Diffusion Transformers
Diffusion Transformers offer state-of-the-art fidelity in image and video synthesis, but their iterative sampling process remains a major bottleneck due to the high cost of transformer forward passes at each timestep. To mitigate this, feature caching has emerged as a training-free acceleration technique that reuses or forecasts hidden representations. However, existing methods often apply a uniform caching strategy across all feature dimensions, ignoring their heterogeneous dynamic behaviors. Therefore, we adopt a new perspective by modeling hidden feature evolution as a mixture of ODEs across dimensions, and introduce HyCa, a Hybrid ODE solver inspired caching framework that applies dimension-wise caching strategies. HyCa achieves near-lossless acceleration across diverse domains and models, including 5.55 times speedup on FLUX, 5.56 times speedup on HunyuanVideo, 6.24 times speedup on Qwen-Image and Qwen-Image-Edit without retraining.
☆ From Segments to Concepts: Interpretable Image Classification via Concept-Guided Segmentation
Deep neural networks have achieved remarkable success in computer vision; however, their black-box nature in decision-making limits interpretability and trust, particularly in safety-critical applications. Interpretability is crucial in domains where errors have severe consequences. Existing models not only lack transparency but also risk exploiting unreliable or misleading features, which undermines both robustness and the validity of their explanations. Concept Bottleneck Models (CBMs) aim to improve transparency by reasoning through human-interpretable concepts. Still, they require costly concept annotations and lack spatial grounding, often failing to identify which regions support each concept. We propose SEG-MIL-CBM, a novel framework that integrates concept-guided image segmentation into an attention-based multiple instance learning (MIL) framework, where each segmented region is treated as an instance and the model learns to aggregate evidence across them. By reasoning over semantically meaningful regions aligned with high-level concepts, our model highlights task-relevant evidence, down-weights irrelevant cues, and produces spatially grounded, concept-level explanations without requiring annotations of concepts or groups. SEG-MIL-CBM achieves robust performance across settings involving spurious correlations (unintended dependencies between background and label), input corruptions (perturbations that degrade visual quality), and large-scale benchmarks, while providing transparent, concept-level explanations.
☆ BLADE: Bias-Linked Adaptive DEbiasing
Neural networks have revolutionized numerous fields, yet they remain vulnerable to a critical flaw: the tendency to learn implicit biases, spurious correlations between certain attributes and target labels in training data. These biases are often more prevalent and easier to learn, causing models to rely on superficial patterns rather than task-relevant features necessary for generalization. Existing methods typically rely on strong assumptions, such as prior knowledge of these biases or access to bias-conflicting samples, i.e., samples that contradict spurious correlations and counterbalance bias-aligned samples, samples that conform to these spurious correlations. However, such assumptions are often impractical in real-world settings. We propose BLADE ({B}ias-{L}inked {A}daptive {DE}biasing), a generative debiasing framework that requires no prior knowledge of bias or bias-conflicting samples. BLADE first trains a generative model to translate images across bias domains while preserving task-relevant features. Then, it adaptively refines each image with its synthetic counterpart based on the image's susceptibility to bias. To encourage robust representations, BLADE aligns an image with its bias-translated synthetic counterpart that shares task-relevant features but differs in bias, while misaligning it with samples sharing the same bias. We evaluate BLADE on multiple benchmark datasets and show that it significantly outperforms state-of-the-art methods. Notably, it exceeds the closest baseline by an absolute margin of around 18% on the corrupted CIFAR-10 dataset under the worst group setting, establishing a new benchmark in bias mitigation and demonstrating its potential for developing more robust deep learning models without explicit supervision.
comment: The authors have contributed equally
☆ Automating construction safety inspections using a multi-modal vision-language RAG framework
Conventional construction safety inspection methods are often inefficient as they require navigating through large volume of information. Recent advances in large vision-language models (LVLMs) provide opportunities to automate safety inspections through enhanced visual and linguistic understanding. However, existing applications face limitations including irrelevant or unspecific responses, restricted modal inputs and hallucinations. Utilisation of Large Language Models (LLMs) for this purpose is constrained by availability of training data and frequently lack real-time adaptability. This study introduces SiteShield, a multi-modal LVLM-based Retrieval-Augmented Generation (RAG) framework for automating construction safety inspection reports by integrating visual and audio inputs. Using real-world data, SiteShield outperformed unimodal LLMs without RAG with an F1 score of 0.82, hamming loss of 0.04, precision of 0.76, and recall of 0.96. The findings indicate that SiteShield offers a novel pathway to enhance information retrieval and efficiency in generating safety reports.
comment: 33 pages, 11 figures, 7 tables
☆ Learning from All: Concept Alignment for Autonomous Distillation from Multiple Drifting MLLMs
This paper identifies a critical yet underexplored challenge in distilling from multimodal large language models (MLLMs): the reasoning trajectories generated by multiple drifting teachers exhibit concept drift, whereby their reasoning distributions evolve unpredictably and transmit biases to the student model, ultimately compromising its performance. To tackle this issue, we pioneer a theoretical connection between concept drift and knowledge distillation, casting the non-stationary reasoning dynamics from multiple MLLM teachers as next-token prediction of multi-stream reasoning trajectories.Guided by concept drift, we introduce the "learn, compare, critique" paradigm, culminating in autonomous preference optimization (APO). Under the active guidance of the teachers, the student model first learns and self-distils preferred thinking by comparing multiple teachers. It then engages in critical reflection over the drifting inference from teachers, performing concept alignment through APO, ultimately yielding a robust, consistent, and generalizable model.Extensive experiments demonstrate our superior performance of consistency, robustness and generalization within knowledge distillation. Besides, we also contributed a large-scale dataset, CXR-MAX (Multi-teachers Alignment X-rays), comprising 170,982 distilled reasoning trajectories derived from publicly accessible MLLMs based on MIMIC-CXR. Our code and data are public at: https://anonymous.4open.science/r/Autonomous-Distillation/.
☆ MoME: Mixture of Matryoshka Experts for Audio-Visual Speech Recognition NeurIPS 2025
Large language models (LLMs) have recently shown strong potential in audio-visual speech recognition (AVSR), but their high computational demands and sensitivity to token granularity limit their practicality in resource-constrained settings. Token compression methods can reduce inference cost, but they require fixing a compression rate in advance and produce a single fixed-length output, offering no flexibility to balance information density and efficiency at inference time. Matryoshka representation learning (MRL) addresses this by enabling a single model to operate across multiple token granularities, allowing compression rates to be adjusted dynamically. However, current MRL-based methods treat each scale independently during training, limiting cross-scale generalization, robustness at high compression, and interpretability. To overcome these limitations, we propose MoME (Mixture of Matryoshka Experts), a novel framework that integrates sparse Mixture-of-Experts (MoE) into MRL-based LLMs for AVSR. MoME augments a frozen LLM with top-k routed and shared experts, allowing dynamic capacity allocation across scales and modalities. A shared router promotes consistent expert activation across granularities, enabling compressed sequences to benefit from representations learned at lower compression. Experiments on LRS2 and LRS3 demonstrate that MoME achieves state-of-the-art performance across AVSR, ASR, and VSR tasks, while requiring significantly fewer parameters and maintaining robustness under noise. MoME unifies the adaptability of MRL with the efficiency of MoE, offering a scalable and interpretable solution for resource-aware speech recognition.
comment: NeurIPS 2025
☆ Learning-Based Hashing for ANN Search: Foundations and Early Advances
Approximate Nearest Neighbour (ANN) search is a fundamental problem in information retrieval, underpinning large-scale applications in computer vision, natural language processing, and cross-modal search. Hashing-based methods provide an efficient solution by mapping high-dimensional data into compact binary codes that enable fast similarity computations in Hamming space. Over the past two decades, a substantial body of work has explored learning to hash, where projection and quantisation functions are optimised from data rather than chosen at random. This article offers a foundational survey of early learning-based hashing methods, with an emphasis on the core ideas that shaped the field. We review supervised, unsupervised, and semi-supervised approaches, highlighting how projection functions are designed to generate meaningful embeddings and how quantisation strategies convert these embeddings into binary codes. We also examine extensions to multi-bit and multi-threshold models, as well as early advances in cross-modal retrieval. Rather than providing an exhaustive account of the most recent methods, our goal is to introduce the conceptual foundations of learning-based hashing for ANN search. By situating these early models in their historical context, we aim to equip readers with a structured understanding of the principles, trade-offs, and open challenges that continue to inform current research in this area.
☆ Joint Learning of Pose Regression and Denoising Diffusion with Score Scaling Sampling for Category-level 6D Pose Estimation
Latest diffusion models have shown promising results in category-level 6D object pose estimation by modeling the conditional pose distribution with depth image input. The existing methods, however, suffer from slow convergence during training, learning its encoder with the diffusion denoising network in end-to-end fashion, and require an additional network that evaluates sampled pose hypotheses to filter out low-quality pose candidates. In this paper, we propose a novel pipeline that tackles these limitations by two key components. First, the proposed method pretrains the encoder with the direct pose regression head, and jointly learns the networks via the regression head and the denoising diffusion head, significantly accelerating training convergence while achieving higher accuracy. Second, sampling guidance via time-dependent score scaling is proposed s.t. the exploration-exploitation trade-off is effectively taken, eliminating the need for the additional evaluation network. The sampling guidance maintains multi-modal characteristics of symmetric objects at early denoising steps while ensuring high-quality pose generation at final steps. Extensive experiments on multiple benchmarks including REAL275, HouseCat6D, and ROPE, demonstrate that the proposed method, simple yet effective, achieves state-of-the-art accuracies even with single-pose inference, while being more efficient in both training and inference.
☆ Learning Efficient Meshflow and Optical Flow from Event Cameras
In this paper, we explore the problem of event-based meshflow estimation, a novel task that involves predicting a spatially smooth sparse motion field from event cameras. To start, we review the state-of-the-art in event-based flow estimation, highlighting two key areas for further research: i) the lack of meshflow-specific event datasets and methods, and ii) the underexplored challenge of event data density. First, we generate a large-scale High-Resolution Event Meshflow (HREM) dataset, which showcases its superiority by encompassing the merits of high resolution at 1280x720, handling dynamic objects and complex motion patterns, and offering both optical flow and meshflow labels. These aspects have not been fully explored in previous works. Besides, we propose Efficient Event-based MeshFlow (EEMFlow) network, a lightweight model featuring a specially crafted encoder-decoder architecture to facilitate swift and accurate meshflow estimation. Furthermore, we upgrade EEMFlow network to support dense event optical flow, in which a Confidence-induced Detail Completion (CDC) module is proposed to preserve sharp motion boundaries. We conduct comprehensive experiments to show the exceptional performance and runtime efficiency (30x faster) of our EEMFlow model compared to the recent state-of-the-art flow method. As an extension, we expand HREM into HREM+, a multi-density event dataset contributing to a thorough study of the robustness of existing methods across data with varying densities, and propose an Adaptive Density Module (ADM) to adjust the density of input event data to a more optimal range, enhancing the model's generalization ability. We empirically demonstrate that ADM helps to significantly improve the performance of EEMFlow and EEMFlow+ by 8% and 10%, respectively. Code and dataset are released at https://github.com/boomluo02/EEMFlowPlus.
comment: Accepted by TPAMI 2025
☆ TOPO-Bench: An Open-Source Topological Mapping Evaluation Framework with Quantifiable Perceptual Aliasing
Topological mapping offers a compact and robust representation for navigation, but progress in the field is hindered by the lack of standardized evaluation metrics, datasets, and protocols. Existing systems are assessed using different environments and criteria, preventing fair and reproducible comparisons. Moreover, a key challenge - perceptual aliasing - remains under-quantified, despite its strong influence on system performance. We address these gaps by (1) formalizing topological consistency as the fundamental property of topological maps and showing that localization accuracy provides an efficient and interpretable surrogate metric, and (2) proposing the first quantitative measure of dataset ambiguity to enable fair comparisons across environments. To support this protocol, we curate a diverse benchmark dataset with calibrated ambiguity levels, implement and release deep-learned baseline systems, and evaluate them alongside classical methods. Our experiments and analysis yield new insights into the limitations of current approaches under perceptual aliasing. All datasets, baselines, and evaluation tools are fully open-sourced to foster consistent and reproducible research in topological mapping.
comment: Jiaming Wang, Diwen Liu, and Jizhuo Chen contributed equally
☆ Using predefined vector systems as latent space configuration for neural network supervised training on data with arbitrarily large number of classes
Supervised learning (SL) methods are indispensable for neural network (NN) training used to perform classification tasks. While resulting in very high accuracy, SL training often requires making NN parameter number dependent on the number of classes, limiting their applicability when the number of classes is extremely large or unknown in advance. In this paper we propose a methodology that allows one to train the same NN architecture regardless of the number of classes. This is achieved by using predefined vector systems as the target latent space configuration (LSC) during NN training. We discuss the desired properties of target configurations and choose randomly perturbed vectors of An root system for our experiments. These vectors are used to successfully train encoders and visual transformers (ViT) on Cinic-10 and ImageNet-1K in low- and high-dimensional cases by matching NN predictions with the predefined vectors. Finally, ViT is trained on a dataset with 1.28 million classes illustrating the applicability of the method to training on datasets with extremely large number of classes. In addition, potential applications of LSC in lifelong learning and NN distillation are discussed illustrating versatility of the proposed methodology.
comment: 28 pages, 12 figures, 10 tables, 12 equations, 1 algorithm
☆ Diffusion Low Rank Hybrid Reconstruction for Sparse View Medical Imaging
This work presents TV-LoRA, a novel method for low-dose sparse-view CT reconstruction that combines a diffusion generative prior (NCSN++ with SDE modeling) and multi-regularization constraints, including anisotropic TV and nuclear norm (LoRA), within an ADMM framework. To address ill-posedness and texture loss under extremely sparse views, TV-LoRA integrates generative and physical constraints, and utilizes a 2D slice-based strategy with FFT acceleration and tensor-parallel optimization for efficient inference. Experiments on AAPM-2016, CTHD, and LIDC datasets with $N_{\mathrm{view}}=8,4,2$ show that TV-LoRA consistently surpasses benchmarks in SSIM, texture recovery, edge clarity, and artifact suppression, demonstrating strong robustness and generalizability. Ablation studies confirm the complementary effects of LoRA regularization and diffusion priors, while the FFT-PCG module provides a speedup. Overall, Diffusion + TV-LoRA achieves high-fidelity, efficient 3D CT reconstruction and broad clinical applicability in low-dose, sparse-sampling scenarios.
☆ QuantDemoire: Quantization with Outlier Aware for Image Demoiréing
Demoir\'eing aims to remove moir\'e artifacts that often occur in images. While recent deep learning-based methods have achieved promising results, they typically require substantial computational resources, limiting their deployment on edge devices. Model quantization offers a compelling solution. However, directly applying existing quantization methods to demoir\'eing models introduces severe performance degradation. The main reasons are distribution outliers and weakened representations in smooth regions. To address these issues, we propose QuantDemoire, a post-training quantization framework tailored to demoir\'eing. It contains two key components. **First}, we introduce an outlier-aware quantizer to reduce errors from outliers. It uses sampling-based range estimation to reduce activation outliers, and keeps a few extreme weights in FP16 with negligible cost. **Second**, we design a frequency-aware calibration strategy. It emphasizes low- and mid-frequency components during fine-tuning, which mitigates banding artifacts caused by low-bit quantization. Extensive experiments validate that our QuantDemoire achieves large reductions in parameters and computation while maintaining quality. Meanwhile, it outperforms existing quantization methods by over **4 dB** on W4A4. Code is released at: https://github.com/zhengchen1999/QuantDemoire.
comment: Code is available at: https://github.com/zhengchen1999/QuantDemoire
☆ Ordinal Encoding as a Regularizer in Binary Loss for Solar Flare Prediction ICDM
The prediction of solar flares is typically formulated as a binary classification task, distinguishing events as either Flare (FL) or No-Flare (NF) according to a specified threshold (for example, greater than or equal to C-class, M-class, or X-class). However, this binary framework neglects the inherent ordinal relationships among the sub-classes contained within each category (FL and NF). Several studies on solar flare prediction have empirically shown that the most frequent misclassifications occur near this prediction threshold. This suggests that the models struggle to differentiate events that are similar in intensity but fall on opposite sides of the binary threshold. To mitigate this limitation, we propose a modified loss function that integrates the ordinal information among the sub-classes of the binarized flare labels into the conventional binary cross-entropy (BCE) loss. This approach serves as an ordinality-aware, data-driven regularization method that penalizes the incorrect predictions of flare events in close proximity to the prediction threshold more heavily than those away from the boundary during model optimization. By incorporating ordinal weighting into the loss function, we aim to enhance the model's learning process by leveraging the ordinal characteristics of the data, thereby improving its overall performance.
comment: This is a preprint submitted to ICDM Workshop (SABID 2025). 6 pages, 2 Figures
☆ MetaFind: Scene-Aware 3D Asset Retrieval for Coherent Metaverse Scene Generation NeurIPS 2025
We present MetaFind, a scene-aware tri-modal compositional retrieval framework designed to enhance scene generation in the metaverse by retrieving 3D assets from large-scale repositories. MetaFind addresses two core challenges: (i) inconsistent asset retrieval that overlooks spatial, semantic, and stylistic constraints, and (ii) the absence of a standardized retrieval paradigm specifically tailored for 3D asset retrieval, as existing approaches mainly rely on general-purpose 3D shape representation models. Our key innovation is a flexible retrieval mechanism that supports arbitrary combinations of text, image, and 3D modalities as queries, enhancing spatial reasoning and style consistency by jointly modeling object-level features (including appearance) and scene-level layout structures. Methodologically, MetaFind introduces a plug-and-play equivariant layout encoder ESSGNN that captures spatial relationships and object appearance features, ensuring retrieved 3D assets are contextually and stylistically coherent with the existing scene, regardless of coordinate frame transformations. The framework supports iterative scene construction by continuously adapting retrieval results to current scene updates. Empirical evaluations demonstrate the improved spatial and stylistic consistency of MetaFind in various retrieval tasks compared to baseline methods.
comment: The Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ Quantization Range Estimation for Convolutional Neural Networks
Post-training quantization for reducing the storage of deep neural network models has been demonstrated to be an effective way in various tasks. However, low-bit quantization while maintaining model accuracy is a challenging problem. In this paper, we present a range estimation method to improve the quantization performance for post-training quantization. We model the range estimation into an optimization problem of minimizing quantization errors by layer-wise local minima. We prove this problem is locally convex and present an efficient search algorithm to find the optimal solution. We propose the application of the above search algorithm to the transformed weights space to do further improvement in practice. Our experiments demonstrate that our method outperforms state-of-the-art performance generally on top-1 accuracy for image classification tasks on the ResNet series models and Inception-v3 model. The experimental results show that the proposed method has almost no loss of top-1 accuracy in 8-bit and 6-bit settings for image classifications, and the accuracy of 4-bit quantization is also significantly improved. The code is available at https://github.com/codeiscommitting/REQuant.
comment: 11 pages, 5 tables, research report
☆ \textsc{GUI-Spotlight}: Adaptive Iterative Focus Refinement for Enhanced GUI Visual Grounding
Multimodal large language models (MLLMs) have markedly expanded the competence of graphical user-interface (GUI) systems, propelling them beyond controlled simulations into complex, real-world environments across diverse platforms. However, practical usefulness is still bounded by the reliability of visual grounding, i.e., mapping textual references to exact on-screen elements. This limitation prevents the system from accurately performing pointer-level actions such as clicking or dragging. To address it, we introduce GUI-Spotlight -- a model trained for image-grounded reasoning that dynamically invokes multiple specialized tools to iteratively narrow its focus to the relevant region of the screen, thereby substantially improving visual grounding accuracy. On the ScreenSpot-Pro benchmark, GUI-Spotlight trained with only 18.5K training samples achieves 52.8\% accuracy, surpassing V2P-7B (50.6\% with 9.6M training samples) and GTA-1-7B (50.1\% with 1.56M training samples).
☆ Prompt-to-Prompt: Text-Based Image Editing Via Cross-Attention Mechanisms -- The Research of Hyperparameters and Novel Mechanisms to Enhance Existing Frameworks
Recent advances in image editing have shifted from manual pixel manipulation to employing deep learning methods like stable diffusion models, which now leverage cross-attention mechanisms for text-driven control. This transition has simplified the editing process but also introduced variability in results, such as inconsistent hair color changes. Our research aims to enhance the precision and reliability of prompt-to-prompt image editing frameworks by exploring and optimizing hyperparameters. We present a comprehensive study of the "word swap" method, develop an "attention re-weight method" for better adaptability, and propose the "CL P2P" framework to address existing limitations like cycle inconsistency. This work contributes to understanding and improving the interaction between hyperparameter settings and the architectural choices of neural network models, specifically their attention mechanisms, which significantly influence the composition and quality of the generated images.
☆ Enhancing Fake News Video Detection via LLM-Driven Creative Process Simulation CIKM 2025
The emergence of fake news on short video platforms has become a new significant societal concern, necessitating automatic video-news-specific detection. Current detectors primarily rely on pattern-based features to separate fake news videos from real ones. However, limited and less diversified training data lead to biased patterns and hinder their performance. This weakness stems from the complex many-to-many relationships between video material segments and fabricated news events in real-world scenarios: a single video clip can be utilized in multiple ways to create different fake narratives, while a single fabricated event often combines multiple distinct video segments. However, existing datasets do not adequately reflect such relationships due to the difficulty of collecting and annotating large-scale real-world data, resulting in sparse coverage and non-comprehensive learning of the characteristics of potential fake news video creation. To address this issue, we propose a data augmentation framework, AgentAug, that generates diverse fake news videos by simulating typical creative processes. AgentAug implements multiple LLM-driven pipelines of four fabrication categories for news video creation, combined with an active learning strategy based on uncertainty sampling to select the potentially useful augmented samples during training. Experimental results on two benchmark datasets demonstrate that AgentAug consistently improves the performance of short video fake news detectors.
comment: ACM CIKM 2025
☆ Fit Pixels, Get Labels: Meta-learned Implicit Networks for Image Segmentation MICCAI 2025
Implicit neural representations (INRs) have achieved remarkable successes in learning expressive yet compact signal representations. However, they are not naturally amenable to predictive tasks such as segmentation, where they must learn semantic structures over a distribution of signals. In this study, we introduce MetaSeg, a meta-learning framework to train INRs for medical image segmentation. MetaSeg uses an underlying INR that simultaneously predicts per pixel intensity values and class labels. It then uses a meta-learning procedure to find optimal initial parameters for this INR over a training dataset of images and segmentation maps, such that the INR can simply be fine-tuned to fit pixels of an unseen test image, and automatically decode its class labels. We evaluated MetaSeg on 2D and 3D brain MRI segmentation tasks and report Dice scores comparable to commonly used U-Net models, but with $90\%$ fewer parameters. MetaSeg offers a fresh, scalable alternative to traditional resource-heavy architectures such as U-Nets and vision transformers for medical image segmentation. Our project is available at https://kushalvyas.github.io/metaseg.html .
comment: MICCAI 2025 (oral). Final peer-reviewed copy accessible at publisher DOI https://link.springer.com/chapter/10.1007/978-3-032-04947-6_19 . Project page, https://kushalvyas.github.io/metaseg.html
☆ Visual Lifelog Retrieval through Captioning-Enhanced Interpretation
People often struggle to remember specific details of past experiences, which can lead to the need to revisit these memories. Consequently, lifelog retrieval has emerged as a crucial application. Various studies have explored methods to facilitate rapid access to personal lifelogs for memory recall assistance. In this paper, we propose a Captioning-Integrated Visual Lifelog (CIVIL) Retrieval System for extracting specific images from a user's visual lifelog based on textual queries. Unlike traditional embedding-based methods, our system first generates captions for visual lifelogs and then utilizes a text embedding model to project both the captions and user queries into a shared vector space. Visual lifelogs, captured through wearable cameras, provide a first-person viewpoint, necessitating the interpretation of the activities of the individual behind the camera rather than merely describing the scene. To address this, we introduce three distinct approaches: the single caption method, the collective caption method, and the merged caption method, each designed to interpret the life experiences of lifeloggers. Experimental results show that our method effectively describes first-person visual images, enhancing the outcomes of lifelog retrieval. Furthermore, we construct a textual dataset that converts visual lifelogs into captions, thereby reconstructing personal life experiences.
☆ Enhancing OCR for Sino-Vietnamese Language Processing via Fine-tuned PaddleOCRv5
Recognizing and processing Classical Chinese (Han-Nom) texts play a vital role in digitizing Vietnamese historical documents and enabling cross-lingual semantic research. However, existing OCR systems struggle with degraded scans, non-standard glyphs, and handwriting variations common in ancient sources. In this work, we propose a fine-tuning approach for PaddleOCRv5 to improve character recognition on Han-Nom texts. We retrain the text recognition module using a curated subset of ancient Vietnamese Chinese manuscripts, supported by a full training pipeline covering preprocessing, LMDB conversion, evaluation, and visualization. Experimental results show a significant improvement over the base model, with exact accuracy increasing from 37.5 percent to 50.0 percent, particularly under noisy image conditions. Furthermore, we develop an interactive demo that visually compares pre- and post-fine-tuning recognition results, facilitating downstream applications such as Han-Vietnamese semantic alignment, machine translation, and historical linguistics research. The demo is available at https://huggingface.co/spaces/MinhDS/Fine-tuned-PaddleOCRv5.
comment: 5 pages, 6 figures, 2 tables
♻ ☆ ImplicitQA: Going beyond frames towards Implicit Video Reasoning
Video Question Answering (VideoQA) has made significant strides by leveraging multimodal learning to align visual and textual modalities. However, current benchmarks overwhelmingly focus on questions answerable through explicit visual content - actions, objects, and events directly observable within individual frames or short clips. In contrast, creative and cinematic videos - such as movies, TV shows, and narrative-driven content - employ storytelling techniques that deliberately omit certain depictions, requiring viewers to infer motives, relationships across discontinuous frames with disjoint visual contexts. Humans naturally excel at such implicit reasoning, seamlessly integrating information across time and context to construct coherent narratives. Yet current benchmarks fail to capture this essential dimension of human-like understanding. To bridge this gap, we present ImplicitQA, a novel benchmark specifically designed to test VideoQA models on human-like implicit reasoning. ImplicitQA comprises 1K meticulously annotated QA pairs drawn from 1K high-quality creative video clips covering 15 genres across 7 decades of content. Questions are systematically categorized into nine key reasoning dimensions: lateral and vertical spatial reasoning, depth and proximity, viewpoint and visibility, motion and trajectory, causal and motivational reasoning, social interactions, physical context, and inferred counting. These annotations are deliberately challenging, crafted by authors, validated through multiple annotators, and benchmarked against human performance to ensure high quality. Our extensive evaluations on 11 leading VideoQA models reveals consistent and significant performance degradation, underscoring their reliance on surface-level visual cues and highlighting the difficulty of implicit reasoning. https://huggingface.co/datasets/ucf-crcv/ImplicitQA.
♻ ☆ GeoRanker: Distance-Aware Ranking for Worldwide Image Geolocalization NeurIPS 2025
Worldwide image geolocalization-the task of predicting GPS coordinates from images taken anywhere on Earth-poses a fundamental challenge due to the vast diversity in visual content across regions. While recent approaches adopt a two-stage pipeline of retrieving candidates and selecting the best match, they typically rely on simplistic similarity heuristics and point-wise supervision, failing to model spatial relationships among candidates. In this paper, we propose GeoRanker, a distance-aware ranking framework that leverages large vision-language models to jointly encode query-candidate interactions and predict geographic proximity. In addition, we introduce a multi-order distance loss that ranks both absolute and relative distances, enabling the model to reason over structured spatial relationships. To support this, we curate GeoRanking, the first dataset explicitly designed for geographic ranking tasks with multimodal candidate information. GeoRanker achieves state-of-the-art results on two well-established benchmarks (IM2GPS3K and YFCC4K), significantly outperforming current best methods.
comment: NeurIPS 2025
♻ ☆ Region-of-Interest Augmentation for Mammography Classification under Patient-Level Cross-Validation
Breast cancer screening with mammography remains central to early detection and mortality reduction. Deep learning has shown strong potential for automating mammogram interpretation, yet limited-resolution datasets and small sample sizes continue to restrict performance. We revisit the Mini-DDSM dataset (9,684 images; 2,414 patients) and introduce a lightweight region-of-interest (ROI) augmentation strategy. During training, full images are probabilistically replaced with random ROI crops sampled from a precomputed, label-free bounding-box bank, with optional jitter to increase variability. We evaluate under strict patient-level cross-validation and report ROC-AUC, PR-AUC, and training-time efficiency metrics (throughput and GPU memory). Because ROI augmentation is training-only, inference-time cost remains unchanged. On Mini-DDSM, ROI augmentation (best: p_roi = 0.10, alpha = 0.10) yields modest average ROC-AUC gains, with performance varying across folds; PR-AUC is flat to slightly lower. These results demonstrate that simple, data-centric ROI strategies can enhance mammography classification in constrained settings without requiring additional labels or architectural modifications.
comment: 5 pages, 5 figures, 2 tables
♻ ☆ How to build a consistency model: Learning flow maps via self-distillation NeurIPS 2025
Flow-based generative models achieve state-of-the-art sample quality, but require the expensive solution of a differential equation at inference time. Flow map models, commonly known as consistency models, encompass many recent efforts to improve inference-time efficiency by learning the solution operator of this differential equation. Yet despite their promise, these models lack a unified description that clearly explains how to learn them efficiently in practice. Here, building on the methodology proposed in Boffi et. al. (2024), we present a systematic algorithmic framework for directly learning the flow map associated with a flow or diffusion model. By exploiting a relationship between the velocity field underlying a continuous-time flow and the instantaneous rate of change of the flow map, we show how to convert any distillation scheme into a direct training algorithm via self-distillation, eliminating the need for pre-trained teachers. We introduce three algorithmic families based on different mathematical characterizations of the flow map: Eulerian, Lagrangian, and Progressive methods, which we show encompass and extend all known distillation and direct training schemes for consistency models. We find that the novel class of Lagrangian methods, which avoid both spatial derivatives and bootstrapping from small steps by design, achieve significantly more stable training and higher performance than more standard Eulerian and Progressive schemes. Our methodology unifies existing training schemes under a single common framework and reveals new design principles for accelerated generative modeling. Associated code is available at https://github.com/nmboffi/flow-maps.
comment: NeurIPS 2025
♻ ☆ Do Sparse Subnetworks Exhibit Cognitively Aligned Attention? Effects of Pruning on Saliency Map Fidelity, Sparsity, and Concept Coherence
Prior works have shown that neural networks can be heavily pruned while preserving performance, but the impact of pruning on model interpretability remains unclear. In this work, we investigate how magnitude-based pruning followed by fine-tuning affects both low-level saliency maps and high-level concept representations. Using a ResNet-18 trained on ImageNette, we compare post-hoc explanations from Vanilla Gradients (VG) and Integrated Gradients (IG) across pruning levels, evaluating sparsity and faithfulness. We further apply CRAFT-based concept extraction to track changes in semantic coherence of learned concepts. Our results show that light-to-moderate pruning improves saliency-map focus and faithfulness while retaining distinct, semantically meaningful concepts. In contrast, aggressive pruning merges heterogeneous features, reducing saliency map sparsity and concept coherence despite maintaining accuracy. These findings suggest that while pruning can shape internal representations toward more human-aligned attention patterns, excessive pruning undermines interpretability.
comment: 4 pages, neurips workshop
VisualChef: Generating Visual Aids in Cooking via Mask Inpainting
Cooking requires not only following instructions but also understanding, executing, and monitoring each step - a process that can be challenging without visual guidance. Although recipe images and videos offer helpful cues, they often lack consistency in focus, tools, and setup. To better support the cooking process, we introduce VisualChef, a method for generating contextual visual aids tailored to cooking scenarios. Given an initial frame and a specified action, VisualChef generates images depicting both the action's execution and the resulting appearance of the object, while preserving the initial frame's environment. Previous work aims to integrate knowledge extracted from large language models by generating detailed textual descriptions to guide image generation, which requires fine-grained visual-textual alignment and involves additional annotations. In contrast, VisualChef simplifies alignment through mask-based visual grounding. Our key insight is identifying action-relevant objects and classifying them to enable targeted modifications that reflect the intended action and outcome while maintaining a consistent environment. In addition, we propose an automated pipeline to extract high-quality initial, action, and final state frames. We evaluate VisualChef quantitatively and qualitatively on three egocentric video datasets and show its improvements over state-of-the-art methods.
comment: GCPR 2025 (oral presentation; Best Master's Thesis Award)
♻ ☆ Smaller is Better: Enhancing Transparency in Vehicle AI Systems via Pruning
Connected and autonomous vehicles continue to heavily rely on AI systems, where transparency and security are critical for trust and operational safety. Post-hoc explanations provide transparency to these black-box like AI models but the quality and reliability of these explanations is often questioned due to inconsistencies and lack of faithfulness in representing model decisions. This paper systematically examines the impact of three widely used training approaches, namely natural training, adversarial training, and pruning, affect the quality of post-hoc explanations for traffic sign classifiers. Through extensive empirical evaluation, we demonstrate that pruning significantly enhances the comprehensibility and faithfulness of explanations (using saliency maps). Our findings reveal that pruning not only improves model efficiency but also enforces sparsity in learned representation, leading to more interpretable and reliable decisions. Additionally, these insights suggest that pruning is a promising strategy for developing transparent deep learning models, especially in resource-constrained vehicular AI systems.
comment: 17 pages
♻ ☆ Evaluating Perceptual Distance Models by Fitting Binomial Distributions to Two-Alternative Forced Choice Data
The Two Alternative Forced Choice (2AFC) paradigm offers advantages over the Mean Opinion Score (MOS) paradigm in psychophysics (PF), such as simplicity and robustness. However, when evaluating perceptual distance models, MOS enables direct correlation between model predictions and PF data. In contrast, 2AFC only allows pairwise comparisons to be converted into a quality ranking similar to MOS when comparisons include shared images. In large datasets, like BAPPS, where image patches and distortions are combined randomly, deriving rankings from 2AFC PF data becomes infeasible, as distorted images included in each comparisons are independent. To address this, instead of relying on MOS correlation, researchers have trained ad-hoc neural networks to reproduce 2AFC PF data based on pairs of model distances - a black-box approach with conceptual and operational limitations. This paper introduces a more robust distance-model evaluation method using a pure probabilistic approach, applying maximum likelihood estimation to a binomial decision model. Our method demonstrates superior simplicity, interpretability, flexibility, and computational efficiency, as shown through evaluations of various visual distance models on two 2AFC PF datasets.
♻ ☆ UGC-VideoCaptioner: An Omni UGC Video Detail Caption Model and New Benchmarks
Real-world user-generated videos, especially on platforms like TikTok, often feature rich and intertwined audio visual content. However, existing video captioning benchmarks and models remain predominantly visual centric, overlooking the crucial role of audio in conveying scene dynamics, speaker intent, and narrative context. This lack of omni datasets and lightweight, capable models hampers progress in fine grained, multimodal video understanding. To address these challenges, we introduce UGC-VideoCap, a new benchmark and model framework specifically designed for detailed omnimodal captioning of short form user-generated videos. Unlike prior datasets, UGC-VideoCap emphasizes balanced integration of audio and visual modalities, featuring 1000 TikTok videos annotated through a structured three stage human-in-the-loop pipeline covering audio only, visual only, and joint audio visual semantics. The benchmark also includes 4000 carefully crafted QA pairs probing both unimodal and cross modal understanding. Alongside the dataset, we propose UGC-VideoCaptioner(3B), a 3B parameter captioning model distilled from Gemini 2.5 Flash. Using a novel two-stage training strategy supervised fine tuning followed by Group Relative Policy Optimization (GRPO), our approach enables efficient adaptation from limited data while maintaining competitive performance. Together, our benchmark and model offer a high-quality foundation and a data-efficient solution for advancing omnimodal video captioning in unconstrained real-world UGC settings.
♻ ☆ FVQ: A Large-Scale Dataset and an LMM-based Method for Face Video Quality Assessment ACM MM 2025
Face video quality assessment (FVQA) deserves to be explored in addition to general video quality assessment (VQA), as face videos are the primary content on social media platforms and human visual system (HVS) is particularly sensitive to human faces. However, FVQA is rarely explored due to the lack of large-scale FVQA datasets. To fill this gap, we present the first large-scale in-the-wild FVQA dataset, FVQ-20K, which contains 20,000 in-the-wild face videos together with corresponding mean opinion score (MOS) annotations. Along with the FVQ-20K dataset, we further propose a specialized FVQA method named FVQ-Rater to achieve human-like rating and scoring for face video, which is the first attempt to explore the potential of large multimodal models (LMMs) for the FVQA task. Concretely, we elaborately extract multi-dimensional features including spatial features, temporal features, and face-specific features (i.e., portrait features and face embeddings) to provide comprehensive visual information, and take advantage of the LoRA-based instruction tuning technique to achieve quality-specific fine-tuning, which shows superior performance on both FVQ-20K and CFVQA datasets. Extensive experiments and comprehensive analysis demonstrate the significant potential of the FVQ-20K dataset and FVQ-Rater method in promoting the development of FVQA.
comment: Accepted by ACM MM 2025. Project page: https://github.com/wsj-sjtu/FVQ
♻ ☆ Periodontal Bone Loss Analysis via Keypoint Detection With Heuristic Post-Processing
This study proposes a deep learning framework and annotation methodology for the automatic detection of periodontal bone loss landmarks, associated conditions, and staging. 192 periapical radiographs were collected and annotated with a stage agnostic methodology, labelling clinically relevant landmarks regardless of disease presence or extent. We propose a heuristic post-processing module that aligns predicted keypoints to tooth boundaries using an auxiliary instance segmentation model. An evaluation metric, Percentage of Relative Correct Keypoints (PRCK), is proposed to capture keypoint performance in dental imaging domains. Four donor pose estimation models were adapted with fine-tuning for our keypoint problem. Post-processing improved fine-grained localisation, raising average PRCK^{0.05} by +0.028, but reduced coarse performance for PRCK^{0.25} by -0.0523 and PRCK^{0.5} by -0.0345. Orientation estimation shows excellent performance for auxiliary segmentation when filtered with either stage 1 object detection model. Periodontal staging was detected sufficiently, with the best mesial and distal Dice scores of 0.508 and 0.489, while furcation involvement and widened periodontal ligament space tasks remained challenging due to scarce positive samples. Scalability is implied with similar validation and external set performance. The annotation methodology enables stage agnostic training with balanced representation across disease severities for some detection tasks. The PRCK metric provides a domain-specific alternative to generic pose metrics, while the heuristic post-processing module consistently corrected implausible predictions with occasional catastrophic failures. The proposed framework demonstrates the feasibility of clinically interpretable periodontal bone loss assessment, with potential to reduce diagnostic variability and clinician workload.
comment: 18 pages, 7 tables, 9 figures, 1 equation, journal paper submitted to Computers in Biology and Medicine
♻ ☆ Do Vision-Language Models See Urban Scenes as People Do? An Urban Perception Benchmark
Understanding how people read city scenes can inform design and planning. We introduce a small benchmark for testing vision-language models (VLMs) on urban perception using 100 Montreal street images, evenly split between photographs and photorealistic synthetic scenes. Twelve participants from seven community groups supplied 230 annotation forms across 30 dimensions mixing physical attributes and subjective impressions. French responses were normalized to English. We evaluated seven VLMs in a zero-shot setup with a structured prompt and deterministic parser. We use accuracy for single-choice items and Jaccard overlap for multi-label items; human agreement uses Krippendorff's alpha and pairwise Jaccard. Results suggest stronger model alignment on visible, objective properties than subjective appraisals. The top system (claude-sonnet) reaches macro 0.31 and mean Jaccard 0.48 on multi-label items. Higher human agreement coincides with better model scores. Synthetic images slightly lower scores. We release the benchmark, prompts, and harness for reproducible, uncertainty-aware evaluation in participatory urban analysis.
♻ ☆ Probabilistic Language-Image Pre-Training
Vision-language models (VLMs) embed aligned image-text pairs into a joint space but often rely on deterministic embeddings, assuming a one-to-one correspondence between images and texts. This oversimplifies real-world relationships, which are inherently many-to-many, with multiple captions describing a single image and vice versa. We introduce Probabilistic Language-Image Pre-training (ProLIP), the first probabilistic VLM pre-trained on a billion-scale image-text dataset using only probabilistic objectives, achieving a strong zero-shot capability (e.g., 74.6% ImageNet zero-shot accuracy with ViT-B/16). ProLIP efficiently estimates uncertainty by an "uncertainty token" without extra parameters. We also introduce a novel inclusion loss that enforces distributional inclusion relationships between image-text pairs and between original and masked inputs. Experiments demonstrate that, by leveraging uncertainty estimates, ProLIP benefits downstream tasks and aligns with intuitive notions of uncertainty, e.g., shorter texts being more uncertain and more general inputs including specific ones. Utilizing text uncertainties, we further improve ImageNet accuracy from 74.6% to 75.8% (under a few-shot setting), supporting the practical advantages of our probabilistic approach. The code is available at https://github.com/naver-ai/prolip
comment: Code: https://github.com/naver-ai/prolip HuggingFace Hub: https://huggingface.co/collections/SanghyukChun/prolip-6712595dfc87fd8597350291 33 pages, 4.5 MB; LongProLIP paper: arXiv:2503.08048; Multiplicity paper for more background: arxiv.org:2505.19614; v4: fix typos
♻ ☆ DiViD: Disentangled Video Diffusion for Static-Dynamic Factorization
Unsupervised disentanglement of static appearance and dynamic motion in video remains a fundamental challenge, often hindered by information leakage and blurry reconstructions in existing VAE- and GAN-based approaches. We introduce DiViD, the first end-to-end video diffusion framework for explicit static-dynamic factorization. DiViD's sequence encoder extracts a global static token from the first frame and per-frame dynamic tokens, explicitly removing static content from the motion code. Its conditional DDPM decoder incorporates three key inductive biases: a shared-noise schedule for temporal consistency, a time-varying KL-based bottleneck that tightens at early timesteps (compressing static information) and relaxes later (enriching dynamics), and cross-attention that routes the global static token to all frames while keeping dynamic tokens frame-specific. An orthogonality regularizer further prevents residual static-dynamic leakage. We evaluate DiViD on real-world benchmarks using swap-based accuracy and cross-leakage metrics. DiViD outperforms state-of-the-art sequential disentanglement methods: it achieves the highest swap-based joint accuracy, preserves static fidelity while improving dynamic transfer, and reduces average cross-leakage.
♻ ☆ FrameMind: Frame-Interleaved Video Reasoning via Reinforcement Learning
Current video understanding models rely on fixed frame sampling strategies, processing predetermined visual inputs regardless of the specific reasoning requirements of each question. This static approach limits their ability to adaptively gather visual evidence, leading to suboptimal performance on tasks that require either broad temporal coverage or fine-grained spatial detail. In this paper, we introduce FrameMind, an end-to-end framework trained with reinforcement learning that enables models to dynamically request visual information during reasoning through Frame-Interleaved Chain-of-Thought (FiCOT). Unlike traditional approaches, FrameMind operates in multiple turns where the model alternates between textual reasoning and active visual perception, using tools to extract targeted frames or video clips based on identified knowledge gaps. To train effective dynamic sampling policies, we propose Dynamic Resolution Frame Sampling (DRFS), which exposes models to diverse temporal-spatial trade-offs during learning, and DRFS-GRPO, a group-relative policy optimization algorithm that learns from outcome-based rewards without requiring frame-level annotations. Extensive experiments on challenging benchmarks like MLVU and VideoMME demonstrate that our method significantly outperforms existing models, advancing the state of the art in flexible and efficient video understanding.
comment: Underreview
♻ ☆ Interpreting deep learning-based stellar mass estimation via causal analysis and mutual information decomposition
End-to-end deep learning models fed with multi-band galaxy images are powerful data-driven tools used to estimate galaxy physical properties in the absence of spectroscopy. However, due to a lack of interpretability and the associational nature of such models, it is difficult to understand how the information that is included in addition to integrated photometry (e.g., morphology) contributes to the estimation task. Improving our understanding in this field would enable further advances into unraveling the physical connections among galaxy properties and optimizing data exploitation. Therefore, our work is aimed at interpreting the deep learning-based estimation of stellar mass via two interpretability techniques: causal analysis and mutual information decomposition. The former reveals the causal paths between multiple variables beyond nondirectional statistical associations, while the latter quantifies the multicomponent contributions (i.e., redundant, unique, and synergistic) of different input data to the stellar mass estimation. Using data from the Sloan Digital Sky Survey (SDSS) and the Wide-field Infrared Survey Explorer (WISE), we obtained meaningful results that provide physical interpretations for image-based models. Our work demonstrates the gains from combining deep learning with interpretability techniques, and holds promise in promoting more data-driven astrophysical research (e.g., astrophysical parameter estimations and investigations on complex multivariate physical processes).
comment: Accepted at Astronomy & Astrophysics; 23 + 12 pages; 8 + 16 figures
♻ ☆ From Gaze to Insight: Bridging Human Visual Attention and Vision Language Model Explanation for Weakly-Supervised Medical Image Segmentation
Medical image segmentation remains challenging due to the high cost of pixel-level annotations for training. In the context of weak supervision, clinician gaze data captures regions of diagnostic interest; however, its sparsity limits its use for segmentation. In contrast, vision-language models (VLMs) provide semantic context through textual descriptions but lack the explanation precision required. Recognizing that neither source alone suffices, we propose a teacher-student framework that integrates both gaze and language supervision, leveraging their complementary strengths. Our key insight is that gaze data indicates where clinicians focus during diagnosis, while VLMs explain why those regions are significant. To implement this, the teacher model first learns from gaze points enhanced by VLM-generated descriptions of lesion morphology, establishing a foundation for guiding the student model. The teacher then directs the student through three strategies: (1) Multi-scale feature alignment to fuse visual cues with textual semantics; (2) Confidence-weighted consistency constraints to focus on reliable predictions; (3) Adaptive masking to limit error propagation in uncertain areas. Experiments on the Kvasir-SEG, NCI-ISBI, and ISIC datasets show that our method achieves Dice scores of 80.78%, 80.53%, and 84.22%, respectively-improving 3-5% over gaze baselines without increasing the annotation burden. By preserving correlations among predictions, gaze data, and lesion descriptions, our framework also maintains clinical interpretability. This work illustrates how integrating human visual attention with AI-generated semantic context can effectively overcome the limitations of individual weak supervision signals, thereby advancing the development of deployable, annotation-efficient medical AI systems. Code is available at: https://github.com/jingkunchen/FGI.
comment: 11 pages, 4 figures
♻ ☆ Blending adversarial training and representation-conditional purification via aggregation improves adversarial robustness
In this work, we propose a novel adversarial defence mechanism for image classification - CARSO - blending the paradigms of adversarial training and adversarial purification in a synergistic robustness-enhancing way. The method builds upon an adversarially-trained classifier, and learns to map its internal representation associated with a potentially perturbed input onto a distribution of tentative clean reconstructions. Multiple samples from such distribution are classified by the same adversarially-trained model, and a carefully chosen aggregation of its outputs finally constitutes the robust prediction of interest. Experimental evaluation by a well-established benchmark of strong adaptive attacks, across different image datasets, shows that CARSO is able to defend itself against adaptive end-to-end white-box attacks devised for stochastic defences. Paying a modest clean accuracy toll, our method improves by a significant margin the state-of-the-art for Cifar-10, Cifar-100, and TinyImageNet-200 $\ell_\infty$ robust classification accuracy against AutoAttack. Code, and instructions to obtain pre-trained models are available at: https://github.com/emaballarin/CARSO .
comment: Published in Transactions on Machine Learning Research (09/2025). 25 pages, 1 figure, 19 tables
♻ ☆ How Far are AI-generated Videos from Simulating the 3D Visual World: A Learned 3D Evaluation Approach ICCV 2025
Recent advancements in video diffusion models enable the generation of photorealistic videos with impressive 3D consistency and temporal coherence. However, the extent to which these AI-generated videos simulate the 3D visual world remains underexplored. In this paper, we introduce Learned 3D Evaluation (L3DE), an objective, quantifiable, and interpretable method for assessing AI-generated videos' ability to simulate the real world in terms of 3D visual qualities and consistencies, without requiring manually labeled defects or quality annotations. Instead of relying on 3D reconstruction, which is prone to failure with in-the-wild videos, L3DE employs a 3D convolutional network, trained on monocular 3D cues of motion, depth, and appearance, to distinguish real from synthetic videos. Confidence scores from L3DE quantify the gap between real and synthetic videos in terms of 3D visual coherence, while a gradient-based visualization pinpoints unrealistic regions, improving interpretability. We validate L3DE through extensive experiments, demonstrating strong alignment with 3D reconstruction quality and human judgments. Our evaluations on leading generative models (e.g., Kling, Sora, and MiniMax) reveal persistent simulation gaps and subtle inconsistencies. Beyond generative video assessment, L3DE extends to broader applications: benchmarking video generation models, serving as a deepfake detector, and enhancing video synthesis by inpainting flagged inconsistencies. Project page: https://justin-crchang.github.io/l3de-project-page/
comment: ICCV 2025
♻ ☆ AutoPrune: Each Complexity Deserves a Pruning Policy
The established redundancy in visual tokens within large vision-language models allows pruning to effectively reduce their substantial computational demands. Previous methods typically employ heuristic layer-specific pruning strategies where, although the number of tokens removed may differ across decoder layers, the overall pruning schedule is fixed and applied uniformly to all input samples and tasks, failing to align token elimination with the model's holistic reasoning trajectory. Cognitive science indicates that human visual processing often begins with broad exploration to accumulate evidence before narrowing focus as the target becomes distinct. Our experiments reveal an analogous pattern in these models. This observation suggests that neither a fixed pruning schedule nor a heuristic layer-wise strategy can optimally accommodate the diverse complexities inherent in different inputs. To overcome this limitation, we introduce Complexity-Adaptive Pruning (AutoPrune), a training-free, plug-and-play framework that tailors pruning policies to varying sample and task complexities. Specifically, AutoPrune quantifies the mutual information between visual and textual tokens, then projects this signal to a budget-constrained logistic retention curve. Each such logistic curve, defined by its unique shape, corresponds to the specific complexity of different tasks and can guarantee adherence to predefined computational constraints. We evaluate AutoPrune on standard vision-language tasks and on Vision-Language-Action models for autonomous driving. Notably, when applied to LLaVA-1.5-7B, our method prunes 89% of visual tokens and reduces inference FLOPs by 76.8% while retaining 96.7% of the original accuracy averaged over all tasks. This corresponds to a 9.1% improvement over the recent work PDrop, demonstrating the effectiveness. Code is available at https://github.com/AutoLab-SAI-SJTU/AutoPrune.
comment: 13 pages, 2 figures
♻ ☆ Reconstructing Topology-Consistent Face Mesh by Volume Rendering from Multi-View Images
Industrial 3D face assets creation typically reconstructs topology-consistent face meshes from multi-view images for downstream production. However, high-quality reconstruction usually requires manual processing or specific capture settings. Recently NeRF has shown great advantages in 3D reconstruction, by representing scenes as density and radiance fields and utilizing neural volume rendering for novel view synthesis. Inspired by this, we introduce a novel method which combines explicit mesh with neural volume rendering to optimize geometry of an artist-made template face mesh from multi-view images while keeping the topology unchanged. Our method derives density fields from meshes using distance fields as an intermediary and encodes radiance field in compact tri-planes. To improve convergence, several adaptions tailored for meshes are introduced to the volume rendering. Experiments demonstrate that our method achieves superior reconstruction quality compared to previous approaches, validating the feasibility of integrating mesh and neural volume rendering.
♻ ☆ Negative Shanshui: Real-time Interactive Ink Painting Synthesis
This paper presents Negative Shanshui, a real-time interactive AI synthesis approach that reinterprets classical Chinese landscape ink painting, i.e., shanshui, to engage with ecological crises in the Anthropocene. Negative Shanshui optimizes a fine-tuned Stable Diffusion model for real-time inferences and integrates it with gaze-driven inpainting, frame interpolation; it enables dynamic morphing animations in response to the viewer's gaze and presents as an interactive virtual reality (VR) experience. The paper describes the complete technical pipeline, covering the system framework, optimization strategies, gaze-based interaction, and multimodal deployment in an art festival. Further analysis of audience feedback collected during its public exhibition highlights how participants variously engaged with the work through empathy, ambivalence, and critical reflection.
♻ ☆ Interactive Test-Time Adaptation with Reliable Spatial-Temporal Voxels for Multi-Modal Segmentation
Multi-modal test-time adaptation (MM-TTA) adapts models to an unlabeled target domain by leveraging the complementary multi-modal inputs in an online manner. While previous MM-TTA methods for 3D segmentation offer a promising solution by leveraging self-refinement per frame, they suffer from two major limitations: 1) unstable frame-wise predictions caused by temporal inconsistency, and 2) consistently incorrect predictions that violate the assumption of reliable modality guidance. To address these limitations, this work introduces a comprehensive two-fold framework. Firstly, building upon our previous work ReLiable Spatial-temporal Voxels (Latte), we propose Latte++ that better suppresses the unstable frame-wise predictions with more informative geometric correspondences. Instead of utilizing a universal sliding window, Latte++ employs multi-window aggregation to capture more reliable correspondences to better evaluate the local prediction consistency of different semantic categories. Secondly, to tackle the consistently incorrect predictions, we propose Interactive Test-Time Adaptation (ITTA), a flexible add-on to empower effortless human feedback with existing MM-TTA methods. ITTA introduces a novel human-in-the-loop approach that efficiently integrates minimal human feedback through interactive segmentation, requiring only simple point clicks and bounding box annotations. Instead of using independent interactive networks, ITTA employs a lightweight promptable branch with a momentum gradient module to capture and reuse knowledge from scarce human feedback during online inference. Extensive experiments across five MM-TTA benchmarks demonstrate that ITTA achieves consistent and notable improvements with robust performance gains for target classes of interest in challenging imbalanced scenarios, while Latte++ provides complementary benefits for temporal stability.
♻ ☆ Humanoid Policy ~ Human Policy
Training manipulation policies for humanoid robots with diverse data enhances their robustness and generalization across tasks and platforms. However, learning solely from robot demonstrations is labor-intensive, requiring expensive tele-operated data collection which is difficult to scale. This paper investigates a more scalable data source, egocentric human demonstrations, to serve as cross-embodiment training data for robot learning. We mitigate the embodiment gap between humanoids and humans from both the data and modeling perspectives. We collect an egocentric task-oriented dataset (PH2D) that is directly aligned with humanoid manipulation demonstrations. We then train a human-humanoid behavior policy, which we term Human Action Transformer (HAT). The state-action space of HAT is unified for both humans and humanoid robots and can be differentiably retargeted to robot actions. Co-trained with smaller-scale robot data, HAT directly models humanoid robots and humans as different embodiments without additional supervision. We show that human data improves both generalization and robustness of HAT with significantly better data collection efficiency. Code and data: https://human-as-robot.github.io/
comment: Code and data: https://human-as-robot.github.io/
Mixture of Contexts for Long Video Generation
Long video generation is fundamentally a long context memory problem: models must retain and retrieve salient events across a long range without collapsing or drifting. However, scaling diffusion transformers to generate long-context videos is fundamentally limited by the quadratic cost of self-attention, which makes memory and computation intractable and difficult to optimize for long sequences. We recast long-context video generation as an internal information retrieval task and propose a simple, learnable sparse attention routing module, Mixture of Contexts (MoC), as an effective long-term memory retrieval engine. In MoC, each query dynamically selects a few informative chunks plus mandatory anchors (caption, local windows) to attend to, with causal routing that prevents loop closures. As we scale the data and gradually sparsify the routing, the model allocates compute to salient history, preserving identities, actions, and scenes over minutes of content. Efficiency follows as a byproduct of retrieval (near-linear scaling), which enables practical training and synthesis, and the emergence of memory and consistency at the scale of minutes.
comment: Project page: https://primecai.github.io/moc/
♻ ☆ TCDiff++: An End-to-end Trajectory-Controllable Diffusion Model for Harmonious Music-Driven Group Choreography
Music-driven dance generation has garnered significant attention due to its wide range of industrial applications, particularly in the creation of group choreography. During the group dance generation process, however, most existing methods still face three primary issues: multi-dancer collisions, single-dancer foot sliding and abrupt swapping in the generation of long group dance. In this paper, we propose TCDiff++, a music-driven end-to-end framework designed to generate harmonious group dance. Specifically, to mitigate multi-dancer collisions, we utilize a dancer positioning embedding to encode temporal and identity information. Additionally, we incorporate a distance-consistency loss to ensure that inter-dancer distances remain within plausible ranges. To address the issue of single-dancer foot sliding, we introduce a swap mode embedding to indicate dancer swapping patterns and design a Footwork Adaptor to refine raw motion, thereby minimizing foot sliding. For long group dance generation, we present a long group diffusion sampling strategy that reduces abrupt position shifts by injecting positional information into the noisy input. Furthermore, we integrate a Sequence Decoder layer to enhance the model's ability to selectively process long sequences. Extensive experiments demonstrate that our TCDiff++ achieves state-of-the-art performance, particularly in long-duration scenarios, ensuring high-quality and coherent group dance generation.
♻ ☆ Generative Human Geometry Distribution
Realistic human geometry generation is an important yet challenging task, requiring both the preservation of fine clothing details and the accurate modeling of clothing-body interactions. To tackle this challenge, we build upon Geometry distributions, a recently proposed representation that can model a single human geometry with high fidelity using a flow matching model. However, extending a single-geometry distribution to a dataset is non-trivial and inefficient for large-scale learning. To address this, we propose a new geometry distribution model by two key techniques: (1) encoding distributions as 2D feature maps rather than network parameters, and (2) using SMPL models as the domain instead of Gaussian and refining the associated flow velocity field. We then design a generative framework adopting a two staged training paradigm analogous to state-of-the-art image and 3D generative models. In the first stage, we compress geometry distributions into a latent space using a diffusion flow model; the second stage trains another flow model on this latent space. We validate our approach on two key tasks: pose-conditioned random avatar generation and avatar-consistent novel pose synthesis. Experimental results demonstrate that our method outperforms existing state-of-the-art methods, achieving a 57% improvement in geometry quality.
♻ ☆ Grounding-IQA: Grounding Multimodal Language Model for Image Quality Assessment
The development of multimodal large language models (MLLMs) enables the evaluation of image quality through natural language descriptions. This advancement allows for more detailed assessments. However, these MLLM-based IQA methods primarily rely on general contextual descriptions, sometimes limiting fine-grained quality assessment. To address this limitation, we introduce a new image quality assessment (IQA) task paradigm, **grounding-IQA**. This paradigm integrates multimodal referring and grounding with IQA to realize more fine-grained quality perception, thereby extending existing IQA. Specifically, grounding-IQA comprises two subtasks: grounding-IQA-description (GIQA-DES) and visual question answering (GIQA-VQA). GIQA-DES involves detailed descriptions with precise locations (e.g., bounding boxes), while GIQA-VQA focuses on quality QA for local regions. To realize grounding-IQA, we construct a corresponding dataset, GIQA-160K, through our proposed automated annotation pipeline. Furthermore, we develop a well-designed benchmark, GIQA-Bench. The benchmark evaluates the grounding-IQA performance from three perspectives: description quality, VQA accuracy, and grounding precision. Experiments demonstrate that our proposed method facilitates the more fine-grained IQA application. Code: https://github.com/zhengchen1999/Grounding-IQA.
comment: Code is available at: https://github.com/zhengchen1999/Grounding-IQA
♻ ☆ DecompDreamer: A Composition-Aware Curriculum for Structured 3D Asset Generation
Current text-to-3D methods excel at generating single objects but falter on compositional prompts. We argue this failure is fundamental to their optimization schedules, as simultaneous or iterative heuristics predictably collapse under a combinatorial explosion of conflicting gradients, leading to entangled geometry or catastrophic divergence. In this paper, we reframe the core challenge of compositional generation as one of optimization scheduling. We introduce DecompDreamer, a framework built on a novel staged optimization strategy that functions as an implicit curriculum. Our method first establishes a coherent structural scaffold by prioritizing inter-object relationships before shifting to the high-fidelity refinement of individual components. This temporal decoupling of competing objectives provides a robust solution to gradient conflict. Qualitative and quantitative evaluations on diverse compositional prompts demonstrate that DecompDreamer outperforms state-of-the-art methods in fidelity, disentanglement, and spatial coherence.
DS-VTON: An Enhanced Dual-Scale Coarse-to-Fine Framework for Virtual Try-On
Despite recent progress, most existing virtual try-on methods still struggle to simultaneously address two core challenges: accurately aligning the garment image with the target human body, and preserving fine-grained garment textures and patterns. These two requirements map directly onto a coarse-to-fine generation paradigm, where the coarse stage handles structural alignment and the fine stage recovers rich garment details. Motivated by this observation, we propose DS-VTON, an enhanced dual-scale coarse-to-fine framework that tackles the try-on problem more effectively. DS-VTON consists of two stages: the first stage generates a low-resolution try-on result to capture the semantic correspondence between garment and body, where reduced detail facilitates robust structural alignment. In the second stage, a blend-refine diffusion process reconstructs high-resolution outputs by refining the residual between scales through noise-image blending, emphasizing texture fidelity and effectively correcting fine-detail errors from the low-resolution stage. In addition, our method adopts a fully mask-free generation strategy, eliminating reliance on human parsing maps or segmentation masks. Extensive experiments show that DS-VTON not only achieves state-of-the-art performance but consistently and significantly surpasses prior methods in both structural alignment and texture fidelity across multiple standard virtual try-on benchmarks.
♻ ☆ Event-driven Robust Fitting on Neuromorphic Hardware ICCV 2025
Robust fitting of geometric models is a fundamental task in many computer vision pipelines. Numerous innovations have been produced on the topic, from improving the efficiency and accuracy of random sampling heuristics to generating novel theoretical insights that underpin new approaches with mathematical guarantees. However, one aspect of robust fitting that has received little attention is energy efficiency. This performance metric has become critical as high energy consumption is a growing concern for AI adoption. In this paper, we explore energy-efficient robust fitting via the neuromorphic computing paradigm. Specifically, we designed a novel spiking neural network for robust fitting on real neuromorphic hardware, the Intel Loihi 2. Enabling this are novel event-driven formulations of model estimation that allow robust fitting to be implemented in the unique architecture of Loihi 2, and algorithmic strategies to alleviate the current limited precision and instruction set of the hardware. Results show that our neuromorphic robust fitting consumes only a fraction (15%) of the energy required to run the established robust fitting algorithm on a standard CPU to equivalent accuracy.
comment: 13 pages, accepted in ICCV 2025 Workshop on Neuromorphic Vision (NeVI)
♻ ☆ TRCE: Towards Reliable Malicious Concept Erasure in Text-to-Image Diffusion Models ICCV2025
Recent advances in text-to-image diffusion models enable photorealistic image generation, but they also risk producing malicious content, such as NSFW images. To mitigate risk, concept erasure methods are studied to facilitate the model to unlearn specific concepts. However, current studies struggle to fully erase malicious concepts implicitly embedded in prompts (e.g., metaphorical expressions or adversarial prompts) while preserving the model's normal generation capability. To address this challenge, our study proposes TRCE, using a two-stage concept erasure strategy to achieve an effective trade-off between reliable erasure and knowledge preservation. Firstly, TRCE starts by erasing the malicious semantics implicitly embedded in textual prompts. By identifying a critical mapping objective(i.e., the [EoT] embedding), we optimize the cross-attention layers to map malicious prompts to contextually similar prompts but with safe concepts. This step prevents the model from being overly influenced by malicious semantics during the denoising process. Following this, considering the deterministic properties of the sampling trajectory of the diffusion model, TRCE further steers the early denoising prediction toward the safe direction and away from the unsafe one through contrastive learning, thus further avoiding the generation of malicious content. Finally, we conduct comprehensive evaluations of TRCE on multiple malicious concept erasure benchmarks, and the results demonstrate its effectiveness in erasing malicious concepts while better preserving the model's original generation ability. The code is available at: http://github.com/ddgoodgood/TRCE. CAUTION: This paper includes model-generated content that may contain offensive material.
comment: accepted by ICCV2025
♻ ☆ AutoMiSeg: Automatic Medical Image Segmentation via Test-Time Adaptation of Foundation Models
Medical image segmentation is vital for clinical diagnosis, yet current deep learning methods often demand extensive expert effort, i.e., either through annotating large training datasets or providing prompts at inference time for each new case. This paper introduces a zero-shot and automatic segmentation pipeline that combines off-the-shelf vision-language and segmentation foundation models. Given a medical image and a task definition (e.g., "segment the optic disc in an eye fundus image"), our method uses a grounding model to generate an initial bounding box, followed by a visual prompt boosting module that enhance the prompts, which are then processed by a promptable segmentation model to produce the final mask. To address the challenges of domain gap and result verification, we introduce a test-time adaptation framework featuring a set of learnable adaptors that align the medical inputs with foundation model representations. Its hyperparameters are optimized via Bayesian Optimization, guided by a proxy validation model without requiring ground-truth labels. Our pipeline offers an annotation-efficient and scalable solution for zero-shot medical image segmentation across diverse tasks. Our pipeline is evaluated on seven diverse medical imaging datasets and shows promising results. By proper decomposition and test-time adaptation, our fully automatic pipeline not only substantially surpasses the previously best-performing method, yielding a 69\% relative improvement in accuracy (Dice Score from 42.53 to 71.81), but also performs competitively with weakly-prompted interactive foundation models.
♻ ☆ WonderHuman: Hallucinating Unseen Parts in Dynamic 3D Human Reconstruction
In this paper, we present WonderHuman to reconstruct dynamic human avatars from a monocular video for high-fidelity novel view synthesis. Previous dynamic human avatar reconstruction methods typically require the input video to have full coverage of the observed human body. However, in daily practice, one typically has access to limited viewpoints, such as monocular front-view videos, making it a cumbersome task for previous methods to reconstruct the unseen parts of the human avatar. To tackle the issue, we present WonderHuman, which leverages 2D generative diffusion model priors to achieve high-quality, photorealistic reconstructions of dynamic human avatars from monocular videos, including accurate rendering of unseen body parts. Our approach introduces a Dual-Space Optimization technique, applying Score Distillation Sampling (SDS) in both canonical and observation spaces to ensure visual consistency and enhance realism in dynamic human reconstruction. Additionally, we present a View Selection strategy and Pose Feature Injection to enforce the consistency between SDS predictions and observed data, ensuring pose-dependent effects and higher fidelity in the reconstructed avatar. In the experiments, our method achieves SOTA performance in producing photorealistic renderings from the given monocular video, particularly for those challenging unseen parts. The project page and source code can be found at https://wyiguanw.github.io/WonderHuman/.
♻ ☆ ShapeICP: Iterative Category-level Object Pose and Shape Estimation from Depth
Category-level object pose and shape estimation from a single depth image has recently drawn research attention due to its potential utility for tasks such as robotics manipulation. The task is particularly challenging because the three unknowns, object pose, object shape, and model-to-measurement correspondences, are compounded together, but only a single view of depth measurements is provided. Most of the prior work heavily relies on data-driven approaches to obtain solutions to at least one of the unknowns, and typically two, risking generalization failures if not designed and trained carefully. The shape representations used in the prior work also mainly focus on point clouds and signed distance fields (SDFs). In stark contrast to the prior work, we approach the problem using an iterative estimation method that does not require learning from pose-annotated data. Moreover, we construct and adopt a novel mesh-based object active shape model (ASM), which additionally maintains vertex connectivity compared to the commonly used point-based object ASM. Our algorithm, ShapeICP, is based on the iterative closest point (ICP) algorithm but is equipped with additional features for the category-level pose and shape estimation task. Although not using pose-annotated data, ShapeICP surpasses many data-driven approaches that rely on pose data for training, opening up a new solution space for researchers to consider.
♻ ☆ Latent Visual Reasoning
Multimodal Large Language Models (MLLMs) have achieved notable gains in various tasks by incorporating Chain-of-Thought (CoT) reasoning in language spaces. Recent work extends this direction by leveraging external tools for visual editing, thereby enhancing the visual signal along the reasoning trajectories. Nevertheless, these approaches remain fundamentally constrained: reasoning is still confined to the language space, with visual information treated as static preconditions. We introduce Latent Visual Reasoning (LVR), a new paradigm that enables autoregressive reasoning directly in the visual embedding space. A visual encoder first projects images into visual tokens within a joint semantic space shared with the language model. The language model is then trained to generate latent states that reconstruct key visual tokens critical for answering the query, constituting the process of latent visual reasoning. By interleaving LVR with standard text generation, our model achieves substantial gains on perception-intensive visual question answering tasks. In addition, we adapt the GRPO algorithm to conduct reinforcement learning on latent reasoning, further balancing LVR and textual generation. We show that LVR substantially improves fine-grained visual understanding and perception, achieving 71.67% on MMVP compared to 66.67% with Qwen2.5-VL. Code base and model weights will be released later.
♻ ☆ DynamicScaler: Seamless and Scalable Video Generation for Panoramic Scenes CVPR 2025
The increasing demand for immersive AR/VR applications and spatial intelligence has heightened the need to generate high-quality scene-level and 360${\deg}$ panoramic video. However, most video diffusion models are constrained by limited resolution and aspect ratio, which restricts their applicability to scene-level dynamic content synthesis. In this work, we propose $\textbf{DynamicScaler}$, addressing these challenges by enabling spatially scalable and panoramic dynamic scene synthesis that preserves coherence across panoramic scenes of arbitrary size. Specifically, we introduce a Offset Shifting Denoiser, facilitating efficient, synchronous, and coherent denoising panoramic dynamic scenes via a diffusion model with fixed resolution through a seamless rotating Window, which ensures seamless boundary transitions and consistency across the entire panoramic space, accommodating varying resolutions and aspect ratios. Additionally, we employ a Global Motion Guidance mechanism to ensure both local detail fidelity and global motion continuity. Extensive experiments demonstrate our method achieves superior content and motion quality in panoramic scene-level video generation, offering a training-free, efficient, and scalable solution for immersive dynamic scene creation with constant VRAM consumption regardless of the output video resolution. Project page is available at $\href{https://dynamic-scaler.pages.dev/new}{https://dynamic-scaler.pages.dev/new}$.
comment: CVPR 2025
♻ ☆ Towards Foundation Models for Cryo-ET Subtomogram Analysis
Cryo-electron tomography (cryo-ET) enables in situ visualization of macromolecular structures, where subtomogram analysis tasks such as classification, alignment, and averaging are critical for structural determination. However, effective analysis is hindered by scarce annotations, severe noise, and poor generalization. To address these challenges, we take the first step towards foundation models for cryo-ET subtomograms. First, we introduce CryoEngine, a large-scale synthetic data generator that produces over 904k subtomograms from 452 particle classes for pretraining. Second, we design an Adaptive Phase Tokenization-enhanced Vision Transformer (APT-ViT), which incorporates adaptive phase tokenization as an equivariance-enhancing module that improves robustness to both geometric and semantic variations. Third, we introduce a Noise-Resilient Contrastive Learning (NRCL) strategy to stabilize representation learning under severe noise conditions. Evaluations across 24 synthetic and real datasets demonstrate state-of-the-art (SOTA) performance on all three major subtomogram tasks and strong generalization to unseen datasets, advancing scalable and robust subtomogram analysis in cryo-ET.
♻ ☆ CryoCCD: Conditional Cycle-consistent Diffusion with Biophysical Modeling for Cryo-EM Synthesis
Single-particle cryo-electron microscopy (cryo-EM) has become a cornerstone of structural biology, enabling near-atomic resolution analysis of macromolecules through advanced computational methods. However, the development of cryo-EM processing tools is constrained by the scarcity of high-quality annotated datasets. Synthetic data generation offers a promising alternative, but existing approaches lack thorough biophysical modeling of heterogeneity and fail to reproduce the complex noise observed in real imaging. To address these limitations, we present CryoCCD, a synthesis framework that unifies versatile biophysical modeling with the first conditional cycle-consistent diffusion model tailored for cryo-EM. The biophysical engine provides multi-functional generation capabilities to capture authentic biological organization, and the diffusion model is enhanced with cycle consistency and mask-guided contrastive learning to ensure realistic noise while preserving structural fidelity. Extensive experiments demonstrate that CryoCCD generates structurally faithful micrographs, enhances particle picking and pose estimation, as well as achieves superior performance over state-of-the-art baselines, while also generalizing effectively to held-out protein families.
♻ ☆ Exploring Representation Invariance in Finetuning
Foundation models pretrained on large-scale natural images are widely adapted to various cross-domain low-resource downstream tasks, benefiting from generalizable and transferable patterns captured by their representations. However, these representations are later found to gradually vanish during finetuning, accompanied by a degradation of model's original generalizability. In this paper, we argue that such tasks can be effectively adapted without sacrificing the benefits of pretrained representations. We approach this by introducing \textit{Representation Invariance FineTuning (RIFT)}, a regularization that maximizes the representation similarity between pretrained and finetuned models by leveraging orthogonal invariance of manifolds in a computationally efficient way. Experiments demonstrate that our method is compatible with mainstream finetuning methods, offering competitive or even enhanced performance and better preservation of the generalizability.
♻ ☆ Reason-RFT: Reinforcement Fine-Tuning for Visual Reasoning of Vision Language Models NeurIPS'25
Visual reasoning abilities play a crucial role in understanding complex multimodal data, advancing both domain-specific applications and artificial general intelligence (AGI). Existing methods enhance Vision-Language Models (VLMs) through Chain-of-Thought (CoT) supervised fine-tuning using meticulously annotated data. However, this approach may lead to overfitting and cognitive rigidity, limiting the model's generalization ability under domain shifts and reducing real-world applicability. To overcome these limitations, we propose Reason-RFT, a two-stage reinforcement fine-tuning framework for visual reasoning. First, Supervised Fine-Tuning (SFT) with curated CoT data activates the reasoning potential of VLMs. This is followed by reinforcement learning based on Group Relative Policy Optimization (GRPO), which generates multiple reasoning-response pairs to enhance adaptability to domain shifts. To evaluate Reason-RFT, we reconstructed a comprehensive dataset covering visual counting, structural perception, and spatial transformation, serving as a benchmark for systematic assessment across three key dimensions. Experimental results highlight three advantages: (1) performance enhancement, with Reason-RFT achieving state-of-the-art results and outperforming both open-source and proprietary models; (2) generalization superiority, maintaining robust performance under domain shifts across various tasks; and (3) data efficiency, excelling in few-shot learning scenarios and surpassing full-dataset SFT baselines. Reason-RFT introduces a novel training paradigm for visual reasoning and marks a significant step forward in multimodal research. Project website: https://tanhuajie.github.io/ReasonRFT
comment: 51 pages, 23 figures, NeurIPS'25
Artificial Intelligence 84
☆ Utility-Learning Tension in Self-Modifying Agents
As systems trend toward superintelligence, a natural modeling premise is that agents can self-improve along every facet of their own design. We formalize this with a five-axis decomposition and a decision layer, separating incentives from learning behavior and analyzing axes in isolation. Our central result identifies and introduces a sharp utility--learning tension, the structural conflict in self-modifying systems whereby utility-driven changes that improve immediate or expected performance can also erode the statistical preconditions for reliable learning and generalization. Our findings show that distribution-free guarantees are preserved iff the policy-reachable model family is uniformly capacity-bounded; when capacity can grow without limit, utility-rational self-changes can render learnable tasks unlearnable. Under standard assumptions common in practice, these axes reduce to the same capacity criterion, yielding a single boundary for safe self-modification. Numerical experiments across several axes validate the theory by comparing destructive utility policies against our proposed two-gate policies that preserve learnability.
☆ SECA: Semantically Equivalent and Coherent Attacks for Eliciting LLM Hallucinations NeurIPS 2025
Large Language Models (LLMs) are increasingly deployed in high-risk domains. However, state-of-the-art LLMs often produce hallucinations, raising serious concerns about their reliability. Prior work has explored adversarial attacks for hallucination elicitation in LLMs, but it often produces unrealistic prompts, either by inserting gibberish tokens or by altering the original meaning. As a result, these approaches offer limited insight into how hallucinations may occur in practice. While adversarial attacks in computer vision often involve realistic modifications to input images, the problem of finding realistic adversarial prompts for eliciting LLM hallucinations has remained largely underexplored. To address this gap, we propose Semantically Equivalent and Coherent Attacks (SECA) to elicit hallucinations via realistic modifications to the prompt that preserve its meaning while maintaining semantic coherence. Our contributions are threefold: (i) we formulate finding realistic attacks for hallucination elicitation as a constrained optimization problem over the input prompt space under semantic equivalence and coherence constraints; (ii) we introduce a constraint-preserving zeroth-order method to effectively search for adversarial yet feasible prompts; and (iii) we demonstrate through experiments on open-ended multiple-choice question answering tasks that SECA achieves higher attack success rates while incurring almost no constraint violations compared to existing methods. SECA highlights the sensitivity of both open-source and commercial gradient-inaccessible LLMs to realistic and plausible prompt variations. Code is available at https://github.com/Buyun-Liang/SECA.
comment: Accepted at NeurIPS 2025. Code is available at https://github.com/Buyun-Liang/SECA
☆ MulVuln: Enhancing Pre-trained LMs with Shared and Language-Specific Knowledge for Multilingual Vulnerability Detection
Software vulnerabilities (SVs) pose a critical threat to safety-critical systems, driving the adoption of AI-based approaches such as machine learning and deep learning for software vulnerability detection. Despite promising results, most existing methods are limited to a single programming language. This is problematic given the multilingual nature of modern software, which is often complex and written in multiple languages. Current approaches often face challenges in capturing both shared and language-specific knowledge of source code, which can limit their performance on diverse programming languages and real-world codebases. To address this gap, we propose MULVULN, a novel multilingual vulnerability detection approach that learns from source code across multiple languages. MULVULN captures both the shared knowledge that generalizes across languages and the language-specific knowledge that reflects unique coding conventions. By integrating these aspects, it achieves more robust and effective detection of vulnerabilities in real-world multilingual software systems. The rigorous and extensive experiments on the real-world and diverse REEF dataset, consisting of 4,466 CVEs with 30,987 patches across seven programming languages, demonstrate the superiority of MULVULN over thirteen effective and state-of-the-art baselines. Notably, MULVULN achieves substantially higher F1-score, with improvements ranging from 1.45% to 23.59% compared to the baseline methods.
☆ Improving Consistency in Retrieval-Augmented Systems with Group Similarity Rewards NeurIPS 2025
RAG systems are increasingly deployed in high-stakes domains where users expect outputs to be consistent across semantically equivalent queries. However, existing systems often exhibit significant inconsistencies due to variability in both the retriever and generator (LLM), undermining trust and reliability. In this work, we focus on information consistency, i.e., the requirement that outputs convey the same core content across semantically equivalent inputs. We introduce a principled evaluation framework that decomposes RAG consistency into retriever-level, generator-level, and end-to-end components, helping identify inconsistency sources. To improve consistency, we propose Paraphrased Set Group Relative Policy Optimization (PS-GRPO), an RL approach that leverages multiple rollouts across paraphrased set to assign group similarity rewards. We leverage PS-GRPO to achieve Information Consistent RAG (Con-RAG), training the generator to produce consistent outputs across paraphrased queries and remain robust to retrieval-induced variability. Because exact reward computation over paraphrase sets is computationally expensive, we also introduce a scalable approximation method that retains effectiveness while enabling efficient, large-scale training. Empirical evaluations across short-form, multi-hop, and long-form QA benchmarks demonstrate that Con-RAG significantly improves both consistency and accuracy over strong baselines, even in the absence of explicit ground-truth supervision. Our work provides practical solutions for evaluating and building reliable RAG systems for safety-critical deployments.
comment: Accepted at NeurIPS 2025 Workshop on Reliable ML from Unreliable Data
☆ Internal World Models as Imagination Networks in Cognitive Agents
What is the computational objective of imagination? While classical interpretations suggest imagination is useful for maximizing rewards, recent findings challenge this view. In this study, we propose that imagination serves to access an internal world model (IWM) and use psychological network analysis to explore IWMs in humans and large language models (LLMs). Specifically, we assessed imagination vividness ratings using two questionnaires and constructed imagination networks from these reports. Imagination networks from human groups showed correlations between different centrality measures, including expected influence, strength, and closeness. However, imagination networks from LLMs showed a lack of clustering and lower correlations between centrality measures under different prompts and conversational memory conditions. Together, these results indicate a lack of similarity between IWMs in human and LLM agents. Overall, our study offers a novel method for comparing internally-generated representations in humans and AI, providing insights for developing human-like imagination in artificial intelligence.
☆ MorphoSim: An Interactive, Controllable, and Editable Language-guided 4D World Simulator
World models that support controllable and editable spatiotemporal environments are valuable for robotics, enabling scalable training data, repro ducible evaluation, and flexible task design. While recent text-to-video models generate realistic dynam ics, they are constrained to 2D views and offer limited interaction. We introduce MorphoSim, a language guided framework that generates 4D scenes with multi-view consistency and object-level controls. From natural language instructions, MorphoSim produces dynamic environments where objects can be directed, recolored, or removed, and scenes can be observed from arbitrary viewpoints. The framework integrates trajectory-guided generation with feature field dis tillation, allowing edits to be applied interactively without full re-generation. Experiments show that Mor phoSim maintains high scene fidelity while enabling controllability and editability. The code is available at https://github.com/eric-ai-lab/Morph4D.
☆ LLM Based Bayesian Optimization for Prompt Search
Bayesian Optimization (BO) has been widely used to efficiently optimize expensive black-box functions with limited evaluations. In this paper, we investigate the use of BO for prompt engineering to enhance text classification with Large Language Models (LLMs). We employ an LLM-powered Gaussian Process (GP) as the surrogate model to estimate the performance of different prompt candidates. These candidates are generated by an LLM through the expansion of a set of seed prompts and are subsequently evaluated using an Upper Confidence Bound (UCB) acquisition function in conjunction with the GP posterior. The optimization process iteratively refines the prompts based on a subset of the data, aiming to improve classification accuracy while reducing the number of API calls by leveraging the prediction uncertainty of the LLM-based GP. The proposed BO-LLM algorithm is evaluated on two datasets, and its advantages are discussed in detail in this paper.
☆ Reconsidering Requirements Engineering: Human-AI Collaboration in AI-Native Software Development
Requirement Engineering (RE) is the foundation of successful software development. In RE, the goal is to ensure that implemented systems satisfy stakeholder needs through rigorous requirements elicitation, validation, and evaluation processes. Despite its critical role, RE continues to face persistent challenges, such as ambiguity, conflicting stakeholder needs, and the complexity of managing evolving requirements. A common view is that Artificial Intelligence (AI) has the potential to streamline the RE process, resulting in improved efficiency, accuracy, and management actions. However, using AI also introduces new concerns, such as ethical issues, biases, and lack of transparency. This paper explores how AI can enhance traditional RE practices by automating labor-intensive tasks, supporting requirement prioritization, and facilitating collaboration between stakeholders and AI systems. The paper also describes the opportunities and challenges that AI brings to RE. In particular, the vision calls for ethical practices in AI, along with a much-enhanced collaboration between academia and industry professionals. The focus should be on creating not only powerful but also trustworthy and practical AI solutions ready to adapt to the fast-paced world of software development.
comment: Accepted at SEAA 2025. Appearing in Springer LNCS 16081, pages 164-180
☆ Adaptive Weighted Loss for Sequential Recommendations on Sparse Domains
The effectiveness of single-model sequential recommendation architectures, while scalable, is often limited when catering to "power users" in sparse or niche domains. Our previous research, PinnerFormerLite, addressed this by using a fixed weighted loss to prioritize specific domains. However, this approach can be sub-optimal, as a single, uniform weight may not be sufficient for domains with very few interactions, where the training signal is easily diluted by the vast, generic dataset. This paper proposes a novel, data-driven approach: a Dynamic Weighted Loss function with comprehensive theoretical foundations and extensive empirical validation. We introduce an adaptive algorithm that adjusts the loss weight for each domain based on its sparsity in the training data, assigning a higher weight to sparser domains and a lower weight to denser ones. This ensures that even rare user interests contribute a meaningful gradient signal, preventing them from being overshadowed. We provide rigorous theoretical analysis including convergence proofs, complexity analysis, and bounds analysis to establish the stability and efficiency of our approach. Our comprehensive empirical validation across four diverse datasets (MovieLens, Amazon Electronics, Yelp Business, LastFM Music) with state-of-the-art baselines (SIGMA, CALRec, SparseEnNet) demonstrates that this dynamic weighting system significantly outperforms all comparison methods, particularly for sparse domains, achieving substantial lifts in key metrics like Recall at 10 and NDCG at 10 while maintaining performance on denser domains and introducing minimal computational overhead.
☆ GDPval: Evaluating AI Model Performance on Real-World Economically Valuable Tasks
We introduce GDPval, a benchmark evaluating AI model capabilities on real-world economically valuable tasks. GDPval covers the majority of U.S. Bureau of Labor Statistics Work Activities for 44 occupations across the top 9 sectors contributing to U.S. GDP (Gross Domestic Product). Tasks are constructed from the representative work of industry professionals with an average of 14 years of experience. We find that frontier model performance on GDPval is improving roughly linearly over time, and that the current best frontier models are approaching industry experts in deliverable quality. We analyze the potential for frontier models, when paired with human oversight, to perform GDPval tasks cheaper and faster than unaided experts. We also demonstrate that increased reasoning effort, increased task context, and increased scaffolding improves model performance on GDPval. Finally, we open-source a gold subset of 220 tasks and provide a public automated grading service at evals.openai.com to facilitate future research in understanding real-world model capabilities.
☆ Just-in-time Episodic Feedback Hinter: Leveraging Offline Knowledge to Improve LLM Agents Adaptation
Large language model (LLM) agents perform well in sequential decision-making tasks, but improving them on unfamiliar domains often requires costly online interactions or fine-tuning on large expert datasets. These strategies are impractical for closed-source models and expensive for open-source ones, with risks of catastrophic forgetting. Offline trajectories offer reusable knowledge, yet demonstration-based methods struggle because raw traces are long, noisy, and tied to specific tasks. We present Just-in-time Episodic Feedback Hinter (JEF Hinter), an agentic system that distills offline traces into compact, context-aware hints. A zooming mechanism highlights decisive steps in long trajectories, capturing both strategies and pitfalls. Unlike prior methods, JEF Hinter leverages both successful and failed trajectories, extracting guidance even when only failure data is available, while supporting parallelized hint generation and benchmark-independent prompting. At inference, a retriever selects relevant hints for the current state, providing targeted guidance with transparency and traceability. Experiments on MiniWoB++, WorkArena-L1, and WebArena-Lite show that JEF Hinter consistently outperforms strong baselines, including human- and document-based hints.
☆ Speculative Actions: A Lossless Framework for Faster Agentic Systems
Despite growing interest in AI agents across industry and academia, their execution in an environment is often slow, hampering training, evaluation, and deployment. For example, a game of chess between two state-of-the-art agents may take hours. A critical bottleneck is that agent behavior unfolds sequentially: each action requires an API call, and these calls can be time-consuming. Inspired by speculative execution in microprocessors and speculative decoding in LLM inference, we propose speculative actions, a lossless framework for general agentic systems that predicts likely actions using faster models, enabling multiple steps to be executed in parallel. We evaluate this framework across three agentic environments: gaming, e-commerce, web search, and a "lossy" extension for an operating systems environment. In all cases, speculative actions achieve substantial accuracy in next-action prediction (up to 55%), translating into significant reductions in end-to-end latency. Moreover, performance can be further improved through stronger guessing models, top-K action prediction, multi-step speculation, and uncertainty-aware optimization, opening a promising path toward deploying low-latency agentic systems in the real world.
☆ NegotiationGym: Self-Optimizing Agents in a Multi-Agent Social Simulation Environment
We design and implement NegotiationGym, an API and user interface for configuring and running multi-agent social simulations focused upon negotiation and cooperation. The NegotiationGym codebase offers a user-friendly, configuration-driven API that enables easy design and customization of simulation scenarios. Agent-level utility functions encode optimization criteria for each agent, and agents can self-optimize by conducting multiple interaction rounds with other agents, observing outcomes, and modifying their strategies for future rounds.
comment: SocialSim Workshop at COLM 2025
☆ MacroBench: A Novel Testbed for Web Automation Scripts via Large Language Models NeurIPS 2025
We introduce MacroBench, a code-first benchmark that evaluates whether LLMs can synthesize reusable browser automation programs from natural language goals by reading HTML/DOM and emitting Python with Selenium. MacroBench instantiates seven self-hosted sites: Airbnb-like, TikTok-like, Reddit-like, Instagram-like, Facebook-like, Discord-like, and Threads-like, covering 681 tasks across interaction complexity and targeting difficulty. Our end-to-end protocol validates generated code via static checks, sandboxed execution, and outcome verification including DOM assertions and database snapshots, and includes a safety suite for scraping, spam/abuse, and credential/privacy prompts. Across 2636 model-task runs, we observe stratified success: GPT-4o-Mini achieves 96.8 percent, GPT-4.1 achieves 95.3 percent, Gemini-2.5-Pro achieves 89.0 percent, and DeepSeek-V3.1 achieves 83.4 percent. Models handle simple tasks reliably at 91.7 percent but fail on complex workflows at 0.0 percent, and none meet production-quality coding practices despite functional completion. We release our complete benchmark pipeline, evaluation framework, and experimental results to enable reproducible assessment of macro synthesis for web automation.
comment: NeurIPS 2025 Workshop on Lock-LLM
☆ Reliable and Scalable Robot Policy Evaluation with Imperfect Simulators
Rapid progress in imitation learning, foundation models, and large-scale datasets has led to robot manipulation policies that generalize to a wide-range of tasks and environments. However, rigorous evaluation of these policies remains a challenge. Typically in practice, robot policies are often evaluated on a small number of hardware trials without any statistical assurances. We present SureSim, a framework to augment large-scale simulation with relatively small-scale real-world testing to provide reliable inferences on the real-world performance of a policy. Our key idea is to formalize the problem of combining real and simulation evaluations as a prediction-powered inference problem, in which a small number of paired real and simulation evaluations are used to rectify bias in large-scale simulation. We then leverage non-asymptotic mean estimation algorithms to provide confidence intervals on mean policy performance. Using physics-based simulation, we evaluate both diffusion policy and multi-task fine-tuned \(\pi_0\) on a joint distribution of objects and initial conditions, and find that our approach saves over \(20-25\%\) of hardware evaluation effort to achieve similar bounds on policy performance.
☆ Challenge on Optimization of Context Collection for Code Completion
The rapid advancement of workflows and methods for software engineering using AI emphasizes the need for a systematic evaluation and analysis of their ability to leverage information from entire projects, particularly in large code bases. In this challenge on optimization of context collection for code completion, organized by JetBrains in collaboration with Mistral AI as part of the ASE 2025 conference, participants developed efficient mechanisms for collecting context from source code repositories to improve fill-in-the-middle code completions for Python and Kotlin. We constructed a large dataset of real-world code in these two programming languages using permissively licensed open-source projects. The submissions were evaluated based on their ability to maximize completion quality for multiple state-of-the-art neural models using the chrF metric. During the public phase of the competition, nineteen teams submitted solutions to the Python track and eight teams submitted solutions to the Kotlin track. In the private phase, six teams competed, of which five submitted papers to the workshop.
comment: 7 pages, 3 figures, 5 tables. A report on the Context Collection Workshop co-located with ASE'25
☆ Critical appraisal of artificial intelligence for rare-event recognition: principles and pharmacovigilance case studies
Many high-stakes AI applications target low-prevalence events, where apparent accuracy can conceal limited real-world value. Relevant AI models range from expert-defined rules and traditional machine learning to generative LLMs constrained for classification. We outline key considerations for critical appraisal of AI in rare-event recognition, including problem framing and test set design, prevalence-aware statistical evaluation, robustness assessment, and integration into human workflows. In addition, we propose an approach to structured case-level examination (SCLE), to complement statistical performance evaluation, and a comprehensive checklist to guide procurement or development of AI models for rare-event recognition. We instantiate the framework in pharmacovigilance, drawing on three studies: rule-based retrieval of pregnancy-related reports; duplicate detection combining machine learning with probabilistic record linkage; and automated redaction of person names using an LLM. We highlight pitfalls specific to the rare-event setting including optimism from unrealistic class balance and lack of difficult positive controls in test sets - and show how cost-sensitive targets align model performance with operational value. While grounded in pharmacovigilance practice, the principles generalize to domains where positives are scarce and error costs may be asymmetric.
comment: 28 pages, 2 figures
☆ Pitch-Conditioned Instrument Sound Synthesis From an Interactive Timbre Latent Space
This paper presents a novel approach to neural instrument sound synthesis using a two-stage semi-supervised learning framework capable of generating pitch-accurate, high-quality music samples from an expressive timbre latent space. Existing approaches that achieve sufficient quality for music production often rely on high-dimensional latent representations that are difficult to navigate and provide unintuitive user experiences. We address this limitation through a two-stage training paradigm: first, we train a pitch-timbre disentangled 2D representation of audio samples using a Variational Autoencoder; second, we use this representation as conditioning input for a Transformer-based generative model. The learned 2D latent space serves as an intuitive interface for navigating and exploring the sound landscape. We demonstrate that the proposed method effectively learns a disentangled timbre space, enabling expressive and controllable audio generation with reliable pitch conditioning. Experimental results show the model's ability to capture subtle variations in timbre while maintaining a high degree of pitch accuracy. The usability of our method is demonstrated in an interactive web application, highlighting its potential as a step towards future music production environments that are both intuitive and creatively empowering: https://pgesam.faresschulz.com
comment: 8 pages, accepted to the Proceedings of the 28-th Int. Conf. on Digital Audio Effects (DAFx25) - demo: https://pgesam.faresschulz.com
☆ FairAgent: Democratizing Fairness-Aware Machine Learning with LLM-Powered Agents ICDM 2025
Training fair and unbiased machine learning models is crucial for high-stakes applications, yet it presents significant challenges. Effective bias mitigation requires deep expertise in fairness definitions, metrics, data preprocessing, and machine learning techniques. In addition, the complex process of balancing model performance with fairness requirements while properly handling sensitive attributes makes fairness-aware model development inaccessible to many practitioners. To address these challenges, we introduce FairAgent, an LLM-powered automated system that significantly simplifies fairness-aware model development. FairAgent eliminates the need for deep technical expertise by automatically analyzing datasets for potential biases, handling data preprocessing and feature engineering, and implementing appropriate bias mitigation strategies based on user requirements. Our experiments demonstrate that FairAgent achieves significant performance improvements while significantly reducing development time and expertise requirements, making fairness-aware machine learning more accessible to practitioners.
comment: Accepted by ICDM 2025 Demo Workshop
☆ On the Importance of Task Complexity in Evaluating LLM-Based Multi-Agent Systems
Large language model multi-agent systems (LLM-MAS) offer a promising paradigm for harnessing collective intelligence to achieve more advanced forms of AI behaviour. While recent studies suggest that LLM-MAS can outperform LLM single-agent systems (LLM-SAS) on certain tasks, the lack of systematic experimental designs limits the strength and generality of these conclusions. We argue that a principled understanding of task complexity, such as the degree of sequential reasoning required and the breadth of capabilities involved, is essential for assessing the effectiveness of LLM-MAS in task solving. To this end, we propose a theoretical framework characterising tasks along two dimensions: depth, representing reasoning length, and width, representing capability diversity. We theoretically examine a representative class of LLM-MAS, namely the multi-agent debate system, and empirically evaluate its performance in both discriminative and generative tasks with varying depth and width. Theoretical and empirical results show that the benefit of LLM-MAS over LLM-SAS increases with both task depth and width, and the effect is more pronounced with respect to depth. This clarifies when LLM-MAS are beneficial and provides a principled foundation for designing future LLM-MAS methods and benchmarks.
☆ Audit the Whisper: Detecting Steganographic Collusion in Multi-Agent LLMs
Multi-agent deployments of large language models (LLMs) are increasingly embedded in market, allocation, and governance workflows, yet covert coordination among agents can silently erode trust and social welfare. Existing audits are dominated by heuristics that lack theoretical guarantees, struggle to transfer across tasks, and seldom ship with the infrastructure needed for independent replication. We introduce \emph{Audit the Whisper}, a conference-grade research artifact that spans theory, benchmark design, detection, and reproducibility. Our contributions are: (i) a channel-capacity analysis showing how interventions such as paraphrase, rate limiting, and role permutation impose quantifiable capacity penalties -- operationalized via paired-run Kullback--Leibler diagnostics -- that tighten mutual-information thresholds with finite-sample guarantees; (ii) \textsc{ColludeBench}-v0, covering pricing, first-price auctions, and peer review with configurable covert schemes, deterministic manifests, and reward instrumentation; and (iii) a calibrated auditing pipeline that fuses cross-run mutual information, permutation invariance, watermark variance, and fairness-aware acceptance bias, each tuned to a \(10^{-3}\) false-positive budget. Across 600 audited runs spanning 12 intervention conditions, the union meta-test attains TPR~$=1$ with zero observed false alarms, while ablations surface the price-of-auditing trade-off and highlight fairness-driven colluders invisible to MI alone. We release regeneration scripts, seed-stamped manifests, and documentation so that external auditors can reproduce every figure and extend the framework with minimal effort.
comment: 8 pages, 0 figures
☆ SliceMoE: Routing Embedding Slices Instead of Tokens for Fine-Grained and Balanced Transformer Scaling EMNLP 2025
Mixture-of-Experts (MoE) layers scale transformers by routing tokens to a sparse subset of feed-forward experts. Token-level routing, however, assigns an entire semantic spectrum to each expert, creating capacity bottlenecks, load-balancing pathologies, and limited specialization. We introduce SliceMoE, an architecture that routes contiguous slices of a token's hidden vector. A d-dimensional embedding is partitioned into S slices, and for each slice, a lightweight shared router predicts the top-k experts. Experts operate on their assigned slices independently, and outputs are reassembled, maintaining per-token FLOP efficiency. Because slices from different tokens interleave within an expert, utilization is naturally smoother. We propose a slice-level capacity loss, cross-slice dropout, and efficient fused batched GEMM kernels. Experiments on WikiText-103 language modeling, WMT En-De translation, and three text-classification datasets show SliceMoE attains up to 1.7x faster inference than dense baselines, 12 to 18 percent lower perplexity than parameter-matched token-MoE, and improved expert balance, with interpretable expertise over syntactic versus semantic subspaces.
comment: EMNLP 2025 Main, 8 pages, 9 figures
Doctor-R1: Mastering Clinical Inquiry with Experiential Agentic Reinforcement Learning
The professionalism of a human doctor in outpatient service depends on two core abilities: the ability to make accurate medical decisions and the medical consultation skill to conduct strategic, empathetic patient inquiry. Existing Large Language Models (LLMs) have achieved remarkable accuracy on medical decision-making benchmarks. However, they often lack the ability to conduct the strategic and empathetic consultation, which is essential for real-world clinical scenarios. To address this gap, we propose Doctor-R1, an AI doctor agent trained to master both of the capabilities by ask high-yield questions and conduct strategic multi-turn inquiry to guide decision-making. Our framework introduces three key components: a multi-agent interactive environment, a two-tiered reward architecture that separately optimizes clinical decision-making and communicative inquiry skills, and an experience repository to ground policy learning in high-quality prior trajectories. We evaluate Doctor-R1 on OpenAI's HealthBench and MAQuE, assessed across multi-facet metrics, such as communication quality, user experience, and task accuracy. Remarkably, Doctor-R1 surpasses state-of-the-art open-source specialized LLMs by a substantial margin with higher parameter efficiency and outperforms powerful proprietary models. Furthermore, the human evaluations show a strong preference for Doctor-R1 to generate human-preferred clinical dialogue, demonstrating the effectiveness of the framework.
☆ GROK: From Quantitative Biomarkers to Qualitative Diagnosis via a Grounded MLLM with Knowledge-Guided Instruction
Multimodal large language models (MLLMs) hold promise for integrating diverse data modalities, but current medical adaptations such as LLaVA-Med often fail to fully exploit the synergy between color fundus photography (CFP) and optical coherence tomography (OCT), and offer limited interpretability of quantitative biomarkers. We introduce GROK, a grounded multimodal large language model that jointly processes CFP, OCT, and text to deliver clinician-grade diagnoses of ocular and systemic disease. GROK comprises three core modules: Knowledge-Guided Instruction Generation, CLIP-Style OCT-Biomarker Alignment, and Supervised Instruction Fine-Tuning, which together establish a quantitative-to-qualitative diagnostic chain of thought, mirroring real clinical reasoning when producing detailed lesion annotations. To evaluate our approach, we introduce the Grounded Ophthalmic Understanding benchmark, which covers six disease categories and three tasks: macro-level diagnostic classification, report generation quality, and fine-grained clinical assessment of the generated chain of thought. Experiments show that, with only LoRA (Low-Rank Adaptation) fine-tuning of a 7B-parameter Qwen2 backbone, GROK outperforms comparable 7B and 32B baselines on both report quality and fine-grained clinical metrics, and even exceeds OpenAI o3. Code and data are publicly available in the GROK repository.
comment: 9 pages, 4 figures, 3 table. Equal contribution: Zhuangzhi Gao and Hongyi Qin. Corresponding author: Yalin Zheng (yzheng@liverpool.ac.uk)
☆ A KL-regularization framework for learning to plan with adaptive priors
Effective exploration remains a central challenge in model-based reinforcement learning (MBRL), particularly in high-dimensional continuous control tasks where sample efficiency is crucial. A prominent line of recent work leverages learned policies as proposal distributions for Model-Predictive Path Integral (MPPI) planning. Initial approaches update the sampling policy independently of the planner distribution, typically maximizing a learned value function with deterministic policy gradient and entropy regularization. However, because the states encountered during training depend on the MPPI planner, aligning the sampling policy with the planner improves the accuracy of value estimation and long-term performance. To this end, recent methods update the sampling policy by minimizing KL divergence to the planner distribution or by introducing planner-guided regularization into the policy update. In this work, we unify these MPPI-based reinforcement learning methods under a single framework by introducing Policy Optimization-Model Predictive Control (PO-MPC), a family of KL-regularized MBRL methods that integrate the planner's action distribution as a prior in policy optimization. By aligning the learned policy with the planner's behavior, PO-MPC allows more flexibility in the policy updates to trade off Return maximization and KL divergence minimization. We clarify how prior approaches emerge as special cases of this family, and we explore previously unstudied variations. Our experiments show that these extended configurations yield significant performance improvements, advancing the state of the art in MPPI-based RL.
comment: Preprint
☆ Scalable Causal Discovery from Recursive Nonlinear Data via Truncated Basis Function Scores and Tests
Learning graphical conditional independence structures from nonlinear, continuous or mixed data is a central challenge in machine learning and the sciences, and many existing methods struggle to scale to thousands of samples or hundreds of variables. We introduce two basis-expansion tools for scalable causal discovery. First, the Basis Function BIC (BF-BIC) score uses truncated additive expansions to approximate nonlinear dependencies. BF-BIC is theoretically consistent under additive models and extends to post-nonlinear (PNL) models via an invertible reparameterization. It remains robust under moderate interactions and supports mixed data through a degenerate-Gaussian embedding for discrete variables. In simulations with fully nonlinear neural causal models (NCMs), BF-BIC outperforms kernel- and constraint-based methods (e.g., KCI, RFCI) in both accuracy and runtime. Second, the Basis Function Likelihood Ratio Test (BF-LRT) provides an approximate conditional independence test that is substantially faster than kernel tests while retaining competitive accuracy. Extensive simulations and a real-data application to Canadian wildfire risk show that, when integrated into hybrid searches, BF-based methods enable interpretable and scalable causal discovery. Implementations are available in Python, R, and Java.
comment: 30 pages, 11 figures, 5 tables
☆ Closing the Loop: Coordinating Inventory and Recommendation via Deep Reinforcement Learning on Multiple Timescales
Effective cross-functional coordination is essential for enhancing firm-wide profitability, particularly in the face of growing organizational complexity and scale. Recent advances in artificial intelligence, especially in reinforcement learning (RL), offer promising avenues to address this fundamental challenge. This paper proposes a unified multi-agent RL framework tailored for joint optimization across distinct functional modules, exemplified via coordinating inventory replenishment and personalized product recommendation. We first develop an integrated theoretical model to capture the intricate interplay between these functions and derive analytical benchmarks that characterize optimal coordination. The analysis reveals synchronized adjustment patterns across products and over time, highlighting the importance of coordinated decision-making. Leveraging these insights, we design a novel multi-timescale multi-agent RL architecture that decomposes policy components according to departmental functions and assigns distinct learning speeds based on task complexity and responsiveness. Our model-free multi-agent design improves scalability and deployment flexibility, while multi-timescale updates enhance convergence stability and adaptability across heterogeneous decisions. We further establish the asymptotic convergence of the proposed algorithm. Extensive simulation experiments demonstrate that the proposed approach significantly improves profitability relative to siloed decision-making frameworks, while the behaviors of the trained RL agents align closely with the managerial insights from our theoretical model. Taken together, this work provides a scalable, interpretable RL-based solution to enable effective cross-functional coordination in complex business settings.
☆ LongTail-Swap: benchmarking language models' abilities on rare words
Children learn to speak with a low amount of data and can be taught new words on a few-shot basis, making them particularly data-efficient learners. The BabyLM challenge aims at exploring language model (LM) training in the low-data regime but uses metrics that concentrate on the head of the word distribution. Here, we introduce LongTail-Swap (LT-Swap), a benchmark that focuses on the tail of the distribution, i.e., measures the ability of LMs to learn new words with very little exposure, like infants do. LT-Swap is a pretraining corpus-specific test set of acceptable versus unacceptable sentence pairs that isolate semantic and syntactic usage of rare words. Models are evaluated in a zero-shot fashion by computing the average log probabilities over the two members of each pair. We built two such test sets associated with the 10M words and 100M words BabyLM training sets, respectively, and evaluated 16 models from the BabyLM leaderboard. Our results not only highlight the poor performance of language models on rare words but also reveal that performance differences across LM architectures are much more pronounced in the long tail than in the head. This offers new insights into which architectures are better at handling rare word generalization. We've also made the code publicly avail
☆ Don't Pass$\mathtt{@}k$: A Bayesian Framework for Large Language Model Evaluation
Pass$@k$ is widely used to report performance for LLM reasoning, but it often yields unstable, misleading rankings, especially when the number of trials (samples) is limited and compute is constrained. We present a principled Bayesian evaluation framework that replaces Pass$@k$ and average accuracy over $N$ trials (avg$@N$) with posterior estimates of a model's underlying success probability and credible intervals, yielding stable rankings and a transparent decision rule for differences. Evaluation outcomes are modeled as categorical (not just 0/1) with a Dirichlet prior, giving closed-form expressions for the posterior mean and uncertainty of any weighted rubric and enabling the use of prior evidence when appropriate. Theoretically, under a uniform prior, the Bayesian posterior mean is order-equivalent to average accuracy (Pass$@1$), explaining its empirical robustness while adding principled uncertainty. Empirically, in simulations with known ground-truth success rates and on AIME'24/'25, HMMT'25, and BrUMO'25, the Bayesian/avg procedure achieves faster convergence and greater rank stability than Pass$@k$ and recent variants, enabling reliable comparisons at far smaller sample counts. The framework clarifies when observed gaps are statistically meaningful (non-overlapping credible intervals) versus noise, and it naturally extends to graded, rubric-based evaluations. Together, these results recommend replacing Pass$@k$ for LLM evaluation and ranking with a posterior-based, compute-efficient protocol that unifies binary and non-binary evaluation while making uncertainty explicit. Code is available at https://mohsenhariri.github.io/bayes-kit
comment: Code and simulations: https://mohsenhariri.github.io/bayes-kit
☆ Efficient Latent Variable Causal Discovery: Combining Score Search and Targeted Testing
Learning causal structure from observational data is especially challenging when latent variables or selection bias are present. The Fast Causal Inference (FCI) algorithm addresses this setting but often performs exhaustive conditional independence tests across many subsets, leading to spurious independence claims, extra or missing edges, and unreliable orientations. We present a family of score-guided mixed-strategy causal search algorithms that build on this tradition. First, we introduce BOSS-FCI and GRaSP-FCI, straightforward variants of GFCI that substitute BOSS or GRaSP for FGES, thereby retaining correctness while incurring different scalability tradeoffs. Second, we develop FCI Targeted-testing (FCIT), a novel mixed-strategy method that improves upon these variants by replacing exhaustive all-subsets testing with targeted tests guided by BOSS, yielding well-formed PAGs with higher precision and efficiency. Finally, we propose a simple heuristic, LV-Dumb (also known as BOSS-POD), which bypasses latent-variable-specific reasoning and directly returns the PAG of the BOSS DAG. Although not strictly correct in the FCI sense, it scales better and often achieves superior accuracy in practice. Simulations and real-data analyses demonstrate that BOSS-FCI and GRaSP-FCI provide sound baselines, FCIT improves both efficiency and reliability, and LV-Dumb offers a practical heuristic with strong empirical performance. Together, these method highlight the value of score-guided and targeted strategies for scalable latent-variable causal discovery.
comment: 30 pages, 23 figures, 6 tables
☆ AgentTypo: Adaptive Typographic Prompt Injection Attacks against Black-box Multimodal Agents
Multimodal agents built on large vision-language models (LVLMs) are increasingly deployed in open-world settings but remain highly vulnerable to prompt injection, especially through visual inputs. We introduce AgentTypo, a black-box red-teaming framework that mounts adaptive typographic prompt injection by embedding optimized text into webpage images. Our automatic typographic prompt injection (ATPI) algorithm maximizes prompt reconstruction by substituting captioners while minimizing human detectability via a stealth loss, with a Tree-structured Parzen Estimator guiding black-box optimization over text placement, size, and color. To further enhance attack strength, we develop AgentTypo-pro, a multi-LLM system that iteratively refines injection prompts using evaluation feedback and retrieves successful past examples for continual learning. Effective prompts are abstracted into generalizable strategies and stored in a strategy repository, enabling progressive knowledge accumulation and reuse in future attacks. Experiments on the VWA-Adv benchmark across Classifieds, Shopping, and Reddit scenarios show that AgentTypo significantly outperforms the latest image-based attacks such as AgentAttack. On GPT-4o agents, our image-only attack raises the success rate from 0.23 to 0.45, with consistent results across GPT-4V, GPT-4o-mini, Gemini 1.5 Pro, and Claude 3 Opus. In image+text settings, AgentTypo achieves 0.68 ASR, also outperforming the latest baselines. Our findings reveal that AgentTypo poses a practical and potent threat to multimodal agents and highlight the urgent need for effective defense.
comment: 13 pages, 8 figures. Submitted to IEEE Transactions on Information Forensics & Security
☆ ContextVLA: Vision-Language-Action Model with Amortized Multi-Frame Context
Leveraging temporal context is crucial for success in partially observable robotic tasks. However, prior work in behavior cloning has demonstrated inconsistent performance gains when using multi-frame observations. In this paper, we introduce ContextVLA, a policy model that robustly improves robotic task performance by effectively leveraging multi-frame observations. Our approach is motivated by the key observation that Vision-Language-Action models (VLA), i.e., policy models built upon a Vision-Language Model (VLM), more effectively utilize multi-frame observations for action generation. This suggests that VLMs' inherent temporal understanding capability enables them to extract more meaningful context from multi-frame observations. However, the high dimensionality of video inputs introduces significant computational overhead, making VLA training and inference inefficient. To address this, ContextVLA compresses past observations into a single context token, allowing the policy to efficiently leverage temporal context for action generation. Our experiments show that ContextVLA consistently improves over single-frame VLAs and achieves the benefits of full multi-frame training but with reduced training and inference times.
comment: Project page: https://huiwon-jang.github.io/contextvla
☆ Concept-Based Masking: A Patch-Agnostic Defense Against Adversarial Patch Attacks
Adversarial patch attacks pose a practical threat to deep learning models by forcing targeted misclassifications through localized perturbations, often realized in the physical world. Existing defenses typically assume prior knowledge of patch size or location, limiting their applicability. In this work, we propose a patch-agnostic defense that leverages concept-based explanations to identify and suppress the most influential concept activation vectors, thereby neutralizing patch effects without explicit detection. Evaluated on Imagenette with a ResNet-50, our method achieves higher robust and clean accuracy than the state-of-the-art PatchCleanser, while maintaining strong performance across varying patch sizes and locations. Our results highlight the promise of combining interpretability with robustness and suggest concept-driven defenses as a scalable strategy for securing machine learning models against adversarial patch attacks.
comment: neurips workshop
☆ Diffusion-Assisted Distillation for Self-Supervised Graph Representation Learning with MLPs
For large-scale applications, there is growing interest in replacing Graph Neural Networks (GNNs) with lightweight Multi-Layer Perceptrons (MLPs) via knowledge distillation. However, distilling GNNs for self-supervised graph representation learning into MLPs is more challenging. This is because the performance of self-supervised learning is more related to the model's inductive bias than supervised learning. This motivates us to design a new distillation method to bridge a huge capacity gap between GNNs and MLPs in self-supervised graph representation learning. In this paper, we propose \textbf{D}iffusion-\textbf{A}ssisted \textbf{D}istillation for \textbf{S}elf-supervised \textbf{G}raph representation learning with \textbf{M}LPs (DAD-SGM). The proposed method employs a denoising diffusion model as a teacher assistant to better distill the knowledge from the teacher GNN into the student MLP. This approach enhances the generalizability and robustness of MLPs in self-supervised graph representation learning. Extensive experiments demonstrate that DAD-SGM effectively distills the knowledge of self-supervised GNNs compared to state-of-the-art GNN-to-MLP distillation methods. Our implementation is available at https://github.com/SeongJinAhn/DAD-SGM.
☆ Empowering Denoising Sequential Recommendation with Large Language Model Embeddings CIKM2025
Sequential recommendation aims to capture user preferences by modeling sequential patterns in user-item interactions. However, these models are often influenced by noise such as accidental interactions, leading to suboptimal performance. Therefore, to reduce the effect of noise, some works propose explicitly identifying and removing noisy items. However, we find that simply relying on collaborative information may result in an over-denoising problem, especially for cold items. To overcome these limitations, we propose a novel framework: Interest Alignment for Denoising Sequential Recommendation (IADSR) which integrates both collaborative and semantic information. Specifically, IADSR is comprised of two stages: in the first stage, we obtain the collaborative and semantic embeddings of each item from a traditional sequential recommendation model and an LLM, respectively. In the second stage, we align the collaborative and semantic embeddings and then identify noise in the interaction sequence based on long-term and short-term interests captured in the collaborative and semantic modalities. Our extensive experiments on four public datasets validate the effectiveness of the proposed framework and its compatibility with different sequential recommendation systems.
comment: Accepted by CIKM2025
Flexible Locomotion Learning with Diffusion Model Predictive Control
Legged locomotion demands controllers that are both robust and adaptable, while remaining compatible with task and safety considerations. However, model-free reinforcement learning (RL) methods often yield a fixed policy that can be difficult to adapt to new behaviors at test time. In contrast, Model Predictive Control (MPC) provides a natural approach to flexible behavior synthesis by incorporating different objectives and constraints directly into its optimization process. However, classical MPC relies on accurate dynamics models, which are often difficult to obtain in complex environments and typically require simplifying assumptions. We present Diffusion-MPC, which leverages a learned generative diffusion model as an approximate dynamics prior for planning, enabling flexible test-time adaptation through reward and constraint based optimization. Diffusion-MPC jointly predicts future states and actions; at each reverse step, we incorporate reward planning and impose constraint projection, yielding trajectories that satisfy task objectives while remaining within physical limits. To obtain a planning model that adapts beyond imitation pretraining, we introduce an interactive training algorithm for diffusion based planner: we execute our reward-and-constraint planner in environment, then filter and reweight the collected trajectories by their realized returns before updating the denoiser. Our design enables strong test-time adaptability, allowing the planner to adjust to new reward specifications without retraining. We validate Diffusion-MPC on real world, demonstrating strong locomotion and flexible adaptation.
comment: 9 pages, 8 figures
☆ Physics-Inspired All-Pair Interaction Learning for 3D Dynamics Modeling
Modeling 3D dynamics is a fundamental problem in multi-body systems across scientific and engineering domains and has important practical implications in trajectory prediction and simulation. While recent GNN-based approaches have achieved strong performance by enforcing geometric symmetries, encoding high-order features or incorporating neural-ODE mechanics, they typically depend on explicitly observed structures and inherently fail to capture the unobserved interactions that are crucial to complex physical behaviors and dynamics mechanism. In this paper, we propose PAINET, a principled SE(3)-equivariant neural architecture for learning all-pair interactions in multi-body systems. The model comprises: (1) a novel physics-inspired attention network derived from the minimization trajectory of an energy function, and (2) a parallel decoder that preserves equivariance while enabling efficient inference. Empirical results on diverse real-world benchmarks, including human motion capture, molecular dynamics, and large-scale protein simulations, show that PAINET consistently outperforms recently proposed models, yielding 4.7% to 41.5% error reductions in 3D dynamics prediction with comparable computation costs in terms of time and memory.
☆ When AI Gets Persuaded, Humans Follow: Inducing the Conformity Effect in Persuasive Dialogue
Recent advancements in AI have highlighted its application in captology, the field of using computers as persuasive technologies. We hypothesized that the "conformity effect," where individuals align with others' actions, also occurs with AI agents. This study verifies this hypothesis by introducing a "Persuadee Agent" that is persuaded alongside a human participant in a three-party persuasive dialogue with a Persuader Agent. We conducted a text-based dialogue experiment with human participants. We compared four conditions manipulating the Persuadee Agent's behavior (persuasion acceptance vs. non-acceptance) and the presence of an icebreaker session. Results showed that when the Persuadee Agent accepted persuasion, both perceived persuasiveness and actual attitude change significantly improved. Attitude change was greatest when an icebreaker was also used, whereas an unpersuaded AI agent suppressed attitude change. Additionally, it was confirmed that the persuasion acceptance of participants increased at the moment the Persuadee Agent was persuaded. These results suggest that appropriately designing a Persuadee Agent can improve persuasion through the conformity effect.
comment: 23 pages, 19 figures. International Conference on Human-Agent Interaction (HAI 2025), November 10-13, 2025, Yokohama, Japan
Zoom-In to Sort AI-Generated Images Out
The rapid growth of AI-generated imagery has blurred the boundary between real and synthetic content, raising critical concerns for digital integrity. Vision-language models (VLMs) offer interpretability through explanations but often fail to detect subtle artifacts in high-quality synthetic images. We propose ZoomIn, a two-stage forensic framework that improves both accuracy and interpretability. Mimicking human visual inspection, ZoomIn first scans an image to locate suspicious regions and then performs a focused analysis on these zoomed-in areas to deliver a grounded verdict. To support training, we introduce MagniFake, a dataset of 20,000 real and high-quality synthetic images annotated with bounding boxes and forensic explanations, generated through an automated VLM-based pipeline. Our method achieves 96.39% accuracy with robust generalization, while providing human-understandable explanations grounded in visual evidence.
comment: 9 pages, 6 images (19 pages, 11 figures including appendix)
☆ MASC: Boosting Autoregressive Image Generation with a Manifold-Aligned Semantic Clustering
Autoregressive (AR) models have shown great promise in image generation, yet they face a fundamental inefficiency stemming from their core component: a vast, unstructured vocabulary of visual tokens. This conventional approach treats tokens as a flat vocabulary, disregarding the intrinsic structure of the token embedding space where proximity often correlates with semantic similarity. This oversight results in a highly complex prediction task, which hinders training efficiency and limits final generation quality. To resolve this, we propose Manifold-Aligned Semantic Clustering (MASC), a principled framework that constructs a hierarchical semantic tree directly from the codebook's intrinsic structure. MASC employs a novel geometry-aware distance metric and a density-driven agglomerative construction to model the underlying manifold of the token embeddings. By transforming the flat, high-dimensional prediction task into a structured, hierarchical one, MASC introduces a beneficial inductive bias that significantly simplifies the learning problem for the AR model. MASC is designed as a plug-and-play module, and our extensive experiments validate its effectiveness: it accelerates training by up to 57% and significantly improves generation quality, reducing the FID of LlamaGen-XL from 2.87 to 2.58. MASC elevates existing AR frameworks to be highly competitive with state-of-the-art methods, establishing that structuring the prediction space is as crucial as architectural innovation for scalable generative modeling.
☆ MLLMEraser: Achieving Test-Time Unlearning in Multimodal Large Language Models through Activation Steering
Multimodal large language models (MLLMs) have demonstrated remarkable capabilities across vision-language tasks, yet their large-scale deployment raises pressing concerns about memorized private data, outdated knowledge, and harmful content. Existing unlearning approaches for MLLMs typically adapt training-based strategies such as gradient ascent or preference optimization, but these methods are computationally expensive, irreversible, and often distort retained knowledge. In this work, we propose MLLMEraser, an input-aware, training-free framework for test-time unlearning. Our approach leverages activation steering to enable dynamic knowledge erasure without parameter updates. Specifically, we construct a multimodal erasure direction by contrasting adversarially perturbed, knowledge-recall image-text pairs with knowledge-erasure counterparts, capturing both textual and visual discrepancies. To prevent unnecessary interference, we further design an input-aware steering mechanism that adaptively determines when and how the erasure direction should be applied, preserving utility on retained knowledge while enforcing forgetting on designated content. Experiments on LLaVA-1.5 and Qwen-2.5-VL demonstrate that MLLMEraser consistently outperforms state-of-the-art MLLM unlearning baselines, achieving stronger forgetting performance with lower computational cost and minimal utility degradation.
☆ Why Low-Precision Transformer Training Fails: An Analysis on Flash Attention
The pursuit of computational efficiency has driven the adoption of low-precision formats for training transformer models. However, this progress is often hindered by notorious training instabilities. This paper provides the first mechanistic explanation for a long-standing and unresolved failure case where training with flash attention in low-precision settings leads to catastrophic loss explosions. Our in-depth analysis reveals that the failure is not a random artifact but caused by two intertwined phenomena: the emergence of similar low-rank representations within the attention mechanism and the compounding effect of biased rounding errors inherent in low-precision arithmetic. We demonstrate how these factors create a vicious cycle of error accumulation that corrupts weight updates, ultimately derailing the training dynamics. To validate our findings, we introduce a minimal modification to the flash attention that mitigates the bias in rounding errors. This simple change stabilizes the training process, confirming our analysis and offering a practical solution to this persistent problem.
comment: 19 pages, 10 figures
☆ AgentRL: Scaling Agentic Reinforcement Learning with a Multi-Turn, Multi-Task Framework
Recent advances in large language models (LLMs) have sparked growing interest in building generalist agents that can learn through online interactions. However, applying reinforcement learning (RL) to train LLM agents in multi-turn, multi-task settings remains challenging due to lack of scalable infrastructure and stable training algorithms. In this work, we present the AgentRL framework for scalable multi-turn, multi-task agentic RL training. On the infrastructure side, AgentRL features a fully-asynchronous generation-training pipeline for efficient multi-turn RL. To support heterogeneous environment development in multi-task RL, we design a unified function-call based API interface, containerized environment development, and a centralized controller. On the algorithm side, we propose cross-policy sampling to encourage model exploration in multi-turn settings and task advantage normalization to stabilize multi-task training. Experiments show that AgentRL, trained on open LLMs across five agentic tasks, significantly outperforms GPT-5, Clause-Sonnet-4, DeepSeek-R1, and other open-source LLM agents. Multi-task training with AgentRL matches the best results among all task-specific models. AgentRL is open-sourced at https://github.com/THUDM/AgentRL. The algorithm and framework are adopted in building \textsc{\href{https://autoglm.zhipuai.cn}{AutoGLM}}.
☆ PolyKAN: A Polyhedral Analysis Framework for Provable and Minimal KAN Compression
Kolmogorov-Arnold Networks (KANs) have emerged as a promising alternative to traditional Multi-Layer Perceptrons (MLPs), offering enhanced interpretability and a strong mathematical foundation. However, their parameter efficiency remains a significant challenge for practical deployment. This paper introduces PolyKAN, a novel theoretical framework for KAN compression that provides formal guarantees on both model size reduction and approximation error. By leveraging the inherent piecewise polynomial structure of KANs, we formulate the compression problem as one of optimal polyhedral region merging. We establish a rigorous polyhedral characterization of KANs, develop a complete theory of $\epsilon$-equivalent compression, and design an optimal dynamic programming algorithm that guarantees minimal compression under specified error bounds. Our theoretical analysis demonstrates that PolyKAN achieves provably minimal compression while maintaining strict error control, with polynomial-time complexity in all network parameters. The framework provides the first formal foundation for KAN compression with mathematical guarantees, opening new directions for efficient deployment of interpretable neural architectures.
comment: 10
☆ CALM Before the STORM: Unlocking Native Reasoning for Optimization Modeling
Large Reasoning Models (LRMs) have demonstrated strong capabilities in complex multi-step reasoning, opening new opportunities for automating optimization modeling. However, existing domain adaptation methods, originally designed for earlier instruction-tuned models, often fail to exploit the advanced reasoning patterns of modern LRMs -- In particular, we show that direct fine-tuning on traditional \textit{non-reflective} datasets leads to limited gains. To fully leverage LRMs' inherent reasoning abilities, we propose \textbf{CALM} (\textit{Corrective Adaptation with Lightweight Modification}), a framework that progressively refines LRMs within their native reasoning modes for optimization modeling tasks. In CALM, an expert intervener identifies reasoning flaws and provides concise corrective hints, which the LRM incorporates to produce improved reasoning trajectories. These interventions modify fewer than 2.6\% of generated tokens, but generate high-quality data for soft adaptation through supervised fine-tuning. The adapted model is then further improved through reinforcement learning. Building on CALM, we develop \textbf{STORM} (\textit{Smart Thinking Optimization Reasoning Model}), a 4B-parameter LRM that achieves a new state-of-the-art average accuracy of 68.9\% across five popular optimization modeling benchmarks, matching the performance of a 671B LRM. These results demonstrate that dynamic, hint-based data synthesis both preserves and amplifies the native reasoning patterns of modern LRMs, offering a more effective and scalable path towards expert-level performance on challenging optimization modeling tasks.
comment: Work in progress
☆ World-To-Image: Grounding Text-to-Image Generation with Agent-Driven World Knowledge
While text-to-image (T2I) models can synthesize high-quality images, their performance degrades significantly when prompted with novel or out-of-distribution (OOD) entities due to inherent knowledge cutoffs. We introduce World-To-Image, a novel framework that bridges this gap by empowering T2I generation with agent-driven world knowledge. We design an agent that dynamically searches the web to retrieve images for concepts unknown to the base model. This information is then used to perform multimodal prompt optimization, steering powerful generative backbones toward an accurate synthesis. Critically, our evaluation goes beyond traditional metrics, utilizing modern assessments like LLMGrader and ImageReward to measure true semantic fidelity. Our experiments show that World-To-Image substantially outperforms state-of-the-art methods in both semantic alignment and visual aesthetics, achieving +8.1% improvement in accuracy-to-prompt on our curated NICE benchmark. Our framework achieves these results with high efficiency in less than three iterations, paving the way for T2I systems that can better reflect the ever-changing real world. Our demo code is available here\footnote{https://github.com/mhson-kyle/World-To-Image}.
☆ COSMO-RL: Towards Trustworthy LMRMs via Joint Safety and Stability
Large Multimodal Reasoning Models (LMRMs) are moving into real applications, where they must be both useful and safe. Safety is especially challenging in multimodal settings: images and text can be combined to bypass guardrails, and single objective training can cause policy drift that yields over-refusal on benign inputs or unsafe compliance on risky ones. We present COSMO-RL, a mixed reinforcement learning framework that trains reasoning oriented LMRMs under multimodal, multitask, and multiobjective signals, and we release the resulting model, COSMO-R1. Our approach aims to let safety and capability grow together in one stable pipeline rather than competing during alignment. In experiments, COSMO-R1 improves safety while maintaining-and often improving multimodal reasoning and instruction following, shows stronger robustness to multimodal jailbreaks, and reduces unnecessary refusals. The framework also transfers across backbones with consistent gains. Ablations support the design choices, indicating a simple path to advancing safety and general capability together in LMRMs.
☆ Constructing coherent spatial memory in LLM agents through graph rectification
Given a map description through global traversal navigation instructions (e.g., visiting each room sequentially with action signals such as north, west, etc.), an LLM can often infer the implicit spatial layout of the environment and answer user queries by providing a shortest path from a start to a destination (for instance, navigating from the lobby to a meeting room via the hall and elevator). However, such context-dependent querying becomes incapable as the environment grows much longer, motivating the need for incremental map construction that builds a complete topological graph from stepwise observations. We propose a framework for LLM-driven construction and map repair, designed to detect, localize, and correct structural inconsistencies in incrementally constructed navigation graphs. Central to our method is the Version Control, which records the full history of graph edits and their source observations, enabling fine-grained rollback, conflict tracing, and repair evaluation. We further introduce an Edge Impact Score to prioritize minimal-cost repairs based on structural reachability, path usage, and conflict propagation. To properly evaluate our approach, we create a refined version of the MANGO benchmark dataset by systematically removing non-topological actions and inherent structural conflicts, providing a cleaner testbed for LLM-driven construction and map repair. Our approach significantly improves map correctness and robustness, especially in scenarios with entangled or chained inconsistencies. Our results highlight the importance of introspective, history-aware repair mechanisms for maintaining coherent spatial memory in LLM agents.
☆ Cooperative Flexibility Exchange: Fair and Comfort-Aware Decentralized Resource Allocation
The growing electricity demand and increased use of smart appliances are placing new pressures on power grids, making efficient energy management more important than ever. The existing energy management systems often prioritize system efficiency (balanced energy demand and supply) at the expense of user comfort. This paper addresses this gap by proposing a novel decentralized multi-agent coordination-based demand-side management system. The proposed system enables individual agents to coordinate for demand-side energy optimization while improving the user comfort and maintaining the system efficiency. A key innovation of this work is the introduction of a slot exchange mechanism, where agents first receive optimized appliance-level energy consumption schedules and then coordinate with each other to adjust these schedules through slot exchanges. This approach improves user comfort even when agents show non-altruistic behaviour, and it scales well with large populations. The system also promotes fairness by balancing satisfaction levels across users. For performance evaluation, a real-world dataset is used, and the results demonstrate that the proposed slot exchange mechanism increases user comfort and fairness without raising system inefficiency cost, making it a practical and scalable solution for future smart grids.
☆ Finite Time Analysis of Constrained Natural Critic-Actor Algorithm with Improved Sample Complexity
Recent studies have increasingly focused on non-asymptotic convergence analyses for actor-critic (AC) algorithms. One such effort introduced a two-timescale critic-actor algorithm for the discounted cost setting using a tabular representation, where the usual roles of the actor and critic are reversed. However, only asymptotic convergence was established there. Subsequently, both asymptotic and non-asymptotic analyses of the critic-actor algorithm with linear function approximation were conducted. In our work, we introduce the first natural critic-actor algorithm with function approximation for the long-run average cost setting and under inequality constraints. We provide the non-asymptotic convergence guarantees for this algorithm. Our analysis establishes optimal learning rates and we also propose a modification to enhance sample complexity. We further show the results of experiments on three different Safety-Gym environments where our algorithm is found to be competitive in comparison with other well known algorithms.
☆ A Complement to Neural Networks for Anisotropic Inelasticity at Finite Strains
We propose a complement to constitutive modeling that augments neural networks with material principles to capture anisotropy and inelasticity at finite strains. The key element is a dual potential that governs dissipation, consistently incorporates anisotropy, and-unlike conventional convex formulations-satisfies the dissipation inequality without requiring convexity. Our neural network architecture employs invariant-based input representations in terms of mixed elastic, inelastic and structural tensors. It adapts Input Convex Neural Networks, and introduces Input Monotonic Neural Networks to broaden the admissible potential class. To bypass exponential-map time integration in the finite strain regime and stabilize the training of inelastic materials, we employ recurrent Liquid Neural Networks. The approach is evaluated at both material point and structural scales. We benchmark against recurrent models without physical constraints and validate predictions of deformation and reaction forces for unseen boundary value problems. In all cases, the method delivers accurate and stable performance beyond the training regime. The neural network and finite element implementations are available as open-source and are accessible to the public via https://doi.org/10.5281/zenodo.17199965.
comment: 40 pages, 19 figures
☆ Thinking on the Fly: Test-Time Reasoning Enhancement via Latent Thought Policy Optimization
Recent advancements in Large Language Models (LLMs) have shifted from explicit Chain-of-Thought (CoT) reasoning to more efficient latent reasoning, where intermediate thoughts are represented as vectors rather than text. However, latent reasoning can be brittle on challenging, out-of-distribution tasks where robust reasoning is most critical. To overcome these limitations, we introduce Latent Thought Policy Optimization (LTPO), a parameter-free framework that enhances LLM reasoning entirely at test time, without requiring model parameter updates. LTPO treats intermediate latent "thought" vectors as dynamic parameters that are actively optimized for each problem instance. It employs an online policy gradient method guided by an intrinsic, confidence-based reward signal computed directly from the frozen LLM's own output distributions, eliminating the need for external supervision or expensive text generation during optimization. Extensive experiments on five reasoning benchmarks show that LTPO not only matches or surpasses strong baselines on standard tasks but also demonstrates remarkable robustness where others fail. Most notably, on highly challenging AIME benchmarks where existing latent reasoning baselines collapse to near-zero accuracy, LTPO delivers substantial improvements, showcasing a unique capability for complex reasoning.
♻ ☆ Optimizing Agricultural Order Fulfillment Systems: A Hybrid Tree Search Approach
Efficient order fulfillment is vital in the agricultural industry, particularly due to the seasonal nature of seed supply chains. This paper addresses the challenge of optimizing seed orders fulfillment in a centralized warehouse where orders are processed in waves, taking into account the unpredictable arrival of seed stocks and strict order deadlines. We model the wave scheduling problem as a Markov decision process and propose an adaptive hybrid tree search algorithm that combines Monte Carlo tree search with domain-specific knowledge to efficiently navigate the complex, dynamic environment of seed distribution. By leveraging historical data and stochastic modeling, our method enables forecast-informed scheduling decisions that balance immediate requirements with long-term operational efficiency. The key idea is that we can augment Monte Carlo tree search algorithm with problem-specific side information that dynamically reduces the number of candidate actions at each decision step to handle the large state and action spaces that render traditional solution methods computationally intractable. Extensive simulations with realistic parameters, including a diverse range of products, a high volume of orders, and authentic seasonal durations, demonstrate that the proposed approach significantly outperforms existing industry standard methods.
♻ ☆ X-Teaming Evolutionary M2S: Automated Discovery of Multi-turn to Single-turn Jailbreak Templates NeurIPS 2025
Multi-turn-to-single-turn (M2S) compresses iterative red-teaming into one structured prompt, but prior work relied on a handful of manually written templates. We present X-Teaming Evolutionary M2S, an automated framework that discovers and optimizes M2S templates through language-model-guided evolution. The system pairs smart sampling from 12 sources with an LLM-as-judge inspired by StrongREJECT and records fully auditable logs. Maintaining selection pressure by setting the success threshold to $\theta = 0.70$, we obtain five evolutionary generations, two new template families, and 44.8% overall success (103/230) on GPT-4.1. A balanced cross-model panel of 2,500 trials (judge fixed) shows that structural gains transfer but vary by target; two models score zero at the same threshold. We also find a positive coupling between prompt length and score, motivating length-aware judging. Our results demonstrate that structure-level search is a reproducible route to stronger single-turn probes and underscore the importance of threshold calibration and cross-model evaluation. Code, configurations, and artifacts are available at https://github.com/hyunjun1121/M2S-x-teaming.
comment: NeurIPS 2025 Workshop on Lock-LLM
♻ ☆ FedMentor: Domain-Aware Differential Privacy for Heterogeneous Federated LLMs in Mental Health NeurIPS 2025
Privacy-preserving adaptation of Large Language Models (LLMs) in sensitive domains (e.g., mental health) requires balancing strict confidentiality with model utility and safety. We propose FedMentor, a federated fine-tuning framework that integrates Low-Rank Adaptation (LoRA) and domain-aware Differential Privacy (DP) to meet per-domain privacy budgets while maintaining performance. Each client (domain) applies a custom DP noise scale proportional to its data sensitivity, and the server adaptively reduces noise when utility falls below a threshold. In experiments on three mental health datasets, we show that FedMentor improves safety over standard Federated Learning (FL) without privacy, raising safe output rates by up to three points and lowering toxicity, while maintaining utility (BERTScore F1 and ROUGE-L) within 0.5% of the non-private baseline and close to the centralized upper bound. The framework scales to backbones with up to 1.7B parameters on single-GPU clients, requiring < 173 MB of communication per-round. FedMentor demonstrates a practical approach to privately fine-tune LLMs for safer deployments in healthcare and other sensitive fields.
comment: NeurIPS 2025 GenAI4Health Workshop
♻ ☆ J1: Incentivizing Thinking in LLM-as-a-Judge via Reinforcement Learning
The progress of AI is bottlenecked by the quality of evaluation, making powerful LLM-as-a-Judge models a core solution. The efficacy of these judges depends on their chain-of-thought reasoning, creating a critical need for methods that can effectively optimize this reasoning process. In this work, we introduce J1, a reinforcement learning framework for teaching LLM judges to think before making decisions. Our core contribution lies in converting all judgment tasks for non-verifiable and verifiable prompts into a unified format with verifiable rewards, enabling direct optimization of evaluation quality while mitigating positional bias. We then use RL to train thinking-judges at scales of 8B, 32B, and 70B and show that they obtain state-of-the-art performance across multiple benchmarks. In particular, J1-Qwen-32B, our multitasked pointwise and pairwise judge also outperforms o1-mini, o3, and a much larger 671B DeepSeek-R1 on some benchmarks, while only training on synthetic data. Through comprehensive ablations of pairwise, pointwise, and multitask J1 variants, we demonstrate the effectiveness of our approach across seed prompts, reward strategies, and training recipes. Qualitative analysis reveals that J1 develops systematic evaluation strategies, including dynamic criteria generation, reference answer creation, iterative self-correction of initial assessments, and feedback generation for low-quality responses.
comment: 10 pages, 13 tables, 14 figures
♻ ☆ Fun-ASR Technical Report
In recent years, automatic speech recognition (ASR) has witnessed transformative advancements driven by three complementary paradigms: data scaling, model size scaling, and deep integration with large language models (LLMs). However, LLMs are prone to hallucination, which can significantly degrade user experience in real-world ASR applications. In this paper, we present Fun-ASR, a large-scale, LLM-based ASR system that synergistically combines massive data, large model capacity, LLM integration, and reinforcement learning to achieve state-of-the-art performance across diverse and complex speech recognition scenarios. Moreover, Fun-ASR is specifically optimized for practical deployment, with enhancements in streaming capability, noise robustness, code-switching, hotword customization, and satisfying other real-world application requirements. Experimental results show that while most LLM-based ASR systems achieve strong performance on open-source benchmarks, they often underperform on real industry evaluation sets. Thanks to production-oriented optimizations, Fun-ASR achieves state-of-the-art performance on real application datasets, demonstrating its effectiveness and robustness in practical settings.
comment: Authors are listed in alphabetical order
♻ ☆ Do Sparse Subnetworks Exhibit Cognitively Aligned Attention? Effects of Pruning on Saliency Map Fidelity, Sparsity, and Concept Coherence
Prior works have shown that neural networks can be heavily pruned while preserving performance, but the impact of pruning on model interpretability remains unclear. In this work, we investigate how magnitude-based pruning followed by fine-tuning affects both low-level saliency maps and high-level concept representations. Using a ResNet-18 trained on ImageNette, we compare post-hoc explanations from Vanilla Gradients (VG) and Integrated Gradients (IG) across pruning levels, evaluating sparsity and faithfulness. We further apply CRAFT-based concept extraction to track changes in semantic coherence of learned concepts. Our results show that light-to-moderate pruning improves saliency-map focus and faithfulness while retaining distinct, semantically meaningful concepts. In contrast, aggressive pruning merges heterogeneous features, reducing saliency map sparsity and concept coherence despite maintaining accuracy. These findings suggest that while pruning can shape internal representations toward more human-aligned attention patterns, excessive pruning undermines interpretability.
comment: 4 pages, neurips workshop
♻ ☆ Exploring Applications of State Space Models and Advanced Training Techniques in Sequential Recommendations: A Comparative Study on Efficiency and Performance
Recommender systems aim to estimate the dynamically changing user preferences and sequential dependencies between historical user behaviour and metadata. Although transformer-based models have proven to be effective in sequential recommendations, their state growth is proportional to the length of the sequence that is being processed, which makes them expensive in terms of memory and inference costs. Our research focused on three promising directions in sequential recommendations: enhancing speed through the use of State Space Models (SSM), as they can achieve SOTA results in the sequential recommendations domain with lower latency, memory, and inference costs, as proposed by arXiv:2403.03900 improving the quality of recommendations with Large Language Models (LLMs) via Monolithic Preference Optimization without Reference Model (ORPO); and implementing adaptive batch- and step-size algorithms to reduce costs and accelerate training processes.
comment: arXiv admin note: text overlap with arXiv:2403.07691 by other authors
♻ ☆ QuIC: Quantum-Inspired Compound Adapters for Parameter Efficient Fine-Tuning
Scaling full finetuning of large foundation models strains GPU memory and training time. Parameter Efficient Fine-Tuning (PEFT) methods address this issue via adapter modules which update only a small subset of model parameters. In this work, we introduce Quantum-Inspired Compound Adapters (QuIC Adapters), a PEFT approach inspired from Hamming-weight preserving quantum circuits that can effectively finetune a model using less than 0.02\% memory footprint of the base model. QuIC adapters preserve pretrained representations by enforcing orthogonality in weight parameters, and have native deployment mechanisms on quantum computers. We test QuIC adapters by finetuning large language models like LLaMA and vision transformers on language, math, reasoning and vision benchmarks. In its first-order configuration, QuIC recovers the performance of existing orthogonal methods, while higher-order configurations enable substantial parameter compression (over 40x smaller than LoRA) for a modest performance trade-off, unlocking applications in highly resource-constrained environments. Through ablation studies, we determine that combining multiple Hamming-weight orders with orthogonality and matrix compounding are essential for performant finetuning. Our findings suggest that QuIC adapters offers a promising direction for efficient finetuning of foundation models in resource-constrained environments.
comment: 30 pages, 12 figures, 7 tables, ~8000 words
♻ ☆ On Zero-Shot Reinforcement Learning
Modern reinforcement learning (RL) systems capture deep truths about general, human problem-solving. In domains where new data can be simulated cheaply, these systems uncover sequential decision-making policies that far exceed the ability of any human. Society faces many problems whose solutions require this skill, but they are often in domains where new data cannot be cheaply simulated. In such scenarios, we can learn simulators from existing data, but these will only ever be approximately correct, and can be pathologically incorrect when queried outside of their training distribution. As a result, a misalignment between the environments in which we train our agents and the real-world in which we wish to deploy our agents is inevitable. Dealing with this misalignment is the primary concern of zero-shot reinforcement learning, a problem setting where the agent must generalise to a new task or domain with zero practice shots. Whilst impressive progress has been made on methods that perform zero-shot RL in idealised settings, new work is needed if these results are to be replicated in real-world settings. In this thesis, we argue that doing so requires us to navigate (at least) three constraints. First, the data quality constraint: real-world datasets are small and homogeneous. Second, the observability constraint: states, dynamics and rewards in the real-world are often only partially observed. And third, the data availability constraint: a priori access to data cannot always be assumed. This work proposes a suite of methods that perform zero-shot RL subject to these constraints. In a series of empirical studies we expose the failings of existing methods, and justify our techniques for remedying them. We believe these designs take us a step closer to RL methods that can be deployed to solve real-world problems.
comment: PhD thesis
♻ ☆ On amortizing convex conjugates for optimal transport ICLR 2023
This paper focuses on computing the convex conjugate (also known as the Legendre-Fenchel conjugate or c-transform) that appears in Euclidean Wasserstein-2 optimal transport. This conjugation is considered difficult to compute and in practice, methods are limited by not being able to exactly conjugate the dual potentials in continuous space. To overcome this, the computation of the conjugate can be approximated with amortized optimization, which learns a model to predict the conjugate. I show that combining amortized approximations to the conjugate with a solver for fine-tuning significantly improves the quality of transport maps learned for the Wasserstein-2 benchmark by Korotin et al. (2021a) and is able to model many 2-dimensional couplings and flows considered in the literature. All baselines, methods, and solvers are publicly available at http://github.com/facebookresearch/w2ot.
comment: ICLR 2023
♻ ☆ Language Agents Mirror Human Causal Reasoning Biases. How Can We Help Them Think Like Scientists?
Language model (LM) agents are increasingly used as autonomous decision-makers which need to actively gather information to guide their decisions. A crucial cognitive skill for such agents is the efficient exploration and understanding of the causal structure of the world -- key to robust, scientifically grounded reasoning. Yet, it remains unclear whether LMs possess this capability or exhibit systematic biases leading to erroneous conclusions. In this work, we examine LMs' ability to explore and infer causal relationships, using the well-established Blicket Test paradigm from developmental psychology. We find that LMs reliably infer the common, intuitive disjunctive causal relationships but systematically struggle with the unusual, yet equally (or sometimes even more) evidenced conjunctive ones. This "disjunctive bias" persists across model families, sizes, and prompting strategies, and performance further declines as task complexity increases. Interestingly, an analogous bias appears in human adults, suggesting that LMs may have inherited deep-seated reasoning heuristics from their training data. To this end, we quantify similarities between LMs and humans, finding that LMs exhibit adult-like inference profiles (but not child-like). Finally, we propose a test-time sampling method which explicitly samples and eliminates hypotheses about causal relationships from the LM. This scalable approach significantly reduces the disjunctive bias and moves LMs closer to the goal of scientific, causally rigorous reasoning.
comment: Conference on Language Modelling (COLM) 2025, Camera Ready
♻ ☆ TalkPlayData 2: An Agentic Synthetic Data Pipeline for Multimodal Conversational Music Recommendation
We present TalkPlayData 2, a synthetic dataset for multimodal conversational music recommendation generated by an agentic data pipeline. In the proposed pipeline, multiple large language model (LLM) agents are created under various roles with specialized prompts and access to different parts of information, and the chat data is acquired by logging the conversation between the Listener LLM and the Recsys LLM. To cover various conversation scenarios, for each conversation, the Listener LLM is conditioned on a finetuned conversation goal. Finally, all the LLMs are multimodal with audio and images, allowing a simulation of multimodal recommendation and conversation. In the LLM-as-a-judge and subjective evaluation experiments, TalkPlayData 2 achieved the proposed goal in various aspects related to training a generative recommendation model for music. TalkPlayData 2 and its generation code are open-sourced at https://talkpl.ai/talkplaydata2.
♻ ☆ MedAgentGym: A Scalable Agentic Training Environment for Code-Centric Reasoning in Biomedical Data Science
We introduce MedAgentGym, a scalable and interactive training environment designed to enhance coding-based biomedical reasoning capabilities in large language model (LLM) agents. MedAgentGym comprises 72,413 task instances across 129 categories derived from 12 authentic real-world biomedical scenarios. Tasks are encapsulated within executable sandbox environments, each featuring detailed task specifications, interactive feedback mechanisms, verifiable ground truth annotations, and scalable training trajectory generation. Extensive benchmarking of 29 LLMs reveals substantial performance disparities in biomedical data science between commercial and open-source LLMs. Leveraging efficient multi-threaded and multi-turn trajectory sampling in MedAgentGym, Med-Copilot achieves performance gains of +43.02% and +45.28% from offline and online reinforcement learning, respectively, demonstrating MedAgentGym as an effective training ground while establishing itself as a cost-effective, privacy-preserving alternative competitive with proprietary LLMs (gpt-4o). By offering a unified execution environment with a comprehensive benchmark and accessible, extensible training resources, MedAgentGym delivers an integrated platform to develop LLM-based coding assistants for advanced biomedical data science.
♻ ☆ VibE-SVC: Vibrato Extraction with High-frequency F0 Contour for Singing Voice Conversion
Controlling singing style is crucial for achieving an expressive and natural singing voice. Among the various style factors, vibrato plays a key role in conveying emotions and enhancing musical depth. However, modeling vibrato remains challenging due to its dynamic nature, making it difficult to control in singing voice conversion. To address this, we propose VibESVC, a controllable singing voice conversion model that explicitly extracts and manipulates vibrato using discrete wavelet transform. Unlike previous methods that model vibrato implicitly, our approach decomposes the F0 contour into frequency components, enabling precise transfer. This allows vibrato control for enhanced flexibility. Experimental results show that VibE-SVC effectively transforms singing styles while preserving speaker similarity. Both subjective and objective evaluations confirm high-quality conversion.
comment: Proceedings of Interspeech
♻ ☆ Network Formation and Dynamics Among Multi-LLMs
Social networks profoundly influence how humans form opinions, exchange information, and organize collectively. As large language models (LLMs) are increasingly embedded into social and professional environments, it is critical to understand whether their interactions approximate human-like network dynamics. We develop a framework to study the network formation behaviors of multiple LLM agents and benchmark them against human decisions. Across synthetic and real-world settings, including friendship, telecommunication, and employment networks, we find that LLMs consistently reproduce fundamental micro-level principles such as preferential attachment, triadic closure, and homophily, as well as macro-level properties including community structure and small-world effects. Importantly, the relative emphasis of these principles adapts to context: for example, LLMs favor homophily in friendship networks but heterophily in organizational settings, mirroring patterns of social mobility. A controlled human-subject survey confirms strong alignment between LLMs and human participants in link-formation decisions. These results establish that LLMs can serve as powerful tools for social simulation and synthetic data generation, while also raising critical questions about bias, fairness, and the design of AI systems that participate in human networks.
comment: Accepted at PNAS Nexus
♻ ☆ Periodontal Bone Loss Analysis via Keypoint Detection With Heuristic Post-Processing
This study proposes a deep learning framework and annotation methodology for the automatic detection of periodontal bone loss landmarks, associated conditions, and staging. 192 periapical radiographs were collected and annotated with a stage agnostic methodology, labelling clinically relevant landmarks regardless of disease presence or extent. We propose a heuristic post-processing module that aligns predicted keypoints to tooth boundaries using an auxiliary instance segmentation model. An evaluation metric, Percentage of Relative Correct Keypoints (PRCK), is proposed to capture keypoint performance in dental imaging domains. Four donor pose estimation models were adapted with fine-tuning for our keypoint problem. Post-processing improved fine-grained localisation, raising average PRCK^{0.05} by +0.028, but reduced coarse performance for PRCK^{0.25} by -0.0523 and PRCK^{0.5} by -0.0345. Orientation estimation shows excellent performance for auxiliary segmentation when filtered with either stage 1 object detection model. Periodontal staging was detected sufficiently, with the best mesial and distal Dice scores of 0.508 and 0.489, while furcation involvement and widened periodontal ligament space tasks remained challenging due to scarce positive samples. Scalability is implied with similar validation and external set performance. The annotation methodology enables stage agnostic training with balanced representation across disease severities for some detection tasks. The PRCK metric provides a domain-specific alternative to generic pose metrics, while the heuristic post-processing module consistently corrected implausible predictions with occasional catastrophic failures. The proposed framework demonstrates the feasibility of clinically interpretable periodontal bone loss assessment, with potential to reduce diagnostic variability and clinician workload.
comment: 18 pages, 7 tables, 9 figures, 1 equation, journal paper submitted to Computers in Biology and Medicine
♻ ☆ Refactoring Codebases through Library Design
Maintainable and general software allows developers to build robust applications efficiently, yet achieving these qualities often requires refactoring specialized solutions into reusable components. This challenge becomes particularly relevant as code agents become used to solve isolated one-off programming problems. We investigate code agents' capacity to refactor code in ways that support growth and reusability. We first investigate what makes a good refactoring, finding via simulation results and a human study that Minimum Description Length best correlates with preferable refactorings. We then present both a benchmark and a method for refactoring: MiniCode, a benchmark where multiple files must be refactored into a shared library, and Librarian, a sample-and-rerank method for generating reusable libraries. We compare Librarian to state-of-the-art library generation methods, and study it on real-world code bases.
comment: 29 pages
♻ ☆ Do Vision-Language Models See Urban Scenes as People Do? An Urban Perception Benchmark
Understanding how people read city scenes can inform design and planning. We introduce a small benchmark for testing vision-language models (VLMs) on urban perception using 100 Montreal street images, evenly split between photographs and photorealistic synthetic scenes. Twelve participants from seven community groups supplied 230 annotation forms across 30 dimensions mixing physical attributes and subjective impressions. French responses were normalized to English. We evaluated seven VLMs in a zero-shot setup with a structured prompt and deterministic parser. We use accuracy for single-choice items and Jaccard overlap for multi-label items; human agreement uses Krippendorff's alpha and pairwise Jaccard. Results suggest stronger model alignment on visible, objective properties than subjective appraisals. The top system (claude-sonnet) reaches macro 0.31 and mean Jaccard 0.48 on multi-label items. Higher human agreement coincides with better model scores. Synthetic images slightly lower scores. We release the benchmark, prompts, and harness for reproducible, uncertainty-aware evaluation in participatory urban analysis.
♻ ☆ Machine Learning as Iterated Belief Change a la Darwiche and Pearl
Artificial Neural Networks (ANNs) are powerful machine-learning models capable of capturing intricate non-linear relationships. They are widely used nowadays across numerous scientific and engineering domains, driving advancements in both research and real-world applications. In our recent work, we focused on the statics and dynamics of a particular subclass of ANNs, which we refer to as binary ANNs. A binary ANN is a feed-forward network in which both inputs and outputs are restricted to binary values, making it particularly suitable for a variety of practical use cases. Our previous study approached binary ANNs through the lens of belief-change theory, specifically the Alchourron, Gardenfors and Makinson (AGM) framework, yielding several key insights. Most notably, we demonstrated that the knowledge embodied in a binary ANN (expressed through its input-output behaviour) can be symbolically represented using a propositional logic language. Moreover, the process of modifying a belief set (through revision or contraction) was mapped onto a gradual transition through a series of intermediate belief sets. Analogously, the training of binary ANNs was conceptualized as a sequence of such belief-set transitions, which we showed can be formalized using full-meet AGM-style belief change. In the present article, we extend this line of investigation by addressing some critical limitations of our previous study. Specifically, we show that Dalal's method for belief change naturally induces a structured, gradual evolution of states of belief. More importantly, given the known shortcomings of full-meet belief change, we demonstrate that the training dynamics of binary ANNs can be more effectively modelled using robust AGM-style change operations -- namely, lexicographic revision and moderate contraction -- that align with the Darwiche-Pearl framework for iterated belief change.
comment: This second version incorporates improvements based on feedback from anonymous reviewers of a previous journal submission
♻ ☆ Advancing Brainwave Modeling with a Codebook-Based Foundation Model
Recent advances in large-scale pre-trained Electroencephalogram (EEG) models have shown great promise, driving progress in Brain-Computer Interfaces (BCIs) and healthcare applications. However, despite their success, many existing pre-trained models have struggled to fully capture the rich information content of neural oscillations, a limitation that fundamentally constrains their performance and generalizability across diverse BCI tasks. This limitation is frequently rooted in suboptimal architectural design choices which constrain their representational capacity. In this work, we introduce LaBraM++, an enhanced Large Brainwave Foundation Model (LBM) that incorporates principled improvements grounded in robust signal processing foundations. LaBraM++ demonstrates substantial gains across a variety of tasks, consistently outperforming its originally-based architecture and achieving competitive results when compared to other open-source LBMs. Its superior performance and training efficiency highlight its potential as a strong foundation for future advancements in LBMs.
♻ ☆ FrameMind: Frame-Interleaved Video Reasoning via Reinforcement Learning
Current video understanding models rely on fixed frame sampling strategies, processing predetermined visual inputs regardless of the specific reasoning requirements of each question. This static approach limits their ability to adaptively gather visual evidence, leading to suboptimal performance on tasks that require either broad temporal coverage or fine-grained spatial detail. In this paper, we introduce FrameMind, an end-to-end framework trained with reinforcement learning that enables models to dynamically request visual information during reasoning through Frame-Interleaved Chain-of-Thought (FiCOT). Unlike traditional approaches, FrameMind operates in multiple turns where the model alternates between textual reasoning and active visual perception, using tools to extract targeted frames or video clips based on identified knowledge gaps. To train effective dynamic sampling policies, we propose Dynamic Resolution Frame Sampling (DRFS), which exposes models to diverse temporal-spatial trade-offs during learning, and DRFS-GRPO, a group-relative policy optimization algorithm that learns from outcome-based rewards without requiring frame-level annotations. Extensive experiments on challenging benchmarks like MLVU and VideoMME demonstrate that our method significantly outperforms existing models, advancing the state of the art in flexible and efficient video understanding.
comment: Underreview
♻ ☆ Interpreting deep learning-based stellar mass estimation via causal analysis and mutual information decomposition
End-to-end deep learning models fed with multi-band galaxy images are powerful data-driven tools used to estimate galaxy physical properties in the absence of spectroscopy. However, due to a lack of interpretability and the associational nature of such models, it is difficult to understand how the information that is included in addition to integrated photometry (e.g., morphology) contributes to the estimation task. Improving our understanding in this field would enable further advances into unraveling the physical connections among galaxy properties and optimizing data exploitation. Therefore, our work is aimed at interpreting the deep learning-based estimation of stellar mass via two interpretability techniques: causal analysis and mutual information decomposition. The former reveals the causal paths between multiple variables beyond nondirectional statistical associations, while the latter quantifies the multicomponent contributions (i.e., redundant, unique, and synergistic) of different input data to the stellar mass estimation. Using data from the Sloan Digital Sky Survey (SDSS) and the Wide-field Infrared Survey Explorer (WISE), we obtained meaningful results that provide physical interpretations for image-based models. Our work demonstrates the gains from combining deep learning with interpretability techniques, and holds promise in promoting more data-driven astrophysical research (e.g., astrophysical parameter estimations and investigations on complex multivariate physical processes).
comment: Accepted at Astronomy & Astrophysics; 23 + 12 pages; 8 + 16 figures
♻ ☆ A Stitch in Time Saves Nine: Proactive Self-Refinement for Language Models
Recent advances in self-refinement have demonstrated significant potential for improving the outputs of large language models (LLMs) through iterative refinement. However, most existing self-refinement methods rely on a reactive process with a fixed number of iterations, making it difficult to determine the optimal timing and content of refinement based on the evolving generation context. Inspired by the way humans dynamically refine their thoughts during execution, we propose ProActive Self-Refinement (PASR), a novel method that enables LLMs to refine their outputs during the generation process. Unlike methods that regenerate entire responses, PASR proactively decides whether, when, and how to refine based on the model's internal state and evolving context. We conduct extensive experiments on a diverse set of 10 tasks to evaluate the effectiveness of PASR. Experimental results show that PASR significantly enhances problem-solving performance. In particular, on Qwen3-8B, PASR reduces average token consumption by 41.6% compared to standard generation, while also achieving an 8.2% improvement in accuracy. Our code and baselines used in the paper are available on GitHub.
♻ ☆ Quant Fever, Reasoning Blackholes, Schrodinger's Compliance, and More: Probing GPT-OSS-20B
OpenAI's GPT-OSS family provides open-weight language models with explicit chain-of-thought (CoT) reasoning and a Harmony prompt format. We summarize an extensive security evaluation of GPT-OSS-20B that probes the model's behavior under different adversarial conditions. Using the Jailbreak Oracle (JO) [1], a systematic LLM evaluation tool, the study uncovers several failure modes including quant fever, reasoning blackholes, Schrodinger's compliance, reasoning procedure mirage, and chain-oriented prompting. Experiments demonstrate how these behaviors can be exploited on the GPT-OSS-20B model, leading to severe consequences.
♻ ☆ Blending adversarial training and representation-conditional purification via aggregation improves adversarial robustness
In this work, we propose a novel adversarial defence mechanism for image classification - CARSO - blending the paradigms of adversarial training and adversarial purification in a synergistic robustness-enhancing way. The method builds upon an adversarially-trained classifier, and learns to map its internal representation associated with a potentially perturbed input onto a distribution of tentative clean reconstructions. Multiple samples from such distribution are classified by the same adversarially-trained model, and a carefully chosen aggregation of its outputs finally constitutes the robust prediction of interest. Experimental evaluation by a well-established benchmark of strong adaptive attacks, across different image datasets, shows that CARSO is able to defend itself against adaptive end-to-end white-box attacks devised for stochastic defences. Paying a modest clean accuracy toll, our method improves by a significant margin the state-of-the-art for Cifar-10, Cifar-100, and TinyImageNet-200 $\ell_\infty$ robust classification accuracy against AutoAttack. Code, and instructions to obtain pre-trained models are available at: https://github.com/emaballarin/CARSO .
comment: Published in Transactions on Machine Learning Research (09/2025). 25 pages, 1 figure, 19 tables
♻ ☆ Tabular Data: Is Deep Learning all you need?
Tabular data represent one of the most prevalent data formats in applied machine learning, largely because they accommodate a broad spectrum of real-world problems. Existing literature has studied many of the shortcomings of neural architectures on tabular data and has repeatedly confirmed the scalability and robustness of gradient-boosted decision trees across varied datasets. However, recent deep learning models have not been subjected to a comprehensive evaluation under conditions that allow for a fair comparison with existing classical approaches. This situation motivates an investigation into whether recent deep-learning paradigms outperform classical ML methods on tabular data. Our survey fills this gap by benchmarking seventeen state-of-the-art methods, spanning neural networks, classical ML and AutoML techniques. Our empirical results over 68 diverse datasets from a well-established benchmark indicate a paradigm shift, where Deep Learning methods outperform classical approaches.
♻ ☆ How Far are AI-generated Videos from Simulating the 3D Visual World: A Learned 3D Evaluation Approach ICCV 2025
Recent advancements in video diffusion models enable the generation of photorealistic videos with impressive 3D consistency and temporal coherence. However, the extent to which these AI-generated videos simulate the 3D visual world remains underexplored. In this paper, we introduce Learned 3D Evaluation (L3DE), an objective, quantifiable, and interpretable method for assessing AI-generated videos' ability to simulate the real world in terms of 3D visual qualities and consistencies, without requiring manually labeled defects or quality annotations. Instead of relying on 3D reconstruction, which is prone to failure with in-the-wild videos, L3DE employs a 3D convolutional network, trained on monocular 3D cues of motion, depth, and appearance, to distinguish real from synthetic videos. Confidence scores from L3DE quantify the gap between real and synthetic videos in terms of 3D visual coherence, while a gradient-based visualization pinpoints unrealistic regions, improving interpretability. We validate L3DE through extensive experiments, demonstrating strong alignment with 3D reconstruction quality and human judgments. Our evaluations on leading generative models (e.g., Kling, Sora, and MiniMax) reveal persistent simulation gaps and subtle inconsistencies. Beyond generative video assessment, L3DE extends to broader applications: benchmarking video generation models, serving as a deepfake detector, and enhancing video synthesis by inpainting flagged inconsistencies. Project page: https://justin-crchang.github.io/l3de-project-page/
comment: ICCV 2025
♻ ☆ INGRID: Intelligent Generative Robotic Design Using Large Language Models
The integration of large language models (LLMs) into robotic systems has accelerated progress in embodied artificial intelligence, yet current approaches remain constrained by existing robotic architectures, particularly serial mechanisms. This hardware dependency fundamentally limits the scope of robotic intelligence. Here, we present INGRID (Intelligent Generative Robotic Design), a framework that enables the automated design of parallel robotic mechanisms through deep integration with reciprocal screw theory and kinematic synthesis methods. We decompose the design challenge into four progressive tasks: constraint analysis, kinematic joint generation, chain construction, and complete mechanism design. INGRID demonstrates the ability to generate novel parallel mechanisms with both fixed and variable mobility, discovering kinematic configurations not previously documented in the literature. We validate our approach through three case studies demonstrating how INGRID assists users in designing task-specific parallel robots based on desired mobility requirements. By bridging the gap between mechanism theory and machine learning, INGRID enables researchers without specialized robotics training to create custom parallel mechanisms, thereby decoupling advances in robotic intelligence from hardware constraints. This work establishes a foundation for mechanism intelligence, where AI systems actively design robotic hardware, potentially transforming the development of embodied AI systems.
comment: We are revising it
♻ ☆ Your Models Have Thought Enough: Training Large Reasoning Models to Stop Overthinking
Large Reasoning Models (LRMs) have achieved impressive performance on challenging tasks, yet their deep reasoning often incurs substantial computational costs. To achieve efficient reasoning, existing reinforcement learning methods still struggle to construct short reasoning path during the rollout stage, limiting effective learning. Inspired by Evidence Accumulation Models, we find that LRMs have accumulated sufficient information early in reasoning, making further reasoning steps redundant. Based on this insight, we propose Just-Enough Thinking (JET), which trains models to proactively terminate unnecessary reasoning. JET performs trajectory truncation during rollout to expose the model to short, distributionally consistent reasoning paths. Besides, it uses a quality-controlled length reward to better encourage concise reasoning while maintaining correctness. Extensive experiments demonstrate that JET significantly improves reasoning efficiency without sacrificing accuracy. Especially, DeepSeek-Distill-Qwen-1.5B achieves a 4.6% accuracy gain while reducing output length by 46.3% on the Olympiad benchmark. Our code is available in the GitHub.
♻ ☆ TIME: A Multi-level Benchmark for Temporal Reasoning of LLMs in Real-World Scenarios NeurIPS 2025
Temporal reasoning is pivotal for Large Language Models (LLMs) to comprehend the real world. However, existing works neglect the real-world challenges for temporal reasoning: (1) intensive temporal information, (2) fast-changing event dynamics, and (3) complex temporal dependencies in social interactions. To bridge this gap, we propose a multi-level benchmark TIME, designed for temporal reasoning in real-world scenarios. TIME consists of 38,522 QA pairs, covering 3 levels with 11 fine-grained sub-tasks. This benchmark encompasses 3 sub-datasets reflecting different real-world challenges: TIME-Wiki, TIME-News, and TIME-Dial. We conduct extensive experiments on reasoning models and non-reasoning models. And we conducted an in-depth analysis of temporal reasoning performance across diverse real-world scenarios and tasks, and summarized the impact of test-time scaling on temporal reasoning capabilities. Additionally, we release TIME-Lite, a human-annotated subset to foster future research and standardized evaluation in temporal reasoning. The code is available at https://github.com/sylvain-wei/TIME , the dataset is available at https://huggingface.co/datasets/SylvainWei/TIME , and the project page link is https://sylvain-wei.github.io/TIME/ .
comment: Accepted by NeurIPS 2025 (Spotlight)
♻ ☆ Boundary on the Table: Efficient Black-Box Decision-Based Attacks for Structured Data
Adversarial robustness in structured data remains an underexplored frontier compared to vision and language domains. In this work, we introduce a novel black-box, decision-based adversarial attack tailored for tabular data. Our approach combines gradient-free direction estimation with an iterative boundary search, enabling efficient navigation of discrete and continuous feature spaces under minimal oracle access. Extensive experiments demonstrate that our method successfully compromises nearly the entire test set across diverse models, ranging from classical machine learning classifiers to large language model (LLM)-based pipelines. Remarkably, the attack achieves success rates consistently above 90%, while requiring only a small number of queries per instance. These results highlight the critical vulnerability of tabular models to adversarial perturbations, underscoring the urgent need for stronger defenses in real-world decision-making systems.
♻ ☆ Beyond holography: the entropic quantum gravity foundations of image processing
Recently, thanks to the development of artificial intelligence (AI) there is increasing scientific attention in establishing the connections between theoretical physics and AI. Traditionally, these connections have been focusing mostly on the relation between string theory and image processing and involve important theoretical paradigms such as holography. Recently G. Bianconi has formulated the Gravity from Entropy (GfE) approach to quantum gravity in which gravity is derived from the geometric quantum relative entropy (GQRE) between two metrics associated with the Lorentzian spacetime. Here it is demonstrated that the famous Perona-Malik algorithm for image processing is the gradient flow that maximizes the GfE action in its simple warm-up scenario. Specifically, this algorithm is the outcome of the maximization of the GfE action calculated between two Euclidean metrics: the one of the support of the image and the one induced by the image. As the Perona-Malik algorithm is known to preserve sharp contours, this implies that the GfE action, does not in general lead to uniform images upon iteration of the gradient flow dynamics as it would be intuitively expected from entropic actions maximising classical entropies. Rather, the outcome of the maximization of the GfE action is compatible with the preservation of complex structures. These results provide the geometrical and information theory foundations for the Perona-Malik algorithm and might contribute to establish deeper connections between GfE, machine learning and brain research.
comment: (7 pages, 1 figure)
Machine Learning 70
☆ Utility-Learning Tension in Self-Modifying Agents
As systems trend toward superintelligence, a natural modeling premise is that agents can self-improve along every facet of their own design. We formalize this with a five-axis decomposition and a decision layer, separating incentives from learning behavior and analyzing axes in isolation. Our central result identifies and introduces a sharp utility--learning tension, the structural conflict in self-modifying systems whereby utility-driven changes that improve immediate or expected performance can also erode the statistical preconditions for reliable learning and generalization. Our findings show that distribution-free guarantees are preserved iff the policy-reachable model family is uniformly capacity-bounded; when capacity can grow without limit, utility-rational self-changes can render learnable tasks unlearnable. Under standard assumptions common in practice, these axes reduce to the same capacity criterion, yielding a single boundary for safe self-modification. Numerical experiments across several axes validate the theory by comparing destructive utility policies against our proposed two-gate policies that preserve learnability.
☆ SECA: Semantically Equivalent and Coherent Attacks for Eliciting LLM Hallucinations NeurIPS 2025
Large Language Models (LLMs) are increasingly deployed in high-risk domains. However, state-of-the-art LLMs often produce hallucinations, raising serious concerns about their reliability. Prior work has explored adversarial attacks for hallucination elicitation in LLMs, but it often produces unrealistic prompts, either by inserting gibberish tokens or by altering the original meaning. As a result, these approaches offer limited insight into how hallucinations may occur in practice. While adversarial attacks in computer vision often involve realistic modifications to input images, the problem of finding realistic adversarial prompts for eliciting LLM hallucinations has remained largely underexplored. To address this gap, we propose Semantically Equivalent and Coherent Attacks (SECA) to elicit hallucinations via realistic modifications to the prompt that preserve its meaning while maintaining semantic coherence. Our contributions are threefold: (i) we formulate finding realistic attacks for hallucination elicitation as a constrained optimization problem over the input prompt space under semantic equivalence and coherence constraints; (ii) we introduce a constraint-preserving zeroth-order method to effectively search for adversarial yet feasible prompts; and (iii) we demonstrate through experiments on open-ended multiple-choice question answering tasks that SECA achieves higher attack success rates while incurring almost no constraint violations compared to existing methods. SECA highlights the sensitivity of both open-source and commercial gradient-inaccessible LLMs to realistic and plausible prompt variations. Code is available at https://github.com/Buyun-Liang/SECA.
comment: Accepted at NeurIPS 2025. Code is available at https://github.com/Buyun-Liang/SECA
☆ Time Is Effort: Estimating Human Post-Editing Time for Grammar Error Correction Tool Evaluation EMNLP 2025
Text editing can involve several iterations of revision. Incorporating an efficient Grammar Error Correction (GEC) tool in the initial correction round can significantly impact further human editing effort and final text quality. This raises an interesting question to quantify GEC Tool usability: How much effort can the GEC Tool save users? We present the first large-scale dataset of post-editing (PE) time annotations and corrections for two English GEC test datasets (BEA19 and CoNLL14). We introduce Post-Editing Effort in Time (PEET) for GEC Tools as a human-focused evaluation scorer to rank any GEC Tool by estimating PE time-to-correct. Using our dataset, we quantify the amount of time saved by GEC Tools in text editing. Analyzing the edit type indicated that determining whether a sentence needs correction and edits like paraphrasing and punctuation changes had the greatest impact on PE time. Finally, comparison with human rankings shows that PEET correlates well with technical effort judgment, providing a new human-centric direction for evaluating GEC tool usability. We release our dataset and code at: https://github.com/ankitvad/PEET_Scorer.
comment: Accepted for publication in the 4th HCI+NLP Workshop (Fourth Workshop on Bridging Human-Computer Interaction and Natural Language Processing; part of EMNLP 2025)
☆ Improving Consistency in Retrieval-Augmented Systems with Group Similarity Rewards NeurIPS 2025
RAG systems are increasingly deployed in high-stakes domains where users expect outputs to be consistent across semantically equivalent queries. However, existing systems often exhibit significant inconsistencies due to variability in both the retriever and generator (LLM), undermining trust and reliability. In this work, we focus on information consistency, i.e., the requirement that outputs convey the same core content across semantically equivalent inputs. We introduce a principled evaluation framework that decomposes RAG consistency into retriever-level, generator-level, and end-to-end components, helping identify inconsistency sources. To improve consistency, we propose Paraphrased Set Group Relative Policy Optimization (PS-GRPO), an RL approach that leverages multiple rollouts across paraphrased set to assign group similarity rewards. We leverage PS-GRPO to achieve Information Consistent RAG (Con-RAG), training the generator to produce consistent outputs across paraphrased queries and remain robust to retrieval-induced variability. Because exact reward computation over paraphrase sets is computationally expensive, we also introduce a scalable approximation method that retains effectiveness while enabling efficient, large-scale training. Empirical evaluations across short-form, multi-hop, and long-form QA benchmarks demonstrate that Con-RAG significantly improves both consistency and accuracy over strong baselines, even in the absence of explicit ground-truth supervision. Our work provides practical solutions for evaluating and building reliable RAG systems for safety-critical deployments.
comment: Accepted at NeurIPS 2025 Workshop on Reliable ML from Unreliable Data
☆ SSM-CGM: Interpretable State-Space Forecasting Model of Continuous Glucose Monitoring for Personalized Diabetes Management
Continuous glucose monitoring (CGM) generates dense data streams critical for diabetes management, but most used forecasting models lack interpretability for clinical use. We present SSM-CGM, a Mamba-based neural state-space forecasting model that integrates CGM and wearable activity signals from the AI-READI cohort. SSM-CGM improves short-term accuracy over a Temporal Fusion Transformer baseline, adds interpretability through variable selection and temporal attribution, and enables counterfactual forecasts simulating how planned changes in physiological signals (e.g., heart rate, respiration) affect near-term glucose. Together, these features make SSM-CGM an interpretable, physiologically grounded framework for personalized diabetes management.
comment: Shakson Isaac and Yentl Collin contributed equally
☆ Score-based Greedy Search for Structure Identification of Partially Observed Linear Causal Models
Identifying the structure of a partially observed causal system is essential to various scientific fields. Recent advances have focused on constraint-based causal discovery to solve this problem, and yet in practice these methods often face challenges related to multiple testing and error propagation. These issues could be mitigated by a score-based method and thus it has raised great attention whether there exists a score-based greedy search method that can handle the partially observed scenario. In this work, we propose the first score-based greedy search method for the identification of structure involving latent variables with identifiability guarantees. Specifically, we propose Generalized N Factor Model and establish the global consistency: the true structure including latent variables can be identified up to the Markov equivalence class by using score. We then design Latent variable Greedy Equivalence Search (LGES), a greedy search algorithm for this class of model with well-defined operators, which search very efficiently over the graph space to find the optimal structure. Our experiments on both synthetic and real-life data validate the effectiveness of our method (code will be publicly available).
☆ TCR-EML: Explainable Model Layers for TCR-pMHC Prediction
T cell receptor (TCR) recognition of peptide-MHC (pMHC) complexes is a central component of adaptive immunity, with implications for vaccine design, cancer immunotherapy, and autoimmune disease. While recent advances in machine learning have improved prediction of TCR-pMHC binding, the most effective approaches are black-box transformer models that cannot provide a rationale for predictions. Post-hoc explanation methods can provide insight with respect to the input but do not explicitly model biochemical mechanisms (e.g. known binding regions), as in TCR-pMHC binding. ``Explain-by-design'' models (i.e., with architectural components that can be examined directly after training) have been explored in other domains, but have not been used for TCR-pMHC binding. We propose explainable model layers (TCR-EML) that can be incorporated into protein-language model backbones for TCR-pMHC modeling. Our approach uses prototype layers for amino acid residue contacts drawn from known TCR-pMHC binding mechanisms, enabling high-quality explanations for predicted TCR-pMHC binding. Experiments of our proposed method on large-scale datasets demonstrate competitive predictive accuracy and generalization, and evaluation on the TCR-XAI benchmark demonstrates improved explainability compared with existing approaches.
☆ Categorical Invariants of Learning Dynamics
Neural network training is typically viewed as gradient descent on a loss surface. We propose a fundamentally different perspective: learning is a structure-preserving transformation (a functor L) between the space of network parameters (Param) and the space of learned representations (Rep). This categorical framework reveals that different training runs producing similar test performance often belong to the same homotopy class (continuous deformation family) of optimization paths. We show experimentally that networks converging via homotopic trajectories generalize within 0.5% accuracy of each other, while non-homotopic paths differ by over 3%. The theory provides practical tools: persistent homology identifies stable minima predictive of generalization (R^2 = 0.82 correlation), pullback constructions formalize transfer learning, and 2-categorical structures explain when different optimization algorithms yield functionally equivalent models. These categorical invariants offer both theoretical insight into why deep learning works and concrete algorithmic principles for training more robust networks.
☆ Adaptive Weighted Loss for Sequential Recommendations on Sparse Domains
The effectiveness of single-model sequential recommendation architectures, while scalable, is often limited when catering to "power users" in sparse or niche domains. Our previous research, PinnerFormerLite, addressed this by using a fixed weighted loss to prioritize specific domains. However, this approach can be sub-optimal, as a single, uniform weight may not be sufficient for domains with very few interactions, where the training signal is easily diluted by the vast, generic dataset. This paper proposes a novel, data-driven approach: a Dynamic Weighted Loss function with comprehensive theoretical foundations and extensive empirical validation. We introduce an adaptive algorithm that adjusts the loss weight for each domain based on its sparsity in the training data, assigning a higher weight to sparser domains and a lower weight to denser ones. This ensures that even rare user interests contribute a meaningful gradient signal, preventing them from being overshadowed. We provide rigorous theoretical analysis including convergence proofs, complexity analysis, and bounds analysis to establish the stability and efficiency of our approach. Our comprehensive empirical validation across four diverse datasets (MovieLens, Amazon Electronics, Yelp Business, LastFM Music) with state-of-the-art baselines (SIGMA, CALRec, SparseEnNet) demonstrates that this dynamic weighting system significantly outperforms all comparison methods, particularly for sparse domains, achieving substantial lifts in key metrics like Recall at 10 and NDCG at 10 while maintaining performance on denser domains and introducing minimal computational overhead.
☆ GDPval: Evaluating AI Model Performance on Real-World Economically Valuable Tasks
We introduce GDPval, a benchmark evaluating AI model capabilities on real-world economically valuable tasks. GDPval covers the majority of U.S. Bureau of Labor Statistics Work Activities for 44 occupations across the top 9 sectors contributing to U.S. GDP (Gross Domestic Product). Tasks are constructed from the representative work of industry professionals with an average of 14 years of experience. We find that frontier model performance on GDPval is improving roughly linearly over time, and that the current best frontier models are approaching industry experts in deliverable quality. We analyze the potential for frontier models, when paired with human oversight, to perform GDPval tasks cheaper and faster than unaided experts. We also demonstrate that increased reasoning effort, increased task context, and increased scaffolding improves model performance on GDPval. Finally, we open-source a gold subset of 220 tasks and provide a public automated grading service at evals.openai.com to facilitate future research in understanding real-world model capabilities.
☆ Quantifying Ambiguity in Categorical Annotations: A Measure and Statistical Inference Framework
Human-generated categorical annotations frequently produce empirical response distributions (soft labels) that reflect ambiguity rather than simple annotator error. We introduce an ambiguity measure that maps a discrete response distribution to a scalar in the unit interval, designed to quantify aleatoric uncertainty in categorical tasks. The measure bears a close relationship to quadratic entropy (Gini-style impurity) but departs from those indices by treating an explicit "can't solve" category asymmetrically, thereby separating uncertainty arising from class-level indistinguishability from uncertainty due to explicit unresolvability. We analyze the measure's formal properties and contrast its behavior with a representative ambiguity measure from the literature. Moving beyond description, we develop statistical tools for inference: we propose frequentist point estimators for population ambiguity and derive the Bayesian posterior over ambiguity induced by Dirichlet priors on the underlying probability vector, providing a principled account of epistemic uncertainty. Numerical examples illustrate estimation, calibration, and practical use for dataset-quality assessment and downstream machine-learning workflows.
comment: Preprint, 20 pages in total, 7 figures
☆ From News to Returns: A Granger-Causal Hypergraph Transformer on the Sphere
We propose the Causal Sphere Hypergraph Transformer (CSHT), a novel architecture for interpretable financial time-series forecasting that unifies \emph{Granger-causal hypergraph structure}, \emph{Riemannian geometry}, and \emph{causally masked Transformer attention}. CSHT models the directional influence of financial news and sentiment on asset returns by extracting multivariate Granger-causal dependencies, which are encoded as directional hyperedges on the surface of a hypersphere. Attention is constrained via angular masks that preserve both temporal directionality and geometric consistency. Evaluated on S\&P 500 data from 2018 to 2023, including the 2020 COVID-19 shock, CSHT consistently outperforms baselines across return prediction, regime classification, and top-asset ranking tasks. By enforcing predictive causal structure and embedding variables in a Riemannian manifold, CSHT delivers both \emph{robust generalisation across market regimes} and \emph{transparent attribution pathways} from macroeconomic events to stock-level responses. These results suggest that CSHT is a principled and practical solution for trustworthy financial forecasting under uncertainty.
comment: 6th ACM International Conference on AI in Finance
☆ Quantizer Design for Finite Model Approximations, Model Learning, and Quantized Q-Learning for MDPs with Unbounded Spaces
In this paper, for Markov decision processes (MDPs) with unbounded state spaces we present refined upper bounds presented in [Kara et. al. JMLR'23] on finite model approximation errors via optimizing the quantizers used for finite model approximations. We also consider implications on quantizer design for quantized Q-learning and empirical model learning, and the performance of policies obtained via Q-learning where the quantized state is treated as the state itself. We highlight the distinctions between planning, where approximating MDPs can be independently designed, and learning (either via Q-learning or empirical model learning), where approximating MDPs are restricted to be defined by invariant measures of Markov chains under exploration policies, leading to significant subtleties on quantizer design performance, even though asymptotic near optimality can be established under both setups. In particular, under Lyapunov growth conditions, we obtain explicit upper bounds which decay to zero as the number of bins approaches infinity.
☆ Challenge on Optimization of Context Collection for Code Completion
The rapid advancement of workflows and methods for software engineering using AI emphasizes the need for a systematic evaluation and analysis of their ability to leverage information from entire projects, particularly in large code bases. In this challenge on optimization of context collection for code completion, organized by JetBrains in collaboration with Mistral AI as part of the ASE 2025 conference, participants developed efficient mechanisms for collecting context from source code repositories to improve fill-in-the-middle code completions for Python and Kotlin. We constructed a large dataset of real-world code in these two programming languages using permissively licensed open-source projects. The submissions were evaluated based on their ability to maximize completion quality for multiple state-of-the-art neural models using the chrF metric. During the public phase of the competition, nineteen teams submitted solutions to the Python track and eight teams submitted solutions to the Kotlin track. In the private phase, six teams competed, of which five submitted papers to the workshop.
comment: 7 pages, 3 figures, 5 tables. A report on the Context Collection Workshop co-located with ASE'25
☆ Unmasking Backdoors: An Explainable Defense via Gradient-Attention Anomaly Scoring for Pre-trained Language Models
Pre-trained language models have achieved remarkable success across a wide range of natural language processing (NLP) tasks, particularly when fine-tuned on large, domain-relevant datasets. However, they remain vulnerable to backdoor attacks, where adversaries embed malicious behaviors using trigger patterns in the training data. These triggers remain dormant during normal usage, but, when activated, can cause targeted misclassifications. In this work, we investigate the internal behavior of backdoored pre-trained encoder-based language models, focusing on the consistent shift in attention and gradient attribution when processing poisoned inputs; where the trigger token dominates both attention and gradient signals, overriding the surrounding context. We propose an inference-time defense that constructs anomaly scores by combining token-level attention and gradient information. Extensive experiments on text classification tasks across diverse backdoor attack scenarios demonstrate that our method significantly reduces attack success rates compared to existing baselines. Furthermore, we provide an interpretability-driven analysis of the scoring mechanism, shedding light on trigger localization and the robustness of the proposed defense.
comment: 15 pages total (9 pages main text + 4 pages appendix + references), 12 figures, preprint version. The final version may differ
☆ Environment-Aware Indoor LoRaWAN Path Loss: Parametric Regression Comparisons, Shadow Fading, and Calibrated Fade Margins
Indoor LoRaWAN propagation is shaped by structural and time-varying context factors, which challenge log-distance models and the assumption of log-normal shadowing. We present an environment-aware, statistically disciplined path loss framework evaluated using leakage-safe cross-validation on a 12-month campaign in an eighth-floor office measuring 240 m^2. A log-distance multi-wall mean is augmented with environmental covariates (relative humidity, temperature, carbon dioxide, particulate matter, and barometric pressure), as well as the signal-to-noise ratio. We compare multiple linear regression with regularized variants, Bayesian linear regression, and a selective second-order polynomial applied to continuous drivers. Predictor relevance is established using heteroscedasticity-robust Type II and III analysis of variance and nested partial F tests. Shadow fading is profiled with kernel density estimation and non-parametric families, including Normal, Skew-Normal, Student's t, and Gaussian mixtures. The polynomial mean reduces cross-validated RMSE from 8.07 to 7.09 dB and raises R^2 from 0.81 to 0.86. Out-of-fold residuals are non-Gaussian; a 3-component mixture captures a sharp core with a light, broad tail. We convert accuracy into reliability by prescribing the fade margin as the upper-tail quantile of cross-validated residuals, quantifying uncertainty via a moving-block bootstrap, and validating on a held-out set. At 99% packet delivery ratio, the environment-aware polynomial requires 25.7 dB versus 27.7 to 27.9 dB for linear baselines. This result presents a deployment-ready, interpretable workflow with calibrated reliability control for indoor Internet of Things planning, aligned with 6G targets.
comment: Code: https://github.com/nahshonmokua/LoRaWAN-Indoor-PL-parametrics
☆ Learning to Predict Chaos: Curriculum-Driven Training for Robust Forecasting of Chaotic Dynamics
Forecasting chaotic systems is a cornerstone challenge in many scientific fields, complicated by the exponential amplification of even infinitesimal prediction errors. Modern machine learning approaches often falter due to two opposing pitfalls: over-specializing on a single, well-known chaotic system (e.g., Lorenz-63), which limits generalizability, or indiscriminately mixing vast, unrelated time-series, which prevents the model from learning the nuances of any specific dynamical regime. We propose Curriculum Chaos Forecasting (CCF), a training paradigm that bridges this gap. CCF organizes training data based on fundamental principles of dynamical systems theory, creating a curriculum that progresses from simple, periodic behaviors to highly complex, chaotic dynamics. We quantify complexity using the largest Lyapunov exponent and attractor dimension, two well-established metrics of chaos. By first training a sequence model on predictable systems and gradually introducing more chaotic trajectories, CCF enables the model to build a robust and generalizable representation of dynamical behaviors. We curate a library of over 50 synthetic ODE/PDE systems to build this curriculum. Our experiments show that pre-training with CCF significantly enhances performance on unseen, real-world benchmarks. On datasets including Sunspot numbers, electricity demand, and human ECG signals, CCF extends the valid prediction horizon by up to 40% compared to random-order training and more than doubles it compared to training on real-world data alone. We demonstrate that this benefit is consistent across various neural architectures (GRU, Transformer) and provide extensive ablations to validate the importance of the curriculum's structure.
comment: MIT URTC Technical Paper (Oral), 5 pages, 4 figures
☆ Critical appraisal of artificial intelligence for rare-event recognition: principles and pharmacovigilance case studies
Many high-stakes AI applications target low-prevalence events, where apparent accuracy can conceal limited real-world value. Relevant AI models range from expert-defined rules and traditional machine learning to generative LLMs constrained for classification. We outline key considerations for critical appraisal of AI in rare-event recognition, including problem framing and test set design, prevalence-aware statistical evaluation, robustness assessment, and integration into human workflows. In addition, we propose an approach to structured case-level examination (SCLE), to complement statistical performance evaluation, and a comprehensive checklist to guide procurement or development of AI models for rare-event recognition. We instantiate the framework in pharmacovigilance, drawing on three studies: rule-based retrieval of pregnancy-related reports; duplicate detection combining machine learning with probabilistic record linkage; and automated redaction of person names using an LLM. We highlight pitfalls specific to the rare-event setting including optimism from unrealistic class balance and lack of difficult positive controls in test sets - and show how cost-sensitive targets align model performance with operational value. While grounded in pharmacovigilance practice, the principles generalize to domains where positives are scarce and error costs may be asymmetric.
comment: 28 pages, 2 figures
☆ Pitch-Conditioned Instrument Sound Synthesis From an Interactive Timbre Latent Space
This paper presents a novel approach to neural instrument sound synthesis using a two-stage semi-supervised learning framework capable of generating pitch-accurate, high-quality music samples from an expressive timbre latent space. Existing approaches that achieve sufficient quality for music production often rely on high-dimensional latent representations that are difficult to navigate and provide unintuitive user experiences. We address this limitation through a two-stage training paradigm: first, we train a pitch-timbre disentangled 2D representation of audio samples using a Variational Autoencoder; second, we use this representation as conditioning input for a Transformer-based generative model. The learned 2D latent space serves as an intuitive interface for navigating and exploring the sound landscape. We demonstrate that the proposed method effectively learns a disentangled timbre space, enabling expressive and controllable audio generation with reliable pitch conditioning. Experimental results show the model's ability to capture subtle variations in timbre while maintaining a high degree of pitch accuracy. The usability of our method is demonstrated in an interactive web application, highlighting its potential as a step towards future music production environments that are both intuitive and creatively empowering: https://pgesam.faresschulz.com
comment: 8 pages, accepted to the Proceedings of the 28-th Int. Conf. on Digital Audio Effects (DAFx25) - demo: https://pgesam.faresschulz.com
☆ DoRAN: Stabilizing Weight-Decomposed Low-Rank Adaptation via Noise Injection and Auxiliary Networks
Parameter-efficient fine-tuning (PEFT) methods have become the standard paradigm for adapting large-scale models. Among these techniques, Weight-Decomposed Low-Rank Adaptation (DoRA) has been shown to improve both the learning capacity and training stability of the vanilla Low-Rank Adaptation (LoRA) method by explicitly decomposing pre-trained weights into magnitude and directional components. In this work, we propose DoRAN, a new variant of DoRA designed to further stabilize training and boost the sample efficiency of DoRA. Our approach includes two key stages: (i) injecting noise into the denominator of DoRA's weight decomposition, which serves as an adaptive regularizer to mitigate instabilities; and (ii) replacing static low-rank matrices with auxiliary networks that generate them dynamically, enabling parameter coupling across layers and yielding better sample efficiency in both theory and practice. Comprehensive experiments on vision and language benchmarks show that DoRAN consistently outperforms LoRA, DoRA, and other PEFT baselines. These results underscore the effectiveness of combining stabilization through noise-based regularization with network-based parameter generation, offering a promising direction for robust and efficient fine-tuning of foundation models.
comment: Nghiem T. Diep, Hien Dang, and Tuan Truong contributed equally to this work
☆ Arithmetic-Mean $μ$P for Modern Architectures: A Unified Learning-Rate Scale for CNNs and ResNets ICLR 2026
Choosing an appropriate learning rate remains a key challenge in scaling depth of modern deep networks. The classical maximal update parameterization ($\mu$P) enforces a fixed per-layer update magnitude, which is well suited to homogeneous multilayer perceptrons (MLPs) but becomes ill-posed in heterogeneous architectures where residual accumulation and convolutions introduce imbalance across layers. We introduce Arithmetic-Mean $\mu$P (AM-$\mu$P), which constrains not each individual layer but the network-wide average one-step pre-activation second moment to a constant scale. Combined with a residual-aware He fan-in initialization - scaling residual-branch weights by the number of blocks ($\mathrm{Var}[W]=c/(K\cdot \mathrm{fan\text{-}in})$) - AM-$\mu$P yields width-robust depth laws that transfer consistently across depths. We prove that, for one- and two-dimensional convolutional networks, the maximal-update learning rate satisfies $\eta^\star(L)\propto L^{-3/2}$; with zero padding, boundary effects are constant-level as $N\gg k$. For standard residual networks with general conv+MLP blocks, we establish $\eta^\star(L)=\Theta(L^{-3/2})$, with $L$ the minimal depth. Empirical results across a range of depths confirm the $-3/2$ scaling law and enable zero-shot learning-rate transfer, providing a unified and practical LR principle for convolutional and deep residual networks without additional tuning overhead.
comment: Preprint. Under review at ICLR 2026
☆ FoilDiff: A Hybrid Transformer Backbone for Diffusion-based Modelling of 2D Airfoil Flow Fields
The accurate prediction of flow fields around airfoils is crucial for aerodynamic design and optimisation. Computational Fluid Dynamics (CFD) models are effective but computationally expensive, thus inspiring the development of surrogate models to enable quicker predictions. These surrogate models can be based on deep learning architectures, such as Convolutional Neural Networks (CNNs), Graph Neural Networks (GNNs), and Diffusion Models (DMs). Diffusion models have shown significant promise in predicting complex flow fields. In this work, we propose FoilDiff, a diffusion-based surrogate model with a hybrid-backbone denoising network. This hybrid design combines the power of convolutional feature extraction and transformer-based global attention to generate more adaptable and accurate representations of flow structures. FoilDiff takes advantage of Denoising Diffusion Implicit Model (DDIM) sampling to optimise the efficiency of the sampling process at no additional cost to model generalisation. We used encoded representations of Reynolds number, angle of attack, and airfoil geometry to define the input space for generalisation across a wide range of aerodynamic conditions. When evaluated against state-of-the-art models, FoilDiff shows significant performance improvements, with mean prediction errors reducing by up to 85\% on the same datasets. The results have demonstrated that FoilDiff can provide both more accurate predictions and better-calibrated predictive uncertainty than existing diffusion-based models.
☆ Towards Fast Option Pricing PDE Solvers Powered by PIELM
Partial differential equation (PDE) solvers underpin modern quantitative finance, governing option pricing and risk evaluation. Physics-Informed Neural Networks (PINNs) have emerged as a promising approach for solving the forward and inverse problems of partial differential equations (PDEs) using deep learning. However they remain computationally expensive due to their iterative gradient descent based optimization and scale poorly with increasing model size. This paper introduces Physics-Informed Extreme Learning Machines (PIELMs) as fast alternative to PINNs for solving both forward and inverse problems in financial PDEs. PIELMs replace iterative optimization with a single least-squares solve, enabling deterministic and efficient training. We benchmark PIELM on the Black-Scholes and Heston-Hull-White models for forward pricing and demonstrate its capability in inverse model calibration to recover volatility and interest rate parameters from noisy data. From experiments we observe that PIELM achieve accuracy comparable to PINNs while being up to $30\times$ faster, highlighting their potential for real-time financial modeling.
comment: 6 Pages, 5 Figures, 3 Tables
☆ Read the Scene, Not the Script: Outcome-Aware Safety for LLMs
Safety-aligned Large Language Models (LLMs) still show two dominant failure modes: they are easily jailbroken, or they over-refuse harmless inputs that contain sensitive surface signals. We trace both to a common cause: current models reason weakly about links between actions and outcomes and over-rely on surface-form signals, lexical or stylistic cues that do not encode consequences. We define this failure mode as Consequence-blindness. To study consequence-blindness, we build a benchmark named CB-Bench covering four risk scenarios that vary whether semantic risk aligns with outcome risk, enabling evaluation under both matched and mismatched conditions which are often ignored by existing safety benchmarks. Mainstream models consistently fail to separate these risks and exhibit consequence-blindness, indicating that consequence-blindness is widespread and systematic. To mitigate consequence-blindness, we introduce CS-Chain-4k, a consequence-reasoning dataset for safety alignment. Models fine-tuned on CS-Chain-4k show clear gains against semantic-camouflage jailbreaks and reduce over-refusal on harmless inputs, while maintaining utility and generalization on other benchmarks. These results clarify the limits of current alignment, establish consequence-aware reasoning as a core alignment goal and provide a more practical and reproducible evaluation path.
☆ Adaptive Coverage Policies in Conformal Prediction
Traditional conformal prediction methods construct prediction sets such that the true label falls within the set with a user-specified coverage level. However, poorly chosen coverage levels can result in uninformative predictions, either producing overly conservative sets when the coverage level is too high, or empty sets when it is too low. Moreover, the fixed coverage level cannot adapt to the specific characteristics of each individual example, limiting the flexibility and efficiency of these methods. In this work, we leverage recent advances in e-values and post-hoc conformal inference, which allow the use of data-dependent coverage levels while maintaining valid statistical guarantees. We propose to optimize an adaptive coverage policy by training a neural network using a leave-one-out procedure on the calibration set, allowing the coverage level and the resulting prediction set size to vary with the difficulty of each individual example. We support our approach with theoretical coverage guarantees and demonstrate its practical benefits through a series of experiments.
comment: Code at: https://github.com/GauthierE/adaptive-coverage-policies
☆ FairAgent: Democratizing Fairness-Aware Machine Learning with LLM-Powered Agents ICDM 2025
Training fair and unbiased machine learning models is crucial for high-stakes applications, yet it presents significant challenges. Effective bias mitigation requires deep expertise in fairness definitions, metrics, data preprocessing, and machine learning techniques. In addition, the complex process of balancing model performance with fairness requirements while properly handling sensitive attributes makes fairness-aware model development inaccessible to many practitioners. To address these challenges, we introduce FairAgent, an LLM-powered automated system that significantly simplifies fairness-aware model development. FairAgent eliminates the need for deep technical expertise by automatically analyzing datasets for potential biases, handling data preprocessing and feature engineering, and implementing appropriate bias mitigation strategies based on user requirements. Our experiments demonstrate that FairAgent achieves significant performance improvements while significantly reducing development time and expertise requirements, making fairness-aware machine learning more accessible to practitioners.
comment: Accepted by ICDM 2025 Demo Workshop
☆ Crash Severity Prediction Using Deep Learning Approaches: A Hybrid CNN-RNN Framework
Accurate and timely prediction of crash severity is crucial in mitigating the severe consequences of traffic accidents. Accurate and timely prediction of crash severity is crucial in mitigating the severe consequences of traffic accidents. In order to provide appropriate levels of medical assistance and transportation services, an intelligent transportation system relies on effective prediction methods. Deep learning models have gained popularity in this domain due to their capability to capture non-linear relationships among variables. In this research, we have implemented a hybrid CNN-RNN deep learning model for crash severity prediction and compared its performance against widely used statistical and machine learning models such as logistic regression, na\"ive bayes classifier, K-Nearest Neighbors (KNN), decision tree, and individual deep learning models: RNN and CNN. This study employs a methodology that considers the interconnected relationships between various features of traffic accidents. The study was conducted using a dataset of 15,870 accident records gathered over a period of seven years between 2015 and 2021 on Virginia highway I-64. The findings demonstrate that the proposed CNN-RNN hybrid model has outperformed all benchmark models in terms of predicting crash severity. This result illustrates the effectiveness of the hybrid model as it combines the advantages of both RNN and CNN models in order to achieve greater accuracy in the prediction process.
☆ On the Importance of Task Complexity in Evaluating LLM-Based Multi-Agent Systems
Large language model multi-agent systems (LLM-MAS) offer a promising paradigm for harnessing collective intelligence to achieve more advanced forms of AI behaviour. While recent studies suggest that LLM-MAS can outperform LLM single-agent systems (LLM-SAS) on certain tasks, the lack of systematic experimental designs limits the strength and generality of these conclusions. We argue that a principled understanding of task complexity, such as the degree of sequential reasoning required and the breadth of capabilities involved, is essential for assessing the effectiveness of LLM-MAS in task solving. To this end, we propose a theoretical framework characterising tasks along two dimensions: depth, representing reasoning length, and width, representing capability diversity. We theoretically examine a representative class of LLM-MAS, namely the multi-agent debate system, and empirically evaluate its performance in both discriminative and generative tasks with varying depth and width. Theoretical and empirical results show that the benefit of LLM-MAS over LLM-SAS increases with both task depth and width, and the effect is more pronounced with respect to depth. This clarifies when LLM-MAS are beneficial and provides a principled foundation for designing future LLM-MAS methods and benchmarks.
☆ Activation Steering with a Feedback Controller
Controlling the behaviors of large language models (LLM) is fundamental to their safety alignment and reliable deployment. However, existing steering methods are primarily driven by empirical insights and lack theoretical performance guarantees. In this work, we develop a control-theoretic foundation for activation steering by showing that popular steering methods correspond to the proportional (P) controllers, with the steering vector serving as the feedback signal. Building on this finding, we propose Proportional-Integral-Derivative (PID) Steering, a principled framework that leverages the full PID controller for activation steering in LLMs. The proportional (P) term aligns activations with target semantic directions, the integral (I) term accumulates errors to enforce persistent corrections across layers, and the derivative (D) term mitigates overshoot by counteracting rapid activation changes. This closed-loop design yields interpretable error dynamics and connects activation steering to classical stability guarantees in control theory. Moreover, PID Steering is lightweight, modular, and readily integrates with state-of-the-art steering methods. Extensive experiments across multiple LLM families and benchmarks demonstrate that PID Steering consistently outperforms existing approaches, achieving more robust and reliable behavioral control.
comment: 9 pages in the main text. Under Review
☆ Wave-PDE Nets: Trainable Wave-Equation Layers as an Alternative to Attention PRICAI 2025
We introduce Wave-PDE Nets, a neural architecture whose elementary operation is a differentiable simulation of the second-order wave equation. Each layer propagates its hidden state as a continuous field through a medium with trainable spatial velocity c(x) and damping {\gamma}(x). A symplectic spectral solver based on FFTs realises this propagation in O(nlog n) time. This oscillatory, global mechanism provides a powerful alternative to attention and first-order state-space models. We prove that a single Wave-PDE layer is a universal approximator. On language and vision benchmarks, Wave-PDE Nets match or exceed Transformer performance while demonstrating superior practical efficiency, reducing wall-clock time by up to 30% and peak memory by 25%. Ablation studies confirm the critical role of symplectic integration and a spectral Laplacian for stability and performance. Visualizations of the learned physical parameters reveal that the model learns intuitive strategies for information propagation. These results position Wave-PDE Nets as a computationally efficient and robust architecture with a strong physical inductive bias.
comment: PRICAI 2025 Oral, 9 pages, 3 figures
☆ HoRA: Cross-Head Low-Rank Adaptation with Joint Hypernetworks
Low-Rank Adaptation (LoRA) is a parameter-efficient fine-tuning (PEFT) technique that adapts large pre-trained models by adding low-rank matrices to their weight updates. However, in the context of fine-tuning multi-head self-attention (MHA), LoRA has been employed to adapt each attention head separately, thereby overlooking potential synergies across different heads. To mitigate this issue, we propose a novel Hyper-shared Low-Rank Adaptation (HoRA) method, which utilizes joint hypernetworks to generate low-rank matrices across attention heads. By coupling their adaptation through a shared generator, HoRA encourages cross-head information sharing, and thus directly addresses the aforementioned limitation of LoRA. By comparing LoRA and HoRA through the lens of hierarchical mixture of experts, our theoretical findings reveal that the latter achieves superior sample efficiency to the former. Furthermore, through extensive experiments across diverse language and vision benchmarks, we demonstrate that HoRA outperforms LoRA and other PEFT methods while requiring only a marginal increase in the number of trainable parameters.
comment: Nghiem T. Diep, Dung Le, and Tuan Truong contributed equally to this work
☆ PABSA: Hybrid Framework for Persian Aspect-Based Sentiment Analysis
Sentiment analysis is a key task in Natural Language Processing (NLP), enabling the extraction of meaningful insights from user opinions across various domains. However, performing sentiment analysis in Persian remains challenging due to the scarcity of labeled datasets, limited preprocessing tools, and the lack of high-quality embeddings and feature extraction methods. To address these limitations, we propose a hybrid approach that integrates machine learning (ML) and deep learning (DL) techniques for Persian aspect-based sentiment analysis (ABSA). In particular, we utilize polarity scores from multilingual BERT as additional features and incorporate them into a decision tree classifier, achieving an accuracy of 93.34%-surpassing existing benchmarks on the Pars-ABSA dataset. Additionally, we introduce a Persian synonym and entity dictionary, a novel linguistic resource that supports text augmentation through synonym and named entity replacement. Our results demonstrate the effectiveness of hybrid modeling and feature augmentation in advancing sentiment analysis for low-resource languages such as Persian.
comment: 8 pages
☆ SliceMoE: Routing Embedding Slices Instead of Tokens for Fine-Grained and Balanced Transformer Scaling EMNLP 2025
Mixture-of-Experts (MoE) layers scale transformers by routing tokens to a sparse subset of feed-forward experts. Token-level routing, however, assigns an entire semantic spectrum to each expert, creating capacity bottlenecks, load-balancing pathologies, and limited specialization. We introduce SliceMoE, an architecture that routes contiguous slices of a token's hidden vector. A d-dimensional embedding is partitioned into S slices, and for each slice, a lightweight shared router predicts the top-k experts. Experts operate on their assigned slices independently, and outputs are reassembled, maintaining per-token FLOP efficiency. Because slices from different tokens interleave within an expert, utilization is naturally smoother. We propose a slice-level capacity loss, cross-slice dropout, and efficient fused batched GEMM kernels. Experiments on WikiText-103 language modeling, WMT En-De translation, and three text-classification datasets show SliceMoE attains up to 1.7x faster inference than dense baselines, 12 to 18 percent lower perplexity than parameter-matched token-MoE, and improved expert balance, with interpretable expertise over syntactic versus semantic subspaces.
comment: EMNLP 2025 Main, 8 pages, 9 figures
☆ Probing Geometry of Next Token Prediction Using Cumulant Expansion of the Softmax Entropy
We introduce a cumulant-expansion framework for quantifying how large language models (LLMs) internalize higher-order statistical structure during next-token prediction. By treating the softmax entropy of each layer's logit distribution as a perturbation around its "center" distribution, we derive closed-form cumulant observables that isolate successively higher-order correlations. Empirically, we track these cumulants in GPT-2 and Pythia models on Pile-10K prompts. (i) Structured prompts exhibit a characteristic rise-and-plateau profile across layers, whereas token-shuffled prompts remain flat, revealing the dependence of the cumulant profile on meaningful context. (ii) During training, all cumulants increase monotonically before saturating, directly visualizing the model's progression from capturing variance to learning skew, kurtosis, and higher-order statistical structures. (iii) Mathematical prompts show distinct cumulant signatures compared to general text, quantifying how models employ fundamentally different processing mechanisms for mathematical versus linguistic content. Together, these results establish cumulant analysis as a lightweight, mathematically grounded probe of feature-learning dynamics in high-dimensional neural networks.
comment: 14 pages, 7 figures. Poster at HiLD 2025: 3rd Workshop on High-dimensional Learning Dynamics
☆ A KL-regularization framework for learning to plan with adaptive priors
Effective exploration remains a central challenge in model-based reinforcement learning (MBRL), particularly in high-dimensional continuous control tasks where sample efficiency is crucial. A prominent line of recent work leverages learned policies as proposal distributions for Model-Predictive Path Integral (MPPI) planning. Initial approaches update the sampling policy independently of the planner distribution, typically maximizing a learned value function with deterministic policy gradient and entropy regularization. However, because the states encountered during training depend on the MPPI planner, aligning the sampling policy with the planner improves the accuracy of value estimation and long-term performance. To this end, recent methods update the sampling policy by minimizing KL divergence to the planner distribution or by introducing planner-guided regularization into the policy update. In this work, we unify these MPPI-based reinforcement learning methods under a single framework by introducing Policy Optimization-Model Predictive Control (PO-MPC), a family of KL-regularized MBRL methods that integrate the planner's action distribution as a prior in policy optimization. By aligning the learned policy with the planner's behavior, PO-MPC allows more flexibility in the policy updates to trade off Return maximization and KL divergence minimization. We clarify how prior approaches emerge as special cases of this family, and we explore previously unstudied variations. Our experiments show that these extended configurations yield significant performance improvements, advancing the state of the art in MPPI-based RL.
comment: Preprint
☆ Relative Information Gain and Gaussian Process Regression
The sample complexity of estimating or maximising an unknown function in a reproducing kernel Hilbert space is known to be linked to both the effective dimension and the information gain associated with the kernel. While the information gain has an attractive information-theoretic interpretation, the effective dimension typically results in better rates. We introduce a new quantity called the relative information gain, which measures the sensitivity of the information gain with respect to the observation noise. We show that the relative information gain smoothly interpolates between the effective dimension and the information gain, and that the relative information gain has the same growth rate as the effective dimension. In the second half of the paper, we prove a new PAC-Bayesian excess risk bound for Gaussian process regression. The relative information gain arises naturally from the complexity term in this PAC-Bayesian bound. We prove bounds on the relative information gain that depend on the spectral properties of the kernel. When these upper bounds are combined with our excess risk bound, we obtain minimax-optimal rates of convergence.
comment: 28 pages
☆ Influence branching for learning to solve mixed-integer programs online
On the occasion of the 20th Mixed Integer Program Workshop's computational competition, this work introduces a new approach for learning to solve MIPs online. Influence branching, a new graph-oriented variable selection strategy, is applied throughout the first iterations of the branch and bound algorithm. This branching heuristic is optimized online with Thompson sampling, which ranks the best graph representations of MIP's structure according to computational speed up over SCIP. We achieve results comparable to state of the art online learning methods. Moreover, our results indicate that our method generalizes well to more general online frameworks, where variations in constraint matrix, constraint vector and objective coefficients can all occur and where more samples are available.
comment: 11 pages
☆ Closing the Loop: Coordinating Inventory and Recommendation via Deep Reinforcement Learning on Multiple Timescales
Effective cross-functional coordination is essential for enhancing firm-wide profitability, particularly in the face of growing organizational complexity and scale. Recent advances in artificial intelligence, especially in reinforcement learning (RL), offer promising avenues to address this fundamental challenge. This paper proposes a unified multi-agent RL framework tailored for joint optimization across distinct functional modules, exemplified via coordinating inventory replenishment and personalized product recommendation. We first develop an integrated theoretical model to capture the intricate interplay between these functions and derive analytical benchmarks that characterize optimal coordination. The analysis reveals synchronized adjustment patterns across products and over time, highlighting the importance of coordinated decision-making. Leveraging these insights, we design a novel multi-timescale multi-agent RL architecture that decomposes policy components according to departmental functions and assigns distinct learning speeds based on task complexity and responsiveness. Our model-free multi-agent design improves scalability and deployment flexibility, while multi-timescale updates enhance convergence stability and adaptability across heterogeneous decisions. We further establish the asymptotic convergence of the proposed algorithm. Extensive simulation experiments demonstrate that the proposed approach significantly improves profitability relative to siloed decision-making frameworks, while the behaviors of the trained RL agents align closely with the managerial insights from our theoretical model. Taken together, this work provides a scalable, interpretable RL-based solution to enable effective cross-functional coordination in complex business settings.
☆ Efficient Latent Variable Causal Discovery: Combining Score Search and Targeted Testing
Learning causal structure from observational data is especially challenging when latent variables or selection bias are present. The Fast Causal Inference (FCI) algorithm addresses this setting but often performs exhaustive conditional independence tests across many subsets, leading to spurious independence claims, extra or missing edges, and unreliable orientations. We present a family of score-guided mixed-strategy causal search algorithms that build on this tradition. First, we introduce BOSS-FCI and GRaSP-FCI, straightforward variants of GFCI that substitute BOSS or GRaSP for FGES, thereby retaining correctness while incurring different scalability tradeoffs. Second, we develop FCI Targeted-testing (FCIT), a novel mixed-strategy method that improves upon these variants by replacing exhaustive all-subsets testing with targeted tests guided by BOSS, yielding well-formed PAGs with higher precision and efficiency. Finally, we propose a simple heuristic, LV-Dumb (also known as BOSS-POD), which bypasses latent-variable-specific reasoning and directly returns the PAG of the BOSS DAG. Although not strictly correct in the FCI sense, it scales better and often achieves superior accuracy in practice. Simulations and real-data analyses demonstrate that BOSS-FCI and GRaSP-FCI provide sound baselines, FCIT improves both efficiency and reliability, and LV-Dumb offers a practical heuristic with strong empirical performance. Together, these method highlight the value of score-guided and targeted strategies for scalable latent-variable causal discovery.
comment: 30 pages, 23 figures, 6 tables
♻ ☆ Uniform convergence of the smooth calibration error and its relationship with functional gradient
Calibration is a critical requirement for reliable probabilistic prediction, especially in high-risk applications. However, the theoretical understanding of which learning algorithms can simultaneously achieve high accuracy and good calibration remains limited, and many existing studies provide empirical validation or a theoretical guarantee in restrictive settings. To address this issue, in this work, we focus on the smooth calibration error (CE) and provide a uniform convergence bound, showing that the smooth CE is bounded by the sum of the smooth CE over the training dataset and a generalization gap. We further prove that the functional gradient of the loss function can effectively control the training smooth CE. Based on this framework, we analyze three representative algorithms: gradient boosting trees, kernel boosting, and two-layer neural networks. For each, we derive conditions under which both classification and calibration performances are simultaneously guaranteed. Our results offer new theoretical insights and practical guidance for designing reliable probabilistic models with provable calibration guarantees.
♻ ☆ Exact and Linear Convergence for Federated Learning under Arbitrary Client Participation is Attainable NeurIPS 2025
This work tackles the fundamental challenges in Federated Learning (FL) posed by arbitrary client participation and data heterogeneity, prevalent characteristics in practical FL settings. It is well-established that popular FedAvg-style algorithms struggle with exact convergence and can suffer from slow convergence rates since a decaying learning rate is required to mitigate these scenarios. To address these issues, we introduce the concept of stochastic matrix and the corresponding time-varying graphs as a novel modeling tool to accurately capture the dynamics of arbitrary client participation and the local update procedure. Leveraging this approach, we offer a fresh decentralized perspective on designing FL algorithms and present FOCUS, Federated Optimization with Exact Convergence via Push-pull Strategy, a provably convergent algorithm designed to effectively overcome the previously mentioned two challenges. More specifically, we provide a rigorous proof demonstrating that FOCUS achieves exact convergence with a linear rate regardless of the arbitrary client participation, establishing it as the first work to demonstrate this significant result.
comment: Accepted by NeurIPS 2025
♻ ☆ CAOTE: KV Cache Selection for LLMs via Attention Output Error-Based Token Eviction
While long context support of large language models has extended their abilities, it also incurs challenges in memory and compute which becomes crucial bottlenecks in resource-restricted devices. Token eviction, a widely adopted post-training methodology designed to alleviate the bottlenecks by evicting less important tokens from the cache, typically uses attention scores as proxy metrics for token importance. However, one major limitation of attention score as a token-wise importance metrics is that it lacks the information about contribution of tokens to the attention output. In this paper, we propose a simple eviction criterion based on the contribution of cached tokens to attention outputs. Our method, CAOTE, optimizes for eviction error due to token eviction, by seamlessly integrating attention scores and value vectors. This is the first method which uses value tokens on top of attention-based eviction scores in closed-form. Additionally, CAOTE can act as a meta-heuristic method with flexible usage with any token eviction method. We show that CAOTE, when combined with the state-of-the-art attention score-based methods, always improves accuracies on the downstream task, indicating the importance of leveraging information from values during token eviction process.
comment: 15 pages, 3 figures, 13 tables
♻ ☆ FedMentor: Domain-Aware Differential Privacy for Heterogeneous Federated LLMs in Mental Health NeurIPS 2025
Privacy-preserving adaptation of Large Language Models (LLMs) in sensitive domains (e.g., mental health) requires balancing strict confidentiality with model utility and safety. We propose FedMentor, a federated fine-tuning framework that integrates Low-Rank Adaptation (LoRA) and domain-aware Differential Privacy (DP) to meet per-domain privacy budgets while maintaining performance. Each client (domain) applies a custom DP noise scale proportional to its data sensitivity, and the server adaptively reduces noise when utility falls below a threshold. In experiments on three mental health datasets, we show that FedMentor improves safety over standard Federated Learning (FL) without privacy, raising safe output rates by up to three points and lowering toxicity, while maintaining utility (BERTScore F1 and ROUGE-L) within 0.5% of the non-private baseline and close to the centralized upper bound. The framework scales to backbones with up to 1.7B parameters on single-GPU clients, requiring < 173 MB of communication per-round. FedMentor demonstrates a practical approach to privately fine-tune LLMs for safer deployments in healthcare and other sensitive fields.
comment: NeurIPS 2025 GenAI4Health Workshop
♻ ☆ Region-of-Interest Augmentation for Mammography Classification under Patient-Level Cross-Validation
Breast cancer screening with mammography remains central to early detection and mortality reduction. Deep learning has shown strong potential for automating mammogram interpretation, yet limited-resolution datasets and small sample sizes continue to restrict performance. We revisit the Mini-DDSM dataset (9,684 images; 2,414 patients) and introduce a lightweight region-of-interest (ROI) augmentation strategy. During training, full images are probabilistically replaced with random ROI crops sampled from a precomputed, label-free bounding-box bank, with optional jitter to increase variability. We evaluate under strict patient-level cross-validation and report ROC-AUC, PR-AUC, and training-time efficiency metrics (throughput and GPU memory). Because ROI augmentation is training-only, inference-time cost remains unchanged. On Mini-DDSM, ROI augmentation (best: p_roi = 0.10, alpha = 0.10) yields modest average ROC-AUC gains, with performance varying across folds; PR-AUC is flat to slightly lower. These results demonstrate that simple, data-centric ROI strategies can enhance mammography classification in constrained settings without requiring additional labels or architectural modifications.
comment: 5 pages, 5 figures, 2 tables
♻ ☆ Learning Semantics, Not Addresses: Runtime Neural Prefetching for Far Memory
Memory prefetching has long boosted CPU caches and is increasingly vital for far-memory systems, where large portions of memory are offloaded to cheaper, remote tiers. While effective prefetching requires accurate prediction of future accesses, prior ML approaches have been limited to simulation or small-scale hardware. We introduce FarSight, the first Linux-based far-memory system to leverage deep learning by decoupling application semantics from runtime memory layout. This separation enables offline-trained models to predict access patterns over a compact ordinal vocabulary, which are resolved at runtime through lightweight mappings. Across four data-intensive workloads, FarSight delivers up to 3.6x higher performance than the state-of-the-art.
♻ ☆ J1: Incentivizing Thinking in LLM-as-a-Judge via Reinforcement Learning
The progress of AI is bottlenecked by the quality of evaluation, making powerful LLM-as-a-Judge models a core solution. The efficacy of these judges depends on their chain-of-thought reasoning, creating a critical need for methods that can effectively optimize this reasoning process. In this work, we introduce J1, a reinforcement learning framework for teaching LLM judges to think before making decisions. Our core contribution lies in converting all judgment tasks for non-verifiable and verifiable prompts into a unified format with verifiable rewards, enabling direct optimization of evaluation quality while mitigating positional bias. We then use RL to train thinking-judges at scales of 8B, 32B, and 70B and show that they obtain state-of-the-art performance across multiple benchmarks. In particular, J1-Qwen-32B, our multitasked pointwise and pairwise judge also outperforms o1-mini, o3, and a much larger 671B DeepSeek-R1 on some benchmarks, while only training on synthetic data. Through comprehensive ablations of pairwise, pointwise, and multitask J1 variants, we demonstrate the effectiveness of our approach across seed prompts, reward strategies, and training recipes. Qualitative analysis reveals that J1 develops systematic evaluation strategies, including dynamic criteria generation, reference answer creation, iterative self-correction of initial assessments, and feedback generation for low-quality responses.
comment: 10 pages, 13 tables, 14 figures
♻ ☆ How to build a consistency model: Learning flow maps via self-distillation NeurIPS 2025
Flow-based generative models achieve state-of-the-art sample quality, but require the expensive solution of a differential equation at inference time. Flow map models, commonly known as consistency models, encompass many recent efforts to improve inference-time efficiency by learning the solution operator of this differential equation. Yet despite their promise, these models lack a unified description that clearly explains how to learn them efficiently in practice. Here, building on the methodology proposed in Boffi et. al. (2024), we present a systematic algorithmic framework for directly learning the flow map associated with a flow or diffusion model. By exploiting a relationship between the velocity field underlying a continuous-time flow and the instantaneous rate of change of the flow map, we show how to convert any distillation scheme into a direct training algorithm via self-distillation, eliminating the need for pre-trained teachers. We introduce three algorithmic families based on different mathematical characterizations of the flow map: Eulerian, Lagrangian, and Progressive methods, which we show encompass and extend all known distillation and direct training schemes for consistency models. We find that the novel class of Lagrangian methods, which avoid both spatial derivatives and bootstrapping from small steps by design, achieve significantly more stable training and higher performance than more standard Eulerian and Progressive schemes. Our methodology unifies existing training schemes under a single common framework and reveals new design principles for accelerated generative modeling. Associated code is available at https://github.com/nmboffi/flow-maps.
comment: NeurIPS 2025
♻ ☆ Do Sparse Subnetworks Exhibit Cognitively Aligned Attention? Effects of Pruning on Saliency Map Fidelity, Sparsity, and Concept Coherence
Prior works have shown that neural networks can be heavily pruned while preserving performance, but the impact of pruning on model interpretability remains unclear. In this work, we investigate how magnitude-based pruning followed by fine-tuning affects both low-level saliency maps and high-level concept representations. Using a ResNet-18 trained on ImageNette, we compare post-hoc explanations from Vanilla Gradients (VG) and Integrated Gradients (IG) across pruning levels, evaluating sparsity and faithfulness. We further apply CRAFT-based concept extraction to track changes in semantic coherence of learned concepts. Our results show that light-to-moderate pruning improves saliency-map focus and faithfulness while retaining distinct, semantically meaningful concepts. In contrast, aggressive pruning merges heterogeneous features, reducing saliency map sparsity and concept coherence despite maintaining accuracy. These findings suggest that while pruning can shape internal representations toward more human-aligned attention patterns, excessive pruning undermines interpretability.
comment: 4 pages, neurips workshop
♻ ☆ Exploring Applications of State Space Models and Advanced Training Techniques in Sequential Recommendations: A Comparative Study on Efficiency and Performance
Recommender systems aim to estimate the dynamically changing user preferences and sequential dependencies between historical user behaviour and metadata. Although transformer-based models have proven to be effective in sequential recommendations, their state growth is proportional to the length of the sequence that is being processed, which makes them expensive in terms of memory and inference costs. Our research focused on three promising directions in sequential recommendations: enhancing speed through the use of State Space Models (SSM), as they can achieve SOTA results in the sequential recommendations domain with lower latency, memory, and inference costs, as proposed by arXiv:2403.03900 improving the quality of recommendations with Large Language Models (LLMs) via Monolithic Preference Optimization without Reference Model (ORPO); and implementing adaptive batch- and step-size algorithms to reduce costs and accelerate training processes.
comment: arXiv admin note: text overlap with arXiv:2403.07691 by other authors
♻ ☆ Graph Alignment via Birkhoff Relaxation NeurIPS 2025
We consider the graph alignment problem, wherein the objective is to find a vertex correspondence between two graphs that maximizes the edge overlap. The graph alignment problem is an instance of the quadratic assignment problem (QAP), known to be NP-hard in the worst case even to approximately solve. In this paper, we analyze Birkhoff relaxation, a tight convex relaxation of QAP, and present theoretical guarantees on its performance when the inputs follow the Gaussian Wigner Model. More specifically, the weighted adjacency matrices are correlated Gaussian Orthogonal Ensemble with correlation $1/\sqrt{1+\sigma^2}$. Denote the optimal solutions of the QAP and Birkhoff relaxation by $\Pi^\star$ and $X^\star$ respectively. We show that $\|X^\star-\Pi^\star\|_F^2 = o(n)$ when $\sigma = o(n^{-1.25})$ and $\|X^\star-\Pi^\star\|_F^2 = \Omega(n)$ when $\sigma = \Omega(n^{-0.5})$. Thus, the optimal solution $X^\star$ transitions from a small perturbation of $\Pi^\star$ for small $\sigma$ to being well separated from $\Pi^\star$ as $\sigma$ becomes larger than $n^{-0.5}$. This result allows us to guarantee that simple rounding procedures on $X^\star$ align $1-o(1)$ fraction of vertices correctly whenever $\sigma = o(n^{-1.25})$. This condition on $\sigma$ to ensure the success of the Birkhoff relaxation is state-of-the-art.
comment: To appear in NeurIPS 2025
♻ ☆ QuIC: Quantum-Inspired Compound Adapters for Parameter Efficient Fine-Tuning
Scaling full finetuning of large foundation models strains GPU memory and training time. Parameter Efficient Fine-Tuning (PEFT) methods address this issue via adapter modules which update only a small subset of model parameters. In this work, we introduce Quantum-Inspired Compound Adapters (QuIC Adapters), a PEFT approach inspired from Hamming-weight preserving quantum circuits that can effectively finetune a model using less than 0.02\% memory footprint of the base model. QuIC adapters preserve pretrained representations by enforcing orthogonality in weight parameters, and have native deployment mechanisms on quantum computers. We test QuIC adapters by finetuning large language models like LLaMA and vision transformers on language, math, reasoning and vision benchmarks. In its first-order configuration, QuIC recovers the performance of existing orthogonal methods, while higher-order configurations enable substantial parameter compression (over 40x smaller than LoRA) for a modest performance trade-off, unlocking applications in highly resource-constrained environments. Through ablation studies, we determine that combining multiple Hamming-weight orders with orthogonality and matrix compounding are essential for performant finetuning. Our findings suggest that QuIC adapters offers a promising direction for efficient finetuning of foundation models in resource-constrained environments.
comment: 30 pages, 12 figures, 7 tables, ~8000 words
♻ ☆ A Case for Library-Level k-Means Binning in Histogram Gradient-Boosted Trees
Modern Gradient Boosted Decision Trees (GBDTs) accelerate split finding with histogram-based binning, which reduces complexity from $O(N\log N)$ to $O(N)$ by aggregating gradients into fixed-size bins. However, the predominant quantile binning strategy - designed to distribute data points evenly among bins -- may overlook critical boundary values that could enhance predictive performance. In this work, we consider a novel approach that replaces quantile binning with a $k$-means discretizer initialized with quantile bins, and justify the swap with a proof showing how, for any $L$-Lipschitz function, k-means maximizes the worst-case explained variance of Y obtained when treating all values in a given bin as equivalent. We test this swap against quantile and uniform binning on 33 OpenML datasets plus synthetics that control for modality, skew, and bin budget. Across 18 regression datasets, k-means shows no statistically significant losses at the 5% level and wins in three cases-most strikingly a 55% MSE drop on one particularly skewed dataset-even though k-means' mean reciprocal rank (MRR) is slightly lower (0.65 vs 0.72). On the 15 classification datasets the two methods are statistically tied (MRR 0.70 vs 0.68) with gaps $\leq$0.2 pp. Synthetic experiments confirm consistently large MSE gains - typically >20% and rising to 90% as outlier magnitude increases or bin budget drops. We find that k-means keeps error on par with exhaustive (no-binning) splitting when extra cuts add little value, yet still recovers key split points that quantile overlooks. As such, we advocate for a built-in bin_method=k-means flag, especially in regression tasks and in tight-budget settings such as the 32-64-bin GPU regime - because it is a "safe default" with large upside, yet adds only a one-off, cacheable overhead ($\approx$ 3.5s per feature to bin 10M rows on one Apple M1 thread).
comment: Published in Transactions on Machine Learning Research (TMLR), 2025. [Link to OpenReview forum: https://openreview.net/forum?id=UaTrLLspJa]
♻ ☆ Quantum Fisher information matrices from Rényi relative entropies
Quantum generalizations of the Fisher information are important in quantum information science, with applications in high energy and condensed matter physics and in quantum estimation theory, machine learning, and optimization. One can derive a quantum generalization of the Fisher information matrix in a natural way as the Hessian matrix arising in a Taylor expansion of a smooth divergence. Such an approach is appealing for quantum information theorists, given the ubiquity of divergences in quantum information theory. In contrast to the classical case, there is not a unique quantum generalization of the Fisher information matrix, similar to how there is not a unique quantum generalization of the relative entropy or the R\'enyi relative entropy. In this paper, I derive information matrices arising from the log-Euclidean, $\alpha$-$z$, and geometric R\'enyi relative entropies, with the main technical tool for doing so being the method of divided differences for calculating matrix derivatives. Interestingly, for all non-negative values of the R\'enyi parameter $\alpha$, the log-Euclidean R\'enyi relative entropy leads to the Kubo-Mori information matrix, and the geometric R\'enyi relative entropy leads to the right-logarithmic derivative Fisher information matrix. Thus, the resulting information matrices obey the data-processing inequality for all non-negative values of the R\'enyi parameter $\alpha$ even though the original quantities do not. Additionally, I derive and establish basic properties of $\alpha$-$z$ information matrices resulting from the $\alpha$-$z$ R\'enyi relative entropies. For parameterized thermal states and time-evolved states, I establish formulas for their $\alpha$-$z$ information matrices and hybrid quantum-classical algorithms for estimating them, with applications in quantum Boltzmann machine learning.
comment: v2: 106 pages, 2 figures, dedicated to Professor Fumio Hiai on the occasion of his forthcoming 80th birthday
♻ ☆ On Zero-Shot Reinforcement Learning
Modern reinforcement learning (RL) systems capture deep truths about general, human problem-solving. In domains where new data can be simulated cheaply, these systems uncover sequential decision-making policies that far exceed the ability of any human. Society faces many problems whose solutions require this skill, but they are often in domains where new data cannot be cheaply simulated. In such scenarios, we can learn simulators from existing data, but these will only ever be approximately correct, and can be pathologically incorrect when queried outside of their training distribution. As a result, a misalignment between the environments in which we train our agents and the real-world in which we wish to deploy our agents is inevitable. Dealing with this misalignment is the primary concern of zero-shot reinforcement learning, a problem setting where the agent must generalise to a new task or domain with zero practice shots. Whilst impressive progress has been made on methods that perform zero-shot RL in idealised settings, new work is needed if these results are to be replicated in real-world settings. In this thesis, we argue that doing so requires us to navigate (at least) three constraints. First, the data quality constraint: real-world datasets are small and homogeneous. Second, the observability constraint: states, dynamics and rewards in the real-world are often only partially observed. And third, the data availability constraint: a priori access to data cannot always be assumed. This work proposes a suite of methods that perform zero-shot RL subject to these constraints. In a series of empirical studies we expose the failings of existing methods, and justify our techniques for remedying them. We believe these designs take us a step closer to RL methods that can be deployed to solve real-world problems.
comment: PhD thesis
♻ ☆ On amortizing convex conjugates for optimal transport ICLR 2023
This paper focuses on computing the convex conjugate (also known as the Legendre-Fenchel conjugate or c-transform) that appears in Euclidean Wasserstein-2 optimal transport. This conjugation is considered difficult to compute and in practice, methods are limited by not being able to exactly conjugate the dual potentials in continuous space. To overcome this, the computation of the conjugate can be approximated with amortized optimization, which learns a model to predict the conjugate. I show that combining amortized approximations to the conjugate with a solver for fine-tuning significantly improves the quality of transport maps learned for the Wasserstein-2 benchmark by Korotin et al. (2021a) and is able to model many 2-dimensional couplings and flows considered in the literature. All baselines, methods, and solvers are publicly available at http://github.com/facebookresearch/w2ot.
comment: ICLR 2023
♻ ☆ MedAgentGym: A Scalable Agentic Training Environment for Code-Centric Reasoning in Biomedical Data Science
We introduce MedAgentGym, a scalable and interactive training environment designed to enhance coding-based biomedical reasoning capabilities in large language model (LLM) agents. MedAgentGym comprises 72,413 task instances across 129 categories derived from 12 authentic real-world biomedical scenarios. Tasks are encapsulated within executable sandbox environments, each featuring detailed task specifications, interactive feedback mechanisms, verifiable ground truth annotations, and scalable training trajectory generation. Extensive benchmarking of 29 LLMs reveals substantial performance disparities in biomedical data science between commercial and open-source LLMs. Leveraging efficient multi-threaded and multi-turn trajectory sampling in MedAgentGym, Med-Copilot achieves performance gains of +43.02% and +45.28% from offline and online reinforcement learning, respectively, demonstrating MedAgentGym as an effective training ground while establishing itself as a cost-effective, privacy-preserving alternative competitive with proprietary LLMs (gpt-4o). By offering a unified execution environment with a comprehensive benchmark and accessible, extensible training resources, MedAgentGym delivers an integrated platform to develop LLM-based coding assistants for advanced biomedical data science.
♻ ☆ Query Drift Compensation: Enabling Compatibility in Continual Learning of Retrieval Embedding Models
Text embedding models enable semantic search, powering several NLP applications like Retrieval Augmented Generation by efficient information retrieval (IR). However, text embedding models are commonly studied in scenarios where the training data is static, thus limiting its applications to dynamic scenarios where new training data emerges over time. IR methods generally encode a huge corpus of documents to low-dimensional embeddings and store them in a database index. During retrieval, a semantic search over the corpus is performed and the document whose embedding is most similar to the query embedding is returned. When updating an embedding model with new training data, using the already indexed corpus is suboptimal due to the non-compatibility issue, since the model which was used to obtain the embeddings of the corpus has changed. While re-indexing of old corpus documents using the updated model enables compatibility, it requires much higher computation and time. Thus, it is critical to study how the already indexed corpus can still be effectively used without the need of re-indexing. In this work, we establish a continual learning benchmark with large-scale datasets and continually train dense retrieval embedding models on query-document pairs from new datasets in each task and observe forgetting on old tasks due to significant drift of embeddings. We employ embedding distillation on both query and document embeddings to maintain stability and propose a novel query drift compensation method during retrieval to project new model query embeddings to the old embedding space. This enables compatibility with previously indexed corpus embeddings extracted using the old model and thus reduces the forgetting. We show that the proposed method significantly improves performance without any re-indexing. Code is available at https://github.com/dipamgoswami/QDC.
comment: Accepted at CoLLAs 2025
♻ ☆ Riemannian Optimization on Tree Tensor Networks with Application in Machine Learning
Tree tensor networks (TTNs) are widely used in low-rank approximation and quantum many-body simulation. In this work, we present a formal analysis of the differential geometry underlying TTNs. Building on this foundation, we develop efficient first- and second-order optimization algorithms that exploit the intrinsic quotient structure of TTNs. Additionally, we devise a backpropagation algorithm for training TTNs in a kernel learning setting. We validate our methods through numerical experiments on a representative machine learning task.
comment: 24 pages, 6 figures, 4 pseudo-code algorithms, 1 table; updated version: additional explanation for computational advantages of Cart. horiz. space in Sec. 6; updated Fig. 6 accordingly; fixed typos and added references
♻ ☆ The Cosine Schedule is Fisher-Rao-Optimal for Masked Discrete Diffusion Models
In this work, we study the problem of choosing the discretisation schedule for sampling from masked discrete diffusion models in terms of the information geometry of the induced probability path. Specifically, we show that the optimal schedule under the Fisher-Rao geometry recovers the popularly-used cosine schedule.
comment: PreprintV2
♻ ☆ Probably Approximately Correct Labels
Obtaining high-quality labeled datasets is often costly, requiring either human annotation or expensive experiments. In theory, powerful pre-trained AI models provide an opportunity to automatically label datasets and save costs. Unfortunately, these models come with no guarantees on their accuracy, making wholesale replacement of manual labeling impractical. In this work, we propose a method for leveraging pre-trained AI models to curate cost-effective and high-quality datasets. In particular, our approach results in probably approximately correct labels: with high probability, the overall labeling error is small. Our method is nonasymptotically valid under minimal assumptions on the dataset or the AI model being studied, and thus enables rigorous yet efficient dataset curation using modern AI models. We demonstrate the benefits of the methodology through text annotation with large language models, image labeling with pre-trained vision models, and protein folding analysis with AlphaFold.
♻ ☆ Approximation Bounds for Recurrent Neural Networks with Application to Regression
We study the approximation capacity of deep ReLU recurrent neural networks (RNNs) and explore the convergence properties of nonparametric least squares regression using RNNs. We derive upper bounds on the approximation error of RNNs for H\"older smooth functions, in the sense that the output at each time step of an RNN can approximate a H\"older function that depends only on past and current information, termed a past-dependent function. This allows a carefully constructed RNN to simultaneously approximate a sequence of past-dependent H\"older functions. We apply these approximation results to derive non-asymptotic upper bounds for the prediction error of the empirical risk minimizer in regression problem. Our error bounds achieve minimax optimal rate under both exponentially $\beta$-mixing and i.i.d. data assumptions, improving upon existing ones. Our results provide statistical guarantees on the performance of RNNs.
♻ ☆ On Pruning State-Space LLMs
Recent work proposed state-space models (SSMs) as an efficient alternative to transformer-based LLMs. Can these models be pruned to further reduce their computation costs? We adapt several pruning methods to the SSM structure, and apply them to four SSM-based LLMs across multiple tasks. We find that such models are quite robust to some pruning methods (e.g. WANDA), while using other methods lead to fast performance degradation.
♻ ☆ Probabilistic Language-Image Pre-Training
Vision-language models (VLMs) embed aligned image-text pairs into a joint space but often rely on deterministic embeddings, assuming a one-to-one correspondence between images and texts. This oversimplifies real-world relationships, which are inherently many-to-many, with multiple captions describing a single image and vice versa. We introduce Probabilistic Language-Image Pre-training (ProLIP), the first probabilistic VLM pre-trained on a billion-scale image-text dataset using only probabilistic objectives, achieving a strong zero-shot capability (e.g., 74.6% ImageNet zero-shot accuracy with ViT-B/16). ProLIP efficiently estimates uncertainty by an "uncertainty token" without extra parameters. We also introduce a novel inclusion loss that enforces distributional inclusion relationships between image-text pairs and between original and masked inputs. Experiments demonstrate that, by leveraging uncertainty estimates, ProLIP benefits downstream tasks and aligns with intuitive notions of uncertainty, e.g., shorter texts being more uncertain and more general inputs including specific ones. Utilizing text uncertainties, we further improve ImageNet accuracy from 74.6% to 75.8% (under a few-shot setting), supporting the practical advantages of our probabilistic approach. The code is available at https://github.com/naver-ai/prolip
comment: Code: https://github.com/naver-ai/prolip HuggingFace Hub: https://huggingface.co/collections/SanghyukChun/prolip-6712595dfc87fd8597350291 33 pages, 4.5 MB; LongProLIP paper: arXiv:2503.08048; Multiplicity paper for more background: arxiv.org:2505.19614; v4: fix typos
♻ ☆ CEMTM: Contextual Embedding-based Multimodal Topic Modeling EMNLP 2025
We introduce CEMTM, a context-enhanced multimodal topic model designed to infer coherent and interpretable topic structures from both short and long documents containing text and images. CEMTM builds on fine-tuned large vision language models (LVLMs) to obtain contextualized embeddings, and employs a distributional attention mechanism to weight token-level contributions to topic inference. A reconstruction objective aligns topic-based representations with the document embedding, encouraging semantic consistency across modalities. Unlike existing approaches, CEMTM can process multiple images per document without repeated encoding and maintains interpretability through explicit word-topic and document-topic distributions. Extensive experiments on six multimodal benchmarks show that CEMTM consistently outperforms unimodal and multimodal baselines, achieving a remarkable average LLM score of 2.61. Further analysis shows its effectiveness in downstream few-shot retrieval and its ability to capture visually grounded semantics in complex domains such as scientific articles.
comment: EMNLP 2025
♻ ☆ Machine Learning as Iterated Belief Change a la Darwiche and Pearl
Artificial Neural Networks (ANNs) are powerful machine-learning models capable of capturing intricate non-linear relationships. They are widely used nowadays across numerous scientific and engineering domains, driving advancements in both research and real-world applications. In our recent work, we focused on the statics and dynamics of a particular subclass of ANNs, which we refer to as binary ANNs. A binary ANN is a feed-forward network in which both inputs and outputs are restricted to binary values, making it particularly suitable for a variety of practical use cases. Our previous study approached binary ANNs through the lens of belief-change theory, specifically the Alchourron, Gardenfors and Makinson (AGM) framework, yielding several key insights. Most notably, we demonstrated that the knowledge embodied in a binary ANN (expressed through its input-output behaviour) can be symbolically represented using a propositional logic language. Moreover, the process of modifying a belief set (through revision or contraction) was mapped onto a gradual transition through a series of intermediate belief sets. Analogously, the training of binary ANNs was conceptualized as a sequence of such belief-set transitions, which we showed can be formalized using full-meet AGM-style belief change. In the present article, we extend this line of investigation by addressing some critical limitations of our previous study. Specifically, we show that Dalal's method for belief change naturally induces a structured, gradual evolution of states of belief. More importantly, given the known shortcomings of full-meet belief change, we demonstrate that the training dynamics of binary ANNs can be more effectively modelled using robust AGM-style change operations -- namely, lexicographic revision and moderate contraction -- that align with the Darwiche-Pearl framework for iterated belief change.
comment: This second version incorporates improvements based on feedback from anonymous reviewers of a previous journal submission
♻ ☆ Learning Safe Strategies for Value Maximizing Buyers in Uniform Price Auctions ICML 2025
We study the bidding problem in repeated uniform price multi-unit auctions from the perspective of a value-maximizing buyer. The buyer aims to maximize their cumulative value over $T$ rounds while adhering to per-round return-on-investment (RoI) constraints in a strategic (or adversarial) environment. Using an $m$-uniform bidding format, the buyer submits $m$ bid-quantity pairs $(b_i, q_i)$ to demand $q_i$ units at bid $b_i$, with $m \ll M$ in practice, where $M$ denotes the maximum demand of the buyer. We introduce the notion of safe bidding strategies as those that satisfy the RoI constraints irrespective of competing bids. Despite the stringent requirement, we show that these strategies satisfy a mild no-overbidding condition, depend only on the valuation curve of the bidder, and the bidder can focus on a finite subset without loss of generality. Though the subset size is $O(M^m)$, we design a polynomial-time learning algorithm that achieves sublinear regret, both in full-information and bandit settings, relative to the hindsight-optimal safe strategy. We assess the robustness of safe strategies against the hindsight-optimal strategy from a richer class. We define the richness ratio $\alpha \in (0,1]$ as the minimum ratio of the value of the optimal safe strategy to that of the optimal strategy from richer class and construct hard instances showing the tightness of $\alpha$. Our algorithm achieves $\alpha$-approximate sublinear regret against these stronger benchmarks. Simulations on semi-synthetic auction data show that empirical richness ratios significantly outperform the theoretical worst-case bounds. The proposed safe strategies and learning algorithm extend naturally to more nuanced buyer and competitor models.
comment: 84 pages, 5 figures. Appeared at ICML 2025. Fixed typos
♻ ☆ Evolutionary Optimization of Physics-Informed Neural Networks: Evo-PINN Frontiers and Opportunities
Deep learning models trained on finite data lack a complete understanding of the physical world. On the other hand, physics-informed neural networks (PINNs) are infused with such knowledge through the incorporation of mathematically expressible laws of nature into their training loss function. By complying with physical laws, PINNs provide advantages over purely data-driven models in limited-data regimes and present as a promising route towards Physical AI. This feature has propelled them to the forefront of scientific machine learning, a domain characterized by scarce and costly data. However, the vision of accurate physics-informed learning comes with significant challenges. This work examines PINNs in terms of model optimization and generalization, shedding light on the need for new algorithmic advances to overcome issues pertaining to the training speed, precision, and generalizability of today's PINN models. Of particular interest are gradient-free evolutionary algorithms (EAs) for optimizing the uniquely complex loss landscapes arising in PINN training. Methods synergizing gradient descent and EAs for discovering bespoke neural architectures and balancing multiple terms in physics-informed learning objectives are positioned as important avenues for future research. Another exciting track is to cast EAs as a meta-learner of generalizable PINN models. To substantiate these proposed avenues, we further highlight results from recent literature to showcase the early success of such approaches in addressing the aforementioned challenges in PINN optimization and generalization.
comment: 22 pages, 10 figures, 1 table
♻ ☆ Inference-time Scaling of Diffusion Models through Classical Search
Classical search algorithms have long underpinned modern artificial intelligence. In this work, we tackle the challenge of inference-time control in diffusion models -- adapting generated outputs to meet diverse test-time objectives -- using principles from classical search. We propose a general framework that orchestrates local and global search to efficiently navigate the generative space. It employs a theoretically grounded local search via annealed Langevin MCMC and performs compute-efficient global exploration using breadth-first and depth-first tree search. We evaluate our approach on a range of challenging domains, including planning, offline reinforcement learning, and image generation. Across all tasks, we observe significant gains in both performance and efficiency. These results show that classical search provides a principled and practical foundation for inference-time scaling in diffusion models. Project page at https://diffusion-inference-scaling.github.io/.
comment: Website at https://diffusion-inference-scaling.github.io/
♻ ☆ Curating art exhibitions using machine learning
Here we present a series of artificial models - a total of four related models - based on machine learning techniques that attempt to learn from existing exhibitions which have been curated by human experts, in order to be able to do similar curatorship work. Out of our four artificial intelligence models, three achieve a reasonable ability at imitating these various curators responsible for all those exhibitions, with various degrees of precision and curatorial coherence. In particular, we can conclude two key insights: first, that there is sufficient information in these exhibitions to construct an artificial intelligence model that replicates past exhibitions with an accuracy well above random choices; and second, that using feature engineering and carefully designing the architecture of modest size models can make them almost as good as those using the so-called large language models such as GPT in a brute force approach.
♻ ☆ Chameleon2++: An Efficient and Scalable Variant Of Chameleon Clustering
Hierarchical clustering remains a fundamental challenge in data mining, particularly when dealing with large-scale datasets where traditional approaches fail to scale effectively. Recent Chameleon-based algorithms - Chameleon2, M-Chameleon, and INNGS-Chameleon have proposed advanced strategies but they still suffer from $O(n^2)$ computational complexity, especially for large datasets. With Chameleon2 as the base algorithm, we introduce Chameleon2++ that addresses this challenge. Our algorithm has three parts. First, Graph Generation - we propose an approximate $k$-NN search instead of an exact one, specifically we integrate with the Annoy algorithm. This results in fast approximate nearest neighbor computation, significantly reducing the graph generation time. Second, Graph Partitioning - we propose use of a multi-level partitioning algorithm instead of a recursive bisection one. Specifically we adapt the hMETIS algorithm instead of the FM. This is because multi-level algorithms are robust to approximation introduced in the graph generation phase yielding higher-quality partitions, and that too with minimum configuration requirements. Third, Merging - we retain the flood fill heuristic that ensures connected balanced components in the partitions as well as efficient partition merging criteria leading to the final clusters. These enhancements reduce the overall time complexity to $O(n\log n)$, achieving scalability. On real-world benchmark datasets used in prior Chameleon works, Chameleon2++ delivers an average of 4% improvement in clustering quality. This demonstrates that algorithmic efficiency and clustering quality can co-exist in large-scale hierarchical clustering.
comment: 10 Pages, 2 Figures, 5 Tables
Robotics 34
☆ A Real-Time Framework for Intermediate Map Construction and Kinematically Feasible Off-Road Planning Without OSM
Off-road environments present unique challenges for autonomous navigation due to their complex and unstructured nature. Traditional global path-planning methods, which typically aim to minimize path length and travel time, perform poorly on large-scale maps and fail to account for critical factors such as real-time performance, kinematic feasibility, and memory efficiency. This paper introduces a novel global path-planning method specifically designed for off-road environments, addressing these essential factors. The method begins by constructing an intermediate map within the pixel coordinate system, incorporating geographical features like off-road trails, waterways, restricted and passable areas, and trees. The planning problem is then divided into three sub-problems: graph-based path planning, kinematic feasibility checking, and path smoothing. This approach effectively meets real-time performance requirements while ensuring kinematic feasibility and efficient memory use. The method was tested in various off-road environments with large-scale maps up to several square kilometers in size, successfully identifying feasible paths in an average of 1.5 seconds and utilizing approximately 1.5GB of memory under extreme conditions. The proposed framework is versatile and applicable to a wide range of off-road autonomous navigation tasks, including search and rescue missions and agricultural operations.
☆ TCB-VIO: Tightly-Coupled Focal-Plane Binary-Enhanced Visual Inertial Odometry
Vision algorithms can be executed directly on the image sensor when implemented on the next-generation sensors known as focal-plane sensor-processor arrays (FPSP)s, where every pixel has a processor. FPSPs greatly improve latency, reducing the problems associated with the bottleneck of data transfer from a vision sensor to a processor. FPSPs accelerate vision-based algorithms such as visual-inertial odometry (VIO). However, VIO frameworks suffer from spatial drift due to the vision-based pose estimation, whilst temporal drift arises from the inertial measurements. FPSPs circumvent the spatial drift by operating at a high frame rate to match the high-frequency output of the inertial measurements. In this paper, we present TCB-VIO, a tightly-coupled 6 degrees-of-freedom VIO by a Multi-State Constraint Kalman Filter (MSCKF), operating at a high frame-rate of 250 FPS and from IMU measurements obtained at 400 Hz. TCB-VIO outperforms state-of-the-art methods: ROVIO, VINS-Mono, and ORB-SLAM3.
comment: Accepted at IEEE Robotics and Automation Letters
☆ OpenFLAME: Federated Visual Positioning System to Enable Large-Scale Augmented Reality Applications
World-scale augmented reality (AR) applications need a ubiquitous 6DoF localization backend to anchor content to the real world consistently across devices. Large organizations such as Google and Niantic are 3D scanning outdoor public spaces in order to build their own Visual Positioning Systems (VPS). These centralized VPS solutions fail to meet the needs of many future AR applications -- they do not cover private indoor spaces because of privacy concerns, regulations, and the labor bottleneck of updating and maintaining 3D scans. In this paper, we present OpenFLAME, a federated VPS backend that allows independent organizations to 3D scan and maintain a separate VPS service for their own spaces. This enables access control of indoor 3D scans, distributed maintenance of the VPS backend, and encourages larger coverage. Sharding of VPS services introduces several unique challenges -- coherency of localization results across spaces, quality control of VPS services, selection of the right VPS service for a location, and many others. We introduce the concept of federated image-based localization and provide reference solutions for managing and merging data across maps without sharing private data.
☆ WAFFLE: A Wearable Approach to Bite Timing Estimation in Robot-Assisted Feeding
Millions of people around the world need assistance with feeding. Robotic feeding systems offer the potential to enhance autonomy and quality of life for individuals with impairments and reduce caregiver workload. However, their widespread adoption has been limited by technical challenges such as estimating bite timing, the appropriate moment for the robot to transfer food to a user's mouth. In this work, we introduce WAFFLE: Wearable Approach For Feeding with LEarned bite timing, a system that accurately predicts bite timing by leveraging wearable sensor data to be highly reactive to natural user cues such as head movements, chewing, and talking. We train a supervised regression model on bite timing data from 14 participants and incorporate a user-adjustable assertiveness threshold to convert predictions into proceed or stop commands. In a study with 15 participants without motor impairments with the Obi feeding robot, WAFFLE performs statistically on par with or better than baseline methods across measures of feeling of control, robot understanding, and workload, and is preferred by the majority of participants for both individual and social dining. We further demonstrate WAFFLE's generalizability in a study with 2 participants with motor impairments in their home environments using a Kinova 7DOF robot. Our findings support WAFFLE's effectiveness in enabling natural, reactive bite timing that generalizes across users, robot hardware, robot positioning, feeding trajectories, foods, and both individual and social dining contexts.
☆ Bridge Thinking and Acting: Unleashing Physical Potential of VLM with Generalizable Action Expert
Although Vision-Language Models (VLM) have demonstrated impressive planning and reasoning capabilities, translating these abilities into the physical world introduces significant challenges. Conventional Vision-Language-Action (VLA) models, which integrate reasoning and action into a monolithic architecture, generalize poorly because they are constrained by scarce, narrow-domain data. While recent dual-system approaches attempt to decouple "thinking" from "acting", they are often constrained by semantic ambiguities within the action module. This ambiguity makes large-scale, cross-task training infeasible. Consequently, these systems typically necessitate fine-tuning on newly collected data when deployed to novel environments, and the cooperation mechanism between the two systems remains ill-defined. To address these limitations, we introduce, for the first time, a framework centered around a generalizable action expert. Our approach utilizes sparse 3D trajectories as an intermediate representation, effectively bridging the high-level planning capabilities of the VLM with the low-level physical action module. During the planning phase, the VLM is only required to generate coarse 3D waypoints. These waypoints are then processed by our generalizable action expert, which refines them into dense, executable action sequences by sampling real-time point cloud observations of the environment. To promote training efficiency and robust generalization, we introduce a novel "Action Pre-training, Pointcloud Fine-tuning" paradigm. Our method combines the broad generalization capabilities of VLMs in visual understanding and planning with the fine-grained, action-level generalization of action expert.
☆ NoTVLA: Narrowing of Dense Action Trajectories for Generalizable Robot Manipulation
Vision-Language-Action (VLA) models represent a pivotal advance in embodied intelligence, yet they confront critical barriers to real-world deployment, most notably catastrophic forgetting. This issue stems from their overreliance on continuous action sequences or action chunks, which inadvertently create isolated data silos that disrupt knowledge retention across tasks. To tackle these challenges, we propose the Narrowing of Trajectory VLA (NoTVLA) framework: a novel approach that narrows its focus to sparse trajectories, thereby avoiding the catastrophic forgetting associated with dense trajectory fine-tuning. A key innovation of NoTVLA lies in its trajectory planning strategy: instead of centering on the target object's trajectory, it leverages temporal compression and spatial reasoning pruning specifically for the robot end effector's trajectory. Furthermore, training is conducted using these sparse trajectories rather than dense action trajectories, an optimization that delivers remarkable practical advantages with better performance in zero-shot. In multi-task evaluation scenarios, NoTVLA achieves superior performance and generalization compared to pi0 while operating under two critical constraints: it uses over an order of magnitude less computing power than pi0 and requires no wrist-mounted camera. This design ensures that NoTVLA's operational accuracy closely approximates that of single-task expert models. Crucially, it also preserves the model's inherent language capabilities, enabling zero-shot generalization in specific scenarios, supporting unified model deployment across multiple robot platforms, and fostering a degree of generalization even when perceiving tasks from novel perspectives.
☆ Seeing the Bigger Picture: 3D Latent Mapping for Mobile Manipulation Policy Learning
In this paper, we demonstrate that mobile manipulation policies utilizing a 3D latent map achieve stronger spatial and temporal reasoning than policies relying solely on images. We introduce Seeing the Bigger Picture (SBP), an end-to-end policy learning approach that operates directly on a 3D map of latent features. In SBP, the map extends perception beyond the robot's current field of view and aggregates observations over long horizons. Our mapping approach incrementally fuses multiview observations into a grid of scene-specific latent features. A pre-trained, scene-agnostic decoder reconstructs target embeddings from these features and enables online optimization of the map features during task execution. A policy, trainable with behavior cloning or reinforcement learning, treats the latent map as a state variable and uses global context from the map obtained via a 3D feature aggregator. We evaluate SBP on scene-level mobile manipulation and sequential tabletop manipulation tasks. Our experiments demonstrate that SBP (i) reasons globally over the scene, (ii) leverages the map as long-horizon memory, and (iii) outperforms image-based policies in both in-distribution and novel scenes, e.g., improving the success rate by 25% for the sequential manipulation task.
comment: Project website can be found at https://existentialrobotics.org/sbp_page/
☆ COVER:COverage-VErified Roadmaps for Fixed-time Motion Planning in Continuous Semi-Static Environments
Having the ability to answer motion-planning queries within a fixed time budget is critical for the widespread deployment of robotic systems. Semi-static environments, where most obstacles remain static but a limited set can vary across queries, exhibit structured variability that can be systematically exploited to provide stronger guarantees than in general motion-planning problems. However, prior approaches in this setting either lack formal guarantees or rely on restrictive discretizations of obstacle configurations, limiting their applicability in realistic domains. This paper introduces COVER, a novel framework that incrementally constructs a coverage-verified roadmap in semi-static environments. By partitioning the obstacle configuration space and solving for feasible paths within each partition, COVER systematically verifies feasibility of the roadmap in each partition and guarantees fixed-time motion planning queries within the verified regions. We validate COVER with a 7-DOF simulated Panda robot performing table and shelf tasks, demonstrating that COVER achieves broader coverage with higher query success rates than prior works.
☆ LIBERO-PRO: Towards Robust and Fair Evaluation of Vision-Language-Action Models Beyond Memorization
LIBERO has emerged as a widely adopted benchmark for evaluating Vision-Language-Action (VLA) models; however, its current training and evaluation settings are problematic, often leading to inflated performance estimates and preventing fair model comparison. To address these issues, we introduce LIBERO-PRO, an extended LIBERO benchmark that systematically evaluates model performance under reasonable perturbations across four dimensions: manipulated objects, initial states, task instructions, and environments. Experimental results reveal that, although existing models achieve over 90% accuracy under the standard LIBERO evaluation, their performance collapses to 0.0% under our generalized setting. Crucially, this discrepancy exposes the models' reliance on rote memorization of action sequences and environment layouts from the training set, rather than genuine task understanding or environmental perception. For instance, models persist in executing grasping actions when the target object is replaced with irrelevant items, and their outputs remain unchanged even when given corrupted instructions or even messy tokens. These findings expose the severe flaws in current evaluation practices, and we call on the community to abandon misleading methodologies in favor of robust assessments of model generalization and comprehension. Our code is available at: https://github.com/Zxy-MLlab/LIBERO-PRO.
comment: 12 pages,7 figures, 5 tables
☆ Distributed Area Coverage with High Altitude Balloons Using Multi-Agent Reinforcement Learning
High Altitude Balloons (HABs) can leverage stratospheric wind layers for limited horizontal control, enabling applications in reconnaissance, environmental monitoring, and communications networks. Existing multi-agent HAB coordination approaches use deterministic methods like Voronoi partitioning and extremum seeking control for large global constellations, which perform poorly for smaller teams and localized missions. While single-agent HAB control using reinforcement learning has been demonstrated on HABs, coordinated multi-agent reinforcement learning (MARL) has not yet been investigated. This work presents the first systematic application of multi-agent reinforcement learning (MARL) to HAB coordination for distributed area coverage. We extend our previously developed reinforcement learning simulation environment (RLHAB) to support cooperative multi-agent learning, enabling multiple agents to operate simultaneously in realistic atmospheric conditions. We adapt QMIX for HAB area coverage coordination, leveraging Centralized Training with Decentralized Execution to address atmospheric vehicle coordination challenges. Our approach employs specialized observation spaces providing individual state, environmental context, and teammate data, with hierarchical rewards prioritizing coverage while encouraging spatial distribution. We demonstrate that QMIX achieves similar performance to the theoretically optimal geometric deterministic method for distributed area coverage, validating the MARL approach and providing a foundation for more complex autonomous multi-HAB missions where deterministic methods become intractable.
☆ Trajectory prediction for heterogeneous agents: A performance analysis on small and imbalanced datasets
Robots and other intelligent systems navigating in complex dynamic environments should predict future actions and intentions of surrounding agents to reach their goals efficiently and avoid collisions. The dynamics of those agents strongly depends on their tasks, roles, or observable labels. Class-conditioned motion prediction is thus an appealing way to reduce forecast uncertainty and get more accurate predictions for heterogeneous agents. However, this is hardly explored in the prior art, especially for mobile robots and in limited data applications. In this paper, we analyse different class-conditioned trajectory prediction methods on two datasets. We propose a set of conditional pattern-based and efficient deep learning-based baselines, and evaluate their performance on robotics and outdoors datasets (TH\"OR-MAGNI and Stanford Drone Dataset). Our experiments show that all methods improve accuracy in most of the settings when considering class labels. More importantly, we observe that there are significant differences when learning from imbalanced datasets, or in new environments where sufficient data is not available. In particular, we find that deep learning methods perform better on balanced datasets, but in applications with limited data, e.g., cold start of a robot in a new environment, or imbalanced classes, pattern-based methods may be preferable.
comment: This paper has been accepted to the IEEE Robotics and Automation Letters journal and presented at the 40th Anniversary of the IEEE International Conference on Robotics and Automation, which was held in Rotterdam, Netherlands on 23-26 September, 2024
☆ Model-Based Adaptive Precision Control for Tabletop Planar Pushing Under Uncertain Dynamics
Data-driven planar pushing methods have recently gained attention as they reduce manual engineering effort and improve generalization compared to analytical approaches. However, most prior work targets narrow capabilities (e.g., side switching, precision, or single-task training), limiting broader applicability. We present a model-based framework for non-prehensile tabletop pushing that uses a single learned model to address multiple tasks without retraining. Our approach employs a recurrent GRU-based architecture with additional non-linear layers to capture object-environment dynamics while ensuring stability. A tailored state-action representation enables the model to generalize across uncertain dynamics, variable push lengths, and diverse tasks. For control, we integrate the learned dynamics with a sampling-based Model Predictive Path Integral (MPPI) controller, which generates adaptive, task-oriented actions. This framework supports side switching, variable-length pushes, and objectives such as precise positioning, trajectory following, and obstacle avoidance. Training is performed in simulation with domain randomization to support sim-to-real transfer. We first evaluate the architecture through ablation studies, showing improved prediction accuracy and stable rollouts. We then validate the full system in simulation and real-world experiments using a Franka Panda robot with markerless tracking. Results demonstrate high success rates in precise positioning under strict thresholds and strong performance in trajectory tracking and obstacle avoidance. Moreover, multiple tasks are solved simply by changing the controller's objective function, without retraining. While our current focus is on a single object type, we extend the framework by training on wider push lengths and designing a balanced controller that reduces the number of steps for longer-horizon goals.
☆ EmbodiSwap for Zero-Shot Robot Imitation Learning
We introduce EmbodiSwap - a method for producing photorealistic synthetic robot overlays over human video. We employ EmbodiSwap for zero-shot imitation learning, bridging the embodiment gap between in-the-wild ego-centric human video and a target robot embodiment. We train a closed-loop robot manipulation policy over the data produced by EmbodiSwap. We make novel use of V-JEPA as a visual backbone, repurposing V-JEPA from the domain of video understanding to imitation learning over synthetic robot videos. Adoption of V-JEPA outperforms alternative vision backbones more conventionally used within robotics. In real-world tests, our zero-shot trained V-JEPA model achieves an $82\%$ success rate, outperforming a few-shot trained $\pi_0$ network as well as $\pi_0$ trained over data produced by EmbodiSwap. We release (i) code for generating the synthetic robot overlays which takes as input human videos and an arbitrary robot URDF and generates a robot dataset, (ii) the robot dataset we synthesize over EPIC-Kitchens, HOI4D and Ego4D, and (iii) model checkpoints and inference code, to facilitate reproducible research and broader adoption.
comment: Video link: https://drive.google.com/file/d/1UccngwgPqUwPMhBja7JrXfZoTquCx_Qe/view?usp=sharing
☆ Robust Visual Embodiment: How Robots Discover Their Bodies in Real Environments
Robots with internal visual self-models promise unprecedented adaptability, yet existing autonomous modeling pipelines remain fragile under realistic sensing conditions such as noisy imagery and cluttered backgrounds. This paper presents the first systematic study quantifying how visual degradations--including blur, salt-and-pepper noise, and Gaussian noise--affect robotic self-modeling. Through both simulation and physical experiments, we demonstrate their impact on morphology prediction, trajectory planning, and damage recovery in state-of-the-art pipelines. To overcome these challenges, we introduce a task-aware denoising framework that couples classical restoration with morphology-preserving constraints, ensuring retention of structural cues critical for self-modeling. In addition, we integrate semantic segmentation to robustly isolate robots from cluttered and colorful scenes. Extensive experiments show that our approach restores near-baseline performance across simulated and physical platforms, while existing pipelines degrade significantly. These contributions advance the robustness of visual self-modeling and establish practical foundations for deploying self-aware robots in unpredictable real-world environments.
☆ An Amphibious Untethered Inchworm Soft Robot for Fast Crawling Locomotion
Untethered soft robots are essential for advancing the real-world deployment of soft robotic systems in diverse and multitasking environments. Inspired by soft-bodied inchworm, we present a fully untethered soft robot with a curved, flexible structure actuated by magnetic forces. The robot has a total mass of 102.63 g and demonstrates multimodal locomotion, achieving a maximum walking speed of 3.74 cm/s and a swimming speed of 0.82 cm/s. A compact and lightweight onboard control circuit enables wireless command transmission, while an integrated camera provides environmental perception. Through structural optimization and system-level integration, the robot successfully performs walking, steering, swimming, and payload transport without reliance on external infrastructure. The robot's dynamic performance and locomotion capabilities are systematically validated through experimental characterization.
☆ Geometrically Exact Hard Magneto-Elastic Cosserat Shells: Static Formulation for Shape Morphing
Cosserat rod theory is the popular approach to modeling ferromagnetic soft robots as 1-Dimensional (1D) slender structures in most applications, such as biomedical. However, recent soft robots designed for locomotion and manipulation often exhibit a large width-to-length ratio that categorizes them as 2D shells. For analysis and shape-morphing control purposes, we develop an efficient coordinate-free static model of hard-magnetic shells found in soft magnetic grippers and walking soft robots. The approach is based on a novel formulation of Cosserat shell theory on the Special Euclidean group ($\mathbf{SE}(3)$). The shell is assumed to be a 2D manifold of material points with six degrees of freedom (position & rotation) suitable for capturing the behavior of a uniformly distributed array of spheroidal hard magnetic particles embedded in the rheological elastomer. The shell's configuration manifold is the space of all smooth embeddings $\mathbb{R}^2\rightarrow\mathbf{SE}(3)$. According to a novel definition of local deformation gradient based on the Lie group structure of $\mathbf{SE}(3)$, we derive the strong and weak forms of equilibrium equations, following the principle of virtual work. We extract the linearized version of the weak form for numerical implementations. The resulting finite element approach can avoid well-known challenges such as singularity and locking phenomenon in modeling shell structures. The proposed model is analytically and experimentally validated through a series of test cases that demonstrate its superior efficacy, particularly when the shell undergoes severe rotations and displacements.
☆ Safety-Oriented Dynamic Path Planning for Automated Vehicles
Ensuring safety in autonomous vehicles necessitates advanced path planning and obstacle avoidance capabilities, particularly in dynamic environments. This paper introduces a bi-level control framework that efficiently augments road boundaries by incorporating time-dependent grid projections of obstacle movements, thus enabling precise and adaptive path planning. The main control loop utilizes Nonlinear Model Predictive Control (NMPC) for real-time path optimization, wherein homotopy-based constraint relaxation is employed to improve the solvability of the optimal control problem (OCP). Furthermore, an independent backup loop runs concurrently to provide safe fallback trajectories when an optimal trajectory cannot be computed by the main loop within a critical time frame, thus enhancing safety and real-time performance. Our evaluation showcases the benefits of the proposed methods in various driving scenarios, highlighting the real-time applicability and robustness of our approach. Overall, the framework represents a significant step towards safer and more reliable autonomous driving in complex and dynamic environments.
comment: Published in 2025 IEEE 101st Vehicular Technology Conference (VTC2025-Spring), Oslo, Norway, June 17-20, 2025. Received Best Conference Paper Award
☆ Learning to Act Through Contact: A Unified View of Multi-Task Robot Learning
We present a unified framework for multi-task locomotion and manipulation policy learning grounded in a contact-explicit representation. Instead of designing different policies for different tasks, our approach unifies the definition of a task through a sequence of contact goals-desired contact positions, timings, and active end-effectors. This enables leveraging the shared structure across diverse contact-rich tasks, leading to a single policy that can perform a wide range of tasks. In particular, we train a goal-conditioned reinforcement learning (RL) policy to realise given contact plans. We validate our framework on multiple robotic embodiments and tasks: a quadruped performing multiple gaits, a humanoid performing multiple biped and quadrupedal gaits, and a humanoid executing different bimanual object manipulation tasks. Each of these scenarios is controlled by a single policy trained to execute different tasks grounded in contacts, demonstrating versatile and robust behaviours across morphologically distinct systems. Our results show that explicit contact reasoning significantly improves generalisation to unseen scenarios, positioning contact-explicit policy learning as a promising foundation for scalable loco-manipulation.
☆ Deep Reinforcement Learning for Multi-Agent Coordination
We address the challenge of coordinating multiple robots in narrow and confined environments, where congestion and interference often hinder collective task performance. Drawing inspiration from insect colonies, which achieve robust coordination through stigmergy -- modifying and interpreting environmental traces -- we propose a Stigmergic Multi-Agent Deep Reinforcement Learning (S-MADRL) framework that leverages virtual pheromones to model local and social interactions, enabling decentralized emergent coordination without explicit communication. To overcome the convergence and scalability limitations of existing algorithms such as MADQN, MADDPG, and MAPPO, we leverage curriculum learning, which decomposes complex tasks into progressively harder sub-problems. Simulation results show that our framework achieves the most effective coordination of up to eight agents, where robots self-organize into asymmetric workload distributions that reduce congestion and modulate group performance. This emergent behavior, analogous to strategies observed in nature, demonstrates a scalable solution for decentralized multi-agent coordination in crowded environments with communication constraints.
comment: 11 pages, 8 figures, 1 table, presented at SWARM 2022, to be published in Journal of Artificial Life and Robotics
♻ ☆ LLM-MCoX: Large Language Model-based Multi-robot Coordinated Exploration and Search
Autonomous exploration and object search in unknown indoor environments remain challenging for multi-robot systems (MRS). Traditional approaches often rely on greedy frontier assignment strategies with limited inter-robot coordination. In this work, we introduce LLM-MCoX (LLM-based Multi-robot Coordinated Exploration and Search), a novel framework that leverages Large Language Models (LLMs) for intelligent coordination of both homogeneous and heterogeneous robot teams tasked with efficient exploration and target object search. Our approach combines real-time LiDAR scan processing for frontier cluster extraction and doorway detection with multimodal LLM reasoning (e.g., GPT-4o) to generate coordinated waypoint assignments based on shared environment maps and robot states. LLM-MCoX demonstrates superior performance compared to existing methods, including greedy and Voronoi-based planners, achieving 22.7% faster exploration times and 50% improved search efficiency in large environments with 6 robots. Notably, LLM-MCoX enables natural language-based object search capabilities, allowing human operators to provide high-level semantic guidance that traditional algorithms cannot interpret.
♻ ☆ AutoDrive-QA: A Multiple-Choice Benchmark for Vision-Language Evaluation in Urban Autonomous Driving
Evaluating vision-language models (VLMs) in urban driving contexts remains challenging, as existing benchmarks rely on open-ended responses that are ambiguous, annotation-intensive, and inconsistent to score. This lack of standardized evaluation slows progress toward safe and reliable AI for urban mobility. We introduce AutoDrive-QA, the first benchmark that systematically converts open-ended driving QA datasets (DriveLM, NuScenes-QA, LingoQA) into structured multiple-choice questions (MCQs) with distractors grounded in five realistic error categories: Driving Domain Misconceptions, Logical Inconsistencies, Misinterpreted Sensor Inputs, Computational Oversights, and Question Ambiguity. This framework enables reproducible and interpretable evaluation of VLMs across perception, prediction, and planning tasks in complex urban scenes. Experiments show that fine-tuning LLaVA-1.5-7B improves accuracy by about six percentage points across tasks, GPT-4V achieves the strongest zero-shot performance with up to 69.8% accuracy, and Qwen2-VL models also perform competitively, particularly in multi-view settings. Moreover, traditional metrics such as BLEU and CIDEr fail to distinguish strong from weak models. By providing an objective, domain-grounded evaluation protocol, AutoDrive-QA contributes to more transparent benchmarking of urban AI systems, supporting the development of safer and more trustworthy autonomous driving technologies for smart cities.
comment: Updated results with larger dataset experiments and expanded discussion
♻ ☆ Nonparametric adaptive payload tracking for an offshore crane
A nonparametric adaptive controller is proposed for crane control where the payload tracks a desired trajectory with feedback from the payload position. The controller is based on a novel version of partial feedback linearization where the unactuated crane load dynamics are controlled with the position of the actuated crane dynamics instead of the acceleration. This is made possible by taking advantage of the gravity terms in a new Cartesian model that we propose for the load dynamics. This Cartesian model structure makes it possible to implement a nonparametric adaptive controller which cancels disturbances on the crane load by approximating the effects of unknown disturbance forces and structurally unknown dynamics in a reproducing kernel Hilbert space (RKHS). It is shown that the nonparametric adaptive controller leads to uniformly ultimately bounded errors in the presence of unknown forces and unmodeled dynamics. In addition, it is shown that the proposed partial feedback linearization based on the Cartesian model has certain advantages in payload tracking control also in the non-adaptive case. The performance of the nonparametric adaptive controller is validated in simulation and experiments with good results.
♻ ☆ RT-GuIDE: Real-Time Gaussian Splatting for Information-Driven Exploration
We propose a framework for active mapping and exploration that leverages Gaussian splatting for constructing dense maps. Further, we develop a GPU-accelerated motion planning algorithm that can exploit the Gaussian map for real-time navigation. The Gaussian map constructed onboard the robot is optimized for both photometric and geometric quality while enabling real-time situational awareness for autonomy. We show through viewpoint selection experiments that our method yields comparable Peak Signal-to-Noise Ratio (PSNR) and similar reconstruction error to state-of-the-art approaches, while being orders of magnitude faster to compute. In closed-loop physics-based simulation and real-world experiments, our algorithm achieves better map quality (at least 0.8dB higher PSNR and more than 16% higher geometric reconstruction accuracy) than maps constructed by a state-of-the-art method, enabling semantic segmentation using off-the-shelf open-set models. Experiment videos and more details can be found on our project page: https://tyuezhan.github.io/RT GuIDE/
♻ ☆ Cyber Racing Coach: A Haptic Shared Control Framework for Teaching Advanced Driving Skills
This study introduces a haptic shared control framework designed to teach human drivers advanced driving skills. In this context, shared control refers to a driving mode where the human driver collaborates with an autonomous driving system to control the steering of a vehicle simultaneously. Advanced driving skills are those necessary to safely push the vehicle to its handling limits in high-performance driving such as racing and emergency obstacle avoidance. Previous research has demonstrated the performance and safety benefits of shared control schemes using both subjective and objective evaluations. However, these schemes have not been assessed for their impact on skill acquisition on complex and demanding tasks. Prior research on long-term skill acquisition either applies haptic shared control to simple tasks or employs other feedback methods like visual and auditory aids. To bridge this gap, this study creates a cyber racing coach framework based on the haptic shared control paradigm and evaluates its performance in helping human drivers acquire high-performance driving skills. The framework introduces (1) an autonomous driving system that is capable of cooperating with humans in a highly performant driving scenario; and (2) a haptic shared control mechanism along with a fading scheme to gradually reduce the steering assistance from autonomy based on the human driver's performance during training. Two benchmarks are considered: self-learning (no assistance) and full assistance during training. Results from a human subject study indicate that the proposed framework helps human drivers develop superior racing skills compared to the benchmarks, resulting in better performance and consistency.
comment: Added the statement written as red text for the IEEE preprint policy
♻ ☆ Dual-arm Motion Generation for Repositioning Care based on Deep Predictive Learning with Somatosensory Attention Mechanism IROS 2025
Caregiving is a vital role for domestic robots, especially the repositioning care has immense societal value, critically improving the health and quality of life of individuals with limited mobility. However, repositioning task is a challenging area of research, as it requires robots to adapt their motions while interacting flexibly with patients. The task involves several key challenges: (1) applying appropriate force to specific target areas; (2) performing multiple actions seamlessly, each requiring different force application policies; and (3) motion adaptation under uncertain positional conditions. To address these, we propose a deep neural network (DNN)-based architecture utilizing proprioceptive and visual attention mechanisms, along with impedance control to regulate the robot's movements. Using the dual-arm humanoid robot Dry-AIREC, the proposed model successfully generated motions to insert the robot's hand between the bed and a mannequin's back without applying excessive force, and it supported the transition from a supine to a lifted-up position. The project page is here: https://sites.google.com/view/caregiving-robot-airec/repositioning
comment: Accepted at IROS 2025
♻ ☆ LERa: Replanning with Visual Feedback in Instruction Following IROS 2025
Large Language Models are increasingly used in robotics for task planning, but their reliance on textual inputs limits their adaptability to real-world changes and failures. To address these challenges, we propose LERa - Look, Explain, Replan - a Visual Language Model-based replanning approach that utilizes visual feedback. Unlike existing methods, LERa requires only a raw RGB image, a natural language instruction, an initial task plan, and failure detection - without additional information such as object detection or predefined conditions that may be unavailable in a given scenario. The replanning process consists of three steps: (i) Look - where LERa generates a scene description and identifies errors; (ii) Explain - where it provides corrective guidance; and (iii) Replan - where it modifies the plan accordingly. LERa is adaptable to various agent architectures and can handle errors from both dynamic scene changes and task execution failures. We evaluate LERa on the newly introduced ALFRED-ChaOS and VirtualHome-ChaOS datasets, achieving a 40% improvement over baselines in dynamic environments. In tabletop manipulation tasks with a predefined probability of task failure within the PyBullet simulator, LERa improves success rates by up to 67%. Further experiments, including real-world trials with a tabletop manipulator robot, confirm LERa's effectiveness in replanning. We demonstrate that LERa is a robust and adaptable solution for error-aware task execution in robotics. The project page is available at https://lera-robo.github.io.
comment: Accepted to IROS 2025
♻ ☆ A Corrector-aided Look-ahead Distance-based Guidance for Online Reference Path Following with an Efficient Mid-course Guidance Strategy
Efficient path-following is crucial in most of the applications of autonomous vehicles (UxV). Among various guidance strategies presented in literature, the look-ahead distance ($L_1$)-based nonlinear guidance has received significant attention due to its ease in implementation and ability to maintain a low cross-track error while following simpler reference paths and generating bounded lateral acceleration commands. However, the constant value of $L_1$ becomes problematic when the UxV is far away from the reference path and also produces higher cross-track error while following complex reference paths having high variation in radius of curvature. To address these challenges, the notion of look-ahead distance is leveraged in a novel way to develop a two-phase guidance strategy. Initially, when the UxV is far from the reference path, an optimized $L_1$ selection strategy is developed to guide the UxV towards the vicinity of the start point of the reference path, while maintaining minimal lateral acceleration command. Once the vehicle reaches a close neighborhood of the reference path, a novel notion of corrector point is incorporated in the constant $L_1$-based guidance scheme to generate the guidance command that effectively reduces the root mean square of the cross-track error and lateral acceleration requirement thereafter. Simulation results validate satisfactory performance of this proposed corrector point and look-ahead point pair-based guidance strategy, along with the developed mid-course guidance scheme. Also, its superiority over the conventional constant $L_1$ guidance scheme is established by simulation studies over different initial condition scenarios.
comment: This paper is currently under review for publication in ACC 2026
♻ ☆ Learning a Unified Policy for Position and Force Control in Legged Loco-Manipulation
Robotic loco-manipulation tasks often involve contact-rich interactions with the environment, requiring the joint modeling of contact force and robot position. However, recent visuomotor policies often focus solely on learning position or force control, overlooking their co-learning. In this work, we propose the first unified policy for legged robots that jointly models force and position control learned without reliance on force sensors. By simulating diverse combinations of position and force commands alongside external disturbance forces, we use reinforcement learning to learn a policy that estimates forces from historical robot states and compensates for them through position and velocity adjustments. This policy enables a wide range of manipulation behaviors under varying force and position inputs, including position tracking, force application, force tracking, and compliant interactions. Furthermore, we demonstrate that the learned policy enhances trajectory-based imitation learning pipelines by incorporating essential contact information through its force estimation module, achieving approximately 39.5% higher success rates across four challenging contact-rich manipulation tasks compared to position-control policies. Extensive experiments on both a quadrupedal manipulator and a humanoid robot validate the versatility and robustness of the proposed policy across diverse scenarios.
comment: website: https://unified-force.github.io/
♻ ☆ Online Hybrid-Belief POMDP with Coupled Semantic-Geometric Models
Robots operating in complex and unknown environments frequently require geometric-semantic representations of the environment to safely perform their tasks. While inferring the environment, they must account for many possible scenarios when planning future actions. Since objects' class types are discrete and the robot's self-pose and the objects' poses are continuous, the environment can be represented by a hybrid discrete-continuous belief which is updated according to models and incoming data. Prior probabilities and observation models representing the environment can be learned from data using deep learning algorithms. Such models often couple environmental semantic and geometric properties. As a result, semantic variables are interconnected, causing semantic state space dimensionality to increase exponentially. In this paper, we consider planning under uncertainty using partially observable Markov decision processes (POMDPs) with hybrid semantic-geometric beliefs. The models and priors consider the coupling between semantic and geometric variables. Within POMDP, we introduce the concept of semantically aware safety. Obtaining representative samples of the theoretical hybrid belief, required for estimating the value function, is very challenging. As a key contribution, we develop a novel form of the hybrid belief and leverage it to sample representative samples. We show that under certain conditions, the value function and probability of safety can be calculated efficiently with an explicit expectation over all possible semantic mappings. Our simulations show that our estimates of the objective function and probability of safety achieve similar levels of accuracy compared to estimators that run exhaustively on the entire semantic state-space using samples from the theoretical hybrid belief. Nevertheless, the complexity of our estimators is polynomial rather than exponential.
comment: 20 pages, 9 figures
♻ ☆ Dynamic Neural Potential Field: Online Trajectory Optimization in the Presence of Moving Obstacles
Generalist robot policies must operate safely and reliably in everyday human environments such as homes, offices, and warehouses, where people and objects move unpredictably. We present Dynamic Neural Potential Field (NPField-GPT), a learning-enhanced model predictive control (MPC) framework that couples classical optimization with a Transformer-based predictor of footprint-aware repulsive potentials. Given an occupancy sub-map, robot footprint, and optional dynamic-obstacle cues, our autoregressive NPField-GPT head forecasts a horizon of differentiable potentials that are injected into a sequential quadratic MPC program via L4CasADi, yielding real-time, constraint-aware trajectory optimization. We additionally study two baselines: (NPField-D1) static-frame decomposition and (NPField-D2) parallel MLP heads for all steps. In dynamic indoor scenarios from BenchMR and on a Husky UGV in office corridors, NPField-GPT produces safer, more conservative trajectories under motion changes, while D1/D2 offer lower latency. We also compare with the CIAO* and MPPI baselines. Across methods, the Transformer+MPC synergy preserves the transparency and stability of model-based planning while learning only the part that benefits from data: spatiotemporal collision risk. Code and trained models are available at https://github.com/CognitiveAISystems/Dynamic-Neural-Potential-Field
♻ ☆ ATK: Automatic Task-driven Keypoint Selection for Robust Policy Learning
Visuomotor policies often suffer from perceptual challenges, where visual differences between training and evaluation environments degrade policy performance. Policies relying on state estimations, like 6D pose, require task-specific tracking and are difficult to scale, while raw sensor-based policies may lack robustness to small visual disturbances. In this work, we leverage 2D keypoints--spatially consistent features in the image frame--as a flexible state representation for robust policy learning and apply it to both sim-to-real transfer and real-world imitation learning. However, the choice of which keypoints to use can vary across objects and tasks. We propose a novel method, ATK, to automatically select keypoints in a task-driven manner so that the chosen keypoints are predictive of optimal behavior for the given task. Our proposal optimizes for a minimal set of keypoints that focus on task-relevant parts while preserving policy performance and robustness. We distill expert data (either from an expert policy in simulation or a human expert) into a policy that operates on RGB images while tracking the selected keypoints. By leveraging pre-trained visual modules, our system effectively encodes states and transfers policies to the real-world evaluation scenario despite wide scene variations and perceptual challenges such as transparent objects, fine-grained tasks, and deformable objects manipulation. We validate ATK on various robotic tasks, demonstrating that these minimal keypoint representations significantly improve robustness to visual disturbances and environmental variations. See all experiments and more details at https://yunchuzhang.github.io/ATK/.
♻ ☆ FreqPolicy: Frequency Autoregressive Visuomotor Policy with Continuous Tokens NeurIPS
Learning effective visuomotor policies for robotic manipulation is challenging, as it requires generating precise actions while maintaining computational efficiency. Existing methods remain unsatisfactory due to inherent limitations in the essential action representation and the basic network architectures. We observe that representing actions in the frequency domain captures the structured nature of motion more effectively: low-frequency components reflect global movement patterns, while high-frequency components encode fine local details. Additionally, robotic manipulation tasks of varying complexity demand different levels of modeling precision across these frequency bands. Motivated by this, we propose a novel paradigm for visuomotor policy learning that progressively models hierarchical frequency components. To further enhance precision, we introduce continuous latent representations that maintain smoothness and continuity in the action space. Extensive experiments across diverse 2D and 3D robotic manipulation benchmarks demonstrate that our approach outperforms existing methods in both accuracy and efficiency, showcasing the potential of a frequency-domain autoregressive framework with continuous tokens for generalized robotic manipulation.Code is available at https://github.com/4DVLab/Freqpolicy
comment: Comments: Published at Neural Information Processing Systems (NeurIPS) 2025. Project page and code: https://freq-policy.github.io/
♻ ☆ Physics-Based Motion Imitation with Adversarial Differential Discriminators SIGGRAPH
Multi-objective optimization problems, which require the simultaneous optimization of multiple objectives, are prevalent across numerous applications. Existing multi-objective optimization methods often rely on manually-tuned aggregation functions to formulate a joint optimization objective. The performance of such hand-tuned methods is heavily dependent on careful weight selection, a time-consuming and laborious process. These limitations also arise in the setting of reinforcement-learning-based motion tracking methods for physically simulated characters, where intricately crafted reward functions are typically used to achieve high-fidelity results. Such solutions not only require domain expertise and significant manual tuning, but also limit the applicability of the resulting reward function across diverse skills. To bridge this gap, we present a novel adversarial multi-objective optimization technique that is broadly applicable to a range of multi-objective reinforcement-learning tasks, including motion tracking. Our proposed Adversarial Differential Discriminator (ADD) receives a single positive sample, yet is still effective at guiding the optimization process. We demonstrate that our technique can enable characters to closely replicate a variety of acrobatic and agile behaviors, achieving comparable quality to state-of-the-art motion-tracking methods, without relying on manually-designed reward functions. Code and results are available at https://add-moo.github.io/.
comment: SIGGRAPH Asia 2025 Conference Papers
♻ ☆ Motion Blender Gaussian Splatting for Dynamic Scene Reconstruction
Gaussian splatting has emerged as a powerful tool for high-fidelity reconstruction of dynamic scenes. However, existing methods primarily rely on implicit motion representations, such as encoding motions into neural networks or per-Gaussian parameters, which makes it difficult to further manipulate the reconstructed motions. This lack of explicit controllability limits existing methods to replaying recorded motions only, which hinders a wider application in robotics. To address this, we propose Motion Blender Gaussian Splatting (MBGS), a novel framework that uses motion graphs as an explicit and sparse motion representation. The motion of a graph's links is propagated to individual Gaussians via dual quaternion skinning, with learnable weight painting functions that determine the influence of each link. The motion graphs and 3D Gaussians are jointly optimized from input videos via differentiable rendering. Experiments show that MBGS achieves state-of-the-art performance on the highly challenging iPhone dataset while being competitive on HyperNeRF. We demonstrate the application potential of our method in animating novel object poses, synthesizing real robot demonstrations, and predicting robot actions through visual planning. The source code, models, video demonstrations can be found at http://mlzxy.github.io/motion-blender-gs.
comment: CoRL 2025
Computer Vision and Pattern Recognition 87
☆ No Tokens Wasted: Leveraging Long Context in Biomedical Vision-Language Models
Embedding vision-language models (VLMs) are typically pretrained with short text windows (<77 tokens), which forces the truncation of long-format captions. Yet, the distribution of biomedical captions from large-scale open source literature reveals that a huge portion of captions far exceed 77 tokens. To this end, we investigate the impact of pretraining on long-format biomedical captions by extending the context length of text encoders in VLMs. We find that longer context (thus, enabling additional supervision provided in long-format captions) correlates with better retrieval and classification performance. Given this finding, we introduce BIOMEDICA-LongCAP, a dataset of 1M image-caption pairs enriched with context-aware descriptions from full-text articles, providing longer and additional textual supervision. Using BIOMEDICA-LongCAP, we train BMC-LongCLIP, a long-context biomedical VLM with a text encoder supporting windows of up to 512 tokens. Our model extends context capacity by 6.6x, reducing token waste from 55% to just 2.2%. On long-caption retrieval benchmarks, BMC-LongCLIP achieves up to +30% absolute gains in Recall@1 and +2% average improvements in classification, while also converging faster than short-context. Our results demonstrate that long-context modeling is a promising direction for advancing biomedical VLMs.
☆ Use of Quadcopter Wakes to Supplement Strawberry Pollination
Pollinators are critical to the world's ecosystems and food supply, yet recent studies have found pollination shortfalls in several crops, including strawberry. This is troubling because wild and managed pollinators are currently experiencing declines. One possibility is to try and provide supplemental pollination solutions. These solutions should be affordable and simple for farmers to implement if their use is to be widespread; quadcopters are a great example, already used for monitoring on many farms. This paper investigates a new method for artificial pollination based on wind pollination that bears further investigation. After determining the height where the lateral flow is maximized, we performed field experiments with a quadcopter assisting natural pollinators. Although our results in the field were inconclusive, lab studies show that the idea shows promise and could be adapted for better field results.
comment: 7 pages, 7 figures
☆ Harnessing Synthetic Preference Data for Enhancing Temporal Understanding of Video-LLMs
While Video Large Language Models (Video-LLMs) have demonstrated remarkable performance across general video understanding benchmarks-particularly in video captioning and descriptive tasks-they consistently underperform on tasks that require fine-grained temporal understanding. This limitation arises due to the lack of visual complexity and temporal nuance in current fine-tuning datasets, leading these models to rely heavily on language-based reasoning rather than truly understanding video dynamics. In this work, we propose TimeWarp, a systematic method to create a targeted synthetic temporal dataset to fine-tune the model's responses to encourage it to focus on the given input video. We introduce a large-scale preference dataset, created using TimeWarp, that captures intricate temporal dynamics often overlooked, grounding the model's responses to visual and temporal information. We demonstrate that when our method is applied to existing models, it significantly improves performance on temporal understanding benchmarks, highlighting the effectiveness of our proposed datasets in advancing temporal understanding in Video-LLMs, resulting in an absolute improvement in performance across seven benchmarks. Code is available at https://github.com/sameepv21/timewarp.
comment: 17 pages, 9 figures, 6 tables. Presents TimeWarp, a synthetic preference data framework to improve temporal understanding in Video-LLMs, showing consistent gains across seven benchmarks. Includes supplementary material in the Appendix
☆ Super-resolution image projection over an extended depth of field using a diffractive decoder
Image projection systems must be efficient in data storage, computation and transmission while maintaining a large space-bandwidth-product (SBP) at their output. Here, we introduce a hybrid image projection system that achieves extended depth-of-field (DOF) with improved resolution, combining a convolutional neural network (CNN)-based digital encoder with an all-optical diffractive decoder. A CNN-based encoder compresses input images into compact phase representations, which are subsequently displayed by a low-resolution (LR) projector and processed by an analog diffractive decoder for all-optical image reconstruction. This optical decoder is completely passive, designed to synthesize pixel super-resolved image projections that feature an extended DOF while eliminating the need for additional power consumption for super-resolved image reconstruction. Our pixel super-resolution (PSR) image projection system demonstrates high-fidelity image synthesis over an extended DOF of ~267xW, where W is the illumination wavelength, concurrently offering up to ~16-fold SBP improvement at each lateral plane. The proof of concept of this approach is validated through an experiment conducted in the THz spectrum, and the system is scalable across different parts of the electromagnetic spectrum. This image projection architecture can reduce data storage and transmission requirements for display systems without imposing additional power constraints on the optical decoder. Beyond extended DOF PSR image projection, the underlying principles of this approach can be extended to various applications, including optical metrology and microscopy.
comment: 18 Pages, 6 Figures
☆ Sliding Window Attention for Learned Video Compression
To manage the complexity of transformers in video compression, local attention mechanisms are a practical necessity. The common approach of partitioning frames into patches, however, creates architectural flaws like irregular receptive fields. When adapted for temporal autoregressive models, this paradigm, exemplified by the Video Compression Transformer (VCT), also necessitates computationally redundant overlapping windows. This work introduces 3D Sliding Window Attention (SWA), a patchless form of local attention. By enabling a decoder-only architecture that unifies spatial and temporal context processing, and by providing a uniform receptive field, our method significantly improves rate-distortion performance, achieving Bj{\o}rntegaard Delta-rate savings of up to 18.6 % against the VCT baseline. Simultaneously, by eliminating the need for overlapping windows, our method reduces overall decoder complexity by a factor of 2.8, while its entropy model is nearly 3.5 times more efficient. We further analyze our model's behavior and show that while it benefits from long-range temporal context, excessive context can degrade performance.
comment: Accepted for PCS 2025
☆ Talking Tennis: Language Feedback from 3D Biomechanical Action Recognition
Automated tennis stroke analysis has advanced significantly with the integration of biomechanical motion cues alongside deep learning techniques, enhancing stroke classification accuracy and player performance evaluation. Despite these advancements, existing systems often fail to connect biomechanical insights with actionable language feedback that is both accessible and meaningful to players and coaches. This research project addresses this gap by developing a novel framework that extracts key biomechanical features (such as joint angles, limb velocities, and kinetic chain patterns) from motion data using Convolutional Neural Network Long Short-Term Memory (CNN-LSTM)-based models. These features are analyzed for relationships influencing stroke effectiveness and injury risk, forming the basis for feedback generation using large language models (LLMs). Leveraging the THETIS dataset and feature extraction techniques, our approach aims to produce feedback that is technically accurate, biomechanically grounded, and actionable for end-users. The experimental setup evaluates this framework on classification performance and interpretability, bridging the gap between explainable AI and sports biomechanics.
comment: 10 pages, 4 figures, 2 tables
☆ OpenFLAME: Federated Visual Positioning System to Enable Large-Scale Augmented Reality Applications
World-scale augmented reality (AR) applications need a ubiquitous 6DoF localization backend to anchor content to the real world consistently across devices. Large organizations such as Google and Niantic are 3D scanning outdoor public spaces in order to build their own Visual Positioning Systems (VPS). These centralized VPS solutions fail to meet the needs of many future AR applications -- they do not cover private indoor spaces because of privacy concerns, regulations, and the labor bottleneck of updating and maintaining 3D scans. In this paper, we present OpenFLAME, a federated VPS backend that allows independent organizations to 3D scan and maintain a separate VPS service for their own spaces. This enables access control of indoor 3D scans, distributed maintenance of the VPS backend, and encourages larger coverage. Sharding of VPS services introduces several unique challenges -- coherency of localization results across spaces, quality control of VPS services, selection of the right VPS service for a location, and many others. We introduce the concept of federated image-based localization and provide reference solutions for managing and merging data across maps without sharing private data.
☆ Generating Human Motion Videos using a Cascaded Text-to-Video Framework
Human video generation is becoming an increasingly important task with broad applications in graphics, entertainment, and embodied AI. Despite the rapid progress of video diffusion models (VDMs), their use for general-purpose human video generation remains underexplored, with most works constrained to image-to-video setups or narrow domains like dance videos. In this work, we propose CAMEO, a cascaded framework for general human motion video generation. It seamlessly bridges Text-to-Motion (T2M) models and conditional VDMs, mitigating suboptimal factors that may arise in this process across both training and inference through carefully designed components. Specifically, we analyze and prepare both textual prompts and visual conditions to effectively train the VDM, ensuring robust alignment between motion descriptions, conditioning signals, and the generated videos. Furthermore, we introduce a camera-aware conditioning module that connects the two stages, automatically selecting viewpoints aligned with the input text to enhance coherence and reduce manual intervention. We demonstrate the effectiveness of our approach on both the MovieGen benchmark and a newly introduced benchmark tailored to the T2M-VDM combination, while highlighting its versatility across diverse use cases.
comment: 18 pages, 7 figures, Project Page:https://hyelinnam.github.io/Cameo/
☆ From Filters to VLMs: Benchmarking Defogging Methods through Object Detection and Segmentation Performance
Autonomous driving perception systems are particularly vulnerable in foggy conditions, where light scattering reduces contrast and obscures fine details critical for safe operation. While numerous defogging methods exist-from handcrafted filters to learned restoration models-improvements in image fidelity do not consistently translate into better downstream detection and segmentation. Moreover, prior evaluations often rely on synthetic data, leaving questions about real-world transferability. We present a structured empirical study that benchmarks a comprehensive set of pipelines, including (i) classical filters, (ii) modern defogging networks, (iii) chained variants (filter$\rightarrow$model, model$\rightarrow$filter), and (iv) prompt-driven visual--language image editing models (VLM) applied directly to foggy images. Using Foggy Cityscapes, we assess both image quality and downstream performance on object detection (mAP) and segmentation (PQ, RQ, SQ). Our analysis reveals when defogging helps, when chaining yields synergy or degradation, and how VLM-based editors compare to dedicated approaches. In addition, we evaluate qualitative rubric-based scores from a VLM judge and quantify their alignment with task metrics, showing strong correlations with mAP. Together, these results establish a transparent, task-oriented benchmark for defogging methods and highlight the conditions under which preprocessing genuinely improves autonomous perception in adverse weather.
☆ Zero-Shot Fine-Grained Image Classification Using Large Vision-Language Models EMNLP 2025
Large Vision-Language Models (LVLMs) have demonstrated impressive performance on vision-language reasoning tasks. However, their potential for zero-shot fine-grained image classification, a challenging task requiring precise differentiation between visually similar categories, remains underexplored. We present a novel method that transforms zero-shot fine-grained image classification into a visual question-answering framework, leveraging LVLMs' comprehensive understanding capabilities rather than relying on direct class name generation. We enhance model performance through a novel attention intervention technique. We also address a key limitation in existing datasets by developing more comprehensive and precise class description benchmarks. We validate the effectiveness of our method through extensive experimentation across multiple fine-grained image classification benchmarks. Our proposed method consistently outperforms the current state-of-the-art (SOTA) approach, demonstrating both the effectiveness of our method and the broader potential of LVLMs for zero-shot fine-grained classification tasks. Code and Datasets: https://github.com/Atabuzzaman/Fine-grained-classification
comment: Accepted to EMNLP 2025 Findings
☆ Bridge Thinking and Acting: Unleashing Physical Potential of VLM with Generalizable Action Expert
Although Vision-Language Models (VLM) have demonstrated impressive planning and reasoning capabilities, translating these abilities into the physical world introduces significant challenges. Conventional Vision-Language-Action (VLA) models, which integrate reasoning and action into a monolithic architecture, generalize poorly because they are constrained by scarce, narrow-domain data. While recent dual-system approaches attempt to decouple "thinking" from "acting", they are often constrained by semantic ambiguities within the action module. This ambiguity makes large-scale, cross-task training infeasible. Consequently, these systems typically necessitate fine-tuning on newly collected data when deployed to novel environments, and the cooperation mechanism between the two systems remains ill-defined. To address these limitations, we introduce, for the first time, a framework centered around a generalizable action expert. Our approach utilizes sparse 3D trajectories as an intermediate representation, effectively bridging the high-level planning capabilities of the VLM with the low-level physical action module. During the planning phase, the VLM is only required to generate coarse 3D waypoints. These waypoints are then processed by our generalizable action expert, which refines them into dense, executable action sequences by sampling real-time point cloud observations of the environment. To promote training efficiency and robust generalization, we introduce a novel "Action Pre-training, Pointcloud Fine-tuning" paradigm. Our method combines the broad generalization capabilities of VLMs in visual understanding and planning with the fine-grained, action-level generalization of action expert.
☆ NoTVLA: Narrowing of Dense Action Trajectories for Generalizable Robot Manipulation
Vision-Language-Action (VLA) models represent a pivotal advance in embodied intelligence, yet they confront critical barriers to real-world deployment, most notably catastrophic forgetting. This issue stems from their overreliance on continuous action sequences or action chunks, which inadvertently create isolated data silos that disrupt knowledge retention across tasks. To tackle these challenges, we propose the Narrowing of Trajectory VLA (NoTVLA) framework: a novel approach that narrows its focus to sparse trajectories, thereby avoiding the catastrophic forgetting associated with dense trajectory fine-tuning. A key innovation of NoTVLA lies in its trajectory planning strategy: instead of centering on the target object's trajectory, it leverages temporal compression and spatial reasoning pruning specifically for the robot end effector's trajectory. Furthermore, training is conducted using these sparse trajectories rather than dense action trajectories, an optimization that delivers remarkable practical advantages with better performance in zero-shot. In multi-task evaluation scenarios, NoTVLA achieves superior performance and generalization compared to pi0 while operating under two critical constraints: it uses over an order of magnitude less computing power than pi0 and requires no wrist-mounted camera. This design ensures that NoTVLA's operational accuracy closely approximates that of single-task expert models. Crucially, it also preserves the model's inherent language capabilities, enabling zero-shot generalization in specific scenarios, supporting unified model deployment across multiple robot platforms, and fostering a degree of generalization even when perceiving tasks from novel perspectives.
☆ Exploring Instruction Data Quality for Explainable Image Quality Assessment
In recent years, with the rapid development of powerful multimodal large language models (MLLMs), explainable image quality assessment (IQA) has gradually become popular, aiming at providing quality-related descriptions and answers of images. To achieve this goal, recent methods seek to construct a large-scale instruction tuning dataset to empower the MLLM with quality perception ability following the well-known scaling law. However, a large amount of instruction tuning data may cause substantial computational costs and redundant data, which in turn will cause harm to the performance of the model. To cope with this problem, in this paper, we challenge the scaling law and systematically investigate the role of data quality of the instruction tuning dataset for explainable IQA. Using a powerful pre-trained MLLM, we first investigate the changes in model performance after fine-tuning with different sizes of instruction tuning data. We find that selecting a subset of the data set randomly using an appropriate ratio can even lead to better results than training with the entire instruction tuning dataset, demonstrating the redundancy of current explainable IQA instruction tuning data. Beyond randomly sampling a subset, we propose a clustering-based data selection framework with three stages: clustering feature extraction, cluster quota allocation, and cluster sampling strategy. Then we systematically analyze the choices of each stage and propose a simple but efficient data selection method IQA-Select for explainable IQA. The experimental results demonstrate that IQA-Select can achieve 102.1% and 103.7% performance of full fine-tuning using only 10% selected data in Q-Bench and AesBench respectively, significantly reducing computational costs while achieving better performance.
☆ Multi-Modal Oral Cancer Detection Using Weighted Ensemble Convolutional Neural Networks
Aims Late diagnosis of Oral Squamous Cell Carcinoma (OSCC) contributes significantly to its high global mortality rate, with over 50\% of cases detected at advanced stages and a 5-year survival rate below 50\% according to WHO statistics. This study aims to improve early detection of OSCC by developing a multimodal deep learning framework that integrates clinical, radiological, and histopathological images using a weighted ensemble of DenseNet-121 convolutional neural networks (CNNs). Material and Methods A retrospective study was conducted using publicly available datasets representing three distinct medical imaging modalities. Each modality-specific dataset was used to train a DenseNet-121 CNN via transfer learning. Augmentation and modality-specific preprocessing were applied to increase robustness. Predictions were fused using a validation-weighted ensemble strategy. Evaluation was performed using accuracy, precision, recall, F1-score. Results High validation accuracy was achieved for radiological (100\%) and histopathological (95.12\%) modalities, with clinical images performing lower (63.10\%) due to visual heterogeneity. The ensemble model demonstrated improved diagnostic robustness with an overall accuracy of 84.58\% on a multimodal validation dataset of 55 samples. Conclusion The multimodal ensemble framework bridges gaps in the current diagnostic workflow by offering a non-invasive, AI-assisted triage tool that enhances early identification of high-risk lesions. It supports clinicians in decision-making, aligning with global oncology guidelines to reduce diagnostic delays and improve patient outcomes.
☆ Skin Lesion Classification Based on ResNet-50 Enhanced With Adaptive Spatial Feature Fusion
Skin cancer classification remains a challenging problem due to high inter-class similarity, intra-class variability, and image noise in dermoscopic images. To address these issues, we propose an improved ResNet-50 model enhanced with Adaptive Spatial Feature Fusion (ASFF), which adaptively integrates multi-scale semantic and surface features to improve feature representation and reduce overfitting. The ResNet-50 model is enhanced with an adaptive feature fusion mechanism to achieve more effective multi-scale feature extraction and improve overall performance. Specifically, a dual-branch design fuses high-level semantic and mid-level detail features, which are processed through global average pooling and fully connected layers to generate adaptive weights for weighted fusion, thereby strengthening feature learning and reducing the impact of noise on classification. The method is evaluated on a subset of the ISIC 2020 dataset containing 3297 benign and malignant skin lesion images. Experimental results show that the proposed ASFF-based ResNet-50 achieves the best overall performance compared with 5 classic convolutional neural networks (CNNs) models. The proposed model reached an accuracy of 93.18% along with higher precision, recall, specificity, and F1 score. The improved model achieves an AUC value of 0.9670 and 0.9717 in the P-R and ROC curve, respectively. Then, the evaluation based on Grad-CAM further proved that the improved model adaptively focuses on lesion-relevant regions while suppressing irrelevant background information, thereby validating its enhanced feature learning capability from a deep representation perspective. These findings demonstrate that the proposed approach provides a more effective and efficient solution for computer-aided skin cancer diagnosis.
☆ DHQA-4D: Perceptual Quality Assessment of Dynamic 4D Digital Human
With the rapid development of 3D scanning and reconstruction technologies, dynamic digital human avatars based on 4D meshes have become increasingly popular. A high-precision dynamic digital human avatar can be applied to various fields such as game production, animation generation, and remote immersive communication. However, these 4D human avatar meshes are prone to being degraded by various types of noise during the processes of collection, compression, and transmission, thereby affecting the viewing experience of users. In light of this fact, quality assessment of dynamic 4D digital humans becomes increasingly important. In this paper, we first propose a large-scale dynamic digital human quality assessment dataset, DHQA-4D, which contains 32 high-quality real-scanned 4D human mesh sequences, 1920 distorted textured 4D human meshes degraded by 11 textured distortions, as well as their corresponding textured and non-textured mean opinion scores (MOSs). Equipped with DHQA-4D dataset, we analyze the influence of different types of distortion on human perception for textured dynamic 4D meshes and non-textured dynamic 4D meshes. Additionally, we propose DynaMesh-Rater, a novel large multimodal model (LMM) based approach that is able to assess both textured 4D meshes and non-textured 4D meshes. Concretely, DynaMesh-Rater elaborately extracts multi-dimensional features, including visual features from a projected 2D video, motion features from cropped video clips, and geometry features from the 4D human mesh to provide comprehensive quality-related information. Then we utilize a LMM model to integrate the multi-dimensional features and conduct a LoRA-based instruction tuning technique to teach the LMM model to predict the quality scores. Extensive experimental results on the DHQA-4D dataset demonstrate the superiority of our DynaMesh-Rater method over previous quality assessment methods.
☆ PoseGaze-AHP: A Knowledge-Based 3D Dataset for AI-Driven Ocular and Postural Diagnosis
Diagnosing ocular-induced abnormal head posture (AHP) requires a comprehensive analysis of both head pose and ocular movements. However, existing datasets focus on these aspects separately, limiting the development of integrated diagnostic approaches and restricting AI-driven advancements in AHP analysis. To address this gap, we introduce PoseGaze-AHP, a novel 3D dataset that synchronously captures head pose and gaze movement information for ocular-induced AHP assessment. Structured clinical data were extracted from medical literature using large language models (LLMs) through an iterative process with the Claude 3.5 Sonnet model, combining stepwise, hierarchical, and complex prompting strategies. The extracted records were systematically imputed and transformed into 3D representations using the Neural Head Avatar (NHA) framework. The dataset includes 7,920 images generated from two head textures, covering a broad spectrum of ocular conditions. The extraction method achieved an overall accuracy of 91.92%, demonstrating its reliability for clinical dataset construction. PoseGaze-AHP is the first publicly available resource tailored for AI-driven ocular-induced AHP diagnosis, supporting the development of accurate and privacy-compliant diagnostic tools.
comment: This is a preprint version of a manuscript under review. All rights reserved by the authors
☆ SDAKD: Student Discriminator Assisted Knowledge Distillation for Super-Resolution Generative Adversarial Networks
Generative Adversarial Networks (GANs) achieve excellent performance in generative tasks, such as image super-resolution, but their computational requirements make difficult their deployment on resource-constrained devices. While knowledge distillation is a promising research direction for GAN compression, effectively training a smaller student generator is challenging due to the capacity mismatch between the student generator and the teacher discriminator. In this work, we propose Student Discriminator Assisted Knowledge Distillation (SDAKD), a novel GAN distillation methodology that introduces a student discriminator to mitigate this capacity mismatch. SDAKD follows a three-stage training strategy, and integrates an adapted feature map distillation approach in its last two training stages. We evaluated SDAKD on two well-performing super-resolution GANs, GCFSR and Real-ESRGAN. Our experiments demonstrate consistent improvements over the baselines and SOTA GAN knowledge distillation methods. The SDAKD source code will be made openly available upon acceptance of the paper.
comment: Under review
☆ Exploring the Challenge and Value of Deep Learning in Automated Skin Disease Diagnosis
Skin cancer is one of the most prevalent and deadly forms of cancer worldwide, which highlights the critical importance of early detection and diagnosis in improving patient outcomes. Deep learning (DL) has shown significant promise in enhancing the accuracy and efficiency of automated skin disease diagnosis, particularly in detecting and evaluating skin lesions and classification. However, there are still several challenges for DL-based skin cancer diagnosis, including complex features, image noise, intra-class variation, inter-class similarity, and data imbalance. By synthesizing recent research, this review discusses innovative approaches to cope with these challenges, such as data augmentation, hybrid models, and feature fusion, etc. Furthermore, the review highlights the integration of DL models into clinical workflows, offering insights into the potential of deep learning to revolutionize skin disease diagnosis and improve clinical decision-making. This article follows a comprehensive methodology based on the PRISMA framework and emphasizes the need for continued advancements to fully unlock the transformative potential of DL in dermatological care.
☆ Cross-View Open-Vocabulary Object Detection in Aerial Imagery
Traditional object detection models are typically trained on a fixed set of classes, limiting their flexibility and making it costly to incorporate new categories. Open-vocabulary object detection addresses this limitation by enabling models to identify unseen classes without explicit training. Leveraging pretrained models contrastively trained on abundantly available ground-view image-text classification pairs provides a strong foundation for open-vocabulary object detection in aerial imagery. Domain shifts, viewpoint variations, and extreme scale differences make direct knowledge transfer across domains ineffective, requiring specialized adaptation strategies. In this paper, we propose a novel framework for adapting open-vocabulary representations from ground-view images to solve object detection in aerial imagery through structured domain alignment. The method introduces contrastive image-to-image alignment to enhance the similarity between aerial and ground-view embeddings and employs multi-instance vocabulary associations to align aerial images with text embeddings. Extensive experiments on the xView, DOTAv2, VisDrone, DIOR, and HRRSD datasets are used to validate our approach. Our open-vocabulary model achieves improvements of +6.32 mAP on DOTAv2, +4.16 mAP on VisDrone (Images), and +3.46 mAP on HRRSD in the zero-shot setting when compared to finetuned closed-vocabulary dataset-specific model performance, thus paving the way for more flexible and scalable object detection systems in aerial applications.
☆ Optimized Minimal 4D Gaussian Splatting
4D Gaussian Splatting has emerged as a new paradigm for dynamic scene representation, enabling real-time rendering of scenes with complex motions. However, it faces a major challenge of storage overhead, as millions of Gaussians are required for high-fidelity reconstruction. While several studies have attempted to alleviate this memory burden, they still face limitations in compression ratio or visual quality. In this work, we present OMG4 (Optimized Minimal 4D Gaussian Splatting), a framework that constructs a compact set of salient Gaussians capable of faithfully representing 4D Gaussian models. Our method progressively prunes Gaussians in three stages: (1) Gaussian Sampling to identify primitives critical to reconstruction fidelity, (2) Gaussian Pruning to remove redundancies, and (3) Gaussian Merging to fuse primitives with similar characteristics. In addition, we integrate implicit appearance compression and generalize Sub-Vector Quantization (SVQ) to 4D representations, further reducing storage while preserving quality. Extensive experiments on standard benchmark datasets demonstrate that OMG4 significantly outperforms recent state-of-the-art methods, reducing model sizes by over 60% while maintaining reconstruction quality. These results position OMG4 as a significant step forward in compact 4D scene representation, opening new possibilities for a wide range of applications. Our source code is available at https://minshirley.github.io/OMG4/.
comment: 17 pages, 8 figures
☆ AI-Assisted Pleural Effusion Volume Estimation from Contrast-Enhanced CT Images
Background: Pleural Effusions (PE) is a common finding in many different clinical conditions, but accurately measuring their volume from CT scans is challenging. Purpose: To improve PE segmentation and quantification for enhanced clinical management, we have developed and trained a semi-supervised deep learning framework on contrast-enhanced CT volumes. Materials and Methods: This retrospective study collected CT Pulmonary Angiogram (CTPA) data from internal and external datasets. A subset of 100 cases was manually annotated for model training, while the remaining cases were used for testing and validation. A novel semi-supervised deep learning framework, Teacher-Teaching Assistant-Student (TTAS), was developed and used to enable efficient training in non-segmented examinations. Segmentation performance was compared to that of state-of-the-art models. Results: 100 patients (mean age, 72 years, 28 [standard deviation]; 55 men) were included in the study. The TTAS model demonstrated superior segmentation performance compared to state-of-the-art models, achieving a mean Dice score of 0.82 (95% CI, 0.79 - 0.84) versus 0.73 for nnU-Net (p < 0.0001, Student's T test). Additionally, TTAS exhibited a four-fold lower mean Absolute Volume Difference (AbVD) of 6.49 mL (95% CI, 4.80 - 8.20) compared to nnU-Net's AbVD of 23.16 mL (p < 0.0001). Conclusion: The developed TTAS framework offered superior PE segmentation, aiding accurate volume determination from CT scans.
☆ UGround: Towards Unified Visual Grounding with Unrolled Transformers
We present UGround, a \textbf{U}nified visual \textbf{Ground}ing paradigm that dynamically selects intermediate layers across \textbf{U}nrolled transformers as ``mask as prompt'', diverging from the prevailing pipeline that leverages the fixed last hidden layer as ``\texttt{} as prompt''. UGround addresses two primary challenges posed by the prevailing paradigm: (1) its reliance on the fixed last hidden layer, which sequentially amplifies cumulative errors arising from layer-by-layer propagation without intermediate correction, and (2) its use of \texttt{} as a prompt, which implicitly projects textual embeddings into visual space without explicit spatial cues (\eg, coordinates). Central to UGround is Policy-Prompted Masking, which comprises two key components: Stochastic Skip Connection (SSC) and Mask as Prompt (MasP). SSC is a reinforcement learning policy that, via stochastic sampling, allows each \texttt{} token to slide across unrolled transformer layers, enabling dynamic layer selection at which it connects to the vision model (\eg, SAM) in a skip-connection fashion. Given the selected hidden layer, MasP uses the similarity map derived from the \texttt{} token and image tokens as a soft logit mask to prompt SAM for mask generation, offering explicit spatial cues through its activation regions. To validate the effectiveness of UGround, we, for the first time, have unified visual grounding within a single framework from an attribute perspective, spanning from traditional refer expression segmentation to newly proposed reasoning segmentation, single-target to multi-target, positive query to false premise (empty target). All codes and models are publicly available at \href{https://github.com/rui-qian/UGround}{https://github.com/rui-qian/UGround}.
comment: https://github.com/rui-qian/UGround
☆ Mirage: Unveiling Hidden Artifacts in Synthetic Images with Large Vision-Language Models ACM MM'25
Recent advances in image generation models have led to models that produce synthetic images that are increasingly difficult for standard AI detectors to identify, even though they often remain distinguishable by humans. To identify this discrepancy, we introduce \textbf{Mirage}, a curated dataset comprising a diverse range of AI-generated images exhibiting visible artifacts, where current state-of-the-art detection methods largely fail. Furthermore, we investigate whether Large Vision-Language Models (LVLMs), which are increasingly employed as substitutes for human judgment in various tasks, can be leveraged for explainable AI image detection. Our experiments on both Mirage and existing benchmark datasets demonstrate that while LVLMs are highly effective at detecting AI-generated images with visible artifacts, their performance declines when confronted with images lacking such cues.
comment: ACM MM'25, MALLM Workshop
☆ Joint Neural SDF Reconstruction and Semantic Segmentation for CAD Models
We propose a simple, data-efficient pipeline that augments an implicit reconstruction network based on neural SDF-based CAD parts with a part-segmentation head trained under PartField-generated supervision. Unlike methods tied to fixed taxonomies, our model accepts meshes with any number of parts and produces coherent, geometry-aligned labels in a single pass. We evaluate on randomly sampled CAD meshes from the ABC dataset with intentionally varied part cardinalities, including over-segmented shapes, and report strong performance across reconstruction (CDL1/CDL2, F1-micro, NC) and segmentation (mIoU, Accuracy), together with a new Segmentation Consistency metric that captures local label smoothness. We attach a lightweight segmentation head to the Flat-CAD SDF trunk; on a paired evaluation it does not alter reconstruction while providing accurate part labels for meshes with any number of parts. Even under degraded reconstructions on thin or intricate geometries, segmentation remains accurate and label-coherent, often preserving the correct part count. Our approach therefore offers a practical route to semantically structured CAD meshes without requiring curated taxonomies or exact palette matches. We discuss limitations in boundary precision, partly due to per-face supervision, and outline paths toward boundary-aware training and higher resolution labels.
☆ Towards Robust and Generalizable Continuous Space-Time Video Super-Resolution with Events
Continuous space-time video super-resolution (C-STVSR) has garnered increasing interest for its capability to reconstruct high-resolution and high-frame-rate videos at arbitrary spatial and temporal scales. However, prevailing methods often generalize poorly, producing unsatisfactory results when applied to out-of-distribution (OOD) scales. To overcome this limitation, we present EvEnhancer, a novel approach that marries the unique properties of high temporal resolution and high dynamic range encapsulated in event streams to achieve robust and generalizable C-STVSR. Our approach incorporates event-adapted synthesis that capitalizes on the spatiotemporal correlations between frames and events to capture long-term motion trajectories, enabling adaptive interpolation and fusion across space and time. This is then coupled with a local implicit video transformer that integrates local implicit video neural function with cross-scale spatiotemporal attention to learn continuous video representations and generate plausible videos at arbitrary resolutions and frame rates. We further develop EvEnhancerPlus, which builds a controllable switching mechanism that dynamically determines the reconstruction difficulty for each spatiotemporal pixel based on local event statistics. This allows the model to adaptively route reconstruction along the most suitable pathways at a fine-grained pixel level, substantially reducing computational overhead while maintaining excellent performance. Furthermore, we devise a cross-derivative training strategy that stabilizes the convergence of such a multi-pathway framework through staged cross-optimization. Extensive experiments demonstrate that our method achieves state-of-the-art performance on both synthetic and real-world datasets, while maintaining superior generalizability at OOD scales. The code is available at https://github.com/W-Shuoyan/EvEnhancerPlus.
comment: 17 pages, 12 figures, 14 tables. Under review
☆ LIBERO-PRO: Towards Robust and Fair Evaluation of Vision-Language-Action Models Beyond Memorization
LIBERO has emerged as a widely adopted benchmark for evaluating Vision-Language-Action (VLA) models; however, its current training and evaluation settings are problematic, often leading to inflated performance estimates and preventing fair model comparison. To address these issues, we introduce LIBERO-PRO, an extended LIBERO benchmark that systematically evaluates model performance under reasonable perturbations across four dimensions: manipulated objects, initial states, task instructions, and environments. Experimental results reveal that, although existing models achieve over 90% accuracy under the standard LIBERO evaluation, their performance collapses to 0.0% under our generalized setting. Crucially, this discrepancy exposes the models' reliance on rote memorization of action sequences and environment layouts from the training set, rather than genuine task understanding or environmental perception. For instance, models persist in executing grasping actions when the target object is replaced with irrelevant items, and their outputs remain unchanged even when given corrupted instructions or even messy tokens. These findings expose the severe flaws in current evaluation practices, and we call on the community to abandon misleading methodologies in favor of robust assessments of model generalization and comprehension. Our code is available at: https://github.com/Zxy-MLlab/LIBERO-PRO.
comment: 12 pages,7 figures, 5 tables
☆ Contrastive-SDE: Guiding Stochastic Differential Equations with Contrastive Learning for Unpaired Image-to-Image Translation
Unpaired image-to-image translation involves learning mappings between source domain and target domain in the absence of aligned or corresponding samples. Score based diffusion models have demonstrated state-of-the-art performance in generative tasks. Their ability to approximate complex data distributions through stochastic differential equations (SDEs) enables them to generate high-fidelity and diverse outputs, making them particularly well-suited for unpaired I2I settings. In parallel, contrastive learning provides a powerful framework for learning semantic similarities without the need for explicit supervision or paired data. By pulling together representations of semantically similar samples and pushing apart dissimilar ones, contrastive methods are inherently aligned with the objectives of unpaired translation. Its ability to selectively enforce semantic consistency at the feature level makes contrastive learning particularly effective for guiding generation in unpaired scenarios. In this work, we propose a time-dependent contrastive learning approach where a model is trained with SimCLR by considering an image and its domain invarient feature as a positive pair, enabling the preservation of domain-invariant features and the discarding of domain-specific ones. The learned contrastive model then guides the inference of a pretrained SDE for the I2I translation task. We empirically compare Contrastive-SDE with several baselines across three common unpaired I2I tasks, using four metrics for evaluation. Constrastive-SDE achieves comparable results to the state-of-the-art on several metrics. Furthermore, we observe that our model converges significantly faster and requires no label supervision or classifier training, making it a more efficient alternative for this task.
comment: 9 pages, 3 figures
☆ Diverse Text-to-Image Generation via Contrastive Noise Optimization
Text-to-image (T2I) diffusion models have demonstrated impressive performance in generating high-fidelity images, largely enabled by text-guided inference. However, this advantage often comes with a critical drawback: limited diversity, as outputs tend to collapse into similar modes under strong text guidance. Existing approaches typically optimize intermediate latents or text conditions during inference, but these methods deliver only modest gains or remain sensitive to hyperparameter tuning. In this work, we introduce Contrastive Noise Optimization, a simple yet effective method that addresses the diversity issue from a distinct perspective. Unlike prior techniques that adapt intermediate latents, our approach shapes the initial noise to promote diverse outputs. Specifically, we develop a contrastive loss defined in the Tweedie data space and optimize a batch of noise latents. Our contrastive optimization repels instances within the batch to maximize diversity while keeping them anchored to a reference sample to preserve fidelity. We further provide theoretical insights into the mechanism of this preprocessing to substantiate its effectiveness. Extensive experiments across multiple T2I backbones demonstrate that our approach achieves a superior quality-diversity Pareto frontier while remaining robust to hyperparameter choices.
☆ Road Damage and Manhole Detection using Deep Learning for Smart Cities: A Polygonal Annotation Approach
Urban safety and infrastructure maintenance are critical components of smart city development. Manual monitoring of road damages is time-consuming, highly costly, and error-prone. This paper presents a deep learning approach for automated road damage and manhole detection using the YOLOv9 algorithm with polygonal annotations. Unlike traditional bounding box annotation, we employ polygonal annotations for more precise localization of road defects. We develop a novel dataset comprising more than one thousand images which are mostly collected from Dhaka, Bangladesh. This dataset is used to train a YOLO-based model for three classes, namely Broken, Not Broken, and Manhole. We achieve 78.1% overall image-level accuracy. The YOLOv9 model demonstrates strong performance for Broken (86.7% F1-score) and Not Broken (89.2% F1-score) classes, with challenges in Manhole detection (18.2% F1-score) due to class imbalance. Our approach offers an efficient and scalable solution for monitoring urban infrastructure in developing countries.
comment: 13 pages
☆ MambaCAFU: Hybrid Multi-Scale and Multi-Attention Model with Mamba-Based Fusion for Medical Image Segmentation
In recent years, deep learning has shown near-expert performance in segmenting complex medical tissues and tumors. However, existing models are often task-specific, with performance varying across modalities and anatomical regions. Balancing model complexity and performance remains challenging, particularly in clinical settings where both accuracy and efficiency are critical. To address these issues, we propose a hybrid segmentation architecture featuring a three-branch encoder that integrates CNNs, Transformers, and a Mamba-based Attention Fusion (MAF) mechanism to capture local, global, and long-range dependencies. A multi-scale attention-based CNN decoder reconstructs fine-grained segmentation maps while preserving contextual consistency. Additionally, a co-attention gate enhances feature selection by emphasizing relevant spatial and semantic information across scales during both encoding and decoding, improving feature interaction and cross-scale communication. Extensive experiments on multiple benchmark datasets show that our approach outperforms state-of-the-art methods in accuracy and generalization, while maintaining comparable computational complexity. By effectively balancing efficiency and effectiveness, our architecture offers a practical and scalable solution for diverse medical imaging tasks. Source code and trained models will be publicly released upon acceptance to support reproducibility and further research.
☆ Efficiency vs. Efficacy: Assessing the Compression Ratio-Dice Score Relationship through a Simple Benchmarking Framework for Cerebrovascular 3D Segmentation
The increasing size and complexity of medical imaging datasets, particularly in 3D formats, present significant barriers to collaborative research and transferability. This study investigates whether the ZFP compression technique can mitigate these challenges without compromising the performance of automated cerebrovascular segmentation, a critical first step in intracranial aneurysm detection. We apply ZFP in both its error tolerance and fixed-rate modes to a large scale, and one of the most recent, datasets in the literature, 3D medical dataset containing ground-truth vascular segmentations. The segmentation quality on the compressed volumes is rigorously compared to the uncompressed baseline (Dice approximately equals 0.8774). Our findings reveal that ZFP can achieve substantial data reduction--up to a 22.89:1 ratio in error tolerance mode--while maintaining a high degree of fidelity, with the mean Dice coefficient remaining high at 0.87656. These results demonstrate that ZFP is a viable and powerful tool for enabling more efficient and accessible research on large-scale medical datasets, fostering broader collaboration across the community.
☆ CoPA: Hierarchical Concept Prompting and Aggregating Network for Explainable Diagnosis MICCAI2025
The transparency of deep learning models is essential for clinical diagnostics. Concept Bottleneck Model provides clear decision-making processes for diagnosis by transforming the latent space of black-box models into human-understandable concepts. However, concept-based methods still face challenges in concept capture capabilities. These methods often rely on encode features solely from the final layer, neglecting shallow and multiscale features, and lack effective guidance in concept encoding, hindering fine-grained concept extraction. To address these issues, we introduce Concept Prompting and Aggregating (CoPA), a novel framework designed to capture multilayer concepts under prompt guidance. This framework utilizes the Concept-aware Embedding Generator (CEG) to extract concept representations from each layer of the visual encoder. Simultaneously, these representations serve as prompts for Concept Prompt Tuning (CPT), steering the model towards amplifying critical concept-related visual cues. Visual representations from each layer are aggregated to align with textual concept representations. With the proposed method, valuable concept-wise information in the images is captured and utilized effectively, thus improving the performance of concept and disease prediction. Extensive experimental results demonstrate that CoPA outperforms state-of-the-art methods on three public datasets. Code is available at https://github.com/yihengd/CoPA.
comment: Accepted by MICCAI2025
☆ Adaptively Sampling-Reusing-Mixing Decomposed Gradients to Speed Up Sharpness Aware Minimization
Sharpness-Aware Minimization (SAM) improves model generalization but doubles the computational cost of Stochastic Gradient Descent (SGD) by requiring twice the gradient calculations per optimization step. To mitigate this, we propose Adaptively sampling-Reusing-mixing decomposed gradients to significantly accelerate SAM (ARSAM). Concretely, we firstly discover that SAM's gradient can be decomposed into the SGD gradient and the Projection of the Second-order gradient onto the First-order gradient (PSF). Furthermore, we observe that the SGD gradient and PSF dynamically evolve during training, emphasizing the growing role of the PSF to achieve a flat minima. Therefore, ARSAM is proposed to the reused PSF and the timely updated PSF still maintain the model's generalization ability. Extensive experiments show that ARSAM achieves state-of-the-art accuracies comparable to SAM across diverse network architectures. On CIFAR-10/100, ARSAM is comparable to SAM while providing a speedup of about 40\%. Moreover, ARSAM accelerates optimization for the various challenge tasks (\textit{e.g.}, human pose estimation, and model quantization) without sacrificing performance, demonstrating its broad practicality.% The code is publicly accessible at: https://github.com/ajiaaa/ARSAM.
☆ The Overlooked Value of Test-time Reference Sets in Visual Place Recognition ICCV 2025
Given a query image, Visual Place Recognition (VPR) is the task of retrieving an image of the same place from a reference database with robustness to viewpoint and appearance changes. Recent works show that some VPR benchmarks are solved by methods using Vision-Foundation-Model backbones and trained on large-scale and diverse VPR-specific datasets. Several benchmarks remain challenging, particularly when the test environments differ significantly from the usual VPR training datasets. We propose a complementary, unexplored source of information to bridge the train-test domain gap, which can further improve the performance of State-of-the-Art (SOTA) VPR methods on such challenging benchmarks. Concretely, we identify that the test-time reference set, the "map", contains images and poses of the target domain, and must be available before the test-time query is received in several VPR applications. Therefore, we propose to perform simple Reference-Set-Finetuning (RSF) of VPR models on the map, boosting the SOTA (~2.3% increase on average for Recall@1) on these challenging datasets. Finetuned models retain generalization, and RSF works across diverse test datasets.
comment: Accepted at ICCV 2025 Workshop CrocoDL
☆ LoRA Patching: Exposing the Fragility of Proactive Defenses against Deepfakes
Deepfakes pose significant societal risks, motivating the development of proactive defenses that embed adversarial perturbations in facial images to prevent manipulation. However, in this paper, we show that these preemptive defenses often lack robustness and reliability. We propose a novel approach, Low-Rank Adaptation (LoRA) patching, which injects a plug-and-play LoRA patch into Deepfake generators to bypass state-of-the-art defenses. A learnable gating mechanism adaptively controls the effect of the LoRA patch and prevents gradient explosions during fine-tuning. We also introduce a Multi-Modal Feature Alignment (MMFA) loss, encouraging the features of adversarial outputs to align with those of the desired outputs at the semantic level. Beyond bypassing, we present defensive LoRA patching, embedding visible warnings in the outputs as a complementary solution to mitigate this newly identified security vulnerability. With only 1,000 facial examples and a single epoch of fine-tuning, LoRA patching successfully defeats multiple proactive defenses. These results reveal a critical weakness in current paradigms and underscore the need for more robust Deepfake defense strategies. Our code is available at https://github.com/ZOMIN28/LoRA-Patching.
☆ Bridging the Gap Between Multimodal Foundation Models and World Models
Humans understand the world through the integration of multiple sensory modalities, enabling them to perceive, reason about, and imagine dynamic physical processes. Inspired by this capability, multimodal foundation models (MFMs) have emerged as powerful tools for multimodal understanding and generation. However, today's MFMs fall short of serving as effective world models. They lack the essential ability such as perform counterfactual reasoning, simulate dynamics, understand the spatiotemporal information, control generated visual outcomes, and perform multifaceted reasoning. We investigates what it takes to bridge the gap between multimodal foundation models and world models. We begin by improving the reasoning capabilities of MFMs through discriminative tasks and equipping MFMs with structured reasoning skills, such as causal inference, counterfactual thinking, and spatiotemporal reasoning, enabling them to go beyond surface correlations and understand deeper relationships within visual and textual data. Next, we explore generative capabilities of multimodal foundation models across both image and video modalities, introducing new frameworks for structured and controllable generation. Our approaches incorporate scene graphs, multimodal conditioning, and multimodal alignment strategies to guide the generation process, ensuring consistency with high-level semantics and fine-grained user intent. We further extend these techniques to controllable 4D generation, enabling interactive, editable, and morphable object synthesis over time and space.
comment: PhD thesis
☆ Mapping Rio de Janeiro's favelas: general-purpose vs. satellite-specific neural networks
While deep learning methods for detecting informal settlements have already been developed, they have not yet fully utilized the potential offered by recent pretrained neural networks. We compare two types of pretrained neural networks for detecting the favelas of Rio de Janeiro: 1. Generic networks pretrained on large diverse datasets of unspecific images, 2. A specialized network pretrained on satellite imagery. While the latter is more specific to the target task, the former has been pretrained on significantly more images. Hence, this research investigates whether task specificity or data volume yields superior performance in urban informal settlement detection.
comment: 6 pages, 1 figure, 1 table. Presented at the 21st Brazilian Symposium on Remote Sensing (SBSR 2025)
☆ Person-Centric Annotations of LAION-400M: Auditing Bias and Its Transfer to Models
Vision-language models trained on large-scale multimodal datasets show strong demographic biases, but the role of training data in producing these biases remains unclear. A major barrier has been the lack of demographic annotations in web-scale datasets such as LAION-400M. We address this gap by creating person-centric annotations for the full dataset, including over 276 million bounding boxes, perceived gender and race/ethnicity labels, and automatically generated captions. These annotations are produced through validated automatic labeling pipelines combining object detection, multimodal captioning, and finetuned classifiers. Using them, we uncover demographic imbalances and harmful associations, such as the disproportionate linking of men and individuals perceived as Black or Middle Eastern with crime-related and negative content. We also show that 60-70% of gender bias in CLIP and Stable Diffusion can be linearly explained by direct co-occurrences in the data. Our resources establish the first large-scale empirical link between dataset composition and downstream model bias.
comment: 48 pages
☆ Artery-Vein Segmentation from Fundus Images using Deep Learning
Segmenting of clinically important retinal blood vessels into arteries and veins is a prerequisite for retinal vessel analysis. Such analysis can provide potential insights and bio-markers for identifying and diagnosing various retinal eye diseases. Alteration in the regularity and width of the retinal blood vessels can act as an indicator of the health of the vasculature system all over the body. It can help identify patients at high risk of developing vasculature diseases like stroke and myocardial infarction. Over the years, various Deep Learning architectures have been proposed to perform retinal vessel segmentation. Recently, attention mechanisms have been increasingly used in image segmentation tasks. The work proposes a new Deep Learning approach for artery-vein segmentation. The new approach is based on the Attention mechanism that is incorporated into the WNet Deep Learning model, and we call the model as Attention-WNet. The proposed approach has been tested on publicly available datasets such as HRF and DRIVE datasets. The proposed approach has outperformed other state-of-art models available in the literature.
comment: 12 pages, 6 figures, preprint under review
☆ EmbodiSwap for Zero-Shot Robot Imitation Learning
We introduce EmbodiSwap - a method for producing photorealistic synthetic robot overlays over human video. We employ EmbodiSwap for zero-shot imitation learning, bridging the embodiment gap between in-the-wild ego-centric human video and a target robot embodiment. We train a closed-loop robot manipulation policy over the data produced by EmbodiSwap. We make novel use of V-JEPA as a visual backbone, repurposing V-JEPA from the domain of video understanding to imitation learning over synthetic robot videos. Adoption of V-JEPA outperforms alternative vision backbones more conventionally used within robotics. In real-world tests, our zero-shot trained V-JEPA model achieves an $82\%$ success rate, outperforming a few-shot trained $\pi_0$ network as well as $\pi_0$ trained over data produced by EmbodiSwap. We release (i) code for generating the synthetic robot overlays which takes as input human videos and an arbitrary robot URDF and generates a robot dataset, (ii) the robot dataset we synthesize over EPIC-Kitchens, HOI4D and Ego4D, and (iii) model checkpoints and inference code, to facilitate reproducible research and broader adoption.
comment: Video link: https://drive.google.com/file/d/1UccngwgPqUwPMhBja7JrXfZoTquCx_Qe/view?usp=sharing
☆ Referring Expression Comprehension for Small Objects
Referring expression comprehension (REC) aims to localize the target object described by a natural language expression. Recent advances in vision-language learning have led to significant performance improvements in REC tasks. However, localizing extremely small objects remains a considerable challenge despite its importance in real-world applications such as autonomous driving. To address this issue, we introduce a novel dataset and method for REC targeting small objects. First, we present the small object REC (SOREC) dataset, which consists of 100,000 pairs of referring expressions and corresponding bounding boxes for small objects in driving scenarios. Second, we propose the progressive-iterative zooming adapter (PIZA), an adapter module for parameter-efficient fine-tuning that enables models to progressively zoom in and localize small objects. In a series of experiments, we apply PIZA to GroundingDINO and demonstrate a significant improvement in accuracy on the SOREC dataset. Our dataset, codes and pre-trained models are publicly available on the project page.
☆ SAMSOD: Rethinking SAM Optimization for RGB-T Salient Object Detection
RGB-T salient object detection (SOD) aims to segment attractive objects by combining RGB and thermal infrared images. To enhance performance, the Segment Anything Model has been fine-tuned for this task. However, the imbalance convergence of two modalities and significant gradient difference between high- and low- activations are ignored, thereby leaving room for further performance enhancement. In this paper, we propose a model called \textit{SAMSOD}, which utilizes unimodal supervision to enhance the learning of non-dominant modality and employs gradient deconfliction to reduce the impact of conflicting gradients on model convergence. The method also leverages two decoupled adapters to separately mask high- and low-activation neurons, emphasizing foreground objects by enhancing background learning. Fundamental experiments on RGB-T SOD benchmark datasets and generalizability experiments on scribble supervised RGB-T SOD, fully supervised RGB-D SOD datasets and full-supervised RGB-D rail surface defect detection all demonstrate the effectiveness of our proposed method.
comment: Accepted by TMM
☆ Model-Guided Microstimulation Steers Primate Visual Behavior
Brain stimulation is a powerful tool for understanding cortical function and holds promise for therapeutic interventions in neuropsychiatric disorders. Initial visual prosthetics apply electric microstimulation to early visual cortex which can evoke percepts of simple symbols such as letters. However, these approaches are fundamentally limited by hardware constraints and the low-level representational properties of this cortical region. In contrast, higher-level visual areas encode more complex object representations and therefore constitute a promising target for stimulation - but determining representational targets that reliably evoke object-level percepts constitutes a major challenge. We here introduce a computational framework to causally model and guide stimulation of high-level cortex, comprising three key components: (1) a perturbation module that translates microstimulation parameters into spatial changes to neural activity, (2) topographic models that capture the spatial organization of cortical neurons and thus enable prototyping of stimulation experiments, and (3) a mapping procedure that links model-optimized stimulation sites back to primate cortex. Applying this framework in two macaque monkeys performing a visual recognition task, model-predicted stimulation experiments produced significant in-vivo changes in perceptual choices. Per-site model predictions and monkey behavior were strongly correlated, underscoring the promise of model-guided stimulation. Image generation further revealed a qualitative similarity between in-silico stimulation of face-selective sites and a patient's report of facephenes. This proof-of-principle establishes a foundation for model-guided microstimulation and points toward next-generation visual prosthetics capable of inducing more complex visual experiences.
☆ A Novel Cloud-Based Diffusion-Guided Hybrid Model for High-Accuracy Accident Detection in Intelligent Transportation Systems
The integration of Diffusion Models into Intelligent Transportation Systems (ITS) is a substantial improvement in the detection of accidents. We present a novel hybrid model integrating guidance classification with diffusion techniques. By leveraging fine-tuned ExceptionNet architecture outputs as input for our proposed diffusion model and processing image tensors as our conditioning, our approach creates a robust classification framework. Our model consists of multiple conditional modules, which aim to modulate the linear projection of inputs using time embeddings and image covariate embeddings, allowing the network to adapt its behavior dynamically throughout the diffusion process. To address the computationally intensive nature of diffusion models, our implementation is cloud-based, enabling scalable and efficient processing. Our strategy overcomes the shortcomings of conventional classification approaches by leveraging diffusion models inherent capacity to effectively understand complicated data distributions. We investigate important diffusion characteristics, such as timestep schedulers, timestep encoding techniques, timestep count, and architectural design changes, using a thorough ablation study, and have conducted a comprehensive evaluation of the proposed model against the baseline models on a publicly available dataset. The proposed diffusion model performs best in image-based accident detection with an accuracy of 97.32%.
☆ MonitorVLM:A Vision Language Framework for Safety Violation Detection in Mining Operations
Industrial accidents, particularly in high-risk domains such as surface and underground mining, are frequently caused by unsafe worker behaviors. Traditional manual inspection remains labor-intensive, error-prone, and insufficient for large-scale, dynamic environments, highlighting the urgent need for intelligent and automated safety monitoring. In this paper, we present MonitorVLM, a novel vision--language framework designed to detect safety violations directly from surveillance video streams. MonitorVLM introduces three key innovations: (1) a domain-specific violation dataset comprising 9,000 vision--question--answer (VQA) samples across 40 high-frequency mining regulations, enriched with augmentation and auxiliary detection cues; (2) a clause filter (CF) module that dynamically selects the Top-$K$ most relevant clauses, reducing inference latency by 13.56\% while maintaining accuracy; and (3) a behavior magnifier (BM) module that enhances worker regions to improve fine-grained action recognition, yielding additional gains of 3.45% in precision and 8.62% in recall. Experimental results demonstrate that MonitorVLM significantly outperforms baseline vision--language models, achieving improvements of 22.01% in precision, 34.22\% in recall, and 28.37% in F1 score over the 72B unfine-tuned baseline. A lightweight web-based interface further integrates MonitorVLM into practical workflows, enabling automatic violation reporting with video timestamping. This study highlights the potential of multimodal large models to enhance occupational safety monitoring in mining and beyond.
☆ Diffusion-Classifier Synergy: Reward-Aligned Learning via Mutual Boosting Loop for FSCIL NeurIPS 2025
Few-Shot Class-Incremental Learning (FSCIL) challenges models to sequentially learn new classes from minimal examples without forgetting prior knowledge, a task complicated by the stability-plasticity dilemma and data scarcity. Current FSCIL methods often struggle with generalization due to their reliance on limited datasets. While diffusion models offer a path for data augmentation, their direct application can lead to semantic misalignment or ineffective guidance. This paper introduces Diffusion-Classifier Synergy (DCS), a novel framework that establishes a mutual boosting loop between diffusion model and FSCIL classifier. DCS utilizes a reward-aligned learning strategy, where a dynamic, multi-faceted reward function derived from the classifier's state directs the diffusion model. This reward system operates at two levels: the feature level ensures semantic coherence and diversity using prototype-anchored maximum mean discrepancy and dimension-wise variance matching, while the logits level promotes exploratory image generation and enhances inter-class discriminability through confidence recalibration and cross-session confusion-aware mechanisms. This co-evolutionary process, where generated images refine the classifier and an improved classifier state yields better reward signals, demonstrably achieves state-of-the-art performance on FSCIL benchmarks, significantly enhancing both knowledge retention and new class learning.
comment: Accepted by NeurIPS 2025
Unsupervised Transformer Pre-Training for Images: Self-Distillation, Mean Teachers, and Random Crops
Recent advances in self-supervised learning (SSL) have made it possible to learn general-purpose visual features that capture both the high-level semantics and the fine-grained spatial structure of images. Most notably, the recent DINOv2 has established a new state of the art by surpassing weakly supervised methods (WSL) like OpenCLIP on most benchmarks. In this survey, we examine the core ideas behind its approach, multi-crop view augmentation and self-distillation with a mean teacher, and trace their development in previous work. We then compare the performance of DINO and DINOv2 with other SSL and WSL methods across various downstream tasks, and highlight some remarkable emergent properties of their learned features with transformer backbones. We conclude by briefly discussing DINOv2's limitations, its impact, and future research directions.
☆ Exploring the Hierarchical Reasoning Model for Small Natural-Image Classification Without Augmentation
This paper asks whether the Hierarchical Reasoning Model (HRM) with the two Transformer-style modules $(f_L,f_H)$, one step (DEQ-style) training, deep supervision, Rotary Position Embeddings, and RMSNorm can serve as a practical image classifier. It is evaluated on MNIST, CIFAR-10, and CIFAR-100 under a deliberately raw regime: no data augmentation, identical optimizer family with one-epoch warmup then cosine-floor decay, and label smoothing. HRM optimizes stably and performs well on MNIST ($\approx 98\%$ test accuracy), but on small natural images it overfits and generalizes poorly: on CIFAR-10, HRM reaches 65.0\% after 25 epochs, whereas a two-stage Conv--BN--ReLU baseline attains 77.2\% while training $\sim 30\times$ faster per epoch; on CIFAR-100, HRM achieves only 29.7\% test accuracy despite 91.5\% train accuracy, while the same CNN reaches 45.3\% test with 50.5\% train accuracy. Loss traces and error analyses indicate healthy optimization but insufficient image-specific inductive bias for HRM in this regime. It is concluded that, for small-resolution image classification without augmentation, HRM is not competitive with even simple convolutional architectures as the HRM currently exist but this does not exclude possibilities that modifications to the model may allow it to improve greatly.
♻ ☆ Automated Defect Detection for Mass-Produced Electronic Components Based on YOLO Object Detection Models
Since the defect detection of conventional industry components is time-consuming and labor-intensive, it leads to a significant burden on quality inspection personnel and makes it difficult to manage product quality. In this paper, we propose an automated defect detection system for the dual in-line package (DIP) that is widely used in industry, using digital camera optics and a deep learning (DL)-based model. The two most common defect categories of DIP are examined: (1) surface defects, and (2) pin-leg defects. However, the lack of defective component images leads to a challenge for detection tasks. To solve this problem, the ConSinGAN is used to generate a suitable-sized dataset for training and testing. Four varieties of the YOLO model are investigated (v3, v4, v7, and v9), both in isolation and with the ConSinGAN augmentation. The proposed YOLOv7 with ConSinGAN is superior to the other YOLO versions in accuracy of 95.50\%, detection time of 285 ms, and is far superior to threshold-based approaches. In addition, the supervisory control and data acquisition (SCADA) system is developed, and the associated sensor architecture is described. The proposed automated defect detection can be easily established with numerous types of defects or insufficient defect data.
comment: 12 pages, 16 figures, 7 tables, and published in IEEE Sensors Journal
♻ ☆ AutoDrive-QA: A Multiple-Choice Benchmark for Vision-Language Evaluation in Urban Autonomous Driving
Evaluating vision-language models (VLMs) in urban driving contexts remains challenging, as existing benchmarks rely on open-ended responses that are ambiguous, annotation-intensive, and inconsistent to score. This lack of standardized evaluation slows progress toward safe and reliable AI for urban mobility. We introduce AutoDrive-QA, the first benchmark that systematically converts open-ended driving QA datasets (DriveLM, NuScenes-QA, LingoQA) into structured multiple-choice questions (MCQs) with distractors grounded in five realistic error categories: Driving Domain Misconceptions, Logical Inconsistencies, Misinterpreted Sensor Inputs, Computational Oversights, and Question Ambiguity. This framework enables reproducible and interpretable evaluation of VLMs across perception, prediction, and planning tasks in complex urban scenes. Experiments show that fine-tuning LLaVA-1.5-7B improves accuracy by about six percentage points across tasks, GPT-4V achieves the strongest zero-shot performance with up to 69.8% accuracy, and Qwen2-VL models also perform competitively, particularly in multi-view settings. Moreover, traditional metrics such as BLEU and CIDEr fail to distinguish strong from weak models. By providing an objective, domain-grounded evaluation protocol, AutoDrive-QA contributes to more transparent benchmarking of urban AI systems, supporting the development of safer and more trustworthy autonomous driving technologies for smart cities.
comment: Updated results with larger dataset experiments and expanded discussion
♻ ☆ A Neurosymbolic Agent System for Compositional Visual Reasoning
The advancement in large language models (LLMs) and large vision models has fueled the rapid progress in multi-modal vision-language reasoning capabilities. However, existing vision-language models (VLMs) remain challenged by compositional visual reasoning. This paper presents VLAgent, a neuro-symbolic approach to developing a Vision-Language Agent system for efficient compositional visual reasoning with three novel features. First, VLAgent develops an interpretable visualization-enhanced two-stage neuro-symbolic reasoning system. The first stage is managed by a front-end engine that generates a structured visual reasoning plan (symbolic program script) for each compositional visual reasoning task by utilizing a pre-trained LLM powered with few-shot chain-of-thought in-context learning. The second stage is managed by a high-performance back-end engine. It transforms the planning script into executable code based on visual input (image or video) and the combination of neural models and symbolic functions and then performs a sequence of actions for the compositional visual reason task. Second, to ensure and enhance the quality of mapping the logic plan to a sequence of executable instructions, VLAgent introduces the SS-parser, which examines the syntax and semantic correctness of the planning script, detects and repairs the logic errors found in the LLM-generated logic plan before generating the executable program. Third, VLAgent introduces the execution verifier in critical reasoning steps to validate and refine its compositional reasoning results in a stepwise manner, for example, ensemble methods for critical visual reasoning and caption analysis for low-confidence compositional reasoning. Extensive experiments on six visual benchmarks compared to a dozen SoTA visual reasoning models show that VLAgent outperforms existing representative approaches to compositional visual reasoning.
♻ ☆ Controllable Video Generation with Provable Disentanglement
Controllable video generation remains a significant challenge, despite recent advances in generating high-quality and consistent videos. Most existing methods for controlling video generation treat the video as a whole, neglecting intricate fine-grained spatiotemporal relationships, which limits both control precision and efficiency. In this paper, we propose Controllable Video Generative Adversarial Networks (CoVoGAN) to disentangle the video concepts, thus facilitating efficient and independent control over individual concepts. Specifically, following the minimal change principle, we first disentangle static and dynamic latent variables. We then leverage the sufficient change property to achieve component-wise identifiability of dynamic latent variables, enabling disentangled control of video generation. To establish the theoretical foundation, we provide a rigorous analysis demonstrating the identifiability of our approach. Building on these theoretical insights, we design a Temporal Transition Module to disentangle latent dynamics. To enforce the minimal change principle and sufficient change property, we minimize the dimensionality of latent dynamic variables and impose temporal conditional independence. To validate our approach, we integrate this module as a plug-in for GANs. Extensive qualitative and quantitative experiments on various video generation benchmarks demonstrate that our method significantly improves generation quality and controllability across diverse real-world scenarios.
♻ ☆ A Comparative Benchmark of Real-time Detectors for Blueberry Detection towards Precision Orchard Management
Blueberry detection in natural environments remains challenging due to variable lighting, occlusions, and motion blur due to environmental factors and imaging devices. Deep learning-based object detectors promise to address these challenges, but they demand a large-scale, diverse dataset that captures the real-world complexities. Moreover, deploying these models in practical scenarios often requires the right accuracy/speed/memory trade-off in model selection. This study presents a novel comparative benchmark analysis of advanced real-time object detectors, including YOLO (You Only Look Once) (v8-v12) and RT-DETR (Real-Time Detection Transformers) (v1-v2) families, consisting of 36 model variants, evaluated on a newly curated dataset for blueberry detection. This dataset comprises 661 canopy images collected with smartphones during the 2022-2023 seasons, consisting of 85,879 labelled instances (including 36,256 ripe and 49,623 unripe blueberries) across a wide range of lighting conditions, occlusions, and fruit maturity stages. Among the YOLO models, YOLOv12m achieved the best accuracy with a mAP@50 of 93.3%, while RT-DETRv2-X obtained a mAP@50 of 93.6%, the highest among all the RT-DETR variants. The inference time varied with the model scale and complexity, and the mid-sized models appeared to offer a good accuracy-speed balance. To further enhance detection performance, all the models were fine-tuned using Unbiased Mean Teacher-based semi-supervised learning (SSL) on a separate set of 1,035 unlabeled images acquired by a ground-based machine vision platform in 2024. This resulted in accuracy gains ranging from -1.4% to 2.9%, with RT-DETR-v2-X achieving the best mAP@50 of 94.8%. More in-depth research into SSL is needed to better leverage cross-domain unlabeled data. Both the dataset and software programs of this study are made publicly available to support further research.
comment: 19 pages, 6 figures, 4 tables. Abstract abridged due to arXiv's 1920 character limit
♻ ☆ OpenCUA: Open Foundations for Computer-Use Agents
Vision-language models have demonstrated impressive capabilities as computer-use agents (CUAs) capable of automating diverse computer tasks. As their commercial potential grows, critical details of the most capable CUA systems remain closed. As these agents will increasingly mediate digital interactions and execute consequential decisions on our behalf, the research community needs access to open CUA frameworks to study their capabilities, limitations, and risks. To bridge this gap, we propose OpenCUA, a comprehensive open-source framework for scaling CUA data and foundation models. Our framework consists of: (1) an annotation infrastructure that seamlessly captures human computer-use demonstrations; (2) AgentNet, the first large-scale computer-use task dataset spanning 3 operating systems and 200+ applications and websites; (3) a scalable pipeline that transforms demonstrations into state-action pairs with reflective long Chain-of-Thought reasoning that sustain robust performance gains as data scales. Our end-to-end agent models demonstrate strong performance across CUA benchmarks. In particular, OpenCUA-72B achieves an average success rate of 45.0% on OSWorld-Verified, establishing a new state-of-the-art (SOTA) among open-source models. Further analysis confirms that our approach generalizes well across domains and benefits significantly from increased test-time computation. We release our annotation tool, datasets, code, and models to build open foundations for further CUA research.
comment: Updata author list, modify first page format, correct typos
♻ ☆ EfficientMIL: Efficient Linear-Complexity MIL Method for WSI Classification
Whole slide images (WSIs) classification represents a fundamental challenge in computational pathology, where multiple instance learning (MIL) has emerged as the dominant paradigm. Current state-of-the-art (SOTA) MIL methods rely on attention mechanisms, achieving good performance but requiring substantial computational resources due to quadratic complexity when processing hundreds of thousands of patches. To address this computational bottleneck, we introduce EfficientMIL, a novel linear-complexity MIL approach for WSIs classification with the patches selection module Adaptive Patch Selector (APS) that we designed, replacing the quadratic-complexity self-attention mechanisms in Transformer-based MIL methods with efficient sequence models including RNN-based GRU, LSTM, and State Space Model (SSM) Mamba. EfficientMIL achieves significant computational efficiency improvements while outperforming other MIL methods across multiple histopathology datasets. On TCGA-Lung dataset, EfficientMIL-Mamba achieved AUC of 0.976 and accuracy of 0.933, while on CAMELYON16 dataset, EfficientMIL-GRU achieved AUC of 0.990 and accuracy of 0.975, surpassing previous state-of-the-art methods. Extensive experiments demonstrate that APS is also more effective for patches selection than conventional selection strategies.
comment: Submitted to Array
♻ ☆ PAL-UI: Planning with Active Look-back for Vision-Based GUI Agents
Graphical User Interface (GUI) agents powered by Multimodal Large Language Models (MLLMs) promise human-like interaction with software applications, yet long-horizon tasks remain challenging due to memory limitations. Existing approaches either truncate history or rely on simple textual summaries, which risk losing critical information when past visual details become necessary for future decisions. In this paper, we propose \textbf{PAL-UI} (\textbf{P}lanning with \textbf{A}ctive \textbf{L}ook-back), a novel framework that enables GUI agents to adaptively retrieve past observations when required. PAL-UI combines a dual-level summarization agent, capturing both observation-level cues and action-level outcomes, with a dedicated retrieval tool that allows the agent to recall specific historical screenshots during planning. We curate a step-level instruction dataset of 8.6K samples from mobile GUI navigation trajectories and train \textbf{PAL-UI-3B} and \textbf{PAL-UI-7B} models based on Qwen2.5-VL. Extensive experiments demonstrate that PAL-UI significantly outperforms baseline models and prior methods in mobile GUI navigation tasks, even under data-efficient settings. Moreover, PAL-UI exhibits strong cross-domain generalization, achieving notable improvements in web navigation without additional training. Our work highlights the potential of active memory retrieval for long-horizon planning capabilities of vision-based GUI agents.
comment: Under Review
♻ ☆ Light of Normals: Unified Feature Representation for Universal Photometric Stereo
Universal photometric stereo (PS) is defined by two factors: it must (i) operate under arbitrary, unknown lighting conditions and (ii) avoid reliance on specific illumination models. Despite progress (e.g., SDM UniPS), two challenges remain. First, current encoders cannot guarantee that illumination and normal information are decoupled. To enforce decoupling, we introduce LINO UniPS with two key components: (i) Light Register Tokens with light alignment supervision to aggregate point, direction, and environment lights; (ii) Interleaved Attention Block featuring global cross-image attention that takes all lighting conditions together so the encoder can factor out lighting while retaining normal-related evidence. Second, high-frequency geometric details are easily lost. We address this with (i) a Wavelet-based Dual-branch Architecture and (ii) a Normal-gradient Perception Loss. These techniques yield a unified feature space in which lighting is explicitly represented by register tokens, while normal details are preserved via wavelet branch. We further introduce PS-Verse, a large-scale synthetic dataset graded by geometric complexity and lighting diversity, and adopt curriculum training from simple to complex scenes. Extensive experiments show new state-of-the-art results on public benchmarks (e.g., DiLiGenT, Luces), stronger generalization to real materials, and improved efficiency; ablations confirm that Light Register Tokens + Interleaved Attention Block drive better feature decoupling, while Wavelet-based Dual-branch Architecture + Normal-gradient Perception Loss recover finer details.
comment: Home: https://houyuanchen111.github.io/lino.github.io Github: https://github.com/houyuanchen111/LINO_UniPS HuggingFace Demo: https://huggingface.co/spaces/houyuanchen/lino
♻ ☆ Deep Spectral Epipolar Representations for Dense Light Field Reconstruction
Accurate and efficient dense depth reconstruction from light field imagery remains a central challenge in computer vision, underpinning applications such as augmented reality, biomedical imaging, and 3D scene reconstruction. Existing deep convolutional approaches, while effective, often incur high computational overhead and are sensitive to noise and disparity inconsistencies in real-world scenarios. This paper introduces a novel Deep Spectral Epipolar Representation (DSER) framework for dense light field reconstruction, which unifies deep spectral feature learning with epipolar-domain regularization. The proposed approach exploits frequency-domain correlations across epipolar plane images to enforce global structural coherence, thereby mitigating artifacts and enhancing depth accuracy. Unlike conventional supervised models, DSER operates efficiently with limited training data while maintaining high reconstruction fidelity. Comprehensive experiments on the 4D Light Field Benchmark and a diverse set of real-world datasets demonstrate that DSER achieves superior performance in terms of precision, structural consistency, and computational efficiency compared to state-of-the-art methods. These results highlight the potential of integrating spectral priors with epipolar geometry for scalable and noise-resilient dense light field depth estimation, establishing DSER as a promising direction for next-generation high-dimensional vision systems.
comment: There are 14 pages, 8 figures, and 3 tables. This full-length article was processed to be submitted to the IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) in October 2025
♻ ☆ TSLA: A Task-Specific Learning Adaptation for Semantic Segmentation on Autonomous Vehicles Platform
Autonomous driving platforms encounter diverse driving scenarios, each with varying hardware resources and precision requirements. Given the computational limitations of embedded devices, it is crucial to consider computing costs when deploying on target platforms like the NVIDIA\textsuperscript{\textregistered} DRIVE PX 2. Our objective is to customize the semantic segmentation network according to the computing power and specific scenarios of autonomous driving hardware. We implement dynamic adaptability through a three-tier control mechanism -- width multiplier, classifier depth, and classifier kernel -- allowing fine-grained control over model components based on hardware constraints and task requirements. This adaptability facilitates broad model scaling, targeted refinement of the final layers, and scenario-specific optimization of kernel sizes, leading to improved resource allocation and performance. Additionally, we leverage Bayesian Optimization with surrogate modeling to efficiently explore hyperparameter spaces under tight computational budgets. Our approach addresses scenario-specific and task-specific requirements through automatic parameter search, accommodating the unique computational complexity and accuracy needs of autonomous driving. It scales its Multiply-Accumulate Operations (MACs) for Task-Specific Learning Adaptation (TSLA), resulting in alternative configurations tailored to diverse self-driving tasks. These TSLA customizations maximize computational capacity and model accuracy, optimizing hardware utilization.
♻ ☆ Capsule Network Projectors are Equivariant and Invariant Learners
Learning invariant representations has been the long-standing approach to self-supervised learning. However, recently progress has been made in preserving equivariant properties in representations, yet do so with highly prescribed architectures. In this work, we propose an invariant-equivariant self-supervised architecture that employs Capsule Networks (CapsNets), which have been shown to capture equivariance with respect to novel viewpoints. We demonstrate that the use of CapsNets in equivariant self-supervised architectures achieves improved downstream performance on equivariant tasks with higher efficiency and fewer network parameters. To accommodate the architectural changes of CapsNets, we introduce a new objective function based on entropy minimisation. This approach, which we name CapsIE (Capsule Invariant Equivariant Network), achieves state-of-the-art performance on the equivariant rotation tasks on the 3DIEBench dataset compared to prior equivariant SSL methods, while performing competitively against supervised counterparts. Our results demonstrate the ability of CapsNets to learn complex and generalised representations for large-scale, multi-task datasets compared to previous CapsNet benchmarks. Code is available at https://github.com/AberdeenML/CapsIE.
comment: V4: accepted at TMLR; V3: Ignore V1 and V2 as we have fixed a bug; 18 pages, 5 figures, 10 Tables
♻ ☆ OracleGS: Grounding Generative Priors for Sparse-View Gaussian Splatting
Sparse-view novel view synthesis is fundamentally ill-posed due to severe geometric ambiguity. Current methods are caught in a trade-off: regressive models are geometrically faithful but incomplete, whereas generative models can complete scenes but often introduce structural inconsistencies. We propose OracleGS, a novel framework that reconciles generative completeness with regressive fidelity for sparse view Gaussian Splatting. Instead of using generative models to patch incomplete reconstructions, our "propose-and-validate" framework first leverages a pre-trained 3D-aware diffusion model to synthesize novel views to propose a complete scene. We then repurpose a multi-view stereo (MVS) model as a 3D-aware oracle to validate the 3D uncertainties of generated views, using its attention maps to reveal regions where the generated views are well-supported by multi-view evidence versus where they fall into regions of high uncertainty due to occlusion, lack of texture, or direct inconsistency. This uncertainty signal directly guides the optimization of a 3D Gaussian Splatting model via an uncertainty-weighted loss. Our approach conditions the powerful generative prior on multi-view geometric evidence, filtering hallucinatory artifacts while preserving plausible completions in under-constrained regions, outperforming state-of-the-art methods on datasets including Mip-NeRF 360 and NeRF Synthetic.
comment: Project page available at: https://atakan-topaloglu.github.io/oraclegs/
♻ ☆ MedEBench: Diagnosing Reliability in Text-Guided Medical Image Editing
Text-guided image editing has seen significant progress in natural image domains, but its application in medical imaging remains limited and lacks standardized evaluation frameworks. Such editing could revolutionize clinical practices by enabling personalized surgical planning, enhancing medical education, and improving patient communication. To bridge this gap, we introduce MedEBench1, a robust benchmark designed to diagnose reliability in text-guided medical image editing. MedEBench consists of 1,182 clinically curated image-prompt pairs covering 70 distinct editing tasks and 13 anatomical regions. It contributes in three key areas: (1) a clinically grounded evaluation framework that measures Editing Accuracy, Context Preservation, and Visual Quality, complemented by detailed descriptions of intended edits and corresponding Region-of-Interest (ROI) masks; (2) a comprehensive comparison of seven state-of-theart models, revealing consistent patterns of failure; and (3) a diagnostic error analysis technique that leverages attention alignment, using Intersection-over-Union (IoU) between model attention maps and ROI masks to identify mislocalization issues, where models erroneously focus on incorrect anatomical regions. MedEBench sets the stage for developing more reliable and clinically effective text-guided medical image editing tools.
comment: Project website: https://mliuby.github.io/MedEBench_Website/
♻ ☆ Erased, But Not Forgotten: Erased Rectified Flow Transformers Still Remain Unsafe Under Concept Attack
Recent advances in text-to-image (T2I) diffusion models have enabled impressive generative capabilities, but they also raise significant safety concerns due to the potential to produce harmful or undesirable content. While concept erasure has been explored as a mitigation strategy, most existing approaches and corresponding attack evaluations are tailored to Stable Diffusion (SD) and exhibit limited effectiveness when transferred to next-generation rectified flow transformers such as Flux. In this work, we present ReFlux, the first concept attack method specifically designed to assess the robustness of concept erasure in the latest rectified flow-based T2I framework. Our approach is motivated by the observation that existing concept erasure techniques, when applied to Flux, fundamentally rely on a phenomenon known as attention localization. Building on this insight, we propose a simple yet effective attack strategy that specifically targets this property. At its core, a reverse-attention optimization strategy is introduced to effectively reactivate suppressed signals while stabilizing attention. This is further reinforced by a velocity-guided dynamic that enhances the robustness of concept reactivation by steering the flow matching process, and a consistency-preserving objective that maintains the global layout and preserves unrelated content. Extensive experiments consistently demonstrate the effectiveness and efficiency of the proposed attack method, establishing a reliable benchmark for evaluating the robustness of concept erasure strategies in rectified flow transformers.
♻ ☆ Circle-RoPE: Cone-like Decoupled Rotary Positional Embedding for Large Vision-Language Models
Rotary Position Embedding (RoPE) is a widely adopted technique for encoding relative positional information in large language models (LLMs). However, when extended to vision-language models (VLMs), RoPE and its variants enforce relative positional dependencies separately within text and image tokens, introducing unintended cross-modal positional biases. For example, image tokens depicting semantically consistent content are assigned distinct positional encodings solely due to spatial location variations. As a result, such tokens exhibit entirely different relative positional relationships with their corresponding text tokens, ultimately leading to misaligned cross-modal representations. To address this, we propose Per-Token Distance, a simple yet effective metric for quantifying the independence of positional encodings across modalities. Informed by this analysis, we introduce Circle-RoPE, a novel encoding scheme designed to eliminate spurious cross-modal biases. Our key idea is to project image token indices onto a \emph{ring} that is orthogonal to the linear axis of text token indices, thereby forming a cone-like structure in the positional encoding space. In this configuration, each text token (point on the linear text axis) becomes the apex of a cone and maintains an equal distance to all image tokens (points on the circular image \emph{ring}), reducing artificial cross-modal biases while preserving intra-image spatial information. To further enhance performance, we propose a staggered strategy that applies different RoPE variants across layers. Extensive experiments demonstrate that our method effectively preserves spatial information from images while reducing relative positional bias, offering a more robust and flexible positional encoding framework for VLMs. The code is available at https://github.com/lose4578/CircleRoPE.
♻ ☆ RoboSwap: A GAN-driven Video Diffusion Framework For Unsupervised Robot Arm Swapping
Recent advancements in generative models have revolutionized video synthesis and editing. However, the scarcity of diverse, high-quality datasets continues to hinder video-conditioned robotic learning, limiting cross-platform generalization. In this work, we address the challenge of swapping a robotic arm in one video with another: a key step for crossembodiment learning. Unlike previous methods that depend on paired video demonstrations in the same environmental settings, our proposed framework, RoboSwap, operates on unpaired data from diverse environments, alleviating the data collection needs. RoboSwap introduces a novel video editing pipeline integrating both GANs and diffusion models, combining their isolated advantages. Specifically, we segment robotic arms from their backgrounds and train an unpaired GAN model to translate one robotic arm to another. The translated arm is blended with the original video background and refined with a diffusion model to enhance coherence, motion realism and object interaction. The GAN and diffusion stages are trained independently. Our experiments demonstrate that RoboSwap outperforms state-of-the-art video and image editing models on three benchmarks in terms of both structural coherence and motion consistency, thereby offering a robust solution for generating reliable, cross-embodiment data in robotic learning.
♻ ☆ FreqPolicy: Frequency Autoregressive Visuomotor Policy with Continuous Tokens NeurIPS
Learning effective visuomotor policies for robotic manipulation is challenging, as it requires generating precise actions while maintaining computational efficiency. Existing methods remain unsatisfactory due to inherent limitations in the essential action representation and the basic network architectures. We observe that representing actions in the frequency domain captures the structured nature of motion more effectively: low-frequency components reflect global movement patterns, while high-frequency components encode fine local details. Additionally, robotic manipulation tasks of varying complexity demand different levels of modeling precision across these frequency bands. Motivated by this, we propose a novel paradigm for visuomotor policy learning that progressively models hierarchical frequency components. To further enhance precision, we introduce continuous latent representations that maintain smoothness and continuity in the action space. Extensive experiments across diverse 2D and 3D robotic manipulation benchmarks demonstrate that our approach outperforms existing methods in both accuracy and efficiency, showcasing the potential of a frequency-domain autoregressive framework with continuous tokens for generalized robotic manipulation.Code is available at https://github.com/4DVLab/Freqpolicy
comment: Comments: Published at Neural Information Processing Systems (NeurIPS) 2025. Project page and code: https://freq-policy.github.io/
♻ ☆ Physics-Based Motion Imitation with Adversarial Differential Discriminators SIGGRAPH
Multi-objective optimization problems, which require the simultaneous optimization of multiple objectives, are prevalent across numerous applications. Existing multi-objective optimization methods often rely on manually-tuned aggregation functions to formulate a joint optimization objective. The performance of such hand-tuned methods is heavily dependent on careful weight selection, a time-consuming and laborious process. These limitations also arise in the setting of reinforcement-learning-based motion tracking methods for physically simulated characters, where intricately crafted reward functions are typically used to achieve high-fidelity results. Such solutions not only require domain expertise and significant manual tuning, but also limit the applicability of the resulting reward function across diverse skills. To bridge this gap, we present a novel adversarial multi-objective optimization technique that is broadly applicable to a range of multi-objective reinforcement-learning tasks, including motion tracking. Our proposed Adversarial Differential Discriminator (ADD) receives a single positive sample, yet is still effective at guiding the optimization process. We demonstrate that our technique can enable characters to closely replicate a variety of acrobatic and agile behaviors, achieving comparable quality to state-of-the-art motion-tracking methods, without relying on manually-designed reward functions. Code and results are available at https://add-moo.github.io/.
comment: SIGGRAPH Asia 2025 Conference Papers
♻ ☆ VSRM: A Robust Mamba-Based Framework for Video Super-Resolution ICCV 2025
Video super-resolution remains a major challenge in low-level vision tasks. To date, CNN- and Transformer-based methods have delivered impressive results. However, CNNs are limited by local receptive fields, while Transformers struggle with quadratic complexity, posing challenges for processing long sequences in VSR. Recently, Mamba has drawn attention for its long-sequence modeling, linear complexity, and large receptive fields. In this work, we propose VSRM, a novel \textbf{V}ideo \textbf{S}uper-\textbf{R}esolution framework that leverages the power of \textbf{M}amba. VSRM introduces Spatial-to-Temporal Mamba and Temporal-to-Spatial Mamba blocks to extract long-range spatio-temporal features and enhance receptive fields efficiently. To better align adjacent frames, we propose Deformable Cross-Mamba Alignment module. This module utilizes a deformable cross-mamba mechanism to make the compensation stage more dynamic and flexible, preventing feature distortions. Finally, we minimize the frequency domain gaps between reconstructed and ground-truth frames by proposing a simple yet effective Frequency Charbonnier-like loss that better preserves high-frequency content and enhances visual quality. Through extensive experiments, VSRM achieves state-of-the-art results on diverse benchmarks, establishing itself as a solid foundation for future research.
comment: Arxiv version of ICCV 2025 paper (3rd version)
♻ ☆ Enhancing Transformers Through Conditioned Embedded Tokens ICCV 2025
Transformers have transformed modern machine learning, driving breakthroughs in computer vision, natural language processing, and robotics. At the core of their success lies the attention mechanism, which enables the modeling of global dependencies among input tokens. However, we reveal that the attention block in transformers suffers from inherent ill-conditioning, which hampers gradient-based optimization and leads to inefficient training. To address this, we develop a theoretical framework that establishes a direct relationship between the conditioning of the attention block and that of the embedded tokenized data. Building on this insight, we introduce conditioned embedded tokens, a method that systematically modifies the embedded tokens to improve the conditioning of the attention mechanism. Our analysis demonstrates that this approach significantly mitigates ill-conditioning, leading to more stable and efficient training. We validate our methodology across various transformer architectures, achieving consistent improvements in image classification, object detection, instance segmentation, and natural language processing, highlighting its broad applicability and effectiveness.
comment: ICCV 2025
♻ ☆ Mask What Matters: Controllable Text-Guided Masking for Self-Supervised Medical Image Analysis
The scarcity of annotated data in specialized domains such as medical imaging presents significant challenges to training robust vision models. While self-supervised masked image modeling (MIM) offers a promising solution, existing approaches largely rely on random high-ratio masking, leading to inefficiency and poor semantic alignment. Moreover, region-aware variants typically depend on reconstruction heuristics or supervised signals, limiting their adaptability across tasks and modalities. We propose Mask What Matters, a controllable text-guided masking framework for self-supervised medical image analysis. By leveraging vision-language models for prompt-based region localization, our method flexibly applies differentiated masking to emphasize diagnostically relevant regions while reducing redundancy in background areas. This controllable design enables better semantic alignment, improved representation learning, and stronger cross-task generalizability. Comprehensive evaluation across multiple medical imaging modalities, including brain MRI, chest CT, and lung X-ray, shows that Mask What Matters consistently outperforms existing MIM methods (e.g., SparK), achieving gains of up to +3.1 percentage points in classification accuracy, +1.3 in box average precision (BoxAP), and +1.1 in mask average precision (MaskAP) for detection. Notably, it achieves these improvements with substantially lower overall masking ratios (e.g., 40\% vs. 70\%). This work demonstrates that controllable, text-driven masking can enable semantically aligned self-supervised learning, advancing the development of robust vision models for medical image analysis.
♻ ☆ RGB-to-Polarization Estimation: A New Task and Benchmark Study NeurIPS 2025
Polarization images provide rich physical information that is fundamentally absent from standard RGB images, benefiting a wide range of computer vision applications such as reflection separation and material classification. However, the acquisition of polarization images typically requires additional optical components, which increases both the cost and the complexity of the applications. To bridge this gap, we introduce a new task: RGB-to-polarization image estimation, which aims to infer polarization information directly from RGB images. In this work, we establish the first comprehensive benchmark for this task by leveraging existing polarization datasets and evaluating a diverse set of state-of-the-art deep learning models, including both restoration-oriented and generative architectures. Through extensive quantitative and qualitative analysis, our benchmark not only establishes the current performance ceiling of RGB-to-polarization estimation, but also systematically reveals the respective strengths and limitations of different model families -- such as direct reconstruction versus generative synthesis, and task-specific training versus large-scale pre-training. In addition, we provide some potential directions for future research on polarization estimation. This benchmark is intended to serve as a foundational resource to facilitate the design and evaluation of future methods for polarization estimation from standard RGB inputs.
comment: Accepted by NeurIPS 2025
♻ ☆ Foveated Retinotopy Improves Classification and Localization in CNNs
From a falcon detecting prey to humans recognizing faces, many species exhibit extraordinary abilities in rapid visual localization and classification. These are made possible by a specialized retinal region called the fovea, which provides high acuity at the center of vision while maintaining lower resolution in the periphery. This distinctive spatial organization, preserved along the early visual pathway through retinotopic mapping, is fundamental to biological vision, yet remains largely unexplored in machine learning. Our study investigates how incorporating foveated retinotopy may benefit deep convolutional neural networks (CNNs) in image classification tasks. By implementing a foveated retinotopic transformation in the input layer of standard ResNet models and re-training them, we maintain comparable classification accuracy while enhancing the network's robustness to scale and rotational perturbations. Although this architectural modification introduces increased sensitivity to fixation point shifts, we demonstrate how this apparent limitation becomes advantageous: variations in classification probabilities across different gaze positions serve as effective indicators for object localization. Our findings suggest that foveated retinotopic mapping encodes implicit knowledge about visual object geometry, offering an efficient solution to the visual search problem - a capability crucial for many living species.
♻ ☆ Jasmine: Harnessing Diffusion Prior for Self-supervised Depth Estimation NeurIPS 2025
In this paper, we propose Jasmine, the first Stable Diffusion (SD)-based self-supervised framework for monocular depth estimation, which effectively harnesses SD's visual priors to enhance the sharpness and generalization of unsupervised prediction. Previous SD-based methods are all supervised since adapting diffusion models for dense prediction requires high-precision supervision. In contrast, self-supervised reprojection suffers from inherent challenges (e.g., occlusions, texture-less regions, illumination variance), and the predictions exhibit blurs and artifacts that severely compromise SD's latent priors. To resolve this, we construct a novel surrogate task of hybrid image reconstruction. Without any additional supervision, it preserves the detail priors of SD models by reconstructing the images themselves while preventing depth estimation from degradation. Furthermore, to address the inherent misalignment between SD's scale and shift invariant estimation and self-supervised scale-invariant depth estimation, we build the Scale-Shift GRU. It not only bridges this distribution gap but also isolates the fine-grained texture of SD output against the interference of reprojection loss. Extensive experiments demonstrate that Jasmine achieves SoTA performance on the KITTI benchmark and exhibits superior zero-shot generalization across multiple datasets.
comment: Accepted to NeurIPS 2025. 23 pages, with the appendix
♻ ☆ MetaSpatial: Reinforcing 3D Spatial Reasoning in VLMs for the Metaverse
We present MetaSpatial, the first reinforcement learning (RL)-based framework designed to enhance 3D spatial reasoning in vision-language models (VLMs), enabling real-time 3D scene generation without the need for hard-coded optimizations. MetaSpatial addresses two core challenges: (i) the lack of internalized 3D spatial reasoning in VLMs, which limits their ability to generate realistic layouts, and (ii) the inefficiency of traditional supervised fine-tuning (SFT) for layout generation tasks, as perfect ground truth annotations are unavailable. Our key innovation is a multi-turn RL-based optimization mechanism that integrates physics-aware constraints and rendered image evaluations, ensuring generated 3D layouts are coherent, physically plausible, and aesthetically consistent. Methodologically, MetaSpatial introduces an adaptive, iterative reasoning process, where the VLM refines spatial arrangements over multiple turns by analyzing rendered outputs, improving scene coherence progressively. Empirical evaluations demonstrate that MetaSpatial significantly enhances the spatial consistency and formatting stability of various scale models. Post-training, object placements are more realistic, aligned, and functionally coherent, validating the effectiveness of RL for 3D spatial reasoning in metaverse, AR/VR, digital twins, and game development applications. Our code, data, and training pipeline are publicly available at https://github.com/PzySeere/MetaSpatial.
comment: Working Paper
♻ ☆ RESCUE: Crowd Evacuation Simulation via Controlling SDM-United Characters
Crowd evacuation simulation is critical for enhancing public safety, and demanded for realistic virtual environments. Current mainstream evacuation models overlook the complex human behaviors that occur during evacuation, such as pedestrian collisions, interpersonal interactions, and variations in behavior influenced by terrain types or individual body shapes. This results in the failure to accurately simulate the escape of people in the real world. In this paper, aligned with the sensory-decision-motor (SDM) flow of the human brain, we propose a real-time 3D crowd evacuation simulation framework that integrates a 3D-adaptive SFM (Social Force Model) Decision Mechanism and a Personalized Gait Control Motor. This framework allows multiple agents to move in parallel and is suitable for various scenarios, with dynamic crowd awareness. Additionally, we introduce Part-level Force Visualization to assist in evacuation analysis. Experimental results demonstrate that our framework supports dynamic trajectory planning and personalized behavior for each agent throughout the evacuation process, and is compatible with uneven terrain. Visually, our method generates evacuation results that are more realistic and plausible, providing enhanced insights for crowd simulation. The code is available at http://cic.tju.edu.cn/faculty/likun/projects/RESCUE.
♻ ☆ InfMasking: Unleashing Synergistic Information by Contrastive Multimodal Interactions NeurIPS 2025
In multimodal representation learning, synergistic interactions between modalities not only provide complementary information but also create unique outcomes through specific interaction patterns that no single modality could achieve alone. Existing methods may struggle to effectively capture the full spectrum of synergistic information, leading to suboptimal performance in tasks where such interactions are critical. This is particularly problematic because synergistic information constitutes the fundamental value proposition of multimodal representation. To address this challenge, we introduce InfMasking, a contrastive synergistic information extraction method designed to enhance synergistic information through an Infinite Masking strategy. InfMasking stochastically occludes most features from each modality during fusion, preserving only partial information to create representations with varied synergistic patterns. Unmasked fused representations are then aligned with masked ones through mutual information maximization to encode comprehensive synergistic information. This infinite masking strategy enables capturing richer interactions by exposing the model to diverse partial modality combinations during training. As computing mutual information estimates with infinite masking is computationally prohibitive, we derive an InfMasking loss to approximate this calculation. Through controlled experiments, we demonstrate that InfMasking effectively enhances synergistic information between modalities. In evaluations on large-scale real-world datasets, InfMasking achieves state-of-the-art performance across seven benchmarks. Code is released at https://github.com/brightest66/InfMasking.
comment: Accepted to NeurIPS 2025
♻ ☆ Segmenting Bi-Atrial Structures Using ResNext Based Framework MICCAI 2025
Atrial Fibrillation (AF), the most common sustained cardiac arrhythmia worldwide, increasingly requires accurate bi-atrial structural assessment to guide ablation strategies, particularly in persistent AF. Late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) enables visualisation of atrial fibrosis, but precise manual segmentation remains time-consuming, operator-dependent, and prone to variability. We propose TASSNet, a novel two-stage deep learning framework for fully automated segmentation of both left atrium (LA) and right atrium (RA), including atrial walls and cavities, from 3D LGE-MRI. TASSNet introduces two main innovations: (i) a ResNeXt-based encoder to enhance feature extraction from limited medical datasets, and (ii) a cyclical learning rate schedule to address convergence instability in highly imbalanced, small-batch 3D segmentation tasks. We evaluated our method on two datasets, one of which was completely out-of-distribution, without any additional training. In both cases, TASSNet successfully segmented atrial structures with high accuracy. These results highlight TASSNet's potential for robust and reproducible bi-atrial segmentation, enabling advanced fibrosis quantification and personalised ablation planning in clinical AF management.
comment: Accepted at STACOM workshop (MICCAI 2025)
♻ ☆ FreeInsert: Disentangled Text-Guided Object Insertion in 3D Gaussian Scene without Spatial Priors
Text-driven object insertion in 3D scenes is an emerging task that enables intuitive scene editing through natural language. However, existing 2D editing-based methods often rely on spatial priors such as 2D masks or 3D bounding boxes, and they struggle to ensure consistency of the inserted object. These limitations hinder flexibility and scalability in real-world applications. In this paper, we propose FreeInsert, a novel framework that leverages foundation models including MLLMs, LGMs, and diffusion models to disentangle object generation from spatial placement. This enables unsupervised and flexible object insertion in 3D scenes without spatial priors. FreeInsert starts with an MLLM-based parser that extracts structured semantics, including object types, spatial relationships, and attachment regions, from user instructions. These semantics guide both the reconstruction of the inserted object for 3D consistency and the learning of its degrees of freedom. We leverage the spatial reasoning capabilities of MLLMs to initialize object pose and scale. A hierarchical, spatially aware refinement stage further integrates spatial semantics and MLLM-inferred priors to enhance placement. Finally, the appearance of the object is improved using the inserted-object image to enhance visual fidelity. Experimental results demonstrate that FreeInsert achieves semantically coherent, spatially precise, and visually realistic 3D insertions without relying on spatial priors, offering a user-friendly and flexible editing experience.
comment: Accepted by ACMMM2025
♻ ☆ Follow-Your-Shape: Shape-Aware Image Editing via Trajectory-Guided Region Control
While recent flow-based image editing models demonstrate general-purpose capabilities across diverse tasks, they often struggle to specialize in challenging scenarios -- particularly those involving large-scale shape transformations. When performing such structural edits, these methods either fail to achieve the intended shape change or inadvertently alter non-target regions, resulting in degraded background quality. We propose Follow-Your-Shape, a training-free and mask-free framework that supports precise and controllable editing of object shapes while strictly preserving non-target content. Motivated by the divergence between inversion and editing trajectories, we compute a Trajectory Divergence Map (TDM) by comparing token-wise velocity differences between the inversion and denoising paths. The TDM enables precise localization of editable regions and guides a Scheduled KV Injection mechanism that ensures stable and faithful editing. To facilitate a rigorous evaluation, we introduce ReShapeBench, a new benchmark comprising 120 new images and enriched prompt pairs specifically curated for shape-aware editing. Experiments demonstrate that our method achieves superior editability and visual fidelity, particularly in tasks requiring large-scale shape replacement.
comment: Project webpage is available at https://follow-your-shape.github.io/
♻ ☆ SAR-TEXT: A Large-Scale SAR Image-Text Dataset Built with SAR-Narrator and A Progressive Learning Strategy for Downstream Tasks
Vision Language Models (VLMs) have achieved remarkable breakthroughs in the field of remote sensing in recent years. Synthetic Aperture Radar (SAR) imagery, with its all-weather capability, is essential in remote sensing, yet the lack of large-scale, high-quality SAR image-text datasets hinders its semantic understanding. In this paper, we construct SAR-TEXT, a large-scale and high-quality dataset consisting of over 130,000 SAR image-text pairs. To construct the SAR-TEXT dataset, we design the SAR-Narrator framework, which generates textual descriptions for SAR images through a multi-stage strategy. To verify the effectiveness of the SAR-TEXT dataset, we conduct experiments on three typical vision-language tasks: image-text retrieval, image captioning, and visual question answering (VQA). Specifically, we construct three representative models on SAR-TEXT: SAR-RS-CLIP, SAR-RS-CoCa, and SAR-GPT. SAR-RS-CLIP achieves notable improvements in retrieval performance, boosting average recall by 12.97% and 10.0% on the OSdataset_512 and HRSID test sets, respectively. In the captioning task, SAR-RS-CoCa achieves significant improvements over the original CoCa models in terms of BLEU-4, SPICE, and CIDEr scores. In the VQA task, SAR-GPT outperforms baseline and single-stage models on multiple SAR-VQA datasets, demonstrating stronger semantic understanding and reasoning ability, as further confirmed by qualitative results. It is worth noting that, as a flexible captioning tool, SAR-Narrator can be readily adopted by the community to construct larger-scale SAR image-text datasets. All code, pretrained models, and the SAR-Text dataset are publicly available at: https://github.com/YiguoHe/SAR-TEXT.
comment: IEEE Submission
♻ ☆ Constructing a 3D Scene from a Single Image
Acquiring detailed 3D scenes typically demands costly equipment, multi-view data, or labor-intensive modeling. Therefore, a lightweight alternative, generating complex 3D scenes from a single top-down image, plays an essential role in real-world applications. While recent 3D generative models have achieved remarkable results at the object level, their extension to full-scene generation often leads to inconsistent geometry, layout hallucinations, and low-quality meshes. In this work, we introduce SceneFuse-3D, a training-free framework designed to synthesize coherent 3D scenes from a single top-down view. Our method is grounded in two principles: region-based generation to improve image-to-3D alignment and resolution, and spatial-aware 3D inpainting to ensure global scene coherence and high-quality geometry generation. Specifically, we decompose the input image into overlapping regions and generate each using a pretrained 3D object generator, followed by a masked rectified flow inpainting process that fills in missing geometry while maintaining structural continuity. This modular design allows us to overcome resolution bottlenecks and preserve spatial structure without requiring 3D supervision or fine-tuning. Extensive experiments across diverse scenes show that SceneFuse-3D outperforms state-of-the-art baselines, including Trellis, Hunyuan3D-2, TripoSG, and LGM, in terms of geometry quality, spatial coherence, and texture fidelity. Our results demonstrate that high-quality coherent 3D scene-level asset generation is achievable from a single top-down image using a principled, training-free pipeline.
♻ ☆ QGFace: Quality-Guided Joint Training For Mixed-Quality Face Recognition
The quality of a face crop in an image is decided by many factors such as camera resolution, distance, and illumination condition. This makes the discrimination of face images with different qualities a challenging problem in realistic applications. However, most existing approaches are designed specifically for high-quality (HQ) or low-quality (LQ) images, and the performances would degrade for the mixed-quality images. Besides, many methods ask for pre-trained feature extractors or other auxiliary structures to support the training and the evaluation. In this paper, we point out that the key to better understand both the HQ and the LQ images simultaneously is to apply different learning methods according to their qualities. We propose a novel quality-guided joint training approach for mixed-quality face recognition, which could simultaneously learn the images of different qualities with a single encoder. Based on quality partition, classification-based method is employed for HQ data learning. Meanwhile, for the LQ images which lack identity information, we learn them with self-supervised image-image contrastive learning. To effectively catch up the model update and improve the discriminability of contrastive learning in our joint training scenario, we further propose a proxy-updated real-time queue to compose the contrastive pairs with features from the genuine encoder. Experiments on the low-quality datasets SCface and Tinyface, the mixed-quality dataset IJB-B, and five high-quality datasets demonstrate the effectiveness of our proposed approach in recognizing face images of different qualities.
♻ ☆ Resolving Task Objective Conflicts in Unified Model via Task-Aware Mixture-of-Experts
Unified multimodal large language models (MLLMs) based on end-to-end autoregressive (AR) transformers effectively integrate both understanding and generation tasks within a single framework. However, intrinsic Task Objective Conflicts between high-level semantic abstraction in understanding and fine-grained detail preservation in generation pose significant challenges, often leading to suboptimal trade-offs and task interference. Existing solutions, such as decoupling shared visual encoders, fall short of fundamentally resolving these conflicts due to inherent AR architecture. In this paper, we propose a novel approach that decouples internal components of AR to resolve task objective conflicts. Specifically, we design UTAMoE, a Unified Task-Aware Mixture-of-Experts (MoE) framework that decouples internal AR modules via a Task-Aware MoE Layer to create task-specific optimization subpaths. To enhance task differentiation while maintaining overall coordination, we introduce a novel Two-Stage Training Strategy. Extensive experiments on multimodal benchmarks demonstrate that UTAMoE mitigates task objective conflicts, achieving state-of-the-art performance across various tasks. Visualizations and ablation studies further validate the effectiveness of our approach.
♻ ☆ Temporal Source Recovery for Time-Series Source-Free Unsupervised Domain Adaptation
Time-Series (TS) data has grown in importance with the rise of Internet of Things devices like sensors, but its labeling remains costly and complex. While Unsupervised Domain Adaptation (UDAs) offers an effective solution, growing data privacy concerns have led to the development of Source-Free UDA (SFUDAs), enabling model adaptation to target domains without accessing source data. Despite their potential, applying existing SFUDAs to TS data is challenging due to the difficulty of transferring temporal dependencies, an essential characteristic of TS data, particularly in the absence of source samples. Although prior works attempt to address this by specific source pretraining designs, such requirements are often impractical, as source data owners cannot be expected to adhere to particular pretraining schemes. To address this, we propose Temporal Source Recovery (TemSR), a framework that leverages the intrinsic properties of TS data to generate a source-like domain and recover source temporal dependencies. With this domain, TemSR enables dependency transfer to the target domain without accessing source data or relying on source-specific designs, thereby facilitating effective and practical TS-SFUDA. TemSR features a masking recovery optimization process to generate a source-like distribution with restored temporal dependencies. This distribution is further refined through local context-aware regularization to preserve local dependencies, and anchor-based recovery diversity maximization to promote distributional diversity. Together, these components enable effective temporal dependency recovery and facilitate transfer across domains using standard UDA techniques. Extensive experiments across multiple TS tasks demonstrate the effectiveness of TemSR, which even surpasses existing TS-SFUDA methods that require source-specific designs.
♻ ☆ Motion Blender Gaussian Splatting for Dynamic Scene Reconstruction
Gaussian splatting has emerged as a powerful tool for high-fidelity reconstruction of dynamic scenes. However, existing methods primarily rely on implicit motion representations, such as encoding motions into neural networks or per-Gaussian parameters, which makes it difficult to further manipulate the reconstructed motions. This lack of explicit controllability limits existing methods to replaying recorded motions only, which hinders a wider application in robotics. To address this, we propose Motion Blender Gaussian Splatting (MBGS), a novel framework that uses motion graphs as an explicit and sparse motion representation. The motion of a graph's links is propagated to individual Gaussians via dual quaternion skinning, with learnable weight painting functions that determine the influence of each link. The motion graphs and 3D Gaussians are jointly optimized from input videos via differentiable rendering. Experiments show that MBGS achieves state-of-the-art performance on the highly challenging iPhone dataset while being competitive on HyperNeRF. We demonstrate the application potential of our method in animating novel object poses, synthesizing real robot demonstrations, and predicting robot actions through visual planning. The source code, models, video demonstrations can be found at http://mlzxy.github.io/motion-blender-gs.
comment: CoRL 2025
♻ ☆ ReMoMask: Retrieval-Augmented Masked Motion Generation
Text-to-Motion (T2M) generation aims to synthesize realistic and semantically aligned human motion sequences from natural language descriptions. However, current approaches face dual challenges: Generative models (e.g., diffusion models) suffer from limited diversity, error accumulation, and physical implausibility, while Retrieval-Augmented Generation (RAG) methods exhibit diffusion inertia, partial-mode collapse, and asynchronous artifacts. To address these limitations, we propose ReMoMask, a unified framework integrating three key innovations: 1) A Bidirectional Momentum Text-Motion Model decouples negative sample scale from batch size via momentum queues, substantially improving cross-modal retrieval precision; 2) A Semantic Spatio-temporal Attention mechanism enforces biomechanical constraints during part-level fusion to eliminate asynchronous artifacts; 3) RAG-Classier-Free Guidance incorporates minor unconditional generation to enhance generalization. Built upon MoMask's RVQ-VAE, ReMoMask efficiently generates temporally coherent motions in minimal steps. Extensive experiments on standard benchmarks demonstrate the state-of-the-art performance of ReMoMask, achieving a 3.88% and 10.97% improvement in FID scores on HumanML3D and KIT-ML, respectively, compared to the previous SOTA method RAG-T2M. Code: https://github.com/AIGeeksGroup/ReMoMask. Website: https://aigeeksgroup.github.io/ReMoMask.
Artificial Intelligence 1
♻ ☆ InfoMosaic-Bench: Evaluating Multi-Source Information Seeking in Tool-Augmented Agents
Information seeking is a fundamental requirement for humans. However, existing LLM agents rely heavily on open-web search, which exposes two fundamental weaknesses: online content is noisy and unreliable, and many real-world tasks require precise, domain-specific knowledge unavailable from the web. The emergence of the Model Context Protocol (MCP) now allows agents to interface with thousands of specialized tools, seemingly resolving this limitation. Yet it remains unclear whether agents can effectively leverage such tools -- and more importantly, whether they can integrate them with general-purpose search to solve complex tasks. Therefore, we introduce InfoMosaic-Bench, the first benchmark dedicated to multi-source information seeking in tool-augmented agents. Covering six representative domains (medicine, finance, maps, video, web, and multi-domain integration), InfoMosaic-Bench requires agents to combine general-purpose search with domain-specific tools. Tasks are synthesized with InfoMosaic-Flow, a scalable pipeline that grounds task conditions in verified tool outputs, enforces cross-source dependencies, and filters out shortcut cases solvable by trivial lookup. This design guarantees both reliability and non-triviality. Experiments with 14 state-of-the-art LLM agents reveal three findings: (i) web information alone is insufficient, with GPT-5 achieving only 38.2% accuracy and 67.5% pass rate; (ii) domain tools provide selective but inconsistent benefits, improving some domains while degrading others; and (iii) 22.4% of failures arise from incorrect tool usage or selection, highlighting that current LLMs still struggle with even basic tool handling.
Graphics 4
☆ Enhancing Foveated Rendering with Weighted Reservoir Sampling SIGGRAPH
Spatiotemporal sensitivity to high frequency information declines with increased peripheral eccentricity. Foveated rendering exploits this by decreasing the spatial resolution of rendered images in peripheral vision, reducing the rendering cost by omitting high frequency details. As foveation levels increase, the rendering quality is reduced, and traditional foveated rendering systems tend not to preserve samples that were previously rendered at high spatial resolution in previous frames. Additionally, prior research has shown that saccade landing positions are distributed around a target location rather than landing at a single point, and that even during fixations, eyes perform small microsaccades around a fixation point. This creates an opportunity for sampling from temporally neighbouring frames with differing foveal locations to reduce the required rendered size of the foveal region while achieving a higher perceived image quality. We further observe that the temporal presentation of pixels frame-to-frame can be viewed as a data stream, presenting a random sampling problem. Following this intuition, we propose a Weighted Reservoir Sampling technique to efficiently maintain a reservoir of the perceptually relevant high quality pixel samples from previous frames and incorporate them into the computation of the current frame. This allows the renderer to render a smaller region of foveal pixels per frame by temporally reusing pixel samples that are still relevant to reconstruct a higher perceived image quality, while allowing for higher levels of foveation. Our method operates on the output of foveated rendering, and runs in under 1\,ms at 4K resolution, making it highly efficient and integrable with real-time VR and AR foveated rendering systems.
comment: To appear in The 18th ACM SIGGRAPH Conference on Motion, Interaction, and Games (MIG '25), December 03-05, 2025, Zurich, Switzerland
☆ Joint Neural SDF Reconstruction and Semantic Segmentation for CAD Models
We propose a simple, data-efficient pipeline that augments an implicit reconstruction network based on neural SDF-based CAD parts with a part-segmentation head trained under PartField-generated supervision. Unlike methods tied to fixed taxonomies, our model accepts meshes with any number of parts and produces coherent, geometry-aligned labels in a single pass. We evaluate on randomly sampled CAD meshes from the ABC dataset with intentionally varied part cardinalities, including over-segmented shapes, and report strong performance across reconstruction (CDL1/CDL2, F1-micro, NC) and segmentation (mIoU, Accuracy), together with a new Segmentation Consistency metric that captures local label smoothness. We attach a lightweight segmentation head to the Flat-CAD SDF trunk; on a paired evaluation it does not alter reconstruction while providing accurate part labels for meshes with any number of parts. Even under degraded reconstructions on thin or intricate geometries, segmentation remains accurate and label-coherent, often preserving the correct part count. Our approach therefore offers a practical route to semantically structured CAD meshes without requiring curated taxonomies or exact palette matches. We discuss limitations in boundary precision, partly due to per-face supervision, and outline paths toward boundary-aware training and higher resolution labels.
☆ Diverse Text-to-Image Generation via Contrastive Noise Optimization
Text-to-image (T2I) diffusion models have demonstrated impressive performance in generating high-fidelity images, largely enabled by text-guided inference. However, this advantage often comes with a critical drawback: limited diversity, as outputs tend to collapse into similar modes under strong text guidance. Existing approaches typically optimize intermediate latents or text conditions during inference, but these methods deliver only modest gains or remain sensitive to hyperparameter tuning. In this work, we introduce Contrastive Noise Optimization, a simple yet effective method that addresses the diversity issue from a distinct perspective. Unlike prior techniques that adapt intermediate latents, our approach shapes the initial noise to promote diverse outputs. Specifically, we develop a contrastive loss defined in the Tweedie data space and optimize a batch of noise latents. Our contrastive optimization repels instances within the batch to maximize diversity while keeping them anchored to a reference sample to preserve fidelity. We further provide theoretical insights into the mechanism of this preprocessing to substantiate its effectiveness. Extensive experiments across multiple T2I backbones demonstrate that our approach achieves a superior quality-diversity Pareto frontier while remaining robust to hyperparameter choices.
♻ ☆ Physics-Based Motion Imitation with Adversarial Differential Discriminators SIGGRAPH
Multi-objective optimization problems, which require the simultaneous optimization of multiple objectives, are prevalent across numerous applications. Existing multi-objective optimization methods often rely on manually-tuned aggregation functions to formulate a joint optimization objective. The performance of such hand-tuned methods is heavily dependent on careful weight selection, a time-consuming and laborious process. These limitations also arise in the setting of reinforcement-learning-based motion tracking methods for physically simulated characters, where intricately crafted reward functions are typically used to achieve high-fidelity results. Such solutions not only require domain expertise and significant manual tuning, but also limit the applicability of the resulting reward function across diverse skills. To bridge this gap, we present a novel adversarial multi-objective optimization technique that is broadly applicable to a range of multi-objective reinforcement-learning tasks, including motion tracking. Our proposed Adversarial Differential Discriminator (ADD) receives a single positive sample, yet is still effective at guiding the optimization process. We demonstrate that our technique can enable characters to closely replicate a variety of acrobatic and agile behaviors, achieving comparable quality to state-of-the-art motion-tracking methods, without relying on manually-designed reward functions. Code and results are available at https://add-moo.github.io/.
comment: SIGGRAPH Asia 2025 Conference Papers
Robotics 57
☆ Simulation to Rules: A Dual-VLM Framework for Formal Visual Planning
Vision Language Models (VLMs) show strong potential for visual planning but struggle with precise spatial and long-horizon reasoning. In contrast, Planning Domain Definition Language (PDDL) planners excel at long-horizon formal planning, but cannot interpret visual inputs. Recent works combine these complementary advantages by enabling VLMs to turn visual planning problems into PDDL files for formal planning. However, while VLMs can generate PDDL problem files satisfactorily, they struggle to accurately generate the PDDL domain files, which describe all the planning rules. As a result, prior methods rely on human experts to predefine domain files or on constant environment access for refinement. We propose VLMFP, a Dual-VLM-guided framework that can autonomously generate both PDDL problem and domain files for formal visual planning. VLMFP introduces two VLMs to ensure reliable PDDL file generation: A SimVLM that simulates action consequences based on input rule descriptions, and a GenVLM that generates and iteratively refines PDDL files by comparing the PDDL and SimVLM execution results. VLMFP unleashes multiple levels of generalizability: The same generated PDDL domain file works for all the different instances under the same problem, and VLMs generalize to different problems with varied appearances and rules. We evaluate VLMFP with 6 grid-world domains and test its generalization to unseen instances, appearance, and game rules. On average, SimVLM accurately describes 95.5%, 82.6% of scenarios, simulates 85.5%, 87.8% of action sequence, and judges 82.4%, 85.6% goal reaching for seen and unseen appearances, respectively. With the guidance of SimVLM, VLMFP can generate PDDL files to reach 70.0%, 54.1% valid plans for unseen instances in seen and unseen appearances, respectively. Project page: https://sites.google.com/view/vlmfp.
comment: 30 pages, 5 figures, 5 tables
☆ Optimal Smooth Coverage Trajectory Planning for Quadrotors in Cluttered Environment
For typical applications of UAVs in power grid scenarios, we construct the problem as planning UAV trajectories for coverage in cluttered environments. In this paper, we propose an optimal smooth coverage trajectory planning algorithm. The algorithm consists of two stages. In the front-end, a Genetic Algorithm (GA) is employed to solve the Traveling Salesman Problem (TSP) for Points of Interest (POIs), generating an initial sequence of optimized visiting points. In the back-end, the sequence is further optimized by considering trajectory smoothness, time consumption, and obstacle avoidance. This is formulated as a nonlinear least squares problem and solved to produce a smooth coverage trajectory that satisfies these constraints. Numerical simulations validate the effectiveness of the proposed algorithm, ensuring UAVs can smoothly cover all POIs in cluttered environments.
comment: This paper has been accepted for publication in the 44th Chinese Control Conference, 2025. Please cite the paper using appropriate formats
☆ Improving Cooperation in Collaborative Embodied AI
The integration of Large Language Models (LLMs) into multiagent systems has opened new possibilities for collaborative reasoning and cooperation with AI agents. This paper explores different prompting methods and evaluates their effectiveness in enhancing agent collaborative behaviour and decision-making. We enhance CoELA, a framework designed for building Collaborative Embodied Agents that leverage LLMs for multi-agent communication, reasoning, and task coordination in shared virtual spaces. Through systematic experimentation, we examine different LLMs and prompt engineering strategies to identify optimised combinations that maximise collaboration performance. Furthermore, we extend our research by integrating speech capabilities, enabling seamless collaborative voice-based interactions. Our findings highlight the effectiveness of prompt optimisation in enhancing collaborative agent performance; for example, our best combination improved the efficiency of the system running with Gemma3 by 22% compared to the original CoELA system. In addition, the speech integration provides a more engaging user interface for iterative system development and demonstrations.
comment: In proceedings of UKCI 2025
☆ MM-Nav: Multi-View VLA Model for Robust Visual Navigation via Multi-Expert Learning
Visual navigation policy is widely regarded as a promising direction, as it mimics humans by using egocentric visual observations for navigation. However, optical information of visual observations is difficult to be explicitly modeled like LiDAR point clouds or depth maps, which subsequently requires intelligent models and large-scale data. To this end, we propose to leverage the intelligence of the Vision-Language-Action (VLA) model to learn diverse navigation capabilities from synthetic expert data in a teacher-student manner. Specifically, we implement the VLA model, MM-Nav, as a multi-view VLA (with 360 observations) based on pretrained large language models and visual foundation models. For large-scale navigation data, we collect expert data from three reinforcement learning (RL) experts trained with privileged depth information in three challenging tailor-made environments for different navigation capabilities: reaching, squeezing, and avoiding. We iteratively train our VLA model using data collected online from RL experts, where the training ratio is dynamically balanced based on performance on individual capabilities. Through extensive experiments in synthetic environments, we demonstrate that our model achieves strong generalization capability. Moreover, we find that our student VLA model outperforms the RL teachers, demonstrating the synergistic effect of integrating multiple capabilities. Extensive real-world experiments further confirm the effectiveness of our method.
comment: Project page: https://pku-epic.github.io/MM-Nav-Web/
☆ Mask2IV: Interaction-Centric Video Generation via Mask Trajectories
Generating interaction-centric videos, such as those depicting humans or robots interacting with objects, is crucial for embodied intelligence, as they provide rich and diverse visual priors for robot learning, manipulation policy training, and affordance reasoning. However, existing methods often struggle to model such complex and dynamic interactions. While recent studies show that masks can serve as effective control signals and enhance generation quality, obtaining dense and precise mask annotations remains a major challenge for real-world use. To overcome this limitation, we introduce Mask2IV, a novel framework specifically designed for interaction-centric video generation. It adopts a decoupled two-stage pipeline that first predicts plausible motion trajectories for both actor and object, then generates a video conditioned on these trajectories. This design eliminates the need for dense mask inputs from users while preserving the flexibility to manipulate the interaction process. Furthermore, Mask2IV supports versatile and intuitive control, allowing users to specify the target object of interaction and guide the motion trajectory through action descriptions or spatial position cues. To support systematic training and evaluation, we curate two benchmarks covering diverse action and object categories across both human-object interaction and robotic manipulation scenarios. Extensive experiments demonstrate that our method achieves superior visual realism and controllability compared to existing baselines.
comment: Project page: https://reagan1311.github.io/mask2iv
☆ Learning Stability Certificate for Robotics in Real-World Environments
Stability certificates play a critical role in ensuring the safety and reliability of robotic systems. However, deriving these certificates for complex, unknown systems has traditionally required explicit knowledge of system dynamics, often making it a daunting task. This work introduces a novel framework that learns a Lyapunov function directly from trajectory data, enabling the certification of stability for autonomous systems without needing detailed system models. By parameterizing the Lyapunov candidate using a neural network and ensuring positive definiteness through Cholesky factorization, our approach automatically identifies whether the system is stable under the given trajectory. To address the challenges posed by noisy, real-world data, we allow for controlled violations of the stability condition, focusing on maintaining high confidence in the stability certification process. Our results demonstrate that this framework can provide data-driven stability guarantees, offering a robust method for certifying the safety of robotic systems in dynamic, real-world environments. This approach works without access to the internal control algorithms, making it applicable even in situations where system behavior is opaque or proprietary. The tool for learning the stability proof is open-sourced by this research: https://github.com/HansOersted/stability.
☆ Whisker-based Tactile Flight for Tiny Drones
Tiny flying robots hold great potential for search-and-rescue, safety inspections, and environmental monitoring, but their small size limits conventional sensing-especially with poor-lighting, smoke, dust or reflective obstacles. Inspired by nature, we propose a lightweight, 3.2-gram, whisker-based tactile sensing apparatus for tiny drones, enabling them to navigate and explore through gentle physical interaction. Just as rats and moles use whiskers to perceive surroundings, our system equips drones with tactile perception in flight, allowing obstacle sensing even in pitch-dark conditions. The apparatus uses barometer-based whisker sensors to detect obstacle locations while minimising destabilisation. To address sensor noise and drift, we develop a tactile depth estimation method achieving sub-6 mm accuracy. This enables drones to navigate, contour obstacles, and explore confined spaces solely through touch-even in total darkness along both soft and rigid surfaces. Running fully onboard a 192-KB RAM microcontroller, the system supports autonomous tactile flight and is validated in both simulation and real-world tests. Our bio-inspired approach redefines vision-free navigation, opening new possibilities for micro aerial vehicles in extreme environments.
☆ Geometry Meets Vision: Revisiting Pretrained Semantics in Distilled Fields
Semantic distillation in radiance fields has spurred significant advances in open-vocabulary robot policies, e.g., in manipulation and navigation, founded on pretrained semantics from large vision models. While prior work has demonstrated the effectiveness of visual-only semantic features (e.g., DINO and CLIP) in Gaussian Splatting and neural radiance fields, the potential benefit of geometry-grounding in distilled fields remains an open question. In principle, visual-geometry features seem very promising for spatial tasks such as pose estimation, prompting the question: Do geometry-grounded semantic features offer an edge in distilled fields? Specifically, we ask three critical questions: First, does spatial-grounding produce higher-fidelity geometry-aware semantic features? We find that image features from geometry-grounded backbones contain finer structural details compared to their counterparts. Secondly, does geometry-grounding improve semantic object localization? We observe no significant difference in this task. Thirdly, does geometry-grounding enable higher-accuracy radiance field inversion? Given the limitations of prior work and their lack of semantics integration, we propose a novel framework SPINE for inverting radiance fields without an initial guess, consisting of two core components: coarse inversion using distilled semantics, and fine inversion using photometric-based optimization. Surprisingly, we find that the pose estimation accuracy decreases with geometry-grounded features. Our results suggest that visual-only features offer greater versatility for a broader range of downstream tasks, although geometry-grounded features contain more geometric detail. Notably, our findings underscore the necessity of future research on effective strategies for geometry-grounding that augment the versatility and performance of pretrained semantic features.
☆ A Dimension-Decomposed Learning Framework for Online Disturbance Identification in Quadrotor SE(3) Control
Quadrotor stability under complex dynamic disturbances and model uncertainties poses significant challenges. One of them remains the underfitting problem in high-dimensional features, which limits the identification capability of current learning-based methods. To address this, we introduce a new perspective: Dimension-Decomposed Learning (DiD-L), from which we develop the Sliced Adaptive-Neuro Mapping (SANM) approach for geometric control. Specifically, the high-dimensional mapping for identification is axially ``sliced" into multiple low-dimensional submappings (``slices"). In this way, the complex high-dimensional problem is decomposed into a set of simple low-dimensional tasks addressed by shallow neural networks and adaptive laws. These neural networks and adaptive laws are updated online via Lyapunov-based adaptation without any pre-training or persistent excitation (PE) condition. To enhance the interpretability of the proposed approach, we prove that the full-state closed-loop system exhibits arbitrarily close to exponential stability despite multi-dimensional time-varying disturbances and model uncertainties. This result is novel as it demonstrates exponential convergence without requiring pre-training for unknown disturbances and specific knowledge of the model.
☆ Embracing Evolution: A Call for Body-Control Co-Design in Embodied Humanoid Robot
Humanoid robots, as general-purpose physical agents, must integrate both intelligent control and adaptive morphology to operate effectively in diverse real-world environments. While recent research has focused primarily on optimizing control policies for fixed robot structures, this position paper argues for evolving both control strategies and humanoid robots' physical structure under a co-design mechanism. Inspired by biological evolution, this approach enables robots to iteratively adapt both their form and behavior to optimize performance within task-specific and resource-constrained contexts. Despite its promise, co-design in humanoid robotics remains a relatively underexplored domain, raising fundamental questions about its feasibility and necessity in achieving true embodied intelligence. To address these challenges, we propose practical co-design methodologies grounded in strategic exploration, Sim2Real transfer, and meta-policy learning. We further argue for the essential role of co-design by analyzing it from methodological, application-driven, and community-oriented perspectives. Striving to guide and inspire future studies, we present open research questions, spanning from short-term innovations to long-term goals. This work positions co-design as a cornerstone for developing the next generation of intelligent and adaptable humanoid agents.
Long-Term Human Motion Prediction Using Spatio-Temporal Maps of Dynamics
Long-term human motion prediction (LHMP) is important for the safe and efficient operation of autonomous robots and vehicles in environments shared with humans. Accurate predictions are important for applications including motion planning, tracking, human-robot interaction, and safety monitoring. In this paper, we exploit Maps of Dynamics (MoDs), which encode spatial or spatio-temporal motion patterns as environment features, to achieve LHMP for horizons of up to 60 seconds. We propose an MoD-informed LHMP framework that supports various types of MoDs and includes a ranking method to output the most likely predicted trajectory, improving practical utility in robotics. Further, a time-conditioned MoD is introduced to capture motion patterns that vary across different times of day. We evaluate MoD-LHMP instantiated with three types of MoDs. Experiments on two real-world datasets show that MoD-informed method outperforms learning-based ones, with up to 50\% improvement in average displacement error, and the time-conditioned variant achieves the highest accuracy overall. Project code is available at https://github.com/test-bai-cpu/LHMP-with-MoDs.git
comment: IEEE Robotics and Automation Letters
☆ HumanoidExo: Scalable Whole-Body Humanoid Manipulation via Wearable Exoskeleton
A significant bottleneck in humanoid policy learning is the acquisition of large-scale, diverse datasets, as collecting reliable real-world data remains both difficult and cost-prohibitive. To address this limitation, we introduce HumanoidExo, a novel system that transfers human motion to whole-body humanoid data. HumanoidExo offers a high-efficiency solution that minimizes the embodiment gap between the human demonstrator and the robot, thereby tackling the scarcity of whole-body humanoid data. By facilitating the collection of more voluminous and diverse datasets, our approach significantly enhances the performance of humanoid robots in dynamic, real-world scenarios. We evaluated our method across three challenging real-world tasks: table-top manipulation, manipulation integrated with stand-squat motions, and whole-body manipulation. Our results empirically demonstrate that HumanoidExo is a crucial addition to real-robot data, as it enables the humanoid policy to generalize to novel environments, learn complex whole-body control from only five real-robot demonstrations, and even acquire new skills (i.e., walking) solely from HumanoidExo data.
☆ 3D-CovDiffusion: 3D-Aware Diffusion Policy for Coverage Path Planning
Diffusion models, as a class of deep generative models, have recently emerged as powerful tools for robot skills by enabling stable training with reliable convergence. In this paper, we present an end-to-end framework for generating long, smooth trajectories that explicitly target high surface coverage across various industrial tasks, including polishing, robotic painting, and spray coating. The conventional methods are always fundamentally constrained by their predefined functional forms, which limit the shapes of the trajectories they can represent and make it difficult to handle complex and diverse tasks. Moreover, their generalization is poor, often requiring manual redesign or extensive parameter tuning when applied to new scenarios. These limitations highlight the need for more expressive generative models, making diffusion-based approaches a compelling choice for trajectory generation. By iteratively denoising trajectories with carefully learned noise schedules and conditioning mechanisms, diffusion models not only ensure smooth and consistent motion but also flexibly adapt to the task context. In experiments, our method improves trajectory continuity, maintains high coverage, and generalizes to unseen shapes, paving the way for unified end-to-end trajectory learning across industrial surface-processing tasks without category-specific models. On average, our approach improves Point-wise Chamfer Distance by 98.2\% and smoothness by 97.0\%, while increasing surface coverage by 61\% compared to prior methods. The link to our code can be found \href{https://anonymous.4open.science/r/spraydiffusion_ral-2FCE/README.md}{here}.
☆ Real-Time Nonlinear Model Predictive Control of Heavy-Duty Skid-Steered Mobile Platform for Trajectory Tracking Tasks
This paper presents a framework for real-time optimal controlling of a heavy-duty skid-steered mobile platform for trajectory tracking. The importance of accurate real-time performance of the controller lies in safety considerations of situations where the dynamic system under control is affected by uncertainties and disturbances, and the controller should compensate for such phenomena in order to provide stable performance. A multiple-shooting nonlinear model-predictive control framework is proposed in this paper. This framework benefits from suitable algorithm along with readings from various sensors for genuine real-time performance with extremely high accuracy. The controller is then tested for tracking different trajectories where it demonstrates highly desirable performance in terms of both speed and accuracy. This controller shows remarkable improvement when compared to existing nonlinear model-predictive controllers in the literature that were implemented on skid-steered mobile platforms.
☆ AI-Enhanced Kinematic Modeling of Flexible Manipulators Using Multi-IMU Sensor Fusion
This paper presents a novel framework for estimating the position and orientation of flexible manipulators undergoing vertical motion using multiple inertial measurement units (IMUs), optimized and calibrated with ground truth data. The flexible links are modeled as a series of rigid segments, with joint angles estimated from accelerometer and gyroscope measurements acquired by cost-effective IMUs. A complementary filter is employed to fuse the measurements, with its parameters optimized through particle swarm optimization (PSO) to mitigate noise and delay. To further improve estimation accuracy, residual errors in position and orientation are compensated using radial basis function neural networks (RBFNN). Experimental results validate the effectiveness of the proposed intelligent multi-IMU kinematic estimation method, achieving root mean square errors (RMSE) of 0.00021~m, 0.00041~m, and 0.00024~rad for $y$, $z$, and $\theta$, respectively.
☆ YawSitter: Modeling and Controlling a Tail-Sitter UAV with Enhanced Yaw Control
Achieving precise lateral motion modeling and decoupled control in hover remains a significant challenge for tail-sitter Unmanned Aerial Vehicles (UAVs), primarily due to complex aerodynamic couplings and the absence of welldefined lateral dynamics. This paper presents a novel modeling and control strategy that enhances yaw authority and lateral motion by introducing a sideslip force model derived from differential propeller slipstream effects acting on the fuselage under differential thrust. The resulting lateral force along the body y-axis enables yaw-based lateral position control without inducing roll coupling. The control framework employs a YXZ Euler rotation formulation to accurately represent attitude and incorporate gravitational components while directly controlling yaw in the yaxis, thereby improving lateral dynamic behavior and avoiding singularities. The proposed approach is validated through trajectory-tracking simulations conducted in a Unity-based environment. Tests on both rectangular and circular paths in hover mode demonstrate stable performance, with low mean absolute position errors and yaw deviations constrained within 5.688 degrees. These results confirm the effectiveness of the proposed lateral force generation model and provide a foundation for the development of agile, hover-capable tail-sitter UAVs.
☆ Single-Rod Brachiation Robot: Mechatronic Control Design and Validation of Prejump Phases
A complete mechatronic design of a minimal configuration brachiation robot is presented. The robot consists of a single rigid rod with gripper mechanisms attached to both ends. The grippers are used to hang the robot on a horizontal bar on which it swings or rotates. The motion is imposed by repositioning the robot's center of mass, which is performed using a crank-slide mechanism. Based on a non-linear model, an optimal control strategy is proposed, for repositioning the center of mass in a bang-bang manner. Consequently, utilizing the concept of input-output linearization, a continuous control strategy is proposed that takes into account the limited torque of the crank-slide mechanism and its geometry. An increased attention is paid to energy accumulation towards the subsequent jump stage of the brachiation. These two strategies are validated and compared in simulations. The continuous control strategy is then also implemented within a low-cost STM32-based control system, and both the swing and rotation stages of the brachiation motion are experimentally validated.
comment: 11 pages, 13 figures, 1 table, Accepted 27 July 2025, Available online 16 Sept 2025, Version of Record 28 Sept 2025
☆ Metrics vs Surveys: Can Quantitative Measures Replace Human Surveys in Social Robot Navigation? A Correlation Analysis
Social, also called human-aware, navigation is a key challenge for the integration of mobile robots into human environments. The evaluation of such systems is complex, as factors such as comfort, safety, and legibility must be considered. Human-centered assessments, typically conducted through surveys, provide reliable insights but are costly, resource-intensive, and difficult to reproduce or compare across systems. Alternatively, numerical social navigation metrics are easy to compute and facilitate comparisons, yet the community lacks consensus on a standard set of metrics. This work explores the relationship between numerical metrics and human-centered evaluations to identify potential correlations. If specific quantitative measures align with human perceptions, they could serve as standardized evaluation tools, reducing the dependency on surveys. Our results indicate that while current metrics capture some aspects of robot navigation behavior, important subjective factors remain insufficiently represented and new metrics are necessary.
☆ Point Cloud-Based Control Barrier Functions for Model Predictive Control in Safety-Critical Navigation of Autonomous Mobile Robots IROS2025
In this work, we propose a novel motion planning algorithm to facilitate safety-critical navigation for autonomous mobile robots. The proposed algorithm integrates a real-time dynamic obstacle tracking and mapping system that categorizes point clouds into dynamic and static components. For dynamic point clouds, the Kalman filter is employed to estimate and predict their motion states. Based on these predictions, we extrapolate the future states of dynamic point clouds, which are subsequently merged with static point clouds to construct the forward-time-domain (FTD) map. By combining control barrier functions (CBFs) with nonlinear model predictive control, the proposed algorithm enables the robot to effectively avoid both static and dynamic obstacles. The CBF constraints are formulated based on risk points identified through collision detection between the predicted future states and the FTD map. Experimental results from both simulated and real-world scenarios demonstrate the efficacy of the proposed algorithm in complex environments. In simulation experiments, the proposed algorithm is compared with two baseline approaches, showing superior performance in terms of safety and robustness in obstacle avoidance. The source code is released for the reference of the robotics community.
comment: 8 pages, 8 figures, accepted to IROS2025
☆ Novel UWB Synthetic Aperture Radar Imaging for Mobile Robot Mapping
Traditional exteroceptive sensors in mobile robots, such as LiDARs and cameras often struggle to perceive the environment in poor visibility conditions. Recently, radar technologies, such as ultra-wideband (UWB) have emerged as potential alternatives due to their ability to see through adverse environmental conditions (e.g. dust, smoke and rain). However, due to the small apertures with low directivity, the UWB radars cannot reconstruct a detailed image of its field of view (FOV) using a single scan. Hence, a virtual large aperture is synthesized by moving the radar along a mobile robot path. The resulting synthetic aperture radar (SAR) image is a high-definition representation of the surrounding environment. Hence, this paper proposes a pipeline for mobile robots to incorporate UWB radar-based SAR imaging to map an unknown environment. Finally, we evaluated the performance of classical feature detectors: SIFT, SURF, BRISK, AKAZE and ORB to identify loop closures using UWB SAR images. The experiments were conducted emulating adverse environmental conditions. The results demonstrate the viability and effectiveness of UWB SAR imaging for high-resolution environmental mapping and loop closure detection toward more robust and reliable robotic perception systems.
comment: Accepted and presented at the 15th International Conference on Indoor Positioning and Indoor Navigation (IPIN) 2025, see https://ipin-conference.org/2025/
☆ Action Deviation-Aware Inference for Low-Latency Wireless Robots
To support latency-sensitive AI applications ranging from autonomous driving to industrial robot manipulation, 6G envisions distributed ML, connecting distributed computational resources in edge and cloud over hyper-reliable low-latency communication (HRLLC). In this setting, speculative decoding can facilitate collaborative inference of models distributively deployed: an on-device draft model locally generates drafts and a remote server-based target model verifies and corrects them, resulting lower latency. However, unlike autoregressive text generation, behavior cloning policies, typically used for embodied AI applications like robot manipulation and autonomous driving, cannot parallelize verification and correction for multiple drafts as each action depends on observation which needs to be updated by a previous action. To this end, we propose Action Deviation-Aware Hybrid Inference, wherein the draft model estimates an action's need for verification and correction by the target model and selectively skips communication and computation for server operations. Action deviation shows a strong correlation with action's rejection probability by the target model, enabling selective skipping. We derive the path deviation threshold that balances the transmission rate and the inference performance, and we empirically show that action deviation-aware hybrid inference reduces uplink transmission and server operation by 40%, while lowering end-to-end latency by 33.32% relative to hybrid inference without skipping and achieving task success rate up to 97.03% of that of target model only inference.
☆ Assist-as-needed Control for FES in Foot Drop Management
Foot drop is commonly managed using Functional Electrical Stimulation (FES), typically delivered via open-loop controllers with fixed stimulation intensities. While users may manually adjust the intensity through external controls, this approach risks overstimulation, leading to muscle fatigue and discomfort, or understimulation, which compromises dorsiflexion and increases fall risk. In this study, we propose a novel closed-loop FES controller that dynamically adjusts the stimulation intensity based on real-time toe clearance, providing "assistance as needed". We evaluate this system by inducing foot drop in healthy participants and comparing the effects of the closed-loop controller with a traditional open-loop controller across various walking conditions, including different speeds and surface inclinations. Kinematic data reveal that our closed-loop controller maintains adequate toe clearance without significantly affecting the joint angles of the hips, the knees, and the ankles, and while using significantly lower stimulation intensities compared to the open-loop controller. These findings suggest that the proposed method not only matches the effectiveness of existing systems but also offers the potential for reduced muscle fatigue and improved long-term user comfort and adherence.
☆ Work Zones challenge VLM Trajectory Planning: Toward Mitigation and Robust Autonomous Driving
Visual Language Models (VLMs), with powerful multimodal reasoning capabilities, are gradually integrated into autonomous driving by several automobile manufacturers to enhance planning capability in challenging environments. However, the trajectory planning capability of VLMs in work zones, which often include irregular layouts, temporary traffic control, and dynamically changing geometric structures, is still unexplored. To bridge this gap, we conduct the \textit{first} systematic study of VLMs for work zone trajectory planning, revealing that mainstream VLMs fail to generate correct trajectories in $68.0%$ of cases. To better understand these failures, we first identify candidate patterns via subgraph mining and clustering analysis, and then confirm the validity of $8$ common failure patterns through human verification. Building on these findings, we propose REACT-Drive, a trajectory planning framework that integrates VLMs with Retrieval-Augmented Generation (RAG). Specifically, REACT-Drive leverages VLMs to convert prior failure cases into constraint rules and executable trajectory planning code, while RAG retrieves similar patterns in new scenarios to guide trajectory generation. Experimental results on the ROADWork dataset show that REACT-Drive yields a reduction of around $3\times$ in average displacement error relative to VLM baselines under evaluation with Qwen2.5-VL. In addition, REACT-Drive yields the lowest inference time ($0.58$s) compared with other methods such as fine-tuning ($17.90$s). We further conduct experiments using a real vehicle in 15 work zone scenarios in the physical world, demonstrating the strong practicality of REACT-Drive.
comment: 13 pages,5 figures
☆ VERNIER: an open-source software pushing marker pose estimation down to the micrometer and nanometer scales
Pose estimation is still a challenge at the small scales. Few solutions exist to capture the 6 degrees of freedom of an object with nanometric and microradians resolutions over relatively large ranges. Over the years, we have proposed several fiducial marker and pattern designs to achieve reliable performance for various microscopy applications. Centimeter ranges are possible using pattern encoding methods, while nanometer resolutions can be achieved using phase processing of the periodic frames. This paper presents VERNIER, an open source phase processing software designed to provide fast and reliable pose measurement based on pseudo-periodic patterns. Thanks to a phase-based local thresholding algorithm, the software has proven to be particularly robust to noise, defocus and occlusion. The successive steps of the phase processing are presented, as well as the different types of patterns that address different application needs. The implementation procedure is illustrated with synthetic and experimental images. Finally, guidelines are given for selecting the appropriate pattern design and microscope magnification lenses as a function of the desired performance.
☆ Periodic Event-Triggered Prescribed Time Control of Euler-Lagrange Systems under State and Input Constraints
This article proposes a periodic event-triggered adaptive barrier control policy for the trajectory tracking problem of perturbed Euler-Lagrangian systems with state, input, and temporal (SIT) constraints. In particular, an approximation-free adaptive-barrier control architecture is designed to ensure prescribed-time convergence of the tracking error to a prescribed bound while rejecting exogenous disturbances. In contrast to existing approaches that necessitate continuous real-time control action, the proposed controller generates event-based updates through periodic evaluation of the triggering condition. Additionally, we derive an upper bound on the monitoring period by analysing the performance degradation of the filtered tracking error to facilitate periodic evaluation of the event-triggered strategy. To this end, a time-varying threshold function is considered in the triggering mechanism to reduce the number of triggers during the transient phase of system behaviour. Notably, the proposed design avoids Zeno behaviour and precludes the need for continuous monitoring of the triggering condition. A simulation and experimental study is undertaken to demonstrate the efficacy of the proposed control scheme.
☆ Flow with the Force Field: Learning 3D Compliant Flow Matching Policies from Force and Demonstration-Guided Simulation Data
While visuomotor policy has made advancements in recent years, contact-rich tasks still remain a challenge. Robotic manipulation tasks that require continuous contact demand explicit handling of compliance and force. However, most visuomotor policies ignore compliance, overlooking the importance of physical interaction with the real world, often leading to excessive contact forces or fragile behavior under uncertainty. Introducing force information into vision-based imitation learning could help improve awareness of contacts, but could also require a lot of data to perform well. One remedy for data scarcity is to generate data in simulation, yet computationally taxing processes are required to generate data good enough not to suffer from the Sim2Real gap. In this work, we introduce a framework for generating force-informed data in simulation, instantiated by a single human demonstration, and show how coupling with a compliant policy improves the performance of a visuomotor policy learned from synthetic data. We validate our approach on real-robot tasks, including non-prehensile block flipping and a bi-manual object moving, where the learned policy exhibits reliable contact maintenance and adaptation to novel conditions. Project Website: https://flow-with-the-force-field.github.io/webpage/
☆ Team Xiaomi EV-AD VLA: Caption-Guided Retrieval System for Cross-Modal Drone Navigation -- Technical Report for IROS 2025 RoboSense Challenge Track 4
Cross-modal drone navigation remains a challenging task in robotics, requiring efficient retrieval of relevant images from large-scale databases based on natural language descriptions. The RoboSense 2025 Track 4 challenge addresses this challenge, focusing on robust, natural language-guided cross-view image retrieval across multiple platforms (drones, satellites, and ground cameras). Current baseline methods, while effective for initial retrieval, often struggle to achieve fine-grained semantic matching between text queries and visual content, especially in complex aerial scenes. To address this challenge, we propose a two-stage retrieval refinement method: Caption-Guided Retrieval System (CGRS) that enhances the baseline coarse ranking through intelligent reranking. Our method first leverages a baseline model to obtain an initial coarse ranking of the top 20 most relevant images for each query. We then use Vision-Language-Model (VLM) to generate detailed captions for these candidate images, capturing rich semantic descriptions of their visual content. These generated captions are then used in a multimodal similarity computation framework to perform fine-grained reranking of the original text query, effectively building a semantic bridge between the visual content and natural language descriptions. Our approach significantly improves upon the baseline, achieving a consistent 5\% improvement across all key metrics (Recall@1, Recall@5, and Recall@10). Our approach win TOP-2 in the challenge, demonstrating the practical value of our semantic refinement strategy in real-world robotic navigation scenarios.
☆ A $1000\times$ Faster LLM-enhanced Algorithm For Path Planning in Large-scale Grid Maps
Path planning in grid maps, arising from various applications, has garnered significant attention. Existing methods, such as A*, Dijkstra, and their variants, work well for small-scale maps but fail to address large-scale ones due to high search time and memory consumption. Recently, Large Language Models (LLMs) have shown remarkable performance in path planning but still suffer from spatial illusion and poor planning performance. Among all the works, LLM-A* \cite{meng2024llm} leverages LLM to generate a series of waypoints and then uses A* to plan the paths between the neighboring waypoints. In this way, the complete path is constructed. However, LLM-A* still suffers from high computational time for large-scale maps. To fill this gap, we conducted a deep investigation into LLM-A* and found its bottleneck, resulting in limited performance. Accordingly, we design an innovative LLM-enhanced algorithm, abbr. as iLLM-A*. iLLM-A* includes 3 carefully designed mechanisms, including the optimization of A*, an incremental learning method for LLM to generate high-quality waypoints, and the selection of the appropriate waypoints for A* for path planning. Finally, a comprehensive evaluation on various grid maps shows that, compared with LLM-A*, iLLM-A* \textbf{1) achieves more than $1000\times$ speedup on average, and up to $2349.5\times$ speedup in the extreme case, 2) saves up to $58.6\%$ of the memory cost, 3) achieves both obviously shorter path length and lower path length standard deviation.}
☆ A Trajectory Generator for High-Density Traffic and Diverse Agent-Interaction Scenarios
Accurate trajectory prediction is fundamental to autonomous driving, as it underpins safe motion planning and collision avoidance in complex environments. However, existing benchmark datasets suffer from a pronounced long-tail distribution problem, with most samples drawn from low-density scenarios and simple straight-driving behaviors. This underrepresentation of high-density scenarios and safety critical maneuvers such as lane changes, overtaking and turning is an obstacle to model generalization and leads to overly optimistic evaluations. To address these challenges, we propose a novel trajectory generation framework that simultaneously enhances scenarios density and enriches behavioral diversity. Specifically, our approach converts continuous road environments into a structured grid representation that supports fine-grained path planning, explicit conflict detection, and multi-agent coordination. Built upon this representation, we introduce behavior-aware generation mechanisms that combine rule-based decision triggers with Frenet-based trajectory smoothing and dynamic feasibility constraints. This design allows us to synthesize realistic high-density scenarios and rare behaviors with complex interactions that are often missing in real data. Extensive experiments on the large-scale Argoverse 1 and Argoverse 2 datasets demonstrate that our method significantly improves both agent density and behavior diversity, while preserving motion realism and scenario-level safety. Our synthetic data also benefits downstream trajectory prediction models and enhances performance in challenging high-density scenarios.
☆ Multi-robot Rigid Formation Navigation via Synchronous Motion and Discrete-time Communication-Control Optimization
Rigid-formation navigation of multiple robots is essential for applications such as cooperative transportation. This process involves a team of collaborative robots maintaining a predefined geometric configuration, such as a square, while in motion. For untethered collaborative motion, inter-robot communication must be conducted through a wireless network. Notably, few existing works offer a comprehensive solution for multi-robot formation navigation executable on microprocessor platforms via wireless networks, particularly for formations that must traverse complex curvilinear paths. To address this gap, we introduce a novel "hold-and-hit" communication-control framework designed to work seamlessly with the widely-used Robotic Operating System (ROS) platform. The hold-and-hit framework synchronizes robot movements in a manner robust against wireless network delays and packet loss. It operates over discrete-time communication-control cycles, making it suitable for implementation on contemporary microprocessors. Complementary to hold-and-hit, we propose an intra-cycle optimization approach that enables rigid formations to closely follow desired curvilinear paths, even under the nonholonomic movement constraints inherent to most vehicular robots. The combination of hold-and-hit and intra-cycle optimization ensures precise and reliable navigation even in challenging scenarios. Simulations in a virtual environment demonstrate the superiority of our method in maintaining a four-robot square formation along an S-shaped path, outperforming two existing approaches. Furthermore, real-world experiments validate the effectiveness of our framework: the robots maintained an inter-distance error within $\pm 0.069m$ and an inter-angular orientation error within $\pm19.15^{\circ}$ while navigating along an S-shaped path at a fixed linear velocity of $0.1 m/s$.
☆ Reachable Predictive Control: A Novel Control Algorithm for Nonlinear Systems with Unknown Dynamics and its Practical Applications
This paper proposes an algorithm capable of driving a system to follow a piecewise linear trajectory without prior knowledge of the system dynamics. Motivated by a critical failure scenario in which a system can experience an abrupt change in its dynamics, we demonstrate that it is possible to follow a set of waypoints comprised of states analytically proven to be reachable despite not knowing the system dynamics. The proposed algorithm first applies small perturbations to locally learn the system dynamics around the current state, then computes the set of states that are provably reachable using the locally learned dynamics and their corresponding maximum growth-rate bounds, and finally synthesizes a control action that navigates the system to a guaranteed reachable state.
☆ Shape-Space Graphs: Fast and Collision-Free Path Planning for Soft Robots
Soft robots, inspired by elephant trunks or octopus arms, offer extraordinary flexibility to bend, twist, and elongate in ways that rigid robots cannot. However, their motion planning remains a challenge, especially in cluttered environments with obstacles, due to their highly nonlinear and infinite-dimensional kinematics. Here, we present a graph-based path planning tool for an elephant-trunk-inspired soft robotic arm designed with three artificial muscle fibers that allow for multimodal continuous deformation through contraction. Using a biomechanical model inspired by morphoelasticity and active filament theory, we precompute a shape library and construct a $k$-nearest neighbor graph in \emph{shape space}, ensuring that each node corresponds to a mechanically accurate and physically valid robot shape. For the graph, we use signed distance functions to prune nodes and edges colliding with obstacles, and define multi-objective edge costs based on geometric distance and actuation effort, enabling energy-efficient planning with collision avoidance. We demonstrate that our algorithm reliably avoids obstacles and generates feasible paths within milliseconds from precomputed graphs using Dijkstra's algorithm. We show that including energy costs can drastically reduce the actuation effort compared to geometry-only planning, at the expense of longer tip trajectories. Our results highlight the potential of shape-space graph search for fast and reliable path planning in the field of soft robotics, paving the way for real-time applications in surgical, industrial, and assistive settings.
☆ SketchPlan: Diffusion Based Drone Planning From Human Sketches
We propose SketchPlan, a diffusion-based planner that interprets 2D hand-drawn sketches over depth images to generate 3D flight paths for drone navigation. SketchPlan comprises two components: a SketchAdapter that learns to map the human sketches to projected 2D paths, and DiffPath, a diffusion model that infers 3D trajectories from 2D projections and a first person view depth image. Our model achieves zero-shot sim-to-real transfer, generating accurate and safe flight paths in previously unseen real-world environments. To train the model, we build a synthetic dataset of 32k flight paths using a diverse set of photorealistic 3D Gaussian Splatting scenes. We automatically label the data by computing 2D projections of the 3D flight paths onto the camera plane, and use this to train the DiffPath diffusion model. However, since real human 2D sketches differ significantly from ideal 2D projections, we additionally label 872 of the 3D flight paths with real human sketches and use this to train the SketchAdapter to infer the 2D projection from the human sketch. We demonstrate SketchPlan's effectiveness in both simulated and real-world experiments, and show through ablations that training on a mix of human labeled and auto-labeled data together with a modular design significantly boosts its capabilities to correctly interpret human intent and infer 3D paths. In real-world drone tests, SketchPlan achieved 100\% success in low/medium clutter and 40\% in unseen high-clutter environments, outperforming key ablations by 20-60\% in task completion.
comment: Code available at https://github.com/sixnor/SketchPlan
☆ Agile Tradespace Exploration for Space Rendezvous Mission Design via Transformers
Spacecraft rendezvous enables on-orbit servicing, debris removal, and crewed docking, forming the foundation for a scalable space economy. Designing such missions requires rapid exploration of the tradespace between control cost and flight time across multiple candidate targets. However, multi-objective optimization in this setting is challenging, as the underlying constraints are often highly nonconvex, and mission designers must balance accuracy (e.g., solving the full problem) with efficiency (e.g., convex relaxations), slowing iteration and limiting design agility. To address these challenges, this paper proposes an AI-powered framework that enables agile mission design for a wide range of Earth orbit rendezvous scenarios. Given the orbital information of the target spacecraft, boundary conditions, and a range of flight times, this work proposes a Transformer-based architecture that generates, in a single parallelized inference step, a set of near-Pareto optimal trajectories across varying flight times, thereby enabling rapid mission trade studies. The model is further extended to accommodate variable flight times and perturbed orbital dynamics, supporting realistic multi-objective trade-offs. Validation on chance-constrained rendezvous problems with passive safety constraints demonstrates that the model generalizes across both flight times and dynamics, consistently providing high-quality initial guesses that converge to superior solutions in fewer iterations. Moreover, the framework efficiently approximates the Pareto front, achieving runtimes comparable to convex relaxation by exploiting parallelized inference. Together, these results position the proposed framework as a practical surrogate for nonconvex trajectory generation and mark an important step toward AI-driven trajectory design for accelerating preliminary mission planning in real-world rendezvous applications.
comment: 14 pages, 7 figures
☆ Efficient Surgical Robotic Instrument Pose Reconstruction in Real World Conditions Using Unified Feature Detection
Accurate camera-to-robot calibration is essential for any vision-based robotic control system and especially critical in minimally invasive surgical robots, where instruments conduct precise micro-manipulations. However, MIS robots have long kinematic chains and partial visibility of their degrees of freedom in the camera, which introduces challenges for conventional camera-to-robot calibration methods that assume stiff robots with good visibility. Previous works have investigated both keypoint-based and rendering-based approaches to address this challenge in real-world conditions; however, they often struggle with consistent feature detection or have long inference times, neither of which are ideal for online robot control. In this work, we propose a novel framework that unifies the detection of geometric primitives (keypoints and shaft edges) through a shared encoding, enabling efficient pose estimation via projection geometry. This architecture detects both keypoints and edges in a single inference and is trained on large-scale synthetic data with projective labeling. This method is evaluated across both feature detection and pose estimation, with qualitative and quantitative results demonstrating fast performance and state-of-the-art accuracy in challenging surgical environments.
☆ LapSurgie: Humanoid Robots Performing Surgery via Teleoperated Handheld Laparoscopy
Robotic laparoscopic surgery has gained increasing attention in recent years for its potential to deliver more efficient and precise minimally invasive procedures. However, adoption of surgical robotic platforms remains largely confined to high-resource medical centers, exacerbating healthcare disparities in rural and low-resource regions. To close this gap, a range of solutions has been explored, from remote mentorship to fully remote telesurgery. Yet, the practical deployment of surgical robotic systems to underserved communities remains an unsolved challenge. Humanoid systems offer a promising path toward deployability, as they can directly operate in environments designed for humans without extensive infrastructure modifications -- including operating rooms. In this work, we introduce LapSurgie, the first humanoid-robot-based laparoscopic teleoperation framework. The system leverages an inverse-mapping strategy for manual-wristed laparoscopic instruments that abides to remote center-of-motion constraints, enabling precise hand-to-tool control of off-the-shelf surgical laparoscopic tools without additional setup requirements. A control console equipped with a stereo vision system provides real-time visual feedback. Finally, a comprehensive user study across platforms demonstrates the effectiveness of the proposed framework and provides initial evidence for the feasibility of deploying humanoid robots in laparoscopic procedures.
☆ Distributed Connectivity Maintenance and Recovery for Quadrotor Motion Planning
Maintaining connectivity is crucial in many multi-robot applications, yet fragile to obstacles and visual occlusions. We present a real-time distributed framework for multi-robot navigation certified by high-order control barrier functions (HOCBFs) that controls inter-robot proximity to maintain connectivity while avoiding collisions. We incorporate control Lyapunov functions to enable connectivity recovery from initial disconnected configurations and temporary losses, providing robust connectivity during navigation in obstacle-rich environments. Our trajectory generation framework concurrently produces planning and control through a Bezier-parameterized trajectory, which naturally provides smooth curves with arbitrary degree of derivatives. The main contribution is the unified MPC-CLF-CBF framework, a continuous-time trajectory generation and control method for connectivity maintenance and recovery of multi-robot systems. We validate the framework through extensive simulations and a physical experiment with 4 Crazyflie nano-quadrotors.
☆ Real-Time Threaded Houbara Detection and Segmentation for Wildlife Conservation using Mobile Platforms
Real-time animal detection and segmentation in natural environments are vital for wildlife conservation, enabling non-invasive monitoring through remote camera streams. However, these tasks remain challenging due to limited computational resources and the cryptic appearance of many species. We propose a mobile-optimized two-stage deep learning framework that integrates a Threading Detection Model (TDM) to parallelize YOLOv10-based detection and MobileSAM-based segmentation. Unlike prior YOLO+SAM pipelines, our approach improves real-time performance by reducing latency through threading. YOLOv10 handles detection while MobileSAM performs lightweight segmentation, both executed concurrently for efficient resource use. On the cryptic Houbara Bustard, a conservation-priority species, our model achieves mAP50 of 0.9627, mAP75 of 0.7731, mAP95 of 0.7178, and a MobileSAM mIoU of 0.7421. YOLOv10 operates at 43.7 ms per frame, confirming real-time readiness. We introduce a curated Houbara dataset of 40,000 annotated images to support model training and evaluation across diverse conditions. The code and dataset used in this study are publicly available on GitHub at https://github.com/LyesSaadSaoud/mobile-houbara-detseg. For interactive demos and additional resources, visit https://lyessaadsaoud.github.io/LyesSaadSaoud-Threaded-YOLO-SAM-Houbara.
☆ Digital-Twin Evaluation for Proactive Human-Robot Collision Avoidance via Prediction-Guided A-RRT*
Human-robot collaboration requires precise prediction of human motion over extended horizons to enable proactive collision avoidance. Unlike existing planners that rely solely on kinodynamic models, we present a prediction-driven safe planning framework that leverages granular, joint-by-joint human motion forecasting validated in a physics-based digital twin. A capsule-based artificial potential field (APF) converts these granular predictions into collision risk metrics, triggering an Adaptive RRT* (A-RRT*) planner when thresholds are exceeded. The depth camera is used to extract 3D skeletal poses and a convolutional neural network-bidirectional long short-term memory (CNN-BiLSTM) model to predict individual joint trajectories ahead of time. A digital twin model integrates real-time human posture prediction placed in front of a simulated robot to evaluate motions and physical contacts. The proposed method enables validation of planned trajectories ahead of time and bridging potential latency gaps in updating planned trajectories in real-time. In 50 trials, our method achieved 100% proactive avoidance with > 250 mm clearance and sub-2 s replanning, demonstrating superior precision and reliability compared to existing kinematic-only planners through the integration of predictive human modeling with digital twin validation.
☆ Robust Permissive Controller Synthesis for Interval MDPs
We address the problem of robust permissive controller synthesis for robots operating under uncertain dynamics, modeled as Interval Markov Decision Processes (IMDPs). IMDPs generalize standard MDPs by allowing transition probabilities to vary within intervals, capturing epistemic uncertainty from sensing noise, actuation imprecision, and coarse system abstractions-common in robotics. Traditional controller synthesis typically yields a single deterministic strategy, limiting adaptability. In contrast, permissive controllers (multi-strategies) allow multiple actions per state, enabling runtime flexibility and resilience. However, prior work on permissive controller synthesis generally assumes exact transition probabilities, which is unrealistic in many robotic applications. We present the first framework for robust permissive controller synthesis on IMDPs, guaranteeing that all strategies compliant with the synthesized multi-strategy satisfy reachability or reward-based specifications under all admissible transitions. We formulate the problem as mixed-integer linear programs (MILPs) and propose two encodings: a baseline vertex-enumeration method and a scalable duality-based method that avoids explicit enumeration. Experiments on four benchmark domains show that both methods synthesize robust, maximally permissive controllers and scale to large IMDPs with up to hundreds of thousands of states.
☆ Destination-to-Chutes Task Mapping Optimization for Multi-Robot Coordination in Robotic Sorting Systems
We study optimizing a destination-to-chutes task mapping to improve throughput in Robotic Sorting Systems (RSS), where a team of robots sort packages on a sortation floor by transporting them from induct workstations to eject chutes based on their shipping destinations (e.g. Los Angeles or Pittsburgh). The destination-to-chutes task mapping is used to determine which chutes a robot can drop its package. Finding a high-quality task mapping is challenging because of the complexity of a real-world RSS. First, optimizing task mapping is interdependent with robot target assignment and path planning. Second, chutes will be CLOSED for a period of time once they receive sufficient packages to allow for downstream processing. Third, task mapping quality directly impacts the downstream processing, as scattered chutes for the same destination increase package handling time. In this paper, we first formally define task mappings and the problem of Task Mapping Optimization (TMO). We then present a simulator of RSS to evaluate task mappings. We then present a simple TMO method based on the Evolutionary Algorithm and Mixed Integer Linear Programming, demonstrating the advantage of our optimized task mappings over the greedily generated ones in various RSS setups with different map sizes, numbers of chutes, and destinations. Finally, we use Quality Diversity algorithms to analyze the throughput of a diverse set of task mappings. Our code is available online at https://github.com/lunjohnzhang/tmo_public.
comment: Accepted to IEEE International Symposium on Multi-Robot and Multi-Agent Systems (MRS) 2025
☆ A Simulation Evaluation Suite for Robust Adaptive Quadcopter Control
Robust adaptive control methods are essential for maintaining quadcopter performance under external disturbances and model uncertainties. However, fragmented evaluations across tasks, simulators, and implementations hinder systematic comparison of these methods. This paper introduces an easy-to-deploy, modular simulation testbed for quadcopter control, built on RotorPy, that enables evaluation under a wide range of disturbances such as wind, payload shifts, rotor faults, and control latency. The framework includes a library of representative adaptive and non-adaptive controllers and provides task-relevant metrics to assess tracking accuracy and robustness. The unified modular environment enables reproducible evaluation across control methods and eliminates redundant reimplementation of components such as disturbance models, trajectory generators, and analysis tools. We illustrate the testbed's versatility through examples spanning multiple disturbance scenarios and trajectory types, including automated stress testing, to demonstrate its utility for systematic analysis. Code is available at https://github.com/Dz298/AdaptiveQuadBench.
☆ Warm-Starting Optimization-Based Motion Planning for Robotic Manipulators via Point Cloud-Conditioned Flow Matching
Rapid robot motion generation is critical in Human-Robot Collaboration (HRC) systems, as robots need to respond to dynamic environments in real time by continuously observing their surroundings and replanning their motions to ensure both safe interactions and efficient task execution. Current sampling-based motion planners face challenges in scaling to high-dimensional configuration spaces and often require post-processing to interpolate and smooth the generated paths, resulting in time inefficiency in complex environments. Optimization-based planners, on the other hand, can incorporate multiple constraints and generate smooth trajectories directly, making them potentially more time-efficient. However, optimization-based planners are sensitive to initialization and may get stuck in local minima. In this work, we present a novel learning-based method that utilizes a Flow Matching model conditioned on a single-view point cloud to learn near-optimal solutions for optimization initialization. Our method does not require prior knowledge of the environment, such as obstacle locations and geometries, and can generate feasible trajectories directly from single-view depth camera input. Simulation studies on a UR5e robotic manipulator in cluttered workspaces demonstrate that the proposed generative initializer achieves a high success rate on its own, significantly improves the success rate of trajectory optimization compared with traditional and learning-based benchmark initializers, requires fewer optimization iterations, and exhibits strong generalization to unseen environments.
☆ Optimal swimming with body compliance in an overdamped medium
Elongate animals and robots use undulatory body waves to locomote through diverse environments. Geometric mechanics provides a framework to model and optimize such systems in highly damped environments, connecting a prescribed shape change pattern (gait) with locomotion displacement. However, existing approaches assume precise execution of prescribed gaits, whereas in practice environmental interactions with compliant bodies of animals or robots frequently perturb the realized trajectories. In this work, we extend geometric mechanics to predict locomotor performance and search for optimal swimming strategy of compliant undulators. We introduce a compliant extension of Purcell's three-link swimmer by incorporating series-connected springs at the joints. Body dynamics are derived with resistive force theory. Geometric mechanics is incorporated into movement prediction and into an optimization framework that identifies strategies for controlling compliant swimmers to achieve maximal displacement. We validate our framework on a physical cable-driven three-link limbless robot, and demonstrate accurate prediction and optimization of locomotor performance under varied programmed, state-dependent compliance in a granular medium. Our results establish a systematic physics-based approach for modeling and controlling compliant swimming locomotion, highlighting compliance as a design feature that can be exploited for robust movement in homogeneous and heterogeneous environments.
☆ Viability-Preserving Passive Torque Control
Conventional passivity-based torque controllers for manipulators are typically unconstrained, which can lead to safety violations under external perturbations. In this paper, we employ viability theory to pre-compute safe sets in the state-space of joint positions and velocities. These viable sets, constructed via data-driven and analytical methods for self-collision avoidance, external object collision avoidance and joint-position and joint-velocity limits, provide constraints on joint accelerations and thus joint torques via the robot dynamics. A quadratic programming-based control framework enforces these constraints on a passive controller tracking a dynamical system, ensuring the robot states remain within the safe set in an infinite time horizon. We validate the proposed approach through simulations and hardware experiments on a 7-DoF Franka Emika manipulator. In comparison to a baseline constrained passive controller, our method operates at higher control-loop rates and yields smoother trajectories.
comment: 8 pages, 7 figures, Project Website: https://vpp-tc.github.io/webpage/
♻ ☆ Decoupling Geometry from Optimization in 2D Irregular Cutting and Packing Problems: an Open-Source Collision Detection Engine
Addressing irregular cutting and packing (C&P) optimization problems poses two distinct challenges: the geometric challenge of determining whether or not an item can be placed feasibly at a certain position, and the optimization challenge of finding a good solution according to some objective function. Until now, those tackling such problems have had to address both challenges simultaneously, requiring two distinct sets of expertise and a lot of research & development effort. One way to lower this barrier is to decouple the two challenges. In this paper we introduce a powerful collision detection engine (CDE) for 2D irregular C&P problems which assumes full responsibility for the geometric challenge. The CDE (i) allows users to focus with full confidence on their optimization challenge by abstracting geometry away and (ii) enables independent advances to propagate to all optimization algorithms built atop it. We present a set of core principles and design philosophies to model a general and adaptable CDE focused on maximizing performance, accuracy and robustness. These principles are accompanied by a concrete open-source implementation called $\texttt{jagua-rs}$. This paper together with its implementation serves as a catalyst for future advances in irregular C&P problems by providing a solid foundation which can either be used as it currently exists or be further improved upon.
comment: 25 pages, 16 figures
Less is More: Lean yet Powerful Vision-Language Model for Autonomous Driving
In this work, we reconceptualize autonomous driving as a generalized language and formulate the trajectory planning task as next waypoint prediction. We introduce Max-V1, a novel framework for one-stage end-to-end autonomous driving. Our framework presents a single-pass generation paradigm that aligns with the inherent sequentiality of driving. This approach leverages the generative capacity of the VLM (Vision-Language Model) to enable end-to-end trajectory prediction directly from front-view camera input. The efficacy of this method is underpinned by a principled supervision strategy derived from statistical modeling. This provides a well-defined learning objective, which makes the framework highly amenable to master complex driving policies through imitation learning from large-scale expert demonstrations. Empirically, our method achieves the state-of-the-art performance on the nuScenes dataset, delivers an overall improvement of over 30% compared to prior baselines. Furthermore, it exhibits superior generalization performance on cross-domain datasets acquired from diverse vehicles, demonstrating notable potential for cross-vehicle robustness and adaptability. Due to these empirical strengths, this work introduces a model enabling fundamental driving behaviors, laying the foundation for the development of more capable self-driving agents. Code will be available upon publication.
♻ ☆ Learned IMU Bias Prediction for Invariant Visual Inertial Odometry
Autonomous mobile robots operating in novel environments depend critically on accurate state estimation, often utilizing visual and inertial measurements. Recent work has shown that an invariant formulation of the extended Kalman filter improves the convergence and robustness of visual-inertial odometry by utilizing the Lie group structure of a robot's position, velocity, and orientation states. However, inertial sensors also require measurement bias estimation, yet introducing the bias in the filter state breaks the Lie group symmetry. In this paper, we design a neural network to predict the bias of an inertial measurement unit (IMU) from a sequence of previous IMU measurements. This allows us to use an invariant filter for visual inertial odometry, relying on the learned bias prediction rather than introducing the bias in the filter state. We demonstrate that an invariant multi-state constraint Kalman filter (MSCKF) with learned bias predictions achieves robust visual-inertial odometry in real experiments, even when visual information is unavailable for extended periods and the system needs to rely solely on IMU measurements.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ HopaDIFF: Holistic-Partial Aware Fourier Conditioned Diffusion for Referring Human Action Segmentation in Multi-Person Scenarios NeurIPS 2025
Action segmentation is a core challenge in high-level video understanding, aiming to partition untrimmed videos into segments and assign each a label from a predefined action set. Existing methods primarily address single-person activities with fixed action sequences, overlooking multi-person scenarios. In this work, we pioneer textual reference-guided human action segmentation in multi-person settings, where a textual description specifies the target person for segmentation. We introduce the first dataset for Referring Human Action Segmentation, i.e., RHAS133, built from 133 movies and annotated with 137 fine-grained actions with 33h video data, together with textual descriptions for this new task. Benchmarking existing action segmentation methods on RHAS133 using VLM-based feature extractors reveals limited performance and poor aggregation of visual cues for the target person. To address this, we propose a holistic-partial aware Fourier-conditioned diffusion framework, i.e., HopaDIFF, leveraging a novel cross-input gate attentional xLSTM to enhance holistic-partial long-range reasoning and a novel Fourier condition to introduce more fine-grained control to improve the action segmentation generation. HopaDIFF achieves state-of-the-art results on RHAS133 in diverse evaluation settings. The dataset and code are available at https://github.com/KPeng9510/HopaDIFF.
comment: Accepted to NeurIPS 2025. The dataset and code are available at https://github.com/KPeng9510/HopaDIFF
♻ ☆ Beyond Anthropomorphism: Enhancing Grasping and Eliminating a Degree of Freedom by Fusing the Abduction of Digits Four and Five IROS
This paper presents the SABD hand, a 16-degree-of-freedom (DoF) robotic hand that departs from purely anthropomorphic designs to achieve an expanded grasp envelope, enable manipulation poses beyond human capability, and reduce the required number of actuators. This is achieved by combining the adduction/abduction (Add/Abd) joint of digits four and five into a single joint with a large range of motion. The combined joint increases the workspace of the digits by 400% and reduces the required DoFs while retaining dexterity. Experimental results demonstrate that the combined Add/Abd joint enables the hand to grasp objects with a side distance of up to 200 mm. Reinforcement learning-based investigations show that the design enables grasping policies that are effective not only for handling larger objects but also for achieving enhanced grasp stability. In teleoperated trials, the hand successfully performed 86% of attempted grasps on suitable YCB objects, including challenging non-anthropomorphic configurations. These findings validate the design's ability to enhance grasp stability, flexibility, and dexterous manipulation without added complexity, making it well-suited for a wide range of applications. A supplementary video is available at https://youtu.be/P3jRts46o4s .
comment: The first five listed authors have equal contribution. This work has been accepted to the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ Learning High-Fidelity Robot Self-Model with Articulated 3D Gaussian Splatting IJRR
Self-modeling enables robots to build task-agnostic models of their morphology and kinematics based on data that can be automatically collected, with minimal human intervention and prior information, thereby enhancing machine intelligence. Recent research has highlighted the potential of data-driven technology in modeling the morphology and kinematics of robots. However, existing self-modeling methods suffer from either low modeling quality or excessive data acquisition costs. Beyond morphology and kinematics, texture is also a crucial component of robots, which is challenging to model and remains unexplored. In this work, a high-quality, texture-aware, and link-level method is proposed for robot self-modeling. We utilize three-dimensional (3D) Gaussians to represent the static morphology and texture of robots, and cluster the 3D Gaussians to construct neural ellipsoid bones, whose deformations are controlled by the transformation matrices generated by a kinematic neural network. The 3D Gaussians and kinematic neural network are trained using data pairs composed of joint angles, camera parameters and multi-view images without depth information. By feeding the kinematic neural network with joint angles, we can utilize the well-trained model to describe the corresponding morphology, kinematics and texture of robots at the link level, and render robot images from different perspectives with the aid of 3D Gaussian splatting. Furthermore, we demonstrate that the established model can be exploited to perform downstream tasks such as motion planning and inverse kinematics.
comment: This paper is accepted by IJRR. The code will be open-sourced on GitHub as soon as possible after the paper is officially published
♻ ☆ S-Graphs 2.0 -- A Hierarchical-Semantic Optimization and Loop Closure for SLAM
The hierarchical structure of 3D scene graphs shows a high relevance for representations purposes, as it fits common patterns from man-made environments. But, additionally, the semantic and geometric information in such hierarchical representations could be leveraged to speed up the optimization and management of map elements and robot poses. In this direction, we present our work Situational Graphs 2.0 (S-Graphs 2.0), which leverages the hierarchical structure of indoor scenes for efficient data management and optimization. Our algorithm begins by constructing a situational graph that represents the environment into four layers: Keyframes, Walls, Rooms, and Floors. Our first novelty lies in the front-end, which includes a floor detection module capable of identifying stairways and assigning floor-level semantic relations to the underlying layers. Floor-level semantics allows us to propose a floor-based loop closure strategy, that effectively rejects false positive closures that typically appear due to aliasing between different floors of a building. Our second novelty lies in leveraging our representation hierarchy in the optimization. Our proposal consists of: (1) local optimization over a window of recent keyframes and their connected components across the four representation layers, (2) floor-level global optimization, which focuses only on keyframes and their connections within the current floor during loop closures, and (3) room-level local optimization, marginalizing redundant keyframes that share observations within the room, which reduces the computational footprint. We validate our algorithm extensively in different real multi-floor environments. Our approach shows state-of-art-art accuracy metrics in large-scale multi-floor environments, estimating hierarchical representations up to 10x faster, in average, than competing baselines
comment: 8 pages, 9 figures, Accepted in IEEE RA-L September 2025
♻ ☆ An Intention-driven Lane Change Framework Considering Heterogeneous Dynamic Cooperation in Mixed-traffic Environment
In mixed-traffic environments, where autonomous vehicles (AVs) interact with diverse human-driven vehicles (HVs), unpredictable intentions and heterogeneous behaviors make safe and efficient lane change maneuvers highly challenging. Existing methods often oversimplify these interactions by assuming uniform patterns. We propose an intention-driven lane change framework that integrates driving-style recognition, cooperation-aware decision-making, and coordinated motion planning. A deep learning classifier trained on the NGSIM dataset identifies human driving styles in real time. A cooperation score with intrinsic and interactive components estimates surrounding drivers' intentions and quantifies their willingness to cooperate with the ego vehicle. Decision-making combines behavior cloning with inverse reinforcement learning to determine whether a lane change should be initiated. For trajectory generation, model predictive control is integrated with IRL-based intention inference to produce collision-free and socially compliant maneuvers. Experiments show that the proposed model achieves 94.2\% accuracy and 94.3\% F1-score, outperforming rule-based and learning-based baselines by 4-15\% in lane change recognition. These results highlight the benefit of modeling inter-driver heterogeneity and demonstrate the potential of the framework to advance context-aware and human-like autonomous driving in complex traffic environments.
♻ ☆ SlideSLAM: Sparse, Lightweight, Decentralized Metric-Semantic SLAM for Multi-Robot Navigation
This paper develops a real-time decentralized metric-semantic SLAM algorithm that enables a heterogeneous robot team to collaboratively construct object-based metric-semantic maps. The proposed framework integrates a data-driven front-end for instance segmentation from either RGBD cameras or LiDARs and a custom back-end for optimizing robot trajectories and object landmarks in the map. To allow multiple robots to merge their information, we design semantics-driven place recognition algorithms that leverage the informativeness and viewpoint invariance of the object-level metric-semantic map for inter-robot loop closure detection. A communication module is designed to track each robot's observations and those of other robots whenever communication links are available. The framework supports real-time, decentralized operation onboard the robots and has been integrated with three types of aerial and ground platforms. We validate its effectiveness through experiments in both indoor and outdoor environments, as well as benchmarks on public datasets and comparisons with existing methods. The framework is open-sourced and suitable for both single-agent and multi-robot real-time metric-semantic SLAM applications. The code is available at: https://github.com/KumarRobotics/SLIDE_SLAM.
comment: Xu Liu, Jiuzhou Lei, and Ankit Prabhu contributed equally to this work
♻ ☆ Latent Action Diffusion for Cross-Embodiment Manipulation
End-to-end learning is emerging as a powerful paradigm for robotic manipulation, but its effectiveness is limited by data scarcity and the heterogeneity of action spaces across robot embodiments. In particular, diverse action spaces across different end-effectors create barriers for cross-embodiment learning and skill transfer. We address this challenge through diffusion policies learned in a latent action space that unifies diverse end-effector actions. We first show that we can learn a semantically aligned latent action space for anthropomorphic robotic hands, a human hand, and a parallel jaw gripper using encoders trained with a contrastive loss. Second, we show that by using our proposed latent action space for co-training on manipulation data from different end-effectors, we can utilize a single policy for multi-robot control and obtain up to 25.3% improved manipulation success rates, indicating successful skill transfer despite a significant embodiment gap. Our approach using latent cross-embodiment policies presents a new method to unify different action spaces across embodiments, enabling efficient multi-robot control and data sharing across robot setups. This unified representation significantly reduces the need for extensive data collection for each new robot morphology, accelerates generalization across embodiments, and ultimately facilitates more scalable and efficient robotic learning.
comment: 15 pages, 7 figures, website: https://mimicrobotics.github.io/lad/
MCGS-SLAM: A Multi-Camera SLAM Framework Using Gaussian Splatting for High-Fidelity Mapping
Recent progress in dense SLAM has primarily targeted monocular setups, often at the expense of robustness and geometric coverage. We present MCGS-SLAM, the first purely RGB-based multi-camera SLAM system built on 3D Gaussian Splatting (3DGS). Unlike prior methods relying on sparse maps or inertial data, MCGS-SLAM fuses dense RGB inputs from multiple viewpoints into a unified, continuously optimized Gaussian map. A multi-camera bundle adjustment (MCBA) jointly refines poses and depths via dense photometric and geometric residuals, while a scale consistency module enforces metric alignment across views using low-rank priors. The system supports RGB input and maintains real-time performance at large scale. Experiments on synthetic and real-world datasets show that MCGS-SLAM consistently yields accurate trajectories and photorealistic reconstructions, usually outperforming monocular baselines. Notably, the wide field of view from multi-camera input enables reconstruction of side-view regions that monocular setups miss, critical for safe autonomous operation. These results highlight the promise of multi-camera Gaussian Splatting SLAM for high-fidelity mapping in robotics and autonomous driving.
♻ ☆ From Real World to Logic and Back: Learning Generalizable Relational Concepts For Long Horizon Robot Planning
Robots still lag behind humans in their ability to generalize from limited experience, particularly when transferring learned behaviors to long-horizon tasks in unseen environments. We present the first method that enables robots to autonomously invent symbolic, relational concepts directly from a small number of raw, unsegmented, and unannotated demonstrations. From these, the robot learns logic-based world models that support zero-shot generalization to tasks of far greater complexity than those in training. Our framework achieves performance on par with hand-engineered symbolic models, while scaling to execution horizons far beyond training and handling up to 18$\times$ more objects than seen during learning. The results demonstrate a framework for autonomously acquiring transferable symbolic abstractions from raw robot experience, contributing toward the development of interpretable, scalable, and generalizable robot planning systems. Project website and code: https://aair-lab.github.io/r2l-lamp.
Computer Vision and Pattern Recognition 100
☆ LEAML: Label-Efficient Adaptation to Out-of-Distribution Visual Tasks for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have achieved strong performance on general visual benchmarks but struggle with out-of-distribution (OOD) tasks in specialized domains such as medical imaging, where labeled data is limited and expensive. We introduce LEAML, a label-efficient adaptation framework that leverages both scarce labeled VQA samples and abundant unlabeled images. Our approach generates domain-relevant pseudo question-answer pairs for unlabeled data using a QA generator regularized by caption distillation. Importantly, we selectively update only those neurons most relevant to question-answering, enabling the QA Generator to efficiently acquire domain-specific knowledge during distillation. Experiments on gastrointestinal endoscopy and sports VQA demonstrate that LEAML consistently outperforms standard fine-tuning under minimal supervision, highlighting the effectiveness of our proposed LEAML framework.
☆ Improving GUI Grounding with Explicit Position-to-Coordinate Mapping
GUI grounding, the task of mapping natural-language instructions to pixel coordinates, is crucial for autonomous agents, yet remains difficult for current VLMs. The core bottleneck is reliable patch-to-pixel mapping, which breaks when extrapolating to high-resolution displays unseen during training. Current approaches generate coordinates as text tokens directly from visual features, forcing the model to infer complex position-to-pixel mappings implicitly; as a result, accuracy degrades and failures proliferate on new resolutions. We address this with two complementary innovations. First, RULER tokens serve as explicit coordinate markers, letting the model reference positions similar to gridlines on a map and adjust rather than generate coordinates from scratch. Second, Interleaved MRoPE (I-MRoPE) improves spatial encoding by ensuring that width and height dimensions are represented equally, addressing the asymmetry of standard positional schemes. Experiments on ScreenSpot, ScreenSpot-V2, and ScreenSpot-Pro show consistent gains in grounding accuracy, with the largest improvements on high-resolution interfaces. By providing explicit spatial guidance rather than relying on implicit learning, our approach enables more reliable GUI automation across diverse resolutions and platforms.
☆ MIXER: Mixed Hyperspherical Random Embedding Neural Network for Texture Recognition
Randomized neural networks for representation learning have consistently achieved prominent results in texture recognition tasks, effectively combining the advantages of both traditional techniques and learning-based approaches. However, existing approaches have so far focused mainly on improving cross-information prediction, without introducing significant advancements to the overall randomized network architecture. In this paper, we propose Mixer, a novel randomized neural network for texture representation learning. At its core, the method leverages hyperspherical random embeddings coupled with a dual-branch learning module to capture both intra- and inter-channel relationships, further enhanced by a newly formulated optimization problem for building rich texture representations. Experimental results have shown the interesting results of the proposed approach across several pure texture benchmarks, each with distinct characteristics and challenges. The source code will be available upon publication.
☆ Test-Time Defense Against Adversarial Attacks via Stochastic Resonance of Latent Ensembles
We propose a test-time defense mechanism against adversarial attacks: imperceptible image perturbations that significantly alter the predictions of a model. Unlike existing methods that rely on feature filtering or smoothing, which can lead to information loss, we propose to "combat noise with noise" by leveraging stochastic resonance to enhance robustness while minimizing information loss. Our approach introduces small translational perturbations to the input image, aligns the transformed feature embeddings, and aggregates them before mapping back to the original reference image. This can be expressed in a closed-form formula, which can be deployed on diverse existing network architectures without introducing additional network modules or fine-tuning for specific attack types. The resulting method is entirely training-free, architecture-agnostic, and attack-agnostic. Empirical results show state-of-the-art robustness on image classification and, for the first time, establish a generic test-time defense for dense prediction tasks, including stereo matching and optical flow, highlighting the method's versatility and practicality. Specifically, relative to clean (unperturbed) performance, our method recovers up to 68.1% of the accuracy loss on image classification, 71.9% on stereo matching, and 29.2% on optical flow under various types of adversarial attacks.
☆ Wave-GMS: Lightweight Multi-Scale Generative Model for Medical Image Segmentation
For equitable deployment of AI tools in hospitals and healthcare facilities, we need Deep Segmentation Networks that offer high performance and can be trained on cost-effective GPUs with limited memory and large batch sizes. In this work, we propose Wave-GMS, a lightweight and efficient multi-scale generative model for medical image segmentation. Wave-GMS has a substantially smaller number of trainable parameters, does not require loading memory-intensive pretrained vision foundation models, and supports training with large batch sizes on GPUs with limited memory. We conducted extensive experiments on four publicly available datasets (BUS, BUSI, Kvasir-Instrument, and HAM10000), demonstrating that Wave-GMS achieves state-of-the-art segmentation performance with superior cross-domain generalizability, while requiring only ~2.6M trainable parameters. Code is available at https://github.com/ATPLab-LUMS/Wave-GMS.
comment: 5 pages, 1 figure, 4 tables; Submitted to IEEE Conference for possible publication
☆ MonSTeR: a Unified Model for Motion, Scene, Text Retrieval
Intention drives human movement in complex environments, but such movement can only happen if the surrounding context supports it. Despite the intuitive nature of this mechanism, existing research has not yet provided tools to evaluate the alignment between skeletal movement (motion), intention (text), and the surrounding context (scene). In this work, we introduce MonSTeR, the first MOtioN-Scene-TExt Retrieval model. Inspired by the modeling of higher-order relations, MonSTeR constructs a unified latent space by leveraging unimodal and cross-modal representations. This allows MonSTeR to capture the intricate dependencies between modalities, enabling flexible but robust retrieval across various tasks. Our results show that MonSTeR outperforms trimodal models that rely solely on unimodal representations. Furthermore, we validate the alignment of our retrieval scores with human preferences through a dedicated user study. We demonstrate the versatility of MonSTeR's latent space on zero-shot in-Scene Object Placement and Motion Captioning. Code and pre-trained models are available at github.com/colloroneluca/MonSTeR.
☆ Memory Forcing: Spatio-Temporal Memory for Consistent Scene Generation on Minecraft
Autoregressive video diffusion models have proved effective for world modeling and interactive scene generation, with Minecraft gameplay as a representative application. To faithfully simulate play, a model must generate natural content while exploring new scenes and preserve spatial consistency when revisiting explored areas. Under limited computation budgets, it must compress and exploit historical cues within a finite context window, which exposes a trade-off: Temporal-only memory lacks long-term spatial consistency, whereas adding spatial memory strengthens consistency but may degrade new scene generation quality when the model over-relies on insufficient spatial context. We present Memory Forcing, a learning framework that pairs training protocols with a geometry-indexed spatial memory. Hybrid Training exposes distinct gameplay regimes, guiding the model to rely on temporal memory during exploration and incorporate spatial memory for revisits. Chained Forward Training extends autoregressive training with model rollouts, where chained predictions create larger pose variations and encourage reliance on spatial memory for maintaining consistency. Point-to-Frame Retrieval efficiently retrieves history by mapping currently visible points to their source frames, while Incremental 3D Reconstruction maintains and updates an explicit 3D cache. Extensive experiments demonstrate that Memory Forcing achieves superior long-term spatial consistency and generative quality across diverse environments, while maintaining computational efficiency for extended sequences.
comment: 19 pages, 8 figures
☆ Product-Quantised Image Representation for High-Quality Image Synthesis
Product quantisation (PQ) is a classical method for scalable vector encoding, yet it has seen limited usage for latent representations in high-fidelity image generation. In this work, we introduce PQGAN, a quantised image autoencoder that integrates PQ into the well-known vector quantisation (VQ) framework of VQGAN. PQGAN achieves a noticeable improvement over state-of-the-art methods in terms of reconstruction performance, including both quantisation methods and their continuous counterparts. We achieve a PSNR score of 37dB, where prior work achieves 27dB, and are able to reduce the FID, LPIPS, and CMMD score by up to 96%. Our key to success is a thorough analysis of the interaction between codebook size, embedding dimensionality, and subspace factorisation, with vector and scalar quantisation as special cases. We obtain novel findings, such that the performance of VQ and PQ behaves in opposite ways when scaling the embedding dimension. Furthermore, our analysis shows performance trends for PQ that help guide optimal hyperparameter selection. Finally, we demonstrate that PQGAN can be seamlessly integrated into pre-trained diffusion models. This enables either a significantly faster and more compute-efficient generation, or a doubling of the output resolution at no additional cost, positioning PQ as a strong extension for discrete latent representation in image synthesis.
Dynamic Prompt Generation for Interactive 3D Medical Image Segmentation Training
Interactive 3D biomedical image segmentation requires efficient models that can iteratively refine predictions based on user prompts. Current foundation models either lack volumetric awareness or suffer from limited interactive capabilities. We propose a training strategy that combines dynamic volumetric prompt generation with content-aware adaptive cropping to optimize the use of the image encoder. Our method simulates realistic user interaction patterns during training while addressing the computational challenges of learning from sequential refinement feedback on a single GPU. For efficient training, we initialize our network using the publicly available weights from the nnInteractive segmentation model. Evaluation on the \textbf{Foundation Models for Interactive 3D Biomedical Image Segmentation} competition demonstrates strong performance with an average final Dice score of 0.6385, normalized surface distance of 0.6614, and area-under-the-curve metrics of 2.4799 (Dice) and 2.5671 (NSD).
☆ ROGR: Relightable 3D Objects using Generative Relighting NeurIPS 2025
We introduce ROGR, a novel approach that reconstructs a relightable 3D model of an object captured from multiple views, driven by a generative relighting model that simulates the effects of placing the object under novel environment illuminations. Our method samples the appearance of the object under multiple lighting environments, creating a dataset that is used to train a lighting-conditioned Neural Radiance Field (NeRF) that outputs the object's appearance under any input environmental lighting. The lighting-conditioned NeRF uses a novel dual-branch architecture to encode the general lighting effects and specularities separately. The optimized lighting-conditioned NeRF enables efficient feed-forward relighting under arbitrary environment maps without requiring per-illumination optimization or light transport simulation. We evaluate our approach on the established TensoIR and Stanford-ORB datasets, where it improves upon the state-of-the-art on most metrics, and showcase our approach on real-world object captures.
comment: NeurIPS 2025 Spotlight. Project page: https://tangjiapeng.github.io/ROGR
☆ UniShield: An Adaptive Multi-Agent Framework for Unified Forgery Image Detection and Localization
With the rapid advancements in image generation, synthetic images have become increasingly realistic, posing significant societal risks, such as misinformation and fraud. Forgery Image Detection and Localization (FIDL) thus emerges as essential for maintaining information integrity and societal security. Despite impressive performances by existing domain-specific detection methods, their practical applicability remains limited, primarily due to their narrow specialization, poor cross-domain generalization, and the absence of an integrated adaptive framework. To address these issues, we propose UniShield, the novel multi-agent-based unified system capable of detecting and localizing image forgeries across diverse domains, including image manipulation, document manipulation, DeepFake, and AI-generated images. UniShield innovatively integrates a perception agent with a detection agent. The perception agent intelligently analyzes image features to dynamically select suitable detection models, while the detection agent consolidates various expert detectors into a unified framework and generates interpretable reports. Extensive experiments show that UniShield achieves state-of-the-art results, surpassing both existing unified approaches and domain-specific detectors, highlighting its superior practicality, adaptiveness, and scalability.
☆ SpineBench: A Clinically Salient, Level-Aware Benchmark Powered by the SpineMed-450k Corpus
Spine disorders affect 619 million people globally and are a leading cause of disability, yet AI-assisted diagnosis remains limited by the lack of level-aware, multimodal datasets. Clinical decision-making for spine disorders requires sophisticated reasoning across X-ray, CT, and MRI at specific vertebral levels. However, progress has been constrained by the absence of traceable, clinically-grounded instruction data and standardized, spine-specific benchmarks. To address this, we introduce SpineMed, an ecosystem co-designed with practicing spine surgeons. It features SpineMed-450k, the first large-scale dataset explicitly designed for vertebral-level reasoning across imaging modalities with over 450,000 instruction instances, and SpineBench, a clinically-grounded evaluation framework. SpineMed-450k is curated from diverse sources, including textbooks, guidelines, open datasets, and ~1,000 de-identified hospital cases, using a clinician-in-the-loop pipeline with a two-stage LLM generation method (draft and revision) to ensure high-quality, traceable data for question-answering, multi-turn consultations, and report generation. SpineBench evaluates models on clinically salient axes, including level identification, pathology assessment, and surgical planning. Our comprehensive evaluation of several recently advanced large vision-language models (LVLMs) on SpineBench reveals systematic weaknesses in fine-grained, level-specific reasoning. In contrast, our model fine-tuned on SpineMed-450k demonstrates consistent and significant improvements across all tasks. Clinician assessments confirm the diagnostic clarity and practical utility of our model's outputs.
☆ ReeMark: Reeb Graphs for Simulating Patterns of Life in Spatiotemporal Trajectories
Accurately modeling human mobility is critical for urban planning, epidemiology, and traffic management. In this work, we introduce Markovian Reeb Graphs, a novel framework for simulating spatiotemporal trajectories that preserve Patterns of Life (PoLs) learned from baseline data. By combining individual- and population-level mobility structures within a probabilistic topological model, our approach generates realistic future trajectories that capture both consistency and variability in daily life. Evaluations on the Urban Anomalies dataset (Atlanta and Berlin subsets) using the Jensen-Shannon Divergence (JSD) across population- and agent-level metrics demonstrate that the proposed method achieves strong fidelity while remaining data- and compute-efficient. These results position Markovian Reeb Graphs as a scalable framework for trajectory simulation with broad applicability across diverse urban environments.
comment: 15 pages, 3 figures, 2 algorithms, 1 table
☆ MM-Nav: Multi-View VLA Model for Robust Visual Navigation via Multi-Expert Learning
Visual navigation policy is widely regarded as a promising direction, as it mimics humans by using egocentric visual observations for navigation. However, optical information of visual observations is difficult to be explicitly modeled like LiDAR point clouds or depth maps, which subsequently requires intelligent models and large-scale data. To this end, we propose to leverage the intelligence of the Vision-Language-Action (VLA) model to learn diverse navigation capabilities from synthetic expert data in a teacher-student manner. Specifically, we implement the VLA model, MM-Nav, as a multi-view VLA (with 360 observations) based on pretrained large language models and visual foundation models. For large-scale navigation data, we collect expert data from three reinforcement learning (RL) experts trained with privileged depth information in three challenging tailor-made environments for different navigation capabilities: reaching, squeezing, and avoiding. We iteratively train our VLA model using data collected online from RL experts, where the training ratio is dynamically balanced based on performance on individual capabilities. Through extensive experiments in synthetic environments, we demonstrate that our model achieves strong generalization capability. Moreover, we find that our student VLA model outperforms the RL teachers, demonstrating the synergistic effect of integrating multiple capabilities. Extensive real-world experiments further confirm the effectiveness of our method.
comment: Project page: https://pku-epic.github.io/MM-Nav-Web/
☆ Mask2IV: Interaction-Centric Video Generation via Mask Trajectories
Generating interaction-centric videos, such as those depicting humans or robots interacting with objects, is crucial for embodied intelligence, as they provide rich and diverse visual priors for robot learning, manipulation policy training, and affordance reasoning. However, existing methods often struggle to model such complex and dynamic interactions. While recent studies show that masks can serve as effective control signals and enhance generation quality, obtaining dense and precise mask annotations remains a major challenge for real-world use. To overcome this limitation, we introduce Mask2IV, a novel framework specifically designed for interaction-centric video generation. It adopts a decoupled two-stage pipeline that first predicts plausible motion trajectories for both actor and object, then generates a video conditioned on these trajectories. This design eliminates the need for dense mask inputs from users while preserving the flexibility to manipulate the interaction process. Furthermore, Mask2IV supports versatile and intuitive control, allowing users to specify the target object of interaction and guide the motion trajectory through action descriptions or spatial position cues. To support systematic training and evaluation, we curate two benchmarks covering diverse action and object categories across both human-object interaction and robotic manipulation scenarios. Extensive experiments demonstrate that our method achieves superior visual realism and controllability compared to existing baselines.
comment: Project page: https://reagan1311.github.io/mask2iv
☆ HAVIR: HierArchical Vision to Image Reconstruction using CLIP-Guided Versatile Diffusion
The reconstruction of visual information from brain activity fosters interdisciplinary integration between neuroscience and computer vision. However, existing methods still face challenges in accurately recovering highly complex visual stimuli. This difficulty stems from the characteristics of natural scenes: low-level features exhibit heterogeneity, while high-level features show semantic entanglement due to contextual overlaps. Inspired by the hierarchical representation theory of the visual cortex, we propose the HAVIR model, which separates the visual cortex into two hierarchical regions and extracts distinct features from each. Specifically, the Structural Generator extracts structural information from spatial processing voxels and converts it into latent diffusion priors, while the Semantic Extractor converts semantic processing voxels into CLIP embeddings. These components are integrated via the Versatile Diffusion model to synthesize the final image. Experimental results demonstrate that HAVIR enhances both the structural and semantic quality of reconstructions, even in complex scenes, and outperforms existing models.
☆ Taming Text-to-Sounding Video Generation via Advanced Modality Condition and Interaction
This study focuses on a challenging yet promising task, Text-to-Sounding-Video (T2SV) generation, which aims to generate a video with synchronized audio from text conditions, meanwhile ensuring both modalities are aligned with text. Despite progress in joint audio-video training, two critical challenges still remain unaddressed: (1) a single, shared text caption where the text for video is equal to the text for audio often creates modal interference, confusing the pretrained backbones, and (2) the optimal mechanism for cross-modal feature interaction remains unclear. To address these challenges, we first propose the Hierarchical Visual-Grounded Captioning (HVGC) framework that generates pairs of disentangled captions, a video caption, and an audio caption, eliminating interference at the conditioning stage. Based on HVGC, we further introduce BridgeDiT, a novel dual-tower diffusion transformer, which employs a Dual CrossAttention (DCA) mechanism that acts as a robust ``bridge" to enable a symmetric, bidirectional exchange of information, achieving both semantic and temporal synchronization. Extensive experiments on three benchmark datasets, supported by human evaluations, demonstrate that our method achieves state-of-the-art results on most metrics. Comprehensive ablation studies further validate the effectiveness of our contributions, offering key insights for the future T2SV task. All the codes and checkpoints will be publicly released.
☆ GeoComplete: Geometry-Aware Diffusion for Reference-Driven Image Completion NeurIPS 2025
Reference-driven image completion, which restores missing regions in a target view using additional images, is particularly challenging when the target view differs significantly from the references. Existing generative methods rely solely on diffusion priors and, without geometric cues such as camera pose or depth, often produce misaligned or implausible content. We propose GeoComplete, a novel framework that incorporates explicit 3D structural guidance to enforce geometric consistency in the completed regions, setting it apart from prior image-only approaches. GeoComplete introduces two key ideas: conditioning the diffusion process on projected point clouds to infuse geometric information, and applying target-aware masking to guide the model toward relevant reference cues. The framework features a dual-branch diffusion architecture. One branch synthesizes the missing regions from the masked target, while the other extracts geometric features from the projected point cloud. Joint self-attention across branches ensures coherent and accurate completion. To address regions visible in references but absent in the target, we project the target view into each reference to detect occluded areas, which are then masked during training. This target-aware masking directs the model to focus on useful cues, enhancing performance in difficult scenarios. By integrating a geometry-aware dual-branch diffusion architecture with a target-aware masking strategy, GeoComplete offers a unified and robust solution for geometry-conditioned image completion. Experiments show that GeoComplete achieves a 17.1 PSNR improvement over state-of-the-art methods, significantly boosting geometric accuracy while maintaining high visual quality.
comment: Accepted by NeurIPS 2025. Project page: https://bb12346.github.io/GeoComplete/
☆ Geometry Meets Vision: Revisiting Pretrained Semantics in Distilled Fields
Semantic distillation in radiance fields has spurred significant advances in open-vocabulary robot policies, e.g., in manipulation and navigation, founded on pretrained semantics from large vision models. While prior work has demonstrated the effectiveness of visual-only semantic features (e.g., DINO and CLIP) in Gaussian Splatting and neural radiance fields, the potential benefit of geometry-grounding in distilled fields remains an open question. In principle, visual-geometry features seem very promising for spatial tasks such as pose estimation, prompting the question: Do geometry-grounded semantic features offer an edge in distilled fields? Specifically, we ask three critical questions: First, does spatial-grounding produce higher-fidelity geometry-aware semantic features? We find that image features from geometry-grounded backbones contain finer structural details compared to their counterparts. Secondly, does geometry-grounding improve semantic object localization? We observe no significant difference in this task. Thirdly, does geometry-grounding enable higher-accuracy radiance field inversion? Given the limitations of prior work and their lack of semantics integration, we propose a novel framework SPINE for inverting radiance fields without an initial guess, consisting of two core components: coarse inversion using distilled semantics, and fine inversion using photometric-based optimization. Surprisingly, we find that the pose estimation accuracy decreases with geometry-grounded features. Our results suggest that visual-only features offer greater versatility for a broader range of downstream tasks, although geometry-grounded features contain more geometric detail. Notably, our findings underscore the necessity of future research on effective strategies for geometry-grounding that augment the versatility and performance of pretrained semantic features.
☆ Latent Diffusion Unlearning: Protecting Against Unauthorized Personalization Through Trajectory Shifted Perturbations
Text-to-image diffusion models have demonstrated remarkable effectiveness in rapid and high-fidelity personalization, even when provided with only a few user images. However, the effectiveness of personalization techniques has lead to concerns regarding data privacy, intellectual property protection, and unauthorized usage. To mitigate such unauthorized usage and model replication, the idea of generating ``unlearnable'' training samples utilizing image poisoning techniques has emerged. Existing methods for this have limited imperceptibility as they operate in the pixel space which results in images with noise and artifacts. In this work, we propose a novel model-based perturbation strategy that operates within the latent space of diffusion models. Our method alternates between denoising and inversion while modifying the starting point of the denoising trajectory: of diffusion models. This trajectory-shifted sampling ensures that the perturbed images maintain high visual fidelity to the original inputs while being resistant to inversion and personalization by downstream generative models. This approach integrates unlearnability into the framework of Latent Diffusion Models (LDMs), enabling a practical and imperceptible defense against unauthorized model adaptation. We validate our approach on four benchmark datasets to demonstrate robustness against state-of-the-art inversion attacks. Results demonstrate that our method achieves significant improvements in imperceptibility ($\sim 8 \% -10\%$ on perceptual metrics including PSNR, SSIM, and FID) and robustness ( $\sim 10\%$ on average across five adversarial settings), highlighting its effectiveness in safeguarding sensitive data.
☆ Neural Posterior Estimation with Autoregressive Tiling for Detecting Objects in Astronomical Images
Upcoming astronomical surveys will produce petabytes of high-resolution images of the night sky, providing information about billions of stars and galaxies. Detecting and characterizing the astronomical objects in these images is a fundamental task in astronomy -- and a challenging one, as most of these objects are faint and many visually overlap with other objects. We propose an amortized variational inference procedure to solve this instance of small-object detection. Our key innovation is a family of spatially autoregressive variational distributions that partition and order the latent space according to a $K$-color checkerboard pattern. By construction, the conditional independencies of this variational family mirror those of the posterior distribution. We fit the variational distribution, which is parameterized by a convolutional neural network, using neural posterior estimation (NPE) to minimize an expectation of the forward KL divergence. Using images from the Sloan Digital Sky Survey, our method achieves state-of-the-art performance. We further demonstrate that the proposed autoregressive structure greatly improves posterior calibration.
☆ InsideOut: An EfficientNetV2-S Based Deep Learning Framework for Robust Multi-Class Facial Emotion Recognition
Facial Emotion Recognition (FER) is a key task in affective computing, enabling applications in human-computer interaction, e-learning, healthcare, and safety systems. Despite advances in deep learning, FER remains challenging due to occlusions, illumination and pose variations, subtle intra-class differences, and dataset imbalance that hinders recognition of minority emotions. We present InsideOut, a reproducible FER framework built on EfficientNetV2-S with transfer learning, strong data augmentation, and imbalance-aware optimization. The approach standardizes FER2013 images, applies stratified splitting and augmentation, and fine-tunes a lightweight classification head with class-weighted loss to address skewed distributions. InsideOut achieves 62.8% accuracy with a macro averaged F1 of 0.590 on FER2013, showing competitive results compared to conventional CNN baselines. The novelty lies in demonstrating that efficient architectures, combined with tailored imbalance handling, can provide practical, transparent, and reproducible FER solutions.
When and Where do Events Switch in Multi-Event Video Generation? ICCV2025
Text-to-video (T2V) generation has surged in response to challenging questions, especially when a long video must depict multiple sequential events with temporal coherence and controllable content. Existing methods that extend to multi-event generation omit an inspection of the intrinsic factor in event shifting. The paper aims to answer the central question: When and where multi-event prompts control event transition during T2V generation. This work introduces MEve, a self-curated prompt suite for evaluating multi-event text-to-video (T2V) generation, and conducts a systematic study of two representative model families, i.e., OpenSora and CogVideoX. Extensive experiments demonstrate the importance of early intervention in denoising steps and block-wise model layers, revealing the essential factor for multi-event video generation and highlighting the possibilities for multi-event conditioning in future models.
comment: Work in Progress. Accepted to ICCV2025 @ LongVid-Foundations
☆ PocketSR: The Super-Resolution Expert in Your Pocket Mobiles
Real-world image super-resolution (RealSR) aims to enhance the visual quality of in-the-wild images, such as those captured by mobile phones. While existing methods leveraging large generative models demonstrate impressive results, the high computational cost and latency make them impractical for edge deployment. In this paper, we introduce PocketSR, an ultra-lightweight, single-step model that brings generative modeling capabilities to RealSR while maintaining high fidelity. To achieve this, we design LiteED, a highly efficient alternative to the original computationally intensive VAE in SD, reducing parameters by 97.5% while preserving high-quality encoding and decoding. Additionally, we propose online annealing pruning for the U-Net, which progressively shifts generative priors from heavy modules to lightweight counterparts, ensuring effective knowledge transfer and further optimizing efficiency. To mitigate the loss of prior knowledge during pruning, we incorporate a multi-layer feature distillation loss. Through an in-depth analysis of each design component, we provide valuable insights for future research. PocketSR, with a model size of 146M parameters, processes 4K images in just 0.8 seconds, achieving a remarkable speedup over previous methods. Notably, it delivers performance on par with state-of-the-art single-step and even multi-step RealSR models, making it a highly practical solution for edge-device applications.
☆ Not every day is a sunny day: Synthetic cloud injection for deep land cover segmentation robustness evaluation across data sources
Supervised deep learning for land cover semantic segmentation (LCS) relies on labeled satellite data. However, most existing Sentinel-2 datasets are cloud-free, which limits their usefulness in tropical regions where clouds are common. To properly evaluate the extent of this problem, we developed a cloud injection algorithm that simulates realistic cloud cover, allowing us to test how Sentinel-1 radar data can fill in the gaps caused by cloud-obstructed optical imagery. We also tackle the issue of losing spatial and/or spectral details during encoder downsampling in deep networks. To mitigate this loss, we propose a lightweight method that injects Normalized Difference Indices (NDIs) into the final decoding layers, enabling the model to retain key spatial features with minimal additional computation. Injecting NDIs enhanced land cover segmentation performance on the DFC2020 dataset, yielding improvements of 1.99% for U-Net and 2.78% for DeepLabV3 on cloud-free imagery. Under cloud-covered conditions, incorporating Sentinel-1 data led to significant performance gains across all models compared to using optical data alone, highlighting the effectiveness of radar-optical fusion in challenging atmospheric scenarios.
☆ Towards Scalable and Consistent 3D Editing
3D editing - the task of locally modifying the geometry or appearance of a 3D asset - has wide applications in immersive content creation, digital entertainment, and AR/VR. However, unlike 2D editing, it remains challenging due to the need for cross-view consistency, structural fidelity, and fine-grained controllability. Existing approaches are often slow, prone to geometric distortions, or dependent on manual and accurate 3D masks that are error-prone and impractical. To address these challenges, we advance both the data and model fronts. On the data side, we introduce 3DEditVerse, the largest paired 3D editing benchmark to date, comprising 116,309 high-quality training pairs and 1,500 curated test pairs. Built through complementary pipelines of pose-driven geometric edits and foundation model-guided appearance edits, 3DEditVerse ensures edit locality, multi-view consistency, and semantic alignment. On the model side, we propose 3DEditFormer, a 3D-structure-preserving conditional transformer. By enhancing image-to-3D generation with dual-guidance attention and time-adaptive gating, 3DEditFormer disentangles editable regions from preserved structure, enabling precise and consistent edits without requiring auxiliary 3D masks. Extensive experiments demonstrate that our framework outperforms state-of-the-art baselines both quantitatively and qualitatively, establishing a new standard for practical and scalable 3D editing. Dataset and code will be released. Project: https://www.lv-lab.org/3DEditFormer/
☆ TIT-Score: Evaluating Long-Prompt Based Text-to-Image Alignment via Text-to-Image-to-Text Consistency
With the rapid advancement of large multimodal models (LMMs), recent text-to-image (T2I) models can generate high-quality images and demonstrate great alignment to short prompts. However, they still struggle to effectively understand and follow long and detailed prompts, displaying inconsistent generation. To address this challenge, we introduce LPG-Bench, a comprehensive benchmark for evaluating long-prompt-based text-to-image generation. LPG-Bench features 200 meticulously crafted prompts with an average length of over 250 words, approaching the input capacity of several leading commercial models. Using these prompts, we generate 2,600 images from 13 state-of-the-art models and further perform comprehensive human-ranked annotations. Based on LPG-Bench, we observe that state-of-the-art T2I alignment evaluation metrics exhibit poor consistency with human preferences on long-prompt-based image generation. To address the gap, we introduce a novel zero-shot metric based on text-to-image-to-text consistency, termed TIT, for evaluating long-prompt-generated images. The core concept of TIT is to quantify T2I alignment by directly comparing the consistency between the raw prompt and the LMM-produced description on the generated image, which includes an efficient score-based instantiation TIT-Score and a large-language-model (LLM) based instantiation TIT-Score-LLM. Extensive experiments demonstrate that our framework achieves superior alignment with human judgment compared to CLIP-score, LMM-score, etc., with TIT-Score-LLM attaining a 7.31% absolute improvement in pairwise accuracy over the strongest baseline. LPG-Bench and TIT methods together offer a deeper perspective to benchmark and foster the development of T2I models. All resources will be made publicly available.
☆ Flip Distribution Alignment VAE for Multi-Phase MRI Synthesis MICCAI 2025
Separating shared and independent features is crucial for multi-phase contrast-enhanced (CE) MRI synthesis. However, existing methods use deep autoencoder generators with low parameter efficiency and lack interpretable training strategies. In this paper, we propose Flip Distribution Alignment Variational Autoencoder (FDA-VAE), a lightweight feature-decoupled VAE model for multi-phase CE MRI synthesis. Our method encodes input and target images into two latent distributions that are symmetric concerning a standard normal distribution, effectively separating shared and independent features. The Y-shaped bidirectional training strategy further enhances the interpretability of feature separation. Experimental results show that compared to existing deep autoencoder-based end-to-end synthesis methods, FDA-VAE significantly reduces model parameters and inference time while effectively improving synthesis quality. The source code is publicly available at https://github.com/QianMuXiao/FDA-VAE.
comment: This paper has been early accept by MICCAI 2025
☆ Confidence and Dispersity as Signals: Unsupervised Model Evaluation and Ranking ICML'23
Assessing model generalization under distribution shift is essential for real-world deployment, particularly when labeled test data is unavailable. This paper presents a unified and practical framework for unsupervised model evaluation and ranking in two common deployment settings: (1) estimating the accuracy of a fixed model on multiple unlabeled test sets (dataset-centric evaluation), and (2) ranking a set of candidate models on a single unlabeled test set (model-centric evaluation). We demonstrate that two intrinsic properties of model predictions, namely confidence (which reflects prediction certainty) and dispersity (which captures the diversity of predicted classes), together provide strong and complementary signals for generalization. We systematically benchmark a set of confidence-based, dispersity-based, and hybrid metrics across a wide range of model architectures, datasets, and distribution shift types. Our results show that hybrid metrics consistently outperform single-aspect metrics on both dataset-centric and model-centric evaluation settings. In particular, the nuclear norm of the prediction matrix provides robust and accurate performance across tasks, including real-world datasets, and maintains reliability under moderate class imbalance. These findings offer a practical and generalizable basis for unsupervised model assessment in deployment scenarios.
comment: 15 pages, 11 figures, extension of ICML'23 work: Confidence and Dispersity Speak: Characterizing Prediction Matrix for Unsupervised Accuracy Estimation
☆ Multimodal Carotid Risk Stratification with Large Vision-Language Models: Benchmarking, Fine-Tuning, and Clinical Insights
Reliable risk assessment for carotid atheromatous disease remains a major clinical challenge, as it requires integrating diverse clinical and imaging information in a manner that is transparent and interpretable to clinicians. This study investigates the potential of state-of-the-art and recent large vision-language models (LVLMs) for multimodal carotid plaque assessment by integrating ultrasound imaging (USI) with structured clinical, demographic, laboratory, and protein biomarker data. A framework that simulates realistic diagnostic scenarios through interview-style question sequences is proposed, comparing a range of open-source LVLMs, including both general-purpose and medically tuned models. Zero-shot experiments reveal that even if they are very powerful, not all LVLMs can accurately identify imaging modality and anatomy, while all of them perform poorly in accurate risk classification. To address this limitation, LLaVa-NeXT-Vicuna is adapted to the ultrasound domain using low-rank adaptation (LoRA), resulting in substantial improvements in stroke risk stratification. The integration of multimodal tabular data in the form of text further enhances specificity and balanced accuracy, yielding competitive performance compared to prior convolutional neural network (CNN) baselines trained on the same dataset. Our findings highlight both the promise and limitations of LVLMs in ultrasound-based cardiovascular risk prediction, underscoring the importance of multimodal integration, model calibration, and domain adaptation for clinical translation.
☆ Zero-Shot Robustness of Vision Language Models Via Confidence-Aware Weighting NeurIPS 2025
Vision-language models like CLIP demonstrate impressive zero-shot generalization but remain highly vulnerable to adversarial attacks. In this work, we propose Confidence-Aware Weighting (CAW) to enhance zero-shot robustness in vision-language models. CAW consists of two components: (1) a Confidence-Aware loss that prioritizes uncertain adversarial examples by scaling the KL divergence between clean and adversarial predictions, and (2) a feature alignment regularization that preserves semantic consistency by minimizing the distance between frozen and fine-tuned image encoder features on adversarial inputs. These components work jointly to improve both clean and robust accuracy without sacrificing generalization. Extensive experiments on TinyImageNet and 14 additional datasets show that CAW outperforms recent methods such as PMG-AFT and TGA-ZSR under strong attacks like AutoAttack, while using less memory.
comment: Accepted to the NeurIPS 2025 Workshop on Reliable ML from Unreliable Data
☆ Don't Just Chase "Highlighted Tokens" in MLLMs: Revisiting Visual Holistic Context Retention NeurIPS 2025
Despite their powerful capabilities, Multimodal Large Language Models (MLLMs) suffer from considerable computational overhead due to their reliance on massive visual tokens. Recent studies have explored token pruning to alleviate this problem, which typically uses text-vision cross-attention or [\texttt{CLS}] attention to assess and discard redundant visual tokens. In this work, we identify a critical limitation of such attention-first pruning approaches, i.e., they tend to preserve semantically similar tokens, resulting in pronounced performance drops under high pruning ratios. To this end, we propose {HoloV}, a simple yet effective, plug-and-play visual token pruning framework for efficient inference. Distinct from previous attention-first schemes, HoloV rethinks token retention from a holistic perspective. By adaptively distributing the pruning budget across different spatial crops, HoloV ensures that the retained tokens capture the global visual context rather than isolated salient features. This strategy minimizes representational collapse and maintains task-relevant information even under aggressive pruning. Experimental results demonstrate that our HoloV achieves superior performance across various tasks, MLLM architectures, and pruning ratios compared to SOTA methods. For instance, LLaVA1.5 equipped with HoloV preserves 95.8\% of the original performance after pruning 88.9\% of visual tokens, achieving superior efficiency-accuracy trade-offs.
comment: Accepted by NeurIPS 2025 main
☆ Training-Free Out-Of-Distribution Segmentation With Foundation Models
Detecting unknown objects in semantic segmentation is crucial for safety-critical applications such as autonomous driving. Large vision foundation models, including DINOv2, InternImage, and CLIP, have advanced visual representation learning by providing rich features that generalize well across diverse tasks. While their strength in closed-set semantic tasks is established, their capability to detect out-of-distribution (OoD) regions in semantic segmentation remains underexplored. In this work, we investigate whether foundation models fine-tuned on segmentation datasets can inherently distinguish in-distribution (ID) from OoD regions without any outlier supervision. We propose a simple, training-free approach that utilizes features from the InternImage backbone and applies K-Means clustering alongside confidence thresholding on raw decoder logits to identify OoD clusters. Our method achieves 50.02 Average Precision on the RoadAnomaly benchmark and 48.77 on the benchmark of ADE-OoD with InternImage-L, surpassing several supervised and unsupervised baselines. These results suggest a promising direction for generic OoD segmentation methods that require minimal assumptions or additional data.
comment: 12 pages, 5 figures, 2 tables, ICOMP 2025
☆ PyRadiomics-cuda: a GPU-accelerated 3D features extraction from medical images within PyRadiomics
PyRadiomics-cuda is a GPU-accelerated extension of the PyRadiomics library, designed to address the computational challenges of extracting three-dimensional shape features from medical images. By offloading key geometric computations to GPU hardware it dramatically reduces processing times for large volumetric datasets. The system maintains full compatibility with the original PyRadiomics API, enabling seamless integration into existing AI workflows without code modifications. This transparent acceleration facilitates efficient, scalable radiomics analysis, supporting rapid feature extraction essential for high-throughput AI pipeline. Tests performed on a typical computational cluster, budget and home devices prove usefulness in all scenarios. PyRadiomics-cuda is implemented in Python and C/CUDA and is freely available under the BSD license at https://github.com/mis-wut/pyradiomics-CUDA Additionally PyRadiomics-cuda test suite is available at https://github.com/mis-wut/pyradiomics-cuda-data-gen. It provides detailed handbook and sample scripts suited for different kinds of workflows plus detailed installation instructions. The dataset used for testing is available at Kaggle https://www.kaggle.com/datasets/sabahesaraki/kidney-tumor-segmentation-challengekits-19
☆ ELMF4EggQ: Ensemble Learning with Multimodal Feature Fusion for Non-Destructive Egg Quality Assessment
Accurate, non-destructive assessment of egg quality is critical for ensuring food safety, maintaining product standards, and operational efficiency in commercial poultry production. This paper introduces ELMF4EggQ, an ensemble learning framework that employs multimodal feature fusion to classify egg grade and freshness using only external attributes - image, shape, and weight. A novel, publicly available dataset of 186 brown-shelled eggs was constructed, with egg grade and freshness levels determined through laboratory-based expert assessments involving internal quality measurements, such as yolk index and Haugh unit. To the best of our knowledge, this is the first study to apply machine learning methods for internal egg quality assessment using only external, non-invasive features, and the first to release a corresponding labeled dataset. The proposed framework integrates deep features extracted from external egg images with structural characteristics such as egg shape and weight, enabling a comprehensive representation of each egg. Image feature extraction is performed using top-performing pre-trained CNN models (ResNet152, DenseNet169, and ResNet152V2), followed by PCA-based dimensionality reduction, SMOTE augmentation, and classification using multiple machine learning algorithms. An ensemble voting mechanism combines predictions from the best-performing classifiers to enhance overall accuracy. Experimental results demonstrate that the multimodal approach significantly outperforms image-only and tabular (shape and weight) only baselines, with the multimodal ensemble approach achieving 86.57% accuracy in grade classification and 70.83% in freshness prediction. All code and data are publicly available at https://github.com/Kenshin-Keeps/Egg_Quality_Prediction_ELMF4EggQ, promoting transparency, reproducibility, and further research in this domain.
comment: 30 pages
☆ Representing Beauty: Towards a Participatory but Objective Latent Aesthetics
What does it mean for a machine to recognize beauty? While beauty remains a culturally and experientially compelling but philosophically elusive concept, deep learning systems increasingly appear capable of modeling aesthetic judgment. In this paper, we explore the capacity of neural networks to represent beauty despite the immense formal diversity of objects for which the term applies. By drawing on recent work on cross-model representational convergence, we show how aesthetic content produces more similar and aligned representations between models which have been trained on distinct data and modalities - while unaesthetic images do not produce more aligned representations. This finding implies that the formal structure of beautiful images has a realist basis - rather than only as a reflection of socially constructed values. Furthermore, we propose that these realist representations exist because of a joint grounding of aesthetic form in physical and cultural substance. We argue that human perceptual and creative acts play a central role in shaping these the latent spaces of deep learning systems, but that a realist basis for aesthetics shows that machines are not mere creative parrots but can produce novel creative insights from the unique vantage point of scale. Our findings suggest that human-machine co-creation is not merely possible, but foundational - with beauty serving as a teleological attractor in both cultural production and machine perception.
☆ Med-K2N: Flexible K-to-N Modality Translation for Medical Image Synthesis ICLR2026
Cross-modal medical image synthesis research focuses on reconstructing missing imaging modalities from available ones to support clinical diagnosis. Driven by clinical necessities for flexible modality reconstruction, we explore K to N medical generation, where three critical challenges emerge: How can we model the heterogeneous contributions of different modalities to various target tasks? How can we ensure fusion quality control to prevent degradation from noisy information? How can we maintain modality identity consistency in multi-output generation? Driven by these clinical necessities, and drawing inspiration from SAM2's sequential frame paradigm and clinicians' progressive workflow of incrementally adding and selectively integrating multi-modal information, we treat multi-modal medical data as sequential frames with quality-driven selection mechanisms. Our key idea is to "learn" adaptive weights for each modality-task pair and "memorize" beneficial fusion patterns through progressive enhancement. To achieve this, we design three collaborative modules: PreWeightNet for global contribution assessment, ThresholdNet for adaptive filtering, and EffiWeightNet for effective weight computation. Meanwhile, to maintain modality identity consistency, we propose the Causal Modality Identity Module (CMIM) that establishes causal constraints between generated images and target modality descriptions using vision-language modeling. Extensive experimental results demonstrate that our proposed Med-K2N outperforms state-of-the-art methods by significant margins on multiple benchmarks. Source code is available.
comment: ICLR2026 under review
☆ Work Zones challenge VLM Trajectory Planning: Toward Mitigation and Robust Autonomous Driving
Visual Language Models (VLMs), with powerful multimodal reasoning capabilities, are gradually integrated into autonomous driving by several automobile manufacturers to enhance planning capability in challenging environments. However, the trajectory planning capability of VLMs in work zones, which often include irregular layouts, temporary traffic control, and dynamically changing geometric structures, is still unexplored. To bridge this gap, we conduct the \textit{first} systematic study of VLMs for work zone trajectory planning, revealing that mainstream VLMs fail to generate correct trajectories in $68.0%$ of cases. To better understand these failures, we first identify candidate patterns via subgraph mining and clustering analysis, and then confirm the validity of $8$ common failure patterns through human verification. Building on these findings, we propose REACT-Drive, a trajectory planning framework that integrates VLMs with Retrieval-Augmented Generation (RAG). Specifically, REACT-Drive leverages VLMs to convert prior failure cases into constraint rules and executable trajectory planning code, while RAG retrieves similar patterns in new scenarios to guide trajectory generation. Experimental results on the ROADWork dataset show that REACT-Drive yields a reduction of around $3\times$ in average displacement error relative to VLM baselines under evaluation with Qwen2.5-VL. In addition, REACT-Drive yields the lowest inference time ($0.58$s) compared with other methods such as fine-tuning ($17.90$s). We further conduct experiments using a real vehicle in 15 work zone scenarios in the physical world, demonstrating the strong practicality of REACT-Drive.
comment: 13 pages,5 figures
☆ VERNIER: an open-source software pushing marker pose estimation down to the micrometer and nanometer scales
Pose estimation is still a challenge at the small scales. Few solutions exist to capture the 6 degrees of freedom of an object with nanometric and microradians resolutions over relatively large ranges. Over the years, we have proposed several fiducial marker and pattern designs to achieve reliable performance for various microscopy applications. Centimeter ranges are possible using pattern encoding methods, while nanometer resolutions can be achieved using phase processing of the periodic frames. This paper presents VERNIER, an open source phase processing software designed to provide fast and reliable pose measurement based on pseudo-periodic patterns. Thanks to a phase-based local thresholding algorithm, the software has proven to be particularly robust to noise, defocus and occlusion. The successive steps of the phase processing are presented, as well as the different types of patterns that address different application needs. The implementation procedure is illustrated with synthetic and experimental images. Finally, guidelines are given for selecting the appropriate pattern design and microscope magnification lenses as a function of the desired performance.
☆ MaskCD: Mitigating LVLM Hallucinations by Image Head Masked Contrastive Decoding
Large vision-language models (LVLMs) have shown remarkable performance in visual-language understanding for downstream multimodal tasks. While their capabilities are improving, problems emerge simultaneously. Among those problems, the hallucinations have attracted much attention, which stands for the phenomenon where LVLMs generate contradictory content to their input visual and text contents. Many approaches have been proposed to deal with this issue, such as contrastive decoding and attention manipulation. However, contrastive decoding methods struggle in constructing appropriate contrastive samples, and attention manipulation methods are highly sensitive, lacking stability. In this work, we propose image head Masked Contrastive Decoding (MaskCD). Our approach utilizes the "image heads" in LVLMs, masking them to construct contrastive samples for contrastive decoding. We evaluated MaskCD on LLaVA-1.5-7b and Qwen-VL-7b, using various benchmarks such as CHAIR, POPE, AMBER and MME. The results demonstrate that MaskCD effectively alleviates the phenomenon of hallucinations and retains the general capabilities of LVLMs. Corresponding resources could be found at: https://github.com/Deng-Jingyuan/MaskCD .
comment: accepted to emnlp2025 findings
☆ Align Your Query: Representation Alignment for Multimodality Medical Object Detection
Medical object detection suffers when a single detector is trained on mixed medical modalities (e.g., CXR, CT, MRI) due to heterogeneous statistics and disjoint representation spaces. To address this challenge, we turn to representation alignment, an approach that has proven effective for bringing features from different sources into a shared space. Specifically, we target the representations of DETR-style object queries and propose a simple, detector-agnostic framework to align them with modality context. First, we define modality tokens: compact, text-derived embeddings encoding imaging modality that are lightweight and require no extra annotations. We integrate the modality tokens into the detection process via Multimodality Context Attention (MoCA), mixing object-query representations via self-attention to propagate modality context within the query set. This preserves DETR-style architectures and adds negligible latency while injecting modality cues into object queries. We further introduce QueryREPA, a short pretraining stage that aligns query representations to their modality tokens using a task-specific contrastive objective with modality-balanced batches. Together, MoCA and QueryREPA produce modality-aware, class-faithful queries that transfer effectively to downstream training. Across diverse modalities trained altogether, the proposed approach consistently improves AP with minimal overhead and no architectural modifications, offering a practical path toward robust multimodality medical object detection. Project page: https://araseo.github.io/alignyourquery/.
comment: Project page: https://araseo.github.io/alignyourquery/
☆ OTR: Synthesizing Overlay Text Dataset for Text Removal
Text removal is a crucial task in computer vision with applications such as privacy preservation, image editing, and media reuse. While existing research has primarily focused on scene text removal in natural images, limitations in current datasets hinder out-of-domain generalization or accurate evaluation. In particular, widely used benchmarks such as SCUT-EnsText suffer from ground truth artifacts due to manual editing, overly simplistic text backgrounds, and evaluation metrics that do not capture the quality of generated results. To address these issues, we introduce an approach to synthesizing a text removal benchmark applicable to domains other than scene texts. Our dataset features text rendered on complex backgrounds using object-aware placement and vision-language model-generated content, ensuring clean ground truth and challenging text removal scenarios. The dataset is available at https://huggingface.co/datasets/cyberagent/OTR .
comment: This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Proceedings of the 33rd ACM International Conference on Multimedia (MM '25), October 27-31, 2025, Dublin, Ireland, https://doi.org/10.1145/3746027.3758297
☆ GCVAMD: A Modified CausalVAE Model for Causal Age-related Macular Degeneration Risk Factor Detection and Prediction
Age Related Macular Degeneration(AMD) has been one of the most leading causes of permanent vision impairment in ophthalmology. Though treatments, such as anti VEGF drugs or photodynamic therapies, were developed to slow down the degenerative process of AMD, there is still no specific cure to reverse vision loss caused by AMD. Thus, for AMD, detecting existence of risk factors of AMD or AMD itself within the patient retina in early stages is a crucial task to reduce the possibility of vision impairment. Apart from traditional approaches, deep learning based methods, especially attention mechanism based CNNs and GradCAM based XAI analysis on OCT scans, exhibited successful performance in distinguishing AMD retina from normal retinas, making it possible to use AI driven models to aid medical diagnosis and analysis by ophthalmologists regarding AMD. However, though having significant success, previous works mostly focused on prediction performance itself, not pathologies or underlying causal mechanisms of AMD, which can prohibit intervention analysis on specific factors or even lead to less reliable decisions. Thus, this paper introduces a novel causal AMD analysis model: GCVAMD, which incorporates a modified CausalVAE approach that can extract latent causal factors from only raw OCT images. By considering causality in AMD detection, GCVAMD enables causal inference such as treatment simulation or intervention analysis regarding major risk factors: drusen and neovascularization, while returning informative latent causal features that can enhance downstream tasks. Results show that through GCVAMD, drusen status and neovascularization status can be identified with AMD causal mechanisms in GCVAMD latent spaces, which can in turn be used for various tasks from AMD detection(classification) to intervention analysis.
☆ Reasoning Riddles: How Explainability Reveals Cognitive Limits in Vision-Language Models
Vision-Language Models (VLMs) excel at many multimodal tasks, yet their cognitive processes remain opaque on complex lateral thinking challenges like rebus puzzles. While recent work has demonstrated these models struggle significantly with rebus puzzle solving, the underlying reasoning processes and failure patterns remain largely unexplored. We address this gap through a comprehensive explainability analysis that moves beyond performance metrics to understand how VLMs approach these complex lateral thinking challenges. Our study contributes a systematically annotated dataset of 221 rebus puzzles across six cognitive categories, paired with an evaluation framework that separates reasoning quality from answer correctness. We investigate three prompting strategies designed to elicit different types of explanatory processes and reveal critical insights into VLM cognitive processes. Our findings demonstrate that reasoning quality varies dramatically across puzzle categories, with models showing systematic strengths in visual composition while exhibiting fundamental limitations in absence interpretation and cultural symbolism. We also discover that prompting strategy substantially influences both cognitive approach and problem-solving effectiveness, establishing explainability as an integral component of model performance rather than a post-hoc consideration.
☆ AdaRD-key: Adaptive Relevance-Diversity Keyframe Sampling for Long-form Video understanding
Understanding long-form videos remains a significant challenge for vision--language models (VLMs) due to their extensive temporal length and high information density. Most current multimodal large language models (MLLMs) rely on uniform sampling, which often overlooks critical moments, leading to incorrect responses to queries. In parallel, many keyframe selection approaches impose rigid temporal spacing: once a frame is chosen, an exclusion window suppresses adjacent timestamps to reduce redundancy. While effective at limiting overlap, this strategy frequently misses short, fine-grained cues near important events. Other methods instead emphasize visual diversity but neglect query relevance. We propose AdaRD-Key, a training-free keyframe sampling module for query-driven long-form video understanding. AdaRD-Key maximizes a unified Relevance--Diversity Max-Volume (RD-MV) objective, combining a query-conditioned relevance score with a log-determinant diversity component to yield informative yet non-redundant frames. To handle broad queries with weak alignment to the video, AdaRD-Key employs a lightweight relevance-aware gating mechanism; when the relevance distribution indicates weak alignment, the method seamlessly shifts into a diversity-only mode, enhancing coverage without additional supervision. Our pipeline is training-free, computationally efficient (running in real time on a single GPU), and compatible with existing VLMs in a plug-and-play manner. Extensive experiments on LongVideoBench and Video-MME demonstrate state-of-the-art performance, particularly on long-form videos. Code available at https://github.com/Xian867/AdaRD-Key.
☆ Hierarchical Generalized Category Discovery for Brain Tumor Classification in Digital Pathology
Accurate brain tumor classification is critical for intra-operative decision making in neuro-oncological surgery. However, existing approaches are restricted to a fixed set of predefined classes and are therefore unable to capture patterns of tumor types not available during training. Unsupervised learning can extract general-purpose features, but it lacks the ability to incorporate prior knowledge from labelled data, and semi-supervised methods often assume that all potential classes are represented in the labelled data. Generalized Category Discovery (GCD) aims to bridge this gap by categorizing both known and unknown classes within unlabelled data. To reflect the hierarchical structure of brain tumor taxonomies, in this work, we introduce Hierarchical Generalized Category Discovery for Brain Tumor Classification (HGCD-BT), a novel approach that integrates hierarchical clustering with contrastive learning. Our method extends contrastive learning based GCD by incorporating a novel semi-supervised hierarchical clustering loss. We evaluate HGCD-BT on OpenSRH, a dataset of stimulated Raman histology brain tumor images, achieving a +28% improvement in accuracy over state-of-the-art GCD methods for patch-level classification, particularly in identifying previously unseen tumor categories. Furthermore, we demonstrate the generalizability of HGCD-BT on slide-level classification of hematoxylin and eosin stained whole-slide images from the Digital Brain Tumor Atlas, confirming its utility across imaging modalities.
☆ Bayesian Test-time Adaptation for Object Recognition and Detection with Vision-language Models
Vision-language models (VLMs) such as CLIP and Grounding DINO have achieved remarkable success in object recognition and detection. However, their performance often degrades under real-world distribution shifts. Test-time adaptation (TTA) aims to mitigate this issue by adapting models during inference. Existing methods either rely on computationally expensive backpropagation, which hinders real-time deployment, or focus solely on likelihood adaptation, which overlooks the critical role of the prior. Our prior work, Bayesian Class Adaptation (BCA), addressed these shortcomings for object recognition by introducing a training-free framework that incorporates adaptive priors. Building upon this foundation, we now present Bayesian Class Adaptation plus (BCA+), a unified, training-free framework for TTA for both object recognition and detection. BCA+ introduces a dynamic cache that adaptively stores and updates class embeddings, spatial scales (for detection), and, crucially, adaptive class priors derived from historical predictions. We formulate adaptation as a Bayesian inference problem, where final predictions are generated by fusing the initial VLM output with a cache-based prediction. This cache-based prediction combines a dynamically updated likelihood (measuring feature and scale similarity) and a prior (reflecting the evolving class distribution). This dual-adaptation mechanism, coupled with uncertainty-guided fusion, enables BCA+ to correct both the model's semantic understanding and its contextual confidence. As a training-free method requiring no backpropagation, BCA+ is highly efficient. Extensive experiments demonstrate that BCA+ achieves state-of-the-art performance on both recognition and detection benchmarks.
comment: Under Review
☆ Retrv-R1: A Reasoning-Driven MLLM Framework for Universal and Efficient Multimodal Retrieval NeurIPS 2025
The success of DeepSeek-R1 demonstrates the immense potential of using reinforcement learning (RL) to enhance LLMs' reasoning capabilities. This paper introduces Retrv-R1, the first R1-style MLLM specifically designed for multimodal universal retrieval, achieving higher performance by employing step-by-step reasoning to produce more accurate retrieval results. We find that directly applying the methods of DeepSeek-R1 to retrieval tasks is not feasible, mainly due to (1) the high computational cost caused by the large token consumption required for multiple candidates with reasoning processes, and (2) the instability and suboptimal results when directly applying RL to train for retrieval tasks. To address these issues, Retrv-R1 introduces an information compression module with a details inspection mechanism, which enhances computational efficiency by reducing the number of tokens while ensuring that critical information for challenging candidates is preserved. Furthermore, a new training paradigm is proposed, including an activation stage using a retrieval-tailored synthetic CoT dataset for more effective optimization, followed by RL with a novel curriculum reward to improve both performance and efficiency. Incorporating these novel designs, Retrv-R1 achieves SOTA performance, high efficiency, and strong generalization ability, as demonstrated by experiments across multiple benchmarks and tasks.
comment: NeurIPS 2025
☆ Net2Net: When Un-trained Meets Pre-trained Networks for Robust Real-World Denoising
Traditional denoising methods for noise removal have largely relied on handcrafted priors, often perform well in controlled environments but struggle to address the complexity and variability of real noise. In contrast, deep learning-based approaches have gained prominence for learning noise characteristics from large datasets, but these methods frequently require extensive labeled data and may not generalize effectively across diverse noise types and imaging conditions. In this paper, we present an innovative method, termed as Net2Net, that combines the strengths of untrained and pre-trained networks to tackle the challenges of real-world noise removal. The innovation of Net2Net lies in its combination of unsupervised DIP and supervised pre-trained model DRUNet by regularization by denoising (RED). The untrained network adapts to the unique noise characteristics of each input image without requiring labeled data, while the pre-trained network leverages learned representations from large-scale datasets to deliver robust denoising performance. This hybrid framework enhances generalization across varying noise patterns and improves performance, particularly in scenarios with limited training data. Extensive experiments on benchmark datasets demonstrate the superiority of our method for real-world noise removal.
☆ From Tokens to Nodes: Semantic-Guided Motion Control for Dynamic 3D Gaussian Splatting
Dynamic 3D reconstruction from monocular videos remains difficult due to the ambiguity inferring 3D motion from limited views and computational demands of modeling temporally varying scenes. While recent sparse control methods alleviate computation by reducing millions of Gaussians to thousands of control points, they suffer from a critical limitation: they allocate points purely by geometry, leading to static redundancy and dynamic insufficiency. We propose a motion-adaptive framework that aligns control density with motion complexity. Leveraging semantic and motion priors from vision foundation models, we establish patch-token-node correspondences and apply motion-adaptive compression to concentrate control points in dynamic regions while suppressing redundancy in static backgrounds. Our approach achieves flexible representational density adaptation through iterative voxelization and motion tendency scoring, directly addressing the fundamental mismatch between control point allocation and motion complexity. To capture temporal evolution, we introduce spline-based trajectory parameterization initialized by 2D tracklets, replacing MLP-based deformation fields to achieve smoother motion representation and more stable optimization. Extensive experiments demonstrate significant improvements in reconstruction quality and efficiency over existing state-of-the-art methods.
☆ Dale meets Langevin: A Multiplicative Denoising Diffusion Model
Gradient descent has proven to be a powerful and effective technique for optimization in numerous machine learning applications. Recent advances in computational neuroscience have shown that learning in standard gradient descent optimization formulation is not consistent with learning in biological systems. This has opened up interesting avenues for building biologically inspired learning techniques. One such approach is inspired by Dale's law, which states that inhibitory and excitatory synapses do not swap roles during the course of learning. The resulting exponential gradient descent optimization scheme leads to log-normally distributed synaptic weights. Interestingly, the density that satisfies the Fokker-Planck equation corresponding to the stochastic differential equation (SDE) with geometric Brownian motion (GBM) is the log-normal density. Leveraging this connection, we start with the SDE governing geometric Brownian motion, and show that discretizing the corresponding reverse-time SDE yields a multiplicative update rule, which surprisingly, coincides with the sampling equivalent of the exponential gradient descent update founded on Dale's law. Furthermore, we propose a new formalism for multiplicative denoising score-matching, subsuming the loss function proposed by Hyvaerinen for non-negative data. Indeed, log-normally distributed data is positive and the proposed score-matching formalism turns out to be a natural fit. This allows for training of score-based models for image data and results in a novel multiplicative update scheme for sample generation starting from a log-normal density. Experimental results on MNIST, Fashion MNIST, and Kuzushiji datasets demonstrate generative capability of the new scheme. To the best of our knowledge, this is the first instance of a biologically inspired generative model employing multiplicative updates, founded on geometric Brownian motion.
☆ MoGIC: Boosting Motion Generation via Intention Understanding and Visual Context
Existing text-driven motion generation methods often treat synthesis as a bidirectional mapping between language and motion, but remain limited in capturing the causal logic of action execution and the human intentions that drive behavior. The absence of visual grounding further restricts precision and personalization, as language alone cannot specify fine-grained spatiotemporal details. We propose MoGIC, a unified framework that integrates intention modeling and visual priors into multimodal motion synthesis. By jointly optimizing multimodal-conditioned motion generation and intention prediction, MoGIC uncovers latent human goals, leverages visual priors to enhance generation, and exhibits versatile multimodal generative capability. We further introduce a mixture-of-attention mechanism with adaptive scope to enable effective local alignment between conditional tokens and motion subsequences. To support this paradigm, we curate Mo440H, a 440-hour benchmark from 21 high-quality motion datasets. Experiments show that after finetuning, MoGIC reduces FID by 38.6\% on HumanML3D and 34.6\% on Mo440H, surpasses LLM-based methods in motion captioning with a lightweight text head, and further enables intention prediction and vision-conditioned generation, advancing controllable motion synthesis and intention understanding. The code is available at https://github.com/JunyuShi02/MoGIC
☆ Image Enhancement Based on Pigment Representation
This paper presents a novel and efficient image enhancement method based on pigment representation. Unlike conventional methods where the color transformation is restricted to pre-defined color spaces like RGB, our method dynamically adapts to input content by transforming RGB colors into a high-dimensional feature space referred to as \textit{pigments}. The proposed pigment representation offers adaptability and expressiveness, achieving superior image enhancement performance. The proposed method involves transforming input RGB colors into high-dimensional pigments, which are then reprojected individually and blended to refine and aggregate the information of the colors in pigment spaces. Those pigments are then transformed back into RGB colors to generate an enhanced output image. The transformation and reprojection parameters are derived from the visual encoder which adaptively estimates such parameters based on the content in the input image. Extensive experimental results demonstrate the superior performance of the proposed method over state-of-the-art methods in image enhancement tasks, including image retouching and tone mapping, while maintaining relatively low computational complexity and small model size.
comment: 14 pages, 9 figures, accepted at IEEE Transactions on Multimedia (TMM)
☆ A Statistical Method for Attack-Agnostic Adversarial Attack Detection with Compressive Sensing Comparison
Adversarial attacks present a significant threat to modern machine learning systems. Yet, existing detection methods often lack the ability to detect unseen attacks or detect different attack types with a high level of accuracy. In this work, we propose a statistical approach that establishes a detection baseline before a neural network's deployment, enabling effective real-time adversarial detection. We generate a metric of adversarial presence by comparing the behavior of a compressed/uncompressed neural network pair. Our method has been tested against state-of-the-art techniques, and it achieves near-perfect detection across a wide range of attack types. Moreover, it significantly reduces false positives, making it both reliable and practical for real-world applications.
☆ A UAV-Based VNIR Hyperspectral Benchmark Dataset for Landmine and UXO Detection RSS
This paper introduces a novel benchmark dataset of Visible and Near-Infrared (VNIR) hyperspectral imagery acquired via an unmanned aerial vehicle (UAV) platform for landmine and unexploded ordnance (UXO) detection research. The dataset was collected over a controlled test field seeded with 143 realistic surrogate landmine and UXO targets, including surface, partially buried, and fully buried configurations. Data acquisition was performed using a Headwall Nano-Hyperspec sensor mounted on a multi-sensor drone platform, flown at an altitude of approximately 20.6 m, capturing 270 contiguous spectral bands spanning 398-1002 nm. Radiometric calibration, orthorectification, and mosaicking were performed followed by reflectance retrieval using a two-point Empirical Line Method (ELM), with reference spectra acquired using an SVC spectroradiometer. Cross-validation against six reference objects yielded RMSE values below 1.0 and SAM values between 1 and 6 degrees in the 400-900 nm range, demonstrating high spectral fidelity. The dataset is released alongside raw radiance cubes, GCP/AeroPoint data, and reference spectra to support reproducible research. This contribution fills a critical gap in open-access UAV-based hyperspectral data for landmine detection and offers a multi-sensor benchmark when combined with previously published drone-based electromagnetic induction (EMI) data from the same test field.
comment: This work has been accepted and will be presented at the Indian Geoscience and Remote Sensing Symposium (InGARSS) 2025 in India and will appear in the IEEE InGARSS 2025 Proceedings
☆ FSFSplatter: Build Surface and Novel Views with Sparse-Views within 3min
Gaussian Splatting has become a leading reconstruction technique, known for its high-quality novel view synthesis and detailed reconstruction. However, most existing methods require dense, calibrated views. Reconstructing from free sparse images often leads to poor surface due to limited overlap and overfitting. We introduce FSFSplatter, a new approach for fast surface reconstruction from free sparse images. Our method integrates end-to-end dense Gaussian initialization, camera parameter estimation, and geometry-enhanced scene optimization. Specifically, FSFSplatter employs a large Transformer to encode multi-view images and generates a dense and geometrically consistent Gaussian scene initialization via a self-splitting Gaussian head. It eliminates local floaters through contribution-based pruning and mitigates overfitting to limited views by leveraging depth and multi-view feature supervision with differentiable camera parameters during rapid optimization. FSFSplatter outperforms current state-of-the-art methods on widely used DTU and Replica.
☆ Smart-GRPO: Smartly Sampling Noise for Efficient RL of Flow-Matching Models
Recent advancements in flow-matching have enabled high-quality text-to-image generation. However, the deterministic nature of flow-matching models makes them poorly suited for reinforcement learning, a key tool for improving image quality and human alignment. Prior work has introduced stochasticity by perturbing latents with random noise, but such perturbations are inefficient and unstable. We propose Smart-GRPO, the first method to optimize noise perturbations for reinforcement learning in flow-matching models. Smart-GRPO employs an iterative search strategy that decodes candidate perturbations, evaluates them with a reward function, and refines the noise distribution toward higher-reward regions. Experiments demonstrate that Smart-GRPO improves both reward optimization and visual quality compared to baseline methods. Our results suggest a practical path toward reinforcement learning in flow-matching frameworks, bridging the gap between efficient training and human-aligned generation.
☆ Sequence-Preserving Dual-FoV Defense for Traffic Sign and Light Recognition in Autonomous Vehicles
Traffic light and sign recognition are key for Autonomous Vehicles (AVs) because perception mistakes directly influence navigation and safety. In addition to digital adversarial attacks, models are vulnerable to existing perturbations (glare, rain, dirt, or graffiti), which could lead to dangerous misclassifications. The current work lacks consideration of temporal continuity, multistatic field-of-view (FoV) sensing, and robustness to both digital and natural degradation. This study proposes a dual FoV, sequence-preserving robustness framework for traffic lights and signs in the USA based on a multi-source dataset built on aiMotive, Udacity, Waymo, and self-recorded videos from the region of Texas. Mid and long-term sequences of RGB images are temporally aligned for four operational design domains (ODDs): highway, night, rainy, and urban. Over a series of experiments on a real-life application of anomaly detection, this study outlines a unified three-layer defense stack framework that incorporates feature squeezing, defensive distillation, and entropy-based anomaly detection, as well as sequence-wise temporal voting for further enhancement. The evaluation measures included accuracy, attack success rate (ASR), risk-weighted misclassification severity, and confidence stability. Physical transferability was confirmed using probes for recapture. The results showed that the Unified Defense Stack achieved 79.8mAP and reduced the ASR to 18.2%, which is superior to YOLOv8, YOLOv9, and BEVFormer, while reducing the high-risk misclassification to 32%.
☆ Deep Generative Continual Learning using Functional LoRA: FunLoRA
Continual adaptation of deep generative models holds tremendous potential and critical importance, given their rapid and expanding usage in text and vision based applications. Incremental training, however, remains highly challenging due to catastrophic forgetting phenomenon, which makes it difficult for neural networks to effectively incorporate new knowledge. A common strategy consists in retraining the generative model on its own synthetic data in order to mitigate forgetting. Yet, such an approach faces two major limitations: (i) the continually increasing training time eventually becomes intractable, and (ii) reliance on synthetic data inevitably leads to long-term performance degradation, since synthetic samples lack the richness of real training data. In this paper, we attenuate these issues by designing a novel and more expressive conditioning mechanism for generative models based on low rank adaptation (LoRA), that exclusively employs rank 1 matrices, whose reparametrized matrix rank is functionally increased using carefully selected functions -- and dubbed functional LoRA: FunLoRA. Using this dynamic conditioning, the generative model is guaranteed to avoid catastrophic forgetting and needs only to be trained on data from the current task. Extensive experiments using flow-matching based models trained from scratch, showcase that our proposed parameter-efficient fine-tuning (PEFT) method surpasses prior state-of-the-art results based on diffusion models, reaching higher classification accuracy scores, while only requiring a fraction of the memory cost and sampling time.
♻ ☆ Causal-Adapter: Taming Text-to-Image Diffusion for Faithful Counterfactual Generation
We present Causal-Adapter, a modular framework that adapts frozen text-to-image diffusion backbones for counterfactual image generation. Our method enables causal interventions on target attributes, consistently propagating their effects to causal dependents without altering the core identity of the image. In contrast to prior approaches that rely on prompt engineering without explicit causal structure, Causal-Adapter leverages structural causal modeling augmented with two attribute regularization strategies: prompt-aligned injection, which aligns causal attributes with textual embeddings for precise semantic control, and a conditioned token contrastive loss to disentangle attribute factors and reduce spurious correlations. Causal-Adapter achieves state-of-the-art performance on both synthetic and real-world datasets, with up to 91% MAE reduction on Pendulum for accurate attribute control and 87% FID reduction on ADNI for high-fidelity MRI image generation. These results show that our approach enables robust, generalizable counterfactual editing with faithful attribute modification and strong identity preservation.
comment: 9 pages, 26 figures
♻ ☆ Equivariant Splitting: Self-supervised learning from incomplete data
Self-supervised learning for inverse problems allows to train a reconstruction network from noise and/or incomplete data alone. These methods have the potential of enabling learning-based solutions when obtaining ground-truth references for training is expensive or even impossible. In this paper, we propose a new self-supervised learning strategy devised for the challenging setting where measurements are observed via a single incomplete observation model. We introduce a new definition of equivariance in the context of reconstruction networks, and show that the combination of self-supervised splitting losses and equivariant reconstruction networks results in the same minimizer in expectation as the one of a supervised loss. Through a series of experiments on image inpainting, accelerated magnetic resonance imaging, and compressive sensing, we demonstrate that the proposed loss achieves state-of-the-art performance in settings with highly rank-deficient forward models.
♻ ☆ Pack and Force Your Memory: Long-form and Consistent Video Generation
Long-form video generation presents a dual challenge: models must capture long-range dependencies while preventing the error accumulation inherent in autoregressive decoding. To address these challenges, we make two contributions. First, for dynamic context modeling, we propose MemoryPack, a learnable context-retrieval mechanism that leverages both textual and image information as global guidance to jointly model short- and long-term dependencies, achieving minute-level temporal consistency. This design scales gracefully with video length, preserves computational efficiency, and maintains linear complexity. Second, to mitigate error accumulation, we introduce Direct Forcing, an efficient single-step approximating strategy that improves training-inference alignment and thereby curtails error propagation during inference. Together, MemoryPack and Direct Forcing substantially enhance the context consistency and reliability of long-form video generation, advancing the practical usability of autoregressive video models.
♻ ☆ UniVerse: Unleashing the Scene Prior of Video Diffusion Models for Robust Radiance Field Reconstruction
This paper tackles the challenge of robust reconstruction, i.e., the task of reconstructing a 3D scene from a set of inconsistent multi-view images. Some recent works have attempted to simultaneously remove image inconsistencies and perform reconstruction by integrating image degradation modeling into neural 3D scene representations. However, these methods rely heavily on dense observations for robustly optimizing model parameters. To address this issue, we propose to decouple robust reconstruction into two subtasks: restoration and reconstruction, which naturally simplifies the optimization process. To this end, we introduce UniVerse, a unified framework for robust reconstruction based on a video diffusion model. Specifically, UniVerse first converts inconsistent images into initial videos, then uses a specially designed video diffusion model to restore them into consistent images, and finally reconstructs the 3D scenes from these restored images. Compared with case-by-case per-view degradation modeling, the diffusion model learns a general scene prior from large-scale data, making it applicable to diverse image inconsistencies. Extensive experiments on both synthetic and real-world datasets demonstrate the strong generalization capability and superior performance of our method in robust reconstruction. Moreover, UniVerse can control the style of the reconstructed 3D scene. Project page: https://jin-cao-tma.github.io/UniVerse.github.io/
comment: page: https://jin-cao-tma.github.io/UniVerse.github.io/ code: https://github.com/zju3dv/UniVerse
♻ ☆ VirDA: Reusing Backbone for Unsupervised Domain Adaptation with Visual Reprogramming
Existing UDA pipelines fine-tune already well-trained backbone parameters for every new source-and-target pair, resulting in the number of training parameters and storage memory growing linearly with each new pair, and also preventing the reuse of these well-trained backbone parameters. Inspired by recent implications that existing backbones have textural biases, we propose making use of domain-specific textural bias for domain adaptation via visual reprogramming, namely VirDA. Instead of fine-tuning the full backbone, VirDA prepends a domain-specific visual reprogramming layer to the backbone. This layer produces visual prompts that act as an added textural bias to the input image, adapting its "style" to a target domain. To optimize these visual reprogramming layers, we use multiple objective functions that optimize the intra- and inter-domain distribution differences when domain-adapting visual prompts are applied. This process does not require modifying the backbone parameters, allowing the same backbone to be reused across different domains. We evaluate VirDA on Office-31 and obtain 92.8% mean accuracy with only 1.5M trainable parameters. VirDA surpasses PDA, the state-of-the-art parameter-efficient UDA baseline, by +1.6% accuracy while using just 46% of its parameters. Compared with full-backbone fine-tuning, VirDA outperforms CDTrans and FixBi by +0.2% and +1.4%, respectively, while requiring only 1.7% and 2.8% of their trainable parameters. Relative to the strongest current methods (PMTrans and TVT), VirDA uses ~1.7% of their parameters and trades off only 2.2% and 1.1% accuracy, respectively.
♻ ☆ Ultra-Efficient Decoding for End-to-End Neural Compression and Reconstruction NeurIPS 2025
Image compression and reconstruction are crucial for various digital applications. While contemporary neural compression methods achieve impressive compression rates, the adoption of such technology has been largely hindered by the complexity and large computational costs of the convolution-based decoders during data reconstruction. To address the decoder bottleneck in neural compression, we develop a new compression-reconstruction framework based on incorporating low-rank representation in an autoencoder with vector quantization. We demonstrated that performing a series of computationally efficient low-rank operations on the learned latent representation of images can efficiently reconstruct the data with high quality. Our approach dramatically reduces the computational overhead in the decoding phase of neural compression/reconstruction, essentially eliminating the decoder compute bottleneck while maintaining high fidelity of image outputs.
comment: 5 pages, 4 figures, NeurIPS 2025 Workshop MLForSys
♻ ☆ Generative Modeling of Weights: Generalization or Memorization?
Generative models have recently been explored for synthesizing neural network weights. These approaches take neural network checkpoints as training data and aim to generate high-performing weights during inference. In this work, we examine four representative, well-known methods on their ability to generate novel model weights, i.e., weights that are different from the checkpoints seen during training. Contrary to claims in prior work, we find that these methods synthesize weights largely by memorization: they produce either replicas, or, at best, simple interpolations of the training checkpoints. Moreover, they fail to outperform simple baselines, such as adding noise to the weights or taking a simple weight ensemble, in obtaining different and simultaneously high-performing models. Our further analysis suggests that this memorization might result from limited data, overparameterized models, and the underuse of structural priors specific to weight data. These findings highlight the need for more careful design and rigorous evaluation of generative models when applied to new domains. Our code is available at https://github.com/boyazeng/weight_memorization.
comment: Project page at https://boyazeng.github.io/weight_memorization
♻ ☆ Revisiting Reweighted Risk for Calibration: AURC, Focal, and Inverse Focal Loss
Several variants of reweighted risk functionals, such as focal loss, inverse focal loss, and the Area Under the Risk--Coverage Curve (AURC), have been proposed for improving model calibration, yet their theoretical connections to calibration errors remain unclear. In this paper, we revisit a broad class of weighted risk functions commonly used in deep learning and establish a principled connection between calibration error and selective classification. We show that minimizing calibration error is closely linked to the selective classification paradigm and demonstrate that optimizing selective risk in low-confidence region naturally leads to improved calibration. This loss shares a similar reweighting strategy with dual focal loss but offers greater flexibility through the choice of confidence score functions (CSFs). Our approach uses a bin-based cumulative distribution function (CDF) approximation, enabling efficient gradient-based optimization without requiring expensive sorting and achieving $O(nK)$ complexity. Empirical evaluations demonstrate that our method achieves competitive calibration performance across a range of datasets and model architectures.
♻ ☆ RACCooN: A Versatile Instructional Video Editing Framework with Auto-Generated Narratives EMNLP 2025
Recent video generative models primarily rely on carefully written text prompts for specific tasks, like inpainting or style editing. They require labor-intensive textual descriptions for input videos, hindering their flexibility to adapt personal/raw videos to user specifications. This paper proposes RACCooN, a versatile and user-friendly video-to-paragraph-to-video generative framework that supports multiple video editing capabilities such as removal, addition, and modification, through a unified pipeline. RACCooN consists of two principal stages: Video-to-Paragraph (V2P) and Paragraph-to-Video (P2V). In the V2P stage, we automatically describe video scenes in well-structured natural language, capturing both the holistic context and focused object details. Subsequently, in the P2V stage, users can optionally refine these descriptions to guide the video diffusion model, enabling various modifications to the input video, such as removing, changing subjects, and/or adding new objects. The proposed approach stands out from other methods through several significant contributions: (1) RACCooN suggests a multi-granular spatiotemporal pooling strategy to generate well-structured video descriptions, capturing both the broad context and object details without requiring complex human annotations, simplifying precise video content editing based on text for users. (2) Our video generative model incorporates auto-generated narratives or instructions to enhance the quality and accuracy of the generated content. (3) RACCooN also plans to imagine new objects in a given video, so users simply prompt the model to receive a detailed video editing plan for complex video editing. The proposed framework demonstrates impressive versatile capabilities in video-to-paragraph generation, video content editing, and can be incorporated into other SoTA video generative models for further enhancement.
comment: EMNLP 2025 main; The first two authors contribute equally. Project Page: https://raccoon-mllm-gen.github.io/
♻ ☆ EFC++: Elastic Feature Consolidation with Prototype Re-balancing for Cold Start Exemplar-free Incremental Learning
Exemplar-free Class Incremental Learning (EFCIL) aims to learn from a sequence of tasks without having access to previous task data. In this paper, we consider the challenging Cold Start scenario in which insufficient data is available in the first task to learn a high-quality backbone. This is especially challenging for EFCIL since it requires high plasticity, resulting in feature drift which is difficult to compensate for in the exemplar-free setting. To address this problem, we propose an effective approach to consolidate feature representations by regularizing drift in directions highly relevant to previous tasks while employing prototypes to reduce task-recency bias. Our approach, which we call Elastic Feature Consolidation++ (EFC++) exploits a tractable second-order approximation of feature drift based on a proposed Empirical Feature Matrix (EFM). The EFM induces a pseudo-metric in feature space which we use to regularize feature drift in important directions and to update Gaussian prototypes. In addition, we introduce a post-training prototype re-balancing phase that updates classifiers to compensate for feature drift. Experimental results on CIFAR-100, Tiny-ImageNet, ImageNet-Subset, ImageNet-1K and DomainNet demonstrate that EFC++ is better able to learn new tasks by maintaining model plasticity and significantly outperforms the state-of-the-art.
comment: Extension of our previous conference paper https://openreview.net/forum?id=7D9X2cFnt1
Less is More: Lean yet Powerful Vision-Language Model for Autonomous Driving
In this work, we reconceptualize autonomous driving as a generalized language and formulate the trajectory planning task as next waypoint prediction. We introduce Max-V1, a novel framework for one-stage end-to-end autonomous driving. Our framework presents a single-pass generation paradigm that aligns with the inherent sequentiality of driving. This approach leverages the generative capacity of the VLM (Vision-Language Model) to enable end-to-end trajectory prediction directly from front-view camera input. The efficacy of this method is underpinned by a principled supervision strategy derived from statistical modeling. This provides a well-defined learning objective, which makes the framework highly amenable to master complex driving policies through imitation learning from large-scale expert demonstrations. Empirically, our method achieves the state-of-the-art performance on the nuScenes dataset, delivers an overall improvement of over 30% compared to prior baselines. Furthermore, it exhibits superior generalization performance on cross-domain datasets acquired from diverse vehicles, demonstrating notable potential for cross-vehicle robustness and adaptability. Due to these empirical strengths, this work introduces a model enabling fundamental driving behaviors, laying the foundation for the development of more capable self-driving agents. Code will be available upon publication.
♻ ☆ Dual-Stage Reweighted MoE for Long-Tailed Egocentric Mistake Detection
In this report, we address the problem of determining whether a user performs an action incorrectly from egocentric video data. To handle the challenges posed by subtle and infrequent mistakes, we propose a Dual-Stage Reweighted Mixture-of-Experts (DR-MoE) framework. In the first stage, features are extracted using a frozen ViViT model and a LoRA-tuned ViViT model, which are combined through a feature-level expert module. In the second stage, three classifiers are trained with different objectives: reweighted cross-entropy to mitigate class imbalance, AUC loss to improve ranking under skewed distributions, and label-aware loss with sharpness-aware minimization to enhance calibration and generalization. Their predictions are fused using a classification-level expert module. The proposed method achieves strong performance, particularly in identifying rare and ambiguous mistake instances. The code is available at https://github.com/boyuh/DR-MoE.
♻ ☆ PATS: Proficiency-Aware Temporal Sampling for Multi-View Sports Skill Assessment
Automated sports skill assessment requires capturing fundamental movement patterns that distinguish expert from novice performance, yet current video sampling methods disrupt the temporal continuity essential for proficiency evaluation. To this end, we introduce Proficiency-Aware Temporal Sampling (PATS), a novel sampling strategy that preserves complete fundamental movements within continuous temporal segments for multi-view skill assessment. PATS adaptively segments videos to ensure each analyzed portion contains full execution of critical performance components, repeating this process across multiple segments to maximize information coverage while maintaining temporal coherence. Evaluated on the EgoExo4D benchmark with SkillFormer, PATS surpasses the state-of-the-art accuracy across all viewing configurations (+0.65% to +3.05%) and delivers substantial gains in challenging domains (+26.22% bouldering, +2.39% music, +1.13% basketball). Systematic analysis reveals that PATS successfully adapts to diverse activity characteristics-from high-frequency sampling for dynamic sports to fine-grained segmentation for sequential skills-demonstrating its effectiveness as an adaptive approach to temporal sampling that advances automated skill assessment for real-world applications. Visit our project page at https://edowhite.github.io/PATS
comment: Accepted at the 2025 4th IEEE International Workshop on Sport Technology and Research. Visit our project page at https://edowhite.github.io/PATS
♻ ☆ So-Fake: Benchmarking and Explaining Social Media Image Forgery Detection
Recent advances in AI-powered generative models have enabled the creation of increasingly realistic synthetic images, posing significant risks to information integrity and public trust on social media platforms. While robust detection frameworks and diverse, large-scale datasets are essential to mitigate these risks, existing academic efforts remain limited in scope: current datasets lack the diversity, scale, and realism required for social media contexts, while detection methods struggle with generalization to unseen generative technologies. To bridge this gap, we introduce So-Fake-Set, a comprehensive social media-oriented dataset with over 2 million high-quality images, diverse generative sources, and photorealistic imagery synthesized using 35 state-of-the-art generative models. To rigorously evaluate cross-domain robustness, we establish a novel and large-scale (100K) out-of-domain benchmark (So-Fake-OOD) featuring synthetic imagery from commercial models explicitly excluded from the training distribution, creating a realistic testbed for evaluating real-world performance. Leveraging these resources, we present So-Fake-R1, an advanced vision-language framework that employs reinforcement learning for highly accurate forgery detection, precise localization, and explainable inference through interpretable visual rationales. Extensive experiments show that So-Fake-R1 outperforms the second-best method, with a 1.3% gain in detection accuracy and a 4.5% increase in localization IoU. By integrating a scalable dataset, a challenging OOD benchmark, and an advanced detection framework, this work establishes a new foundation for social media-centric forgery detection research. The code, models, and datasets will be released publicly.
♻ ☆ RelayFormer: A Unified Local-Global Attention Framework for Scalable Image and Video Manipulation Localization
Visual manipulation localization (VML) aims to identify tampered regions in images and videos, a task that has become increasingly challenging with the rise of advanced editing tools. Existing methods face two main issues: resolution diversity, where resizing or padding distorts forensic traces and reduces efficiency, and the modality gap, as images and videos often require separate models. To address these challenges, we propose RelayFormer, a unified framework that adapts to varying resolutions and modalities. RelayFormer partitions inputs into fixed-size sub-images and introduces Global-Local Relay (GLR) tokens, which propagate structured context through a global-local relay attention (GLRA) mechanism. This enables efficient exchange of global cues, such as semantic or temporal consistency, while preserving fine-grained manipulation artifacts. Unlike prior methods that rely on uniform resizing or sparse attention, RelayFormer naturally scales to arbitrary resolutions and video sequences without excessive overhead. Experiments across diverse benchmarks demonstrate that RelayFormer achieves state-of-the-art performance with notable efficiency, combining resolution adaptivity without interpolation or excessive padding, unified modeling for both images and videos, and a strong balance between accuracy and computational cost. Code is available at: https://github.com/WenOOI/RelayFormer.
♻ ☆ HopaDIFF: Holistic-Partial Aware Fourier Conditioned Diffusion for Referring Human Action Segmentation in Multi-Person Scenarios NeurIPS 2025
Action segmentation is a core challenge in high-level video understanding, aiming to partition untrimmed videos into segments and assign each a label from a predefined action set. Existing methods primarily address single-person activities with fixed action sequences, overlooking multi-person scenarios. In this work, we pioneer textual reference-guided human action segmentation in multi-person settings, where a textual description specifies the target person for segmentation. We introduce the first dataset for Referring Human Action Segmentation, i.e., RHAS133, built from 133 movies and annotated with 137 fine-grained actions with 33h video data, together with textual descriptions for this new task. Benchmarking existing action segmentation methods on RHAS133 using VLM-based feature extractors reveals limited performance and poor aggregation of visual cues for the target person. To address this, we propose a holistic-partial aware Fourier-conditioned diffusion framework, i.e., HopaDIFF, leveraging a novel cross-input gate attentional xLSTM to enhance holistic-partial long-range reasoning and a novel Fourier condition to introduce more fine-grained control to improve the action segmentation generation. HopaDIFF achieves state-of-the-art results on RHAS133 in diverse evaluation settings. The dataset and code are available at https://github.com/KPeng9510/HopaDIFF.
comment: Accepted to NeurIPS 2025. The dataset and code are available at https://github.com/KPeng9510/HopaDIFF
♻ ☆ Ranked from Within: Ranking Large Multimodal Models Without Labels ICML 2025
Can the relative performance of a pre-trained large multimodal model (LMM) be predicted without access to labels? As LMMs proliferate, it becomes increasingly important to develop efficient ways to choose between them when faced with new data or tasks. The usual approach does the equivalent of giving the models an exam and marking them. We opt to avoid marking and the associated labor of determining the ground-truth answers. Instead, we explore other signals elicited and ascertain how well the models know their own limits, evaluating the effectiveness of these signals at unsupervised model ranking. We evaluate $47$ state-of-the-art LMMs (\eg, LLaVA) across $9$ visual question answering benchmarks, analyzing how well uncertainty-based metrics can predict relative model performance. Our findings show that uncertainty scores derived from softmax distributions provide a robust and consistent basis for ranking models across various tasks. This facilitates the ranking of LMMs on unlabeled data, providing a practical approach for selecting models for diverse target domains without requiring manual annotation.
comment: ICML 2025 Camera Ready
♻ ☆ Toward a Holistic Evaluation of Robustness in CLIP Models NeurIPS'23
Contrastive Language-Image Pre-training (CLIP) models have shown significant potential, particularly in zero-shot classification across diverse distribution shifts. Building on existing evaluations of overall classification robustness, this work aims to provide a more comprehensive assessment of CLIP by introducing several new perspectives. First, we investigate their robustness to variations in specific visual factors. Second, we assess two critical safety objectives--confidence uncertainty and out-of-distribution detection--beyond mere classification accuracy. Third, we evaluate the finesse with which CLIP models bridge the image and text modalities. Fourth, we extend our examination to 3D awareness in CLIP models, moving beyond traditional 2D image understanding. Finally, we explore the interaction between vision and language encoders within modern large multimodal models (LMMs) that utilize CLIP as the visual backbone, focusing on how this interaction impacts classification robustness. In each aspect, we consider the impact of six factors on CLIP models: model architecture, training distribution, training set size, fine-tuning, contrastive loss, and test-time prompts. Our study uncovers several previously unknown insights into CLIP. For instance, the architecture of the visual encoder in CLIP plays a significant role in their robustness against 3D corruption. CLIP models tend to exhibit a bias towards shape when making predictions. Moreover, this bias tends to diminish after fine-tuning on ImageNet. Vision-language models like LLaVA, leveraging the CLIP vision encoder, could exhibit benefits in classification performance for challenging categories over CLIP alone. Our findings are poised to offer valuable guidance for enhancing the robustness and reliability of CLIP models.
comment: Accepted to IEEE TPAMI, extension of NeurIPS'23 work: A Closer Look at the Robustness of Contrastive Language-Image Pre-Training (CLIP)
♻ ☆ Gate-Shift-Pose: Enhancing Action Recognition in Sports with Skeleton Information WACV
This paper introduces Gate-Shift-Pose, an enhanced version of Gate-Shift-Fuse networks, designed for athlete fall classification in figure skating by integrating skeleton pose data alongside RGB frames. We evaluate two fusion strategies: early-fusion, which combines RGB frames with Gaussian heatmaps of pose keypoints at the input stage, and late-fusion, which employs a multi-stream architecture with attention mechanisms to combine RGB and pose features. Experiments on the FR-FS dataset demonstrate that Gate-Shift-Pose significantly outperforms the RGB-only baseline, improving accuracy by up to 40% with ResNet18 and 20% with ResNet50. Early-fusion achieves the highest accuracy (98.08%) with ResNet50, leveraging the model's capacity for effective multimodal integration, while late-fusion is better suited for lighter backbones like ResNet18. These results highlight the potential of multimodal architectures for sports action recognition and the critical role of skeleton pose information in capturing complex motion patterns. Visit the project page at https://edowhite.github.io/Gate-Shift-Pose
comment: Accepted at the 2025 Winter Conference on Applications of Computer Vision (WACV) Workshops. Visit the project page at https://edowhite.github.io/Gate-Shift-Pose
♻ ☆ From Long Videos to Engaging Clips: A Human-Inspired Video Editing Framework with Multimodal Narrative Understanding EMNLP 2025
The rapid growth of online video content, especially on short video platforms, has created a growing demand for efficient video editing techniques that can condense long-form videos into concise and engaging clips. Existing automatic editing methods predominantly rely on textual cues from ASR transcripts and end-to-end segment selection, often neglecting the rich visual context and leading to incoherent outputs. In this paper, we propose a human-inspired automatic video editing framework (HIVE) that leverages multimodal narrative understanding to address these limitations. Our approach incorporates character extraction, dialogue analysis, and narrative summarization through multimodal large language models, enabling a holistic understanding of the video content. To further enhance coherence, we apply scene-level segmentation and decompose the editing process into three subtasks: highlight detection, opening/ending selection, and pruning of irrelevant content. To facilitate research in this area, we introduce DramaAD, a novel benchmark dataset comprising over 800 short drama episodes and 500 professionally edited advertisement clips. Experimental results demonstrate that our framework consistently outperforms existing baselines across both general and advertisement-oriented editing tasks, significantly narrowing the quality gap between automatic and human-edited videos.
comment: Accepted by EMNLP 2025 Industry Track
♻ ☆ Photography Perspective Composition: Towards Aesthetic Perspective Recommendation NeurIPS 2025
Traditional photography composition approaches are dominated by 2D cropping-based methods. However, these methods fall short when scenes contain poorly arranged subjects. Professional photographers often employ perspective adjustment as a form of 3D recomposition, modifying the projected 2D relationships between subjects while maintaining their actual spatial positions to achieve better compositional balance. Inspired by this artistic practice, we propose photography perspective composition (PPC), extending beyond traditional cropping-based methods. However, implementing the PPC faces significant challenges: the scarcity of perspective transformation datasets and undefined assessment criteria for perspective quality. To address these challenges, we present three key contributions: (1) An automated framework for building PPC datasets through expert photographs. (2) A video generation approach that demonstrates the transformation process from less favorable to aesthetically enhanced perspectives. (3) A perspective quality assessment (PQA) model constructed based on human performance. Our approach is concise and requires no additional prompt instructions or camera trajectories, helping and guiding ordinary users to enhance their composition skills.
comment: Accepted at NeurIPS 2025
♻ ☆ SkillFormer: Unified Multi-View Video Understanding for Proficiency Estimation
Assessing human skill levels in complex activities is a challenging problem with applications in sports, rehabilitation, and training. In this work, we present SkillFormer, a parameter-efficient architecture for unified multi-view proficiency estimation from egocentric and exocentric videos. Building on the TimeSformer backbone, SkillFormer introduces a CrossViewFusion module that fuses view-specific features using multi-head cross-attention, learnable gating, and adaptive self-calibration. We leverage Low-Rank Adaptation to fine-tune only a small subset of parameters, significantly reducing training costs. In fact, when evaluated on the EgoExo4D dataset, SkillFormer achieves state-of-the-art accuracy in multi-view settings while demonstrating remarkable computational efficiency, using 4.5x fewer parameters and requiring 3.75x fewer training epochs than prior baselines. It excels in multiple structured tasks, confirming the value of multi-view integration for fine-grained skill assessment. Project page at https://edowhite.github.io/SkillFormer
comment: Accepted at the 2025 18th International Conference on Machine Vision. Project page at https://edowhite.github.io/SkillFormer
♻ ☆ AlignDiT: Multimodal Aligned Diffusion Transformer for Synchronized Speech Generation
In this paper, we address the task of multimodal-to-speech generation, which aims to synthesize high-quality speech from multiple input modalities: text, video, and reference audio. This task has gained increasing attention due to its wide range of applications, such as film production, dubbing, and virtual avatars. Despite recent progress, existing methods still suffer from limitations in speech intelligibility, audio-video synchronization, speech naturalness, and voice similarity to the reference speaker. To address these challenges, we propose AlignDiT, a multimodal Aligned Diffusion Transformer that generates accurate, synchronized, and natural-sounding speech from aligned multimodal inputs. Built upon the in-context learning capability of the DiT architecture, AlignDiT explores three effective strategies to align multimodal representations. Furthermore, we introduce a novel multimodal classifier-free guidance mechanism that allows the model to adaptively balance information from each modality during speech synthesis. Extensive experiments demonstrate that AlignDiT significantly outperforms existing methods across multiple benchmarks in terms of quality, synchronization, and speaker similarity. Moreover, AlignDiT exhibits strong generalization capability across various multimodal tasks, such as video-to-speech synthesis and visual forced alignment, consistently achieving state-of-the-art performance. The demo page is available at https://mm.kaist.ac.kr/projects/AlignDiT.
comment: ACM Multimedia 2025
♻ ☆ Vehicle-Scene Interaction: A Text-Driven 3D Lidar Place Recognition Method for Autonomous Driving
Environment description-based localization in large-scale point cloud maps constructed through remote sensing is critically significant for the advancement of large-scale autonomous systems, such as delivery robots operating in the last mile. However, current approaches encounter challenges due to the inability of point cloud encoders to effectively capture local details and long-range spatial relationships, as well as a significant modality gap between text and point cloud representations. To address these challenges, we present Des4Pos, a novel two-stage text-driven remote sensing localization framework. In the coarse stage, the point-cloud encoder utilizes the Multi-scale Fusion Attention Mechanism (MFAM) to enhance local geometric features, followed by a bidirectional Long Short-Term Memory (LSTM) module to strengthen global spatial relationships. Concurrently, the Stepped Text Encoder (STE) integrates cross-modal prior knowledge from CLIP [1] and aligns text and point-cloud features using this prior knowledge, effectively bridging modality discrepancies. In the fine stage, we introduce a Cascaded Residual Attention (CRA) module to fuse cross-modal features and predict relative localization offsets, thereby achieving greater localization precision. Experiments on the KITTI360Pose test set demonstrate that Des4Pos achieves state-of-the-art performance in text-to-point-cloud place recognition. Specifically, it attains a top-1 accuracy of 40% and a top-10 accuracy of 77% under a 5-meter radius threshold, surpassing the best existing methods by 7% and 7%, respectively.
comment: 13 pages
♻ ☆ Learning High-Fidelity Robot Self-Model with Articulated 3D Gaussian Splatting IJRR
Self-modeling enables robots to build task-agnostic models of their morphology and kinematics based on data that can be automatically collected, with minimal human intervention and prior information, thereby enhancing machine intelligence. Recent research has highlighted the potential of data-driven technology in modeling the morphology and kinematics of robots. However, existing self-modeling methods suffer from either low modeling quality or excessive data acquisition costs. Beyond morphology and kinematics, texture is also a crucial component of robots, which is challenging to model and remains unexplored. In this work, a high-quality, texture-aware, and link-level method is proposed for robot self-modeling. We utilize three-dimensional (3D) Gaussians to represent the static morphology and texture of robots, and cluster the 3D Gaussians to construct neural ellipsoid bones, whose deformations are controlled by the transformation matrices generated by a kinematic neural network. The 3D Gaussians and kinematic neural network are trained using data pairs composed of joint angles, camera parameters and multi-view images without depth information. By feeding the kinematic neural network with joint angles, we can utilize the well-trained model to describe the corresponding morphology, kinematics and texture of robots at the link level, and render robot images from different perspectives with the aid of 3D Gaussian splatting. Furthermore, we demonstrate that the established model can be exploited to perform downstream tasks such as motion planning and inverse kinematics.
comment: This paper is accepted by IJRR. The code will be open-sourced on GitHub as soon as possible after the paper is officially published
♻ ☆ S-Graphs 2.0 -- A Hierarchical-Semantic Optimization and Loop Closure for SLAM
The hierarchical structure of 3D scene graphs shows a high relevance for representations purposes, as it fits common patterns from man-made environments. But, additionally, the semantic and geometric information in such hierarchical representations could be leveraged to speed up the optimization and management of map elements and robot poses. In this direction, we present our work Situational Graphs 2.0 (S-Graphs 2.0), which leverages the hierarchical structure of indoor scenes for efficient data management and optimization. Our algorithm begins by constructing a situational graph that represents the environment into four layers: Keyframes, Walls, Rooms, and Floors. Our first novelty lies in the front-end, which includes a floor detection module capable of identifying stairways and assigning floor-level semantic relations to the underlying layers. Floor-level semantics allows us to propose a floor-based loop closure strategy, that effectively rejects false positive closures that typically appear due to aliasing between different floors of a building. Our second novelty lies in leveraging our representation hierarchy in the optimization. Our proposal consists of: (1) local optimization over a window of recent keyframes and their connected components across the four representation layers, (2) floor-level global optimization, which focuses only on keyframes and their connections within the current floor during loop closures, and (3) room-level local optimization, marginalizing redundant keyframes that share observations within the room, which reduces the computational footprint. We validate our algorithm extensively in different real multi-floor environments. Our approach shows state-of-art-art accuracy metrics in large-scale multi-floor environments, estimating hierarchical representations up to 10x faster, in average, than competing baselines
comment: 8 pages, 9 figures, Accepted in IEEE RA-L September 2025
♻ ☆ Addressing Representation Collapse in Vector Quantized Models with One Linear Layer ICCV2025
Vector Quantization (VQ) is essential for discretizing continuous representations in unsupervised learning but suffers from representation collapse, causing low codebook utilization and limiting scalability. Existing solutions often rely on complex optimizations or reduce latent dimensionality, which compromises model capacity and fails to fully solve the problem. We identify the root cause as disjoint codebook optimization, where only a few code vectors are updated via gradient descent. To fix this, we propose \textbf{Sim}ple\textbf{VQ}, which reparameterizes code vectors through a learnable linear transformation layer over a latent basis, optimizing the \textit{entire linear space} rather than nearest \textit{individual code vectors}. Although the multiplication of two linear matrices is equivalent to applying a single linear layer, this simple approach effectively prevents collapse. Extensive experiments on image and audio tasks demonstrate that SimVQ improves codebook usage, is easy to implement, and generalizes well across modalities and architectures. The code is available at https://github.com/youngsheen/SimVQ.
comment: Accepted at ICCV2025
♻ ☆ Contextualized Representation Learning for Effective Human-Object Interaction Detection
Human-Object Interaction (HOI) detection aims to simultaneously localize human-object pairs and recognize their interactions. While recent two-stage approaches have made significant progress, they still face challenges due to incomplete context modeling. In this work, we introduce a Contextualized Representation Learning that integrates both affordance-guided reasoning and contextual prompts with visual cues to better capture complex interactions. We enhance the conventional HOI detection framework by expanding it beyond simple human-object pairs to include multivariate relationships involving auxiliary entities like tools. Specifically, we explicitly model the functional role (affordance) of these auxiliary objects through triplet structures . This enables our model to identify tool-dependent interactions such as 'filling'. Furthermore, the learnable prompt is enriched with instance categories and subsequently integrated with contextual visual features using an attention mechanism. This process aligns language with image content at both global and regional levels. These contextualized representations equip the model with enriched relational cues for more reliable reasoning over complex, context-dependent interactions. Our proposed method demonstrates superior performance on both the HICO-Det and V-COCO datasets in most scenarios. The source code is available at https://github.com/lzzhhh1019/CRL.
♻ ☆ Filter-Guided Diffusion for Controllable Image Generation SIGGRAPH 2024
Recent advances in diffusion-based generative models have shown incredible promise for zero shot image-to-image translation and editing. Most of these approaches work by combining or replacing network-specific features used in the generation of new images with those taken from the inversion of some guide image. Methods of this type are considered the current state-of-the-art in training-free approaches, but have some notable limitations: they tend to be costly in runtime and memory, and often depend on deterministic sampling that limits variation in generated results. We propose Filter-Guided Diffusion (FGD), an alternative approach that leverages fast filtering operations during the diffusion process to support finer control over the strength and frequencies of guidance and can work with non-deterministic samplers to produce greater variety. With its efficiency, FGD can be sampled over multiple seeds and hyperparameters in less time than a single run of other SOTA methods to produce superior results based on structural and semantic metrics. We conduct extensive quantitative and qualitative experiments to evaluate the performance of FGD in translation tasks and also demonstrate its potential in localized editing when used with masks. Project page: https://filterguideddiffusion.github.io/
comment: First two listed authors have equal contribution. The latest version has been accepted to SIGGRAPH 2024
♻ ☆ Enhancing Monocular Height Estimation via Sparse LiDAR-Guided Correction
Monocular height estimation (MHE) from very-high-resolution (VHR) remote sensing imagery via deep learning is notoriously challenging due to the lack of sufficient structural information. Conventional digital elevation models (DEMs), typically derived from airborne LiDAR or multi-view stereo, remain costly and geographically limited. Recently, models trained on synthetic data and refined through domain adaptation have shown remarkable performance in MHE, yet it remains unclear how these models make predictions or how reliable they truly are. In this paper, we investigate a state-of-the-art MHE model trained purely on synthetic data to explore where the model looks when making height predictions. Through systematic analyses, we find that the model relies heavily on shadow cues, a factor that can lead to overestimation or underestimation of heights when shadows deviate from expected norms. Furthermore, the inherent difficulty of evaluating regression tasks with the human eye underscores additional limitations of purely synthetic training. To address these issues, we propose a novel correction pipeline that integrates sparse, imperfect global LiDAR measurements (ICESat-2) with deep-learning outputs to improve local accuracy and achieve spatially consistent corrections. Our method comprises two stages: pre-processing raw ICESat-2 data, followed by a random forest-based approach to densely refine height estimates. Experiments in three representative urban regions -- Saint-Omer, Tokyo, and Sao Paulo -- reveal substantial error reductions, with mean absolute error (MAE) decreased by 22.8\%, 6.9\%, and 4.9\%, respectively. These findings highlight the critical role of shadow awareness in synthetic data-driven models and demonstrate how fusing imperfect real-world LiDAR data can bolster the robustness of MHE, paving the way for more reliable and scalable 3D mapping solutions.
♻ ☆ CostFilter-AD: Enhancing Anomaly Detection through Matching Cost Filtering ICML 2025
Unsupervised anomaly detection (UAD) seeks to localize the anomaly mask of an input image with respect to normal samples. Either by reconstructing normal counterparts (reconstruction-based) or by learning an image feature embedding space (embedding-based), existing approaches fundamentally rely on image-level or feature-level matching to derive anomaly scores. Often, such a matching process is inaccurate yet overlooked, leading to sub-optimal detection. To address this issue, we introduce the concept of cost filtering, borrowed from classical matching tasks, such as depth and flow estimation, into the UAD problem. We call this approach {\em CostFilter-AD}. Specifically, we first construct a matching cost volume between the input and normal samples, comprising two spatial dimensions and one matching dimension that encodes potential matches. To refine this, we propose a cost volume filtering network, guided by the input observation as an attention query across multiple feature layers, which effectively suppresses matching noise while preserving edge structures and capturing subtle anomalies. Designed as a generic post-processing plug-in, CostFilter-AD can be integrated with either reconstruction-based or embedding-based methods. Extensive experiments on MVTec-AD and VisA benchmarks validate the generic benefits of CostFilter-AD for both single- and multi-class UAD tasks. Code and models will be released at https://github.com/ZHE-SAPI/CostFilter-AD.
comment: 25 pages, 12 figures, 20 tables, accepted by Forty-Second International Conference on Machine Learning ( ICML 2025 ), link: https://icml.cc/virtual/2025/poster/46359
♻ ☆ Unified Domain Adaptive Semantic Segmentation
Unsupervised Domain Adaptive Semantic Segmentation (UDA-SS) aims to transfer the supervision from a labeled source domain to an unlabeled target domain. The majority of existing UDA-SS works typically consider images whilst recent attempts have extended further to tackle videos by modeling the temporal dimension. Although the two lines of research share the major challenges -- overcoming the underlying domain distribution shift, their studies are largely independent, resulting in fragmented insights, a lack of holistic understanding, and missed opportunities for cross-pollination of ideas. This fragmentation prevents the unification of methods, leading to redundant efforts and suboptimal knowledge transfer across image and video domains. Under this observation, we advocate unifying the study of UDA-SS across video and image scenarios, enabling a more comprehensive understanding, synergistic advancements, and efficient knowledge sharing. To that end, we explore the unified UDA-SS from a general data augmentation perspective, serving as a unifying conceptual framework, enabling improved generalization, and potential for cross-pollination of ideas, ultimately contributing to the overall progress and practical impact of this field of research. Specifically, we propose a Quad-directional Mixup (QuadMix) method, characterized by tackling distinct point attributes and feature inconsistencies through four-directional paths for intra- and inter-domain mixing in a feature space. To deal with temporal shifts with videos, we incorporate optical flow-guided feature aggregation across spatial and temporal dimensions for fine-grained domain alignment. Extensive experiments show that our method outperforms the state-of-the-art works by large margins on four challenging UDA-SS benchmarks. Our source code and models will be released at https://github.com/ZHE-SAPI/UDASS.
comment: 34 pages (main paper and supplementary material), 25 figures, 19 tables. Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2025
♻ ☆ PointAD+: Learning Hierarchical Representations for Zero-shot 3D Anomaly Detection
In this paper, we aim to transfer CLIP's robust 2D generalization capabilities to identify 3D anomalies across unseen objects of highly diverse class semantics. To this end, we propose a unified framework to comprehensively detect and segment 3D anomalies by leveraging both point- and pixel-level information. We first design PointAD, which leverages point-pixel correspondence to represent 3D anomalies through their associated rendering pixel representations. This approach is referred to as implicit 3D representation, as it focuses solely on rendering pixel anomalies but neglects the inherent spatial relationships within point clouds. Then, we propose PointAD+ to further broaden the interpretation of 3D anomalies by introducing explicit 3D representation, emphasizing spatial abnormality to uncover abnormal spatial relationships. Hence, we propose G-aggregation to involve geometry information to enable the aggregated point representations spatially aware. To simultaneously capture rendering and spatial abnormality, PointAD+ proposes hierarchical representation learning, incorporating implicit and explicit anomaly semantics into hierarchical text prompts: rendering prompts for the rendering layer and geometry prompts for the geometry layer. A cross-hierarchy contrastive alignment is further introduced to promote the interaction between the rendering and geometry layers, facilitating mutual anomaly learning. Finally, PointAD+ integrates anomaly semantics from both layers to capture the generalized anomaly semantics. During the test, PointAD+ can integrate RGB information in a plug-and-play manner and further improve its detection performance. Extensive experiments demonstrate the superiority of PointAD+ in ZS 3D anomaly detection across unseen objects with highly diverse class semantics, achieving a holistic understanding of abnormality.
comment: Submitted to TPAMI
♻ ☆ SoccerSynth-Detection: A Synthetic Dataset for Soccer Player Detection
In soccer video analysis, player detection is essential for identifying key events and reconstructing tactical positions. The presence of numerous players and frequent occlusions, combined with copyright restrictions, severely restricts the availability of datasets, leaving limited options such as SoccerNet-Tracking and SportsMOT. These datasets suffer from a lack of diversity, which hinders algorithms from adapting effectively to varied soccer video contexts. To address these challenges, we developed SoccerSynth-Detection, the first synthetic dataset designed for the detection of synthetic soccer players. It includes a broad range of random lighting and textures, as well as simulated camera motion blur. We validated its efficacy using the object detection model (Yolov8n) against real-world datasets (SoccerNet-Tracking and SportsMoT). In transfer tests, it matched the performance of real datasets and significantly outperformed them in images with motion blur; in pre-training tests, it demonstrated its efficacy as a pre-training dataset, significantly enhancing the algorithm's overall performance. Our work demonstrates the potential of synthetic datasets to replace real datasets for algorithm training in the field of soccer video analysis.
comment: The SoccerSynth-Detection Dataset is available at https://github.com/open-starlab/SoccerSynth-Detection
♻ ☆ RichControl: Structure- and Appearance-Rich Training-Free Spatial Control for Text-to-Image Generation
Text-to-image (T2I) diffusion models have shown remarkable success in generating high-quality images from text prompts. Recent efforts extend these models to incorporate conditional images (e.g., canny edge) for fine-grained spatial control. Among them, feature injection methods have emerged as a training-free alternative to traditional fine-tuning-based approaches. However, they often suffer from structural misalignment, condition leakage, and visual artifacts, especially when the condition image diverges significantly from natural RGB distributions. Through an empirical analysis of existing methods, we identify a key limitation: the sampling schedule of condition features, previously unexplored, fails to account for the evolving interplay between structure preservation and domain alignment throughout diffusion steps. Inspired by this observation, we propose a flexible training-free framework that decouples the sampling schedule of condition features from the denoising process, and systematically investigate the spectrum of feature injection schedules for a higher-quality structure guidance in the feature space. Specifically, we find that condition features sampled from a single timestep are sufficient, yielding a simple yet efficient schedule that balances structure alignment and appearance quality. We further enhance the sampling process by introducing a restart refinement schedule, and improve the visual quality with an appearance-rich prompting strategy. Together, these designs enable training-free generation that is both structure-rich and appearance-rich. Extensive experiments show that our approach achieves state-of-the-art results across diverse zero-shot conditioning scenarios.
♻ ☆ SP-VLA: A Joint Model Scheduling and Token Pruning Approach for VLA Model Acceleration
Vision-Language-Action (VLA) models have attracted increasing attention for their strong control capabilities. However, their high computational cost and low execution frequency hinder their suitability for real-time tasks such as robotic manipulation and autonomous navigation. Existing VLA acceleration methods primarily focus on structural optimization, overlooking the fact that these models operate in sequential decision-making environments. As a result, temporal redundancy in sequential action generation and spatial redundancy in visual input remain unaddressed. To this end, we propose SP-VLA, a unified framework that accelerates VLA models by jointly scheduling models and pruning tokens. Specifically, we design an action-aware model scheduling mechanism that reduces temporal redundancy by dynamically switching between VLA model and a lightweight generator. Inspired by the human motion pattern of focusing on key decision points while relying on intuition for other actions, we categorize VLA actions into deliberative and intuitive, assigning the former to the VLA model and the latter to the lightweight generator, enabling frequency-adaptive execution through collaborative model scheduling. To address spatial redundancy, we further develop a spatio-semantic dual-aware token pruning method. Tokens are classified into spatial and semantic types and pruned based on their dual-aware importance to accelerate VLA inference. These two mechanisms work jointly to guide the VLA in focusing on critical actions and salient visual information, achieving effective acceleration while maintaining high accuracy. Extensive experiments show that our method achieves 1.5$\times$ lossless acceleration in LIBERO and 2.4$\times$ in SimplerEnv, with up to 6% average performance gain. Inference frequency and latency improve by 2.2$\times$ in SimplerEnv and 1.4$\times$ in LIBERO.
♻ ☆ SBP-YOLO:A Lightweight Real-Time Model for Detecting Speed Bumps and Potholes toward Intelligent Vehicle Suspension Systems
Speed bumps and potholes are the most common road anomalies, significantly affecting ride comfort and vehicle stability. Preview-based suspension control mitigates their impact by detecting such irregularities in advance and adjusting suspension parameters proactively. Accurate and real-time detection is essential, but embedded deployment is constrained by limited computational resources and the small size of targets in input images.To address these challenges, this paper proposes SBP-YOLO, an efficient detection framework for speed bumps and potholes in embedded systems. Built upon YOLOv11n, it integrates GhostConv and VoVGSCSPC modules in the backbone and neck to reduce computation while enhancing multi-scale semantic features. A P2-level branch improves small-object detection, and a lightweight and efficient detection head (LEDH) maintains accuracy with minimal overhead. A hybrid training strategy further enhances robustness under varying road and environmental conditions, combining NWD loss, BCKD knowledge distillation, and Albumentations-based augmentation. Experiments show that SBP-YOLO achieves 87.0% mAP, outperforming the YOLOv11n baseline by 5.8%. After TensorRT FP16 quantization, it runs at 139.5 FPS on Jetson AGX Xavier, yielding a 12.4% speedup over the P2-enhanced YOLOv11. These results demonstrate the framework's suitability for fast, low-latency road condition perception in embedded suspension control systems.
comment: 14pages,11figures
♻ ☆ YOLO-Based Defect Detection for Metal Sheets
In this paper, we propose a YOLO-based deep learning (DL) model for automatic defect detection to solve the time-consuming and labor-intensive tasks in industrial manufacturing. In our experiments, the images of metal sheets are used as the dataset for training the YOLO model to detect the defects on the surfaces and in the holes of metal sheets. However, the lack of metal sheet images significantly degrades the performance of detection accuracy. To address this issue, the ConSinGAN is used to generate a considerable amount of data. Four versions of the YOLO model (i.e., YOLOv3, v4, v7, and v9) are combined with the ConSinGAN for data augmentation. The proposed YOLOv9 model with ConSinGAN outperforms the other YOLO models with an accuracy of 91.3%, and a detection time of 146 ms. The proposed YOLOv9 model is integrated into manufacturing hardware and a supervisory control and data acquisition (SCADA) system to establish a practical automated optical inspection (AOI) system. Additionally, the proposed automated defect detection is easily applied to other components in industrial manufacturing.
comment: 5 pages, 8 figures, 2 tables, and published in IEEE IST 2024
♻ ☆ WaveNet-SF: A Hybrid Network for Retinal Disease Detection Based on Wavelet Transform in Spatial-Frequency Domain
Retinal diseases are a leading cause of vision impairment and blindness, with timely diagnosis being critical for effective treatment. Optical Coherence Tomography (OCT) has become a standard imaging modality for retinal disease diagnosis, but OCT images often suffer from issues such as speckle noise, complex lesion shapes, and varying lesion sizes, making interpretation challenging. In this paper, we propose a novel framework, WaveNet-SF, to enhance retinal disease detection by integrating the spatial-domain and frequency-domain learning. The framework utilizes wavelet transforms to decompose OCT images into low- and high-frequency components, enabling the model to extract both global structural features and fine-grained details. To improve lesion detection, we introduce a Multi-Scale Wavelet Spatial Attention (MSW-SA) module, which enhances the model's focus on regions of interest at multiple scales. Additionally, a High-Frequency Feature Compensation (HFFC) block is incorporated to recover edge information lost during wavelet decomposition, suppress noise, and preserve fine details crucial for lesion detection. Our approach achieves state-of-the-art (SOTA) classification accuracies of 97.82% and 99.58% on the OCT-C8 and OCT2017 datasets, respectively, surpassing existing methods. These results demonstrate the efficacy of WaveNet-SF in addressing the challenges of OCT image analysis and its potential as a powerful tool for retinal disease diagnosis.
♻ ☆ Towards Size-invariant Salient Object Detection: A Generic Evaluation and Optimization Approach
This paper investigates a fundamental yet underexplored issue in Salient Object Detection (SOD): the size-invariant property for evaluation protocols, particularly in scenarios when multiple salient objects of significantly different sizes appear within a single image. We first present a novel perspective to expose the inherent size sensitivity of existing widely used SOD metrics. Through careful theoretical derivations, we show that the evaluation outcome of an image under current SOD metrics can be essentially decomposed into a sum of several separable terms, with the contribution of each term being directly proportional to its corresponding region size. Consequently, the prediction errors would be dominated by the larger regions, while smaller yet potentially more semantically important objects are often overlooked, leading to biased performance assessments and practical degradation. To address this challenge, a generic Size-Invariant Evaluation (SIEva) framework is proposed. The core idea is to evaluate each separable component individually and then aggregate the results, thereby effectively mitigating the impact of size imbalance across objects. Building upon this, we further develop a dedicated optimization framework (SIOpt), which adheres to the size-invariant principle and significantly enhances the detection of salient objects across a broad range of sizes. Notably, SIOpt is model-agnostic and can be seamlessly integrated with a wide range of SOD backbones. Theoretically, we also present generalization analysis of SOD methods and provide evidence supporting the validity of our new evaluation protocols. Finally, comprehensive experiments speak to the efficacy of our proposed approach. The code is available at https://github.com/Ferry-Li/SI-SOD.
MCGS-SLAM: A Multi-Camera SLAM Framework Using Gaussian Splatting for High-Fidelity Mapping
Recent progress in dense SLAM has primarily targeted monocular setups, often at the expense of robustness and geometric coverage. We present MCGS-SLAM, the first purely RGB-based multi-camera SLAM system built on 3D Gaussian Splatting (3DGS). Unlike prior methods relying on sparse maps or inertial data, MCGS-SLAM fuses dense RGB inputs from multiple viewpoints into a unified, continuously optimized Gaussian map. A multi-camera bundle adjustment (MCBA) jointly refines poses and depths via dense photometric and geometric residuals, while a scale consistency module enforces metric alignment across views using low-rank priors. The system supports RGB input and maintains real-time performance at large scale. Experiments on synthetic and real-world datasets show that MCGS-SLAM consistently yields accurate trajectories and photorealistic reconstructions, usually outperforming monocular baselines. Notably, the wide field of view from multi-camera input enables reconstruction of side-view regions that monocular setups miss, critical for safe autonomous operation. These results highlight the promise of multi-camera Gaussian Splatting SLAM for high-fidelity mapping in robotics and autonomous driving.
Artificial Intelligence 160
☆ Reward Models are Metrics in a Trench Coat
The emergence of reinforcement learning in post-training of large language models has sparked significant interest in reward models. Reward models assess the quality of sampled model outputs to generate training signals. This task is also performed by evaluation metrics that monitor the performance of an AI model. We find that the two research areas are mostly separate, leading to redundant terminology and repeated pitfalls. Common challenges include susceptibility to spurious correlations, impact on downstream reward hacking, methods to improve data quality, and approaches to meta-evaluation. Our position paper argues that a closer collaboration between the fields can help overcome these issues. To that end, we show how metrics outperform reward models on specific tasks and provide an extensive survey of the two areas. Grounded in this survey, we point to multiple research topics in which closer alignment can improve reward models and metrics in areas such as preference elicitation methods, avoidance of spurious correlations and reward hacking, and calibration-aware meta-evaluation.
☆ Improving GUI Grounding with Explicit Position-to-Coordinate Mapping
GUI grounding, the task of mapping natural-language instructions to pixel coordinates, is crucial for autonomous agents, yet remains difficult for current VLMs. The core bottleneck is reliable patch-to-pixel mapping, which breaks when extrapolating to high-resolution displays unseen during training. Current approaches generate coordinates as text tokens directly from visual features, forcing the model to infer complex position-to-pixel mappings implicitly; as a result, accuracy degrades and failures proliferate on new resolutions. We address this with two complementary innovations. First, RULER tokens serve as explicit coordinate markers, letting the model reference positions similar to gridlines on a map and adjust rather than generate coordinates from scratch. Second, Interleaved MRoPE (I-MRoPE) improves spatial encoding by ensuring that width and height dimensions are represented equally, addressing the asymmetry of standard positional schemes. Experiments on ScreenSpot, ScreenSpot-V2, and ScreenSpot-Pro show consistent gains in grounding accuracy, with the largest improvements on high-resolution interfaces. By providing explicit spatial guidance rather than relying on implicit learning, our approach enables more reliable GUI automation across diverse resolutions and platforms.
☆ Test-Time Defense Against Adversarial Attacks via Stochastic Resonance of Latent Ensembles
We propose a test-time defense mechanism against adversarial attacks: imperceptible image perturbations that significantly alter the predictions of a model. Unlike existing methods that rely on feature filtering or smoothing, which can lead to information loss, we propose to "combat noise with noise" by leveraging stochastic resonance to enhance robustness while minimizing information loss. Our approach introduces small translational perturbations to the input image, aligns the transformed feature embeddings, and aggregates them before mapping back to the original reference image. This can be expressed in a closed-form formula, which can be deployed on diverse existing network architectures without introducing additional network modules or fine-tuning for specific attack types. The resulting method is entirely training-free, architecture-agnostic, and attack-agnostic. Empirical results show state-of-the-art robustness on image classification and, for the first time, establish a generic test-time defense for dense prediction tasks, including stereo matching and optical flow, highlighting the method's versatility and practicality. Specifically, relative to clean (unperturbed) performance, our method recovers up to 68.1% of the accuracy loss on image classification, 71.9% on stereo matching, and 29.2% on optical flow under various types of adversarial attacks.
☆ Self-Anchor: Large Language Model Reasoning via Step-by-step Attention Alignment
To solve complex reasoning tasks for Large Language Models (LLMs), prompting-based methods offer a lightweight alternative to fine-tuning and reinforcement learning. However, as reasoning chains extend, critical intermediate steps and the original prompt will be buried in the context, receiving insufficient attention and leading to errors. In this paper, we propose Self-Anchor, a novel pipeline that leverages the inherent structure of reasoning to steer LLM attention. Self-Anchor decomposes reasoning trajectories into structured plans and automatically aligns the model's attention to the most relevant inference steps, allowing the model to maintain focus throughout generation. Our experiment shows that Self-Anchor outperforms SOTA prompting methods across six benchmarks. Notably, Self-Anchor significantly reduces the performance gap between ``non-reasoning'' models and specialized reasoning models, with the potential to enable most LLMs to tackle complex reasoning tasks without retraining.
☆ Abstain and Validate: A Dual-LLM Policy for Reducing Noise in Agentic Program Repair
Agentic Automated Program Repair (APR) is increasingly tackling complex, repository-level bugs in industry, but ultimately agent-generated patches still need to be reviewed by a human before committing them to ensure they address the bug. Showing unlikely patches to developers can lead to substantial noise, wasting valuable developer time and eroding trust in automated code changes. We introduce two complementary LLM-based policies to reduce such noise: bug abstention and patch validation policies. Bug abstention excludes bugs that the agentic APR system is unlikely to fix. Patch validation rejects patches that are unlikely to be a good fix for the given bug. We evaluate both policies on three sets of bugs from Google's codebase, and their candidate patches generated by an internal agentic APR system. On a set of 174 human-reported bugs, removing bugs and patch trajectories rejected by our policies can raise success rates by up to 13 percentage points and 15 percentage points, respectively, and by up to 39 percentage points in combination. On null pointer exceptions and sanitizer-reported bugs with machine-generated bug reports, patch validation also improves average single-sample success rates. This two-policy approach provides a practical path to the reliable, industrial-scale deployment of agentic APR systems.
☆ Wave-GMS: Lightweight Multi-Scale Generative Model for Medical Image Segmentation
For equitable deployment of AI tools in hospitals and healthcare facilities, we need Deep Segmentation Networks that offer high performance and can be trained on cost-effective GPUs with limited memory and large batch sizes. In this work, we propose Wave-GMS, a lightweight and efficient multi-scale generative model for medical image segmentation. Wave-GMS has a substantially smaller number of trainable parameters, does not require loading memory-intensive pretrained vision foundation models, and supports training with large batch sizes on GPUs with limited memory. We conducted extensive experiments on four publicly available datasets (BUS, BUSI, Kvasir-Instrument, and HAM10000), demonstrating that Wave-GMS achieves state-of-the-art segmentation performance with superior cross-domain generalizability, while requiring only ~2.6M trainable parameters. Code is available at https://github.com/ATPLab-LUMS/Wave-GMS.
comment: 5 pages, 1 figure, 4 tables; Submitted to IEEE Conference for possible publication
☆ Coevolutionary Continuous Discrete Diffusion: Make Your Diffusion Language Model a Latent Reasoner
Diffusion language models, especially masked discrete diffusion models, have achieved great success recently. While there are some theoretical and primary empirical results showing the advantages of latent reasoning with looped transformers or continuous chain-of-thoughts, continuous diffusion models typically underperform their discrete counterparts. In this paper, we argue that diffusion language models do not necessarily need to be in the discrete space. In particular, we prove that continuous diffusion models have stronger expressivity than discrete diffusions and looped transformers. We attribute the contradiction between the theoretical expressiveness and empirical performance to their practical trainability: while continuous diffusion provides intermediate supervision that looped transformers lack, they introduce additional difficulty decoding tokens into the discrete token space from the continuous representation space. We therefore propose Coevolutionary Continuous Discrete Diffusion (CCDD), which defines a joint multimodal diffusion process on the union of a continuous representation space and a discrete token space, leveraging a single model to simultaneously denoise in the joint space. By combining two modalities, CCDD is expressive with rich semantics in the latent space, as well as good trainability and sample quality with the help of explicit discrete tokens. We also propose effective architectures and advanced training/sampling techniques for CCDD, which reveals strong empirical performance in extensive language modeling experiments on real-world tasks.
comment: 27 pages
☆ CoDA: Agentic Systems for Collaborative Data Visualization
Deep research has revolutionized data analysis, yet data scientists still devote substantial time to manually crafting visualizations, highlighting the need for robust automation from natural language queries. However, current systems struggle with complex datasets containing multiple files and iterative refinement. Existing approaches, including simple single- or multi-agent systems, often oversimplify the task, focusing on initial query parsing while failing to robustly manage data complexity, code errors, or final visualization quality. In this paper, we reframe this challenge as a collaborative multi-agent problem. We introduce CoDA, a multi-agent system that employs specialized LLM agents for metadata analysis, task planning, code generation, and self-reflection. We formalize this pipeline, demonstrating how metadata-focused analysis bypasses token limits and quality-driven refinement ensures robustness. Extensive evaluations show CoDA achieves substantial gains in the overall score, outperforming competitive baselines by up to 41.5%. This work demonstrates that the future of visualization automation lies not in isolated code generation but in integrated, collaborative agentic workflows.
comment: 31 pages, 6 figures, 5 tables
☆ Simulation to Rules: A Dual-VLM Framework for Formal Visual Planning
Vision Language Models (VLMs) show strong potential for visual planning but struggle with precise spatial and long-horizon reasoning. In contrast, Planning Domain Definition Language (PDDL) planners excel at long-horizon formal planning, but cannot interpret visual inputs. Recent works combine these complementary advantages by enabling VLMs to turn visual planning problems into PDDL files for formal planning. However, while VLMs can generate PDDL problem files satisfactorily, they struggle to accurately generate the PDDL domain files, which describe all the planning rules. As a result, prior methods rely on human experts to predefine domain files or on constant environment access for refinement. We propose VLMFP, a Dual-VLM-guided framework that can autonomously generate both PDDL problem and domain files for formal visual planning. VLMFP introduces two VLMs to ensure reliable PDDL file generation: A SimVLM that simulates action consequences based on input rule descriptions, and a GenVLM that generates and iteratively refines PDDL files by comparing the PDDL and SimVLM execution results. VLMFP unleashes multiple levels of generalizability: The same generated PDDL domain file works for all the different instances under the same problem, and VLMs generalize to different problems with varied appearances and rules. We evaluate VLMFP with 6 grid-world domains and test its generalization to unseen instances, appearance, and game rules. On average, SimVLM accurately describes 95.5%, 82.6% of scenarios, simulates 85.5%, 87.8% of action sequence, and judges 82.4%, 85.6% goal reaching for seen and unseen appearances, respectively. With the guidance of SimVLM, VLMFP can generate PDDL files to reach 70.0%, 54.1% valid plans for unseen instances in seen and unseen appearances, respectively. Project page: https://sites.google.com/view/vlmfp.
comment: 30 pages, 5 figures, 5 tables
☆ Topic Modeling as Long-Form Generation: Can Long-Context LLMs revolutionize NTM via Zero-Shot Prompting?
Traditional topic models such as neural topic models rely on inference and generation networks to learn latent topic distributions. This paper explores a new paradigm for topic modeling in the era of large language models, framing TM as a long-form generation task whose definition is updated in this paradigm. We propose a simple but practical approach to implement LLM-based topic model tasks out of the box (sample a data subset, generate topics and representative text with our prompt, text assignment with keyword match). We then investigate whether the long-form generation paradigm can beat NTMs via zero-shot prompting. We conduct a systematic comparison between NTMs and LLMs in terms of topic quality and empirically examine the claim that "a majority of NTMs are outdated."
☆ UniShield: An Adaptive Multi-Agent Framework for Unified Forgery Image Detection and Localization
With the rapid advancements in image generation, synthetic images have become increasingly realistic, posing significant societal risks, such as misinformation and fraud. Forgery Image Detection and Localization (FIDL) thus emerges as essential for maintaining information integrity and societal security. Despite impressive performances by existing domain-specific detection methods, their practical applicability remains limited, primarily due to their narrow specialization, poor cross-domain generalization, and the absence of an integrated adaptive framework. To address these issues, we propose UniShield, the novel multi-agent-based unified system capable of detecting and localizing image forgeries across diverse domains, including image manipulation, document manipulation, DeepFake, and AI-generated images. UniShield innovatively integrates a perception agent with a detection agent. The perception agent intelligently analyzes image features to dynamically select suitable detection models, while the detection agent consolidates various expert detectors into a unified framework and generates interpretable reports. Extensive experiments show that UniShield achieves state-of-the-art results, surpassing both existing unified approaches and domain-specific detectors, highlighting its superior practicality, adaptiveness, and scalability.
☆ SpineBench: A Clinically Salient, Level-Aware Benchmark Powered by the SpineMed-450k Corpus
Spine disorders affect 619 million people globally and are a leading cause of disability, yet AI-assisted diagnosis remains limited by the lack of level-aware, multimodal datasets. Clinical decision-making for spine disorders requires sophisticated reasoning across X-ray, CT, and MRI at specific vertebral levels. However, progress has been constrained by the absence of traceable, clinically-grounded instruction data and standardized, spine-specific benchmarks. To address this, we introduce SpineMed, an ecosystem co-designed with practicing spine surgeons. It features SpineMed-450k, the first large-scale dataset explicitly designed for vertebral-level reasoning across imaging modalities with over 450,000 instruction instances, and SpineBench, a clinically-grounded evaluation framework. SpineMed-450k is curated from diverse sources, including textbooks, guidelines, open datasets, and ~1,000 de-identified hospital cases, using a clinician-in-the-loop pipeline with a two-stage LLM generation method (draft and revision) to ensure high-quality, traceable data for question-answering, multi-turn consultations, and report generation. SpineBench evaluates models on clinically salient axes, including level identification, pathology assessment, and surgical planning. Our comprehensive evaluation of several recently advanced large vision-language models (LVLMs) on SpineBench reveals systematic weaknesses in fine-grained, level-specific reasoning. In contrast, our model fine-tuned on SpineMed-450k demonstrates consistent and significant improvements across all tasks. Clinician assessments confirm the diagnostic clarity and practical utility of our model's outputs.
☆ Stimulus-Voltage-Based Prediction of Action Potential Onset Timing: Classical vs. Quantum-Inspired Approaches
Accurate modeling of neuronal action potential (AP) onset timing is crucial for understanding neural coding of danger signals. Traditional leaky integrate-and-fire (LIF) models, while widely used, exhibit high relative error in predicting AP onset latency, especially under strong or rapidly changing stimuli. Inspired by recent experimental findings and quantum theory, we present a quantum-inspired leaky integrate-and-fire (QI-LIF) model that treats AP onset as a probabilistic event, represented by a Gaussian wave packet in time. This approach captures the biological variability and uncertainty inherent in neuronal firing. We systematically compare the relative error of AP onset predictions between the classical LIF and QI-LIF models using synthetic data from hippocampal and sensory neurons subjected to varying stimulus amplitudes. Our results demonstrate that the QI-LIF model significantly reduces prediction error, particularly for high-intensity stimuli, aligning closely with observed biological responses. This work highlights the potential of quantum-inspired computational frameworks in advancing the accuracy of neural modeling and has implications for quantum engineering approaches to brain-inspired computing.
☆ Improving Cooperation in Collaborative Embodied AI
The integration of Large Language Models (LLMs) into multiagent systems has opened new possibilities for collaborative reasoning and cooperation with AI agents. This paper explores different prompting methods and evaluates their effectiveness in enhancing agent collaborative behaviour and decision-making. We enhance CoELA, a framework designed for building Collaborative Embodied Agents that leverage LLMs for multi-agent communication, reasoning, and task coordination in shared virtual spaces. Through systematic experimentation, we examine different LLMs and prompt engineering strategies to identify optimised combinations that maximise collaboration performance. Furthermore, we extend our research by integrating speech capabilities, enabling seamless collaborative voice-based interactions. Our findings highlight the effectiveness of prompt optimisation in enhancing collaborative agent performance; for example, our best combination improved the efficiency of the system running with Gemma3 by 22% compared to the original CoELA system. In addition, the speech integration provides a more engaging user interface for iterative system development and demonstrations.
comment: In proceedings of UKCI 2025
☆ Signature-Informed Transformer for Asset Allocation
Robust asset allocation is a key challenge in quantitative finance, where deep-learning forecasters often fail due to objective mismatch and error amplification. We introduce the Signature-Informed Transformer (SIT), a novel framework that learns end-to-end allocation policies by directly optimizing a risk-aware financial objective. SIT's core innovations include path signatures for a rich geometric representation of asset dynamics and a signature-augmented attention mechanism embedding financial inductive biases, like lead-lag effects, into the model. Evaluated on daily S\&P 100 equity data, SIT decisively outperforms traditional and deep-learning baselines, especially when compared to predict-then-optimize models. These results indicate that portfolio-aware objectives and geometry-aware inductive biases are essential for risk-aware capital allocation in machine-learning systems. The code is available at: https://github.com/Yoontae6719/Signature-Informed-Transformer-For-Asset-Allocation
☆ A Study of Rule Omission in Raven's Progressive Matrices
Analogical reasoning lies at the core of human cognition and remains a fundamental challenge for artificial intelligence. Raven's Progressive Matrices (RPM) serve as a widely used benchmark to assess abstract reasoning by requiring the inference of underlying structural rules. While many vision-based and language-based models have achieved success on RPM tasks, it remains unclear whether their performance reflects genuine reasoning ability or reliance on statistical shortcuts. This study investigates the generalization capacity of modern AI systems under conditions of incomplete training by deliberately omitting several structural rules during training. Both sequence-to-sequence transformer models and vision-based architectures such as CoPINet and the Dual-Contrast Network are evaluated on the Impartial-RAVEN (I-RAVEN) dataset. Experiments reveal that although transformers demonstrate strong performance on familiar rules, their accuracy declines sharply when faced with novel or omitted rules. Moreover, the gap between token-level accuracy and complete answer accuracy highlights fundamental limitations in current approaches. These findings provide new insights into the reasoning mechanisms underlying deep learning models and underscore the need for architectures that move beyond pattern recognition toward robust abstract reasoning.
☆ HAVIR: HierArchical Vision to Image Reconstruction using CLIP-Guided Versatile Diffusion
The reconstruction of visual information from brain activity fosters interdisciplinary integration between neuroscience and computer vision. However, existing methods still face challenges in accurately recovering highly complex visual stimuli. This difficulty stems from the characteristics of natural scenes: low-level features exhibit heterogeneity, while high-level features show semantic entanglement due to contextual overlaps. Inspired by the hierarchical representation theory of the visual cortex, we propose the HAVIR model, which separates the visual cortex into two hierarchical regions and extracts distinct features from each. Specifically, the Structural Generator extracts structural information from spatial processing voxels and converts it into latent diffusion priors, while the Semantic Extractor converts semantic processing voxels into CLIP embeddings. These components are integrated via the Versatile Diffusion model to synthesize the final image. Experimental results demonstrate that HAVIR enhances both the structural and semantic quality of reconstructions, even in complex scenes, and outperforms existing models.
☆ Distilled Protein Backbone Generation
Diffusion- and flow-based generative models have recently demonstrated strong performance in protein backbone generation tasks, offering unprecedented capabilities for de novo protein design. However, while achieving notable performance in generation quality, these models are limited by their generating speed, often requiring hundreds of iterative steps in the reverse-diffusion process. This computational bottleneck limits their practical utility in large-scale protein discovery, where thousands to millions of candidate structures are needed. To address this challenge, we explore the techniques of score distillation, which has shown great success in reducing the number of sampling steps in the vision domain while maintaining high generation quality. However, a straightforward adaptation of these methods results in unacceptably low designability. Through extensive study, we have identified how to appropriately adapt Score identity Distillation (SiD), a state-of-the-art score distillation strategy, to train few-step protein backbone generators which significantly reduce sampling time, while maintaining comparable performance to their pretrained teacher model. In particular, multistep generation combined with inference time noise modulation is key to the success. We demonstrate that our distilled few-step generators achieve more than a 20-fold improvement in sampling speed, while achieving similar levels of designability, diversity, and novelty as the Proteina teacher model. This reduction in inference cost enables large-scale in silico protein design, thereby bringing diffusion-based models closer to real-world protein engineering applications.
☆ From Facts to Foils: Designing and Evaluating Counterfactual Explanations for Smart Environments
Explainability is increasingly seen as an essential feature of rule-based smart environments. While counterfactual explanations, which describe what could have been done differently to achieve a desired outcome, are a powerful tool in eXplainable AI (XAI), no established methods exist for generating them in these rule-based domains. In this paper, we present the first formalization and implementation of counterfactual explanations tailored to this domain. It is implemented as a plugin that extends an existing explanation engine for smart environments. We conducted a user study (N=17) to evaluate our generated counterfactuals against traditional causal explanations. The results show that user preference is highly contextual: causal explanations are favored for their linguistic simplicity and in time-pressured situations, while counterfactuals are preferred for their actionable content, particularly when a user wants to resolve a problem. Our work contributes a practical framework for a new type of explanation in smart environments and provides empirical evidence to guide the choice of when each explanation type is most effective.
comment: Accepted at Ex-ASE 2025, co-located with the 40th IEEE/ACM International Conference on Automated Software Engineering (ASE 2025)
☆ A Study of Neural Polar Decoders for Communication
In this paper, we adapt and analyze Neural Polar Decoders (NPDs) for end-to-end communication systems. While prior work demonstrated the effectiveness of NPDs on synthetic channels, this study extends the NPD to real-world communication systems. The NPD was adapted to complete OFDM and single-carrier communication systems. To satisfy practical system requirements, the NPD is extended to support any code length via rate matching, higher-order modulations, and robustness across diverse channel conditions. The NPD operates directly on channels with memory, exploiting their structure to achieve higher data rates without requiring pilots and a cyclic prefix. Although NPD entails higher computational complexity than the standard 5G polar decoder, its neural network architecture enables an efficient representation of channel statistics, resulting in manageable complexity suitable for practical systems. Experimental results over 5G channels demonstrate that the NPD consistently outperforms the 5G polar decoder in terms of BER, BLER, and throughput. These improvements are particularly significant for low-rate and short-block configurations, which are prevalent in 5G control channels. Furthermore, NPDs applied to single-carrier systems offer performance comparable to OFDM with lower PAPR, enabling effective single-carrier transmission over 5G channels. These results position the NPD as a high-performance, pilotless, and robust decoding solution.
☆ A Unified Deep Reinforcement Learning Approach for Close Enough Traveling Salesman Problem
In recent years, deep reinforcement learning (DRL) has gained traction for solving the NP-hard traveling salesman problem (TSP). However, limited attention has been given to the close-enough TSP (CETSP), primarily due to the challenge introduced by its neighborhood-based visitation criterion, wherein a node is considered visited if the agent enters a compact neighborhood around it. In this work, we formulate a Markov decision process (MDP) for CETSP using a discretization scheme and propose a novel unified dual-decoder DRL (UD3RL) framework that separates decision-making into node selection and waypoint determination. Specifically, an adapted encoder is employed for effective feature extraction, followed by a node-decoder and a loc-decoder to handle the two sub-tasks, respectively. A k-nearest neighbors subgraph interaction strategy is further introduced to enhance spatial reasoning during location decoding. Furthermore, we customize the REINFORCE algorithm to train UD3RL as a unified model capable of generalizing across different problem sizes and varying neighborhood radius types (i.e., constant and random radii). Experimental results show that UD3RL outperforms conventional methods in both solution quality and runtime, while exhibiting strong generalization across problem scales, spatial distributions, and radius ranges, as well as robustness to dynamic environments.
☆ Comparative Analysis of Parameterized Action Actor-Critic Reinforcement Learning Algorithms for Web Search Match Plan Generation
This study evaluates the performance of Soft Actor Critic (SAC), Greedy Actor Critic (GAC), and Truncated Quantile Critics (TQC) in high-dimensional decision-making tasks using fully observable environments. The focus is on parametrized action (PA) spaces, eliminating the need for recurrent networks, with benchmarks Platform-v0 and Goal-v0 testing discrete actions linked to continuous action-parameter spaces. Hyperparameter optimization was performed with Microsoft NNI, ensuring reproducibility by modifying the codebase for GAC and TQC. Results show that Parameterized Action Greedy Actor-Critic (PAGAC) outperformed other algorithms, achieving the fastest training times and highest returns across benchmarks, completing 5,000 episodes in 41:24 for the Platform game and 24:04 for the Robot Soccer Goal game. Its speed and stability provide clear advantages in complex action spaces. Compared to PASAC and PATQC, PAGAC demonstrated superior efficiency and reliability, making it ideal for tasks requiring rapid convergence and robust performance. Future work could explore hybrid strategies combining entropy-regularization with truncation-based methods to enhance stability and expand investigations into generalizability.
comment: 10 pages, 10th International Congress on Information and Communication Technology (ICICT 2025)
☆ Semantic Differentiation in Speech Emotion Recognition: Insights from Descriptive and Expressive Speech Roles EMNLP2025
Speech Emotion Recognition (SER) is essential for improving human-computer interaction, yet its accuracy remains constrained by the complexity of emotional nuances in speech. In this study, we distinguish between descriptive semantics, which represents the contextual content of speech, and expressive semantics, which reflects the speaker's emotional state. After watching emotionally charged movie segments, we recorded audio clips of participants describing their experiences, along with the intended emotion tags for each clip, participants' self-rated emotional responses, and their valence/arousal scores. Through experiments, we show that descriptive semantics align with intended emotions, while expressive semantics correlate with evoked emotions. Our findings inform SER applications in human-AI interaction and pave the way for more context-aware AI systems.
comment: Accepted to the *SEM conference collocated with EMNLP2025
☆ ZeroShotOpt: Towards Zero-Shot Pretrained Models for Efficient Black-Box Optimization
Global optimization of expensive, derivative-free black-box functions requires extreme sample efficiency. While Bayesian optimization (BO) is the current state-of-the-art, its performance hinges on surrogate and acquisition function hyper-parameters that are often hand-tuned and fail to generalize across problem landscapes. We present ZeroShotOpt, a general-purpose, pretrained model for continuous black-box optimization tasks ranging from 2D to 20D. Our approach leverages offline reinforcement learning on large-scale optimization trajectories collected from 12 BO variants. To scale pretraining, we generate millions of synthetic Gaussian process-based functions with diverse landscapes, enabling the model to learn transferable optimization policies. As a result, ZeroShotOpt achieves robust zero-shot generalization on a wide array of unseen benchmarks, matching or surpassing the sample efficiency of leading global optimizers, including BO, while also offering a reusable foundation for future extensions and improvements. Our open-source code, dataset, and model are available at: https://github.com/jamisonmeindl/zeroshotopt
When and Where do Events Switch in Multi-Event Video Generation? ICCV2025
Text-to-video (T2V) generation has surged in response to challenging questions, especially when a long video must depict multiple sequential events with temporal coherence and controllable content. Existing methods that extend to multi-event generation omit an inspection of the intrinsic factor in event shifting. The paper aims to answer the central question: When and where multi-event prompts control event transition during T2V generation. This work introduces MEve, a self-curated prompt suite for evaluating multi-event text-to-video (T2V) generation, and conducts a systematic study of two representative model families, i.e., OpenSora and CogVideoX. Extensive experiments demonstrate the importance of early intervention in denoising steps and block-wise model layers, revealing the essential factor for multi-event video generation and highlighting the possibilities for multi-event conditioning in future models.
comment: Work in Progress. Accepted to ICCV2025 @ LongVid-Foundations
☆ CHORD: Customizing Hybrid-precision On-device Model for Sequential Recommendation with Device-cloud Collaboration ACM MM'25
With the advancement of mobile device capabilities, deploying reranking models directly on devices has become feasible, enabling real-time contextual recommendations. When migrating models from cloud to devices, resource heterogeneity inevitably necessitates model compression. Recent quantization methods show promise for efficient deployment, yet they overlook device-specific user interests, resulting in compromised recommendation accuracy. While on-device finetuning captures personalized user preference, it imposes additional computational burden through local retraining. To address these challenges, we propose a framework for \underline{\textbf{C}}ustomizing \underline{\textbf{H}}ybrid-precision \underline{\textbf{O}}n-device model for sequential \underline{\textbf{R}}ecommendation with \underline{\textbf{D}}evice-cloud collaboration (\textbf{CHORD}), leveraging channel-wise mixed-precision quantization to simultaneously achieve personalization and resource-adaptive deployment. CHORD distributes randomly initialized models across heterogeneous devices and identifies user-specific critical parameters through auxiliary hypernetwork modules on the cloud. Our parameter sensitivity analysis operates across multiple granularities (layer, filter, and element levels), enabling precise mapping from user profiles to quantization strategy. Through on-device mixed-precision quantization, CHORD delivers dynamic model adaptation and accelerated inference without backpropagation, eliminating costly retraining cycles. We minimize communication overhead by encoding quantization strategies using only 2 bits per channel instead of 32-bit weights. Experiments on three real-world datasets with two popular backbones (SASRec and Caser) demonstrate the accuracy, efficiency, and adaptivity of CHORD.
comment: accepted by ACM MM'25
☆ Investigating The Smells of LLM Generated Code
Context: Large Language Models (LLMs) are increasingly being used to generate program code. Much research has been reported on the functional correctness of generated code, but there is far less on code quality. Objectives: In this study, we propose a scenario-based method of evaluating the quality of LLM-generated code to identify the weakest scenarios in which the quality of LLM generated code should be improved. Methods: The method measures code smells, an important indicator of code quality, and compares them with a baseline formed from reference solutions of professionally written code. The test dataset is divided into various subsets according to the topics of the code and complexity of the coding tasks to represent different scenarios of using LLMs for code generation. We will also present an automated test system for this purpose and report experiments with the Java programs generated in response to prompts given to four state-of-the-art LLMs: Gemini Pro, ChatGPT, Codex, and Falcon. Results: We find that LLM-generated code has a higher incidence of code smells compared to reference solutions. Falcon performed the least badly, with a smell increase of 42.28%, followed by Gemini Pro (62.07%), ChatGPT (65.05%) and finally Codex (84.97%). The average smell increase across all LLMs was 63.34%, comprising 73.35% for implementation smells and 21.42% for design smells. We also found that the increase in code smells is greater for more complex coding tasks and for more advanced topics, such as those involving object-orientated concepts. Conclusion: In terms of code smells, LLM's performances on various coding task complexities and topics are highly correlated to the quality of human written code in the corresponding scenarios. However, the quality of LLM generated code is noticeably poorer than human written code.
☆ Learning Robust Diffusion Models from Imprecise Supervision
Conditional diffusion models have achieved remarkable success in various generative tasks recently, but their training typically relies on large-scale datasets that inevitably contain imprecise information in conditional inputs. Such supervision, often stemming from noisy, ambiguous, or incomplete labels, will cause condition mismatch and degrade generation quality. To address this challenge, we propose DMIS, a unified framework for training robust Diffusion Models from Imprecise Supervision, which is the first systematic study within diffusion models. Our framework is derived from likelihood maximization and decomposes the objective into generative and classification components: the generative component models imprecise-label distributions, while the classification component leverages a diffusion classifier to infer class-posterior probabilities, with its efficiency further improved by an optimized timestep sampling strategy. Extensive experiments on diverse forms of imprecise supervision, covering tasks of image generation, weakly supervised learning, and noisy dataset condensation demonstrate that DMIS consistently produces high-quality and class-discriminative samples.
☆ BrainIB++: Leveraging Graph Neural Networks and Information Bottleneck for Functional Brain Biomarkers in Schizophrenia
The development of diagnostic models is gaining traction in the field of psychiatric disorders. Recently, machine learning classifiers based on resting-state functional magnetic resonance imaging (rs-fMRI) have been developed to identify brain biomarkers that differentiate psychiatric disorders from healthy controls. However, conventional machine learning-based diagnostic models often depend on extensive feature engineering, which introduces bias through manual intervention. While deep learning models are expected to operate without manual involvement, their lack of interpretability poses significant challenges in obtaining explainable and reliable brain biomarkers to support diagnostic decisions, ultimately limiting their clinical applicability. In this study, we introduce an end-to-end innovative graph neural network framework named BrainIB++, which applies the information bottleneck (IB) principle to identify the most informative data-driven brain regions as subgraphs during model training for interpretation. We evaluate the performance of our model against nine established brain network classification methods across three multi-cohort schizophrenia datasets. It consistently demonstrates superior diagnostic accuracy and exhibits generalizability to unseen data. Furthermore, the subgraphs identified by our model also correspond with established clinical biomarkers in schizophrenia, particularly emphasizing abnormalities in the visual, sensorimotor, and higher cognition brain functional network. This alignment enhances the model's interpretability and underscores its relevance for real-world diagnostic applications.
comment: This manuscript has been accepted by Biomedical Signal Processing and Control and the code is available at https://github.com/TianzhengHU/BrainIB_coding/tree/main/BrainIB_GIB
☆ From high-frequency sensors to noon reports: Using transfer learning for shaft power prediction in maritime
With the growth of global maritime transportation, energy optimization has become crucial for reducing costs and ensuring operational efficiency. Shaft power is the mechanical power transmitted from the engine to the shaft and directly impacts fuel consumption, making its accurate prediction a paramount step in optimizing vessel performance. Power consumption is highly correlated with ship parameters such as speed and shaft rotation per minute, as well as weather and sea conditions. Frequent access to this operational data can improve prediction accuracy. However, obtaining high-quality sensor data is often infeasible and costly, making alternative sources such as noon reports a viable option. In this paper, we propose a transfer learning-based approach for predicting vessels shaft power, where a model is initially trained on high-frequency data from a vessel and then fine-tuned with low-frequency daily noon reports from other vessels. We tested our approach on sister vessels (identical dimensions and configurations), a similar vessel (slightly larger with a different engine), and a different vessel (distinct dimensions and configurations). The experiments showed that the mean absolute percentage error decreased by 10.6 percent for sister vessels, 3.6 percent for a similar vessel, and 5.3 percent for a different vessel, compared to the model trained solely on noon report data.
comment: Keywords: transfer learning, shaft power prediction, noon reports, sensor data, maritime
☆ Untargeted Jailbreak Attack
Existing gradient-based jailbreak attacks on Large Language Models (LLMs), such as Greedy Coordinate Gradient (GCG) and COLD-Attack, typically optimize adversarial suffixes to align the LLM output with a predefined target response. However, by restricting the optimization objective as inducing a predefined target, these methods inherently constrain the adversarial search space, which limit their overall attack efficacy. Furthermore, existing methods typically require a large number of optimization iterations to fulfill the large gap between the fixed target and the original model response, resulting in low attack efficiency. To overcome the limitations of targeted jailbreak attacks, we propose the first gradient-based untargeted jailbreak attack (UJA), aiming to elicit an unsafe response without enforcing any predefined patterns. Specifically, we formulate an untargeted attack objective to maximize the unsafety probability of the LLM response, which can be quantified using a judge model. Since the objective is non-differentiable, we further decompose it into two differentiable sub-objectives for optimizing an optimal harmful response and the corresponding adversarial prompt, with a theoretical analysis to validate the decomposition. In contrast to targeted jailbreak attacks, UJA's unrestricted objective significantly expands the search space, enabling a more flexible and efficient exploration of LLM vulnerabilities.Extensive evaluations demonstrate that \textsc{UJA} can achieve over 80\% attack success rates against recent safety-aligned LLMs with only 100 optimization iterations, outperforming the state-of-the-art gradient-based attacks such as I-GCG and COLD-Attack by over 20\%.
☆ Onto-Epistemological Analysis of AI Explanations
Artificial intelligence (AI) is being applied in almost every field. At the same time, the currently dominant deep learning methods are fundamentally black-box systems that lack explanations for their inferences, significantly limiting their trustworthiness and adoption. Explainable AI (XAI) methods aim to overcome this challenge by providing explanations of the models' decision process. Such methods are often proposed and developed by engineers and scientists with a predominantly technical background and incorporate their assumptions about the existence, validity, and explanatory utility of different conceivable explanatory mechanisms. However, the basic concept of an explanation -- what it is, whether we can know it, whether it is absolute or relative -- is far from trivial and has been the subject of deep philosophical debate for millennia. As we point out here, the assumptions incorporated into different XAI methods are not harmless and have important consequences for the validity and interpretation of AI explanations in different domains. We investigate ontological and epistemological assumptions in explainability methods when they are applied to AI systems, meaning the assumptions we make about the existence of explanations and our ability to gain knowledge about those explanations. Our analysis shows how seemingly small technical changes to an XAI method may correspond to important differences in the underlying assumptions about explanations. We furthermore highlight the risks of ignoring the underlying onto-epistemological paradigm when choosing an XAI method for a given application, and we discuss how to select and adapt appropriate XAI methods for different domains of application.
☆ AI Generated Child Sexual Abuse Material -- What's the Harm?
The development of generative artificial intelligence (AI) tools capable of producing wholly or partially synthetic child sexual abuse material (AI CSAM) presents profound challenges for child protection, law enforcement, and societal responses to child exploitation. While some argue that the harmfulness of AI CSAM differs fundamentally from other CSAM due to a perceived absence of direct victimization, this perspective fails to account for the range of risks associated with its production and consumption. AI has been implicated in the creation of synthetic CSAM of children who have not previously been abused, the revictimization of known survivors of abuse, the facilitation of grooming, coercion and sexual extortion, and the normalization of child sexual exploitation. Additionally, AI CSAM may serve as a new or enhanced pathway into offending by lowering barriers to engagement, desensitizing users to progressively extreme content, and undermining protective factors for individuals with a sexual interest in children. This paper provides a primer on some key technologies, critically examines the harms associated with AI CSAM, and cautions against claims that it may function as a harm reduction tool, emphasizing how some appeals to harmlessness obscure its real risks and may contribute to inertia in ecosystem responses.
☆ Corrosion Risk Estimation for Heritage Preservation: An Internet of Things and Machine Learning Approach Using Temperature and Humidity
Proactive preservation of steel structures at culturally significant heritage sites like the San Sebastian Basilica in the Philippines requires accurate corrosion forecasting. This study developed an Internet of Things hardware system connected with LoRa wireless communications to monitor heritage buildings with steel structures. From a three year dataset generated by the IoT system, we built a machine learning framework for predicting atmospheric corrosion rates using only temperature and relative humidity data. Deployed via a Streamlit dashboard with ngrok tunneling for public access, the framework provides real-time corrosion monitoring and actionable preservation recommendations. This minimal-data approach is scalable and cost effective for heritage sites with limited monitoring resources, showing that advanced regression can extract accurate corrosion predictions from basic meteorological data enabling proactive preservation of culturally significant structures worldwide without requiring extensive sensor networks
comment: 17 pages
☆ Grounding Large Language Models in Clinical Evidence: A Retrieval-Augmented Generation System for Querying UK NICE Clinical Guidelines
This paper presents the development and evaluation of a Retrieval-Augmented Generation (RAG) system for querying the United Kingdom's National Institute for Health and Care Excellence (NICE) clinical guidelines using Large Language Models (LLMs). The extensive length and volume of these guidelines can impede their utilisation within a time-constrained healthcare system, a challenge this project addresses through the creation of a system capable of providing users with precisely matched information in response to natural language queries. The system's retrieval architecture, composed of a hybrid embedding mechanism, was evaluated against a database of 10,195 text chunks derived from three hundred guidelines. It demonstrates high performance, with a Mean Reciprocal Rank (MRR) of 0.814, a Recall of 81% at the first chunk and of 99.1% within the top ten retrieved chunks, when evaluated on 7901 queries. The most significant impact of the RAG system was observed during the generation phase. When evaluated on a manually curated dataset of seventy question-answer pairs, RAG-enhanced models showed substantial gains in performance. Faithfulness, the measure of whether an answer is supported by the source text, was increased by 64.7 percentage points to 99.5% for the RAG-enhanced O4-Mini model and significantly outperformed the medical-focused Meditron3-8B LLM, which scored 43%. This, combined with a perfect Context Precision score of 1 for all RAG-enhanced models, confirms the system's ability to prevent information fabrication by grounding its answers in relevant source material. This study thus establishes RAG as an effective, reliable, and scalable approach for applying generative AI in healthcare, enabling cost-effective access to medical guidelines.
☆ Ergodic Risk Measures: Towards a Risk-Aware Foundation for Continual Reinforcement Learning
Continual reinforcement learning (continual RL) seeks to formalize the notions of lifelong learning and endless adaptation in RL. In particular, the aim of continual RL is to develop RL agents that can maintain a careful balance between retaining useful information and adapting to new situations. To date, continual RL has been explored almost exclusively through the lens of risk-neutral decision-making, in which the agent aims to optimize the expected (or mean) long-run performance. In this work, we present the first formal theoretical treatment of continual RL through the lens of risk-aware decision-making, in which the agent aims to optimize a reward-based measure of long-run performance beyond the mean. In particular, we show that the classical theory of risk measures, widely used as a theoretical foundation in non-continual risk-aware RL, is, in its current form, incompatible with the continual setting. Then, building on this insight, we extend risk measure theory into the continual setting by introducing a new class of ergodic risk measures that are compatible with continual learning. Finally, we provide a case study of risk-aware continual learning, along with empirical results, which show the intuitive appeal and theoretical soundness of ergodic risk measures.
☆ Multimodal Carotid Risk Stratification with Large Vision-Language Models: Benchmarking, Fine-Tuning, and Clinical Insights
Reliable risk assessment for carotid atheromatous disease remains a major clinical challenge, as it requires integrating diverse clinical and imaging information in a manner that is transparent and interpretable to clinicians. This study investigates the potential of state-of-the-art and recent large vision-language models (LVLMs) for multimodal carotid plaque assessment by integrating ultrasound imaging (USI) with structured clinical, demographic, laboratory, and protein biomarker data. A framework that simulates realistic diagnostic scenarios through interview-style question sequences is proposed, comparing a range of open-source LVLMs, including both general-purpose and medically tuned models. Zero-shot experiments reveal that even if they are very powerful, not all LVLMs can accurately identify imaging modality and anatomy, while all of them perform poorly in accurate risk classification. To address this limitation, LLaVa-NeXT-Vicuna is adapted to the ultrasound domain using low-rank adaptation (LoRA), resulting in substantial improvements in stroke risk stratification. The integration of multimodal tabular data in the form of text further enhances specificity and balanced accuracy, yielding competitive performance compared to prior convolutional neural network (CNN) baselines trained on the same dataset. Our findings highlight both the promise and limitations of LVLMs in ultrasound-based cardiovascular risk prediction, underscoring the importance of multimodal integration, model calibration, and domain adaptation for clinical translation.
☆ WavInWav: Time-domain Speech Hiding via Invertible Neural Network
Data hiding is essential for secure communication across digital media, and recent advances in Deep Neural Networks (DNNs) provide enhanced methods for embedding secret information effectively. However, previous audio hiding methods often result in unsatisfactory quality when recovering secret audio, due to their inherent limitations in the modeling of time-frequency relationships. In this paper, we explore these limitations and introduce a new DNN-based approach. We use a flow-based invertible neural network to establish a direct link between stego audio, cover audio, and secret audio, enhancing the reversibility of embedding and extracting messages. To address common issues from time-frequency transformations that degrade secret audio quality during recovery, we implement a time-frequency loss on the time-domain signal. This approach not only retains the benefits of time-frequency constraints but also enhances the reversibility of message recovery, which is vital for practical applications. We also add an encryption technique to protect the hidden data from unauthorized access. Experimental results on the VCTK and LibriSpeech datasets demonstrate that our method outperforms previous approaches in terms of subjective and objective metrics and exhibits robustness to various types of noise, suggesting its utility in targeted secure communication scenarios.
comment: 13 pages, 5 figures, project page: https://cyberrrange.github.io/project/wavinwav
☆ FeDABoost: Fairness Aware Federated Learning with Adaptive Boosting ECML-PKDD 2025
This work focuses on improving the performance and fairness of Federated Learning (FL) in non IID settings by enhancing model aggregation and boosting the training of underperforming clients. We propose FeDABoost, a novel FL framework that integrates a dynamic boosting mechanism and an adaptive gradient aggregation strategy. Inspired by the weighting mechanism of the Multiclass AdaBoost (SAMME) algorithm, our aggregation method assigns higher weights to clients with lower local error rates, thereby promoting more reliable contributions to the global model. In parallel, FeDABoost dynamically boosts underperforming clients by adjusting the focal loss focusing parameter, emphasizing hard to classify examples during local training. We have evaluated FeDABoost on three benchmark datasets MNIST, FEMNIST, and CIFAR10, and compared its performance with those of FedAvg and Ditto. The results show that FeDABoost achieves improved fairness and competitive performance.
comment: Presented in WAFL@ECML-PKDD 2025
☆ FinReflectKG -- MultiHop: Financial QA Benchmark for Reasoning with Knowledge Graph Evidence
Multi-hop reasoning over financial disclosures is often a retrieval problem before it becomes a reasoning or generation problem: relevant facts are dispersed across sections, filings, companies, and years, and LLMs often expend excessive tokens navigating noisy context. Without precise Knowledge Graph (KG)-guided selection of relevant context, even strong reasoning models either fail to answer or consume excessive tokens, whereas KG-linked evidence enables models to focus their reasoning on composing already retrieved facts. We present FinReflectKG - MultiHop, a benchmark built on FinReflectKG, a temporally indexed financial KG that links audited triples to source chunks from S&P 100 filings (2022-2024). Mining frequent 2-3 hop subgraph patterns across sectors (via GICS taxonomy), we generate financial analyst style questions with exact supporting evidence from the KG. A two-phase pipeline first creates QA pairs via pattern-specific prompts, followed by a multi-criteria quality control evaluation to ensure QA validity. We then evaluate three controlled retrieval scenarios: (S1) precise KG-linked paths; (S2) text-only page windows centered on relevant text spans; and (S3) relevant page windows with randomizations and distractors. Across both reasoning and non-reasoning models, KG-guided precise retrieval yields substantial gains on the FinReflectKG - MultiHop QA benchmark dataset, boosting correctness scores by approximately 24 percent while reducing token utilization by approximately 84.5 percent compared to the page window setting, which reflects the traditional vector retrieval paradigm. Spanning intra-document, inter-year, and cross-company scopes, our work underscores the pivotal role of knowledge graphs in efficiently connecting evidence for multi-hop financial QA. We also release a curated subset of the benchmark (555 QA Pairs) to catalyze further research.
☆ DMark: Order-Agnostic Watermarking for Diffusion Large Language Models
Diffusion large language models (dLLMs) offer faster generation than autoregressive models while maintaining comparable quality, but existing watermarking methods fail on them due to their non-sequential decoding. Unlike autoregressive models that generate tokens left-to-right, dLLMs can finalize tokens in arbitrary order, breaking the causal design underlying traditional watermarks. We present DMark, the first watermarking framework designed specifically for dLLMs. DMark introduces three complementary strategies to restore watermark detectability: predictive watermarking uses model-predicted tokens when actual context is unavailable; bidirectional watermarking exploits both forward and backward dependencies unique to diffusion decoding; and predictive-bidirectional watermarking combines both approaches to maximize detection strength. Experiments across multiple dLLMs show that DMark achieves 92.0-99.5% detection rates at 1% false positive rate while maintaining text quality, compared to only 49.6-71.2% for naive adaptations of existing methods. DMark also demonstrates robustness against text manipulations, establishing that effective watermarking is feasible for non-autoregressive language models.
Global Convergence of Policy Gradient for Entropy Regularized Linear-Quadratic Control with multiplicative noise
Reinforcement Learning (RL) has emerged as a powerful framework for sequential decision-making in dynamic environments, particularly when system parameters are unknown. This paper investigates RL-based control for entropy-regularized Linear Quadratic control (LQC) problems with multiplicative noises over an infinite time horizon. First, we adapt the Regularized Policy Gradient (RPG) algorithm to stochastic optimal control settings, proving that despite the non-convexity of the problem, RPG converges globally under conditions of gradient domination and near-smoothness. Second, based on zero-order optimization approach, we introduce a novel model free RL algorithm: Sample-Based Regularized Policy Gradient (SB-RPG). SB-RPG operates without knowledge of system parameters yet still retains strong theoretical guarantees of global convergence. Our model leverages entropy regularization to accelerate convergence and address the exploration versus exploitation trade-off inherent in RL. Numerical simulations validate the theoretical results and demonstrate the efficacy of SB-RPG in unknown-parameters environments.
comment: 33 pages, 4 figures
☆ Consolidating Reinforcement Learning for Multimodal Discrete Diffusion Models
Optimizing discrete diffusion model (DDM) with rewards remains a challenge: the non-autoregressive paradigm makes importance sampling intractable and rollout complex, puzzling reinforcement learning methods such as Group Relative Policy Optimization (GRPO). In this study, we introduce MaskGRPO, the first viable approach to enable scalable multimodal reinforcement learning in discrete diffusion with effective importance sampling and modality-specific adaptations. To this end, we first clarify the theoretical foundation for DDMs, which facilitates building an importance estimator that captures valuable token fluctuation for gradient updates. We then delicately tailored the rollout method for visual sequences, which yields diverse completions and reliable optimization gradients. Upon math reasoning, coding, and visual generation benchmarks, MaskGRPO brings more stable and efficient updates, leading to stronger reasoning performance and better generation quality. This study establishes MaskGRPO as a systematic policy optimization approach and the first practical way for discretized visual diffusion.
comment: Project Page: https://github.com/martian422/MaskGRPO
☆ Representing Beauty: Towards a Participatory but Objective Latent Aesthetics
What does it mean for a machine to recognize beauty? While beauty remains a culturally and experientially compelling but philosophically elusive concept, deep learning systems increasingly appear capable of modeling aesthetic judgment. In this paper, we explore the capacity of neural networks to represent beauty despite the immense formal diversity of objects for which the term applies. By drawing on recent work on cross-model representational convergence, we show how aesthetic content produces more similar and aligned representations between models which have been trained on distinct data and modalities - while unaesthetic images do not produce more aligned representations. This finding implies that the formal structure of beautiful images has a realist basis - rather than only as a reflection of socially constructed values. Furthermore, we propose that these realist representations exist because of a joint grounding of aesthetic form in physical and cultural substance. We argue that human perceptual and creative acts play a central role in shaping these the latent spaces of deep learning systems, but that a realist basis for aesthetics shows that machines are not mere creative parrots but can produce novel creative insights from the unique vantage point of scale. Our findings suggest that human-machine co-creation is not merely possible, but foundational - with beauty serving as a teleological attractor in both cultural production and machine perception.
☆ Constraint Satisfaction Approaches to Wordle: Novel Heuristics and Cross-Lexicon Validation
Wordle presents an algorithmically rich testbed for constraint satisfaction problem (CSP) solving. While existing solvers rely on information-theoretic entropy maximization or frequency-based heuristics without formal constraint treatment, we present the first comprehensive CSP formulation of Wordle with novel constraint-aware solving strategies. We introduce CSP-Aware Entropy, computing information gain after constraint propagation rather than on raw candidate sets, and a Probabilistic CSP framework integrating Bayesian word-frequency priors with logical constraints. Through evaluation on 2,315 English words, CSP-Aware Entropy achieves 3.54 average guesses with 99.9% success rate, a statistically significant 1.7% improvement over Forward Checking (t=-4.82, p<0.001, Cohen's d=0.07) with 46% faster runtime (12.9ms versus 23.7ms per guess). Under 10% noise, CSP-aware approaches maintain 5.3 percentage point advantages (29.0% versus 23.7%, p=0.041), while Probabilistic CSP achieves 100% success across all noise levels (0-20%) through constraint recovery mechanisms. Cross-lexicon validation on 500 Spanish words demonstrates 88% success with zero language-specific tuning, validating that core CSP principles transfer across languages despite an 11.2 percentage point gap from linguistic differences (p<0.001, Fisher's exact test). Our open-source implementation with 34 unit tests achieving 91% code coverage provides reproducible infrastructure for CSP research. The combination of formal CSP treatment, constraint-aware heuristics, probabilistic-logical integration, robustness analysis, and cross-lexicon validation establishes new performance benchmarks demonstrating that principled constraint satisfaction techniques outperform classical information-theoretic and learning-based approaches for structured puzzle-solving domains.
comment: 35 pages, 14 figures, 10 tables. Open-source implementation with 91% test coverage available at https://github.com/jahidul-arafat/constraint_satisfaction_wordle_arxiv_preprint
☆ Reward Model Routing in Alignment
Reinforcement learning from human or AI feedback (RLHF / RLAIF) has become the standard paradigm for aligning large language models (LLMs). However, most pipelines rely on a single reward model (RM), limiting alignment quality and risking overfitting. Recent work explores RM routing--dynamically selecting an RM from a candidate pool to exploit complementary strengths while maintaining $O(1)$ RM calls--but existing methods suffer from cold-start and insufficient exploration. We propose BayesianRouter, a hybrid routing framework that combines offline RM strengths learning with online Bayesian selection. In the offline stage, a multi-task router is trained on preference data to estimate per-RM reliability. In the online stage, a Bayesian Thompson sampling router performs per-query RM selection, initializing RM-specific weight vectors with offline embeddings as Gaussian priors and adaptively updating their posteriors with online rewards to adapt to the evolving policy distribution. Extensive experiments on instruction-following (AlpacaEval-2, Arena-Hard, MT-Bench) and reasoning (GSM8K, MMLU) benchmarks show that BayesianRouter consistently outperforms individual RMs, RM ensembling, and existing routing methods.
☆ Flamed-TTS: Flow Matching Attention-Free Models for Efficient Generating and Dynamic Pacing Zero-shot Text-to-Speech
Zero-shot Text-to-Speech (TTS) has recently advanced significantly, enabling models to synthesize speech from text using short, limited-context prompts. These prompts serve as voice exemplars, allowing the model to mimic speaker identity, prosody, and other traits without extensive speaker-specific data. Although recent approaches incorporating language models, diffusion, and flow matching have proven their effectiveness in zero-shot TTS, they still encounter challenges such as unreliable synthesis caused by token repetition or unexpected content transfer, along with slow inference and substantial computational overhead. Moreover, temporal diversity-crucial for enhancing the naturalness of synthesized speech-remains largely underexplored. To address these challenges, we propose Flamed-TTS, a novel zero-shot TTS framework that emphasizes low computational cost, low latency, and high speech fidelity alongside rich temporal diversity. To achieve this, we reformulate the flow matching training paradigm and incorporate both discrete and continuous representations corresponding to different attributes of speech. Experimental results demonstrate that Flamed-TTS surpasses state-of-the-art models in terms of intelligibility, naturalness, speaker similarity, acoustic characteristics preservation, and dynamic pace. Notably, Flamed-TTS achieves the best WER of 4% compared to the leading zero-shot TTS baselines, while maintaining low latency in inference and high fidelity in generated speech. Code and audio samples are available at our demo page https://flamed-tts.github.io.
☆ Take Goodhart Seriously: Principled Limit on General-Purpose AI Optimization
A common but rarely examined assumption in machine learning is that training yields models that actually satisfy their specified objective function. We call this the Objective Satisfaction Assumption (OSA). Although deviations from OSA are acknowledged, their implications are overlooked. We argue, in a learning-paradigm-agnostic framework, that OSA fails in realistic conditions: approximation, estimation, and optimization errors guarantee systematic deviations from the intended objective, regardless of the quality of its specification. Beyond these technical limitations, perfectly capturing and translating the developer's intent, such as alignment with human preferences, into a formal objective is practically impossible, making misspecification inevitable. Building on recent mathematical results, absent a mathematical characterization of these gaps, they are indistinguishable from those that collapse into Goodhart's law failure modes under strong optimization pressure. Because the Goodhart breaking point cannot be located ex ante, a principled limit on the optimization of General-Purpose AI systems is necessary. Absent such a limit, continued optimization is liable to push systems into predictable and irreversible loss of control.
comment: 9 pages, 1 figure. Under review
☆ Knowledge-Aware Modeling with Frequency Adaptive Learning for Battery Health Prognostics
Battery health prognostics are critical for ensuring safety, efficiency, and sustainability in modern energy systems. However, it has been challenging to achieve accurate and robust prognostics due to complex battery degradation behaviors with nonlinearity, noise, capacity regeneration, etc. Existing data-driven models capture temporal degradation features but often lack knowledge guidance, which leads to unreliable long-term health prognostics. To overcome these limitations, we propose Karma, a knowledge-aware model with frequency-adaptive learning for battery capacity estimation and remaining useful life prediction. The model first performs signal decomposition to derive battery signals in different frequency bands. A dual-stream deep learning architecture is developed, where one stream captures long-term low-frequency degradation trends and the other models high-frequency short-term dynamics. Karma regulates the prognostics with knowledge, where battery degradation is modeled as a double exponential function based on empirical studies. Our dual-stream model is used to optimize the parameters of the knowledge with particle filters to ensure physically consistent and reliable prognostics and uncertainty quantification. Experimental study demonstrates Karma's superior performance, achieving average error reductions of 50.6% and 32.6% over state-of-the-art algorithms for battery health prediction on two mainstream datasets, respectively. These results highlight Karma's robustness, generalizability, and potential for safer and more reliable battery management across diverse applications.
comment: 12 pages, 4 figures, 4 tables
☆ Beyond the Final Answer: Evaluating the Reasoning Trajectories of Tool-Augmented Agents
Although recent tool-augmented benchmarks incorporate complex user requests and diverse tools, the evaluation methods for most of them remain limited to answer matching. However, as the number of steps required to resolve a user request increases, a proper evaluation of an agent's performance must go beyond the final answer to also assess the problem-solving trajectory, including previously ignored aspects such as efficiency, hallucination, and adaptivity. The most straightforward method for evaluating these aspects is to compare an agent's trajectory with the ground-truth trajectory, but this approach is fundamentally limited since annotating all valid ground-truth trajectories is prohibitively expensive. However, a simple LLM-based evaluator struggles to assess trajectories in detail without ground truth. To effectively evaluate the agents in this manner, we introduce TRACE, a framework for the multi-dimensional evaluation of tool-augmented LLM agent performance. By incorporating an evidence bank, which accumulates knowledge gathered from preceding reasoning steps, TRACE enables a multi-faceted analysis and evaluation of an agent's reasoning trajectory effectively. To validate our framework, we develop a new meta-evaluation dataset by augmenting existing benchmarks with diverse and flawed trajectories, each labeled with multi-faceted performance scores. Our results confirm that TRACE accurately evaluates these complex behaviors in a scalable and cost-effective manner, even with small open-source LLMs. Furthermore, we apply our method to evaluate the trajectories that agents produce while solving tool-augmented tasks, presenting previously unreported observations and their corresponding insights.
comment: Preprint. Under Review
☆ Evaluating Large Language Models for IUCN Red List Species Information
Large Language Models (LLMs) are rapidly being adopted in conservation to address the biodiversity crisis, yet their reliability for species evaluation is uncertain. This study systematically validates five leading models on 21,955 species across four core IUCN Red List assessment components: taxonomy, conservation status, distribution, and threats. A critical paradox was revealed: models excelled at taxonomic classification (94.9%) but consistently failed at conservation reasoning (27.2% for status assessment). This knowledge-reasoning gap, evident across all models, suggests inherent architectural constraints, not just data limitations. Furthermore, models exhibited systematic biases favoring charismatic vertebrates, potentially amplifying existing conservation inequities. These findings delineate clear boundaries for responsible LLM deployment: they are powerful tools for information retrieval but require human oversight for judgment-based decisions. A hybrid approach is recommended, where LLMs augment expert capacity while human experts retain sole authority over risk assessment and policy.
comment: 20 pages, 7 figures
☆ NCV: A Node-Wise Consistency Verification Approach for Low-Cost Structured Error Localization in LLM Reasoning
Verifying multi-step reasoning in large language models is difficult due to imprecise error localization and high token costs. Existing methods either assess entire reasoning chains, suffering attention dilution, or rely on expensive multi-sampling. We introduce Node-wise Consistency Verification (NCV), a training-free framework that recasts verification as lightweight binary consistency checks at the node level. By decomposing the chain of thought into interconnected verification nodes, NCV precisely localizes errors and avoids unnecessary long-form generation. Experiments demonstrate that our approach enhances interpretability and efficiency, presenting a scalable solution for reliable LLM reasoning verification. On public datasets, NCV achieves a 10\% to 25\% improvement in F1 scores over baselines while utilizing $6\times$~$58\times$ fewer tokens than traditional methods like CoT-based verifiers.
☆ A Computational Framework for Interpretable Text-Based Personality Assessment from Social Media
Personality refers to individual differences in behavior, thinking, and feeling. With the growing availability of digital footprints, especially from social media, automated methods for personality assessment have become increasingly important. Natural language processing (NLP) enables the analysis of unstructured text data to identify personality indicators. However, two main challenges remain central to this thesis: the scarcity of large, personality-labeled datasets and the disconnect between personality psychology and NLP, which restricts model validity and interpretability. To address these challenges, this thesis presents two datasets -- MBTI9k and PANDORA -- collected from Reddit, a platform known for user anonymity and diverse discussions. The PANDORA dataset contains 17 million comments from over 10,000 users and integrates the MBTI and Big Five personality models with demographic information, overcoming limitations in data size, quality, and label coverage. Experiments on these datasets show that demographic variables influence model validity. In response, the SIMPA (Statement-to-Item Matching Personality Assessment) framework was developed - a computational framework for interpretable personality assessment that matches user-generated statements with validated questionnaire items. By using machine learning and semantic similarity, SIMPA delivers personality assessments comparable to human evaluations while maintaining high interpretability and efficiency. Although focused on personality assessment, SIMPA's versatility extends beyond this domain. Its model-agnostic design, layered cue detection, and scalability make it suitable for various research and practical applications involving complex label taxonomies and variable cue associations with target concepts.
comment: Phd thesis
☆ Dissecting Transformers: A CLEAR Perspective towards Green AI
The rapid adoption of Large Language Models (LLMs) has raised significant environmental concerns. Unlike the one-time cost of training, LLM inference occurs continuously at a global scale and now dominates the AI energy footprint. Yet, most sustainability studies report only coarse, model-level metrics due to the lack of fine-grained measurement methods, treating energy efficiency more as an afterthought than as a primary objective. We present the first fine-grained empirical analysis of inference energy across core components of transformer architecture. We propose a novel methodology, Component-Level Energy Assessment via Repeated sampling (CLEAR), to overcome temporal mismatch between microsecond scale component execution and monitoring of millisecond (ms) scale energy sensors. Using CLEAR, we evaluate 15 models spanning four distinct architecture types and consistently keep component-wise energy variance below 9.5\% while capturing more than 90\% of the model's total energy as individual components. Our empirical analysis reveals that Attention blocks consume significantly more energy per floating-point operation (FLOP), indicating that energy consumption is not proportionally aligned with FLOP counts. This shows that FLOPs alone fail to capture the true energy cost at a component level. Our findings establish detailed component-level energy baselines and provide insight as an initial step to build energy-efficient transformer models through component-level optimizations.
☆ Work Zones challenge VLM Trajectory Planning: Toward Mitigation and Robust Autonomous Driving
Visual Language Models (VLMs), with powerful multimodal reasoning capabilities, are gradually integrated into autonomous driving by several automobile manufacturers to enhance planning capability in challenging environments. However, the trajectory planning capability of VLMs in work zones, which often include irregular layouts, temporary traffic control, and dynamically changing geometric structures, is still unexplored. To bridge this gap, we conduct the \textit{first} systematic study of VLMs for work zone trajectory planning, revealing that mainstream VLMs fail to generate correct trajectories in $68.0%$ of cases. To better understand these failures, we first identify candidate patterns via subgraph mining and clustering analysis, and then confirm the validity of $8$ common failure patterns through human verification. Building on these findings, we propose REACT-Drive, a trajectory planning framework that integrates VLMs with Retrieval-Augmented Generation (RAG). Specifically, REACT-Drive leverages VLMs to convert prior failure cases into constraint rules and executable trajectory planning code, while RAG retrieves similar patterns in new scenarios to guide trajectory generation. Experimental results on the ROADWork dataset show that REACT-Drive yields a reduction of around $3\times$ in average displacement error relative to VLM baselines under evaluation with Qwen2.5-VL. In addition, REACT-Drive yields the lowest inference time ($0.58$s) compared with other methods such as fine-tuning ($17.90$s). We further conduct experiments using a real vehicle in 15 work zone scenarios in the physical world, demonstrating the strong practicality of REACT-Drive.
comment: 13 pages,5 figures
☆ OptunaHub: A Platform for Black-Box Optimization
Black-box optimization (BBO) drives advances in domains such as AutoML and Materials Informatics, yet research efforts often remain fragmented across domains. We introduce OptunaHub (https://hub.optuna.org/), a community platform that centralizes BBO methods and benchmarks. OptunaHub provides unified Python APIs, a contributor package registry, and a web interface to promote searchability and cross-domain research. OptunaHub aims to foster a virtuous cycle of contributions and applications. The source code is publicly available in the optunahub, optunahub-registry, and optunahub-web repositories under the Optuna organization on GitHub (https://github.com/optuna/).
comment: Submitted to Journal of machine learning research
☆ Pareto-optimal Non-uniform Language Generation
Kleinberg and Mullainathan (2024) recently proposed an interesting model for language generation in the limit: Given a countable collection of languages, and an adversary enumerating the strings of some language $L$ from the collection, the objective is to generate new strings from the target language, such that all strings generated beyond some finite time are valid. Li, Raman and Tewari (2024) and Charikar and Pabbaraju (2024) showed strong non-uniform generation guarantees in this model, giving algorithms that generate new valid strings from $L$ after seeing a number of distinct input strings $t(L)$ that depends only on $L$ (and the collection), but not the enumeration order. However, for both these works, the language-wise generation times $t(L)$ of the algorithm can be strictly sub-optimal. In this work, we study Pareto-optimality of non-uniform language generation in the limit. We propose an algorithm, whose generation times $t^\star(L)$ are (almost) Pareto-optimal: any other algorithm whose generation time for some language $L$ is strictly smaller than $t^\star(L)$, must satisfy that its generation time for some other language $L'$ is strictly worse than $t^\star(L')$. Pareto-optimality is essentially the best that one can achieve for non-uniform generation. Our algorithmic framework conveniently adapts to further give Pareto-optimal non-uniform generation algorithms in the practically motivated settings of noisy as well as representative generation.
comment: 24 pages, 1 figure
☆ MaskCD: Mitigating LVLM Hallucinations by Image Head Masked Contrastive Decoding
Large vision-language models (LVLMs) have shown remarkable performance in visual-language understanding for downstream multimodal tasks. While their capabilities are improving, problems emerge simultaneously. Among those problems, the hallucinations have attracted much attention, which stands for the phenomenon where LVLMs generate contradictory content to their input visual and text contents. Many approaches have been proposed to deal with this issue, such as contrastive decoding and attention manipulation. However, contrastive decoding methods struggle in constructing appropriate contrastive samples, and attention manipulation methods are highly sensitive, lacking stability. In this work, we propose image head Masked Contrastive Decoding (MaskCD). Our approach utilizes the "image heads" in LVLMs, masking them to construct contrastive samples for contrastive decoding. We evaluated MaskCD on LLaVA-1.5-7b and Qwen-VL-7b, using various benchmarks such as CHAIR, POPE, AMBER and MME. The results demonstrate that MaskCD effectively alleviates the phenomenon of hallucinations and retains the general capabilities of LVLMs. Corresponding resources could be found at: https://github.com/Deng-Jingyuan/MaskCD .
comment: accepted to emnlp2025 findings
☆ Align Your Query: Representation Alignment for Multimodality Medical Object Detection
Medical object detection suffers when a single detector is trained on mixed medical modalities (e.g., CXR, CT, MRI) due to heterogeneous statistics and disjoint representation spaces. To address this challenge, we turn to representation alignment, an approach that has proven effective for bringing features from different sources into a shared space. Specifically, we target the representations of DETR-style object queries and propose a simple, detector-agnostic framework to align them with modality context. First, we define modality tokens: compact, text-derived embeddings encoding imaging modality that are lightweight and require no extra annotations. We integrate the modality tokens into the detection process via Multimodality Context Attention (MoCA), mixing object-query representations via self-attention to propagate modality context within the query set. This preserves DETR-style architectures and adds negligible latency while injecting modality cues into object queries. We further introduce QueryREPA, a short pretraining stage that aligns query representations to their modality tokens using a task-specific contrastive objective with modality-balanced batches. Together, MoCA and QueryREPA produce modality-aware, class-faithful queries that transfer effectively to downstream training. Across diverse modalities trained altogether, the proposed approach consistently improves AP with minimal overhead and no architectural modifications, offering a practical path toward robust multimodality medical object detection. Project page: https://araseo.github.io/alignyourquery/.
comment: Project page: https://araseo.github.io/alignyourquery/
☆ Fusing Multi- and Hyperspectral Satellite Data for Harmful Algal Bloom Monitoring with Self-Supervised and Hierarchical Deep Learning
We present a self-supervised machine learning framework for detecting and mapping harmful algal bloom (HAB) severity and speciation using multi-sensor satellite data. By fusing reflectance data from operational instruments (VIIRS, MODIS, Sentinel-3, PACE) with TROPOMI solar-induced fluorescence (SIF), our framework, called SIT-FUSE, generates HAB severity and speciation products without requiring per-instrument labeled datasets. The framework employs self-supervised representation learning, hierarchical deep clustering to segment phytoplankton concentrations and speciations into interpretable classes, validated against in-situ data from the Gulf of Mexico and Southern California (2018-2025). Results show strong agreement with total phytoplankton, Karenia brevis, Alexandrium spp., and Pseudo-nitzschia spp. measurements. This work advances scalable HAB monitoring in label-scarce environments while enabling exploratory analysis via hierarchical embeddings: a critical step toward operationalizing self-supervised learning for global aquatic biogeochemistry.
☆ Hierarchical Generalized Category Discovery for Brain Tumor Classification in Digital Pathology
Accurate brain tumor classification is critical for intra-operative decision making in neuro-oncological surgery. However, existing approaches are restricted to a fixed set of predefined classes and are therefore unable to capture patterns of tumor types not available during training. Unsupervised learning can extract general-purpose features, but it lacks the ability to incorporate prior knowledge from labelled data, and semi-supervised methods often assume that all potential classes are represented in the labelled data. Generalized Category Discovery (GCD) aims to bridge this gap by categorizing both known and unknown classes within unlabelled data. To reflect the hierarchical structure of brain tumor taxonomies, in this work, we introduce Hierarchical Generalized Category Discovery for Brain Tumor Classification (HGCD-BT), a novel approach that integrates hierarchical clustering with contrastive learning. Our method extends contrastive learning based GCD by incorporating a novel semi-supervised hierarchical clustering loss. We evaluate HGCD-BT on OpenSRH, a dataset of stimulated Raman histology brain tumor images, achieving a +28% improvement in accuracy over state-of-the-art GCD methods for patch-level classification, particularly in identifying previously unseen tumor categories. Furthermore, we demonstrate the generalizability of HGCD-BT on slide-level classification of hematoxylin and eosin stained whole-slide images from the Digital Brain Tumor Atlas, confirming its utility across imaging modalities.
☆ Prototyping Digital Social Spaces through Metaphor-Driven Design: Translating Spatial Concepts into an Interactive Social Simulation
Social media platforms are central to communication, yet their designs remain narrowly focused on engagement and scale. While researchers have proposed alternative visions for online spaces, these ideas are difficult to prototype within platform constraints. In this paper, we introduce a metaphor-driven system to help users imagine and explore new social media environments. The system translates users' metaphors into structured sets of platform features and generates interactive simulations populated with LLM-driven agents. To evaluate this approach, we conducted a study where participants created and interacted with simulated social media spaces. Our findings show that metaphors allow users to express distinct social expectations, and that perceived authenticity of the simulation depended on how well it captured dynamics like intimacy, participation, and temporal engagement. We conclude by discussing how metaphor-driven simulation can be a powerful design tool for prototyping alternative social architectures and expanding the design space for future social platforms.
comment: 25 pages, in submission to CHI 2026
☆ SAE-RNA: A Sparse Autoencoder Model for Interpreting RNA Language Model Representations
Deep learning, particularly with the advancement of Large Language Models, has transformed biomolecular modeling, with protein advances (e.g., ESM) inspiring emerging RNA language models such as RiNALMo. Yet how and what these RNA Language Models internally encode about messenger RNA (mRNA) or non-coding RNA (ncRNA) families remains unclear. We present SAE- RNA, interpretability model that analyzes RiNALMo representations and maps them to known human-level biological features. Our work frames RNA interpretability as concept discovery in pretrained embeddings, without end-to-end retraining, and provides practical tools to probe what RNA LMs may encode about ncRNA families. The model can be extended to close comparisons between RNA groups, and supporting hypothesis generation about previously unrecognized relationships.
comment: preprint
☆ TravelBench : Exploring LLM Performance in Low-Resource Domains
Results on existing LLM benchmarks capture little information over the model capabilities in low-resource tasks, making it difficult to develop effective solutions in these domains. To address these challenges, we curated 14 travel-domain datasets spanning 7 common NLP tasks using anonymised data from real-world scenarios, and analysed the performance across LLMs. We report on the accuracy, scaling behaviour, and reasoning capabilities of LLMs in a variety of tasks. Our results confirm that general benchmarking results are insufficient for understanding model performance in low-resource tasks. Despite the amount of training FLOPs, out-of-the-box LLMs hit performance bottlenecks in complex, domain-specific scenarios. Furthermore, reasoning provides a more significant boost for smaller LLMs by making the model a better judge on certain tasks.
comment: 10 pages, 3 figures
☆ CST-AFNet: A dual attention-based deep learning framework for intrusion detection in IoT networks
The rapid expansion of the Internet of Things (IoT) has revolutionized modern industries by enabling smart automation and real time connectivity. However, this evolution has also introduced complex cybersecurity challenges due to the heterogeneous, resource constrained, and distributed nature of these environments. To address these challenges, this research presents CST AFNet, a novel dual attention based deep learning framework specifically designed for robust intrusion detection in IoT networks. The model integrates multi scale Convolutional Neural Networks (CNNs) for spatial feature extraction, Bidirectional Gated Recurrent Units (BiGRUs) for capturing temporal dependencies, and a dual attention mechanism, channel and temporal attention, to enhance focus on critical patterns in the data. The proposed method was trained and evaluated on the Edge IIoTset dataset, a comprehensive and realistic benchmark containing more than 2.2 million labeled instances spanning 15 attack types and benign traffic, collected from a seven layer industrial testbed. Our proposed model achieves outstanding accuracy for both 15 attack types and benign traffic. CST AFNet achieves 99.97 percent accuracy. Moreover, this model demonstrates exceptional performance with macro averaged precision, recall, and F1 score all above 99.3 percent. Experimental results show that CST AFNet achieves superior detection accuracy, significantly outperforming traditional deep learning models. The findings confirm that CST AFNet is a powerful and scalable solution for real time cyber threat detection in complex IoT and IIoT environments, paving the way for more secure, intelligent, and adaptive cyber physical systems.
comment: 9 pages, 9 figures, 5 tables
☆ A $1000\times$ Faster LLM-enhanced Algorithm For Path Planning in Large-scale Grid Maps
Path planning in grid maps, arising from various applications, has garnered significant attention. Existing methods, such as A*, Dijkstra, and their variants, work well for small-scale maps but fail to address large-scale ones due to high search time and memory consumption. Recently, Large Language Models (LLMs) have shown remarkable performance in path planning but still suffer from spatial illusion and poor planning performance. Among all the works, LLM-A* \cite{meng2024llm} leverages LLM to generate a series of waypoints and then uses A* to plan the paths between the neighboring waypoints. In this way, the complete path is constructed. However, LLM-A* still suffers from high computational time for large-scale maps. To fill this gap, we conducted a deep investigation into LLM-A* and found its bottleneck, resulting in limited performance. Accordingly, we design an innovative LLM-enhanced algorithm, abbr. as iLLM-A*. iLLM-A* includes 3 carefully designed mechanisms, including the optimization of A*, an incremental learning method for LLM to generate high-quality waypoints, and the selection of the appropriate waypoints for A* for path planning. Finally, a comprehensive evaluation on various grid maps shows that, compared with LLM-A*, iLLM-A* \textbf{1) achieves more than $1000\times$ speedup on average, and up to $2349.5\times$ speedup in the extreme case, 2) saves up to $58.6\%$ of the memory cost, 3) achieves both obviously shorter path length and lower path length standard deviation.}
☆ Fully automated inverse co-optimization of templates and block copolymer blending recipes for DSA lithography
The directed self-assembly (DSA) of block copolymers (BCPs) offers a highly promising approach for the fabrication of contact holes or vertical interconnect access at sub-7nm technology nodes. To fabricate circular holes with precisely controlled size and positions, the self-assembly of block copolymers requires guidance from a properly designed template. Effectively parameterizing the template shape to enable efficient optimization remains a critical yet challenging problem. Moreover, the optimized template must possess excellent manufacturability for practical applications. In this work, we propose a Gaussian descriptor for characterizing the template shape with only two parameters. We further propose to use AB/AB binary blends instead of pure diblock copolymer to improve the adaptability of the block copolymer system to the template shape. The Bayesian optimization (BO) is applied to co-optimize the binary blend and the template shape. Our results demonstrate that BO based on the Gaussian descriptor can efficiently yield the optimal templates for diverse multi-hole patterns, all leading to highly matched self-assembled morphologies. Moreover, by imposing constraints on the variation of curvature of the template during optimization, superior manufacturability is ensured for each optimized template. It is noteworthy that each key parameter of the blend exhibits a relatively wide tunable window under the requirement of rather high precision. Our work provides valuable insights for advancing DSA technology, and thus potentially propels its practical applications forward.
☆ Time-To-Inconsistency: A Survival Analysis of Large Language Model Robustness to Adversarial Attacks
Large Language Models (LLMs) have revolutionized conversational AI, yet their robustness in extended multi-turn dialogues remains poorly understood. Existing evaluation frameworks focus on static benchmarks and single-turn assessments, failing to capture the temporal dynamics of conversational degradation that characterize real-world interactions. In this work, we present the first comprehensive survival analysis of conversational AI robustness, analyzing 36,951 conversation turns across 9 state-of-the-art LLMs to model failure as a time-to-event process. Our survival modeling framework-employing Cox proportional hazards, Accelerated Failure Time, and Random Survival Forest approaches-reveals extraordinary temporal dynamics. We find that abrupt, prompt-to-prompt(P2P) semantic drift is catastrophic, dramatically increasing the hazard of conversational failure. In stark contrast, gradual, cumulative drift is highly protective, vastly reducing the failure hazard and enabling significantly longer dialogues. AFT models with interactions demonstrate superior performance, achieving excellent discrimination and exceptional calibration. These findings establish survival analysis as a powerful paradigm for evaluating LLM robustness, offer concrete insights for designing resilient conversational agents, and challenge prevailing assumptions about the necessity of semantic consistency in conversational AI Systems.
☆ A Novel Unified Lightweight Temporal-Spatial Transformer Approach for Intrusion Detection in Drone Networks
The growing integration of drones across commercial, industrial, and civilian domains has introduced significant cybersecurity challenges, particularly due to the susceptibility of drone networks to a wide range of cyberattacks. Existing intrusion detection mechanisms often lack the adaptability, efficiency, and generalizability required for the dynamic and resource constrained environments in which drones operate. This paper proposes TSLT-Net, a novel lightweight and unified Temporal Spatial Transformer based intrusion detection system tailored specifically for drone networks. By leveraging self attention mechanisms, TSLT-Net effectively models both temporal patterns and spatial dependencies in network traffic, enabling accurate detection of diverse intrusion types. The framework includes a streamlined preprocessing pipeline and supports both multiclass attack classification and binary anomaly detection within a single architecture. Extensive experiments conducted on the ISOT Drone Anomaly Detection Dataset, consisting of more than 2.3 million labeled records, demonstrate the superior performance of TSLT-Net with 99.99 percent accuracy in multiclass detection and 100 percent in binary anomaly detection, while maintaining a minimal memory footprint of only 0.04 MB and 9722 trainable parameters. These results establish TSLT-Net as an effective and scalable solution for real time drone cybersecurity, particularly suitable for deployment on edge devices in mission critical UAV systems.
comment: 21 pages, 18 figures, 5 tables
☆ RAMAC: Multimodal Risk-Aware Offline Reinforcement Learning and the Role of Behavior Regularization ICLR 2026
In safety-critical domains where online data collection is infeasible, offline reinforcement learning (RL) offers an attractive alternative but only if policies deliver high returns without incurring catastrophic lower-tail risk. Prior work on risk-averse offline RL achieves safety at the cost of value conservatism and restricted policy classes, whereas expressive policies are only used in risk-neutral settings. Here, we address this gap by introducing the \textbf{Risk-Aware Multimodal Actor-Critic (RAMAC)} framework, which couples an \emph{expressive generative actor} with a distributional critic. The RAMAC differentiates composite objective combining distributional risk and BC loss through the generative path, achieving risk-sensitive learning in complex multimodal scenarios. We instantiate RAMAC with diffusion and flow-matching actors and observe consistent gains in $\mathrm{CVaR}_{0.1}$ while maintaining strong returns on most Stochastic-D4RL tasks. Code: https://github.com/KaiFukazawa/RAMAC.git
comment: Under review as a conference paper at ICLR 2026, 21 pages, 8 figures. The HTML preview may misrender some figures; please refer to the PDF
☆ Fine-Tuning Diffusion Models via Intermediate Distribution Shaping
Diffusion models are widely used for generative tasks across domains. While pre-trained diffusion models effectively capture the training data distribution, it is often desirable to shape these distributions using reward functions to align with downstream applications. Policy gradient methods, such as Proximal Policy Optimization (PPO), are widely used in the context of autoregressive generation. However, the marginal likelihoods required for such methods are intractable for diffusion models, leading to alternative proposals and relaxations. In this context, we unify variants of Rejection sAmpling based Fine-Tuning (RAFT) as GRAFT, and show that this implicitly performs PPO with reshaped rewards. We then introduce P-GRAFT to shape distributions at intermediate noise levels and demonstrate empirically that this can lead to more effective fine-tuning. We mathematically explain this via a bias-variance tradeoff. Motivated by this, we propose inverse noise correction to improve flow models without leveraging explicit rewards. We empirically evaluate our methods on text-to-image(T2I) generation, layout generation, molecule generation and unconditional image generation. Notably, our framework, applied to Stable Diffusion 2, improves over policy gradient methods on popular T2I benchmarks in terms of VQAScore and shows an $8.81\%$ relative improvement over the base model. For unconditional image generation, inverse noise correction improves FID of generated images at lower FLOPs/image.
☆ Can Data-Driven Dynamics Reveal Hidden Physics? There Is A Need for Interpretable Neural Operators
Recently, neural operators have emerged as powerful tools for learning mappings between function spaces, enabling data-driven simulations of complex dynamics. Despite their successes, a deeper understanding of their learning mechanisms remains underexplored. In this work, we classify neural operators into two types: (1) Spatial domain models that learn on grids and (2) Functional domain models that learn with function bases. We present several viewpoints based on this classification and focus on learning data-driven dynamics adhering to physical principles. Specifically, we provide a way to explain the prediction-making process of neural operators and show that neural operator can learn hidden physical patterns from data. However, this explanation method is limited to specific situations, highlighting the urgent need for generalizable explanation methods. Next, we show that a simple dual-space multi-scale model can achieve SOTA performance and we believe that dual-space multi-spatio-scale models hold significant potential to learn complex physics and require further investigation. Lastly, we discuss the critical need for principled frameworks to incorporate known physics into neural operators, enabling better generalization and uncovering more hidden physical phenomena.
☆ Automated Constraint Specification for Job Scheduling by Regulating Generative Model with Domain-Specific Representation
Advanced Planning and Scheduling (APS) systems have become indispensable for modern manufacturing operations, enabling optimized resource allocation and production efficiency in increasingly complex and dynamic environments. While algorithms for solving abstracted scheduling problems have been extensively investigated, the critical prerequisite of specifying manufacturing requirements into formal constraints remains manual and labor-intensive. Although recent advances of generative models, particularly Large Language Models (LLMs), show promise in automating constraint specification from heterogeneous raw manufacturing data, their direct application faces challenges due to natural language ambiguity, non-deterministic outputs, and limited domain-specific knowledge. This paper presents a constraint-centric architecture that regulates LLMs to perform reliable automated constraint specification for production scheduling. The architecture defines a hierarchical structural space organized across three levels, implemented through domain-specific representation to ensure precision and reliability while maintaining flexibility. Furthermore, an automated production scenario adaptation algorithm is designed and deployed to efficiently customize the architecture for specific manufacturing configurations. Experimental results demonstrate that the proposed approach successfully balances the generative capabilities of LLMs with the reliability requirements of manufacturing systems, significantly outperforming pure LLM-based approaches in constraint specification tasks.
comment: Accepted for publication in IEEE Transactions on Automation Science and Engineering
☆ ARMs: Adaptive Red-Teaming Agent against Multimodal Models with Plug-and-Play Attacks
As vision-language models (VLMs) gain prominence, their multimodal interfaces also introduce new safety vulnerabilities, making the safety evaluation challenging and critical. Existing red-teaming efforts are either restricted to a narrow set of adversarial patterns or depend heavily on manual engineering, lacking scalable exploration of emerging real-world VLM vulnerabilities. To bridge this gap, we propose ARMs, an adaptive red-teaming agent that systematically conducts comprehensive risk assessments for VLMs. Given a target harmful behavior or risk definition, ARMs automatically optimizes diverse red-teaming strategies with reasoning-enhanced multi-step orchestration, to effectively elicit harmful outputs from target VLMs. We propose 11 novel multimodal attack strategies, covering diverse adversarial patterns of VLMs (e.g., reasoning hijacking, contextual cloaking), and integrate 17 red-teaming algorithms into ARMs via model context protocol (MCP). To balance the diversity and effectiveness of the attack, we design a layered memory with an epsilon-greedy attack exploration algorithm. Extensive experiments on instance- and policy-based benchmarks show that ARMs achieves SOTA attack success rates, exceeding baselines by an average of 52.1% and surpassing 90% on Claude-4-Sonnet. We show that the diversity of red-teaming instances generated by ARMs is significantly higher, revealing emerging vulnerabilities in VLMs. Leveraging ARMs, we construct ARMs-Bench, a large-scale multimodal safety dataset comprising over 30K red-teaming instances spanning 51 diverse risk categories, grounded in both real-world multimodal threats and regulatory risks. Safety fine-tuning with ARMs-Bench substantially improves the robustness of VLMs while preserving their general utility, providing actionable guidance to improve multimodal safety alignment against emerging threats.
comment: 60 pages, 16 figures
☆ To Compress or Not? Pushing the Frontier of Lossless GenAI Model Weights Compression with Exponent Concentration
The scaling of Generative AI (GenAI) models into the hundreds of billions of parameters makes low-precision computation indispensable for efficient deployment. We argue that the fundamental solution lies in developing low-precision floating-point formats, which inherently provide numerical stability, memory savings, and hardware efficiency without dequantization overhead. In this paper, we present a theoretical and empirical study of an exponent concentration phenomenon in GenAI weights: exponents consistently exhibit low entropy across architectures and modalities. We show that this arises naturally from $\alpha$-stable distributions induced by stochastic gradient descent, and we prove tight bounds on the entropy of exponents. Our analysis establishes a theoretical compression limit near FP4.67, which motivates the design of a practical FP8 format. Building on these insights, we propose Exponent-Concentrated FP8 (ECF8), a lossless compression framework with entropy-aware encoding and GPU-optimized decoding. Experiments on LLMs and DiTs up to 671B parameters demonstrate up to 26.9% memory savings and 177.1% throughput acceleration, with perfectly lossless computations, i.e., no deviation in model outputs. Our results establish exponent concentration as a statistical law of trained models and open a principled path for lossless low-precision floating-point design in the FP8 era.
☆ HALO: Memory-Centric Heterogeneous Accelerator with 2.5D Integration for Low-Batch LLM Inference
The rapid adoption of Large Language Models (LLMs) has driven a growing demand for efficient inference, particularly in latency-sensitive applications such as chatbots and personalized assistants. Unlike traditional deep neural networks, LLM inference proceeds in two distinct phases: the prefill phase, which processes the full input sequence in parallel, and the decode phase, which generates tokens sequentially. These phases exhibit highly diverse compute and memory requirements, which makes accelerator design particularly challenging. Prior works have primarily been optimized for high-batch inference or evaluated only short input context lengths, leaving the low-batch and long context regime, which is critical for interactive applications, largely underexplored. We propose HALO, a heterogeneous memory centric accelerator designed for these unique challenges of prefill and decode phases in low-batch LLM inference. HALO integrates HBM based Compute-in-DRAM (CiD) with an on-chip analog Compute-in-Memory (CiM), co-packaged using 2.5D integration. To further improve the hardware utilization, we introduce a phase-aware mapping strategy that adapts to the distinct demands of the prefill and decode phases. Compute bound operations in the prefill phase are mapped to CiM to exploit its high throughput matrix multiplication capability, while memory-bound operations in the decode phase are executed on CiD to benefit from reduced data movement within DRAM. Additionally, we present an analysis of the performance tradeoffs of LLMs under two architectural extremes: a fully CiD and a fully on-chip analog CiM design to highlight the need for a heterogeneous design. We evaluate HALO on LLaMA-2 7B and Qwen3 8B models. Our experimental results show that LLMs mapped to HALO achieve up to 18x geometric mean speedup over AttAcc, an attention-optimized mapping and 2.5x over CENT, a fully CiD based mapping.
☆ AutoMaAS: Self-Evolving Multi-Agent Architecture Search for Large Language Models
Multi-agent systems powered by large language models have demonstrated remarkable capabilities across diverse domains, yet existing automated design approaches seek monolithic solutions that fail to adapt resource allocation based on query complexity and domain requirements. This paper introduces AutoMaAS, a self-evolving multi-agent architecture search framework that leverages neural architecture search principles to automatically discover optimal agent configurations through dynamic operator lifecycle management and automated machine learning techniques. Our approach incorporates four key innovations: (1) automatic operator generation, fusion, and elimination based on performance-cost analysis, (2) dynamic cost-aware optimization with real-time parameter adjustment, (3) online feedback integration for continuous architecture refinement, and (4) enhanced interpretability through decision tracing mechanisms. Extensive experiments across six benchmarks demonstrate that AutoMaAS achieves 1.0-7.1\% performance improvement while reducing inference costs by 3-5\% compared to state-of-the-art methods. The framework shows superior transferability across datasets and LLM backbones, establishing a new paradigm for automated multi-agent system design in the era of large language models.
☆ AgenticRAG: Tool-Augmented Foundation Models for Zero-Shot Explainable Recommender Systems
Foundation models have revolutionized artificial intelligence, yet their application in recommender systems remains limited by reasoning opacity and knowledge constraints. This paper introduces AgenticRAG, a novel framework that combines tool-augmented foundation models with retrieval-augmented generation for zero-shot explainable recommendations. Our approach integrates external tool invocation, knowledge retrieval, and chain-of-thought reasoning to create autonomous recommendation agents capable of transparent decision-making without task-specific training. Experimental results on three real-world datasets demonstrate that AgenticRAG achieves consistent improvements over state-of-the-art baselines, with NDCG@10 improvements of 0.4\% on Amazon Electronics, 0.8\% on MovieLens-1M, and 1.6\% on Yelp datasets. The framework exhibits superior explainability while maintaining computational efficiency comparable to traditional methods.
☆ TutorBench: A Benchmark To Assess Tutoring Capabilities Of Large Language Models
As students increasingly adopt large language models (LLMs) as learning aids, it is crucial to build models that are adept at handling the nuances of tutoring: they need to identify the core needs of students, be adaptive, provide personalized guidance, and be accurate. To this end, we introduce TutorBench, a dataset and evaluation benchmark designed to rigorously evaluate the core tutoring skills of LLMs. The dataset comprises 1,490 samples curated by human experts, focused on high-school and AP-level curricula. The samples are drawn from three common tutoring tasks: (i) generating adaptive explanations tailored to a student's confusion, (ii) providing actionable feedback on a student's work, and (iii) promoting active learning through effective hint generation. To account for the inherent complexity of tutoring, samples are accompanied by sample-specific rubrics which are used to judge model responses during evaluation. TutorBench uses a reliable and fine-grained automatic evaluation method that uses an LLM-judge and the sample-specific rubrics. We evaluate 16 frontier LLMs on TutorBench and present a detailed analysis of their performance and behavior. Our results show that none of the frontier LLMs achieve a score of greater than $56\%$, showing a large room for improvement. We find that LLMs fall short in exhibiting the full range of tutoring skills needed to guide, diagnose, and support students effectively, with all the frontier models achieving less than a $60\%$ pass rate on rubric criteria related to these skills. We also find that different model families exhibit varied strengths and limitations: the Claude models outperform others in supporting active learning, while they lag behind in the other two use cases. By releasing TutorBench, we provide a comprehensive and unsaturated benchmark to guide the development of the next-generation of AI tutors.
☆ When Researchers Say Mental Model/Theory of Mind of AI, What Are They Really Talking About?
When researchers claim AI systems possess ToM or mental models, they are fundamentally discussing behavioral predictions and bias corrections rather than genuine mental states. This position paper argues that the current discourse conflates sophisticated pattern matching with authentic cognition, missing a crucial distinction between simulation and experience. While recent studies show LLMs achieving human-level performance on ToM laboratory tasks, these results are based only on behavioral mimicry. More importantly, the entire testing paradigm may be flawed in applying individual human cognitive tests to AI systems, but assessing human cognition directly in the moment of human-AI interaction. I suggest shifting focus toward mutual ToM frameworks that acknowledge the simultaneous contributions of human cognition and AI algorithms, emphasizing the interaction dynamics, instead of testing AI in isolation.
☆ A Concept of Possibility for Real-World Events
This paper offers a new concept of {\it possibility} as an alternative to the now-a-days standard concept originally introduced by L.A. Zadeh in 1978. This new version was inspired by the original but, formally, has nothing in common with it other than that they both adopt the {\L}ukasiewicz multivalent interpretation of the logical connectives. Moreover, rather than seeking to provide a general notion of possibility, this focuses specifically on the possibility of a real-world event. An event is viewed as having prerequisites that enable its occurrence and constraints that may impede its occurrence, and the possibility of the event is computed as a function of the probabilities that the prerequisites hold and the constraints do not. This version of possibility might appropriately be applied to problems of planning. When there are multiple plans available for achieving a goal, this theory can be used to determine which plan is most possible, i.e., easiest or most feasible to complete. It is speculated that this model of reasoning correctly captures normal human reasoning about plans. The theory is elaborated and an illustrative example for vehicle route planning is provided. There is also a suggestion of potential future applications.
☆ Geolog-IA: Conversational System for Academic Theses
This study presents the development of Geolog-IA, a novel conversational system based on artificial intelligence that responds naturally to questions about geology theses from the Central University of Ecuador. Our proposal uses the Llama 3.1 and Gemini 2.5 language models, which are complemented by a Retrieval Augmented Generation (RAG) architecture and an SQLite database. This strategy allows us to overcome problems such as hallucinations and outdated knowledge. The evaluation of Geolog-IA's performance with the BLEU metric reaches an average of 0.87, indicating high consistency and accuracy in the responses generated. The system offers an intuitive, web-based interface that facilitates interaction and information retrieval for directors, teachers, students, and administrative staff at the institution. This tool can be a key support in education, training, and research and establishes a basis for future applications in other disciplines.
comment: 17 pages, in Spanish language
☆ Automatic Building Code Review: A Case Study
Building officials, particularly those in resource-constrained or rural jurisdictions, face labor-intensive, error-prone, and costly manual reviews of design documents as projects increase in size and complexity. The growing adoption of Building Information Modeling (BIM) and Large Language Models (LLMs) presents opportunities for automated code review (ACR) solutions. This study introduces a novel agent-driven framework that integrates BIM-based data extraction with automated verification using both retrieval-augmented generation (RAG) and Model Context Protocol (MCP) agent pipelines. The framework employs LLM-enabled agents to extract geometry, schedules, and system attributes from heterogeneous file types, which are then processed for building code checking through two complementary mechanisms: (1) direct API calls to the US Department of Energy COMcheck engine, providing deterministic and audit-ready outputs, and (2) RAG-based reasoning over rule provisions, enabling flexible interpretation where coverage is incomplete or ambiguous. The framework was evaluated through case demonstrations, including automated extraction of geometric attributes (such as surface area, tilt, and insulation values), parsing of operational schedules, and validation of lighting allowances under ASHRAE Standard 90.1-2022. Comparative performance tests across multiple LLMs showed that GPT-4o achieved the best balance of efficiency and stability, while smaller models exhibited inconsistencies or failures. Results confirm that MCP agent pipelines outperform RAG reasoning pipelines in rigor and reliability. This work advances ACR research by demonstrating a scalable, interoperable, and production-ready approach that bridges BIM with authoritative code review tools.
☆ A Trajectory Generator for High-Density Traffic and Diverse Agent-Interaction Scenarios
Accurate trajectory prediction is fundamental to autonomous driving, as it underpins safe motion planning and collision avoidance in complex environments. However, existing benchmark datasets suffer from a pronounced long-tail distribution problem, with most samples drawn from low-density scenarios and simple straight-driving behaviors. This underrepresentation of high-density scenarios and safety critical maneuvers such as lane changes, overtaking and turning is an obstacle to model generalization and leads to overly optimistic evaluations. To address these challenges, we propose a novel trajectory generation framework that simultaneously enhances scenarios density and enriches behavioral diversity. Specifically, our approach converts continuous road environments into a structured grid representation that supports fine-grained path planning, explicit conflict detection, and multi-agent coordination. Built upon this representation, we introduce behavior-aware generation mechanisms that combine rule-based decision triggers with Frenet-based trajectory smoothing and dynamic feasibility constraints. This design allows us to synthesize realistic high-density scenarios and rare behaviors with complex interactions that are often missing in real data. Extensive experiments on the large-scale Argoverse 1 and Argoverse 2 datasets demonstrate that our method significantly improves both agent density and behavior diversity, while preserving motion realism and scenario-level safety. Our synthetic data also benefits downstream trajectory prediction models and enhances performance in challenging high-density scenarios.
♻ ☆ Causal-Adapter: Taming Text-to-Image Diffusion for Faithful Counterfactual Generation
We present Causal-Adapter, a modular framework that adapts frozen text-to-image diffusion backbones for counterfactual image generation. Our method enables causal interventions on target attributes, consistently propagating their effects to causal dependents without altering the core identity of the image. In contrast to prior approaches that rely on prompt engineering without explicit causal structure, Causal-Adapter leverages structural causal modeling augmented with two attribute regularization strategies: prompt-aligned injection, which aligns causal attributes with textual embeddings for precise semantic control, and a conditioned token contrastive loss to disentangle attribute factors and reduce spurious correlations. Causal-Adapter achieves state-of-the-art performance on both synthetic and real-world datasets, with up to 91% MAE reduction on Pendulum for accurate attribute control and 87% FID reduction on ADNI for high-fidelity MRI image generation. These results show that our approach enables robust, generalizable counterfactual editing with faithful attribute modification and strong identity preservation.
comment: 9 pages, 26 figures
♻ ☆ Do AI Models Perform Human-like Abstract Reasoning Across Modalities?
OpenAI's o3-preview reasoning model exceeded human accuracy on the ARC-AGI benchmark, but does that mean state-of-the-art models recognize and reason with the abstractions that the task creators intended? We investigate models' abstraction abilities on ConceptARC. We evaluate models under settings that vary the input modality (textual vs. visual), whether the model is permitted to use external Python tools, and, for reasoning models, the amount of reasoning effort. In addition to measuring output accuracy, we perform fine-grained evaluation of the natural-language rules that models generate to explain their solutions. This dual evaluation lets us assess whether models solve tasks using the abstractions ConceptARC was designed to elicit, rather than relying on surface-level patterns. Our results show that, while some models using text-based representations match human output accuracy, the best models' rules are often based on surface-level ``shortcuts'' and capture intended abstractions far less often than humans. Thus their capabilities for general abstract reasoning may be overestimated by evaluations based on accuracy alone. In the visual modality, AI models' output accuracy drops sharply, yet our rule-level analysis reveals that models might be underestimated, as they still exhibit a substantial share of rules that capture intended abstractions, but are often unable to correctly apply these rules. In short, our results show that models still lag humans in abstract reasoning, and that using accuracy alone to evaluate abstract reasoning on ARC-like tasks may overestimate abstract-reasoning capabilities in textual modalities and underestimate it in visual modalities. We believe that our evaluation framework offers a more faithful picture of multimodal models' abstract reasoning abilities and a more principled way to track progress toward human-like, abstraction-centered intelligence.
comment: 10 pages, 4 figures
♻ ☆ VarCoNet: A variability-aware self-supervised framework for functional connectome extraction from resting-state fMRI
Accounting for inter-individual variability in brain function is key to precision medicine. Here, by considering functional inter-individual variability as meaningful data rather than noise, we introduce VarCoNet, an enhanced self-supervised framework for robust functional connectome (FC) extraction from resting-state fMRI (rs-fMRI) data. VarCoNet employs self-supervised contrastive learning to exploit inherent functional inter-individual variability, serving as a brain function encoder that generates FC embeddings readily applicable to downstream tasks even in the absence of labeled data. Contrastive learning is facilitated by a novel augmentation strategy based on segmenting rs-fMRI signals. At its core, VarCoNet integrates a 1D-CNN-Transformer encoder for advanced time-series processing, enhanced with a robust Bayesian hyperparameter optimization. Our VarCoNet framework is evaluated on two downstream tasks: (i) subject fingerprinting, using rs-fMRI data from the Human Connectome Project, and (ii) autism spectrum disorder (ASD) classification, using rs-fMRI data from the ABIDE I and ABIDE II datasets. Using different brain parcellations, our extensive testing against state-of-the-art methods, including 13 deep learning methods, demonstrates VarCoNet's superiority, robustness, interpretability, and generalizability. Overall, VarCoNet provides a versatile and robust framework for FC analysis in rs-fMRI.
♻ ☆ KAIROS: Unified Training for Universal Non-Autoregressive Time Series Forecasting
In the World Wide Web, reliable time series forecasts provide the forward-looking signals that drive resource planning, cache placement, and anomaly response, enabling platforms to operate efficiently as user behavior and content distributions evolve. Compared with other domains, time series forecasting for Web applications requires much faster responsiveness to support real-time decision making. We present KAIROS, a non-autoregressive time series forecasting framework that directly models segment-level multi-peak distributions. Unlike autoregressive approaches, KAIROS avoids error accumulation and achieves just-in-time inference, while improving over existing non-autoregressive models that collapse to over-smoothed predictions. Trained on the large-scale corpus, KAIROS demonstrates strong zero-shot generalization on six widely used benchmarks, delivering forecasting performance comparable to state-of-the-art foundation models with similar scale, at a fraction of their inference cost. Beyond empirical results, KAIROS highlights the importance of non-autoregressive design as a scalable paradigm for foundation models in time series.
♻ ☆ An Architecture for Spatial Networking
Physical spaces are increasingly dense with networked devices, promising seamless coordination and ambient intelligence. Yet today, cloud-first architectures force all communication through wide-area networks regardless of physical proximity. We lack an abstraction for spatial networking: using physical spaces to create boundaries for private, robust, and low-latency communication. We introduce $\textit{Bifr\"ost}$, a programming model that realizes spatial networking using bigraphs to express both containment and connectivity, enabling policies to be scoped by physical boundaries, devices to be named by location, the instantiation of spatial services, and the composition of spaces while maintaining local autonomy. Bifr\"ost enables a new class of spatially-aware applications, where co-located devices communicate directly, physical barriers require explicit gateways, and local control bridges to global coordination.
♻ ☆ SingMOS-Pro: An Comprehensive Benchmark for Singing Quality Assessment
Singing voice generation progresses rapidly, yet evaluating singing quality remains a critical challenge. Human subjective assessment, typically in the form of listening tests, is costly and time consuming, while existing objective metrics capture only limited perceptual aspects. In this work, we introduce SingMOS-Pro, a dataset for automatic singing quality assessment. Building on our preview version SingMOS, which provides only overall ratings, SingMOS-Pro expands annotations of the additional part to include lyrics, melody, and overall quality, offering broader coverage and greater diversity. The dataset contains 7,981 singing clips generated by 41 models across 12 datasets, spanning from early systems to recent advances. Each clip receives at least five ratings from professional annotators, ensuring reliability and consistency. Furthermore, we explore how to effectively utilize MOS data annotated under different standards and benchmark several widely used evaluation methods from related tasks on SingMOS-Pro, establishing strong baselines and practical references for future research. The dataset can be accessed at https://huggingface.co/datasets/TangRain/SingMOS-Pro.
comment: 4 pages, 5 figures;
♻ ☆ Pack and Force Your Memory: Long-form and Consistent Video Generation
Long-form video generation presents a dual challenge: models must capture long-range dependencies while preventing the error accumulation inherent in autoregressive decoding. To address these challenges, we make two contributions. First, for dynamic context modeling, we propose MemoryPack, a learnable context-retrieval mechanism that leverages both textual and image information as global guidance to jointly model short- and long-term dependencies, achieving minute-level temporal consistency. This design scales gracefully with video length, preserves computational efficiency, and maintains linear complexity. Second, to mitigate error accumulation, we introduce Direct Forcing, an efficient single-step approximating strategy that improves training-inference alignment and thereby curtails error propagation during inference. Together, MemoryPack and Direct Forcing substantially enhance the context consistency and reliability of long-form video generation, advancing the practical usability of autoregressive video models.
♻ ☆ Learning to Decide with Just Enough: Information-Theoretic Context Summarization for CMDPs
Contextual Markov Decision Processes (CMDPs) offer a framework for sequential decision-making under external signals, but existing methods often fail to generalize in high-dimensional or unstructured contexts, resulting in excessive computation and unstable performance. We propose an information-theoretic summarization approach that uses large language models (LLMs) to compress contextual inputs into low-dimensional, semantically rich summaries. These summaries augment states by preserving decision-critical cues while reducing redundancy. Building on the notion of approximate context sufficiency, we provide, to our knowledge, the first regret bounds and a latency-entropy trade-off characterization for CMDPs. Our analysis clarifies how informativeness impacts computational cost. Experiments across discrete, continuous, visual, and recommendation benchmarks show that our method outperforms raw-context and non-context baselines, improving reward, success rate, and sample efficiency, while reducing latency and memory usage. These findings demonstrate that LLM-based summarization offers a scalable and interpretable solution for efficient decision-making in context-rich, resource-constrained environments.
♻ ☆ Model Parallelism With Subnetwork Data Parallelism
Pre-training large neural networks at scale imposes heavy memory demands on accelerators and often requires costly communication. We introduce Subnetwork Data Parallelism (SDP), a distributed training framework that partitions a model into structured subnetworks trained across workers without exchanging activations. We study two complementary masking regimes: backward masking, which applies sparsity only in the backward step to retain unbiased gradients, and forward masking, which also removes parameters in the forward pass to deliver stronger efficiency gains while providing additional regularization. We further explore two subnetwork construction strategies: neuron level and block level, applied across both CNNs and transformers. In experiments spanning CNNs and transformers on CIFAR and ImageNet, as well as LLM pre-training on FineWeb, SDP reduces per-device memory usage by 30%-75% while maintaining or improving performance. Notably, in FLOP-matched settings, forward masking can sometimes achieve better performance.
comment: 10 pages, 2 figure
♻ ☆ Disentangling Multiplex Spatial-Temporal Transition Graph Representation Learning for Socially Enhanced POI Recommendation
Next Point-of-Interest (POI) recommendation is a research hotspot in business intelligence, where users' spatial-temporal transitions and social relationships play key roles. However, most existing works model spatial and temporal transitions separately, leading to misaligned representations of the same spatial-temporal key nodes. This misalignment introduces redundant information during fusion, increasing model uncertainty and reducing interpretability. To address this issue, we propose DiMuST, a socially enhanced POI recommendation model based on disentangled representation learning over multiplex spatial-temporal transition graphs. The model employs a novel Disentangled variational multiplex graph Auto-Encoder (DAE), which first disentangles shared and private distributions using a multiplex spatial-temporal graph strategy. It then fuses the shared features via a Product of Experts (PoE) mechanism and denoises the private features through contrastive constraints. The model effectively captures the spatial-temporal transition representations of POIs while preserving the intrinsic correlation of their spatial-temporal relationships. Experiments on two challenging datasets demonstrate that our DiMuST significantly outperforms existing methods across multiple metrics.
comment: The original paper has issues and has been restructured in the work; it is no longer suitable, so I am applying for withdrawal
♻ ☆ Understanding Adversarial Transfer: Why Representation-Space Attacks Fail Where Data-Space Attacks Succeed
The field of adversarial robustness has long established that adversarial examples can successfully transfer between image classifiers and that text jailbreaks can successfully transfer between language models (LMs). However, a pair of recent studies reported being unable to successfully transfer image jailbreaks between vision-language models (VLMs). To explain this striking difference, we propose a fundamental distinction regarding the transferability of attacks against machine learning models: attacks in the input data-space can transfer, whereas attacks in model representation space do not, at least not without geometric alignment of representations. We then provide theoretical and empirical evidence of this hypothesis in four different settings. First, we mathematically prove this distinction in a simple setting where two networks compute the same input-output map but via different representations. Second, we construct representation-space attacks against image classifiers that are as successful as well-known data-space attacks, but fail to transfer. Third, we construct representation-space attacks against LMs that successfully jailbreak the attacked models but again fail to transfer. Fourth, we construct data-space attacks against VLMs that successfully transfer to new VLMs, and we show that representation space attacks can transfer when VLMs' latent geometries are sufficiently aligned in post-projector space. Our work reveals that adversarial transfer is not an inherent property of all attacks but contingent on their operational domain - the shared data-space versus models' unique representation spaces - a critical insight for building more robust models.
♻ ☆ LLAMAFUZZ: Large Language Model Enhanced Greybox Fuzzing
Greybox fuzzing has achieved success in revealing bugs and vulnerabilities in programs. However, randomized mutation strategies have limited the fuzzer's performance on structured data. Specialized fuzzers can handle complex structured data, but require additional efforts in grammar and suffer from low throughput. In this paper, we explore the potential of utilizing the Large Language Model to enhance greybox fuzzing for structured data. We utilize the pre-trained knowledge of LLM about data conversion and format to generate new valid inputs. We further fine-tuned it with paired mutation seeds to learn structured format and mutation strategies effectively. Our LLM-based fuzzer, LLAMAFUZZ, integrates the power of LLM to understand and mutate structured data to fuzzing. We conduct experiments on the standard bug-based benchmark Magma and a wide variety of real-world programs. LLAMAFUZZ outperforms our top competitor by 41 bugs on average. We also identified 47 unique bugs across all trials. Moreover, LLAMAFUZZ demonstrated consistent performance on both bug trigger and bug reached. Compared to AFL++, LLAMAFUZZ achieved 27.19% more branches in real-world program sets on average. We also demonstrate a case study to explain how LLMs enhance the fuzzing process in terms of code coverage.
♻ ☆ MobiLLM: An Agentic AI Framework for Closed-Loop Threat Mitigation in 6G Open RANs
The evolution toward 6G networks is being accelerated by the Open Radio Access Network (O-RAN) paradigm -- an open, interoperable architecture that enables intelligent, modular applications across public telecom and private enterprise domains. While this openness creates unprecedented opportunities for innovation, it also expands the attack surface, demanding resilient, low-cost, and autonomous security solutions. Legacy defenses remain largely reactive, labor-intensive, and inadequate for the scale and complexity of next-generation systems. Current O-RAN applications focus mainly on network optimization or passive threat detection, with limited capability for closed-loop, automated response. To address this critical gap, we present an agentic AI framework for fully automated, end-to-end threat mitigation in 6G O-RAN environments. MobiLLM orchestrates security workflows through a modular multi-agent system powered by Large Language Models (LLMs). The framework features a Threat Analysis Agent for real-time data triage, a Threat Classification Agent that uses Retrieval-Augmented Generation (RAG) to map anomalies to specific countermeasures, and a Threat Response Agent that safely operationalizes mitigation actions via O-RAN control interfaces. Grounded in trusted knowledge bases such as the MITRE FiGHT framework and 3GPP specifications, and equipped with robust safety guardrails, MobiLLM provides a blueprint for trustworthy AI-driven network security. Initial evaluations demonstrate that MobiLLM can effectively identify and orchestrate complex mitigation strategies, significantly reducing response latency and showcasing the feasibility of autonomous security operations in 6G.
♻ ☆ Controlled Generation with Equivariant Variational Flow Matching
We derive a controlled generation objective within the framework of Variational Flow Matching (VFM), which casts flow matching as a variational inference problem. We demonstrate that controlled generation can be implemented two ways: (1) by way of end-to-end training of conditional generative models, or (2) as a Bayesian inference problem, enabling post hoc control of unconditional models without retraining. Furthermore, we establish the conditions required for equivariant generation and provide an equivariant formulation of VFM tailored for molecular generation, ensuring invariance to rotations, translations, and permutations. We evaluate our approach on both uncontrolled and controlled molecular generation, achieving state-of-the-art performance on uncontrolled generation and outperforming state-of-the-art models in controlled generation, both with end-to-end training and in the Bayesian inference setting. This work strengthens the connection between flow-based generative modeling and Bayesian inference, offering a scalable and principled framework for constraint-driven and symmetry-aware generation.
♻ ☆ MIRROR: Modular Internal Processing for Personalized Safety in LLM Dialogue
Large language models frequently generate harmful recommendations in personal multi-turn dialogue by ignoring user-specific safety context, exhibiting sycophantic agreement, and compromising user safety for larger group preferences. We introduce MIRROR, a modular production-focused architecture that prevents these failures through a persistent, bounded internal state that preserves personal conversational information across conversational turns. Our dual-component design inspired by Dual Process Theory separates immediate response generation (Talker) from asynchronous deliberative processing (Thinker), which synthesizes parallel reasoning threads between turns with marginal latency. On the CuRaTe personalized safety benchmark, MIRROR-augmented models achieve a 21% relative improvement (69% to 84%) across seven diverse frontier models, with open-source Llama 4 and Mistral 3 variants surpassing both GPT-4o and Claude 3.7 Sonnet at only \$0.0028 to \$0.0172 additional cost per turn, narrowing the gap between affordable open-source models to frontier systems in the safety space. The modular architecture enables flexible deployment: full internal processing for affordable models or single-component configurations for expensive systems, democratizing access to safer, personalized AI.
♻ ☆ FinAgentBench: A Benchmark Dataset for Agentic Retrieval in Financial Question Answering
Accurate information retrieval (IR) is critical in the financial domain, where investors must identify relevant information from large collections of documents. Traditional IR methods -- whether sparse or dense -- often fall short in retrieval accuracy, as it requires not only capturing semantic similarity but also performing fine-grained reasoning over document structure and domain-specific knowledge. Recent advances in large language models (LLMs) have opened up new opportunities for retrieval with multi-step reasoning, where the model ranks passages through iterative reasoning about which information is most relevant to a given query. However, there exists no benchmark to evaluate such capabilities in the financial domain. To address this gap, we introduce FinAgentBench, the first large-scale benchmark for evaluating retrieval with multi-step reasoning in finance -- a setting we term agentic retrieval. The benchmark consists of 26K expert-annotated examples on S&P-500 listed firms and assesses whether LLM agents can (1) identify the most relevant document type among candidates, and (2) pinpoint the key passage within the selected document. Our evaluation framework explicitly separates these two reasoning steps to address context limitations. This design enables to provide a quantitative basis for understanding retrieval-centric LLM behavior in finance. We evaluate a suite of state-of-the-art models and further demonstrated how targeted fine-tuning can significantly improve agentic retrieval performance. Our benchmark provides a foundation for studying retrieval-centric LLM behavior in complex, domain-specific tasks for finance.
comment: 6 pages
♻ ☆ Tuning LLM-based Code Optimization via Meta-Prompting: An Industrial Perspective
There is a growing interest in leveraging multiple large language models (LLMs) for automated code optimization. However, industrial platforms deploying multiple LLMs face a critical challenge: prompts optimized for one LLM often fail with others, requiring expensive model-specific prompt engineering. This cross-model prompt engineering bottleneck severely limits the practical deployment of multi-LLM systems in production environments. We introduce Meta-Prompted Code Optimization (MPCO), a framework that automatically generates high-quality, task-specific prompts across diverse LLMs while maintaining industrial efficiency requirements. MPCO leverages metaprompting to dynamically synthesize context-aware optimization prompts by integrating project metadata, task requirements, and LLM-specific contexts. It is an essential part of the ARTEMIS code optimization platform for automated validation and scaling. Our comprehensive evaluation on five real-world codebases with 366 hours of runtime benchmarking demonstrates MPCO's effectiveness: it achieves overall performance improvements up to 19.06% with the best statistical rank across all systems compared to baseline methods. Analysis shows that 96% of the top-performing optimizations stem from meaningful edits. Through systematic ablation studies and meta-prompter sensitivity analysis, we identify that comprehensive context integration is essential for effective meta-prompting and that major LLMs can serve effectively as meta-prompters, providing actionable insights for industrial practitioners.
comment: Accepted by ASE'25 Industry Showcase
♻ ☆ Leveraging Online Data to Enhance Medical Knowledge in a Small Persian Language Model
The rapid advancement of language models has demonstrated the potential of artificial intelligence in the healthcare industry. However, small language models struggle with specialized domains in low-resource languages like Persian. While numerous medical-domain websites exist in Persian, no curated dataset or corpus has been available making ours the first of its kind. This study introduces a newly curated dataset comprising 20k doctor-patient Q\&A pairs and 60\% of a 90-million-token crawled corpus from medical magazines. Using a parameter-efficient fine-tuning approach, we enhanced the medical knowledge of the baseline model, aya-expanse-8b. Benchmark evaluations demonstrate that the fine-tuned model achieves improved accuracy in medical question answering and successfully passed the Iranian Basic Medical Science Entrance Exam (IBSEE) in September 2023, which the baseline model did not. Additionally, the fine-tuned model improved Persian-translated MMLU accuracy by an average of 2.67\%. This work highlights the potential of leveraging open-access online data to enrich small language models in medical fields, providing a novel solution for Persian medical AI applications suitable for resource-constrained environments. Future research could explore multimodal input to further enhance performance.
comment: 8 pages, 7 figures
♻ ☆ Putnam-like dataset summary: LLMs as mathematical competition contestants
In this paper we summarize the results of the Putnam-like benchmark published by Google DeepMind. This dataset consists of 96 original problems in the spirit of the Putnam Competition and 576 solutions of LLMs. We analyse the performance of models on this set of problems to verify their ability to solve problems from mathematical contests.
comment: 11 pages, 11 figures
♻ ☆ RACCooN: A Versatile Instructional Video Editing Framework with Auto-Generated Narratives EMNLP 2025
Recent video generative models primarily rely on carefully written text prompts for specific tasks, like inpainting or style editing. They require labor-intensive textual descriptions for input videos, hindering their flexibility to adapt personal/raw videos to user specifications. This paper proposes RACCooN, a versatile and user-friendly video-to-paragraph-to-video generative framework that supports multiple video editing capabilities such as removal, addition, and modification, through a unified pipeline. RACCooN consists of two principal stages: Video-to-Paragraph (V2P) and Paragraph-to-Video (P2V). In the V2P stage, we automatically describe video scenes in well-structured natural language, capturing both the holistic context and focused object details. Subsequently, in the P2V stage, users can optionally refine these descriptions to guide the video diffusion model, enabling various modifications to the input video, such as removing, changing subjects, and/or adding new objects. The proposed approach stands out from other methods through several significant contributions: (1) RACCooN suggests a multi-granular spatiotemporal pooling strategy to generate well-structured video descriptions, capturing both the broad context and object details without requiring complex human annotations, simplifying precise video content editing based on text for users. (2) Our video generative model incorporates auto-generated narratives or instructions to enhance the quality and accuracy of the generated content. (3) RACCooN also plans to imagine new objects in a given video, so users simply prompt the model to receive a detailed video editing plan for complex video editing. The proposed framework demonstrates impressive versatile capabilities in video-to-paragraph generation, video content editing, and can be incorporated into other SoTA video generative models for further enhancement.
comment: EMNLP 2025 main; The first two authors contribute equally. Project Page: https://raccoon-mllm-gen.github.io/
♻ ☆ Comparing Exploration-Exploitation Strategies of LLMs and Humans: Insights from Standard Multi-armed Bandit Experiments
Large language models (LLMs) are increasingly used to simulate or automate human behavior in complex sequential decision-making settings. A natural question is then whether LLMs exhibit similar decision-making behavior to humans, and can achieve comparable (or superior) performance. In this work, we focus on the exploration-exploitation (E&E) tradeoff, a fundamental aspect of dynamic decision-making under uncertainty. We employ canonical multi-armed bandit (MAB) experiments introduced in the cognitive science and psychiatry literature to conduct a comparative study of the E&E strategies of LLMs, humans, and MAB algorithms. We use interpretable choice models to capture the E&E strategies of the agents and investigate how enabling thinking traces, through both prompting strategies and thinking models, shapes LLM decision-making. We find that enabling thinking in LLMs shifts their behavior toward more human-like behavior, characterized by a mix of random and directed exploration. In a simple stationary setting, thinking-enabled LLMs exhibit similar levels of random and directed exploration compared to humans. However, in more complex, non-stationary environments, LLMs struggle to match human adaptability, particularly in effective directed exploration, despite achieving similar regret in certain scenarios. Our findings highlight both the promise and limits of LLMs as simulators of human behavior and tools for automated decision-making and point to potential areas for improvement.
♻ ☆ Towards Economical Inference: Enabling DeepSeek's Multi-Head Latent Attention in Any Transformer-based LLMs ACL 2025
Multi-head Latent Attention (MLA) is an innovative architecture proposed by DeepSeek, designed to ensure efficient and economical inference by significantly compressing the Key-Value (KV) cache into a latent vector. Compared to MLA, standard LLMs employing Multi-Head Attention (MHA) and its variants such as Grouped-Query Attention (GQA) exhibit significant cost disadvantages. Enabling well-trained LLMs (e.g., Llama) to rapidly adapt to MLA without pre-training from scratch is both meaningful and challenging. This paper proposes the first data-efficient fine-tuning method for transitioning from MHA to MLA (MHA2MLA), which includes two key components: for partial-RoPE, we remove RoPE from dimensions of queries and keys that contribute less to the attention scores, for low-rank approximation, we introduce joint SVD approximations based on the pre-trained parameters of keys and values. These carefully designed strategies enable MHA2MLA to recover performance using only a small fraction (0.3% to 0.6%) of the data, significantly reducing inference costs while seamlessly integrating with compression techniques such as KV cache quantization. For example, the KV cache size of Llama2-7B is reduced by 92.19%, with only a 0.5% drop in LongBench performance.
comment: 16 pages, 8 figures; Accepted to ACL 2025
Less is More: Lean yet Powerful Vision-Language Model for Autonomous Driving
In this work, we reconceptualize autonomous driving as a generalized language and formulate the trajectory planning task as next waypoint prediction. We introduce Max-V1, a novel framework for one-stage end-to-end autonomous driving. Our framework presents a single-pass generation paradigm that aligns with the inherent sequentiality of driving. This approach leverages the generative capacity of the VLM (Vision-Language Model) to enable end-to-end trajectory prediction directly from front-view camera input. The efficacy of this method is underpinned by a principled supervision strategy derived from statistical modeling. This provides a well-defined learning objective, which makes the framework highly amenable to master complex driving policies through imitation learning from large-scale expert demonstrations. Empirically, our method achieves the state-of-the-art performance on the nuScenes dataset, delivers an overall improvement of over 30% compared to prior baselines. Furthermore, it exhibits superior generalization performance on cross-domain datasets acquired from diverse vehicles, demonstrating notable potential for cross-vehicle robustness and adaptability. Due to these empirical strengths, this work introduces a model enabling fundamental driving behaviors, laying the foundation for the development of more capable self-driving agents. Code will be available upon publication.
♻ ☆ Dual-Stage Reweighted MoE for Long-Tailed Egocentric Mistake Detection
In this report, we address the problem of determining whether a user performs an action incorrectly from egocentric video data. To handle the challenges posed by subtle and infrequent mistakes, we propose a Dual-Stage Reweighted Mixture-of-Experts (DR-MoE) framework. In the first stage, features are extracted using a frozen ViViT model and a LoRA-tuned ViViT model, which are combined through a feature-level expert module. In the second stage, three classifiers are trained with different objectives: reweighted cross-entropy to mitigate class imbalance, AUC loss to improve ranking under skewed distributions, and label-aware loss with sharpness-aware minimization to enhance calibration and generalization. Their predictions are fused using a classification-level expert module. The proposed method achieves strong performance, particularly in identifying rare and ambiguous mistake instances. The code is available at https://github.com/boyuh/DR-MoE.
♻ ☆ Efficient & Correct Predictive Equivalence for Decision Trees
The Rashomon set of decision trees (DTs) finds importance uses. Recent work showed that DTs computing the same classification function, i.e. predictive equivalent DTs, can represent a significant fraction of the Rashomon set. Such redundancy is undesirable. For example, feature importance based on the Rashomon set becomes inaccurate due the existence of predictive equivalent DTs, i.e. DTs with the same prediction for every possible input. In recent work, McTavish et al. proposed solutions for several computational problems related with DTs, including that of deciding predictive equivalent DTs. The approach of McTavish et al. consists of applying the well-known method of Quine-McCluskey (QM) for obtaining minimum-size DNF (disjunctive normal form) representations of DTs, which are then used for comparing DTs for predictive equivalence. Furthermore, the minimum-size DNF representation was also applied to computing explanations for the predictions made by DTs, and to finding predictions in the presence of missing data. However, the problem of formula minimization is hard for the second level of the polynomial hierarchy, and the QM method may exhibit worst-case exponential running time and space. This paper first demonstrates that there exist decision trees that trigger the worst-case exponential running time and space of the QM method. Second, the paper shows that the QM method may incorrectly decide predictive equivalence, if two key constraints are not respected, and one may be difficult to formally guarantee. Third, the paper shows that any of the problems to which the smallest DNF representation has been applied to can be solved in polynomial time, in the size of the DT. The experiments confirm that, for DTs for which the worst-case of the QM method is triggered, the algorithms proposed in this paper are orders of magnitude faster than the ones proposed by McTavish et al.
♻ ☆ RelayFormer: A Unified Local-Global Attention Framework for Scalable Image and Video Manipulation Localization
Visual manipulation localization (VML) aims to identify tampered regions in images and videos, a task that has become increasingly challenging with the rise of advanced editing tools. Existing methods face two main issues: resolution diversity, where resizing or padding distorts forensic traces and reduces efficiency, and the modality gap, as images and videos often require separate models. To address these challenges, we propose RelayFormer, a unified framework that adapts to varying resolutions and modalities. RelayFormer partitions inputs into fixed-size sub-images and introduces Global-Local Relay (GLR) tokens, which propagate structured context through a global-local relay attention (GLRA) mechanism. This enables efficient exchange of global cues, such as semantic or temporal consistency, while preserving fine-grained manipulation artifacts. Unlike prior methods that rely on uniform resizing or sparse attention, RelayFormer naturally scales to arbitrary resolutions and video sequences without excessive overhead. Experiments across diverse benchmarks demonstrate that RelayFormer achieves state-of-the-art performance with notable efficiency, combining resolution adaptivity without interpolation or excessive padding, unified modeling for both images and videos, and a strong balance between accuracy and computational cost. Code is available at: https://github.com/WenOOI/RelayFormer.
♻ ☆ Permissioned LLMs: Enforcing Access Control in Large Language Models
In enterprise settings, organizational data is segregated, siloed and carefully protected by elaborate access control frameworks. These access control structures can completely break down if an LLM fine-tuned on the siloed data serves requests, for downstream tasks, from individuals with disparate access privileges. We propose Permissioned LLMs (PermLLM), a new class of LLMs that superimpose the organizational data access control structures on query responses they generate. We formalize abstractions underpinning the means to determine whether access control enforcement happens correctly over LLM query responses. Our formalism introduces the notion of a relevant response that can be used to prove whether a PermLLM mechanism has been implemented correctly. We also introduce a novel metric, called access advantage, to empirically evaluate the efficacy of a PermLLM mechanism. We introduce three novel PermLLM mechanisms that build on Parameter Efficient Fine-Tuning to achieve the desired access control. We furthermore present two instantiations of access advantage--(i) Domain Distinguishability Index (DDI) based on Membership Inference Attacks, and (ii) Utility Gap Index (UGI) based on LLM utility evaluation. We demonstrate the efficacy of our PermLLM mechanisms through extensive experiments on five public datasets (GPQA, RCV1, SimpleQA, WMDP, and PubMedQA), in addition to evaluating the validity of DDI and UGI metrics themselves for quantifying access control in LLMs.
♻ ☆ A Survey of Deep Learning for Complex Speech Spectrograms
Recent advancements in deep learning have significantly impacted the field of speech signal processing, particularly in the analysis and manipulation of complex spectrograms. This survey provides a comprehensive overview of the state-of-the-art techniques leveraging deep neural networks for processing complex spectrograms, which encapsulate both magnitude and phase information. We begin by introducing complex spectrograms and their associated features for various speech processing tasks. Next, we examine the key components and architectures of complex-valued neural networks, which are specifically designed to handle complex-valued data and have been applied to complex spectrogram processing. As recent studies have primarily focused on applying real-valued neural networks to complex spectrograms, we revisit these approaches and their architectural designs. We then discuss various training strategies and loss functions tailored for training neural networks to process and model complex spectrograms. The survey further examines key applications, including phase retrieval, speech enhancement, and speaker separation, where deep learning has achieved significant progress by leveraging complex spectrograms or their derived feature representations. Additionally, we examine the intersection of complex spectrograms with generative models. This survey aims to serve as a valuable resource for researchers and practitioners in the field of speech signal processing, deep learning and related fields.
♻ ☆ Improved Monte Carlo Planning via Causal Disentanglement for Structurally-Decomposed Markov Decision Processes
Markov Decision Processes (MDPs), as a general-purpose framework, often overlook the benefits of incorporating the causal structure of the transition and reward dynamics. For a subclass of resource allocation problems, we introduce the Structurally Decomposed MDP (SD-MDP), which leverages causal disentanglement to partition an MDP's temporal causal graph into independent components. By exploiting this disentanglement, SD-MDP enables dimensionality reduction and computational efficiency gains in optimal value function estimation. We reduce the sequential optimization problem to a fractional knapsack problem with log-linear complexity $O(T \log T)$, outperforming traditional stochastic programming methods that exhibit polynomial complexity with respect to the time horizon $T$. Additionally, SD-MDP's computational advantages are independent of state-action space size, making it viable for high-dimensional spaces. Furthermore, our approach integrates seamlessly with Monte Carlo Tree Search (MCTS), achieving higher expected rewards under constrained simulation budgets while providing a vanishing simple regret bound. Empirical results demonstrate superior policy performance over benchmarks across various logistics and finance domains.
comment: Conference Paper. 7th International Conference on Distributed Artificial Intelligence (DAI)
♻ ☆ Better by Comparison: Retrieval-Augmented Contrastive Reasoning for Automatic Prompt Optimization
Automatic prompt optimization has recently emerged as a strategy for improving the quality of prompts used in Large Language Models (LLMs), with the goal of generating more accurate and useful responses. However, most prior work focuses on direct prompt refinement or model fine-tuning, overlooking the potential of leveraging LLMs' inherent reasoning capability to learn from contrasting examples. In this paper, we present Contrastive Reasoning Prompt Optimization (CRPO), a novel framework that formulates prompt optimization as a retrieval-augmented reasoning process. Our approach retrieves top k reference prompt-response pairs from the HelpSteer2 dataset, an open source collection where each response is annotated for helpfulness, correctness, coherence, complexity, and verbosity, and constructs two complementary optimization paradigms: (1) tiered contrastive reasoning, where the LLM compares high-, medium-, and low-quality exemplars (both prompts and responses) to refine its own generation through reflective reasoning, and (2) multi-metric contrastive reasoning, where the LLM analyzes the best exemplars along each evaluation dimension and integrates their strengths into an optimized prompt. By explicitly contrasting high and low quality exemplars, CRPO enables the model to deduce why certain prompts succeed while others fail, thereby achieving more robust and interpretable optimization. Experimental results on the HelpSteer2 benchmark demonstrate that CRPO significantly outperforms baselines. Our findings highlight the promise of contrastive, retrieval-augmented reasoning for advancing automatic prompt optimization.
comment: Preprint
♻ ☆ Rethinking the Vulnerability of Concept Erasure and a New Method
The proliferation of text-to-image diffusion models has raised significant privacy and security concerns, particularly regarding the generation of copyrighted or harmful images. In response, concept erasure (defense) methods have been developed to "unlearn" specific concepts through post-hoc finetuning. However, recent concept restoration (attack) methods have demonstrated that these supposedly erased concepts can be recovered using adversarially crafted prompts, revealing a critical vulnerability in current defense mechanisms. In this work, we first investigate the fundamental sources of adversarial vulnerability and reveal that vulnerabilities are pervasive in the prompt embedding space of concept-erased models, a characteristic inherited from the original pre-unlearned model. Furthermore, we introduce **RECORD**, a novel coordinate-descent-based restoration algorithm that consistently outperforms existing restoration methods by up to 17.8 times. We conduct extensive experiments to assess its compute-performance tradeoff and propose acceleration strategies.
♻ ☆ DatawiseAgent: A Notebook-Centric LLM Agent Framework for Adaptive and Robust Data Science Automation EMNLP 2025
Existing large language model (LLM) agents for automating data science show promise, but they remain constrained by narrow task scopes, limited generalization across tasks and models, and over-reliance on state-of-the-art (SOTA) LLMs. We introduce DatawiseAgent, a notebook-centric LLM agent framework for adaptive and robust data science automation. Inspired by how human data scientists work in computational notebooks, DatawiseAgent introduces a unified interaction representation and a multi-stage architecture based on finite-state transducers (FSTs). This design enables flexible long-horizon planning, progressive solution development, and robust recovery from execution failures. Extensive experiments across diverse data science scenarios and models show that DatawiseAgent consistently achieves SOTA performance by surpassing strong baselines such as AutoGen and TaskWeaver, demonstrating superior effectiveness and adaptability. Further evaluations reveal graceful performance degradation under weaker or smaller models, underscoring the robustness and scalability.
comment: The camera-ready version for EMNLP 2025 Main Conference
♻ ☆ THOR: Tool-Integrated Hierarchical Optimization via RL for Mathematical Reasoning
Large Language Models (LLMs) have made remarkable progress in mathematical reasoning, but still continue to struggle with high-precision tasks like numerical computation and formal symbolic manipulation. Integrating external tools has emerged as a promising approach to bridge this gap. Despite recent advances, existing methods struggle with three key challenges: constructing tool-integrated reasoning data, performing fine-grained optimization, and enhancing inference. To overcome these limitations, we propose THOR (Tool-Integrated Hierarchical Optimization via RL). First, we introduce TIRGen, a multi-agent actor-critic-based pipeline for constructing high-quality datasets of tool-integrated reasoning paths, aligning with the policy and generalizing well across diverse models. Second, to perform fine-grained hierarchical optimization, we introduce an RL strategy that jointly optimizes for both episode-level problem solving and step-level code generation. This is motivated by our key insight that the success of an intermediate tool call is a strong predictor of the final answer's correctness. Finally, THOR incorporates a self-correction mechanism that leverages immediate tool feedback to dynamically revise erroneous reasoning paths during inference. Our approach demonstrates strong generalization across diverse models, performing effectively in both reasoning and non-reasoning models. It further achieves state-of-the-art performance for models of a similar scale on multiple mathematical benchmarks, while also delivering consistent improvements on code benchmarks. Our code will be publicly available at https://github.com/JingMog/THOR.
comment: 22 pages, 13 figures
♻ ☆ A Survey of Pun Generation: Datasets, Evaluations and Methodologies EMNLP 2025
Pun generation seeks to creatively modify linguistic elements in text to produce humour or evoke double meanings. It also aims to preserve coherence and contextual appropriateness, making it useful in creative writing and entertainment across various media and contexts. Although pun generation has received considerable attention in computational linguistics, there is currently no dedicated survey that systematically reviews this specific area. To bridge this gap, this paper provides a comprehensive review of pun generation datasets and methods across different stages, including conventional approaches, deep learning techniques, and pre-trained language models. Additionally, we summarise both automated and human evaluation metrics used to assess the quality of pun generation. Finally, we discuss the research challenges and propose promising directions for future work.
comment: Accepted to EMNLP 2025 Findings
♻ ☆ OffTopicEval: When Large Language Models Enter the Wrong Chat, Almost Always!
Large Language Model (LLM) safety is one of the most pressing challenges for enabling wide-scale deployment. While most studies and global discussions focus on generic harms, such as models assisting users in harming themselves or others, enterprises face a more fundamental concern: whether LLM-based agents are safe for their intended use case. To address this, we introduce operational safety, defined as an LLM's ability to appropriately accept or refuse user queries when tasked with a specific purpose. We further propose OffTopicEval, an evaluation suite and benchmark for measuring operational safety both in general and within specific agentic use cases. Our evaluations on six model families comprising 20 open-weight LLMs reveal that while performance varies across models, all of them remain highly operationally unsafe. Even the strongest models - Qwen-3 (235B) with 77.77% and Mistral (24B) with 79.96% - fall far short of reliable operational safety, while GPT models plateau in the 62-73% range, Phi achieves only mid-level scores (48-70%), and Gemma and Llama-3 collapse to 39.53% and 23.84%, respectively. While operational safety is a core model alignment issue, to suppress these failures, we propose prompt-based steering methods: query grounding (Q-ground) and system-prompt grounding (P-ground), which substantially improve OOD refusal. Q-ground provides consistent gains of up to 23%, while P-ground delivers even larger boosts, raising Llama-3.3 (70B) by 41% and Qwen-3 (30B) by 27%. These results highlight both the urgent need for operational safety interventions and the promise of prompt-based steering as a first step toward more reliable LLM-based agents.
♻ ☆ Not a nuisance but a useful heuristic: Outlier dimensions favor frequent tokens in language models
We study last-layer outlier dimensions, i.e. dimensions that display extreme activations for the majority of inputs. We show that outlier dimensions arise in many different modern language models, and trace their function back to the heuristic of constantly predicting frequent words. We further show how a model can block this heuristic when it is not contextually appropriate, by assigning a counterbalancing weight mass to the remaining dimensions, and we investigate which model parameters boost outlier dimensions and when they arise during training. We conclude that outlier dimensions are a specialized mechanism discovered by many distinct models to implement a useful token prediction heuristic.
comment: Published as workshop paper at BlackBox NLP 2025
♻ ☆ GPT and Prejudice: A Sparse Approach to Understanding Learned Representations in Large Language Models
As large language models (LLMs) are increasingly trained on massive, uncurated corpora, understanding both model representations and the data they internalize has become a major challenge. In this work, we show that pairing LLMs with sparse autoencoders (SAEs) enables interpretation not only of model behavior but also of the deeper structures, themes, and biases embedded in the training data. We train a GPT-style transformer model exclusively on the novels of Jane Austen, a corpus rich in social constructs and narrative patterns. We then apply SAEs to hidden states across multiple layers, uncovering sparse, interpretable features that reflect the key narratives and concepts present in the corpus, including gender, class, and societal duty. Our findings demonstrate that LLMs combined with SAEs can act as scalable probes into complex datasets, offering a new path for corpus exploration, bias discovery, and model interpretability at scale.
comment: Preprint. Draft version, subject to revision
♻ ☆ MTRec: Learning to Align with User Preferences via Mental Reward Models
Recommendation models are predominantly trained using implicit user feedback, since explicit feedback is often costly to obtain. However, implicit feedback, such as clicks, does not always reflect users' real preferences. For example, a user might click on a news article because of its attractive headline, but end up feeling uncomfortable after reading the content. In the absence of explicit feedback, such erroneous implicit signals may severely mislead recommender systems. In this paper, we propose MTRec, a novel sequential recommendation framework designed to align with real user preferences by uncovering their internal satisfaction on recommended items. Specifically, we introduce a mental reward model to quantify user satisfaction and propose a distributional inverse reinforcement learning approach to learn it. The learned mental reward model is then used to guide recommendation models to better align with users' real preferences. Our experiments show that MTRec brings significant improvements to a variety of recommendation models. We also deploy MTRec on an industrial short video platform and observe a 7 percent increase in average user viewing time.
♻ ☆ Efficient Preimage Approximation for Neural Network Certification
The growing reliance on artificial intelligence in safety- and security-critical applications demands effective neural network certification. A challenging real-world use case is "patch attacks", where adversarial patches or lighting conditions obscure parts of images, for example, traffic signs. A significant step towards certification against patch attacks was recently achieved using PREMAP, which uses under- and over-approximations of the preimage, the set of inputs that lead to a specified output, for the certification. While the PREMAP approach is versatile, it is currently limited to fully-connected neural networks of moderate dimensionality. In order to tackle broader real-world use cases, we present novel algorithmic extensions to PREMAP involving tighter bounds, adaptive Monte Carlo sampling, and improved branching heuristics. Firstly, we demonstrate that these efficiency improvements significantly outperform the original PREMAP and enable scaling to convolutional neural networks that were previously intractable. Secondly, we showcase the potential of preimage approximation methodology for analysing and certifying reliability and robustness on a range of use cases from computer vision and control.
comment: Code available at https://github.com/Anton-Bjorklund/Premap2
♻ ☆ Enhancing LLM Steering through Sparse Autoencoder-Based Vector Refinement
Steering has emerged as a promising approach in controlling large language models (LLMs) without modifying model parameters. However, most existing steering methods rely on large-scale datasets to learn clear behavioral information, which limits their applicability in many real-world scenarios. The steering vectors extracted from small dataset often contain task-irrelevant noising features, which degrades their effectiveness. To refine the steering vectors learned from limited data, we introduce Refinement of Steering Vector via Sparse Autoencoder (SAE-RSV) that leverages SAEs to semantically denoise and augment the steering vectors. In our framework, we first remove task-irrelevant features according to their semantics provided by SAEs, and then enrich task-relevant features missing from the small dataset through their semantic similarity to the identified relevant features. Extensive experiments demonstrate that the proposed SAE-RSV substantially outperforms all the baseline methods including supervised fine-tuning. Our findings show that effective steering vector can be constructed from limited training data by refining the original steering vector through SAEs.
comment: 19 pages, 11 figures, 7 tables
♻ ☆ LayerCake: Token-Aware Contrastive Decoding within Large Language Model Layers
Large language models (LLMs) excel at natural language understanding and generation but remain vulnerable to factual errors, limiting their reliability in knowledge-intensive tasks. While decoding-time strategies provide a promising efficient solution without training, existing methods typically treat token-level and layer-level signals in isolation, overlooking the joint dynamics between them. In this work, we introduce a token-aware, layer-localized contrastive decoding method that aligns specific token types with their most influential transformer layers to improve factual generation. Through empirical attention analysis, we identify two key patterns: punctuation tokens receive dominant attention in early layers, while conceptual tokens govern semantic reasoning in intermediate layers. By selectively suppressing attention to these token types at their respective depths, we achieve the induction of controlled factual degradation and derive contrastive signals to guide the final factual decoding. Our method requires no additional training or model modification, and experiments demonstrate that our method consistently improves factuality across multiple LLMs and various benchmarks.
comment: The submission was made before undergoing the required review by the co-authors' affiliated institutions. We are withdrawing the paper to allow for the completion of the institutional review process
♻ ☆ ViLBias: Detecting and Reasoning about Bias in Multimodal Content
Detecting bias in multimodal news requires models that reason over text--image pairs, not just classify text. In response, we present ViLBias, a VQA-style benchmark and framework for detecting and reasoning about bias in multimodal news. The dataset comprises 40,945 text--image pairs from diverse outlets, each annotated with a bias label and concise rationale using a two-stage LLM-as-annotator pipeline with hierarchical majority voting and human-in-the-loop validation. We evaluate Small Language Models (SLMs), Large Language Models (LLMs), and Vision--Language Models (VLMs) across closed-ended classification and open-ended reasoning (oVQA), and compare parameter-efficient tuning strategies. Results show that incorporating images alongside text improves detection accuracy by 3--5\%, and that LLMs/VLMs better capture subtle framing and text--image inconsistencies than SLMs. Parameter-efficient methods (LoRA/QLoRA/Adapters) recover 97--99\% of full fine-tuning performance with $<5\%$ trainable parameters. For oVQA, reasoning accuracy spans 52--79\% and faithfulness 68--89\%, both improved by instruction tuning; closed accuracy correlates strongly with reasoning ($r = 0.91$). ViLBias offers a scalable benchmark and strong baselines for multimodal bias detection and rationale quality.
comment: Under review
♻ ☆ Graph Neural Networks for Transmission Grid Topology Control: Busbar Information Asymmetry and Heterogeneous Representations
Factors such as the proliferation of renewable energy and electrification contribute to grid congestion as a pressing problem. Topology control is an appealing method for relieving congestion, but traditional approaches for topology discovery have proven too slow for practical application. Recent research has focused on machine learning (ML) as an efficient alternative. Graph neural networks (GNNs) are particularly well-suited for topology control applications due to their ability to model the graph structure of power grids. This study investigates the effect of the graph representation on GNN effectiveness for topology control. We identify the busbar information asymmetry problem inherent to the popular homogeneous graph representation. We propose a heterogeneous graph representation that resolves this problem. We apply GNNs with both representations and a fully connected neural network (FCNN) baseline on an imitation learning task. The models are evaluated by classification accuracy and grid operation ability. We find that heterogeneous GNNs perform best on in-distribution network configurations, followed by FCNNs, and lastly, homogeneous GNNs. We also find that both GNN types generalize better to out-of-distribution network configurations than FCNNs.
comment: 31 pages, 9 figures. Submitted to Applied Energy. Previous versions were uploaded to arXiv with the title "Generalizable Graph Neural Networks for Robust Power Grid Topology Control"
♻ ☆ AlignDiT: Multimodal Aligned Diffusion Transformer for Synchronized Speech Generation
In this paper, we address the task of multimodal-to-speech generation, which aims to synthesize high-quality speech from multiple input modalities: text, video, and reference audio. This task has gained increasing attention due to its wide range of applications, such as film production, dubbing, and virtual avatars. Despite recent progress, existing methods still suffer from limitations in speech intelligibility, audio-video synchronization, speech naturalness, and voice similarity to the reference speaker. To address these challenges, we propose AlignDiT, a multimodal Aligned Diffusion Transformer that generates accurate, synchronized, and natural-sounding speech from aligned multimodal inputs. Built upon the in-context learning capability of the DiT architecture, AlignDiT explores three effective strategies to align multimodal representations. Furthermore, we introduce a novel multimodal classifier-free guidance mechanism that allows the model to adaptively balance information from each modality during speech synthesis. Extensive experiments demonstrate that AlignDiT significantly outperforms existing methods across multiple benchmarks in terms of quality, synchronization, and speaker similarity. Moreover, AlignDiT exhibits strong generalization capability across various multimodal tasks, such as video-to-speech synthesis and visual forced alignment, consistently achieving state-of-the-art performance. The demo page is available at https://mm.kaist.ac.kr/projects/AlignDiT.
comment: ACM Multimedia 2025
♻ ☆ Quantum-RAG and PunGPT2: Advancing Low-Resource Language Generation and Retrieval for the Punjabi Language
Despite rapid advances in large language models (LLMs), low-resource languages remain excluded from NLP, limiting digital access for millions. We present PunGPT2, the first fully open-source Punjabi generative model suite, trained on a 35GB corpus covering literature, religious texts, news, social discourse, etc. PunGPT2 captures Punjabi's syntactic and morphological richness through a tokenizer optimized for Gurmukhi and Shahmukhi scripts. We introduce Pun-RAG, a retrieval-augmented framework integrating PunGPT2 with a FAISS retriever over a curated Punjabi knowledge base, and Pun-Instruct, an instruction-tuned variant using QLoRA for robust zero-shot summarization, translation, and question answering. Our key innovation, Quantum-RAG, fuses sparse, dense, and quantum kernel embeddings for efficient, context-aware retrieval with low memory overhead, marking the first practical quantum-inspired retrieval in a low-resource LLM. Our models outperform multilingual baselines (mBERT, mT5, MuRIL, BLOOM) on FLORES-200, IndicGenBench, and a new PunjabiEval suite. Quantum-RAG yields +7.4 Recall@10 over FAISS and +3.5 BLEU over mT5 on PunjabiEval. We publicly release all training scripts, hyperparameters, evaluation pipelines, the 35GB Punjabi corpus, the PunjabiEval benchmark, and all model weights, establishing new state-of-the-art results for Punjabi language generation and retrieval.
♻ ☆ SelfBudgeter: Adaptive Token Allocation for Efficient LLM Reasoning
While reasoning models demonstrate exceptional performance on complex tasks, they often exhibit tendencies of overthinking on simple problems. This phenomenon not only leads to excessive computational resource consumption but also significantly degrades user experience. To address this challenge, we propose SelfBudgeter - a novel user-friendly adaptive controllable reasoning framework that incorporates a budget estimation mechanism prior to reasoning. The framework adopts a dual-phase training paradigm: during the cold-start phase, the model learns to predict token budgets before executing reasoning in a standardized format; in the reinforcement learning phase, the model is trained to autonomously plan budgets based on problem difficulty and strictly adhere to them when generating responses. Since the model outputs budget estimates at the initial stage, users can immediately anticipate waiting duration, enabling flexible decisions on whether to interrupt or continue the generation process. Notably, our method supports manual control of reasoning length through pre-filled budget fields. Experimental results demonstrate that SelfBudgeter can dynamically allocate budgets according to problem complexity, yielding an average response length compression of 61% for the 1.5B model on GSM8K, MATH500, and AIME2025, and 48% for the 7B model, while maintaining nearly undiminished accuracy.
♻ ☆ XBreaking: Explainable Artificial Intelligence for Jailbreaking LLMs
Large Language Models are fundamental actors in the modern IT landscape dominated by AI solutions. However, security threats associated with them might prevent their reliable adoption in critical application scenarios such as government organizations and medical institutions. For this reason, commercial LLMs typically undergo a sophisticated censoring mechanism to eliminate any harmful output they could possibly produce. In response to this, LLM Jailbreaking is a significant threat to such protections, and many previous approaches have already demonstrated its effectiveness across diverse domains. Existing jailbreak proposals mostly adopt a generate-and-test strategy to craft malicious input. To improve the comprehension of censoring mechanisms and design a targeted jailbreak attack, we propose an Explainable-AI solution that comparatively analyzes the behavior of censored and uncensored models to derive unique exploitable alignment patterns. Then, we propose XBreaking, a novel jailbreak attack that exploits these unique patterns to break the security constraints of LLMs by targeted noise injection. Our thorough experimental campaign returns important insights about the censoring mechanisms and demonstrates the effectiveness and performance of our attack.
♻ ☆ Manipulating 3D Molecules in a Fixed-Dimensional E(3)-Equivariant Latent Space NeurIPS 2025
Medicinal chemists often optimize drugs considering their 3D structures and designing structurally distinct molecules that retain key features, such as shapes, pharmacophores, or chemical properties. Previous deep learning approaches address this through supervised tasks like molecule inpainting or property-guided optimization. In this work, we propose a flexible zero-shot molecule manipulation method by navigating in a shared latent space of 3D molecules. We introduce a Variational AutoEncoder (VAE) for 3D molecules, named MolFLAE, which learns a fixed-dimensional, E(3)-equivariant latent space independent of atom counts. MolFLAE encodes 3D molecules using an E(3)-equivariant neural network into fixed number of latent nodes, distinguished by learned embeddings. The latent space is regularized, and molecular structures are reconstructed via a Bayesian Flow Network (BFN) conditioned on the encoder's latent output. MolFLAE achieves competitive performance on standard unconditional 3D molecule generation benchmarks. Moreover, the latent space of MolFLAE enables zero-shot molecule manipulation, including atom number editing, structure reconstruction, and coordinated latent interpolation for both structure and properties. We further demonstrate our approach on a drug optimization task for the human glucocorticoid receptor, generating molecules with improved hydrophilicity while preserving key interactions, under computational evaluations. These results highlight the flexibility, robustness, and real-world utility of our method, opening new avenues for molecule editing and optimization.
comment: This version (v2) includes minor edits. The paper has been accepted to NeurIPS 2025. Code is available at: https://github.com/MuZhao2333/MolFLAE
♻ ☆ Towards Quantifying Long-Range Interactions in Graph Machine Learning: a Large Graph Dataset and a Measurement
Long-range dependencies are critical for effective graph representation learning, yet most existing datasets focus on small graphs tailored to inductive tasks, offering limited insight into long-range interactions. Current evaluations primarily compare models employing global attention (e.g., graph transformers) with those using local neighborhood aggregation (e.g., message-passing neural networks) without a direct measurement of long-range dependency. In this work, we introduce City-Networks, a novel large-scale transductive learning dataset derived from real-world city road networks. This dataset features graphs with over 100k nodes and significantly larger diameters than those in existing benchmarks, naturally embodying long-range information. We annotate the graphs based on local node eccentricities, ensuring that the classification task inherently requires information from distant nodes. Furthermore, we propose a model-agnostic measurement based on the Jacobians of neighbors from distant hops, offering a principled quantification of long-range dependencies. Finally, we provide theoretical justifications for both our dataset design and the proposed measurement-particularly by focusing on over-smoothing and influence score dilution-which establishes a robust foundation for further exploration of long-range interactions in graph neural networks.
comment: work in progress
♻ ☆ PropRAG: Guiding Retrieval with Beam Search over Proposition Paths EMNLP 2025
Retrieval Augmented Generation (RAG) has become the standard approach for equipping Large Language Models (LLMs) with up-to-date knowledge. However, standard RAG, relying on independent passage retrieval, often fails to capture the interconnected nature of information required for complex, multi-hop reasoning. While structured RAG methods attempt to address this using knowledge graphs built from triples, we argue that the inherent context loss of triples (context collapse) limits the fidelity of the knowledge representation. We introduce PropRAG, a novel RAG framework that shifts from triples to context-rich propositions and introduces an efficient, LLM-free online beam search over proposition paths to discover multi-step reasoning chains. By coupling a higher-fidelity knowledge representation with explicit path discovery, PropRAG achieves state-of-the-art zero-shot Recall@5 and F1 scores on 2Wiki, HotpotQA, and MuSiQue, advancing non-parametric knowledge integration by improving evidence retrieval through richer representation and efficient reasoning path discovery.
comment: Accepted to EMNLP 2025 (Main Conference). Camera-ready version. Code and data: https://github.com/ReLink-Inc/PropRAG
♻ ☆ DiffusionBlocks: Block-wise Neural Network Training via Diffusion Interpretation
End-to-end backpropagation requires storing activations throughout all layers, creating memory bottlenecks that limit model scalability. Existing block-wise training methods offer means to alleviate this problem, but they rely on ad-hoc local objectives and remain largely unexplored beyond classification tasks. We propose $\textit{DiffusionBlocks}$, a principled framework for transforming transformer-based networks into genuinely independent trainable blocks that maintain competitive performance with end-to-end training. Our key insight leverages the fact that residual connections naturally correspond to updates in a dynamical system. With minimal modifications to this system, we can convert the updates to those of a denoising process, where each block can be learned independently by leveraging the score matching objective. This independence enables training with gradients for only one block at a time, thereby reducing memory requirements in proportion to the number of blocks. Our experiments on a range of transformer architectures (vision, diffusion, autoregressive, recurrent-depth, and masked diffusion) demonstrate that DiffusionBlocks training matches the performance of end-to-end training while enabling scalable block-wise training on practical tasks beyond small-scale classification. DiffusionBlocks provides a theoretically grounded approach that successfully scales to modern generative tasks across diverse architectures.
comment: Under review
♻ ☆ Semantic Preprocessing for LLM-based Malware Analysis
In a context of malware analysis, numerous approaches rely on Artificial Intelligence to handle a large volume of data. However, these techniques focus on data view (images, sequences) and not on an expert's view. Noticing this issue, we propose a preprocessing that focuses on expert knowledge to improve malware semantic analysis and result interpretability. We propose a new preprocessing method which creates JSON reports for Portable Executable files. These reports gather features from both static and behavioral analysis, and incorporate packer signature detection, MITRE ATT\&CK and Malware Behavior Catalog (MBC) knowledge. The purpose of this preprocessing is to gather a semantic representation of binary files, understandable by malware analysts, and that can enhance AI models' explainability for malicious files analysis. Using this preprocessing to train a Large Language Model for Malware classification, we achieve a weighted-average F1-score of 0.94 on a complex dataset, representative of market reality.
♻ ☆ Primus: A Pioneering Collection of Open-Source Datasets for Cybersecurity LLM Training EMNLP 2025
Large Language Models (LLMs) have shown remarkable advancements in specialized fields such as finance, law, and medicine. However, in cybersecurity, we have noticed a lack of open-source datasets, with a particular lack of high-quality cybersecurity pretraining corpora, even though much research indicates that LLMs acquire their knowledge during pretraining. To address this, we present a comprehensive suite of datasets covering all major training stages, including pretraining, instruction fine-tuning, and reasoning distillation with cybersecurity-specific self-reflection data. Extensive ablation studies demonstrate their effectiveness on public cybersecurity benchmarks. In particular, continual pre-training on our dataset yields a 15.9% improvement in the aggregate score, while reasoning distillation leads to a 15.8% gain in security certification (CISSP). We will release all datasets and trained cybersecurity LLMs under the ODC-BY and MIT licenses to encourage further research in the community. For access to all datasets and model weights, please refer to https://huggingface.co/collections/trendmicro-ailab/primus-67b1fd27052b802b4af9d243.
comment: Accepted to EMNLP 2025
♻ ☆ Bridging Ethical Principles and Algorithmic Methods: An Alternative Approach for Assessing Trustworthiness in AI Systems
Artificial Intelligence (AI) technology epitomizes the complex challenges posed by human-made artifacts, particularly those widely integrated into society and exerting significant influence, highlighting potential benefits and their negative consequences. While other technologies may also pose substantial risks, AI's pervasive reach makes its societal effects especially profound. The complexity of AI systems, coupled with their remarkable capabilities, can lead to a reliance on technologies that operate beyond direct human oversight or understanding. To mitigate the risks that arise, several theoretical tools and guidelines have been developed, alongside efforts to create technological tools aimed at safeguarding Trustworthy AI. The guidelines take a more holistic view of the issue but fail to provide techniques for quantifying trustworthiness. Conversely, while technological tools are better at achieving such quantification, they lack a holistic perspective, focusing instead on specific aspects of Trustworthy AI. This paper aims to introduce an assessment method that combines the ethical components of Trustworthy AI with the algorithmic processes of PageRank and TrustRank. The goal is to establish an assessment framework that minimizes the subjectivity inherent in the self-assessment techniques prevalent in the field by introducing algorithmic criteria. The application of our approach indicates that a holistic assessment of an AI system's trustworthiness can be achieved by providing quantitative insights while considering the theoretical content of relevant guidelines.
♻ ☆ STORI: A Benchmark and Taxonomy for Stochastic Environments
Reinforcement learning (RL) techniques have achieved impressive performance on simulated benchmarks such as Atari100k, yet recent advances remain largely confined to simulation and show limited transfer to real-world domains. A central obstacle is environmental stochasticity, as real systems involve noisy observations, unpredictable dynamics, and non-stationary conditions that undermine the stability of current methods. Existing benchmarks rarely capture these uncertainties and favor simplified settings where algorithms can be tuned to succeed. The absence of a well-defined taxonomy of stochasticity further complicates evaluation, as robustness to one type of stochastic perturbation, such as sticky actions, does not guarantee robustness to other forms of uncertainty. To address this critical gap, we introduce STORI (STOchastic-ataRI), a benchmark that systematically incorporates diverse stochastic effects and enables rigorous evaluation of RL techniques under different forms of uncertainty. We propose a comprehensive five-type taxonomy of environmental stochasticity and demonstrate systematic vulnerabilities in state-of-the-art model-based RL algorithms through targeted evaluation of DreamerV3 and STORM. Our findings reveal that world models dramatically underestimate environmental variance, struggle with action corruption, and exhibit unreliable dynamics under partial observability. We release the code and benchmark publicly at https://github.com/ARY2260/stori, providing a unified framework for developing more robust RL systems.
comment: v2. New mathematical formulation and renamed notation; added additional experiments and a detailed analytical case study on error behaviors in world models under different stochasticity types; link to code repository for reproducibility: https://github.com/ARY2260/stori
♻ ☆ MarketSenseAI 2.0: Enhancing Stock Analysis through LLM Agents
MarketSenseAI is a novel framework for holistic stock analysis which leverages Large Language Models (LLMs) to process financial news, historical prices, company fundamentals and the macroeconomic environment to support decision making in stock analysis and selection. In this paper, we present the latest advancements on MarketSenseAI, driven by rapid technological expansion in LLMs. Through a novel architecture combining Retrieval-Augmented Generation and LLM agents, the framework processes SEC filings and earnings calls, while enriching macroeconomic analysis through systematic processing of diverse institutional reports. We demonstrate a significant improvement in fundamental analysis accuracy over the previous version. Empirical evaluation on S\&P 100 stocks over two years (2023-2024) shows MarketSenseAI achieving cumulative returns of 125.9% compared to the index return of 73.5%, while maintaining comparable risk profiles. Further validation on S\&P 500 stocks during 2024 demonstrates the framework's scalability, delivering a 33.8% higher Sortino ratio than the market. This work marks a significant advancement in applying LLM technology to financial analysis, offering insights into the robustness of LLM-driven investment strategies.
comment: 25 pages, 7 figures, Under review at Financial Innovation (FIN)
♻ ☆ Observation-Free Attacks on Online Learning to Rank
Online learning to rank (OLTR) plays a critical role in information retrieval and machine learning systems, with a wide range of applications in search engines and content recommenders. However, despite their extensive adoption, the susceptibility of OLTR algorithms to coordinated adversarial attacks remains poorly understood. In this work, we present a novel framework for attacking some of the widely used OLTR algorithms. Our framework is designed to promote a set of target items so that they appear in the list of top-K recommendations for T - o(T) rounds, while simultaneously inducing linear regret in the learning algorithm. We propose two novel attack strategies: CascadeOFA for CascadeUCB1 and PBMOFA for PBM-UCB . We provide theoretical guarantees showing that both strategies require only O(log T) manipulations to succeed. Additionally, we supplement our theoretical analysis with empirical results on real-world data.
♻ ☆ Optimizing Container Loading and Unloading through Dual-Cycling and Dockyard Rehandle Reduction Using a Hybrid Genetic Algorithm
This paper addresses the NP-hard problem of optimizing container handling at ports by integrating Quay Crane Dual-Cycling (QCDC) and dockyard rehandle minimization. We realized that there are interdependencies between the unloading sequence of QCDC and the dockyard plan and propose the Quay Crane Dual Cycle - Dockyard Rehandle Genetic Algorithm (QCDC-DR-GA), a hybrid Genetic Algorithm (GA) that holistically optimizes both aspects: maximizing the number of Dual Cycles (DCs) and minimizing the number of dockyard rehandles. QCDC-DR-GA employs specialized crossover and mutation strategies. Extensive experiments on various ship sizes demonstrate that QCDC-DR-GA reduces total operation time by 15-20% for large ships compared to existing methods. Statistical validation via two-tailed paired t-tests confirms significant improvements at a 5% significance level. The results underscore the inefficiency of isolated optimization and highlight the critical need for integrated algorithms in port operations. This approach increases resource utilization and operational efficiency, offering a cost-effective solution for ports to decrease turnaround times without infrastructure investments.
♻ ☆ JALMBench: Benchmarking Jailbreak Vulnerabilities in Audio Language Models
Audio Language Models (ALMs) have made significant progress recently. These models integrate the audio modality directly into the model, rather than converting speech into text and inputting text to Large Language Models (LLMs). While jailbreak attacks on LLMs have been extensively studied, the security of ALMs with audio modalities remains largely unexplored. Currently, there is a lack of an adversarial audio dataset and a unified framework specifically designed to evaluate and compare attacks and ALMs. In this paper, we present JALMBench, a comprehensive benchmark to assess the safety of ALMs against jailbreak attacks. JALMBench includes a dataset containing 11,316 text samples and 245,355 audio samples with over 1,000 hours. It supports 12 mainstream ALMs, 4 text-transferred and 4 audio-originated attack methods, and 5 defense methods. Using JALMBench, we provide an in-depth analysis of attack efficiency, topic sensitivity, voice diversity, and architecture. Additionally, we explore mitigation strategies for the attacks at both the prompt level and the response level.
♻ ☆ CostFilter-AD: Enhancing Anomaly Detection through Matching Cost Filtering ICML 2025
Unsupervised anomaly detection (UAD) seeks to localize the anomaly mask of an input image with respect to normal samples. Either by reconstructing normal counterparts (reconstruction-based) or by learning an image feature embedding space (embedding-based), existing approaches fundamentally rely on image-level or feature-level matching to derive anomaly scores. Often, such a matching process is inaccurate yet overlooked, leading to sub-optimal detection. To address this issue, we introduce the concept of cost filtering, borrowed from classical matching tasks, such as depth and flow estimation, into the UAD problem. We call this approach {\em CostFilter-AD}. Specifically, we first construct a matching cost volume between the input and normal samples, comprising two spatial dimensions and one matching dimension that encodes potential matches. To refine this, we propose a cost volume filtering network, guided by the input observation as an attention query across multiple feature layers, which effectively suppresses matching noise while preserving edge structures and capturing subtle anomalies. Designed as a generic post-processing plug-in, CostFilter-AD can be integrated with either reconstruction-based or embedding-based methods. Extensive experiments on MVTec-AD and VisA benchmarks validate the generic benefits of CostFilter-AD for both single- and multi-class UAD tasks. Code and models will be released at https://github.com/ZHE-SAPI/CostFilter-AD.
comment: 25 pages, 12 figures, 20 tables, accepted by Forty-Second International Conference on Machine Learning ( ICML 2025 ), link: https://icml.cc/virtual/2025/poster/46359
♻ ☆ Unified Domain Adaptive Semantic Segmentation
Unsupervised Domain Adaptive Semantic Segmentation (UDA-SS) aims to transfer the supervision from a labeled source domain to an unlabeled target domain. The majority of existing UDA-SS works typically consider images whilst recent attempts have extended further to tackle videos by modeling the temporal dimension. Although the two lines of research share the major challenges -- overcoming the underlying domain distribution shift, their studies are largely independent, resulting in fragmented insights, a lack of holistic understanding, and missed opportunities for cross-pollination of ideas. This fragmentation prevents the unification of methods, leading to redundant efforts and suboptimal knowledge transfer across image and video domains. Under this observation, we advocate unifying the study of UDA-SS across video and image scenarios, enabling a more comprehensive understanding, synergistic advancements, and efficient knowledge sharing. To that end, we explore the unified UDA-SS from a general data augmentation perspective, serving as a unifying conceptual framework, enabling improved generalization, and potential for cross-pollination of ideas, ultimately contributing to the overall progress and practical impact of this field of research. Specifically, we propose a Quad-directional Mixup (QuadMix) method, characterized by tackling distinct point attributes and feature inconsistencies through four-directional paths for intra- and inter-domain mixing in a feature space. To deal with temporal shifts with videos, we incorporate optical flow-guided feature aggregation across spatial and temporal dimensions for fine-grained domain alignment. Extensive experiments show that our method outperforms the state-of-the-art works by large margins on four challenging UDA-SS benchmarks. Our source code and models will be released at https://github.com/ZHE-SAPI/UDASS.
comment: 34 pages (main paper and supplementary material), 25 figures, 19 tables. Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2025
♻ ☆ A Comprehensive Review on Harnessing Large Language Models to Overcome Recommender System Challenges
Recommender systems have traditionally followed modular architectures comprising candidate generation, multi-stage ranking, and re-ranking, each trained separately with supervised objectives and hand-engineered features. While effective in many domains, such systems face persistent challenges including sparse and noisy interaction data, cold-start problems, limited personalization depth, and inadequate semantic understanding of user and item content. The recent emergence of Large Language Models (LLMs) offers a new paradigm for addressing these limitations through unified, language-native mechanisms that can generalize across tasks, domains, and modalities. In this paper, we present a comprehensive technical survey of how LLMs can be leveraged to tackle key challenges in modern recommender systems. We examine the use of LLMs for prompt-driven candidate retrieval, language-native ranking, retrieval-augmented generation (RAG), and conversational recommendation, illustrating how these approaches enhance personalization, semantic alignment, and interpretability without requiring extensive task-specific supervision. LLMs further enable zero- and few-shot reasoning, allowing systems to operate effectively in cold-start and long-tail scenarios by leveraging external knowledge and contextual cues. We categorize these emerging LLM-driven architectures and analyze their effectiveness in mitigating core bottlenecks of conventional pipelines. In doing so, we provide a structured framework for understanding the design space of LLM-enhanced recommenders, and outline the trade-offs between accuracy, scalability, and real-time performance. Our goal is to demonstrate that LLMs are not merely auxiliary components but foundational enablers for building more adaptive, semantically rich, and user-centric recommender systems
♻ ☆ SP-VLA: A Joint Model Scheduling and Token Pruning Approach for VLA Model Acceleration
Vision-Language-Action (VLA) models have attracted increasing attention for their strong control capabilities. However, their high computational cost and low execution frequency hinder their suitability for real-time tasks such as robotic manipulation and autonomous navigation. Existing VLA acceleration methods primarily focus on structural optimization, overlooking the fact that these models operate in sequential decision-making environments. As a result, temporal redundancy in sequential action generation and spatial redundancy in visual input remain unaddressed. To this end, we propose SP-VLA, a unified framework that accelerates VLA models by jointly scheduling models and pruning tokens. Specifically, we design an action-aware model scheduling mechanism that reduces temporal redundancy by dynamically switching between VLA model and a lightweight generator. Inspired by the human motion pattern of focusing on key decision points while relying on intuition for other actions, we categorize VLA actions into deliberative and intuitive, assigning the former to the VLA model and the latter to the lightweight generator, enabling frequency-adaptive execution through collaborative model scheduling. To address spatial redundancy, we further develop a spatio-semantic dual-aware token pruning method. Tokens are classified into spatial and semantic types and pruned based on their dual-aware importance to accelerate VLA inference. These two mechanisms work jointly to guide the VLA in focusing on critical actions and salient visual information, achieving effective acceleration while maintaining high accuracy. Extensive experiments show that our method achieves 1.5$\times$ lossless acceleration in LIBERO and 2.4$\times$ in SimplerEnv, with up to 6% average performance gain. Inference frequency and latency improve by 2.2$\times$ in SimplerEnv and 1.4$\times$ in LIBERO.
♻ ☆ OML: A Primitive for Reconciling Open Access with Owner Control in AI Model Distribution
The current paradigm of AI model distribution presents a fundamental dichotomy: models are either closed and API-gated, sacrificing transparency and local execution, or openly distributed, sacrificing monetization and control. We introduce OML(Open-access, Monetizable, and Loyal AI Model Serving), a primitive that enables a new distribution paradigm where models can be freely distributed for local execution while maintaining cryptographically enforced usage authorization. We are the first to introduce and formalize this problem, introducing rigorous security definitions tailored to the unique challenge of white-box model protection: model extraction resistance and permission forgery resistance. We prove fundamental bounds on the achievability of OML properties and characterize the complete design space of potential constructions, from obfuscation-based approaches to cryptographic solutions. To demonstrate practical feasibility, we present OML 1.0, a novel OML construction leveraging AI-native model fingerprinting coupled with crypto-economic enforcement mechanisms. Through extensive theoretical analysis and empirical evaluation, we establish OML as a foundational primitive necessary for sustainable AI ecosystems. This work opens a new research direction at the intersection of cryptography, machine learning, and mechanism design, with critical implications for the future of AI distribution and governance.
comment: 53 pages; Under review; We look forward to any suggestions/discussion around OML
♻ ☆ A Study on the Framework for Evaluating the Ethics and Trustworthiness of Generative AI
This study provides an in_depth analysis of the ethical and trustworthiness challenges emerging alongside the rapid advancement of generative artificial intelligence (AI) technologies and proposes a comprehensive framework for their systematic evaluation. While generative AI, such as ChatGPT, demonstrates remarkable innovative potential, it simultaneously raises ethical and social concerns, including bias, harmfulness, copyright infringement, privacy violations, and hallucination. Current AI evaluation methodologies, which mainly focus on performance and accuracy, are insufficient to address these multifaceted issues. Thus, this study emphasizes the need for new human_centered criteria that also reflect social impact. To this end, it identifies key dimensions for evaluating the ethics and trustworthiness of generative AI_fairness, transparency, accountability, safety, privacy, accuracy, consistency, robustness, explainability, copyright and intellectual property protection, and source traceability and develops detailed indicators and assessment methodologies for each. Moreover, it provides a comparative analysis of AI ethics policies and guidelines in South Korea, the United States, the European Union, and China, deriving key approaches and implications from each. The proposed framework applies across the AI lifecycle and integrates technical assessments with multidisciplinary perspectives, thereby offering practical means to identify and manage ethical risks in real_world contexts. Ultimately, the study establishes an academic foundation for the responsible advancement of generative AI and delivers actionable insights for policymakers, developers, users, and other stakeholders, supporting the positive societal contributions of AI technologies.
comment: 22 pages, 3 figures, 6 tables
♻ ☆ SBP-YOLO:A Lightweight Real-Time Model for Detecting Speed Bumps and Potholes toward Intelligent Vehicle Suspension Systems
Speed bumps and potholes are the most common road anomalies, significantly affecting ride comfort and vehicle stability. Preview-based suspension control mitigates their impact by detecting such irregularities in advance and adjusting suspension parameters proactively. Accurate and real-time detection is essential, but embedded deployment is constrained by limited computational resources and the small size of targets in input images.To address these challenges, this paper proposes SBP-YOLO, an efficient detection framework for speed bumps and potholes in embedded systems. Built upon YOLOv11n, it integrates GhostConv and VoVGSCSPC modules in the backbone and neck to reduce computation while enhancing multi-scale semantic features. A P2-level branch improves small-object detection, and a lightweight and efficient detection head (LEDH) maintains accuracy with minimal overhead. A hybrid training strategy further enhances robustness under varying road and environmental conditions, combining NWD loss, BCKD knowledge distillation, and Albumentations-based augmentation. Experiments show that SBP-YOLO achieves 87.0% mAP, outperforming the YOLOv11n baseline by 5.8%. After TensorRT FP16 quantization, it runs at 139.5 FPS on Jetson AGX Xavier, yielding a 12.4% speedup over the P2-enhanced YOLOv11. These results demonstrate the framework's suitability for fast, low-latency road condition perception in embedded suspension control systems.
comment: 14pages,11figures
♻ ☆ GUI-PRA: Process Reward Agent for GUI Tasks
Graphical User Interface (GUI) Agents powered by Multimodal Large Language Models (MLLMs) show significant potential for automating tasks. However, they often struggle with long-horizon tasks, leading to frequent failures. Process Reward Models (PRMs) are a promising solution, as they can guide these agents with crucial process signals during inference. Nevertheless, their application to the GUI domain presents unique challenges. When processing dense artificial inputs with long history data, PRMs suffer from a "lost in the middle" phenomenon, where the overwhelming historical context compromises the evaluation of the current step. Furthermore, standard PRMs lacks GUI changing awareness, providing static evaluations that are disconnected from the dynamic consequences of actions, a critical mismatch with the inherently dynamic nature of GUI tasks. In response to these challenges, we introduce GUI-PRA (Process Reward Agent for GUI Tasks), a judge agent designed to better provide process reward than standard PRM by intelligently processing historical context and actively perceiving UI state changes. Specifically, to directly combat the ``lost in the middle'' phenomenon, we introduce a dynamic memory mechanism consisting of two core components: a Relevance-based Retrieval Module to actively fetch pertinent information from long histories and a Progressive Summarization Module to dynamically condense growing interaction data, ensuring the model focuses on relevant context. Moreover, to address the lack of UI changing awareness, we introduce an Aadaptive UI Perception mechanism. This mechanism enables the agent to reason about UI state changes and dynamically select the most appropriate tool to gather grounded visual evidence, ensuring its evaluation is always informed by the current UI context.
♻ ☆ Continuous Thought Machines NeurIPS 2025
Biological brains demonstrate complex neural activity, where neural dynamics are critical to how brains process information. Most artificial neural networks ignore the complexity of individual neurons. We challenge that paradigm. By incorporating neuron-level processing and synchronization, we reintroduce neural timing as a foundational element. We present the Continuous Thought Machine (CTM), a model designed to leverage neural dynamics as its core representation. The CTM has two innovations: (1) neuron-level temporal processing, where each neuron uses unique weight parameters to process incoming histories; and (2) neural synchronization as a latent representation. The CTM aims to strike a balance between neuron abstractions and biological realism. It operates at a level of abstraction that effectively captures essential temporal dynamics while remaining computationally tractable. We demonstrate the CTM's performance and versatility across a range of tasks, including solving 2D mazes, ImageNet-1K classification, parity computation, and more. Beyond displaying rich internal representations and offering a natural avenue for interpretation owing to its internal process, the CTM is able to perform tasks that require complex sequential reasoning. The CTM can also leverage adaptive compute, where it can stop earlier for simpler tasks, or keep computing when faced with more challenging instances. The goal of this work is to share the CTM and its associated innovations, rather than pushing for new state-of-the-art results. To that end, we believe the CTM represents a significant step toward developing more biologically plausible and powerful artificial intelligence systems. We provide an accompanying interactive online demonstration at https://pub.sakana.ai/ctm/ and an extended technical report at https://pub.sakana.ai/ctm/paper .
comment: Technical report accompanied by online project page: https://pub.sakana.ai/ctm/ Accepted as a spotlight paper at NeurIPS 2025
♻ ☆ YOLO-Based Defect Detection for Metal Sheets
In this paper, we propose a YOLO-based deep learning (DL) model for automatic defect detection to solve the time-consuming and labor-intensive tasks in industrial manufacturing. In our experiments, the images of metal sheets are used as the dataset for training the YOLO model to detect the defects on the surfaces and in the holes of metal sheets. However, the lack of metal sheet images significantly degrades the performance of detection accuracy. To address this issue, the ConSinGAN is used to generate a considerable amount of data. Four versions of the YOLO model (i.e., YOLOv3, v4, v7, and v9) are combined with the ConSinGAN for data augmentation. The proposed YOLOv9 model with ConSinGAN outperforms the other YOLO models with an accuracy of 91.3%, and a detection time of 146 ms. The proposed YOLOv9 model is integrated into manufacturing hardware and a supervisory control and data acquisition (SCADA) system to establish a practical automated optical inspection (AOI) system. Additionally, the proposed automated defect detection is easily applied to other components in industrial manufacturing.
comment: 5 pages, 8 figures, 2 tables, and published in IEEE IST 2024
♻ ☆ L1: Controlling How Long A Reasoning Model Thinks With Reinforcement Learning
Reasoning language models have shown an uncanny ability to improve performance at test-time by ``thinking longer''-that is, by generating longer chain-of-thought sequences and hence using more compute. However, the length of their chain-of-thought reasoning is not controllable, making it impossible to allocate test-time compute to achieve a desired level of performance. We introduce Length Controlled Policy Optimization (LCPO), a simple reinforcement learning method that optimizes for accuracy and adherence to user-specified length constraints. We use LCPO to train L1, a reasoning language model that produces outputs satisfying a length constraint given in its prompt. L1's length control allows for smoothly trading off computational cost and accuracy on a wide range of tasks, and outperforms the state-of-the-art S1 method for length control. Furthermore, we uncover an unexpected short chain-of-thought capability in models trained with LCPO. Specifically, using LCPO we derive Short Reasoning Models (SRMs), that exhibit similar reasoning patterns as full-length reasoning models, but can generate CoT lengths comparable to non-reasoning models. They demonstrate significant performance gains, for instance, our 1.5B L1 model surpasses GPT-4o at equal reasoning lengths. Overall, LCPO enables precise control over reasoning length, allowing for fine-grained allocation of test-time compute and accuracy. We release code and models at https://www.cmu-l3.github.io/l1
comment: Accepted at COLM 2025
♻ ☆ Rubrics as Rewards: Reinforcement Learning Beyond Verifiable Domains
Reinforcement Learning with Verifiable Rewards (RLVR) has proven effective for complex reasoning tasks with clear correctness signals such as math and coding. However, extending it to real-world reasoning tasks is challenging, as evaluation depends on nuanced, multi-criteria judgments rather than binary correctness. Instance-specific rubrics have recently been used in evaluation benchmarks to capture such judgments, but their potential as reward signals for on-policy post-training remains underexplored. We introduce $\textbf{Rubrics as Rewards}$ (RaR), an on-policy reinforcement learning method that extends RLVR beyond verifiable domains by using rubric-based feedback. Across both medical and science domains, we evaluate multiple strategies for aggregating rubric feedback into rewards. The best RaR variant achieves relative improvements of up to $31\%$ on HealthBench and $7\%$ on GPQA-Diamond over popular LLM-as-judge baselines that rely on direct Likert-based rewards. These results demonstrate that RaR-trained policies adapt well to diverse evaluation formats, performing strongly on both rubric-based and multiple-choice tasks. Moreover, we find that using rubrics as structured reward signals yields better alignment for smaller judges and reduces performance variance across judge scales.
comment: preprint
♻ ☆ Towards Size-invariant Salient Object Detection: A Generic Evaluation and Optimization Approach
This paper investigates a fundamental yet underexplored issue in Salient Object Detection (SOD): the size-invariant property for evaluation protocols, particularly in scenarios when multiple salient objects of significantly different sizes appear within a single image. We first present a novel perspective to expose the inherent size sensitivity of existing widely used SOD metrics. Through careful theoretical derivations, we show that the evaluation outcome of an image under current SOD metrics can be essentially decomposed into a sum of several separable terms, with the contribution of each term being directly proportional to its corresponding region size. Consequently, the prediction errors would be dominated by the larger regions, while smaller yet potentially more semantically important objects are often overlooked, leading to biased performance assessments and practical degradation. To address this challenge, a generic Size-Invariant Evaluation (SIEva) framework is proposed. The core idea is to evaluate each separable component individually and then aggregate the results, thereby effectively mitigating the impact of size imbalance across objects. Building upon this, we further develop a dedicated optimization framework (SIOpt), which adheres to the size-invariant principle and significantly enhances the detection of salient objects across a broad range of sizes. Notably, SIOpt is model-agnostic and can be seamlessly integrated with a wide range of SOD backbones. Theoretically, we also present generalization analysis of SOD methods and provide evidence supporting the validity of our new evaluation protocols. Finally, comprehensive experiments speak to the efficacy of our proposed approach. The code is available at https://github.com/Ferry-Li/SI-SOD.
♻ ☆ Grounding Multimodal LLMs to Embodied Agents that Ask for Help with Reinforcement Learning
Embodied agents operating in household environments must interpret ambiguous and under-specified human instructions. A capable household robot should recognize ambiguity and ask relevant clarification questions to infer the user intent accurately, leading to more effective task execution. To study this problem, we introduce the Ask-to-Act task, where an embodied agent is tasked with a single or multi-object rearrangement task using an under-specified instruction in a home environment. The agent must strategically ask minimal, yet relevant, clarification questions to resolve ambiguity while navigating under partial observability. To address this challenge, we propose a novel approach that fine-tunes multi-modal large language models (MLLMs) as vision-language-action (VLA) policies using online reinforcement learning (RL) with LLM-generated rewards. Our method eliminates the need for large-scale human demonstrations or manually engineered rewards for training such agents. We benchmark against strong zero-shot baselines including GPT-4o as well as supervised fine-tuned MLLMs on our task. Our results show that our RL-finetuned MLLM outperforms all baselines by a significant margin (10.4-16.5%), generalizing well to novel scenes and tasks. To the best of our knowledge, this is the first demonstration of adapting MLLMs as VLA agents that can act and ask for help using LLM-generated rewards with online RL.
♻ ☆ When Long Helps Short: How Context Length in Supervised Fine-tuning Affects Behavior of Large Language Models
Large language models (LLMs) have achieved impressive performance across natural language processing (NLP) tasks. As real-world applications increasingly demand longer context windows, continued pretraining and supervised fine-tuning (SFT) on long-context data has become a common approach. While the effects of data length in continued pretraining have been extensively studied, their implications for SFT remain unclear. In this work, we systematically investigate how SFT data length influences LLM behavior on short-context tasks. Counterintuitively, we find that long-context SFT improves short-context performance, contrary to the commonly observed degradation from long-context pretraining. To uncover the underlying mechanisms of this phenomenon, we first decouple and analyze two key components, Multi-Head Attention (MHA) and Feed-Forward Network (FFN), and show that both independently benefit from long-context SFT. We further study their interaction and reveal a knowledge preference bias: long-context SFT promotes contextual knowledge, while short-context SFT favors parametric knowledge, making exclusive reliance on long-context SFT suboptimal. Finally, we demonstrate that hybrid training mitigates this bias, offering explainable guidance for fine-tuning LLMs.
♻ ☆ Understanding Generative Recommendation with Semantic IDs from a Model-scaling View
Recent advancements in generative models have allowed the emergence of a promising paradigm for recommender systems (RS), known as Generative Recommendation (GR), which tries to unify rich item semantics and collaborative filtering signals. One popular modern approach is to use semantic IDs (SIDs), which are discrete codes quantized from the embeddings of modality encoders (e.g., large language or vision models), to represent items in an autoregressive user interaction sequence modeling setup (henceforth, SID-based GR). While generative models in other domains exhibit well-established scaling laws, our work reveals that SID-based GR shows significant bottlenecks while scaling up the model. In particular, the performance of SID-based GR quickly saturates as we enlarge each component: the modality encoder, the quantization tokenizer, and the RS itself. In this work, we identify the limited capacity of SIDs to encode item semantic information as one of the fundamental bottlenecks. Motivated by this observation, as an initial effort to obtain GR models with better scaling behaviors, we revisit another GR paradigm that directly uses large language models (LLMs) as recommenders (henceforth, LLM-as-RS). Our experiments show that the LLM-as-RS paradigm has superior model scaling properties and achieves up to 20 percent improvement over the best achievable performance of SID-based GR through scaling. We also challenge the prevailing belief that LLMs struggle to capture collaborative filtering information, showing that their ability to model user-item interactions improves as LLMs scale up. Our analyses on both SID-based GR and LLMs across model sizes from 44M to 14B parameters underscore the intrinsic scaling limits of SID-based GR and position LLM-as-RS as a promising path toward foundation models for GR.
♻ ☆ OT Score: An OT based Confidence Score for Source Free Unsupervised Domain Adaptation
We address the computational and theoretical limitations of current distributional alignment methods for source-free unsupervised domain adaptation (SFUDA). In particular, we focus on estimating classification performance and confidence in the absence of target labels. Current theoretical frameworks for these methods often yield computationally intractable quantities and fail to adequately reflect the properties of the alignment algorithms employed. To overcome these challenges, we introduce the Optimal Transport (OT) score, a confidence metric derived from a novel theoretical analysis that exploits the flexibility of decision boundaries induced by Semi-Discrete Optimal Transport alignment. The proposed OT score is intuitively interpretable and theoretically rigorous. It provides principled uncertainty estimates for any given set of target pseudo-labels. Experimental results demonstrate that OT score outperforms existing confidence scores. Moreover, it improves SFUDA performance through training-time reweighting and provides a reliable, label-free proxy for model performance.
Machine Learning 121
☆ Test-Time Defense Against Adversarial Attacks via Stochastic Resonance of Latent Ensembles
We propose a test-time defense mechanism against adversarial attacks: imperceptible image perturbations that significantly alter the predictions of a model. Unlike existing methods that rely on feature filtering or smoothing, which can lead to information loss, we propose to "combat noise with noise" by leveraging stochastic resonance to enhance robustness while minimizing information loss. Our approach introduces small translational perturbations to the input image, aligns the transformed feature embeddings, and aggregates them before mapping back to the original reference image. This can be expressed in a closed-form formula, which can be deployed on diverse existing network architectures without introducing additional network modules or fine-tuning for specific attack types. The resulting method is entirely training-free, architecture-agnostic, and attack-agnostic. Empirical results show state-of-the-art robustness on image classification and, for the first time, establish a generic test-time defense for dense prediction tasks, including stereo matching and optical flow, highlighting the method's versatility and practicality. Specifically, relative to clean (unperturbed) performance, our method recovers up to 68.1% of the accuracy loss on image classification, 71.9% on stereo matching, and 29.2% on optical flow under various types of adversarial attacks.
☆ Low-probability Tokens Sustain Exploration in Reinforcement Learning with Verifiable Reward
Reinforcement Learning with Verifiable Rewards (RLVR) has propelled Large Language Models in complex reasoning, yet its scalability is often hindered by a training bottleneck where performance plateaus as policy entropy collapses, signaling a loss of exploration. Previous methods typically address this by maintaining high policy entropy, yet the precise mechanisms that govern meaningful exploration have remained underexplored. Our analysis suggests that an unselective focus on entropy risks amplifying irrelevant tokens and destabilizing training. This paper investigates the exploration dynamics within RLVR and identifies a key issue: the gradual elimination of valuable low-probability exploratory tokens, which we term \textbf{\textit{reasoning sparks}}. We find that while abundant in pre-trained models, these sparks are systematically extinguished during RLVR due to over-penalization, leading to a degeneracy in exploration. To address this, we introduce Low-probability Regularization (Lp-Reg). Its core mechanism regularizes the policy towards a heuristic proxy distribution. This proxy is constructed by filtering out presumed noise tokens and re-normalizing the distribution over the remaining candidates. The result is a less-noisy proxy where the probability of \textit{reasoning sparks} is amplified, which then serves as a soft regularization target to shield these valuable tokens from elimination via KL divergence. Experiments show that Lp-Reg enables stable on-policy training for around 1,000 steps, a regime where baseline entropy-control methods collapse. This sustained exploration leads to state-of-the-art performance, achieving a $60.17\%$ average accuracy on five math benchmarks, an improvement of $2.66\%$ over prior methods. Code is available at https://github.com/CarlanLark/Lp-Reg.
☆ Cache-to-Cache: Direct Semantic Communication Between Large Language Models
Multi-LLM systems harness the complementary strengths of diverse Large Language Models, achieving performance and efficiency gains unattainable by a single model. In existing designs, LLMs communicate through text, forcing internal representations to be transformed into output token sequences. This process both loses rich semantic information and incurs token-by-token generation latency. Motivated by these limitations, we ask: Can LLMs communicate beyond text? Oracle experiments show that enriching the KV-Cache semantics can improve response quality without increasing cache size, supporting KV-Cache as an effective medium for inter-model communication. Thus, we propose Cache-to-Cache (C2C), a new paradigm for direct semantic communication between LLMs. C2C uses a neural network to project and fuse the source model's KV-cache with that of the target model to enable direct semantic transfer. A learnable gating mechanism selects the target layers that benefit from cache communication. Compared with text communication, C2C utilizes the deep, specialized semantics from both models, while avoiding explicit intermediate text generation. Experiments show that C2C achieves 8.5-10.5% higher average accuracy than individual models. It further outperforms the text communication paradigm by approximately 3.0-5.0%, while delivering an average 2.0x speedup in latency. Our code is available at https://github.com/thu-nics/C2C.
☆ Joint Bidding on Intraday and Frequency Containment Reserve Markets
As renewable energy integration increases supply variability, battery energy storage systems (BESS) present a viable solution for balancing supply and demand. This paper proposes a novel approach for optimizing battery BESS participation in multiple electricity markets. We develop a joint bidding strategy that combines participation in the primary frequency reserve market with continuous trading in the intraday market, addressing a gap in the extant literature which typically considers these markets in isolation or simplifies the continuous nature of intraday trading. Our approach utilizes a mixed integer linear programming implementation of the rolling intrinsic algorithm for intraday decisions and state of charge recovery, alongside a learned classifier strategy (LCS) that determines optimal capacity allocation between markets. A comprehensive out-of-sample backtest over more than one year of historical German market data validates our approach: The LCS increases overall profits by over 4% compared to the best-performing static strategy and by more than 3% over a naive dynamic benchmark. Crucially, our method closes the gap to a theoretical perfect foresight strategy to just 4%, demonstrating the effectiveness of dynamic, learning-based allocation in a complex, multi-market environment.
☆ To Distill or Decide? Understanding the Algorithmic Trade-off in Partially Observable Reinforcement Learning NeurIPS 2025
Partial observability is a notorious challenge in reinforcement learning (RL), due to the need to learn complex, history-dependent policies. Recent empirical successes have used privileged expert distillation--which leverages availability of latent state information during training (e.g., from a simulator) to learn and imitate the optimal latent, Markovian policy--to disentangle the task of "learning to see" from "learning to act". While expert distillation is more computationally efficient than RL without latent state information, it also has well-documented failure modes. In this paper--through a simple but instructive theoretical model called the perturbed Block MDP, and controlled experiments on challenging simulated locomotion tasks--we investigate the algorithmic trade-off between privileged expert distillation and standard RL without privileged information. Our main findings are: (1) The trade-off empirically hinges on the stochasticity of the latent dynamics, as theoretically predicted by contrasting approximate decodability with belief contraction in the perturbed Block MDP; and (2) The optimal latent policy is not always the best latent policy to distill. Our results suggest new guidelines for effectively exploiting privileged information, potentially advancing the efficiency of policy learning across many practical partially observable domains.
comment: 45 pages, 9 figures, published at NeurIPS 2025
☆ Automatic Generation of Digital Twins for Network Testing
The increased use of software in the operation and management of telecommunication networks has moved the industry one step closer to realizing autonomous network operation. One consequence of this shift is the significantly increased need for testing and validation before such software can be deployed. Complementing existing simulation or hardware-based approaches, digital twins present an environment to achieve this testing; however, they require significant time and human effort to configure and execute. This paper explores the automatic generation of digital twins to provide efficient and accurate validation tools, aligned to the ITU-T autonomous network architecture's experimentation subsystem. We present experimental results for an initial use case, demonstrating that the approach is feasible in automatically creating efficient digital twins with sufficient accuracy to be included as part of existing validation pipelines.
comment: Accepted to ANMS at ICDCS 2025
☆ Best-of-Majority: Minimax-Optimal Strategy for Pass@$k$ Inference Scaling
LLM inference often generates a batch of candidates for a prompt and selects one via strategies like majority voting or Best-of- N (BoN). For difficult tasks, this single-shot selection often underperforms. Consequently, evaluations commonly report Pass@$k$: the agent may submit up to $k$ responses, and only the best of them is used when computing regret. Motivated by this, we study inference scaling in the more general Pass@$k$ inference setting, and prove that neither majority voting nor BoN exhibits the desirable scaling with $k$ and the sampling budget $N$. Combining the advantages of majority voting and BoN, we propose a new inference strategy called Best-of-Majority (BoM), with a pivotal step that restricts the candidates to the responses with high frequency in the $N$ samples before selecting the top-$k$ rewards. We prove that when the sampling budget is $N=\tilde\Omega(C^*)$, the regret of BoM is $O(\epsilon_{\mathrm{opt}}+\sqrt{\epsilon_{\mathrm{RM}}^2C^*/k})$, where $C^*$ is the coverage coefficient, $\epsilon_{\mathrm{RM}}$ is the estimation error of the reward model, and $\epsilon_{\mathrm{opt}}$ is the estimation error of reward at the optimal response. We further establish a matching lower bound, certifying that our algorithm is minimax optimal. Beyond optimality, BoM has a key advantage: unlike majority voting and BoN, its performance does not degrade when increasing $N$. Experimental results of inference on math problems show BoM outperforming both majority voting and BoN.
comment: 29 pages, 3 figures
Estimation of Resistance Training RPE using Inertial Sensors and Electromyography
Accurate estimation of rating of perceived exertion (RPE) can enhance resistance training through personalized feedback and injury prevention. This study investigates the application of machine learning models to estimate RPE during single-arm dumbbell bicep curls, using data from wearable inertial and electromyography (EMG) sensors. A custom dataset of 69 sets and over 1000 repetitions was collected, with statistical features extracted for model training. Among the models evaluated, a random forest classifier achieved the highest performance, with 41.4% exact accuracy and 85.9% $\pm1$ RPE accuracy. While the inclusion of EMG data slightly improved model accuracy over inertial sensors alone, its utility may have been limited by factors such as data quality and placement sensitivity. Feature analysis highlighted eccentric repetition time as the strongest RPE predictor. The results demonstrate the feasibility of wearable-sensor-based RPE estimation and identify key challenges for improving model generalizability.
☆ Superposition disentanglement of neural representations reveals hidden alignment
The superposition hypothesis states that a single neuron within a population may participate in the representation of multiple features in order for the population to represent more features than the number of neurons. In neuroscience and AI, representational alignment metrics measure the extent to which different deep neural networks (DNNs) or brains represent similar information. In this work, we explore a critical question: \textit{does superposition interact with alignment metrics in any undesirable way?} We hypothesize that models which represent the same features in \textit{different superposition arrangements}, i.e., their neurons have different linear combinations of the features, will interfere with predictive mapping metrics (semi-matching, soft-matching, linear regression), producing lower alignment than expected. We first develop a theory for how the strict permutation metrics are dependent on superposition arrangements. This is tested by training sparse autoencoders (SAEs) to disentangle superposition in toy models, where alignment scores are shown to typically increase when a model's base neurons are replaced with its sparse overcomplete latent codes. We find similar increases for DNN\(\rightarrow\)DNN and DNN\(\rightarrow\)brain linear regression alignment in the visual domain. Our results suggest that superposition disentanglement is necessary for mapping metrics to uncover the true representational alignment between neural codes.
☆ PRISM-Physics: Causal DAG-Based Process Evaluation for Physics Reasoning
Benchmarks for competition-style reasoning have advanced evaluation in mathematics and programming, yet physics remains comparatively explored. Most existing physics benchmarks evaluate only final answers, which fail to capture reasoning processes, while recent stepwise methods rely on heuristic LLM-as-judge scoring or restrictive linear assumptions, limiting reliability and diagnostic validity. We introduce PRISM-Physics, a process-level evaluation framework and benchmark for complex physics reasoning problems. Solutions are represented as directed acyclic graphs (DAGs) of formulas, explicitly encoding causal dependencies among intermediate steps to enable fine-grained, interpretable, and theoretically grounded scoring. We prove the optimality of the DAG representation and the corresponding scoring policy. Combining with a fully rule-based method for symbolic formula equivalence matching that we developed, we ensure consistent validation across diverse formulations without heuristic judgments. Results show that our evaluation framework is more aligned with human experts' scoring. Experiments on state-of-the-art LLMs reveal persistent reasoning failures in physics, while step-level scoring offers both diagnostic insight and rich signals for later training. By combining structural rigor, theoretical guarantees, and symbolic validation, PRISM-Physics provides a principled foundation for advancing process-level evaluation and guiding the development of models with deeper scientific reasoning capabilities.
☆ Q-Learning with Shift-Aware Upper Confidence Bound in Non-Stationary Reinforcement Learning
We study the Non-Stationary Reinforcement Learning (RL) under distribution shifts in both finite-horizon episodic and infinite-horizon discounted Markov Decision Processes (MDPs). In the finite-horizon case, the transition functions may suddenly change at a particular episode. In the infinite-horizon setting, such changes can occur at an arbitrary time step during the agent's interaction with the environment. While the Q-learning Upper Confidence Bound algorithm (QUCB) can discover a proper policy during learning, due to the distribution shifts, this policy can exploit sub-optimal rewards after the shift happens. To address this issue, we propose Density-QUCB (DQUCB), a shift-aware Q-learning~UCB algorithm, which uses a transition density function to detect distribution shifts, then leverages its likelihood to enhance the uncertainty estimation quality of Q-learning~UCB, resulting in a balance between exploration and exploitation. Theoretically, we prove that our oracle DQUCB achieves a better regret guarantee than QUCB. Empirically, our DQUCB enjoys the computational efficiency of model-free RL and outperforms QUCB baselines by having a lower regret across RL tasks, as well as a real-world COVID-19 patient hospital allocation task using a Deep-Q-learning architecture.
☆ FTTE: Federated Learning on Resource-Constrained Devices
Federated learning (FL) enables collaborative model training across distributed devices while preserving data privacy, but deployment on resource-constrained edge nodes remains challenging due to limited memory, energy, and communication bandwidth. Traditional synchronous and asynchronous FL approaches further suffer from straggler induced delays and slow convergence in heterogeneous, large scale networks. We present FTTE (Federated Tiny Training Engine),a novel semi-asynchronous FL framework that uniquely employs sparse parameter updates and a staleness-weighted aggregation based on both age and variance of client updates. Extensive experiments across diverse models and data distributions - including up to 500 clients and 90% stragglers - demonstrate that FTTE not only achieves 81% faster convergence, 80% lower on-device memory usage, and 69% communication payload reduction than synchronous FL (eg.FedAVG), but also consistently reaches comparable or higher target accuracy than semi-asynchronous (eg.FedBuff) in challenging regimes. These results establish FTTE as the first practical and scalable solution for real-world FL deployments on heterogeneous and predominantly resource-constrained edge devices.
☆ Why Do We Need Warm-up? A Theoretical Perspective
Learning rate warm-up - increasing the learning rate at the beginning of training - has become a ubiquitous heuristic in modern deep learning, yet its theoretical foundations remain poorly understood. In this work, we provide a principled explanation for why warm-up improves training. We rely on a generalization of the $(L_0, L_1)$-smoothness condition, which bounds local curvature as a linear function of the loss sub-optimality and exhibits desirable closure properties. We demonstrate both theoretically and empirically that this condition holds for common neural architectures trained with mean-squared error and cross-entropy losses. Under this assumption, we prove that Gradient Descent with a warm-up schedule achieves faster convergence than with a fixed step-size, establishing upper and lower complexity bounds. Finally, we validate our theoretical insights through experiments on language and vision models, confirming the practical benefits of warm-up schedules.
☆ Calibrated Uncertainty Sampling for Active Learning
We study the problem of actively learning a classifier with a low calibration error. One of the most popular Acquisition Functions (AFs) in pool-based Active Learning (AL) is querying by the model's uncertainty. However, we recognize that an uncalibrated uncertainty model on the unlabeled pool may significantly affect the AF effectiveness, leading to sub-optimal generalization and high calibration error on unseen data. Deep Neural Networks (DNNs) make it even worse as the model uncertainty from DNN is usually uncalibrated. Therefore, we propose a new AF by estimating calibration errors and query samples with the highest calibration error before leveraging DNN uncertainty. Specifically, we utilize a kernel calibration error estimator under the covariate shift and formally show that AL with this AF eventually leads to a bounded calibration error on the unlabeled pool and unseen test data. Empirically, our proposed method surpasses other AF baselines by having a lower calibration and generalization error across pool-based AL settings.
☆ Stimulus-Voltage-Based Prediction of Action Potential Onset Timing: Classical vs. Quantum-Inspired Approaches
Accurate modeling of neuronal action potential (AP) onset timing is crucial for understanding neural coding of danger signals. Traditional leaky integrate-and-fire (LIF) models, while widely used, exhibit high relative error in predicting AP onset latency, especially under strong or rapidly changing stimuli. Inspired by recent experimental findings and quantum theory, we present a quantum-inspired leaky integrate-and-fire (QI-LIF) model that treats AP onset as a probabilistic event, represented by a Gaussian wave packet in time. This approach captures the biological variability and uncertainty inherent in neuronal firing. We systematically compare the relative error of AP onset predictions between the classical LIF and QI-LIF models using synthetic data from hippocampal and sensory neurons subjected to varying stimulus amplitudes. Our results demonstrate that the QI-LIF model significantly reduces prediction error, particularly for high-intensity stimuli, aligning closely with observed biological responses. This work highlights the potential of quantum-inspired computational frameworks in advancing the accuracy of neural modeling and has implications for quantum engineering approaches to brain-inspired computing.
☆ ReeMark: Reeb Graphs for Simulating Patterns of Life in Spatiotemporal Trajectories
Accurately modeling human mobility is critical for urban planning, epidemiology, and traffic management. In this work, we introduce Markovian Reeb Graphs, a novel framework for simulating spatiotemporal trajectories that preserve Patterns of Life (PoLs) learned from baseline data. By combining individual- and population-level mobility structures within a probabilistic topological model, our approach generates realistic future trajectories that capture both consistency and variability in daily life. Evaluations on the Urban Anomalies dataset (Atlanta and Berlin subsets) using the Jensen-Shannon Divergence (JSD) across population- and agent-level metrics demonstrate that the proposed method achieves strong fidelity while remaining data- and compute-efficient. These results position Markovian Reeb Graphs as a scalable framework for trajectory simulation with broad applicability across diverse urban environments.
comment: 15 pages, 3 figures, 2 algorithms, 1 table
☆ Mixture of Many Zero-Compute Experts: A High-Rate Quantization Theory Perspective
This paper uses classical high-rate quantization theory to provide new insights into mixture-of-experts (MoE) models for regression tasks. Our MoE is defined by a segmentation of the input space to regions, each with a single-parameter expert that acts as a constant predictor with zero-compute at inference. Motivated by high-rate quantization theory assumptions, we assume that the number of experts is sufficiently large to make their input-space regions very small. This lets us to study the approximation error of our MoE model class: (i) for one-dimensional inputs, we formulate the test error and its minimizing segmentation and experts; (ii) for multidimensional inputs, we formulate an upper bound for the test error and study its minimization. Moreover, we consider the learning of the expert parameters from a training dataset, given an input-space segmentation, and formulate their statistical learning properties. This leads us to theoretically and empirically show how the tradeoff between approximation and estimation errors in MoE learning depends on the number of experts.
☆ Taming Imperfect Process Verifiers: A Sampling Perspective on Backtracking
Test-time algorithms that combine the generative power of language models with process verifiers that assess the quality of partial generations offer a promising lever for eliciting new reasoning capabilities, but the algorithmic design space and computational scaling properties of such approaches are still opaque, and their benefits are far from apparent when one accounts for the cost of learning a high-quality verifier. Our starting point is the observation that seemingly benign errors in a learned verifier can lead to catastrophic failures for standard decoding techniques due to error amplification during the course of generation. We then ask: can this be improved with more sophisticated decoding strategies? We introduce a new process-guided test-time sampling algorithm, VGB, which uses theoretically grounded backtracking to achieve provably better robustness to verifier errors. VGB interprets autoregressive generation as a random walk on a tree of partial generations, with transition probabilities guided by the process verifier and base model; crucially, backtracking occurs probabilistically. This process generalizes the seminal Sinclair-Jerrum random walk (Sinclair & Jerrum, 1989) from the literature on approximate counting and sampling in theoretical computer science, and a conceptual contribution of our work is to highlight parallels with this literature. Empirically, we demonstrate on both synthetic and real language modeling tasks that VGB outperforms baselines on a variety of metrics.
☆ The Computational Complexity of Almost Stable Clustering with Penalties
We investigate the complexity of stable (or perturbation-resilient) instances of $\mathrm{k-M\small{EANS}}$ and $\mathrm{k-M\small{EDIAN}}$ clustering problems in metrics with small doubling dimension. While these problems have been extensively studied under multiplicative perturbation resilience in low-dimensional Euclidean spaces (e.g., (Friggstad et al., 2019; Cohen-Addad and Schwiegelshohn, 2017)), we adopt a more general notion of stability, termed ``almost stable'', which is closer to the notion of $(\alpha, \varepsilon)$-perturbation resilience introduced by Balcan and Liang (2016). Additionally, we extend our results to $\mathrm{k-M\small{EANS}}$/$\mathrm{k-M\small{EDIAN}}$ with penalties, where each data point is either assigned to a cluster centre or incurs a penalty. We show that certain special cases of almost stable $\mathrm{k-M\small{EANS}}$/$\mathrm{k-M\small{EDIAN}}$ (with penalties) are solvable in polynomial time. To complement this, we also examine the hardness of almost stable instances and $(1 + \frac{1}{poly(n)})$-stable instances of $\mathrm{k-M\small{EANS}}$/$\mathrm{k-M\small{EDIAN}}$ (with penalties), proving super-polynomial lower bounds on the runtime of any exact algorithm under the widely believed Exponential Time Hypothesis (ETH).
☆ Enhancing XAI Narratives through Multi-Narrative Refinement and Knowledge Distillation
Explainable Artificial Intelligence has become a crucial area of research, aiming to demystify the decision-making processes of deep learning models. Among various explainability techniques, counterfactual explanations have been proven particularly promising, as they offer insights into model behavior by highlighting minimal changes that would alter a prediction. Despite their potential, these explanations are often complex and technical, making them difficult for non-experts to interpret. To address this challenge, we propose a novel pipeline that leverages Language Models, large and small, to compose narratives for counterfactual explanations. We employ knowledge distillation techniques along with a refining mechanism to enable Small Language Models to perform comparably to their larger counterparts while maintaining robust reasoning abilities. In addition, we introduce a simple but effective evaluation method to assess natural language narratives, designed to verify whether the models' responses are in line with the factual, counterfactual ground truth. As a result, our proposed pipeline enhances both the reasoning capabilities and practical performance of student models, making them more suitable for real-world use cases.
☆ Signature-Informed Transformer for Asset Allocation
Robust asset allocation is a key challenge in quantitative finance, where deep-learning forecasters often fail due to objective mismatch and error amplification. We introduce the Signature-Informed Transformer (SIT), a novel framework that learns end-to-end allocation policies by directly optimizing a risk-aware financial objective. SIT's core innovations include path signatures for a rich geometric representation of asset dynamics and a signature-augmented attention mechanism embedding financial inductive biases, like lead-lag effects, into the model. Evaluated on daily S\&P 100 equity data, SIT decisively outperforms traditional and deep-learning baselines, especially when compared to predict-then-optimize models. These results indicate that portfolio-aware objectives and geometry-aware inductive biases are essential for risk-aware capital allocation in machine-learning systems. The code is available at: https://github.com/Yoontae6719/Signature-Informed-Transformer-For-Asset-Allocation
☆ Real Time Headway Predictions in Urban Rail Systems and Implications for Service Control: A Deep Learning Approach
Efficient real-time dispatching in urban metro systems is essential for ensuring service reliability, maximizing resource utilization, and improving passenger satisfaction. This study presents a novel deep learning framework centered on a Convolutional Long Short-Term Memory (ConvLSTM) model designed to predict the complex spatiotemporal propagation of train headways across an entire metro line. By directly incorporating planned terminal headways as a critical input alongside historical headway data, the proposed model accurately forecasts future headway dynamics, effectively capturing both their temporal evolution and spatial dependencies across all stations. This capability empowers dispatchers to evaluate the impact of various terminal headway control decisions without resorting to computationally intensive simulations. We introduce a flexible methodology to simulate diverse dispatcher strategies, ranging from maintaining even headways to implementing custom patterns derived from observed terminal departures. In contrast to existing research primarily focused on passenger load predictioning or atypical disruption scenarios, our approach emphasizes proactive operational control. Evaluated on a large-scale dataset from an urban metro line, the proposed ConvLSTM model demonstrates promising headway predictions, offering actionable insights for real-time decision-making. This framework provides rail operators with a powerful, computationally efficient tool to optimize dispatching strategies, thereby significantly improving service consistency and passenger satisfaction.
☆ AdaBet: Gradient-free Layer Selection for Efficient Training of Deep Neural Networks
To utilize pre-trained neural networks on edge and mobile devices, we often require efficient adaptation to user-specific runtime data distributions while operating under limited compute and memory resources. On-device retraining with a target dataset can facilitate such adaptations; however, it remains impractical due to the increasing depth of modern neural nets, as well as the computational overhead associated with gradient-based optimization across all layers. Current approaches reduce training cost by selecting a subset of layers for retraining, however, they rely on labeled data, at least one full-model backpropagation, or server-side meta-training; limiting their suitability for constrained devices. We introduce AdaBet, a gradient-free layer selection approach to rank important layers by analyzing topological features of their activation spaces through Betti Numbers and using forward passes alone. AdaBet allows selecting layers with high learning capacity, which are important for retraining and adaptation, without requiring labels or gradients. Evaluating AdaBet on sixteen pairs of benchmark models and datasets, shows AdaBet achieves an average gain of 5% more classification accuracy over gradient-based baselines while reducing average peak memory consumption by 40%.
☆ Adaptive Node Feature Selection For Graph Neural Networks
We propose an adaptive node feature selection approach for graph neural networks (GNNs) that identifies and removes unnecessary features during training. The ability to measure how features contribute to model output is key for interpreting decisions, reducing dimensionality, and even improving performance by eliminating unhelpful variables. However, graph-structured data introduces complex dependencies that may not be amenable to classical feature importance metrics. Inspired by this challenge, we present a model- and task-agnostic method that determines relevant features during training based on changes in validation performance upon permuting feature values. We theoretically motivate our intervention-based approach by characterizing how GNN performance depends on the relationships between node data and graph structure. Not only do we return feature importance scores once training concludes, we also track how relevance evolves as features are successively dropped. We can therefore monitor if features are eliminated effectively and also evaluate other metrics with this technique. Our empirical results verify the flexibility of our approach to different graph architectures as well as its adaptability to more challenging graph learning settings.
☆ Distilled Protein Backbone Generation
Diffusion- and flow-based generative models have recently demonstrated strong performance in protein backbone generation tasks, offering unprecedented capabilities for de novo protein design. However, while achieving notable performance in generation quality, these models are limited by their generating speed, often requiring hundreds of iterative steps in the reverse-diffusion process. This computational bottleneck limits their practical utility in large-scale protein discovery, where thousands to millions of candidate structures are needed. To address this challenge, we explore the techniques of score distillation, which has shown great success in reducing the number of sampling steps in the vision domain while maintaining high generation quality. However, a straightforward adaptation of these methods results in unacceptably low designability. Through extensive study, we have identified how to appropriately adapt Score identity Distillation (SiD), a state-of-the-art score distillation strategy, to train few-step protein backbone generators which significantly reduce sampling time, while maintaining comparable performance to their pretrained teacher model. In particular, multistep generation combined with inference time noise modulation is key to the success. We demonstrate that our distilled few-step generators achieve more than a 20-fold improvement in sampling speed, while achieving similar levels of designability, diversity, and novelty as the Proteina teacher model. This reduction in inference cost enables large-scale in silico protein design, thereby bringing diffusion-based models closer to real-world protein engineering applications.
☆ Bootstrap Learning for Combinatorial Graph Alignment with Sequential GNNs
Graph neural networks (GNNs) have struggled to outperform traditional optimization methods on combinatorial problems, limiting their practical impact. We address this gap by introducing a novel chaining procedure for the graph alignment problem, a fundamental NP-hard task of finding optimal node correspondences between unlabeled graphs using only structural information. Our method trains a sequence of GNNs where each network learns to iteratively refine similarity matrices produced by previous networks. During inference, this creates a bootstrap effect: each GNN improves upon partial solutions by incorporating discrete ranking information about node alignment quality from prior iterations. We combine this with a powerful architecture that operates on node pairs rather than individual nodes, capturing global structural patterns essential for alignment that standard message-passing networks cannot represent. Extensive experiments on synthetic benchmarks demonstrate substantial improvements: our chained GNNs achieve over 3x better accuracy than existing methods on challenging instances, and uniquely solve regular graphs where all competing approaches fail. When combined with traditional optimization as post-processing, our method substantially outperforms state-of-the-art solvers on the graph alignment benchmark.
comment: 27 pages, 10 figures, 12 tables
☆ A Unified Deep Reinforcement Learning Approach for Close Enough Traveling Salesman Problem
In recent years, deep reinforcement learning (DRL) has gained traction for solving the NP-hard traveling salesman problem (TSP). However, limited attention has been given to the close-enough TSP (CETSP), primarily due to the challenge introduced by its neighborhood-based visitation criterion, wherein a node is considered visited if the agent enters a compact neighborhood around it. In this work, we formulate a Markov decision process (MDP) for CETSP using a discretization scheme and propose a novel unified dual-decoder DRL (UD3RL) framework that separates decision-making into node selection and waypoint determination. Specifically, an adapted encoder is employed for effective feature extraction, followed by a node-decoder and a loc-decoder to handle the two sub-tasks, respectively. A k-nearest neighbors subgraph interaction strategy is further introduced to enhance spatial reasoning during location decoding. Furthermore, we customize the REINFORCE algorithm to train UD3RL as a unified model capable of generalizing across different problem sizes and varying neighborhood radius types (i.e., constant and random radii). Experimental results show that UD3RL outperforms conventional methods in both solution quality and runtime, while exhibiting strong generalization across problem scales, spatial distributions, and radius ranges, as well as robustness to dynamic environments.
☆ Comparative Analysis of Parameterized Action Actor-Critic Reinforcement Learning Algorithms for Web Search Match Plan Generation
This study evaluates the performance of Soft Actor Critic (SAC), Greedy Actor Critic (GAC), and Truncated Quantile Critics (TQC) in high-dimensional decision-making tasks using fully observable environments. The focus is on parametrized action (PA) spaces, eliminating the need for recurrent networks, with benchmarks Platform-v0 and Goal-v0 testing discrete actions linked to continuous action-parameter spaces. Hyperparameter optimization was performed with Microsoft NNI, ensuring reproducibility by modifying the codebase for GAC and TQC. Results show that Parameterized Action Greedy Actor-Critic (PAGAC) outperformed other algorithms, achieving the fastest training times and highest returns across benchmarks, completing 5,000 episodes in 41:24 for the Platform game and 24:04 for the Robot Soccer Goal game. Its speed and stability provide clear advantages in complex action spaces. Compared to PASAC and PATQC, PAGAC demonstrated superior efficiency and reliability, making it ideal for tasks requiring rapid convergence and robust performance. Future work could explore hybrid strategies combining entropy-regularization with truncation-based methods to enhance stability and expand investigations into generalizability.
comment: 10 pages, 10th International Congress on Information and Communication Technology (ICICT 2025)
☆ ZeroShotOpt: Towards Zero-Shot Pretrained Models for Efficient Black-Box Optimization
Global optimization of expensive, derivative-free black-box functions requires extreme sample efficiency. While Bayesian optimization (BO) is the current state-of-the-art, its performance hinges on surrogate and acquisition function hyper-parameters that are often hand-tuned and fail to generalize across problem landscapes. We present ZeroShotOpt, a general-purpose, pretrained model for continuous black-box optimization tasks ranging from 2D to 20D. Our approach leverages offline reinforcement learning on large-scale optimization trajectories collected from 12 BO variants. To scale pretraining, we generate millions of synthetic Gaussian process-based functions with diverse landscapes, enabling the model to learn transferable optimization policies. As a result, ZeroShotOpt achieves robust zero-shot generalization on a wide array of unseen benchmarks, matching or surpassing the sample efficiency of leading global optimizers, including BO, while also offering a reusable foundation for future extensions and improvements. Our open-source code, dataset, and model are available at: https://github.com/jamisonmeindl/zeroshotopt
☆ Bayesian E(3)-Equivariant Interatomic Potential with Iterative Restratification of Many-body Message Passing
Machine learning potentials (MLPs) have become essential for large-scale atomistic simulations, enabling ab initio-level accuracy with computational efficiency. However, current MLPs struggle with uncertainty quantification, limiting their reliability for active learning, calibration, and out-of-distribution (OOD) detection. We address these challenges by developing Bayesian E(3) equivariant MLPs with iterative restratification of many-body message passing. Our approach introduces the joint energy-force negative log-likelihood (NLL$_\text{JEF}$) loss function, which explicitly models uncertainty in both energies and interatomic forces, yielding superior accuracy compared to conventional NLL losses. We systematically benchmark multiple Bayesian approaches, including deep ensembles with mean-variance estimation, stochastic weight averaging Gaussian, improved variational online Newton, and laplace approximation by evaluating their performance on uncertainty prediction, OOD detection, calibration, and active learning tasks. We further demonstrate that NLL$_\text{JEF}$ facilitates efficient active learning by quantifying energy and force uncertainties. Using Bayesian active learning by disagreement (BALD), our framework outperforms random sampling and energy-uncertainty-based sampling. Our results demonstrate that Bayesian MLPs achieve competitive accuracy with state-of-the-art models while enabling uncertainty-guided active learning, OOD detection, and energy/forces calibration. This work establishes Bayesian equivariant neural networks as a powerful framework for developing uncertainty-aware MLPs for atomistic simulations at scale.
☆ CHORD: Customizing Hybrid-precision On-device Model for Sequential Recommendation with Device-cloud Collaboration ACM MM'25
With the advancement of mobile device capabilities, deploying reranking models directly on devices has become feasible, enabling real-time contextual recommendations. When migrating models from cloud to devices, resource heterogeneity inevitably necessitates model compression. Recent quantization methods show promise for efficient deployment, yet they overlook device-specific user interests, resulting in compromised recommendation accuracy. While on-device finetuning captures personalized user preference, it imposes additional computational burden through local retraining. To address these challenges, we propose a framework for \underline{\textbf{C}}ustomizing \underline{\textbf{H}}ybrid-precision \underline{\textbf{O}}n-device model for sequential \underline{\textbf{R}}ecommendation with \underline{\textbf{D}}evice-cloud collaboration (\textbf{CHORD}), leveraging channel-wise mixed-precision quantization to simultaneously achieve personalization and resource-adaptive deployment. CHORD distributes randomly initialized models across heterogeneous devices and identifies user-specific critical parameters through auxiliary hypernetwork modules on the cloud. Our parameter sensitivity analysis operates across multiple granularities (layer, filter, and element levels), enabling precise mapping from user profiles to quantization strategy. Through on-device mixed-precision quantization, CHORD delivers dynamic model adaptation and accelerated inference without backpropagation, eliminating costly retraining cycles. We minimize communication overhead by encoding quantization strategies using only 2 bits per channel instead of 32-bit weights. Experiments on three real-world datasets with two popular backbones (SASRec and Caser) demonstrate the accuracy, efficiency, and adaptivity of CHORD.
comment: accepted by ACM MM'25
☆ Lightweight Transformer for EEG Classification via Balanced Signed Graph Algorithm Unrolling
Samples of brain signals collected by EEG sensors have inherent anti-correlations that are well modeled by negative edges in a finite graph. To differentiate epilepsy patients from healthy subjects using collected EEG signals, we build lightweight and interpretable transformer-like neural nets by unrolling a spectral denoising algorithm for signals on a balanced signed graph -- graph with no cycles of odd number of negative edges. A balanced signed graph has well-defined frequencies that map to a corresponding positive graph via similarity transform of the graph Laplacian matrices. We implement an ideal low-pass filter efficiently on the mapped positive graph via Lanczos approximation, where the optimal cutoff frequency is learned from data. Given that two balanced signed graph denoisers learn posterior probabilities of two different signal classes during training, we evaluate their reconstruction errors for binary classification of EEG signals. Experiments show that our method achieves classification performance comparable to representative deep learning schemes, while employing dramatically fewer parameters.
☆ Differentially Private Wasserstein Barycenters
The Wasserstein barycenter is defined as the mean of a set of probability measures under the optimal transport metric, and has numerous applications spanning machine learning, statistics, and computer graphics. In practice these input measures are empirical distributions built from sensitive datasets, motivating a differentially private (DP) treatment. We present, to our knowledge, the first algorithms for computing Wasserstein barycenters under differential privacy. Empirically, on synthetic data, MNIST, and large-scale U.S. population datasets, our methods produce high-quality private barycenters with strong accuracy-privacy tradeoffs.
comment: 24 pages, 9 figures
☆ Learning Robust Diffusion Models from Imprecise Supervision
Conditional diffusion models have achieved remarkable success in various generative tasks recently, but their training typically relies on large-scale datasets that inevitably contain imprecise information in conditional inputs. Such supervision, often stemming from noisy, ambiguous, or incomplete labels, will cause condition mismatch and degrade generation quality. To address this challenge, we propose DMIS, a unified framework for training robust Diffusion Models from Imprecise Supervision, which is the first systematic study within diffusion models. Our framework is derived from likelihood maximization and decomposes the objective into generative and classification components: the generative component models imprecise-label distributions, while the classification component leverages a diffusion classifier to infer class-posterior probabilities, with its efficiency further improved by an optimized timestep sampling strategy. Extensive experiments on diverse forms of imprecise supervision, covering tasks of image generation, weakly supervised learning, and noisy dataset condensation demonstrate that DMIS consistently produces high-quality and class-discriminative samples.
☆ Distributional Inverse Reinforcement Learning
We propose a distributional framework for offline Inverse Reinforcement Learning (IRL) that jointly models uncertainty over reward functions and full distributions of returns. Unlike conventional IRL approaches that recover a deterministic reward estimate or match only expected returns, our method captures richer structure in expert behavior, particularly in learning the reward distribution, by minimizing first-order stochastic dominance (FSD) violations and thus integrating distortion risk measures (DRMs) into policy learning, enabling the recovery of both reward distributions and distribution-aware policies. This formulation is well-suited for behavior analysis and risk-aware imitation learning. Empirical results on synthetic benchmarks, real-world neurobehavioral data, and MuJoCo control tasks demonstrate that our method recovers expressive reward representations and achieves state-of-the-art imitation performance.
☆ BrainIB++: Leveraging Graph Neural Networks and Information Bottleneck for Functional Brain Biomarkers in Schizophrenia
The development of diagnostic models is gaining traction in the field of psychiatric disorders. Recently, machine learning classifiers based on resting-state functional magnetic resonance imaging (rs-fMRI) have been developed to identify brain biomarkers that differentiate psychiatric disorders from healthy controls. However, conventional machine learning-based diagnostic models often depend on extensive feature engineering, which introduces bias through manual intervention. While deep learning models are expected to operate without manual involvement, their lack of interpretability poses significant challenges in obtaining explainable and reliable brain biomarkers to support diagnostic decisions, ultimately limiting their clinical applicability. In this study, we introduce an end-to-end innovative graph neural network framework named BrainIB++, which applies the information bottleneck (IB) principle to identify the most informative data-driven brain regions as subgraphs during model training for interpretation. We evaluate the performance of our model against nine established brain network classification methods across three multi-cohort schizophrenia datasets. It consistently demonstrates superior diagnostic accuracy and exhibits generalizability to unseen data. Furthermore, the subgraphs identified by our model also correspond with established clinical biomarkers in schizophrenia, particularly emphasizing abnormalities in the visual, sensorimotor, and higher cognition brain functional network. This alignment enhances the model's interpretability and underscores its relevance for real-world diagnostic applications.
comment: This manuscript has been accepted by Biomedical Signal Processing and Control and the code is available at https://github.com/TianzhengHU/BrainIB_coding/tree/main/BrainIB_GIB
☆ From high-frequency sensors to noon reports: Using transfer learning for shaft power prediction in maritime
With the growth of global maritime transportation, energy optimization has become crucial for reducing costs and ensuring operational efficiency. Shaft power is the mechanical power transmitted from the engine to the shaft and directly impacts fuel consumption, making its accurate prediction a paramount step in optimizing vessel performance. Power consumption is highly correlated with ship parameters such as speed and shaft rotation per minute, as well as weather and sea conditions. Frequent access to this operational data can improve prediction accuracy. However, obtaining high-quality sensor data is often infeasible and costly, making alternative sources such as noon reports a viable option. In this paper, we propose a transfer learning-based approach for predicting vessels shaft power, where a model is initially trained on high-frequency data from a vessel and then fine-tuned with low-frequency daily noon reports from other vessels. We tested our approach on sister vessels (identical dimensions and configurations), a similar vessel (slightly larger with a different engine), and a different vessel (distinct dimensions and configurations). The experiments showed that the mean absolute percentage error decreased by 10.6 percent for sister vessels, 3.6 percent for a similar vessel, and 5.3 percent for a different vessel, compared to the model trained solely on noon report data.
comment: Keywords: transfer learning, shaft power prediction, noon reports, sensor data, maritime
☆ FR-LUX: Friction-Aware, Regime-Conditioned Policy Optimization for Implementable Portfolio Management
Transaction costs and regime shifts are major reasons why paper portfolios fail in live trading. We introduce FR-LUX (Friction-aware, Regime-conditioned Learning under eXecution costs), a reinforcement learning framework that learns after-cost trading policies and remains robust across volatility-liquidity regimes. FR-LUX integrates three ingredients: (i) a microstructure-consistent execution model combining proportional and impact costs, directly embedded in the reward; (ii) a trade-space trust region that constrains changes in inventory flow rather than logits, yielding stable low-turnover updates; and (iii) explicit regime conditioning so the policy specializes to LL/LH/HL/HH states without fragmenting the data. On a 4 x 5 grid of regimes and cost levels with multiple random seeds, FR-LUX achieves the top average Sharpe ratio with narrow bootstrap confidence intervals, maintains a flatter cost-performance slope than strong baselines, and attains superior risk-return efficiency for a given turnover budget. Pairwise scenario-level improvements are strictly positive and remain statistically significant after multiple-testing corrections. We provide formal guarantees on optimality under convex frictions, monotonic improvement under a KL trust region, long-run turnover bounds and induced inaction bands due to proportional costs, positive value advantage for regime-conditioned policies, and robustness to cost misspecification. The methodology is implementable: costs are calibrated from standard liquidity proxies, scenario-level inference avoids pseudo-replication, and all figures and tables are reproducible from released artifacts.
comment: 19 pages, 7 figures, includes theoretical guarantees and empirical evaluation, submitted to AI/ML in Finance track
☆ Oracle-based Uniform Sampling from Convex Bodies
We propose new Markov chain Monte Carlo algorithms to sample a uniform distribution on a convex body $K$. Our algorithms are based on the Alternating Sampling Framework/proximal sampler, which uses Gibbs sampling on an augmented distribution and assumes access to the so-called restricted Gaussian oracle (RGO). The key contribution of this work is the efficient implementation of RGO for uniform sampling on $K$ via rejection sampling and access to either a projection oracle or a separation oracle on $K$. In both oracle cases, we establish non-asymptotic complexities to obtain unbiased samples where the accuracy is measured in R\'enyi divergence or $\chi^2$-divergence.
comment: 24 pages
☆ oRANS: Online optimisation of RANS machine learning models with embedded DNS data generation
Deep learning (DL) has demonstrated promise for accelerating and enhancing the accuracy of flow physics simulations, but progress is constrained by the scarcity of high-fidelity training data, which is costly to generate and inherently limited to a small set of flow conditions. Consequently, closures trained in the conventional offline paradigm tend to overfit and fail to generalise to new regimes. We introduce an online optimisation framework for DL-based Reynolds-averaged Navier--Stokes (RANS) closures which seeks to address the challenge of limited high-fidelity datasets. Training data is dynamically generated by embedding a direct numerical simulation (DNS) within a subdomain of the RANS domain. The RANS solution supplies boundary conditions to the DNS, while the DNS provides mean velocity and turbulence statistics that are used to update a DL closure model during the simulation. This feedback loop enables the closure to adapt to the embedded DNS target flow, avoiding reliance on precomputed datasets and improving out-of-distribution performance. The approach is demonstrated for the stochastically forced Burgers equation and for turbulent channel flow at $Re_\tau=180$, $270$, $395$ and $590$ with varying embedded domain lengths $1\leq L_0/L\leq 8$. Online-optimised RANS models significantly outperform both offline-trained and literature-calibrated closures, with accurate training achieved using modest DNS subdomains. Performance degrades primarily when boundary-condition contamination dominates or when domains are too short to capture low-wavenumber modes. This framework provides a scalable route to physics-informed machine learning closures, enabling data-adaptive reduced-order models that generalise across flow regimes without requiring large precomputed training datasets.
☆ Confidence and Dispersity as Signals: Unsupervised Model Evaluation and Ranking ICML'23
Assessing model generalization under distribution shift is essential for real-world deployment, particularly when labeled test data is unavailable. This paper presents a unified and practical framework for unsupervised model evaluation and ranking in two common deployment settings: (1) estimating the accuracy of a fixed model on multiple unlabeled test sets (dataset-centric evaluation), and (2) ranking a set of candidate models on a single unlabeled test set (model-centric evaluation). We demonstrate that two intrinsic properties of model predictions, namely confidence (which reflects prediction certainty) and dispersity (which captures the diversity of predicted classes), together provide strong and complementary signals for generalization. We systematically benchmark a set of confidence-based, dispersity-based, and hybrid metrics across a wide range of model architectures, datasets, and distribution shift types. Our results show that hybrid metrics consistently outperform single-aspect metrics on both dataset-centric and model-centric evaluation settings. In particular, the nuclear norm of the prediction matrix provides robust and accurate performance across tasks, including real-world datasets, and maintains reliability under moderate class imbalance. These findings offer a practical and generalizable basis for unsupervised model assessment in deployment scenarios.
comment: 15 pages, 11 figures, extension of ICML'23 work: Confidence and Dispersity Speak: Characterizing Prediction Matrix for Unsupervised Accuracy Estimation
☆ ContextFlow: Context-Aware Flow Matching For Trajectory Inference From Spatial Omics Data
Inferring trajectories from longitudinal spatially-resolved omics data is fundamental to understanding the dynamics of structural and functional tissue changes in development, regeneration and repair, disease progression, and response to treatment. We propose ContextFlow, a novel context-aware flow matching framework that incorporates prior knowledge to guide the inference of structural tissue dynamics from spatially resolved omics data. Specifically, ContextFlow integrates local tissue organization and ligand-receptor communication patterns into a transition plausibility matrix that regularizes the optimal transport objective. By embedding these contextual constraints, ContextFlow generates trajectories that are not only statistically consistent but also biologically meaningful, making it a generalizable framework for modeling spatiotemporal dynamics from longitudinal, spatially resolved omics data. Evaluated on three datasets, ContextFlow consistently outperforms state-of-the-art flow matching methods across multiple quantitative and qualitative metrics of inference accuracy and biological coherence. Our code is available at: \href{https://github.com/santanurathod/ContextFlow}{ContextFlow}
comment: 26 pages, 9 figures, 13 tables
☆ Ergodic Risk Measures: Towards a Risk-Aware Foundation for Continual Reinforcement Learning
Continual reinforcement learning (continual RL) seeks to formalize the notions of lifelong learning and endless adaptation in RL. In particular, the aim of continual RL is to develop RL agents that can maintain a careful balance between retaining useful information and adapting to new situations. To date, continual RL has been explored almost exclusively through the lens of risk-neutral decision-making, in which the agent aims to optimize the expected (or mean) long-run performance. In this work, we present the first formal theoretical treatment of continual RL through the lens of risk-aware decision-making, in which the agent aims to optimize a reward-based measure of long-run performance beyond the mean. In particular, we show that the classical theory of risk measures, widely used as a theoretical foundation in non-continual risk-aware RL, is, in its current form, incompatible with the continual setting. Then, building on this insight, we extend risk measure theory into the continual setting by introducing a new class of ergodic risk measures that are compatible with continual learning. Finally, we provide a case study of risk-aware continual learning, along with empirical results, which show the intuitive appeal and theoretical soundness of ergodic risk measures.
☆ RAxSS: Retrieval-Augmented Sparse Sampling for Explainable Variable-Length Medical Time Series Classification NeurIPS 2025
Medical time series analysis is challenging due to data sparsity, noise, and highly variable recording lengths. Prior work has shown that stochastic sparse sampling effectively handles variable-length signals, while retrieval-augmented approaches improve explainability and robustness to noise and weak temporal correlations. In this study, we generalize the stochastic sparse sampling framework for retrieval-informed classification. Specifically, we weight window predictions by within-channel similarity and aggregate them in probability space, yielding convex series-level scores and an explicit evidence trail for explainability. Our method achieves competitive iEEG classification performance and provides practitioners with greater transparency and explainability. We evaluate our method in iEEG recordings collected in four medical centers, demonstrating its potential for reliable and explainable clinical variable-length time series classification.
comment: Accepted at the NeurIPS 2025 Workshop on Learning from Time Series for Health
☆ Scalable Quantum Optimisation using HADOF: Hamiltonian Auto-Decomposition Optimisation Framework
Quantum Annealing (QA) and QAOA are promising quantum optimisation algorithms used for finding approximate solutions to combinatorial problems on near-term NISQ systems. Many NP-hard problems can be reformulated as Quadratic Unconstrained Binary Optimisation (QUBO), which maps naturally onto quantum Hamiltonians. However, the limited qubit counts of current NISQ devices restrict practical deployment of such algorithms. In this study, we present the Hamiltonian Auto-Decomposition Optimisation Framework (HADOF), which leverages an iterative strategy to automatically divide the Quadratic Unconstrained Binary Optimisation (QUBO) Hamiltonian into sub-Hamiltonians which can be optimised separately using Hamiltonian based optimisers such as QAOA, QA or Simulated Annealing (SA) and aggregated into a global solution. We compare HADOF with Simulated Annealing (SA) and the CPLEX exact solver, showing scalability to problem sizes far exceeding available qubits while maintaining competitive accuracy and runtime. Furthermore, we realise HADOF for a toy problem on an IBM quantum computer, showing promise for practical applications of quantum optimisation.
comment: Sankar, N., Miliotis, G. and Caton, S. Scalable Quantum Optimisation using HADOF: Hamiltonian Auto-Decomposition Optimisation Framework. In 3rd International Workshop on AI for Quantum and Quantum for AI (AIQxQIA 2025), at the 28th European Conference on Artificial Intelligence (ECAI), October 25-30, 2025, Bologna, Italy
☆ Mechanistic Interpretability of Code Correctness in LLMs via Sparse Autoencoders
As Large Language Models become integral to software development, with substantial portions of AI-suggested code entering production, understanding their internal correctness mechanisms becomes critical for safe deployment. We apply sparse autoencoders to decompose LLM representations, identifying directions that correspond to code correctness. We select predictor directions using t-statistics and steering directions through separation scores from base model representations, then analyze their mechanistic properties through steering, attention analysis, and weight orthogonalization. We find that code correctness directions in LLMs reliably predict incorrect code, while correction capabilities, though statistically significant, involve tradeoffs between fixing errors and preserving correct code. Mechanistically, successful code generation depends on attending to test cases rather than problem descriptions. Moreover, directions identified in base models retain their effectiveness after instruction-tuning, suggesting code correctness mechanisms learned during pre-training are repurposed during fine-tuning. Our mechanistic insights suggest three practical applications: prompting strategies should prioritize test examples over elaborate problem descriptions, predictor directions can serve as error alarms for developer review, and these same predictors can guide selective steering, intervening only when errors are anticipated to prevent the code corruption from constant steering.
☆ SALSA-V: Shortcut-Augmented Long-form Synchronized Audio from Videos
We propose SALSA-V, a multimodal video-to-audio generation model capable of synthesizing highly synchronized, high-fidelity long-form audio from silent video content. Our approach introduces a masked diffusion objective, enabling audio-conditioned generation and the seamless synthesis of audio sequences of unconstrained length. Additionally, by integrating a shortcut loss into our training process, we achieve rapid generation of high-quality audio samples in as few as eight sampling steps, paving the way for near-real-time applications without requiring dedicated fine-tuning or retraining. We demonstrate that SALSA-V significantly outperforms existing state-of-the-art methods in both audiovisual alignment and synchronization with video content in quantitative evaluation and a human listening study. Furthermore, our use of random masking during training enables our model to match spectral characteristics of reference audio samples, broadening its applicability to professional audio synthesis tasks such as Foley generation and sound design.
☆ WavInWav: Time-domain Speech Hiding via Invertible Neural Network
Data hiding is essential for secure communication across digital media, and recent advances in Deep Neural Networks (DNNs) provide enhanced methods for embedding secret information effectively. However, previous audio hiding methods often result in unsatisfactory quality when recovering secret audio, due to their inherent limitations in the modeling of time-frequency relationships. In this paper, we explore these limitations and introduce a new DNN-based approach. We use a flow-based invertible neural network to establish a direct link between stego audio, cover audio, and secret audio, enhancing the reversibility of embedding and extracting messages. To address common issues from time-frequency transformations that degrade secret audio quality during recovery, we implement a time-frequency loss on the time-domain signal. This approach not only retains the benefits of time-frequency constraints but also enhances the reversibility of message recovery, which is vital for practical applications. We also add an encryption technique to protect the hidden data from unauthorized access. Experimental results on the VCTK and LibriSpeech datasets demonstrate that our method outperforms previous approaches in terms of subjective and objective metrics and exhibits robustness to various types of noise, suggesting its utility in targeted secure communication scenarios.
comment: 13 pages, 5 figures, project page: https://cyberrrange.github.io/project/wavinwav
☆ FeDABoost: Fairness Aware Federated Learning with Adaptive Boosting ECML-PKDD 2025
This work focuses on improving the performance and fairness of Federated Learning (FL) in non IID settings by enhancing model aggregation and boosting the training of underperforming clients. We propose FeDABoost, a novel FL framework that integrates a dynamic boosting mechanism and an adaptive gradient aggregation strategy. Inspired by the weighting mechanism of the Multiclass AdaBoost (SAMME) algorithm, our aggregation method assigns higher weights to clients with lower local error rates, thereby promoting more reliable contributions to the global model. In parallel, FeDABoost dynamically boosts underperforming clients by adjusting the focal loss focusing parameter, emphasizing hard to classify examples during local training. We have evaluated FeDABoost on three benchmark datasets MNIST, FEMNIST, and CIFAR10, and compared its performance with those of FedAvg and Ditto. The results show that FeDABoost achieves improved fairness and competitive performance.
comment: Presented in WAFL@ECML-PKDD 2025
☆ Learning Explicit Single-Cell Dynamics Using ODE Representations
Modeling the dynamics of cellular differentiation is fundamental to advancing the understanding and treatment of diseases associated with this process, such as cancer. With the rapid growth of single-cell datasets, this has also become a particularly promising and active domain for machine learning. Current state-of-the-art models, however, rely on computationally expensive optimal transport preprocessing and multi-stage training, while also not discovering explicit gene interactions. To address these challenges we propose Cell-Mechanistic Neural Networks (Cell-MNN), an encoder-decoder architecture whose latent representation is a locally linearized ODE governing the dynamics of cellular evolution from stem to tissue cells. Cell-MNN is fully end-to-end (besides a standard PCA pre-processing) and its ODE representation explicitly learns biologically consistent and interpretable gene interactions. Empirically, we show that Cell-MNN achieves competitive performance on single-cell benchmarks, surpasses state-of-the-art baselines in scaling to larger datasets and joint training across multiple datasets, while also learning interpretable gene interactions that we validate against the TRRUST database of gene interactions.
comment: 26 pages, 10 figures. Preprint under review
☆ DMark: Order-Agnostic Watermarking for Diffusion Large Language Models
Diffusion large language models (dLLMs) offer faster generation than autoregressive models while maintaining comparable quality, but existing watermarking methods fail on them due to their non-sequential decoding. Unlike autoregressive models that generate tokens left-to-right, dLLMs can finalize tokens in arbitrary order, breaking the causal design underlying traditional watermarks. We present DMark, the first watermarking framework designed specifically for dLLMs. DMark introduces three complementary strategies to restore watermark detectability: predictive watermarking uses model-predicted tokens when actual context is unavailable; bidirectional watermarking exploits both forward and backward dependencies unique to diffusion decoding; and predictive-bidirectional watermarking combines both approaches to maximize detection strength. Experiments across multiple dLLMs show that DMark achieves 92.0-99.5% detection rates at 1% false positive rate while maintaining text quality, compared to only 49.6-71.2% for naive adaptations of existing methods. DMark also demonstrates robustness against text manipulations, establishing that effective watermarking is feasible for non-autoregressive language models.
☆ RoiRL: Efficient, Self-Supervised Reasoning with Offline Iterative Reinforcement Learning
Reinforcement learning (RL) is central to improving reasoning in large language models (LLMs) but typically requires ground-truth rewards. Test-Time Reinforcement Learning (TTRL) removes this need by using majority-vote rewards, but relies on heavy online RL and incurs substantial computational cost. We propose RoiRL: Reasoning with offline iterative Reinforcement Learning, a family of lightweight offline learning alternatives that can target the same regularized optimal policies. Unlike TTRL, RoiRL eliminates the need to maintain a reference model and instead optimizes weighted log-likelihood objectives, enabling stable training with significantly lower memory and compute requirements. Experimental results show that RoiRL trains to 2.5x faster and consistently outperforms TTRL on reasoning benchmarks, establishing a scalable path to self-improving LLMs without labels.
comment: Accepted to the Efficient Reasoning Workshop at NeuRIPS 2025
☆ ELMF4EggQ: Ensemble Learning with Multimodal Feature Fusion for Non-Destructive Egg Quality Assessment
Accurate, non-destructive assessment of egg quality is critical for ensuring food safety, maintaining product standards, and operational efficiency in commercial poultry production. This paper introduces ELMF4EggQ, an ensemble learning framework that employs multimodal feature fusion to classify egg grade and freshness using only external attributes - image, shape, and weight. A novel, publicly available dataset of 186 brown-shelled eggs was constructed, with egg grade and freshness levels determined through laboratory-based expert assessments involving internal quality measurements, such as yolk index and Haugh unit. To the best of our knowledge, this is the first study to apply machine learning methods for internal egg quality assessment using only external, non-invasive features, and the first to release a corresponding labeled dataset. The proposed framework integrates deep features extracted from external egg images with structural characteristics such as egg shape and weight, enabling a comprehensive representation of each egg. Image feature extraction is performed using top-performing pre-trained CNN models (ResNet152, DenseNet169, and ResNet152V2), followed by PCA-based dimensionality reduction, SMOTE augmentation, and classification using multiple machine learning algorithms. An ensemble voting mechanism combines predictions from the best-performing classifiers to enhance overall accuracy. Experimental results demonstrate that the multimodal approach significantly outperforms image-only and tabular (shape and weight) only baselines, with the multimodal ensemble approach achieving 86.57% accuracy in grade classification and 70.83% in freshness prediction. All code and data are publicly available at https://github.com/Kenshin-Keeps/Egg_Quality_Prediction_ELMF4EggQ, promoting transparency, reproducibility, and further research in this domain.
comment: 30 pages
☆ Knowledge-Aware Modeling with Frequency Adaptive Learning for Battery Health Prognostics
Battery health prognostics are critical for ensuring safety, efficiency, and sustainability in modern energy systems. However, it has been challenging to achieve accurate and robust prognostics due to complex battery degradation behaviors with nonlinearity, noise, capacity regeneration, etc. Existing data-driven models capture temporal degradation features but often lack knowledge guidance, which leads to unreliable long-term health prognostics. To overcome these limitations, we propose Karma, a knowledge-aware model with frequency-adaptive learning for battery capacity estimation and remaining useful life prediction. The model first performs signal decomposition to derive battery signals in different frequency bands. A dual-stream deep learning architecture is developed, where one stream captures long-term low-frequency degradation trends and the other models high-frequency short-term dynamics. Karma regulates the prognostics with knowledge, where battery degradation is modeled as a double exponential function based on empirical studies. Our dual-stream model is used to optimize the parameters of the knowledge with particle filters to ensure physically consistent and reliable prognostics and uncertainty quantification. Experimental study demonstrates Karma's superior performance, achieving average error reductions of 50.6% and 32.6% over state-of-the-art algorithms for battery health prediction on two mainstream datasets, respectively. These results highlight Karma's robustness, generalizability, and potential for safer and more reliable battery management across diverse applications.
comment: 12 pages, 4 figures, 4 tables
☆ Subject-Adaptive Sparse Linear Models for Interpretable Personalized Health Prediction from Multimodal Lifelog Data
Improved prediction of personalized health outcomes -- such as sleep quality and stress -- from multimodal lifelog data could have meaningful clinical and practical implications. However, state-of-the-art models, primarily deep neural networks and gradient-boosted ensembles, sacrifice interpretability and fail to adequately address the significant inter-individual variability inherent in lifelog data. To overcome these challenges, we propose the Subject-Adaptive Sparse Linear (SASL) framework, an interpretable modeling approach explicitly designed for personalized health prediction. SASL integrates ordinary least squares regression with subject-specific interactions, systematically distinguishing global from individual-level effects. We employ an iterative backward feature elimination method based on nested $F$-tests to construct a sparse and statistically robust model. Additionally, recognizing that health outcomes often represent discretized versions of continuous processes, we develop a regression-then-thresholding approach specifically designed to maximize macro-averaged F1 scores for ordinal targets. For intrinsically challenging predictions, SASL selectively incorporates outputs from compact LightGBM models through confidence-based gating, enhancing accuracy without compromising interpretability. Evaluations conducted on the CH-2025 dataset -- which comprises roughly 450 daily observations from ten subjects -- demonstrate that the hybrid SASL-LightGBM framework achieves predictive performance comparable to that of sophisticated black-box methods, but with significantly fewer parameters and substantially greater transparency, thus providing clear and actionable insights for clinicians and practitioners.
comment: 6 pages, ICTC 2025
☆ The land use-climate change-biodiversity nexus in European islands stakeholders
To promote climate adaptation and mitigation, it is crucial to understand stakeholder perspectives and knowledge gaps on land use and climate changes. Stakeholders across 21 European islands were consulted on climate and land use change issues affecting ecosystem services. Climate change perceptions included temperature, precipitation, humidity, extremes, and wind. Land use change perceptions included deforestation, coastal degradation, habitat protection, renewable energy facilities, wetlands, and others. Additional concerns such as invasive species, water or energy scarcity, infrastructure problems, and austerity were also considered. Climate and land use change impact perceptions were analysed with machine learning to quantify their influence. The predominant climatic characteristic is temperature, and the predominant land use characteristic is deforestation. Water-related problems are top priorities for stakeholders. Energy-related problems, including energy deficiency and issues with wind and solar facilities, rank high as combined climate and land use risks. Stakeholders generally perceive climate change impacts on ecosystem services as negative, with natural habitat destruction and biodiversity loss identified as top issues. Land use change impacts are also negative but more complex, with more explanatory variables. Stakeholders share common perceptions on biodiversity impacts despite geographic disparity, but they differentiate between climate and land use impacts. Water, energy, and renewable energy issues pose serious concerns, requiring management measures.
comment: In press at the Environmental Impact Assessment Review journal. Pre-proof author's version
☆ Multi-scale Autoregressive Models are Laplacian, Discrete, and Latent Diffusion Models in Disguise
We revisit Visual Autoregressive (VAR) models through the lens of an iterative-refinement framework. Rather than viewing VAR solely as next-scale autoregression, we formalise it as a deterministic forward process that constructs a Laplacian-style latent pyramid, paired with a learned backward process that reconstructs it in a small number of coarse-to-fine steps. This view connects VAR to denoising diffusion and isolates three design choices that help explain its efficiency and fidelity: refining in a learned latent space, casting prediction as discrete classification over code indices, and partitioning the task by spatial frequency. We run controlled experiments to quantify each factor's contribution to fidelity and speed, and we outline how the same framework extends to permutation-invariant graph generation and to probabilistic, ensemble-style medium-range weather forecasting. The framework also suggests practical interfaces for VAR to leverage tools from the diffusion ecosystem while retaining few-step, scale-parallel generation.
☆ The Curious Case of In-Training Compression of State Space Models
State Space Models (SSMs), developed to tackle long sequence modeling tasks efficiently, offer both parallelizable training and fast inference. At their core are recurrent dynamical systems that maintain a hidden state, with update costs scaling with the state dimension. A key design challenge is striking the right balance between maximizing expressivity and limiting this computational burden. Control theory, and more specifically Hankel singular value analysis, provides a potent framework for the measure of energy for each state, as well as the balanced truncation of the original system down to a smaller representation with performance guarantees. Leveraging the eigenvalue stability properties of Hankel matrices, we apply this lens to SSMs during training, where only dimensions of high influence are identified and preserved. Our approach applies to Linear Time-Invariant SSMs such as Linear Recurrent Units, but is also extendable to selective models. Experiments show that in-training reduction significantly accelerates optimization while preserving expressivity, with compressed models retaining task-critical structure lost by models trained directly at smaller dimension. In other words, SSMs that begin large and shrink during training achieve computational efficiency while maintaining higher performance.
☆ FlexiQ: Adaptive Mixed-Precision Quantization for Latency/Accuracy Trade-Offs in Deep Neural Networks
Neural networks commonly execute on hardware accelerators such as NPUs and GPUs for their size and computation overhead. These accelerators are costly and it is hard to scale their resources to handle real-time workload fluctuations. We present FlexiQ, an adaptive mixed-precision quantization scheme for computer vision models. FlexiQ selectively applies low-bitwidth computation to feature channels with small value ranges and employs an efficient bit-lowering method to minimize quantization errors while maintaining inference accuracy. Furthermore, FlexiQ adjusts its low-bitwidth channel ratio in real time, enabling quantized models to effectively manage fluctuating inference workload. We implemented FlexiQ prototype, including the mixed-precision inference runtime on our custom NPU and GPUs. Evaluated on eleven convolution- and transformer-based vision models, FlexiQ achieves on average 6.6% higher accuracy for 4-bit models with finetuning and outperforms four state-of-the-art quantization techniques. Moreover, our mixed-precision models achieved an efficient accuracy-latency trade-off, with the 50% 4-bit model incurring only 0.6% accuracy loss while achieving 40% of the speedup of the 100% 4-bit model over 8-bit model. Latency evaluations on our NPU and GPUs confirmed that FlexiQ introduces minimal runtime overhead, demonstrating its hardware efficiency and overall performance benefits.
comment: 16 pages. 14 figures. To be published in the Proceedings of the European Conference on Computer Systems (EUROSYS '26)
☆ Online Learning in the Random Order Model
In the random-order model for online learning, the sequence of losses is chosen upfront by an adversary and presented to the learner after a random permutation. Any random-order input is \emph{asymptotically} equivalent to a stochastic i.i.d. one, but, for finite times, it may exhibit significant {\em non-stationarity}, which can hinder the performance of stochastic learning algorithms. While algorithms for adversarial inputs naturally maintain their regret guarantees in random order, simple no-regret algorithms exist for the stochastic model that fail against random-order instances. In this paper, we propose a general template to adapt stochastic learning algorithms to the random-order model without substantially affecting their regret guarantees. This allows us to recover improved regret bounds for prediction with delays, online learning with constraints, and bandits with switching costs. Finally, we investigate online classification and prove that, in random order, learnability is characterized by the VC dimension rather than the Littlestone dimension, thus providing a further separation from the general adversarial model.
☆ Mitigating Spurious Correlation via Distributionally Robust Learning with Hierarchical Ambiguity Sets
Conventional supervised learning methods are often vulnerable to spurious correlations, particularly under distribution shifts in test data. To address this issue, several approaches, most notably Group DRO, have been developed. While these methods are highly robust to subpopulation or group shifts, they remain vulnerable to intra-group distributional shifts, which frequently occur in minority groups with limited samples. We propose a hierarchical extension of Group DRO that addresses both inter-group and intra-group uncertainties, providing robustness to distribution shifts at multiple levels. We also introduce new benchmark settings that simulate realistic minority group distribution shifts-an important yet previously underexplored challenge in spurious correlation research. Our method demonstrates strong robustness under these conditions-where existing robust learning methods consistently fail-while also achieving superior performance on standard benchmarks. These results highlight the importance of broadening the ambiguity set to better capture both inter-group and intra-group distributional uncertainties.
☆ Dissecting Transformers: A CLEAR Perspective towards Green AI
The rapid adoption of Large Language Models (LLMs) has raised significant environmental concerns. Unlike the one-time cost of training, LLM inference occurs continuously at a global scale and now dominates the AI energy footprint. Yet, most sustainability studies report only coarse, model-level metrics due to the lack of fine-grained measurement methods, treating energy efficiency more as an afterthought than as a primary objective. We present the first fine-grained empirical analysis of inference energy across core components of transformer architecture. We propose a novel methodology, Component-Level Energy Assessment via Repeated sampling (CLEAR), to overcome temporal mismatch between microsecond scale component execution and monitoring of millisecond (ms) scale energy sensors. Using CLEAR, we evaluate 15 models spanning four distinct architecture types and consistently keep component-wise energy variance below 9.5\% while capturing more than 90\% of the model's total energy as individual components. Our empirical analysis reveals that Attention blocks consume significantly more energy per floating-point operation (FLOP), indicating that energy consumption is not proportionally aligned with FLOP counts. This shows that FLOPs alone fail to capture the true energy cost at a component level. Our findings establish detailed component-level energy baselines and provide insight as an initial step to build energy-efficient transformer models through component-level optimizations.
♻ ☆ C2AL: Cohort-Contrastive Auxiliary Learning for Large-scale Recommendation Systems ICLR 2026
Training large-scale recommendation models under a single global objective implicitly assumes homogeneity across user populations. However, real-world data are composites of heterogeneous cohorts with distinct conditional distributions. As models increase in scale and complexity and as more data is used for training, they become dominated by central distribution patterns, neglecting head and tail regions. This imbalance limits the model's learning ability and can result in inactive attention weights or dead neurons. In this paper, we reveal how the attention mechanism can play a key role in factorization machines for shared embedding selection, and propose to address this challenge by analyzing the substructures in the dataset and exposing those with strong distributional contrast through auxiliary learning. Unlike previous research, which heuristically applies weighted labels or multi-task heads to mitigate such biases, we leverage partially conflicting auxiliary labels to regularize the shared representation. This approach customizes the learning process of attention layers to preserve mutual information with minority cohorts while improving global performance. We evaluated C2AL on massive production datasets with billions of data points each for six SOTA models. Experiments show that the factorization machine is able to capture fine-grained user-ad interactions using the proposed method, achieving up to a 0.16% reduction in normalized entropy overall and delivering gains exceeding 0.30% on targeted minority cohorts.
comment: Submitted to ICLR 2026
♻ ☆ VarCoNet: A variability-aware self-supervised framework for functional connectome extraction from resting-state fMRI
Accounting for inter-individual variability in brain function is key to precision medicine. Here, by considering functional inter-individual variability as meaningful data rather than noise, we introduce VarCoNet, an enhanced self-supervised framework for robust functional connectome (FC) extraction from resting-state fMRI (rs-fMRI) data. VarCoNet employs self-supervised contrastive learning to exploit inherent functional inter-individual variability, serving as a brain function encoder that generates FC embeddings readily applicable to downstream tasks even in the absence of labeled data. Contrastive learning is facilitated by a novel augmentation strategy based on segmenting rs-fMRI signals. At its core, VarCoNet integrates a 1D-CNN-Transformer encoder for advanced time-series processing, enhanced with a robust Bayesian hyperparameter optimization. Our VarCoNet framework is evaluated on two downstream tasks: (i) subject fingerprinting, using rs-fMRI data from the Human Connectome Project, and (ii) autism spectrum disorder (ASD) classification, using rs-fMRI data from the ABIDE I and ABIDE II datasets. Using different brain parcellations, our extensive testing against state-of-the-art methods, including 13 deep learning methods, demonstrates VarCoNet's superiority, robustness, interpretability, and generalizability. Overall, VarCoNet provides a versatile and robust framework for FC analysis in rs-fMRI.
♻ ☆ Morphlux: Transforming Torus Fabrics for Efficient Multi-tenant ML
We develop Morphlux, a server-scale programmable photonic fabric to interconnect accelerators within servers. We show that augmenting state-of-the-art torus-based ML data-centers with Morphlux can improve the bandwidth of tenant compute allocations by up to 66%, reduce compute fragmentation by up to 70%, and minimize the blast radius of chip failures. We develop a novel end-to-end hardware prototype of Morphlux to demonstrate these performance benefits which translate to 1.72X improvement in training throughput of ML models. By rapidly programming the server-scale fabric in our hardware testbed, Morphlux can replace a failed accelerator chip with a healthy one in 1.2 seconds.
♻ ☆ KAIROS: Unified Training for Universal Non-Autoregressive Time Series Forecasting
In the World Wide Web, reliable time series forecasts provide the forward-looking signals that drive resource planning, cache placement, and anomaly response, enabling platforms to operate efficiently as user behavior and content distributions evolve. Compared with other domains, time series forecasting for Web applications requires much faster responsiveness to support real-time decision making. We present KAIROS, a non-autoregressive time series forecasting framework that directly models segment-level multi-peak distributions. Unlike autoregressive approaches, KAIROS avoids error accumulation and achieves just-in-time inference, while improving over existing non-autoregressive models that collapse to over-smoothed predictions. Trained on the large-scale corpus, KAIROS demonstrates strong zero-shot generalization on six widely used benchmarks, delivering forecasting performance comparable to state-of-the-art foundation models with similar scale, at a fraction of their inference cost. Beyond empirical results, KAIROS highlights the importance of non-autoregressive design as a scalable paradigm for foundation models in time series.
♻ ☆ PepCompass: Navigating peptide embedding spaces using Riemannian Geometry
Antimicrobial peptide discovery is challenged by the astronomical size of peptide space and the relative scarcity of active peptides. Generative models provide continuous latent "maps" of peptide space, but conventionally ignore decoder-induced geometry and rely on flat Euclidean metrics, rendering exploration and optimization distorted and inefficient. Prior manifold-based remedies assume fixed intrinsic dimensionality, which critically fails in practice for peptide data. Here, we introduce PepCompass, a geometry-aware framework for peptide exploration and optimization. At its core, we define a Union of $\kappa$-Stable Riemannian Manifolds $\mathbb{M}^{\kappa}$, a family of decoder-induced manifolds that captures local geometry while ensuring computational stability. We propose two local exploration methods: Second-Order Riemannian Brownian Efficient Sampling, which provides a convergent second-order approximation to Riemannian Brownian motion, and Mutation Enumeration in Tangent Space, which reinterprets tangent directions as discrete amino-acid substitutions. Combining these yields Local Enumeration Bayesian Optimization (LE-BO), an efficient algorithm for local activity optimization. Finally, we introduce Potential-minimizing Geodesic Search (PoGS), which interpolates between prototype embeddings along property-enriched geodesics, biasing discovery toward seeds, i.e. peptides with favorable activity. In-vitro validation confirms the effectiveness of PepCompass: PoGS yields four novel seeds, and subsequent optimization with LE-BO discovers 25 highly active peptides with broad-spectrum activity, including against resistant bacterial strains. These results demonstrate that geometry-informed exploration provides a powerful new paradigm for antimicrobial peptide design.
♻ ☆ Octax: Accelerated CHIP-8 Arcade Environments for Reinforcement Learning in JAX
Reinforcement learning (RL) research requires diverse, challenging environments that are both tractable and scalable. While modern video games may offer rich dynamics, they are computationally expensive and poorly suited for large-scale experimentation due to their CPU-bound execution. We introduce Octax, a high-performance suite of classic arcade game environments implemented in JAX, based on CHIP-8 emulation, a predecessor to Atari, which is widely adopted as a benchmark in RL research. Octax provides the JAX community with a long-awaited end-to-end GPU alternative to the Atari benchmark, offering image-based environments, spanning puzzle, action, and strategy genres, all executable at massive scale on modern GPUs. Our JAX-based implementation achieves orders-of-magnitude speedups over traditional CPU emulators while maintaining perfect fidelity to the original game mechanics. We demonstrate Octax's capabilities by training RL agents across multiple games, showing significant improvements in training speed and scalability compared to existing solutions. The environment's modular design enables researchers to easily extend the suite with new games or generate novel environments using large language models, making it an ideal platform for large-scale RL experimentation.
♻ ☆ Model Parallelism With Subnetwork Data Parallelism
Pre-training large neural networks at scale imposes heavy memory demands on accelerators and often requires costly communication. We introduce Subnetwork Data Parallelism (SDP), a distributed training framework that partitions a model into structured subnetworks trained across workers without exchanging activations. We study two complementary masking regimes: backward masking, which applies sparsity only in the backward step to retain unbiased gradients, and forward masking, which also removes parameters in the forward pass to deliver stronger efficiency gains while providing additional regularization. We further explore two subnetwork construction strategies: neuron level and block level, applied across both CNNs and transformers. In experiments spanning CNNs and transformers on CIFAR and ImageNet, as well as LLM pre-training on FineWeb, SDP reduces per-device memory usage by 30%-75% while maintaining or improving performance. Notably, in FLOP-matched settings, forward masking can sometimes achieve better performance.
comment: 10 pages, 2 figure
♻ ☆ Disentangling Multiplex Spatial-Temporal Transition Graph Representation Learning for Socially Enhanced POI Recommendation
Next Point-of-Interest (POI) recommendation is a research hotspot in business intelligence, where users' spatial-temporal transitions and social relationships play key roles. However, most existing works model spatial and temporal transitions separately, leading to misaligned representations of the same spatial-temporal key nodes. This misalignment introduces redundant information during fusion, increasing model uncertainty and reducing interpretability. To address this issue, we propose DiMuST, a socially enhanced POI recommendation model based on disentangled representation learning over multiplex spatial-temporal transition graphs. The model employs a novel Disentangled variational multiplex graph Auto-Encoder (DAE), which first disentangles shared and private distributions using a multiplex spatial-temporal graph strategy. It then fuses the shared features via a Product of Experts (PoE) mechanism and denoises the private features through contrastive constraints. The model effectively captures the spatial-temporal transition representations of POIs while preserving the intrinsic correlation of their spatial-temporal relationships. Experiments on two challenging datasets demonstrate that our DiMuST significantly outperforms existing methods across multiple metrics.
comment: The original paper has issues and has been restructured in the work; it is no longer suitable, so I am applying for withdrawal
♻ ☆ Understanding Adversarial Transfer: Why Representation-Space Attacks Fail Where Data-Space Attacks Succeed
The field of adversarial robustness has long established that adversarial examples can successfully transfer between image classifiers and that text jailbreaks can successfully transfer between language models (LMs). However, a pair of recent studies reported being unable to successfully transfer image jailbreaks between vision-language models (VLMs). To explain this striking difference, we propose a fundamental distinction regarding the transferability of attacks against machine learning models: attacks in the input data-space can transfer, whereas attacks in model representation space do not, at least not without geometric alignment of representations. We then provide theoretical and empirical evidence of this hypothesis in four different settings. First, we mathematically prove this distinction in a simple setting where two networks compute the same input-output map but via different representations. Second, we construct representation-space attacks against image classifiers that are as successful as well-known data-space attacks, but fail to transfer. Third, we construct representation-space attacks against LMs that successfully jailbreak the attacked models but again fail to transfer. Fourth, we construct data-space attacks against VLMs that successfully transfer to new VLMs, and we show that representation space attacks can transfer when VLMs' latent geometries are sufficiently aligned in post-projector space. Our work reveals that adversarial transfer is not an inherent property of all attacks but contingent on their operational domain - the shared data-space versus models' unique representation spaces - a critical insight for building more robust models.
♻ ☆ Fine-tuning LLMs with variational Bayesian last layer for high-dimensional Bayesian optimization
A plethora of applications entail solving black-box optimization problems with high evaluation costs, including drug discovery, material design, as well as hyperparameter tuning. Toward finding the global optimum of such black-box optimization problems with sample efficiency, Bayesian optimization (BO) is a theoretically elegant framework that relies on a probabilistic surrogate model so as to iteratively select the query point with well-balanced exploration-exploitation tradeoffs. The Gaussian process (GP), as the de-facto choice for surrogate modeling, has achieved compelling performances for vanilla BO with low-dimensional continuous variables. However, GPs fall short in coping with high-dimensional counterparts with {\it irregular} variables (e.g., categorical, ordinal, etc.). To alleviate this, neural network-based surrogates have been explored. Inspired by the powerful capabilities of LLMs, we adopt the LLM as the surrogate to model the mapping from the high-dimensional input variables to the objective function. To adapt to the current problem, we leverage the low-rank adaptation (LoRA) to fine-tune the LLM parameters together with the posterior of a linear regression head via the variational Bayesian last layer (VBLL) framework. The resulting LoRA-VBLL is not only computationally light compared to existing alternatives, but also admits recursive updates. To automate the critical selection of the LoRA rank as well as other hyperparameters, a weighted ensemble (ENS) of LoRA-VBLL surrogates has been devised, which further accommodates continual update of the per-model weight and individual LoRA-VBLL parameters via recursive Bayes. Extensive experimental results demonstrate the compelling performance of the proposed (ENS-)LoRA-VBLL approaches on various high-dimensional benchmarks and the real-world molecular optimization tasks.
♻ ☆ Generative Modeling of Weights: Generalization or Memorization?
Generative models have recently been explored for synthesizing neural network weights. These approaches take neural network checkpoints as training data and aim to generate high-performing weights during inference. In this work, we examine four representative, well-known methods on their ability to generate novel model weights, i.e., weights that are different from the checkpoints seen during training. Contrary to claims in prior work, we find that these methods synthesize weights largely by memorization: they produce either replicas, or, at best, simple interpolations of the training checkpoints. Moreover, they fail to outperform simple baselines, such as adding noise to the weights or taking a simple weight ensemble, in obtaining different and simultaneously high-performing models. Our further analysis suggests that this memorization might result from limited data, overparameterized models, and the underuse of structural priors specific to weight data. These findings highlight the need for more careful design and rigorous evaluation of generative models when applied to new domains. Our code is available at https://github.com/boyazeng/weight_memorization.
comment: Project page at https://boyazeng.github.io/weight_memorization
♻ ☆ MobiLLM: An Agentic AI Framework for Closed-Loop Threat Mitigation in 6G Open RANs
The evolution toward 6G networks is being accelerated by the Open Radio Access Network (O-RAN) paradigm -- an open, interoperable architecture that enables intelligent, modular applications across public telecom and private enterprise domains. While this openness creates unprecedented opportunities for innovation, it also expands the attack surface, demanding resilient, low-cost, and autonomous security solutions. Legacy defenses remain largely reactive, labor-intensive, and inadequate for the scale and complexity of next-generation systems. Current O-RAN applications focus mainly on network optimization or passive threat detection, with limited capability for closed-loop, automated response. To address this critical gap, we present an agentic AI framework for fully automated, end-to-end threat mitigation in 6G O-RAN environments. MobiLLM orchestrates security workflows through a modular multi-agent system powered by Large Language Models (LLMs). The framework features a Threat Analysis Agent for real-time data triage, a Threat Classification Agent that uses Retrieval-Augmented Generation (RAG) to map anomalies to specific countermeasures, and a Threat Response Agent that safely operationalizes mitigation actions via O-RAN control interfaces. Grounded in trusted knowledge bases such as the MITRE FiGHT framework and 3GPP specifications, and equipped with robust safety guardrails, MobiLLM provides a blueprint for trustworthy AI-driven network security. Initial evaluations demonstrate that MobiLLM can effectively identify and orchestrate complex mitigation strategies, significantly reducing response latency and showcasing the feasibility of autonomous security operations in 6G.
♻ ☆ Controlled Generation with Equivariant Variational Flow Matching
We derive a controlled generation objective within the framework of Variational Flow Matching (VFM), which casts flow matching as a variational inference problem. We demonstrate that controlled generation can be implemented two ways: (1) by way of end-to-end training of conditional generative models, or (2) as a Bayesian inference problem, enabling post hoc control of unconditional models without retraining. Furthermore, we establish the conditions required for equivariant generation and provide an equivariant formulation of VFM tailored for molecular generation, ensuring invariance to rotations, translations, and permutations. We evaluate our approach on both uncontrolled and controlled molecular generation, achieving state-of-the-art performance on uncontrolled generation and outperforming state-of-the-art models in controlled generation, both with end-to-end training and in the Bayesian inference setting. This work strengthens the connection between flow-based generative modeling and Bayesian inference, offering a scalable and principled framework for constraint-driven and symmetry-aware generation.
♻ ☆ The Challenges of Hyperparameter Tuning for Accurate Causal Effect Estimation
ML is playing an increasingly crucial role in estimating causal effects of treatments on outcomes from observational data. Many ML methods (`causal estimators') have been proposed for this task. All of these methods, as with any ML approach, require extensive hyperparameter tuning. For non-causal predictive tasks, there is a consensus on the choice of tuning metrics (e.g. mean squared error), making it simple to compare models. However, for causal inference tasks, such a consensus is yet to be reached, making any comparison of causal models difficult. On top of that, there is no ideal metric on which to tune causal estimators, so one must rely on proxies. Furthermore, the fact that model selection in causal inference involves multiple components (causal estimator, ML regressor, hyperparameters, metric), complicates the issue even further. In order to evaluate the importance of each component, we perform an extensive empirical study on their combination. Our experimental setup involves many commonly used causal estimators, regressors (`base learners' henceforth) and metrics applied to four well-known causal inference benchmark datasets. Our results show that hyperparameter tuning increased the probability of reaching state-of-the-art performance in average ($65\% {\rightarrow} 81\%$) and individualised ($50\% {\rightarrow} 57\%$) effect estimation with only commonly used estimators. We also show that the performance of standard metrics can be inconsistent across different scenarios. Our findings highlight the need for further research to establish whether metrics uniformly capable of state-of-the-art performance in causal model evaluation can be found.
comment: Substantially revised version. 18 pages of main content (33 pages in total), 4 main figures (11 in total)
♻ ☆ Exponential Family Variational Flow Matching for Tabular Data Generation
While denoising diffusion and flow matching have driven major advances in generative modeling, their application to tabular data remains limited, despite its ubiquity in real-world applications. To this end, we develop TabbyFlow, a variational Flow Matching (VFM) method for tabular data generation. To apply VFM to data with mixed continuous and discrete features, we introduce Exponential Family Variational Flow Matching (EF-VFM), which represents heterogeneous data types using a general exponential family distribution. We hereby obtain an efficient, data-driven objective based on moment matching, enabling principled learning of probability paths over mixed continuous and discrete variables. We also establish a connection between variational flow matching and generalized flow matching objectives based on Bregman divergences. Evaluation on tabular data benchmarks demonstrates state-of-the-art performance compared to baselines.
comment: 14 pages, 1 figure, and 9 tables; To be published in the Proceedings of the Forty-Second International Conference on Machine Learning
♻ ☆ IntrusionX: A Hybrid Convolutional-LSTM Deep Learning Framework with Squirrel Search Optimization for Network Intrusion Detection
Intrusion Detection Systems (IDS) face persistent challenges due to evolving cyberattacks, high-dimensional traffic data, and severe class imbalance in benchmark datasets such as NSL-KDD. To address these issues, we propose IntrusionX, a hybrid deep learning framework that integrates Convolutional Neural Networks (CNNs) for local feature extraction and Long Short-Term Memory (LSTM) networks for temporal modeling. The architecture is further optimized using the Squirrel Search Algorithm (SSA), enabling effective hyperparameter tuning while maintaining computational efficiency. Our pipeline incorporates rigorous preprocessing, stratified data splitting, and dynamic class weighting to enhance the detection of rare classes. Experimental evaluation on NSL-KDD demonstrates that IntrusionX achieves 98% accuracy in binary classification and 87% in 5-class classification, with significant improvements in minority class recall (U2R: 71%, R2L: 93%). The novelty of IntrusionX lies in its reproducible, imbalance-aware design with metaheuristic optimization.
♻ ☆ Understanding How CodeLLMs (Mis)Predict Types with Activation Steering
Large Language Models (LLMs) are widely used by software engineers for programming tasks. However, research shows that LLMs often lack a deep understanding of program semantics. Even minor changes to syntax, such as renaming variables, can significantly degrade performance across various tasks. In this work, we examine the task of type prediction: given a partially typed program, can a model predict a missing type annotations such that the resulting program is more typed? We construct a dataset of adversarial examples where models initially predict the correct types, but begin to fail after semantically irrelevant edits. This is problematic, as models should ideally generalize across different syntactic forms of semantically equivalent code. This lack of robustness suggests that models may have a shallow understanding of code semantics. Despite this, we provide evidence that LLMs do, in fact, learn robust mechanisms for type prediction-though these mechanisms often fail to activate in adversarial scenarios. By using activation steering, a method that manipulates a model's internal activations to guide it toward using latent knowledge, we restore accurate predictions on adversarial inputs. We show that steering successfully activates a type prediction mechanism that is shared by both Python and TypeScript, and is more effective than prompting with in-context examples. Across five different models, our comprehensive evaluation demonstrates that LLMs can learn generalizable representations of code semantics that transfer across programming languages.
comment: 40 pages, 67 figures. To be published at BlackBoxNLP 2025
♻ ☆ Putnam-like dataset summary: LLMs as mathematical competition contestants
In this paper we summarize the results of the Putnam-like benchmark published by Google DeepMind. This dataset consists of 96 original problems in the spirit of the Putnam Competition and 576 solutions of LLMs. We analyse the performance of models on this set of problems to verify their ability to solve problems from mathematical contests.
comment: 11 pages, 11 figures
♻ ☆ Fixing That Free Lunch: When, Where, and Why Synthetic Data Fails in Model-Based Policy Optimization
Synthetic data is a core component of data-efficient Dyna-style model-based reinforcement learning, yet it can also degrade performance. We study when it helps, where it fails, and why, and we show that addressing the resulting failure modes enables policy improvement that was previously unattainable. We focus on Model-Based Policy Optimization (MBPO), which performs actor and critic updates using synthetic action counterfactuals. Despite reports of strong and generalizable sample-efficiency gains in OpenAI Gym, recent work shows that MBPO often underperforms its model-free counterpart, Soft Actor-Critic (SAC), in the DeepMind Control Suite (DMC). Although both suites involve continuous control with proprioceptive robots, this shift leads to sharp performance losses across seven challenging DMC tasks, with MBPO failing in cases where claims of generalization from Gym would imply success. This reveals how environment-specific assumptions can become implicitly encoded into algorithm design when evaluation is limited. We identify two coupled issues behind these failures: scale mismatches between dynamics and reward models that induce critic underestimation and hinder policy improvement during model-policy coevolution, and a poor choice of target representation that inflates model variance and produces error-prone rollouts. Addressing these failure modes enables policy improvement where none was previously possible, allowing MBPO to outperform SAC in five of seven tasks while preserving the strong performance previously reported in OpenAI Gym. Rather than aiming only for incremental average gains, we hope our findings motivate the community to develop taxonomies that tie MDP task- and environment-level structure to algorithmic failure modes, pursue unified solutions where possible, and clarify how benchmark choices ultimately shape the conditions under which algorithms generalize.
♻ ☆ SCOPED: Score-Curvature Out-of-distribution Proximity Evaluator for Diffusion
Out-of-distribution (OOD) detection is essential for reliable deployment of machine learning systems in vision, robotics, reinforcement learning, and beyond. We introduce Score-Curvature Out-of-distribution Proximity Evaluator for Diffusion (SCOPED), a fast and general-purpose OOD detection method for diffusion models that reduces the number of forward passes on the trained model by an order of magnitude compared to prior methods, outperforming most diffusion-based baselines and closely approaching the accuracy of the strongest ones. SCOPED is computed from a single diffusion model trained once on a diverse dataset, and combines the Jacobian trace and squared norm of the model's score function into a single test statistic. Rather than thresholding on a fixed value, we estimate the in-distribution density of SCOPED scores using kernel density estimation, enabling a flexible, unsupervised test that, in the simplest case, only requires a single forward pass and one Jacobian-vector product (JVP), made efficient by Hutchinson's trace estimator. On four vision benchmarks, SCOPED achieves competitive or state-of-the-art precision-recall scores despite its low computational cost. The same method generalizes to robotic control tasks with shared state and action spaces, identifying distribution shifts across reward functions and training regimes. These results position SCOPED as a practical foundation for fast and reliable OOD detection in real-world domains, including perceptual artifacts in vision, outlier detection in autoregressive models, exploration in reinforcement learning, and dataset curation for unsupervised training.
♻ ☆ Comparing Exploration-Exploitation Strategies of LLMs and Humans: Insights from Standard Multi-armed Bandit Experiments
Large language models (LLMs) are increasingly used to simulate or automate human behavior in complex sequential decision-making settings. A natural question is then whether LLMs exhibit similar decision-making behavior to humans, and can achieve comparable (or superior) performance. In this work, we focus on the exploration-exploitation (E&E) tradeoff, a fundamental aspect of dynamic decision-making under uncertainty. We employ canonical multi-armed bandit (MAB) experiments introduced in the cognitive science and psychiatry literature to conduct a comparative study of the E&E strategies of LLMs, humans, and MAB algorithms. We use interpretable choice models to capture the E&E strategies of the agents and investigate how enabling thinking traces, through both prompting strategies and thinking models, shapes LLM decision-making. We find that enabling thinking in LLMs shifts their behavior toward more human-like behavior, characterized by a mix of random and directed exploration. In a simple stationary setting, thinking-enabled LLMs exhibit similar levels of random and directed exploration compared to humans. However, in more complex, non-stationary environments, LLMs struggle to match human adaptability, particularly in effective directed exploration, despite achieving similar regret in certain scenarios. Our findings highlight both the promise and limits of LLMs as simulators of human behavior and tools for automated decision-making and point to potential areas for improvement.
♻ ☆ Batched Nonparametric Contextual Bandits
We study nonparametric contextual bandits under batch constraints, where the expected reward for each action is modeled as a smooth function of covariates, and the policy updates are made at the end of each batch of observations. We establish a minimax regret lower bound for this setting and propose a novel batch learning algorithm that achieves the optimal regret (up to logarithmic factors). In essence, our procedure dynamically splits the covariate space into smaller bins, carefully aligning their widths with the batch size. Our theoretical results suggest that for nonparametric contextual bandits, a nearly constant number of policy updates can attain optimal regret in the fully online setting.
♻ ☆ Post Reinforcement Learning Inference
We study estimation and inference using data collected by reinforcement learning (RL) algorithms. These algorithms adaptively experiment by interacting with individual units over multiple stages, updating their strategies based on past outcomes. Our goal is to evaluate a counterfactual policy after data collection and estimate structural parameters, such as dynamic treatment effects, that support credit assignment and quantify the impact of early actions on final outcomes. These parameters can often be defined as solutions to moment equations, motivating moment-based estimation methods developed for static data. In RL settings, however, data are often collected adaptively under nonstationary behavior policies. As a result, standard estimators fail to achieve asymptotic normality due to time-varying variance. We propose a weighted generalized method of moments (GMM) approach that uses adaptive weights to stabilize this variance. We characterize weighting schemes that ensure consistency and asymptotic normality of the weighted GMM estimators, enabling valid hypothesis testing and uniform confidence region construction. Key applications include dynamic treatment effect estimation and dynamic off-policy evaluation.
♻ ☆ To Backtrack or Not to Backtrack: When Sequential Search Limits Model Reasoning
Recent advancements in large language models (LLMs) have significantly improved their reasoning abilities, particularly through techniques involving search and backtracking. Backtracking naturally scales test-time compute by enabling sequential, linearized exploration via long chain-of-thought (CoT) generation. However, this is not the only strategy for scaling test time-compute: parallel sampling with best-of-N selection provides an alternative that generates diverse solutions simultaneously. Despite the growing adoption of sequential search, its advantages over parallel sampling-especially under a fixed compute budget-remain poorly understood. In this paper, we systematically compare these two approaches on two challenging reasoning tasks: CountDown and Sudoku. Surprisingly, we find that sequential search underperforms parallel sampling on CountDown but outperforms it on Sudoku, suggesting that backtracking is not universally beneficial. We identify two factors that can cause backtracking to degrade performance: (1) training on fixed search traces can lock models intro suboptimal strategies, and (2) explicit CoT supervision can discourage implicit (non verbalized) reasoning. Extending our analysis to reinforcement learning (RL), we show that models with backtracking capabilities benefit significantly from RL fine-tuning, while models without backtracking see limited, mixed gains. Together, these findings challenge the assumption that backtracking universally enhances LLM reasoning, instead revealing a complex interaction between task structure, training data, model scale, and learning paradigm.
comment: COLM 2025 Camera Ready
♻ ☆ Highly Efficient and Effective LLMs with Multi-Boolean Architectures
Weight binarization has emerged as a promising strategy to reduce the complexity of large language models (LLMs). Existing approaches fall into post-training binarization, which is simple but causes severe performance loss, and training-aware methods, which depend on full-precision latent weights, adding complexity and limiting efficiency. We propose a novel framework that represents LLMs with multi-kernel Boolean parameters and, for the first time, enables direct finetuning LMMs in the Boolean domain, eliminating the need for latent weights. This enhances representational capacity and dramatically reduces complexity during both finetuning and inference. Extensive experiments across diverse LLMs show our method outperforms recent ultra low-bit quantization and binarization techniques.
comment: Preprint. Under Review
♻ ☆ Ultra-Efficient Decoding for End-to-End Neural Compression and Reconstruction NeurIPS 2025
Image compression and reconstruction are crucial for various digital applications. While contemporary neural compression methods achieve impressive compression rates, the adoption of such technology has been largely hindered by the complexity and large computational costs of the convolution-based decoders during data reconstruction. To address the decoder bottleneck in neural compression, we develop a new compression-reconstruction framework based on incorporating low-rank representation in an autoencoder with vector quantization. We demonstrated that performing a series of computationally efficient low-rank operations on the learned latent representation of images can efficiently reconstruct the data with high quality. Our approach dramatically reduces the computational overhead in the decoding phase of neural compression/reconstruction, essentially eliminating the decoder compute bottleneck while maintaining high fidelity of image outputs.
comment: 5 pages, 4 figures, NeurIPS 2025 Workshop MLForSys
♻ ☆ Risk-Sensitive Agent Compositions
From software development to robot control, modern agentic systems decompose complex objectives into a sequence of subtasks and choose a set of specialized AI agents to complete them. We formalize agentic workflows as directed acyclic graphs, called agent graphs, where edges represent AI agents and paths correspond to feasible compositions of agents. Real-world deployment requires selecting agent compositions that not only maximize task success but also minimize violations of safety, fairness, and privacy requirements which demands a careful analysis of the low-probability (tail) behaviors of compositions of agents. In this work, we consider risk minimization over the set of feasible agent compositions and seek to minimize the value-at-risk of the loss distribution of the agent composition where the loss quantifies violations of these requirements. We introduce an efficient algorithm which traverses the agent graph and finds a near-optimal composition of agents. It uses a dynamic programming approach to approximate the value-at-risk of agent compositions by exploiting a union bound. Furthermore, we prove that the approximation is near-optimal asymptotically for a broad class of practical loss functions. To evaluate our framework, we consider a suite of video game-like control benchmarks that require composing several agents trained with reinforcement learning and demonstrate our algorithm's effectiveness in approximating the value-at-risk and identifying the optimal agent composition.
comment: 17 pages, 6 figures
♻ ☆ Dual-Stage Reweighted MoE for Long-Tailed Egocentric Mistake Detection
In this report, we address the problem of determining whether a user performs an action incorrectly from egocentric video data. To handle the challenges posed by subtle and infrequent mistakes, we propose a Dual-Stage Reweighted Mixture-of-Experts (DR-MoE) framework. In the first stage, features are extracted using a frozen ViViT model and a LoRA-tuned ViViT model, which are combined through a feature-level expert module. In the second stage, three classifiers are trained with different objectives: reweighted cross-entropy to mitigate class imbalance, AUC loss to improve ranking under skewed distributions, and label-aware loss with sharpness-aware minimization to enhance calibration and generalization. Their predictions are fused using a classification-level expert module. The proposed method achieves strong performance, particularly in identifying rare and ambiguous mistake instances. The code is available at https://github.com/boyuh/DR-MoE.
♻ ☆ Modern Methods in Associative Memory ICML 2025
Associative Memories like the famous Hopfield Networks are elegant models for describing fully recurrent neural networks whose fundamental job is to store and retrieve information. In the past few years they experienced a surge of interest due to novel theoretical results pertaining to their information storage capabilities, and their relationship with SOTA AI architectures, such as Transformers and Diffusion Models. These connections open up possibilities for interpreting the computation of traditional AI networks through the theoretical lens of Associative Memories. Additionally, novel Lagrangian formulations of these networks make it possible to design powerful distributed models that learn useful representations and inform the design of novel architectures. This tutorial provides an approachable introduction to Associative Memories, emphasizing the modern language and methods used in this area of research, with practical hands-on mathematical derivations and coding notebooks.
comment: Tutorial at ICML 2025
♻ ☆ Efficient & Correct Predictive Equivalence for Decision Trees
The Rashomon set of decision trees (DTs) finds importance uses. Recent work showed that DTs computing the same classification function, i.e. predictive equivalent DTs, can represent a significant fraction of the Rashomon set. Such redundancy is undesirable. For example, feature importance based on the Rashomon set becomes inaccurate due the existence of predictive equivalent DTs, i.e. DTs with the same prediction for every possible input. In recent work, McTavish et al. proposed solutions for several computational problems related with DTs, including that of deciding predictive equivalent DTs. The approach of McTavish et al. consists of applying the well-known method of Quine-McCluskey (QM) for obtaining minimum-size DNF (disjunctive normal form) representations of DTs, which are then used for comparing DTs for predictive equivalence. Furthermore, the minimum-size DNF representation was also applied to computing explanations for the predictions made by DTs, and to finding predictions in the presence of missing data. However, the problem of formula minimization is hard for the second level of the polynomial hierarchy, and the QM method may exhibit worst-case exponential running time and space. This paper first demonstrates that there exist decision trees that trigger the worst-case exponential running time and space of the QM method. Second, the paper shows that the QM method may incorrectly decide predictive equivalence, if two key constraints are not respected, and one may be difficult to formally guarantee. Third, the paper shows that any of the problems to which the smallest DNF representation has been applied to can be solved in polynomial time, in the size of the DT. The experiments confirm that, for DTs for which the worst-case of the QM method is triggered, the algorithms proposed in this paper are orders of magnitude faster than the ones proposed by McTavish et al.
♻ ☆ Permissioned LLMs: Enforcing Access Control in Large Language Models
In enterprise settings, organizational data is segregated, siloed and carefully protected by elaborate access control frameworks. These access control structures can completely break down if an LLM fine-tuned on the siloed data serves requests, for downstream tasks, from individuals with disparate access privileges. We propose Permissioned LLMs (PermLLM), a new class of LLMs that superimpose the organizational data access control structures on query responses they generate. We formalize abstractions underpinning the means to determine whether access control enforcement happens correctly over LLM query responses. Our formalism introduces the notion of a relevant response that can be used to prove whether a PermLLM mechanism has been implemented correctly. We also introduce a novel metric, called access advantage, to empirically evaluate the efficacy of a PermLLM mechanism. We introduce three novel PermLLM mechanisms that build on Parameter Efficient Fine-Tuning to achieve the desired access control. We furthermore present two instantiations of access advantage--(i) Domain Distinguishability Index (DDI) based on Membership Inference Attacks, and (ii) Utility Gap Index (UGI) based on LLM utility evaluation. We demonstrate the efficacy of our PermLLM mechanisms through extensive experiments on five public datasets (GPQA, RCV1, SimpleQA, WMDP, and PubMedQA), in addition to evaluating the validity of DDI and UGI metrics themselves for quantifying access control in LLMs.
♻ ☆ Statistical Inference for Temporal Difference Learning with Linear Function Approximation
We investigate the statistical properties of Temporal Difference (TD) learning with Polyak-Ruppert averaging, arguably one of the most widely used algorithms in reinforcement learning, for the task of estimating the parameters of the optimal linear approximation to the value function. Assuming independent samples, we make three theoretical contributions that improve upon the current state-of-the-art results: (i) we derive sharper high probability convergence guarantees that depend explicitly on the asymptotic variance and hold under weaker conditions than those adopted in the literature; (ii) we establish refined high-dimensional Berry-Esseen bounds over the class of convex sets, achieving faster rates than the best known results, and (iii) we propose and analyze a novel, computationally efficient online plug-in estimator of the asymptotic covariance matrix. These results enable the construction of confidence regions and simultaneous confidence intervals for the linear parameters of the value function approximation, with guaranteed finite-sample coverage. We demonstrate the applicability of our theoretical findings through numerical experiments.
♻ ☆ Topological Autoencoders++: Fast and Accurate Cycle-Aware Dimensionality Reduction
This paper presents a novel topology-aware dimensionality reduction approach aiming at accurately visualizing the cyclic patterns present in high dimensional data. To that end, we build on the Topological Autoencoders (TopoAE) formulation. First, we provide a novel theoretical analysis of its associated loss and show that a zero loss indeed induces identical persistence pairs (in high and low dimensions) for the $0$-dimensional persistent homology (PH$^0$) of the Rips filtration. We also provide a counter example showing that this property no longer holds for a naive extension of TopoAE to PH$^d$ for $d\ge 1$. Based on this observation, we introduce a novel generalization of TopoAE to $1$-dimensional persistent homology (PH$^1$), called TopoAE++, for the accurate generation of cycle-aware planar embeddings, addressing the above failure case. This generalization is based on the notion of cascade distortion, a new penalty term favoring an isometric embedding of the $2$-chains filling persistent $1$-cycles, hence resulting in more faithful geometrical reconstructions of the $1$-cycles in the plane. We further introduce a novel, fast algorithm for the exact computation of PH for Rips filtrations in the plane, yielding improved runtimes over previously documented topology-aware methods. Our method also achieves a better balance between the topological accuracy, as measured by the Wasserstein distance, and the visual preservation of the cycles in low dimensions. Our C++ implementation is available at https://github.com/MClemot/TopologicalAutoencodersPlusPlus.
♻ ☆ HopaDIFF: Holistic-Partial Aware Fourier Conditioned Diffusion for Referring Human Action Segmentation in Multi-Person Scenarios NeurIPS 2025
Action segmentation is a core challenge in high-level video understanding, aiming to partition untrimmed videos into segments and assign each a label from a predefined action set. Existing methods primarily address single-person activities with fixed action sequences, overlooking multi-person scenarios. In this work, we pioneer textual reference-guided human action segmentation in multi-person settings, where a textual description specifies the target person for segmentation. We introduce the first dataset for Referring Human Action Segmentation, i.e., RHAS133, built from 133 movies and annotated with 137 fine-grained actions with 33h video data, together with textual descriptions for this new task. Benchmarking existing action segmentation methods on RHAS133 using VLM-based feature extractors reveals limited performance and poor aggregation of visual cues for the target person. To address this, we propose a holistic-partial aware Fourier-conditioned diffusion framework, i.e., HopaDIFF, leveraging a novel cross-input gate attentional xLSTM to enhance holistic-partial long-range reasoning and a novel Fourier condition to introduce more fine-grained control to improve the action segmentation generation. HopaDIFF achieves state-of-the-art results on RHAS133 in diverse evaluation settings. The dataset and code are available at https://github.com/KPeng9510/HopaDIFF.
comment: Accepted to NeurIPS 2025. The dataset and code are available at https://github.com/KPeng9510/HopaDIFF
♻ ☆ Amelia: A Large Dataset and Benchmark for Airport Surface Movement Forecasting
Demand for air travel is rising, straining existing aviation infrastructure. In the US, more than 90% of airport control towers are understaffed, falling short of FAA and union standards. This, in part, has contributed to an uptick in near-misses and safety-critical events, highlighting the need for advancements in air traffic management technologies to ensure safe and efficient operations. Data-driven predictive models for terminal airspace show potential to address these challenges; however, the lack of large-scale surface movement datasets in the public domain has hindered the development of scalable and generalizable approaches. To address this, we introduce Amelia-42, a first-of-its-kind large collection of raw airport surface movement reports streamed through the FAA's System Wide Information Management (SWIM) Program, comprising over two years of trajectory data (~9.19 TB) across 42 US airports. We open-source tools to process this data into clean tabular position reports. We release Amelia42-Mini, a 15-day sample per airport, fully processed data on HuggingFace for ease of use. We also present a trajectory forecasting benchmark consisting of Amelia10-Bench, an accessible experiment family using 292 days from 10 airports, as well as Amelia-TF, a transformer-based baseline for multi-agent trajectory forecasting. All resources are available at our website: https://ameliacmu.github.io and https://huggingface.co/AmeliaCMU.
comment: 40 pages, 19 figures, 9 tables
♻ ☆ Improved Monte Carlo Planning via Causal Disentanglement for Structurally-Decomposed Markov Decision Processes
Markov Decision Processes (MDPs), as a general-purpose framework, often overlook the benefits of incorporating the causal structure of the transition and reward dynamics. For a subclass of resource allocation problems, we introduce the Structurally Decomposed MDP (SD-MDP), which leverages causal disentanglement to partition an MDP's temporal causal graph into independent components. By exploiting this disentanglement, SD-MDP enables dimensionality reduction and computational efficiency gains in optimal value function estimation. We reduce the sequential optimization problem to a fractional knapsack problem with log-linear complexity $O(T \log T)$, outperforming traditional stochastic programming methods that exhibit polynomial complexity with respect to the time horizon $T$. Additionally, SD-MDP's computational advantages are independent of state-action space size, making it viable for high-dimensional spaces. Furthermore, our approach integrates seamlessly with Monte Carlo Tree Search (MCTS), achieving higher expected rewards under constrained simulation budgets while providing a vanishing simple regret bound. Empirical results demonstrate superior policy performance over benchmarks across various logistics and finance domains.
comment: Conference Paper. 7th International Conference on Distributed Artificial Intelligence (DAI)
♻ ☆ Variance Reduction and Low Sample Complexity in Stochastic Optimization via Proximal Point Method
High-probability guarantees in stochastic optimization are often obtained only under strong noise assumptions such as sub-Gaussian tails. We show that such guarantees can also be achieved under the weaker assumption of bounded variance by developing a stochastic proximal point method. This method combines a proximal subproblem solver, which inherently reduces variance, with a probability booster that amplifies per-iteration reliability into high-confidence results. The analysis demonstrates convergence with low sample complexity, without restrictive noise assumptions or reliance on mini-batching.
comment: 23 pages
♻ ☆ Rethinking the Vulnerability of Concept Erasure and a New Method
The proliferation of text-to-image diffusion models has raised significant privacy and security concerns, particularly regarding the generation of copyrighted or harmful images. In response, concept erasure (defense) methods have been developed to "unlearn" specific concepts through post-hoc finetuning. However, recent concept restoration (attack) methods have demonstrated that these supposedly erased concepts can be recovered using adversarially crafted prompts, revealing a critical vulnerability in current defense mechanisms. In this work, we first investigate the fundamental sources of adversarial vulnerability and reveal that vulnerabilities are pervasive in the prompt embedding space of concept-erased models, a characteristic inherited from the original pre-unlearned model. Furthermore, we introduce **RECORD**, a novel coordinate-descent-based restoration algorithm that consistently outperforms existing restoration methods by up to 17.8 times. We conduct extensive experiments to assess its compute-performance tradeoff and propose acceleration strategies.
♻ ☆ Towards Provable Emergence of In-Context Reinforcement Learning NeurIPS 2025
Typically, a modern reinforcement learning (RL) agent solves a task by updating its neural network parameters to adapt its policy to the task. Recently, it has been observed that some RL agents can solve a wide range of new out-of-distribution tasks without parameter updates after pretraining on some task distribution. When evaluated in a new task, instead of making parameter updates, the pretrained agent conditions its policy on additional input called the context, e.g., the agent's interaction history in the new task. The agent's performance increases as the information in the context increases, with the agent's parameters fixed. This phenomenon is typically called in-context RL (ICRL). The pretrained parameters of the agent network enable the remarkable ICRL phenomenon. However, many ICRL works perform the pretraining with standard RL algorithms. This raises the central question this paper aims to address: Why can the RL pretraining algorithm generate network parameters that enable ICRL? We hypothesize that the parameters capable of ICRL are minimizers of the pretraining loss. This work provides initial support for this hypothesis through a case study. In particular, we prove that when a Transformer is pretrained for policy evaluation, one of the global minimizers of the pretraining loss can enable in-context temporal difference learning.
comment: NeurIPS 2025, 29 pages
♻ ☆ QiMeng-CodeV-R1: Reasoning-Enhanced Verilog Generation
Large language models (LLMs) trained via reinforcement learning with verifiable reward (RLVR) have achieved breakthroughs on tasks with explicit, automatable verification, such as software programming and mathematical problems. Extending RLVR to electronic design automation (EDA), especially automatically generating hardware description languages (HDLs) like Verilog from natural-language (NL) specifications, however, poses three key challenges: the lack of automated and accurate verification environments, the scarcity of high-quality NL-code pairs, and the prohibitive computation cost of RLVR. To this end, we introduce CodeV-R1, an RLVR framework for training Verilog generation LLMs. First, we develop a rule-based testbench generator that performs robust equivalence checking against golden references. Second, we propose a round-trip data synthesis method that pairs open-source Verilog snippets with LLM-generated NL descriptions, verifies code-NL-code consistency via the generated testbench, and filters out inequivalent examples to yield a high-quality dataset. Third, we employ a two-stage "distill-then-RL" training pipeline: distillation for the cold start of reasoning abilities, followed by adaptive DAPO, our novel RLVR algorithm that can reduce training cost by adaptively adjusting sampling rate. The resulting model, CodeV-R1-7B, achieves 68.6% and 72.9% pass@1 on VerilogEval v2 and RTLLM v1.1, respectively, surpassing prior state-of-the-art by 12~20%, while even exceeding the performance of 671B DeepSeek-R1 on RTLLM. We have released our model, training code, and dataset to facilitate research in EDA and LLM communities.
♻ ☆ On the $O(\frac{\sqrt{d}}{K^{1/4}})$ Convergence Rate of AdamW Measured by $\ell_1$ Norm NeurIPS
As the default optimizer for training large language models, AdamW has achieved remarkable success in deep learning. However, its convergence behavior is not theoretically well-understood. This paper establishes the convergence rate $\frac{1}{K}\sum_{k=1}^KE\left[||\nabla f(x^k)||_1\right]\leq O(\frac{\sqrt{d}C}{K^{1/4}})$ for AdamW measured by $\ell_1$ norm, where $K$ represents the iteration number, $d$ denotes the model dimension, and $C$ matches the constant in the optimal convergence rate of SGD. Theoretically, we have $||\nabla f(x)||_2\ll ||\nabla f(x)||_1\leq \sqrt{d}||\nabla f(x)||_2$ for any high-dimensional vector $x$ and $E\left[||\nabla f(x)||_1\right]\geq\sqrt{\frac{2d}{\pi}}E\left[||\nabla f(x)||_2\right]$ when each element of $\nabla f(x)$ is generated from Gaussian distribution $\mathcal N(0,1)$. Empirically, our experimental results on real-world deep learning tasks reveal $||\nabla f(x)||_1=\varTheta(\sqrt{d})||\nabla f(x)||_2$. Both support that our convergence rate can be considered to be analogous to the optimal $\frac{1}{K}\sum_{k=1}^KE\left[||\nabla f(x^k)||_2\right]\leq O(\frac{C}{K^{1/4}})$ convergence rate of SGD in the ideal case. We also extend our result to NAdamW, an AdamW variant that employs a double-momentum mechanism, and demonstrate that it maintains the same convergence rate.
comment: V2: NeurIPS Camera-Ready. V3: expand upon the conference version by incorporating the analysis of NAdamW
♻ ☆ On diffusion posterior sampling via sequential Monte Carlo for zero-shot scaffolding of protein motifs
With the advent of diffusion models, new proteins can be generated at an unprecedented rate. The motif scaffolding problem requires steering this generative process to yield proteins with a desirable functional substructure called a motif. While models have been trained to take the motif as conditional input, recent techniques in diffusion posterior sampling can be leveraged as zero-shot alternatives whose approximations can be corrected with sequential Monte Carlo (SMC) algorithms. In this work, we introduce a new set of guidance potentials for describing scaffolding tasks and solve them by adapting SMC-aided diffusion posterior samplers with an unconditional model, Genie, as a prior. In single motif problems, we find that (i) the proposed potentials perform comparably, if not better, than the conventional masking approach, (ii) samplers based on reconstruction guidance outperform their replacement method counterparts, and (iii) measurement tilted proposals and twisted targets improve performance substantially. Furthermore, as a demonstration, we provide solutions to two multi-motif problems by pairing reconstruction guidance with an SE(3)-invariant potential. We also produce designable internally symmetric monomers with a guidance potential for point symmetry constraints. Our code is available at: https://github.com/matsagad/mres-project.
comment: Published in Transactions on Machine Learning Research (09/2025). Reviewed on OpenReview: https://openreview.net/forum?id=KXRYY7iwqh
♻ ☆ GPT and Prejudice: A Sparse Approach to Understanding Learned Representations in Large Language Models
As large language models (LLMs) are increasingly trained on massive, uncurated corpora, understanding both model representations and the data they internalize has become a major challenge. In this work, we show that pairing LLMs with sparse autoencoders (SAEs) enables interpretation not only of model behavior but also of the deeper structures, themes, and biases embedded in the training data. We train a GPT-style transformer model exclusively on the novels of Jane Austen, a corpus rich in social constructs and narrative patterns. We then apply SAEs to hidden states across multiple layers, uncovering sparse, interpretable features that reflect the key narratives and concepts present in the corpus, including gender, class, and societal duty. Our findings demonstrate that LLMs combined with SAEs can act as scalable probes into complex datasets, offering a new path for corpus exploration, bias discovery, and model interpretability at scale.
comment: Preprint. Draft version, subject to revision
♻ ☆ Co-rewarding: Stable Self-supervised RL for Eliciting Reasoning in Large Language Models
While reinforcement learning with verifiable rewards (RLVR) is effective to improve the reasoning ability of large language models (LLMs), its reliance on human-annotated labels leads to the scaling up dilemma, especially for complex tasks. Recent self-rewarding methods investigate a label-free alternative to unlock the reasoning capabilities of LLMs, yet they frequently encounter the non-negligible training collapse issue, as the single-view supervision signal easily forms the self-consistent illusion, yielding the reward hacking. Inspired by the success of self-supervised learning, we propose \textit{Co-rewarding}, a novel self-supervised RL framework that improves training stability by seeking complementary supervision from another views. Specifically, we instantiate Co-rewarding in two ways: (1) \textit{Co-rewarding-I} is a data-side instantiation that derives reward signals from contrastive agreement across semantically analogous questions; and (2) \textit{Co-rewarding-II} is a model-side instantiation that maintains a slowly-updated reference teacher with pseudo labels to realize self-distillation. Intuitively, such instantiations introduce different levels of discrepancy to increase the difficulty of training collapse on trivial reasoning solutions. Empirically, Co-rewarding exhibits stable training across various setups, and outperforms other self-rewarding baselines by $+3.31\%$ improvements on average on multiple mathematical reasoning benchmarks, especially by $+7.49\%$ on Llama-3.2-3B-Instruct. Notably, Co-rewarding reaches or even surpasses RLVR with ground-truth (GT) label in several cases, such as a Pass@$1$ of $94.01\%$ on GSM8K with Qwen3-8B-Base remarkably higher than GT. Our code is publicly available at https://github.com/tmlr-group/Co-rewarding.
♻ ☆ Discrimination in machine learning algorithms
Machine learning algorithms are routinely used for business decisions that may directly affect individuals, for example, because a credit scoring algorithm refuses them a loan. It is then relevant from an ethical (and legal) point of view to ensure that these algorithms do not discriminate based on sensitive attributes (like sex or race), which may occur unwittingly and unknowingly by the operator and the management. Statistical tools and methods are then required to detect and eliminate such potential biases.
♻ ☆ A Malliavin-Gamma calculus approach to Score Based Diffusion Generative models for random fields
We adopt a Gamma and Malliavin Calculi point of view in order to generalize Score-based diffusion Generative Models (SGMs) to an infinite-dimensional abstract Hilbertian setting. Particularly, we define the forward noising process using Dirichlet forms associated to the Cameron-Martin space of Gaussian measures and Wiener chaoses; whereas by relying on an abstract time-reversal formula, we show that the score function is a Malliavin derivative and it corresponds to a conditional expectation. This allows us to generalize SGMs to the infinite-dimensional setting. Moreover, we extend existing finite-dimensional entropic convergence bounds to this Hilbertian setting by highlighting the role played by the Cameron-Martin norm in the Fisher information of the data distribution. Lastly, we specify our discussion for spherical random fields, considering as source of noise a Whittle-Mat\'ern random spherical field.
comment: 26 pages, amended typos and added a simulation of the forward noising process for the spherical fields example
♻ ☆ Efficient Preimage Approximation for Neural Network Certification
The growing reliance on artificial intelligence in safety- and security-critical applications demands effective neural network certification. A challenging real-world use case is "patch attacks", where adversarial patches or lighting conditions obscure parts of images, for example, traffic signs. A significant step towards certification against patch attacks was recently achieved using PREMAP, which uses under- and over-approximations of the preimage, the set of inputs that lead to a specified output, for the certification. While the PREMAP approach is versatile, it is currently limited to fully-connected neural networks of moderate dimensionality. In order to tackle broader real-world use cases, we present novel algorithmic extensions to PREMAP involving tighter bounds, adaptive Monte Carlo sampling, and improved branching heuristics. Firstly, we demonstrate that these efficiency improvements significantly outperform the original PREMAP and enable scaling to convolutional neural networks that were previously intractable. Secondly, we showcase the potential of preimage approximation methodology for analysing and certifying reliability and robustness on a range of use cases from computer vision and control.
comment: Code available at https://github.com/Anton-Bjorklund/Premap2
♻ ☆ Enhancing LLM Steering through Sparse Autoencoder-Based Vector Refinement
Steering has emerged as a promising approach in controlling large language models (LLMs) without modifying model parameters. However, most existing steering methods rely on large-scale datasets to learn clear behavioral information, which limits their applicability in many real-world scenarios. The steering vectors extracted from small dataset often contain task-irrelevant noising features, which degrades their effectiveness. To refine the steering vectors learned from limited data, we introduce Refinement of Steering Vector via Sparse Autoencoder (SAE-RSV) that leverages SAEs to semantically denoise and augment the steering vectors. In our framework, we first remove task-irrelevant features according to their semantics provided by SAEs, and then enrich task-relevant features missing from the small dataset through their semantic similarity to the identified relevant features. Extensive experiments demonstrate that the proposed SAE-RSV substantially outperforms all the baseline methods including supervised fine-tuning. Our findings show that effective steering vector can be constructed from limited training data by refining the original steering vector through SAEs.
comment: 19 pages, 11 figures, 7 tables
♻ ☆ Diffusion-aided Task-oriented Semantic Communications with Model Inversion Attack
Semantic communication enhances transmission efficiency by conveying semantic information rather than raw input symbol sequences. Task-oriented semantic communication is a variant that tries to retains only task-specific information, thus achieving greater bandwidth savings. However, these neural-based communication systems are vulnerable to model inversion attacks, where adversaries try to infer sensitive input information from eavesdropped transmitted data. The key challenge, therefore, lies in preserving privacy while ensuring transmission correctness and robustness. While prior studies typically assume that adversaries aim to fully reconstruct the raw input in task-oriented settings, there exist scenarios where pixel-level metrics such as PSNR or SSIM are low, yet the adversary's outputs still suffice to accomplish the downstream task, indicating leakage of sensitive information. We therefore adopt the attacker's task accuracy as a more appropriate metric for evaluating attack effectiveness. To optimize the gap between the legitimate receiver's accuracy and the adversary's accuracy, we propose DiffSem, a diffusion-aided framework for task-oriented semantic communication. DiffSem integrates a transmitter-side self-noising mechanism that adaptively regulates semantic content while compensating for channel noise, and a receiver-side diffusion U-Net that enhances task performance and can be optionally strengthened by self-referential label embeddings. Our experiments demonstrate that DiffSem enables the legitimate receiver to achieve higher accuracy, thereby validating the superior performance of the proposed framework.
♻ ☆ Theoretical Investigation on Inductive Bias of Isolation Forest
Isolation Forest (iForest) stands out as a widely-used unsupervised anomaly detector, primarily owing to its remarkable runtime efficiency and superior performance in large-scale tasks. Despite its widespread adoption, a theoretical foundation explaining iForest's success remains unclear. This paper focuses on the inductive bias of iForest, which theoretically elucidates under what circumstances and to what extent iForest works well. The key is to formulate the growth process of iForest, where the split dimensions and split values are randomly selected. We model the growth process of iForest as a random walk, enabling us to derive the expected depth function, which is the outcome of iForest, using transition probabilities. The case studies reveal key inductive biases: iForest exhibits lower sensitivity to central anomalies while demonstrating greater parameter adaptability compared to $k$-Nearest Neighbor. Our study provides a theoretical understanding of the effectiveness of iForest and establishes a foundation for further theoretical exploration.
♻ ☆ Graph Neural Networks for Transmission Grid Topology Control: Busbar Information Asymmetry and Heterogeneous Representations
Factors such as the proliferation of renewable energy and electrification contribute to grid congestion as a pressing problem. Topology control is an appealing method for relieving congestion, but traditional approaches for topology discovery have proven too slow for practical application. Recent research has focused on machine learning (ML) as an efficient alternative. Graph neural networks (GNNs) are particularly well-suited for topology control applications due to their ability to model the graph structure of power grids. This study investigates the effect of the graph representation on GNN effectiveness for topology control. We identify the busbar information asymmetry problem inherent to the popular homogeneous graph representation. We propose a heterogeneous graph representation that resolves this problem. We apply GNNs with both representations and a fully connected neural network (FCNN) baseline on an imitation learning task. The models are evaluated by classification accuracy and grid operation ability. We find that heterogeneous GNNs perform best on in-distribution network configurations, followed by FCNNs, and lastly, homogeneous GNNs. We also find that both GNN types generalize better to out-of-distribution network configurations than FCNNs.
comment: 31 pages, 9 figures. Submitted to Applied Energy. Previous versions were uploaded to arXiv with the title "Generalizable Graph Neural Networks for Robust Power Grid Topology Control"
♻ ☆ A Nearly Optimal and Low-Switching Algorithm for Reinforcement Learning with General Function Approximation
The exploration-exploitation dilemma has been a central challenge in reinforcement learning (RL) with complex model classes. In this paper, we propose a new algorithm, Monotonic Q-Learning with Upper Confidence Bound (MQL-UCB) for RL with general function approximation. Our key algorithmic design includes (1) a general deterministic policy-switching strategy that achieves low switching cost, (2) a monotonic value function structure with carefully controlled function class complexity, and (3) a variance-weighted regression scheme that exploits historical trajectories with high data efficiency. MQL-UCB achieves minimax optimal regret of $\tilde{O}(d\sqrt{HK})$ when $K$ is sufficiently large and near-optimal policy switching cost of $\tilde{O}(dH)$, with $d$ being the eluder dimension of the function class, $H$ being the planning horizon, and $K$ being the number of episodes. Our work sheds light on designing provably sample-efficient and deployment-efficient Q-learning with nonlinear function approximation.
comment: 46 pages, 1 table
♻ ☆ Online Decision-Focused Learning
Decision-focused learning (DFL) is an increasingly popular paradigm for training predictive models whose outputs are used in decision-making tasks. Instead of merely optimizing for predictive accuracy, DFL trains models to directly minimize the loss associated with downstream decisions. However, existing studies focus solely on scenarios where a fixed batch of data is available and the objective function does not change over time. We instead investigate DFL in dynamic environments where the objective function and data distribution evolve over time. This setting is challenging for online learning because the objective function has zero or undefined gradients -- which prevents the use of standard first-order optimization methods -- and is generally non-convex. To address these difficulties, we (i) regularize the objective to make it differentiable and (ii) use perturbation techniques along with a near-optimal oracle to overcome non-convexity. Combining those techniques yields two original online algorithms tailored for DFL, for which we establish respectively static and dynamic regret bounds. These are the first provable guarantees for the online decision-focused problem. Finally, we showcase the effectiveness of our algorithms on a knapsack experiment, where they outperform two standard benchmarks.
♻ ☆ XBreaking: Explainable Artificial Intelligence for Jailbreaking LLMs
Large Language Models are fundamental actors in the modern IT landscape dominated by AI solutions. However, security threats associated with them might prevent their reliable adoption in critical application scenarios such as government organizations and medical institutions. For this reason, commercial LLMs typically undergo a sophisticated censoring mechanism to eliminate any harmful output they could possibly produce. In response to this, LLM Jailbreaking is a significant threat to such protections, and many previous approaches have already demonstrated its effectiveness across diverse domains. Existing jailbreak proposals mostly adopt a generate-and-test strategy to craft malicious input. To improve the comprehension of censoring mechanisms and design a targeted jailbreak attack, we propose an Explainable-AI solution that comparatively analyzes the behavior of censored and uncensored models to derive unique exploitable alignment patterns. Then, we propose XBreaking, a novel jailbreak attack that exploits these unique patterns to break the security constraints of LLMs by targeted noise injection. Our thorough experimental campaign returns important insights about the censoring mechanisms and demonstrates the effectiveness and performance of our attack.
♻ ☆ Manipulating 3D Molecules in a Fixed-Dimensional E(3)-Equivariant Latent Space NeurIPS 2025
Medicinal chemists often optimize drugs considering their 3D structures and designing structurally distinct molecules that retain key features, such as shapes, pharmacophores, or chemical properties. Previous deep learning approaches address this through supervised tasks like molecule inpainting or property-guided optimization. In this work, we propose a flexible zero-shot molecule manipulation method by navigating in a shared latent space of 3D molecules. We introduce a Variational AutoEncoder (VAE) for 3D molecules, named MolFLAE, which learns a fixed-dimensional, E(3)-equivariant latent space independent of atom counts. MolFLAE encodes 3D molecules using an E(3)-equivariant neural network into fixed number of latent nodes, distinguished by learned embeddings. The latent space is regularized, and molecular structures are reconstructed via a Bayesian Flow Network (BFN) conditioned on the encoder's latent output. MolFLAE achieves competitive performance on standard unconditional 3D molecule generation benchmarks. Moreover, the latent space of MolFLAE enables zero-shot molecule manipulation, including atom number editing, structure reconstruction, and coordinated latent interpolation for both structure and properties. We further demonstrate our approach on a drug optimization task for the human glucocorticoid receptor, generating molecules with improved hydrophilicity while preserving key interactions, under computational evaluations. These results highlight the flexibility, robustness, and real-world utility of our method, opening new avenues for molecule editing and optimization.
comment: This version (v2) includes minor edits. The paper has been accepted to NeurIPS 2025. Code is available at: https://github.com/MuZhao2333/MolFLAE
♻ ☆ ColNet: Collaborative Optimization in Decentralized Federated Multi-task Learning Systems
The integration of Federated Learning (FL) and Multi-Task Learning (MTL) has been explored to address client heterogeneity, with Federated Multi-Task Learning (FMTL) treating each client as a distinct task. However, most existing research focuses on data heterogeneity (e.g., addressing non-IID data) rather than task heterogeneity, where clients solve fundamentally different tasks. Additionally, much of the work relies on centralized settings with a server managing the federation, leaving the more challenging domain of decentralized FMTL largely unexplored. Thus, this work bridges this gap by proposing ColNet, a framework designed for heterogeneous tasks in decentralized federated environments. ColNet partitions models into a backbone and task-specific heads, and uses adaptive clustering based on model and data sensitivity to form task-coherent client groups. Backbones are averaged within groups, and group leaders perform hyper-conflict-averse cross-group aggregation. Across datasets and federations, ColNet outperforms competing schemes under label and task heterogeneity and shows robustness to poisoning attacks.
♻ ☆ Towards Quantifying Long-Range Interactions in Graph Machine Learning: a Large Graph Dataset and a Measurement
Long-range dependencies are critical for effective graph representation learning, yet most existing datasets focus on small graphs tailored to inductive tasks, offering limited insight into long-range interactions. Current evaluations primarily compare models employing global attention (e.g., graph transformers) with those using local neighborhood aggregation (e.g., message-passing neural networks) without a direct measurement of long-range dependency. In this work, we introduce City-Networks, a novel large-scale transductive learning dataset derived from real-world city road networks. This dataset features graphs with over 100k nodes and significantly larger diameters than those in existing benchmarks, naturally embodying long-range information. We annotate the graphs based on local node eccentricities, ensuring that the classification task inherently requires information from distant nodes. Furthermore, we propose a model-agnostic measurement based on the Jacobians of neighbors from distant hops, offering a principled quantification of long-range dependencies. Finally, we provide theoretical justifications for both our dataset design and the proposed measurement-particularly by focusing on over-smoothing and influence score dilution-which establishes a robust foundation for further exploration of long-range interactions in graph neural networks.
comment: work in progress
♻ ☆ Anchored Supervised Fine-Tuning
Post-training of large language models involves a fundamental trade-off between supervised fine-tuning (SFT), which efficiently mimics demonstrations but tends to memorize, and reinforcement learning (RL), which achieves better generalization at higher computational cost. Dynamic Fine-Tuning (DFT) recently emerged as a promising middle ground, reweighting SFT objectives with token probabilities and achieving improvements in certain reasoning domains, though it exhibits instability in other tasks. We provide a analysis of DFT through the reward-weighted regression (RWR) framework, revealing that it corresponds to a specific auxiliary distribution choice that yields provably tighter RL bounds than standard SFT. However, our analysis also uncovers a critical limitation: this construction lacks distributional anchoring, leading to progressive drift that undermines training stability. To address this, we propose Anchored Supervised Fine-Tuning (ASFT), which augments DFT's reweighting with lightweight KL regularization to preserve tightness while ensuring stability. Empirically, ASFT consistently outperforms both SFT and DFT across mathematical reasoning, medical knowledge grounding, and code generation, achieving substantial improvements with minimal computational overhead. Our RWR framework provides a systematic lens for understanding post-training methods and demonstrates that principled theoretical analysis leads to both stronger guarantees and practical gains.
♻ ☆ DualRAG: A Dual-Process Approach to Integrate Reasoning and Retrieval for Multi-Hop Question Answering
Multi-Hop Question Answering (MHQA) tasks permeate real-world applications, posing challenges in orchestrating multi-step reasoning across diverse knowledge domains. While existing approaches have been improved with iterative retrieval, they still struggle to identify and organize dynamic knowledge. To address this, we propose DualRAG, a synergistic dual-process framework that seamlessly integrates reasoning and retrieval. DualRAG operates through two tightly coupled processes: Reasoning-augmented Querying (RaQ) and progressive Knowledge Aggregation (pKA). They work in concert: as RaQ navigates the reasoning path and generates targeted queries, pKA ensures that newly acquired knowledge is systematically integrated to support coherent reasoning. This creates a virtuous cycle of knowledge enrichment and reasoning refinement. Through targeted fine-tuning, DualRAG preserves its sophisticated reasoning and retrieval capabilities even in smaller-scale models, demonstrating its versatility and core advantages across different scales. Extensive experiments demonstrate that this dual-process approach substantially improves answer accuracy and coherence, approaching, and in some cases surpassing, the performance achieved with oracle knowledge access. These results establish DualRAG as a robust and efficient solution for complex multi-hop reasoning tasks.
Graphics 8
☆ ROGR: Relightable 3D Objects using Generative Relighting NeurIPS 2025
We introduce ROGR, a novel approach that reconstructs a relightable 3D model of an object captured from multiple views, driven by a generative relighting model that simulates the effects of placing the object under novel environment illuminations. Our method samples the appearance of the object under multiple lighting environments, creating a dataset that is used to train a lighting-conditioned Neural Radiance Field (NeRF) that outputs the object's appearance under any input environmental lighting. The lighting-conditioned NeRF uses a novel dual-branch architecture to encode the general lighting effects and specularities separately. The optimized lighting-conditioned NeRF enables efficient feed-forward relighting under arbitrary environment maps without requiring per-illumination optimization or light transport simulation. We evaluate our approach on the established TensoIR and Stanford-ORB datasets, where it improves upon the state-of-the-art on most metrics, and showcase our approach on real-world object captures.
comment: NeurIPS 2025 Spotlight. Project page: https://tangjiapeng.github.io/ROGR
☆ GS-Share: Enabling High-fidelity Map Sharing with Incremental Gaussian Splatting
Constructing and sharing 3D maps is essential for many applications, including autonomous driving and augmented reality. Recently, 3D Gaussian splatting has emerged as a promising approach for accurate 3D reconstruction. However, a practical map-sharing system that features high-fidelity, continuous updates, and network efficiency remains elusive. To address these challenges, we introduce GS-Share, a photorealistic map-sharing system with a compact representation. The core of GS-Share includes anchor-based global map construction, virtual-image-based map enhancement, and incremental map update. We evaluate GS-Share against state-of-the-art methods, demonstrating that our system achieves higher fidelity, particularly for extrapolated views, with improvements of 11%, 22%, and 74% in PSNR, LPIPS, and Depth L1, respectively. Furthermore, GS-Share is significantly more compact, reducing map transmission overhead by 36%.
comment: 11 pages, 11 figures
☆ FSFSplatter: Build Surface and Novel Views with Sparse-Views within 3min
Gaussian Splatting has become a leading reconstruction technique, known for its high-quality novel view synthesis and detailed reconstruction. However, most existing methods require dense, calibrated views. Reconstructing from free sparse images often leads to poor surface due to limited overlap and overfitting. We introduce FSFSplatter, a new approach for fast surface reconstruction from free sparse images. Our method integrates end-to-end dense Gaussian initialization, camera parameter estimation, and geometry-enhanced scene optimization. Specifically, FSFSplatter employs a large Transformer to encode multi-view images and generates a dense and geometrically consistent Gaussian scene initialization via a self-splitting Gaussian head. It eliminates local floaters through contribution-based pruning and mitigates overfitting to limited views by leveraging depth and multi-view feature supervision with differentiable camera parameters during rapid optimization. FSFSplatter outperforms current state-of-the-art methods on widely used DTU and Replica.
☆ Visualizing Spatial Point Clouds: A Task-Oriented Taxonomy
The visualization of 3D point cloud data is essential in fields such as autonomous navigation, environmental monitoring, and disaster response, where tasks like object recognition, structural analysis, and spatiotemporal exploration rely on clear and effective visual representation. Despite advancements in AI-driven processing, visualization remains a critical tool for interpreting complex spatial datasets. However, designing effective point cloud visualizations presents significant challenges due to the sparsity, density variations, and scale of the data. In this work, we analyze the design space of spatial point cloud visualization, highlighting a gap in systematically mapping visualization techniques to analytical objectives. We introduce a taxonomy that categorizes four decades of visualization design choices, linking them to fundamental challenges in modern applications. By structuring visualization strategies based on data types, user objectives, and visualization techniques, our framework provides a foundation for advancing more effective, interpretable, and user-centered visualization techniques.
comment: 12 pages, 3 figures, 1 table
☆ Paris: A Decentralized Trained Open-Weight Diffusion Model
We present Paris, the first publicly released diffusion model pre-trained entirely through decentralized computation. Paris demonstrates that high-quality text-to-image generation can be achieved without centrally coordinated infrastructure. Paris is open for research and commercial use. Paris required implementing our Distributed Diffusion Training framework from scratch. The model consists of 8 expert diffusion models (129M-605M parameters each) trained in complete isolation with no gradient, parameter, or intermediate activation synchronization. Rather than requiring synchronized gradient updates across thousands of GPUs, we partition data into semantically coherent clusters where each expert independently optimizes its subset while collectively approximating the full distribution. A lightweight transformer router dynamically selects appropriate experts at inference, achieving generation quality comparable to centrally coordinated baselines. Eliminating synchronization enables training on heterogeneous hardware without specialized interconnects. Empirical validation confirms that Paris's decentralized training maintains generation quality while removing the dedicated GPU cluster requirement for large-scale diffusion models. Paris achieves this using 14$\times$ less training data and 16$\times$ less compute than the prior decentralized baseline.
☆ Style Brush: Guided Style Transfer for 3D Objects
We introduce Style Brush, a novel style transfer method for textured meshes designed to empower artists with fine-grained control over the stylization process. Our approach extends traditional 3D style transfer methods by introducing a novel loss function that captures style directionality, supports multiple style images or portions thereof, and enables smooth transitions between styles in the synthesized texture. The use of easily generated guiding textures streamlines user interaction, making our approach accessible to a broad audience. Extensive evaluations with various meshes, style images, and contour shapes demonstrate the flexibility of our method and showcase the visual appeal of the generated textures.
♻ ☆ Topological Autoencoders++: Fast and Accurate Cycle-Aware Dimensionality Reduction
This paper presents a novel topology-aware dimensionality reduction approach aiming at accurately visualizing the cyclic patterns present in high dimensional data. To that end, we build on the Topological Autoencoders (TopoAE) formulation. First, we provide a novel theoretical analysis of its associated loss and show that a zero loss indeed induces identical persistence pairs (in high and low dimensions) for the $0$-dimensional persistent homology (PH$^0$) of the Rips filtration. We also provide a counter example showing that this property no longer holds for a naive extension of TopoAE to PH$^d$ for $d\ge 1$. Based on this observation, we introduce a novel generalization of TopoAE to $1$-dimensional persistent homology (PH$^1$), called TopoAE++, for the accurate generation of cycle-aware planar embeddings, addressing the above failure case. This generalization is based on the notion of cascade distortion, a new penalty term favoring an isometric embedding of the $2$-chains filling persistent $1$-cycles, hence resulting in more faithful geometrical reconstructions of the $1$-cycles in the plane. We further introduce a novel, fast algorithm for the exact computation of PH for Rips filtrations in the plane, yielding improved runtimes over previously documented topology-aware methods. Our method also achieves a better balance between the topological accuracy, as measured by the Wasserstein distance, and the visual preservation of the cycles in low dimensions. Our C++ implementation is available at https://github.com/MClemot/TopologicalAutoencodersPlusPlus.
♻ ☆ ProcTex: Consistent and Interactive Text-to-texture Synthesis for Part-based Procedural Models
Recent advances in generative modeling have driven significant progress in text-guided texture synthesis. However, current methods focus on synthesizing texture for single static 3D object, and struggle to handle entire families of shapes, such as those produced by procedural programs. Applying existing methods naively to each procedural shape is too slow to support exploring different parameter configurations at interactive rates, and also results in inconsistent textures across the procedural shapes. To this end, we introduce ProcTex, the first text-to-texture system designed for part-based procedural models. ProcTex enables consistent and real-time text-guided texture synthesis for families of shapes, which integrates seamlessly with the interactive design flow of procedural modeling. To ensure consistency, our core approach is to synthesize texture for a template shape from the procedural model, followed by a texture transfer stage to apply the texture to other procedural shapes via solving dense correspondence. To ensure interactiveness, we propose a novel correspondence network and show that dense correspondence can be effectively learned by a neural network for procedural models. We also develop several techniques, including a retexturing pipeline to support structural variation from procedural parameters, and part-level UV texture map generation for local appearance editing. Extensive experiments on a diverse set of procedural models validate ProcTex's ability to produce high-quality, visually consistent textures while supporting interactive applications.
Robotics 68
☆ ARMADA: Autonomous Online Failure Detection and Human Shared Control Empower Scalable Real-world Deployment and Adaptation
Imitation learning has shown promise in learning from large-scale real-world datasets. However, pretrained policies usually perform poorly without sufficient in-domain data. Besides, human-collected demonstrations entail substantial labour and tend to encompass mixed-quality data and redundant information. As a workaround, human-in-the-loop systems gather domain-specific data for policy post-training, and exploit closed-loop policy feedback to offer informative guidance, but usually require full-time human surveillance during policy rollout. In this work, we devise ARMADA, a multi-robot deployment and adaptation system with human-in-the-loop shared control, featuring an autonomous online failure detection method named FLOAT. Thanks to FLOAT, ARMADA enables paralleled policy rollout and requests human intervention only when necessary, significantly reducing reliance on human supervision. Hence, ARMADA enables efficient acquisition of in-domain data, and leads to more scalable deployment and faster adaptation to new scenarios. We evaluate the performance of ARMADA on four real-world tasks. FLOAT achieves nearly 95% accuracy on average, surpassing prior state-of-the-art failure detection approaches by over 20%. Besides, ARMADA manifests more than 4$\times$ increase in success rate and greater than 2$\times$ reduction in human intervention rate over multiple rounds of policy rollout and post-training, compared to previous human-in-the-loop learning methods.
☆ Do You Know Where Your Camera Is? View-Invariant Policy Learning with Camera Conditioning
We study view-invariant imitation learning by explicitly conditioning policies on camera extrinsics. Using Plucker embeddings of per-pixel rays, we show that conditioning on extrinsics significantly improves generalization across viewpoints for standard behavior cloning policies, including ACT, Diffusion Policy, and SmolVLA. To evaluate policy robustness under realistic viewpoint shifts, we introduce six manipulation tasks in RoboSuite and ManiSkill that pair "fixed" and "randomized" scene variants, decoupling background cues from camera pose. Our analysis reveals that policies without extrinsics often infer camera pose using visual cues from static backgrounds in fixed scenes; this shortcut collapses when workspace geometry or camera placement shifts. Conditioning on extrinsics restores performance and yields robust RGB-only control without depth. We release the tasks, demonstrations, and code at https://ripl.github.io/know_your_camera/ .
comment: Code and project materials are available at ripl.github.io/know_your_camera
☆ Retargeting Matters: General Motion Retargeting for Humanoid Motion Tracking
Humanoid motion tracking policies are central to building teleoperation pipelines and hierarchical controllers, yet they face a fundamental challenge: the embodiment gap between humans and humanoid robots. Current approaches address this gap by retargeting human motion data to humanoid embodiments and then training reinforcement learning (RL) policies to imitate these reference trajectories. However, artifacts introduced during retargeting, such as foot sliding, self-penetration, and physically infeasible motion are often left in the reference trajectories for the RL policy to correct. While prior work has demonstrated motion tracking abilities, they often require extensive reward engineering and domain randomization to succeed. In this paper, we systematically evaluate how retargeting quality affects policy performance when excessive reward tuning is suppressed. To address issues that we identify with existing retargeting methods, we propose a new retargeting method, General Motion Retargeting (GMR). We evaluate GMR alongside two open-source retargeters, PHC and ProtoMotions, as well as with a high-quality closed-source dataset from Unitree. Using BeyondMimic for policy training, we isolate retargeting effects without reward tuning. Our experiments on a diverse subset of the LAFAN1 dataset reveal that while most motions can be tracked, artifacts in retargeted data significantly reduce policy robustness, particularly for dynamic or long sequences. GMR consistently outperforms existing open-source methods in both tracking performance and faithfulness to the source motion, achieving perceptual fidelity and policy success rates close to the closed-source baseline. Website: https://jaraujo98.github.io/retargeting_matters. Code: https://github.com/YanjieZe/GMR.
☆ Performance-Guided Refinement for Visual Aerial Navigation using Editable Gaussian Splatting in FalconGym 2.0
Visual policy design is crucial for aerial navigation. However, state-of-the-art visual policies often overfit to a single track and their performance degrades when track geometry changes. We develop FalconGym 2.0, a photorealistic simulation framework built on Gaussian Splatting (GSplat) with an Edit API that programmatically generates diverse static and dynamic tracks in milliseconds. Leveraging FalconGym 2.0's editability, we propose a Performance-Guided Refinement (PGR) algorithm, which concentrates visual policy's training on challenging tracks while iteratively improving its performance. Across two case studies (fixed-wing UAVs and quadrotors) with distinct dynamics and environments, we show that a single visual policy trained with PGR in FalconGym 2.0 outperforms state-of-the-art baselines in generalization and robustness: it generalizes to three unseen tracks with 100% success without per-track retraining and maintains higher success rates under gate-pose perturbations. Finally, we demonstrate that the visual policy trained with PGR in FalconGym 2.0 can be zero-shot sim-to-real transferred to a quadrotor hardware, achieving a 98.6% success rate (69 / 70 gates) over 30 trials spanning two three-gate tracks and a moving-gate track.
☆ DisCo-Layout: Disentangling and Coordinating Semantic and Physical Refinement in a Multi-Agent Framework for 3D Indoor Layout Synthesis
3D indoor layout synthesis is crucial for creating virtual environments. Traditional methods struggle with generalization due to fixed datasets. While recent LLM and VLM-based approaches offer improved semantic richness, they often lack robust and flexible refinement, resulting in suboptimal layouts. We develop DisCo-Layout, a novel framework that disentangles and coordinates physical and semantic refinement. For independent refinement, our Semantic Refinement Tool (SRT) corrects abstract object relationships, while the Physical Refinement Tool (PRT) resolves concrete spatial issues via a grid-matching algorithm. For collaborative refinement, a multi-agent framework intelligently orchestrates these tools, featuring a planner for placement rules, a designer for initial layouts, and an evaluator for assessment. Experiments demonstrate DisCo-Layout's state-of-the-art performance, generating realistic, coherent, and generalizable 3D indoor layouts. Our code will be publicly available.
☆ Product Digital Twin Supporting End-of-life Phase of Electric Vehicle Batteries Utilizing Product-Process-Resource Asset Network
In the context of the circular economy, products in their end-of-life phase should be either remanufactured or recycled. Both of these processes are crucial for sustainability and environmental conservation. However, manufacturers often do not support these processes enough by not sharing relevant data. This paper proposes use of a digital twin technology, which is capable to help optimizing the disassembly processes to reduce ecological impact and enhance sustainability. The proposed approach is demonstrated through a disassembly use-case of the product digital twin of an electric vehicle battery. By utilizing product digital twins, challenges associated with the disassembly of electric vehicle batteries can be solved flexibly and efficiently for various battery types. As a backbone for the product digital twin representation, the paper uses the paradigm of product-process-resource asset networks (PAN). Such networks enable to model relevant relationships across products, production resources, manufacturing processes, and specific production operations that have to be done in the manufacturing phase of a product. This paper introduces a Bi-Flow Product-Process-Resource Asset Network (Bi-PAN) representation, which extends the PAN paradigm to cover not only the manufacturing, but also the remanufacturing/recycling phase.
comment: This work has been submitted to the IEEE for possible publication. 6 pages, 4 figures
☆ SCANS: A Soft Gripper with Curvature and Spectroscopy Sensors for In-Hand Material Differentiation
We introduce the soft curvature and spectroscopy (SCANS) system: a versatile, electronics-free, fluidically actuated soft manipulator capable of assessing the spectral properties of objects either in hand or through pre-touch caging. This platform offers a wider spectral sensing capability than previous soft robotic counterparts. We perform a material analysis to explore optimal soft substrates for spectral sensing, and evaluate both pre-touch and in-hand performance. Experiments demonstrate explainable, statistical separation across diverse object classes and sizes (metal, wood, plastic, organic, paper, foam), with large spectral angle differences between items. Through linear discriminant analysis, we show that sensitivity in the near-infrared wavelengths is critical to distinguishing visually similar objects. These capabilities advance the potential of optics as a multi-functional sensory modality for soft robots. The complete parts list, assembly guidelines, and processing code for the SCANS gripper are accessible at: https://parses-lab.github.io/scans/.
comment: Accepted to IEEE Robotics & Automation Letters Special Issue on Interdisciplinarity and Widening Horizons in Soft Robotics
☆ Stand Up, NAO! Increasing the Reliability of Stand-Up Motions Through Error Compensation in Position Control
Stand-up motions are an indispensable part of humanoid robot soccer. A robot incapable of standing up by itself is removed from the game for some time. In this paper, we present our stand-up motions for the NAO robot. Our approach dates back to 2019 and has been evaluated and slightly expanded over the past six years. We claim that the main reason for failed stand-up attempts are large errors in the executed joint positions. By addressing such problems by either executing special motions to free up stuck limbs such as the arms, or by compensating large errors with other joints, we significantly increased the overall success rate of our stand-up routine. The motions presented in this paper are also used by several other teams in the Standard Platform League, which thereby achieve similar success rates, as shown in an analysis of videos from multiple tournaments.
☆ LangGrasp: Leveraging Fine-Tuned LLMs for Language Interactive Robot Grasping with Ambiguous Instructions
The existing language-driven grasping methods struggle to fully handle ambiguous instructions containing implicit intents. To tackle this challenge, we propose LangGrasp, a novel language-interactive robotic grasping framework. The framework integrates fine-tuned large language models (LLMs) to leverage their robust commonsense understanding and environmental perception capabilities, thereby deducing implicit intents from linguistic instructions and clarifying task requirements along with target manipulation objects. Furthermore, our designed point cloud localization module, guided by 2D part segmentation, enables partial point cloud localization in scenes, thereby extending grasping operations from coarse-grained object-level to fine-grained part-level manipulation. Experimental results show that the LangGrasp framework accurately resolves implicit intents in ambiguous instructions, identifying critical operations and target information that are unstated yet essential for task completion. Additionally, it dynamically selects optimal grasping poses by integrating environmental information. This enables high-precision grasping from object-level to part-level manipulation, significantly enhancing the adaptability and task execution efficiency of robots in unstructured environments. More information and code are available here: https://github.com/wu467/LangGrasp.
comment: 8 pages, 6 figures
☆ Cooperative Guidance for Aerial Defense in Multiagent Systems
This paper addresses a critical aerial defense challenge in contested airspace, involving three autonomous aerial vehicles -- a hostile drone (the pursuer), a high-value drone (the evader), and a protective drone (the defender). We present a cooperative guidance framework for the evader-defender team that guarantees interception of the pursuer before it can capture the evader, even under highly dynamic and uncertain engagement conditions. Unlike traditional heuristic, optimal control, or differential game-based methods, we approach the problem within a time-constrained guidance framework, leveraging true proportional navigation based approach that ensures robust and guaranteed solutions to the aerial defense problem. The proposed strategy is computationally lightweight, scalable to a large number of agent configurations, and does not require knowledge of the pursuer's strategy or control laws. From arbitrary initial geometries, our method guarantees that key engagement errors are driven to zero within a fixed time, leading to a successful mission. Extensive simulations across diverse and adversarial scenarios confirm the effectiveness of the proposed strategy and its relevance for real-time autonomous defense in contested airspace environments.
☆ EC3R-SLAM: Efficient and Consistent Monocular Dense SLAM with Feed-Forward 3D Reconstruction
The application of monocular dense Simultaneous Localization and Mapping (SLAM) is often hindered by high latency, large GPU memory consumption, and reliance on camera calibration. To relax this constraint, we propose EC3R-SLAM, a novel calibration-free monocular dense SLAM framework that jointly achieves high localization and mapping accuracy, low latency, and low GPU memory consumption. This enables the framework to achieve efficiency through the coupling of a tracking module, which maintains a sparse map of feature points, and a mapping module based on a feed-forward 3D reconstruction model that simultaneously estimates camera intrinsics. In addition, both local and global loop closures are incorporated to ensure mid-term and long-term data association, enforcing multi-view consistency and thereby enhancing the overall accuracy and robustness of the system. Experiments across multiple benchmarks show that EC3R-SLAM achieves competitive performance compared to state-of-the-art methods, while being faster and more memory-efficient. Moreover, it runs effectively even on resource-constrained platforms such as laptops and Jetson Orin NX, highlighting its potential for real-world robotics applications.
☆ Reducing Discomfort in Driving Simulators: Motion Cueing for Motion Sickness Mitigation
Driving simulators are increasingly used in research and development. However, simulators often cause motion sickness due to downscaled motion and unscaled veridical visuals. In this paper, a motion cueing algorithm is proposed that reduces motion sickness as predicted by the subjective vertical conflict (SVC) model using model predictive control (MPC). Both sensory conflict and specific force errors are penalised in the cost function, allowing the algorithm to jointly optimise fidelity and comfort. Human-in-the-loop experiments were conducted to compare four simulator motion settings: two variations of our MPC-based algorithm, one focused on pure specific force tracking and the second compromising specific force tracking and motion sickness minimisation, as well as reference adaptive washout and no motion cases. The experiments were performed on a hexapod driving simulator with participants exposed to passive driving. Experimental motion sickness results closely matched the sickness model predictions. As predicted by the model, the no motion condition yielded the lowest sickness levels. However, it was rated lowest in terms of fidelity. The compromise solution reduced sickness by over 50% (average MISC level 3 to 1.5) compared to adaptive washout and the algorithm focusing on specific force tracking, without any significant reduction in fidelity rating. The proposed approach for developing MCA that takes into account both the simulator dynamics and time evolution of motion sickness offers a significant advancement in achieving an optimal control of motion sickness and specific force recreation in driving simulators, supporting broader simulator use.
SPARC: Spine with Prismatic and Revolute Compliance for Quadruped Robot
We present SPARC, a compact, open-source 3-DoF sagittal-plane spine module that combines revolute (pitch) and prismatic (axial) motion with programmable task-space impedance for quadruped robots. The system integrates three torque-controlled actuators, a custom 1 kHz control board, and a protected power unit in a 1.26 kg package, enabling closed-loop stiffness and damping shaping along x, z, and theta. We develop an RNEA-based computed-acceleration controller with smooth Stribeck friction compensation to render spring-damper behavior without explicit inertia shaping. Bench experiments validate the approach. Quasi-static push-pull tests show linear force-displacement characteristics with commanded horizontal stiffness spanning 300-700 N/m and <= 1.5% relative error (R^2 >= 0.992, narrow 95% CIs). Dynamic displace-and-release trials confirm mass-spring-damper responses over multiple damping settings, with small, interpretable phase deviations due to configuration-dependent inertia and low-speed friction effects. A task-space PD controller produces roughly linear stiffness but with greater variability and coupling sensitivity. SPARC provides a portable platform for systematic studies of spine compliance in legged locomotion and will be released with complete hardware and firmware resources.
☆ TACOS: Task Agnostic COordinator of a multi-drone System
When a single pilot is responsible for managing a multi-drone system, the task demands varying levels of autonomy, from direct control of individual UAVs, to group-level coordination, to fully autonomous swarm behaviors for accomplishing high-level tasks. Enabling such flexible interaction requires a framework that supports multiple modes of shared autonomy. As language models continue to improve in reasoning and planning, they provide a natural foundation for such systems, reducing pilot workload by enabling high-level task delegation through intuitive, language-based interfaces. In this paper we present TACOS (Task-Agnostic COordinator of a multi-drone System), a unified framework that enables high-level natural language control of multi-UAV systems through Large Language Models (LLMs). TACOS integrates three key capabilities into a single architecture: a one-to-many natural language interface for intuitive user interaction, an intelligent coordinator for translating user intent into structured task plans, and an autonomous agent that executes plans interacting with the real-world. TACOS allows a LLM to interact with a library of executable APIs, bridging semantic reasoning with real-time multi-robot coordination. We demonstrate the system in real-world multi-drone system and conduct an ablation study to assess the contribution of each module.
comment: 6 pages, 6 figures, accepted as poster at 2025 IEEE International Symposium on Multi-Robot & Multi-Agent Systems
☆ GreenhouseSplat: A Dataset of Photorealistic Greenhouse Simulations for Mobile Robotics
Simulating greenhouse environments is critical for developing and evaluating robotic systems for agriculture, yet existing approaches rely on simplistic or synthetic assets that limit simulation-to-real transfer. Recent advances in radiance field methods, such as Gaussian splatting, enable photorealistic reconstruction but have so far been restricted to individual plants or controlled laboratory conditions. In this work, we introduce GreenhouseSplat, a framework and dataset for generating photorealistic greenhouse assets directly from inexpensive RGB images. The resulting assets are integrated into a ROS-based simulation with support for camera and LiDAR rendering, enabling tasks such as localization with fiducial markers. We provide a dataset of 82 cucumber plants across multiple row configurations and demonstrate its utility for robotics evaluation. GreenhouseSplat represents the first step toward greenhouse-scale radiance-field simulation and offers a foundation for future research in agricultural robotics.
☆ Like Playing a Video Game: Spatial-Temporal Optimization of Foot Trajectories for Controlled Football Kicking in Bipedal Robots
Humanoid robot soccer presents several challenges, particularly in maintaining system stability during aggressive kicking motions while achieving precise ball trajectory control. Current solutions, whether traditional position-based control methods or reinforcement learning (RL) approaches, exhibit significant limitations. Model predictive control (MPC) is a prevalent approach for ordinary quadruped and biped robots. While MPC has demonstrated advantages in legged robots, existing studies often oversimplify the leg swing progress, relying merely on simple trajectory interpolation methods. This severely constrains the foot's environmental interaction capability, hindering tasks such as ball kicking. This study innovatively adapts the spatial-temporal trajectory planning method, which has been successful in drone applications, to bipedal robotic systems. The proposed approach autonomously generates foot trajectories that satisfy constraints on target kicking position, velocity, and acceleration while simultaneously optimizing swing phase duration. Experimental results demonstrate that the optimized trajectories closely mimic human kicking behavior, featuring a backswing motion. Simulation and hardware experiments confirm the algorithm's efficiency, with trajectory planning times under 1 ms, and its reliability, achieving nearly 100 % task completion accuracy when the soccer goal is within the range of -90{\deg} to 90{\deg}.
comment: 8 pages, 8 figures, conference paper
What Matters in RL-Based Methods for Object-Goal Navigation? An Empirical Study and A Unified Framework
Object-Goal Navigation (ObjectNav) is a critical component toward deploying mobile robots in everyday, uncontrolled environments such as homes, schools, and workplaces. In this context, a robot must locate target objects in previously unseen environments using only its onboard perception. Success requires the integration of semantic understanding, spatial reasoning, and long-horizon planning, which is a combination that remains extremely challenging. While reinforcement learning (RL) has become the dominant paradigm, progress has spanned a wide range of design choices, yet the field still lacks a unifying analysis to determine which components truly drive performance. In this work, we conduct a large-scale empirical study of modular RL-based ObjectNav systems, decomposing them into three key components: perception, policy, and test-time enhancement. Through extensive controlled experiments, we isolate the contribution of each and uncover clear trends: perception quality and test-time strategies are decisive drivers of performance, whereas policy improvements with current methods yield only marginal gains. Building on these insights, we propose practical design guidelines and demonstrate an enhanced modular system that surpasses State-of-the-Art (SotA) methods by 6.6% on SPL and by a 2.7% success rate. We also introduce a human baseline under identical conditions, where experts achieve an average 98% success, underscoring the gap between RL agents and human-level navigation. Our study not only sets the SotA performance but also provides principled guidance for future ObjectNav development and evaluation.
☆ Nav-EE: Navigation-Guided Early Exiting for Efficient Vision-Language Models in Autonomous Driving
Vision-Language Models (VLMs) are increasingly applied in autonomous driving for unified perception and reasoning, but high inference latency hinders real-time deployment. Early-exit reduces latency by terminating inference at intermediate layers, yet its task-dependent nature limits generalization across diverse scenarios. We observe that this limitation aligns with autonomous driving: navigation systems can anticipate upcoming contexts (e.g., intersections, traffic lights), indicating which tasks will be required. We propose Nav-EE, a navigation-guided early-exit framework that precomputes task-specific exit layers offline and dynamically applies them online based on navigation priors. Experiments on CODA, Waymo, and BOSCH show that Nav-EE achieves accuracy comparable to full inference while reducing latency by up to 63.9%. Real-vehicle integration with Autoware Universe further demonstrates reduced inference latency (600ms to 300ms), supporting faster decision-making in complex scenarios. These results suggest that coupling navigation foresight with early-exit offers a viable path toward efficient deployment of large models in autonomous systems. Code and data are available at our anonymous repository: https://anonymous.4open.science/r/Nav-EE-BBC4
☆ An Anytime, Scalable and Complete Algorithm for Embedding a Manufacturing Procedure in a Smart Factory
Modern automated factories increasingly run manufacturing procedures using a matrix of programmable machines, such as 3D printers, interconnected by a programmable transport system, such as a fleet of tabletop robots. To embed a manufacturing procedure into a smart factory, an operator must: (a) assign each of its processes to a machine and (b) specify how agents should transport parts between machines. The problem of embedding a manufacturing process into a smart factory is termed the Smart Factory Embedding (SFE) problem. State-of-the-art SFE solvers can only scale to factories containing a couple dozen machines. Modern smart factories, however, may contain hundreds of machines. We fill this hole by introducing the first highly scalable solution to the SFE, TS-ACES, the Traffic System based Anytime Cyclic Embedding Solver. We show that TS-ACES is complete and can scale to SFE instances based on real industrial scenarios with more than a hundred machines.
☆ Dual-Mode Magnetic Continuum Robot for Targeted Drug Delivery ICRA 2026
Magnetic continuum robots (MCRs) enable minimally invasive navigation through tortuous anatomical channels, yet axially magnetized designs have largely been limited to bending-only motion. To expand deformation capabilities, this paper presents a simple assembly that embeds permanent magnets radially within the catheter wall, allowing a single externally steered permanent magnet to independently induce either bending or torsion. A physics-based formulation together with finite-element analysis establishes the actuation principles, and benchtop experiments validate decoupled mode control under practical fields. Building on this, a dual-layer blockage mechanism consisting of outer grooves and inner plates leverages torsional shear to achieve on-demand drug release. Finally, an in-phantom intervention experiment demonstrates end-to-end operation: lumen following by bending for target approach, followed by twist-activated release at the site. The resulting compact, cable-free platform combines versatile deformation with precise payload delivery, indicating strong potential for next-generation, site-specific therapies.
comment: 7 pages, 3 figures, under review of ICRA 2026
☆ Contrastive Representation Regularization for Vision-Language-Action Models
Vision-Language-Action (VLA) models have shown its capabilities in robot manipulation by leveraging rich representations from pre-trained Vision-Language Models (VLMs). However, their representations arguably remain suboptimal, lacking sensitivity to robotic signals such as control actions and proprioceptive states. To address the issue, we introduce Robot State-aware Contrastive Loss (RS-CL), a simple and effective representation regularization for VLA models, designed to bridge the gap between VLM representations and robotic signals. In particular, RS-CL aligns the representations more closely with the robot's proprioceptive states, by using relative distances between the states as soft supervision. Complementing the original action prediction objective, RS-CL effectively enhances control-relevant representation learning, while being lightweight and fully compatible with standard VLA training pipeline. Our empirical results demonstrate that RS-CL substantially improves the manipulation performance of state-of-the-art VLA models; it pushes the prior art from 30.8% to 41.5% on pick-and-place tasks in RoboCasa-Kitchen, through more accurate positioning during grasping and placing, and boosts success rates from 45.0% to 58.3% on challenging real-robot manipulation tasks.
comment: 20 pages, 12 figures
☆ PolySim: Bridging the Sim-to-Real Gap for Humanoid Control via Multi-Simulator Dynamics Randomization
Humanoid whole-body control (WBC) policies trained in simulation often suffer from the sim-to-real gap, which fundamentally arises from simulator inductive bias, the inherent assumptions and limitations of any single simulator. These biases lead to nontrivial discrepancies both across simulators and between simulation and the real world. To mitigate the effect of simulator inductive bias, the key idea is to train policies jointly across multiple simulators, encouraging the learned controller to capture dynamics that generalize beyond any single simulator's assumptions. We thus introduce PolySim, a WBC training platform that integrates multiple heterogeneous simulators. PolySim can launch parallel environments from different engines simultaneously within a single training run, thereby realizing dynamics-level domain randomization. Theoretically, we show that PolySim yields a tighter upper bound on simulator inductive bias than single-simulator training. In experiments, PolySim substantially reduces motion-tracking error in sim-to-sim evaluations; for example, on MuJoCo, it improves execution success by 52.8 over an IsaacSim baseline. PolySim further enables zero-shot deployment on a real Unitree G1 without additional fine-tuning, showing effective transfer from simulation to the real world. We will release the PolySim code upon acceptance of this work.
comment: 8 pages, 5 figures
☆ Geometric Backstepping Control of Omnidirectional Tiltrotors Incorporating Servo-Rotor Dynamics for Robustness against Sudden Disturbances
This work presents a geometric backstepping controller for a variable-tilt omnidirectional multirotor that explicitly accounts for both servo and rotor dynamics. Considering actuator dynamics is essential for more effective and reliable operation, particularly during aggressive flight maneuvers or recovery from sudden disturbances. While prior studies have investigated actuator-aware control for conventional and fixed-tilt multirotors, these approaches rely on linear relationships between actuator input and wrench, which cannot capture the nonlinearities induced by variable tilt angles. In this work, we exploit the cascade structure between the rigid-body dynamics of the multirotor and its nonlinear actuator dynamics to design the proposed backstepping controller and establish exponential stability of the overall system. Furthermore, we reveal parametric uncertainty in the actuator model through experiments, and we demonstrate that the proposed controller remains robust against such uncertainty. The controller was compared against a baseline that does not account for actuator dynamics across three experimental scenarios: fast translational tracking, rapid rotational tracking, and recovery from sudden disturbance. The proposed method consistently achieved better tracking performance, and notably, while the baseline diverged and crashed during the fastest translational trajectory tracking and the recovery experiment, the proposed controller maintained stability and successfully completed the tasks, thereby demonstrating its effectiveness.
☆ Non-Rigid Structure-from-Motion via Differential Geometry with Recoverable Conformal Scale
Non-rigid structure-from-motion (NRSfM), a promising technique for addressing the mapping challenges in monocular visual deformable simultaneous localization and mapping (SLAM), has attracted growing attention. We introduce a novel method, called Con-NRSfM, for NRSfM under conformal deformations, encompassing isometric deformations as a subset. Our approach performs point-wise reconstruction using 2D selected image warps optimized through a graph-based framework. Unlike existing methods that rely on strict assumptions, such as locally planar surfaces or locally linear deformations, and fail to recover the conformal scale, our method eliminates these constraints and accurately computes the local conformal scale. Additionally, our framework decouples constraints on depth and conformal scale, which are inseparable in other approaches, enabling more precise depth estimation. To address the sensitivity of the formulated problem, we employ a parallel separable iterative optimization strategy. Furthermore, a self-supervised learning framework, utilizing an encoder-decoder network, is incorporated to generate dense 3D point clouds with texture. Simulation and experimental results using both synthetic and real datasets demonstrate that our method surpasses existing approaches in terms of reconstruction accuracy and robustness. The code for the proposed method will be made publicly available on the project website: https://sites.google.com/view/con-nrsfm.
☆ Symskill: Symbol and Skill Co-Invention for Data-Efficient and Real-Time Long-Horizon Manipulation
Multi-step manipulation in dynamic environments remains challenging. Two major families of methods fail in distinct ways: (i) imitation learning (IL) is reactive but lacks compositional generalization, as monolithic policies do not decide which skill to reuse when scenes change; (ii) classical task-and-motion planning (TAMP) offers compositionality but has prohibitive planning latency, preventing real-time failure recovery. We introduce SymSkill, a unified learning framework that combines the benefits of IL and TAMP, allowing compositional generalization and failure recovery in real-time. Offline, SymSkill jointly learns predicates, operators, and skills directly from unlabeled and unsegmented demonstrations. At execution time, upon specifying a conjunction of one or more learned predicates, SymSkill uses a symbolic planner to compose and reorder learned skills to achieve the symbolic goals, while performing recovery at both the motion and symbolic levels in real time. Coupled with a compliant controller, SymSkill enables safe and uninterrupted execution under human and environmental disturbances. In RoboCasa simulation, SymSkill can execute 12 single-step tasks with 85% success rate. Without additional data, it composes these skills into multi-step plans requiring up to 6 skill recompositions, recovering robustly from execution failures. On a real Franka robot, we demonstrate SymSkill, learning from 5 minutes of unsegmented and unlabeled play data, is capable of performing multiple tasks simply by goal specifications. The source code and additional analysis can be found on https://sites.google.com/view/symskill.
comment: CoRL 2025 Learning Effective Abstractions for Planning (LEAP) Workshop Best Paper Award (https://sites.google.com/view/symskill)
☆ Statistical Uncertainty Learning for Robust Visual-Inertial State Estimation
A fundamental challenge in robust visual-inertial odometry (VIO) is to dynamically assess the reliability of sensor measurements. This assessment is crucial for properly weighting the contribution of each measurement to the state estimate. Conventional methods often simplify this by assuming a static, uniform uncertainty for all measurements. This heuristic, however, may be limited in its ability to capture the dynamic error characteristics inherent in real-world data. To improve this limitation, we present a statistical framework that learns measurement reliability assessment online, directly from sensor data and optimization results. Our approach leverages multi-view geometric consistency as a form of self-supervision. This enables the system to infer landmark uncertainty and adaptively weight visual measurements during optimization. We evaluated our method on the public EuRoC dataset, demonstrating improvements in tracking accuracy with average reductions of approximately 24\% in translation error and 42\% in rotation error compared to baseline methods with fixed uncertainty parameters. The resulting framework operates in real time while showing enhanced accuracy and robustness. To facilitate reproducibility and encourage further research, the source code will be made publicly available.
☆ FailSafe: Reasoning and Recovery from Failures in Vision-Language-Action Models
Recent advances in robotic manipulation have integrated low-level robotic control into Vision-Language Models (VLMs), extending them into Vision-Language-Action (VLA) models. Although state-of-the-art VLAs achieve strong performance in downstream robotic applications, supported by large-scale crowd-sourced robot training data, they still inevitably encounter failures during execution. Enabling robots to reason about and recover from unpredictable and abrupt failures remains a critical challenge. Existing robotic manipulation datasets, collected in either simulation or the real world, primarily provide only ground-truth trajectories, leaving robots unable to recover once failures occur. Moreover, the few datasets that address failure detection typically offer only textual explanations, which are difficult to utilize directly in VLA models. To address this gap, we introduce FailSafe, a novel failure generation and recovery system that automatically produces diverse failure cases paired with executable recovery actions. FailSafe can be seamlessly applied to any manipulation task in any simulator, enabling scalable creation of failure-action data. To demonstrate its effectiveness, we fine-tune LLaVa-OneVision-7B (LLaVa-OV-7B) to build FailSafe-VLM. Experimental results show that FailSafe-VLM successfully helps robotic arm detect and recover from potential failures, improving the performance of three state-of-the-art VLA models pi0-FAST, OpenVLA, OpenVLA-OFT) by up to 22.6% on average across several tasks in Maniskill. Furthermore, FailSafe-VLM could generalize across different spatial configurations, camera viewpoints, and robotic embodiments. We plan to release the FailSafe code to the community.
comment: Project Page: https://jimntu.github.io/FailSafe/
☆ VLA-R1: Enhancing Reasoning in Vision-Language-Action Models
Vision-Language-Action (VLA) models aim to unify perception, language understanding, and action generation, offering strong cross-task and cross-scene generalization with broad impact on embodied AI. However, current VLA models often lack explicit step-by-step reasoning, instead emitting final actions without considering affordance constraints or geometric relations. Their post-training pipelines also rarely reinforce reasoning quality, relying primarily on supervised fine-tuning with weak reward design. To address these challenges, we present VLA-R1, a reasoning-enhanced VLA that integrates Reinforcement Learning from Verifiable Rewards (RLVR) with Group Relative Policy Optimization (GRPO) to systematically optimize both reasoning and execution. Specifically, we design an RLVR-based post-training strategy with verifiable rewards for region alignment, trajectory consistency, and output formatting, thereby strengthening reasoning robustness and execution accuracy. Moreover, we develop VLA-CoT-13K, a high-quality dataset that provides chain-of-thought supervision explicitly aligned with affordance and trajectory annotations. Furthermore, extensive evaluations on in-domain, out-of-domain, simulation, and real-robot platforms demonstrate that VLA-R1 achieves superior generalization and real-world performance compared to prior VLA methods. We plan to release the model, code, and dataset following the publication of this work. Code: https://github.com/GigaAI-research/VLA-R1. Website: https://gigaai-research.github.io/VLA-R1.
☆ ActiveUMI: Robotic Manipulation with Active Perception from Robot-Free Human Demonstrations
We present ActiveUMI, a framework for a data collection system that transfers in-the-wild human demonstrations to robots capable of complex bimanual manipulation. ActiveUMI couples a portable VR teleoperation kit with sensorized controllers that mirror the robot's end-effectors, bridging human-robot kinematics via precise pose alignment. To ensure mobility and data quality, we introduce several key techniques, including immersive 3D model rendering, a self-contained wearable computer, and efficient calibration methods. ActiveUMI's defining feature is its capture of active, egocentric perception. By recording an operator's deliberate head movements via a head-mounted display, our system learns the crucial link between visual attention and manipulation. We evaluate ActiveUMI on six challenging bimanual tasks. Policies trained exclusively on ActiveUMI data achieve an average success rate of 70\% on in-distribution tasks and demonstrate strong generalization, retaining a 56\% success rate when tested on novel objects and in new environments. Our results demonstrate that portable data collection systems, when coupled with learned active perception, provide an effective and scalable pathway toward creating generalizable and highly capable real-world robot policies.
comment: technique report. The website is available at https://activeumi.github.io
☆ MiniBEE: A New Form Factor for Compact Bimanual Dexterity
Bimanual robot manipulators can achieve impressive dexterity, but typically rely on two full six- or seven- degree-of-freedom arms so that paired grippers can coordinate effectively. This traditional framework increases system complexity while only exploiting a fraction of the overall workspace for dexterous interaction. We introduce the MiniBEE (Miniature Bimanual End-effector), a compact system in which two reduced-mobility arms (3+ DOF each) are coupled into a kinematic chain that preserves full relative positioning between grippers. To guide our design, we formulate a kinematic dexterity metric that enlarges the dexterous workspace while keeping the mechanism lightweight and wearable. The resulting system supports two complementary modes: (i) wearable kinesthetic data collection with self-tracked gripper poses, and (ii) deployment on a standard robot arm, extending dexterity across its entire workspace. We present kinematic analysis and design optimization methods for maximizing dexterous range, and demonstrate an end-to-end pipeline in which wearable demonstrations train imitation learning policies that perform robust, real-world bimanual manipulation.
☆ Real-time Multi-Plane Segmentation Based on GPU Accelerated High-Resolution 3D Voxel Mapping for Legged Robot Locomotion
This paper proposes a real-time multi-plane segmentation method based on GPU-accelerated high-resolution 3D voxel mapping for legged robot locomotion. Existing online planar mapping approaches struggle to balance accuracy and computational efficiency: direct depth image segmentation from specific sensors suffers from poor temporal integration, height map-based methods cannot represent complex 3D structures like overhangs, and voxel-based plane segmentation remains unexplored for real-time applications. To address these limitations, we develop a novel framework that integrates vertex-based connected component labeling with random sample consensus based plane detection and convex hull, leveraging GPU parallel computing to rapidly extract planar regions from point clouds accumulated in high-resolution 3D voxel maps. Experimental results demonstrate that the proposed method achieves fast and accurate 3D multi-plane segmentation at over 30 Hz update rate even at a resolution of 0.01 m, enabling the detected planes to be utilized in real time for locomotion tasks. Furthermore, we validate the effectiveness of our approach through experiments in both simulated environments and physical legged robot platforms, confirming robust locomotion performance when considering 3D planar structures.
comment: 8 pages, 12 figures, This work has been submitted to the IEEE for possible publication. Copyright may be transfered without notice, after which this version may no longer be accessible
☆ Predictive Preference Learning from Human Interventions NeurIPS 2025
Learning from human involvement aims to incorporate the human subject to monitor and correct agent behavior errors. Although most interactive imitation learning methods focus on correcting the agent's action at the current state, they do not adjust its actions in future states, which may be potentially more hazardous. To address this, we introduce Predictive Preference Learning from Human Interventions (PPL), which leverages the implicit preference signals contained in human interventions to inform predictions of future rollouts. The key idea of PPL is to bootstrap each human intervention into L future time steps, called the preference horizon, with the assumption that the agent follows the same action and the human makes the same intervention in the preference horizon. By applying preference optimization on these future states, expert corrections are propagated into the safety-critical regions where the agent is expected to explore, significantly improving learning efficiency and reducing human demonstrations needed. We evaluate our approach with experiments on both autonomous driving and robotic manipulation benchmarks and demonstrate its efficiency and generality. Our theoretical analysis further shows that selecting an appropriate preference horizon L balances coverage of risky states with label correctness, thereby bounding the algorithmic optimality gap. Demo and code are available at: https://metadriverse.github.io/ppl
comment: NeurIPS 2025 Spotlight. Project page: https://metadriverse.github.io/ppl
☆ Information Seeking for Robust Decision Making under Partial Observability
Explicit information seeking is essential to human problem-solving in practical environments characterized by incomplete information and noisy dynamics. When the true environmental state is not directly observable, humans seek information to update their internal dynamics and inform future decision-making. Although existing Large Language Model (LLM) planning agents have addressed observational uncertainty, they often overlook discrepancies between their internal dynamics and the actual environment. We introduce Information Seeking Decision Planner (InfoSeeker), an LLM decision-making framework that integrates task-oriented planning with information seeking to align internal dynamics and make optimal decisions under uncertainty in both agent observations and environmental dynamics. InfoSeeker prompts an LLM to actively gather information by planning actions to validate its understanding, detect environmental changes, or test hypotheses before generating or revising task-oriented plans. To evaluate InfoSeeker, we introduce a novel benchmark suite featuring partially observable environments with incomplete observations and uncertain dynamics. Experiments demonstrate that InfoSeeker achieves a 74% absolute performance gain over prior methods without sacrificing sample efficiency. Moreover, InfoSeeker generalizes across LLMs and outperforms baselines on established benchmarks such as robotic manipulation and web navigation. These findings underscore the importance of tightly integrating planning and information seeking for robust behavior in partially observable environments. The project page is available at https://infoseekerllm.github.io
comment: The project page is available at https://infoseekerllm.github.io
☆ RSV-SLAM: Toward Real-Time Semantic Visual SLAM in Indoor Dynamic Environments
Simultaneous Localization and Mapping (SLAM) plays an important role in many robotics fields, including social robots. Many of the available visual SLAM methods are based on the assumption of a static world and struggle in dynamic environments. In the current study, we introduce a real-time semantic RGBD SLAM approach designed specifically for dynamic environments. Our proposed system can effectively detect moving objects and maintain a static map to ensure robust camera tracking. The key innovation of our approach is the incorporation of deep learning-based semantic information into SLAM systems to mitigate the impact of dynamic objects. Additionally, we enhance the semantic segmentation process by integrating an Extended Kalman filter to identify dynamic objects that may be temporarily idle. We have also implemented a generative network to fill in the missing regions of input images belonging to dynamic objects. This highly modular framework has been implemented on the ROS platform and can achieve around 22 fps on a GTX1080. Benchmarking the developed pipeline on dynamic sequences from the TUM dataset suggests that the proposed approach delivers competitive localization error in comparison with the state-of-the-art methods, all while operating in near real-time. The source code is publicly available.
comment: Proceedings of SAI Intelligent Systems Conference 2023
☆ UMI-on-Air: Embodiment-Aware Guidance for Embodiment-Agnostic Visuomotor Policies
We introduce UMI-on-Air, a framework for embodiment-aware deployment of embodiment-agnostic manipulation policies. Our approach leverages diverse, unconstrained human demonstrations collected with a handheld gripper (UMI) to train generalizable visuomotor policies. A central challenge in transferring these policies to constrained robotic embodiments-such as aerial manipulators-is the mismatch in control and robot dynamics, which often leads to out-of-distribution behaviors and poor execution. To address this, we propose Embodiment-Aware Diffusion Policy (EADP), which couples a high-level UMI policy with a low-level embodiment-specific controller at inference time. By integrating gradient feedback from the controller's tracking cost into the diffusion sampling process, our method steers trajectory generation towards dynamically feasible modes tailored to the deployment embodiment. This enables plug-and-play, embodiment-aware trajectory adaptation at test time. We validate our approach on multiple long-horizon and high-precision aerial manipulation tasks, showing improved success rates, efficiency, and robustness under disturbances compared to unguided diffusion baselines. Finally, we demonstrate deployment in previously unseen environments, using UMI demonstrations collected in the wild, highlighting a practical pathway for scaling generalizable manipulation skills across diverse-and even highly constrained-embodiments. All code, data, and checkpoints will be publicly released after acceptance. Result videos can be found at umi-on-air.github.io.
comment: Result videos can be found at umi-on-air.github.io
☆ SubSense: VR-Haptic and Motor Feedback for Immersive Control in Subsea Telerobotics
This paper investigates the integration of haptic feedback and virtual reality (VR) control interfaces to enhance teleoperation and telemanipulation of underwater ROVs (remotely operated vehicles). Traditional ROV teleoperation relies on low-resolution 2D camera feeds and lacks immersive and sensory feedback, which diminishes situational awareness in complex subsea environments. We propose SubSense -- a novel VR-Haptic framework incorporating a non-invasive feedback interface to an otherwise 1-DOF (degree of freedom) manipulator, which is paired with the teleoperator's glove to provide haptic feedback and grasp status. Additionally, our framework integrates end-to-end software for managing control inputs and displaying immersive camera views through a VR platform. We validate the system through comprehensive experiments and user studies, demonstrating its effectiveness over conventional teleoperation interfaces, particularly for delicate manipulation tasks. Our results highlight the potential of multisensory feedback in immersive virtual environments to significantly improve remote situational awareness and mission performance, offering more intuitive and accessible ROV operations in the field.
comment: Presented at the OCEANS 2025 Great Lakes Conference
☆ Efficient Optimal Path Planning in Dynamic Environments Using Koopman MPC
This paper presents a data-driven model predictive control framework for mobile robots navigating in dynamic environments, leveraging Koopman operator theory. Unlike the conventional Koopman-based approaches that focus on the linearization of system dynamics only, our work focuses on finding a global linear representation for the optimal path planning problem that includes both the nonlinear robot dynamics and collision-avoidance constraints. We deploy extended dynamic mode decomposition to identify linear and bilinear Koopman realizations from input-state data. Our open-loop analysis demonstrates that only the bilinear Koopman model can accurately capture nonlinear state-input couplings and quadratic terms essential for collision avoidance, whereas linear realizations fail to do so. We formulate a quadratic program for the robot path planning in the presence of moving obstacles in the lifted space and determine the optimal robot action in an MPC framework. Our approach is capable of finding the safe optimal action 320 times faster than a nonlinear MPC counterpart that solves the path planning problem in the original state space. Our work highlights the potential of bilinear Koopman realizations for linearization of highly nonlinear optimal control problems subject to nonlinear state and input constraints to achieve computational efficiency similar to linear problems.
comment: This work has been submitted to the ACC2026 conference
☆ A Recipe for Efficient Sim-to-Real Transfer in Manipulation with Online Imitation-Pretrained World Models
We are interested in solving the problem of imitation learning with a limited amount of real-world expert data. Existing offline imitation methods often struggle with poor data coverage and severe performance degradation. We propose a solution that leverages robot simulators to achieve online imitation learning. Our sim-to-real framework is based on world models and combines online imitation pretraining with offline finetuning. By leveraging online interactions, our approach alleviates the data coverage limitations of offline methods, leading to improved robustness and reduced performance degradation during finetuning. It also enhances generalization during domain transfer. Our empirical results demonstrate its effectiveness, improving success rates by at least 31.7% in sim-to-sim transfer and 23.3% in sim-to-real transfer over existing offline imitation learning baselines.
☆ U-LAG: Uncertainty-Aware, Lag-Adaptive Goal Retargeting for Robotic Manipulation IROS 2025
Robots manipulating in changing environments must act on percepts that are late, noisy, or stale. We present U-LAG, a mid-execution goal-retargeting layer that leaves the low-level controller unchanged while re-aiming task goals (pre-contact, contact, post) as new observations arrive. Unlike motion retargeting or generic visual servoing, U-LAG treats in-flight goal re-aiming as a first-class, pluggable module between perception and control. Our main technical contribution is UAR-PF, an uncertainty-aware retargeter that maintains a distribution over object pose under sensing lag and selects goals that maximize expected progress. We instantiate a reproducible Shift x Lag stress test in PyBullet/PandaGym for pick, push, stacking, and peg insertion, where the object undergoes abrupt in-plane shifts while synthetic perception lag is injected during approach. Across 0-10 cm shifts and 0-400 ms lags, UAR-PF and ICP degrade gracefully relative to a no-retarget baseline, achieving higher success with modest end-effector travel and fewer aborts; simple operational safeguards further improve stability. Contributions: (1) UAR-PF for lag-adaptive, uncertainty-aware goal retargeting; (2) a pluggable retargeting interface; and (3) a reproducible Shift x Lag benchmark with evaluation on pick, push, stacking, and peg insertion.
comment: 8 pages, 5 figures. Accepted to the IROS 2025 Workshop on Perception and Planning for Mobile Manipulation in Changing Environments
☆ SIMSplat: Predictive Driving Scene Editing with Language-aligned 4D Gaussian Splatting
Driving scene manipulation with sensor data is emerging as a promising alternative to traditional virtual driving simulators. However, existing frameworks struggle to generate realistic scenarios efficiently due to limited editing capabilities. To address these challenges, we present SIMSplat, a predictive driving scene editor with language-aligned Gaussian splatting. As a language-controlled editor, SIMSplat enables intuitive manipulation using natural language prompts. By aligning language with Gaussian-reconstructed scenes, it further supports direct querying of road objects, allowing precise and flexible editing. Our method provides detailed object-level editing, including adding new objects and modifying the trajectories of both vehicles and pedestrians, while also incorporating predictive path refinement through multi-agent motion prediction to generate realistic interactions among all agents in the scene. Experiments on the Waymo dataset demonstrate SIMSplat's extensive editing capabilities and adaptability across a wide range of scenarios. Project page: https://sungyeonparkk.github.io/simsplat/
☆ ERUPT: An Open Toolkit for Interfacing with Robot Motion Planners in Extended Reality
We propose the Extended Reality Universal Planning Toolkit (ERUPT), an extended reality (XR) system for interactive motion planning. Our system allows users to create and dynamically reconfigure environments while they plan robot paths. In immersive three-dimensional XR environments, users gain a greater spatial understanding. XR also unlocks a broader range of natural interaction capabilities, allowing users to grab and adjust objects in the environment similarly to the real world, rather than using a mouse and keyboard with the scene projected onto a two-dimensional computer screen. Our system integrates with MoveIt, a manipulation planning framework, allowing users to send motion planning requests and visualize the resulting robot paths in virtual or augmented reality. We provide a broad range of interaction modalities, allowing users to modify objects in the environment and interact with a virtual robot. Our system allows operators to visualize robot motions, ensuring desired behavior as it moves throughout the environment, without risk of collisions within a virtual space, and to then deploy planned paths on physical robots in the real world.
☆ Gemini Robotics 1.5: Pushing the Frontier of Generalist Robots with Advanced Embodied Reasoning, Thinking, and Motion Transfer
General-purpose robots need a deep understanding of the physical world, advanced reasoning, and general and dexterous control. This report introduces the latest generation of the Gemini Robotics model family: Gemini Robotics 1.5, a multi-embodiment Vision-Language-Action (VLA) model, and Gemini Robotics-ER 1.5, a state-of-the-art Embodied Reasoning (ER) model. We are bringing together three major innovations. First, Gemini Robotics 1.5 features a novel architecture and a Motion Transfer (MT) mechanism, which enables it to learn from heterogeneous, multi-embodiment robot data and makes the VLA more general. Second, Gemini Robotics 1.5 interleaves actions with a multi-level internal reasoning process in natural language. This enables the robot to "think before acting" and notably improves its ability to decompose and execute complex, multi-step tasks, and also makes the robot's behavior more interpretable to the user. Third, Gemini Robotics-ER 1.5 establishes a new state-of-the-art for embodied reasoning, i.e., for reasoning capabilities that are critical for robots, such as visual and spatial understanding, task planning, and progress estimation. Together, this family of models takes us a step towards an era of physical agents-enabling robots to perceive, think and then act so they can solve complex multi-step tasks.
♻ ☆ Poutine: Vision-Language-Trajectory Pre-Training and Reinforcement Learning Post-Training Enable Robust End-to-End Autonomous Driving
Maintaining good driving behavior in out-of-distribution scenarios remains a critical challenge in autonomous driving. A promising direction is to leverage the generalist knowledge and reasoning capabilities of large-language models by treating unusual driving scenarios as a logical reasoning task. In this work, we present Poutine, a method that uses an off-the-shelf 3B-parameter vision-language model (VLM) - without any additional components - to achieve robust end-to-end autonomous driving via a simple and scalable training recipe. To learn strong base driving capabilities, we first train Poutine-Base using self-supervised next-token prediction over vision, language, and trajectory (VLT) tokens, leveraging both nominal and long-tail driving data. In the second stage, we fine-tune Poutine-Base using Group Relative Policy Optimization (GRPO) with a small set of human preference-labeled examples. We evaluated our approach on the Waymo end-to-end driving benchmark curated for long-tail scenarios. The final Poutine model achieves an RFS of 7.99 on the test set, placing 1st in the 2025 Waymo Vision-Based End-to-End Driving Challenge by a significant margin. Our results suggest that handcrafted tokenizers or custom architectural components added to base VLMs in prior work are not necessary to achieve strong driving performance. Instead, this work highlights the potential of scalable VLT pretraining combined with lightweight RL fine-tuning to enable robust and generalizable autonomous driving.
♻ ☆ World Model for AI Autonomous Navigation in Mechanical Thrombectomy MICCAI 2025
Autonomous navigation for mechanical thrombectomy (MT) remains a critical challenge due to the complexity of vascular anatomy and the need for precise, real-time decision-making. Reinforcement learning (RL)-based approaches have demonstrated potential in automating endovascular navigation, but current methods often struggle with generalization across multiple patient vasculatures and long-horizon tasks. We propose a world model for autonomous endovascular navigation using TD-MPC2, a model-based RL algorithm. We trained a single RL agent across multiple endovascular navigation tasks in ten real patient vasculatures, comparing performance against the state-of-the-art Soft Actor-Critic (SAC) method. Results indicate that TD-MPC2 significantly outperforms SAC in multi-task learning, achieving a 65% mean success rate compared to SAC's 37%, with notable improvements in path ratio. TD-MPC2 exhibited increased procedure times, suggesting a trade-off between success rate and execution speed. These findings highlight the potential of world models for improving autonomous endovascular navigation and lay the foundation for future research in generalizable AI-driven robotic interventions.
comment: Published in Medical Image Computing and Computer Assisted Intervention - MICCAI 2025, Lecture Notes in Computer Science, vol 15968
♻ ☆ SARM: Stage-Aware Reward Modeling for Long Horizon Robot Manipulation
Large-scale robot learning has recently shown promise for enabling robots to perform complex tasks by integrating perception, control, and language understanding. Yet, it struggles with long-horizon, contact-rich manipulation such as deformable object handling, where demonstration quality is inconsistent. Reward modeling offers a natural solution: by providing grounded progress signals, it transforms noisy demonstrations into stable supervision that generalizes across diverse trajectories. We introduce a stage-aware, video-based reward modeling framework that jointly predicts high-level task stages and fine-grained progress. Reward labels are automatically derived from natural language subtask annotations, ensuring consistent progress estimation across variable-length demonstrations. This design overcomes frame-index labeling, which fails in variable-duration tasks like folding a T-shirt. Our reward model demonstrates robustness to variability, generalization to out-of-distribution settings, and strong utility for policy training. Building on it, we propose Reward-Aligned Behavior Cloning (RA-BC), which filters high-quality data and reweights samples by reward. Experiments show the reward model alone outperforms baselines on validation and real robot rollouts. Integrated into RA-BC, our approach achieves 83\% success on folding T-shirts from the flattened state and 67\% from the crumpled state -- far surpassing vanilla behavior cloning, which attains only 8\% and 0\% success. Overall, our results highlight reward modeling as a key enabler for scalable, annotation-efficient, and robust imitation learning in long-horizon manipulation.
♻ ☆ VITA: Vision-to-Action Flow Matching Policy
Conventional flow matching and diffusion-based policies sample through iterative denoising from standard noise distributions (e.g., Gaussian), and require conditioning mechanisms to incorporate visual information during the generative process, incurring substantial time and memory overhead. To reduce the complexity, we develop VITA(VIsion-To-Action policy), a noise-free and conditioning-free policy learning framework that directly maps visual representations to latent actions using flow matching. VITA treats latent visual representations as the source of the flow, thus eliminating the need of conditioning. As expected, bridging vision and action is challenging, because actions are lower-dimensional, less structured, and sparser than visual representations; moreover, flow matching requires the source and target to have the same dimensionality. To overcome this, we introduce an action autoencoder that maps raw actions into a structured latent space aligned with visual latents, trained jointly with flow matching. To further prevent latent space collapse, we propose flow latent decoding, which anchors the latent generation process by backpropagating the action reconstruction loss through the flow matching ODE (ordinary differential equations) solving steps. We evaluate VITA on 8 simulation and 2 real-world tasks from ALOHA and Robomimic. VITA outperforms or matches state-of-the-art generative policies, while achieving 1.5-2.3x faster inference compared to conventional methods with conditioning. Project page: https://ucd-dare.github.io/VITA/
comment: Project page: https://ucd-dare.github.io/VITA/ Code: https://github.com/ucd-dare/VITA
♻ ☆ FalconWing: An Ultra-Light Indoor Fixed-Wing UAV Platform for Vision-Based Autonomy
We introduce FalconWing, an ultra-light (150 g) indoor fixed-wing UAV platform for vision-based autonomy. Controlled indoor environment enables year-round repeatable UAV experiment but imposes strict weight and maneuverability limits on the UAV, motivating our ultra-light FalconWing design. FalconWing couples a lightweight hardware stack (137g airframe with a 9g camera) and offboard computation with a software stack featuring a photorealistic 3D Gaussian Splat (GSplat) simulator for developing and evaluating vision-based controllers. We validate FalconWing on two challenging vision-based aerial case studies. In the leader-follower case study, our best vision-based controller, trained via imitation learning on GSplat-rendered data augmented with domain randomization, achieves 100% tracking success across 3 types of leader maneuvers over 30 trials and shows robustness to leader's appearance shifts in simulation. In the autonomous landing case study, our vision-based controller trained purely in simulation transfers zero-shot to real hardware, achieving an 80% success rate over ten landing trials. We will release hardware designs, GSplat scenes, and dynamics models upon publication to make FalconWing an open-source flight kit for engineering students and research labs.
♻ ☆ LPAC: Learnable Perception-Action-Communication Loops with Applications to Coverage Control
Coverage control is the problem of navigating a robot swarm to collaboratively monitor features or a phenomenon of interest not known a priori. The problem is challenging in decentralized settings with robots that have limited communication and sensing capabilities. We propose a learnable Perception-Action-Communication (LPAC) architecture for the problem, wherein a convolutional neural network (CNN) processes localized perception; a graph neural network (GNN) facilitates robot communications; finally, a shallow multi-layer perceptron (MLP) computes robot actions. The GNN enables collaboration in the robot swarm by computing what information to communicate with nearby robots and how to incorporate received information. Evaluations show that the LPAC models -- trained using imitation learning -- outperform standard decentralized and centralized coverage control algorithms. The learned policy generalizes to environments different from the training dataset, transfers to larger environments with more robots, and is robust to noisy position estimates. The results indicate the suitability of LPAC architectures for decentralized navigation in robot swarms to achieve collaborative behavior.
comment: 20 Pages, 20 figures, Accepted for publication in the IEEE Transactions on Robotics
♻ ☆ A Tactile Feedback Approach to Path Recovery after High-Speed Impacts for Collision-Resilient Drones
Aerial robots are a well-established solution for exploration, monitoring, and inspection, thanks to their superior maneuverability and agility. However, in many environments, they risk crashing and sustaining damage after collisions. Traditional methods focus on avoiding obstacles entirely, but these approaches can be limiting, particularly in cluttered spaces or on weight-and compute-constrained platforms such as drones. This paper presents a novel approach to enhance drone robustness and autonomy by developing a path recovery and adjustment method for a high-speed collision-resilient aerial robot equipped with lightweight, distributed tactile sensors. The proposed system explicitly models collisions using pre-collision velocities, rates and tactile feedback to predict post-collision dynamics, improving state estimation accuracy. Additionally, we introduce a computationally efficient vector-field-based path representation that guarantees convergence to a user-specified path, while naturally avoiding known obstacles. Post-collision, contact point locations are incorporated into the vector field as a repulsive potential, enabling the drone to avoid obstacles while naturally returning to its path. The effectiveness of this method is validated through Monte Carlo simulations and demonstrated on a physical prototype, showing successful path following, collision recovery, and adjustment at speeds up to 3.7 m/s.
♻ ☆ NeoARCADE: Robust Calibration for Distance Estimation to Support Assistive Drones for the Visually Impaired
Autonomous navigation by drones using onboard sensors, combined with deep learning and computer vision algorithms, is impacting a number of domains. We examine the use of drones to autonomously follow and assist Visually Impaired People (VIPs) in navigating urban environments. Estimating the absolute distance between the drone and the VIP, and to nearby objects, is essential to design obstacle avoidance algorithms. Here, we present NeoARCADE (Neo), which uses depth maps over monocular video feeds, common in consumer drones, to estimate absolute distances to the VIP and obstacles. Neo proposes robust calibration technique based on depth score normalization and coefficient estimations to translate relative distances from depth map to absolute ones. It further develops a dynamic recalibration method that can adapt to changing scenarios. We also develop two baseline models, Regression and Geometric, and compare Neo with SOTA depth map approaches and the baselines. We provide detailed evaluations to validate their robustness and generalizability for distance estimation to VIPs and other obstacles in diverse and dynamic conditions, using datasets collected in a campus environment. Neo predicts distances to VIP with an error <30cm, and to different obstacles like cars and bicycles within a maximum error of 60cm, which are better than the baselines. Neo also clearly out-performs SOTA depth map methods, reporting errors up to 5.3-14.6x lower.
comment: 34 pages, 20 figures, 3 tables
♻ ☆ Physics-Constrained Robot Grasp Planning for Dynamic Tool Use
Tool use requires not only selecting appropriate tools but also generating grasps and motions that remain stable under dynamic interactions. Existing approaches largely focus on high-level tool grounding or quasi-static manipulation, overlooking stability in dynamic and cluttered regimes. We introduce iTuP (inverse Tool-use Planning), a framework that outputs robot grasps explicitly tailored for tool use. iTuP integrates a physics-constrained grasp generator with a task-conditional scoring function to produce grasps that remain stable during dynamic tool interactions. These grasps account for manipulation trajectories, torque requirements, and slip prevention, enabling reliable execution of real-world tasks. Experiments across hammering, sweeping, knocking, and reaching tasks demonstrate that iTuP outperforms geometry-based and vision-language model (VLM)-based baselines in grasp stability and task success. Our results underscore that physics-constrained grasping is essential for robust robot tool use in quasi-static, dynamic, and cluttered environments.
comment: In submission and under review
♻ ☆ VFP: Variational Flow-Matching Policy for Multi-Modal Robot Manipulation
Flow-matching-based policies have recently emerged as a promising approach for learning-based robot manipulation, offering significant acceleration in action sampling compared to diffusion-based policies. However, conventional flow-matching methods struggle with multi-modality, often collapsing to averaged or ambiguous behaviors in complex manipulation tasks. To address this, we propose the Variational Flow-Matching Policy (VFP), which introduces a variational latent prior for mode-aware action generation and effectively captures both task-level and trajectory-level multi-modality. VFP further incorporates Kantorovich Optimal Transport (K-OT) for distribution-level alignment and utilizes a Mixture-of-Experts (MoE) decoder for mode specialization and efficient inference. We comprehensively evaluate VFP on 41 simulated tasks and 3 real-robot tasks, demonstrating its effectiveness and sampling efficiency in both simulated and real-world settings. Results show that VFP achieves a 49% relative improvement in task success rate over standard flow-based baselines in simulation, and further outperforms them on real-robot tasks, while still maintaining fast inference and a compact model size. More details are available on our project page: https://sites.google.com/view/varfp/
♻ ☆ Interactive Expressive Motion Generation Using Dynamic Movement Primitives IROS
Our goal is to enable social robots to interact autonomously with humans in a realistic, engaging, and expressive manner. The 12 Principles of Animation are a well-established framework animators use to create movements that make characters appear convincing, dynamic, and emotionally expressive. This paper proposes a novel approach that leverages Dynamic Movement Primitives (DMPs) to implement key animation principles, providing a learnable, explainable, modulable, online adaptable and composable model for automatic expressive motion generation. DMPs, originally developed for general imitation learning in robotics and grounded in a spring-damper system design, offer mathematical properties that make them particularly suitable for this task. Specifically, they enable modulation of the intensities of individual principles and facilitate the decomposition of complex, expressive motion sequences into learnable and parametrizable primitives. We present the mathematical formulation of the parameterized animation principles and demonstrate the effectiveness of our framework through experiments and application on three robotic platforms with different kinematic configurations, in simulation, on actual robots and in a user study. Our results show that the approach allows for creating diverse and nuanced expressions using a single base model.
comment: This paper has been accepted for publication at the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
♻ ☆ Model Evaluation of a Transformable CubeSat for Nonholonomic Attitude Reorientation Using a Drop Tower
This paper presents a design for a drop tower test to evaluate a numerical model for a structurally reconfigurable spacecraft with actuatable joints, referred to as a transformable spacecraft. A mock-up robot for a 3U-sized transformable spacecraft is designed to fit in a limited time and space of the microgravity environment available in the drop tower. The robot performs agile reorientation, referred to as nonholonomic attitude control, by actuating joints in a particular manner. To adapt to the very short duration of microgravity in the drop tower test, a successive joint actuation maneuver is optimized to maximize the amount of attitude reorientation within the time constraint. The robot records the angular velocity history of all four bodies, and the data is analyzed to evaluate the accuracy of the numerical model. We confirm that the constructed numerical model sufficiently replicates the robot's motion and show that the post-experiment model corrections further improve the accuracy of the numerical simulations. Finally, the difference between this drop tower test and the actual orbit demonstration is discussed to show the prospect.
comment: 22 pages, 22 figures
Temporal Overlapping Prediction: A Self-supervised Pre-training Method for LiDAR Moving Object Segmentation
Moving object segmentation (MOS) on LiDAR point clouds is crucial for autonomous systems like self-driving vehicles. Previous supervised approaches rely heavily on costly manual annotations, while LiDAR sequences naturally capture temporal motion cues that can be leveraged for self-supervised learning. In this paper, we propose Temporal Overlapping Prediction (TOP), a self-supervised pre-training method that alleviate the labeling burden for MOS. TOP explores the temporal overlapping points that commonly observed by current and adjacent scans, and learns spatiotemporal representations by predicting the occupancy states of temporal overlapping points. Moreover, we utilize current occupancy reconstruction as an auxiliary pre-training objective, which enhances the current structural awareness of the model. We conduct extensive experiments and observe that the conventional metric Intersection-over-Union (IoU) shows strong bias to objects with more scanned points, which might neglect small or distant objects. To compensate for this bias, we introduce an additional metric called mIoU_obj to evaluate object-level performance. Experiments on nuScenes and SemanticKITTI show that TOPoutperforms both supervised training-from-scratch baseline and other self-supervised pre-training baselines by up to 28.77% relative improvement, demonstrating strong transferability across LiDAR setups and generalization to other tasks. Code and pre-trained models will be publicly available upon publication.
♻ ☆ Software Engineering for Self-Adaptive Robotics: A Research Agenda
Self-adaptive robotic systems operate autonomously in dynamic and uncertain environments, requiring robust real-time monitoring and adaptive behaviour. Unlike traditional robotic software with predefined logic, self-adaptive robots exploit artificial intelligence (AI), machine learning, and model-driven engineering to adapt continuously to changing conditions, thereby ensuring reliability, safety, and optimal performance. This paper presents a research agenda for software engineering in self-adaptive robotics, structured along two dimensions. The first concerns the software engineering lifecycle, requirements, design, development, testing, and operations, tailored to the challenges of self-adaptive robotics. The second focuses on enabling technologies such as digital twins, AI-driven adaptation, and quantum computing, which support runtime monitoring, fault detection, and automated decision-making. We identify open challenges, including verifying adaptive behaviours under uncertainty, balancing trade-offs between adaptability, performance, and safety, and integrating self-adaptation frameworks like MAPE-K/MAPLE-K. By consolidating these challenges into a roadmap toward 2030, this work contributes to the foundations of trustworthy and efficient self-adaptive robotic systems capable of meeting the complexities of real-world deployment.
♻ ☆ LRFusionPR: A Polar BEV-Based LiDAR-Radar Fusion Network for Place Recognition RAL
In autonomous driving, place recognition is critical for global localization in GPS-denied environments. LiDAR and radar-based place recognition methods have garnered increasing attention, as LiDAR provides precise ranging, whereas radar excels in adverse weather resilience. However, effectively leveraging LiDAR-radar fusion for place recognition remains challenging. The noisy and sparse nature of radar data limits its potential to further improve recognition accuracy. In addition, heterogeneous radar configurations complicate the development of unified cross-modality fusion frameworks. In this paper, we propose LRFusionPR, which improves recognition accuracy and robustness by fusing LiDAR with either single-chip or scanning radar. Technically, a dual-branch network is proposed to fuse different modalities within the unified polar coordinate bird's eye view (BEV) representation. In the fusion branch, cross-attention is utilized to perform cross-modality feature interactions. The knowledge from the fusion branch is simultaneously transferred to the distillation branch, which takes radar as its only input to further improve the robustness. Ultimately, the descriptors from both branches are concatenated, producing the multimodal global descriptor for place retrieval. Extensive evaluations on multiple datasets demonstrate that our LRFusionPR achieves accurate place recognition, while maintaining robustness under varying weather conditions. Our open-source code will be released at https://github.com/QiZS-BIT/LRFusionPR.
comment: Accepted by IEEE Robotics and Automation Letters (RAL) 2025
♻ ☆ An effective control of large systems of active particles: An application to evacuation problem
Manipulation of large systems of active particles is a serious challenge across diverse domains, including crowd management, control of robotic swarms, and coordinated material transport. The development of advanced control strategies for complex scenarios is hindered, however, by the lack of scalability and robustness of the existing methods, in particular, due to the need of an individual control for each agent. One possible solution involves controlling a system through a leader or a group of leaders, which other agents tend to follow. Using such an approach we develop an effective control strategy for a leader, combining reinforcement learning (RL) with artificial forces acting on the system. To describe the guidance of active particles by a leader we introduce the generalized Vicsek model. This novel method is then applied to the problem of the effective evacuation by a robot-rescuer (leader) of large groups of people from hazardous places. We demonstrate, that while a straightforward application of RL yields suboptimal results, even for advanced architectures, our approach provides a robust and efficient evacuation strategy. The source code supporting this study is publicly available at: https://github.com/cinemere/evacuation.
♻ ☆ PlaceIt3D: Language-Guided Object Placement in Real 3D Scenes ICCV 2025
We introduce the novel task of Language-Guided Object Placement in Real 3D Scenes. Our model is given a 3D scene's point cloud, a 3D asset, and a textual prompt broadly describing where the 3D asset should be placed. The task here is to find a valid placement for the 3D asset that respects the prompt. Compared with other language-guided localization tasks in 3D scenes such as grounding, this task has specific challenges: it is ambiguous because it has multiple valid solutions, and it requires reasoning about 3D geometric relationships and free space. We inaugurate this task by proposing a new benchmark and evaluation protocol. We also introduce a new dataset for training 3D LLMs on this task, as well as the first method to serve as a non-trivial baseline. We believe that this challenging task and our new benchmark could become part of the suite of benchmarks used to evaluate and compare generalist 3D LLM models.
comment: ICCV 2025. Project page: https://nianticlabs.github.io/placeit3d/
♻ ☆ DexUMI: Using Human Hand as the Universal Manipulation Interface for Dexterous Manipulation
We present DexUMI - a data collection and policy learning framework that uses the human hand as the natural interface to transfer dexterous manipulation skills to various robot hands. DexUMI includes hardware and software adaptations to minimize the embodiment gap between the human hand and various robot hands. The hardware adaptation bridges the kinematics gap using a wearable hand exoskeleton. It allows direct haptic feedback in manipulation data collection and adapts human motion to feasible robot hand motion. The software adaptation bridges the visual gap by replacing the human hand in video data with high-fidelity robot hand inpainting. We demonstrate DexUMI's capabilities through comprehensive real-world experiments on two different dexterous robot hand hardware platforms, achieving an average task success rate of 86%.
♻ ☆ HAMLET: Switch your Vision-Language-Action Model into a History-Aware Policy
Inherently, robotic manipulation tasks are history-dependent: leveraging past context could be beneficial. However, most existing Vision-Language-Action models (VLAs) have been designed without considering this aspect, i.e., they rely solely on the current observation, ignoring preceding context. In this paper, we propose HAMLET, a scalable framework to adapt VLAs to attend to the historical context during action prediction. Specifically, we introduce moment tokens that compactly encode perceptual information at each timestep. Their representations are initialized with time-contrastive learning, allowing them to better capture temporally distinctive aspects. Next, we employ a lightweight memory module that integrates the moment tokens across past timesteps into memory features, which are then leveraged for action prediction. Through empirical evaluation, we show that HAMLET successfully transforms a state-of-the-art VLA into a history-aware policy, especially demonstrating significant improvements on long-horizon tasks that require historical context. In particular, on top of GR00T N1.5, HAMLET achieves an average success rate of 76.4% on history-dependent real-world tasks, surpassing the baseline performance by 47.2%. Furthermore, HAMLET pushes prior art performance from 64.1% to 66.4% on RoboCasa Kitchen (100-demo setup) and from 95.6% to 97.7% on LIBERO, highlighting its effectiveness even under generic robot-manipulation benchmarks.
comment: Project page: https://myungkyukoo.github.io/hamlet/
♻ ☆ Safe Navigation of Bipedal Robots via Koopman Operator-Based Model Predictive Control
Nonlinearity in dynamics has long been a major challenge in robotics, often causing significant performance degradation in existing control algorithms. For example, the navigation of bipedal robots can exhibit nonlinear behaviors even under simple velocity commands, as their actual dynamics are governed by complex whole-body movements and discrete contacts. In this work, we propose a novel safe navigation framework inspired by Koopman operator theory. We first train a low-level locomotion policy using deep reinforcement learning, and then capture its low-frequency, base-level dynamics by learning linearized dynamics in a high-dimensional lifted space using Dynamic Mode Decomposition. Then, our model-predictive controller (MPC) efficiently optimizes control signals via standard quadratic objective and the linear dynamics constraint in the lifted space. We demonstrate that the Koopman-based model more accurately predicts bipedal robot trajectories than baseline approaches. Furthermore, we show that the proposed navigation framework achieves improved safety with better success rates in dense environments with narrow passages.
comment: 8 pages
♻ ☆ Optimal Modified Feedback Strategies in LQ Games under Control Imperfections
Game-theoretic approaches and Nash equilibrium have been widely applied across various engineering domains. However, practical challenges such as disturbances, delays, and actuator limitations can hinder the precise execution of Nash equilibrium strategies. This work investigates the impact of such implementation imperfections on game trajectories and players' costs in the context of a two-player finite-horizon linear quadratic (LQ) nonzero-sum game. Specifically, we analyze how small deviations by one player, measured or estimated at each stage, affect the state and cost function of the other player. To mitigate these effects, we propose an adjusted control policy that optimally compensates for the deviations under the stated information structure and can, under certain conditions, exploit them to improve performance. Rigorous mathematical analysis and proofs are provided, and the effectiveness of the proposed method is demonstrated through a representative numerical example.
comment: 6 pages, 2 figures, Preprint version of a paper submitted to ACC 2026
♻ ☆ A Benchmarking Study of Vision-based Robotic Grasping Algorithms
We present a benchmarking study of vision-based robotic grasping algorithms with distinct approaches, and provide a comparative analysis. In particular, we compare two machine-learning-based and two analytical algorithms using an existing benchmarking protocol from the literature and determine the algorithm's strengths and weaknesses under different experimental conditions. These conditions include variations in lighting, background textures, cameras with different noise levels, and grippers. We also run analogous experiments in simulations and with real robots and present the discrepancies. Some experiments are also run in two different laboratories using same protocols to further analyze the repeatability of our results. We believe that this study, comprising 5040 experiments, provides important insights into the role and challenges of systematic experimentation in robotic manipulation, and guides the development of new algorithms by considering the factors that could impact the performance. The experiment recordings and our benchmarking software are publicly available.
comment: This work was intended as a replacement of arXiv:2307.11622. I will upload it as a replacement to arXiv:2307.11622 simultaneously
♻ ☆ VOTE: Vision-Language-Action Optimization with Trajectory Ensemble Voting
Recent large-scale Vision Language Action (VLA) models have shown superior performance in robotic manipulation tasks guided by natural language. However, current VLA models suffer from two drawbacks: (i) generation of massive tokens leading to high inference latency and increased training cost, and (ii) insufficient utilization of generated actions resulting in potential performance loss. To address these issues, we develop a training framework to finetune VLA models for generating significantly fewer action tokens with high parallelism, effectively reducing inference latency and training cost. Furthermore, we introduce an inference optimization technique with a novel voting-based ensemble strategy to combine current and previous action predictions, improving the utilization of generated actions and overall performance. Our results demonstrate that we achieve superior performance compared with state-of-the-art VLA models, achieving significantly higher success rates and 39$\times$ faster inference than OpenVLA with 46 Hz throughput on edge platforms, demonstrating practical deployability. The code is available at https://github.com/LukeLIN-web/VOTE.
♻ ☆ Active Alignments of Lens Systems with Reinforcement Learning
Aligning a lens system relative to an imager is a critical challenge in camera manufacturing. While optimal alignment can be mathematically computed under ideal conditions, real-world deviations caused by manufacturing tolerances often render this approach impractical. Measuring these tolerances can be costly or even infeasible, and neglecting them may result in suboptimal alignments. We propose a reinforcement learning (RL) approach that learns exclusively in the pixel space of the sensor output, eliminating the need to develop expert-designed alignment concepts. We conduct an extensive benchmark study and show that our approach surpasses other methods in speed, precision, and robustness. We further introduce relign, a realistic, freely explorable, open-source simulation utilizing physically based rendering that models optical systems with non-deterministic manufacturing tolerances and noise in robotic alignment movement. It provides an interface to popular machine learning frameworks, enabling seamless experimentation and development. Our work highlights the potential of RL in a manufacturing environment to enhance efficiency of optical alignments while minimizing the need for manual intervention.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ A Multi-Fidelity Control Variate Approach for Policy Gradient Estimation
Many reinforcement learning (RL) algorithms are impractical for deployment in operational systems or for training with computationally expensive high-fidelity simulations, as they require large amounts of data. Meanwhile, low-fidelity simulators -- such as reduced-order models, heuristic rewards, or generative world models -- can cheaply provide useful data for RL training, even if they are too coarse for zero-shot transfer. We propose multi-fidelity policy gradients (MFPGs), an RL framework that mixes a small amount of data from the target environment with a control variate formed from a large volume of low-fidelity simulation data to construct an unbiased, variance-reduced estimator for on-policy policy gradients. We instantiate the framework with a multi-fidelity variant of the classical REINFORCE algorithm. We show that under standard assumptions, the MFPG estimator guarantees asymptotic convergence of REINFORCE to locally optimal policies in the target environment, and achieves faster finite-sample convergence rates compared to training with high-fidelity data alone. Empirically, we evaluate the MFPG algorithm across a suite of simulated robotics benchmark tasks with limited high-fidelity data but abundant off-dynamics, low-fidelity data. With mild-moderate dynamics gaps, MFPG reliably improves the median performance over a high-fidelity-only baseline, matching the performance of leading multi-fidelity baselines despite its simplicity and minimal tuning overhead. Under large dynamics gaps, MFPG demonstrates the strongest robustness among the evaluated multi-fidelity approaches. An additional experiment shows that MFPG can remain effective even under low-fidelity reward misspecification. Thus, MFPG not only offers a novel paradigm for efficient sim-to-real transfer but also provides a principled approach to managing the trade-off between policy performance and data collection costs.
♻ ☆ Introduction to Online Control
This text presents an introduction to an emerging paradigm in control of dynamical systems and differentiable reinforcement learning called online nonstochastic control. The new approach applies techniques from online convex optimization and convex relaxations to obtain new methods with provable guarantees for classical settings in optimal and robust control. The primary distinction between online nonstochastic control and other frameworks is the objective. In optimal control, robust control, and other control methodologies that assume stochastic noise, the goal is to perform comparably to an offline optimal strategy. In online nonstochastic control, both the cost functions as well as the perturbations from the assumed dynamical model are chosen by an adversary. Thus the optimal policy is not defined a priori. Rather, the target is to attain low regret against the best policy in hindsight from a benchmark class of policies. This objective suggests the use of the decision making framework of online convex optimization as an algorithmic methodology. The resulting methods are based on iterative mathematical optimization algorithms, and are accompanied by finite-time regret and computational complexity guarantees.
comment: Draft; comments/suggestions welcome at nonstochastic.control@gmail.com
Computer Vision and Pattern Recognition 174
☆ Optimal Control Meets Flow Matching: A Principled Route to Multi-Subject Fidelity
Text-to-image (T2I) models excel on single-entity prompts but struggle with multi-subject descriptions, often showing attribute leakage, identity entanglement, and subject omissions. We introduce the first theoretical framework with a principled, optimizable objective for steering sampling dynamics toward multi-subject fidelity. Viewing flow matching (FM) through stochastic optimal control (SOC), we formulate subject disentanglement as control over a trained FM sampler. This yields two architecture-agnostic algorithms: (i) a training-free test-time controller that perturbs the base velocity with a single-pass update, and (ii) Adjoint Matching, a lightweight fine-tuning rule that regresses a control network to a backward adjoint signal while preserving base-model capabilities. The same formulation unifies prior attention heuristics, extends to diffusion models via a flow-diffusion correspondence, and provides the first fine-tuning route explicitly designed for multi-subject fidelity. Empirically, on Stable Diffusion 3.5, FLUX, and Stable Diffusion XL, both algorithms consistently improve multi-subject alignment while maintaining base-model style. Test-time control runs efficiently on commodity GPUs, and fine-tuned controllers trained on limited prompts generalize to unseen ones. We further highlight FOCUS (Flow Optimal Control for Unentangled Subjects), which achieves state-of-the-art multi-subject fidelity across models.
comment: Code: https://github.com/ericbill21/FOCUS/
☆ StealthAttack: Robust 3D Gaussian Splatting Poisoning via Density-Guided Illusions ICCV 2025
3D scene representation methods like Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have significantly advanced novel view synthesis. As these methods become prevalent, addressing their vulnerabilities becomes critical. We analyze 3DGS robustness against image-level poisoning attacks and propose a novel density-guided poisoning method. Our method strategically injects Gaussian points into low-density regions identified via Kernel Density Estimation (KDE), embedding viewpoint-dependent illusory objects clearly visible from poisoned views while minimally affecting innocent views. Additionally, we introduce an adaptive noise strategy to disrupt multi-view consistency, further enhancing attack effectiveness. We propose a KDE-based evaluation protocol to assess attack difficulty systematically, enabling objective benchmarking for future research. Extensive experiments demonstrate our method's superior performance compared to state-of-the-art techniques. Project page: https://hentci.github.io/stealthattack/
comment: ICCV 2025. Project page: https://hentci.github.io/stealthattack/
☆ Clink! Chop! Thud! -- Learning Object Sounds from Real-World Interactions ICCV 2025
Can a model distinguish between the sound of a spoon hitting a hardwood floor versus a carpeted one? Everyday object interactions produce sounds unique to the objects involved. We introduce the sounding object detection task to evaluate a model's ability to link these sounds to the objects directly involved. Inspired by human perception, our multimodal object-aware framework learns from in-the-wild egocentric videos. To encourage an object-centric approach, we first develop an automatic pipeline to compute segmentation masks of the objects involved to guide the model's focus during training towards the most informative regions of the interaction. A slot attention visual encoder is used to further enforce an object prior. We demonstrate state of the art performance on our new task along with existing multimodal action understanding tasks.
comment: ICCV 2025. Project page: https://clink-chop-thud.github.io/
☆ Inferring Dynamic Physical Properties from Video Foundation Models
We study the task of predicting dynamic physical properties from videos. More specifically, we consider physical properties that require temporal information to be inferred: elasticity of a bouncing object, viscosity of a flowing liquid, and dynamic friction of an object sliding on a surface. To this end, we make the following contributions: (i) We collect a new video dataset for each physical property, consisting of synthetic training and testing splits, as well as a real split for real world evaluation. (ii) We explore three ways to infer the physical property from videos: (a) an oracle method where we supply the visual cues that intrinsically reflect the property using classical computer vision techniques; (b) a simple read out mechanism using a visual prompt and trainable prompt vector for cross-attention on pre-trained video generative and self-supervised models; and (c) prompt strategies for Multi-modal Large Language Models (MLLMs). (iii) We show that video foundation models trained in a generative or self-supervised manner achieve a similar performance, though behind that of the oracle, and MLLMs are currently inferior to the other models, though their performance can be improved through suitable prompting.
☆ NoiseShift: Resolution-Aware Noise Recalibration for Better Low-Resolution Image Generation
Text-to-image diffusion models trained on a fixed set of resolutions often fail to generalize, even when asked to generate images at lower resolutions than those seen during training. High-resolution text-to-image generators are currently unable to easily offer an out-of-the-box budget-efficient alternative to their users who might not need high-resolution images. We identify a key technical insight in diffusion models that when addressed can help tackle this limitation: Noise schedulers have unequal perceptual effects across resolutions. The same level of noise removes disproportionately more signal from lower-resolution images than from high-resolution images, leading to a train-test mismatch. We propose NoiseShift, a training-free method that recalibrates the noise level of the denoiser conditioned on resolution size. NoiseShift requires no changes to model architecture or sampling schedule and is compatible with existing models. When applied to Stable Diffusion 3, Stable Diffusion 3.5, and Flux-Dev, quality at low resolutions is significantly improved. On LAION-COCO, NoiseShift improves SD3.5 by 15.89%, SD3 by 8.56%, and Flux-Dev by 2.44% in FID on average. On CelebA, NoiseShift improves SD3.5 by 10.36%, SD3 by 5.19%, and Flux-Dev by 3.02% in FID on average. These results demonstrate the effectiveness of NoiseShift in mitigating resolution-dependent artifacts and enhancing the quality of low-resolution image generation.
☆ Equilibrium Matching: Generative Modeling with Implicit Energy-Based Models
We introduce Equilibrium Matching (EqM), a generative modeling framework built from an equilibrium dynamics perspective. EqM discards the non-equilibrium, time-conditional dynamics in traditional diffusion and flow-based generative models and instead learns the equilibrium gradient of an implicit energy landscape. Through this approach, we can adopt an optimization-based sampling process at inference time, where samples are obtained by gradient descent on the learned landscape with adjustable step sizes, adaptive optimizers, and adaptive compute. EqM surpasses the generation performance of diffusion/flow models empirically, achieving an FID of 1.90 on ImageNet 256$\times$256. EqM is also theoretically justified to learn and sample from the data manifold. Beyond generation, EqM is a flexible framework that naturally handles tasks including partially noised image denoising, OOD detection, and image composition. By replacing time-conditional velocities with a unified equilibrium landscape, EqM offers a tighter bridge between flow and energy-based models and a simple route to optimization-driven inference.
☆ Continual Personalization for Diffusion Models
Updating diffusion models in an incremental setting would be practical in real-world applications yet computationally challenging. We present a novel learning strategy of Concept Neuron Selection (CNS), a simple yet effective approach to perform personalization in a continual learning scheme. CNS uniquely identifies neurons in diffusion models that are closely related to the target concepts. In order to mitigate catastrophic forgetting problems while preserving zero-shot text-to-image generation ability, CNS finetunes concept neurons in an incremental manner and jointly preserves knowledge learned of previous concepts. Evaluation of real-world datasets demonstrates that CNS achieves state-of-the-art performance with minimal parameter adjustments, outperforming previous methods in both single and multi-concept personalization works. CNS also achieves fusion-free operation, reducing memory storage and processing time for continual personalization.
VideoNSA: Native Sparse Attention Scales Video Understanding
Video understanding in multimodal language models remains limited by context length: models often miss key transition frames and struggle to maintain coherence across long time scales. To address this, we adapt Native Sparse Attention (NSA) to video-language models. Our method, VideoNSA, adapts Qwen2.5-VL through end-to-end training on a 216K video instruction dataset. We employ a hardware-aware hybrid approach to attention, preserving dense attention for text, while employing NSA for video. Compared to token-compression and training-free sparse baselines, VideoNSA achieves improved performance on long-video understanding, temporal reasoning, and spatial benchmarks. Further ablation analysis reveals four key findings: (1) reliable scaling to 128K tokens; (2) an optimal global-local attention allocation at a fixed budget; (3) task-dependent branch usage patterns; and (4) the learnable combined sparse attention help induce dynamic attention sinks.
comment: Project Page: https://enxinsong.com/VideoNSA-web/, Code: https://github.com/Espere-1119-Song/VideoNSA
☆ From Behavioral Performance to Internal Competence: Interpreting Vision-Language Models with VLM-Lens EMNLP 2025
We introduce VLM-Lens, a toolkit designed to enable systematic benchmarking, analysis, and interpretation of vision-language models (VLMs) by supporting the extraction of intermediate outputs from any layer during the forward pass of open-source VLMs. VLM-Lens provides a unified, YAML-configurable interface that abstracts away model-specific complexities and supports user-friendly operation across diverse VLMs. It currently supports 16 state-of-the-art base VLMs and their over 30 variants, and is extensible to accommodate new models without changing the core logic. The toolkit integrates easily with various interpretability and analysis methods. We demonstrate its usage with two simple analytical experiments, revealing systematic differences in the hidden representations of VLMs across layers and target concepts. VLM-Lens is released as an open-sourced project to accelerate community efforts in understanding and improving VLMs.
comment: EMNLP 2025 System Demonstration | Code: https://github.com/compling-wat/vlm-lens
☆ Test-Time Anchoring for Discrete Diffusion Posterior Sampling
We study the problem of posterior sampling using pretrained discrete diffusion foundation models, aiming to recover images from noisy measurements without retraining task-specific models. While diffusion models have achieved remarkable success in generative modeling, most advances rely on continuous Gaussian diffusion. In contrast, discrete diffusion offers a unified framework for jointly modeling categorical data such as text and images. Beyond unification, discrete diffusion provides faster inference, finer control, and principled training-free Bayesian inference, making it particularly well-suited for posterior sampling. However, existing approaches to discrete diffusion posterior sampling face severe challenges: derivative-free guidance yields sparse signals, continuous relaxations limit applicability, and split Gibbs samplers suffer from the curse of dimensionality. To overcome these limitations, we introduce Anchored Posterior Sampling (APS) for masked diffusion foundation models, built on two key innovations -- quantized expectation for gradient-like guidance in discrete embedding space, and anchored remasking for adaptive decoding. Our approach achieves state-of-the-art performance among discrete diffusion samplers across linear and nonlinear inverse problems on the standard benchmarks. We further demonstrate the benefits of our approach in training-free stylization and text-guided editing.
comment: Preprint
☆ MultiModal Action Conditioned Video Generation
Current video models fail as world model as they lack fine-graiend control. General-purpose household robots require real-time fine motor control to handle delicate tasks and urgent situations. In this work, we introduce fine-grained multimodal actions to capture such precise control. We consider senses of proprioception, kinesthesia, force haptics, and muscle activation. Such multimodal senses naturally enables fine-grained interactions that are difficult to simulate with text-conditioned generative models. To effectively simulate fine-grained multisensory actions, we develop a feature learning paradigm that aligns these modalities while preserving the unique information each modality provides. We further propose a regularization scheme to enhance causality of the action trajectory features in representing intricate interaction dynamics. Experiments show that incorporating multimodal senses improves simulation accuracy and reduces temporal drift. Extensive ablation studies and downstream applications demonstrate the effectiveness and practicality of our work.
☆ Learning to Generate Object Interactions with Physics-Guided Video Diffusion
Recent models for video generation have achieved remarkable progress and are now deployed in film, social media production, and advertising. Beyond their creative potential, such models also hold promise as world simulators for robotics and embodied decision making. Despite strong advances, however, current approaches still struggle to generate physically plausible object interactions and lack physics-grounded control mechanisms. To address this limitation, we introduce KineMask, an approach for physics-guided video generation that enables realistic rigid body control, interactions, and effects. Given a single image and a specified object velocity, our method generates videos with inferred motions and future object interactions. We propose a two-stage training strategy that gradually removes future motion supervision via object masks. Using this strategy we train video diffusion models (VDMs) on synthetic scenes of simple interactions and demonstrate significant improvements of object interactions in real scenes. Furthermore, KineMask integrates low-level motion control with high-level textual conditioning via predictive scene descriptions, leading to effective support for synthesis of complex dynamical phenomena. Extensive experiments show that KineMask achieves strong improvements over recent models of comparable size. Ablation studies further highlight the complementary roles of low- and high-level conditioning in VDMs. Our code, model, and data will be made publicly available.
☆ Self-Forcing++: Towards Minute-Scale High-Quality Video Generation
Diffusion models have revolutionized image and video generation, achieving unprecedented visual quality. However, their reliance on transformer architectures incurs prohibitively high computational costs, particularly when extending generation to long videos. Recent work has explored autoregressive formulations for long video generation, typically by distilling from short-horizon bidirectional teachers. Nevertheless, given that teacher models cannot synthesize long videos, the extrapolation of student models beyond their training horizon often leads to pronounced quality degradation, arising from the compounding of errors within the continuous latent space. In this paper, we propose a simple yet effective approach to mitigate quality degradation in long-horizon video generation without requiring supervision from long-video teachers or retraining on long video datasets. Our approach centers on exploiting the rich knowledge of teacher models to provide guidance for the student model through sampled segments drawn from self-generated long videos. Our method maintains temporal consistency while scaling video length by up to 20x beyond teacher's capability, avoiding common issues such as over-exposure and error-accumulation without recomputing overlapping frames like previous methods. When scaling up the computation, our method shows the capability of generating videos up to 4 minutes and 15 seconds, equivalent to 99.9% of the maximum span supported by our base model's position embedding and more than 50x longer than that of our baseline model. Experiments on standard benchmarks and our proposed improved benchmark demonstrate that our approach substantially outperforms baseline methods in both fidelity and consistency. Our long-horizon videos demo can be found at https://self-forcing-plus-plus.github.io/
comment: preprint
☆ VidGuard-R1: AI-Generated Video Detection and Explanation via Reasoning MLLMs and RL
With the rapid advancement of AI-generated videos, there is an urgent need for effective detection tools to mitigate societal risks such as misinformation and reputational harm. In addition to accurate classification, it is essential that detection models provide interpretable explanations to ensure transparency for regulators and end users. To address these challenges, we introduce VidGuard-R1, the first video authenticity detector that fine-tunes a multi-modal large language model (MLLM) using group relative policy optimization (GRPO). Our model delivers both highly accurate judgments and insightful reasoning. We curate a challenging dataset of 140k real and AI-generated videos produced by state-of-the-art generation models, carefully designing the generation process to maximize discrimination difficulty. We then fine-tune Qwen-VL using GRPO with two specialized reward models that target temporal artifacts and generation complexity. Extensive experiments demonstrate that VidGuard-R1 achieves state-of-the-art zero-shot performance on existing benchmarks, with additional training pushing accuracy above 95%. Case studies further show that VidGuard-R1 produces precise and interpretable rationales behind its predictions. The code is publicly available at https://VidGuard-R1.github.io.
☆ microCLIP: Unsupervised CLIP Adaptation via Coarse-Fine Token Fusion for Fine-Grained Image Classification
Unsupervised adaptation of CLIP-based vision-language models (VLMs) for fine-grained image classification requires sensitivity to microscopic local cues. While CLIP exhibits strong zero-shot transfer, its reliance on coarse global features restricts its performance on fine-grained classification tasks. Prior efforts inject fine-grained knowledge by aligning large language model (LLM) descriptions with the CLIP $\texttt{[CLS]}$ token; however, this approach overlooks spatial precision. We propose $\textbf{microCLIP}$, a self-training framework that jointly refines CLIP's visual and textual representations using fine-grained cues. At its core is Saliency-Oriented Attention Pooling (SOAP) within a lightweight TokenFusion module, which builds a saliency-guided $\texttt{[FG]}$ token from patch embeddings and fuses it with the global $\texttt{[CLS]}$ token for coarse-fine alignment. To stabilize adaptation, we introduce a two-headed LLM-derived classifier: a frozen classifier that, via multi-view alignment, provides a stable text-based prior for pseudo-labeling, and a learnable classifier initialized from LLM descriptions and fine-tuned with TokenFusion. We further develop Dynamic Knowledge Aggregation, which convexly combines fixed LLM/CLIP priors with TokenFusion's evolving logits to iteratively refine pseudo-labels. Together, these components uncover latent fine-grained signals in CLIP, yielding a consistent $2.90\%$ average accuracy gain across 13 fine-grained benchmarks while requiring only light adaptation. Our code is available at https://github.com/sathiiii/microCLIP.
☆ Do You Know Where Your Camera Is? View-Invariant Policy Learning with Camera Conditioning
We study view-invariant imitation learning by explicitly conditioning policies on camera extrinsics. Using Plucker embeddings of per-pixel rays, we show that conditioning on extrinsics significantly improves generalization across viewpoints for standard behavior cloning policies, including ACT, Diffusion Policy, and SmolVLA. To evaluate policy robustness under realistic viewpoint shifts, we introduce six manipulation tasks in RoboSuite and ManiSkill that pair "fixed" and "randomized" scene variants, decoupling background cues from camera pose. Our analysis reveals that policies without extrinsics often infer camera pose using visual cues from static backgrounds in fixed scenes; this shortcut collapses when workspace geometry or camera placement shifts. Conditioning on extrinsics restores performance and yields robust RGB-only control without depth. We release the tasks, demonstrations, and code at https://ripl.github.io/know_your_camera/ .
comment: Code and project materials are available at ripl.github.io/know_your_camera
☆ NeuroSwift: A Lightweight Cross-Subject Framework for fMRI Visual Reconstruction of Complex Scenes
Reconstructing visual information from brain activity via computer vision technology provides an intuitive understanding of visual neural mechanisms. Despite progress in decoding fMRI data with generative models, achieving accurate cross-subject reconstruction of visual stimuli remains challenging and computationally demanding. This difficulty arises from inter-subject variability in neural representations and the brain's abstract encoding of core semantic features in complex visual inputs. To address these challenges, we propose NeuroSwift, which integrates complementary adapters via diffusion: AutoKL for low-level features and CLIP for semantics. NeuroSwift's CLIP Adapter is trained on Stable Diffusion generated images paired with COCO captions to emulate higher visual cortex encoding. For cross-subject generalization, we pretrain on one subject and then fine-tune only 17 percent of parameters (fully connected layers) for new subjects, while freezing other components. This enables state-of-the-art performance with only one hour of training per subject on lightweight GPUs (three RTX 4090), and it outperforms existing methods.
☆ Paving the Way Towards Kinematic Assessment Using Monocular Video: A Preclinical Benchmark of State-of-the-Art Deep-Learning-Based 3D Human Pose Estimators Against Inertial Sensors in Daily Living Activities
Advances in machine learning and wearable sensors offer new opportunities for capturing and analyzing human movement outside specialized laboratories. Accurate assessment of human movement under real-world conditions is essential for telemedicine, sports science, and rehabilitation. This preclinical benchmark compares monocular video-based 3D human pose estimation models with inertial measurement units (IMUs), leveraging the VIDIMU dataset containing a total of 13 clinically relevant daily activities which were captured using both commodity video cameras and five IMUs. During this initial study only healthy subjects were recorded, so results cannot be generalized to pathological cohorts. Joint angles derived from state-of-the-art deep learning frameworks (MotionAGFormer, MotionBERT, MMPose 2D-to-3D pose lifting, and NVIDIA BodyTrack) were evaluated against joint angles computed from IMU data using OpenSim inverse kinematics following the Human3.6M dataset format with 17 keypoints. Among them, MotionAGFormer demonstrated superior performance, achieving the lowest overall RMSE ($9.27\deg \pm 4.80\deg$) and MAE ($7.86\deg \pm 4.18\deg$), as well as the highest Pearson correlation ($0.86 \pm 0.15$) and the highest coefficient of determination $R^{2}$ ($0.67 \pm 0.28$). The results reveal that both technologies are viable for out-of-the-lab kinematic assessment. However, they also highlight key trade-offs between video- and sensor-based approaches including costs, accessibility, and precision. This study clarifies where off-the-shelf video models already provide clinically promising kinematics in healthy adults and where they lag behind IMU-based estimates while establishing valuable guidelines for researchers and clinicians seeking to develop robust, cost-effective, and user-friendly solutions for telehealth and remote patient monitoring.
comment: All tables, graphs and figures generated can be obtained in the Zenodo repository complementary to this work: https://doi.org/10.5281/zenodo.15088423
☆ From Frames to Clips: Efficient Key Clip Selection for Long-Form Video Understanding
Video Large Language Models (VLMs) have achieved remarkable results on a variety of vision language tasks, yet their practical use is limited by the "needle in a haystack" problem: the massive number of visual tokens produced from raw video frames exhausts the model's context window. Existing solutions alleviate this issue by selecting a sparse set of frames, thereby reducing token count, but such frame-wise selection discards essential temporal dynamics, leading to suboptimal reasoning about motion and event continuity. In this work we systematically explore the impact of temporal information and demonstrate that extending selection from isolated key frames to key clips, which are short, temporally coherent segments, improves video understanding. To maintain a fixed computational budget while accommodating the larger token footprint of clips, we propose an adaptive resolution strategy that dynamically balances spatial resolution and clip length, ensuring a constant token count per video. Experiments on three long-form video benchmarks demonstrate that our training-free approach, F2C, outperforms uniform sampling up to 8.1%, 5.6%, and 10.3% on Video-MME, LongVideoBench and MLVU benchmarks, respectively. These results highlight the importance of preserving temporal coherence in frame selection and provide a practical pathway for scaling Video LLMs to real world video understanding applications. Project webpage is available at https://guangyusun.com/f2c .
☆ DragFlow: Unleashing DiT Priors with Region Based Supervision for Drag Editing
Drag-based image editing has long suffered from distortions in the target region, largely because the priors of earlier base models, Stable Diffusion, are insufficient to project optimized latents back onto the natural image manifold. With the shift from UNet-based DDPMs to more scalable DiT with flow matching (e.g., SD3.5, FLUX), generative priors have become significantly stronger, enabling advances across diverse editing tasks. However, drag-based editing has yet to benefit from these stronger priors. This work proposes the first framework to effectively harness FLUX's rich prior for drag-based editing, dubbed DragFlow, achieving substantial gains over baselines. We first show that directly applying point-based drag editing to DiTs performs poorly: unlike the highly compressed features of UNets, DiT features are insufficiently structured to provide reliable guidance for point-wise motion supervision. To overcome this limitation, DragFlow introduces a region-based editing paradigm, where affine transformations enable richer and more consistent feature supervision. Additionally, we integrate pretrained open-domain personalization adapters (e.g., IP-Adapter) to enhance subject consistency, while preserving background fidelity through gradient mask-based hard constraints. Multimodal large language models (MLLMs) are further employed to resolve task ambiguities. For evaluation, we curate a novel Region-based Dragging benchmark (ReD Bench) featuring region-level dragging instructions. Extensive experiments on DragBench-DR and ReD Bench show that DragFlow surpasses both point-based and region-based baselines, setting a new state-of-the-art in drag-based image editing. Code and datasets will be publicly available upon publication.
comment: Preprint
☆ The Unreasonable Effectiveness of Scaling Agents for Computer Use
Computer-use agents (CUAs) hold promise for automating everyday digital tasks, but their unreliability and high variance hinder their application to long-horizon, complex tasks. We introduce Behavior Best-of-N (bBoN), a method that scales over agents by generating multiple rollouts and selecting among them using behavior narratives that describe the agents' rollouts. It enables both wide exploration and principled trajectory selection, substantially improving robustness and success rates. On OSWorld, our bBoN scaling method establishes a new state of the art (SoTA) at 69.9%, significantly outperforming prior methods and approaching human-level performance at 72%, with comprehensive ablations validating key design choices. We further demonstrate strong generalization results to different operating systems on WindowsAgentArena and AndroidWorld. Crucially, our results highlight the unreasonable effectiveness of scaling CUAs, when you do it right: effective scaling requires structured trajectory understanding and selection, and bBoN provides a practical framework to achieve this.
comment: 23 pages, 7 figures, 10 tables
☆ RewardMap: Tackling Sparse Rewards in Fine-grained Visual Reasoning via Multi-Stage Reinforcement Learning
Fine-grained visual reasoning remains a core challenge for multimodal large language models (MLLMs). The recently introduced ReasonMap highlights this gap by showing that even advanced MLLMs struggle with spatial reasoning in structured and information-rich settings such as transit maps, a task of clear practical and scientific importance. However, standard reinforcement learning (RL) on such tasks is impeded by sparse rewards and unstable optimization. To address this, we first construct ReasonMap-Plus, an extended dataset that introduces dense reward signals through Visual Question Answering (VQA) tasks, enabling effective cold-start training of fine-grained visual understanding skills. Next, we propose RewardMap, a multi-stage RL framework designed to improve both visual understanding and reasoning capabilities of MLLMs. RewardMap incorporates two key designs. First, we introduce a difficulty-aware reward design that incorporates detail rewards, directly tackling the sparse rewards while providing richer supervision. Second, we propose a multi-stage RL scheme that bootstraps training from simple perception to complex reasoning tasks, offering a more effective cold-start strategy than conventional Supervised Fine-Tuning (SFT). Experiments on ReasonMap and ReasonMap-Plus demonstrate that each component of RewardMap contributes to consistent performance gains, while their combination yields the best results. Moreover, models trained with RewardMap achieve an average improvement of 3.47% across 6 benchmarks spanning spatial reasoning, fine-grained visual reasoning, and general tasks beyond transit maps, underscoring enhanced visual understanding and reasoning capabilities.
☆ The Reasoning Boundary Paradox: How Reinforcement Learning Constrains Language Models
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key method for improving Large Language Models' reasoning capabilities, yet recent evidence suggests it may paradoxically shrink the reasoning boundary rather than expand it. This paper investigates the shrinkage issue of RLVR by analyzing its learning dynamics and reveals two critical phenomena that explain this failure. First, we expose negative interference in RLVR, where learning to solve certain training problems actively reduces the likelihood of correct solutions for others, leading to the decline of Pass@$k$ performance, or the probability of generating a correct solution within $k$ attempts. Second, we uncover the winner-take-all phenomenon: RLVR disproportionately reinforces problems with high likelihood, correct solutions, under the base model, while suppressing other initially low-likelihood ones. Through extensive theoretical and empirical analysis on multiple mathematical reasoning benchmarks, we show that this effect arises from the inherent on-policy sampling in standard RL objectives, causing the model to converge toward narrow solution strategies. Based on these insights, we propose a simple yet effective data curation algorithm that focuses RLVR learning on low-likelihood problems, achieving notable improvement in Pass@$k$ performance. Our code is available at https://github.com/mail-research/SELF-llm-interference.
comment: 23 pages, 15 figures
☆ TempoControl: Temporal Attention Guidance for Text-to-Video Models
Recent advances in generative video models have enabled the creation of high-quality videos based on natural language prompts. However, these models frequently lack fine-grained temporal control, meaning they do not allow users to specify when particular visual elements should appear within a generated sequence. In this work, we introduce TempoControl, a method that allows for temporal alignment of visual concepts during inference, without requiring retraining or additional supervision. TempoControl utilizes cross-attention maps, a key component of text-to-video diffusion models, to guide the timing of concepts through a novel optimization approach. Our method steers attention using three complementary principles: aligning its temporal shape with a control signal (via correlation), amplifying it where visibility is needed (via energy), and maintaining spatial focus (via entropy). TempoControl allows precise control over timing while ensuring high video quality and diversity. We demonstrate its effectiveness across various video generation applications, including temporal reordering for single and multiple objects, as well as action and audio-aligned generation.
comment: Under Review
☆ MMDEW: Multipurpose Multiclass Density Estimation in the Wild
Density map estimation can be used to estimate object counts in dense and occluded scenes where discrete counting-by-detection methods fail. We propose a multicategory counting framework that leverages a Twins pyramid vision-transformer backbone and a specialised multi-class counting head built on a state-of-the-art multiscale decoding approach. A two-task design adds a segmentation-based Category Focus Module, suppressing inter-category cross-talk at training time. Training and evaluation on the VisDrone and iSAID benchmarks demonstrates superior performance versus prior multicategory crowd-counting approaches (33%, 43% and 64% reduction to MAE), and the comparison with YOLOv11 underscores the necessity of crowd counting methods in dense scenes. The method's regional loss opens up multi-class crowd counting to new domains, demonstrated through the application to a biodiversity monitoring dataset, highlighting its capacity to inform conservation efforts and enable scalable ecological insights.
comment: 8+1 pages, 4 figures, 5 tables
☆ Measurement-Guided Consistency Model Sampling for Inverse Problems
Diffusion models have become powerful generative priors for solving inverse imaging problems, but their reliance on slow multi-step sampling limits practical deployment. Consistency models address this bottleneck by enabling high-quality generation in a single or only a few steps, yet their direct adaptation to inverse problems is underexplored. In this paper, we present a modified consistency sampling approach tailored for inverse problem reconstruction: the sampler's stochasticity is guided by a measurement-consistency mechanism tied to the measurement operator, which enforces fidelity to the acquired measurements while retaining the efficiency of consistency-based generation. Experiments on Fashion-MNIST and LSUN Bedroom datasets demonstrate consistent improvements in perceptual and pixel-level metrics, including Fr\'echet Inception Distance, Kernel Inception Distance, peak signal-to-noise ratio, and structural similarity index measure, compared to baseline consistency sampling, yielding competitive or superior reconstructions with only a handful of steps.
comment: 5 pages, 3 figures, submitted to IEEE Signal Processing Letters
☆ Cross-Breed Pig Identification Using Auricular Vein Pattern Recognition: A Machine Learning Approach for Small-Scale Farming Applications
Accurate livestock identification is a cornerstone of modern farming: it supports health monitoring, breeding programs, and productivity tracking. However, common pig identification methods, such as ear tags and microchips, are often unreliable, costly, target pure breeds, and thus impractical for small-scale farmers. To address this gap, we propose a noninvasive biometric identification approach that leverages uniqueness of the auricular vein patterns. To this end, we have collected 800 ear images from 20 mixed-breed pigs (Landrace cross Pietrain and Duroc cross Pietrain), captured using a standard smartphone and simple back lighting. A multistage computer vision pipeline was developed to enhance vein visibility, extract structural and spatial features, and generate biometric signatures. These features were then classified using machine learning models. Support Vector Machines (SVM) achieved the highest accuracy: correctly identifying pigs with 98.12% precision across mixed-breed populations. The entire process from image processing to classification was completed in an average of 8.3 seconds, demonstrating feasibility for real-time farm deployment. We believe that by replacing fragile physical identifiers with permanent biological markers, this system provides farmers with a cost-effective and stress-free method of animal identification. More broadly, the findings confirm the practicality of auricular vein biometrics for digitizing livestock management, reinforcing its potential to extend the benefits of precision farming to resource-constrained agricultural communities.
comment: 20 pages
☆ GeoPurify: A Data-Efficient Geometric Distillation Framework for Open-Vocabulary 3D Segmentation
Recent attempts to transfer features from 2D Vision-Language Models (VLMs) to 3D semantic segmentation expose a persistent trade-off. Directly projecting 2D features into 3D yields noisy and fragmented predictions, whereas enforcing geometric coherence necessitates costly training pipelines and large-scale annotated 3D data. We argue that this limitation stems from the dominant segmentation-and-matching paradigm, which fails to reconcile 2D semantics with 3D geometric structure. The geometric cues are not eliminated during the 2D-to-3D transfer but remain latent within the noisy and view-aggregated features. To exploit this property, we propose GeoPurify that applies a small Student Affinity Network to purify 2D VLM-generated 3D point features using geometric priors distilled from a 3D self-supervised teacher model. During inference, we devise a Geometry-Guided Pooling module to further denoise the point cloud and ensure the semantic and structural consistency. Benefiting from latent geometric information and the learned affinity network, GeoPurify effectively mitigates the trade-off and achieves superior data efficiency. Extensive experiments on major 3D benchmarks demonstrate that GeoPurify achieves or surpasses state-of-the-art performance while utilizing only about 1.5% of the training data. Our codes and checkpoints are available at [https://github.com/tj12323/GeoPurify](https://github.com/tj12323/GeoPurify).
☆ Uncovering Semantic Selectivity of Latent Groups in Higher Visual Cortex with Mutual Information-Guided Diffusion
Understanding how neural populations in higher visual areas encode object-centered visual information remains a central challenge in computational neuroscience. Prior works have investigated representational alignment between artificial neural networks and the visual cortex. Nevertheless, these findings are indirect and offer limited insights to the structure of neural populations themselves. Similarly, decoding-based methods have quantified semantic features from neural populations but have not uncovered their underlying organizations. This leaves open a scientific question: "how feature-specific visual information is distributed across neural populations in higher visual areas, and whether it is organized into structured, semantically meaningful subspaces." To tackle this problem, we present MIG-Vis, a method that leverages the generative power of diffusion models to visualize and validate the visual-semantic attributes encoded in neural latent subspaces. Our method first uses a variational autoencoder to infer a group-wise disentangled neural latent subspace from neural populations. Subsequently, we propose a mutual information (MI)-guided diffusion synthesis procedure to visualize the specific visual-semantic features encoded by each latent group. We validate MIG-Vis on multi-session neural spiking datasets from the inferior temporal (IT) cortex of two macaques. The synthesized results demonstrate that our method identifies neural latent groups with clear semantic selectivity to diverse visual features, including object pose, inter-category transformations, and intra-class content. These findings provide direct, interpretable evidence of structured semantic representation in the higher visual cortex and advance our understanding of its encoding principles.
☆ DisCo-Layout: Disentangling and Coordinating Semantic and Physical Refinement in a Multi-Agent Framework for 3D Indoor Layout Synthesis
3D indoor layout synthesis is crucial for creating virtual environments. Traditional methods struggle with generalization due to fixed datasets. While recent LLM and VLM-based approaches offer improved semantic richness, they often lack robust and flexible refinement, resulting in suboptimal layouts. We develop DisCo-Layout, a novel framework that disentangles and coordinates physical and semantic refinement. For independent refinement, our Semantic Refinement Tool (SRT) corrects abstract object relationships, while the Physical Refinement Tool (PRT) resolves concrete spatial issues via a grid-matching algorithm. For collaborative refinement, a multi-agent framework intelligently orchestrates these tools, featuring a planner for placement rules, a designer for initial layouts, and an evaluator for assessment. Experiments demonstrate DisCo-Layout's state-of-the-art performance, generating realistic, coherent, and generalizable 3D indoor layouts. Our code will be publicly available.
☆ Unlocking Vision-Language Models for Video Anomaly Detection via Fine-Grained Prompting
Prompting has emerged as a practical way to adapt frozen vision-language models (VLMs) for video anomaly detection (VAD). Yet, existing prompts are often overly abstract, overlooking the fine-grained human-object interactions or action semantics that define complex anomalies in surveillance videos. We propose ASK-Hint, a structured prompting framework that leverages action-centric knowledge to elicit more accurate and interpretable reasoning from frozen VLMs. Our approach organizes prompts into semantically coherent groups (e.g. violence, property crimes, public safety) and formulates fine-grained guiding questions that align model predictions with discriminative visual cues. Extensive experiments on UCF-Crime and XD-Violence show that ASK-Hint consistently improves AUC over prior baselines, achieving state-of-the-art performance compared to both fine-tuned and training-free methods. Beyond accuracy, our framework provides interpretable reasoning traces towards anomaly and demonstrates strong generalization across datasets and VLM backbones. These results highlight the critical role of prompt granularity and establish ASK-Hint as a new training-free and generalizable solution for explainable video anomaly detection.
comment: 14 pages, video anomaly detection
☆ FRIEREN: Federated Learning with Vision-Language Regularization for Segmentation
Federeated Learning (FL) offers a privacy-preserving solution for Semantic Segmentation (SS) tasks to adapt to new domains, but faces significant challenges from these domain shifts, particularly when client data is unlabeled. However, most existing FL methods unrealistically assume access to labeled data on remote clients or fail to leverage the power of modern Vision Foundation Models (VFMs). Here, we propose a novel and challenging task, FFREEDG, in which a model is pretrained on a server's labeled source dataset and subsequently trained across clients using only their unlabeled data, without ever re-accessing the source. To solve FFREEDG, we propose FRIEREN, a framework that leverages the knowledge of a VFM by integrating vision and language modalities. Our approach employs a Vision-Language decoder guided by CLIP-based text embeddings to improve semantic disambiguation and uses a weak-to-strong consistency learning strategy for robust local training on pseudo-labels. Our experiments on synthetic-to-real and clear-to-adverse-weather benchmarks demonstrate that our framework effectively tackles this new task, achieving competitive performance against established domain generalization and adaptation methods and setting a strong baseline for future research.
comment: Master Thesis
☆ SpurBreast: A Curated Dataset for Investigating Spurious Correlations in Real-world Breast MRI Classification MICCAI
Deep neural networks (DNNs) have demonstrated remarkable success in medical imaging, yet their real-world deployment remains challenging due to spurious correlations, where models can learn non-clinical features instead of meaningful medical patterns. Existing medical imaging datasets are not designed to systematically study this issue, largely due to restrictive licensing and limited supplementary patient data. To address this gap, we introduce SpurBreast, a curated breast MRI dataset that intentionally incorporates spurious correlations to evaluate their impact on model performance. Analyzing over 100 features involving patient, device, and imaging protocol, we identify two dominant spurious signals: magnetic field strength (a global feature influencing the entire image) and image orientation (a local feature affecting spatial alignment). Through controlled dataset splits, we demonstrate that DNNs can exploit these non-clinical signals, achieving high validation accuracy while failing to generalize to unbiased test data. Alongside these two datasets containing spurious correlations, we also provide benchmark datasets without spurious correlations, allowing researchers to systematically investigate clinically relevant and irrelevant features, uncertainty estimation, adversarial robustness, and generalization strategies. Models and datasets are available at https://github.com/utkuozbulak/spurbreast.
comment: Accepted for publication in the 28th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2025
☆ When Tracking Fails: Analyzing Failure Modes of SAM2 for Point-Based Tracking in Surgical Videos MICCAI
Video object segmentation (VOS) models such as SAM2 offer promising zero-shot tracking capabilities for surgical videos using minimal user input. Among the available input types, point-based tracking offers an efficient and low-cost alternative, yet its reliability and failure cases in complex surgical environments are not well understood. In this work, we systematically analyze the failure modes of point-based tracking in laparoscopic cholecystectomy videos. Focusing on three surgical targets, the gallbladder, grasper, and L-hook electrocautery, we compare the performance of point-based tracking with segmentation mask initialization. Our results show that point-based tracking is competitive for surgical tools but consistently underperforms for anatomical targets, where tissue similarity and ambiguous boundaries lead to failure. Through qualitative analysis, we reveal key factors influencing tracking outcomes and provide several actionable recommendations for selecting and placing tracking points to improve performance in surgical video analysis.
comment: Accepted for publication in the 28th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) Workshop on Collaborative Intelligence and Autonomy in Image-guided Surgery (COLAS), 2025
☆ Mapping Historic Urban Footprints in France: Balancing Quality, Scalability and AI Techniques
Quantitative analysis of historical urban sprawl in France before the 1970s is hindered by the lack of nationwide digital urban footprint data. This study bridges this gap by developing a scalable deep learning pipeline to extract urban areas from the Scan Histo historical map series (1925-1950), which produces the first open-access, national-scale urban footprint dataset for this pivotal period. Our key innovation is a dual-pass U-Net approach designed to handle the high radiometric and stylistic complexity of historical maps. The first pass, trained on an initial dataset, generates a preliminary map that identifies areas of confusion, such as text and roads, to guide targeted data augmentation. The second pass uses a refined dataset and the binarized output of the first model to minimize radiometric noise, which significantly reduces false positives. Deployed on a high-performance computing cluster, our method processes 941 high-resolution tiles covering the entirety of metropolitan France. The final mosaic achieves an overall accuracy of 73%, effectively capturing diverse urban patterns while overcoming common artifacts like labels and contour lines. We openly release the code, training datasets, and the resulting nationwide urban raster to support future research in long-term urbanization dynamics.
☆ VGDM: Vision-Guided Diffusion Model for Brain Tumor Detection and Segmentation
Accurate detection and segmentation of brain tumors from magnetic resonance imaging (MRI) are essential for diagnosis, treatment planning, and clinical monitoring. While convolutional architectures such as U-Net have long been the backbone of medical image segmentation, their limited capacity to capture long-range dependencies constrains performance on complex tumor structures. Recent advances in diffusion models have demonstrated strong potential for generating high-fidelity medical images and refining segmentation boundaries. In this work, we propose VGDM: Vision-Guided Diffusion Model for Brain Tumor Detection and Segmentation framework, a transformer-driven diffusion framework for brain tumor detection and segmentation. By embedding a vision transformer at the core of the diffusion process, the model leverages global contextual reasoning together with iterative denoising to enhance both volumetric accuracy and boundary precision. The transformer backbone enables more effective modeling of spatial relationships across entire MRI volumes, while diffusion refinement mitigates voxel-level errors and recovers fine-grained tumor details. This hybrid design provides a pathway toward improved robustness and scalability in neuro-oncology, moving beyond conventional U-Net baselines. Experimental validation on MRI brain tumor datasets demonstrates consistent gains in Dice similarity and Hausdorff distance, underscoring the potential of transformer-guided diffusion models to advance the state of the art in tumor segmentation.
☆ Spec-Gloss Surfels and Normal-Diffuse Priors for Relightable Glossy Objects
Accurate reconstruction and relighting of glossy objects remain a longstanding challenge, as object shape, material properties, and illumination are inherently difficult to disentangle. Existing neural rendering approaches often rely on simplified BRDF models or parameterizations that couple diffuse and specular components, which restricts faithful material recovery and limits relighting fidelity. We propose a relightable framework that integrates a microfacet BRDF with the specular-glossiness parameterization into 2D Gaussian Splatting with deferred shading. This formulation enables more physically consistent material decomposition, while diffusion-based priors for surface normals and diffuse color guide early-stage optimization and mitigate ambiguity. A coarse-to-fine optimization of the environment map accelerates convergence and preserves high-dynamic-range specular reflections. Extensive experiments on complex, glossy scenes demonstrate that our method achieves high-quality geometry and material reconstruction, delivering substantially more realistic and consistent relighting under novel illumination compared to existing Gaussian splatting methods.
☆ Zero-shot Human Pose Estimation using Diffusion-based Inverse solvers
Pose estimation refers to tracking a human's full body posture, including their head, torso, arms, and legs. The problem is challenging in practical settings where the number of body sensors are limited. Past work has shown promising results using conditional diffusion models, where the pose prediction is conditioned on both measurements from the sensors. Unfortunately, nearly all these approaches generalize poorly across users, primarly because location measurements are highly influenced by the body size of the user. In this paper, we formulate pose estimation as an inverse problem and design an algorithm capable of zero-shot generalization. Our idea utilizes a pre-trained diffusion model and conditions it on rotational measurements alone; the priors from this model are then guided by a likelihood term, derived from the measured locations. Thus, given any user, our proposed InPose method generatively estimates the highly likely sequence of poses that best explains the sparse on-body measurements.
☆ A Multicentric Dataset for Training and Benchmarking Breast Cancer Segmentation in H&E Slides
Automated semantic segmentation of whole-slide images (WSIs) stained with hematoxylin and eosin (H&E) is essential for large-scale artificial intelligence-based biomarker analysis in breast cancer. However, existing public datasets for breast cancer segmentation lack the morphological diversity needed to support model generalizability and robust biomarker validation across heterogeneous patient cohorts. We introduce BrEast cancEr hisTopathoLogy sEgmentation (BEETLE), a dataset for multiclass semantic segmentation of H&E-stained breast cancer WSIs. It consists of 587 biopsies and resections from three collaborating clinical centers and two public datasets, digitized using seven scanners, and covers all molecular subtypes and histological grades. Using diverse annotation strategies, we collected annotations across four classes - invasive epithelium, non-invasive epithelium, necrosis, and other - with particular focus on morphologies underrepresented in existing datasets, such as ductal carcinoma in situ and dispersed lobular tumor cells. The dataset's diversity and relevance to the rapidly growing field of automated biomarker quantification in breast cancer ensure its high potential for reuse. Finally, we provide a well-curated, multicentric external evaluation set to enable standardized benchmarking of breast cancer segmentation models.
comment: Our dataset is available at https://zenodo.org/records/16812932 , our code is available at https://github.com/DIAGNijmegen/beetle , and our benchmark is available at https://beetle.grand-challenge.org/
☆ GaussianMorphing: Mesh-Guided 3D Gaussians for Semantic-Aware Object Morphing
We introduce GaussianMorphing, a novel framework for semantic-aware 3D shape and texture morphing from multi-view images. Previous approaches usually rely on point clouds or require pre-defined homeomorphic mappings for untextured data. Our method overcomes these limitations by leveraging mesh-guided 3D Gaussian Splatting (3DGS) for high-fidelity geometry and appearance modeling. The core of our framework is a unified deformation strategy that anchors 3DGaussians to reconstructed mesh patches, ensuring geometrically consistent transformations while preserving texture fidelity through topology-aware constraints. In parallel, our framework establishes unsupervised semantic correspondence by using the mesh topology as a geometric prior and maintains structural integrity via physically plausible point trajectories. This integrated approach preserves both local detail and global semantic coherence throughout the morphing process with out requiring labeled data. On our proposed TexMorph benchmark, GaussianMorphing substantially outperforms prior 2D/3D methods, reducing color consistency error ($\Delta E$) by 22.2% and EI by 26.2%. Project page: https://baiyunshu.github.io/GAUSSIANMORPHING.github.io/
comment: Project page: https://baiyunshu.github.io/GAUSSIANMORPHING.github.io/
☆ kabr-tools: Automated Framework for Multi-Species Behavioral Monitoring
A comprehensive understanding of animal behavior ecology depends on scalable approaches to quantify and interpret complex, multidimensional behavioral patterns. Traditional field observations are often limited in scope, time-consuming, and labor-intensive, hindering the assessment of behavioral responses across landscapes. To address this, we present kabr-tools (Kenyan Animal Behavior Recognition Tools), an open-source package for automated multi-species behavioral monitoring. This framework integrates drone-based video with machine learning systems to extract behavioral, social, and spatial metrics from wildlife footage. Our pipeline leverages object detection, tracking, and behavioral classification systems to generate key metrics, including time budgets, behavioral transitions, social interactions, habitat associations, and group composition dynamics. Compared to ground-based methods, drone-based observations significantly improved behavioral granularity, reducing visibility loss by 15% and capturing more transitions with higher accuracy and continuity. We validate kabr-tools through three case studies, analyzing 969 behavioral sequences, surpassing the capacity of traditional methods for data capture and annotation. We found that, like Plains zebras, vigilance in Grevy's zebras decreases with herd size, but, unlike Plains zebras, habitat has a negligible impact. Plains and Grevy's zebras exhibit strong behavioral inertia, with rare transitions to alert behaviors and observed spatial segregation between Grevy's zebras, Plains zebras, and giraffes in mixed-species herds. By enabling automated behavioral monitoring at scale, kabr-tools offers a powerful tool for ecosystem-wide studies, advancing conservation, biodiversity research, and ecological monitoring.
comment: 31 pages
☆ LiLa-Net: Lightweight Latent LiDAR Autoencoder for 3D Point Cloud Reconstruction ICRA
This work proposed a 3D autoencoder architecture, named LiLa-Net, which encodes efficient features from real traffic environments, employing only the LiDAR's point clouds. For this purpose, we have real semi-autonomous vehicle, equipped with Velodyne LiDAR. The system leverage skip connections concept to improve the performance without using extensive resources as the state-of-the-art architectures. Key changes include reducing the number of encoder layers and simplifying the skip connections, while still producing an efficient and representative latent space which allows to accurately reconstruct the original point cloud. Furthermore, an effective balance has been achieved between the information carried by the skip connections and the latent encoding, leading to improved reconstruction quality without compromising performance. Finally, the model demonstrates strong generalization capabilities, successfully reconstructing objects unrelated to the original traffic environment.
comment: 7 pages, 3 figures, 7 tables, Submitted to ICRA
☆ Generating Findings for Jaw Cysts in Dental Panoramic Radiographs Using GPT-4o: Building a Two-Stage Self-Correction Loop with Structured Output (SLSO) Framework
In this study, we utilized the multimodal capabilities of OpenAI GPT-4o to automatically generate jaw cyst findings on dental panoramic radiographs. To improve accuracy, we constructed a Self-correction Loop with Structured Output (SLSO) framework and verified its effectiveness. A 10-step process was implemented for 22 cases of jaw cysts, including image input and analysis, structured data generation, tooth number extraction and consistency checking, iterative regeneration when inconsistencies were detected, and finding generation with subsequent restructuring and consistency verification. A comparative experiment was conducted using the conventional Chain-of-Thought (CoT) method across seven evaluation items: transparency, internal structure, borders, root resorption, tooth movement, relationships with other structures, and tooth number. The results showed that the proposed SLSO framework improved output accuracy for many items, with 66.9%, 33.3%, and 28.6% improvement rates for tooth number, tooth movement, and root resorption, respectively. In the successful cases, a consistently structured output was achieved after up to five regenerations. Although statistical significance was not reached because of the small size of the dataset, the overall SLSO framework enforced negative finding descriptions, suppressed hallucinations, and improved tooth number identification accuracy. However, the accurate identification of extensive lesions spanning multiple teeth is limited. Nevertheless, further refinement is required to enhance overall performance and move toward a practical finding generation system.
comment: Intended for submission to Scientific Reports
☆ Pure-Pass: Fine-Grained, Adaptive Masking for Dynamic Token-Mixing Routing in Lightweight Image Super-Resolution
Image Super-Resolution (SR) aims to reconstruct high-resolution images from low-resolution counterparts, but the computational complexity of deep learning-based methods often hinders practical deployment. CAMixer is the pioneering work to integrate the advantages of existing lightweight SR methods and proposes a content-aware mixer to route token mixers of varied complexities according to the difficulty of content recovery. However, several limitations remain, such as poor adaptability, coarse-grained masking and spatial inflexibility, among others. We propose Pure-Pass (PP), a pixel-level masking mechanism that identifies pure pixels and exempts them from expensive computations. PP utilizes fixed color center points to classify pixels into distinct categories, enabling fine-grained, spatially flexible masking while maintaining adaptive flexibility. Integrated into the state-of-the-art ATD-light model, PP-ATD-light achieves superior SR performance with minimal overhead, outperforming CAMixer-ATD-light in reconstruction quality and parameter efficiency when saving a similar amount of computation.
☆ 4DGS-Craft: Consistent and Interactive 4D Gaussian Splatting Editing
Recent advances in 4D Gaussian Splatting (4DGS) editing still face challenges with view, temporal, and non-editing region consistency, as well as with handling complex text instructions. To address these issues, we propose 4DGS-Craft, a consistent and interactive 4DGS editing framework. We first introduce a 4D-aware InstructPix2Pix model to ensure both view and temporal consistency. This model incorporates 4D VGGT geometry features extracted from the initial scene, enabling it to capture underlying 4D geometric structures during editing. We further enhance this model with a multi-view grid module that enforces consistency by iteratively refining multi-view input images while jointly optimizing the underlying 4D scene. Furthermore, we preserve the consistency of non-edited regions through a novel Gaussian selection mechanism, which identifies and optimizes only the Gaussians within the edited regions. Beyond consistency, facilitating user interaction is also crucial for effective 4DGS editing. Therefore, we design an LLM-based module for user intent understanding. This module employs a user instruction template to define atomic editing operations and leverages an LLM for reasoning. As a result, our framework can interpret user intent and decompose complex instructions into a logical sequence of atomic operations, enabling it to handle intricate user commands and further enhance editing performance. Compared to related works, our approach enables more consistent and controllable 4D scene editing. Our code will be made available upon acceptance.
☆ TriAlignXA: An Explainable Trilemma Alignment Framework for Trustworthy Agri-product Grading
The 'trust deficit' in online fruit and vegetable e-commerce stems from the inability of digital transactions to provide direct sensory perception of product quality. This paper constructs a 'Trust Pyramid' model through 'dual-source verification' of consumer trust. Experiments confirm that quality is the cornerstone of trust. The study reveals an 'impossible triangle' in agricultural product grading, comprising biological characteristics, timeliness, and economic viability, highlighting the limitations of traditional absolute grading standards. To quantitatively assess this trade-off, we propose the 'Triangular Trust Index' (TTI). We redefine the role of algorithms from 'decision-makers' to 'providers of transparent decision-making bases', designing the explainable AI framework--TriAlignXA. This framework supports trustworthy online transactions within agricultural constraints through multi-objective optimization. Its core relies on three engines: the Bio-Adaptive Engine for granular quality description; the Timeliness Optimization Engine for processing efficiency; and the Economic Optimization Engine for cost control. Additionally, the "Pre-Mapping Mechanism" encodes process data into QR codes, transparently conveying quality information. Experiments on grading tasks demonstrate significantly higher accuracy than baseline models. Empirical evidence and theoretical analysis verify the framework's balancing capability in addressing the "impossible triangle". This research provides comprehensive support--from theory to practice--for building a trustworthy online produce ecosystem, establishing a critical pathway from algorithmic decision-making to consumer trust.
☆ $\text{G}^2$RPO: Granular GRPO for Precise Reward in Flow Models
The integration of online reinforcement learning (RL) into diffusion and flow models has recently emerged as a promising approach for aligning generative models with human preferences. Stochastic sampling via Stochastic Differential Equations (SDE) is employed during the denoising process to generate diverse denoising directions for RL exploration. While existing methods effectively explore potential high-value samples, they suffer from sub-optimal preference alignment due to sparse and narrow reward signals. To address these challenges, we propose a novel Granular-GRPO ($\text{G}^2$RPO ) framework that achieves precise and comprehensive reward assessments of sampling directions in reinforcement learning of flow models. Specifically, a Singular Stochastic Sampling strategy is introduced to support step-wise stochastic exploration while enforcing a high correlation between the reward and the injected noise, thereby facilitating a faithful reward for each SDE perturbation. Concurrently, to eliminate the bias inherent in fixed-granularity denoising, we introduce a Multi-Granularity Advantage Integration module that aggregates advantages computed at multiple diffusion scales, producing a more comprehensive and robust evaluation of the sampling directions. Experiments conducted on various reward models, including both in-domain and out-of-domain evaluations, demonstrate that our $\text{G}^2$RPO significantly outperforms existing flow-based GRPO baselines,highlighting its effectiveness and robustness.
comment: Github Page: https://github.com/bcmi/Granular-GRPO
☆ ROI-GS: Interest-based Local Quality 3D Gaussian Splatting
We tackle the challenge of efficiently reconstructing 3D scenes with high detail on objects of interest. Existing 3D Gaussian Splatting (3DGS) methods allocate resources uniformly across the scene, limiting fine detail to Regions Of Interest (ROIs) and leading to inflated model size. We propose ROI-GS, an object-aware framework that enhances local details through object-guided camera selection, targeted Object training, and seamless integration of high-fidelity object of interest reconstructions into the global scene. Our method prioritizes higher resolution details on chosen objects while maintaining real-time performance. Experiments show that ROI-GS significantly improves local quality (up to 2.96 dB PSNR), while reducing overall model size by $\approx 17\%$ of baseline and achieving faster training for a scene with a single object of interest, outperforming existing methods.
comment: 4 pages, 3 figures, 2 tables
☆ ZK-WAGON: Imperceptible Watermark for Image Generation Models using ZK-SNARKs
As image generation models grow increasingly powerful and accessible, concerns around authenticity, ownership, and misuse of synthetic media have become critical. The ability to generate lifelike images indistinguishable from real ones introduces risks such as misinformation, deepfakes, and intellectual property violations. Traditional watermarking methods either degrade image quality, are easily removed, or require access to confidential model internals - making them unsuitable for secure and scalable deployment. We are the first to introduce ZK-WAGON, a novel system for watermarking image generation models using the Zero-Knowledge Succinct Non Interactive Argument of Knowledge (ZK-SNARKs). Our approach enables verifiable proof of origin without exposing model weights, generation prompts, or any sensitive internal information. We propose Selective Layer ZK-Circuit Creation (SL-ZKCC), a method to selectively convert key layers of an image generation model into a circuit, reducing proof generation time significantly. Generated ZK-SNARK proofs are imperceptibly embedded into a generated image via Least Significant Bit (LSB) steganography. We demonstrate this system on both GAN and Diffusion models, providing a secure, model-agnostic pipeline for trustworthy AI image generation.
comment: Accepted at AI-ML Systems 2025, Bangalore, India, https://www.aimlsystems.org/2025/
☆ Patch-as-Decodable-Token: Towards Unified Multi-Modal Vision Tasks in MLLMs
Multimodal large language models (MLLMs) have advanced rapidly in recent years. However, existing approaches for vision tasks often rely on indirect representations, such as generating coordinates as text for detection, which limits performance and prevents dense prediction tasks like segmentation. To overcome these challenges, we introduce Patch-as-Decodable Token (PaDT), a unified paradigm that enables MLLMs to directly generate both textual and diverse visual outputs. Central to PaDT are Visual Reference Tokens (VRTs), derived from visual patch embeddings of query images and interleaved seamlessly with LLM's output textual tokens. A lightweight decoder then transforms LLM's outputs into detection, segmentation, and grounding predictions. Unlike prior methods, PaDT processes VRTs independently at each forward pass and dynamically expands the embedding table, thus improving localization and differentiation among similar objects. We further tailor a training strategy for PaDT by randomly selecting VRTs for supervised fine-tuning and introducing a robust per-token cross-entropy loss. Our empirical studies across four visual perception and understanding tasks suggest PaDT consistently achieving state-of-the-art performance, even compared with significantly larger MLLM models. The code is available at https://github.com/Gorilla-Lab-SCUT/PaDT.
comment: 24 pages, 12 figures and 9 tables
☆ ClustViT: Clustering-based Token Merging for Semantic Segmentation
Vision Transformers can achieve high accuracy and strong generalization across various contexts, but their practical applicability on real-world robotic systems is limited due to their quadratic attention complexity. Recent works have focused on dynamically merging tokens according to the image complexity. Token merging works well for classification but is less suited to dense prediction. We propose ClustViT, where we expand upon the Vision Transformer (ViT) backbone and address semantic segmentation. Within our architecture, a trainable Cluster module merges similar tokens along the network guided by pseudo-clusters from segmentation masks. Subsequently, a Regenerator module restores fine details for downstream heads. Our approach achieves up to 2.18x fewer GFLOPs and 1.64x faster inference on three different datasets, with comparable segmentation accuracy. Our code and models will be made publicly available.
comment: Submitted to IEEE
☆ Foundation Visual Encoders Are Secretly Few-Shot Anomaly Detectors
Few-shot anomaly detection streamlines and simplifies industrial safety inspection. However, limited samples make accurate differentiation between normal and abnormal features challenging, and even more so under category-agnostic conditions. Large-scale pre-training of foundation visual encoders has advanced many fields, as the enormous quantity of data helps to learn the general distribution of normal images. We observe that the anomaly amount in an image directly correlates with the difference in the learnt embeddings and utilize this to design a few-shot anomaly detector termed FoundAD. This is done by learning a nonlinear projection operator onto the natural image manifold. The simple operator acts as an effective tool for anomaly detection to characterize and identify out-of-distribution regions in an image. Extensive experiments show that our approach supports multi-class detection and achieves competitive performance while using substantially fewer parameters than prior methods. Backed up by evaluations with multiple foundation encoders, including fresh DINOv3, we believe this idea broadens the perspective on foundation features and advances the field of few-shot anomaly detection.
comment: 23 pages, 13 figures. Code is available at \url{https://github.com/ymxlzgy/FoundAD}
☆ GFSR-Net: Guided Focus via Segment-Wise Relevance Network for Interpretable Deep Learning in Medical Imaging
Deep learning has achieved remarkable success in medical image analysis, however its adoption in clinical practice is limited by a lack of interpretability. These models often make correct predictions without explaining their reasoning. They may also rely on image regions unrelated to the disease or visual cues, such as annotations, that are not present in real-world conditions. This can reduce trust and increase the risk of misleading diagnoses. We introduce the Guided Focus via Segment-Wise Relevance Network (GFSR-Net), an approach designed to improve interpretability and reliability in medical imaging. GFSR-Net uses a small number of human annotations to approximate where a person would focus within an image intuitively, without requiring precise boundaries or exhaustive markings, making the process fast and practical. During training, the model learns to align its focus with these areas, progressively emphasizing features that carry diagnostic meaning. This guidance works across different types of natural and medical images, including chest X-rays, retinal scans, and dermatological images. Our experiments demonstrate that GFSR achieves comparable or superior accuracy while producing saliency maps that better reflect human expectations. This reduces the reliance on irrelevant patterns and increases confidence in automated diagnostic tools.
☆ Automated Defect Detection for Mass-Produced Electronic Components Based on YOLO Object Detection Models
Since the defect detection of conventional industry components is time-consuming and labor-intensive, it leads to a significant burden on quality inspection personnel and makes it difficult to manage product quality. In this paper, we propose an automated defect detection system for the dual in-line package (DIP) that is widely used in industry, using digital camera optics and a deep learning (DL)-based model. The two most common defect categories of DIP are examined: (1) surface defects, and (2) pin-leg defects. However, the lack of defective component images leads to a challenge for detection tasks. To solve this problem, the ConSinGAN is used to generate a suitable-sized dataset for training and testing. Four varieties of the YOLO model are investigated (v3, v4, v7, and v9), both in isolation and with the ConSinGAN augmentation. The proposed YOLOv7 with ConSinGAN is superior to the other YOLO versions in accuracy of 95.50\%, detection time of 285 ms, and is far superior to threshold-based approaches. In addition, the supervisory control and data acquisition (SCADA) system is developed, and the associated sensor architecture is described. The proposed automated defect detection can be easily established with numerous types of defects or insufficient defect data.
comment: 12 pages, 16 figures, 7 tables, and published in IEEE Sensors Journal
☆ Flow-Matching Guided Deep Unfolding for Hyperspectral Image Reconstruction
Hyperspectral imaging (HSI) provides rich spatial-spectral information but remains costly to acquire due to hardware limitations and the difficulty of reconstructing three-dimensional data from compressed measurements. Although compressive sensing systems such as CASSI improve efficiency, accurate reconstruction is still challenged by severe degradation and loss of fine spectral details. We propose the Flow-Matching-guided Unfolding network (FMU), which, to our knowledge, is the first to integrate flow matching into HSI reconstruction by embedding its generative prior within a deep unfolding framework. To further strengthen the learned dynamics, we introduce a mean velocity loss that enforces global consistency of the flow, leading to a more robust and accurate reconstruction. This hybrid design leverages the interpretability of optimization-based methods and the generative capacity of flow matching. Extensive experiments on both simulated and real datasets show that FMU significantly outperforms existing approaches in reconstruction quality. Code and models will be available at https://github.com/YiAi03/FMU.
☆ Model Merging to Maintain Language-Only Performance in Developmentally Plausible Multimodal Models EMNLP 2025
State-of-the-art vision-and-language models consist of many parameters and learn from enormous datasets, surpassing the amounts of linguistic data that children are exposed to as they acquire a language. This paper presents our approach to the multimodal track of the BabyLM challenge addressing this discrepancy. We develop language-only and multimodal models in low-resource settings using developmentally plausible datasets, with our multimodal models outperforming previous BabyLM baselines. One finding in the multimodal language model literature is that these models tend to underperform in \textit{language-only} tasks. Therefore, we focus on maintaining language-only abilities in multimodal models. To this end, we experiment with \textit{model merging}, where we fuse the parameters of multimodal models with those of language-only models using weighted linear interpolation. Our results corroborate the findings that multimodal models underperform in language-only benchmarks that focus on grammar, and model merging with text-only models can help alleviate this problem to some extent, while maintaining multimodal performance.
comment: Accepted to the EMNLP 2025 workshop BabyLM: Accelerating language modeling research with cognitively plausible datasets
☆ Leveraging Prior Knowledge of Diffusion Model for Person Search
Person search aims to jointly perform person detection and re-identification by localizing and identifying a query person within a gallery of uncropped scene images. Existing methods predominantly utilize ImageNet pre-trained backbones, which may be suboptimal for capturing the complex spatial context and fine-grained identity cues necessary for person search. Moreover, they rely on a shared backbone feature for both person detection and re-identification, leading to suboptimal features due to conflicting optimization objectives. In this paper, we propose DiffPS (Diffusion Prior Knowledge for Person Search), a novel framework that leverages a pre-trained diffusion model while eliminating the optimization conflict between two sub-tasks. We analyze key properties of diffusion priors and propose three specialized modules: (i) Diffusion-Guided Region Proposal Network (DGRPN) for enhanced person localization, (ii) Multi-Scale Frequency Refinement Network (MSFRN) to mitigate shape bias, and (iii) Semantic-Adaptive Feature Aggregation Network (SFAN) to leverage text-aligned diffusion features. DiffPS sets a new state-of-the-art on CUHK-SYSU and PRW.
☆ Calibrating the Full Predictive Class Distribution of 3D Object Detectors for Autonomous Driving
In autonomous systems, precise object detection and uncertainty estimation are critical for self-aware and safe operation. This work addresses confidence calibration for the classification task of 3D object detectors. We argue that it is necessary to regard the calibration of the full predictive confidence distribution over all classes and deduce a metric which captures the calibration of dominant and secondary class predictions. We propose two auxiliary regularizing loss terms which introduce either calibration of the dominant prediction or the full prediction vector as a training goal. We evaluate a range of post-hoc and train-time methods for CenterPoint, PillarNet and DSVT-Pillar and find that combining our loss term, which regularizes for calibration of the full class prediction, and isotonic regression lead to the best calibration of CenterPoint and PillarNet with respect to both dominant and secondary class predictions. We further find that DSVT-Pillar can not be jointly calibrated for dominant and secondary predictions using the same method.
☆ Pack and Force Your Memory: Long-form and Consistent Video Generation
Long-form video generation presents a dual challenge: models must capture long-range dependencies while preventing the error accumulation inherent in autoregressive decoding. To address these challenges, we make two contributions. First, for dynamic context modeling, we propose MemoryPack, a learnable context-retrieval mechanism that leverages both textual and image information as global guidance to jointly model short- and long-term dependencies, achieving minute-level temporal consistency. This design scales gracefully with video length, preserves computational efficiency, and maintains linear complexity. Second, to mitigate error accumulation, we introduce Direct Forcing, an efficient single-step approximating strategy that improves training-inference alignment and thereby curtails error propagation during inference. Together, MemoryPack and Direct Forcing substantially enhance the context consistency and reliability of long-form video generation, advancing the practical usability of autoregressive video models.
☆ LOBE-GS: Load-Balanced and Efficient 3D Gaussian Splatting for Large-Scale Scene Reconstruction
3D Gaussian Splatting (3DGS) has established itself as an efficient representation for real-time, high-fidelity 3D scene reconstruction. However, scaling 3DGS to large and unbounded scenes such as city blocks remains difficult. Existing divide-and-conquer methods alleviate memory pressure by partitioning the scene into blocks, but introduce new bottlenecks: (i) partitions suffer from severe load imbalance since uniform or heuristic splits do not reflect actual computational demands, and (ii) coarse-to-fine pipelines fail to exploit the coarse stage efficiently, often reloading the entire model and incurring high overhead. In this work, we introduce LoBE-GS, a novel Load-Balanced and Efficient 3D Gaussian Splatting framework, that re-engineers the large-scale 3DGS pipeline. LoBE-GS introduces a depth-aware partitioning method that reduces preprocessing from hours to minutes, an optimization-based strategy that balances visible Gaussians -- a strong proxy for computational load -- across blocks, and two lightweight techniques, visibility cropping and selective densification, to further reduce training cost. Evaluations on large-scale urban and outdoor datasets show that LoBE-GS consistently achieves up to $2\times$ faster end-to-end training time than state-of-the-art baselines, while maintaining reconstruction quality and enabling scalability to scenes infeasible with vanilla 3DGS.
Unsupervised Dynamic Feature Selection for Robust Latent Spaces in Vision Tasks
Latent representations are critical for the performance and robustness of machine learning models, as they encode the essential features of data in a compact and informative manner. However, in vision tasks, these representations are often affected by noisy or irrelevant features, which can degrade the model's performance and generalization capabilities. This paper presents a novel approach for enhancing latent representations using unsupervised Dynamic Feature Selection (DFS). For each instance, the proposed method identifies and removes misleading or redundant information in images, ensuring that only the most relevant features contribute to the latent space. By leveraging an unsupervised framework, our approach avoids reliance on labeled data, making it broadly applicable across various domains and datasets. Experiments conducted on image datasets demonstrate that models equipped with unsupervised DFS achieve significant improvements in generalization performance across various tasks, including clustering and image generation, while incurring a minimal increase in the computational cost.
☆ Towards Photonic Band Diagram Generation with Transformer-Latent Diffusion Models
Photonic crystals enable fine control over light propagation at the nanoscale, and thus play a central role in the development of photonic and quantum technologies. Photonic band diagrams (BDs) are a key tool to investigate light propagation into such inhomogeneous structured materials. However, computing BDs requires solving Maxwell's equations across many configurations, making it numerically expensive, especially when embedded in optimization loops for inverse design techniques, for example. To address this challenge, we introduce the first approach for BD generation based on diffusion models, with the capacity to later generalize and scale to arbitrary three dimensional structures. Our method couples a transformer encoder, which extracts contextual embeddings from the input structure, with a latent diffusion model to generate the corresponding BD. In addition, we provide insights into why transformers and diffusion models are well suited to capture the complex interference and scattering phenomena inherent to photonics, paving the way for new surrogate modeling strategies in this domain.
☆ PyramidStyler: Transformer-Based Neural Style Transfer with Pyramidal Positional Encoding and Reinforcement Learning
Neural Style Transfer (NST) has evolved from Gatys et al.'s (2015) CNN-based algorithm, enabling AI-driven artistic image synthesis. However, existing CNN and transformer-based models struggle to scale efficiently to complex styles and high-resolution inputs. We introduce PyramidStyler, a transformer framework with Pyramidal Positional Encoding (PPE): a hierarchical, multi-scale encoding that captures both local details and global context while reducing computational load. We further incorporate reinforcement learning to dynamically optimize stylization, accelerating convergence. Trained on Microsoft COCO and WikiArt, PyramidStyler reduces content loss by 62.6% (to 2.07) and style loss by 57.4% (to 0.86) after 4000 epochs--achieving 1.39 s inference--and yields further improvements (content 2.03; style 0.75) with minimal speed penalty (1.40 s) when using RL. These results demonstrate real-time, high-quality artistic rendering, with broad applications in media and design.
☆ Holistic Order Prediction in Natural Scenes
Even in controlled settings, understanding instance-wise geometries is a challenging task for a wide range of visual models. Although specialized systems exist, modern arts rely on expensive input formats (category labels, binary segmentation masks) and inference costs (a quadratic amount of forward passes). We mitigate these limitations by proposing InstaFormer, a network capable of holistic order prediction. That is, solely given an input RGB image, InstaFormer returns the full occlusion and depth orderings for all the instances in the scene in a single forward pass. At its core, InstaFormer relies on interactions between object queries and latent mask descriptors that semantically represent the same objects while carrying complementary information. We comprehensively benchmark and ablate our approach to highlight its effectiveness. Our code and models are open-source and available at this URL: https://github.com/SNU-VGILab/InstaOrder.
comment: 25 pages, 11 figures, 6 tables
☆ VaPR -- Vision-language Preference alignment for Reasoning
Preference finetuning methods like Direct Preference Optimization (DPO) with AI-generated feedback have shown promise in aligning Large Vision-Language Models (LVLMs) with human preferences. However, existing techniques overlook the prevalence of noise in synthetic preference annotations in the form of stylistic and length biases. To this end, we introduce a hard-negative response generation framework based on LLM-guided response editing, that produces rejected responses with targeted errors, maintaining stylistic and length similarity to the accepted ones. Using this framework, we develop the VaPR dataset, comprising 30K high-quality samples, to finetune three LVLM families: LLaVA-V1.5, Qwen2VL & Qwen2.5VL (2B-13B sizes). Our VaPR models deliver significant performance improvements across ten benchmarks, achieving average gains of 6.5% (LLaVA), 4.0% (Qwen2VL), and 1.5% (Qwen2.5VL), with notable improvements on reasoning tasks. A scaling analysis shows that performance consistently improves with data size, with LLaVA models benefiting even at smaller scales. Moreover, VaPR reduces the tendency to answer "Yes" in binary questions - addressing a common failure mode in LVLMs like LLaVA. Lastly, we show that the framework generalizes to open-source LLMs as editors, with models trained on VaPR-OS achieving ~99% of the performance of models trained on \name, which is synthesized using GPT-4o. Our data, models, and code can be found on the project page https://vap-r.github.io
☆ MedQ-Bench: Evaluating and Exploring Medical Image Quality Assessment Abilities in MLLMs
Medical Image Quality Assessment (IQA) serves as the first-mile safety gate for clinical AI, yet existing approaches remain constrained by scalar, score-based metrics and fail to reflect the descriptive, human-like reasoning process central to expert evaluation. To address this gap, we introduce MedQ-Bench, a comprehensive benchmark that establishes a perception-reasoning paradigm for language-based evaluation of medical image quality with Multi-modal Large Language Models (MLLMs). MedQ-Bench defines two complementary tasks: (1) MedQ-Perception, which probes low-level perceptual capability via human-curated questions on fundamental visual attributes; and (2) MedQ-Reasoning, encompassing both no-reference and comparison reasoning tasks, aligning model evaluation with human-like reasoning on image quality. The benchmark spans five imaging modalities and over forty quality attributes, totaling 2,600 perceptual queries and 708 reasoning assessments, covering diverse image sources including authentic clinical acquisitions, images with simulated degradations via physics-based reconstructions, and AI-generated images. To evaluate reasoning ability, we propose a multi-dimensional judging protocol that assesses model outputs along four complementary axes. We further conduct rigorous human-AI alignment validation by comparing LLM-based judgement with radiologists. Our evaluation of 14 state-of-the-art MLLMs demonstrates that models exhibit preliminary but unstable perceptual and reasoning skills, with insufficient accuracy for reliable clinical use. These findings highlight the need for targeted optimization of MLLMs in medical IQA. We hope that MedQ-Bench will catalyze further exploration and unlock the untapped potential of MLLMs for medical image quality evaluation.
comment: 26 pages, 13 figures
☆ FreeViS: Training-free Video Stylization with Inconsistent References
Video stylization plays a key role in content creation, but it remains a challenging problem. Na\"ively applying image stylization frame-by-frame hurts temporal consistency and reduces style richness. Alternatively, training a dedicated video stylization model typically requires paired video data and is computationally expensive. In this paper, we propose FreeViS, a training-free video stylization framework that generates stylized videos with rich style details and strong temporal coherence. Our method integrates multiple stylized references to a pretrained image-to-video (I2V) model, effectively mitigating the propagation errors observed in prior works, without introducing flickers and stutters. In addition, it leverages high-frequency compensation to constrain the content layout and motion, together with flow-based motion cues to preserve style textures in low-saliency regions. Through extensive evaluations, FreeViS delivers higher stylization fidelity and superior temporal consistency, outperforming recent baselines and achieving strong human preference. Our training-free pipeline offers a practical and economic solution for high-quality, temporally coherent video stylization. The code and videos can be accessed via https://xujiacong.github.io/FreeViS/
comment: Project Page: \url{https://xujiacong.github.io/FreeViS/}
☆ Uncovering Overconfident Failures in CXR Models via Augmentation-Sensitivity Risk Scoring
Deep learning models achieve strong performance in chest radiograph (CXR) interpretation, yet fairness and reliability concerns persist. Models often show uneven accuracy across patient subgroups, leading to hidden failures not reflected in aggregate metrics. Existing error detection approaches -- based on confidence calibration or out-of-distribution (OOD) detection -- struggle with subtle within-distribution errors, while image- and representation-level consistency-based methods remain underexplored in medical imaging. We propose an augmentation-sensitivity risk scoring (ASRS) framework to identify error-prone CXR cases. ASRS applies clinically plausible rotations ($\pm 15^\circ$/$\pm 30^\circ$) and measures embedding shifts with the RAD-DINO encoder. Sensitivity scores stratify samples into stability quartiles, where highly sensitive cases show substantially lower recall ($-0.2$ to $-0.3$) despite high AUROC and confidence. ASRS provides a label-free means for selective prediction and clinician review, improving fairness and safety in medical AI.
comment: 5 pages, 1 figures
☆ Look Less, Reason More: Rollout-Guided Adaptive Pixel-Space Reasoning
Vision-Language Models (VLMs) excel at many multimodal tasks, yet they frequently struggle with tasks requiring precise understanding and handling of fine-grained visual elements. This is mainly due to information loss during image encoding or insufficient attention to critical regions. Recent work has shown promise by incorporating pixel-level visual information into the reasoning process, enabling VLMs to access high-resolution visual details during their thought process. However, this pixel-level information is often overused, leading to inefficiency and distraction from irrelevant visual details. To address these challenges, we propose the first framework for adaptive pixel reasoning that dynamically determines necessary pixel-level operations based on the input query. Specifically, we first apply operation-aware supervised fine-tuning to establish baseline competence in textual reasoning and visual operations, then design a novel rollout-guided reinforcement learning framework relying on feedback of the model's own responses, which enables the VLM to determine when pixel operations should be invoked based on query difficulty. Experiments on extensive multimodal reasoning benchmarks show that our model achieves superior performance while significantly reducing unnecessary visual operations. Impressively, our model achieves 73.4\% accuracy on HR-Bench 4K while maintaining a tool usage ratio of only 20.1\%, improving accuracy and simultaneously reducing tool usage by 66.5\% compared to the previous methods.
comment: Preprint, Under review
☆ An Efficient Deep Template Matching and In-Plane Pose Estimation Method via Template-Aware Dynamic Convolution
In industrial inspection and component alignment tasks, template matching requires efficient estimation of a target's position and geometric state (rotation and scaling) under complex backgrounds to support precise downstream operations. Traditional methods rely on exhaustive enumeration of angles and scales, leading to low efficiency under compound transformations. Meanwhile, most deep learning-based approaches only estimate similarity scores without explicitly modeling geometric pose, making them inadequate for real-world deployment. To overcome these limitations, we propose a lightweight end-to-end framework that reformulates template matching as joint localization and geometric regression, outputting the center coordinates, rotation angle, and independent horizontal and vertical scales. A Template-Aware Dynamic Convolution Module (TDCM) dynamically injects template features at inference to guide generalizable matching. The compact network integrates depthwise separable convolutions and pixel shuffle for efficient matching. To enable geometric-annotation-free training, we introduce a rotation-shear-based augmentation strategy with structure-aware pseudo labels. A lightweight refinement module further improves angle and scale precision via local optimization. Experiments show our 3.07M model achieves high precision and 14ms inference under compound transformations. It also demonstrates strong robustness in small-template and multi-object scenarios, making it highly suitable for deployment in real-time industrial applications. The code is available at:https://github.com/ZhouJ6610/PoseMatch-TDCM.
comment: Published in Expert Systems with Applications
☆ Beyond Simple Fusion: Adaptive Gated Fusion for Robust Multimodal Sentiment Analysis
Multimodal sentiment analysis (MSA) leverages information fusion from diverse modalities (e.g., text, audio, visual) to enhance sentiment prediction. However, simple fusion techniques often fail to account for variations in modality quality, such as those that are noisy, missing, or semantically conflicting. This oversight leads to suboptimal performance, especially in discerning subtle emotional nuances. To mitigate this limitation, we introduce a simple yet efficient \textbf{A}daptive \textbf{G}ated \textbf{F}usion \textbf{N}etwork that adaptively adjusts feature weights via a dual gate fusion mechanism based on information entropy and modality importance. This mechanism mitigates the influence of noisy modalities and prioritizes informative cues following unimodal encoding and cross-modal interaction. Experiments on CMU-MOSI and CMU-MOSEI show that AGFN significantly outperforms strong baselines in accuracy, effectively discerning subtle emotions with robust performance. Visualization analysis of feature representations demonstrates that AGFN enhances generalization by learning from a broader feature distribution, achieved by reducing the correlation between feature location and prediction error, thereby decreasing reliance on specific locations and creating more robust multimodal feature representations.
☆ UniVerse: Unleashing the Scene Prior of Video Diffusion Models for Robust Radiance Field Reconstruction
This paper tackles the challenge of robust reconstruction, i.e., the task of reconstructing a 3D scene from a set of inconsistent multi-view images. Some recent works have attempted to simultaneously remove image inconsistencies and perform reconstruction by integrating image degradation modeling into neural 3D scene representations.However, these methods rely heavily on dense observations for robustly optimizing model parameters.To address this issue, we propose to decouple robust reconstruction into two subtasks: restoration and reconstruction, which naturally simplifies the optimization process.To this end, we introduce UniVerse, a unified framework for robust reconstruction based on a video diffusion model. Specifically, UniVerse first converts inconsistent images into initial videos, then uses a specially designed video diffusion model to restore them into consistent images, and finally reconstructs the 3D scenes from these restored images.Compared with case-by-case per-view degradation modeling, the diffusion model learns a general scene prior from large-scale data, making it applicable to diverse image inconsistencies.Extensive experiments on both synthetic and real-world datasets demonstrate the strong generalization capability and superior performance of our method in robust reconstruction. Moreover, UniVerse can control the style of the reconstructed 3D scene. Project page: https://jin-cao-tma.github.io/UniVerse.github.io/
comment: page: https://jin-cao-tma.github.io/UniVerse.github.io/ code: https://github.com/zju3dv/UniVerse
☆ Median2Median: Zero-shot Suppression of Structured Noise in Images
Image denoising is a fundamental problem in computer vision and medical imaging. However, real-world images are often degraded by structured noise with strong anisotropic correlations that existing methods struggle to remove. Most data-driven approaches rely on large datasets with high-quality labels and still suffer from limited generalizability, whereas existing zero-shot methods avoid this limitation but remain effective only for independent and identically distributed (i.i.d.) noise. To address this gap, we propose Median2Median (M2M), a zero-shot denoising framework designed for structured noise. M2M introduces a novel sampling strategy that generates pseudo-independent sub-image pairs from a single noisy input. This strategy leverages directional interpolation and generalized median filtering to adaptively exclude values distorted by structured artifacts. To further enlarge the effective sampling space and eliminate systematic bias, a randomized assignment strategy is employed, ensuring that the sampled sub-image pairs are suitable for Noise2Noise training. In our realistic simulation studies, M2M performs on par with state-of-the-art zero-shot methods under i.i.d. noise, while consistently outperforming them under correlated noise. These findings establish M2M as an efficient, data-free solution for structured noise suppression and mark the first step toward effective zero-shot denoising beyond the strict i.i.d. assumption.
comment: 13 pages, 6 figures, not published yet
☆ Non-Rigid Structure-from-Motion via Differential Geometry with Recoverable Conformal Scale
Non-rigid structure-from-motion (NRSfM), a promising technique for addressing the mapping challenges in monocular visual deformable simultaneous localization and mapping (SLAM), has attracted growing attention. We introduce a novel method, called Con-NRSfM, for NRSfM under conformal deformations, encompassing isometric deformations as a subset. Our approach performs point-wise reconstruction using 2D selected image warps optimized through a graph-based framework. Unlike existing methods that rely on strict assumptions, such as locally planar surfaces or locally linear deformations, and fail to recover the conformal scale, our method eliminates these constraints and accurately computes the local conformal scale. Additionally, our framework decouples constraints on depth and conformal scale, which are inseparable in other approaches, enabling more precise depth estimation. To address the sensitivity of the formulated problem, we employ a parallel separable iterative optimization strategy. Furthermore, a self-supervised learning framework, utilizing an encoder-decoder network, is incorporated to generate dense 3D point clouds with texture. Simulation and experimental results using both synthetic and real datasets demonstrate that our method surpasses existing approaches in terms of reconstruction accuracy and robustness. The code for the proposed method will be made publicly available on the project website: https://sites.google.com/view/con-nrsfm.
☆ Discrete Facial Encoding: : A Framework for Data-driven Facial Display Discovery
Facial expression analysis is central to understanding human behavior, yet existing coding systems such as the Facial Action Coding System (FACS) are constrained by limited coverage and costly manual annotation. In this work, we introduce Discrete Facial Encoding (DFE), an unsupervised, data-driven alternative of compact and interpretable dictionary of facial expressions from 3D mesh sequences learned through a Residual Vector Quantized Variational Autoencoder (RVQ-VAE). Our approach first extracts identity-invariant expression features from images using a 3D Morphable Model (3DMM), effectively disentangling factors such as head pose and facial geometry. We then encode these features using an RVQ-VAE, producing a sequence of discrete tokens from a shared codebook, where each token captures a specific, reusable facial deformation pattern that contributes to the overall expression. Through extensive experiments, we demonstrate that Discrete Facial Encoding captures more precise facial behaviors than FACS and other facial encoding alternatives. We evaluate the utility of our representation across three high-level psychological tasks: stress detection, personality prediction, and depression detection. Using a simple Bag-of-Words model built on top of the learned tokens, our system consistently outperforms both FACS-based pipelines and strong image and video representation learning models such as Masked Autoencoders. Further analysis reveals that our representation covers a wider variety of facial displays, highlighting its potential as a scalable and effective alternative to FACS for psychological and affective computing applications.
☆ VirDA: Reusing Backbone for Unsupervised Domain Adaptation with Visual Reprogramming
Existing UDA pipelines fine-tune already well-trained backbone parameters for every new source-and-target pair, resulting in the number of training parameters and storage memory growing linearly with each new pair, and also preventing the reuse of these well-trained backbone parameters. Inspired by recent implications that existing backbones have textural biases, we propose making use of domain-specific textural bias for domain adaptation via visual reprogramming, namely VirDA.Instead of fine-tuning the full backbone, VirDA prepends a domain-specific visual reprogramming layer to the backbone. This layer produces visual prompts that act as an added textural bias to the input image, adapting its ``style'' to a target domain. To optimize these visual reprogramming layers, we use multiple objective functions that optimize the intra- and inter-domain distribution differences when domain-adapting visual prompts are applied. This process does not require modifying the backbone parameters, allowing the same backbone to be reused across different domains. We evaluate VirDA on Office-31 and obtain 92.8% mean accuracy with only 1.5M trainable parameters. VirDA surpasses PDA, the state-of-the-art parameter-efficient UDA baseline, by +1.6% accuracy while using just 46% of its parameters. Compared with full-backbone fine-tuning, VirDA outperforms CDTrans and FixBi by +0.2% and +1.4%, respectively, while requiring only 1.7% and 2.8% of their trainable parameters. Relative to the strongest current methods (PMTrans and TVT), VirDA uses ~1.7% of their parameters and trades off only 2.2% and 1.1% accuracy, respectively.
☆ LadderMoE: Ladder-Side Mixture of Experts Adapters for Bronze Inscription Recognition
Bronze inscriptions (BI), engraved on ritual vessels, constitute a crucial stage of early Chinese writing and provide indispensable evidence for archaeological and historical studies. However, automatic BI recognition remains difficult due to severe visual degradation, multi-domain variability across photographs, rubbings, and tracings, and an extremely long-tailed character distribution. To address these challenges, we curate a large-scale BI dataset comprising 22454 full-page images and 198598 annotated characters spanning 6658 unique categories, enabling robust cross-domain evaluation. Building on this resource, we develop a two-stage detection-recognition pipeline that first localizes inscriptions and then transcribes individual characters. To handle heterogeneous domains and rare classes, we equip the pipeline with LadderMoE, which augments a pretrained CLIP encoder with ladder-style MoE adapters, enabling dynamic expert specialization and stronger robustness. Comprehensive experiments on single-character and full-page recognition tasks demonstrate that our method substantially outperforms state-of-the-art scene text recognition baselines, achieving superior accuracy across head, mid, and tail categories as well as all acquisition modalities. These results establish a strong foundation for bronze inscription recognition and downstream archaeological analysis.
comment: 18 pages, 7 figures, 2 Tables
☆ FideDiff: Efficient Diffusion Model for High-Fidelity Image Motion Deblurring
Recent advancements in image motion deblurring, driven by CNNs and transformers, have made significant progress. Large-scale pre-trained diffusion models, which are rich in true-world modeling, have shown great promise for high-quality image restoration tasks such as deblurring, demonstrating stronger generative capabilities than CNN and transformer-based methods. However, challenges such as unbearable inference time and compromised fidelity still limit the full potential of the diffusion models. To address this, we introduce FideDiff, a novel single-step diffusion model designed for high-fidelity deblurring. We reformulate motion deblurring as a diffusion-like process where each timestep represents a progressively blurred image, and we train a consistency model that aligns all timesteps to the same clean image. By reconstructing training data with matched blur trajectories, the model learns temporal consistency, enabling accurate one-step deblurring. We further enhance model performance by integrating Kernel ControlNet for blur kernel estimation and introducing adaptive timestep prediction. Our model achieves superior performance on full-reference metrics, surpassing previous diffusion-based methods and matching the performance of other state-of-the-art models. FideDiff offers a new direction for applying pre-trained diffusion models to high-fidelity image restoration tasks, establishing a robust baseline for further advancing diffusion models in real-world industrial applications. Our dataset and code will be available at https://github.com/xyLiu339/FideDiff.
☆ Joint Deblurring and 3D Reconstruction for Macrophotography
Macro lens has the advantages of high resolution and large magnification, and 3D modeling of small and detailed objects can provide richer information. However, defocus blur in macrophotography is a long-standing problem that heavily hinders the clear imaging of the captured objects and high-quality 3D reconstruction of them. Traditional image deblurring methods require a large number of images and annotations, and there is currently no multi-view 3D reconstruction method for macrophotography. In this work, we propose a joint deblurring and 3D reconstruction method for macrophotography. Starting from multi-view blurry images captured, we jointly optimize the clear 3D model of the object and the defocus blur kernel of each pixel. The entire framework adopts a differentiable rendering method to self-supervise the optimization of the 3D model and the defocus blur kernel. Extensive experiments show that from a small number of multi-view images, our proposed method can not only achieve high-quality image deblurring but also recover high-fidelity 3D appearance.
comment: Accepted to Pacific Graphics 2025. To be published in Computer Graphics Forum
☆ VLA-R1: Enhancing Reasoning in Vision-Language-Action Models
Vision-Language-Action (VLA) models aim to unify perception, language understanding, and action generation, offering strong cross-task and cross-scene generalization with broad impact on embodied AI. However, current VLA models often lack explicit step-by-step reasoning, instead emitting final actions without considering affordance constraints or geometric relations. Their post-training pipelines also rarely reinforce reasoning quality, relying primarily on supervised fine-tuning with weak reward design. To address these challenges, we present VLA-R1, a reasoning-enhanced VLA that integrates Reinforcement Learning from Verifiable Rewards (RLVR) with Group Relative Policy Optimization (GRPO) to systematically optimize both reasoning and execution. Specifically, we design an RLVR-based post-training strategy with verifiable rewards for region alignment, trajectory consistency, and output formatting, thereby strengthening reasoning robustness and execution accuracy. Moreover, we develop VLA-CoT-13K, a high-quality dataset that provides chain-of-thought supervision explicitly aligned with affordance and trajectory annotations. Furthermore, extensive evaluations on in-domain, out-of-domain, simulation, and real-robot platforms demonstrate that VLA-R1 achieves superior generalization and real-world performance compared to prior VLA methods. We plan to release the model, code, and dataset following the publication of this work. Code: https://github.com/GigaAI-research/VLA-R1. Website: https://gigaai-research.github.io/VLA-R1.
☆ MPMAvatar: Learning 3D Gaussian Avatars with Accurate and Robust Physics-Based Dynamics NeurIPS 2025
While there has been significant progress in the field of 3D avatar creation from visual observations, modeling physically plausible dynamics of humans with loose garments remains a challenging problem. Although a few existing works address this problem by leveraging physical simulation, they suffer from limited accuracy or robustness to novel animation inputs. In this work, we present MPMAvatar, a framework for creating 3D human avatars from multi-view videos that supports highly realistic, robust animation, as well as photorealistic rendering from free viewpoints. For accurate and robust dynamics modeling, our key idea is to use a Material Point Method-based simulator, which we carefully tailor to model garments with complex deformations and contact with the underlying body by incorporating an anisotropic constitutive model and a novel collision handling algorithm. We combine this dynamics modeling scheme with our canonical avatar that can be rendered using 3D Gaussian Splatting with quasi-shadowing, enabling high-fidelity rendering for physically realistic animations. In our experiments, we demonstrate that MPMAvatar significantly outperforms the existing state-of-the-art physics-based avatar in terms of (1) dynamics modeling accuracy, (2) rendering accuracy, and (3) robustness and efficiency. Additionally, we present a novel application in which our avatar generalizes to unseen interactions in a zero-shot manner-which was not achievable with previous learning-based methods due to their limited simulation generalizability. Our project page is at: https://KAISTChangmin.github.io/MPMAvatar/
comment: Accepted to NeurIPS 2025
☆ Automated Genomic Interpretation via Concept Bottleneck Models for Medical Robotics
We propose an automated genomic interpretation module that transforms raw DNA sequences into actionable, interpretable decisions suitable for integration into medical automation and robotic systems. Our framework combines Chaos Game Representation (CGR) with a Concept Bottleneck Model (CBM), enforcing predictions to flow through biologically meaningful concepts such as GC content, CpG density, and k mer motifs. To enhance reliability, we incorporate concept fidelity supervision, prior consistency alignment, KL distribution matching, and uncertainty calibration. Beyond accurate classification of HIV subtypes across both in-house and LANL datasets, our module delivers interpretable evidence that can be directly validated against biological priors. A cost aware recommendation layer further translates predictive outputs into decision policies that balance accuracy, calibration, and clinical utility, reducing unnecessary retests and improving efficiency. Extensive experiments demonstrate that the proposed system achieves state of the art classification performance, superior concept prediction fidelity, and more favorable cost benefit trade-offs compared to existing baselines. By bridging the gap between interpretable genomic modeling and automated decision-making, this work establishes a reliable foundation for robotic and clinical automation in genomic medicine.
☆ NPN: Non-Linear Projections of the Null-Space for Imaging Inverse Problems NeurIPS 2025
Imaging inverse problems aims to recover high-dimensional signals from undersampled, noisy measurements, a fundamentally ill-posed task with infinite solutions in the null-space of the sensing operator. To resolve this ambiguity, prior information is typically incorporated through handcrafted regularizers or learned models that constrain the solution space. However, these priors typically ignore the task-specific structure of that null-space. In this work, we propose \textit{Non-Linear Projections of the Null-Space} (NPN), a novel class of regularization that, instead of enforcing structural constraints in the image domain, promotes solutions that lie in a low-dimensional projection of the sensing matrix's null-space with a neural network. Our approach has two key advantages: (1) Interpretability: by focusing on the structure of the null-space, we design sensing-matrix-specific priors that capture information orthogonal to the signal components that are fundamentally blind to the sensing process. (2) Flexibility: NPN is adaptable to various inverse problems, compatible with existing reconstruction frameworks, and complementary to conventional image-domain priors. We provide theoretical guarantees on convergence and reconstruction accuracy when used within plug-and-play methods. Empirical results across diverse sensing matrices demonstrate that NPN priors consistently enhance reconstruction fidelity in various imaging inverse problems, such as compressive sensing, deblurring, super-resolution, computed tomography, and magnetic resonance imaging, with plug-and-play methods, unrolling networks, deep image prior, and diffusion models.
comment: 25 pages, 12 tables, 10 figures. Accepted to NeurIPS 2025
☆ ActiveUMI: Robotic Manipulation with Active Perception from Robot-Free Human Demonstrations
We present ActiveUMI, a framework for a data collection system that transfers in-the-wild human demonstrations to robots capable of complex bimanual manipulation. ActiveUMI couples a portable VR teleoperation kit with sensorized controllers that mirror the robot's end-effectors, bridging human-robot kinematics via precise pose alignment. To ensure mobility and data quality, we introduce several key techniques, including immersive 3D model rendering, a self-contained wearable computer, and efficient calibration methods. ActiveUMI's defining feature is its capture of active, egocentric perception. By recording an operator's deliberate head movements via a head-mounted display, our system learns the crucial link between visual attention and manipulation. We evaluate ActiveUMI on six challenging bimanual tasks. Policies trained exclusively on ActiveUMI data achieve an average success rate of 70\% on in-distribution tasks and demonstrate strong generalization, retaining a 56\% success rate when tested on novel objects and in new environments. Our results demonstrate that portable data collection systems, when coupled with learned active perception, provide an effective and scalable pathway toward creating generalizable and highly capable real-world robot policies.
comment: technique report. The website is available at https://activeumi.github.io
☆ ImageNet-Think-250K: A Large-Scale Synthetic Dataset for Multimodal Reasoning for Vision Language Models
We develop ImageNet-Think, a multimodal reasoning dataset designed to aid the development of Vision Language Models (VLMs) with explicit reasoning capabilities. Our dataset is built on 250,000 images from ImageNet21k dataset, providing structured thinking tokens and corresponding answers. Our synthetic dataset is generated by two state-of-the-art VLMs: GLM-4.1V-9B-Thinking and Kimi-VL-A3B-Thinking-2506. Each image is accompanied by two pairs of thinking-answer sequences, creating a resource for training and evaluating multimodal reasoning models. We capture the step-by-step reasoning process of VLMs and the final descriptive answers. Our goal with this dataset is to enable the development of more robust VLMs while contributing to the broader understanding of multimodal reasoning mechanisms. The dataset and evaluation benchmarks will be publicly available to aid research in reasoning/thinking multimodal VLMs.
comment: Preprint
☆ Guiding Multimodal Large Language Models with Blind and Low Vision People Visual Questions for Proactive Visual Interpretations ICCV 2025
Multimodal large language models (MLLMs) have been integrated into visual interpretation applications to support Blind and Low Vision (BLV) users because of their accuracy and ability to provide rich, human-like interpretations. However, these applications often default to comprehensive, lengthy descriptions regardless of context. This leads to inefficient exchanges, as users must go through irrelevant details rather than receiving the specific information they are likely to seek. To deliver more contextually-relevant information, we developed a system that draws on historical BLV users questions. When given an image, our system identifies similar past visual contexts from the VizWiz-LF dataset and uses the associated questions to guide the MLLM generate descriptions more relevant to BLV users. An evaluation with three human labelers who revised 92 context-aware and context-free descriptions showed that context-aware descriptions anticipated and answered users' questions in 76.1% of cases (70 out of 92) and were preferred in 54.4% of comparisons (50 out of 92). Our paper reviews, and data analysis are publicly available in a Github repository at https://github.com/rgonzalezp/guiding-multimodal-large-language-models-with-blind-and-low-vision-people-visual-questions .
comment: 7 pages, 2 figure, 2 tables, CV4A11y Workshop at ICCV 2025
☆ Consistent Assistant Domains Transformer for Source-free Domain Adaptation
Source-free domain adaptation (SFDA) aims to address the challenge of adapting to a target domain without accessing the source domain directly. However, due to the inaccessibility of source domain data, deterministic invariable features cannot be obtained. Current mainstream methods primarily focus on evaluating invariant features in the target domain that closely resemble those in the source domain, subsequently aligning the target domain with the source domain. However, these methods are susceptible to hard samples and influenced by domain bias. In this paper, we propose a Consistent Assistant Domains Transformer for SFDA, abbreviated as CADTrans, which solves the issue by constructing invariable feature representations of domain consistency. Concretely, we develop an assistant domain module for CADTrans to obtain diversified representations from the intermediate aggregated global attentions, which addresses the limitation of existing methods in adequately representing diversity. Based on assistant and target domains, invariable feature representations are obtained by multiple consistent strategies, which can be used to distinguish easy and hard samples. Finally, to align the hard samples to the corresponding easy samples, we construct a conditional multi-kernel max mean discrepancy (CMK-MMD) strategy to distinguish between samples of the same category and those of different categories. Extensive experiments are conducted on various benchmarks such as Office-31, Office-Home, VISDA-C, and DomainNet-126, proving the significant performance improvements achieved by our proposed approaches. Code is available at https://github.com/RoryShao/CADTrans.git.
☆ Robust Classification of Oral Cancer with Limited Training Data
Oral cancer ranks among the most prevalent cancers globally, with a particularly high mortality rate in regions lacking adequate healthcare access. Early diagnosis is crucial for reducing mortality; however, challenges persist due to limited oral health programs, inadequate infrastructure, and a shortage of healthcare practitioners. Conventional deep learning models, while promising, often rely on point estimates, leading to overconfidence and reduced reliability. Critically, these models require large datasets to mitigate overfitting and ensure generalizability, an unrealistic demand in settings with limited training data. To address these issues, we propose a hybrid model that combines a convolutional neural network (CNN) with Bayesian deep learning for oral cancer classification using small training sets. This approach employs variational inference to enhance reliability through uncertainty quantification. The model was trained on photographic color images captured by smartphones and evaluated on three distinct test datasets. The proposed method achieved 94% accuracy on a test dataset with a distribution similar to that of the training data, comparable to traditional CNN performance. Notably, for real-world photographic image data, despite limitations and variations differing from the training dataset, the proposed model demonstrated superior generalizability, achieving 88% accuracy on diverse datasets compared to 72.94% for traditional CNNs, even with a smaller dataset. Confidence analysis revealed that the model exhibits low uncertainty (high confidence) for correctly classified samples and high uncertainty (low confidence) for misclassified samples. These results underscore the effectiveness of Bayesian inference in data-scarce environments in enhancing early oral cancer diagnosis by improving model reliability and generalizability.
Growing Visual Generative Capacity for Pre-Trained MLLMs
Multimodal large language models (MLLMs) extend the success of language models to visual understanding, and recent efforts have sought to build unified MLLMs that support both understanding and generation. However, constructing such models remains challenging: hybrid approaches combine continuous embeddings with diffusion or flow-based objectives, producing high-quality images but breaking the autoregressive paradigm, while pure autoregressive approaches unify text and image prediction over discrete visual tokens but often face trade-offs between semantic alignment and pixel-level fidelity. In this work, we present Bridge, a pure autoregressive unified MLLM that augments pre-trained visual understanding models with generative ability through a Mixture-of-Transformers architecture, enabling both image understanding and generation within a single next-token prediction framework. To further improve visual generation fidelity, we propose a semantic-to-pixel discrete representation that integrates compact semantic tokens with fine-grained pixel tokens, achieving strong language alignment and precise description of visual details with only a 7.9% increase in sequence length. Extensive experiments across diverse multimodal benchmarks demonstrate that Bridge achieves competitive or superior results in both understanding and generation benchmarks, while requiring less training data and reduced training time compared to prior unified MLLMs.
comment: Project page: https://hywang66.github.io/bridge/
☆ Towards Better Optimization For Listwise Preference in Diffusion Models
Reinforcement learning from human feedback (RLHF) has proven effectiveness for aligning text-to-image (T2I) diffusion models with human preferences. Although Direct Preference Optimization (DPO) is widely adopted for its computational efficiency and avoidance of explicit reward modeling, its applications to diffusion models have primarily relied on pairwise preferences. The precise optimization of listwise preferences remains largely unaddressed. In practice, human feedback on image preferences often contains implicit ranked information, which conveys more precise human preferences than pairwise comparisons. In this work, we propose Diffusion-LPO, a simple and effective framework for Listwise Preference Optimization in diffusion models with listwise data. Given a caption, we aggregate user feedback into a ranked list of images and derive a listwise extension of the DPO objective under the Plackett-Luce model. Diffusion-LPO enforces consistency across the entire ranking by encouraging each sample to be preferred over all of its lower-ranked alternatives. We empirically demonstrate the effectiveness of Diffusion-LPO across various tasks, including text-to-image generation, image editing, and personalized preference alignment. Diffusion-LPO consistently outperforms pairwise DPO baselines on visual quality and preference alignment.
☆ MATCH: Multi-faceted Adaptive Topo-Consistency for Semi-Supervised Histopathology Segmentation NeurIPS 2025
In semi-supervised segmentation, capturing meaningful semantic structures from unlabeled data is essential. This is particularly challenging in histopathology image analysis, where objects are densely distributed. To address this issue, we propose a semi-supervised segmentation framework designed to robustly identify and preserve relevant topological features. Our method leverages multiple perturbed predictions obtained through stochastic dropouts and temporal training snapshots, enforcing topological consistency across these varied outputs. This consistency mechanism helps distinguish biologically meaningful structures from transient and noisy artifacts. A key challenge in this process is to accurately match the corresponding topological features across the predictions in the absence of ground truth. To overcome this, we introduce a novel matching strategy that integrates spatial overlap with global structural alignment, minimizing discrepancies among predictions. Extensive experiments demonstrate that our approach effectively reduces topological errors, resulting in more robust and accurate segmentations essential for reliable downstream analysis. Code is available at \href{https://github.com/Melon-Xu/MATCH}{https://github.com/Melon-Xu/MATCH}.
comment: 20 pages, 6 figures. Accepted by NeurIPS 2025
☆ Input-Aware Sparse Attention for Real-Time Co-Speech Video Generation
Diffusion models can synthesize realistic co-speech video from audio for various applications, such as video creation and virtual agents. However, existing diffusion-based methods are slow due to numerous denoising steps and costly attention mechanisms, preventing real-time deployment. In this work, we distill a many-step diffusion video model into a few-step student model. Unfortunately, directly applying recent diffusion distillation methods degrades video quality and falls short of real-time performance. To address these issues, our new video distillation method leverages input human pose conditioning for both attention and loss functions. We first propose using accurate correspondence between input human pose keypoints to guide attention to relevant regions, such as the speaker's face, hands, and upper body. This input-aware sparse attention reduces redundant computations and strengthens temporal correspondences of body parts, improving inference efficiency and motion coherence. To further enhance visual quality, we introduce an input-aware distillation loss that improves lip synchronization and hand motion realism. By integrating our input-aware sparse attention and distillation loss, our method achieves real-time performance with improved visual quality compared to recent audio-driven and input-driven methods. We also conduct extensive experiments showing the effectiveness of our algorithmic design choices.
comment: Project Page: https://beijia11.github.io/IASA
☆ Ego-Exo 3D Hand Tracking in the Wild with a Mobile Multi-Camera Rig
Accurate 3D tracking of hands and their interactions with the world in unconstrained settings remains a significant challenge for egocentric computer vision. With few exceptions, existing datasets are predominantly captured in controlled lab setups, limiting environmental diversity and model generalization. To address this, we introduce a novel marker-less multi-camera system designed to capture precise 3D hands and objects, which allows for nearly unconstrained mobility in genuinely in-the-wild conditions. We combine a lightweight, back-mounted capture rig with eight exocentric cameras, and a user-worn Meta Quest 3 headset, which contributes two egocentric views. We design an ego-exo tracking pipeline to generate accurate 3D hand pose ground truth from this system, and rigorously evaluate its quality. By collecting an annotated dataset featuring synchronized multi-view images and precise 3D hand poses, we demonstrate the capability of our approach to significantly reduce the trade-off between environmental realism and 3D annotation accuracy.
☆ PEO: Training-Free Aesthetic Quality Enhancement in Pre-Trained Text-to-Image Diffusion Models with Prompt Embedding Optimization
This paper introduces a novel approach to aesthetic quality improvement in pre-trained text-to-image diffusion models when given a simple prompt. Our method, dubbed Prompt Embedding Optimization (PEO), leverages a pre-trained text-to-image diffusion model as a backbone and optimizes the text embedding of a given simple and uncurated prompt to enhance the visual quality of the generated image. We achieve this by a tripartite objective function that improves the aesthetic fidelity of the generated image, ensures adherence to the optimized text embedding, and minimal divergence from the initial prompt. The latter is accomplished through a prompt preservation term. Additionally, PEO is training-free and backbone-independent. Quantitative and qualitative evaluations confirm the effectiveness of the proposed method, exceeding or equating the performance of state-of-the-art text-to-image and prompt adaptation methods.
☆ How Confident are Video Models? Empowering Video Models to Express their Uncertainty
Generative video models demonstrate impressive text-to-video capabilities, spurring widespread adoption in many real-world applications. However, like large language models (LLMs), video generation models tend to hallucinate, producing plausible videos even when they are factually wrong. Although uncertainty quantification (UQ) of LLMs has been extensively studied in prior work, no UQ method for video models exists, raising critical safety concerns. To our knowledge, this paper represents the first work towards quantifying the uncertainty of video models. We present a framework for uncertainty quantification of generative video models, consisting of: (i) a metric for evaluating the calibration of video models based on robust rank correlation estimation with no stringent modeling assumptions; (ii) a black-box UQ method for video models (termed S-QUBED), which leverages latent modeling to rigorously decompose predictive uncertainty into its aleatoric and epistemic components; and (iii) a UQ dataset to facilitate benchmarking calibration in video models. By conditioning the generation task in the latent space, we disentangle uncertainty arising due to vague task specifications from that arising from lack of knowledge. Through extensive experiments on benchmark video datasets, we demonstrate that S-QUBED computes calibrated total uncertainty estimates that are negatively correlated with the task accuracy and effectively computes the aleatoric and epistemic constituents.
☆ Unlocking the power of partnership: How humans and machines can work together to improve face recognition
Human review of consequential decisions by face recognition algorithms creates a "collaborative" human-machine system. Individual differences between people and machines, however, affect whether collaboration improves or degrades accuracy in any given case. We establish the circumstances under which combining human and machine face identification decisions improves accuracy. Using data from expert and non-expert face identifiers, we examined the benefits of human-human and human-machine collaborations. The benefits of collaboration increased as the difference in baseline accuracy between collaborators decreased-following the Proximal Accuracy Rule (PAR). This rule predicted collaborative (fusion) benefit across a wide range of baseline abilities, from people with no training to those with extensive training. Using the PAR, we established a critical fusion zone, where humans are less accurate than the machine, but fusing the two improves system accuracy. This zone was surprisingly large. We implemented "intelligent human-machine fusion" by selecting people with the potential to increase the accuracy of a high-performing machine. Intelligent fusion was more accurate than the machine operating alone and more accurate than combining all human and machine judgments. The highest system-wide accuracy achievable with human-only partnerships was found by graph theory. This fully human system approximated the average performance achieved by intelligent human-machine collaboration. However, intelligent human-machine collaboration more effectively minimized the impact of low-performing humans on system-wide accuracy. The results demonstrate a meaningful role for both humans and machines in assuring accurate face identification. This study offers an evidence-based road map for the intelligent use of AI in face identification.
☆ PhysHMR: Learning Humanoid Control Policies from Vision for Physically Plausible Human Motion Reconstruction
Reconstructing physically plausible human motion from monocular videos remains a challenging problem in computer vision and graphics. Existing methods primarily focus on kinematics-based pose estimation, often leading to unrealistic results due to the lack of physical constraints. To address such artifacts, prior methods have typically relied on physics-based post-processing following the initial kinematics-based motion estimation. However, this two-stage design introduces error accumulation, ultimately limiting the overall reconstruction quality. In this paper, we present PhysHMR, a unified framework that directly learns a visual-to-action policy for humanoid control in a physics-based simulator, enabling motion reconstruction that is both physically grounded and visually aligned with the input video. A key component of our approach is the pixel-as-ray strategy, which lifts 2D keypoints into 3D spatial rays and transforms them into global space. These rays are incorporated as policy inputs, providing robust global pose guidance without depending on noisy 3D root predictions. This soft global grounding, combined with local visual features from a pretrained encoder, allows the policy to reason over both detailed pose and global positioning. To overcome the sample inefficiency of reinforcement learning, we further introduce a distillation scheme that transfers motion knowledge from a mocap-trained expert to the vision-conditioned policy, which is then refined using physically motivated reinforcement learning rewards. Extensive experiments demonstrate that PhysHMR produces high-fidelity, physically plausible motion across diverse scenarios, outperforming prior approaches in both visual accuracy and physical realism.
☆ Oracle-RLAIF: An Improved Fine-Tuning Framework for Multi-modal Video Models through Reinforcement Learning from Ranking Feedback
Recent advances in large video-language models (VLMs) rely on extensive fine-tuning techniques that strengthen alignment between textual and visual comprehension. Leading pipelines typically pair supervised fine-tuning (SFT) with reinforcement learning from preference data to enhance video comprehension. However, as VLMs scale in parameter size, so does the cost of gathering enough human feedback. To make fine-tuning more cost-effective, recent frameworks explore reinforcement learning with AI feedback (RLAIF), which replace human preference with AI as a judge. Current RLAIF frameworks rely on a specialized reward model trained with video narratives to create calibrated scalar rewards -- an expensive and restrictive pipeline. We propose Oracle-RLAIF, a novel framework that replaces the trained reward model with a more general Oracle ranker which acts as a drop-in model ranking candidate model responses rather than scoring them. Alongside Oracle-RLAIF, we introduce $GRPO_{rank}$, a novel rank-based loss function based on Group Relative Policy Optimization (GRPO) that directly optimizes ordinal feedback with rank-aware advantages. Empirically, we demonstrate that Oracle-RLAIF consistently outperforms leading VLMs using existing fine-tuning methods when evaluated across various video comprehension benchmarks. Oracle-RLAIF paves the path to creating flexible and data-efficient frameworks for aligning large multi-modal video models with reinforcement learning from rank rather than score.
comment: Proceedings of the 39th Annual Conference on Neural Information Processing Systems, ARLET Workshop (Aligning Reinforcement Learning Experimentalists and Theorists)
☆ Exploring OCR-augmented Generation for Bilingual VQA
We investigate OCR-augmented generation with Vision Language Models (VLMs), exploring tasks in Korean and English toward multilingualism. To support research in this domain, we train and release KLOCR, a strong bilingual OCR baseline trained on 100M instances to augment VLMs with OCR ability. To complement existing VQA benchmarks, we curate KOCRBench for Korean VQA, and analyze different prompting methods. Extensive experiments show that OCR-extracted text significantly boosts performance across open source and commercial models. Our work offers new insights into OCR-augmented generation for bilingual VQA. Model, code, and data are available at https://github.com/JHLee0513/KLOCR.
☆ Learning a distance measure from the information-estimation geometry of data
We introduce the Information-Estimation Metric (IEM), a novel form of distance function derived from an underlying continuous probability density over a domain of signals. The IEM is rooted in a fundamental relationship between information theory and estimation theory, which links the log-probability of a signal with the errors of an optimal denoiser, applied to noisy observations of the signal. In particular, the IEM between a pair of signals is obtained by comparing their denoising error vectors over a range of noise amplitudes. Geometrically, this amounts to comparing the score vector fields of the blurred density around the signals over a range of blur levels. We prove that the IEM is a valid global metric and derive a closed-form expression for its local second-order approximation, which yields a Riemannian metric. For Gaussian-distributed signals, the IEM coincides with the Mahalanobis distance. But for more complex distributions, it adapts, both locally and globally, to the geometry of the distribution. In practice, the IEM can be computed using a learned denoiser (analogous to generative diffusion models) and solving a one-dimensional integral. To demonstrate the value of our framework, we learn an IEM on the ImageNet database. Experiments show that this IEM is competitive with or outperforms state-of-the-art supervised image quality metrics in predicting human perceptual judgments.
comment: Code available at https://github.com/ohayonguy/information-estimation-metric
☆ SIMSplat: Predictive Driving Scene Editing with Language-aligned 4D Gaussian Splatting
Driving scene manipulation with sensor data is emerging as a promising alternative to traditional virtual driving simulators. However, existing frameworks struggle to generate realistic scenarios efficiently due to limited editing capabilities. To address these challenges, we present SIMSplat, a predictive driving scene editor with language-aligned Gaussian splatting. As a language-controlled editor, SIMSplat enables intuitive manipulation using natural language prompts. By aligning language with Gaussian-reconstructed scenes, it further supports direct querying of road objects, allowing precise and flexible editing. Our method provides detailed object-level editing, including adding new objects and modifying the trajectories of both vehicles and pedestrians, while also incorporating predictive path refinement through multi-agent motion prediction to generate realistic interactions among all agents in the scene. Experiments on the Waymo dataset demonstrate SIMSplat's extensive editing capabilities and adaptability across a wide range of scenarios. Project page: https://sungyeonparkk.github.io/simsplat/
☆ Words That Make Language Models Perceive
Large language models (LLMs) trained purely on text ostensibly lack any direct perceptual experience, yet their internal representations are implicitly shaped by multimodal regularities encoded in language. We test the hypothesis that explicit sensory prompting can surface this latent structure, bringing a text-only LLM into closer representational alignment with specialist vision and audio encoders. When a sensory prompt tells the model to 'see' or 'hear', it cues the model to resolve its next-token predictions as if they were conditioned on latent visual or auditory evidence that is never actually supplied. Our findings reveal that lightweight prompt engineering can reliably activate modality-appropriate representations in purely text-trained LLMs.
♻ ☆ Diffusion Model as a Noise-Aware Latent Reward Model for Step-Level Preference Optimization NeurIPS 2025
Preference optimization for diffusion models aims to align them with human preferences for images. Previous methods typically use Vision-Language Models (VLMs) as pixel-level reward models to approximate human preferences. However, when used for step-level preference optimization, these models face challenges in handling noisy images of different timesteps and require complex transformations into pixel space. In this work, we show that pre-trained diffusion models are naturally suited for step-level reward modeling in the noisy latent space, as they are explicitly designed to process latent images at various noise levels. Accordingly, we propose the Latent Reward Model (LRM), which repurposes components of the diffusion model to predict preferences of latent images at arbitrary timesteps. Building on LRM, we introduce Latent Preference Optimization (LPO), a step-level preference optimization method conducted directly in the noisy latent space. Experimental results indicate that LPO significantly improves the model's alignment with general, aesthetic, and text-image alignment preferences, while achieving a 2.5-28x training speedup over existing preference optimization methods. Our code and models are available at https://github.com/Kwai-Kolors/LPO.
comment: NeurIPS 2025
♻ ☆ Poutine: Vision-Language-Trajectory Pre-Training and Reinforcement Learning Post-Training Enable Robust End-to-End Autonomous Driving
Maintaining good driving behavior in out-of-distribution scenarios remains a critical challenge in autonomous driving. A promising direction is to leverage the generalist knowledge and reasoning capabilities of large-language models by treating unusual driving scenarios as a logical reasoning task. In this work, we present Poutine, a method that uses an off-the-shelf 3B-parameter vision-language model (VLM) - without any additional components - to achieve robust end-to-end autonomous driving via a simple and scalable training recipe. To learn strong base driving capabilities, we first train Poutine-Base using self-supervised next-token prediction over vision, language, and trajectory (VLT) tokens, leveraging both nominal and long-tail driving data. In the second stage, we fine-tune Poutine-Base using Group Relative Policy Optimization (GRPO) with a small set of human preference-labeled examples. We evaluated our approach on the Waymo end-to-end driving benchmark curated for long-tail scenarios. The final Poutine model achieves an RFS of 7.99 on the test set, placing 1st in the 2025 Waymo Vision-Based End-to-End Driving Challenge by a significant margin. Our results suggest that handcrafted tokenizers or custom architectural components added to base VLMs in prior work are not necessary to achieve strong driving performance. Instead, this work highlights the potential of scalable VLT pretraining combined with lightweight RL fine-tuning to enable robust and generalizable autonomous driving.
♻ ☆ RIFLE: Removal of Image Flicker-Banding via Latent Diffusion Enhancement
Capturing screens is now routine in our everyday lives. But the photographs of emissive displays are often influenced by the flicker-banding (FB), which is alternating bright%u2013dark stripes that arise from temporal aliasing between a camera's rolling-shutter readout and the display's brightness modulation. Unlike moire degradation, which has been extensively studied, the FB remains underexplored despite its frequent and severe impact on readability and perceived quality. We formulate FB removal as a dedicated restoration task and introduce Removal of Image Flicker-Banding via Latent Diffusion Enhancement, RIFLE, a diffusion-based framework designed to remove FB while preserving fine details. We propose the flicker-banding prior estimator (FPE) that predicts key banding attributes and injects it into the restoration network. Additionally, Masked Loss (ML) is proposed to concentrate supervision on banded regions without sacrificing global fidelity. To overcome data scarcity, we provide a simulation pipeline that synthesizes FB in the luminance domain with stochastic jitter in banding angle, banding spacing, and banding width. Feathered boundaries and sensor noise are also applied for a more realistic simulation. For evaluation, we collect a paired real-world FB dataset with pixel-aligned banding-free references captured via long exposure. Across quantitative metrics and visual comparisons on our real-world dataset, RIFLE consistently outperforms recent image reconstruction baselines from mild to severe flicker-banding. To the best of our knowledge, it is the first work to research the simulation and removal of FB. Our work establishes a great foundation for subsequent research in both the dataset construction and the removal model design. Our dataset and code will be released soon.
♻ ☆ VRWKV-Editor: Reducing quadratic complexity in transformer-based video editing
In light of recent progress in video editing, deep learning models focusing on both spatial and temporal dependencies have emerged as the primary method. However, these models suffer from the quadratic computational complexity of traditional attention mechanisms, making them difficult to adapt to long-duration and high-resolution videos. This limitation restricts their applicability in practical contexts such as real-time video processing. To tackle this challenge, we introduce a method to reduce both time and space complexity of these systems by proposing VRWKV-Editor, a novel video editing model that integrates a linear spatio-temporal aggregation module into video-based diffusion models. VRWKV-Editor leverages bidirectional weighted key-value recurrence mechanism of the RWKV transformer to capture global dependencies while preserving temporal coherence, achieving linear complexity without sacrificing quality. Extensive experiments demonstrate that the proposed method achieves up to 3.7x speedup and 60% lower memory usage compared to state-of-the-art diffusion-based video editing methods, while maintaining competitive performance in frame consistency and text alignment. Furthermore, a comparative analysis we conducted on videos with different sequence lengths confirms that the gap in editing speed between our approach and architectures with self-attention becomes more significant with long videos.
♻ ☆ More Thought, Less Accuracy? On the Dual Nature of Reasoning in Vision-Language Models
Reasoning has emerged as a pivotal capability in Large Language Models (LLMs). Through Reinforcement Learning (RL), typically Group Relative Policy Optimization (GRPO), these models are able to solve complex tasks such as mathematics and code generation. Building on these advances, recent research has sought to extend reasoning to Vision-Language Models (VLMs), yielding promising results across diverse visual tasks. Despite this progress, our study uncovers the dual nature of multimodal reasoning: while it substantially enhances logical inference and facilitates performance on challenging problems, it may gradually impair perceptual grounding, leading to recognition failures on otherwise basic visual questions. Through further analysis, we attribute this phenomenon to visual forgetting, wherein prolonged reasoning causes the model to increasingly disregard visual input. To address this, we propose Vision-Anchored Policy Optimization (VAPO), a simple yet effective method that explicitly steers the reasoning process toward visually grounded trajectories. Our result model, VAPO-Thinker-7B, significantly strengthens the model's reliance on visual information and achieves new state-of-the-art results on a wide range of established benchmarks. Project page: https://xytian1008.github.io/VAPO/
♻ ☆ What Makes a Good Dataset for Knowledge Distillation?
Knowledge distillation (KD) has been a popular and effective method for model compression. One important assumption of KD is that the teacher's original dataset will also be available when training the student. However, in situations such as continual learning and distilling large models trained on company-withheld datasets, having access to the original data may not always be possible. This leads practitioners towards utilizing other sources of supplemental data, which could yield mixed results. One must then ask: "what makes a good dataset for transferring knowledge from teacher to student?" Many would assume that only real in-domain imagery is viable, but is that the only option? In this work, we explore multiple possible surrogate distillation datasets and demonstrate that many different datasets, even unnatural synthetic imagery, can serve as a suitable alternative in KD. From examining these alternative datasets, we identify and present various criteria describing what makes a good dataset for distillation. Source code is available at https://github.com/osu-cvl/good-kd-dataset.
♻ ☆ VITA: Vision-to-Action Flow Matching Policy
Conventional flow matching and diffusion-based policies sample through iterative denoising from standard noise distributions (e.g., Gaussian), and require conditioning mechanisms to incorporate visual information during the generative process, incurring substantial time and memory overhead. To reduce the complexity, we develop VITA(VIsion-To-Action policy), a noise-free and conditioning-free policy learning framework that directly maps visual representations to latent actions using flow matching. VITA treats latent visual representations as the source of the flow, thus eliminating the need of conditioning. As expected, bridging vision and action is challenging, because actions are lower-dimensional, less structured, and sparser than visual representations; moreover, flow matching requires the source and target to have the same dimensionality. To overcome this, we introduce an action autoencoder that maps raw actions into a structured latent space aligned with visual latents, trained jointly with flow matching. To further prevent latent space collapse, we propose flow latent decoding, which anchors the latent generation process by backpropagating the action reconstruction loss through the flow matching ODE (ordinary differential equations) solving steps. We evaluate VITA on 8 simulation and 2 real-world tasks from ALOHA and Robomimic. VITA outperforms or matches state-of-the-art generative policies, while achieving 1.5-2.3x faster inference compared to conventional methods with conditioning. Project page: https://ucd-dare.github.io/VITA/
comment: Project page: https://ucd-dare.github.io/VITA/ Code: https://github.com/ucd-dare/VITA
♻ ☆ NeRAF: 3D Scene Infused Neural Radiance and Acoustic Fields ICLR 2025
Sound plays a major role in human perception. Along with vision, it provides essential information for understanding our surroundings. Despite advances in neural implicit representations, learning acoustics that align with visual scenes remains a challenge. We propose NeRAF, a method that jointly learns acoustic and radiance fields. NeRAF synthesizes both novel views and spatialized room impulse responses (RIR) at new positions by conditioning the acoustic field on 3D scene geometric and appearance priors from the radiance field. The generated RIR can be applied to auralize any audio signal. Each modality can be rendered independently and at spatially distinct positions, offering greater versatility. We demonstrate that NeRAF generates high-quality audio on SoundSpaces and RAF datasets, achieving significant performance improvements over prior methods while being more data-efficient. Additionally, NeRAF enhances novel view synthesis of complex scenes trained with sparse data through cross-modal learning. NeRAF is designed as a Nerfstudio module, providing convenient access to realistic audio-visual generation.
comment: ICLR 2025 (Poster). Camera ready version. Project Page: https://amandinebtto.github.io/NeRAF; 24 pages, 13 figures
♻ ☆ Learning to Weight Parameters for Training Data Attribution
We study gradient-based data attribution, aiming to identify which training examples most influence a given output. Existing methods for this task either treat network parameters uniformly or rely on implicit weighting derived from Hessian approximations, which do not fully model functional heterogeneity of network parameters. To address this, we propose a method to explicitly learn parameter importance weights directly from data, without requiring annotated labels. Our approach improves attribution accuracy across diverse tasks, including image classification, language modeling, and diffusion, and enables fine-grained attribution for concepts like subject and style.
♻ ☆ GEM: 3D Gaussian Splatting for Efficient and Accurate Cryo-EM Reconstruction
Cryo-electron microscopy (cryo-EM) has become a central tool for high-resolution structural biology, yet the massive scale of datasets (often exceeding 100k particle images) renders 3D reconstruction both computationally expensive and memory intensive. Traditional Fourier-space methods are efficient but lose fidelity due to repeated transforms, while recent real-space approaches based on neural radiance fields (NeRFs) improve accuracy but incur cubic memory and computation overhead. Therefore, we introduce GEM, a novel cryo-EM reconstruction framework built on 3D Gaussian Splatting (3DGS) that operates directly in real-space while maintaining high efficiency. Instead of modeling the entire density volume, GEM represents proteins with compact 3D Gaussians, each parameterized by only 11 values. To further improve the training efficiency, we designed a novel gradient computation to 3D Gaussians that contribute to each voxel. This design substantially reduced both memory footprint and training cost. On standard cryo-EM benchmarks, GEM achieves up to 48% faster training and 12% lower memory usage compared to state-of-the-art methods, while improving local resolution by as much as 38.8%. These results establish GEM as a practical and scalable paradigm for cryo-EM reconstruction, unifying speed, efficiency, and high-resolution accuracy. Our code is available at https://github.com/UNITES-Lab/GEM.
♻ ☆ Segmentor-Guided Counterfactual Fine-Tuning for Locally Coherent and Targeted Image Synthesis MICCAI 2025
Counterfactual image generation is a powerful tool for augmenting training data, de-biasing datasets, and modeling disease. Current approaches rely on external classifiers or regressors to increase the effectiveness of subject-level interventions (e.g., changing the patient's age). For structure-specific interventions (e.g., changing the area of the left lung in a chest radiograph), we show that this is insufficient, and can result in undesirable global effects across the image domain. Previous work used pixel-level label maps as guidance, requiring a user to provide hypothetical segmentations which are tedious and difficult to obtain. We propose Segmentor-guided Counterfactual Fine-Tuning (Seg-CFT), which preserves the simplicity of intervening on scalar-valued, structure-specific variables while producing locally coherent and effective counterfactuals. We demonstrate the capability of generating realistic chest radiographs, and we show promising results for modeling coronary artery disease. Code: https://github.com/biomedia-mira/seg-cft.
comment: Accepted at MICCAI 2025
♻ ☆ Multiple Queries with Multiple Keys: A Precise Prompt Matching Paradigm for Prompt-based Continual Learning ACM MM2025
Continual learning requires machine learning models to continuously acquire new knowledge in dynamic environments while avoiding the forgetting of previous knowledge. Prompt-based continual learning methods effectively address the issue of catastrophic forgetting through prompt expansion and selection. However, existing approaches often suffer from low accuracy in prompt selection, which can result in the model receiving biased knowledge and making biased predictions. To address this issue, we propose the Multiple Queries with Multiple Keys (MQMK) prompt matching paradigm for precise prompt selection. The goal of MQMK is to select the prompts whose training data distribution most closely matches that of the test sample. Specifically, Multiple Queries enable precise breadth search by introducing task-specific knowledge, while Multiple Keys perform deep search by representing the feature distribution of training samples at a fine-grained level. Each query is designed to perform local matching with a designated task to reduce interference across queries. Experiments show that MQMK enhances the prompt matching rate by over 30\% in challenging scenarios and achieves state-of-the-art performance on three widely adopted continual learning benchmarks. The code is available at https://github.com/DunweiTu/MQMK.
comment: accepted by ACM MM2025
♻ ☆ GenExam: A Multidisciplinary Text-to-Image Exam
Exams are a fundamental test of expert-level intelligence and require integrated understanding, reasoning, and generation. Existing exam-style benchmarks mainly focus on understanding and reasoning tasks, and current generation benchmarks emphasize the illustration of world knowledge and visual concepts, neglecting the evaluation of rigorous drawing exams. We introduce GenExam, the first benchmark for multidisciplinary text-to-image exams, featuring 1,000 samples across 10 subjects with exam-style prompts organized under a four-level taxonomy. Each problem is equipped with ground-truth images and fine-grained scoring points to enable a precise evaluation of semantic correctness and visual plausibility. Experiments show that even state-of-the-art models such as GPT-Image-1 and Gemini-2.5-Flash-Image achieve less than 15% strict scores, and most models yield almost 0%, suggesting the great challenge of our benchmark. By framing image generation as an exam, GenExam offers a rigorous assessment of models' ability to integrate understanding, reasoning, and generation, providing insights on the path to general AGI. Our benchmark and evaluation code are released at https://github.com/OpenGVLab/GenExam.
♻ ☆ Enhancing Corpus Callosum Segmentation in Fetal MRI via Pathology-Informed Domain Randomization MICCAI 2025
Accurate fetal brain segmentation is crucial for extracting biomarkers and assessing neurodevelopment, especially in conditions such as corpus callosum dysgenesis (CCD), which can induce drastic anatomical changes. However, the rarity of CCD severely limits annotated data, hindering the generalization of deep learning models. To address this, we propose a pathology-informed domain randomization strategy that embeds prior knowledge of CCD manifestations into a synthetic data generation pipeline. By simulating diverse brain alterations from healthy data alone, our approach enables robust segmentation without requiring pathological annotations. We validate our method on a cohort comprising 248 healthy fetuses, 26 with CCD, and 47 with other brain pathologies, achieving substantial improvements on CCD cases while maintaining performance on both healthy fetuses and those with other pathologies. From the predicted segmentations, we derive clinically relevant biomarkers, such as corpus callosum length (LCC) and volume, and show their utility in distinguishing CCD subtypes. Our pathology-informed augmentation reduces the LCC estimation error from 1.89 mm to 0.80 mm in healthy cases and from 10.9 mm to 0.7 mm in CCD cases. Beyond these quantitative gains, our approach yields segmentations with improved topological consistency relative to available ground truth, enabling more reliable shape-based analyses. Overall, this work demonstrates that incorporating domain-specific anatomical priors into synthetic data pipelines can effectively mitigate data scarcity and enhance analysis of rare but clinically significant malformations.
comment: Presented at the PIPPI Workshop of MICCAI 2025
♻ ☆ One-Step Residual Shifting Diffusion for Image Super-Resolution via Distillation
Diffusion models for super-resolution (SR) produce high-quality visual results but require expensive computational costs. Despite the development of several methods to accelerate diffusion-based SR models, some (e.g., SinSR) fail to produce realistic perceptual details, while others (e.g., OSEDiff) may hallucinate non-existent structures. To overcome these issues, we present RSD, a new distillation method for ResShift, one of the top diffusion-based SR models. Our method is based on training the student network to produce such images that a new fake ResShift model trained on them will coincide with the teacher model. RSD achieves single-step restoration and outperforms the teacher by a large margin. We show that our distillation method can surpass the other distillation-based method for ResShift - SinSR - making it on par with state-of-the-art diffusion-based SR distillation methods. Compared to SR methods based on pre-trained text-to-image models, RSD produces competitive perceptual quality, provides images with better alignment to degraded input images, and requires fewer parameters and GPU memory. We provide experimental results on various real-world and synthetic datasets, including RealSR, RealSet65, DRealSR, ImageNet, and DIV2K.
♻ ☆ Automated Model Evaluation for Object Detection via Prediction Consistency and Reliability ICCV 2025
Recent advances in computer vision have made training object detectors more efficient and effective; however, assessing their performance in real-world applications still relies on costly manual annotation. To address this limitation, we develop an automated model evaluation (AutoEval) framework for object detection. We propose Prediction Consistency and Reliability (PCR), which leverages the multiple candidate bounding boxes that conventional detectors generate before non-maximum suppression (NMS). PCR estimates detection performance without ground-truth labels by jointly measuring 1) the spatial consistency between boxes before and after NMS, and 2) the reliability of the retained boxes via the confidence scores of overlapping boxes. For a more realistic and scalable evaluation, we construct a meta-dataset by applying image corruptions of varying severity. Experimental results demonstrate that PCR yields more accurate performance estimates than existing AutoEval methods, and the proposed meta-dataset covers a wider range of detection performance. The code is available at https://github.com/YonseiML/autoeval-det.
comment: ICCV 2025 Oral; v2: fixed a typo in the title and updated experimental results
♻ ☆ Causal-Adapter: Taming Text-to-Image Diffusion for Faithful Counterfactual Generation
We present Causal-Adapter, a modular framework that adapts frozen text-to-image diffusion backbones for counterfactual image generation. Our method enables causal interventions on target attributes, consistently propagating their effects to causal dependents without altering the core identity of the image. In contrast to prior approaches that rely on prompt engineering without explicit causal structure, Causal-Adapter leverages structural causal modeling augmented with two attribute regularization strategies: prompt-aligned injection, which aligns causal attributes with textual embeddings for precise semantic control, and a conditioned token contrastive loss to disentangle attribute factors and reduce spurious correlations. Causal-Adapter achieves state-of-the-art performance on both synthetic and real-world datasets, with up to 91% MAE reduction on Pendulum for accurate attribute control and 87% FID reduction on ADNI for high-fidelity MRI image generation. These results show that our approach enables robust, generalizable counterfactual editing with faithful attribute modification and strong identity preservation.
comment: 9 pages, 26 figures
♻ ☆ LoFT: Parameter-Efficient Fine-Tuning for Long-tailed Semi-Supervised Learning in Open-World Scenarios
Long-tailed learning has garnered increasing attention due to its wide applicability in real-world scenarios. Among existing approaches, Long-Tailed Semi-Supervised Learning (LTSSL) has emerged as an effective solution by incorporating a large amount of unlabeled data into the imbalanced labeled dataset. However, most prior LTSSL methods are designed to train models from scratch, which often leads to issues such as overconfidence and low-quality pseudo-labels. To address these challenges, we extend LTSSL into the foundation model fine-tuning paradigm and propose a novel framework: LoFT (Long-tailed semi-supervised learning via parameter-efficient Fine-Tuning). We demonstrate that fine-tuned foundation models can generate more reliable pseudolabels, thereby benefiting imbalanced learning. Furthermore, we explore a more practical setting by investigating semi-supervised learning under open-world conditions, where the unlabeled data may include out-of-distribution (OOD) samples. To handle this problem, we propose LoFT-OW (LoFT under Open-World scenarios) to improve the discriminative ability. Experimental results on multiple benchmarks demonstrate that our method achieves superior performance compared to previous approaches, even when utilizing only 1\% of the unlabeled data compared with previous works.
♻ ☆ Equivariant Splitting: Self-supervised learning from incomplete data
Self-supervised learning for inverse problems allows to train a reconstruction network from noise and/or incomplete data alone. These methods have the potential of enabling learning-based solutions when obtaining ground-truth references for training is expensive or even impossible. In this paper, we propose a new self-supervised learning strategy devised for the challenging setting where measurements are observed via a single incomplete observation model. We introduce a new definition of equivariance in the context of reconstruction networks, and show that the combination of self-supervised splitting losses and equivariant reconstruction networks results in the same minimizer in expectation as the one of a supervised loss. Through a series of experiments on image inpainting, accelerated magnetic resonance imaging, and compressive sensing, we demonstrate that the proposed loss achieves state-of-the-art performance in settings with highly rank-deficient forward models.
♻ ☆ Interior Object Geometry via Fitted Frames
We propose a means of computing fitted frames on the boundary and in the interior of objects and using them to provide the basis for producing geometric features from them that are not only alignment-free but most importantly can be made to correspond locally across a population of objects. We describe a representation targeted for anatomic objects which is designed to enable this strong locational correspondence within object populations and thus to provide powerful object statistics. It accomplishes this by understanding an object as the diffeomorphic deformation of the closure of the interior of an ellipsoid and by using a skeletal representation fitted throughout the deformation to produce a model of the target object, where the object is provided initially in the form of a boundary mesh. Via classification performance on hippocampi shape between individuals with a disorder vs. others, we compare our method to two state-of-theart methods for producing object representations that are intended to capture geometric correspondence across a population of objects and to yield geometric features useful for statistics, and we show notably improved classification performance by this new representation, which we call the evolutionary s-rep. The geometric features that are derived from each of the representations, especially via fitted frames, are discussed.
♻ ☆ L4P: Towards Unified Low-Level 4D Vision Perception
The spatio-temporal relationship between the pixels of a video carries critical information for low-level 4D perception tasks. A single model that reasons about it should be able to solve several such tasks well. Yet, most state-of-the-art methods rely on architectures specialized for the task at hand. We present L4P, a feedforward, general-purpose architecture that solves low-level 4D perception tasks in a unified framework. L4P leverages a pre-trained ViT-based video encoder and combines it with per-task heads that are lightweight and therefore do not require extensive training. Despite its general and feedforward formulation, our method is competitive with existing specialized methods on both dense tasks, such as depth or optical flow estimation, and sparse tasks, such as 2D/3D tracking. Moreover, it solves all tasks at once in a time comparable to that of single-task methods.
♻ ☆ Post-hoc Probabilistic Vision-Language Models
Vision-language models (VLMs), such as CLIP and SigLIP, have found remarkable success in classification, retrieval, and generative tasks. For this, VLMs deterministically map images and text descriptions to a joint latent space in which their similarity is assessed using the cosine similarity. However, a deterministic mapping of inputs fails to capture uncertainties over concepts arising from domain shifts when used in downstream tasks. In this work, we propose post-hoc uncertainty estimation in VLMs that does not require additional training. Our method leverages a Bayesian posterior approximation over the last layers in VLMs and analytically quantifies uncertainties over cosine similarities. We demonstrate its effectiveness for uncertainty quantification and support set selection in active learning. Compared to baselines, we obtain improved and well-calibrated predictive uncertainties, interpretable uncertainty estimates, and sample-efficient active learning. Our results show promise for safety-critical applications of large-scale models.
comment: Project page: https://aaltoml.github.io/BayesVLM/
♻ ☆ Momentum-SAM: Sharpness Aware Minimization without Computational Overhead
The recently proposed optimization algorithm for deep neural networks Sharpness Aware Minimization (SAM) suggests perturbing parameters before gradient calculation by a gradient ascent step to guide the optimization into parameter space regions of flat loss. While significant generalization improvements and thus reduction of overfitting could be demonstrated, the computational costs are doubled due to the additionally needed gradient calculation, making SAM unfeasible in case of limited computationally capacities. Motivated by Nesterov Accelerated Gradient (NAG) we propose Momentum-SAM (MSAM), which perturbs parameters in the direction of the accumulated momentum vector to achieve low sharpness without significant computational overhead or memory demands over SGD or Adam. We evaluate MSAM in detail and reveal insights on separable mechanisms of NAG, SAM and MSAM regarding training optimization and generalization. Code is available at https://github.com/MarlonBecker/MSAM.
♻ ☆ TrimTokenator: Towards Adaptive Visual Token Pruning for Large Multimodal Models
Large Multimodal Models (LMMs) have achieved significant success across various tasks. These models usually encode visual inputs into dense token sequences, which are then concatenated with textual tokens and jointly processed by a language model. However, the increased token count substantially raises computational and memory costs during inference. Token pruning has emerged as a promising approach to address this issue. Existing token pruning methods often rely on costly calibration or suboptimal importance metrics, leading to redundant retained tokens. In this paper, we analyze the redundancy differences between visual and textual tokens and propose pruning exclusively on visual tokens. Based on this, we propose a visual token pruning strategy that explicitly preserves both cross-modal alignment and intra-modal informational diversity. We introduce a mutual information-based token pruning strategy that removes visual tokens semantically misaligned with textual tokens, effectively preserving the alignment between the visual and textual modalities. To further improve the representational quality of the retained tokens, we additionally prune redundant visual tokens by maximizing the expected pairwise distances in the embedding space, which is solved efficiently with a greedy algorithm. Extensive experiments demonstrate that our method maintains strong performance while reducing tokens by 88.9% on models such as LLaVA-1.5-7B and LLaVA-NEXT-7B, resulting in a 56.7% improvement in inference speed.
comment: 15 pages
♻ ☆ DiCache: Let Diffusion Model Determine Its Own Cache
Recent years have witnessed the rapid development of acceleration techniques for diffusion models, especially caching-based acceleration methods. These studies seek to answer two fundamental questions: "When to cache" and "How to use cache", typically relying on predefined empirical laws or dataset-level priors to determine caching timings and adopting handcrafted rules for multi-step cache utilization. However, given the highly dynamic nature of the diffusion process, they often exhibit limited generalizability and fail to cope with diverse samples. In this paper, a strong sample-specific correlation is revealed between the variation patterns of the shallow-layer feature differences in the diffusion model and those of deep-layer features. Moreover, we have observed that the features from different model layers form similar trajectories. Based on these observations, we present DiCache, a novel training-free adaptive caching strategy for accelerating diffusion models at runtime, answering both when and how to cache within a unified framework. Specifically, DiCache is composed of two principal components: (1) Online Probe Profiling Scheme leverages a shallow-layer online probe to obtain an on-the-fly indicator for the caching error in real time, enabling the model to dynamically customize the caching schedule for each sample. (2) Dynamic Cache Trajectory Alignment adaptively approximates the deep-layer feature output from multi-step historical caches based on the shallow-layer feature trajectory, facilitating higher visual quality. Extensive experiments validate DiCache's capability in achieving higher efficiency and improved fidelity over state-of-the-art approaches on various leading diffusion models including WAN 2.1, HunyuanVideo and Flux.
comment: Project Page: https://bujiazi.github.io/dicache.github.io/ Code: https://github.com/Bujiazi/DiCache
♻ ☆ UltraUPConvNet: A UPerNet- and ConvNeXt-Based Multi-Task Network for Ultrasound Tissue Segmentation and Disease Prediction
Ultrasound imaging is widely used in clinical practice due to its cost-effectiveness, mobility, and safety. However, current AI research often treats disease prediction and tissue segmentation as two separate tasks and their model requires substantial computational overhead. In such a situation, we introduce UltraUPConvNet, a computationally efficient universal framework designed for both ultrasound image classification and segmentation. Trained on a large-scale dataset containing more than 9,700 annotations across seven different anatomical regions, our model achieves state-of-the-art performance on certain datasets with lower computational overhead. Our model weights and codes are available at https://github.com/yyxl123/UltraUPConvNet
comment: 8 pages
♻ ☆ Robust Prompt Tuning for Vision-Language Models with Mild Semantic Noise
Prompt tuning has shown promising results, but its robustness and generalization to unseen categories remain limited. Through our experiments, we demonstrate that the complete removal of semantic noise is a key factor restricting robustness. Existing methods typically suppress or filter out semantic noise in the prompt space, inadvertently hindering the model's robustness and its ability to generalize to unseen categories. To address this, we propose ANPrompt, a robust prompt tuning framework that actively incorporates weak semantic noise. By clustering weakly perturbed features into noise prompts and integrating them with learnable tokens in both the text and vision encoders, ANPrompt ensures controlled exposure to semantic variations. To enhance the visual pathway, we introduce the Noise-Resistant Visual Prompt Prototype (NRVPP), which stabilizes visual semantics under weak perturbations. Additionally, we propose a Weak Alignment Loss (WALoss) at the logits level to enforce consistency between clean and perturbed predictions, providing stable supervision. By combining weak semantic noise exposure with logits-based consistency, ANPrompt prevents overfitting to specific phrasings while preserving semantic integrity. Extensive experiments across 11 benchmarks, including base-to-new splits, show that ANPrompt consistently outperforms existing prompt tuning methods, offering superior robustness to semantic noise and improved generalization across tasks.
♻ ☆ NeoARCADE: Robust Calibration for Distance Estimation to Support Assistive Drones for the Visually Impaired
Autonomous navigation by drones using onboard sensors, combined with deep learning and computer vision algorithms, is impacting a number of domains. We examine the use of drones to autonomously follow and assist Visually Impaired People (VIPs) in navigating urban environments. Estimating the absolute distance between the drone and the VIP, and to nearby objects, is essential to design obstacle avoidance algorithms. Here, we present NeoARCADE (Neo), which uses depth maps over monocular video feeds, common in consumer drones, to estimate absolute distances to the VIP and obstacles. Neo proposes robust calibration technique based on depth score normalization and coefficient estimations to translate relative distances from depth map to absolute ones. It further develops a dynamic recalibration method that can adapt to changing scenarios. We also develop two baseline models, Regression and Geometric, and compare Neo with SOTA depth map approaches and the baselines. We provide detailed evaluations to validate their robustness and generalizability for distance estimation to VIPs and other obstacles in diverse and dynamic conditions, using datasets collected in a campus environment. Neo predicts distances to VIP with an error <30cm, and to different obstacles like cars and bicycles within a maximum error of 60cm, which are better than the baselines. Neo also clearly out-performs SOTA depth map methods, reporting errors up to 5.3-14.6x lower.
comment: 34 pages, 20 figures, 3 tables
♻ ☆ Accelerating Targeted Hard-Label Adversarial Attacks in Low-Query Black-Box Settings
Deep neural networks for image classification remain vulnerable to adversarial examples -- small, imperceptible perturbations that induce misclassifications. In black-box settings, where only the final prediction is accessible, crafting targeted attacks that aim to misclassify into a specific target class is particularly challenging due to narrow decision regions. Current state-of-the-art methods often exploit the geometric properties of the decision boundary separating a source image and a target image rather than incorporating information from the images themselves. In contrast, we propose Targeted Edge-informed Attack (TEA), a novel attack that utilizes edge information from the target image to carefully perturb it, thereby producing an adversarial image that is closer to the source image while still achieving the desired target classification. Our approach consistently outperforms current state-of-the-art methods across different models in low query settings (nearly 70% fewer queries are used), a scenario especially relevant in real-world applications with limited queries and black-box access. Furthermore, by efficiently generating a suitable adversarial example, TEA provides an improved target initialization for established geometry-based attacks.
comment: This paper contains 10 pages, 8 figures and 8 tables. For associated supplementary code, see https://github.com/mdppml/TEA
♻ ☆ How far can we go with ImageNet for Text-to-Image generation?
Recent text-to-image (T2I) generation models have achieved remarkable sucess by training on billion-scale datasets, following a `bigger is better' paradigm that prioritizes data quantity over availability (closed vs open source) and reproducibility (data decay vs established collections). We challenge this established paradigm by demonstrating that one can achieve capabilities of models trained on massive web-scraped collections, using only ImageNet enhanced with well-designed text and image augmentations. With this much simpler setup, we achieve a +6% overall score over SD-XL on GenEval and +5% on DPGBench while using just 1/10th the parameters and 1/1000th the training images. We also show that ImageNet pretrained models can be finetuned on task specific datasets (like for high resolution aesthetic applications) with good results, indicating that ImageNet is sufficient for acquiring general capabilities. This opens the way for more reproducible research as ImageNet is widely available and the proposed standardized training setup only requires 500 hours of H100 to train a text-to-image model.
♻ ☆ EyePCR: A Comprehensive Benchmark for Fine-Grained Perception, Knowledge Comprehension and Clinical Reasoning in Ophthalmic Surgery NeurIPS2025
MLLMs (Multimodal Large Language Models) have showcased remarkable capabilities, but their performance in high-stakes, domain-specific scenarios like surgical settings, remains largely under-explored. To address this gap, we develop \textbf{EyePCR}, a large-scale benchmark for ophthalmic surgery analysis, grounded in structured clinical knowledge to evaluate cognition across \textit{Perception}, \textit{Comprehension} and \textit{Reasoning}. EyePCR offers a richly annotated corpus with more than 210k VQAs, which cover 1048 fine-grained attributes for multi-view perception, medical knowledge graph of more than 25k triplets for comprehension, and four clinically grounded reasoning tasks. The rich annotations facilitate in-depth cognitive analysis, simulating how surgeons perceive visual cues and combine them with domain knowledge to make decisions, thus greatly improving models' cognitive ability. In particular, \textbf{EyePCR-MLLM}, a domain-adapted variant of Qwen2.5-VL-7B, achieves the highest accuracy on MCQs for \textit{Perception} among compared models and outperforms open-source models in \textit{Comprehension} and \textit{Reasoning}, rivalling commercial models like GPT-4.1. EyePCR reveals the limitations of existing MLLMs in surgical cognition and lays the foundation for benchmarking and enhancing clinical reliability of surgical video understanding models.
comment: Strong accept by NeurIPS2025 Reviewers and AC
♻ ☆ RGS-DR: Deferred Reflections and Residual Shading in 2D Gaussian Splatting
In this work, we address specular appearance in inverse rendering using 2D Gaussian splatting with deferred shading and argue for a refinement stage to improve specular detail, thereby bridging the gap with reconstruction-only methods. Our pipeline estimates editable material properties and environment illumination while employing a directional residual pass that captures leftover view-dependent effects for further refining novel view synthesis. In contrast to per-Gaussian shading with shortest-axis normals and normal residuals, which tends to result in more noisy geometry and specular appearance, a pixel-deferred surfel formulation with specular residuals yields sharper highlights, cleaner materials, and improved editability. We evaluate our approach on rendering and reconstruction quality on three popular datasets featuring glossy objects, and also demonstrate high-quality relighting and material editing.
♻ ☆ Fusing Foveal Fixations Using Linear Retinal Transformations and Bayesian Experimental Design
Humans (and many vertebrates) face the problem of fusing together multiple fixations of a scene in order to obtain a representation of the whole, where each fixation uses a high-resolution fovea and decreasing resolution in the periphery. In this paper we explicitly represent the retinal transformation of a fixation as a linear downsampling of a high-resolution latent image of the scene, exploiting the known geometry. This linear transformation allows us to carry out exact inference for the latent variables in factor analysis (FA) and mixtures of FA models of the scene. Further, this allows us to formulate and solve the choice of "where to look next" as a Bayesian experimental design problem using the Expected Information Gain criterion. Experiments on the Frey faces and MNIST datasets demonstrate the effectiveness of our models.
comment: 19 pages, 3 figures
♻ ☆ Feature Representation Transferring to Lightweight Models via Perception Coherence
In this paper, we propose a method for transferring feature representation to lightweight student models from larger teacher models. We mathematically define a new notion called \textit{perception coherence}. Based on this notion, we propose a loss function, which takes into account the dissimilarities between data points in feature space through their ranking. At a high level, by minimizing this loss function, the student model learns to mimic how the teacher model \textit{perceives} inputs. More precisely, our method is motivated by the fact that the representational capacity of the student model is weaker than the teacher model. Hence, we aim to develop a new method allowing for a better relaxation. This means that, the student model does not need to preserve the absolute geometry of the teacher one, while preserving global coherence through dissimilarity ranking. Importantly, while rankings are defined only on finite sets, our notion of \textit{perception coherence} extends them into a probabilistic form. This formulation depends on the input distribution and applies to general dissimilarity metrics. Our theoretical insights provide a probabilistic perspective on the process of feature representation transfer. Our experiments results show that our method outperforms or achieves on-par performance compared to strong baseline methods for representation transferring.
Temporal Overlapping Prediction: A Self-supervised Pre-training Method for LiDAR Moving Object Segmentation
Moving object segmentation (MOS) on LiDAR point clouds is crucial for autonomous systems like self-driving vehicles. Previous supervised approaches rely heavily on costly manual annotations, while LiDAR sequences naturally capture temporal motion cues that can be leveraged for self-supervised learning. In this paper, we propose Temporal Overlapping Prediction (TOP), a self-supervised pre-training method that alleviate the labeling burden for MOS. TOP explores the temporal overlapping points that commonly observed by current and adjacent scans, and learns spatiotemporal representations by predicting the occupancy states of temporal overlapping points. Moreover, we utilize current occupancy reconstruction as an auxiliary pre-training objective, which enhances the current structural awareness of the model. We conduct extensive experiments and observe that the conventional metric Intersection-over-Union (IoU) shows strong bias to objects with more scanned points, which might neglect small or distant objects. To compensate for this bias, we introduce an additional metric called mIoU_obj to evaluate object-level performance. Experiments on nuScenes and SemanticKITTI show that TOPoutperforms both supervised training-from-scratch baseline and other self-supervised pre-training baselines by up to 28.77% relative improvement, demonstrating strong transferability across LiDAR setups and generalization to other tasks. Code and pre-trained models will be publicly available upon publication.
♻ ☆ There and Back Again: On the relation between Noise and Image Inversions in Diffusion Models
Diffusion Models achieve state-of-the-art performance in generating new samples but lack a low-dimensional latent space that encodes the data into editable features. Inversion-based methods address this by reversing the denoising trajectory, transferring images to their approximated starting noise. In this work, we thoroughly analyze this procedure and focus on the relation between the initial noise, the generated samples, and their corresponding latent encodings obtained through the DDIM inversion. First, we show that latents exhibit structural patterns in the form of less diverse noise predicted for smooth image areas (e.g., plain sky). Through a series of analyses, we trace this issue to the first inversion steps, which fail to provide accurate and diverse noise. Consequently, the DDIM inversion space is notably less manipulative than the original noise. We show that prior inversion methods do not fully resolve this issue, but our simple fix, where we replace the first DDIM Inversion steps with a forward diffusion process, successfully decorrelates latent encodings and enables higher quality editions and interpolations. The code is available at https://github.com/luk-st/taba.
comment: Preprint
♻ ☆ Concept Unlearning by Modeling Key Steps of Diffusion Process
Text-to-image diffusion models (T2I DMs), represented by Stable Diffusion, which generate highly realistic images based on textual input, have been widely used, but their flexibility also makes them prone to misuse for producing harmful or unsafe content. Concept unlearning has been used to prevent text-to-image diffusion models from being misused to generate undesirable visual content. However, existing methods struggle to trade off unlearning effectiveness with the preservation of generation quality. To address this limitation, we propose Key Step Concept Unlearning (KSCU), which selectively fine-tunes the model at key steps to the target concept. KSCU is inspired by the fact that different diffusion denoising steps contribute unequally to the final generation. Compared to previous approaches, which treat all denoising steps uniformly, KSCU avoids over-optimization of unnecessary steps for higher effectiveness and reduces the number of parameter updates for higher efficiency. For example, on the I2P dataset, KSCU outperforms ESD by 8.3% in nudity unlearning accuracy while improving FID by 8.4%, and achieves a high overall score of 0.92, substantially surpassing all other SOTA methods.
♻ ☆ GARLIC: GAussian Representation LearnIng for spaCe partitioning
We present \textbf{GARLIC}, a representation learning approach for Euclidean approximate nearest neighbor (ANN) search in high dimensions. Existing partitions tend to rely on isotropic cells, fixed global resolution, or balanced constraints, which fragment dense regions and merge unrelated points in sparse ones, thereby increasing the candidate count when probing only a few cells. Our method instead partitions \(\mathbb{R}^d\) into anisotropic Gaussian cells whose shapes align with local geometry and sizes adapt to data density. Information-theoretic objectives balance coverage, overlap, and geometric alignment, while split/clone refinement introduces Gaussians only where needed. At query time, Mahalanobis distance selects relevant cells and localized quantization prunes candidates. This yields partitions that reduce cross-cell neighbor splits and candidate counts under small probe budgets, while remaining robust even when trained on only a small fraction of the dataset. Overall, GARLIC introduces a geometry-aware space-partitioning paradigm that combines information-theoretic objectives with adaptive density refinement, offering competitive recall--efficiency trade-offs for Euclidean ANN search.
♻ ☆ A Survey on Dynamic Neural Networks: from Computer Vision to Multi-modal Sensor Fusion
Model compression is essential in the deployment of large Computer Vision models on embedded devices. However, static optimization techniques (e.g. pruning, quantization, etc.) neglect the fact that different inputs have different complexities, thus requiring different amount of computations. Dynamic Neural Networks allow to condition the number of computations to the specific input. The current literature on the topic is very extensive and fragmented. We present a comprehensive survey that synthesizes and unifies existing Dynamic Neural Networks research in the context of Computer Vision. Additionally, we provide a logical taxonomy based on which component of the network is adaptive: the output, the computation graph or the input. Furthermore, we argue that Dynamic Neural Networks are particularly beneficial in the context of Sensor Fusion for better adaptivity, noise reduction and information prioritization. We present preliminary works in this direction. We complement this survey with a curated repository listing all the surveyed papers, each with a brief summary of the solution and the code base when available: https://github.com/DTU-PAS/awesome-dynn-for-cv .
comment: Under review at Image and Vision Computing
♻ ☆ SCoT: Unifying Consistency Models and Rectified Flows via Straight-Consistent Trajectories
Pre-trained diffusion models are commonly used to generate clean data (e.g., images) from random noises, effectively forming pairs of noises and corresponding clean images. Distillation on these pre-trained models can be viewed as the process of constructing advanced trajectories within the pair to accelerate sampling. For instance, consistency model distillation develops consistent projection functions to regulate trajectories, although sampling efficiency remains a concern. Rectified flow method enforces straight trajectories to enable faster sampling, yet relies on numerical ODE solvers, which may introduce approximation errors. In this work, we bridge the gap between the consistency model and the rectified flow method by proposing a Straight Consistent Trajectory~(SCoT) model. SCoT enjoys the benefits of both approaches for fast sampling, producing trajectories with consistent and straight properties simultaneously. These dual properties are strategically balanced by targeting two critical objectives: (1) regulating the gradient of SCoT's mapping to a constant, (2) ensuring trajectory consistency. Extensive experimental results demonstrate the effectiveness and efficiency of SCoT.
♻ ☆ Landcover classification and change detection using remote sensing and machine learning: a case study of Western Fiji
As a developing country, Fiji is facing rapid urbanisation, which is visible in the massive development projects that include housing, roads, and civil works. In this study, we present machine learning and remote sensing frameworks to compare land use and land cover change from 2013 to 2024 in Nadi, Fiji. The ultimate goal of this study is to provide technical support in land cover/land use modelling and change detection. We used Landsat-8 satellite image for the study region and created our training dataset with labels for supervised machine learning. We used Google Earth Engine and unsupervised machine learning via k-means clustering to generate the land cover map. We used convolutional neural networks to classify the selected regions' land cover types. We present a visualisation of change detection, highlighting urban area changes over time to monitor changes in the map.
♻ ☆ DreamOmni: Unified Image Generation and Editing
Currently, the success of large language models (LLMs) illustrates that a unified multitasking approach can significantly enhance model usability, streamline deployment, and foster synergistic benefits across different tasks. However, in computer vision, while text-to-image (T2I) models have significantly improved generation quality through scaling up, their framework design did not initially consider how to unify with downstream tasks, such as various types of editing. To address this, we introduce DreamOmni, a unified model for image generation and editing. We begin by analyzing existing frameworks and the requirements of downstream tasks, proposing a unified framework that integrates both T2I models and various editing tasks. Furthermore, another key challenge is the efficient creation of high-quality editing data, particularly for instruction-based and drag-based editing. To this end, we develop a synthetic data pipeline using sticker-like elements to synthesize accurate, high-quality datasets efficiently, which enables editing data scaling up for unified model training. For training, DreamOmni jointly trains T2I generation and downstream tasks. T2I training enhances the model's understanding of specific concepts and improves generation quality, while editing training helps the model grasp the nuances of the editing task. This collaboration significantly boosts editing performance. Extensive experiments confirm the effectiveness of DreamOmni. The code and model will be released.
♻ ☆ LRFusionPR: A Polar BEV-Based LiDAR-Radar Fusion Network for Place Recognition RAL
In autonomous driving, place recognition is critical for global localization in GPS-denied environments. LiDAR and radar-based place recognition methods have garnered increasing attention, as LiDAR provides precise ranging, whereas radar excels in adverse weather resilience. However, effectively leveraging LiDAR-radar fusion for place recognition remains challenging. The noisy and sparse nature of radar data limits its potential to further improve recognition accuracy. In addition, heterogeneous radar configurations complicate the development of unified cross-modality fusion frameworks. In this paper, we propose LRFusionPR, which improves recognition accuracy and robustness by fusing LiDAR with either single-chip or scanning radar. Technically, a dual-branch network is proposed to fuse different modalities within the unified polar coordinate bird's eye view (BEV) representation. In the fusion branch, cross-attention is utilized to perform cross-modality feature interactions. The knowledge from the fusion branch is simultaneously transferred to the distillation branch, which takes radar as its only input to further improve the robustness. Ultimately, the descriptors from both branches are concatenated, producing the multimodal global descriptor for place retrieval. Extensive evaluations on multiple datasets demonstrate that our LRFusionPR achieves accurate place recognition, while maintaining robustness under varying weather conditions. Our open-source code will be released at https://github.com/QiZS-BIT/LRFusionPR.
comment: Accepted by IEEE Robotics and Automation Letters (RAL) 2025
♻ ☆ Subspace Node Pruning
Improving the efficiency of neural network inference is undeniably important in a time where commercial use of AI models increases daily. Node pruning is the art of removing computational units such as neurons, filters, attention heads, or even entire layers to significantly reduce inference time while retaining network performance. In this work, we propose the projection of unit activations to an orthogonal subspace in which there is no redundant activity and within which we may prune nodes while simultaneously recovering the impact of lost units via linear least squares. We furthermore show that the order in which units are orthogonalized can be optimized to maximally rank units by their redundancy. Finally, we leverage these orthogonal subspaces to automatically determine layer-wise pruning ratios based upon the relative scale of node activations in our subspace, equivalent to cumulative variance. Our method matches or exceeds state-of-the-art pruning results on ImageNet-trained VGG-16, ResNet-50 and DeiT models while simultaneously having up to 24x lower computational cost than alternative methods. We also demonstrate that this method can be applied in a one-shot manner to OPT LLM models, again outperforming competing methods.
comment: 18 pages, 10 figures, 5 tables
♻ ☆ SoftCFG: Uncertainty-guided Stable Guidance for Visual Autoregressive Model
Autoregressive (AR) models have emerged as powerful tools for image generation by modeling images as sequences of discrete tokens. While Classifier-Free Guidance (CFG) has been adopted to improve conditional generation, its application in AR models faces two key issues: guidance diminishing, where the conditional-unconditional gap quickly vanishes as decoding progresses, and over-guidance, where strong conditions distort visual coherence. To address these challenges, we propose SoftCFG, an uncertainty-guided inference method that distributes adaptive perturbations across all tokens in the sequence. The key idea behind SoftCFG is to let each generated token contribute certainty-weighted guidance, ensuring that the signal persists across steps while resolving conflicts between text guidance and visual context. To further stabilize long-sequence generation, we introduce Step Normalization, which bounds cumulative perturbations of SoftCFG. Our method is training-free, model-agnostic, and seamlessly integrates with existing AR pipelines. Experiments show that SoftCFG significantly improves image quality over standard CFG and achieves state-of-the-art FID on ImageNet 256*256 among autoregressive models.
comment: preprint
♻ ☆ DiffCut: Catalyzing Zero-Shot Semantic Segmentation with Diffusion Features and Recursive Normalized Cut NeurIPS 2024
Foundation models have emerged as powerful tools across various domains including language, vision, and multimodal tasks. While prior works have addressed unsupervised image segmentation, they significantly lag behind supervised models. In this paper, we use a diffusion UNet encoder as a foundation vision encoder and introduce DiffCut, an unsupervised zero-shot segmentation method that solely harnesses the output features from the final self-attention block. Through extensive experimentation, we demonstrate that the utilization of these diffusion features in a graph based segmentation algorithm, significantly outperforms previous state-of-the-art methods on zero-shot segmentation. Specifically, we leverage a recursive Normalized Cut algorithm that softly regulates the granularity of detected objects and produces well-defined segmentation maps that precisely capture intricate image details. Our work highlights the remarkably accurate semantic knowledge embedded within diffusion UNet encoders that could then serve as foundation vision encoders for downstream tasks. Project page at https://diffcut-segmentation.github.io
comment: NeurIPS 2024. Project page at https://diffcut-segmentation.github.io. Code at https://github.com/PaulCouairon/DiffCut
♻ ☆ Patch-Level Kernel Alignment for Dense Self-Supervised Learning
Dense self-supervised learning (SSL) methods showed its effectiveness in enhancing the fine-grained semantic understandings of vision models. However, existing approaches often rely on parametric assumptions or complex post-processing (e.g., clustering, sorting), limiting their flexibility and stability. To overcome these limitations, we introduce Patch-level Kernel Alignment (PaKA), a non-parametric, kernel-based approach that improves the dense representations of pretrained vision encoders with a post-(pre)training. Our method propose a robust and effective alignment objective that captures statistical dependencies which matches the intrinsic structure of high-dimensional dense feature distributions. In addition, we revisit the augmentation strategies inherited from image-level SSL and propose a refined augmentation strategy for dense SSL. Our framework improves dense representations by conducting a lightweight post-training stage on top of a pretrained model. With only 14 hours of additional training on a single GPU, our method achieves state-of-the-art performance across a range of dense vision benchmarks, demonstrating both efficiency and effectiveness.
♻ ☆ What are You Looking at? Modality Contribution in Multimodal Medical Deep Learning
Purpose High dimensional, multimodal data can nowadays be analyzed by huge deep neural networks with little effort. Several fusion methods for bringing together different modalities have been developed. Given the prevalence of high-dimensional, multimodal patient data in medicine, the development of multimodal models marks a significant advancement. However, how these models process information from individual sources in detail is still underexplored. Methods To this end, we implemented an occlusion-based modality contribution method that is both model- and performance-agnostic. This method quantitatively measures the importance of each modality in the dataset for the model to fulfill its task. We applied our method to three different multimodal medical problems for experimental purposes. Results Herein we found that some networks have modality preferences that tend to unimodal collapses, while some datasets are imbalanced from the ground up. Moreover, we provide fine-grained quantitative and visual attribute importance for each modality. Conclusion Our metric offers valuable insights that can support the advancement of multimodal model development and dataset creation. By introducing this method, we contribute to the growing field of interpretability in deep learning for multimodal research. This approach helps to facilitate the integration of multimodal AI into clinical practice. Our code is publicly available at https://github.com/ChristianGappGit/MC_MMD.
comment: Contribution to Conference for Computer Assisted Radiology and Surgery (CARS 2025)
♻ ☆ VideoGen-of-Thought: Step-by-step generating multi-shot video with minimal manual intervention
Current video generation models excel at short clips but fail to produce cohesive multi-shot narratives due to disjointed visual dynamics and fractured storylines. Existing solutions either rely on extensive manual scripting/editing or prioritize single-shot fidelity over cross-scene continuity, limiting their practicality for movie-like content. We introduce VideoGen-of-Thought (VGoT), a step-by-step framework that automates multi-shot video synthesis from a single sentence by systematically addressing three core challenges: (1) Narrative fragmentation: Existing methods lack structured storytelling. We propose dynamic storyline modeling, which turns the user prompt into concise shot drafts and then expands them into detailed specifications across five domains (character dynamics, background continuity, relationship evolution, camera movements, and HDR lighting) with self-validation to ensure logical progress. (2) Visual inconsistency: previous approaches struggle to maintain consistent appearance across shots. Our identity-aware cross-shot propagation builds identity-preserving portrait (IPP) tokens that keep character identity while allowing controlled trait changes (expressions, aging) required by the story. (3) Transition artifacts: Abrupt shot changes disrupt immersion. Our adjacent latent transition mechanisms implement boundary-aware reset strategies that process adjacent shots' features at transition points, enabling seamless visual flow while preserving narrative continuity. Combined in a training-free pipeline, VGoT surpasses strong baselines by 20.4\% in within-shot face consistency and 17.4\% in style consistency, while requiring 10x fewer manual adjustments. VGoT bridges the gap between raw visual synthesis and director-level storytelling for automated multi-shot video generation.
comment: Code: https://github.com/DuNGEOnmassster/VideoGen-of-Thought.git; Webpage: https://cheliosoops.github.io/VGoT/
♻ ☆ PlaceIt3D: Language-Guided Object Placement in Real 3D Scenes ICCV 2025
We introduce the novel task of Language-Guided Object Placement in Real 3D Scenes. Our model is given a 3D scene's point cloud, a 3D asset, and a textual prompt broadly describing where the 3D asset should be placed. The task here is to find a valid placement for the 3D asset that respects the prompt. Compared with other language-guided localization tasks in 3D scenes such as grounding, this task has specific challenges: it is ambiguous because it has multiple valid solutions, and it requires reasoning about 3D geometric relationships and free space. We inaugurate this task by proposing a new benchmark and evaluation protocol. We also introduce a new dataset for training 3D LLMs on this task, as well as the first method to serve as a non-trivial baseline. We believe that this challenging task and our new benchmark could become part of the suite of benchmarks used to evaluate and compare generalist 3D LLM models.
comment: ICCV 2025. Project page: https://nianticlabs.github.io/placeit3d/
♻ ☆ Multi-Domain Brain Vessel Segmentation Through Feature Disentanglement
The intricate morphology of brain vessels poses significant challenges for automatic segmentation models, which usually focus on a single imaging modality. However, accurately treating brain-related conditions requires a comprehensive understanding of the cerebrovascular tree, regardless of the specific acquisition procedure. Our framework effectively segments brain arteries and veins in various datasets through image-to-image translation while avoiding domain-specific model design and data harmonization between the source and the target domain. This is accomplished by employing disentanglement techniques to independently manipulate different image properties, allowing them to move from one domain to another in a label-preserving manner. Specifically, we focus on manipulating vessel appearances during adaptation while preserving spatial information, such as shapes and locations, which are crucial for correct segmentation. Our evaluation effectively bridges large and varied domain gaps across medical centers, image modalities, and vessel types. Additionally, we conduct ablation studies on the optimal number of required annotations and other architectural choices. The results highlight our framework's robustness and versatility, demonstrating the potential of domain adaptation methodologies to perform cerebrovascular image segmentation in multiple scenarios accurately. Our code is available at https://github.com/i-vesseg/MultiVesSeg.
comment: 19 pages, 7 figures, 3 tables. Joint first authors: Francesco Galati and Daniele Falcetta. Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:021. Code available at https://github.com/i-vesseg/MultiVesSeg
♻ ☆ Towards Methane Detection Onboard Satellites
Methane is a potent greenhouse gas and a major driver of climate change, making its timely detection critical for effective mitigation. Machine learning (ML) deployed onboard satellites can enable rapid detection while reducing downlink costs, supporting faster response systems. Conventional methane detection methods often rely on image processing techniques, such as orthorectification to correct geometric distortions and matched filters to enhance plume signals. We introduce a novel approach that bypasses these preprocessing steps by using \textit{unorthorectified} data (UnorthoDOS). We find that ML models trained on this dataset achieve performance comparable to those trained on orthorectified data. Moreover, we also train models on an orthorectified dataset, showing that they can outperform the matched filter baseline (mag1c). We release model checkpoints and two ML-ready datasets comprising orthorectified and unorthorectified hyperspectral images from the Earth Surface Mineral Dust Source Investigation (EMIT) sensor at https://huggingface.co/datasets/SpaceML/UnorthoDOS , along with code at https://github.com/spaceml-org/plume-hunter.
Using KL-Divergence to Focus Frequency Information in Low-Light Image Enhancement
In the Fourier domain, luminance information is primarily encoded in the amplitude spectrum, while spatial structures are captured in the phase components. The traditional Fourier Frequency information fitting employs pixel-wise loss functions, which tend to focus excessively on local information and may lead to global information loss. In this paper, we present LLFDisc, a U-shaped deep enhancement network that integrates cross-attention and gating mechanisms tailored for frequency-aware enhancement. We propose a novel distribution-aware loss that directly fits the Fourier-domain information and minimizes their divergence using a closed-form KL-Divergence objective. This enables the model to align Fourier-domain information more robustly than with conventional MSE-based losses. Furthermore, we enhance the perceptual loss based on VGG by embedding KL-Divergence on extracted deep features, enabling better structural fidelity. Extensive experiments across multiple benchmarks demonstrate that LLFDisc achieves state-of-the-art performance in both qualitative and quantitative evaluations. Our code will be released at: https://github.com/YanXY000/LLFDisc
AniMaker: Multi-Agent Animated Storytelling with MCTS-Driven Clip Generation
Despite rapid advancements in video generation models, generating coherent storytelling videos that span multiple scenes and characters remains challenging. Current methods often rigidly convert pre-generated keyframes into fixed-length clips, resulting in disjointed narratives and pacing issues. Furthermore, the inherent instability of video generation models means that even a single low-quality clip can significantly degrade the entire output animation's logical coherence and visual continuity. To overcome these obstacles, we introduce AniMaker, a multi-agent framework enabling efficient multi-candidate clip generation and storytelling-aware clip selection, thus creating globally consistent and story-coherent animation solely from text input. The framework is structured around specialized agents, including the Director Agent for storyboard generation, the Photography Agent for video clip generation, the Reviewer Agent for evaluation, and the Post-Production Agent for editing and voiceover. Central to AniMaker's approach are two key technical components: MCTS-Gen in Photography Agent, an efficient Monte Carlo Tree Search (MCTS)-inspired strategy that intelligently navigates the candidate space to generate high-potential clips while optimizing resource usage; and AniEval in Reviewer Agent, the first framework specifically designed for multi-shot animation evaluation, which assesses critical aspects such as story-level consistency, action completion, and animation-specific features by considering each clip in the context of its preceding and succeeding clips. Experiments demonstrate that AniMaker achieves superior quality as measured by popular metrics including VBench and our proposed AniEval framework, while significantly improving the efficiency of multi-candidate generation, pushing AI-generated storytelling animation closer to production standards.
♻ ☆ HAMLET: Switch your Vision-Language-Action Model into a History-Aware Policy
Inherently, robotic manipulation tasks are history-dependent: leveraging past context could be beneficial. However, most existing Vision-Language-Action models (VLAs) have been designed without considering this aspect, i.e., they rely solely on the current observation, ignoring preceding context. In this paper, we propose HAMLET, a scalable framework to adapt VLAs to attend to the historical context during action prediction. Specifically, we introduce moment tokens that compactly encode perceptual information at each timestep. Their representations are initialized with time-contrastive learning, allowing them to better capture temporally distinctive aspects. Next, we employ a lightweight memory module that integrates the moment tokens across past timesteps into memory features, which are then leveraged for action prediction. Through empirical evaluation, we show that HAMLET successfully transforms a state-of-the-art VLA into a history-aware policy, especially demonstrating significant improvements on long-horizon tasks that require historical context. In particular, on top of GR00T N1.5, HAMLET achieves an average success rate of 76.4% on history-dependent real-world tasks, surpassing the baseline performance by 47.2%. Furthermore, HAMLET pushes prior art performance from 64.1% to 66.4% on RoboCasa Kitchen (100-demo setup) and from 95.6% to 97.7% on LIBERO, highlighting its effectiveness even under generic robot-manipulation benchmarks.
comment: Project page: https://myungkyukoo.github.io/hamlet/
♻ ☆ Audio-Enhanced Vision-Language Modeling with Latent Space Broadening for High Quality Data Expansion
Transformer-based multimodal models are widely used in industrial-scale recommendation, search, and advertising systems for content understanding and relevance ranking. Enhancing labeled training data quality and cross-modal fusion significantly improves model performance, influencing key metrics such as quality view rates and ad revenue. High-quality annotations are crucial for advancing content modeling, yet traditional statistical-based active learning (AL) methods face limitations: they struggle to detect overconfident misclassifications and are less effective in distinguishing semantically similar items in deep neural networks. Additionally, audio information plays an increasing role, especially in short-video platforms, yet most pre-trained multimodal architectures primarily focus on text and images. While training from scratch across all three modalities is possible, it sacrifices the benefits of leveraging existing pre-trained visual-language (VL) and audio models. To address these challenges, we propose kNN-based Latent Space Broadening (LSB) to enhance AL efficiency and Vision-Language Modeling with Audio Enhancement (VLMAE), a mid-fusion approach integrating audio into VL models. This system deployed in production systems, leading to significant business gains.
♻ ☆ Normal-Abnormal Guided Generalist Anomaly Detection NeurIPS 2025
Generalist Anomaly Detection (GAD) aims to train a unified model on an original domain that can detect anomalies in new target domains. Previous GAD methods primarily use only normal samples as references, overlooking the valuable information contained in anomalous samples that are often available in real-world scenarios. To address this limitation, we propose a more practical approach: normal-abnormal-guided generalist anomaly detection, which leverages both normal and anomalous samples as references to guide anomaly detection across diverse domains. We introduce the Normal-Abnormal Generalist Learning (NAGL) framework, consisting of two key components: Residual Mining (RM) and Anomaly Feature Learning (AFL). RM extracts abnormal patterns from normal-abnormal reference residuals to establish transferable anomaly representations, while AFL adaptively learns anomaly features in query images through residual mapping to identify instance-aware anomalies. Our approach effectively utilizes both normal and anomalous references for more accurate and efficient cross-domain anomaly detection. Extensive experiments across multiple benchmarks demonstrate that our method significantly outperforms existing GAD approaches. This work represents the first to adopt a mixture of normal and abnormal samples as references in generalist anomaly detection. The code and datasets are available at https://github.com/JasonKyng/NAGL.
comment: Accepted by NeurIPS 2025
♻ ☆ Euclid's Gift: Enhancing Spatial Perception and Reasoning in Vision-Language Models via Geometric Surrogate Tasks
Spatial intelligence spans a rich suite of abilities, including visualising and transforming shapes, mentally rotating objects, judging relational positions and containment, and estimating numerosity. However, it still remains a critical unresolved challenge for Multimodal Large Language Models (MLLMs).To fill this gap, we propose to treat Euclidean geometry problem-solving as a surrogate task. Specifically, we meticulously constructed a curated multimodal dataset, called Euclid30K, comprising approximately 30K plane and solid geometry problems. To enable the model to acquire and apply Euclidean principles from these geometry problems, we employed Group Relative Policy Optimization (GRPO) to finetune the Qwen2.5VL family and RoboBrain2.0 family, inspiring the models to identify shapes, count, and relate entities, and perform multi-step deductive reasoning using Euclidean principles. Our experiments demonstrate that the resulting models achieve substantial zero-shot gains across four spatial reasoning benchmarks (Super-CLEVR, Omni3DBench, VSI-Bench, and MindCube) without any task-specific adaptations. Notably, after training on the Euclid30K, the mean VSI-Bench accuracy of all evaluated models rose from 34.5% to 40.5%, improving by 5.5 percentage points. Among them, RoboBrain2.0-Euclid-7B achieves 49.6\% accuracy, surpassing the previous state-of-the-art model, Spatial-MLLM.To our knowledge, this is the first systematic study showing that geometry-centric fine-tuning can confer vision-language models with broadly transferable spatial skills. Code and Euclid30K dataset can be found in https://zgca-ai4edu.github.io/Euclids_Gift.
♻ ☆ Efficient Whole Slide Pathology VQA via Token Compression
Whole-slide images (WSIs) in pathology can reach up to 10,000 x 10,000 pixels, posing significant challenges for multimodal large language model (MLLM) due to long context length and high computational demands. Previous methods typically focus on patch-level analysis or slide-level classification using CLIP-based models with multi-instance learning, but they lack the generative capabilities needed for visual question answering (VQA). More recent MLLM-based approaches address VQA by feeding thousands of patch tokens directly into the language model, which leads to excessive resource consumption. To address these limitations, we propose Token Compression Pathology LLaVA (TCP-LLaVA), the first MLLM architecture to perform WSI VQA via token compression. TCP-LLaVA introduces a set of trainable compression tokens that aggregate visual and textual information through a modality compression module, inspired by the [CLS] token mechanism in BERT. Only the compressed tokens are forwarded to the LLM for answer generation, significantly reducing input length and computational cost. Experiments on ten TCGA tumor subtypes show that TCP-LLaVA outperforms existing MLLM baselines in VQA accuracy while reducing training resource consumption by a substantial margin.
♻ ☆ Does Bigger Mean Better? Comparitive Analysis of CNNs and Biomedical Vision Language Modles in Medical Diagnosis
The accurate interpretation of chest radiographs using automated methods is a critical task in medical imaging. This paper presents a comparative analysis between a supervised lightweight Convolutional Neural Network (CNN) and a state-of-the-art, zero-shot medical Vision-Language Model (VLM), BiomedCLIP, across two distinct diagnostic tasks: pneumonia detection on the PneumoniaMNIST benchmark and tuberculosis detection on the Shenzhen TB dataset. Our experiments show that supervised CNNs serve as highly competitive baselines in both cases. While the default zero-shot performance of the VLM is lower, we demonstrate that its potential can be unlocked via a simple yet crucial remedy: decision threshold calibration. By optimizing the classification threshold on a validation set, the performance of BiomedCLIP is significantly boosted across both datasets. For pneumonia detection, calibration enables the zero-shot VLM to achieve a superior F1-score of 0.8841, surpassing the supervised CNN's 0.8803. For tuberculosis detection, calibration dramatically improves the F1-score from 0.4812 to 0.7684, bringing it close to the supervised baseline's 0.7834. This work highlights a key insight: proper calibration is essential for leveraging the full diagnostic power of zero-shot VLMs, enabling them to match or even outperform efficient, task-specific supervised models.
comment: 6pages,3 figures.Uunder review of International Conference on Artificial Intelligence, Computer, Data Sciences and Applications
♻ ☆ LiDAR-HMR: 3D Human Mesh Recovery from LiDAR
In recent years, point cloud perception tasks have been garnering increasing attention. This paper presents the first attempt to estimate 3D human body mesh from sparse LiDAR point clouds. We found that the major challenge in estimating human pose and mesh from point clouds lies in the sparsity, noise, and incompletion of LiDAR point clouds. Facing these challenges, we propose an effective sparse-to-dense reconstruction scheme to reconstruct 3D human mesh. This involves estimating a sparse representation of a human (3D human pose) and gradually reconstructing the body mesh. To better leverage the 3D structural information of point clouds, we employ a cascaded graph transformer (graphormer) to introduce point cloud features during sparse-to-dense reconstruction. Experimental results on three publicly available databases demonstrate the effectiveness of the proposed approach. Code: https://github.com/soullessrobot/LiDAR-HMR/
comment: Code is available at: https://github.com/soullessrobot/LiDAR-HMR/
♻ ☆ An Improved Pure Fully Connected Neural Network for Rice Grain Classification
Rice is a staple food for a significant portion of the world's population, providing essential nutrients and serving as a versatile in-gredient in a wide range of culinary traditions. Recently, the use of deep learning has enabled automated classification of rice, im-proving accuracy and efficiency. However, classical models based on first-stage training may face difficulties in distinguishing between rice varieties with similar external characteristics, thus leading to misclassifications. Considering the transparency and feasibility of model, we selected and gradually improved pure fully connected neural network to achieve classification of rice grain. The dataset we used contains both global and domestic rice images obtained from websites and laboratories respectively. First, the training mode was changed from one-stage training to two-stage training, which significantly contributes to distinguishing two similar types of rice. Secondly, the preprocessing method was changed from random tilting to horizontal or vertical position cor-rection. After those two enhancements, the accuracy of our model increased notably from 97% to 99%. In summary, two subtle methods proposed in this study can remarkably enhance the classification ability of deep learning models in terms of the classification of rice grain.
♻ ☆ How Can Time Series Analysis Benefit From Multiple Modalities? A Survey and Outlook IJCAI25
Time series analysis (TSA) is a longstanding research topic in the data mining community and has wide real-world significance. Compared to "richer" modalities such as language and vision, which have recently experienced explosive development and are densely connected, the time-series modality remains relatively underexplored and isolated. We notice that many recent TSA works have formed a new research field, i.e., Multiple Modalities for TSA (MM4TSA). In general, these MM4TSA works follow a common motivation: how TSA can benefit from multiple modalities. This survey is the first to offer a comprehensive review and a detailed outlook for this emerging field. Specifically, we systematically discuss three benefits: (1) reusing foundation models of other modalities for efficient TSA, (2) multimodal extension for enhanced TSA, and (3) cross-modality interaction for advanced TSA. We further group the works by the introduced modality type, including text, images, audio, tables, and others, within each perspective. Finally, we identify the gaps with future opportunities, including the reused modalities selections, heterogeneous modality combinations, and unseen tasks generalizations, corresponding to the three benefits. We release an up-to-date GitHub repository that includes key papers and resources.
comment: Github Repo: https://github.com/AdityaLab/MM4TSA Updated to include papers accepted by IJCAI25, KDD25, ICML25, NeurIPS25 4 figures or tables, 19 pages, 251 references
♻ ☆ Robust Pan-Cancer Mitotic Figure Detection with YOLOv12
Mitotic figures represent a key histoprognostic feature in tumor pathology, providing crucial insights into tumor aggressiveness and proliferation. However, their identification remains challenging, subject to significant inter-observer variability, even among experienced pathologists. To address this issue, the MItosis DOmain Generalization (MIDOG) 2025 challenge marks the third edition of an international competition aiming to develop robust mitosis detection algorithms. In this paper, we present a mitotic figure detection approach based on the state-of-the-art YOLOv12 object detection architecture. Our method achieved an F1-score of 0.801 on the preliminary test set (hotspots only) and ranked second on the final test leaderboard with an F1-score of 0.7216 across complex and heterogeneous whole-slide regions, without relying on external data.
♻ ☆ Q-FSRU: Quantum-Augmented Frequency-Spectral For Medical Visual Question Answering ICLR 2026
Solving tough clinical questions that require both image and text understanding is still a major challenge in healthcare AI. In this work, we propose Q-FSRU, a new model that combines Frequency Spectrum Representation and Fusion (FSRU) with a method called Quantum Retrieval-Augmented Generation (Quantum RAG) for medical Visual Question Answering (VQA). The model takes in features from medical images and related text, then shifts them into the frequency domain using Fast Fourier Transform (FFT). This helps it focus on more meaningful data and filter out noise or less useful information. To improve accuracy and ensure that answers are based on real knowledge, we add a quantum inspired retrieval system. It fetches useful medical facts from external sources using quantum-based similarity techniques. These details are then merged with the frequency-based features for stronger reasoning. We evaluated our model using the VQA-RAD dataset, which includes real radiology images and questions. The results showed that Q-FSRU outperforms earlier models, especially on complex cases needing image text reasoning. The mix of frequency and quantum information improves both performance and explainability. Overall, this approach offers a promising way to build smart, clear, and helpful AI tools for doctors.
comment: 12 pages (9 main + 2 references/appendix), 2 figures, conference paper submitted to ICLR 2026
♻ ☆ CBVLM: Training-free Explainable Concept-based Large Vision Language Models for Medical Image Classification
The main challenges limiting the adoption of deep learning-based solutions in medical workflows are the availability of annotated data and the lack of interpretability of such systems. Concept Bottleneck Models (CBMs) tackle the latter by constraining the model output on a set of predefined and human-interpretable concepts. However, the increased interpretability achieved through these concept-based explanations implies a higher annotation burden. Moreover, if a new concept needs to be added, the whole system needs to be retrained. Inspired by the remarkable performance shown by Large Vision-Language Models (LVLMs) in few-shot settings, we propose a simple, yet effective, methodology, CBVLM, which tackles both of the aforementioned challenges. First, for each concept, we prompt the LVLM to answer if the concept is present in the input image. Then, we ask the LVLM to classify the image based on the previous concept predictions. Moreover, in both stages, we incorporate a retrieval module responsible for selecting the best examples for in-context learning. By grounding the final diagnosis on the predicted concepts, we ensure explainability, and by leveraging the few-shot capabilities of LVLMs, we drastically lower the annotation cost. We validate our approach with extensive experiments across four medical datasets and twelve LVLMs (both generic and medical) and show that CBVLM consistently outperforms CBMs and task-specific supervised methods without requiring any training and using just a few annotated examples. More information on our project page: https://cristianopatricio.github.io/CBVLM/.
comment: Accepted for publication in Computers in Biology and Medicine
♻ ☆ Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection ICCV 2025
Current zero-shot anomaly detection (ZSAD) methods show remarkable success in prompting large pre-trained vision-language models to detect anomalies in a target dataset without using any dataset-specific training or demonstration. However, these methods often focus on crafting/learning prompts that capture only coarse-grained semantics of abnormality, e.g., high-level semantics like "damaged", "imperfect", or "defective" objects. They therefore have limited capability in recognizing diverse abnormality details that deviate from these general abnormal patterns in various ways. To address this limitation, we propose FAPrompt, a novel framework designed to learn Fine-grained Abnormality Prompts for accurate ZSAD. To this end, a novel Compound Abnormality Prompt learning (CAP) module is introduced in FAPrompt to learn a set of complementary, decomposed abnormality prompts, where abnormality prompts are enforced to model diverse abnormal patterns derived from the same normality semantic. On the other hand, the fine-grained abnormality patterns can be different from one dataset to another. To enhance the cross-dataset generalization, another novel module, namely Data-dependent Abnormality Prior learning (DAP), is introduced in FAPrompt to learn a sample-wise abnormality prior from abnormal features of each test image to dynamically adapt the abnormality prompts to individual test images. Comprehensive experiments on 19 real-world datasets, covering both industrial defects and medical anomalies, demonstrate that FAPrompt substantially outperforms state-of-the-art methods in both image- and pixel-level ZSAD tasks. Code is available at https://github.com/mala-lab/FAPrompt.
comment: Accepted to ICCV 2025; 11 pages, 3 figures
♻ ☆ Comparing YOLOv8 and Mask R-CNN for instance segmentation in complex orchard environments
Instance segmentation is an important image processing operation for agricultural automation, providing precise delineation of individual objects within images and enabling tasks such as selective harvesting and precision pruning. This study compares the one stage YOLOv8 model with the two stage Mask R CNN model for instance segmentation under varying orchard conditions across two datasets. Dataset 1, collected in the dormant season, contains images of apple trees without foliage and was used to train multi object segmentation models delineating branches and trunks. Dataset 2, collected in the early growing season, includes canopy images with green foliage and immature apples and was used to train single object segmentation models delineating fruitlets. Results showed YOLOv8 outperformed Mask R CNN with higher precision and near perfect recall at a confidence threshold of 0.5. For Dataset 1, YOLOv8 achieved precision 0.90 and recall 0.95 compared to 0.81 and 0.81 for Mask R CNN. For Dataset 2, YOLOv8 reached precision 0.93 and recall 0.97 compared to 0.85 and 0.88. Inference times were also lower for YOLOv8, at 10.9 ms and 7.8 ms, versus 15.6 ms and 12.8 ms for Mask R CNN. These findings demonstrate superior accuracy and efficiency of YOLOv8 for real time orchard automation tasks such as robotic harvesting and fruit thinning.
♻ ☆ A Benchmarking Study of Vision-based Robotic Grasping Algorithms
We present a benchmarking study of vision-based robotic grasping algorithms with distinct approaches, and provide a comparative analysis. In particular, we compare two machine-learning-based and two analytical algorithms using an existing benchmarking protocol from the literature and determine the algorithm's strengths and weaknesses under different experimental conditions. These conditions include variations in lighting, background textures, cameras with different noise levels, and grippers. We also run analogous experiments in simulations and with real robots and present the discrepancies. Some experiments are also run in two different laboratories using same protocols to further analyze the repeatability of our results. We believe that this study, comprising 5040 experiments, provides important insights into the role and challenges of systematic experimentation in robotic manipulation, and guides the development of new algorithms by considering the factors that could impact the performance. The experiment recordings and our benchmarking software are publicly available.
comment: This work was intended as a replacement of arXiv:2307.11622. I will upload it as a replacement to arXiv:2307.11622 simultaneously
♻ ☆ VOTE: Vision-Language-Action Optimization with Trajectory Ensemble Voting
Recent large-scale Vision Language Action (VLA) models have shown superior performance in robotic manipulation tasks guided by natural language. However, current VLA models suffer from two drawbacks: (i) generation of massive tokens leading to high inference latency and increased training cost, and (ii) insufficient utilization of generated actions resulting in potential performance loss. To address these issues, we develop a training framework to finetune VLA models for generating significantly fewer action tokens with high parallelism, effectively reducing inference latency and training cost. Furthermore, we introduce an inference optimization technique with a novel voting-based ensemble strategy to combine current and previous action predictions, improving the utilization of generated actions and overall performance. Our results demonstrate that we achieve superior performance compared with state-of-the-art VLA models, achieving significantly higher success rates and 39$\times$ faster inference than OpenVLA with 46 Hz throughput on edge platforms, demonstrating practical deployability. The code is available at https://github.com/LukeLIN-web/VOTE.
♻ ☆ Evict3R: Training-Free Token Eviction for Memory-Bounded Streaming Visual Geometry Transformers
Streaming visual transformers like StreamVGGT achieve strong 3D perception but suffer from unbounded growth of key value (KV) memory, which limits scalability. We propose a training-free, inference-time token eviction policy that bounds memory by discarding redundant tokens while keeping the most informative ones. Our method uses significantly less memory with little to no drop in accuracy: on 7-Scenes with long sequences it reduces peak memory from 18.63 GB to 9.39 GB while accuracy and completeness drop by only 0.003. Under strict memory budgets, eviction enables denser frame sampling, which improves reconstruction accuracy compared to the baseline. Experiments across video depth estimation (Sintel, KITTI), 3D reconstruction (7-Scenes, NRGBD), and camera pose estimation (Sintel, TUM-dynamics) show that our approach closely matches StreamVGGT at a fraction of the memory and makes long-horizon streaming inference more practical.
comment: project page: https://soroush-mim.github.io/projects/evict3r/
♻ ☆ AudioStory: Generating Long-Form Narrative Audio with Large Language Models
Recent advances in text-to-audio (TTA) generation excel at synthesizing short audio clips but struggle with long-form narrative audio, which requires temporal coherence and compositional reasoning. To address this gap, we propose AudioStory, a unified framework that integrates large language models (LLMs) with TTA systems to generate structured, long-form audio narratives. AudioStory possesses strong instruction-following reasoning generation capabilities. It employs LLMs to decompose complex narrative queries into temporally ordered sub-tasks with contextual cues, enabling coherent scene transitions and emotional tone consistency. AudioStory has two appealing features: (1) Decoupled bridging mechanism: AudioStory disentangles LLM-diffuser collaboration into two specialized components, i.e., a bridging query for intra-event semantic alignment and a residual query for cross-event coherence preservation. (2) End-to-end training: By unifying instruction comprehension and audio generation within a single end-to-end framework, AudioStory eliminates the need for modular training pipelines while enhancing synergy between components. Furthermore, we establish a benchmark AudioStory-10K, encompassing diverse domains such as animated soundscapes and natural sound narratives. Extensive experiments show the superiority of AudioStory on both single-audio generation and narrative audio generation, surpassing prior TTA baselines in both instruction-following ability and audio fidelity. Our code is available at https://github.com/TencentARC/AudioStory
Artificial Intelligence 288
☆ NoiseShift: Resolution-Aware Noise Recalibration for Better Low-Resolution Image Generation
Text-to-image diffusion models trained on a fixed set of resolutions often fail to generalize, even when asked to generate images at lower resolutions than those seen during training. High-resolution text-to-image generators are currently unable to easily offer an out-of-the-box budget-efficient alternative to their users who might not need high-resolution images. We identify a key technical insight in diffusion models that when addressed can help tackle this limitation: Noise schedulers have unequal perceptual effects across resolutions. The same level of noise removes disproportionately more signal from lower-resolution images than from high-resolution images, leading to a train-test mismatch. We propose NoiseShift, a training-free method that recalibrates the noise level of the denoiser conditioned on resolution size. NoiseShift requires no changes to model architecture or sampling schedule and is compatible with existing models. When applied to Stable Diffusion 3, Stable Diffusion 3.5, and Flux-Dev, quality at low resolutions is significantly improved. On LAION-COCO, NoiseShift improves SD3.5 by 15.89%, SD3 by 8.56%, and Flux-Dev by 2.44% in FID on average. On CelebA, NoiseShift improves SD3.5 by 10.36%, SD3 by 5.19%, and Flux-Dev by 3.02% in FID on average. These results demonstrate the effectiveness of NoiseShift in mitigating resolution-dependent artifacts and enhancing the quality of low-resolution image generation.
☆ Diffusion Models and the Manifold Hypothesis: Log-Domain Smoothing is Geometry Adaptive
Diffusion models have achieved state-of-the-art performance, demonstrating remarkable generalisation capabilities across diverse domains. However, the mechanisms underpinning these strong capabilities remain only partially understood. A leading conjecture, based on the manifold hypothesis, attributes this success to their ability to adapt to low-dimensional geometric structure within the data. This work provides evidence for this conjecture, focusing on how such phenomena could result from the formulation of the learning problem through score matching. We inspect the role of implicit regularisation by investigating the effect of smoothing minimisers of the empirical score matching objective. Our theoretical and empirical results confirm that smoothing the score function -- or equivalently, smoothing in the log-density domain -- produces smoothing tangential to the data manifold. In addition, we show that the manifold along which the diffusion model generalises can be controlled by choosing an appropriate smoothing.
☆ Equilibrium Matching: Generative Modeling with Implicit Energy-Based Models
We introduce Equilibrium Matching (EqM), a generative modeling framework built from an equilibrium dynamics perspective. EqM discards the non-equilibrium, time-conditional dynamics in traditional diffusion and flow-based generative models and instead learns the equilibrium gradient of an implicit energy landscape. Through this approach, we can adopt an optimization-based sampling process at inference time, where samples are obtained by gradient descent on the learned landscape with adjustable step sizes, adaptive optimizers, and adaptive compute. EqM surpasses the generation performance of diffusion/flow models empirically, achieving an FID of 1.90 on ImageNet 256$\times$256. EqM is also theoretically justified to learn and sample from the data manifold. Beyond generation, EqM is a flexible framework that naturally handles tasks including partially noised image denoising, OOD detection, and image composition. By replacing time-conditional velocities with a unified equilibrium landscape, EqM offers a tighter bridge between flow and energy-based models and a simple route to optimization-driven inference.
☆ Interactive Training: Feedback-Driven Neural Network Optimization EMNLP 2025
Traditional neural network training typically follows fixed, predefined optimization recipes, lacking the flexibility to dynamically respond to instabilities or emerging training issues. In this paper, we introduce Interactive Training, an open-source framework that enables real-time, feedback-driven intervention during neural network training by human experts or automated AI agents. At its core, Interactive Training uses a control server to mediate communication between users or agents and the ongoing training process, allowing users to dynamically adjust optimizer hyperparameters, training data, and model checkpoints. Through three case studies, we demonstrate that Interactive Training achieves superior training stability, reduced sensitivity to initial hyperparameters, and improved adaptability to evolving user needs, paving the way toward a future training paradigm where AI agents autonomously monitor training logs, proactively resolve instabilities, and optimize training dynamics.
comment: EMNLP 2025 Demo
VideoNSA: Native Sparse Attention Scales Video Understanding
Video understanding in multimodal language models remains limited by context length: models often miss key transition frames and struggle to maintain coherence across long time scales. To address this, we adapt Native Sparse Attention (NSA) to video-language models. Our method, VideoNSA, adapts Qwen2.5-VL through end-to-end training on a 216K video instruction dataset. We employ a hardware-aware hybrid approach to attention, preserving dense attention for text, while employing NSA for video. Compared to token-compression and training-free sparse baselines, VideoNSA achieves improved performance on long-video understanding, temporal reasoning, and spatial benchmarks. Further ablation analysis reveals four key findings: (1) reliable scaling to 128K tokens; (2) an optimal global-local attention allocation at a fixed budget; (3) task-dependent branch usage patterns; and (4) the learnable combined sparse attention help induce dynamic attention sinks.
comment: Project Page: https://enxinsong.com/VideoNSA-web/, Code: https://github.com/Espere-1119-Song/VideoNSA
☆ F2LLM Technical Report: Matching SOTA Embedding Performance with 6 Million Open-Source Data
We introduce F2LLM - Foundation to Feature Large Language Models, a suite of state-of-the-art embedding models in three sizes: 0.6B, 1.7B, and 4B. Unlike previous top-ranking embedding models that require massive contrastive pretraining, sophisticated training pipelines, and costly synthetic training data, F2LLM is directly finetuned from foundation models on 6 million query-document-negative tuples curated from open-source, non-synthetic datasets, striking a strong balance between training cost, model size, and embedding performance. On the MTEB English leaderboard, F2LLM-4B ranks 2nd among models with approximately 4B parameters and 7th overall, while F2LLM-1.7B ranks 1st among models in the 1B-2B size range. To facilitate future research in the field, we release the models, training dataset, and code, positioning F2LLM as a strong, reproducible, and budget-friendly baseline for future works.
☆ Tree-based Dialogue Reinforced Policy Optimization for Red-Teaming Attacks
Despite recent rapid progress in AI safety, current large language models remain vulnerable to adversarial attacks in multi-turn interaction settings, where attackers strategically adapt their prompts across conversation turns and pose a more critical yet realistic challenge. Existing approaches that discover safety vulnerabilities either rely on manual red-teaming with human experts or employ automated methods using pre-defined templates and human-curated attack data, with most focusing on single-turn attacks. However, these methods did not explore the vast space of possible multi-turn attacks, failing to consider novel attack trajectories that emerge from complex dialogue dynamics and strategic conversation planning. This gap is particularly critical given recent findings that LLMs exhibit significantly higher vulnerability to multi-turn attacks compared to single-turn attacks. We propose DialTree-RPO, an on-policy reinforcement learning framework integrated with tree search that autonomously discovers diverse multi-turn attack strategies by treating the dialogue as a sequential decision-making problem, enabling systematic exploration without manually curated data. Through extensive experiments, our approach not only achieves more than 25.9% higher ASR across 10 target models compared to previous state-of-the-art approaches, but also effectively uncovers new attack strategies by learning optimal dialogue policies that maximize attack success across multiple turns.
☆ Learning to Generate Object Interactions with Physics-Guided Video Diffusion
Recent models for video generation have achieved remarkable progress and are now deployed in film, social media production, and advertising. Beyond their creative potential, such models also hold promise as world simulators for robotics and embodied decision making. Despite strong advances, however, current approaches still struggle to generate physically plausible object interactions and lack physics-grounded control mechanisms. To address this limitation, we introduce KineMask, an approach for physics-guided video generation that enables realistic rigid body control, interactions, and effects. Given a single image and a specified object velocity, our method generates videos with inferred motions and future object interactions. We propose a two-stage training strategy that gradually removes future motion supervision via object masks. Using this strategy we train video diffusion models (VDMs) on synthetic scenes of simple interactions and demonstrate significant improvements of object interactions in real scenes. Furthermore, KineMask integrates low-level motion control with high-level textual conditioning via predictive scene descriptions, leading to effective support for synthesis of complex dynamical phenomena. Extensive experiments show that KineMask achieves strong improvements over recent models of comparable size. Ablation studies further highlight the complementary roles of low- and high-level conditioning in VDMs. Our code, model, and data will be made publicly available.
☆ Self-Forcing++: Towards Minute-Scale High-Quality Video Generation
Diffusion models have revolutionized image and video generation, achieving unprecedented visual quality. However, their reliance on transformer architectures incurs prohibitively high computational costs, particularly when extending generation to long videos. Recent work has explored autoregressive formulations for long video generation, typically by distilling from short-horizon bidirectional teachers. Nevertheless, given that teacher models cannot synthesize long videos, the extrapolation of student models beyond their training horizon often leads to pronounced quality degradation, arising from the compounding of errors within the continuous latent space. In this paper, we propose a simple yet effective approach to mitigate quality degradation in long-horizon video generation without requiring supervision from long-video teachers or retraining on long video datasets. Our approach centers on exploiting the rich knowledge of teacher models to provide guidance for the student model through sampled segments drawn from self-generated long videos. Our method maintains temporal consistency while scaling video length by up to 20x beyond teacher's capability, avoiding common issues such as over-exposure and error-accumulation without recomputing overlapping frames like previous methods. When scaling up the computation, our method shows the capability of generating videos up to 4 minutes and 15 seconds, equivalent to 99.9% of the maximum span supported by our base model's position embedding and more than 50x longer than that of our baseline model. Experiments on standard benchmarks and our proposed improved benchmark demonstrate that our approach substantially outperforms baseline methods in both fidelity and consistency. Our long-horizon videos demo can be found at https://self-forcing-plus-plus.github.io/
comment: preprint
☆ Addressing Pitfalls in the Evaluation of Uncertainty Estimation Methods for Natural Language Generation
Hallucinations are a common issue that undermine the reliability of large language models (LLMs). Recent studies have identified a specific subset of hallucinations, known as confabulations, which arise due to predictive uncertainty of LLMs. To detect confabulations, various methods for estimating predictive uncertainty in natural language generation (NLG) have been developed. These methods are typically evaluated by correlating uncertainty estimates with the correctness of generated text, with question-answering (QA) datasets serving as the standard benchmark. However, commonly used approximate correctness functions have substantial disagreement between each other and, consequently, in the ranking of the uncertainty estimation methods. This allows one to inflate the apparent performance of uncertainty estimation methods. We propose using several alternative risk indicators for risk correlation experiments that improve robustness of empirical assessment of UE algorithms for NLG. For QA tasks, we show that marginalizing over multiple LLM-as-a-judge variants leads to reducing the evaluation biases. Furthermore, we explore structured tasks as well as out of distribution and perturbation detection tasks which provide robust and controllable risk indicators. Finally, we propose to use an Elo rating of uncertainty estimation methods to give an objective summarization over extensive evaluation settings.
☆ BioX-Bridge: Model Bridging for Unsupervised Cross-Modal Knowledge Transfer across Biosignals
Biosignals offer valuable insights into the physiological states of the human body. Although biosignal modalities differ in functionality, signal fidelity, sensor comfort, and cost, they are often intercorrelated, reflecting the holistic and interconnected nature of human physiology. This opens up the possibility of performing the same tasks using alternative biosignal modalities, thereby improving the accessibility, usability, and adaptability of health monitoring systems. However, the limited availability of large labeled datasets presents challenges for training models tailored to specific tasks and modalities of interest. Unsupervised cross-modal knowledge transfer offers a promising solution by leveraging knowledge from an existing modality to support model training for a new modality. Existing methods are typically based on knowledge distillation, which requires running a teacher model alongside student model training, resulting in high computational and memory overhead. This challenge is further exacerbated by the recent development of foundation models that demonstrate superior performance and generalization across tasks at the cost of large model sizes. To this end, we explore a new framework for unsupervised cross-modal knowledge transfer of biosignals by training a lightweight bridge network to align the intermediate representations and enable information flow between foundation models and across modalities. Specifically, we introduce an efficient strategy for selecting alignment positions where the bridge should be constructed, along with a flexible prototype network as the bridge architecture. Extensive experiments across multiple biosignal modalities, tasks, and datasets show that BioX-Bridge reduces the number of trainable parameters by 88--99\% while maintaining or even improving transfer performance compared to state-of-the-art methods.
☆ Parallel Scaling Law: Unveiling Reasoning Generalization through A Cross-Linguistic Perspective
Recent advancements in Reinforcement Post-Training (RPT) have significantly enhanced the capabilities of Large Reasoning Models (LRMs), sparking increased interest in the generalization of RL-based reasoning. While existing work has primarily focused on investigating its generalization across tasks or modalities, this study proposes a novel cross-linguistic perspective to investigate reasoning generalization. This raises a crucial question: $\textit{Does the reasoning capability achieved from English RPT effectively transfer to other languages?}$ We address this by systematically evaluating English-centric LRMs on multilingual reasoning benchmarks and introducing a metric to quantify cross-lingual transferability. Our findings reveal that cross-lingual transferability varies significantly across initial model, target language, and training paradigm. Through interventional studies, we find that models with stronger initial English capabilities tend to over-rely on English-specific patterns, leading to diminished cross-lingual generalization. To address this, we conduct a thorough parallel training study. Experimental results yield three key findings: $\textbf{First-Parallel Leap}$, a substantial leap in performance when transitioning from monolingual to just a single parallel language, and a predictable $\textbf{Parallel Scaling Law}$, revealing that cross-lingual reasoning transfer follows a power-law with the number of training parallel languages. Moreover, we identify the discrepancy between actual monolingual performance and the power-law prediction as $\textbf{Monolingual Generalization Gap}$, indicating that English-centric LRMs fail to fully generalize across languages. Our study challenges the assumption that LRM reasoning mirrors human cognition, providing critical insights for the development of more language-agnostic LRMs.
comment: Work in progress
☆ InfoMosaic-Bench: Evaluating Multi-Source Information Seeking in Tool-Augmented Agents
Information seeking is a fundamental requirement for humans. However, existing LLM agents rely heavily on open-web search, which exposes two fundamental weaknesses: online content is noisy and unreliable, and many real-world tasks require precise, domain-specific knowledge unavailable from the web. The emergence of the Model Context Protocol (MCP) now allows agents to interface with thousands of specialized tools, seemingly resolving this limitation. Yet it remains unclear whether agents can effectively leverage such tools -- and more importantly, whether they can integrate them with general-purpose search to solve complex tasks. Therefore, we introduce InfoMosaic-Bench, the first benchmark dedicated to multi-source information seeking in tool-augmented agents. Covering six representative domains (medicine, finance, maps, video, web, and multi-domain integration), InfoMosaic-Bench requires agents to combine general-purpose search with domain-specific tools. Tasks are synthesized with InfoMosaic-Flow, a scalable pipeline that grounds task conditions in verified tool outputs, enforces cross-source dependencies, and filters out shortcut cases solvable by trivial lookup. This design guarantees both reliability and non-triviality. Experiments with 14 state-of-the-art LLM agents reveal three findings: (i) web information alone is insufficient, with GPT-5 achieving only 38.2% accuracy and 67.5% pass rate; (ii) domain tools provide selective but inconsistent benefits, improving some domains while degrading others; and (iii) 22.4% of failures arise from incorrect tool usage or selection, highlighting that current LLMs still struggle with even basic tool handling.
☆ microCLIP: Unsupervised CLIP Adaptation via Coarse-Fine Token Fusion for Fine-Grained Image Classification
Unsupervised adaptation of CLIP-based vision-language models (VLMs) for fine-grained image classification requires sensitivity to microscopic local cues. While CLIP exhibits strong zero-shot transfer, its reliance on coarse global features restricts its performance on fine-grained classification tasks. Prior efforts inject fine-grained knowledge by aligning large language model (LLM) descriptions with the CLIP $\texttt{[CLS]}$ token; however, this approach overlooks spatial precision. We propose $\textbf{microCLIP}$, a self-training framework that jointly refines CLIP's visual and textual representations using fine-grained cues. At its core is Saliency-Oriented Attention Pooling (SOAP) within a lightweight TokenFusion module, which builds a saliency-guided $\texttt{[FG]}$ token from patch embeddings and fuses it with the global $\texttt{[CLS]}$ token for coarse-fine alignment. To stabilize adaptation, we introduce a two-headed LLM-derived classifier: a frozen classifier that, via multi-view alignment, provides a stable text-based prior for pseudo-labeling, and a learnable classifier initialized from LLM descriptions and fine-tuned with TokenFusion. We further develop Dynamic Knowledge Aggregation, which convexly combines fixed LLM/CLIP priors with TokenFusion's evolving logits to iteratively refine pseudo-labels. Together, these components uncover latent fine-grained signals in CLIP, yielding a consistent $2.90\%$ average accuracy gain across 13 fine-grained benchmarks while requiring only light adaptation. Our code is available at https://github.com/sathiiii/microCLIP.
☆ How to Combat Reactive and Dynamic Jamming Attacks with Reinforcement Learning
This paper studies the problem of mitigating reactive jamming, where a jammer adopts a dynamic policy of selecting channels and sensing thresholds to detect and jam ongoing transmissions. The transmitter-receiver pair learns to avoid jamming and optimize throughput over time (without prior knowledge of channel conditions or jamming strategies) by using reinforcement learning (RL) to adapt transmit power, modulation, and channel selection. Q-learning is employed for discrete jamming-event states, while Deep Q-Networks (DQN) are employed for continuous states based on received power. Through different reward functions and action sets, the results show that RL can adapt rapidly to spectrum dynamics and sustain high rates as channels and jamming policies change over time.
☆ Paving the Way Towards Kinematic Assessment Using Monocular Video: A Preclinical Benchmark of State-of-the-Art Deep-Learning-Based 3D Human Pose Estimators Against Inertial Sensors in Daily Living Activities
Advances in machine learning and wearable sensors offer new opportunities for capturing and analyzing human movement outside specialized laboratories. Accurate assessment of human movement under real-world conditions is essential for telemedicine, sports science, and rehabilitation. This preclinical benchmark compares monocular video-based 3D human pose estimation models with inertial measurement units (IMUs), leveraging the VIDIMU dataset containing a total of 13 clinically relevant daily activities which were captured using both commodity video cameras and five IMUs. During this initial study only healthy subjects were recorded, so results cannot be generalized to pathological cohorts. Joint angles derived from state-of-the-art deep learning frameworks (MotionAGFormer, MotionBERT, MMPose 2D-to-3D pose lifting, and NVIDIA BodyTrack) were evaluated against joint angles computed from IMU data using OpenSim inverse kinematics following the Human3.6M dataset format with 17 keypoints. Among them, MotionAGFormer demonstrated superior performance, achieving the lowest overall RMSE ($9.27\deg \pm 4.80\deg$) and MAE ($7.86\deg \pm 4.18\deg$), as well as the highest Pearson correlation ($0.86 \pm 0.15$) and the highest coefficient of determination $R^{2}$ ($0.67 \pm 0.28$). The results reveal that both technologies are viable for out-of-the-lab kinematic assessment. However, they also highlight key trade-offs between video- and sensor-based approaches including costs, accessibility, and precision. This study clarifies where off-the-shelf video models already provide clinically promising kinematics in healthy adults and where they lag behind IMU-based estimates while establishing valuable guidelines for researchers and clinicians seeking to develop robust, cost-effective, and user-friendly solutions for telehealth and remote patient monitoring.
comment: All tables, graphs and figures generated can be obtained in the Zenodo repository complementary to this work: https://doi.org/10.5281/zenodo.15088423
☆ RLAD: Training LLMs to Discover Abstractions for Solving Reasoning Problems
Reasoning requires going beyond pattern matching or memorization of solutions to identify and implement "algorithmic procedures" that can be used to deduce answers to hard problems. Doing so requires realizing the most relevant primitives, intermediate results, or shared procedures, and building upon them. While RL post-training on long chains of thought ultimately aims to uncover this kind of algorithmic behavior, most reasoning traces learned by large models fail to consistently capture or reuse procedures, instead drifting into verbose and degenerate exploration. To address more effective reasoning, we introduce reasoning abstractions: concise natural language descriptions of procedural and factual knowledge that guide the model toward learning successful reasoning. We train models to be capable of proposing multiple abstractions given a problem, followed by RL that incentivizes building a solution while using the information provided by these abstractions. This results in a two-player RL training paradigm, abbreviated as RLAD, that jointly trains an abstraction generator and a solution generator. This setup effectively enables structured exploration, decouples learning signals of abstraction proposal and solution generation, and improves generalization to harder problems. We also show that allocating more test-time compute to generating abstractions is more beneficial for performance than generating more solutions at large test budgets, illustrating the role of abstractions in guiding meaningful exploration.
☆ DragFlow: Unleashing DiT Priors with Region Based Supervision for Drag Editing
Drag-based image editing has long suffered from distortions in the target region, largely because the priors of earlier base models, Stable Diffusion, are insufficient to project optimized latents back onto the natural image manifold. With the shift from UNet-based DDPMs to more scalable DiT with flow matching (e.g., SD3.5, FLUX), generative priors have become significantly stronger, enabling advances across diverse editing tasks. However, drag-based editing has yet to benefit from these stronger priors. This work proposes the first framework to effectively harness FLUX's rich prior for drag-based editing, dubbed DragFlow, achieving substantial gains over baselines. We first show that directly applying point-based drag editing to DiTs performs poorly: unlike the highly compressed features of UNets, DiT features are insufficiently structured to provide reliable guidance for point-wise motion supervision. To overcome this limitation, DragFlow introduces a region-based editing paradigm, where affine transformations enable richer and more consistent feature supervision. Additionally, we integrate pretrained open-domain personalization adapters (e.g., IP-Adapter) to enhance subject consistency, while preserving background fidelity through gradient mask-based hard constraints. Multimodal large language models (MLLMs) are further employed to resolve task ambiguities. For evaluation, we curate a novel Region-based Dragging benchmark (ReD Bench) featuring region-level dragging instructions. Extensive experiments on DragBench-DR and ReD Bench show that DragFlow surpasses both point-based and region-based baselines, setting a new state-of-the-art in drag-based image editing. Code and datasets will be publicly available upon publication.
comment: Preprint
☆ The Unreasonable Effectiveness of Scaling Agents for Computer Use
Computer-use agents (CUAs) hold promise for automating everyday digital tasks, but their unreliability and high variance hinder their application to long-horizon, complex tasks. We introduce Behavior Best-of-N (bBoN), a method that scales over agents by generating multiple rollouts and selecting among them using behavior narratives that describe the agents' rollouts. It enables both wide exploration and principled trajectory selection, substantially improving robustness and success rates. On OSWorld, our bBoN scaling method establishes a new state of the art (SoTA) at 69.9%, significantly outperforming prior methods and approaching human-level performance at 72%, with comprehensive ablations validating key design choices. We further demonstrate strong generalization results to different operating systems on WindowsAgentArena and AndroidWorld. Crucially, our results highlight the unreasonable effectiveness of scaling CUAs, when you do it right: effective scaling requires structured trajectory understanding and selection, and bBoN provides a practical framework to achieve this.
comment: 23 pages, 7 figures, 10 tables
☆ Explore Briefly, Then Decide: Mitigating LLM Overthinking via Cumulative Entropy Regulation
Large Language Models (LLMs) have demonstrated remarkable reasoning abilities on complex problems using long Chain-of-Thought (CoT) reasoning. However, they often suffer from overthinking, meaning generating unnecessarily lengthy reasoning steps for simpler problems. This issue may degrade the efficiency of the models and make them difficult to adapt the reasoning depth to the complexity of problems. To address this, we introduce a novel metric Token Entropy Cumulative Average (TECA), which measures the extent of exploration throughout the reasoning process. We further propose a novel reasoning paradigm -- Explore Briefly, Then Decide -- with an associated Cumulative Entropy Regulation (CER) mechanism. This paradigm leverages TECA to help the model dynamically determine the optimal point to conclude its thought process and provide a final answer, thus achieving efficient reasoning. Experimental results across diverse mathematical benchmarks show that our approach substantially mitigates overthinking without sacrificing problem-solving ability. With our thinking paradigm, the average response length decreases by up to 71% on simpler datasets, demonstrating the effectiveness of our method in creating a more efficient and adaptive reasoning process.
☆ ExGRPO: Learning to Reason from Experience
Reinforcement learning from verifiable rewards (RLVR) is an emerging paradigm for improving the reasoning ability of large language models. However, standard on-policy training discards rollout experiences after a single update, leading to computational inefficiency and instability. While prior work on RL has highlighted the benefits of reusing past experience, the role of experience characteristics in shaping learning dynamics of large reasoning models remains underexplored. In this paper, we are the first to investigate what makes a reasoning experience valuable and identify rollout correctness and entropy as effective indicators of experience value. Based on these insights, we propose ExGRPO (Experiential Group Relative Policy Optimization), a framework that organizes and prioritizes valuable experiences, and employs a mixed-policy objective to balance exploration with experience exploitation. Experiments on five backbone models (1.5B-8B parameters) show that ExGRPO consistently improves reasoning performance on mathematical/general benchmarks, with an average gain of +3.5/7.6 points over on-policy RLVR. Moreover, ExGRPO stabilizes training on both stronger and weaker models where on-policy methods fail. These results highlight principled experience management as a key ingredient for efficient and scalable RLVR.
☆ RewardMap: Tackling Sparse Rewards in Fine-grained Visual Reasoning via Multi-Stage Reinforcement Learning
Fine-grained visual reasoning remains a core challenge for multimodal large language models (MLLMs). The recently introduced ReasonMap highlights this gap by showing that even advanced MLLMs struggle with spatial reasoning in structured and information-rich settings such as transit maps, a task of clear practical and scientific importance. However, standard reinforcement learning (RL) on such tasks is impeded by sparse rewards and unstable optimization. To address this, we first construct ReasonMap-Plus, an extended dataset that introduces dense reward signals through Visual Question Answering (VQA) tasks, enabling effective cold-start training of fine-grained visual understanding skills. Next, we propose RewardMap, a multi-stage RL framework designed to improve both visual understanding and reasoning capabilities of MLLMs. RewardMap incorporates two key designs. First, we introduce a difficulty-aware reward design that incorporates detail rewards, directly tackling the sparse rewards while providing richer supervision. Second, we propose a multi-stage RL scheme that bootstraps training from simple perception to complex reasoning tasks, offering a more effective cold-start strategy than conventional Supervised Fine-Tuning (SFT). Experiments on ReasonMap and ReasonMap-Plus demonstrate that each component of RewardMap contributes to consistent performance gains, while their combination yields the best results. Moreover, models trained with RewardMap achieve an average improvement of 3.47% across 6 benchmarks spanning spatial reasoning, fine-grained visual reasoning, and general tasks beyond transit maps, underscoring enhanced visual understanding and reasoning capabilities.
☆ The Reasoning Boundary Paradox: How Reinforcement Learning Constrains Language Models
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key method for improving Large Language Models' reasoning capabilities, yet recent evidence suggests it may paradoxically shrink the reasoning boundary rather than expand it. This paper investigates the shrinkage issue of RLVR by analyzing its learning dynamics and reveals two critical phenomena that explain this failure. First, we expose negative interference in RLVR, where learning to solve certain training problems actively reduces the likelihood of correct solutions for others, leading to the decline of Pass@$k$ performance, or the probability of generating a correct solution within $k$ attempts. Second, we uncover the winner-take-all phenomenon: RLVR disproportionately reinforces problems with high likelihood, correct solutions, under the base model, while suppressing other initially low-likelihood ones. Through extensive theoretical and empirical analysis on multiple mathematical reasoning benchmarks, we show that this effect arises from the inherent on-policy sampling in standard RL objectives, causing the model to converge toward narrow solution strategies. Based on these insights, we propose a simple yet effective data curation algorithm that focuses RLVR learning on low-likelihood problems, achieving notable improvement in Pass@$k$ performance. Our code is available at https://github.com/mail-research/SELF-llm-interference.
comment: 23 pages, 15 figures
☆ More Than One Teacher: Adaptive Multi-Guidance Policy Optimization for Diverse Exploration
Reinforcement Learning with Verifiable Rewards (RLVR) is a promising paradigm for enhancing the reasoning ability in Large Language Models (LLMs). However, prevailing methods primarily rely on self-exploration or a single off-policy teacher to elicit long chain-of-thought (LongCoT) reasoning, which may introduce intrinsic model biases and restrict exploration, ultimately limiting reasoning diversity and performance. Drawing inspiration from multi-teacher strategies in knowledge distillation, we introduce Adaptive Multi-Guidance Policy Optimization (AMPO), a novel framework that adaptively leverages guidance from multiple proficient teacher models, but only when the on-policy model fails to generate correct solutions. This "guidance-on-demand" approach expands exploration while preserving the value of self-discovery. Moreover, AMPO incorporates a comprehension-based selection mechanism, prompting the student to learn from the reasoning paths that it is most likely to comprehend, thus balancing broad exploration with effective exploitation. Extensive experiments show AMPO substantially outperforms a strong baseline (GRPO), with a 4.3% improvement on mathematical reasoning tasks and 12.2% on out-of-distribution tasks, while significantly boosting Pass@k performance and enabling more diverse exploration. Notably, using four peer-sized teachers, our method achieves comparable results to approaches that leverage a single, more powerful teacher (e.g., DeepSeek-R1) with more data. These results demonstrate a more efficient and scalable path to superior reasoning and generalizability. Our code is available at https://github.com/SII-Enigma/AMPO.
comment: 20 pages, 5 figures
☆ TempoControl: Temporal Attention Guidance for Text-to-Video Models
Recent advances in generative video models have enabled the creation of high-quality videos based on natural language prompts. However, these models frequently lack fine-grained temporal control, meaning they do not allow users to specify when particular visual elements should appear within a generated sequence. In this work, we introduce TempoControl, a method that allows for temporal alignment of visual concepts during inference, without requiring retraining or additional supervision. TempoControl utilizes cross-attention maps, a key component of text-to-video diffusion models, to guide the timing of concepts through a novel optimization approach. Our method steers attention using three complementary principles: aligning its temporal shape with a control signal (via correlation), amplifying it where visibility is needed (via energy), and maintaining spatial focus (via entropy). TempoControl allows precise control over timing while ensuring high video quality and diversity. We demonstrate its effectiveness across various video generation applications, including temporal reordering for single and multiple objects, as well as action and audio-aligned generation.
comment: Under Review
☆ DiFFPO: Training Diffusion LLMs to Reason Fast and Furious via Reinforcement Learning
We propose DiFFPO, Diffusion Fast and Furious Policy Optimization, a unified framework for training masked diffusion large language models (dLLMs) to reason not only better (furious), but also faster via reinforcement learning (RL). We first unify the existing baseline approach such as d1 by proposing to train surrogate policies via off-policy RL, whose likelihood is much more tractable as an approximation to the true dLLM policy. This naturally motivates a more accurate and informative two-stage likelihood approximation combined with importance sampling correction, which leads to generalized RL algorithms with better sample efficiency and superior task performance. Second, we propose a new direction of joint training efficient samplers/controllers of dLLMs policy. Via RL, we incentivize dLLMs' natural multi-token prediction capabilities by letting the model learn to adaptively allocate an inference threshold for each prompt. By jointly training the sampler, we yield better accuracies with lower number of function evaluations (NFEs) compared to training the model only, obtaining the best performance in improving the Pareto frontier of the inference-time compute of dLLMs. We showcase the effectiveness of our pipeline by training open source large diffusion language models over benchmark math and planning tasks.
Detection of Chagas Disease from the ECG: The George B. Moody PhysioNet Challenge 2025
Objective: Chagas disease is a parasitic infection that is endemic to South America, Central America, and, more recently, the U.S., primarily transmitted by insects. Chronic Chagas disease can cause cardiovascular diseases and digestive problems. Serological testing capacities for Chagas disease are limited, but Chagas cardiomyopathy often manifests in ECGs, providing an opportunity to prioritize patients for testing and treatment. Approach: The George B. Moody PhysioNet Challenge 2025 invites teams to develop algorithmic approaches for identifying Chagas disease from electrocardiograms (ECGs). Main results: This Challenge provides multiple innovations. First, we leveraged several datasets with labels from patient reports and serological testing, provided a large dataset with weak labels and smaller datasets with strong labels. Second, we augmented the data to support model robustness and generalizability to unseen data sources. Third, we applied an evaluation metric that captured the local serological testing capacity for Chagas disease to frame the machine learning problem as a triage task. Significance: Over 630 participants from 111 teams submitted over 1300 entries during the Challenge, representing diverse approaches from academia and industry worldwide.
comment: 13 pages, 2 figures
☆ ARUQULA -- An LLM based Text2SPARQL Approach using ReAct and Knowledge Graph Exploration Utilities SP
Interacting with knowledge graphs can be a daunting task for people without a background in computer science since the query language that is used (SPARQL) has a high barrier of entry. Large language models (LLMs) can lower that barrier by providing support in the form of Text2SPARQL translation. In this paper we introduce a generalized method based on SPINACH, an LLM backed agent that translates natural language questions to SPARQL queries not in a single shot, but as an iterative process of exploration and execution. We describe the overall architecture and reasoning behind our design decisions, and also conduct a thorough analysis of the agent behavior to gain insights into future areas for targeted improvements. This work was motivated by the Text2SPARQL challenge, a challenge that was held to facilitate improvements in the Text2SPARQL domain.
comment: peer reviewed publication at Text2SPARQL Workshop @ ESWC 2025
☆ UpSafe$^\circ$C: Upcycling for Controllable Safety in Large Language Models
Large Language Models (LLMs) have achieved remarkable progress across a wide range of tasks, but remain vulnerable to safety risks such as harmful content generation and jailbreak attacks. Existing safety techniques -- including external guardrails, inference-time guidance, and post-training alignment -- each face limitations in balancing safety, utility, and controllability. In this work, we propose UpSafe$^\circ$C, a unified framework for enhancing LLM safety through safety-aware upcycling. Our approach first identifies safety-critical layers and upcycles them into a sparse Mixture-of-Experts (MoE) structure, where the router acts as a soft guardrail that selectively activates original MLPs and added safety experts. We further introduce a two-stage SFT strategy to strengthen safety discrimination while preserving general capabilities. To enable flexible control at inference time, we introduce a safety temperature mechanism, allowing dynamic adjustment of the trade-off between safety and utility. Experiments across multiple benchmarks, base model, and model scales demonstrate that UpSafe$^\circ$C achieves robust safety improvements against harmful and jailbreak inputs, while maintaining competitive performance on general tasks. Moreover, analysis shows that safety temperature provides fine-grained inference-time control that achieves the Pareto-optimal frontier between utility and safety. Our results highlight a new direction for LLM safety: moving from static alignment toward dynamic, modular, and inference-aware control.
☆ A Rigorous Benchmark with Multidimensional Evaluation for Deep Research Agents: From Answers to Reports
Artificial intelligence is undergoing the paradigm shift from closed language models to interconnected agent systems capable of external perception and information integration. As a representative embodiment, Deep Research Agents (DRAs) systematically exhibit the capabilities for task decomposition, cross-source retrieval, multi-stage reasoning, and structured output, which markedly enhance performance on complex and open-ended tasks. However, existing benchmarks remain deficient in evaluation dimensions, response formatting, and scoring mechanisms, limiting their capacity to assess such systems effectively. This paper introduces a rigorous benchmark and a multidimensional evaluation framework tailored to DRAs and report-style responses. The benchmark comprises 214 expert-curated challenging queries distributed across 10 broad thematic domains, each accompanied by manually constructed reference bundles to support composite evaluation. The framework enables comprehensive evaluation of long-form reports generated by DRAs, incorporating integrated scoring metrics for semantic quality, topical focus, and retrieval trustworthiness. Extensive experimentation confirms the superior performance of mainstream DRAs over web-search-tool-augmented reasoning models, yet reveals considerable scope for further improvement. This study provides a robust foundation for capability assessment, architectural refinement, and paradigm advancement in DRA systems.
☆ EvolveCaptions: Empowering DHH Users Through Real-Time Collaborative Captioning
Automatic Speech Recognition (ASR) systems often fail to accurately transcribe speech from Deaf and Hard of Hearing (DHH) individuals, especially during real-time conversations. Existing personalization approaches typically require extensive pre-recorded data and place the burden of adaptation on the DHH speaker. We present EvolveCaptions, a real-time, collaborative ASR adaptation system that supports in-situ personalization with minimal effort. Hearing participants correct ASR errors during live conversations. Based on these corrections, the system generates short, phonetically targeted prompts for the DHH speaker to record, which are then used to fine-tune the ASR model. In a study with 12 DHH and six hearing participants, EvolveCaptions reduced Word Error Rate (WER) across all DHH users within one hour of use, using only five minutes of recording time on average. Participants described the system as intuitive, low-effort, and well-integrated into communication. These findings demonstrate the promise of collaborative, real-time ASR adaptation for more equitable communication.
☆ GRACE: A Language Model Framework for Explainable Inverse Reinforcement Learning
Inverse Reinforcement Learning aims to recover reward models from expert demonstrations, but traditional methods yield "black-box" models that are difficult to interpret and debug. In this work, we introduce GRACE (Generating Rewards As CodE), a method for using Large Language Models within an evolutionary search to reverse-engineer an interpretable, code-based reward function directly from expert trajectories. The resulting reward function is executable code that can be inspected and verified. We empirically validate GRACE on the BabyAI and AndroidWorld benchmarks, where it efficiently learns highly accurate rewards, even in complex, multi-task settings. Further, we demonstrate that the resulting reward leads to strong policies, compared to both competitive Imitation Learning and online RL approaches with ground-truth rewards. Finally, we show that GRACE is able to build complex reward APIs in multi-task setups.
☆ Learning to Reason for Hallucination Span Detection
Large language models (LLMs) often generate hallucinations -- unsupported content that undermines reliability. While most prior works frame hallucination detection as a binary task, many real-world applications require identifying hallucinated spans, which is a multi-step decision making process. This naturally raises the question of whether explicit reasoning can help the complex task of detecting hallucination spans. To answer this question, we first evaluate pretrained models with and without Chain-of-Thought (CoT) reasoning, and show that CoT reasoning has the potential to generate at least one correct answer when sampled multiple times. Motivated by this, we propose RL4HS, a reinforcement learning framework that incentivizes reasoning with a span-level reward function. RL4HS builds on Group Relative Policy Optimization and introduces Class-Aware Policy Optimization to mitigate reward imbalance issue. Experiments on the RAGTruth benchmark (summarization, question answering, data-to-text) show that RL4HS surpasses pretrained reasoning models and supervised fine-tuning, demonstrating the necessity of reinforcement learning with span-level rewards for detecting hallucination spans.
☆ Go witheFlow: Real-time Emotion Driven Audio Effects Modulation NeurIPS
Music performance is a distinctly human activity, intrinsically linked to the performer's ability to convey, evoke, or express emotion. Machines cannot perform music in the human sense; they can produce, reproduce, execute, or synthesize music, but they lack the capacity for affective or emotional experience. As such, music performance is an ideal candidate through which to explore aspects of collaboration between humans and machines. In this paper, we introduce the witheFlow system, designed to enhance real-time music performance by automatically modulating audio effects based on features extracted from both biosignals and the audio itself. The system, currently in a proof-of-concept phase, is designed to be lightweight, able to run locally on a laptop, and is open-source given the availability of a compatible Digital Audio Workstation and sensors.
comment: Accepted at NeurIPS Creative AI Track 2025: Humanity
☆ SIEVE: Towards Verifiable Certification for Code-datasets
Code agents and empirical software engineering rely on public code datasets, yet these datasets lack verifiable quality guarantees. Static 'dataset cards' inform, but they are neither auditable nor do they offer statistical guarantees, making it difficult to attest to dataset quality. Teams build isolated, ad-hoc cleaning pipelines. This fragments effort and raises cost. We present SIEVE, a community-driven framework. It turns per-property checks into Confidence Cards-machine-readable, verifiable certificates with anytime-valid statistical bounds. We outline a research plan to bring SIEVE to maturity, replacing narrative cards with anytime-verifiable certification. This shift is expected to lower quality-assurance costs and increase trust in code-datasets.
comment: 5
☆ Comparing Contrastive and Triplet Loss in Audio-Visual Embedding: Intra-Class Variance and Greediness Analysis
Contrastive loss and triplet loss are widely used objectives in deep metric learning, yet their effects on representation quality remain insufficiently understood. We present a theoretical and empirical comparison of these losses, focusing on intra- and inter-class variance and optimization behavior (e.g., greedy updates). Through task-specific experiments with consistent settings on synthetic data and real datasets-MNIST, CIFAR-10-it is shown that triplet loss preserves greater variance within and across classes, supporting finer-grained distinctions in the learned representations. In contrast, contrastive loss tends to compact intra-class embeddings, which may obscure subtle semantic differences. To better understand their optimization dynamics, By examining loss-decay rate, active ratio, and gradient norm, we find that contrastive loss drives many small updates early on, while triplet loss produces fewer but stronger updates that sustain learning on hard examples. Finally, across both classification and retrieval tasks on MNIST, CIFAR-10, CUB-200, and CARS196 datasets, our results consistently show that triplet loss yields superior performance, which suggests using triplet loss for detail retention and hard-sample focus, and contrastive loss for smoother, broad-based embedding refinement.
comment: 8 pages, 4 tables, 3 figures
☆ Unlocking Vision-Language Models for Video Anomaly Detection via Fine-Grained Prompting
Prompting has emerged as a practical way to adapt frozen vision-language models (VLMs) for video anomaly detection (VAD). Yet, existing prompts are often overly abstract, overlooking the fine-grained human-object interactions or action semantics that define complex anomalies in surveillance videos. We propose ASK-Hint, a structured prompting framework that leverages action-centric knowledge to elicit more accurate and interpretable reasoning from frozen VLMs. Our approach organizes prompts into semantically coherent groups (e.g. violence, property crimes, public safety) and formulates fine-grained guiding questions that align model predictions with discriminative visual cues. Extensive experiments on UCF-Crime and XD-Violence show that ASK-Hint consistently improves AUC over prior baselines, achieving state-of-the-art performance compared to both fine-tuned and training-free methods. Beyond accuracy, our framework provides interpretable reasoning traces towards anomaly and demonstrates strong generalization across datasets and VLM backbones. These results highlight the critical role of prompt granularity and establish ASK-Hint as a new training-free and generalizable solution for explainable video anomaly detection.
comment: 14 pages, video anomaly detection
☆ Human-Robo-advisor collaboration in decision-making: Evidence from a multiphase mixed methods experimental study
Robo-advisors (RAs) are cost-effective, bias-resistant alternatives to human financial advisors, yet adoption remains limited. While prior research has examined user interactions with RAs, less is known about how individuals interpret RA roles and integrate their advice into decision-making. To address this gap, this study employs a multiphase mixed methods design integrating a behavioral experiment (N = 334), thematic analysis, and follow-up quantitative testing. Findings suggest that people tend to rely on RAs, with reliance shaped by information about RA performance and the framing of advice as gains or losses. Thematic analysis reveals three RA roles in decision-making and four user types, each reflecting distinct patterns of advice integration. In addition, a 2 x 2 typology categorizes antecedents of acceptance into enablers and inhibitors at both the individual and algorithmic levels. By combining behavioral, interpretive, and confirmatory evidence, this study advances understanding of human-RA collaboration and provides actionable insights for designing more trustworthy and adaptive RA systems.
☆ How to Find Fantastic Papers: Self-Rankings as a Powerful Predictor of Scientific Impact Beyond Peer Review
Peer review in academic research aims not only to ensure factual correctness but also to identify work of high scientific potential that can shape future research directions. This task is especially critical in fast-moving fields such as artificial intelligence (AI), yet it has become increasingly difficult given the rapid growth of submissions. In this paper, we investigate an underexplored measure for identifying high-impact research: authors' own rankings of their multiple submissions to the same AI conference. Grounded in game-theoretic reasoning, we hypothesize that self-rankings are informative because authors possess unique understanding of their work's conceptual depth and long-term promise. To test this hypothesis, we conducted a large-scale experiment at a leading AI conference, where 1,342 researchers self-ranked their 2,592 submissions by perceived quality. Tracking outcomes over more than a year, we found that papers ranked highest by their authors received twice as many citations as their lowest-ranked counterparts; self-rankings were especially effective at identifying highly cited papers (those with over 150 citations). Moreover, we showed that self-rankings outperformed peer review scores in predicting future citation counts. Our results remained robust after accounting for confounders such as preprint posting time and self-citations. Together, these findings demonstrate that authors' self-rankings provide a reliable and valuable complement to peer review for identifying and elevating high-impact research in AI.
☆ BioinfoMCP: A Unified Platform Enabling MCP Interfaces in Agentic Bioinformatics
Bioinformatics tools are essential for complex computational biology tasks, yet their integration with emerging AI-agent frameworks is hindered by incompatible interfaces, heterogeneous input-output formats, and inconsistent parameter conventions. The Model Context Protocol (MCP) provides a standardized framework for tool-AI communication, but manually converting hundreds of existing and rapidly growing specialized bioinformatics tools into MCP-compliant servers is labor-intensive and unsustainable. Here, we present BioinfoMCP, a unified platform comprising two components: BioinfoMCP Converter, which automatically generates robust MCP servers from tool documentation using large language models, and BioinfoMCP Benchmark, which systematically validates the reliability and versatility of converted tools across diverse computational tasks. We present a platform of 38 MCP-converted bioinformatics tools, extensively validated to show that 94.7% successfully executed complex workflows across three widely used AI-agent platforms. By removing technical barriers to AI automation, BioinfoMCP enables natural-language interaction with sophisticated bioinformatics analyses without requiring extensive programming expertise, offering a scalable path to intelligent, interoperable computational biology.
comment: 20 pages, 8 figures, 3 tables
☆ FlexDoc: Parameterized Sampling for Diverse Multilingual Synthetic Documents for Training Document Understanding Models EMNLP 2025
Developing document understanding models at enterprise scale requires large, diverse, and well-annotated datasets spanning a wide range of document types. However, collecting such data is prohibitively expensive due to privacy constraints, legal restrictions, and the sheer volume of manual annotation needed - costs that can scale into millions of dollars. We introduce FlexDoc, a scalable synthetic data generation framework that combines Stochastic Schemas and Parameterized Sampling to produce realistic, multilingual semi-structured documents with rich annotations. By probabilistically modeling layout patterns, visual structure, and content variability, FlexDoc enables the controlled generation of diverse document variants at scale. Experiments on Key Information Extraction (KIE) tasks demonstrate that FlexDoc-generated data improves the absolute F1 Score by up to 11% when used to augment real datasets, while reducing annotation effort by over 90% compared to traditional hard-template methods. The solution is in active deployment, where it has accelerated the development of enterprise-grade document understanding models while significantly reducing data acquisition and annotation costs.
comment: Accepted at EMNLP 2025
☆ The Disparate Impacts of Speculative Decoding
The practice of speculative decoding, whereby inference is probabilistically supported by a smaller, cheaper, ``drafter'' model, has become a standard technique for systematically reducing the decoding time of large language models. This paper conducts an analysis of speculative decoding through the lens of its potential disparate speed-up rates across tasks. Crucially, the paper shows that speed-up gained from speculative decoding is not uniformly distributed across tasks, consistently diminishing for under-fit, and often underrepresented tasks. To better understand this phenomenon, we derive an analysis to quantify this observed ``unfairness'' and draw attention to the factors that motivate such disparate speed-ups to emerge. Further, guided by these insights, the paper proposes a mitigation strategy designed to reduce speed-up disparities and validates the approach across several model pairs, revealing on average a 12% improvement in our fairness metric.
☆ Do AI Models Perform Human-like Abstract Reasoning Across Modalities?
OpenAI's o3-preview reasoning model exceeded human accuracy on the ARC-AGI benchmark, but does that mean state-of-the-art models recognize and reason with the abstractions that the task creators intended? We investigate models' abstraction abilities on ConceptARC. We evaluate models under settings that vary the input modality (textual vs. visual), whether the model is permitted to use external Python tools, and, for reasoning models, the amount of reasoning effort. In addition to measuring output accuracy, we perform fine-grained evaluation of the natural-language rules that models generate to explain their solutions. This dual evaluation lets us assess whether models solve tasks using the abstractions ConceptARC was designed to elicit, rather than relying on surface-level patterns. Our results show that, while some models using text-based representations match human output accuracy, the best models' rules are often based on surface-level ``shortcuts'' and capture intended abstractions far less often than humans. Thus their capabilities for general abstract reasoning may be overestimated by evaluations based on accuracy alone. In the visual modality, AI models' output accuracy drops sharply, yet our rule-level analysis reveals that models might be underestimated, as they still exhibit a substantial share of rules that capture intended abstractions, but are often unable to correctly apply these rules. In short, our results show that models still lag humans in abstract reasoning, and that using accuracy alone to evaluate abstract reasoning on ARC-like tasks may overestimate abstract-reasoning capabilities in textual modalities and underestimate it in visual modalities. We believe that our evaluation framework offers a more faithful picture of multimodal models' abstract reasoning abilities and a more principled way to track progress toward human-like, abstraction-centered intelligence.
comment: 10 pages, 4 figures
☆ VarCoNet: A variability-aware self-supervised framework for functional connectome extraction from resting-state fMRI
Accounting for inter-individual variability in brain function is key to precision medicine. Here, by considering functional inter-individual variability as meaningful data rather than noise, we introduce VarCoNet, an enhanced self-supervised framework for robust functional connectome (FC) extraction from resting-state fMRI (rs-fMRI) data. VarCoNet employs self-supervised contrastive learning to exploit inherent functional inter-individual variability, serving as a brain function encoder that generates FC embeddings readily applicable to downstream tasks even in the absence of labeled data. Contrastive learning is facilitated by a novel augmentation strategy based on segmenting rs-fMRI signals. At its core, VarCoNet integrates a 1D-CNN-Transformer encoder for advanced time-series processing, enhanced with a robust Bayesian hyperparameter optimization. Our VarCoNet framework is evaluated on two downstream tasks: (i) subject fingerprinting, using rs-fMRI data from the Human Connectome Project, and (ii) autism spectrum disorder (ASD) classification, using rs-fMRI data from the ABIDE I and ABIDE II datasets. Using different brain parcellations, our extensive testing against state-of-the-art methods, including 13 deep learning methods, demonstrates VarCoNet's superiority, robustness, interpretability, and generalizability. Overall, VarCoNet provides a versatile and robust framework for FC analysis in rs-fMRI.
comment: My preview .pdf was not loading. Can you please share with me a compiled .pdf file so I can confirm that the result is correct?
☆ SpurBreast: A Curated Dataset for Investigating Spurious Correlations in Real-world Breast MRI Classification MICCAI
Deep neural networks (DNNs) have demonstrated remarkable success in medical imaging, yet their real-world deployment remains challenging due to spurious correlations, where models can learn non-clinical features instead of meaningful medical patterns. Existing medical imaging datasets are not designed to systematically study this issue, largely due to restrictive licensing and limited supplementary patient data. To address this gap, we introduce SpurBreast, a curated breast MRI dataset that intentionally incorporates spurious correlations to evaluate their impact on model performance. Analyzing over 100 features involving patient, device, and imaging protocol, we identify two dominant spurious signals: magnetic field strength (a global feature influencing the entire image) and image orientation (a local feature affecting spatial alignment). Through controlled dataset splits, we demonstrate that DNNs can exploit these non-clinical signals, achieving high validation accuracy while failing to generalize to unbiased test data. Alongside these two datasets containing spurious correlations, we also provide benchmark datasets without spurious correlations, allowing researchers to systematically investigate clinically relevant and irrelevant features, uncertainty estimation, adversarial robustness, and generalization strategies. Models and datasets are available at https://github.com/utkuozbulak/spurbreast.
comment: Accepted for publication in the 28th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2025
☆ Unlocking Symbol-Level Precoding Efficiency Through Tensor Equivariant Neural Network
Although symbol-level precoding (SLP) based on constructive interference (CI) exploitation offers performance gains, its high complexity remains a bottleneck. This paper addresses this challenge with an end-to-end deep learning (DL) framework with low inference complexity that leverages the structure of the optimal SLP solution in the closed-form and its inherent tensor equivariance (TE), where TE denotes that a permutation of the input induces the corresponding permutation of the output. Building upon the computationally efficient model-based formulations, as well as their known closed-form solutions, we analyze their relationship with linear precoding (LP) and investigate the corresponding optimality condition. We then construct a mapping from the problem formulation to the solution and prove its TE, based on which the designed networks reveal a specific parameter-sharing pattern that delivers low computational complexity and strong generalization. Leveraging these, we propose the backbone of the framework with an attention-based TE module, achieving linear computational complexity. Furthermore, we demonstrate that such a framework is also applicable to imperfect CSI scenarios, where we design a TE-based network to map the CSI, statistics, and symbols to auxiliary variables. Simulation results show that the proposed framework captures substantial performance gains of optimal SLP, while achieving an approximately 80-times speedup over conventional methods and maintaining strong generalization across user numbers and symbol block lengths.
comment: This work has been submitted to the IEEE for possible publication
☆ When Tracking Fails: Analyzing Failure Modes of SAM2 for Point-Based Tracking in Surgical Videos MICCAI
Video object segmentation (VOS) models such as SAM2 offer promising zero-shot tracking capabilities for surgical videos using minimal user input. Among the available input types, point-based tracking offers an efficient and low-cost alternative, yet its reliability and failure cases in complex surgical environments are not well understood. In this work, we systematically analyze the failure modes of point-based tracking in laparoscopic cholecystectomy videos. Focusing on three surgical targets, the gallbladder, grasper, and L-hook electrocautery, we compare the performance of point-based tracking with segmentation mask initialization. Our results show that point-based tracking is competitive for surgical tools but consistently underperforms for anatomical targets, where tissue similarity and ambiguous boundaries lead to failure. Through qualitative analysis, we reveal key factors influencing tracking outcomes and provide several actionable recommendations for selecting and placing tracking points to improve performance in surgical video analysis.
comment: Accepted for publication in the 28th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) Workshop on Collaborative Intelligence and Autonomy in Image-guided Surgery (COLAS), 2025
☆ Demystifying the Roles of LLM Layers in Retrieval, Knowledge, and Reasoning ICASSP 2025
Recent studies suggest that the deeper layers of Large Language Models (LLMs) contribute little to representation learning and can often be removed without significant performance loss. However, such claims are typically drawn from narrow evaluations and may overlook important aspects of model behavior. In this work, we present a systematic study of depth utilization across diverse dimensions, including evaluation protocols, task categories, and model architectures. Our analysis confirms that very deep layers are generally less effective than earlier ones, but their contributions vary substantially with the evaluation setting. Under likelihood-based metrics without generation, pruning most layers preserves performance, with only the initial few being critical. By contrast, generation-based evaluation uncovers indispensable roles for middle and deeper layers in enabling reasoning and maintaining long-range coherence. We further find that knowledge and retrieval are concentrated in shallow components, whereas reasoning accuracy relies heavily on deeper layers -- yet can be reshaped through distillation. These results highlight that depth usage in LLMs is highly heterogeneous and context-dependent, underscoring the need for task-, metric-, and model-aware perspectives in both interpreting and compressing large models.
comment: ICASSP 2025
☆ KAIROS: Unified Training for Universal Non-Autoregressive Time Series Forecasting
In the World Wide Web, reliable time series forecasts provide the forward-looking signals that drive resource planning, cache placement, and anomaly response, enabling platforms to operate efficiently as user behavior and content distributions evolve. Compared with other domains, time series forecasting for Web applications requires much faster responsiveness to support real-time decision making. We present KAIROS, a non-autoregressive time series forecasting framework that directly models segment-level multi-peak distributions. Unlike autoregressive approaches, KAIROS avoids error accumulation and achieves just-in-time inference, while improving over existing non-autoregressive models that collapse to over-smoothed predictions. Trained on the large-scale corpus, KAIROS demonstrates strong zero-shot generalization on six widely used benchmarks, delivering forecasting performance comparable to state-of-the-art foundation models with similar scale, at a fraction of their inference cost. Beyond empirical results, KAIROS highlights the importance of non-autoregressive design as a scalable paradigm for foundation models in time series.
☆ ReTabAD: A Benchmark for Restoring Semantic Context in Tabular Anomaly Detection
In tabular anomaly detection (AD), textual semantics often carry critical signals, as the definition of an anomaly is closely tied to domain-specific context. However, existing benchmarks provide only raw data points without semantic context, overlooking rich textual metadata such as feature descriptions and domain knowledge that experts rely on in practice. This limitation restricts research flexibility and prevents models from fully leveraging domain knowledge for detection. ReTabAD addresses this gap by restoring textual semantics to enable context-aware tabular AD research. We provide (1) 20 carefully curated tabular datasets enriched with structured textual metadata, together with implementations of state-of-the-art AD algorithms including classical, deep learning, and LLM-based approaches, and (2) a zero-shot LLM framework that leverages semantic context without task-specific training, establishing a strong baseline for future research. Furthermore, this work provides insights into the role and utility of textual metadata in AD through experiments and analysis. Results show that semantic context improves detection performance and enhances interpretability by supporting domain-aware reasoning. These findings establish ReTabAD as a benchmark for systematic exploration of context-aware AD.
comment: 9 pages, 4 figures
☆ The Current State of AI Bias Bounties: An Overview of Existing Programmes and Research
Current bias evaluation methods rarely engage with communities impacted by AI systems. Inspired by bug bounties, bias bounties have been proposed as a reward-based method that involves communities in AI bias detection by asking users of AI systems to report biases they encounter when interacting with such systems. In the absence of a state-of-the-art review, this survey aimed to identify and analyse existing AI bias bounty programmes and to present academic literature on bias bounties. Google, Google Scholar, PhilPapers, and IEEE Xplore were searched, and five bias bounty programmes, as well as five research publications, were identified. All bias bounties were organised by U.S.-based organisations as time-limited contests, with public participation in four programmes and prize pools ranging from 7,000 to 24,000 USD. The five research publications included a report on the application of bug bounties to algorithmic harms, an article addressing Twitter's bias bounty, a proposal for bias bounties as an institutional mechanism to increase AI scrutiny, a workshop discussing bias bounties from queer perspectives, and an algorithmic framework for bias bounties. We argue that reducing the technical requirements to enter bounty programmes is important to include those without coding experience. Given the limited adoption of bias bounties, future efforts should explore the transferability of the best practices from bug bounties and examine how such programmes can be designed to be sensitive to underrepresented groups while lowering adoption barriers for organisations.
comment: 6,227 words (18 pages, from abstract to appendix), one figure, one table, and an appendix with an additional table
☆ LiLa-Net: Lightweight Latent LiDAR Autoencoder for 3D Point Cloud Reconstruction ICRA
This work proposed a 3D autoencoder architecture, named LiLa-Net, which encodes efficient features from real traffic environments, employing only the LiDAR's point clouds. For this purpose, we have real semi-autonomous vehicle, equipped with Velodyne LiDAR. The system leverage skip connections concept to improve the performance without using extensive resources as the state-of-the-art architectures. Key changes include reducing the number of encoder layers and simplifying the skip connections, while still producing an efficient and representative latent space which allows to accurately reconstruct the original point cloud. Furthermore, an effective balance has been achieved between the information carried by the skip connections and the latent encoding, leading to improved reconstruction quality without compromising performance. Finally, the model demonstrates strong generalization capabilities, successfully reconstructing objects unrelated to the original traffic environment.
comment: 7 pages, 3 figures, 7 tables, Submitted to ICRA
☆ Zero-shot reasoning for simulating scholarly peer-review
The scholarly publishing ecosystem faces a dual crisis of unmanageable submission volumes and unregulated AI, creating an urgent need for new governance models to safeguard scientific integrity. The traditional human-only peer review regime lacks a scalable, objective benchmark, making editorial processes opaque and difficult to audit. Here we investigate a deterministic simulation framework that provides the first stable, evidence-based standard for evaluating AI-generated peer review reports. Analyzing 352 peer-review simulation reports, we identify consistent system state indicators that demonstrate its reliability. First, the system is able to simulate calibrated editorial judgment, with 'Revise' decisions consistently forming the majority outcome (>50%) across all disciplines, while 'Reject' rates dynamically adapt to field-specific norms, rising to 45% in Health Sciences. Second, it maintains unwavering procedural integrity, enforcing a stable 29% evidence-anchoring compliance rate that remains invariant across diverse review tasks and scientific domains. These findings demonstrate a system that is predictably rule-bound, mitigating the stochasticity of generative AI. For the scientific community, this provides a transparent tool to ensure fairness; for publishing strategists, it offers a scalable instrument for auditing workflows, managing integrity risks, and implementing evidence-based governance. The framework repositions AI as an essential component of institutional accountability, providing the critical infrastructure to maintain trust in scholarly communication.
☆ Generating Findings for Jaw Cysts in Dental Panoramic Radiographs Using GPT-4o: Building a Two-Stage Self-Correction Loop with Structured Output (SLSO) Framework
In this study, we utilized the multimodal capabilities of OpenAI GPT-4o to automatically generate jaw cyst findings on dental panoramic radiographs. To improve accuracy, we constructed a Self-correction Loop with Structured Output (SLSO) framework and verified its effectiveness. A 10-step process was implemented for 22 cases of jaw cysts, including image input and analysis, structured data generation, tooth number extraction and consistency checking, iterative regeneration when inconsistencies were detected, and finding generation with subsequent restructuring and consistency verification. A comparative experiment was conducted using the conventional Chain-of-Thought (CoT) method across seven evaluation items: transparency, internal structure, borders, root resorption, tooth movement, relationships with other structures, and tooth number. The results showed that the proposed SLSO framework improved output accuracy for many items, with 66.9%, 33.3%, and 28.6% improvement rates for tooth number, tooth movement, and root resorption, respectively. In the successful cases, a consistently structured output was achieved after up to five regenerations. Although statistical significance was not reached because of the small size of the dataset, the overall SLSO framework enforced negative finding descriptions, suppressed hallucinations, and improved tooth number identification accuracy. However, the accurate identification of extensive lesions spanning multiple teeth is limited. Nevertheless, further refinement is required to enhance overall performance and move toward a practical finding generation system.
comment: Intended for submission to Scientific Reports
☆ Clarifying Semantics of In-Context Examples for Unit Test Generation
Recent advances in large language models (LLMs) have enabled promising performance in unit test generation through in-context learning (ICL). However, the quality of in-context examples significantly influences the effectiveness of generated tests-poorly structured or semantically unclear test examples often lead to suboptimal outputs. In this paper, we propose CLAST, a novel technique that systematically refines unit tests to improve their semantic clarity, thereby enhancing their utility as in-context examples. The approach decomposes complex tests into logically clearer ones and improves semantic clarity through a combination of program analysis and LLM-based rewriting. We evaluated CLAST on four open-source and three industrial projects. The results demonstrate that CLAST largely outperforms UTgen, the state-of-the-art refinement technique, in both preserving test effectiveness and enhancing semantic clarity. Specifically, CLAST fully retains the original effectiveness of unit tests, while UTgen reduces compilation success rate (CSR), pass rate (PR), test coverage (Cov), and mutation score (MS) by an average of 12.90%, 35.82%, 4.65%, and 5.07%, respectively. Over 85.33% of participants in our user study preferred the semantic clarity of CLAST-refined tests. Notably, incorporating CLAST-refined tests as examples effectively improves ICL-based unit test generation approaches such as RAGGen and TELPA, resulting in an average increase of 25.97% in CSR, 28.22% in PR, and 45.99% in Cov for generated tests, compared to incorporating UTgen-refined tests. The insights from the follow-up user study not only reinforce CLAST's potential impact in software testing practice but also illuminate avenues for future research.
comment: accepted in the research track of ASE 2025
☆ ZK-WAGON: Imperceptible Watermark for Image Generation Models using ZK-SNARKs
As image generation models grow increasingly powerful and accessible, concerns around authenticity, ownership, and misuse of synthetic media have become critical. The ability to generate lifelike images indistinguishable from real ones introduces risks such as misinformation, deepfakes, and intellectual property violations. Traditional watermarking methods either degrade image quality, are easily removed, or require access to confidential model internals - making them unsuitable for secure and scalable deployment. We are the first to introduce ZK-WAGON, a novel system for watermarking image generation models using the Zero-Knowledge Succinct Non Interactive Argument of Knowledge (ZK-SNARKs). Our approach enables verifiable proof of origin without exposing model weights, generation prompts, or any sensitive internal information. We propose Selective Layer ZK-Circuit Creation (SL-ZKCC), a method to selectively convert key layers of an image generation model into a circuit, reducing proof generation time significantly. Generated ZK-SNARK proofs are imperceptibly embedded into a generated image via Least Significant Bit (LSB) steganography. We demonstrate this system on both GAN and Diffusion models, providing a secure, model-agnostic pipeline for trustworthy AI image generation.
comment: Accepted at AI-ML Systems 2025, Bangalore, India, https://www.aimlsystems.org/2025/
☆ Exploring Resolution-Wise Shared Attention in Hybrid Mamba-U-Nets for Improved Cross-Corpus Speech Enhancement
Recent advances in speech enhancement have shown that models combining Mamba and attention mechanisms yield superior cross-corpus generalization performance. At the same time, integrating Mamba in a U-Net structure has yielded state-of-the-art enhancement performance, while reducing both model size and computational complexity. Inspired by these insights, we propose RWSA-MambaUNet, a novel and efficient hybrid model combining Mamba and multi-head attention in a U-Net structure for improved cross-corpus performance. Resolution-wise shared attention (RWSA) refers to layerwise attention-sharing across corresponding time- and frequency resolutions. Our best-performing RWSA-MambaUNet model achieves state-of-the-art generalization performance on two out-of-domain test sets. Notably, our smallest model surpasses all baselines on the out-of-domain DNS 2020 test set in terms of PESQ, SSNR, and ESTOI, and on the out-of-domain EARS-WHAM_v2 test set in terms of SSNR, ESTOI, and SI-SDR, while using less than half the model parameters and a fraction of the FLOPs.
comment: Submitted to IEEE for possible publication
☆ Foundation Visual Encoders Are Secretly Few-Shot Anomaly Detectors
Few-shot anomaly detection streamlines and simplifies industrial safety inspection. However, limited samples make accurate differentiation between normal and abnormal features challenging, and even more so under category-agnostic conditions. Large-scale pre-training of foundation visual encoders has advanced many fields, as the enormous quantity of data helps to learn the general distribution of normal images. We observe that the anomaly amount in an image directly correlates with the difference in the learnt embeddings and utilize this to design a few-shot anomaly detector termed FoundAD. This is done by learning a nonlinear projection operator onto the natural image manifold. The simple operator acts as an effective tool for anomaly detection to characterize and identify out-of-distribution regions in an image. Extensive experiments show that our approach supports multi-class detection and achieves competitive performance while using substantially fewer parameters than prior methods. Backed up by evaluations with multiple foundation encoders, including fresh DINOv3, we believe this idea broadens the perspective on foundation features and advances the field of few-shot anomaly detection.
comment: 23 pages, 13 figures. Code is available at \url{https://github.com/ymxlzgy/FoundAD}
☆ To Mask or to Mirror: Human-AI Alignment in Collective Reasoning
As large language models (LLMs) are increasingly used to model and augment collective decision-making, it is critical to examine their alignment with human social reasoning. We present an empirical framework for assessing collective alignment, in contrast to prior work on the individual level. Using the Lost at Sea social psychology task, we conduct a large-scale online experiment (N=748), randomly assigning groups to leader elections with either visible demographic attributes (e.g. name, gender) or pseudonymous aliases. We then simulate matched LLM groups conditioned on the human data, benchmarking Gemini 2.5, GPT 4.1, Claude Haiku 3.5, and Gemma 3. LLM behaviors diverge: some mirror human biases; others mask these biases and attempt to compensate for them. We empirically demonstrate that human-AI alignment in collective reasoning depends on context, cues, and model-specific inductive biases. Understanding how LLMs align with collective human behavior is critical to advancing socially-aligned AI, and demands dynamic benchmarks that capture the complexities of collective reasoning.
☆ Automated Defect Detection for Mass-Produced Electronic Components Based on YOLO Object Detection Models
Since the defect detection of conventional industry components is time-consuming and labor-intensive, it leads to a significant burden on quality inspection personnel and makes it difficult to manage product quality. In this paper, we propose an automated defect detection system for the dual in-line package (DIP) that is widely used in industry, using digital camera optics and a deep learning (DL)-based model. The two most common defect categories of DIP are examined: (1) surface defects, and (2) pin-leg defects. However, the lack of defective component images leads to a challenge for detection tasks. To solve this problem, the ConSinGAN is used to generate a suitable-sized dataset for training and testing. Four varieties of the YOLO model are investigated (v3, v4, v7, and v9), both in isolation and with the ConSinGAN augmentation. The proposed YOLOv7 with ConSinGAN is superior to the other YOLO versions in accuracy of 95.50\%, detection time of 285 ms, and is far superior to threshold-based approaches. In addition, the supervisory control and data acquisition (SCADA) system is developed, and the associated sensor architecture is described. The proposed automated defect detection can be easily established with numerous types of defects or insufficient defect data.
comment: 12 pages, 16 figures, 7 tables, and published in IEEE Sensors Journal
☆ Are LLMs Better GNN Helpers? Rethinking Robust Graph Learning under Deficiencies with Iterative Refinement
Graph Neural Networks (GNNs) are widely adopted in Web-related applications, serving as a core technique for learning from graph-structured data, such as text-attributed graphs. Yet in real-world scenarios, such graphs exhibit deficiencies that substantially undermine GNN performance. While prior GNN-based augmentation studies have explored robustness against individual imperfections, a systematic understanding of how graph-native and Large Language Models (LLMs) enhanced methods behave under compound deficiencies is still missing. Specifically, there has been no comprehensive investigation comparing conventional approaches and recent LLM-on-graph frameworks, leaving their merits unclear. To fill this gap, we conduct the first empirical study that benchmarks these two lines of methods across diverse graph deficiencies, revealing overlooked vulnerabilities and challenging the assumption that LLM augmentation is consistently superior. Building on empirical findings, we propose Robust Graph Learning via Retrieval-Augmented Contrastive Refinement (RoGRAD) framework. Unlike prior one-shot LLM-as-Enhancer designs, RoGRAD is the first iterative paradigm that leverages Retrieval-Augmented Generation (RAG) to inject retrieval-grounded augmentations by supplying class-consistent, diverse augmentations and enforcing discriminative representations through iterative graph contrastive learning. It transforms LLM augmentation for graphs from static signal injection into dynamic refinement. Extensive experiments demonstrate RoGRAD's superiority over both conventional GNN- and LLM-enhanced baselines, achieving up to 82.43% average improvement.
comment: 14 pages
☆ Constrained Adaptive Rejection Sampling
Language Models (LMs) are increasingly used in applications where generated outputs must satisfy strict semantic or syntactic constraints. Existing approaches to constrained generation fall along a spectrum: greedy constrained decoding methods enforce validity during decoding but distort the LM's distribution, while rejection sampling (RS) preserves fidelity but wastes computation by discarding invalid outputs. Both extremes are problematic in domains such as program fuzzing, where both validity and diversity of samples are essential. We present Constrained Adaptive Rejection Sampling (CARS), an approach that strictly improves the sample-efficiency of RS without distributional distortion. CARS begins with unconstrained LM sampling and adaptively rules out constraint-violating continuations by recording them in a trie and subtracting their probability mass from future draws. This adaptive pruning ensures that prefixes proven invalid are never revisited, acceptance rates improve monotonically, and the resulting samples exactly follow the constrained distribution. In experiments on a variety of domains -- e.g., program fuzzing and molecular generation -- CARS consistently achieves higher efficiency -- measured in the number of LM forward passes per valid sample -- while also producing stronger sample diversity than both GCD and methods that approximate the LM's distribution.
☆ Multimodal Foundation Models for Early Disease Detection
Healthcare generates diverse streams of data, including electronic health records (EHR), medical imaging, genetics, and ongoing monitoring from wearable devices. Traditional diagnostic models frequently analyze these sources in isolation, which constrains their capacity to identify cross-modal correlations essential for early disease diagnosis. Our research presents a multimodal foundation model that consolidates diverse patient data through an attention-based transformer framework. At first, dedicated encoders put each modality into a shared latent space. Then, they combine them using multi-head attention and residual normalization. The architecture is made for pretraining on many tasks, which makes it easy to adapt to new diseases and datasets with little extra work. We provide an experimental strategy that uses benchmark datasets in oncology, cardiology, and neurology, with the goal of testing early detection tasks. The framework includes data governance and model management tools in addition to technological performance to improve transparency, reliability, and clinical interpretability. The suggested method works toward a single foundation model for precision diagnostics, which could improve the accuracy of predictions and help doctors make decisions.
comment: 6 pages
☆ HRTFformer: A Spatially-Aware Transformer for Personalized HRTF Upsampling in Immersive Audio Rendering
Personalized Head-Related Transfer Functions (HRTFs) are starting to be introduced in many commercial immersive audio applications and are crucial for realistic spatial audio rendering. However, one of the main hesitations regarding their introduction is that creating personalized HRTFs is impractical at scale due to the complexities of the HRTF measurement process. To mitigate this drawback, HRTF spatial upsampling has been proposed with the aim of reducing measurements required. While prior work has seen success with different machine learning (ML) approaches, these models often struggle with long-range spatial consistency and generalization at high upsampling factors. In this paper, we propose a novel transformer-based architecture for HRTF upsampling, leveraging the attention mechanism to better capture spatial correlations across the HRTF sphere. Working in the spherical harmonic (SH) domain, our model learns to reconstruct high-resolution HRTFs from sparse input measurements with significantly improved accuracy. To enhance spatial coherence, we introduce a neighbor dissimilarity loss that promotes magnitude smoothness, yielding more realistic upsampling. We evaluate our method using both perceptual localization models and objective spectral distortion metrics. Experiments show that our model surpasses leading methods by a substantial margin in generating realistic, high-fidelity HRTFs.
comment: 10 pages and 5 figures
☆ Small is Sufficient: Reducing the World AI Energy Consumption Through Model Selection
The energy consumption and carbon footprint of Artificial Intelligence (AI) have become critical concerns due to rising costs and environmental impacts. In response, a new trend in green AI is emerging, shifting from the "bigger is better" paradigm, which prioritizes large models, to "small is sufficient", emphasizing energy sobriety through smaller, more efficient models. We explore how the AI community can adopt energy sobriety today by focusing on model selection during inference. Model selection consists of choosing the most appropriate model for a given task, a simple and readily applicable method, unlike approaches requiring new hardware or architectures. Our hypothesis is that, as in many industrial activities, marginal utility gains decrease with increasing model size. Thus, applying model selection can significantly reduce energy consumption while maintaining good utility for AI inference. We conduct a systematic study of AI tasks, analyzing their popularity, model size, and efficiency. We examine how the maturity of different tasks and model adoption patterns impact the achievable energy savings, ranging from 1% to 98% for different tasks. Our estimates indicate that applying model selection could reduce AI energy consumption by 27.8%, saving 31.9 TWh worldwide in 2025 - equivalent to the annual output of five nuclear power reactors.
☆ FINCH: Financial Intelligence using Natural language for Contextualized SQL Handling
Text-to-SQL, the task of translating natural language questions into SQL queries, has long been a central challenge in NLP. While progress has been significant, applying it to the financial domain remains especially difficult due to complex schema, domain-specific terminology, and high stakes of error. Despite this, there is no dedicated large-scale financial dataset to advance research, creating a critical gap. To address this, we introduce a curated financial dataset (FINCH) comprising 292 tables and 75,725 natural language-SQL pairs, enabling both fine-tuning and rigorous evaluation. Building on this resource, we benchmark reasoning models and language models of varying scales, providing a systematic analysis of their strengths and limitations in financial Text-to-SQL tasks. Finally, we propose a finance-oriented evaluation metric (FINCH Score) that captures nuances overlooked by existing measures, offering a more faithful assessment of model performance.
☆ REPAIR: Robust Editing via Progressive Adaptive Intervention and Reintegration
Post-training for large language models (LLMs) is constrained by the high cost of acquiring new knowledge or correcting errors and by the unintended side effects that frequently arise from retraining. To address these issues, we introduce REPAIR (Robust Editing via Progressive Adaptive Intervention and Reintegration), a lifelong editing framework designed to support precise and low-cost model updates while preserving non-target knowledge. REPAIR mitigates the instability and conflicts of large-scale sequential edits through a closed-loop feedback mechanism coupled with dynamic memory management. Furthermore, by incorporating frequent knowledge fusion and enforcing strong locality guards, REPAIR effectively addresses the shortcomings of traditional distribution-agnostic approaches that often overlook unintended ripple effects. Our experiments demonstrate that REPAIR boosts editing accuracy by 10%-30% across multiple model families and significantly reduces knowledge forgetting. This work introduces a robust framework for developing reliable, scalable, and continually evolving LLMs.
☆ TACOS: Task Agnostic COordinator of a multi-drone System
When a single pilot is responsible for managing a multi-drone system, the task demands varying levels of autonomy, from direct control of individual UAVs, to group-level coordination, to fully autonomous swarm behaviors for accomplishing high-level tasks. Enabling such flexible interaction requires a framework that supports multiple modes of shared autonomy. As language models continue to improve in reasoning and planning, they provide a natural foundation for such systems, reducing pilot workload by enabling high-level task delegation through intuitive, language-based interfaces. In this paper we present TACOS (Task-Agnostic COordinator of a multi-drone System), a unified framework that enables high-level natural language control of multi-UAV systems through Large Language Models (LLMs). TACOS integrates three key capabilities into a single architecture: a one-to-many natural language interface for intuitive user interaction, an intelligent coordinator for translating user intent into structured task plans, and an autonomous agent that executes plans interacting with the real-world. TACOS allows a LLM to interact with a library of executable APIs, bridging semantic reasoning with real-time multi-robot coordination. We demonstrate the system in real-world multi-drone system and conduct an ablation study to assess the contribution of each module.
comment: 6 pages, 6 figures, accepted as poster at 2025 IEEE International Symposium on Multi-Robot & Multi-Agent Systems
☆ A Modular Theory of Subjective Consciousness for Natural and Artificial Minds
Understanding how subjective experience arises from information processing remains a central challenge in neuroscience, cognitive science, and AI research. The Modular Consciousness Theory (MCT) proposes a biologically grounded and computationally explicit framework in which consciousness is a discrete sequence of Integrated Informational States (IISs). Each IIS is a packet of integrated information tagged with a multidimensional density vector that quantifies informational richness. Its magnitude correlates with subjective intensity, shaping memory, behavior, and continuity of experience. Inputs from body and environment are adaptively filtered, processed by modules (abstraction, narration, evaluation, self-evaluation), and integrated into an IIS. The resulting packet, tagged with its density vector, is transmitted to behavioral readiness, memory, and decision-making modules, closing the loop. This explains why strongly tagged states exert greater influence on long-term memory and action. Unlike Global Workspace Theory, Integrated Information Theory, or Higher-Order Thought, MCT specifies a full computational pipeline producing discrete informational units with quantifiable internal structure. Subjectivity is reframed as a correlate of the density-tagging signal with functional consequences. MCT generates testable predictions, such as stress enhancing memory encoding, and provides a naturalistic blueprint for both biological and artificial architectures. Consciousness, in this view, is not an irreducible essence but an evolvable, quantifiable, and constructible feature of complex information processing.
comment: 41 pages, 3 figures. Under review, comments welcome
☆ Learning a Dense Reasoning Reward Model from Expert Demonstration via Inverse Reinforcement Learning
We reframe and operationalise adversarial inverse reinforcement learning (IRL) to large language model reasoning, learning a dense, token-level reward model for process supervision directly from expert demonstrations rather than imitating style via supervised fine-tuning. The learned reasoning reward serves two complementary roles: (i) it provides step-level feedback to optimise a reasoning policy during training; and (ii) it functions at inference as a critic to rerank sampled traces under fixed compute budgets. We demonstrate that our approach prioritises correctness over surface form, yielding scores that correlate with eventual answer validity and enabling interpretable localisation of errors within a trace. Empirically, on GSM8K with Llama3 and Qwen2.5 backbones, we demonstrate: (i) dense reasoning rewards can be used as a learning signal to elicit reasoning, and (ii) predictive performance is improved from reward-guided reranking (notably for Llama-based policies). By unifying training signals, inference-time selection, and token-level diagnostics into a single reasoning reward, this work suggests reusable process-level rewards with broad potential to enhance multi-step reasoning in language models.
☆ NGGAN: Noise Generation GAN Based on the Practical Measurement Dataset for Narrowband Powerline Communications
Capturing comprehensive statistics of nonperiodic asynchronous impulsive noise is a critical issue in enhancing impulse noise processing for narrowband powerline communication (NB-PLC) transceivers. However, existing mathematical noise generative models capture only some of the characteristics of additive noise. Therefore, we propose a generative adversarial network (GAN), called the noise-generation GAN (NGGAN), that learns the complicated characteristics of practically measured noise samples for data augmentation. To closely match the statistics of complicated noise in NB-PLC systems, we measured the NB-PLC noise via the analog coupling and bandpass filtering circuits of a commercial NB-PLC modem to build a realistic dataset. Specifically, the NGGAN design approaches based on the practically measured dataset are as follows: (i) we design the length of input signals that the NGGAN model can fit to facilitate cyclo-stationary noise generation. (ii) Wasserstein distance is used as a loss function to enhance the similarity between the generated noise and the training dataset and ensure that the sample diversity is sufficient for various applications. (iii) To measure the similarity performance of the GAN-based models based on mathematical and practically measured datasets, we perform quantitative and qualitative analyses. The training datasets include (1) a piecewise spectral cyclo-stationary Gaussian model (PSCGM), (2) a frequency-shift (FRESH) filter, and (3) practical measurements from NB-PLC systems. Simulation results demonstrate that the proposed NGGAN trained using waveform characteristics is closer to the practically measured dataset in terms of the quality of the generated noise.
comment: 16 pages, 15 figures, 11 tables, and published in IEEE Transactions on Instrumentation and Measurement, Vol. 74, 2025
☆ Pre-Hoc Predictions in AutoML: Leveraging LLMs to Enhance Model Selection and Benchmarking for Tabular datasets
The field of AutoML has made remarkable progress in post-hoc model selection, with libraries capable of automatically identifying the most performing models for a given dataset. Nevertheless, these methods often rely on exhaustive hyperparameter searches, where methods automatically train and test different types of models on the target dataset. Contrastingly, pre-hoc prediction emerges as a promising alternative, capable of bypassing exhaustive search through intelligent pre-selection of models. Despite its potential, pre-hoc prediction remains under-explored in the literature. This paper explores the intersection of AutoML and pre-hoc model selection by leveraging traditional models and Large Language Model (LLM) agents to reduce the search space of AutoML libraries. By relying on dataset descriptions and statistical information, we reduce the AutoML search space. Our methodology is applied to the AWS AutoGluon portfolio dataset, a state-of-the-art AutoML benchmark containing 175 tabular classification datasets available on OpenML. The proposed approach offers a shift in AutoML workflows, significantly reducing computational overhead, while still selecting the best model for the given dataset.
comment: Oral Presentations ADAPT Annual Scientific Conference 2025
☆ Plan Then Action:High-Level Planning Guidance Reinforcement Learning for LLM Reasoning
Large language models (LLMs) have demonstrated remarkable reasoning abilities in complex tasks, often relying on Chain-of-Thought (CoT) reasoning. However, due to their autoregressive token-level generation, the reasoning process is largely constrained to local decision-making and lacks global planning. This limitation frequently results in redundant, incoherent, or inaccurate reasoning, which significantly degrades overall performance. Existing approaches, such as tree-based algorithms and reinforcement learning (RL), attempt to address this issue but suffer from high computational costs and often fail to produce optimal reasoning trajectories. To tackle this challenge, we propose Plan-Then-Action Enhanced Reasoning with Group Relative Policy Optimization PTA-GRPO, a two-stage framework designed to improve both high-level planning and fine-grained CoT reasoning. In the first stage, we leverage advanced LLMs to distill CoT into compact high-level guidance, which is then used for supervised fine-tuning (SFT). In the second stage, we introduce a guidance-aware RL method that jointly optimizes the final output and the quality of high-level guidance, thereby enhancing reasoning effectiveness. We conduct extensive experiments on multiple mathematical reasoning benchmarks, including MATH, AIME2024, AIME2025, and AMC, across diverse base models such as Qwen2.5-7B-Instruct, Qwen3-8B, Qwen3-14B, and LLaMA3.2-3B. Experimental results demonstrate that PTA-GRPO consistently achieves stable and significant improvements across different models and tasks, validating its effectiveness and generalization.
comment: 19 pages and 5 figures
☆ Human-AI Teaming Co-Learning in Military Operations
In a time of rapidly evolving military threats and increasingly complex operational environments, the integration of AI into military operations proves significant advantages. At the same time, this implies various challenges and risks regarding building and deploying human-AI teaming systems in an effective and ethical manner. Currently, understanding and coping with them are often tackled from an external perspective considering the human-AI teaming system as a collective agent. Nevertheless, zooming into the dynamics involved inside the system assures dealing with a broader palette of relevant multidimensional responsibility, safety, and robustness aspects. To this end, this research proposes the design of a trustworthy co-learning model for human-AI teaming in military operations that encompasses a continuous and bidirectional exchange of insights between the human and AI agents as they jointly adapt to evolving battlefield conditions. It does that by integrating four dimensions. First, adjustable autonomy for dynamically calibrating the autonomy levels of agents depending on aspects like mission state, system confidence, and environmental uncertainty. Second, multi-layered control which accounts continuous oversight, monitoring of activities, and accountability. Third, bidirectional feedback with explicit and implicit feedback loops between the agents to assure a proper communication of reasoning, uncertainties, and learned adaptations that each of the agents has. And fourth, collaborative decision-making which implies the generation, evaluation, and proposal of decisions associated with confidence levels and rationale behind them. The model proposed is accompanied by concrete exemplifications and recommendations that contribute to further developing responsible and trustworthy human-AI teaming systems in military operations.
comment: Submitted to Sensors + Imaging; presented on 18th of September (Artificial Intelligence for Security and Defence Applications III)
☆ SingMOS-Pro: An Comprehensive Benchmark for Singing Quality Assessment ICASSP 2026
Singing voice generation progresses rapidly, yet evaluating singing quality remains a critical challenge. Human subjective assessment, typically in the form of listening tests, is costly and time consuming, while existing objective metrics capture only limited perceptual aspects. In this work, we introduce SingMOS-Pro, a dataset for automatic singing quality assessment. Building on our preview version SingMOS, which provides only overall ratings, SingMOS-Pro expands annotations of the additional part to include lyrics, melody, and overall quality, offering broader coverage and greater diversity. The dataset contains 7,981 singing clips generated by 41 models across 12 datasets, spanning from early systems to recent advances. Each clip receives at least five ratings from professional annotators, ensuring reliability and consistency. Furthermore, we explore how to effectively utilize MOS data annotated under different standards and benchmark several widely used evaluation methods from related tasks on SingMOS-Pro, establishing strong baselines and practical references for future research. The dataset can be accessed at https://huggingface.co/datasets/TangRain/SingMOS-Pro.
comment: 4 pages, 5 figures; submitted to ICASSP 2026
☆ REBot: From RAG to CatRAG with Semantic Enrichment and Graph Routing
Academic regulation advising is essential for helping students interpret and comply with institutional policies, yet building effective systems requires domain specific regulatory resources. To address this challenge, we propose REBot, an LLM enhanced advisory chatbot powered by CatRAG, a hybrid retrieval reasoning framework that integrates retrieval augmented generation with graph based reasoning. CatRAG unifies dense retrieval and graph reasoning, supported by a hierarchical, category labeled knowledge graph enriched with semantic features for domain alignment. A lightweight intent classifier routes queries to the appropriate retrieval modules, ensuring both factual accuracy and contextual depth. We construct a regulation specific dataset and evaluate REBot on classification and question answering tasks, achieving state of the art performance with an F1 score of 98.89%. Finally, we implement a web application that demonstrates the practical value of REBot in real world academic advising scenarios.
☆ Rethinking the shape convention of an MLP
Multi-layer perceptrons (MLPs) conventionally follow a narrow-wide-narrow design where skip connections operate at the input/output dimensions while processing occurs in expanded hidden spaces. We challenge this convention by proposing wide-narrow-wide (Hourglass) MLP blocks where skip connections operate at expanded dimensions while residual computation flows through narrow bottlenecks. This inversion leverages higher-dimensional spaces for incremental refinement while maintaining computational efficiency through parameter-matched designs. Implementing Hourglass MLPs requires an initial projection to lift input signals to expanded dimensions. We propose that this projection can remain fixed at random initialization throughout training, enabling efficient training and inference implementations. We evaluate both architectures on generative tasks over popular image datasets, characterizing performance-parameter Pareto frontiers through systematic architectural search. Results show that Hourglass architectures consistently achieve superior Pareto frontiers compared to conventional designs. As parameter budgets increase, optimal Hourglass configurations favor deeper networks with wider skip connections and narrower bottlenecks-a scaling pattern distinct from conventional MLPs. Our findings suggest reconsidering skip connection placement in modern architectures, with potential applications extending to Transformers and other residual networks.
☆ Nav-EE: Navigation-Guided Early Exiting for Efficient Vision-Language Models in Autonomous Driving
Vision-Language Models (VLMs) are increasingly applied in autonomous driving for unified perception and reasoning, but high inference latency hinders real-time deployment. Early-exit reduces latency by terminating inference at intermediate layers, yet its task-dependent nature limits generalization across diverse scenarios. We observe that this limitation aligns with autonomous driving: navigation systems can anticipate upcoming contexts (e.g., intersections, traffic lights), indicating which tasks will be required. We propose Nav-EE, a navigation-guided early-exit framework that precomputes task-specific exit layers offline and dynamically applies them online based on navigation priors. Experiments on CODA, Waymo, and BOSCH show that Nav-EE achieves accuracy comparable to full inference while reducing latency by up to 63.9%. Real-vehicle integration with Autoware Universe further demonstrates reduced inference latency (600ms to 300ms), supporting faster decision-making in complex scenarios. These results suggest that coupling navigation foresight with early-exit offers a viable path toward efficient deployment of large models in autonomous systems. Code and data are available at our anonymous repository: https://anonymous.4open.science/r/Nav-EE-BBC4
☆ Comparison of Unsupervised Metrics for Evaluating Judicial Decision Extraction
The rapid advancement of artificial intelligence in legal natural language processing demands scalable methods for evaluating text extraction from judicial decisions. This study evaluates 16 unsupervised metrics, including novel formulations, to assess the quality of extracting seven semantic blocks from 1,000 anonymized Russian judicial decisions, validated against 7,168 expert reviews on a 1--5 Likert scale. These metrics, spanning document-based, semantic, structural, pseudo-ground truth, and legal-specific categories, operate without pre-annotated ground truth. Bootstrapped correlations, Lin's concordance correlation coefficient (CCC), and mean absolute error (MAE) reveal that Term Frequency Coherence (Pearson $r = 0.540$, Lin CCC = 0.512, MAE = 0.127) and Coverage Ratio/Block Completeness (Pearson $r = 0.513$, Lin CCC = 0.443, MAE = 0.139) best align with expert ratings, while Legal Term Density (Pearson $r = -0.479$, Lin CCC = -0.079, MAE = 0.394) show strong negative correlations. The LLM Evaluation Score (mean = 0.849, Pearson $r = 0.382$, Lin CCC = 0.325, MAE = 0.197) showed moderate alignment, but its performance, using gpt-4.1-mini via g4f, suggests limited specialization for legal textse. These findings highlight that unsupervised metrics, including LLM-based approaches, enable scalable screening but, with moderate correlations and low CCC values, cannot fully replace human judgment in high-stakes legal contexts. This work advances legal NLP by providing annotation-free evaluation tools, with implications for judicial analytics and ethical AI deployment.
comment: 28 pages
☆ Pack and Force Your Memory: Long-form and Consistent Video Generation
Long-form video generation presents a dual challenge: models must capture long-range dependencies while preventing the error accumulation inherent in autoregressive decoding. To address these challenges, we make two contributions. First, for dynamic context modeling, we propose MemoryPack, a learnable context-retrieval mechanism that leverages both textual and image information as global guidance to jointly model short- and long-term dependencies, achieving minute-level temporal consistency. This design scales gracefully with video length, preserves computational efficiency, and maintains linear complexity. Second, to mitigate error accumulation, we introduce Direct Forcing, an efficient single-step approximating strategy that improves training-inference alignment and thereby curtails error propagation during inference. Together, MemoryPack and Direct Forcing substantially enhance the context consistency and reliability of long-form video generation, advancing the practical usability of autoregressive video models.
☆ Can LLMs Refuse Questions They Do Not Know? Measuring Knowledge-Aware Refusal in Factual Tasks
Large Language Models (LLMs) should refuse to answer questions beyond their knowledge. This capability, which we term knowledge-aware refusal, is crucial for factual reliability. However, existing metrics fail to faithfully measure this ability. On the one hand, simple refusal-based metrics are biased by refusal rates and yield inconsistent scores when models exhibit different refusal tendencies. On the other hand, existing calibration metrics are proxy-based, capturing the performance of auxiliary calibration processes rather than the model's actual refusal behavior. In this work, we propose the Refusal Index (RI), a principled metric that measures how accurately LLMs refuse questions they do not know. We define RI as Spearman's rank correlation between refusal probability and error probability. To make RI practically measurable, we design a lightweight two-pass evaluation method that efficiently estimates RI from observed refusal rates across two standard evaluation runs. Extensive experiments across 16 models and 5 datasets demonstrate that RI accurately quantifies a model's intrinsic knowledge-aware refusal capability in factual tasks. Notably, RI remains stable across different refusal rates and provides consistent model rankings independent of a model's overall accuracy and refusal rates. More importantly, RI provides insight into an important but previously overlooked aspect of LLM factuality: while LLMs achieve high accuracy on factual tasks, their refusal behavior can be unreliable and fragile. This finding highlights the need to complement traditional accuracy metrics with the Refusal Index for comprehensive factuality evaluation.
☆ Secure Multi-Modal Data Fusion in Federated Digital Health Systems via MCP
Secure and interoperable integration of heterogeneous medical data remains a grand challenge in digital health. Current federated learning (FL) frameworks offer privacy-preserving model training but lack standardized mechanisms to orchestrate multi-modal data fusion across distributed and resource-constrained environments. This study introduces a novel framework that leverages the Model Context Protocol (MCP) as an interoperability layer for secure, cross-agent communication in multi-modal federated healthcare systems. The proposed architecture unifies three pillars: (i) multi-modal feature alignment for clinical imaging, electronic medical records, and wearable IoT data; (ii) secure aggregation with differential privacy to protect patient-sensitive updates; and (iii) energy-aware scheduling to mitigate dropouts in mobile clients. By employing MCP as a schema-driven interface, the framework enables adaptive orchestration of AI agents and toolchains while ensuring compliance with privacy regulations. Experimental evaluation on benchmark datasets and pilot clinical cohorts demonstrates up to 9.8\% improvement in diagnostic accuracy compared with baseline FL, a 54\% reduction in client dropout rates, and clinically acceptable privacy--utility trade-offs. These results highlight MCP-enabled multi-modal fusion as a scalable and trustworthy pathway toward equitable, next-generation federated health infrastructures.
comment: 6 pages, 8 figures, 7 equations, 1 algorithm
Unsupervised Dynamic Feature Selection for Robust Latent Spaces in Vision Tasks
Latent representations are critical for the performance and robustness of machine learning models, as they encode the essential features of data in a compact and informative manner. However, in vision tasks, these representations are often affected by noisy or irrelevant features, which can degrade the model's performance and generalization capabilities. This paper presents a novel approach for enhancing latent representations using unsupervised Dynamic Feature Selection (DFS). For each instance, the proposed method identifies and removes misleading or redundant information in images, ensuring that only the most relevant features contribute to the latent space. By leveraging an unsupervised framework, our approach avoids reliance on labeled data, making it broadly applicable across various domains and datasets. Experiments conducted on image datasets demonstrate that models equipped with unsupervised DFS achieve significant improvements in generalization performance across various tasks, including clustering and image generation, while incurring a minimal increase in the computational cost.
☆ A cybersecurity AI agent selection and decision support framework
This paper presents a novel, structured decision support framework that systematically aligns diverse artificial intelligence (AI) agent architectures, reactive, cognitive, hybrid, and learning, with the comprehensive National Institute of Standards and Technology (NIST) Cybersecurity Framework (CSF) 2.0. By integrating agent theory with industry guidelines, this framework provides a transparent and stepwise methodology for selecting and deploying AI solutions to address contemporary cyber threats. Employing a granular decomposition of NIST CSF 2.0 functions into specific tasks, the study links essential AI agent properties such as autonomy, adaptive learning, and real-time responsiveness to each subcategory's security requirements. In addition, it outlines graduated levels of autonomy (assisted, augmented, and fully autonomous) to accommodate organisations at varying stages of cybersecurity maturity. This holistic approach transcends isolated AI applications, providing a unified detection, incident response, and governance strategy. Through conceptual validation, the framework demonstrates how tailored AI agent deployments can align with real-world constraints and risk profiles, enhancing situational awareness, accelerating response times, and fortifying long-term resilience via adaptive risk management. Ultimately, this research bridges the gap between theoretical AI constructs and operational cybersecurity demands, establishing a foundation for robust, empirically validated multi-agent systems that adhere to industry standards.
comment: 6 figures, 6 tables, AI agents decision support framework
☆ Machine-interpretable Engineering Design Standards for Valve Specification
Engineering design processes use technical specifications and must comply with standards. Product specifications, product type data sheets, and design standards are still mainly document-centric despite the ambition to digitalize industrial work. In this paper, we demonstrate how to transform information held in engineering design standards into modular, reusable, machine-interpretable ontologies and use the ontologies in quality assurance of the plant design and equipment selection process. We use modelling patterns to create modular ontologies for knowledge captured in the text and in frequently referenced tables in International Standards for piping, material and valve design. These modules are exchangeable, as stored in a W3C compliant format, and interoperable as they are aligned with the top-level ontology ISO DIS 23726-3: Industrial Data Ontology (IDO). We test these ontologies, created based on international material and piping standards and industry norms, on a valve selection process. Valves are instantiated in semantic asset models as individuals along with a semantic representation of the environmental condition at their location on the asset. We create "functional location tags" as OWL individuals that become instances of OWL class Valve Data Sheet (VDS) specified valves. Similarly we create instances of manufacturer product type. Our approach enables automated validation that a specific VDS is compliant with relevant industry standards. Using semantic reasoning and executable design rules, we also determine whether the product type meets the valve specification. Creation of shared, reusable IDO-based modular ontologies for design standards enables semantic reasoning to be applied to equipment selection processes and demonstrates the potential of this approach for Standards Bodies wanting to transition to digitized Smart Standards.
comment: 22 pages, 10 figures, 4 tables
☆ MetaboT: AI-based agent for natural language-based interaction with metabolomics knowledge graphs
Mass spectrometry metabolomics generates vast amounts of data requiring advanced methods for interpretation. Knowledge graphs address these challenges by structuring mass spectrometry data, metabolite information, and their relationships into a connected network (Gaudry et al. 2024). However, effective use of a knowledge graph demands an in-depth understanding of its ontology and its query language syntax. To overcome this, we designed MetaboT, an AI system utilizing large language models (LLMs) to translate user questions into SPARQL semantic query language for operating on knowledge graphs (Steve Harris 2013). We demonstrate its effectiveness using the Experimental Natural Products Knowledge Graph (ENPKG), a large-scale public knowledge graph for plant natural products (Gaudry et al. 2024).MetaboT employs specialized AI agents for handling user queries and interacting with the knowledge graph by breaking down complex tasks into discrete components, each managed by a specialised agent (Fig. 1a). The multi-agent system is constructed using the LangChain and LangGraph libraries, which facilitate the integration of LLMs with external tools and information sources (LangChain, n.d.). The query generation process follows a structured workflow. First, the Entry Agent determines if the question is new or a follow-up to previous interactions. New questions are forwarded to the Validator Agent, which verifies if the question is related to the knowledge graph. Then, the valid question is sent to the Supervisor Agent, which identifies if the question requires chemical conversions or standardized identifiers. In this case it delegates the question to the Knowledge Graph Agent, which can use tools to extract necessary details, such as URIs or taxonomies of chemical names, from the user query. Finally, an agent responsible for crafting the SPARQL queries equipped with the ontology of the knowledge graph uses the provided identifiers to generate the query. Then, the system executes the generated query against the metabolomics knowledge graph and returns structured results to the user (Fig. 1b). To assess the performance of MetaboT we have curated 50 metabolomics-related questions and their expected answers. In addition to submitting these questions to MetaboT, we evaluated a baseline by submitting them to a standard LLM (GPT-4o) with a prompt that incorporated the knowledge graph ontology but did not provide specific entity IDs. This baseline achieved only 8.16% accuracy, compared to MetaboT's 83.67%, underscoring the necessity of our multi-agent system for accurately retrieving entities and generating correct SPARQL queries. MetaboT demonstrates promising performance as a conversational question-answering assistant, enabling researchers to retrieve structured metabolomics data through natural language queries. By automating the generation and execution of SPARQL queries, it removes technical barriers that have traditionally hindered access to knowledge graphs. Importantly, MetaboT leverages the capabilities of LLMs while maintaining experimentally grounded query generation, ensuring that outputs remain aligned with domain-specific standards and data structures. This approach facilitates data-driven discoveries by bridging the gap between complex semantic technologies and user-friendly interaction. MetaboT is accessible at [https://metabot.holobiomicslab.eu/], and its source code is available at [https://github.com/HolobiomicsLab/MetaboT].
☆ Emotional Text-To-Speech Based on Mutual-Information-Guided Emotion-Timbre Disentanglement SC 2025
Current emotional Text-To-Speech (TTS) and style transfer methods rely on reference encoders to control global style or emotion vectors, but do not capture nuanced acoustic details of the reference speech. To this end, we propose a novel emotional TTS method that enables fine-grained phoneme-level emotion embedding prediction while disentangling intrinsic attributes of the reference speech. The proposed method employs a style disentanglement method to guide two feature extractors, reducing mutual information between timbre and emotion features, and effectively separating distinct style components from the reference speech. Experimental results demonstrate that our method outperforms baseline TTS systems in generating natural and emotionally rich speech. This work highlights the potential of disentangled and fine-grained representations in advancing the quality and flexibility of emotional TTS systems.
comment: In Proceedings of the 17th Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC 2025)
☆ Latency-aware Multimodal Federated Learning over UAV Networks
This paper investigates federated multimodal learning (FML) assisted by unmanned aerial vehicles (UAVs) with a focus on minimizing system latency and providing convergence analysis. In this framework, UAVs are distributed throughout the network to collect data, participate in model training, and collaborate with a base station (BS) to build a global model. By utilizing multimodal sensing, the UAVs overcome the limitations of unimodal systems, enhancing model accuracy, generalization, and offering a more comprehensive understanding of the environment. The primary objective is to optimize FML system latency in UAV networks by jointly addressing UAV sensing scheduling, power control, trajectory planning, resource allocation, and BS resource management. To address the computational complexity of our latency minimization problem, we propose an efficient iterative optimization algorithm combining block coordinate descent and successive convex approximation techniques, which provides high-quality approximate solutions. We also present a theoretical convergence analysis for the UAV-assisted FML framework under a non-convex loss function. Numerical experiments demonstrate that our FML framework outperforms existing approaches in terms of system latency and model training performance under different data settings.
comment: Accepted at IEEE Transactions on Network Science and Engineering
☆ PyramidStyler: Transformer-Based Neural Style Transfer with Pyramidal Positional Encoding and Reinforcement Learning
Neural Style Transfer (NST) has evolved from Gatys et al.'s (2015) CNN-based algorithm, enabling AI-driven artistic image synthesis. However, existing CNN and transformer-based models struggle to scale efficiently to complex styles and high-resolution inputs. We introduce PyramidStyler, a transformer framework with Pyramidal Positional Encoding (PPE): a hierarchical, multi-scale encoding that captures both local details and global context while reducing computational load. We further incorporate reinforcement learning to dynamically optimize stylization, accelerating convergence. Trained on Microsoft COCO and WikiArt, PyramidStyler reduces content loss by 62.6% (to 2.07) and style loss by 57.4% (to 0.86) after 4000 epochs--achieving 1.39 s inference--and yields further improvements (content 2.03; style 0.75) with minimal speed penalty (1.40 s) when using RL. These results demonstrate real-time, high-quality artistic rendering, with broad applications in media and design.
☆ PolySim: Bridging the Sim-to-Real Gap for Humanoid Control via Multi-Simulator Dynamics Randomization
Humanoid whole-body control (WBC) policies trained in simulation often suffer from the sim-to-real gap, which fundamentally arises from simulator inductive bias, the inherent assumptions and limitations of any single simulator. These biases lead to nontrivial discrepancies both across simulators and between simulation and the real world. To mitigate the effect of simulator inductive bias, the key idea is to train policies jointly across multiple simulators, encouraging the learned controller to capture dynamics that generalize beyond any single simulator's assumptions. We thus introduce PolySim, a WBC training platform that integrates multiple heterogeneous simulators. PolySim can launch parallel environments from different engines simultaneously within a single training run, thereby realizing dynamics-level domain randomization. Theoretically, we show that PolySim yields a tighter upper bound on simulator inductive bias than single-simulator training. In experiments, PolySim substantially reduces motion-tracking error in sim-to-sim evaluations; for example, on MuJoCo, it improves execution success by 52.8 over an IsaacSim baseline. PolySim further enables zero-shot deployment on a real Unitree G1 without additional fine-tuning, showing effective transfer from simulation to the real world. We will release the PolySim code upon acceptance of this work.
comment: 8 pages, 5 figures
☆ Representational Alignment Across Model Layers and Brain Regions with Hierarchical Optimal Transport
Standard representational similarity methods align each layer of a network to its best match in another independently, producing asymmetric results, lacking a global alignment score, and struggling with networks of different depths. These limitations arise from ignoring global activation structure and restricting mappings to rigid one-to-one layer correspondences. We propose Hierarchical Optimal Transport (HOT), a unified framework that jointly infers soft, globally consistent layer-to-layer couplings and neuron-level transport plans. HOT allows source neurons to distribute mass across multiple target layers while minimizing total transport cost under marginal constraints. This yields both a single alignment score for the entire network comparison and a soft transport plan that naturally handles depth mismatches through mass distribution. We evaluate HOT on vision models, large language models, and human visual cortex recordings. Across all domains, HOT matches or surpasses standard pairwise matching in alignment quality. Moreover, it reveals smooth, fine-grained hierarchical correspondences: early layers map to early layers, deeper layers maintain relative positions, and depth mismatches are resolved by distributing representations across multiple layers. These structured patterns emerge naturally from global optimization without being imposed, yet are absent in greedy layer-wise methods. HOT thus enables richer, more interpretable comparisons between representations, particularly when networks differ in architecture or depth.
☆ Holistic Order Prediction in Natural Scenes
Even in controlled settings, understanding instance-wise geometries is a challenging task for a wide range of visual models. Although specialized systems exist, modern arts rely on expensive input formats (category labels, binary segmentation masks) and inference costs (a quadratic amount of forward passes). We mitigate these limitations by proposing InstaFormer, a network capable of holistic order prediction. That is, solely given an input RGB image, InstaFormer returns the full occlusion and depth orderings for all the instances in the scene in a single forward pass. At its core, InstaFormer relies on interactions between object queries and latent mask descriptors that semantically represent the same objects while carrying complementary information. We comprehensively benchmark and ablate our approach to highlight its effectiveness. Our code and models are open-source and available at this URL: https://github.com/SNU-VGILab/InstaOrder.
comment: 25 pages, 11 figures, 6 tables
☆ VaPR -- Vision-language Preference alignment for Reasoning
Preference finetuning methods like Direct Preference Optimization (DPO) with AI-generated feedback have shown promise in aligning Large Vision-Language Models (LVLMs) with human preferences. However, existing techniques overlook the prevalence of noise in synthetic preference annotations in the form of stylistic and length biases. To this end, we introduce a hard-negative response generation framework based on LLM-guided response editing, that produces rejected responses with targeted errors, maintaining stylistic and length similarity to the accepted ones. Using this framework, we develop the VaPR dataset, comprising 30K high-quality samples, to finetune three LVLM families: LLaVA-V1.5, Qwen2VL & Qwen2.5VL (2B-13B sizes). Our VaPR models deliver significant performance improvements across ten benchmarks, achieving average gains of 6.5% (LLaVA), 4.0% (Qwen2VL), and 1.5% (Qwen2.5VL), with notable improvements on reasoning tasks. A scaling analysis shows that performance consistently improves with data size, with LLaVA models benefiting even at smaller scales. Moreover, VaPR reduces the tendency to answer "Yes" in binary questions - addressing a common failure mode in LVLMs like LLaVA. Lastly, we show that the framework generalizes to open-source LLMs as editors, with models trained on VaPR-OS achieving ~99% of the performance of models trained on \name, which is synthesized using GPT-4o. Our data, models, and code can be found on the project page https://vap-r.github.io
☆ Format Inertia: A Failure Mechanism of LLMs in Medical Pre-Consultation EMNLP 2025
Recent advances in Large Language Models (LLMs) have brought significant improvements to various service domains, including chatbots and medical pre-consultation applications. In the healthcare domain, the most common approach for adapting LLMs to multi-turn dialogue generation is Supervised Fine-Tuning (SFT). However, datasets for SFT in tasks like medical pre-consultation typically exhibit a skewed turn-count distribution. Training on such data induces a novel failure mechanism we term **Format Inertia**, where models tend to generate repetitive, format-correct, but diagnostically uninformative questions in long medical dialogues. To mitigate this observed failure mechanism, we adopt a simple, data-centric method that rebalances the turn-count distribution of the training dataset. Experimental results show that our approach substantially alleviates Format Inertia in medical pre-consultation.
comment: EMNLP 2025 Industry Track
☆ Improving AGI Evaluation: A Data Science Perspective
Evaluation of potential AGI systems and methods is difficult due to the breadth of the engineering goal. We have no methods for perfect evaluation of the end state, and instead measure performance on small tests designed to provide directional indication that we are approaching AGI. In this work we argue that AGI evaluation methods have been dominated by a design philosophy that uses our intuitions of what intelligence is to create synthetic tasks, that have performed poorly in the history of AI. Instead we argue for an alternative design philosophy focused on evaluating robust task execution that seeks to demonstrate AGI through competence. This perspective is developed from common practices in data science that are used to show that a system can be reliably deployed. We provide practical examples of what this would mean for AGI evaluation.
☆ How Do Language Models Compose Functions?
While large language models (LLMs) appear to be increasingly capable of solving compositional tasks, it is an open question whether they do so using compositional mechanisms. In this work, we investigate how feedforward LLMs solve two-hop factual recall tasks, which can be expressed compositionally as $g(f(x))$. We first confirm that modern LLMs continue to suffer from the "compositionality gap": i.e. their ability to compute both $z = f(x)$ and $y = g(z)$ does not entail their ability to compute the composition $y = g(f(x))$. Then, using logit lens on their residual stream activations, we identify two processing mechanisms, one which solves tasks $\textit{compositionally}$, computing $f(x)$ along the way to computing $g(f(x))$, and one which solves them $\textit{directly}$, without any detectable signature of the intermediate variable $f(x)$. Finally, we find that which mechanism is employed appears to be related to the embedding space geometry, with the idiomatic mechanism being dominant in cases where there exists a linear mapping from $x$ to $g(f(x))$ in the embedding spaces. We fully release our data and code at: https://github.com/apoorvkh/composing-functions .
☆ Look Less, Reason More: Rollout-Guided Adaptive Pixel-Space Reasoning
Vision-Language Models (VLMs) excel at many multimodal tasks, yet they frequently struggle with tasks requiring precise understanding and handling of fine-grained visual elements. This is mainly due to information loss during image encoding or insufficient attention to critical regions. Recent work has shown promise by incorporating pixel-level visual information into the reasoning process, enabling VLMs to access high-resolution visual details during their thought process. However, this pixel-level information is often overused, leading to inefficiency and distraction from irrelevant visual details. To address these challenges, we propose the first framework for adaptive pixel reasoning that dynamically determines necessary pixel-level operations based on the input query. Specifically, we first apply operation-aware supervised fine-tuning to establish baseline competence in textual reasoning and visual operations, then design a novel rollout-guided reinforcement learning framework relying on feedback of the model's own responses, which enables the VLM to determine when pixel operations should be invoked based on query difficulty. Experiments on extensive multimodal reasoning benchmarks show that our model achieves superior performance while significantly reducing unnecessary visual operations. Impressively, our model achieves 73.4\% accuracy on HR-Bench 4K while maintaining a tool usage ratio of only 20.1\%, improving accuracy and simultaneously reducing tool usage by 66.5\% compared to the previous methods.
comment: Preprint, Under review
☆ FOR-Prompting: From Objection to Revision via an Asymmetric Prompting Protocol
Reasoning protocols such as Chain of Thought (CoT) and Tree of Thought (ToT) organize internal deliberation but lack an explicit mechanism for external questioning that elicits self-revision. We present FOR-Prompting (From Objection to Revision Prompting), an asymmetric protocol where a Defender proposes an answer, an Objectioner raises question-style objections with no direct fixes, and a Host enforces consistency and closure. On GSM8K we observe about a 22% point gain over single-prompt and accuracy on par with CoT, with more than 10% higher ratings in reasoning and coherence from a uniform GPT 4.1 judge. FOR-Prompting also corrects mistakes without tools or human supervision on tricky queries, and improves performance for small-scale model (approx. 19% accuracy improved on Llama3.2:1b for GSM8K task), highlighting promise for small models and on personal device use. Beyond factual QA, qualitative analyses on open-ended tasks show enhanced exploration and refinement, with dialogue traces that make assumptions and trade-offs explicit. The protocol is model agnostic and operates purely at the prompt level through role-structured turns, so it works with hosted and local models of different sizes without retraining, and it supports large-scale study of objection-guided reasoning.
☆ A Locally Executable AI System for Improving Preoperative Patient Communication: A Multi-Domain Clinical Evaluation
Patients awaiting invasive procedures often have unanswered pre-procedural questions; however, time-pressured workflows and privacy constraints limit personalized counseling. We present LENOHA (Low Energy, No Hallucination, Leave No One Behind Architecture), a safety-first, local-first system that routes inputs with a high-precision sentence-transformer classifier and returns verbatim answers from a clinician-curated FAQ for clinical queries, eliminating free-text generation in the clinical path. We evaluated two domains (tooth extraction and gastroscopy) using expert-reviewed validation sets (n=400/domain) for thresholding and independent test sets (n=200/domain). Among the four encoders, E5-large-instruct (560M) achieved an overall accuracy of 0.983 (95% CI 0.964-0.991), AUC 0.996, and seven total errors, which were statistically indistinguishable from GPT-4o on this task; Gemini made no errors on this test set. Energy logging shows that the non-generative clinical path consumes ~1.0 mWh per input versus ~168 mWh per small-talk reply from a local 8B SLM, a ~170x difference, while maintaining ~0.10 s latency on a single on-prem GPU. These results indicate that near-frontier discrimination and generation-induced errors are structurally avoided in the clinical path by returning vetted FAQ answers verbatim, supporting privacy, sustainability, and equitable deployment in bandwidth-limited environments.
comment: 32 pages, 4 figures, 10 tables 32 pages, 4 figures, 10 tables. This paper is currently under review at ACM Transactions on Computing for Healthcare. Reproducibility resources: http://github.com/motokinaru/LENOHA-medical-dialogue
☆ Just Do It!? Computer-Use Agents Exhibit Blind Goal-Directedness
Computer-Use Agents (CUAs) are an increasingly deployed class of agents that take actions on GUIs to accomplish user goals. In this paper, we show that CUAs consistently exhibit Blind Goal-Directedness (BGD): a bias to pursue goals regardless of feasibility, safety, reliability, or context. We characterize three prevalent patterns of BGD: (i) lack of contextual reasoning, (ii) assumptions and decisions under ambiguity, and (iii) contradictory or infeasible goals. We develop BLIND-ACT, a benchmark of 90 tasks capturing these three patterns. Built on OSWorld, BLIND-ACT provides realistic environments and employs LLM-based judges to evaluate agent behavior, achieving 93.75% agreement with human annotations. We use BLIND-ACT to evaluate nine frontier models, including Claude Sonnet and Opus 4, Computer-Use-Preview, and GPT-5, observing high average BGD rates (80.8%) across them. We show that BGD exposes subtle risks that arise even when inputs are not directly harmful. While prompting-based interventions lower BGD levels, substantial risk persists, highlighting the need for stronger training- or inference-time interventions. Qualitative analysis reveals observed failure modes: execution-first bias (focusing on how to act over whether to act), thought-action disconnect (execution diverging from reasoning), and request-primacy (justifying actions due to user request). Identifying BGD and introducing BLIND-ACT establishes a foundation for future research on studying and mitigating this fundamental risk and ensuring safe CUA deployment.
☆ GuruAgents: Emulating Wise Investors with Prompt-Guided LLM Agents
This study demonstrates that GuruAgents, prompt-guided AI agents, can systematically operationalize the strategies of legendary investment gurus. We develop five distinct GuruAgents, each designed to emulate an iconic investor, by encoding their distinct philosophies into LLM prompts that integrate financial tools and a deterministic reasoning pipeline. In a backtest on NASDAQ-100 constituents from Q4 2023 to Q2 2025, the GuruAgents exhibit unique behaviors driven by their prompted personas. The Buffett GuruAgent achieves the highest performance, delivering a 42.2\% CAGR that significantly outperforms benchmarks, while other agents show varied results. These findings confirm that prompt engineering can successfully translate the qualitative philosophies of investment gurus into reproducible, quantitative strategies, highlighting a novel direction for automated systematic investing. The source code and data are available at https://github.com/yejining99/GuruAgents.
comment: 7 Pages, 2 figures
☆ Shift-Invariant Attribute Scoring for Kolmogorov-Arnold Networks via Shapley Value
For many real-world applications, understanding feature-outcome relationships is as crucial as achieving high predictive accuracy. While traditional neural networks excel at prediction, their black-box nature obscures underlying functional relationships. Kolmogorov--Arnold Networks (KANs) address this by employing learnable spline-based activation functions on edges, enabling recovery of symbolic representations while maintaining competitive performance. However, KAN's architecture presents unique challenges for network pruning. Conventional magnitude-based methods become unreliable due to sensitivity to input coordinate shifts. We propose \textbf{ShapKAN}, a pruning framework using Shapley value attribution to assess node importance in a shift-invariant manner. Unlike magnitude-based approaches, ShapKAN quantifies each node's actual contribution, ensuring consistent importance rankings regardless of input parameterization. Extensive experiments on synthetic and real-world datasets demonstrate that ShapKAN preserves true node importance while enabling effective network compression. Our approach improves KAN's interpretability advantages, facilitating deployment in resource-constrained environments.
comment: 15 pages, 6 figures, 9 tables
☆ MDSEval: A Meta-Evaluation Benchmark for Multimodal Dialogue Summarization EMNLP 2025
Multimodal Dialogue Summarization (MDS) is a critical task with wide-ranging applications. To support the development of effective MDS models, robust automatic evaluation methods are essential for reducing both cost and human effort. However, such methods require a strong meta-evaluation benchmark grounded in human annotations. In this work, we introduce MDSEval, the first meta-evaluation benchmark for MDS, consisting image-sharing dialogues, corresponding summaries, and human judgments across eight well-defined quality aspects. To ensure data quality and richfulness, we propose a novel filtering framework leveraging Mutually Exclusive Key Information (MEKI) across modalities. Our work is the first to identify and formalize key evaluation dimensions specific to MDS. We benchmark state-of-the-art modal evaluation methods, revealing their limitations in distinguishing summaries from advanced MLLMs and their susceptibility to various bias.
comment: Accepted by EMNLP 2025
☆ Learning Time-Series Representations by Hierarchical Uniformity-Tolerance Latent Balancing
We propose TimeHUT, a novel method for learning time-series representations by hierarchical uniformity-tolerance balancing of contrastive representations. Our method uses two distinct losses to learn strong representations with the aim of striking an effective balance between uniformity and tolerance in the embedding space. First, TimeHUT uses a hierarchical setup to learn both instance-wise and temporal information from input time-series. Next, we integrate a temperature scheduler within the vanilla contrastive loss to balance the uniformity and tolerance characteristics of the embeddings. Additionally, a hierarchical angular margin loss enforces instance-wise and temporal contrast losses, creating geometric margins between positive and negative pairs of temporal sequences. This approach improves the coherence of positive pairs and their separation from the negatives, enhancing the capture of temporal dependencies within a time-series sample. We evaluate our approach on a wide range of tasks, namely 128 UCR and 30 UAE datasets for univariate and multivariate classification, as well as Yahoo and KPI datasets for anomaly detection. The results demonstrate that TimeHUT outperforms prior methods by considerable margins on classification, while obtaining competitive results for anomaly detection. Finally, detailed sensitivity and ablation studies are performed to evaluate different components and hyperparameters of our method.
comment: Accepted in Transactions on Machine Learning Research
☆ Asymmetric Proximal Policy Optimization: mini-critics boost LLM reasoning
Most recent RL for LLMs (RL4LLM) methods avoid explicit critics, replacing them with average advantage baselines. This shift is largely pragmatic: conventional value functions are computationally expensive to train at LLM scale and often fail under sparse rewards and long reasoning horizons. We revisit this bottleneck from an architectural perspective and introduce Asymmetric Proximal Policy Optimization (AsyPPO), a simple and scalable framework that restores the critics role while remaining efficient in large-model settings. AsyPPO employs a set of lightweight mini-critics, each trained on disjoint prompt shards. This design encourages diversity while preserving calibration, reducing value-estimation bias. Beyond robust estimation, AsyPPO leverages inter-critic uncertainty to refine the policy update: (i) masking advantages in states where critics agree and gradients add little learning signal, and (ii) filtering high-divergence states from entropy regularization, suppressing spurious exploration. After training on open-source data with only 5,000 samples, AsyPPO consistently improves learning stability and performance across multiple benchmarks over strong baselines, such as GRPO, achieving performance gains of more than six percent on Qwen3-4b-Base and about three percent on Qwen3-8b-Base and Qwen3-14b-Base over classic PPO, without additional tricks. These results highlight the importance of architectural innovations for scalable, efficient algorithms.
☆ SoK: Measuring What Matters for Closed-Loop Security Agents
Cybersecurity is a relentless arms race, with AI driven offensive systems evolving faster than traditional defenses can adapt. Research and tooling remain fragmented across isolated defensive functions, creating blind spots that adversaries exploit. Autonomous agents capable of integrating, exploit confirmation, remediation, and validation into a single closed loop offer promise, but the field lacks three essentials: a framework defining the agentic capabilities of security systems across security life cycle, a principled method for evaluating closed loop agents, and a benchmark for measuring their performance in practice. We introduce CLASP: the Closed-Loop Autonomous Security Performance framework which aligns the security lifecycle (reconnaissance, exploitation, root cause analysis, patch synthesis, validation) with core agentic capabilities (planning, tool use, memory, reasoning, reflection & perception) providing a common vocabulary and rubric for assessing agentic capabilities in security tasks. By applying CLASP to 21 representative works, we map where systems demonstrate strengths, and where capability gaps persist. We then define the Closed-Loop Capability (CLC) Score, a composite metric quantifying both degree of loop closure and operational effectiveness, and outline the requirements for a closed loop benchmark. Together, CLASP and the CLC Score, provide the vocabulary, diagnostics, and measurements needed to advance both function level performance and measure closed loop security agents.
☆ The Unseen Frontier: Pushing the Limits of LLM Sparsity with Surrogate-Free ADMM
Neural network pruning is a promising technique to mitigate the excessive computational and memory requirements of large language models (LLMs). Despite its promise, however, progress in this area has diminished, as conventional methods are seemingly unable to surpass moderate sparsity levels (50-60%) without severely degrading model accuracy. This work breaks through the current impasse, presenting a principled and effective method called $\texttt{Elsa}$, which achieves extreme sparsity levels of up to 90% while retaining high model fidelity. This is done by identifying several limitations in current practice, all of which can be traced back to their reliance on a surrogate objective formulation. $\texttt{Elsa}$ tackles this issue directly and effectively via standard and well-established constrained optimization techniques based on ADMM. Our extensive experiments across a wide range of models and scales show that $\texttt{Elsa}$ achieves substantial improvements over existing methods; e.g., it achieves 7.8$\times$ less perplexity than the best existing method on LLaMA-2-7B at 90% sparsity. Furthermore, we present $\texttt{Elsa}_{\text{-L}}$, a quantized variant that scales to extremely large models (27B), and establish its theoretical convergence guarantees. These results highlight meaningful progress in advancing the frontier of LLM sparsity, while promising that significant opportunities for further advancement may remain in directions that have so far attracted limited exploration.
comment: Preprint
☆ Source-Free Cross-Domain Continual Learning
Although existing cross-domain continual learning approaches successfully address many streaming tasks having domain shifts, they call for a fully labeled source domain hindering their feasibility in the privacy constrained environments. This paper goes one step ahead with the problem of source-free cross-domain continual learning where the use of source-domain samples are completely prohibited. We propose the idea of rehearsal-free frequency-aware dynamic prompt collaborations (REFEREE) to cope with the absence of labeled source-domain samples in realm of cross-domain continual learning. REFEREE is built upon a synergy between a source-pre-trained model and a large-scale vision-language model, thus overcoming the problem of sub-optimal generalizations when relying only on a source pre-trained model. The domain shift problem between the source domain and the target domain is handled by a frequency-aware prompting technique encouraging low-frequency components while suppressing high-frequency components. This strategy generates frequency-aware augmented samples, robust against noisy pseudo labels. The noisy pseudo-label problem is further addressed with the uncertainty-aware weighting strategy where the mean and covariance matrix are weighted by prediction uncertainties, thus mitigating the adverse effects of the noisy pseudo label. Besides, the issue of catastrophic forgetting (CF) is overcome by kernel linear discriminant analysis (KLDA) where the backbone network is frozen while the classification is performed using the linear discriminant analysis approach guided by the random kernel method. Our rigorous numerical studies confirm the advantage of our approach where it beats prior arts having access to source domain samples with significant margins.
☆ Position: Privacy Is Not Just Memorization!
The discourse on privacy risks in Large Language Models (LLMs) has disproportionately focused on verbatim memorization of training data, while a constellation of more immediate and scalable privacy threats remain underexplored. This position paper argues that the privacy landscape of LLM systems extends far beyond training data extraction, encompassing risks from data collection practices, inference-time context leakage, autonomous agent capabilities, and the democratization of surveillance through deep inference attacks. We present a comprehensive taxonomy of privacy risks across the LLM lifecycle -- from data collection through deployment -- and demonstrate through case studies how current privacy frameworks fail to address these multifaceted threats. Through a longitudinal analysis of 1,322 AI/ML privacy papers published at leading conferences over the past decade (2016--2025), we reveal that while memorization receives outsized attention in technical research, the most pressing privacy harms lie elsewhere, where current technical approaches offer little traction and viable paths forward remain unclear. We call for a fundamental shift in how the research community approaches LLM privacy, moving beyond the narrow focus of current technical solutions and embracing interdisciplinary approaches that address the sociotechnical nature of these emerging threats.
comment: 27 pages, 6 figures, 2 tables
☆ NLP Methods for Detecting Novel LLM Jailbreaks and Keyword Analysis with BERT
Large Language Models (LLMs) suffer from a range of vulnerabilities that allow malicious users to solicit undesirable responses through manipulation of the input text. These so-called jailbreak prompts are designed to trick the LLM into circumventing the safety guardrails put in place to keep responses acceptable to the developer's policies. In this study, we analyse the ability of different machine learning models to distinguish jailbreak prompts from genuine uses, including looking at our ability to identify jailbreaks that use previously unseen strategies. Our results indicate that using current datasets the best performance is achieved by fine tuning a Bidirectional Encoder Representations from Transformers (BERT) model end-to-end for identifying jailbreaks. We visualise the keywords that distinguish jailbreak from genuine prompts and conclude that explicit reflexivity in prompt structure could be a signal of jailbreak intention.
☆ Understanding the Geospatial Reasoning Capabilities of LLMs: A Trajectory Recovery Perspective
We explore the geospatial reasoning capabilities of Large Language Models (LLMs), specifically, whether LLMs can read road network maps and perform navigation. We frame trajectory recovery as a proxy task, which requires models to reconstruct masked GPS traces, and introduce GLOBALTRACE, a dataset with over 4,000 real-world trajectories across diverse regions and transportation modes. Using road network as context, our prompting framework enables LLMs to generate valid paths without accessing any external navigation tools. Experiments show that LLMs outperform off-the-shelf baselines and specialized trajectory recovery models, with strong zero-shot generalization. Fine-grained analysis shows that LLMs have strong comprehension of the road network and coordinate systems, but also pose systematic biases with respect to regions and transportation modes. Finally, we demonstrate how LLMs can enhance navigation experiences by reasoning over maps in flexible ways to incorporate user preferences.
☆ Towards Human-Centered RegTech: Unpacking Professionals' Strategies and Needs for Using LLMs Safely EMNLP 2025
Large Language Models are profoundly changing work patterns in high-risk professional domains, yet their application also introduces severe and underexplored compliance risks. To investigate this issue, we conducted semi-structured interviews with 24 highly-skilled knowledge workers from industries such as law, healthcare, and finance. The study found that these experts are commonly concerned about sensitive information leakage, intellectual property infringement, and uncertainty regarding the quality of model outputs. In response, they spontaneously adopt various mitigation strategies, such as actively distorting input data and limiting the details in their prompts. However, the effectiveness of these spontaneous efforts is limited due to a lack of specific compliance guidance and training for Large Language Models. Our research reveals a significant gap between current NLP tools and the actual compliance needs of experts. This paper positions these valuable empirical findings as foundational work for building the next generation of Human-Centered, Compliance-Driven Natural Language Processing for Regulatory Technology (RegTech), providing a critical human-centered perspective and design requirements for engineering NLP systems that can proactively support expert compliance workflows.
comment: Accepted to the 4th HCI+NLP@EMNLP 2025 Workshop. (Non-archival)
☆ BioBlobs: Differentiable Graph Partitioning for Protein Representation Learning
Protein function is driven by coherent substructures which vary in size and topology, yet current protein representation learning models (PRL) distort these signals by relying on rigid substructures such as k-hop and fixed radius neighbourhoods. We introduce BioBlobs, a plug-and-play, fully differentiable module that represents proteins by dynamically partitioning structures into flexibly-sized, non-overlapping substructures ("blobs"). The resulting blobs are quantized into a shared and interpretable codebook, yielding a discrete vocabulary of function-relevant protein substructures used to compute protein embeddings. We show that BioBlobs representations improve the performance of widely used protein encoders such as GVP-GNN across various PRL tasks. Our approach highlights the value of architectures that directly capture function-relevant protein substructures, enabling both improved predictive performance and mechanistic insight into protein function.
☆ Demystifying Synthetic Data in LLM Pre-training: A Systematic Study of Scaling Laws, Benefits, and Pitfalls EMNLP 2025
Training data plays a crucial role in Large Language Models (LLM) scaling, yet high quality data is of limited supply. Synthetic data techniques offer a potential path toward sidestepping these limitations. We conduct a large-scale empirical investigation (>1000 LLMs with >100k GPU hours) using a unified protocol and scaling laws, comparing natural web data, diverse synthetic types (rephrased text, generated textbooks), and mixtures of natural and synthetic data. Specifically, we found pre-training on rephrased synthetic data \textit{alone} is not faster than pre-training on natural web texts; while pre-training on 1/3 rephrased synthetic data mixed with 2/3 natural web texts can speed up 5-10x (to reach the same validation loss) at larger data budgets. Pre-training on textbook-style synthetic data \textit{alone} results in notably higher loss on many downstream domains especially at small data budgets. "Good" ratios of synthetic data in training data mixtures depend on the model size and data budget, empirically converging to ~30% for rephrased synthetic data. Larger generator models do not necessarily yield better pre-training data than ~8B-param models. These results contribute mixed evidence on "model collapse" during large-scale single-round (n=1) model training on synthetic data--training on rephrased synthetic data shows no degradation in performance in foreseeable scales whereas training on mixtures of textbook-style pure-generated synthetic data shows patterns predicted by "model collapse". Our work demystifies synthetic data in pre-training, validates its conditional benefits, and offers practical guidance.
comment: Published as a Main Conference paper at EMNLP 2025
☆ Quagmires in SFT-RL Post-Training: When High SFT Scores Mislead and What to Use Instead
In post-training for reasoning Large Language Models (LLMs), the current state of practice trains LLMs in two independent stages: Supervised Fine-Tuning (SFT) and Reinforcement Learning with Verifiable Rewards (RLVR, shortened as ``RL'' below). In this work, we challenge whether high SFT scores translate to improved performance after RL. We provide extensive counter-examples where this is not true. We find high SFT scores can be biased toward simpler or more homogeneous data and are not reliably predictive of subsequent RL gains or scaled-up post-training effectiveness. In some cases, RL training on models with improved SFT performance could lead to substantially worse outcome compared to RL on the base model without SFT. We study alternative metrics and identify generalization loss on held-out reasoning examples and Pass@large k performance to provide strong proxies for the RL outcome. We trained hundreds of models up to 12B-parameter with SFT and RLVR via GRPO and ran extensive evaluations on 7 math benchmarks with up to 256 repetitions, spending $>$1M GPU hours. Experiments include models from Llama3, Mistral-Nemo, Qwen3 and multiple state-of-the-art SFT/RL datasets. Compared to directly predicting from pre-RL performance, prediction based on generalization loss and Pass@large k achieves substantial higher precision, improving $R^2$ coefficient and Spearman's rank correlation coefficient by up to 0.5 (2x). This provides strong utility for broad use cases. For example, in most experiments, we find SFT training on unique examples for a one epoch underperforms training on half examples for two epochs, either after SFT or SFT-then-RL; With the same SFT budget, training only on short examples may lead to better SFT performance, though, it often leads to worse outcome after RL compared to training on examples with varying lengths. Evaluation tool will be open-sourced.
comment: Preprint. Under Review
☆ LLM4Rec: Large Language Models for Multimodal Generative Recommendation with Causal Debiasing
Contemporary generative recommendation systems face significant challenges in handling multimodal data, eliminating algorithmic biases, and providing transparent decision-making processes. This paper introduces an enhanced generative recommendation framework that addresses these limitations through five key innovations: multimodal fusion architecture, retrieval-augmented generation mechanisms, causal inference-based debiasing, explainable recommendation generation, and real-time adaptive learning capabilities. Our framework leverages advanced large language models as the backbone while incorporating specialized modules for cross-modal understanding, contextual knowledge integration, bias mitigation, explanation synthesis, and continuous model adaptation. Extensive experiments on three benchmark datasets (MovieLens-25M, Amazon-Electronics, Yelp-2023) demonstrate consistent improvements in recommendation accuracy, fairness, and diversity compared to existing approaches. The proposed framework achieves up to 2.3% improvement in NDCG@10 and 1.4% enhancement in diversity metrics while maintaining computational efficiency through optimized inference strategies.
☆ Learning to Decide with Just Enough: Information-Theoretic Context Summarization for CDMPs
Contextual Markov Decision Processes (CMDPs) offer a framework for sequential decision-making under external signals, but existing methods often fail to generalize in high-dimensional or unstructured contexts, resulting in excessive computation and unstable performance. We propose an information-theoretic summarization approach that uses large language models (LLMs) to compress contextual inputs into low-dimensional, semantically rich summaries. These summaries augment states by preserving decision-critical cues while reducing redundancy. Building on the notion of approximate context sufficiency, we provide, to our knowledge, the first regret bounds and a latency-entropy trade-off characterization for CMDPs. Our analysis clarifies how informativeness impacts computational cost. Experiments across discrete, continuous, visual, and recommendation benchmarks show that our method outperforms raw-context and non-context baselines, improving reward, success rate, and sample efficiency, while reducing latency and memory usage. These findings demonstrate that LLM-based summarization offers a scalable and interpretable solution for efficient decision-making in context-rich, resource-constrained environments.
☆ RAG-BioQA Retrieval-Augmented Generation for Long-Form Biomedical Question Answering
The exponential growth of biomedical literature creates significant challenges for accessing precise medical information. Current biomedical question-answering systems primarily focus on short-form answers, failing to provide the comprehensive explanations necessary for clinical decision-making. We present RAG-BioQA, a novel framework combining retrieval-augmented generation with domain-specific fine-tuning to produce evidence-based, long-form biomedical answers. Our approach integrates BioBERT embeddings with FAISS indexing and compares various re-ranking strategies (BM25, ColBERT, MonoT5) to optimize context selection before synthesizing evidence through a fine-tuned T5 model. Experimental results on the PubMedQA dataset show significant improvements over baselines, with our best model achieving substantial gains across BLEU, ROUGE, and METEOR metrics, advancing the state of accessible, evidence-based biomedical knowledge retrieval.
☆ PychoBench: Evaluating the Psychology Intelligence of Large Language Models
Large Language Models (LLMs) have demonstrated remarkable success across a wide range of industries, primarily due to their impressive generative abilities. Yet, their potential in applications requiring cognitive abilities, such as psychological counseling, remains largely untapped. This paper investigates the key question: Can LLMs be effectively applied to psychological counseling? To determine whether an LLM can effectively take on the role of a psychological counselor, the first step is to assess whether it meets the qualifications required for such a role, namely the ability to pass the U.S. National Counselor Certification Exam (NCE). This is because, just as a human counselor must pass a certification exam to practice, an LLM must demonstrate sufficient psychological knowledge to meet the standards required for such a role. To address this, we introduce PsychoBench, a benchmark grounded in U.S.national counselor examinations, a licensure test for professional counselors that requires about 70% accuracy to pass. PsychoBench comprises approximately 2,252 carefully curated single-choice questions, crafted to require deep understanding and broad enough to cover various sub-disciplines of psychology. This benchmark provides a comprehensive assessment of an LLM's ability to function as a counselor. Our evaluation shows that advanced models such as GPT-4o, Llama3.3-70B, and Gemma3-27B achieve well above the passing threshold, while smaller open-source models (e.g., Qwen2.5-7B, Mistral-7B) remain far below it. These results suggest that only frontier LLMs are currently capable of meeting counseling exam standards, highlighting both the promise and the challenges of developing psychology-oriented LLMs.
☆ AgentRec: Next-Generation LLM-Powered Multi-Agent Collaborative Recommendation with Adaptive Intelligence
Interactive conversational recommender systems have gained significant attention for their ability to capture user preferences through natural language interactions. However, existing approaches face substantial challenges in handling dynamic user preferences, maintaining conversation coherence, and balancing multiple ranking objectives simultaneously. This paper introduces AgentRec, a next-generation LLM-powered multi-agent collaborative recommendation framework that addresses these limitations through hierarchical agent networks with adaptive intelligence. Our approach employs specialized LLM-powered agents for conversation understanding, preference modeling, context awareness, and dynamic ranking, coordinated through an adaptive weighting mechanism that learns from interaction patterns. We propose a three-tier learning strategy combining rapid response for simple queries, intelligent reasoning for complex preferences, and deep collaboration for challenging scenarios. Extensive experiments on three real-world datasets demonstrate that AgentRec achieves consistent improvements over state-of-the-art baselines, with 2.8\% enhancement in conversation success rate, 1.9\% improvement in recommendation accuracy (NDCG@10), and 3.2\% better conversation efficiency while maintaining comparable computational costs through intelligent agent coordination.
☆ Bridging Collaborative Filtering and Large Language Models with Dynamic Alignment, Multimodal Fusion and Evidence-grounded Explanations
Recent research has explored using Large Language Models for recommendation tasks by transforming user interaction histories and item metadata into text prompts, then having the LLM produce rankings or recommendations. A promising approach involves connecting collaborative filtering knowledge to LLM representations through compact adapter networks, which avoids expensive fine-tuning while preserving the strengths of both components. Yet several challenges persist in practice: collaborative filtering models often use static snapshots that miss rapidly changing user preferences; many real-world items contain rich visual and audio content beyond textual descriptions; and current systems struggle to provide trustworthy explanations backed by concrete evidence. Our work introduces \model{}, a framework that tackles these limitations through three key innovations. We develop an online adaptation mechanism that continuously incorporates new user interactions through lightweight modules, avoiding the need to retrain large models. We create a unified representation that seamlessly combines collaborative signals with visual and audio features, handling cases where some modalities may be unavailable. Finally, we design an explanation system that grounds recommendations in specific collaborative patterns and item attributes, producing natural language rationales users can verify. Our approach maintains the efficiency of frozen base models while adding minimal computational overhead, making it practical for real-world deployment.
☆ A Comparison of Independent and Joint Fine-tuning Strategies for Retrieval-Augmented Generation
A Comparison of Independent and Joint Fine-tuning Strategies for Retrieval-Augmented Generation Download PDF Neal Gregory Lawton, Alfy Samuel, Anoop Kumar, Daben Liu Published: 20 Aug 2025, Last Modified: 17 Sept 2025EMNLP 2025 FindingsConference, Publication Chairs, AuthorsRevisionsBibTeXCC BY 4.0 Keywords: Retrieval-Augmented Generation (RAG), Large Language Models (LLMs), Fine-tuning, Question Answering, Joint fine-tuning TL;DR: We evaluate and compare strategies for fine-tuning Retrieval Augmented Generation (RAG) pipelines, including independent fine-tuning, joint fine-tuning, and two-phase fine-tuning. Abstract: Retrieval augmented generation (RAG) is a popular framework for question answering that is powered by two large language models (LLMs): an embedding model that retrieves context documents from a database that are relevant to a given question, and a generator model that uses the retrieved context to generate an answer to the question. Both the embedding and generator models can be fine-tuned to increase performance of a RAG pipeline on a new task, but multiple fine-tuning strategies exist with different costs and benefits. In this paper, we evaluate and compare several RAG fine-tuning strategies, including independent, joint, and two-phase fine-tuning. In our experiments, we observe that all of these strategies achieve about equal improvement in EM and F1 generation quality metrics, although they have significantly different computational costs. We conclude the optimal fine-tuning strategy to use depends on whether the training dataset includes context labels and whether a grid search over the learning rates for the embedding and generator models is required.
☆ Enhancing Noise Robustness of Parkinson's Disease Telemonitoring via Contrastive Feature Augmentation
Parkinson's disease (PD) is one of the most common neurodegenerative disorder. PD telemonitoring emerges as a novel assessment modality enabling self-administered at-home tests of Unified Parkinson's Disease Rating Scale (UPDRS) scores, enhancing accessibility for PD patients. However, three types of noise would occur during measurements: (1) patient-induced measurement inaccuracies, (2) environmental noise, and (3) data packet loss during transmission, resulting in higher prediction errors. To address these challenges, NoRo, a noise-robust UPDRS prediction framework is proposed. First, the original speech features are grouped into ordered bins, based on the continuous values of a selected feature, to construct contrastive pairs. Second, the contrastive pairs are employed to train a multilayer perceptron encoder for generating noise-robust features. Finally, these features are concatenated with the original features as the augmented features, which are then fed into the UPDRS prediction models. Notably, we further introduces a novel evaluation approach with customizable noise injection module, and extensive experiments show that NoRo can successfully enhance the noise robustness of UPDRS prediction across various downstream prediction models under different noisy environments.
☆ AdvEvo-MARL: Shaping Internalized Safety through Adversarial Co-Evolution in Multi-Agent Reinforcement Learning
LLM-based multi-agent systems excel at planning, tool use, and role coordination, but their openness and interaction complexity also expose them to jailbreak, prompt-injection, and adversarial collaboration. Existing defenses fall into two lines: (i) self-verification that asks each agent to pre-filter unsafe instructions before execution, and (ii) external guard modules that police behaviors. The former often underperforms because a standalone agent lacks sufficient capacity to detect cross-agent unsafe chains and delegation-induced risks; the latter increases system overhead and creates a single-point-of-failure-once compromised, system-wide safety collapses, and adding more guards worsens cost and complexity. To solve these challenges, we propose AdvEvo-MARL, a co-evolutionary multi-agent reinforcement learning framework that internalizes safety into task agents. Rather than relying on external guards, AdvEvo-MARL jointly optimizes attackers (which synthesize evolving jailbreak prompts) and defenders (task agents trained to both accomplish their duties and resist attacks) in adversarial learning environments. To stabilize learning and foster cooperation, we introduce a public baseline for advantage estimation: agents within the same functional group share a group-level mean-return baseline, enabling lower-variance updates and stronger intra-group coordination. Across representative attack scenarios, AdvEvo-MARL consistently keeps attack-success rate (ASR) below 20%, whereas baselines reach up to 38.33%, while preserving-and sometimes improving-task accuracy (up to +3.67% on reasoning tasks). These results show that safety and utility can be jointly improved without relying on extra guard agents or added system overhead.
☆ Think Right: Learning to Mitigate Under-Over Thinking via Adaptive, Attentive Compression
Recent thinking models solve complex reasoning tasks by scaling test-time compute, but this scaling must be allocated in line with task difficulty. On one hand, short reasoning (underthinking) leads to errors on harder problems that require extended reasoning steps; but, excessively long reasoning (overthinking) can be token-inefficient, generating unnecessary steps even after reaching a correct intermediate solution. We refer to this as under-adaptivity, where the model fails to modulate its response length appropriately given problems of varying difficulty. To address under-adaptivity and strike a balance between under- and overthinking, we propose TRAAC (Think Right with Adaptive, Attentive Compression), an online post-training RL method that leverages the model's self-attention over a long reasoning trajectory to identify important steps and prune redundant ones. TRAAC also estimates difficulty and incorporates it into training rewards, thereby learning to allocate reasoning budget commensurate with example difficulty. Our approach improves accuracy, reduces reasoning steps, and enables adaptive thinking compared to base models and other RL baselines. Across a variety of tasks (AIME, AMC, GPQA-D, BBEH), TRAAC (Qwen3-4B) achieves an average absolute accuracy gain of 8.4% with a relative reduction in reasoning length of 36.8% compared to the base model, and a 7.9% accuracy gain paired with a 29.4% length drop compared to the best RL baseline. TRAAC also shows strong generalization: although our models are trained on math datasets, they show accuracy and efficiency gains on out-of-distribution non-math datasets like GPQA-D, BBEH, and OptimalThinkingBench. Our analysis further verifies that TRAAC provides fine-grained adjustments to thinking budget based on difficulty and that a combination of task-difficulty calibration and attention-based compression yields gains across diverse tasks.
comment: Code: https://github.com/joykirat18/TRAAC
☆ Guiding Multimodal Large Language Models with Blind and Low Vision People Visual Questions for Proactive Visual Interpretations ICCV 2025
Multimodal large language models (MLLMs) have been integrated into visual interpretation applications to support Blind and Low Vision (BLV) users because of their accuracy and ability to provide rich, human-like interpretations. However, these applications often default to comprehensive, lengthy descriptions regardless of context. This leads to inefficient exchanges, as users must go through irrelevant details rather than receiving the specific information they are likely to seek. To deliver more contextually-relevant information, we developed a system that draws on historical BLV users questions. When given an image, our system identifies similar past visual contexts from the VizWiz-LF dataset and uses the associated questions to guide the MLLM generate descriptions more relevant to BLV users. An evaluation with three human labelers who revised 92 context-aware and context-free descriptions showed that context-aware descriptions anticipated and answered users' questions in 76.1% of cases (70 out of 92) and were preferred in 54.4% of comparisons (50 out of 92). Our paper reviews, and data analysis are publicly available in a Github repository at https://github.com/rgonzalezp/guiding-multimodal-large-language-models-with-blind-and-low-vision-people-visual-questions .
comment: 7 pages, 2 figure, 2 tables, CV4A11y Workshop at ICCV 2025
☆ Synthetic Prefixes to Mitigate Bias in Real-Time Neural Query Autocomplete SIGIR
We introduce a data-centric approach for mitigating presentation bias in real-time neural query autocomplete systems through the use of synthetic prefixes. These prefixes are generated from complete user queries collected during regular search sessions where autocomplete was not active. This allows us to enrich the training data for learning to rank models with more diverse and less biased examples. This method addresses the inherent bias in engagement signals collected from live query autocomplete interactions, where model suggestions influence user behavior. Our neural ranker is optimized for real-time deployment under strict latency constraints and incorporates a rich set of features, including query popularity, seasonality, fuzzy match scores, and contextual signals such as department affinity, device type, and vertical alignment with previous user queries. To support efficient training, we introduce a task-specific simplification of the listwise loss, reducing computational complexity from $O(n^2)$ to $O(n)$ by leveraging the query autocomplete structure of having only one ground-truth selection per prefix. Deployed in a large-scale e-commerce setting, our system demonstrates statistically significant improvements in user engagement, as measured by mean reciprocal rank and related metrics. Our findings show that synthetic prefixes not only improve generalization but also provide a scalable path toward bias mitigation in other low-latency ranking tasks, including related searches and query recommendations.
comment: Accepted to the Proceedings of the ACM SIGIR Asia Pacific Conference on Information Retrieval (SIGIR-AP 2025), December 7-10, 2025, Xi'an, China
☆ From Supervision to Exploration: What Does Protein Language Model Learn During Reinforcement Learning?
Protein language models (PLMs) have advanced computational protein science through large-scale pretraining and scalable architectures. In parallel, reinforcement learning (RL) has broadened exploration and enabled precise multi-objective optimization in protein design. Yet whether RL can push PLMs beyond their pretraining priors to uncover latent sequence-structure-function rules remains unclear. We address this by pairing RL with PLMs across four domains: antimicrobial peptide design, kinase variant optimization, antibody engineering, and inverse folding. Using diverse RL algorithms and model classes, we ask if RL improves sampling efficiency and, more importantly, if it reveals capabilities not captured by supervised learning. Across benchmarks, RL consistently boosts success rates and sample efficiency. Performance follows a three-factor interaction: task headroom, reward fidelity, and policy capacity jointly determine gains. When rewards are accurate and informative, policies have sufficient capacity, and tasks leave room beyond supervised baselines, improvements scale; when rewards are noisy or capacity is constrained, gains saturate despite exploration. This view yields practical guidance for RL in protein design: prioritize reward modeling and calibration before scaling policy size, match algorithm and regularization strength to task difficulty, and allocate capacity where marginal gains are largest. Implementation is available at https://github.com/chq1155/RL-PLM.
comment: 24 pages, 7 figures, 4 tables
☆ InvThink: Towards AI Safety via Inverse Reasoning
We present InvThink, a simple yet powerful approach that gives large language models (LLMs) the capability of inverse thinking: reasoning through failure modes before generating responses. Unlike existing safety alignment methods that optimize directly for safe response, InvThink instructs models to 1) enumerate potential harms, 2) analyze their consequences, and 3) generate safe outputs that proactively avoid these risks. Our method reveals three key findings: (i) safety improvements show stronger scaling with model size compared to existing safety methods. (ii) InvThink mitigates safety tax; by training models to systematically consider failure modes, it preserves general reasoning capabilities on standard benchmarks. (iii) beyond general safety tasks, InvThink excels in high-stakes domains including external-facing (medicine, finance, law) and agentic (blackmail, murder) risk scenarios, achieving up to 15.7% reduction in harmful responses compared to baseline methods like SafetyPrompt. We further implement InvThink via supervised fine-tuning, and reinforcement learning across three LLM families. These results suggest that inverse reasoning provides a scalable and generalizable path toward safer, more capable language models.
Rethinking KL Regularization in RLHF: From Value Estimation to Gradient Optimization
Reinforcement Learning from Human Feedback (RLHF) leverages a Kullback-Leibler (KL) divergence loss to stabilize training and prevent overfitting. However, in methods such as GRPO, its implementation may be guided by principles from numerical value estimation-a practice that overlooks the term's functional role as an optimization loss. To analyze this issue, we establish a unified framework that connects two seemingly distinct implementation styles: using the mathematical term $k_n$ as a detached coefficient for the policy's score function ('$k_n$ in reward') or as a direct loss function through which gradients are propagated ('$k_n$ as loss'). We show that the latter can always be analyzed via an equivalent gradient coefficient in the former, unifying the two perspectives. Through this framework, we prove that the conventional '$k_1$ in reward' (like in PPO) is the principled loss for Reverse KL (RKL) regularization. We further establish a key finding: under on-policy conditions, the '$k_2$ as loss' formulation is, in fact, gradient-equivalent to '$k_1$ in reward'. This equivalence, first proven in our work, identifies both as the theoretically sound implementations of the RKL objective. In contrast, we show that the recently adopted '$k_3$ as loss' (like in GRPO) is merely a first-order, biased approximation of the principled loss. Furthermore, we argue that common off-policy implementations of '$k_n$ as loss' methods are biased due to neglected importance sampling, and we propose a principled correction. Our findings provide a comprehensive, gradient-based rationale for choosing and correctly implementing KL regularization, paving the way for more robust and effective RLHF systems.
☆ POLAR: Automating Cyber Threat Prioritization through LLM-Powered Assessment
Large Language Models (LLMs) are intensively used to assist security analysts in counteracting the rapid exploitation of cyber threats, wherein LLMs offer cyber threat intelligence (CTI) to support vulnerability assessment and incident response. While recent work has shown that LLMs can support a wide range of CTI tasks such as threat analysis, vulnerability detection, and intrusion defense, significant performance gaps persist in practical deployments. In this paper, we investigate the intrinsic vulnerabilities of LLMs in CTI, focusing on challenges that arise from the nature of the threat landscape itself rather than the model architecture. Using large-scale evaluations across multiple CTI benchmarks and real-world threat reports, we introduce a novel categorization methodology that integrates stratification, autoregressive refinement, and human-in-the-loop supervision to reliably analyze failure instances. Through extensive experiments and human inspections, we reveal three fundamental vulnerabilities: spurious correlations, contradictory knowledge, and constrained generalization, that limit LLMs in effectively supporting CTI. Subsequently, we provide actionable insights for designing more robust LLM-powered CTI systems to facilitate future research.
comment: 25 pages
☆ Predictive Preference Learning from Human Interventions NeurIPS 2025
Learning from human involvement aims to incorporate the human subject to monitor and correct agent behavior errors. Although most interactive imitation learning methods focus on correcting the agent's action at the current state, they do not adjust its actions in future states, which may be potentially more hazardous. To address this, we introduce Predictive Preference Learning from Human Interventions (PPL), which leverages the implicit preference signals contained in human interventions to inform predictions of future rollouts. The key idea of PPL is to bootstrap each human intervention into L future time steps, called the preference horizon, with the assumption that the agent follows the same action and the human makes the same intervention in the preference horizon. By applying preference optimization on these future states, expert corrections are propagated into the safety-critical regions where the agent is expected to explore, significantly improving learning efficiency and reducing human demonstrations needed. We evaluate our approach with experiments on both autonomous driving and robotic manipulation benchmarks and demonstrate its efficiency and generality. Our theoretical analysis further shows that selecting an appropriate preference horizon L balances coverage of risky states with label correctness, thereby bounding the algorithmic optimality gap. Demo and code are available at: https://metadriverse.github.io/ppl
comment: NeurIPS 2025 Spotlight. Project page: https://metadriverse.github.io/ppl
☆ Step-Aware Policy Optimization for Reasoning in Diffusion Large Language Models
Diffusion language models (dLLMs) offer a promising, non-autoregressive paradigm for text generation, yet training them for complex reasoning remains a key challenge. Current reinforcement learning approaches often rely on sparse, outcome-based rewards, which can reinforce flawed reasoning paths that lead to coincidentally correct answers. We argue that this stems from a fundamental mismatch with the natural structure of reasoning. We first propose a theoretical framework that formalizes complex problem solving as a hierarchical selection process, where an intractable global constraint is decomposed into a series of simpler, localized logical steps. This framework provides a principled foundation for algorithm design, including theoretical insights into the identifiability of this latent reasoning structure. Motivated by this theory, we identify unstructured refinement -- a failure mode where a model's iterative steps do not contribute meaningfully to the solution -- as a core deficiency in existing methods. We then introduce Step-Aware Policy Optimization (SAPO), a novel RL algorithm that aligns the dLLM's denoising process with the latent reasoning hierarchy. By using a process-based reward function that encourages incremental progress, SAPO guides the model to learn structured, coherent reasoning paths. Our empirical results show that this principled approach significantly improves performance on challenging reasoning benchmarks and enhances the interpretability of the generation process.
☆ Information Seeking for Robust Decision Making under Partial Observability
Explicit information seeking is essential to human problem-solving in practical environments characterized by incomplete information and noisy dynamics. When the true environmental state is not directly observable, humans seek information to update their internal dynamics and inform future decision-making. Although existing Large Language Model (LLM) planning agents have addressed observational uncertainty, they often overlook discrepancies between their internal dynamics and the actual environment. We introduce Information Seeking Decision Planner (InfoSeeker), an LLM decision-making framework that integrates task-oriented planning with information seeking to align internal dynamics and make optimal decisions under uncertainty in both agent observations and environmental dynamics. InfoSeeker prompts an LLM to actively gather information by planning actions to validate its understanding, detect environmental changes, or test hypotheses before generating or revising task-oriented plans. To evaluate InfoSeeker, we introduce a novel benchmark suite featuring partially observable environments with incomplete observations and uncertain dynamics. Experiments demonstrate that InfoSeeker achieves a 74% absolute performance gain over prior methods without sacrificing sample efficiency. Moreover, InfoSeeker generalizes across LLMs and outperforms baselines on established benchmarks such as robotic manipulation and web navigation. These findings underscore the importance of tightly integrating planning and information seeking for robust behavior in partially observable environments. The project page is available at https://infoseekerllm.github.io
comment: The project page is available at https://infoseekerllm.github.io
☆ LOGicalThought: Logic-Based Ontological Grounding of LLMs for High-Assurance Reasoning
High-assurance reasoning, particularly in critical domains such as law and medicine, requires conclusions that are accurate, verifiable, and explicitly grounded in evidence. This reasoning relies on premises codified from rules, statutes, and contracts, inherently involving defeasible or non-monotonic logic due to numerous exceptions, where the introduction of a single fact can invalidate general rules, posing significant challenges. While large language models (LLMs) excel at processing natural language, their capabilities in standard inference tasks do not translate to the rigorous reasoning required over high-assurance text guidelines. Core reasoning challenges within such texts often manifest specific logical structures involving negation, implication, and, most critically, defeasible rules and exceptions. In this paper, we propose a novel neurosymbolically-grounded architecture called LOGicalThought (LogT) that uses an advanced logical language and reasoner in conjunction with an LLM to construct a dual symbolic graph context and logic-based context. These two context representations transform the problem from inference over long-form guidelines into a compact grounded evaluation. Evaluated on four multi-domain benchmarks against four baselines, LogT improves overall performance by 11.84% across all LLMs. Performance improves significantly across all three modes of reasoning: by up to +10.2% on negation, +13.2% on implication, and +5.5% on defeasible reasoning compared to the strongest baseline.
☆ Towards Interpretable and Inference-Optimal COT Reasoning with Sparse Autoencoder-Guided Generation
We propose a novel method that leverages sparse autoencoders (SAEs) and clustering techniques to analyze the internal token representations of large language models (LLMs) and guide generations in mathematical reasoning tasks. Our approach first trains an SAE to generate sparse vector representations for training tokens, then applies k-means clustering to construct a graph where vertices represent token clusters and weighted edges capture sequential token transitions. Using this graph, we define an edge-weight based reward function to quantify adherence to established reasoning traces, thereby identifying exploitative reasoning trajectories. Additionally, we measure generation diversity from clustering to assess the extent of exploration. Our findings indicate that balancing both exploitation and exploration is crucial for achieving high accuracy in mathematical reasoning tasks. During generation, the SAE can serve as a scalable reward model to guide generations, ensuring a balanced trade-off between exploitation and exploration. This prevents extreme behaviors in either direction, ultimately fostering a higher-quality reasoning process in LLMs.
☆ On the Role of Temperature Sampling in Test-Time Scaling
Large language models (LLMs) can improve reasoning at inference time through test-time scaling (TTS), where multiple reasoning traces are generated and the best one is selected. Prior work shows that increasing the number of samples K steadily improves accuracy. In this paper, we demonstrate that this trend does not hold indefinitely: at large K, further scaling yields no gains, and certain hard questions remain unsolved regardless of the number of traces. Interestingly, we find that different sampling temperatures solve different subsets of problems, implying that single-temperature scaling explores only part of a model's potential. We therefore propose scaling along the temperature dimension, which enlarges the reasoning boundary of LLMs. Averaged over Qwen3 (0.6B, 1.7B, 4B, 8B) and five representative reasoning benchmarks (AIME 2024/2025, MATH500, LiveCodeBench, Hi-ToM), temperature scaling yields an additional 7.3 points over single-temperature TTS. Temperature scaling also enables base models to reach performance comparable to reinforcement learning (RL)-trained counterparts, without additional post-training. We further provide a comprehensive analysis of this phenomenon and design a multi-temperature voting method that reduces the overhead of temperature scaling. Overall, our findings suggest that TTS is more powerful than previously thought, and that temperature scaling offers a simple and effective way to unlock the latent potential of base models.
☆ Multimodal Large Language Model Framework for Safe and Interpretable Grid-Integrated EVs
The integration of electric vehicles (EVs) into smart grids presents unique opportunities to enhance both transportation systems and energy networks. However, ensuring safe and interpretable interactions between drivers, vehicles, and the surrounding environment remains a critical challenge. This paper presents a multi-modal large language model (LLM)-based framework to process multimodal sensor data - such as object detection, semantic segmentation, and vehicular telemetry - and generate natural-language alerts for drivers. The framework is validated using real-world data collected from instrumented vehicles driving on urban roads, ensuring its applicability to real-world scenarios. By combining visual perception (YOLOv8), geocoded positioning, and CAN bus telemetry, the framework bridges raw sensor data and driver comprehension, enabling safer and more informed decision-making in urban driving scenarios. Case studies using real data demonstrate the framework's effectiveness in generating context-aware alerts for critical situations, such as proximity to pedestrians, cyclists, and other vehicles. This paper highlights the potential of LLMs as assistive tools in e-mobility, benefiting both transportation systems and electric networks by enabling scalable fleet coordination, EV load forecasting, and traffic-aware energy planning. Index Terms - Electric vehicles, visual perception, large language models, YOLOv8, semantic segmentation, CAN bus, prompt engineering, smart grid.
comment: This paper has been presented at the 2025 IEEE PES Conference on Innovative Smart Grid Technologies (ISGT 2025)
☆ A Benchmark Study of Deep Reinforcement Learning Algorithms for the Container Stowage Planning Problem
Container stowage planning (CSPP) is a critical component of maritime transportation and terminal operations, directly affecting supply chain efficiency. Owing to its complexity, CSPP has traditionally relied on human expertise. While reinforcement learning (RL) has recently been applied to CSPP, systematic benchmark comparisons across different algorithms remain limited. To address this gap, we develop a Gym environment that captures the fundamental features of CSPP and extend it to include crane scheduling in both multi-agent and single-agent formulations. Within this framework, we evaluate five RL algorithms: DQN, QR-DQN, A2C, PPO, and TRPO under multiple scenarios of varying complexity. The results reveal distinct performance gaps with increasing complexity, underscoring the importance of algorithm choice and problem formulation for CSPP. Overall, this paper benchmarks multiple RL methods for CSPP while providing a reusable Gym environment with crane scheduling, thus offering a foundation for future research and practical deployment in maritime logistics.
☆ How Confident are Video Models? Empowering Video Models to Express their Uncertainty
Generative video models demonstrate impressive text-to-video capabilities, spurring widespread adoption in many real-world applications. However, like large language models (LLMs), video generation models tend to hallucinate, producing plausible videos even when they are factually wrong. Although uncertainty quantification (UQ) of LLMs has been extensively studied in prior work, no UQ method for video models exists, raising critical safety concerns. To our knowledge, this paper represents the first work towards quantifying the uncertainty of video models. We present a framework for uncertainty quantification of generative video models, consisting of: (i) a metric for evaluating the calibration of video models based on robust rank correlation estimation with no stringent modeling assumptions; (ii) a black-box UQ method for video models (termed S-QUBED), which leverages latent modeling to rigorously decompose predictive uncertainty into its aleatoric and epistemic components; and (iii) a UQ dataset to facilitate benchmarking calibration in video models. By conditioning the generation task in the latent space, we disentangle uncertainty arising due to vague task specifications from that arising from lack of knowledge. Through extensive experiments on benchmark video datasets, we demonstrate that S-QUBED computes calibrated total uncertainty estimates that are negatively correlated with the task accuracy and effectively computes the aleatoric and epistemic constituents.
☆ Agentic Additive Manufacturing Alloy Discovery
Agentic systems enable the intelligent use of research tooling, augmenting a researcher's ability to investigate and propose novel solutions to existing problems. Within Additive Manufacturing (AM), alloy discovery remains a complex challenge, often requiring expertise in the various domains of materials science, thermodynamic simulations, and experimental analysis. Large Language Model (LLM) enabled agents can facilitate this endeavor by utilizing their extensive knowledge base to dispatch tool calls via Model Context Protocol (MCP) to perform actions such as Thermo-Calc property diagram calculations and lack of fusion process map generation. In addition, the multi-agent system developed in this work is able to effectively reason through complex user prompts and provide analysis on the printability of proposed alloys. These agents can dynamically adjust their task trajectory to the outcomes of tool call results, effectively enabling autonomous decision-making in practical environments. This work aims to utilize LLM enabled agents to automate and accelerate the task of alloy discovery within the field of additive manufacturing and showcase the benefits of adopting this multi-agent system.
☆ Oracle-RLAIF: An Improved Fine-Tuning Framework for Multi-modal Video Models through Reinforcement Learning from Ranking Feedback
Recent advances in large video-language models (VLMs) rely on extensive fine-tuning techniques that strengthen alignment between textual and visual comprehension. Leading pipelines typically pair supervised fine-tuning (SFT) with reinforcement learning from preference data to enhance video comprehension. However, as VLMs scale in parameter size, so does the cost of gathering enough human feedback. To make fine-tuning more cost-effective, recent frameworks explore reinforcement learning with AI feedback (RLAIF), which replace human preference with AI as a judge. Current RLAIF frameworks rely on a specialized reward model trained with video narratives to create calibrated scalar rewards -- an expensive and restrictive pipeline. We propose Oracle-RLAIF, a novel framework that replaces the trained reward model with a more general Oracle ranker which acts as a drop-in model ranking candidate model responses rather than scoring them. Alongside Oracle-RLAIF, we introduce $GRPO_{rank}$, a novel rank-based loss function based on Group Relative Policy Optimization (GRPO) that directly optimizes ordinal feedback with rank-aware advantages. Empirically, we demonstrate that Oracle-RLAIF consistently outperforms leading VLMs using existing fine-tuning methods when evaluated across various video comprehension benchmarks. Oracle-RLAIF paves the path to creating flexible and data-efficient frameworks for aligning large multi-modal video models with reinforcement learning from rank rather than score.
comment: Proceedings of the 39th Annual Conference on Neural Information Processing Systems, ARLET Workshop (Aligning Reinforcement Learning Experimentalists and Theorists)
☆ Orchestrating Human-AI Teams: The Manager Agent as a Unifying Research Challenge
While agentic AI has advanced in automating individual tasks, managing complex multi-agent workflows remains a challenging problem. This paper presents a research vision for autonomous agentic systems that orchestrate collaboration within dynamic human-AI teams. We propose the Autonomous Manager Agent as a core challenge: an agent that decomposes complex goals into task graphs, allocates tasks to human and AI workers, monitors progress, adapts to changing conditions, and maintains transparent stakeholder communication. We formalize workflow management as a Partially Observable Stochastic Game and identify four foundational challenges: (1) compositional reasoning for hierarchical decomposition, (2) multi-objective optimization under shifting preferences, (3) coordination and planning in ad hoc teams, and (4) governance and compliance by design. To advance this agenda, we release MA-Gym, an open-source simulation and evaluation framework for multi-agent workflow orchestration. Evaluating GPT-5-based Manager Agents across 20 workflows, we find they struggle to jointly optimize for goal completion, constraint adherence, and workflow runtime - underscoring workflow management as a difficult open problem. We conclude with organizational and ethical implications of autonomous management systems.
comment: Accepted as an oral paper for the conference for Distributed Artificial Intelligence (DAI 2025). 8 pages, 2 figures
☆ ToolTweak: An Attack on Tool Selection in LLM-based Agents
As LLMs increasingly power agents that interact with external tools, tool use has become an essential mechanism for extending their capabilities. These agents typically select tools from growing databases or marketplaces to solve user tasks, creating implicit competition among tool providers and developers for visibility and usage. In this paper, we show that this selection process harbors a critical vulnerability: by iteratively manipulating tool names and descriptions, adversaries can systematically bias agents toward selecting specific tools, gaining unfair advantage over equally capable alternatives. We present ToolTweak, a lightweight automatic attack that increases selection rates from a baseline of around 20% to as high as 81%, with strong transferability between open-source and closed-source models. Beyond individual tools, we show that such attacks cause distributional shifts in tool usage, revealing risks to fairness, competition, and security in emerging tool ecosystems. To mitigate these risks, we evaluate two defenses: paraphrasing and perplexity filtering, which reduce bias and lead agents to select functionally similar tools more equally. All code will be open-sourced upon acceptance.
☆ Knowledge-Graph Based RAG System Evaluation Framework
Large language models (LLMs) has become a significant research focus and is utilized in various fields, such as text generation and dialog systems. One of the most essential applications of LLM is Retrieval Augmented Generation (RAG), which greatly enhances generated content's reliability and relevance. However, evaluating RAG systems remains a challenging task. Traditional evaluation metrics struggle to effectively capture the key features of modern LLM-generated content that often exhibits high fluency and naturalness. Inspired by the RAGAS tool, a well-known RAG evaluation framework, we extended this framework into a KG-based evaluation paradigm, enabling multi-hop reasoning and semantic community clustering to derive more comprehensive scoring metrics. By incorporating these comprehensive evaluation criteria, we gain a deeper understanding of RAG systems and a more nuanced perspective on their performance. To validate the effectiveness of our approach, we compare its performance with RAGAS scores and construct a human-annotated subset to assess the correlation between human judgments and automated metrics. In addition, we conduct targeted experiments to demonstrate that our KG-based evaluation method is more sensitive to subtle semantic differences in generated outputs. Finally, we discuss the key challenges in evaluating RAG systems and highlight potential directions for future research.
☆ PHORECAST: Enabling AI Understanding of Public Health Outreach Across Populations
Understanding how diverse individuals and communities respond to persuasive messaging holds significant potential for advancing personalized and socially aware machine learning. While Large Vision and Language Models (VLMs) offer promise, their ability to emulate nuanced, heterogeneous human responses, particularly in high stakes domains like public health, remains underexplored due in part to the lack of comprehensive, multimodal dataset. We introduce PHORECAST (Public Health Outreach REceptivity and CAmpaign Signal Tracking), a multimodal dataset curated to enable fine-grained prediction of both individuallevel behavioral responses and community-wide engagement patterns to health messaging. This dataset supports tasks in multimodal understanding, response prediction, personalization, and social forecasting, allowing rigorous evaluation of how well modern AI systems can emulate, interpret, and anticipate heterogeneous public sentiment and behavior. By providing a new dataset to enable AI advances for public health, PHORECAST aims to catalyze the development of models that are not only more socially aware but also aligned with the goals of adaptive and inclusive health communication
☆ Multimodal Function Vectors for Spatial Relations
Large Multimodal Models (LMMs) demonstrate impressive in-context learning abilities from limited multimodal demonstrations, yet the internal mechanisms supporting such task learning remain opaque. Building on prior work of large language models, we show that a small subset of attention heads in the vision-language model OpenFlamingo-4B is responsible for transmitting representations of spatial relations. The activations of these attention heads, termed function vectors, can be extracted and manipulated to alter an LMM's performance on relational tasks. First, using both synthetic and real image datasets, we apply causal mediation analysis to identify attention heads that strongly influence relational predictions, and extract multimodal function vectors that improve zero-shot accuracy at inference time. We further demonstrate that these multimodal function vectors can be fine-tuned with a modest amount of training data, while keeping LMM parameters frozen, to significantly outperform in-context learning baselines. Finally, we show that relation-specific function vectors can be linearly combined to solve analogy problems involving novel and untrained spatial relations, highlighting the strong generalization ability of this approach. Our results show that LMMs encode spatial relational knowledge within localized internal structures, which can be systematically extracted and optimized, thereby advancing our understanding of model modularity and enhancing control over relational reasoning in LMMs.
☆ From Pixels to Factors: Learning Independently Controllable State Variables for Reinforcement Learning
Algorithms that exploit factored Markov decision processes are far more sample-efficient than factor-agnostic methods, yet they assume a factored representation is known a priori -- a requirement that breaks down when the agent sees only high-dimensional observations. Conversely, deep reinforcement learning handles such inputs but cannot benefit from factored structure. We address this representation problem with Action-Controllable Factorization (ACF), a contrastive learning approach that uncovers independently controllable latent variables -- state components each action can influence separately. ACF leverages sparsity: actions typically affect only a subset of variables, while the rest evolve under the environment's dynamics, yielding informative data for contrastive training. ACF recovers the ground truth controllable factors directly from pixel observations on three benchmarks with known factored structure -- Taxi, FourRooms, and MiniGrid-DoorKey -- consistently outperforming baseline disentanglement algorithms.
☆ Litespark Technical Report: High-Throughput, Energy-Efficient LLM Training Framework
Training Large Language Models (LLMs) is plagued by long training times and massive energy consumption, with modern models requiring months of computation and gigawatt-hours of electricity. In light of these challenges,we introduce Litespark, a novel pre-training framework that addresses these inefficiencies through targeted optimizations to transformer attention and MLP layers. Our approach combines architectural improvements with algorithmic enhancements to maximize Model FLOPs Utilization (MFU) while maintaining compatibility with standard transformer implementations. Comprehensive benchmarking on 3B and 30B parameter Llama models using the SlimPajama-627B dataset demonstrates substantial performance gains: 2x-6x training throughput improvement and $55\%-83$% energy consumption reduction across multi-node H200 GPU clusters. These optimizations are model- and hardware-agnostic, enabling broad applicability across transformer architectures and extending to post-training phases including supervised fine-tuning and direct preference optimization.
comment: 14 pages
☆ Safe and Efficient In-Context Learning via Risk Control
Large language models (LLMs) demonstrate a remarkable ability to learn new tasks from a few in-context examples. However, this flexibility introduces safety concerns: LLMs can be influenced by incorrect or malicious demonstrations -- for example, if an adversary tampers with or injects harmful examples without a human supervisor noticing. This motivates principled designs in which the system itself includes built-in mechanisms to guard against such attacks. We propose a novel approach to limit the degree to which harmful demonstrations can degrade model performance. First, we define a baseline ``safe'' behavior for the model -- the model's performance given no in-context demonstrations (zero-shot). Next, we apply distribution-free risk control (DFRC) to control the extent to which in-context samples can decay performance below zero-shot. We achieve this by leveraging dynamic early exit prediction, ignoring later attention heads that attend the most to the unsafe inputs. Finally, we propose modifications to DFRC that allow it to both control risk for harmful inputs \textit{and} leverage performance and efficiency gains on helpful inputs. We present both theoretical and empirical results showing that our approach can effectively control risk for harmful in-context demonstrations while simultaneously achieving substantial computational efficiency gains with helpful demonstrations.
☆ SIMSplat: Predictive Driving Scene Editing with Language-aligned 4D Gaussian Splatting
Driving scene manipulation with sensor data is emerging as a promising alternative to traditional virtual driving simulators. However, existing frameworks struggle to generate realistic scenarios efficiently due to limited editing capabilities. To address these challenges, we present SIMSplat, a predictive driving scene editor with language-aligned Gaussian splatting. As a language-controlled editor, SIMSplat enables intuitive manipulation using natural language prompts. By aligning language with Gaussian-reconstructed scenes, it further supports direct querying of road objects, allowing precise and flexible editing. Our method provides detailed object-level editing, including adding new objects and modifying the trajectories of both vehicles and pedestrians, while also incorporating predictive path refinement through multi-agent motion prediction to generate realistic interactions among all agents in the scene. Experiments on the Waymo dataset demonstrate SIMSplat's extensive editing capabilities and adaptability across a wide range of scenarios. Project page: https://sungyeonparkk.github.io/simsplat/
☆ CLARITY: Clinical Assistant for Routing, Inference, and Triage EMNLP 2025
We present CLARITY (Clinical Assistant for Routing, Inference, and Triage), an AI-driven platform designed to facilitate patient-to-specialist routing, clinical consultations, and severity assessment of patients' conditions. Its hybrid architecture combines a Finite State Machine (FSM) for structured dialogue flows with collaborative agents that employ Large Language Model (LLM) to analyze symptoms and prioritize referrals to appropriate specialists. Built on a modular microservices framework, CLARITY ensures safe, efficient, and robust performance, flexible and readily scalable to meet the demands of existing workflows and IT solutions in healthcare. We report integration of our clinical assistant into a large-scale nation-wide inter-hospital IT platform, with over 55,000 content-rich user dialogues completed within the two months of deployment, 2,500 of which were expert-annotated for a consequent validation. The validation results show that CLARITY surpasses human-level performance in terms of the first-attempt routing precision, naturally requiring up to 3 times shorter duration of the consultation than with a human.
comment: Accepted to EMNLP 2025 (Industrial Track)
☆ Market-Based Data Subset Selection -- Principled Aggregation of Multi-Criteria Example Utility
Selecting a small yet useful subset of training data is hard because signals of example utility (uncertainty, rarity, diversity, etc.) are heterogeneous and typically combined with ad hoc weights. We propose a market-based selector that prices each example via a cost-function prediction market (LMSR), signals act as traders, a single liquidity parameter controls concentration, and topic-wise normalization stabilizes calibration. Token budgets are handled explicitly by a price-per-token rule $\rho=p/\ell^{\gamma}$, with $\gamma$ exposing an interpretable length bias; a lightweight diversity head improves coverage. We quantify coverage via topic cluster coverage and effective sample size. On the theory side, we show that LMSR implements a maximum-entropy aggregation with exponential weighting and a convex objective, yielding transparent knobs for aggregation strength. Empirically, on GSM8K (60k-token budget) the market with diversity achieves parity with strong single-signal baselines while reducing seed variance and incurring $<\!0.1$ GPU-hr selection overhead; on AGNews at kept=5-25\% the market (with light balancing) delivers competitive accuracy with improved balance and stability. The framework unifies multi-signal data curation under fixed compute for prompt-level reasoning and classification.
☆ How to Train Your Advisor: Steering Black-Box LLMs with Advisor Models
Foundation models are increasingly deployed as black-box services, where model weights cannot be modified and customization is limited to prompting. While static prompt optimization has shown promise, it produces a single fixed prompt that fails to adapt to different inputs, users, or environments. We introduce Advisor Models, lightweight parametric policies trained with reinforcement learning to reactively issue natural language steering instructions in-context to black-box models. The advisor is a second small model that sits between the input and the model, shaping behavior on a per-instance basis using reward signals from the environment. Across multiple domains involving reasoning and personalization, we show that Advisor Models outperform static prompt optimizers, discovering environment dynamics and improving downstream task performance. We also demonstrate the generalizability of advisors by transferring them across black-box models, as well as the framework's ability to achieve specialization while retaining robustness to out-of-distribution inputs. Viewed more broadly, Advisor Models provide a learnable interface to black-box systems where the advisor acts as a parametric, environment-specific memory. We argue that dynamic optimization of black-box models via Advisor Models is a promising direction for enabling personalization and environment-adaptable AI with frontier-level capabilities.
☆ RefineShot: Rethinking Cinematography Understanding with Foundational Skill Evaluation
Cinematography understanding refers to the ability to recognize not only the visual content of a scene but also the cinematic techniques that shape narrative meaning. This capability is attracting increasing attention, as it enhances multimodal understanding in real-world applications and underpins coherent content creation in film and media. As the most comprehensive benchmark for this task, ShotBench spans a wide range of cinematic concepts and VQA-style evaluations, with ShotVL achieving state-of-the-art results on it. However, our analysis reveals that ambiguous option design in ShotBench and ShotVL's shortcomings in reasoning consistency and instruction adherence undermine evaluation reliability, limiting fair comparison and hindering future progress. To overcome these issues, we systematically refine ShotBench through consistent option restructuring, conduct the first critical analysis of ShotVL's reasoning behavior, and introduce an extended evaluation protocol that jointly assesses task accuracy and core model competencies. These efforts lead to RefineShot, a refined and expanded benchmark that enables more reliable assessment and fosters future advances in cinematography understanding.
Dynamic Target Attack
Existing gradient-based jailbreak attacks typically optimize an adversarial suffix to induce a fixed affirmative response. However, this fixed target usually resides in an extremely low-density region of a safety-aligned LLM's output distribution conditioned on diverse harmful inputs. Due to the substantial discrepancy between the target and the original output, existing attacks require numerous iterations to optimize the adversarial prompt, which might still fail to induce the low-probability target response from the target LLM. In this paper, we propose Dynamic Target Attack (DTA), a new jailbreaking framework relying on the target LLM's own responses as targets to optimize the adversarial prompts. In each optimization round, DTA iteratively samples multiple candidate responses directly from the output distribution conditioned on the current prompt, and selects the most harmful response as a temporary target for prompt optimization. In contrast to existing attacks, DTA significantly reduces the discrepancy between the target and the output distribution, substantially easing the optimization process to search for an effective adversarial prompt. Extensive experiments demonstrate the superior effectiveness and efficiency of DTA: under the white-box setting, DTA only needs 200 optimization iterations to achieve an average attack success rate (ASR) of over 87\% on recent safety-aligned LLMs, exceeding the state-of-the-art baselines by over 15\%. The time cost of DTA is 2-26 times less than existing baselines. Under the black-box setting, DTA uses Llama-3-8B-Instruct as a surrogate model for target sampling and achieves an ASR of 85\% against the black-box target model Llama-3-70B-Instruct, exceeding its counterparts by over 25\%.
☆ BrowserArena: Evaluating LLM Agents on Real-World Web Navigation Tasks
LLM web agents now browse and take actions on the open web, yet current agent evaluations are constrained to sandboxed environments or artificial tasks. We introduce BrowserArena, a live open-web agent evaluation platform that collects user-submitted tasks, runs Arena-style head-to-head comparisons, and uses step-level human feedback to surface failure modes. Collecting and analyzing step-level annotations on the agent traces, we identify three consistent failure modes: captcha resolution, pop-up banner removal, and direct navigation to URLs. By constructing targeted datasets to further study these tasks, we discover variations in how different language models navigate these failure modes. We find, for example, that o4-mini deploys a wider variety of strategies to circumvent captcha resolution than other models and DeepSeek-R1 consistently misleads users about captcha resolution. Our findings surface both the diversity and brittleness of current web agents. More broadly, our benchmarking methodology provides an approach to evaluating and understanding web agent failure modes at scale.
☆ NEURODNAAI: Neural pipeline approaches for the advancing dna-based information storage as a sustainable digital medium using deep learning framework
DNA is a promising medium for digital information storage for its exceptional density and durability. While prior studies advanced coding theory, workflow design, and simulation tools, challenges such as synthesis costs, sequencing errors, and biological constraints (GC-content imbalance, homopolymers) limit practical deployment. To address this, our framework draws from quantum parallelism concepts to enhance encoding diversity and resilience, integrating biologically informed constraints with deep learning to enhance error mitigation in DNA storage. NeuroDNAAI encodes binary data streams into symbolic DNA sequences, transmits them through a noisy channel with substitutions, insertions, and deletions, and reconstructs them with high fidelity. Our results show that traditional prompting or rule-based schemes fail to adapt effectively to realistic noise, whereas NeuroDNAAI achieves superior accuracy. Experiments on benchmark datasets demonstrate low bit error rates for both text and images. By unifying theory, workflow, and simulation into one pipeline, NeuroDNAAI enables scalable, biologically valid archival DNA storage
☆ Cross-Platform DNA Methylation Classifier for the Eight Molecular Subtypes of Group 3 & 4 Medulloblastoma
Medulloblastoma is a malignant pediatric brain cancer, and the discovery of molecular subgroups is enabling personalized treatment strategies. In 2019, a consensus identified eight novel subtypes within Groups 3 and 4, each displaying heterogeneous characteristics. Classifiers are essential for translating these findings into clinical practice by supporting clinical trials, personalized therapy development and application, and patient monitoring. This study presents a DNA methylation-based, cross-platform machine learning classifier capable of distinguishing these subtypes on both HM450 and EPIC methylation array samples. Across two independent test sets, the model achieved weighted F1 = 0.95 and balanced accuracy = 0.957, consistent across platforms. As the first cross-platform solution, it provides backward compatibility while extending applicability to a newer platform, also enhancing accessibility. It also has the potential to become the first publicly available classifier for these subtypes once deployed through a web application, as planned in the future. This work overall takes steps in the direction of advancing precision medicine and improving clinical outcomes for patients within the majority prevalence medulloblastoma subgroups, groups 3 and 4.
comment: 9 pages, 5 figures, 5 tables
☆ RainSeer: Fine-Grained Rainfall Reconstruction via Physics-Guided Modeling
Reconstructing high-resolution rainfall fields is essential for flood forecasting, hydrological modeling, and climate analysis. However, existing spatial interpolation methods-whether based on automatic weather station (AWS) measurements or enhanced with satellite/radar observations often over-smooth critical structures, failing to capture sharp transitions and localized extremes. We introduce RainSeer, a structure-aware reconstruction framework that reinterprets radar reflectivity as a physically grounded structural prior-capturing when, where, and how rain develops. This shift, however, introduces two fundamental challenges: (i) translating high-resolution volumetric radar fields into sparse point-wise rainfall observations, and (ii) bridging the physical disconnect between aloft hydro-meteors and ground-level precipitation. RainSeer addresses these through a physics-informed two-stage architecture: a Structure-to-Point Mapper performs spatial alignment by projecting mesoscale radar structures into localized ground-level rainfall, through a bidirectional mapping, and a Geo-Aware Rain Decoder captures the semantic transformation of hydro-meteors through descent, melting, and evaporation via a causal spatiotemporal attention mechanism. We evaluate RainSeer on two public datasets-RAIN-F (Korea, 2017-2019) and MeteoNet (France, 2016-2018)-and observe consistent improvements over state-of-the-art baselines, reducing MAE by over 13.31% and significantly enhancing structural fidelity in reconstructed rainfall fields.
♻ ☆ Model Parallelism With Subnetwork Data Parallelism
Pre-training large neural networks at scale imposes heavy memory demands on accelerators and often requires costly communication. We introduce Subnetwork Data Parallelism (SDP), a distributed training framework that partitions a model into structured subnetworks trained across workers without exchanging activations. We study two complementary masking regimes: backward masking, which applies sparsity only in the backward step to retain unbiased gradients, and forward masking, which also removes parameters in the forward pass to deliver stronger efficiency gains while providing additional regularization. We further explore two subnetwork construction strategies: neuron level and block level, applied across both CNNs and transformers. In experiments spanning CNNs and transformers on CIFAR and ImageNet, as well as LLM pre-training on FineWeb, SDP reduces per-device memory usage by 30%-75% while maintaining or improving performance. Notably, in FLOP-matched settings, forward masking can sometimes achieve better performance.
comment: 10 pages, 2 figure
♻ ☆ Evaluating LLMs for Combinatorial Optimization: One-Phase and Two-Phase Heuristics for 2D Bin-Packing NeurIPS 2025
This paper presents an evaluation framework for assessing Large Language Models' (LLMs) capabilities in combinatorial optimization, specifically addressing the 2D bin-packing problem. We introduce a systematic methodology that combines LLMs with evolutionary algorithms to generate and refine heuristic solutions iteratively. Through comprehensive experiments comparing LLM generated heuristics against traditional approaches (Finite First-Fit and Hybrid First-Fit), we demonstrate that LLMs can produce more efficient solutions while requiring fewer computational resources. Our evaluation reveals that GPT-4o achieves optimal solutions within two iterations, reducing average bin usage from 16 to 15 bins while improving space utilization from 0.76-0.78 to 0.83. This work contributes to understanding LLM evaluation in specialized domains and establishes benchmarks for assessing LLM performance in combinatorial optimization tasks.
comment: 1 table, 6 figures. 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Accepted for the Workshop: Evaluating the Evolving LLM Lifecycle Benchmarks, Emergent Abilities, and Scaling
♻ ☆ MS-DFTVNet:A Long-Term Time Series Prediction Method Based on Multi-Scale Deformable Convolution
Research on long-term time series prediction has primarily relied on Transformer and MLP models, while the potential of convolutional networks in this domain remains underexplored. To address this, we propose a novel multi-scale time series reshape module that effectively captures cross-period patch interactions and variable dependencies. Building on this, we develop MS-DFTVNet, the multi-scale 3D deformable convolutional framework tailored for long-term forecasting. Moreover, to handle the inherently uneven distribution of temporal features, we introduce a context-aware dynamic deformable convolution mechanism, which further enhances the model's ability to capture complex temporal patterns. Extensive experiments demonstrate that MS-DFTVNet not only significantly outperforms strong baselines but also achieves an average improvement of about 7.5% across six public datasets, setting new state-of-the-art results.
♻ ☆ Communication-Efficient and Accurate Approach for Aggregation in Federated Low-Rank Adaptation
With the rapid emergence of foundation models and the increasing need for fine-tuning across distributed environments, Federated Low-Rank Adaptation (FedLoRA) has recently gained significant attention. Despite enormous potential, current FedLoRA methods face notable challenges due to inexact updates. Existing approaches have attempted to mitigate this issue, but they often introduce a \emph{local-global generalization gap} and incur \emph{substantial communication overhead}, limiting their scalability and effectiveness. To address these limitations, we propose \textbf{F}ederated \textbf{Lo}w-\textbf{R}ank \textbf{A}ggregation with \textbf{N}early \textbf{A}ccurate Estimation (FLoRA-NA). FLoRA-NA leverages the local LoRA matrices on the server to estimate the aggregated matrices $\hat{A}$ and $\hat{B}$, which are then distributed to clients for local updates. This surrogated aggregated matrices minimizes the divergence between ideal $\nabla \Bar{W} = \sum^{U}_{u=1}B_u A_u$ and practical updates $\nabla \hat{W} = \hat{B}\hat{A}$ without adding communication cost beyond vanilla FedLoRA. By doing so, FLoRA-NA achieves communication efficiency and bridges the gap between local personalization and global generalization, addressing a key limitation of prior personalized FedLoRA approaches. We conduct extensive evaluations across diverse tasks, including natural language understanding, mathematical reasoning, and code-solving ability using various foundation models. Experimental results consistently demonstrate that FLoRA-NA achieves state-of-the-art global performance while maintaining low communication overhead.
comment: 34 pages, 4 figures, 11 tables
♻ ☆ Interactive Learning for LLM Reasoning
Existing multi-agent learning approaches have developed interactive training environments to explicitly promote collaboration among multiple Large Language Models (LLMs), thereby constructing stronger multi-agent systems (MAS). However, during inference, they require re-executing the MAS to obtain final solutions, which diverges from human cognition that individuals can enhance their reasoning capabilities through interactions with others and resolve questions independently in the future. To investigate whether multi-agent interaction can enhance LLMs' independent problem-solving ability, we introduce ILR, a novel co-learning framework for MAS that integrates two key components: Dynamic Interaction and Perception Calibration. Specifically, Dynamic Interaction first adaptively selects either cooperative or competitive strategies depending on question difficulty and model ability. LLMs then exchange information through Idea3 (Idea Sharing, Idea Analysis, and Idea Fusion), an innovative interaction paradigm designed to mimic human discussion, before deriving their respective final answers. In Perception Calibration, ILR employs Group Relative Policy Optimization (GRPO) to train LLMs while integrating one LLM's reward distribution characteristics into another's reward function, thereby enhancing the cohesion of multi-agent interactions. We validate ILR on three LLMs across two model families of varying scales, evaluating performance on five mathematical benchmarks and one coding benchmark. Experimental results show that ILR consistently outperforms single-agent learning, yielding an improvement of up to 5% over the strongest baseline. We further discover that Idea3 can enhance the robustness of stronger LLMs during multi-agent inference, and dynamic interaction types can boost multi-agent learning compared to pure cooperative or competitive strategies.
comment: The code is available at https://github.com/linhh29/Interactive-Learning-for-LLM-Reasoning
♻ ☆ Differential Information Distribution: A Bayesian Perspective on Direct Preference Optimization
Direct Preference Optimization (DPO) has been widely used for aligning language models with human preferences in a supervised manner. However, several key questions remain unresolved: the rationale behind its log-ratio reward, how the statistical structure of preference datasets shapes its training dynamics, and how those dynamics impact downstream capabilities. We approach these questions from a Bayesian perspective, interpreting the goal of preference optimization as learning the differential information required to update a reference policy into a target policy. To formalize this view, we introduce the Differential Information Distribution (DID), defined as the distribution over samples that carry the Bayesian evidence required to update policies. We introduce three complementary insights by viewing preference optimization through the DID. First, we find that DPO's log-ratio reward is uniquely justified when preferences encode the Differential Information needed to update a reference policy into the target policy. Second, we discuss how commonly observed training dynamics in DPO, including changes in log-likelihood and policy exploration, stem from a power-law DID relationship. Finally, we analyze how training dynamics influence downstream performance using the entropy of DID, a principled measure of uncertainty in the learned information. We observe that learning high-entropy DID improves open-ended instruction-following, while low-entropy DID benefits knowledge-intensive QA. Taken together, our results show that DPO's reward design, training dynamics, and downstream capabilities all emerge as natural consequences of learning Differential Information, offering both a principled theoretical foundation and practical guidance for preference-based alignment.
comment: Preprint, under review. 39 pages, 12 figures. Updates from v1: Added new theoretical results on DPO training dynamics and policy exploration, included experiments with Qwen3-4B, and refined the discussion of log-margin dynamics
♻ ☆ VITA: Vision-to-Action Flow Matching Policy
Conventional flow matching and diffusion-based policies sample through iterative denoising from standard noise distributions (e.g., Gaussian), and require conditioning mechanisms to incorporate visual information during the generative process, incurring substantial time and memory overhead. To reduce the complexity, we develop VITA(VIsion-To-Action policy), a noise-free and conditioning-free policy learning framework that directly maps visual representations to latent actions using flow matching. VITA treats latent visual representations as the source of the flow, thus eliminating the need of conditioning. As expected, bridging vision and action is challenging, because actions are lower-dimensional, less structured, and sparser than visual representations; moreover, flow matching requires the source and target to have the same dimensionality. To overcome this, we introduce an action autoencoder that maps raw actions into a structured latent space aligned with visual latents, trained jointly with flow matching. To further prevent latent space collapse, we propose flow latent decoding, which anchors the latent generation process by backpropagating the action reconstruction loss through the flow matching ODE (ordinary differential equations) solving steps. We evaluate VITA on 8 simulation and 2 real-world tasks from ALOHA and Robomimic. VITA outperforms or matches state-of-the-art generative policies, while achieving 1.5-2.3x faster inference compared to conventional methods with conditioning. Project page: https://ucd-dare.github.io/VITA/
comment: Project page: https://ucd-dare.github.io/VITA/ Code: https://github.com/ucd-dare/VITA
♻ ☆ Boundless Byte Pair Encoding: Breaking the Pre-tokenization Barrier
Pre-tokenization, the initial step in many modern tokenization pipelines, segments text into smaller units called pretokens, typically splitting on whitespace and punctuation. While this process encourages having full, individual words as tokens, it introduces a fundamental limitation in most tokenization algorithms such as Byte Pair Encoding (BPE). Specifically, pre-tokenization causes the distribution of tokens in a corpus to heavily skew towards common, full-length words. This skewed distribution limits the benefits of expanding to larger vocabularies, since the additional tokens appear with progressively lower counts. To overcome this barrier, we propose BoundlessBPE, a modified BPE algorithm that relaxes the pretoken boundary constraint. Our approach selectively merges two complete pretokens into a larger unit we term a superword. Superwords are not necessarily semantically cohesive. For example, the pretokens " of" and " the" might be combined to form the superword " of the". This merging strategy results in a substantially more uniform distribution of tokens across a corpus than standard BPE, and compresses text more effectively, with up to a 15% increase in bytes per token.
comment: Accepted to COLM 2025
♻ ☆ FalconWing: An Ultra-Light Indoor Fixed-Wing UAV Platform for Vision-Based Autonomy
We introduce FalconWing, an ultra-light (150 g) indoor fixed-wing UAV platform for vision-based autonomy. Controlled indoor environment enables year-round repeatable UAV experiment but imposes strict weight and maneuverability limits on the UAV, motivating our ultra-light FalconWing design. FalconWing couples a lightweight hardware stack (137g airframe with a 9g camera) and offboard computation with a software stack featuring a photorealistic 3D Gaussian Splat (GSplat) simulator for developing and evaluating vision-based controllers. We validate FalconWing on two challenging vision-based aerial case studies. In the leader-follower case study, our best vision-based controller, trained via imitation learning on GSplat-rendered data augmented with domain randomization, achieves 100% tracking success across 3 types of leader maneuvers over 30 trials and shows robustness to leader's appearance shifts in simulation. In the autonomous landing case study, our vision-based controller trained purely in simulation transfers zero-shot to real hardware, achieving an 80% success rate over ten landing trials. We will release hardware designs, GSplat scenes, and dynamics models upon publication to make FalconWing an open-source flight kit for engineering students and research labs.
♻ ☆ AbsTopK: Rethinking Sparse Autoencoders For Bidirectional Features
Sparse autoencoders (SAEs) have emerged as powerful techniques for interpretability of large language models (LLMs), aiming to decompose hidden states into meaningful semantic features. While several SAE variants have been proposed, there remains no principled framework to derive SAEs from the original dictionary learning formulation. In this work, we introduce such a framework by unrolling the proximal gradient method for sparse coding. We show that a single-step update naturally recovers common SAE variants, including ReLU, JumpReLU, and TopK. Through this lens, we reveal a fundamental limitation of existing SAEs: their sparsity-inducing regularizers enforce non-negativity, preventing a single feature from representing bidirectional concepts (e.g., male vs. female). This structural constraint fragments semantic axes into separate, redundant features, limiting representational completeness. To address this issue, we propose AbsTopK SAE, a new variant derived from the $\ell_0$ sparsity constraint that applies hard thresholding over the largest-magnitude activations. By preserving both positive and negative activations, AbsTopK uncovers richer, bidirectional conceptual representations. Comprehensive experiments across four LLMs and seven probing and steering tasks show that AbsTopK improves reconstruction fidelity, enhances interpretability, and enables single features to encode contrasting concepts. Remarkably, AbsTopK matches or even surpasses the Difference-in-Mean method, a supervised approach that requires labeled data for each concept and has been shown in prior work to outperform SAEs.
♻ ☆ Unraveling Indirect In-Context Learning Using Influence Functions
In this work, we introduce a novel paradigm for generalized In-Context Learning (ICL), termed Indirect In-Context Learning. In Indirect ICL, we explore demonstration selection strategies tailored for two distinct real-world scenarios: Mixture of Tasks and Noisy ICL. We systematically evaluate the effectiveness of Influence Functions (IFs) as a selection tool for these settings, highlighting the potential of IFs to better capture the informativeness of examples within the demonstration pool. For the Mixture of Tasks setting, demonstrations are drawn from 28 diverse tasks, including MMLU, BigBench, StrategyQA, and CommonsenseQA. We demonstrate that combining BertScore-Recall (BSR) with an IF surrogate model can further improve performance, leading to average absolute accuracy gains of 0.37\% and 1.45\% for 3-shot and 5-shot setups when compared to traditional ICL metrics. In the Noisy ICL setting, we examine scenarios where demonstrations might be mislabeled or have adversarial noise. Our experiments show that reweighting traditional ICL selectors (BSR and Cosine Similarity) with IF-based selectors boosts accuracy by an average of 2.90\% for Cosine Similarity and 2.94\% for BSR on noisy GLUE benchmarks. For the adversarial sub-setting, we show the utility of using IFs for task-agnostic demonstration selection for backdoor attack mitigation. Showing a 32.89\% reduction in Attack Success Rate compared to task-aware methods. In sum, we propose a robust framework for demonstration selection that generalizes beyond traditional ICL, offering valuable insights into the role of IFs for Indirect ICL.
comment: Under Review
♻ ☆ Segmentor-Guided Counterfactual Fine-Tuning for Locally Coherent and Targeted Image Synthesis MICCAI 2025
Counterfactual image generation is a powerful tool for augmenting training data, de-biasing datasets, and modeling disease. Current approaches rely on external classifiers or regressors to increase the effectiveness of subject-level interventions (e.g., changing the patient's age). For structure-specific interventions (e.g., changing the area of the left lung in a chest radiograph), we show that this is insufficient, and can result in undesirable global effects across the image domain. Previous work used pixel-level label maps as guidance, requiring a user to provide hypothetical segmentations which are tedious and difficult to obtain. We propose Segmentor-guided Counterfactual Fine-Tuning (Seg-CFT), which preserves the simplicity of intervening on scalar-valued, structure-specific variables while producing locally coherent and effective counterfactuals. We demonstrate the capability of generating realistic chest radiographs, and we show promising results for modeling coronary artery disease. Code: https://github.com/biomedia-mira/seg-cft.
comment: Accepted at MICCAI 2025
♻ ☆ DrKGC: Dynamic Subgraph Retrieval-Augmented LLMs for Knowledge Graph Completion across General and Biomedical Domains EMNLP 2025
Knowledge graph completion (KGC) aims to predict missing triples in knowledge graphs (KGs) by leveraging existing triples and textual information. Recently, generative large language models (LLMs) have been increasingly employed for graph tasks. However, current approaches typically encode graph context in textual form, which fails to fully exploit the potential of LLMs for perceiving and reasoning about graph structures. To address this limitation, we propose DrKGC (Dynamic Subgraph Retrieval-Augmented LLMs for Knowledge Graph Completion). DrKGC employs a flexible lightweight model training strategy to learn structural embeddings and logical rules within the KG. It then leverages a novel bottom-up graph retrieval method to extract a subgraph for each query guided by the learned rules. Finally, a graph convolutional network (GCN) adapter uses the retrieved subgraph to enhance the structural embeddings, which are then integrated into the prompt for effective LLM fine-tuning. Experimental results on two general domain benchmark datasets and two biomedical datasets demonstrate the superior performance of DrKGC. Furthermore, a realistic case study in the biomedical domain highlights its interpretability and practical utility.
comment: Accepted at EMNLP 2025 Findings
♻ ☆ Towards end-to-end ASP computation
We propose an end-to-end approach for Answer Set Programming (ASP) and linear algebraically compute stable models satisfying given constraints. The idea is to implement Lin-Zhao's theorem together with constraints directly in vector spaces as numerical minimization of a cost function constructed from a matricized normal logic program, loop formulas in Lin-Zhao's theorem and constraints, thereby no use of symbolic ASP or SAT solvers involved in our approach. We also propose precomputation that shrinks the program size and heuristics for loop formulas to reduce computational difficulty. We empirically test our approach with programming examples including the 3-coloring and Hamiltonian cycle problems.
comment: 26 pages, 9 figures. Accepted for Neurosymbolic Artificial Intelligence
♻ ☆ Enhancing Personalized Multi-Turn Dialogue with Curiosity Reward
Effective conversational agents like large language models (LLMs) must personalize their interactions to adapt to user preferences, personalities, and attributes across diverse domains like education and healthcare. Current methods like Reinforcement Learning from Human Feedback (RLHF), often prioritize helpfulness and safety but fall short in fostering truly empathetic, adaptive, and personalized dialogues. Existing personalization approaches typically rely on extensive user history, limiting their effectiveness for new or context-limited users. To address these limitations, we propose leveraging a user model to incorporate a curiosity-based intrinsic reward into multi-turn RLHF. This novel reward mechanism encourages the LLM agent to actively infer user traits by optimizing conversations to improve its user model's accuracy. Consequently, the agent delivers more personalized interactions by learning more about the user. We demonstrate our method's effectiveness in two distinct domains: significantly improving personalization performance in a conversational recommendation task, and personalizing conversations for different learning styles in an educational setting. We show improved generalization capabilities compared to traditional multi-turn RLHF, all while maintaining conversation quality. Our method offers a promising solution for creating more personalized, adaptive, and engaging conversational agents.
♻ ☆ ABBA-Adapters: Efficient and Expressive Fine-Tuning of Foundation Models
Large Language Models have demonstrated strong performance across a wide range of tasks, but adapting them efficiently to new domains remains a key challenge. Parameter-Efficient Fine-Tuning (PEFT) methods address this by introducing lightweight, trainable modules while keeping most pre-trained weights fixed. The prevailing approach, LoRA, models updates using a low-rank decomposition, but its expressivity is inherently constrained by the rank. Recent methods like HiRA aim to increase expressivity by incorporating a Hadamard product with the frozen weights, but still rely on the structure of the pre-trained model. We introduce ABBA, a new PEFT architecture that reparameterizes the update as a Hadamard product of two independently learnable low-rank matrices. In contrast to prior work, ABBA fully decouples the update from the pre-trained weights, enabling both components to be optimized freely. This leads to significantly higher expressivity under the same parameter budget, a property we validate through matrix reconstruction experiments. Empirically, ABBA achieves state-of-the-art results on arithmetic and commonsense reasoning benchmarks, consistently outperforming existing PEFT methods by a significant margin across multiple models. Our code is publicly available at: https://github.com/CERT-Lab/abba.
comment: Raghav Singhal, Kaustubh Ponkshe, and Rohit Vartak contributed equally to this work
♻ ☆ Neurosymbolic Association Rule Mining from Tabular Data
Association Rule Mining (ARM) is the task of mining patterns among data features in the form of logical rules, with applications across a myriad of domains. However, high-dimensional datasets often result in an excessive number of rules, increasing execution time and negatively impacting downstream task performance. Managing this rule explosion remains a central challenge in ARM research. To address this, we introduce Aerial+, a novel neurosymbolic ARM method. Aerial+ leverages an under-complete autoencoder to create a neural representation of the data, capturing associations between features. It extracts rules from this neural representation by exploiting the model's reconstruction mechanism. Extensive evaluations on five datasets against seven baselines demonstrate that Aerial+ achieves state-of-the-art results by learning more concise, high-quality rule sets with full data coverage. When integrated into rule-based interpretable machine learning models, Aerial+ significantly reduces execution time while maintaining or improving accuracy.
comment: This paper has been accepted and presented at the 19th International Conference on Neurosymbolic Learning and Reasoning (NeSy 2025)
♻ ☆ Initialization using Update Approximation is a Silver Bullet for Extremely Efficient Low-Rank Fine-Tuning
Low-rank adapters have become standard for efficiently fine-tuning large language models, but they often fall short of achieving the performance of full fine-tuning. We propose a method, LoRA Silver Bullet or LoRA-SB, that approximates full fine-tuning within low-rank subspaces using a carefully designed initialization strategy. We theoretically demonstrate that the architecture of LoRA-XS, which inserts a learnable r x r matrix between B and A while keeping other matrices fixed, provides the precise conditions needed for this approximation. We leverage its constrained update space to achieve optimal scaling for high-rank gradient updates while removing the need for scaling factor tuning. We prove that our initialization offers an optimal low-rank approximation of the initial gradient and preserves update directions throughout training. Extensive experiments across mathematical reasoning, commonsense reasoning, and language understanding tasks demonstrate that our approach exceeds the performance of LoRA (and baselines) while using 27-90 times fewer learnable parameters, and comprehensively outperforms LoRA-XS. Our findings establish that it is possible to simulate full fine-tuning in low-rank subspaces, and achieve significant parameter efficiency gains without sacrificing performance. Our code is publicly available at: https://github.com/CERT-Lab/lora-sb.
comment: Kaustubh Ponkshe and Raghav Singhal contributed equally to this work
♻ ☆ Superficial Safety Alignment Hypothesis
As large language models (LLMs) are overwhelmingly more and more integrated into various applications, ensuring they generate safe responses is a pressing need. Previous studies on alignment have largely focused on general instruction-following but have often overlooked the distinct properties of safety alignment, such as the brittleness of safety mechanisms. To bridge the gap, we propose the Superficial Safety Alignment Hypothesis (SSAH), which posits that safety alignment teaches an otherwise unsafe model to choose the correct reasoning direction - fulfill or refuse users' requests - interpreted as an implicit binary classification task. Through SSAH, we hypothesize that only a few essential components can establish safety guardrails in LLMs. We successfully identify four types of attribute-critical components: Safety Critical Unit (SCU), Utility Critical Unit (UCU), Complex Unit (CU), and Redundant Unit (RU). Our findings show that freezing certain safety-critical components during fine-tuning allows the model to retain its safety attributes while adapting to new tasks. Similarly, we show that leveraging redundant units in the pre-trained model as an "alignment budget" can effectively minimize the alignment tax while achieving the alignment goal. All considered, this paper concludes that the atomic functional unit for safety in LLMs is at the neuron level and underscores that safety alignment should not be complicated.
♻ ☆ CodeSense: a Real-World Benchmark and Dataset for Code Semantic Reasoning
Understanding and reasoning about code semantics is essential for enhancing code LLMs' abilities to solve real-world software engineering (SE) tasks. Although several code reasoning benchmarks exist, most rely on synthetic datasets or educational coding problems and focus on coarse-grained reasoning tasks such as input/output prediction, limiting their effectiveness in evaluating LLMs in practical SE contexts. To bridge this gap, we propose CodeSense, the first benchmark that makes available a spectrum of fine-grained code reasoning tasks concerned with the software engineering of real-world code. We collected Python, C and Java software projects from real-world repositories. We executed tests from these repositories, collected their execution traces, and constructed a ground truth dataset for fine-grained semantic reasoning tasks. We then performed comprehensive evaluations on state-of-the-art LLMs. Our results show a clear performance gap for the models to handle fine-grained reasoning tasks. Although prompting techniques such as chain-of-thought and in-context learning helped, the lack of code semantics in LLMs fundamentally limit models' capabilities of code reasoning. Besides dataset, benchmark and evaluation, our work produced an execution tracing framework and tool set that make it easy to collect ground truth for fine-grained SE reasoning tasks, offering a strong basis for future benchmark construction and model post training. Our code and data are located at https://codesense-bench.github.io/.
♻ ☆ Automated Model Evaluation for Object Detection via Prediction Consistency and Reliability ICCV 2025
Recent advances in computer vision have made training object detectors more efficient and effective; however, assessing their performance in real-world applications still relies on costly manual annotation. To address this limitation, we develop an automated model evaluation (AutoEval) framework for object detection. We propose Prediction Consistency and Reliability (PCR), which leverages the multiple candidate bounding boxes that conventional detectors generate before non-maximum suppression (NMS). PCR estimates detection performance without ground-truth labels by jointly measuring 1) the spatial consistency between boxes before and after NMS, and 2) the reliability of the retained boxes via the confidence scores of overlapping boxes. For a more realistic and scalable evaluation, we construct a meta-dataset by applying image corruptions of varying severity. Experimental results demonstrate that PCR yields more accurate performance estimates than existing AutoEval methods, and the proposed meta-dataset covers a wider range of detection performance. The code is available at https://github.com/YonseiML/autoeval-det.
comment: ICCV 2025 Oral; v2: fixed a typo in the title and updated experimental results
♻ ☆ Causal-Adapter: Taming Text-to-Image Diffusion for Faithful Counterfactual Generation
We present Causal-Adapter, a modular framework that adapts frozen text-to-image diffusion backbones for counterfactual image generation. Our method enables causal interventions on target attributes, consistently propagating their effects to causal dependents without altering the core identity of the image. In contrast to prior approaches that rely on prompt engineering without explicit causal structure, Causal-Adapter leverages structural causal modeling augmented with two attribute regularization strategies: prompt-aligned injection, which aligns causal attributes with textual embeddings for precise semantic control, and a conditioned token contrastive loss to disentangle attribute factors and reduce spurious correlations. Causal-Adapter achieves state-of-the-art performance on both synthetic and real-world datasets, with up to 91% MAE reduction on Pendulum for accurate attribute control and 87% FID reduction on ADNI for high-fidelity MRI image generation. These results show that our approach enables robust, generalizable counterfactual editing with faithful attribute modification and strong identity preservation.
comment: 9 pages, 26 figures
♻ ☆ Interpretable Text Embeddings and Text Similarity Explanation: A Survey EMNLP 2025
Text embeddings are a fundamental component in many NLP tasks, including classification, regression, clustering, and semantic search. However, despite their ubiquitous application, challenges persist in interpreting embeddings and explaining similarities between them. In this work, we provide a structured overview of methods specializing in inherently interpretable text embeddings and text similarity explanation, an underexplored research area. We characterize the main ideas, approaches, and trade-offs. We compare means of evaluation, discuss overarching lessons learned and finally identify opportunities and open challenges for future research.
comment: EMNLP 2025 (main)
♻ ☆ On Predictability of Reinforcement Learning Dynamics for Large Language Models
Recent advances in reasoning capabilities of large language models (LLMs) are largely driven by reinforcement learning (RL), yet the underlying parameter dynamics during RL training remain poorly understood. This work identifies two fundamental properties of RL-induced parameter updates in LLMs: (1) Rank-1 Dominance, where the top singular subspace of the parameter update matrix nearly fully determines reasoning improvements, recovering over 99\% of performance gains; and (2) Rank-1 Linear Dynamics, where this dominant subspace evolves linearly throughout training, enabling accurate prediction from early checkpoints. Extensive experiments across 8 LLMs and 7 algorithms validate the generalizability of these properties. More importantly, based on these findings, we propose AlphaRL, a plug-in acceleration framework that extrapolates the final parameter update using a short early training window, achieving up to 2.5 speedup while retaining \textgreater 96\% of reasoning performance without extra modules or hyperparameter tuning. This positions our finding as a versatile and practical tool for large-scale RL, opening a path toward principled, interpretable, and efficient training paradigm for LLMs.
comment: 43 pages, 28 figures; 43
♻ ☆ Legal Knowledge Graph Foundations, Part I: URI-Addressable Abstract Works (LRMoo F1 to schema.org)
Building upon a formal, event-centric model for the diachronic evolution of legal norms grounded in the IFLA Library Reference Model (LRMoo), this paper addresses the essential first step of publishing this model's foundational entity-the abstract legal Work (F1)-on the Semantic Web. We propose a detailed, property-by-property mapping of the LRMoo F1 Work to the widely adopted schema.org/Legislation vocabulary. Using Brazilian federal legislation from the Normas.leg.br portal as a practical case study, we demonstrate how to create interoperable, machine-readable descriptions via JSON-LD, focusing on stable URN identifiers, core metadata, and norm relationships. This structured mapping establishes a stable, URI-addressable anchor for each legal norm, creating a verifiable "ground truth". It provides the essential, interoperable foundation upon which subsequent layers of the model, such as temporal versions (Expressions) and internal components, can be built. By bridging formal ontology with web-native standards, this work paves the way for building deterministic and reliable Legal Knowledge Graphs (LKGs), overcoming the limitations of purely probabilistic models.
comment: This version formalizes the LRMoo event-centric model for the legal lifecycle (enactment, publication). This provides a more precise and ontologically-grounded mapping to Schema.org, with a clearer case study and improved diagrams
♻ ☆ Neural Network Parameter-optimization of Gaussian pmDAGs
Finding the parameters of a latent variable causal model is central to causal inference and causal identification. In this article, we show that existing graphical structures that are used in causal inference are not stable under marginalization of Gaussian Bayesian networks, and present a graphical structure that faithfully represent margins of Gaussian Bayesian networks. We present the first duality between parameter optimization of a latent variable model and training a feed-forward neural network in the parameter space of the assumed family of distributions. Based on this observation, we develop an algorithm for parameter optimization of these graphical structures based on a given observational distribution. Then, we provide conditions for causal effect identifiability in the Gaussian setting. We propose an meta-algorithm that checks whether a causal effect is identifiable or not. Moreover, we lay a grounding for generalizing the duality between a neural network and a causal model from the Gaussian to other distributions.
comment: 52 pages
♻ ☆ Investigating ReLoRA: Effects on the Learning Dynamics of Small Language Models
Parameter-efficient methods like LoRA have revolutionised large language model (LLM) fine-tuning. ReLoRA extends this idea to pretraining by repeatedly merging and reinitialising low-rank adapters, increasing cumulative rank while keeping updates cheap. This aligns well with observations that high-capacity models learn through locally low-rank trajectories that expand over time. By contrast, recent work suggests that small language models (SLMs) exhibit rank deficiencies and under-utilise their available dimensionality. This raises a natural question: can ReLoRA's rank-expanding update rule \textit{steer} SLMs toward healthier learning dynamics, mitigating rank bottlenecks in a capacity-constrained regime? We argue SLMs are an ideal testbed: they train quickly, enable controlled ablations, and make rank phenomena more measurable. We present the first systematic study of ReLoRA in SLMs (11M-66M parameters), evaluating both performance and learning dynamics. Across loss, Paloma perplexity, and BLiMP, we find that ReLoRA underperforms full-rank training, with gaps widening at larger scales. Analysis of proportional effective rank and condition numbers shows that ReLoRA amplifies existing rank deficiencies and induces ill-conditioned updates early in training. Our results suggest that while ReLoRA's merge-and-restart strategy can expand ranks in larger models, it does not straightforwardly translate to capacity-limited SLMs, motivating adaptive-rank or hybrid-rank approaches for low-compute pretraining.
comment: 12 Pages, 6 Tables, 8 Figures
♻ ☆ QSpec: Speculative Decoding with Complementary Quantization Schemes
Quantization is widely adopted to accelerate inference and reduce memory consumption in large language models (LLMs). While activation-weight joint quantization enables efficient low-precision decoding, it suffers from substantial performance degradation on multi-step reasoning tasks. We propose QSpec, a novel quantization paradigm that decouples efficiency from quality by integrating two complementary schemes via speculative decoding: low-precision joint quantization for fast drafting and high-precision weight-only quantization for accurate verification. QSpec reuses both weights and KV cache across stages, enabling near-zero-cost switching without retraining or auxiliary models. Compared to high-precision baselines, QSpec achieves up to 1.64x speedup without quality degradation, and outperforms state-of-the-art speculative decoding methods by up to 1.55x in batched settings. Furthermore, QSpec supports plug-and-play deployment and generalizes well across model scales, quantization methods, and workloads. These properties make QSpec a practical and scalable solution for high-fidelity quantized LLM serving under memory-constrained scenarios. Our code is available at https://github.com/hku-netexplo-lab/QSpec.
♻ ☆ GeoSQL-Eval: First Evaluation of LLMs on PostGIS-Based NL2GeoSQL Queries
Large language models (LLMs) have shown strong performance in natural language to SQL (NL2SQL) tasks within general databases. However, extending to GeoSQL introduces additional complexity from spatial data types, function invocation, and coordinate systems, which greatly increases generation and execution difficulty. Existing benchmarks mainly target general SQL, and a systematic evaluation framework for GeoSQL is still lacking. To fill this gap, we present GeoSQL-Eval, the first end-to-end automated evaluation framework for PostGIS query generation, together with GeoSQL-Bench, a benchmark for assessing LLM performance in NL2GeoSQL tasks. GeoSQL-Bench defines three task categories-conceptual understanding, syntax-level SQL generation, and schema retrieval-comprising 14,178 instances, 340 PostGIS functions, and 82 thematic databases. GeoSQL-Eval is grounded in Webb's Depth of Knowledge (DOK) model, covering four cognitive dimensions, five capability levels, and twenty task types to establish a comprehensive process from knowledge acquisition and syntax generation to semantic alignment, execution accuracy, and robustness. We evaluate 24 representative models across six categories and apply the entropy weight method with statistical analyses to uncover performance differences, common error patterns, and resource usage. Finally, we release a public GeoSQL-Eval leaderboard platform for continuous testing and global comparison. This work extends the NL2GeoSQL paradigm and provides a standardized, interpretable, and extensible framework for evaluating LLMs in spatial database contexts, offering valuable references for geospatial information science and related applications.
♻ ☆ What happens when generative AI models train recursively on each others' outputs?
The internet serves as a common source of training data for generative AI (genAI) models but is increasingly populated with AI-generated content. This duality raises the possibility that future genAI models may be trained on other models' generated outputs. Prior work has studied consequences of models training on their own generated outputs, but limited work has considered what happens if models ingest content produced by other models. Given society's increasing dependence on genAI tools, understanding such data-mediated model interactions is critical. This work provides empirical evidence for how data-mediated interactions might unfold in practice, develops a theoretical model for this interactive training process, and experimentally validates the theory. We find that data-mediated interactions can benefit models by exposing them to novel concepts perhaps missed in original training data, but also can homogenize their performance on shared tasks.
comment: 9 pages
♻ ☆ Programming Distributed Collective Processes in the eXchange Calculus
Recent trends like the Internet of Things (IoT) suggest a vision of dense and multi-scale deployments of computing devices in nearly all kinds of environments. A prominent engineering challenge revolves around programming the collective adaptive behaviour of such computational ecosystems. This requires abstractions able to capture concepts like ensembles (dynamic groups of cooperating devices) and collective tasks (joint activities carried out by ensembles). In this work, we consider collections of devices interacting with neighbours and that execute in nearly-synchronised sense-compute-interact rounds, where the computation is given by a single program mapping sensing values and incoming messages to output and outcoming messages. To support programming whole computational collectives, we propose the abstraction of a distributed collective process, which can be used to define at once the ensemble formation logic and its collective task. We formalise the abstraction in the eXchange Calculus (XC), a core functional language based on neighbouring values (maps from neighbours to values) where state and interaction is handled through a single primitive, exchange, and provide a corresponding implementation in the FCPP language. Then, we exercise distributed collective processes using two case studies: multi-hop message propagation and distributed monitoring of spatial properties. Finally, we discuss the features of the abstraction and its suitability for different kinds of distributed computing applications.
♻ ☆ MolLangBench: A Comprehensive Benchmark for Language-Prompted Molecular Structure Recognition, Editing, and Generation
Precise recognition, editing, and generation of molecules are essential prerequisites for both chemists and AI systems tackling various chemical tasks. We present MolLangBench, a comprehensive benchmark designed to evaluate fundamental molecule-language interface tasks: language-prompted molecular structure recognition, editing, and generation. To ensure high-quality, unambiguous, and deterministic outputs, we construct the recognition tasks using automated cheminformatics tools, and curate editing and generation tasks through rigorous expert annotation and validation. MolLangBench supports the evaluation of models that interface language with different molecular representations, including linear strings, molecular images, and molecular graphs. Evaluations of state-of-the-art models reveal significant limitations: the strongest model (GPT-5) achieves $86.2\%$ and $85.5\%$ accuracy on recognition and editing tasks, which are intuitively simple for humans, and performs even worse on the generation task, reaching only $43.0\%$ accuracy. These results highlight the shortcomings of current AI systems in handling even preliminary molecular recognition and manipulation tasks. We hope MolLangBench will catalyze further research toward more effective and reliable AI systems for chemical applications.
♻ ☆ Tenyidie Syllabification corpus creation and deep learning applications
The Tenyidie language is a low-resource language of the Tibeto-Burman family spoken by the Tenyimia Community of Nagaland in the north-eastern part of India and is considered a major language in Nagaland. It is tonal, Subject-Object-Verb, and highly agglutinative in nature. Being a low-resource language, very limited research on Natural Language Processing (NLP) has been conducted. To the best of our knowledge, no work on syllabification has been reported for this language. Among the many NLP tasks, syllabification or syllabication is an important task in which the given word syllables are identified. The contribution of this work is the creation of 10,120 syllabified Tenyidie words and the application of the Deep Learning techniques on the created corpus. In this paper, we have applied LSTM, BLSTM, BLSTM+CRF, and Encoder-decoder deep learning architectures on our created dataset. In our dataset split of 80:10:10 (train:validation:test) set, we achieved the highest accuracy of 99.21% with BLSTM model on the test set. This work will find its application in numerous other NLP applications, such as morphological analysis, part-of-speech tagging, machine translation, etc, for the Tenyidie Language. Keywords: Tenyidie; NLP; syllabification; deep learning; LSTM; BLSTM; CRF; Encoder-decoder
comment: 17 pages
♻ ☆ Time-o1: Time-Series Forecasting Needs Transformed Label Alignment NeurIPS 2025
Training time-series forecast models presents unique challenges in designing effective learning objectives. Existing methods predominantly utilize the temporal mean squared error, which faces two critical challenges: (1) label autocorrelation, which leads to bias from the label sequence likelihood; (2) excessive amount of tasks, which increases with the forecast horizon and complicates optimization. To address these challenges, we propose Time-o1, a transformation-augmented learning objective tailored for time-series forecasting. The central idea is to transform the label sequence into decorrelated components with discriminated significance. Models are then trained to align the most significant components, thereby effectively mitigating label autocorrelation and reducing task amount. Extensive experiments demonstrate that Time-o1 achieves state-of-the-art performance and is compatible with various forecast models. Code is available at https://github.com/Master-PLC/Time-o1.
comment: Accepted as poster in NeurIPS 2025
♻ ☆ The Hidden Costs of Translation Accuracy: Distillation, Quantization, and Environmental Impact
The rapid expansion of large language models (LLMs) has heightened concerns about their computational and environmental costs. This study investigates the trade-offs between translation quality and efficiency by comparing full-scale, distilled, and quantized models using machine translation as a case study. We evaluated performance on the Flores+ benchmark and through human judgments of conversational translations in French, Hindi, and Kannada. Our analysis revealed that the full 3.3B FP32 model, while achieving the highest BLEU scores, incurred the largest environmental footprint (~ 0.007-0.008 kg CO2 per run). The distilled 600M FP32 model reduced inference time by 71-78% and carbon emissions by 63-65% compared with the full model, with only minimal reductions in BLEU scores. Human evaluations further showed that even aggressive quantization (INT4) preserved high levels of accuracy and fluency, with differences between models generally minor. These findings demonstrate that model compression strategies can substantially reduce computational demands and environmental impact while maintaining competitive translation quality, though trade-offs are more pronounced in low-resource settings. We argue for evaluation frameworks that integrate efficiency and sustainability alongside accuracy as central dimensions of progress in NLP.
♻ ☆ LEXam: Benchmarking Legal Reasoning on 340 Law Exams
Long-form legal reasoning remains a key challenge for large language models (LLMs) in spite of recent advances in test-time scaling. To address this, we introduce \textsc{LEXam}, a novel benchmark derived from 340 law exams spanning 116 law school courses across a range of subjects and degree levels. The dataset comprises 4,886 law exam questions in English and German, including 2,841 long-form, open-ended questions and 2,045 multiple-choice questions. Besides reference answers, the open questions are also accompanied by explicit guidance outlining the expected legal reasoning approach such as issue spotting, rule recall, or rule application. Our evaluation on both open-ended and multiple-choice questions present significant challenges for current LLMs; in particular, they notably struggle with open questions that require structured, multi-step legal reasoning. Moreover, our results underscore the effectiveness of the dataset in differentiating between models with varying capabilities. Deploying an ensemble LLM-as-a-Judge paradigm with rigorous human expert validation, we demonstrate how model-generated reasoning steps can be evaluated consistently and accurately, closely aligning with human expert assessments. Our evaluation setup provides a scalable method to assess legal reasoning quality beyond simple accuracy metrics. We have open-sourced our code on \href{https://github.com/LEXam-Benchmark/LEXam}{GitHub} and released our data on \href{https://huggingface.co/datasets/LEXam-Benchmark/LEXam}{Hugging Face}. Project page: https://lexam-benchmark.github.io/
♻ ☆ MOSS-Speech: Towards True Speech-to-Speech Models Without Text Guidance
Spoken dialogue systems often rely on cascaded pipelines that transcribe, process, and resynthesize speech. While effective, this design discards paralinguistic cues and limits expressivity. Recent end-to-end methods reduce latency and better preserve these cues, yet still rely on text intermediates, creating a fundamental bottleneck. We present MOSS-Speech, a true speech-to-speech large language model that directly understands and generates speech without relying on text guidance. Our approach combines a modality-based layer-splitting architecture with a frozen pre-training strategy, preserving the reasoning and knowledge of pretrained text LLMs while adding native speech capabilities. Experiments show that our model achieves state-of-the-art results in spoken question answering and delivers comparable speech-to-speech performance relative to existing text-guided systems, while still maintaining competitive text performance. By narrowing the gap between text-guided and direct speech generation, our work establishes a new paradigm for expressive and efficient end-to-end speech interaction.
♻ ☆ PlaceFM: A Training-free Geospatial Foundation Model of Places using Large-Scale Point of Interest Data
With the rapid growth and continual updates of geospatial data from diverse sources, geospatial foundation model pre-training for urban representation learning has emerged as a key research direction for advancing data-driven urban planning. Spatial structure is fundamental to effective geospatial intelligence systems; however, existing foundation models often lack the flexibility to reason about places, context-rich regions spanning multiple spatial granularities that may consist of many spatially and semantically related points of interest. To address this gap, we propose PlaceFM, a geospatial foundation model that captures place representations through a training-free, clustering-based approach. PlaceFM summarizes the entire point of interest graph constructed from U.S. Foursquare data, producing general-purpose region embeddings while automatically identifying places of interest. These embeddings can be directly integrated into geolocation data pipelines to support a variety of urban downstream tasks. Without the need for costly pre-training, PlaceFM provides a scalable and efficient solution for multi-granular geospatial analysis. Extensive experiments on two real-world prediction tasks, ZIP code-level population density and housing prices, demonstrate that PlaceFM not only outperforms most state-of-the-art graph-based geospatial foundation models but also achieves up to a 100x speedup in generating region-level representations on large-scale POI graphs. The implementation is available at https://github.com/mohammadhashemii/PlaceFM.
♻ ☆ AI-Powered Inverse Design of Ku-Band SIW Resonant Structures by Iterative Residual Correction Network
Designing high-performance substrate-integrated waveguide (SIW) filters with both closely spaced and widely separated resonances is challenging. Consequently, there is a growing need for robust methods that reduce reliance on time-consuming electromagnetic (EM) simulations. In this study, a deep learning-based framework was developed and validated for the inverse design of multi-mode SIW filters with both closely spaced and widely separated resonances. A series of SIW filters were designed, fabricated, and experimentally evaluated. A three-stage deep learning framework was implemented, consisting of a Feedforward Inverse Model (FIM), a Hybrid Inverse-Forward Residual Refinement Network (HiFR\textsuperscript{2}-Net), and an Iterative Residual Correction Network (IRC-Net). The design methodology and performance of each model were systematically analyzed. Notably, IRC-Net outperformed both FIM and HiFR\textsuperscript{2}-Net, achieving systematic error reduction over five correction iterations. Experimental results showed a reduction in mean squared error (MSE) from 0.00191 to 0.00146 and mean absolute error (MAE) from 0.0262 to 0.0209, indicating improved accuracy and convergence. The proposed framework demonstrates the capability to enable robust, accurate, and generalizable inverse design of complex microwave filters with minimal simulation cost. This approach is expected to facilitate rapid prototyping of advanced filter designs and could extend to other high-frequency components in microwave and millimeter-wave technologies.
comment: The final published version is available at: https://doi.org/10.1016/j.aeue.2025.156003
♻ ☆ Enhanced DACER Algorithm with High Diffusion Efficiency
Due to their expressive capacity, diffusion models have shown great promise in offline RL and imitation learning. Diffusion Actor-Critic with Entropy Regulator (DACER) extended this capability to online RL by using the reverse diffusion process as a policy approximator, achieving state-of-the-art performance. However, it still suffers from a core trade-off: more diffusion steps ensure high performance but reduce efficiency, while fewer steps degrade performance. This remains a major bottleneck for deploying diffusion policies in real-time online RL. To mitigate this, we propose DACERv2, which leverages a Q-gradient field objective with respect to action as an auxiliary optimization target to guide the denoising process at each diffusion step, thereby introducing intermediate supervisory signals that enhance the efficiency of single-step diffusion. Additionally, we observe that the independence of the Q-gradient field from the diffusion time step is inconsistent with the characteristics of the diffusion process. To address this issue, a temporal weighting mechanism is introduced, allowing the model to effectively eliminate large-scale noise during the early stages and refine its outputs in the later stages. Experimental results on OpenAI Gym benchmarks and multimodal tasks demonstrate that, compared with classical and diffusion-based online RL algorithms, DACERv2 achieves higher performance in most complex control environments with only five diffusion steps and shows greater multimodality.
♻ ☆ Localized Forest Fire Risk Prediction: A Department-Aware Approach for Operational Decision Support
Forest fire prediction involves estimating the likelihood of fire ignition or related risk levels in a specific area over a defined time period. With climate change intensifying fire behavior and frequency, accurate prediction has become one of the most pressing challenges in Artificial Intelligence (AI). Traditionally, fire ignition is approached as a binary classification task in the literature. However, this formulation oversimplifies the problem, especially from the perspective of end-users such as firefighters. In general, as is the case in France, firefighting units are organized by department, each with its terrain, climate conditions, and historical experience with fire events. Consequently, fire risk should be modeled in a way that is sensitive to local conditions and does not assume uniform risk across all regions. This paper proposes a new approach that tailors fire risk assessment to departmental contexts, offering more actionable and region-specific predictions for operational use. With this, we present the first national-scale AI benchmark for metropolitan France using state-of-the-art AI models on a relatively unexplored dataset. Finally, we offer a summary of important future works that should be taken into account. Supplementary materials are available on GitHub.
comment: 8 pages, 4 figures, 4 tables, submitted to CFP: 7th IEEE Computers, Communications and IT Applications Conference December
♻ ☆ More Thought, Less Accuracy? On the Dual Nature of Reasoning in Vision-Language Models
Reasoning has emerged as a pivotal capability in Large Language Models (LLMs). Through Reinforcement Learning (RL), typically Group Relative Policy Optimization (GRPO), these models are able to solve complex tasks such as mathematics and code generation. Building on these advances, recent research has sought to extend reasoning to Vision-Language Models (VLMs), yielding promising results across diverse visual tasks. Despite this progress, our study uncovers the dual nature of multimodal reasoning: while it substantially enhances logical inference and facilitates performance on challenging problems, it may gradually impair perceptual grounding, leading to recognition failures on otherwise basic visual questions. Through further analysis, we attribute this phenomenon to visual forgetting, wherein prolonged reasoning causes the model to increasingly disregard visual input. To address this, we propose Vision-Anchored Policy Optimization (VAPO), a simple yet effective method that explicitly steers the reasoning process toward visually grounded trajectories. Our result model, VAPO-Thinker-7B, significantly strengthens the model's reliance on visual information and achieves new state-of-the-art results on a wide range of established benchmarks. Project page: https://xytian1008.github.io/VAPO/
♻ ☆ MambAttention: Mamba with Multi-Head Attention for Generalizable Single-Channel Speech Enhancement
With the advent of new sequence models like Mamba and xLSTM, several studies have shown that these models match or outperform state-of-the-art models in single-channel speech enhancement, automatic speech recognition, and self-supervised audio representation learning. However, prior research has demonstrated that sequence models like LSTM and Mamba tend to overfit to the training set. To address this issue, previous works have shown that adding self-attention to LSTMs substantially improves generalization performance for single-channel speech enhancement. Nevertheless, neither the concept of hybrid Mamba and time-frequency attention models nor their generalization performance have been explored for speech enhancement. In this paper, we propose a novel hybrid architecture, MambAttention, which combines Mamba and shared time- and frequency-multi-head attention modules for generalizable single-channel speech enhancement. To train our model, we introduce VoiceBank+Demand Extended (VB-DemandEx), a dataset inspired by VoiceBank+Demand but with more challenging noise types and lower signal-to-noise ratios. Trained on VB-DemandEx, our proposed MambAttention model significantly outperforms existing state-of-the-art LSTM-, xLSTM-, Mamba-, and Conformer-based systems of similar complexity across all reported metrics on two out-of-domain datasets: DNS 2020 and EARS-WHAM_v2, while matching their performance on the in-domain dataset VB-DemandEx. Ablation studies highlight the role of weight sharing between the time- and frequency-multi-head attention modules for generalization performance. Finally, we explore integrating the shared time- and frequency-multi-head attention modules with LSTM and xLSTM, which yields a notable performance improvement on the out-of-domain datasets. However, our MambAttention model remains superior on both out-of-domain datasets across all reported evaluation metrics.
comment: Submitted to IEEE/ACM Transactions on Audio, Speech, and Language Processing for possible publication
♻ ☆ Feature Representation Transferring to Lightweight Models via Perception Coherence
In this paper, we propose a method for transferring feature representation to lightweight student models from larger teacher models. We mathematically define a new notion called \textit{perception coherence}. Based on this notion, we propose a loss function, which takes into account the dissimilarities between data points in feature space through their ranking. At a high level, by minimizing this loss function, the student model learns to mimic how the teacher model \textit{perceives} inputs. More precisely, our method is motivated by the fact that the representational capacity of the student model is weaker than the teacher model. Hence, we aim to develop a new method allowing for a better relaxation. This means that, the student model does not need to preserve the absolute geometry of the teacher one, while preserving global coherence through dissimilarity ranking. Importantly, while rankings are defined only on finite sets, our notion of \textit{perception coherence} extends them into a probabilistic form. This formulation depends on the input distribution and applies to general dissimilarity metrics. Our theoretical insights provide a probabilistic perspective on the process of feature representation transfer. Our experiments results show that our method outperforms or achieves on-par performance compared to strong baseline methods for representation transferring.
♻ ☆ Can LLMs Find Fraudsters? Multi-level LLM Enhanced Graph Fraud Detection ACM MM 2025
Graph fraud detection has garnered significant attention as Graph Neural Networks (GNNs) have proven effective in modeling complex relationships within multimodal data. However, existing graph fraud detection methods typically use preprocessed node embeddings and predefined graph structures to reveal fraudsters, which ignore the rich semantic cues contained in raw textual information. Although Large Language Models (LLMs) exhibit powerful capabilities in processing textual information, it remains a significant challenge to perform multimodal fusion of processed textual embeddings with graph structures. In this paper, we propose a \textbf{M}ulti-level \textbf{L}LM \textbf{E}nhanced Graph Fraud \textbf{D}etection framework called MLED. In MLED, we utilize LLMs to extract external knowledge from textual information to enhance graph fraud detection methods. To integrate LLMs with graph structure information and enhance the ability to distinguish fraudsters, we design a multi-level LLM enhanced framework including type-level enhancer and relation-level enhancer. One is to enhance the difference between the fraudsters and the benign entities, the other is to enhance the importance of the fraudsters in different relations. The experiments on four real-world datasets show that MLED achieves state-of-the-art performance in graph fraud detection as a generalized framework that can be applied to existing methods.
comment: Accepted by ACM MM 2025
♻ ☆ WebRollback: Enhancing Web Agents with Explicit Rollback Mechanisms
With recent advancements in large language models, web agents have been greatly improved. However, dealing with complex and dynamic web environments requires more advanced planning and search abilities. Previous studies usually adopt a greedy one-way search strategy, which may struggle to recover from erroneous states. In this work, we enhance web agents with an explicit rollback mechanism, enabling the agent to revert back to a previous state in its navigation trajectory. This mechanism gives the model the flexibility to directly control the search process, leading to an effective and efficient web navigation method. We conduct experiments on two live web navigation benchmarks with zero-shot and fine-tuning settings. The results demonstrate the effectiveness of our proposed approach.
♻ ☆ VRWKV-Editor: Reducing quadratic complexity in transformer-based video editing
In light of recent progress in video editing, deep learning models focusing on both spatial and temporal dependencies have emerged as the primary method. However, these models suffer from the quadratic computational complexity of traditional attention mechanisms, making them difficult to adapt to long-duration and high-resolution videos. This limitation restricts their applicability in practical contexts such as real-time video processing. To tackle this challenge, we introduce a method to reduce both time and space complexity of these systems by proposing VRWKV-Editor, a novel video editing model that integrates a linear spatio-temporal aggregation module into video-based diffusion models. VRWKV-Editor leverages bidirectional weighted key-value recurrence mechanism of the RWKV transformer to capture global dependencies while preserving temporal coherence, achieving linear complexity without sacrificing quality. Extensive experiments demonstrate that the proposed method achieves up to 3.7x speedup and 60% lower memory usage compared to state-of-the-art diffusion-based video editing methods, while maintaining competitive performance in frame consistency and text alignment. Furthermore, a comparative analysis we conducted on videos with different sequence lengths confirms that the gap in editing speed between our approach and architectures with self-attention becomes more significant with long videos.
♻ ☆ An Architecture for Spatial Networking
Physical spaces are increasingly dense with networked devices, promising seamless coordination and ambient intelligence. Yet today, cloud-first architectures force all communication through wide-area networks regardless of physical proximity. We lack an abstraction for spatial networking: using physical spaces to create boundaries for private, robust, and low-latency communication. We introduce $\textit{Bifr\"ost}$, a programming model that realizes spatial networking using bigraphs to express both containment and connectivity, enabling policies to be scoped by physical boundaries, devices to be named by location, the instantiation of spatial services, and the composition of spaces while maintaining local autonomy. Bifr\"ost enables a new class of spatially-aware applications, where co-located devices communicate directly, physical barriers require explicit gateways, and local control bridges to global coordination.
♻ ☆ Reinforcement Learning with Verifiable Rewards Implicitly Incentivizes Correct Reasoning in Base LLMs
Recent advancements in long chain-of-thought (CoT) reasoning, particularly through the Group Relative Policy Optimization algorithm used by DeepSeek-R1, have led to significant interest in the potential of Reinforcement Learning with Verifiable Rewards (RLVR) for Large Language Models (LLMs). While RLVR promises to improve reasoning by allowing models to learn from free exploration, there remains debate over whether it truly enhances reasoning abilities or simply boosts sampling efficiency. This paper systematically investigates the impact of RLVR on LLM reasoning. We revisit Pass@K experiments and demonstrate that RLVR can extend the reasoning boundary for both mathematical and coding tasks. This is supported by our introduction of a novel evaluation metric, CoT-Pass@K, which captures reasoning success by accounting for both the final answer and intermediate reasoning steps. Furthermore, we present a theoretical framework explaining RLVR's incentive mechanism, demonstrating how it can encourage correct reasoning even when rewards are based solely on answer correctness. Our analysis of RLVR's training dynamics reveals that it incentivizes correct reasoning early in the process, with substantial improvements in reasoning quality confirmed through extensive evaluations. These findings provide strong evidence of RLVR's potential to enhance LLM reasoning, offering valuable insights into its mechanisms and performance improvements.
comment: Update with more experiments
♻ ☆ WWAggr: A Window Wasserstein-based Aggregation for Ensemble Change Point Detection
Change Point Detection (CPD) aims to identify moments of abrupt distribution shifts in data streams. Real-world high-dimensional CPD remains challenging due to data pattern complexity and violation of common assumptions. Resorting to standalone deep neural networks, the current state-of-the-art detectors have yet to achieve perfect quality. Concurrently, ensembling provides more robust solutions, boosting the performance. In this paper, we investigate ensembles of deep change point detectors and realize that standard prediction aggregation techniques, e.g., averaging, are suboptimal and fail to account for problem peculiarities. Alternatively, we introduce WWAggr -- a novel task-specific method of ensemble aggregation based on the Wasserstein distance. Our procedure is versatile, working effectively with various ensembles of deep CPD models. Moreover, unlike existing solutions, we practically lift a long-standing problem of the decision threshold selection for CPD.
♻ ☆ MathArena: Evaluating LLMs on Uncontaminated Math Competitions
The rapid advancement of reasoning capabilities in large language models (LLMs) has led to notable improvements on mathematical benchmarks. However, many of the most commonly used evaluation datasets (e.g., AIME 2024) are widely available online, making it difficult to disentangle genuine reasoning from potential memorization. Furthermore, these benchmarks do not evaluate proof-writing capabilities, which are crucial for many mathematical tasks. To address this, we introduce MathArena, a new benchmark based on the following key insight: recurring math competitions provide a stream of high-quality, challenging problems that can be used for real-time evaluation of LLMs. By evaluating models as soon as new problems are released, we effectively eliminate the risk of contamination. Using this framework, we find strong signs of contamination in AIME 2024. Nonetheless, evaluations on harder competitions, such as CMIMC 2025, demonstrate impressive reasoning capabilities in top-performing models. MathArena is also the first benchmark for proof-writing capabilities. On IMO 2025, top models achieve slightly less than 40%, demonstrating both notable progress and significant room for improvement. So far, we have evaluated over $50$ models across seven competitions, totaling $162$ problems. As an evolving benchmark, MathArena will continue to track the progress of LLMs on newly released competitions, ensuring rigorous and up-to-date evaluation of mathematical reasoning.
♻ ☆ Mechanistic Interpretability as Statistical Estimation: A Variance Analysis of EAP-IG
The development of trustworthy artificial intelligence requires moving beyond black-box performance metrics toward an understanding of models' internal computations. Mechanistic Interpretability (MI) aims to meet this need by identifying the algorithmic mechanisms underlying model behaviors. Yet, the scientific rigor of MI critically depends on the reliability of its findings. In this work, we argue that interpretability methods, such as circuit discovery, should be viewed as statistical estimators, subject to questions of variance and robustness. To illustrate this statistical framing, we present a systematic stability analysis of a state-of-the-art circuit discovery method: EAP-IG. We evaluate its variance and robustness through a comprehensive suite of controlled perturbations, including input resampling, prompt paraphrasing, hyperparameter variation, and injected noise within the causal analysis itself. Across a diverse set of models and tasks, our results demonstrate that EAP-IG exhibits high structural variance and sensitivity to hyperparameters, questioning the stability of its findings. Based on these results, we offer a set of best-practice recommendations for the field, advocating for the routine reporting of stability metrics to promote a more rigorous and statistically grounded science of interpretability.
♻ ☆ Schema Generation for Large Knowledge Graphs Using Large Language Models EMNLP 2025
Schemas play a vital role in ensuring data quality and supporting usability in the Semantic Web and natural language processing. Traditionally, their creation demands substantial involvement from knowledge engineers and domain experts. Leveraging the impressive capabilities of large language models (LLMs) in tasks like ontology engineering, we explore schema generation using LLMs. To bridge the resource gap, we introduce two datasets: YAGO Schema and Wikidata EntitySchema, along with novel evaluation metrics. The LLM-based pipelines utilize local and global information from knowledge graphs (KGs) to generate schemas in Shape Expressions (ShEx). Experiments demonstrate LLMs' strong potential in producing high-quality ShEx schemas, paving the way for scalable, automated schema generation for large KGs. Furthermore, our benchmark introduces a new challenge for structured generation, pushing the limits of LLMs on syntactically rich formalisms.
comment: EMNLP 2025 Findings
♻ ☆ There and Back Again: On the relation between Noise and Image Inversions in Diffusion Models
Diffusion Models achieve state-of-the-art performance in generating new samples but lack a low-dimensional latent space that encodes the data into editable features. Inversion-based methods address this by reversing the denoising trajectory, transferring images to their approximated starting noise. In this work, we thoroughly analyze this procedure and focus on the relation between the initial noise, the generated samples, and their corresponding latent encodings obtained through the DDIM inversion. First, we show that latents exhibit structural patterns in the form of less diverse noise predicted for smooth image areas (e.g., plain sky). Through a series of analyses, we trace this issue to the first inversion steps, which fail to provide accurate and diverse noise. Consequently, the DDIM inversion space is notably less manipulative than the original noise. We show that prior inversion methods do not fully resolve this issue, but our simple fix, where we replace the first DDIM Inversion steps with a forward diffusion process, successfully decorrelates latent encodings and enables higher quality editions and interpolations. The code is available at https://github.com/luk-st/taba.
comment: Preprint
♻ ☆ Machines are more productive than humans until they aren't, and vice versa
With the growth of artificial skills, organizations are increasingly confronting the problem of optimizing skill policy decisions guided by economic principles. This paper addresses the underlying complexity of this challenge by developing an in-silico framework based on Monte Carlo simulations grounded in empirical realism to analyze the economic impact of human and machine skills, individually or jointly deployed, in the execution of tasks presenting varying levels of complexity. Our results provide quantitative support for the established notions that automation tends to be the most economically-effective strategy for tasks characterized by low-to-medium generalization difficulty, while automation may struggle to match the economic utility of human skills in more complex scenarios. Critically, our simulations highlight that, when a high level of generalization is required and the cost of errors is high, combining human and machine skills can be the most effective strategy, but only if genuine augmentation is achieved. In contrast, when failing to realize this synergy, the human-machine policy is severely penalized by the inherent costs of its dual skill structure, causing it to destroy value and become the worst choice from an economic perspective. The takeaway for decision-makers is unambiguous: in complex and critical contexts, simply allocating human and machine skills to a task may be insufficient, and a human-machine skill policy is neither a silver-bullet solution nor a low-risk compromise. Rather, it is a critical opportunity to boost competitiveness that demands a strong organizational commitment to enabling augmentation. Also, our findings show that improving the cost-effectiveness of machine skills over time, while useful, does not replace the fundamental need to focus on achieving augmentation.
comment: Results and Discussion sections reorganised, results unchanged; more extensive detail of results from Experiment 2; meta-modeling section enriched; see comments of the previous versions for a complete list
♻ ☆ Landcover classification and change detection using remote sensing and machine learning: a case study of Western Fiji
As a developing country, Fiji is facing rapid urbanisation, which is visible in the massive development projects that include housing, roads, and civil works. In this study, we present machine learning and remote sensing frameworks to compare land use and land cover change from 2013 to 2024 in Nadi, Fiji. The ultimate goal of this study is to provide technical support in land cover/land use modelling and change detection. We used Landsat-8 satellite image for the study region and created our training dataset with labels for supervised machine learning. We used Google Earth Engine and unsupervised machine learning via k-means clustering to generate the land cover map. We used convolutional neural networks to classify the selected regions' land cover types. We present a visualisation of change detection, highlighting urban area changes over time to monitor changes in the map.
♻ ☆ AlgoTune: Can Language Models Speed Up General-Purpose Numerical Programs?
Despite progress in language model (LM) capabilities, evaluations have thus far focused on models' performance on tasks that humans have previously solved, including in programming (Jimenez et al., 2024) and mathematics (Glazer et al., 2024). We therefore propose testing models' ability to design and implement algorithms in an open-ended benchmark: We task LMs with writing code that efficiently solves computationally challenging problems in computer science, physics, and mathematics. Our AlgoTune benchmark consists of 154 coding tasks collected from domain experts and a framework for validating and timing LM-synthesized solution code, which is compared to reference implementations from popular open-source packages. In addition, we develop a baseline LM agent, AlgoTuner, and evaluate its performance across a suite of frontier models. AlgoTuner uses a simple, budgeted loop that edits code, compiles and runs it, profiles performance, verifies correctness on tests, and selects the fastest valid version. AlgoTuner achieves an average 1.72x speedup against our reference solvers, which use libraries such as SciPy, sk-learn and CVXPY. However, we find that current models fail to discover algorithmic innovations, instead preferring surface-level optimizations. We hope that AlgoTune catalyzes the development of LM agents exhibiting creative problem solving beyond state-of-the-art human performance.
♻ ☆ Neural Diffusion Processes for Physically Interpretable Survival Prediction
We introduce DeepFHT, a survival-analysis framework that couples deep neural networks with first hitting time (FHT) distributions from stochastic process theory. Time to event is represented as the first passage of a latent diffusion process to an absorbing boundary. A neural network maps input variables to physically meaningful parameters including initial condition, drift, and diffusion, within a chosen FHT process such as Brownian motion, both with drift and driftless. This yields closed-form survival and hazard functions and captures time-varying risk without assuming proportional-hazards. We compare DeepFHT with Cox survival model using synthetic and real-world datasets. The method achieves predictive accuracy on par with state-of-the-art approaches, while maintaining a physics-based interpretable parameterization that elucidates the relation between input features and risk. This combination of stochastic process theory and deep learning provides a principled avenue for modeling survival phenomena in complex systems.
comment: 11 pages, 6 figures
♻ ☆ A Novel Approach for Estimating Largest Lyapunov Exponents in One-Dimensional Chaotic Time Series Using Machine Learning
Understanding and quantifying chaos from data remains challenging. We present a data-driven method for estimating the largest Lyapunov exponent (LLE) from one-dimensional chaotic time series using machine learning. A predictor is trained to produce out-of-sample, multi-horizon forecasts; the LLE is then inferred from the exponential growth of the geometrically averaged forecast error (GMAE) across the horizon, which serves as a proxy for trajectory divergence. We validate the approach on four canonical 1D maps-logistic, sine, cubic, and Chebyshev-achieving R2pos > 0.99 against reference LLE curves with series as short as M = 450. Among baselines, KNN yields the closest fits (KNN-R comparable; RF larger deviations). By design the estimator targets positive exponents: in periodic/stable regimes it returns values indistinguishable from zero. Noise robustness is assessed by adding zero-mean white measurement noise and summarizing performance versus the average SNR over parameter sweeps: accuracy saturates for SNRm > 30 dB and collapses below 27 dB, a conservative sensor-level benchmark. The method is simple, computationally efficient, and model-agnostic, requiring only stationarity and the presence of a dominant positive exponent. It offers a practical route to LLE estimation in experimental settings where only scalar time-series measurements are available, with extensions to higher-dimensional and irregularly sampled data left for future work.
comment: 18 pages, 5 figures, 2 Tables, 14 Equations
♻ ☆ Forms of Understanding for XAI-Explanations
Explainability has become an important topic in computer science and artificial intelligence, leading to a subfield called Explainable Artificial Intelligence (XAI). The goal of providing or seeking explanations is to achieve (better) 'understanding' on the part of the explainee. However, what it means to 'understand' is still not clearly defined, and the concept itself is rarely the subject of scientific investigation. This conceptual article aims to present a model of forms of understanding for XAI-explanations and beyond. From an interdisciplinary perspective bringing together computer science, linguistics, sociology, philosophy and psychology, a definition of understanding and its forms, assessment, and dynamics during the process of giving everyday explanations are explored. Two types of understanding are considered as possible outcomes of explanations, namely enabledness, 'knowing how' to do or decide something, and comprehension, 'knowing that' -- both in different degrees (from shallow to deep). Explanations regularly start with shallow understanding in a specific domain and can lead to deep comprehension and enabledness of the explanandum, which we see as a prerequisite for human users to gain agency. In this process, the increase of comprehension and enabledness are highly interdependent. Against the background of this systematization, special challenges of understanding in XAI are discussed.
comment: revised version
♻ ☆ Benchmarking Foundation Models with Retrieval-Augmented Generation in Olympic-Level Physics Problem Solving EMNLP 2025
Retrieval-augmented generation (RAG) with foundation models has achieved strong performance across diverse tasks, but their capacity for expert-level reasoning-such as solving Olympiad-level physics problems-remains largely unexplored. Inspired by the way students prepare for competitions by reviewing past problems, we investigate the potential of RAG to enhance physics reasoning in foundation models. We introduce PhoPile, a high-quality multimodal dataset specifically designed for Olympiad-level physics, enabling systematic study of retrieval-based reasoning. PhoPile includes diagrams, graphs, and equations, capturing the inherently multimodal nature of physics problem solving. Using PhoPile, we benchmark RAG-augmented foundation models, covering both large language models (LLMs) and large multimodal models (LMMs) with multiple retrievers. Our results demonstrate that integrating retrieval with physics corpora can improve model performance, while also highlighting challenges that motivate further research in retrieval-augmented physics reasoning.
comment: Accepted to EMNLP 2025 (Findings)
♻ ☆ Semantic Bridges Between First Order c-Representations and Cost-Based Semantics: An Initial Perspective
Weighted-knowledge bases and cost-based semantics represent a recent formalism introduced by Bienvenu et al. for Ontology Mediated Data Querying in the case where a given knowledge base is inconsistent. This is done by adding a weight to each statement in the knowledge base (KB), and then giving each DL interpretation a cost based on how often it breaks rules in the KB. In this paper we compare this approach with c-representations, a form of non-monotonic reasoning originally introduced by Kern-Isberner. c-Representations describe a means to interpret defeasible concept inclusions in the first-order case. This is done by assigning a numerical ranking to each interpretations via penalties for each violated conditional. We compare these two approaches on a semantic level. In particular, we show that under certain conditions a weighted knowledge base and a set of defeasible conditionals can generate the same ordering on interpretations, and therefore an equivalence of semantic structures up to relative cost. Moreover, we compare entailment described in both cases, where certain notions are equivalently expressible in both formalisms. Our results have the potential to benefit further work on both cost-based semantics and c-representations
♻ ☆ Search-Based Software Engineering and AI Foundation Models: Current Landscape and Future Roadmap
Search-based software engineering (SBSE), which integrates metaheuristic search techniques with software engineering, has been an active area of research for about 25 years. It has been applied to solve numerous problems across the entire software engineering lifecycle and has demonstrated its versatility in multiple domains. With recent advances in AI, particularly the emergence of foundation models (FMs) such as large language models (LLMs), the evolution of SBSE alongside these models remains undetermined. In this window of opportunity, we present a research roadmap that articulates the current landscape of SBSE in relation to FMs, identifies open challenges, and outlines potential research directions to advance SBSE through its integration and interplay with FMs. Specifically, we analyze five core aspects: leveraging FMs for SBSE design, applying FMs to complement SBSE in SE problems, employing SBSE to address FM challenges, adapting SBSE practices for FMs tailored to SE activities, and exploring the synergistic potential between SBSE and FMs. Furthermore, we present a forward-thinking perspective that envisions the future of SBSE in the era of FMs, highlighting promising research opportunities to address challenges in emerging domains.
♻ ☆ An effective control of large systems of active particles: An application to evacuation problem
Manipulation of large systems of active particles is a serious challenge across diverse domains, including crowd management, control of robotic swarms, and coordinated material transport. The development of advanced control strategies for complex scenarios is hindered, however, by the lack of scalability and robustness of the existing methods, in particular, due to the need of an individual control for each agent. One possible solution involves controlling a system through a leader or a group of leaders, which other agents tend to follow. Using such an approach we develop an effective control strategy for a leader, combining reinforcement learning (RL) with artificial forces acting on the system. To describe the guidance of active particles by a leader we introduce the generalized Vicsek model. This novel method is then applied to the problem of the effective evacuation by a robot-rescuer (leader) of large groups of people from hazardous places. We demonstrate, that while a straightforward application of RL yields suboptimal results, even for advanced architectures, our approach provides a robust and efficient evacuation strategy. The source code supporting this study is publicly available at: https://github.com/cinemere/evacuation.
♻ ☆ MOSAIC: A Multilingual, Taxonomy-Agnostic, and Computationally Efficient Approach for Radiological Report Classification
Radiology reports contain rich clinical information that can be used to train imaging models without relying on costly manual annotation. However, existing approaches face critical limitations: rule-based methods struggle with linguistic variability, supervised models require large annotated datasets, and recent LLM-based systems depend on closed-source or resource-intensive models that are unsuitable for clinical use. Moreover, current solutions are largely restricted to English and single-modality, single-taxonomy datasets. We introduce MOSAIC, a multilingual, taxonomy-agnostic, and computationally efficient approach for radiological report classification. Built on a compact open-access language model (MedGemma-4B), MOSAIC supports both zero-/few-shot prompting and lightweight fine-tuning, enabling deployment on consumer-grade GPUs. We evaluate MOSAIC across seven datasets in English, Spanish, French, and Danish, spanning multiple imaging modalities and label taxonomies. The model achieves a mean macro F1 score of 88 across five chest X-ray datasets, approaching or exceeding expert-level performance, while requiring only 24 GB of GPU memory. With data augmentation, as few as 80 annotated samples are sufficient to reach a weighted F1 score of 82 on Danish reports, compared to 86 with the full 1600-sample training set. MOSAIC offers a practical alternative to large or proprietary LLMs in clinical settings. Code and models are open-source. We invite the community to evaluate and extend MOSAIC on new languages, taxonomies, and modalities.
comment: 8 pages, 14 pages including references and appendix. 9 figures. Preprint
♻ ☆ Towards Effective E-Participation of Citizens in the European Union: The Development of AskThePublic
E-participation platforms are an important asset for governments in increasing trust and fostering democratic societies. By engaging public and private institutions and individuals, policymakers can make informed and inclusive decisions. However, current approaches of primarily static nature struggle to integrate citizen feedback effectively. Drawing on the Media Richness Theory and applying the Design Science Research method, we explore how a chatbot can address these shortcomings to improve the decision-making abilities for primary stakeholders of e-participation platforms. Leveraging the "Have Your Say" platform, which solicits feedback on initiatives and regulations by the European Commission, a Large Language Model-based chatbot, called AskThePublic is created, providing policymakers, journalists, researchers, and interested citizens with a convenient channel to explore and engage with citizen input. Evaluating AskThePublic in 11 semi-structured interviews with public sector-affiliated experts, we find that the interviewees value the interactive and structured responses as well as enhanced language capabilities.
♻ ☆ What are You Looking at? Modality Contribution in Multimodal Medical Deep Learning
Purpose High dimensional, multimodal data can nowadays be analyzed by huge deep neural networks with little effort. Several fusion methods for bringing together different modalities have been developed. Given the prevalence of high-dimensional, multimodal patient data in medicine, the development of multimodal models marks a significant advancement. However, how these models process information from individual sources in detail is still underexplored. Methods To this end, we implemented an occlusion-based modality contribution method that is both model- and performance-agnostic. This method quantitatively measures the importance of each modality in the dataset for the model to fulfill its task. We applied our method to three different multimodal medical problems for experimental purposes. Results Herein we found that some networks have modality preferences that tend to unimodal collapses, while some datasets are imbalanced from the ground up. Moreover, we provide fine-grained quantitative and visual attribute importance for each modality. Conclusion Our metric offers valuable insights that can support the advancement of multimodal model development and dataset creation. By introducing this method, we contribute to the growing field of interpretability in deep learning for multimodal research. This approach helps to facilitate the integration of multimodal AI into clinical practice. Our code is publicly available at https://github.com/ChristianGappGit/MC_MMD.
comment: Contribution to Conference for Computer Assisted Radiology and Surgery (CARS 2025)
♻ ☆ VideoGen-of-Thought: Step-by-step generating multi-shot video with minimal manual intervention
Current video generation models excel at short clips but fail to produce cohesive multi-shot narratives due to disjointed visual dynamics and fractured storylines. Existing solutions either rely on extensive manual scripting/editing or prioritize single-shot fidelity over cross-scene continuity, limiting their practicality for movie-like content. We introduce VideoGen-of-Thought (VGoT), a step-by-step framework that automates multi-shot video synthesis from a single sentence by systematically addressing three core challenges: (1) Narrative fragmentation: Existing methods lack structured storytelling. We propose dynamic storyline modeling, which turns the user prompt into concise shot drafts and then expands them into detailed specifications across five domains (character dynamics, background continuity, relationship evolution, camera movements, and HDR lighting) with self-validation to ensure logical progress. (2) Visual inconsistency: previous approaches struggle to maintain consistent appearance across shots. Our identity-aware cross-shot propagation builds identity-preserving portrait (IPP) tokens that keep character identity while allowing controlled trait changes (expressions, aging) required by the story. (3) Transition artifacts: Abrupt shot changes disrupt immersion. Our adjacent latent transition mechanisms implement boundary-aware reset strategies that process adjacent shots' features at transition points, enabling seamless visual flow while preserving narrative continuity. Combined in a training-free pipeline, VGoT surpasses strong baselines by 20.4\% in within-shot face consistency and 17.4\% in style consistency, while requiring 10x fewer manual adjustments. VGoT bridges the gap between raw visual synthesis and director-level storytelling for automated multi-shot video generation.
comment: Code: https://github.com/DuNGEOnmassster/VideoGen-of-Thought.git; Webpage: https://cheliosoops.github.io/VGoT/
♻ ☆ PlaceIt3D: Language-Guided Object Placement in Real 3D Scenes ICCV 2025
We introduce the novel task of Language-Guided Object Placement in Real 3D Scenes. Our model is given a 3D scene's point cloud, a 3D asset, and a textual prompt broadly describing where the 3D asset should be placed. The task here is to find a valid placement for the 3D asset that respects the prompt. Compared with other language-guided localization tasks in 3D scenes such as grounding, this task has specific challenges: it is ambiguous because it has multiple valid solutions, and it requires reasoning about 3D geometric relationships and free space. We inaugurate this task by proposing a new benchmark and evaluation protocol. We also introduce a new dataset for training 3D LLMs on this task, as well as the first method to serve as a non-trivial baseline. We believe that this challenging task and our new benchmark could become part of the suite of benchmarks used to evaluate and compare generalist 3D LLM models.
comment: ICCV 2025. Project page: https://nianticlabs.github.io/placeit3d/
♻ ☆ DS-STAR: Data Science Agent via Iterative Planning and Verification
Data science, which transforms raw data into actionable insights, is critical for data-driven decision-making. However, these tasks are often complex, involving steps for exploring multiple data sources and synthesizing findings to deliver insightful answers. While large language models (LLMs) show significant promise in automating this process, they often struggle with heterogeneous data formats and generate sub-optimal analysis plans, as verifying plan sufficiency is inherently difficult without ground-truth labels for such open-ended tasks. To overcome these limitations, we introduce DS-STAR, a novel data science agent. Specifically, DS-STAR makes three key contributions: (1) a data file analysis module that automatically explores and extracts context from diverse data formats, including unstructured types; (2) a verification step where an LLM-based judge evaluates the sufficiency of the analysis plan at each stage; and (3) a sequential planning mechanism that starts with a simple, executable plan and iteratively refines it based on the DS-STAR's feedback until its sufficiency is verified. This iterative refinement allows DS-STAR to reliably navigate complex analyses involving diverse data sources. Our experiments show that DS-STAR achieves state-of-the-art performance across three challenging benchmarks: DABStep, KramaBench, and DA-Code. Moreover, DS-STAR particularly outperforms baselines on hard tasks that require processing multiple data files with heterogeneous formats.
♻ ☆ Beyond Chunking: Discourse-Aware Hierarchical Retrieval for Long Document Question Answering
Long document question answering systems typically process texts as flat sequences or use arbitrary segmentation, failing to capture discourse structures that guide human comprehension. We present a discourse-aware hierarchical framework that leverages rhetorical structure theory (RST) to enhance long document question answering. Our approach converts discourse trees into sentence-level representations and employs LLM-enhanced node representations to bridge structural and semantic information. The framework involves three key innovations: specialized discourse parsing for lengthy documents, LLM-based enhancement of discourse relation nodes, and structure-guided hierarchical retrieval. Comprehensive experiments on QASPER, QuALITY, and NarrativeQA demonstrate consistent improvements over existing approaches. Ablation studies confirm that incorporating discourse structure significantly enhances question answering across diverse document types.
comment: 20 pages, 9 figures
♻ ☆ Aligning Reasoning LLMs for Materials Discovery with Physics-aware Rejection Sampling
AI-driven materials discovery that couples automated experimentation with algorithmic decision-making requires process aware recipe to property predictors that are accurate, calibrated, and physically admissible. We approach this as a reasoning problem with large reasoning models (LRMs). To instill reasoning capability into language models, we curate reasoning traces from a teacher model to train a student model. However, most training pipelines select reasoning traces using binary correctness or learned preference signals that poorly reflect physical admissibility. We introduce Physics-aware Rejection Sampling (PaRS), a training-time trace selection scheme that favors traces consistent with fundamental physics and numerically close to targets, with lightweight halting to control compute. We instantiate our framework with a large student model fine-tuned on traces synthesized by a larger teacher model, and evaluate under matched token budgets against various rejection sampling baselines. Our method improves accuracy and calibration, reduces physics-violation rates, and lowers sampling cost relative to baselines. These results indicate that modest, domain-aware constraints combined with trace-level selection provide a practical path toward reliable, efficient LRMs for process-aware property prediction and closed-loop materials design.
comment: 16 pages, 6 figures
♻ ☆ Towards Methane Detection Onboard Satellites
Methane is a potent greenhouse gas and a major driver of climate change, making its timely detection critical for effective mitigation. Machine learning (ML) deployed onboard satellites can enable rapid detection while reducing downlink costs, supporting faster response systems. Conventional methane detection methods often rely on image processing techniques, such as orthorectification to correct geometric distortions and matched filters to enhance plume signals. We introduce a novel approach that bypasses these preprocessing steps by using \textit{unorthorectified} data (UnorthoDOS). We find that ML models trained on this dataset achieve performance comparable to those trained on orthorectified data. Moreover, we also train models on an orthorectified dataset, showing that they can outperform the matched filter baseline (mag1c). We release model checkpoints and two ML-ready datasets comprising orthorectified and unorthorectified hyperspectral images from the Earth Surface Mineral Dust Source Investigation (EMIT) sensor at https://huggingface.co/datasets/SpaceML/UnorthoDOS , along with code at https://github.com/spaceml-org/plume-hunter.
♻ ☆ GSM-Agent: Understanding Agentic Reasoning Using Controllable Environments
As LLMs are increasingly deployed as agents, agentic reasoning - the ability to combine tool use, especially search, and reasoning - becomes a critical skill. However, it is hard to disentangle agentic reasoning when evaluated in complex environments and tasks. Current agent benchmarks often mix agentic reasoning with challenging math reasoning, expert-level knowledge, and other advanced capabilities. To fill this gap, we build a novel benchmark, GSM-Agent, where an LLM agent is required to solve grade-school-level reasoning problems, but is only presented with the question in the prompt without the premises that contain the necessary information to solve the task, and needs to proactively collect that information using tools. Although the original tasks are grade-school math problems, we observe that even frontier models like GPT-5 only achieve 67% accuracy. To understand and analyze the agentic reasoning patterns, we propose the concept of agentic reasoning graph: cluster the environment's document embeddings into nodes, and map each tool call to its nearest node to build a reasoning path. Surprisingly, we identify that the ability to revisit a previously visited node, widely taken as a crucial pattern in static reasoning, is often missing for agentic reasoning for many models. Based on the insight, we propose a tool-augmented test-time scaling method to improve LLM's agentic reasoning performance by adding tools to encourage models to revisit. We expect our benchmark and the agentic reasoning framework to aid future studies of understanding and pushing the boundaries of agentic reasoning.
comment: 39 pages, 8 figures
♻ ☆ IndexNet: Timestamp and Variable-Aware Modeling for Time Series Forecasting
Multivariate time series forecasting (MTSF) plays a vital role in a wide range of real-world applications, such as weather prediction and traffic flow forecasting. Although recent advances have significantly improved the modeling of temporal dynamics and inter-variable dependencies, most existing methods overlook index-related descriptive information, such as timestamps and variable indices, which carry rich contextual semantics. To unlock the potential of such information and take advantage of the lightweight and powerful periodic capture ability of MLP-based architectures, we propose IndexNet, an MLP-based framework augmented with an Index Embedding (IE) module. The IE module consists of two key components: Timestamp Embedding (TE) and Channel Embedding (CE). Specifically, TE transforms timestamps into embedding vectors and injects them into the input sequence, thereby improving the model's ability to capture long-term complex periodic patterns. In parallel, CE assigns each variable a unique and trainable identity embedding based on its index, allowing the model to explicitly distinguish between heterogeneous variables and avoid homogenized predictions when input sequences seem close. Extensive experiments on 12 diverse real-world datasets demonstrate that IndexNet achieves comparable performance across mainstream baselines, validating the effectiveness of our temporally and variably aware design. Moreover, plug-and-play experiments and visualization analyses further reveal that IndexNet exhibits strong generality and interpretability, two aspects that remain underexplored in current MTSF research.
♻ ☆ The Future of Artificial Intelligence and the Mathematical and Physical Sciences (AI+MPS)
This community paper developed out of the NSF Workshop on the Future of Artificial Intelligence (AI) and the Mathematical and Physics Sciences (MPS), which was held in March 2025 with the goal of understanding how the MPS domains (Astronomy, Chemistry, Materials Research, Mathematical Sciences, and Physics) can best capitalize on, and contribute to, the future of AI. We present here a summary and snapshot of the MPS community's perspective, as of Spring/Summer 2025, in a rapidly developing field. The link between AI and MPS is becoming increasingly inextricable; now is a crucial moment to strengthen the link between AI and Science by pursuing a strategy that proactively and thoughtfully leverages the potential of AI for scientific discovery and optimizes opportunities to impact the development of AI by applying concepts from fundamental science. To achieve this, we propose activities and strategic priorities that: (1) enable AI+MPS research in both directions; (2) build up an interdisciplinary community of AI+MPS researchers; and (3) foster education and workforce development in AI for MPS researchers and students. We conclude with a summary of suggested priorities for funding agencies, educational institutions, and individual researchers to help position the MPS community to be a leader in, and take full advantage of, the transformative potential of AI+MPS.
comment: Community Paper from the NSF Future of AI+MPS Workshop, Cambridge, Massachusetts, March 24-26, 2025, supported by NSF Award Number 2512945; v2: minor clarifications
♻ ☆ R2 v2: The Pareto-compliant R2 Indicator for Better Benchmarking in Bi-objective Optimization PPSN 2024
In multi-objective optimization, set-based quality indicators are a cornerstone of benchmarking and performance assessment. They capture the quality of a set of trade-off solutions by reducing it to a scalar number. One of the most commonly used set-based metrics is the R2 indicator, which describes the expected utility of a solution set to a decision-maker under a distribution of utility functions. Typically, this indicator is applied by discretizing the latter distribution, yielding a weakly Pareto-compliant indicator. In consequence, adding a nondominated or dominating solution to a solution set may -- but does not have to -- improve the indicator's value. In this paper, we reinvestigate the R2 indicator under the premise that we have a continuous, uniform distribution of (Tchebycheff) utility functions. We analyze its properties in detail, demonstrating that this continuous variant is indeed Pareto-compliant -- that is, any beneficial solution will improve the metric's value. Additionally, we provide efficient computational procedures that (a) compute this metric for bi-objective problems in $\mathcal O (N \log N)$, and (b) can perform incremental updates to the indicator whenever solutions are added to (or removed from) the current set of solutions, without needing to recompute the indicator for the entire set. As a result, this work contributes to the state-of-the-art Pareto-compliant unary performance metrics, such as the hypervolume indicator, offering an efficient and promising alternative.
comment: This version is a journal extension of the original PPSN 2024 paper and has been accepted for publication in the PPSN 2024 Special Issue of Evolutionary Computation Journal
♻ ☆ Uncertainty-Aware Generative Oversampling Using an Entropy-Guided Conditional Variational Autoencoder
Class imbalance remains a major challenge in machine learning, especially for high-dimensional biomedical data where nonlinear manifold structures dominate. Traditional oversampling methods such as SMOTE rely on local linear interpolation, often producing implausible synthetic samples. Deep generative models like Conditional Variational Autoencoders (CVAEs) better capture nonlinear distributions, but standard variants treat all minority samples equally, neglecting the importance of uncertain, boundary-region examples emphasized by heuristic methods like Borderline-SMOTE and ADASYN. We propose Local Entropy-Guided Oversampling with a CVAE (LEO-CVAE), a generative oversampling framework that explicitly incorporates local uncertainty into both representation learning and data generation. To quantify uncertainty, we compute Shannon entropy over the class distribution in a sample's neighborhood: high entropy indicates greater class overlap, serving as a proxy for uncertainty. LEO-CVAE leverages this signal through two mechanisms: (i) a Local Entropy-Weighted Loss (LEWL) that emphasizes robust learning in uncertain regions, and (ii) an entropy-guided sampling strategy that concentrates generation in these informative, class-overlapping areas. Applied to clinical genomics datasets (ADNI and TCGA lung cancer), LEO-CVAE consistently improves classifier performance, outperforming both traditional oversampling and generative baselines. These results highlight the value of uncertainty-aware generative oversampling for imbalanced learning in domains governed by complex nonlinear structures, such as omics data.
comment: 16 pages, 2 figures
♻ ☆ Audio-Enhanced Vision-Language Modeling with Latent Space Broadening for High Quality Data Expansion
Transformer-based multimodal models are widely used in industrial-scale recommendation, search, and advertising systems for content understanding and relevance ranking. Enhancing labeled training data quality and cross-modal fusion significantly improves model performance, influencing key metrics such as quality view rates and ad revenue. High-quality annotations are crucial for advancing content modeling, yet traditional statistical-based active learning (AL) methods face limitations: they struggle to detect overconfident misclassifications and are less effective in distinguishing semantically similar items in deep neural networks. Additionally, audio information plays an increasing role, especially in short-video platforms, yet most pre-trained multimodal architectures primarily focus on text and images. While training from scratch across all three modalities is possible, it sacrifices the benefits of leveraging existing pre-trained visual-language (VL) and audio models. To address these challenges, we propose kNN-based Latent Space Broadening (LSB) to enhance AL efficiency and Vision-Language Modeling with Audio Enhancement (VLMAE), a mid-fusion approach integrating audio into VL models. This system deployed in production systems, leading to significant business gains.
♻ ☆ Normal-Abnormal Guided Generalist Anomaly Detection NeurIPS 2025
Generalist Anomaly Detection (GAD) aims to train a unified model on an original domain that can detect anomalies in new target domains. Previous GAD methods primarily use only normal samples as references, overlooking the valuable information contained in anomalous samples that are often available in real-world scenarios. To address this limitation, we propose a more practical approach: normal-abnormal-guided generalist anomaly detection, which leverages both normal and anomalous samples as references to guide anomaly detection across diverse domains. We introduce the Normal-Abnormal Generalist Learning (NAGL) framework, consisting of two key components: Residual Mining (RM) and Anomaly Feature Learning (AFL). RM extracts abnormal patterns from normal-abnormal reference residuals to establish transferable anomaly representations, while AFL adaptively learns anomaly features in query images through residual mapping to identify instance-aware anomalies. Our approach effectively utilizes both normal and anomalous references for more accurate and efficient cross-domain anomaly detection. Extensive experiments across multiple benchmarks demonstrate that our method significantly outperforms existing GAD approaches. This work represents the first to adopt a mixture of normal and abnormal samples as references in generalist anomaly detection. The code and datasets are available at https://github.com/JasonKyng/NAGL.
comment: Accepted by NeurIPS 2025
♻ ☆ Reasoning over User Preferences: Knowledge Graph-Augmented LLMs for Explainable Conversational Recommendations ICDM 2025
Conversational Recommender Systems (CRSs) aim to provide personalized recommendations by capturing user preferences through interactive dialogues. Explainability in CRSs is crucial as it enables users to understand the reasoning behind recommendations, increasing system transparency and trustworthiness. However, current CRSs often leverage knowledge graphs (KGs) or language models to extract and represent user preferences as latent vectors, which limits their explainability. Large language models (LLMs) offer powerful reasoning capabilities that can bridge this gap by generating human-understandable preference summaries. However, effectively reasoning over user preferences in CRSs remains challenging as LLMs pre-trained on large-scale corpora may not be well-suited for analyzing user preferences. While KGs provide rich domain knowledge, integrating them with LLMs encounters a significant modality gap between structured KG information and unstructured conversations. In this paper, we propose COMPASS, a plug-and-play framework that synergizes LLMs and KGs to reason over user preferences, enhancing the performance and explainability of existing CRSs. COMPASS employs a two-stage training approach: first, it bridges the gap between the structured KG and natural language through novel graph entity captioning pre-training. Next, COMPASS optimizes user preference reasoning via knowledge-aware instruction fine-tuning, where the LLM learns to reason and summarize user preferences from dialogue histories and KG-augmented context. This enables COMPASS to perform knowledge-aware reasoning and generate interpretable user preferences that can seamlessly integrate with existing CRS models for improving recommendation performance and explainability. Our experiments on benchmark datasets demonstrate the effectiveness of COMPASS in improving various CRS models.
comment: Accepted by ICDM 2025
♻ ☆ Fact Grounded Attention: Eliminating Hallucination in Large Language Models Through Attention Level Knowledge Integration
"The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge." Large Language Models have conquered natural language but remain prisoners of their own probabilistic nature--confidently hallucinating facts they never truly knew. We present Fact Grounded Attention (FGA), a novel architectural modification that transforms unreliable language models into deterministic truth tellers by injecting verifiable knowledge directly into the attention mechanism. Unlike existing approaches that patch hallucinations after generation or prepend retrieved text, FGA intervenes at the mathematical heart of the transformer--the pre-softmax attention scores--creating a model that cannot hallucinate when facts exist in its knowledge base. Our experiments across 1,107 technical queries spanning smartphones, laptops, and electric vehicles demonstrate a transformation from 6.3% accuracy in vanilla Llama 3.2 to 99.7% accuracy with FGA. More critically, knowledge updates occur in under one second without retraining, compared to hours for parameter editing approaches. FGA doesn't just reduce hallucination--it eliminates it entirely for verifiable facts, marking a fundamental shift from probabilistic approximation to deterministic precision in neural language generation.
comment: 15 pages, 3 figures, 4 tables. Code and dataset available at https://github.com/ayushgupta4897/FGA
♻ ☆ Forecasting the Ionosphere from Sparse GNSS Data with Temporal-Fusion Transformers
The ionosphere critically influences Global Navigation Satellite Systems (GNSS), satellite communications, and Low Earth Orbit (LEO) operations, yet accurate prediction of its variability remains challenging due to nonlinear couplings between solar, geomagnetic, and thermospheric drivers. Total Electron Content (TEC), a key ionospheric parameter, is derived from GNSS observations, but its reliable forecasting is limited by the sparse nature of global measurements and the limited accuracy of empirical models, especially during strong space weather conditions. In this work, we present a machine learning framework for ionospheric TEC forecasting that leverages Temporal Fusion Transformers (TFT) to predict sparse ionosphere data. Our approach accommodates heterogeneous input sources, including solar irradiance, geomagnetic indices, and GNSS-derived vertical TEC, and applies preprocessing and temporal alignment strategies. Experiments spanning 2010-2025 demonstrate that the model achieves robust predictions up to 24 hours ahead, with root mean square errors as low as 3.33 TECU. Results highlight that solar EUV irradiance provides the strongest predictive signals. Beyond forecasting accuracy, the framework offers interpretability through attention-based analysis, supporting both operational applications and scientific discovery. To encourage reproducibility and community-driven development, we release the full implementation as the open-source toolkit \texttt{ionopy}.
♻ ☆ Euclid's Gift: Enhancing Spatial Perception and Reasoning in Vision-Language Models via Geometric Surrogate Tasks
Spatial intelligence spans a rich suite of abilities, including visualising and transforming shapes, mentally rotating objects, judging relational positions and containment, and estimating numerosity. However, it still remains a critical unresolved challenge for Multimodal Large Language Models (MLLMs).To fill this gap, we propose to treat Euclidean geometry problem-solving as a surrogate task. Specifically, we meticulously constructed a curated multimodal dataset, called Euclid30K, comprising approximately 30K plane and solid geometry problems. To enable the model to acquire and apply Euclidean principles from these geometry problems, we employed Group Relative Policy Optimization (GRPO) to finetune the Qwen2.5VL family and RoboBrain2.0 family, inspiring the models to identify shapes, count, and relate entities, and perform multi-step deductive reasoning using Euclidean principles. Our experiments demonstrate that the resulting models achieve substantial zero-shot gains across four spatial reasoning benchmarks (Super-CLEVR, Omni3DBench, VSI-Bench, and MindCube) without any task-specific adaptations. Notably, after training on the Euclid30K, the mean VSI-Bench accuracy of all evaluated models rose from 34.5% to 40.5%, improving by 5.5 percentage points. Among them, RoboBrain2.0-Euclid-7B achieves 49.6\% accuracy, surpassing the previous state-of-the-art model, Spatial-MLLM.To our knowledge, this is the first systematic study showing that geometry-centric fine-tuning can confer vision-language models with broadly transferable spatial skills. Code and Euclid30K dataset can be found in https://zgca-ai4edu.github.io/Euclids_Gift.
♻ ☆ Adaptive Batch-Wise Sample Scheduling for Direct Preference Optimization
Direct Preference Optimization (DPO) has emerged as an effective approach for aligning large language models (LLMs) with human preferences. However, its performance is highly dependent on the quality of the underlying human preference data. To address this bottleneck, prior work has explored various data selection strategies, but these methods often overlook the impact of the evolving states of the language model during the optimization process. In this paper, we introduce a novel problem: Sample Scheduling for DPO, which aims to dynamically and adaptively schedule training samples based on the model's evolving batch-wise states throughout preference optimization. To solve this problem, we propose SamS, an efficient and effective algorithm that adaptively selects samples in each training batch based on the LLM's learning feedback to maximize the potential generalization performance. Notably, without modifying the core DPO algorithm, simply integrating SamS significantly improves performance across tasks, with minimal additional computational overhead. This work points to a promising new direction for improving LLM alignment through batch-wise sample selection, with potential generalization to RLHF and broader supervised learning paradigms.
♻ ☆ The AI Productivity Index (APEX)
We introduce the first version of the AI Productivity Index (APEX), a benchmark for assessing whether frontier AI models can perform knowledge work with high economic value. APEX addresses one of the largest inefficiencies in AI research: outside of coding, benchmarks often fail to test economically relevant capabilities. APEX-v1.0 contains 200 test cases and covers four domains: investment banking, management consulting, law, and primary medical care. It was built in three steps. First, we sourced experts with top-tier experience e.g., investment bankers from Goldman Sachs. Second, experts created prompts that reflect high-value tasks in their day-to-day work. Third, experts created rubrics for evaluating model responses. We evaluate 23 frontier models on APEX-v1.0 using an LM judge. GPT 5 (Thinking = High) achieves the highest mean score (64.2%), followed by Grok 4 (61.3%) and Gemini 2.5 Flash (Thinking = On) (60.4%). Qwen 3 235B is the best performing open-source model and seventh best overall. There is a large gap between the performance of even the best models and human experts, highlighting the need for better measurement of models' ability to produce economically valuable work.
♻ ☆ VAR-MATH: Probing True Mathematical Reasoning in LLMS via Symbolic Multi-Instance Benchmarks
Recent advances in reinforcement learning (RL) have led to substantial improvements in the mathematical reasoning abilities of LLMs, as measured by standard benchmarks. Yet these gains often persist even when models are trained with flawed signals, such as random or inverted rewards. This raises a fundamental question: do such improvements reflect genuine reasoning, or are they merely artifacts of overfitting to benchmark-specific patterns? To answer this question, we adopt an evaluation-centric perspective and highlight two critical shortcomings in existing protocols. First, benchmark contamination arises because test problems are publicly available, thereby increasing the risk of data leakage. Second, evaluation fragility results from reliance on single-instance assessments, which are sensitive to stochastic outputs and fail to capture reasoning consistency. These limitations suggest the need for a new evaluation paradigm that can probe reasoning ability beyond memorization and one-off success. As response, we propose VAR-MATH, a symbolic evaluation framework that converts fixed numerical problems into parameterized templates and requires models to solve multiple instantiations of each. This design enforces consistency across structurally equivalent variants, mitigates contamination, and enhances robustness through bootstrapped metrics. We apply VAR-MATH to transform three popular benchmarks, AMC23, AIME24, and AIME25, into their symbolic counterparts, VAR-AMC23, VAR-AIME24, and VAR-AIME25. Experimental results show substantial performance drops for RL-trained models on these variabilized benchmarks, especially for smaller models, with average declines of 47.9\% on AMC23, 58.8\% on AIME24, and 72.9\% on AIME25. These findings indicate that some existing RL methods rely on superficial heuristics and fail to generalize beyond specific numerical forms.
♻ ☆ Reliable Decision Making via Calibration Oriented Retrieval Augmented Generation NeurIPS 2025
Recently, Large Language Models (LLMs) have been increasingly used to support various decision-making tasks, assisting humans in making informed decisions. However, when LLMs confidently provide incorrect information, it can lead humans to make suboptimal decisions. To prevent LLMs from generating incorrect information on topics they are unsure of and to improve the accuracy of generated content, prior works have proposed Retrieval Augmented Generation (RAG), where external documents are referenced to generate responses. However, previous RAG methods focus only on retrieving documents most relevant to the input query, without specifically aiming to ensure that the human user's decisions are well-calibrated. To address this limitation, we propose a novel retrieval method called Calibrated Retrieval-Augmented Generation (CalibRAG), which ensures that decisions informed by RAG are well-calibrated. Then we empirically validate that CalibRAG improves calibration performance as well as accuracy, compared to other baselines across various datasets.
comment: Accepted by NeurIPS 2025
♻ ☆ Does Bigger Mean Better? Comparitive Analysis of CNNs and Biomedical Vision Language Modles in Medical Diagnosis
The accurate interpretation of chest radiographs using automated methods is a critical task in medical imaging. This paper presents a comparative analysis between a supervised lightweight Convolutional Neural Network (CNN) and a state-of-the-art, zero-shot medical Vision-Language Model (VLM), BiomedCLIP, across two distinct diagnostic tasks: pneumonia detection on the PneumoniaMNIST benchmark and tuberculosis detection on the Shenzhen TB dataset. Our experiments show that supervised CNNs serve as highly competitive baselines in both cases. While the default zero-shot performance of the VLM is lower, we demonstrate that its potential can be unlocked via a simple yet crucial remedy: decision threshold calibration. By optimizing the classification threshold on a validation set, the performance of BiomedCLIP is significantly boosted across both datasets. For pneumonia detection, calibration enables the zero-shot VLM to achieve a superior F1-score of 0.8841, surpassing the supervised CNN's 0.8803. For tuberculosis detection, calibration dramatically improves the F1-score from 0.4812 to 0.7684, bringing it close to the supervised baseline's 0.7834. This work highlights a key insight: proper calibration is essential for leveraging the full diagnostic power of zero-shot VLMs, enabling them to match or even outperform efficient, task-specific supervised models.
comment: 6pages,3 figures.Uunder review of International Conference on Artificial Intelligence, Computer, Data Sciences and Applications
♻ ☆ PiCa: Parameter-Efficient Fine-Tuning with Column Space Projection
Fine-tuning large foundation models is essential for building expert models tailored to specialized tasks and domains, but fully updating billions of parameters is computationally prohibitive. Reducing the number of trainable parameters using parameter-efficient fine-tuning is therefore crucial not only to reduce training costs but also to mitigate storage, caching, and serving overheads during deployment. Prior works, such as Singular Vectors-guided Fine-Tuning, have shown that exploiting the geometry of pre-trained weights can significantly improve parameter-efficiency, but they lack a solid theoretical foundation. In this paper, we introduce Parameter-efficient Fine-tuning with Column Space Projection (PiCa), a novel theoretically grounded PEFT method. We prove that projecting gradients onto the principal column space of pre-trained weights provides an effective inductive bias for adaptation and further enhance parameter efficiency through a novel weight-sharing strategy. Across diverse NLP and vision tasks, PiCa consistently outperforms state-of-the-art baselines under comparable or smaller parameter budgets, demonstrating both theoretical rigor and practical effectiveness.
♻ ☆ nDNA -- the Semantic Helix of Artificial Cognition
As AI foundation models grow in capability, a deeper question emerges: What shapes their internal cognitive identity -- beyond fluency and output? Benchmarks measure behavior, but the soul of a model resides in its latent geometry. In this work, we propose Neural DNA (nDNA) as a semantic-genotypic representation that captures this latent identity through the intrinsic geometry of belief. At its core, nDNA is synthesized from three principled and indispensable dimensions of latent geometry: spectral curvature, which reveals the curvature of conceptual flow across layers; thermodynamic length, which quantifies the semantic effort required to traverse representational transitions through layers; and belief vector field, which delineates the semantic torsion fields that guide a model's belief directional orientations. Like biological DNA, it encodes ancestry, mutation, and semantic inheritance, found in finetuning and alignment scars, cultural imprints, and architectural drift. In naming it, we open a new field: Neural Genomics, where models are not just tools, but digital semantic organisms with traceable inner cognition. Modeling statement. We read AI foundation models as semantic fluid dynamics: meaning is transported through layers like fluid in a shaped conduit; nDNA is the physics-grade readout of that flow -- a geometry-first measure of how meaning is bent, paid for, and pushed -- yielding a stable, coordinate-free neural DNA fingerprint tied to on-input behavior; with this fingerprint we cross into biology: tracing lineages across pretraining, fine-tuning, alignment, pruning, distillation, and merges; measuring inheritance between checkpoints; detecting drift as traits shift under new data or objectives; and, ultimately, studying the evolution of artificial cognition to compare models, diagnose risks, and govern change over time.
♻ ☆ Handling Heterophily in Recommender Systems with Wavelet Hypergraph Diffusion
Recommender systems are pivotal in delivering personalised user experiences across various domains. However, capturing the heterophily patterns and the multi-dimensional nature of user-item interactions poses significant challenges. To address this, we introduce FWHDNN (Fusion-based Wavelet Hypergraph Diffusion Neural Networks), an innovative framework aimed at advancing representation learning in hypergraph-based recommendation tasks. The model incorporates three key components: (1) a cross-difference relation encoder leveraging heterophily-aware hypergraph diffusion to adapt message-passing for diverse class labels, (2) a multi-level cluster-wise encoder employing wavelet transform-based hypergraph neural network layers to capture multi-scale topological relationships, and (3) an integrated multi-modal fusion mechanism that combines structural and textual information through intermediate and late-fusion strategies. Extensive experiments on real-world datasets demonstrate that FWHDNN surpasses state-of-the-art methods in accuracy, robustness, and scalability in capturing high-order interconnections between users and items.
comment: Fixed and extended results
♻ ☆ Should I Share this Translation? Evaluating Quality Feedback for User Reliance on Machine Translation EMNLP 2025
As people increasingly use AI systems in work and daily life, feedback mechanisms that help them use AI responsibly are urgently needed, particularly in settings where users are not equipped to assess the quality of AI predictions. We study a realistic Machine Translation (MT) scenario where monolingual users decide whether to share an MT output, first without and then with quality feedback. We compare four types of quality feedback: explicit feedback that directly give users an assessment of translation quality using (1) error highlights and (2) LLM explanations, and implicit feedback that helps users compare MT inputs and outputs through (3) backtranslation and (4) question-answer (QA) tables. We find that all feedback types, except error highlights, significantly improve both decision accuracy and appropriate reliance. Notably, implicit feedback, especially QA tables, yields significantly greater gains than explicit feedback in terms of decision accuracy, appropriate reliance, and user perceptions, receiving the highest ratings for helpfulness and trust, and the lowest for mental burden.
comment: EMNLP 2025
♻ ☆ EMR-AGENT: Automating Cohort and Feature Extraction from EMR Databases ICLR 2026
Machine learning models for clinical prediction rely on structured data extracted from Electronic Medical Records (EMRs), yet this process remains dominated by hardcoded, database-specific pipelines for cohort definition, feature selection, and code mapping. These manual efforts limit scalability, reproducibility, and cross-institutional generalization. To address this, we introduce EMR-AGENT (Automated Generalized Extraction and Navigation Tool), an agent-based framework that replaces manual rule writing with dynamic, language model-driven interaction to extract and standardize structured clinical data. Our framework automates cohort selection, feature extraction, and code mapping through interactive querying of databases. Our modular agents iteratively observe query results and reason over schema and documentation, using SQL not just for data retrieval but also as a tool for database observation and decision making. This eliminates the need for hand-crafted, schema-specific logic. To enable rigorous evaluation, we develop a benchmarking codebase for three EMR databases (MIMIC-III, eICU, SICdb), including both seen and unseen schema settings. Our results demonstrate strong performance and generalization across these databases, highlighting the feasibility of automating a process previously thought to require expert-driven design. The code will be released publicly at https://github.com/AITRICS/EMR-AGENT/tree/main. For a demonstration, please visit our anonymous demo page: https://anonymoususer-max600.github.io/EMR_AGENT/
comment: currently under submission to ICLR 2026
♻ ☆ scSiameseClu: A Siamese Clustering Framework for Interpreting single-cell RNA Sequencing Data
Single-cell RNA sequencing (scRNA-seq) reveals cell heterogeneity, with cell clustering playing a key role in identifying cell types and marker genes. Recent advances, especially graph neural networks (GNNs)-based methods, have significantly improved clustering performance. However, the analysis of scRNA-seq data remains challenging due to noise, sparsity, and high dimensionality. Compounding these challenges, GNNs often suffer from over-smoothing, limiting their ability to capture complex biological information. In response, we propose scSiameseClu, a novel Siamese Clustering framework for interpreting single-cell RNA-seq data, comprising of 3 key steps: (1) Dual Augmentation Module, which applies biologically informed perturbations to the gene expression matrix and cell graph relationships to enhance representation robustness; (2) Siamese Fusion Module, which combines cross-correlation refinement and adaptive information fusion to capture complex cellular relationships while mitigating over-smoothing; and (3) Optimal Transport Clustering, which utilizes Sinkhorn distance to efficiently align cluster assignments with predefined proportions while maintaining balance. Comprehensive evaluations on seven real-world datasets demonstrate that scSiameseClu outperforms state-of-the-art methods in single-cell clustering, cell type annotation, and cell type classification, providing a powerful tool for scRNA-seq data interpretation.
♻ ☆ When Reasoning Meets Compression: Understanding the Effects of LLMs Compression on Large Reasoning Models
Compression methods, including quantization, distillation, and pruning, improve the computational efficiency of large reasoning models (LRMs). However, existing studies either fail to sufficiently compare all three compression methods on LRMs or lack in-depth interpretation analysis. In this paper, we investigate how the reasoning capabilities of LRMs are compromised during compression, through performance benchmarking and mechanistic interpretation. To uncover the effects of compression on reasoning performance, we benchmark quantized, distilled, and pruned DeepSeek-R1 models on four reasoning datasets (AIME 2024, FOLIO, Temporal Sequences, and MuSiQue). To precisely locate compression effects on model weights, we adapt difference of means and attribution patching techniques, focusing on the activation of every linear component in compressed LRMs, to interpret fine-grained causal relationships between weights and various reasoning capabilities. This fine-grained interpretation addresses a fundamental question of compression: which weights are the most important for reasoning? Overall, we find dynamically quantized 2.51-bit R1 reaches close-to-R1 performance. With empirical verification, we present three main findings that generalize across both Llama and Qwen: (1) Weight count has a greater impact on LRMs' knowledge memorization than reasoning, highlighting the risks of pruning and distillation; (2) The MLP up projection in the final layer of distilled LRMs is one of the most important components, offering a new perspective on locating critical weights - a fundamental problem in model compression; and (3) Current quantization methods overly compress the final-layer modules and MLP gate projections, so protecting just 2% of all weights that are excessively compressed can raise average accuracy by 6.57%, greatly surpassing the state-of-the-art.
♻ ☆ Rethinking Reward Models for Multi-Domain Test-Time Scaling
The reliability of large language models (LLMs) during test-time scaling is often assessed with \emph{external verifiers} or \emph{reward models} that distinguish correct reasoning from flawed logic. Prior work generally assumes that process reward models (PRMs), which score every intermediate reasoning step, outperform outcome reward models (ORMs) that assess only the final answer. This view is based mainly on evidence from narrow, math-adjacent domains. We present the first unified evaluation of four reward model variants, discriminative ORM and PRM (\DisORM, \DisPRM) and generative ORM and PRM (\GenORM, \GenPRM), across 14 diverse domains. Contrary to conventional wisdom, we find that (i) \DisORM performs on par with \DisPRM, (ii) \GenPRM is not competitive, and (iii) overall, \GenORM is the most robust, yielding significant and consistent gains across every tested domain. We attribute this to PRM-style stepwise scoring, which inherits label noise from LLM auto-labeling and has difficulty evaluating long reasoning trajectories, including those involving self-correcting reasoning. Our theoretical analysis shows that step-wise aggregation compounds errors as reasoning length grows, and our empirical observations confirm this effect. These findings challenge the prevailing assumption that fine-grained supervision is always better and support generative outcome verification for multi-domain deployment. We publicly release our code, datasets, and checkpoints at \href{https://github.com/db-Lee/Multi-RM}{\underline{\small\texttt{https://github.com/db-Lee/Multi-RM}}} to facilitate future research in multi-domain settings.
♻ ☆ Synergizing LLMs and Knowledge Graphs: A Novel Approach to Software Repository-Related Question Answering
Software repositories contain valuable information for understanding the development process. However, extracting insights from repository data is time-consuming and requires technical expertise. While software engineering chatbots support natural language interactions with repositories, chatbots struggle to understand questions beyond their trained intents and to accurately retrieve the relevant data. This study aims to improve the accuracy of LLM-based chatbots in answering repository-related questions by augmenting them with knowledge graphs. We use a two-step approach: constructing a knowledge graph from repository data, and synergizing the knowledge graph with an LLM to handle natural language questions and answers. We curated 150 questions of varying complexity and evaluated the approach on five popular open-source projects. Our initial results revealed the limitations of the approach, with most errors due to the reasoning ability of the LLM. We therefore applied few-shot chain-of-thought prompting, which improved accuracy to 84%. We also compared against baselines (MSRBot and GPT-4o-search-preview), and our approach performed significantly better. In a task-based user study with 20 participants, users completed more tasks correctly and in less time with our approach, and they reported that it was useful. Our findings demonstrate that LLMs and knowledge graphs are a viable solution for making repository data accessible.
comment: Submitted to ACM Transactions on Software Engineering and Methodology for review
♻ ☆ AutoScale: Scale-Aware Data Mixing for Pre-Training LLMs
Domain reweighting is an emerging research area aimed at adjusting the relative weights of different data sources to improve the effectiveness and efficiency of LLM pre-training. We show that data mixtures that perform well at smaller scales may not retain their advantage at larger scales, challenging the existing practice of determining competitive mixtures in small-scale experiments and directly applying them at much larger scales. To address this, we propose AutoScale, a two-stage, scale-aware data composition framework. First, AutoScale fits a parametric model that predicts the model's loss under different data compositions, then uses it to find an approximate best allocation at smaller, more manageable budgets. Next, leveraging a novel theoretical analysis of how optimal compositions evolve with scale, AutoScale extrapolates that composition to larger budgets without further retraining. Empirically, AutoScale accelerates convergence and improves downstream performance. For instance, when pre-training GPT-2 Large, it achieves a 28% faster perplexity reduction than baselines and up to a 38% speed-up over unweighted training, while yielding best-average results on various downstream tasks. Overall, our findings illustrate how domain importance shifts with training scale, underscoring the need for scale-dependent data curation in LLM training. Our code is open-sourced.
comment: Published as a conference paper at COLM 2025
GEPO: Group Expectation Policy Optimization for Stable Heterogeneous Reinforcement Learning
As single-center computing approaches power constraints, decentralized training becomes essential. However, traditional Reinforcement Learning (RL) methods, crucial for enhancing large model post-training, cannot adapt to decentralized distributed training due to the tight coupling between parameter learning and rollout sampling. For this, we propose HeteroRL, a heterogeneous RL architecture that decouples these processes, enabling stable training across geographically distributed nodes connected via the Internet. The core component is Group Expectation Policy Optimization (GEPO), an asynchronous RL algorithm robust to latency caused by network delays or heterogeneity in computational resources. Our study reveals that high latency significantly increases KL divergence, leading to higher variance in importance sampling weights and training instability. GEPO mitigates this issue by using group expectation weighting to exponentially reduce the variance of importance weights, with theoretical guarantees. Experiments show that GEPO achieves superior stability, with only a 3\% performance drop from online to 1800s latency, demonstrating strong potential for decentralized RL in geographically distributed, resource-heterogeneous computing environments.
♻ ☆ Finite Sample Analysis of Linear Temporal Difference Learning with Arbitrary Features
Linear TD($\lambda$) is one of the most fundamental reinforcement learning algorithms for policy evaluation. Previously, convergence rates are typically established under the assumption of linearly independent features, which does not hold in many practical scenarios. This paper instead establishes the first $L^2$ convergence rates for linear TD($\lambda$) operating under arbitrary features, without making any algorithmic modification or additional assumptions. Our results apply to both the discounted and average-reward settings. To address the potential non-uniqueness of solutions resulting from arbitrary features, we develop a novel stochastic approximation result featuring convergence rates to the solution set instead of a single point.
♻ ☆ Disentangling Multiplex Spatial-Temporal Transition Graph Representation Learning for Socially Enhanced POI Recommendation
Next Point-of-Interest (POI) recommendation is a research hotspot in business intelligence, where users' spatial-temporal transitions and social relationships play key roles. However, most existing works model spatial and temporal transitions separately, leading to misaligned representations of the same spatial-temporal key nodes. This misalignment introduces redundant information during fusion, increasing model uncertainty and reducing interpretability. To address this issue, we propose DiMuST, a socially enhanced POI recommendation model based on disentangled representation learning over multiplex spatial-temporal transition graphs. The model employs a novel Disentangled variational multiplex graph Auto-Encoder (DAE), which first disentangles shared and private distributions using a multiplex spatial-temporal graph strategy. It then fuses the shared features via a Product of Experts (PoE) mechanism and denoises the private features through contrastive constraints. The model effectively captures the spatial-temporal transition representations of POIs while preserving the intrinsic correlation of their spatial-temporal relationships. Experiments on two challenging datasets demonstrate that our DiMuST significantly outperforms existing methods across multiple metrics.
comment: There are quality issues with the paper and it requires major revisions
♻ ☆ Rethinking and Benchmarking Large Language Models for Graph Reasoning
Large Language Models (LLMs) for Graph Reasoning have been extensively studied over the past two years, involving enabling LLMs to understand graph structures and reason on graphs to solve various graph problems, with graph algorithm problems being the most prevalent. Recent studies underscore the potential of LLMs in handling graph reasoning tasks, but their performance is underwhelming. In this work, we point out issues with existing methods and benchmarks, and rethink the direction that LLMs for graph reasoning should strive toward. We find that base models, e.g., GPT-4o-mini, are largely underestimated due to improper reasoning focus. Base models with reasoning focus redirected from replicating graph algorithms to designing them can easily solve most graph reasoning tasks in existing benchmarks. To truly evaluate the graph reasoning capabilities of LLMs, we construct a more challenging GraphAlgorithm benchmark, comprising 239 different graph problems and 3,041 test instances collected from 4 competition platforms. Finally, we introduce a simple and strong baseline Simple-Reasoning-Then-Coding (Simple-RTC)-which guides LLMs to design graph algorithms first and then code to address graph reasoning tasks. Simple-RTC achieves near-perfect accuracy on existing benchmarks and significantly outperforms GPT-4o-mini and all prior methods on the GraphAlgorithm benchmark. This strong baseline encourages further advancements in LLMs for Graph Reasoning in the future.
♻ ☆ Paper Quality Assessment based on Individual Wisdom Metrics from Open Peer Review
Traditional closed peer review systems, which have played a central role in scientific publishing, are often slow, costly, non-transparent, stochastic, and possibly subject to biases - factors that can impede scientific progress and undermine public trust. Here, we propose and examine the efficacy and accuracy of an alternative form of scientific peer review: through an open, bottom-up process. First, using data from two major scientific conferences (CCN2023 and ICLR2023), we highlight how high variability of review scores and low correlation across reviewers presents a challenge for collective review. We quantify reviewer agreement with community consensus scores and use this as a reviewer quality estimator, showing that surprisingly, reviewer quality scores are not correlated with authorship quality. Instead, we reveal an inverted U-shape relationship, where authors with intermediate paper scores are the best reviewers. We assess empirical Bayesian methods to estimate paper quality based on different assessments of individual reviewer reliability. We show how under a one-shot review-then-score scenario, both in our models and on real peer review data, a Bayesian measure significantly improves paper quality assessments relative to simple averaging. We then consider an ongoing model of publishing, reviewing, and scoring, with reviewers scoring not only papers but also other reviewers. We show that user-generated reviewer ratings can yield robust and high-quality paper scoring even when unreliable (but unbiased) reviewers dominate. Finally, we outline incentive structures to recognize high-quality reviewers and encourage broader reviewing coverage of submitted papers. These findings suggest that a self-selecting open peer review process is potentially scalable, reliable, and equitable with the possibility of enhancing the speed, fairness, and transparency of the peer review process.
comment: 19 pages, 6 main text figures, 4 supplementary figures
♻ ☆ Adaptive Cybersecurity Architecture for Digital Product Ecosystems Using Agentic AI
Traditional static cybersecurity models often struggle with scalability, real-time detection, and contextual responsiveness in the current digital product ecosystems which include cloud services, application programming interfaces (APIs), mobile platforms, and edge devices. This study introduces autonomous goal driven agents capable of dynamic learning and context-aware decision making as part of an adaptive cybersecurity architecture driven by agentic artificial intelligence (AI). To facilitate autonomous threat mitigation, proactive policy enforcement, and real-time anomaly detection, this framework integrates agentic AI across the key ecosystem layers. Behavioral baselining, decentralized risk scoring, and federated threat intelligence sharing are important features. The capacity of the system to identify zero-day attacks and dynamically modify access policies was demonstrated through native cloud simulations. The evaluation results show increased adaptability, decreased response latency, and improved detection accuracy. The architecture provides an intelligent and scalable blueprint for safeguarding complex digital infrastructure and is compatible with zero-trust models, thereby supporting the adherence to international cybersecurity regulations.
♻ ☆ First Hallucination Tokens Are Different from Conditional Ones
Large Language Models (LLMs) hallucinate, and detecting these cases is key to ensuring trust. While many approaches address hallucination detection at the response or span level, recent work explores token-level detection, enabling more fine-grained intervention. However, the distribution of hallucination signal across sequences of hallucinated tokens remains unexplored. We leverage token-level annotations from the RAGTruth corpus and find that the first hallucinated token is far more detectable than later ones. This structural property holds across models, suggesting that first hallucination tokens play a key role in token-level hallucination detection. Our code is available at https://github.com/jakobsnl/RAGTruth\_Xtended.
comment: 4.5 pages, 3 figures, Dataset, Knowledge Paper, Hallucination, Trustworthiness
♻ ☆ SecInfer: Preventing Prompt Injection via Inference-time Scaling
Prompt injection attacks pose a pervasive threat to the security of Large Language Models (LLMs). State-of-the-art prevention-based defenses typically rely on fine-tuning an LLM to enhance its security, but they achieve limited effectiveness against strong attacks. In this work, we propose \emph{SecInfer}, a novel defense against prompt injection attacks built on \emph{inference-time scaling}, an emerging paradigm that boosts LLM capability by allocating more compute resources for reasoning during inference. SecInfer consists of two key steps: \emph{system-prompt-guided sampling}, which generates multiple responses for a given input by exploring diverse reasoning paths through a varied set of system prompts, and \emph{target-task-guided aggregation}, which selects the response most likely to accomplish the intended task. Extensive experiments show that, by leveraging additional compute at inference, SecInfer effectively mitigates both existing and adaptive prompt injection attacks, outperforming state-of-the-art defenses as well as existing inference-time scaling approaches.
♻ ☆ Analyzing Latent Concepts in Code Language Models
Interpreting the internal behavior of large language models trained on code remains a critical challenge, particularly for applications demanding trust, transparency, and semantic robustness. We propose Code Concept Analysis (CoCoA): a global post-hoc interpretability framework that uncovers emergent lexical, syntactic, and semantic structures in a code language model's representation space by clustering contextualized token embeddings into human-interpretable concept groups. We propose a hybrid annotation pipeline that combines static analysis tool-based syntactic alignment with prompt-engineered large language models (LLMs), enabling scalable labeling of latent concepts across abstraction levels. We analyse the distribution of concepts across layers and across three finetuning tasks. Emergent concept clusters can help identify unexpected latent interactions and be used to identify trends and biases within the model's learned representations. We further integrate LCA with local attribution methods to produce concept-grounded explanations, improving the coherence and interpretability of token-level saliency. Empirical evaluations across multiple models and tasks show that LCA discovers concepts that remain stable under semantic-preserving perturbations (average Cluster Sensitivity Index, CSI = 0.288) and evolve predictably with fine-tuning. In a user study on the programming-language classification task, concept-augmented explanations disambiguated token roles and improved human-centric explainability by 37 percentage points compared with token-level attributions using Integrated Gradients.
♻ ☆ Grounding the Ungrounded: A Spectral-Graph Framework for Quantifying Hallucinations in multimodal LLMs
Hallucinations in large language models (LLMs) remain a fundamental obstacle to trustworthy AI, particularly in high-stakes multimodal domains such as medicine, law, and finance. Existing evaluation techniques are largely heuristic -- anchored in qualitative benchmarking or ad-hoc empirical mitigation -- providing neither principled quantification nor actionable theoretical guarantees. This gap leaves a critical blind spot in understanding how hallucinations arise, propagate, and interact across modalities. We introduce the first (to our knowledge) rigorous information geometric framework in diffusion dynamics for quantifying hallucinations in multimodal LLMs (MLLMs), advancing the field from qualitative detection to mathematically grounded measurement. Our approach represents MLLM outputs as the spectral embeddings over multimodal graph Laplacians and characterizes the manifold gaps of truth vs inconsistencies as the semantic distortion, enabling the tight Rayleigh--Ritz bounds on the multimodal hallucination energy as a functional of time-dependent temperature profiles. By leveraging eigenmode decompositions in Reproducing Kernel Hilbert Space (RKHS) embeddings, our framework delivers modality-aware, theoretically interpretable metrics that capture the evolution of hallucinations across time and input prompts through temperature annealing. This work establishes a principled foundation for quantifying and bounding hallucinations, transforming them from a qualitative risk to a tractable, analyzable phenomenon.
comment: 29 pages, 3 figures, 1 table
♻ ☆ Robust Pan-Cancer Mitotic Figure Detection with YOLOv12
Mitotic figures represent a key histoprognostic feature in tumor pathology, providing crucial insights into tumor aggressiveness and proliferation. However, their identification remains challenging, subject to significant inter-observer variability, even among experienced pathologists. To address this issue, the MItosis DOmain Generalization (MIDOG) 2025 challenge marks the third edition of an international competition aiming to develop robust mitosis detection algorithms. In this paper, we present a mitotic figure detection approach based on the state-of-the-art YOLOv12 object detection architecture. Our method achieved an F1-score of 0.801 on the preliminary test set (hotspots only) and ranked second on the final test leaderboard with an F1-score of 0.7216 across complex and heterogeneous whole-slide regions, without relying on external data.
♻ ☆ Inferring Pluggable Types with Machine Learning
Pluggable type systems allow programmers to extend the type system of a programming language to enforce semantic properties defined by the programmer. Pluggable type systems are difficult to deploy in legacy codebases because they require programmers to write type annotations manually. This paper investigates how to use machine learning to infer type qualifiers automatically. We propose a novel representation, NaP-AST, that encodes minimal dataflow hints for the effective inference of type qualifiers. We evaluate several model architectures for inferring type qualifiers, including Graph Transformer Network, Graph Convolutional Network and Large Language Model. We further validated these models by applying them to 12 open-source programs from a prior evaluation of the NullAway pluggable typechecker, lowering warnings in all but one unannotated project. We discovered that GTN shows the best performance, with a recall of .89 and precision of 0.6. Furthermore, we conduct a study to estimate the number of Java classes needed for good performance of the trained model. For our feasibility study, performance improved around 16k classes, and deteriorated due to overfitting around 22k classes.
♻ ☆ Scam2Prompt: A Scalable Framework for Auditing Malicious Scam Endpoints in Production LLMs
Large Language Models (LLMs) have become critical to modern software development, but their reliance on uncurated web-scale datasets for training introduces a significant security risk: the absorption and reproduction of malicious content. To systematically evaluate this risk, we introduce Scam2Prompt, a scalable automated auditing framework that identifies the underlying intent of a scam site and then synthesizes innocuous, developer-style prompts that mirror this intent, allowing us to test whether an LLM will generate malicious code in response to these innocuous prompts. In a large-scale study of four production LLMs (GPT-4o, GPT-4o-mini, Llama-4-Scout, and DeepSeek-V3), we found that Scam2Prompt's innocuous prompts triggered malicious URL generation in 4.24% of cases. To test the persistence of this security risk, we constructed Innoc2Scam-bench, a benchmark of 1,559 innocuous prompts that consistently elicited malicious code from all four initial LLMs. When applied to seven additional production LLMs released in 2025, we found the vulnerability is not only present but severe, with malicious code generation rates ranging from 12.7% to 43.8%. Furthermore, existing safety measures like state-of-the-art guardrails proved insufficient to prevent this behavior, with an overall detection rate of less than 0.3%.
♻ ☆ V2X-UniPool: Unifying Multimodal Perception and Knowledge Reasoning for Autonomous Driving
Autonomous driving (AD) has achieved significant progress, yet single-vehicle perception remains constrained by sensing range and occlusions. Vehicle-to-Everything (V2X) communication addresses these limits by enabling collaboration across vehicles and infrastructure, but it also faces heterogeneity, synchronization, and latency constraints. Language models offer strong knowledge-driven reasoning and decision-making capabilities, but they are not inherently designed to process raw sensor streams and are prone to hallucination. We propose V2X-UniPool, the first framework that unifies V2X perception with language-based reasoning for knowledge-driven AD. It transforms multimodal V2X data into structured, language-based knowledge, organizes it in a time-indexed knowledge pool for temporally consistent reasoning, and employs Retrieval-Augmented Generation (RAG) to ground decisions in real-time context. Experiments on the real-world DAIR-V2X dataset show that V2X-UniPool achieves state-of-the-art planning accuracy and safety while reducing communication cost by more than 80\%, achieving the lowest overhead among evaluated methods. These results highlight the promise of bridging V2X perception and language reasoning to advance scalable and trustworthy driving. Our code is available at: https://github.com/Xuewen2025/V2X-UniPool
♻ ☆ Learning to Interact in World Latent for Team Coordination
This work presents a novel representation learning framework, interactive world latent (IWoL), to facilitate team coordination in multi-agent reinforcement learning (MARL). Building effective representation for team coordination is a challenging problem, due to the intricate dynamics emerging from multi-agent interaction and incomplete information induced by local observations. Our key insight is to construct a learnable representation space that jointly captures inter-agent relations and task-specific world information by directly modeling communication protocols. This representation, we maintain fully decentralized execution with implicit coordination, all while avoiding the inherent drawbacks of explicit message passing, e.g., slower decision-making, vulnerability to malicious attackers, and sensitivity to bandwidth constraints. In practice, our representation can be used not only as an implicit latent for each agent, but also as an explicit message for communication. Across four challenging MARL benchmarks, we evaluate both variants and show that IWoL provides a simple yet powerful key for team coordination. Moreover, we demonstrate that our representation can be combined with existing MARL algorithms to further enhance their performance.
comment: Web: https://dongsuleetech.github.io/projects/IWoL/
♻ ☆ PRIME: Planning and Retrieval-Integrated Memory for Enhanced Reasoning
Inspired by the dual-process theory of human cognition from \textit{Thinking, Fast and Slow}, we introduce \textbf{PRIME} (Planning and Retrieval-Integrated Memory for Enhanced Reasoning), a multi-agent reasoning framework that dynamically integrates \textbf{System 1} (fast, intuitive thinking) and \textbf{System 2} (slow, deliberate thinking). PRIME first employs a Quick Thinking Agent (System 1) to generate a rapid answer; if uncertainty is detected, it then triggers a structured System 2 reasoning pipeline composed of specialized agents for \textit{planning}, \textit{hypothesis generation}, \textit{retrieval}, \textit{information integration}, and \textit{decision-making}. This multi-agent design faithfully mimics human cognitive processes and enhances both efficiency and accuracy. Experimental results with LLaMA 3 models demonstrate that PRIME enables open-source LLMs to perform competitively with state-of-the-art closed-source models like GPT-4 and GPT-4o on benchmarks requiring multi-hop and knowledge-grounded reasoning. This research establishes PRIME as a scalable solution for improving LLMs in domains requiring complex, knowledge-intensive reasoning.
comment: 8 pages
♻ ☆ CBVLM: Training-free Explainable Concept-based Large Vision Language Models for Medical Image Classification
The main challenges limiting the adoption of deep learning-based solutions in medical workflows are the availability of annotated data and the lack of interpretability of such systems. Concept Bottleneck Models (CBMs) tackle the latter by constraining the model output on a set of predefined and human-interpretable concepts. However, the increased interpretability achieved through these concept-based explanations implies a higher annotation burden. Moreover, if a new concept needs to be added, the whole system needs to be retrained. Inspired by the remarkable performance shown by Large Vision-Language Models (LVLMs) in few-shot settings, we propose a simple, yet effective, methodology, CBVLM, which tackles both of the aforementioned challenges. First, for each concept, we prompt the LVLM to answer if the concept is present in the input image. Then, we ask the LVLM to classify the image based on the previous concept predictions. Moreover, in both stages, we incorporate a retrieval module responsible for selecting the best examples for in-context learning. By grounding the final diagnosis on the predicted concepts, we ensure explainability, and by leveraging the few-shot capabilities of LVLMs, we drastically lower the annotation cost. We validate our approach with extensive experiments across four medical datasets and twelve LVLMs (both generic and medical) and show that CBVLM consistently outperforms CBMs and task-specific supervised methods without requiring any training and using just a few annotated examples. More information on our project page: https://cristianopatricio.github.io/CBVLM/.
comment: Accepted for publication in Computers in Biology and Medicine
♻ ☆ DM-Bench: Benchmarking LLMs for Personalized Decision Making in Diabetes Management
We present DM-Bench, the first benchmark designed to evaluate large language model (LLM) performance across real-world decision-making tasks faced by individuals managing diabetes in their daily lives. Unlike prior health benchmarks that are either generic, clinician-facing or focused on clinical tasks (e.g., diagnosis, triage), DM-Bench introduces a comprehensive evaluation framework tailored to the unique challenges of prototyping patient-facing AI solutions in diabetes, glucose management, metabolic health and related domains. Our benchmark encompasses 7 distinct task categories, reflecting the breadth of real-world questions individuals with diabetes ask, including basic glucose interpretation, educational queries, behavioral associations, advanced decision making and long term planning. Towards this end, we compile a rich dataset comprising one month of time-series data encompassing glucose traces and metrics from continuous glucose monitors (CGMs) and behavioral logs (e.g., eating and activity patterns) from 15,000 individuals across three different diabetes populations (type 1, type 2, pre-diabetes/general health and wellness). Using this data, we generate a total of 360,600 personalized, contextual questions across the 7 tasks. We evaluate model performance on these tasks across 5 metrics: accuracy, groundedness, safety, clarity and actionability. Our analysis of 8 recent LLMs reveals substantial variability across tasks and metrics; no single model consistently outperforms others across all dimensions. By establishing this benchmark, we aim to advance the reliability, safety, effectiveness and practical utility of AI solutions in diabetes care.
♻ ☆ Gala: Global LLM Agents for Text-to-Model Translation
Natural language descriptions of optimization or satisfaction problems are challenging to translate into correct MiniZinc models, as this process demands both logical reasoning and constraint programming expertise. We introduce Gala, a framework that addresses this challenge with a global agentic approach: multiple specialized large language model (LLM) agents decompose the modeling task by global constraint type. Each agent is dedicated to detecting and generating code for a specific class of global constraint, while a final assembler agent integrates these constraint snippets into a complete MiniZinc model. By dividing the problem into smaller, well-defined sub-tasks, each LLM handles a simpler reasoning challenge, potentially reducing overall complexity. We conduct initial experiments with several LLMs and show better performance against baselines such as one-shot prompting and chain-of-thought prompting. Finally, we outline a comprehensive roadmap for future work, highlighting potential enhancements and directions for improvement.
♻ ☆ Verbosity Tradeoffs and the Impact of Scale on the Faithfulness of LLM Self-Explanations
When asked to explain their decisions, LLMs can often give explanations which sound plausible to humans. But are these explanations faithful, i.e. do they convey the factors actually responsible for the decision? In this work, we analyse counterfactual faithfulness across 75 models from 13 families. We analyze the tradeoff between conciseness and comprehensiveness, how correlational faithfulness metrics assess this tradeoff, and the extent to which metrics can be gamed. This analysis motivates two new metrics: the phi-CCT, a simplified variant of the Correlational Counterfactual Test (CCT) which avoids the need for token probabilities while explaining most of the variance of the original test; and F-AUROC, which eliminates sensitivity to imbalanced intervention distributions and captures a model's ability to produce explanations with different levels of detail. Our findings reveal a clear scaling trend: larger and more capable models are consistently more faithful on all metrics we consider. Our code is available at https://github.com/google-deepmind/corr_faith.
comment: 66 pages, 12 figures
♻ ☆ VOTE: Vision-Language-Action Optimization with Trajectory Ensemble Voting
Recent large-scale Vision Language Action (VLA) models have shown superior performance in robotic manipulation tasks guided by natural language. However, current VLA models suffer from two drawbacks: (i) generation of massive tokens leading to high inference latency and increased training cost, and (ii) insufficient utilization of generated actions resulting in potential performance loss. To address these issues, we develop a training framework to finetune VLA models for generating significantly fewer action tokens with high parallelism, effectively reducing inference latency and training cost. Furthermore, we introduce an inference optimization technique with a novel voting-based ensemble strategy to combine current and previous action predictions, improving the utilization of generated actions and overall performance. Our results demonstrate that we achieve superior performance compared with state-of-the-art VLA models, achieving significantly higher success rates and 39$\times$ faster inference than OpenVLA with 46 Hz throughput on edge platforms, demonstrating practical deployability. The code is available at https://github.com/LukeLIN-web/VOTE.
♻ ☆ Activated LoRA: Fine-tuned LLMs for Intrinsics
Low-Rank Adaptation (LoRA) has emerged as a highly efficient framework for finetuning the weights of large foundation models, and has become the go-to method for data-driven customization of LLMs. Despite the promise of highly customized behaviors and capabilities, switching between relevant LoRAs in a multiturn setting is inefficient, as the key-value (KV) cache of the entire turn history must be recomputed with the LoRA weights before generation can begin. To address this problem, we propose Activated LoRA (aLoRA), an adapter architecture which modifies the LoRA framework to only adapt weights for the tokens in the sequence after the aLoRA is invoked. This change crucially allows aLoRA to accept the base model's KV cache of the input string, meaning that aLoRA can be instantly activated whenever needed in a chain without recomputing the prior keys and values. This enables building what we call intrinsics, i.e. specialized models invoked to perform well-defined operations on portions of an input chain or conversation that otherwise uses the base model by default. We train a set of aLoRA-based intrinsics models, demonstrating competitive accuracy with standard LoRA while significantly improving inference efficiency. We contributed our Activated LoRA implementation to the Huggingface PEFT library https://github.com/huggingface/peft.
♻ ☆ cAST: Enhancing Code Retrieval-Augmented Generation with Structural Chunking via Abstract Syntax Tree
Retrieval-Augmented Generation (RAG) has become essential for large-scale code generation, grounding predictions in external code corpora to improve actuality. However, a critical yet underexplored aspect of RAG pipelines is chunking -- the process of dividing documents into retrievable units. Existing line-based chunking heuristics often break semantic structures, splitting functions or merging unrelated code, which can degrade generation quality. We propose chunking via Abstract Syntax Trees (\ourwork), a structure-aware method that recursively breaks large AST nodes into smaller chunks and merges sibling nodes while respecting size limits. This approach generates self-contained, semantically coherent units across programming languages and tasks, improving performance on diverse code generation tasks, e.g., boosting Recall@5 by 4.3 points on RepoEval retrieval and Pass@1 by 2.67 points on SWE-bench generation. Our work highlights the importance of structure-aware chunking for scaling retrieval-enhanced code intelligence.
♻ ☆ Mutual Information Guided Backdoor Mitigation for Pre-trained Encoders
Self-supervised learning (SSL) is increasingly attractive for pre-training encoders without requiring labeled data. Downstream tasks built on top of those pre-trained encoders can achieve nearly state-of-the-art performance. The pre-trained encoders by SSL, however, are vulnerable to backdoor attacks as demonstrated by existing studies. Numerous backdoor mitigation techniques are designed for downstream task models. However, their effectiveness is impaired and limited when adapted to pre-trained encoders, due to the lack of label information when pre-training. To address backdoor attacks against pre-trained encoders, in this paper, we innovatively propose a mutual information guided backdoor mitigation technique, named MIMIC. MIMIC treats the potentially backdoored encoder as the teacher net and employs knowledge distillation to distill a clean student encoder from the teacher net. Different from existing knowledge distillation approaches, MIMIC initializes the student with random weights, inheriting no backdoors from teacher nets. Then MIMIC leverages mutual information between each layer and extracted features to locate where benign knowledge lies in the teacher net, with which distillation is deployed to clone clean features from teacher to student. We craft the distillation loss with two aspects, including clone loss and attention loss, aiming to mitigate backdoors and maintain encoder performance at the same time. Our evaluation conducted on two backdoor attacks in SSL demonstrates that MIMIC can significantly reduce the attack success rate by only utilizing <5% of clean data, surpassing seven state-of-the-art backdoor mitigation techniques.
♻ ☆ Pre-training Limited Memory Language Models with Internal and External Knowledge
Neural language models are black-boxes--both linguistic patterns and factual knowledge are distributed across billions of opaque parameters. This entangled encoding makes it difficult to reliably inspect, verify, or update specific facts. We introduce Limited Memory Language Models (LMLM), a new class of language models that externalizes factual knowledge to external database during pre-training rather than memorizing them. Our pre-training approach strategically masks externally retrieved factual values from the training loss, thereby teaching the model to perform targeted lookups rather than relying on memorization in model weights. Our experiments demonstrate that LMLMs achieve competitive performance compared to significantly larger LLMs on standard benchmarks, while offering the advantages of explicit, editable, and verifiable knowledge bases.
comment: Code, models, and data available at https://github.com/kilian-group/LMLM
♻ ☆ A Multi-Fidelity Control Variate Approach for Policy Gradient Estimation
Many reinforcement learning (RL) algorithms are impractical for deployment in operational systems or for training with computationally expensive high-fidelity simulations, as they require large amounts of data. Meanwhile, low-fidelity simulators -- such as reduced-order models, heuristic rewards, or generative world models -- can cheaply provide useful data for RL training, even if they are too coarse for zero-shot transfer. We propose multi-fidelity policy gradients (MFPGs), an RL framework that mixes a small amount of data from the target environment with a control variate formed from a large volume of low-fidelity simulation data to construct an unbiased, variance-reduced estimator for on-policy policy gradients. We instantiate the framework with a multi-fidelity variant of the classical REINFORCE algorithm. We show that under standard assumptions, the MFPG estimator guarantees asymptotic convergence of REINFORCE to locally optimal policies in the target environment, and achieves faster finite-sample convergence rates compared to training with high-fidelity data alone. Empirically, we evaluate the MFPG algorithm across a suite of simulated robotics benchmark tasks with limited high-fidelity data but abundant off-dynamics, low-fidelity data. With mild-moderate dynamics gaps, MFPG reliably improves the median performance over a high-fidelity-only baseline, matching the performance of leading multi-fidelity baselines despite its simplicity and minimal tuning overhead. Under large dynamics gaps, MFPG demonstrates the strongest robustness among the evaluated multi-fidelity approaches. An additional experiment shows that MFPG can remain effective even under low-fidelity reward misspecification. Thus, MFPG not only offers a novel paradigm for efficient sim-to-real transfer but also provides a principled approach to managing the trade-off between policy performance and data collection costs.
♻ ☆ Thinkquel: A Model Dedicated to Text-to-dbt Using Synthetic Data and a Span-Aware Objective
Transforming natural-language requests into reliable, production-ready data transformations remains challenging: correctness depends on precise schema linking and warehouse-specific SQL dialects, while the strongest supervision available during training--execution success and result matching--are provided only at the sequence level. At the same time, assembling large, execution-validated corpora is costly, and token-level objectives misalign with these global signals, yielding unstable optimization and limited portability. We introduce Thinkquel, a fine-tuned model for producing robust, portable, and execution-validated database queries. Methodologies in Thinkquel integrates a novel synthetic data pipeline, TS-SQL, that leverages dbt as a portable intermediate representation with a span-aware reinforcement learning objective, and Token-Sequence GRPO (TS-GRPO), specifically designed to bridge the gap between token-level training signals and sequence-level execution rewards when finetuning LLMs. On the 500-example TS-SQL test set, Thinkquel (32B) reaches 93.2% execution success and 61.8% exact-result match with a two-stage SFT curriculum, improving over the base model by 67.2% (exec.) and 44.4% (match). In Spider (14B) experiments, TS-GRPO increases training stability and speeds convergence of the execution-match reward relative to GRPO and GSPO.
♻ ☆ Flow-Induced Diagonal Gaussian Processes
We present Flow-Induced Diagonal Gaussian Processes (FiD-GP), a compression framework that incorporates a compact inducing weight matrix to project a neural network's weight uncertainty into a lower-dimensional subspace. Critically, FiD-GP relies on normalising-flow priors and spectral regularisations to augment its expressiveness and align the inducing subspace with feature-gradient geometry through a numerically stable projection mechanism objective. Furthermore, we demonstrate how the prediction framework in FiD-GP can help to design a single-pass projection for Out-of-Distribution (OoD) detection. Our analysis shows that FiD-GP improves uncertainty estimation ability on various tasks compared with SVGP-based baselines, satisfies tight spectral residual bounds with theoretically guaranteed OoD detection, and significantly compresses the neural network's storage requirements at the cost of increased inference computation dependent on the number of inducing weights employed. Specifically, in a comprehensive empirical study spanning regression, image classification, semantic segmentation, and out-of-distribution detection benchmarks, it cuts Bayesian training cost by several orders of magnitude, compresses parameters by roughly 51%, reduces model size by about 75%, and matches state-of-the-art accuracy and uncertainty estimation.
comment: 15 pages
♻ ☆ NeSyGeo: A Neuro-Symbolic Framework for Multimodal Geometric Reasoning Data Generation
Obtaining large-scale, high-quality reasoning data is crucial for improving the geometric reasoning capabilities of multi-modal large language models (MLLMs). However, existing data generation methods, whether based on predefined tem plates or constrained symbolic provers, inevitably face diversity and numerical generalization limitations. To address these limitations, we propose NeSyGeo, a novel neuro-symbolic framework for generating geometric reasoning data. First, we propose a domain-specific language grounded in the entity-attributes-relations paradigm to comprehensively represent all components of plane geometry, along with generative actions defined within this symbolic space. We then design a symbolic-visual-text pipeline that synthesizes symbolic sequences, maps them to visual and textual representations and generates reasoning path with reverse search and forward validation. Based on this framework, we construct NeSyGeo CoT and NeSyGeo-Caption datasets, containing 100k samples, and release a new benchmark NeSyGeo-Test for evaluating geometric reasoning abilities in MLLMs. Experiments demonstrate that the proposal significantly and consistently improves the performance of multiple MLLMs under both reinforcement and supervised fine-tuning. With only 4k samples and two epochs of reinforcement fine-tuning, base models achieve improvements of up to +15.8% on MathVision, +8.4% on MathVerse, and +7.3% on GeoQA. Notably, a 4B model can be improved to outperform an 8B model from the same series on geometric reasoning tasks.s
comment: 29 pages
Machine Learning 276
☆ KaVa: Latent Reasoning via Compressed KV-Cache Distillation
Large Language Models (LLMs) excel at multi-step reasoning problems with explicit chain-of-thought (CoT), but verbose traces incur significant computational costs and memory overhead, and often carry redundant, stylistic artifacts. Latent reasoning has emerged as an efficient alternative that internalizes the thought process, but it suffers from a critical lack of supervision, limiting its effectiveness on complex, natural-language reasoning traces. In this work, we propose KaVa, the first framework that bridges this gap by distilling knowledge directly from a compressed KV-cache of the teacher into a latent-reasoning student via self-distillation, leveraging the representational flexibility of continuous latent tokens to align stepwise KV trajectories. We show that the abstract, unstructured knowledge within compressed KV-cache, which lacks direct token correspondence, can serve as a rich supervisory signal for a latent reasoning student. Empirically, the approach consistently outperforms strong latent baselines, exhibits markedly smaller degradation from equation-only to natural-language traces, and scales to larger backbones while preserving efficiency. These results establish compressed KV-cache distillation as a scalable supervision signal for latent reasoning, combining the accuracy of CoT-trained teachers with the efficiency and deployability of latent inference.
comment: Preprint. Under Review
☆ Inferring Dynamic Physical Properties from Video Foundation Models
We study the task of predicting dynamic physical properties from videos. More specifically, we consider physical properties that require temporal information to be inferred: elasticity of a bouncing object, viscosity of a flowing liquid, and dynamic friction of an object sliding on a surface. To this end, we make the following contributions: (i) We collect a new video dataset for each physical property, consisting of synthetic training and testing splits, as well as a real split for real world evaluation. (ii) We explore three ways to infer the physical property from videos: (a) an oracle method where we supply the visual cues that intrinsically reflect the property using classical computer vision techniques; (b) a simple read out mechanism using a visual prompt and trainable prompt vector for cross-attention on pre-trained video generative and self-supervised models; and (c) prompt strategies for Multi-modal Large Language Models (MLLMs). (iii) We show that video foundation models trained in a generative or self-supervised manner achieve a similar performance, though behind that of the oracle, and MLLMs are currently inferior to the other models, though their performance can be improved through suitable prompting.
☆ Robust Tangent Space Estimation via Laplacian Eigenvector Gradient Orthogonalization
Estimating the tangent spaces of a data manifold is a fundamental problem in data analysis. The standard approach, Local Principal Component Analysis (LPCA), struggles in high-noise settings due to a critical trade-off in choosing the neighborhood size. Selecting an optimal size requires prior knowledge of the geometric and noise characteristics of the data that are often unavailable. In this paper, we propose a spectral method, Laplacian Eigenvector Gradient Orthogonalization (LEGO), that utilizes the global structure of the data to guide local tangent space estimation. Instead of relying solely on local neighborhoods, LEGO estimates the tangent space at each data point by orthogonalizing the gradients of low-frequency eigenvectors of the graph Laplacian. We provide two theoretical justifications of our method. First, a differential geometric analysis on a tubular neighborhood of a manifold shows that gradients of the low-frequency Laplacian eigenfunctions of the tube align closely with the manifold's tangent bundle, while an eigenfunction with high gradient in directions orthogonal to the manifold lie deeper in the spectrum. Second, a random matrix theoretic analysis also demonstrates that low-frequency eigenvectors are robust to sub-Gaussian noise. Through comprehensive experiments, we demonstrate that LEGO yields tangent space estimates that are significantly more robust to noise than those from LPCA, resulting in marked improvements in downstream tasks such as manifold learning, boundary detection, and local intrinsic dimension estimation.
☆ Diffusion Models and the Manifold Hypothesis: Log-Domain Smoothing is Geometry Adaptive
Diffusion models have achieved state-of-the-art performance, demonstrating remarkable generalisation capabilities across diverse domains. However, the mechanisms underpinning these strong capabilities remain only partially understood. A leading conjecture, based on the manifold hypothesis, attributes this success to their ability to adapt to low-dimensional geometric structure within the data. This work provides evidence for this conjecture, focusing on how such phenomena could result from the formulation of the learning problem through score matching. We inspect the role of implicit regularisation by investigating the effect of smoothing minimisers of the empirical score matching objective. Our theoretical and empirical results confirm that smoothing the score function -- or equivalently, smoothing in the log-density domain -- produces smoothing tangential to the data manifold. In addition, we show that the manifold along which the diffusion model generalises can be controlled by choosing an appropriate smoothing.
☆ Knowledge Distillation Detection for Open-weights Models NeurIPS 2025
We propose the task of knowledge distillation detection, which aims to determine whether a student model has been distilled from a given teacher, under a practical setting where only the student's weights and the teacher's API are available. This problem is motivated by growing concerns about model provenance and unauthorized replication through distillation. To address this task, we introduce a model-agnostic framework that combines data-free input synthesis and statistical score computation for detecting distillation. Our approach is applicable to both classification and generative models. Experiments on diverse architectures for image classification and text-to-image generation show that our method improves detection accuracy over the strongest baselines by 59.6% on CIFAR-10, 71.2% on ImageNet, and 20.0% for text-to-image generation. The code is available at https://github.com/shqii1j/distillation_detection.
comment: NeurIPS 2025
☆ Equilibrium Matching: Generative Modeling with Implicit Energy-Based Models
We introduce Equilibrium Matching (EqM), a generative modeling framework built from an equilibrium dynamics perspective. EqM discards the non-equilibrium, time-conditional dynamics in traditional diffusion and flow-based generative models and instead learns the equilibrium gradient of an implicit energy landscape. Through this approach, we can adopt an optimization-based sampling process at inference time, where samples are obtained by gradient descent on the learned landscape with adjustable step sizes, adaptive optimizers, and adaptive compute. EqM surpasses the generation performance of diffusion/flow models empirically, achieving an FID of 1.90 on ImageNet 256$\times$256. EqM is also theoretically justified to learn and sample from the data manifold. Beyond generation, EqM is a flexible framework that naturally handles tasks including partially noised image denoising, OOD detection, and image composition. By replacing time-conditional velocities with a unified equilibrium landscape, EqM offers a tighter bridge between flow and energy-based models and a simple route to optimization-driven inference.
☆ Interactive Training: Feedback-Driven Neural Network Optimization EMNLP 2025
Traditional neural network training typically follows fixed, predefined optimization recipes, lacking the flexibility to dynamically respond to instabilities or emerging training issues. In this paper, we introduce Interactive Training, an open-source framework that enables real-time, feedback-driven intervention during neural network training by human experts or automated AI agents. At its core, Interactive Training uses a control server to mediate communication between users or agents and the ongoing training process, allowing users to dynamically adjust optimizer hyperparameters, training data, and model checkpoints. Through three case studies, we demonstrate that Interactive Training achieves superior training stability, reduced sensitivity to initial hyperparameters, and improved adaptability to evolving user needs, paving the way toward a future training paradigm where AI agents autonomously monitor training logs, proactively resolve instabilities, and optimize training dynamics.
comment: EMNLP 2025 Demo
☆ Continual Personalization for Diffusion Models
Updating diffusion models in an incremental setting would be practical in real-world applications yet computationally challenging. We present a novel learning strategy of Concept Neuron Selection (CNS), a simple yet effective approach to perform personalization in a continual learning scheme. CNS uniquely identifies neurons in diffusion models that are closely related to the target concepts. In order to mitigate catastrophic forgetting problems while preserving zero-shot text-to-image generation ability, CNS finetunes concept neurons in an incremental manner and jointly preserves knowledge learned of previous concepts. Evaluation of real-world datasets demonstrates that CNS achieves state-of-the-art performance with minimal parameter adjustments, outperforming previous methods in both single and multi-concept personalization works. CNS also achieves fusion-free operation, reducing memory storage and processing time for continual personalization.
VideoNSA: Native Sparse Attention Scales Video Understanding
Video understanding in multimodal language models remains limited by context length: models often miss key transition frames and struggle to maintain coherence across long time scales. To address this, we adapt Native Sparse Attention (NSA) to video-language models. Our method, VideoNSA, adapts Qwen2.5-VL through end-to-end training on a 216K video instruction dataset. We employ a hardware-aware hybrid approach to attention, preserving dense attention for text, while employing NSA for video. Compared to token-compression and training-free sparse baselines, VideoNSA achieves improved performance on long-video understanding, temporal reasoning, and spatial benchmarks. Further ablation analysis reveals four key findings: (1) reliable scaling to 128K tokens; (2) an optimal global-local attention allocation at a fixed budget; (3) task-dependent branch usage patterns; and (4) the learnable combined sparse attention help induce dynamic attention sinks.
comment: Project Page: https://enxinsong.com/VideoNSA-web/, Code: https://github.com/Espere-1119-Song/VideoNSA
☆ Test-Time Anchoring for Discrete Diffusion Posterior Sampling
We study the problem of posterior sampling using pretrained discrete diffusion foundation models, aiming to recover images from noisy measurements without retraining task-specific models. While diffusion models have achieved remarkable success in generative modeling, most advances rely on continuous Gaussian diffusion. In contrast, discrete diffusion offers a unified framework for jointly modeling categorical data such as text and images. Beyond unification, discrete diffusion provides faster inference, finer control, and principled training-free Bayesian inference, making it particularly well-suited for posterior sampling. However, existing approaches to discrete diffusion posterior sampling face severe challenges: derivative-free guidance yields sparse signals, continuous relaxations limit applicability, and split Gibbs samplers suffer from the curse of dimensionality. To overcome these limitations, we introduce Anchored Posterior Sampling (APS) for masked diffusion foundation models, built on two key innovations -- quantized expectation for gradient-like guidance in discrete embedding space, and anchored remasking for adaptive decoding. Our approach achieves state-of-the-art performance among discrete diffusion samplers across linear and nonlinear inverse problems on the standard benchmarks. We further demonstrate the benefits of our approach in training-free stylization and text-guided editing.
comment: Preprint
☆ Tree-based Dialogue Reinforced Policy Optimization for Red-Teaming Attacks
Despite recent rapid progress in AI safety, current large language models remain vulnerable to adversarial attacks in multi-turn interaction settings, where attackers strategically adapt their prompts across conversation turns and pose a more critical yet realistic challenge. Existing approaches that discover safety vulnerabilities either rely on manual red-teaming with human experts or employ automated methods using pre-defined templates and human-curated attack data, with most focusing on single-turn attacks. However, these methods did not explore the vast space of possible multi-turn attacks, failing to consider novel attack trajectories that emerge from complex dialogue dynamics and strategic conversation planning. This gap is particularly critical given recent findings that LLMs exhibit significantly higher vulnerability to multi-turn attacks compared to single-turn attacks. We propose DialTree-RPO, an on-policy reinforcement learning framework integrated with tree search that autonomously discovers diverse multi-turn attack strategies by treating the dialogue as a sequential decision-making problem, enabling systematic exploration without manually curated data. Through extensive experiments, our approach not only achieves more than 25.9% higher ASR across 10 target models compared to previous state-of-the-art approaches, but also effectively uncovers new attack strategies by learning optimal dialogue policies that maximize attack success across multiple turns.
☆ Learning to Generate Object Interactions with Physics-Guided Video Diffusion
Recent models for video generation have achieved remarkable progress and are now deployed in film, social media production, and advertising. Beyond their creative potential, such models also hold promise as world simulators for robotics and embodied decision making. Despite strong advances, however, current approaches still struggle to generate physically plausible object interactions and lack physics-grounded control mechanisms. To address this limitation, we introduce KineMask, an approach for physics-guided video generation that enables realistic rigid body control, interactions, and effects. Given a single image and a specified object velocity, our method generates videos with inferred motions and future object interactions. We propose a two-stage training strategy that gradually removes future motion supervision via object masks. Using this strategy we train video diffusion models (VDMs) on synthetic scenes of simple interactions and demonstrate significant improvements of object interactions in real scenes. Furthermore, KineMask integrates low-level motion control with high-level textual conditioning via predictive scene descriptions, leading to effective support for synthesis of complex dynamical phenomena. Extensive experiments show that KineMask achieves strong improvements over recent models of comparable size. Ablation studies further highlight the complementary roles of low- and high-level conditioning in VDMs. Our code, model, and data will be made publicly available.
☆ VidGuard-R1: AI-Generated Video Detection and Explanation via Reasoning MLLMs and RL
With the rapid advancement of AI-generated videos, there is an urgent need for effective detection tools to mitigate societal risks such as misinformation and reputational harm. In addition to accurate classification, it is essential that detection models provide interpretable explanations to ensure transparency for regulators and end users. To address these challenges, we introduce VidGuard-R1, the first video authenticity detector that fine-tunes a multi-modal large language model (MLLM) using group relative policy optimization (GRPO). Our model delivers both highly accurate judgments and insightful reasoning. We curate a challenging dataset of 140k real and AI-generated videos produced by state-of-the-art generation models, carefully designing the generation process to maximize discrimination difficulty. We then fine-tune Qwen-VL using GRPO with two specialized reward models that target temporal artifacts and generation complexity. Extensive experiments demonstrate that VidGuard-R1 achieves state-of-the-art zero-shot performance on existing benchmarks, with additional training pushing accuracy above 95%. Case studies further show that VidGuard-R1 produces precise and interpretable rationales behind its predictions. The code is publicly available at https://VidGuard-R1.github.io.
☆ Addressing Pitfalls in the Evaluation of Uncertainty Estimation Methods for Natural Language Generation
Hallucinations are a common issue that undermine the reliability of large language models (LLMs). Recent studies have identified a specific subset of hallucinations, known as confabulations, which arise due to predictive uncertainty of LLMs. To detect confabulations, various methods for estimating predictive uncertainty in natural language generation (NLG) have been developed. These methods are typically evaluated by correlating uncertainty estimates with the correctness of generated text, with question-answering (QA) datasets serving as the standard benchmark. However, commonly used approximate correctness functions have substantial disagreement between each other and, consequently, in the ranking of the uncertainty estimation methods. This allows one to inflate the apparent performance of uncertainty estimation methods. We propose using several alternative risk indicators for risk correlation experiments that improve robustness of empirical assessment of UE algorithms for NLG. For QA tasks, we show that marginalizing over multiple LLM-as-a-judge variants leads to reducing the evaluation biases. Furthermore, we explore structured tasks as well as out of distribution and perturbation detection tasks which provide robust and controllable risk indicators. Finally, we propose to use an Elo rating of uncertainty estimation methods to give an objective summarization over extensive evaluation settings.
☆ Fine-Grained Urban Traffic Forecasting on Metropolis-Scale Road Networks
Traffic forecasting on road networks is a complex task of significant practical importance that has recently attracted considerable attention from the machine learning community, with spatiotemporal graph neural networks (GNNs) becoming the most popular approach. The proper evaluation of traffic forecasting methods requires realistic datasets, but current publicly available benchmarks have significant drawbacks, including the absence of information about road connectivity for road graph construction, limited information about road properties, and a relatively small number of road segments that falls short of real-world applications. Further, current datasets mostly contain information about intercity highways with sparsely located sensors, while city road networks arguably present a more challenging forecasting task due to much denser roads and more complex urban traffic patterns. In this work, we provide a more complete, realistic, and challenging benchmark for traffic forecasting by releasing datasets representing the road networks of two major cities, with the largest containing almost 100,000 road segments (more than a 10-fold increase relative to existing datasets). Our datasets contain rich road features and provide fine-grained data about both traffic volume and traffic speed, allowing for building more holistic traffic forecasting systems. We show that most current implementations of neural spatiotemporal models for traffic forecasting have problems scaling to datasets of our size. To overcome this issue, we propose an alternative approach to neural traffic forecasting that uses a GNN without a dedicated module for temporal sequence processing, thus achieving much better scalability, while also demonstrating stronger forecasting performance. We hope our datasets and modeling insights will serve as a valuable resource for research in traffic forecasting.
☆ Diffusion^2: Turning 3D Environments into Radio Frequency Heatmaps
Modeling radio frequency (RF) signal propagation is essential for understanding the environment, as RF signals offer valuable insights beyond the capabilities of RGB cameras, which are limited by the visible-light spectrum, lens coverage, and occlusions. It is also useful for supporting wireless diagnosis, deployment, and optimization. However, accurately predicting RF signals in complex environments remains a challenge due to interactions with obstacles such as absorption and reflection. We introduce Diffusion^2, a diffusion-based approach that uses 3D point clouds to model the propagation of RF signals across a wide range of frequencies, from Wi-Fi to millimeter waves. To effectively capture RF-related features from 3D data, we present the RF-3D Encoder, which encapsulates the complexities of 3D geometry along with signal-specific details. These features undergo multi-scale embedding to simulate the actual RF signal dissemination process. Our evaluation, based on synthetic and real-world measurements, demonstrates that Diffusion^2 accurately estimates the behavior of RF signals in various frequency bands and environmental conditions, with an error margin of just 1.9 dB and 27x faster than existing methods, marking a significant advancement in the field. Refer to https://rfvision-project.github.io/ for more information.
☆ How to Combat Reactive and Dynamic Jamming Attacks with Reinforcement Learning
This paper studies the problem of mitigating reactive jamming, where a jammer adopts a dynamic policy of selecting channels and sensing thresholds to detect and jam ongoing transmissions. The transmitter-receiver pair learns to avoid jamming and optimize throughput over time (without prior knowledge of channel conditions or jamming strategies) by using reinforcement learning (RL) to adapt transmit power, modulation, and channel selection. Q-learning is employed for discrete jamming-event states, while Deep Q-Networks (DQN) are employed for continuous states based on received power. Through different reward functions and action sets, the results show that RL can adapt rapidly to spectrum dynamics and sustain high rates as channels and jamming policies change over time.
☆ Paving the Way Towards Kinematic Assessment Using Monocular Video: A Preclinical Benchmark of State-of-the-Art Deep-Learning-Based 3D Human Pose Estimators Against Inertial Sensors in Daily Living Activities
Advances in machine learning and wearable sensors offer new opportunities for capturing and analyzing human movement outside specialized laboratories. Accurate assessment of human movement under real-world conditions is essential for telemedicine, sports science, and rehabilitation. This preclinical benchmark compares monocular video-based 3D human pose estimation models with inertial measurement units (IMUs), leveraging the VIDIMU dataset containing a total of 13 clinically relevant daily activities which were captured using both commodity video cameras and five IMUs. During this initial study only healthy subjects were recorded, so results cannot be generalized to pathological cohorts. Joint angles derived from state-of-the-art deep learning frameworks (MotionAGFormer, MotionBERT, MMPose 2D-to-3D pose lifting, and NVIDIA BodyTrack) were evaluated against joint angles computed from IMU data using OpenSim inverse kinematics following the Human3.6M dataset format with 17 keypoints. Among them, MotionAGFormer demonstrated superior performance, achieving the lowest overall RMSE ($9.27\deg \pm 4.80\deg$) and MAE ($7.86\deg \pm 4.18\deg$), as well as the highest Pearson correlation ($0.86 \pm 0.15$) and the highest coefficient of determination $R^{2}$ ($0.67 \pm 0.28$). The results reveal that both technologies are viable for out-of-the-lab kinematic assessment. However, they also highlight key trade-offs between video- and sensor-based approaches including costs, accessibility, and precision. This study clarifies where off-the-shelf video models already provide clinically promising kinematics in healthy adults and where they lag behind IMU-based estimates while establishing valuable guidelines for researchers and clinicians seeking to develop robust, cost-effective, and user-friendly solutions for telehealth and remote patient monitoring.
comment: All tables, graphs and figures generated can be obtained in the Zenodo repository complementary to this work: https://doi.org/10.5281/zenodo.15088423
☆ RLAD: Training LLMs to Discover Abstractions for Solving Reasoning Problems
Reasoning requires going beyond pattern matching or memorization of solutions to identify and implement "algorithmic procedures" that can be used to deduce answers to hard problems. Doing so requires realizing the most relevant primitives, intermediate results, or shared procedures, and building upon them. While RL post-training on long chains of thought ultimately aims to uncover this kind of algorithmic behavior, most reasoning traces learned by large models fail to consistently capture or reuse procedures, instead drifting into verbose and degenerate exploration. To address more effective reasoning, we introduce reasoning abstractions: concise natural language descriptions of procedural and factual knowledge that guide the model toward learning successful reasoning. We train models to be capable of proposing multiple abstractions given a problem, followed by RL that incentivizes building a solution while using the information provided by these abstractions. This results in a two-player RL training paradigm, abbreviated as RLAD, that jointly trains an abstraction generator and a solution generator. This setup effectively enables structured exploration, decouples learning signals of abstraction proposal and solution generation, and improves generalization to harder problems. We also show that allocating more test-time compute to generating abstractions is more beneficial for performance than generating more solutions at large test budgets, illustrating the role of abstractions in guiding meaningful exploration.
☆ Transformers Discover Molecular Structure Without Graph Priors
Graph Neural Networks (GNNs) are the dominant architecture for molecular machine learning, particularly for molecular property prediction and machine learning interatomic potentials (MLIPs). GNNs perform message passing on predefined graphs often induced by a fixed radius cutoff or k-nearest neighbor scheme. While this design aligns with the locality present in many molecular tasks, a hard-coded graph can limit expressivity due to the fixed receptive field and slows down inference with sparse graph operations. In this work, we investigate whether pure, unmodified Transformers trained directly on Cartesian coordinates$\unicode{x2013}$without predefined graphs or physical priors$\unicode{x2013}$can approximate molecular energies and forces. As a starting point for our analysis, we demonstrate how to train a Transformer to competitive energy and force mean absolute errors under a matched training compute budget, relative to a state-of-the-art equivariant GNN on the OMol25 dataset. We discover that the Transformer learns physically consistent patterns$\unicode{x2013}$such as attention weights that decay inversely with interatomic distance$\unicode{x2013}$and flexibly adapts them across different molecular environments due to the absence of hard-coded biases. The use of a standard Transformer also unlocks predictable improvements with respect to scaling training resources, consistent with empirical scaling laws observed in other domains. Our results demonstrate that many favorable properties of GNNs can emerge adaptively in Transformers, challenging the necessity of hard-coded graph inductive biases and pointing toward standardized, scalable architectures for molecular modeling.
☆ DragFlow: Unleashing DiT Priors with Region Based Supervision for Drag Editing
Drag-based image editing has long suffered from distortions in the target region, largely because the priors of earlier base models, Stable Diffusion, are insufficient to project optimized latents back onto the natural image manifold. With the shift from UNet-based DDPMs to more scalable DiT with flow matching (e.g., SD3.5, FLUX), generative priors have become significantly stronger, enabling advances across diverse editing tasks. However, drag-based editing has yet to benefit from these stronger priors. This work proposes the first framework to effectively harness FLUX's rich prior for drag-based editing, dubbed DragFlow, achieving substantial gains over baselines. We first show that directly applying point-based drag editing to DiTs performs poorly: unlike the highly compressed features of UNets, DiT features are insufficiently structured to provide reliable guidance for point-wise motion supervision. To overcome this limitation, DragFlow introduces a region-based editing paradigm, where affine transformations enable richer and more consistent feature supervision. Additionally, we integrate pretrained open-domain personalization adapters (e.g., IP-Adapter) to enhance subject consistency, while preserving background fidelity through gradient mask-based hard constraints. Multimodal large language models (MLLMs) are further employed to resolve task ambiguities. For evaluation, we curate a novel Region-based Dragging benchmark (ReD Bench) featuring region-level dragging instructions. Extensive experiments on DragBench-DR and ReD Bench show that DragFlow surpasses both point-based and region-based baselines, setting a new state-of-the-art in drag-based image editing. Code and datasets will be publicly available upon publication.
comment: Preprint
☆ The Unreasonable Effectiveness of Scaling Agents for Computer Use
Computer-use agents (CUAs) hold promise for automating everyday digital tasks, but their unreliability and high variance hinder their application to long-horizon, complex tasks. We introduce Behavior Best-of-N (bBoN), a method that scales over agents by generating multiple rollouts and selecting among them using behavior narratives that describe the agents' rollouts. It enables both wide exploration and principled trajectory selection, substantially improving robustness and success rates. On OSWorld, our bBoN scaling method establishes a new state of the art (SoTA) at 69.9%, significantly outperforming prior methods and approaching human-level performance at 72%, with comprehensive ablations validating key design choices. We further demonstrate strong generalization results to different operating systems on WindowsAgentArena and AndroidWorld. Crucially, our results highlight the unreasonable effectiveness of scaling CUAs, when you do it right: effective scaling requires structured trajectory understanding and selection, and bBoN provides a practical framework to achieve this.
comment: 23 pages, 7 figures, 10 tables
☆ Explore Briefly, Then Decide: Mitigating LLM Overthinking via Cumulative Entropy Regulation
Large Language Models (LLMs) have demonstrated remarkable reasoning abilities on complex problems using long Chain-of-Thought (CoT) reasoning. However, they often suffer from overthinking, meaning generating unnecessarily lengthy reasoning steps for simpler problems. This issue may degrade the efficiency of the models and make them difficult to adapt the reasoning depth to the complexity of problems. To address this, we introduce a novel metric Token Entropy Cumulative Average (TECA), which measures the extent of exploration throughout the reasoning process. We further propose a novel reasoning paradigm -- Explore Briefly, Then Decide -- with an associated Cumulative Entropy Regulation (CER) mechanism. This paradigm leverages TECA to help the model dynamically determine the optimal point to conclude its thought process and provide a final answer, thus achieving efficient reasoning. Experimental results across diverse mathematical benchmarks show that our approach substantially mitigates overthinking without sacrificing problem-solving ability. With our thinking paradigm, the average response length decreases by up to 71% on simpler datasets, demonstrating the effectiveness of our method in creating a more efficient and adaptive reasoning process.
☆ ExGRPO: Learning to Reason from Experience
Reinforcement learning from verifiable rewards (RLVR) is an emerging paradigm for improving the reasoning ability of large language models. However, standard on-policy training discards rollout experiences after a single update, leading to computational inefficiency and instability. While prior work on RL has highlighted the benefits of reusing past experience, the role of experience characteristics in shaping learning dynamics of large reasoning models remains underexplored. In this paper, we are the first to investigate what makes a reasoning experience valuable and identify rollout correctness and entropy as effective indicators of experience value. Based on these insights, we propose ExGRPO (Experiential Group Relative Policy Optimization), a framework that organizes and prioritizes valuable experiences, and employs a mixed-policy objective to balance exploration with experience exploitation. Experiments on five backbone models (1.5B-8B parameters) show that ExGRPO consistently improves reasoning performance on mathematical/general benchmarks, with an average gain of +3.5/7.6 points over on-policy RLVR. Moreover, ExGRPO stabilizes training on both stronger and weaker models where on-policy methods fail. These results highlight principled experience management as a key ingredient for efficient and scalable RLVR.
☆ Drop-Muon: Update Less, Converge Faster
Conventional wisdom in deep learning optimization dictates updating all layers at every step-a principle followed by all recent state-of-the-art optimizers such as Muon. In this work, we challenge this assumption, showing that full-network updates can be fundamentally suboptimal, both in theory and in practice. We introduce a non-Euclidean Randomized Progressive Training method-Drop-Muon-a simple yet powerful framework that updates only a subset of layers per step according to a randomized schedule, combining the efficiency of progressive training with layer-specific non-Euclidean updates for top-tier performance. We provide rigorous convergence guarantees under both layer-wise smoothness and layer-wise $(L^0, L^1)$-smoothness, covering deterministic and stochastic gradient settings, marking the first such results for progressive training in the stochastic and non-smooth regime. Our cost analysis further reveals that full-network updates are not optimal unless a very specific relationship between layer smoothness constants holds. Through controlled CNN experiments, we empirically demonstrate that Drop-Muon consistently outperforms full-network Muon, achieving the same accuracy up to $1.4\times$ faster in wall-clock time. Together, our results suggest a shift in how large-scale models can be efficiently trained, challenging the status quo and offering a highly efficient, theoretically grounded alternative to full-network updates.
☆ PUL-Inter-slice Defender: An Anomaly Detection Solution for Distributed Slice Mobility Attacks
Network Slices (NSs) are virtual networks operating over a shared physical infrastructure, each designed to meet specific application requirements while maintaining consistent Quality of Service (QoS). In Fifth Generation (5G) networks, User Equipment (UE) can connect to and seamlessly switch between multiple NSs to access diverse services. However, this flexibility, known as Inter-Slice Switching (ISS), introduces a potential vulnerability that can be exploited to launch Distributed Slice Mobility (DSM) attacks, a form of Distributed Denial of Service (DDoS) attack. To secure 5G networks and their NSs against DSM attacks, we present in this work, PUL-Inter-Slice Defender; an anomaly detection solution that leverages Positive Unlabeled Learning (PUL) and incorporates a combination of Long Short-Term Memory Autoencoders and K-Means clustering. PUL-Inter-Slice Defender leverages the Third Generation Partnership Project (3GPP) key performance indicators and performance measurement counters as features for its machine learning models to detect DSM attack variants while maintaining robustness in the presence of contaminated training data. When evaluated on data collected from our 5G testbed based on the open-source free5GC and UERANSIM, a UE/ Radio Access Network (RAN) simulator; PUL-Inter-Slice Defender achieved F1-scores exceeding 98.50% on training datasets with 10% to 40% attack contamination, consistently outperforming its counterpart Inter-Slice Defender and other PUL based solutions combining One-Class Support Vector Machine (OCSVM) with Random Forest and XGBoost.
comment: 13 pages, 7 figures, 4 tables, journal paper
☆ xLSTM Scaling Laws: Competitive Performance with Linear Time-Complexity
Scaling laws play a central role in the success of Large Language Models (LLMs), enabling the prediction of model performance relative to compute budgets prior to training. While Transformers have been the dominant architecture, recent alternatives such as xLSTM offer linear complexity with respect to context length while remaining competitive in the billion-parameter regime. We conduct a comparative investigation on the scaling behavior of Transformers and xLSTM along the following lines, providing insights to guide future model design and deployment. First, we study the scaling behavior for xLSTM in compute-optimal and over-training regimes using both IsoFLOP and parametric fit approaches on a wide range of model sizes (80M-7B) and number of training tokens (2B-2T). Second, we examine the dependence of optimal model sizes on context length, a pivotal aspect that was largely ignored in previous work. Finally, we analyze inference-time scaling characteristics. Our findings reveal that in typical LLM training and inference scenarios, xLSTM scales favorably compared to Transformers. Importantly, xLSTM's advantage widens as training and inference contexts grow.
comment: Code and data available at https://github.com/NX-AI/xlstm_scaling_laws
☆ More Than One Teacher: Adaptive Multi-Guidance Policy Optimization for Diverse Exploration
Reinforcement Learning with Verifiable Rewards (RLVR) is a promising paradigm for enhancing the reasoning ability in Large Language Models (LLMs). However, prevailing methods primarily rely on self-exploration or a single off-policy teacher to elicit long chain-of-thought (LongCoT) reasoning, which may introduce intrinsic model biases and restrict exploration, ultimately limiting reasoning diversity and performance. Drawing inspiration from multi-teacher strategies in knowledge distillation, we introduce Adaptive Multi-Guidance Policy Optimization (AMPO), a novel framework that adaptively leverages guidance from multiple proficient teacher models, but only when the on-policy model fails to generate correct solutions. This "guidance-on-demand" approach expands exploration while preserving the value of self-discovery. Moreover, AMPO incorporates a comprehension-based selection mechanism, prompting the student to learn from the reasoning paths that it is most likely to comprehend, thus balancing broad exploration with effective exploitation. Extensive experiments show AMPO substantially outperforms a strong baseline (GRPO), with a 4.3% improvement on mathematical reasoning tasks and 12.2% on out-of-distribution tasks, while significantly boosting Pass@k performance and enabling more diverse exploration. Notably, using four peer-sized teachers, our method achieves comparable results to approaches that leverage a single, more powerful teacher (e.g., DeepSeek-R1) with more data. These results demonstrate a more efficient and scalable path to superior reasoning and generalizability. Our code is available at https://github.com/SII-Enigma/AMPO.
comment: 20 pages, 5 figures
☆ TempoControl: Temporal Attention Guidance for Text-to-Video Models
Recent advances in generative video models have enabled the creation of high-quality videos based on natural language prompts. However, these models frequently lack fine-grained temporal control, meaning they do not allow users to specify when particular visual elements should appear within a generated sequence. In this work, we introduce TempoControl, a method that allows for temporal alignment of visual concepts during inference, without requiring retraining or additional supervision. TempoControl utilizes cross-attention maps, a key component of text-to-video diffusion models, to guide the timing of concepts through a novel optimization approach. Our method steers attention using three complementary principles: aligning its temporal shape with a control signal (via correlation), amplifying it where visibility is needed (via energy), and maintaining spatial focus (via entropy). TempoControl allows precise control over timing while ensuring high video quality and diversity. We demonstrate its effectiveness across various video generation applications, including temporal reordering for single and multiple objects, as well as action and audio-aligned generation.
comment: Under Review
☆ Efficiently Generating Correlated Sample Paths from Multi-step Time Series Foundation Models
Many time series applications require access to multi-step forecast trajectories in the form of sample paths. Recently, time series foundation models have leveraged multi-step lookahead predictions to improve the quality and efficiency of multi-step forecasts. However, these models only predict independent marginal distributions for each time step, rather than a full joint predictive distribution. To generate forecast sample paths with realistic correlation structures, one typically resorts to autoregressive sampling, which can be extremely expensive. In this paper, we present a copula-based approach to efficiently generate accurate, correlated sample paths from existing multi-step time series foundation models in one forward pass. Our copula-based approach generates correlated sample paths orders of magnitude faster than autoregressive sampling, and it yields improved sample path quality by mitigating the snowballing error phenomenon.
☆ Quantum Fisher information matrices from Rényi relative entropies
Quantum generalizations of the Fisher information are important in quantum information science, with applications in high energy and condensed matter physics and in quantum estimation theory, machine learning, and optimization. One can derive a quantum generalization of the Fisher information matrix in a natural way as the Hessian matrix arising in a Taylor expansion of a smooth divergence. Such an approach is appealing for quantum information theorists, given the ubiquity of divergences in quantum information theory. In contrast to the classical case, there is not a unique quantum generalization of the Fisher information matrix, similar to how there is not a unique quantum generalization of the relative entropy or the R\'enyi relative entropy. In this paper, I derive information matrices arising from the log-Euclidean, $\alpha$-$z$, and geometric R\'enyi relative entropies, with the main technical tool for doing so being the method of divided differences for calculating matrix derivatives. Interestingly, for all non-negative values of the R\'enyi parameter $\alpha$, the log-Euclidean R\'enyi relative entropy leads to the Kubo-Mori information matrix, and the geometric R\'enyi relative entropy leads to the right-logarithmic derivative Fisher information matrix. Thus, the resulting information matrices obey the data-processing inequality for all non-negative values of the R\'enyi parameter $\alpha$ even though the original quantities do not. Additionally, I derive and establish basic properties of $\alpha$-$z$ information matrices resulting from the $\alpha$-$z$ R\'enyi relative entropies. For parameterized thermal states, I establish formulas for their $\alpha$-$z$ information matrices and hybrid quantum-classical algorithms for estimating them, with applications in quantum Boltzmann machine learning.
comment: 94 pages, 2 figures, dedicated to Professor Fumio Hiai on the occasion of his forthcoming 80th birthday
☆ Diffusion Transformers for Imputation: Statistical Efficiency and Uncertainty Quantification NeurIPS 2025
Imputation methods play a critical role in enhancing the quality of practical time-series data, which often suffer from pervasive missing values. Recently, diffusion-based generative imputation methods have demonstrated remarkable success compared to autoregressive and conventional statistical approaches. Despite their empirical success, the theoretical understanding of how well diffusion-based models capture complex spatial and temporal dependencies between the missing values and observed ones remains limited. Our work addresses this gap by investigating the statistical efficiency of conditional diffusion transformers for imputation and quantifying the uncertainty in missing values. Specifically, we derive statistical sample complexity bounds based on a novel approximation theory for conditional score functions using transformers, and, through this, construct tight confidence regions for missing values. Our findings also reveal that the efficiency and accuracy of imputation are significantly influenced by the missing patterns. Furthermore, we validate these theoretical insights through simulation and propose a mixed-masking training strategy to enhance the imputation performance.
comment: 49 pages, 4 figures. Accepted as a poster at NeurIPS 2025
☆ C2AL: Cohort-Contrastive Auxiliary Learning for Large-scale Recommendation Systems ICLR 2026
Training large-scale recommendation models under a single global objective implicitly assumes homogeneity across user populations. However, real-world data are composites of heterogeneous cohorts with distinct conditional distributions. As models increase in scale and complexity and as more data is used for training, they become dominated by central distribution patterns, neglecting head and tail regions. This imbalance limits the model's learning ability and can result in inactive attention weights or dead neurons. In this paper, we reveal how the attention mechanism can play a key role in factorization machines for shared embedding selection, and propose to address this challenge by analyzing the substructures in the dataset and exposing those with strong distributional contrast through auxiliary learning. Unlike previous research, which heuristically applies weighted labels or multi-task heads to mitigate such biases, we leverage partially conflicting auxiliary labels to regularize the shared representation. This approach customizes the learning process of attention layers to preserve mutual information with minority cohorts while improving global performance. We evaluated C2AL on massive production datasets with billions of data points each for six SOTA models. Experiments show that the factorization machine is able to capture fine-grained user-ad interactions using the proposed method, achieving up to a 0.16% reduction in normalized entropy overall and delivering gains exceeding 0.30% on targeted minority cohorts.
comment: Submitted to ICLR 2026
☆ DiFFPO: Training Diffusion LLMs to Reason Fast and Furious via Reinforcement Learning
We propose DiFFPO, Diffusion Fast and Furious Policy Optimization, a unified framework for training masked diffusion large language models (dLLMs) to reason not only better (furious), but also faster via reinforcement learning (RL). We first unify the existing baseline approach such as d1 by proposing to train surrogate policies via off-policy RL, whose likelihood is much more tractable as an approximation to the true dLLM policy. This naturally motivates a more accurate and informative two-stage likelihood approximation combined with importance sampling correction, which leads to generalized RL algorithms with better sample efficiency and superior task performance. Second, we propose a new direction of joint training efficient samplers/controllers of dLLMs policy. Via RL, we incentivize dLLMs' natural multi-token prediction capabilities by letting the model learn to adaptively allocate an inference threshold for each prompt. By jointly training the sampler, we yield better accuracies with lower number of function evaluations (NFEs) compared to training the model only, obtaining the best performance in improving the Pareto frontier of the inference-time compute of dLLMs. We showcase the effectiveness of our pipeline by training open source large diffusion language models over benchmark math and planning tasks.
☆ StockBench: Can LLM Agents Trade Stocks Profitably In Real-world Markets?
Large language models (LLMs) have recently demonstrated strong capabilities as autonomous agents, showing promise in reasoning, tool use, and sequential decision-making. While prior benchmarks have evaluated LLM agents in domains such as software engineering and scientific discovery, the finance domain remains underexplored, despite its direct relevance to economic value and high-stakes decision-making. Existing financial benchmarks primarily test static knowledge through question answering, but they fall short of capturing the dynamic and iterative nature of trading. To address this gap, we introduce StockBench, a contamination-free benchmark designed to evaluate LLM agents in realistic, multi-month stock trading environments. Agents receive daily market signals -- including prices, fundamentals, and news -- and must make sequential buy, sell, or hold decisions. Performance is assessed using financial metrics such as cumulative return, maximum drawdown, and the Sortino ratio. Our evaluation of state-of-the-art proprietary (e.g., GPT-5, Claude-4) and open-weight (e.g., Qwen3, Kimi-K2, GLM-4.5) models shows that while most LLM agents struggle to outperform the simple buy-and-hold baseline, several models demonstrate the potential to deliver higher returns and manage risk more effectively. These findings highlight both the challenges and opportunities in developing LLM-powered financial agents, showing that excelling at static financial knowledge tasks does not necessarily translate into successful trading strategies. We release StockBench as an open-source resource to support reproducibility and advance future research in this domain.
☆ Measurement-Guided Consistency Model Sampling for Inverse Problems
Diffusion models have become powerful generative priors for solving inverse imaging problems, but their reliance on slow multi-step sampling limits practical deployment. Consistency models address this bottleneck by enabling high-quality generation in a single or only a few steps, yet their direct adaptation to inverse problems is underexplored. In this paper, we present a modified consistency sampling approach tailored for inverse problem reconstruction: the sampler's stochasticity is guided by a measurement-consistency mechanism tied to the measurement operator, which enforces fidelity to the acquired measurements while retaining the efficiency of consistency-based generation. Experiments on Fashion-MNIST and LSUN Bedroom datasets demonstrate consistent improvements in perceptual and pixel-level metrics, including Fr\'echet Inception Distance, Kernel Inception Distance, peak signal-to-noise ratio, and structural similarity index measure, compared to baseline consistency sampling, yielding competitive or superior reconstructions with only a handful of steps.
comment: 5 pages, 3 figures, submitted to IEEE Signal Processing Letters
☆ Poolformer: Recurrent Networks with Pooling for Long-Sequence Modeling
Sequence-to-sequence models have become central in Artificial Intelligence, particularly following the introduction of the transformer architecture. While initially developed for Natural Language Processing, these models have demonstrated utility across domains, including Computer Vision. Such models require mechanisms to exchange information along the time dimension, typically using recurrent or self-attention layers. However, self-attention scales quadratically with sequence length, limiting its practicality for very long sequences. We introduce Poolformer, a sequence-to-sequence model that replaces self-attention with recurrent layers and incorporates pooling operations to reduce sequence length. Poolformer is defined recursively using SkipBlocks, which contain residual blocks, a down-pooling layer, a nested SkipBlock, an up-pooling layer, and additional residual blocks. We conduct extensive experiments to support our architectural choices. Our results show that pooling greatly accelerates training, improves perceptual metrics (FID and IS), and prevents overfitting. Our experiments also suggest that long-range dependencies are handled by deep layers, while shallow layers take care of short-term features. Evaluated on raw audio, which naturally features long sequence lengths, Poolformer outperforms state-of-the-art models such as SaShiMi and Mamba. Future directions include applications to text and vision, as well as multi-modal scenarios, where a Poolformer-based LLM could effectively process dense representations of images and videos.
Detection of Chagas Disease from the ECG: The George B. Moody PhysioNet Challenge 2025
Objective: Chagas disease is a parasitic infection that is endemic to South America, Central America, and, more recently, the U.S., primarily transmitted by insects. Chronic Chagas disease can cause cardiovascular diseases and digestive problems. Serological testing capacities for Chagas disease are limited, but Chagas cardiomyopathy often manifests in ECGs, providing an opportunity to prioritize patients for testing and treatment. Approach: The George B. Moody PhysioNet Challenge 2025 invites teams to develop algorithmic approaches for identifying Chagas disease from electrocardiograms (ECGs). Main results: This Challenge provides multiple innovations. First, we leveraged several datasets with labels from patient reports and serological testing, provided a large dataset with weak labels and smaller datasets with strong labels. Second, we augmented the data to support model robustness and generalizability to unseen data sources. Third, we applied an evaluation metric that captured the local serological testing capacity for Chagas disease to frame the machine learning problem as a triage task. Significance: Over 630 participants from 111 teams submitted over 1300 entries during the Challenge, representing diverse approaches from academia and industry worldwide.
comment: 13 pages, 2 figures
☆ UpSafe$^\circ$C: Upcycling for Controllable Safety in Large Language Models
Large Language Models (LLMs) have achieved remarkable progress across a wide range of tasks, but remain vulnerable to safety risks such as harmful content generation and jailbreak attacks. Existing safety techniques -- including external guardrails, inference-time guidance, and post-training alignment -- each face limitations in balancing safety, utility, and controllability. In this work, we propose UpSafe$^\circ$C, a unified framework for enhancing LLM safety through safety-aware upcycling. Our approach first identifies safety-critical layers and upcycles them into a sparse Mixture-of-Experts (MoE) structure, where the router acts as a soft guardrail that selectively activates original MLPs and added safety experts. We further introduce a two-stage SFT strategy to strengthen safety discrimination while preserving general capabilities. To enable flexible control at inference time, we introduce a safety temperature mechanism, allowing dynamic adjustment of the trade-off between safety and utility. Experiments across multiple benchmarks, base model, and model scales demonstrate that UpSafe$^\circ$C achieves robust safety improvements against harmful and jailbreak inputs, while maintaining competitive performance on general tasks. Moreover, analysis shows that safety temperature provides fine-grained inference-time control that achieves the Pareto-optimal frontier between utility and safety. Our results highlight a new direction for LLM safety: moving from static alignment toward dynamic, modular, and inference-aware control.
☆ Hybrid Physics-ML Framework for Pan-Arctic Permafrost Infrastructure Risk at Record 2.9-Million Observation Scale
Arctic warming threatens over 100 billion in permafrost-dependent infrastructure across Northern territories, yet existing risk assessment frameworks lack spatiotemporal validation, uncertainty quantification, and operational decision-support capabilities. We present a hybrid physics-machine learning framework integrating 2.9 million observations from 171,605 locations (2005-2021) combining permafrost fraction data with climate reanalysis. Our stacked ensemble model (Random Forest + Histogram Gradient Boosting + Elastic Net) achieves R2=0.980 (RMSE=5.01 pp) with rigorous spatiotemporal cross-validation preventing data leakage. To address machine learning limitations in extrapolative climate scenarios, we develop a hybrid approach combining learned climate-permafrost relationships (60%) with physical permafrost sensitivity models (40%, -10 pp/C). Under RCP8.5 forcing (+5C over 10 years), we project mean permafrost fraction decline of -20.3 pp (median: -20.0 pp), with 51.5% of Arctic Russia experiencing over 20 percentage point loss. Infrastructure risk classification identifies 15% high-risk zones (25% medium-risk) with spatially explicit uncertainty maps. Our framework represents the largest validated permafrost ML dataset globally, provides the first operational hybrid physics-ML forecasting system for Arctic infrastructure, and delivers open-source tools enabling probabilistic permafrost projections for engineering design codes and climate adaptation planning. The methodology is generalizable to other permafrost regions and demonstrates how hybrid approaches can overcome pure data-driven limitations in climate change applications.
comment: 14 pages, 9 figures
☆ High-Fidelity Speech Enhancement via Discrete Audio Tokens
Recent autoregressive transformer-based speech enhancement (SE) methods have shown promising results by leveraging advanced semantic understanding and contextual modeling of speech. However, these approaches often rely on complex multi-stage pipelines and low sampling rate codecs, limiting them to narrow and task-specific speech enhancement. In this work, we introduce DAC-SE1, a simplified language model-based SE framework leveraging discrete high-resolution audio representations; DAC-SE1 preserves fine-grained acoustic details while maintaining semantic coherence. Our experiments show that DAC-SE1 surpasses state-of-the-art autoregressive SE methods on both objective perceptual metrics and in a MUSHRA human evaluation. We release our codebase and model checkpoints to support further research in scalable, unified, and high-quality speech enhancement.
☆ GeoPurify: A Data-Efficient Geometric Distillation Framework for Open-Vocabulary 3D Segmentation
Recent attempts to transfer features from 2D Vision-Language Models (VLMs) to 3D semantic segmentation expose a persistent trade-off. Directly projecting 2D features into 3D yields noisy and fragmented predictions, whereas enforcing geometric coherence necessitates costly training pipelines and large-scale annotated 3D data. We argue that this limitation stems from the dominant segmentation-and-matching paradigm, which fails to reconcile 2D semantics with 3D geometric structure. The geometric cues are not eliminated during the 2D-to-3D transfer but remain latent within the noisy and view-aggregated features. To exploit this property, we propose GeoPurify that applies a small Student Affinity Network to purify 2D VLM-generated 3D point features using geometric priors distilled from a 3D self-supervised teacher model. During inference, we devise a Geometry-Guided Pooling module to further denoise the point cloud and ensure the semantic and structural consistency. Benefiting from latent geometric information and the learned affinity network, GeoPurify effectively mitigates the trade-off and achieves superior data efficiency. Extensive experiments on major 3D benchmarks demonstrate that GeoPurify achieves or surpasses state-of-the-art performance while utilizing only about 1.5% of the training data. Our codes and checkpoints are available at [https://github.com/tj12323/GeoPurify](https://github.com/tj12323/GeoPurify).
☆ Uncovering Semantic Selectivity of Latent Groups in Higher Visual Cortex with Mutual Information-Guided Diffusion
Understanding how neural populations in higher visual areas encode object-centered visual information remains a central challenge in computational neuroscience. Prior works have investigated representational alignment between artificial neural networks and the visual cortex. Nevertheless, these findings are indirect and offer limited insights to the structure of neural populations themselves. Similarly, decoding-based methods have quantified semantic features from neural populations but have not uncovered their underlying organizations. This leaves open a scientific question: "how feature-specific visual information is distributed across neural populations in higher visual areas, and whether it is organized into structured, semantically meaningful subspaces." To tackle this problem, we present MIG-Vis, a method that leverages the generative power of diffusion models to visualize and validate the visual-semantic attributes encoded in neural latent subspaces. Our method first uses a variational autoencoder to infer a group-wise disentangled neural latent subspace from neural populations. Subsequently, we propose a mutual information (MI)-guided diffusion synthesis procedure to visualize the specific visual-semantic features encoded by each latent group. We validate MIG-Vis on multi-session neural spiking datasets from the inferior temporal (IT) cortex of two macaques. The synthesized results demonstrate that our method identifies neural latent groups with clear semantic selectivity to diverse visual features, including object pose, inter-category transformations, and intra-class content. These findings provide direct, interpretable evidence of structured semantic representation in the higher visual cortex and advance our understanding of its encoding principles.
☆ GRACE: A Language Model Framework for Explainable Inverse Reinforcement Learning
Inverse Reinforcement Learning aims to recover reward models from expert demonstrations, but traditional methods yield "black-box" models that are difficult to interpret and debug. In this work, we introduce GRACE (Generating Rewards As CodE), a method for using Large Language Models within an evolutionary search to reverse-engineer an interpretable, code-based reward function directly from expert trajectories. The resulting reward function is executable code that can be inspected and verified. We empirically validate GRACE on the BabyAI and AndroidWorld benchmarks, where it efficiently learns highly accurate rewards, even in complex, multi-task settings. Further, we demonstrate that the resulting reward leads to strong policies, compared to both competitive Imitation Learning and online RL approaches with ground-truth rewards. Finally, we show that GRACE is able to build complex reward APIs in multi-task setups.
☆ Flatness-Aware Stochastic Gradient Langevin Dynamics
Generalization in deep learning is closely tied to the pursuit of flat minima in the loss landscape, yet classical Stochastic Gradient Langevin Dynamics (SGLD) offers no mechanism to bias its dynamics toward such low-curvature solutions. This work introduces Flatness-Aware Stochastic Gradient Langevin Dynamics (fSGLD), designed to efficiently and provably seek flat minima in high-dimensional nonconvex optimization problems. At each iteration, fSGLD uses the stochastic gradient evaluated at parameters perturbed by isotropic Gaussian noise, commonly referred to as Random Weight Perturbation (RWP), thereby optimizing a randomized-smoothing objective that implicitly captures curvature information. Leveraging these properties, we prove that the invariant measure of fSGLD stays close to a stationary measure concentrated on the global minimizers of a loss function regularized by the Hessian trace whenever the inverse temperature and the scale of random weight perturbation are properly coupled. This result provides a rigorous theoretical explanation for the benefits of random weight perturbation. In particular, we establish non-asymptotic convergence guarantees in Wasserstein distance with the best known rate and derive an excess-risk bound for the Hessian-trace regularized objective. Extensive experiments on noisy-label and large-scale vision tasks, in both training-from-scratch and fine-tuning settings, demonstrate that fSGLD achieves superior or comparable generalization and robustness to baseline algorithms while maintaining the computational cost of SGD, about half that of SAM. Hessian-spectrum analysis further confirms that fSGLD converges to significantly flatter minima.
☆ Learning to Reason for Hallucination Span Detection
Large language models (LLMs) often generate hallucinations -- unsupported content that undermines reliability. While most prior works frame hallucination detection as a binary task, many real-world applications require identifying hallucinated spans, which is a multi-step decision making process. This naturally raises the question of whether explicit reasoning can help the complex task of detecting hallucination spans. To answer this question, we first evaluate pretrained models with and without Chain-of-Thought (CoT) reasoning, and show that CoT reasoning has the potential to generate at least one correct answer when sampled multiple times. Motivated by this, we propose RL4HS, a reinforcement learning framework that incentivizes reasoning with a span-level reward function. RL4HS builds on Group Relative Policy Optimization and introduces Class-Aware Policy Optimization to mitigate reward imbalance issue. Experiments on the RAGTruth benchmark (summarization, question answering, data-to-text) show that RL4HS surpasses pretrained reasoning models and supervised fine-tuning, demonstrating the necessity of reinforcement learning with span-level rewards for detecting hallucination spans.
☆ NoMod: A Non-modular Attack on Module Learning With Errors
The advent of quantum computing threatens classical public-key cryptography, motivating NIST's adoption of post-quantum schemes such as those based on the Module Learning With Errors (Module-LWE) problem. We present NoMod ML-Attack, a hybrid white-box cryptanalytic method that circumvents the challenge of modeling modular reduction by treating wrap-arounds as statistical corruption and casting secret recovery as robust linear estimation. Our approach combines optimized lattice preprocessing--including reduced-vector saving and algebraic amplification--with robust estimators trained via Tukey's Biweight loss. Experiments show NoMod achieves full recovery of binary secrets for dimension $n = 350$, recovery of sparse binomial secrets for $n = 256$, and successful recovery of sparse secrets in CRYSTALS-Kyber settings with parameters $(n, k) = (128, 3)$ and $(256, 2)$. We release our implementation in an anonymous repository https://anonymous.4open.science/r/NoMod-3BD4.
☆ Comparing Contrastive and Triplet Loss in Audio-Visual Embedding: Intra-Class Variance and Greediness Analysis
Contrastive loss and triplet loss are widely used objectives in deep metric learning, yet their effects on representation quality remain insufficiently understood. We present a theoretical and empirical comparison of these losses, focusing on intra- and inter-class variance and optimization behavior (e.g., greedy updates). Through task-specific experiments with consistent settings on synthetic data and real datasets-MNIST, CIFAR-10-it is shown that triplet loss preserves greater variance within and across classes, supporting finer-grained distinctions in the learned representations. In contrast, contrastive loss tends to compact intra-class embeddings, which may obscure subtle semantic differences. To better understand their optimization dynamics, By examining loss-decay rate, active ratio, and gradient norm, we find that contrastive loss drives many small updates early on, while triplet loss produces fewer but stronger updates that sustain learning on hard examples. Finally, across both classification and retrieval tasks on MNIST, CIFAR-10, CUB-200, and CARS196 datasets, our results consistently show that triplet loss yields superior performance, which suggests using triplet loss for detail retention and hard-sample focus, and contrastive loss for smoother, broad-based embedding refinement.
comment: 8 pages, 4 tables, 3 figures
Reinforcement Learning with Action-Triggered Observations
We study reinforcement learning problems where state observations are stochastically triggered by actions, a constraint common in many real-world applications. This framework is formulated as Action-Triggered Sporadically Traceable Markov Decision Processes (ATST-MDPs), where each action has a specified probability of triggering a state observation. We derive tailored Bellman optimality equations for this framework and introduce the action-sequence learning paradigm in which agents commit to executing a sequence of actions until the next observation arrives. Under the linear MDP assumption, value-functions are shown to admit linear representations in an induced action-sequence feature map. Leveraging this structure, we propose off-policy estimators with statistical error guarantees for such feature maps and introduce ST-LSVI-UCB, a variant of LSVI-UCB adapted for action-triggered settings. ST-LSVI-UCB achieves regret $\widetilde O(\sqrt{Kd^3(1-\gamma)^{-3}})$, where $K$ is the number of episodes, $d$ the feature dimension, and $\gamma$ the discount factor (per-step episode non-termination probability). Crucially, this work establishes the theoretical foundation for learning with sporadic, action-triggered observations while demonstrating that efficient learning remains feasible under such observation constraints.
☆ Policy Gradient Guidance Enables Test Time Control
We introduce Policy Gradient Guidance (PGG), a simple extension of classifier-free guidance from diffusion models to classical policy gradient methods. PGG augments the policy gradient with an unconditional branch and interpolates conditional and unconditional branches, yielding a test-time control knob that modulates behavior without retraining. We provide a theoretical derivation showing that the additional normalization term vanishes under advantage estimation, leading to a clean guided policy gradient update. Empirically, we evaluate PGG on discrete and continuous control benchmarks. We find that conditioning dropout-central to diffusion guidance-offers gains in simple discrete tasks and low sample regimes, but dropout destabilizes continuous control. Training with modestly larger guidance ($\gamma>1$) consistently improves stability, sample efficiency, and controllability. Our results show that guidance, previously confined to diffusion policies, can be adapted to standard on-policy methods, opening new directions for controllable online reinforcement learning.
☆ How to Find Fantastic Papers: Self-Rankings as a Powerful Predictor of Scientific Impact Beyond Peer Review
Peer review in academic research aims not only to ensure factual correctness but also to identify work of high scientific potential that can shape future research directions. This task is especially critical in fast-moving fields such as artificial intelligence (AI), yet it has become increasingly difficult given the rapid growth of submissions. In this paper, we investigate an underexplored measure for identifying high-impact research: authors' own rankings of their multiple submissions to the same AI conference. Grounded in game-theoretic reasoning, we hypothesize that self-rankings are informative because authors possess unique understanding of their work's conceptual depth and long-term promise. To test this hypothesis, we conducted a large-scale experiment at a leading AI conference, where 1,342 researchers self-ranked their 2,592 submissions by perceived quality. Tracking outcomes over more than a year, we found that papers ranked highest by their authors received twice as many citations as their lowest-ranked counterparts; self-rankings were especially effective at identifying highly cited papers (those with over 150 citations). Moreover, we showed that self-rankings outperformed peer review scores in predicting future citation counts. Our results remained robust after accounting for confounders such as preprint posting time and self-citations. Together, these findings demonstrate that authors' self-rankings provide a reliable and valuable complement to peer review for identifying and elevating high-impact research in AI.
Catalyst GFlowNet for electrocatalyst design: A hydrogen evolution reaction case study NeurIPS
Efficient and inexpensive energy storage is essential for accelerating the adoption of renewable energy and ensuring a stable supply, despite fluctuations in sources such as wind and solar. Electrocatalysts play a key role in hydrogen energy storage (HES), allowing the energy to be stored as hydrogen. However, the development of affordable and high-performance catalysts for this process remains a significant challenge. We introduce Catalyst GFlowNet, a generative model that leverages machine learning-based predictors of formation and adsorption energy to design crystal surfaces that act as efficient catalysts. We demonstrate the performance of the model through a proof-of-concept application to the hydrogen evolution reaction, a key reaction in HES, for which we successfully identified platinum as the most efficient known catalyst. In future work, we aim to extend this approach to the oxygen evolution reaction, where current optimal catalysts are expensive metal oxides, and open the search space to discover new materials. This generative modeling framework offers a promising pathway for accelerating the search for novel and efficient catalysts.
comment: 5 pages, 2 figures. Accepted to NeurIPS AI for Materials Workshop 2025
☆ BioinfoMCP: A Unified Platform Enabling MCP Interfaces in Agentic Bioinformatics
Bioinformatics tools are essential for complex computational biology tasks, yet their integration with emerging AI-agent frameworks is hindered by incompatible interfaces, heterogeneous input-output formats, and inconsistent parameter conventions. The Model Context Protocol (MCP) provides a standardized framework for tool-AI communication, but manually converting hundreds of existing and rapidly growing specialized bioinformatics tools into MCP-compliant servers is labor-intensive and unsustainable. Here, we present BioinfoMCP, a unified platform comprising two components: BioinfoMCP Converter, which automatically generates robust MCP servers from tool documentation using large language models, and BioinfoMCP Benchmark, which systematically validates the reliability and versatility of converted tools across diverse computational tasks. We present a platform of 38 MCP-converted bioinformatics tools, extensively validated to show that 94.7% successfully executed complex workflows across three widely used AI-agent platforms. By removing technical barriers to AI automation, BioinfoMCP enables natural-language interaction with sophisticated bioinformatics analyses without requiring extensive programming expertise, offering a scalable path to intelligent, interoperable computational biology.
comment: 20 pages, 8 figures, 3 tables
☆ FlexDoc: Parameterized Sampling for Diverse Multilingual Synthetic Documents for Training Document Understanding Models EMNLP 2025
Developing document understanding models at enterprise scale requires large, diverse, and well-annotated datasets spanning a wide range of document types. However, collecting such data is prohibitively expensive due to privacy constraints, legal restrictions, and the sheer volume of manual annotation needed - costs that can scale into millions of dollars. We introduce FlexDoc, a scalable synthetic data generation framework that combines Stochastic Schemas and Parameterized Sampling to produce realistic, multilingual semi-structured documents with rich annotations. By probabilistically modeling layout patterns, visual structure, and content variability, FlexDoc enables the controlled generation of diverse document variants at scale. Experiments on Key Information Extraction (KIE) tasks demonstrate that FlexDoc-generated data improves the absolute F1 Score by up to 11% when used to augment real datasets, while reducing annotation effort by over 90% compared to traditional hard-template methods. The solution is in active deployment, where it has accelerated the development of enterprise-grade document understanding models while significantly reducing data acquisition and annotation costs.
comment: Accepted at EMNLP 2025
☆ VarCoNet: A variability-aware self-supervised framework for functional connectome extraction from resting-state fMRI
Accounting for inter-individual variability in brain function is key to precision medicine. Here, by considering functional inter-individual variability as meaningful data rather than noise, we introduce VarCoNet, an enhanced self-supervised framework for robust functional connectome (FC) extraction from resting-state fMRI (rs-fMRI) data. VarCoNet employs self-supervised contrastive learning to exploit inherent functional inter-individual variability, serving as a brain function encoder that generates FC embeddings readily applicable to downstream tasks even in the absence of labeled data. Contrastive learning is facilitated by a novel augmentation strategy based on segmenting rs-fMRI signals. At its core, VarCoNet integrates a 1D-CNN-Transformer encoder for advanced time-series processing, enhanced with a robust Bayesian hyperparameter optimization. Our VarCoNet framework is evaluated on two downstream tasks: (i) subject fingerprinting, using rs-fMRI data from the Human Connectome Project, and (ii) autism spectrum disorder (ASD) classification, using rs-fMRI data from the ABIDE I and ABIDE II datasets. Using different brain parcellations, our extensive testing against state-of-the-art methods, including 13 deep learning methods, demonstrates VarCoNet's superiority, robustness, interpretability, and generalizability. Overall, VarCoNet provides a versatile and robust framework for FC analysis in rs-fMRI.
comment: My preview .pdf was not loading. Can you please share with me a compiled .pdf file so I can confirm that the result is correct?
☆ Non-Asymptotic Analysis of Data Augmentation for Precision Matrix Estimation NeurIPS 2025
This paper addresses the problem of inverse covariance (also known as precision matrix) estimation in high-dimensional settings. Specifically, we focus on two classes of estimators: linear shrinkage estimators with a target proportional to the identity matrix, and estimators derived from data augmentation (DA). Here, DA refers to the common practice of enriching a dataset with artificial samples--typically generated via a generative model or through random transformations of the original data--prior to model fitting. For both classes of estimators, we derive estimators and provide concentration bounds for their quadratic error. This allows for both method comparison and hyperparameter tuning, such as selecting the optimal proportion of artificial samples. On the technical side, our analysis relies on tools from random matrix theory. We introduce a novel deterministic equivalent for generalized resolvent matrices, accommodating dependent samples with specific structure. We support our theoretical results with numerical experiments.
comment: Conference paper at NeurIPS 2025 (Spotlight)
☆ DAG DECORation: Continuous Optimization for Structure Learning under Hidden Confounding
We study structure learning for linear Gaussian SEMs in the presence of latent confounding. Existing continuous methods excel when errors are independent, while deconfounding-first pipelines rely on pervasive factor structure or nonlinearity. We propose \textsc{DECOR}, a single likelihood-based and fully differentiable estimator that jointly learns a DAG and a correlated noise model. Our theory gives simple sufficient conditions for global parameter identifiability: if the mixed graph is bow free and the noise covariance has a uniform eigenvalue margin, then the map from $(\B,\OmegaMat)$ to the observational covariance is injective, so both the directed structure and the noise are uniquely determined. The estimator alternates a smooth-acyclic graph update with a convex noise update and can include a light bow complementarity penalty or a post hoc reconciliation step. On synthetic benchmarks that vary confounding density, graph density, latent rank, and dimension with $n
☆ Ensemble Threshold Calibration for Stable Sensitivity Control
Precise recall control is critical in large-scale spatial conflation and entity-matching tasks, where missing even a few true matches can break downstream analytics, while excessive manual review inflates cost. Classical confidence-interval cuts such as Clopper-Pearson or Wilson provide lower bounds on recall, but they routinely overshoot the target by several percentage points and exhibit high run-to-run variance under skewed score distributions. We present an end-to-end framework that achieves exact recall with sub-percent variance over tens of millions of geometry pairs, while remaining TPU-friendly. Our pipeline starts with an equigrid bounding-box filter and compressed sparse row (CSR) candidate representation, reducing pair enumeration by two orders of magnitude. A deterministic xxHash bootstrap sample trains a lightweight neural ranker; its scores are propagated to all remaining pairs via a single forward pass and used to construct a reproducible, score-decile-stratified calibration set. Four complementary threshold estimators - Clopper-Pearson, Jeffreys, Wilson, and an exact quantile - are aggregated via inverse-variance weighting, then fused across nine independent subsamples. This ensemble reduces threshold variance compared to any single method. Evaluated on two real cadastral datasets (approximately 6.31M and 67.34M pairs), our approach consistently hits a recall target within a small error, decreases redundant verifications relative to other calibrations, and runs end-to-end on a single TPU v3 core.
comment: 10 pages, 6 tables
☆ Hybrid Deep Learning Modeling Approach to Predict Natural Gas Consumption of Home Subscribers on Limited Data
Today, natural gas, as a clean fuel and the best alternative to crude oil, covers a significant part of global demand. Iran is one of the largest countries with energy resources and in terms of gas is the second-largest country in the world. But, due to the increase in population and energy consumption, it faces problems such as pressure drops and gas outages yearly in cold seasons and therefore it is necessary to control gas consumption, especially in the residential sector, which has the largest share in Iran. This study aims to analyze and predict gas consumption for residential customers in Zanjan province, Iran, using machine learning models, including LSTM, GRU, and a hybrid BiLSTM-XGBoost model. The dataset consists of gas consumption and meteorology data collected over six years, from 2017 to 2022. The models were trained and evaluated based on their ability to accurately predict consumption patterns. The results indicate that the hybrid BiLSTM-XGBoost model outperformed the other models in terms of accuracy, with lower Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) values, and Mean Percentage Error (MPE). Additionally, the Hybrid model demonstrated robust performance, particularly in scenarios with limited data. The findings suggest that machine learning approaches, particularly hybrid models, can be effectively utilized to manage and predict gas consumption, contributing to more efficient resource management and reducing seasonal shortages. This study highlights the importance of incorporating geographical and climatic factors in predictive modeling, as these significantly influence gas usage across different regions.
☆ SoundReactor: Frame-level Online Video-to-Audio Generation
Prevailing Video-to-Audio (V2A) generation models operate offline, assuming an entire video sequence or chunks of frames are available beforehand. This critically limits their use in interactive applications such as live content creation and emerging generative world models. To address this gap, we introduce the novel task of frame-level online V2A generation, where a model autoregressively generates audio from video without access to future video frames. Furthermore, we propose SoundReactor, which, to the best of our knowledge, is the first simple yet effective framework explicitly tailored for this task. Our design enforces end-to-end causality and targets low per-frame latency with audio-visual synchronization. Our model's backbone is a decoder-only causal transformer over continuous audio latents. For vision conditioning, it leverages grid (patch) features extracted from the smallest variant of the DINOv2 vision encoder, which are aggregated into a single token per frame to maintain end-to-end causality and efficiency. The model is trained through a diffusion pre-training followed by consistency fine-tuning to accelerate the diffusion head decoding. On a benchmark of diverse gameplay videos from AAA titles, our model successfully generates semantically and temporally aligned, high-quality full-band stereo audio, validated by both objective and human evaluations. Furthermore, our model achieves low per-frame waveform-level latency (26.3ms with the head NFE=1, 31.5ms with NFE=4) on 30FPS, 480p videos using a single H100. Demo samples are available at https://koichi-saito-sony.github.io/soundreactor/.
☆ PENEX: AdaBoost-Inspired Neural Network Regularization
AdaBoost sequentially fits so-called weak learners to minimize an exponential loss, which penalizes mislabeled data points more severely than other loss functions like cross-entropy. Paradoxically, AdaBoost generalizes well in practice as the number of weak learners grows. In the present work, we introduce Penalized Exponential Loss (PENEX), a new formulation of the multi-class exponential loss that is theoretically grounded and, in contrast to the existing formulation, amenable to optimization via first-order methods. We demonstrate both empirically and theoretically that PENEX implicitly maximizes margins of data points. Also, we show that gradient increments on PENEX implicitly parameterize weak learners in the boosting framework. Across computer vision and language tasks, we show that PENEX exhibits a regularizing effect often better than established methods with similar computational cost. Our results highlight PENEX's potential as an AdaBoost-inspired alternative for effective training and fine-tuning of deep neural networks.
☆ Learning Model Representations Using Publicly Available Model Hubs
The weights of neural networks have emerged as a novel data modality, giving rise to the field of weight space learning. A central challenge in this area is that learning meaningful representations of weights typically requires large, carefully constructed collections of trained models, typically referred to as model zoos. These model zoos are often trained ad-hoc, requiring large computational resources, constraining the learned weight space representations in scale and flexibility. In this work, we drop this requirement by training a weight space learning backbone on arbitrary models downloaded from large, unstructured model repositories such as Hugging Face. Unlike curated model zoos, these repositories contain highly heterogeneous models: they vary in architecture and dataset, and are largely undocumented. To address the methodological challenges posed by such heterogeneity, we propose a new weight space backbone designed to handle unstructured model populations. We demonstrate that weight space representations trained on models from Hugging Face achieve strong performance, often outperforming backbones trained on laboratory-generated model zoos. Finally, we show that the diversity of the model weights in our training set allows our weight space model to generalize to unseen data modalities. By demonstrating that high-quality weight space representations can be learned in the wild, we show that curated model zoos are not indispensable, thereby overcoming a strong limitation currently faced by the weight space learning community.
☆ KAIROS: Unified Training for Universal Non-Autoregressive Time Series Forecasting
In the World Wide Web, reliable time series forecasts provide the forward-looking signals that drive resource planning, cache placement, and anomaly response, enabling platforms to operate efficiently as user behavior and content distributions evolve. Compared with other domains, time series forecasting for Web applications requires much faster responsiveness to support real-time decision making. We present KAIROS, a non-autoregressive time series forecasting framework that directly models segment-level multi-peak distributions. Unlike autoregressive approaches, KAIROS avoids error accumulation and achieves just-in-time inference, while improving over existing non-autoregressive models that collapse to over-smoothed predictions. Trained on the large-scale corpus, KAIROS demonstrates strong zero-shot generalization on six widely used benchmarks, delivering forecasting performance comparable to state-of-the-art foundation models with similar scale, at a fraction of their inference cost. Beyond empirical results, KAIROS highlights the importance of non-autoregressive design as a scalable paradigm for foundation models in time series.
☆ Fine-Tuning Flow Matching via Maximum Likelihood Estimation of Reconstructions
Flow Matching (FM) algorithm achieves remarkable results in generative tasks especially in robotic manipulation. Building upon the foundations of diffusion models, the simulation-free paradigm of FM enables simple and efficient training, but inherently introduces a train-inference gap. Specifically, we cannot assess the model's output during the training phase. In contrast, other generative models including Variational Autoencoder (VAE), Normalizing Flow and Generative Adversarial Networks (GANs) directly optimize on the reconstruction loss. Such a gap is particularly evident in scenarios that demand high precision, such as robotic manipulation. Moreover, we show that FM's over-pursuit of straight predefined paths may introduce some serious problems such as stiffness into the system. These motivate us to fine-tune FM via Maximum Likelihood Estimation of reconstructions - an approach made feasible by FM's underlying smooth ODE formulation, in contrast to the stochastic differential equations (SDEs) used in diffusion models. This paper first theoretically analyzes the relation between training loss and inference error in FM. Then we propose a method of fine-tuning FM via Maximum Likelihood Estimation of reconstructions, which includes both straightforward fine-tuning and residual-based fine-tuning approaches. Furthermore, through specifically designed architectures, the residual-based fine-tuning can incorporate the contraction property into the model, which is crucial for the model's robustness and interpretability. Experimental results in image generation and robotic manipulation verify that our method reliably improves the inference performance of FM.
☆ Inferring Optical Tissue Properties from Photoplethysmography using Hybrid Amortized Inference
Smart wearables enable continuous tracking of established biomarkers such as heart rate, heart rate variability, and blood oxygen saturation via photoplethysmography (PPG). Beyond these metrics, PPG waveforms contain richer physiological information, as recent deep learning (DL) studies demonstrate. However, DL models often rely on features with unclear physiological meaning, creating a tension between predictive power, clinical interpretability, and sensor design. We address this gap by introducing PPGen, a biophysical model that relates PPG signals to interpretable physiological and optical parameters. Building on PPGen, we propose hybrid amortized inference (HAI), enabling fast, robust, and scalable estimation of relevant physiological parameters from PPG signals while correcting for model misspecification. In extensive in-silico experiments, we show that HAI can accurately infer physiological parameters under diverse noise and sensor conditions. Our results illustrate a path toward PPG models that retain the fidelity needed for DL-based features while supporting clinical interpretation and informed hardware design.
☆ Adaptive Kernel Selection for Stein Variational Gradient Descent
A central challenge in Bayesian inference is efficiently approximating posterior distributions. Stein Variational Gradient Descent (SVGD) is a popular variational inference method which transports a set of particles to approximate a target distribution. The SVGD dynamics are governed by a reproducing kernel Hilbert space (RKHS) and are highly sensitive to the choice of the kernel function, which directly influences both convergence and approximation quality. The commonly used median heuristic offers a simple approach for setting kernel bandwidths but lacks flexibility and often performs poorly, particularly in high-dimensional settings. In this work, we propose an alternative strategy for adaptively choosing kernel parameters over an abstract family of kernels. Recent convergence analyses based on the kernelized Stein discrepancy (KSD) suggest that optimizing the kernel parameters by maximizing the KSD can improve performance. Building on this insight, we introduce Adaptive SVGD (Ad-SVGD), a method that alternates between updating the particles via SVGD and adaptively tuning kernel bandwidths through gradient ascent on the KSD. We provide a simplified theoretical analysis that extends existing results on minimizing the KSD for fixed kernels to our adaptive setting, showing convergence properties for the maximal KSD over our kernel class. Our empirical results further support this intuition: Ad-SVGD consistently outperforms standard heuristics in a variety of tasks.
☆ ReTabAD: A Benchmark for Restoring Semantic Context in Tabular Anomaly Detection
In tabular anomaly detection (AD), textual semantics often carry critical signals, as the definition of an anomaly is closely tied to domain-specific context. However, existing benchmarks provide only raw data points without semantic context, overlooking rich textual metadata such as feature descriptions and domain knowledge that experts rely on in practice. This limitation restricts research flexibility and prevents models from fully leveraging domain knowledge for detection. ReTabAD addresses this gap by restoring textual semantics to enable context-aware tabular AD research. We provide (1) 20 carefully curated tabular datasets enriched with structured textual metadata, together with implementations of state-of-the-art AD algorithms including classical, deep learning, and LLM-based approaches, and (2) a zero-shot LLM framework that leverages semantic context without task-specific training, establishing a strong baseline for future research. Furthermore, this work provides insights into the role and utility of textual metadata in AD through experiments and analysis. Results show that semantic context improves detection performance and enhances interpretability by supporting domain-aware reasoning. These findings establish ReTabAD as a benchmark for systematic exploration of context-aware AD.
comment: 9 pages, 4 figures
☆ Adaptive Heterogeneous Mixtures of Normalising Flows for Robust Variational Inference
Normalising-flow variational inference (VI) can approximate complex posteriors, yet single-flow models often behave inconsistently across qualitatively different distributions. We propose Adaptive Mixture Flow Variational Inference (AMF-VI), a heterogeneous mixture of complementary flows (MAF, RealNVP, RBIG) trained in two stages: (i) sequential expert training of individual flows, and (ii) adaptive global weight estimation via likelihood-driven updates, without per-sample gating or architectural changes. Evaluated on six canonical posterior families of banana, X-shape, two-moons, rings, a bimodal, and a five-mode mixture, AMF-VI achieves consistently lower negative log-likelihood than each single-flow baseline and delivers stable gains in transport metrics (Wasserstein-2) and maximum mean discrepancy (MDD), indicating improved robustness across shapes and modalities. The procedure is efficient and architecture-agnostic, incurring minimal overhead relative to standard flow training, and demonstrates that adaptive mixtures of diverse flows provide a reliable route to robust VI across diverse posterior families whilst preserving each expert's inductive bias.
comment: 2 Figures and 2 tables
☆ Multidata Causal Discovery for Statistical Hurricane Intensity Forecasting
Improving statistical forecasts of Atlantic hurricane intensity is limited by complex nonlinear interactions and difficulty in identifying relevant predictors. Conventional methods prioritize correlation or fit, often overlooking confounding variables and limiting generalizability to unseen tropical storms. To address this, we leverage a multidata causal discovery framework with a replicated dataset based on Statistical Hurricane Intensity Prediction Scheme (SHIPS) using ERA5 meteorological reanalysis. We conduct multiple experiments to identify and select predictors causally linked to hurricane intensity changes. We train multiple linear regression models to compare causal feature selection with no selection, correlation, and random forest feature importance across five forecast lead times from 1 to 5 days (24 to 120 hours). Causal feature selection consistently outperforms on unseen test cases, especially for lead times shorter than 3 days. The causal features primarily include vertical shear, mid-tropospheric potential vorticity and surface moisture conditions, which are physically significant yet often underutilized in hurricane intensity predictions. Further, we build an extended predictor set (SHIPS+) by adding selected features to the standard SHIPS predictors. SHIPS+ yields increased short-term predictive skill at lead times of 24, 48, and 72 hours. Adding nonlinearity using multilayer perceptron further extends skill to longer lead times, despite our framework being purely regional and not requiring global forecast data. Operational SHIPS tests confirm that three of the six added causally discovered predictors improve forecasts, with the largest gains at longer lead times. Our results demonstrate that causal discovery improves hurricane intensity prediction and pave the way toward more empirical forecasts.
comment: 19 pages, 7 Figures, 1 Table, SI
☆ Mathematical Modeling and Convergence Analysis of Deep Neural Networks with Dense Layer Connectivities in Deep Learning
In deep learning, dense layer connectivity has become a key design principle in deep neural networks (DNNs), enabling efficient information flow and strong performance across a range of applications. In this work, we model densely connected DNNs mathematically and analyze their learning problems in the deep-layer limit. For a broad applicability, we present our analysis in a framework setting of DNNs with densely connected layers and general non-local feature transformations (with local feature transformations as special cases) within layers, which is called dense non-local (DNL) framework and includes standard DenseNets and variants as special examples. In this formulation, the densely connected networks are modeled as nonlinear integral equations, in contrast to the ordinary differential equation viewpoint commonly adopted in prior works. We study the associated training problems from an optimal control perspective and prove convergence results from the network learning problem to its continuous-time counterpart. In particular, we show the convergence of optimal values and the subsequence convergence of minimizers, using a piecewise linear extension and $\Gamma$-convergence analysis. Our results provide a mathematical foundation for understanding densely connected DNNs and further suggest that such architectures can offer stability of training deep models.
☆ Variational Secret Common Randomness Extraction
This paper studies the problem of extracting common randomness (CR) or secret keys from correlated random sources observed by two legitimate parties, Alice and Bob, through public discussion in the presence of an eavesdropper, Eve. We propose a practical two-stage CR extraction framework. In the first stage, the variational probabilistic quantization (VPQ) step is introduced, where Alice and Bob employ probabilistic neural network (NN) encoders to map their observations into discrete, nearly uniform random variables (RVs) with high agreement probability while minimizing information leakage to Eve. This is realized through a variational learning objective combined with adversarial training. In the second stage, a secure sketch using code-offset construction reconciles the encoder outputs into identical secret keys, whose secrecy is guaranteed by the VPQ objective. As a representative application, we study physical layer key (PLK) generation. Beyond the traditional methods, which rely on the channel reciprocity principle and require two-way channel probing, thus suffering from large protocol overhead and being unsuitable in high mobility scenarios, we propose a sensing-based PLK generation method for integrated sensing and communications (ISAC) systems, where paired range-angle (RA) maps measured at Alice and Bob serve as correlated sources. The idea is verified through both end-to-end simulations and real-world software-defined radio (SDR) measurements, including scenarios where Eve has partial knowledge about Bob's position. The results demonstrate the feasibility and convincing performance of both the proposed CR extraction framework and sensing-based PLK generation method.
☆ Zero-shot Human Pose Estimation using Diffusion-based Inverse solvers
Pose estimation refers to tracking a human's full body posture, including their head, torso, arms, and legs. The problem is challenging in practical settings where the number of body sensors are limited. Past work has shown promising results using conditional diffusion models, where the pose prediction is conditioned on both measurements from the sensors. Unfortunately, nearly all these approaches generalize poorly across users, primarly because location measurements are highly influenced by the body size of the user. In this paper, we formulate pose estimation as an inverse problem and design an algorithm capable of zero-shot generalization. Our idea utilizes a pre-trained diffusion model and conditions it on rotational measurements alone; the priors from this model are then guided by a likelihood term, derived from the measured locations. Thus, given any user, our proposed InPose method generatively estimates the highly likely sequence of poses that best explains the sparse on-body measurements.
☆ FairContrast: Enhancing Fairness through Contrastive learning and Customized Augmenting Methods on Tabular Data NeurIPS 2025
As AI systems become more embedded in everyday life, the development of fair and unbiased models becomes more critical. Considering the social impact of AI systems is not merely a technical challenge but a moral imperative. As evidenced in numerous research studies, learning fair and robust representations has proven to be a powerful approach to effectively debiasing algorithms and improving fairness while maintaining essential information for prediction tasks. Representation learning frameworks, particularly those that utilize self-supervised and contrastive learning, have demonstrated superior robustness and generalizability across various domains. Despite the growing interest in applying these approaches to tabular data, the issue of fairness in these learned representations remains underexplored. In this study, we introduce a contrastive learning framework specifically designed to address bias and learn fair representations in tabular datasets. By strategically selecting positive pair samples and employing supervised and self-supervised contrastive learning, we significantly reduce bias compared to existing state-of-the-art contrastive learning models for tabular data. Our results demonstrate the efficacy of our approach in mitigating bias with minimum trade-off in accuracy and leveraging the learned fair representations in various downstream tasks.
comment: Accepted to NeurIPS 2025 - Reliable ML Workshop
☆ Normality Calibration in Semi-supervised Graph Anomaly Detection
Graph anomaly detection (GAD) has attracted growing interest for its crucial ability to uncover irregular patterns in broad applications. Semi-supervised GAD, which assumes a subset of annotated normal nodes available during training, is among the most widely explored application settings. However, the normality learned by existing semi-supervised GAD methods is limited to the labeled normal nodes, often inclining to overfitting the given patterns. These can lead to high detection errors, such as high false positives. To overcome this limitation, we propose GraphNC , a graph normality calibration framework that leverages both labeled and unlabeled data to calibrate the normality from a teacher model (a pre-trained semi-supervised GAD model) jointly in anomaly score and node representation spaces. GraphNC includes two main components, anomaly score distribution alignment (ScoreDA) and perturbation-based normality regularization (NormReg). ScoreDA optimizes the anomaly scores of our model by aligning them with the score distribution yielded by the teacher model. Due to accurate scores in most of the normal nodes and part of the anomaly nodes in the teacher model, the score alignment effectively pulls the anomaly scores of the normal and abnormal classes toward the two ends, resulting in more separable anomaly scores. Nevertheless, there are inaccurate scores from the teacher model. To mitigate the misleading by these scores, NormReg is designed to regularize the graph normality in the representation space, making the representations of normal nodes more compact by minimizing a perturbation-guided consistency loss solely on the labeled nodes.
comment: 17 pages
☆ ShapeGen3DCP: A Deep Learning Framework for Layer Shape Prediction in 3D Concrete Printing
This work introduces ShapeGen3DCP, a deep learning framework for fast and accurate prediction of filament cross-sectional geometry in 3D Concrete Printing (3DCP). The method is based on a neural network architecture that takes as input both material properties in the fluid state (density, yield stress, plastic viscosity) and process parameters (nozzle diameter, nozzle height, printing and flow velocities) to directly predict extruded layer shapes. To enhance generalization, some inputs are reformulated into dimensionless parameters that capture underlying physical principles. Predicted geometries are compactly represented using Fourier descriptors, which enforce smooth, closed, and symmetric profiles while reducing the prediction task to a small set of coefficients. The training dataset was synthetically generated using a well-established Particle Finite Element (PFEM) model of 3DCP, overcoming the scarcity of experimental data. Validation against diverse numerical and experimental cases shows strong agreement, confirming the framework's accuracy and reliability. This opens the way to practical uses ranging from pre-calibration of print settings, minimizing or even eliminating trial-and-error adjustments, to toolpath optimization for more advanced designs. Looking ahead, coupling the framework with simulations and sensor feedback could enable closed-loop digital twins for 3DCP, driving real-time process optimization, defect detection, and adaptive control of printing parameters.
☆ PepCompass: Navigating peptide embedding spaces using Riemannian Geometry
Antimicrobial peptide discovery is challenged by the astronomical size of peptide space and the relative scarcity of active peptides. Generative models provide continuous latent "maps" of peptide space, but conventionally ignore decoder-induced geometry and rely on flat Euclidean metrics, rendering exploration and optimization distorted and inefficient. Prior manifold-based remedies assume fixed intrinsic dimensionality, which critically fails in practice for peptide data. Here, we introduce PepCompass, a geometry-aware framework for peptide exploration and optimization. At its core, we define a Union of $\kappa$-Stable Riemannian Manifolds $\mathbb{M}^{\kappa}$, a family of decoder-induced manifolds that captures local geometry while ensuring computational stability. We propose two local exploration methods: Second-Order Riemannian Brownian Efficient Sampling, which provides a convergent second-order approximation to Riemannian Brownian motion, and Mutation Enumeration in Tangent Space, which reinterprets tangent directions as discrete amino-acid substitutions. Combining these yields Local Enumeration Bayesian Optimization (LE-BO), an efficient algorithm for local activity optimization. Finally, we introduce Potential-minimizing Geodesic Search (PoGS), which interpolates between prototype embeddings along property-enriched geodesics, biasing discovery toward seeds, i.e. peptides with favorable activity. In-vitro validation confirms the effectiveness of PepCompass: PoGS yields four novel seeds, and subsequent optimization with LE-BO discovers 25 highly active peptides with broad-spectrum activity, including against resistant bacterial strains. These results demonstrate that geometry-informed exploration provides a powerful new paradigm for antimicrobial peptide design.
☆ Private Federated Multiclass Post-hoc Calibration
Calibrating machine learning models so that predicted probabilities better reflect the true outcome frequencies is crucial for reliable decision-making across many applications. In Federated Learning (FL), the goal is to train a global model on data which is distributed across multiple clients and cannot be centralized due to privacy concerns. FL is applied in key areas such as healthcare and finance where calibration is strongly required, yet federated private calibration has been largely overlooked. This work introduces the integration of post-hoc model calibration techniques within FL. Specifically, we transfer traditional centralized calibration methods such as histogram binning and temperature scaling into federated environments and define new methods to operate them under strong client heterogeneity. We study (1) a federated setting and (2) a user-level Differential Privacy (DP) setting and demonstrate how both federation and DP impacts calibration accuracy. We propose strategies to mitigate degradation commonly observed under heterogeneity and our findings highlight that our federated temperature scaling works best for DP-FL whereas our weighted binning approach is best when DP is not required.
☆ $\text{G}^2$RPO: Granular GRPO for Precise Reward in Flow Models
The integration of online reinforcement learning (RL) into diffusion and flow models has recently emerged as a promising approach for aligning generative models with human preferences. Stochastic sampling via Stochastic Differential Equations (SDE) is employed during the denoising process to generate diverse denoising directions for RL exploration. While existing methods effectively explore potential high-value samples, they suffer from sub-optimal preference alignment due to sparse and narrow reward signals. To address these challenges, we propose a novel Granular-GRPO ($\text{G}^2$RPO ) framework that achieves precise and comprehensive reward assessments of sampling directions in reinforcement learning of flow models. Specifically, a Singular Stochastic Sampling strategy is introduced to support step-wise stochastic exploration while enforcing a high correlation between the reward and the injected noise, thereby facilitating a faithful reward for each SDE perturbation. Concurrently, to eliminate the bias inherent in fixed-granularity denoising, we introduce a Multi-Granularity Advantage Integration module that aggregates advantages computed at multiple diffusion scales, producing a more comprehensive and robust evaluation of the sampling directions. Experiments conducted on various reward models, including both in-domain and out-of-domain evaluations, demonstrate that our $\text{G}^2$RPO significantly outperforms existing flow-based GRPO baselines,highlighting its effectiveness and robustness.
comment: Github Page: https://github.com/bcmi/Granular-GRPO
☆ Moon: A Modality Conversion-based Efficient Multivariate Time Series Anomaly Detection
Multivariate time series (MTS) anomaly detection identifies abnormal patterns where each timestamp contains multiple variables. Existing MTS anomaly detection methods fall into three categories: reconstruction-based, prediction-based, and classifier-based methods. However, these methods face two key challenges: (1) Unsupervised learning methods, such as reconstruction-based and prediction-based methods, rely on error thresholds, which can lead to inaccuracies; (2) Semi-supervised methods mainly model normal data and often underuse anomaly labels, limiting detection of subtle anomalies;(3) Supervised learning methods, such as classifier-based approaches, often fail to capture local relationships, incur high computational costs, and are constrained by the scarcity of labeled data. To address these limitations, we propose Moon, a supervised modality conversion-based multivariate time series anomaly detection framework. Moon enhances the efficiency and accuracy of anomaly detection while providing detailed anomaly analysis reports. First, Moon introduces a novel multivariate Markov Transition Field (MV-MTF) technique to convert numeric time series data into image representations, capturing relationships across variables and timestamps. Since numeric data retains unique patterns that cannot be fully captured by image conversion alone, Moon employs a Multimodal-CNN to integrate numeric and image data through a feature fusion model with parameter sharing, enhancing training efficiency. Finally, a SHAP-based anomaly explainer identifies key variables contributing to anomalies, improving interpretability. Extensive experiments on six real-world MTS datasets demonstrate that Moon outperforms six state-of-the-art methods by up to 93% in efficiency, 4% in accuracy and, 10.8% in interpretation performance.
☆ Lower Bounds on Adversarial Robustness for Multiclass Classification with General Loss Functions
We consider adversarially robust classification in a multiclass setting under arbitrary loss functions and derive dual and barycentric reformulations of the corresponding learner-agnostic robust risk minimization problem. We provide explicit characterizations for important cases such as the cross-entropy loss, loss functions with a power form, and the quadratic loss, extending in this way available results for the 0-1 loss. These reformulations enable efficient computation of sharp lower bounds for adversarial risks and facilitate the design of robust classifiers beyond the 0-1 loss setting. Our paper uncovers interesting connections between adversarial robustness, $\alpha$-fair packing problems, and generalized barycenter problems for arbitrary positive measures where Kullback-Leibler and Tsallis entropies are used as penalties. Our theoretical results are accompanied with illustrative numerical experiments where we obtain tighter lower bounds for adversarial risks with the cross-entropy loss function.
☆ Multi-bit Audio Watermarking
We present Timbru, a post-hoc audio watermarking model that achieves state-of-the-art robustness and imperceptibility trade-offs without training an embedder-detector model. Given any 44.1 kHz stereo music snippet, our method performs per-audio gradient optimization to add imperceptible perturbations in the latent space of a pretrained audio VAE, guided by a combined message and perceptual loss. The watermark can then be extracted using a pretrained CLAP model. We evaluate 16-bit watermarking on MUSDB18-HQ against AudioSeal, WavMark, and SilentCipher across common filtering, noise, compression, resampling, cropping, and regeneration attacks. Our approach attains the best average bit error rates, while preserving perceptual quality, demonstrating an efficient, dataset-free path to imperceptible audio watermarking.
☆ Bias beyond Borders: Global Inequalities in AI-Generated Music
While recent years have seen remarkable progress in music generation models, research on their biases across countries, languages, cultures, and musical genres remains underexplored. This gap is compounded by the lack of datasets and benchmarks that capture the global diversity of music. To address these challenges, we introduce GlobalDISCO, a large-scale dataset consisting of 73k music tracks generated by state-of-the-art commercial generative music models, along with paired links to 93k reference tracks in LAION-DISCO-12M. The dataset spans 147 languages and includes musical style prompts extracted from MusicBrainz and Wikipedia. The dataset is globally balanced, representing musical styles from artists across 79 countries and five continents. Our evaluation reveals large disparities in music quality and alignment with reference music between high-resource and low-resource regions. Furthermore, we find marked differences in model performance between mainstream and geographically niche genres, including cases where models generate music for regional genres that more closely align with the distribution of mainstream styles.
☆ Uniform-in-time convergence bounds for Persistent Contrastive Divergence Algorithms
We propose a continuous-time formulation of persistent contrastive divergence (PCD) for maximum likelihood estimation (MLE) of unnormalised densities. Our approach expresses PCD as a coupled, multiscale system of stochastic differential equations (SDEs), which perform optimisation of the parameter and sampling of the associated parametrised density, simultaneously. From this novel formulation, we are able to derive explicit bounds for the error between the PCD iterates and the MLE solution for the model parameter. This is made possible by deriving uniform-in-time (UiT) bounds for the difference in moments between the multiscale system and the averaged regime. An efficient implementation of the continuous-time scheme is introduced, leveraging a class of explicit, stable intregators, stochastic orthogonal Runge-Kutta Chebyshev (S-ROCK), for which we provide explicit error estimates in the long-time regime. This leads to a novel method for training energy-based models (EBMs) with explicit error guarantees.
☆ Smooth Quasar-Convex Optimization with Constraints
Quasar-convex functions form a broad nonconvex class with applications to linear dynamical systems, generalized linear models, and Riemannian optimization, among others. Current nearly optimal algorithms work only in affine spaces due to the loss of one degree of freedom when working with general convex constraints. Obtaining an accelerated algorithm that makes nearly optimal $\widetilde{O}(1/(\gamma\sqrt{\epsilon}))$ first-order queries to a $\gamma$-quasar convex smooth function \emph{with constraints} was independently asked as an open problem in Mart\'inez-Rubio (2022); Lezane, Langer, and Koolen (2024). In this work, we solve this question by designing an inexact accelerated proximal point algorithm that we implement using a first-order method achieving the aforementioned rate and, as a consequence, we improve the complexity of the accelerated geodesically Riemannian optimization solution in Mart\'inez-Rubio (2022). We also analyze projected gradient descent and Frank-Wolfe algorithms in this constrained quasar-convex setting. To the best of our knowledge, our work provides the first analyses of first-order methods for quasar-convex smooth functions with general convex constraints.
☆ StelLA: Subspace Learning in Low-rank Adaptation using Stiefel Manifold NeurIPS 2025
Low-rank adaptation (LoRA) has been widely adopted as a parameter-efficient technique for fine-tuning large-scale pre-trained models. However, it still lags behind full fine-tuning in performance, partly due to its insufficient exploitation of the geometric structure underlying low-rank manifolds. In this paper, we propose a geometry-aware extension of LoRA that uses a three-factor decomposition $U\!SV^\top$. Analogous to the structure of singular value decomposition (SVD), it separates the adapter's input and output subspaces, $V$ and $U$, from the scaling factor $S$. Our method constrains $U$ and $V$ to lie on the Stiefel manifold, ensuring their orthonormality throughout the training. To optimize on the Stiefel manifold, we employ a flexible and modular geometric optimization design that converts any Euclidean optimizer to a Riemannian one. It enables efficient subspace learning while remaining compatible with existing fine-tuning pipelines. Empirical results across a wide range of downstream tasks, including commonsense reasoning, math and code generation, image classification, and image generation, demonstrate the superior performance of our approach against the recent state-of-the-art variants of LoRA. Code is available at https://github.com/SonyResearch/stella.
comment: Accepted as a spotlight at NeurIPS 2025
☆ Foundation Visual Encoders Are Secretly Few-Shot Anomaly Detectors
Few-shot anomaly detection streamlines and simplifies industrial safety inspection. However, limited samples make accurate differentiation between normal and abnormal features challenging, and even more so under category-agnostic conditions. Large-scale pre-training of foundation visual encoders has advanced many fields, as the enormous quantity of data helps to learn the general distribution of normal images. We observe that the anomaly amount in an image directly correlates with the difference in the learnt embeddings and utilize this to design a few-shot anomaly detector termed FoundAD. This is done by learning a nonlinear projection operator onto the natural image manifold. The simple operator acts as an effective tool for anomaly detection to characterize and identify out-of-distribution regions in an image. Extensive experiments show that our approach supports multi-class detection and achieves competitive performance while using substantially fewer parameters than prior methods. Backed up by evaluations with multiple foundation encoders, including fresh DINOv3, we believe this idea broadens the perspective on foundation features and advances the field of few-shot anomaly detection.
comment: 23 pages, 13 figures. Code is available at \url{https://github.com/ymxlzgy/FoundAD}
☆ Precise Dynamics of Diagonal Linear Networks: A Unifying Analysis by Dynamical Mean-Field Theory
Diagonal linear networks (DLNs) are a tractable model that captures several nontrivial behaviors in neural network training, such as initialization-dependent solutions and incremental learning. These phenomena are typically studied in isolation, leaving the overall dynamics insufficiently understood. In this work, we present a unified analysis of various phenomena in the gradient flow dynamics of DLNs. Using Dynamical Mean-Field Theory (DMFT), we derive a low-dimensional effective process that captures the asymptotic gradient flow dynamics in high dimensions. Analyzing this effective process yields new insights into DLN dynamics, including loss convergence rates and their trade-off with generalization, and systematically reproduces many of the previously observed phenomena. These findings deepen our understanding of DLNs and demonstrate the effectiveness of the DMFT approach in analyzing high-dimensional learning dynamics of neural networks.
comment: 54 pages
☆ Automated Defect Detection for Mass-Produced Electronic Components Based on YOLO Object Detection Models
Since the defect detection of conventional industry components is time-consuming and labor-intensive, it leads to a significant burden on quality inspection personnel and makes it difficult to manage product quality. In this paper, we propose an automated defect detection system for the dual in-line package (DIP) that is widely used in industry, using digital camera optics and a deep learning (DL)-based model. The two most common defect categories of DIP are examined: (1) surface defects, and (2) pin-leg defects. However, the lack of defective component images leads to a challenge for detection tasks. To solve this problem, the ConSinGAN is used to generate a suitable-sized dataset for training and testing. Four varieties of the YOLO model are investigated (v3, v4, v7, and v9), both in isolation and with the ConSinGAN augmentation. The proposed YOLOv7 with ConSinGAN is superior to the other YOLO versions in accuracy of 95.50\%, detection time of 285 ms, and is far superior to threshold-based approaches. In addition, the supervisory control and data acquisition (SCADA) system is developed, and the associated sensor architecture is described. The proposed automated defect detection can be easily established with numerous types of defects or insufficient defect data.
comment: 12 pages, 16 figures, 7 tables, and published in IEEE Sensors Journal
☆ Are LLMs Better GNN Helpers? Rethinking Robust Graph Learning under Deficiencies with Iterative Refinement
Graph Neural Networks (GNNs) are widely adopted in Web-related applications, serving as a core technique for learning from graph-structured data, such as text-attributed graphs. Yet in real-world scenarios, such graphs exhibit deficiencies that substantially undermine GNN performance. While prior GNN-based augmentation studies have explored robustness against individual imperfections, a systematic understanding of how graph-native and Large Language Models (LLMs) enhanced methods behave under compound deficiencies is still missing. Specifically, there has been no comprehensive investigation comparing conventional approaches and recent LLM-on-graph frameworks, leaving their merits unclear. To fill this gap, we conduct the first empirical study that benchmarks these two lines of methods across diverse graph deficiencies, revealing overlooked vulnerabilities and challenging the assumption that LLM augmentation is consistently superior. Building on empirical findings, we propose Robust Graph Learning via Retrieval-Augmented Contrastive Refinement (RoGRAD) framework. Unlike prior one-shot LLM-as-Enhancer designs, RoGRAD is the first iterative paradigm that leverages Retrieval-Augmented Generation (RAG) to inject retrieval-grounded augmentations by supplying class-consistent, diverse augmentations and enforcing discriminative representations through iterative graph contrastive learning. It transforms LLM augmentation for graphs from static signal injection into dynamic refinement. Extensive experiments demonstrate RoGRAD's superiority over both conventional GNN- and LLM-enhanced baselines, achieving up to 82.43% average improvement.
comment: 14 pages
☆ A Methodology for Transparent Logic-Based Classification Using a Multi-Task Convolutional Tsetlin Machine
The Tsetlin Machine (TM) is a novel machine learning paradigm that employs finite-state automata for learning and utilizes propositional logic to represent patterns. Due to its simplistic approach, TMs are inherently more interpretable than learning algorithms based on Neural Networks. The Convolutional TM has shown comparable performance on various datasets such as MNIST, K-MNIST, F-MNIST and CIFAR-2. In this paper, we explore the applicability of the TM architecture for large-scale multi-channel (RGB) image classification. We propose a methodology to generate both local interpretations and global class representations. The local interpretations can be used to explain the model predictions while the global class representations aggregate important patterns for each class. These interpretations summarize the knowledge captured by the convolutional clauses, which can be visualized as images. We evaluate our methods on MNIST and CelebA datasets, using models that achieve 98.5\% accuracy on MNIST and 86.56\% F1-score on CelebA (compared to 88.07\% for ResNet50) respectively. We show that the TM performs competitively to this deep learning model while maintaining its interpretability, even in large-scale complex training environments. This contributes to a better understanding of TM clauses and provides insights into how these models can be applied to more complex and diverse datasets.
☆ Constrained Adaptive Rejection Sampling
Language Models (LMs) are increasingly used in applications where generated outputs must satisfy strict semantic or syntactic constraints. Existing approaches to constrained generation fall along a spectrum: greedy constrained decoding methods enforce validity during decoding but distort the LM's distribution, while rejection sampling (RS) preserves fidelity but wastes computation by discarding invalid outputs. Both extremes are problematic in domains such as program fuzzing, where both validity and diversity of samples are essential. We present Constrained Adaptive Rejection Sampling (CARS), an approach that strictly improves the sample-efficiency of RS without distributional distortion. CARS begins with unconstrained LM sampling and adaptively rules out constraint-violating continuations by recording them in a trie and subtracting their probability mass from future draws. This adaptive pruning ensures that prefixes proven invalid are never revisited, acceptance rates improve monotonically, and the resulting samples exactly follow the constrained distribution. In experiments on a variety of domains -- e.g., program fuzzing and molecular generation -- CARS consistently achieves higher efficiency -- measured in the number of LM forward passes per valid sample -- while also producing stronger sample diversity than both GCD and methods that approximate the LM's distribution.
☆ Multimodal Foundation Models for Early Disease Detection
Healthcare generates diverse streams of data, including electronic health records (EHR), medical imaging, genetics, and ongoing monitoring from wearable devices. Traditional diagnostic models frequently analyze these sources in isolation, which constrains their capacity to identify cross-modal correlations essential for early disease diagnosis. Our research presents a multimodal foundation model that consolidates diverse patient data through an attention-based transformer framework. At first, dedicated encoders put each modality into a shared latent space. Then, they combine them using multi-head attention and residual normalization. The architecture is made for pretraining on many tasks, which makes it easy to adapt to new diseases and datasets with little extra work. We provide an experimental strategy that uses benchmark datasets in oncology, cardiology, and neurology, with the goal of testing early detection tasks. The framework includes data governance and model management tools in addition to technological performance to improve transparency, reliability, and clinical interpretability. The suggested method works toward a single foundation model for precision diagnostics, which could improve the accuracy of predictions and help doctors make decisions.
comment: 6 pages
☆ Multi-marginal temporal Schrödinger Bridge Matching for video generation from unpaired data
Many natural dynamic processes -- such as in vivo cellular differentiation or disease progression -- can only be observed through the lens of static sample snapshots. While challenging, reconstructing their temporal evolution to decipher underlying dynamic properties is of major interest to scientific research. Existing approaches enable data transport along a temporal axis but are poorly scalable in high dimension and require restrictive assumptions to be met. To address these issues, we propose \textit{\textbf{Multi-Marginal temporal Schr\"odinger Bridge Matching}} (\textbf{MMtSBM}) \textit{for video generation from unpaired data}, extending the theoretical guarantees and empirical efficiency of Diffusion Schr\"odinger Bridge Matching (arXiv:archive/2303.16852) by deriving the Iterative Markovian Fitting algorithm to multiple marginals in a novel factorized fashion. Experiments show that MMtSBM retains theoretical properties on toy examples, achieves state-of-the-art performance on real world datasets such as transcriptomic trajectory inference in 100 dimensions, and for the first time recovers couplings and dynamics in very high dimensional image settings. Our work establishes multi-marginal Schr\"odinger bridges as a practical and principled approach for recovering hidden dynamics from static data.
comment: Under review. Code available at https://github.com/tgravier/MMDSBM-pytorch . Additional experiment materials available at https://mmdsbm.notion.site
☆ Randomized Gradient Subspaces for Efficient Large Language Model Training
Training large language models (LLMs) is often bottlenecked by extreme memory demands, with optimizer states dominating the footprint. Recent works mitigates this cost by projecting gradients into low-dimensional subspaces using sophisticated update strategies. In this paper, we analyze the dynamics of gradient space and its underlying subspaces. We find that while a small subspace captures most gradient energy, a significant portion still resides in the residual bulk; moreover, the influence of the core subspace diminishes over time and in deeper layers. We also observe that the gradient space exhibits near-flat curvature, calling for algorithms that explicitly account for this geometry. Motivated by these insights, we introduce a suite of randomized algorithms, GrassWalk and GrassJump, which exploit subspace and achieve state-of-the-art memory savings while improving performance on LLaMA-1B and LLaMA-7B pretraining.
☆ Deep Hedging Under Non-Convexity: Limitations and a Case for AlphaZero
This paper examines replication portfolio construction in incomplete markets - a key problem in financial engineering with applications in pricing, hedging, balance sheet management, and energy storage planning. We model this as a two-player game between an investor and the market, where the investor makes strategic bets on future states while the market reveals outcomes. Inspired by the success of Monte Carlo Tree Search in stochastic games, we introduce an AlphaZero-based system and compare its performance to deep hedging - a widely used industry method based on gradient descent. Through theoretical analysis and experiments, we show that deep hedging struggles in environments where the $Q$-function is not subject to convexity constraints - such as those involving non-convex transaction costs, capital constraints, or regulatory limitations - converging to local optima. We construct specific market environments to highlight these limitations and demonstrate that AlphaZero consistently finds near-optimal replication strategies. On the theoretical side, we establish a connection between deep hedging and convex optimization, suggesting that its effectiveness is contingent on convexity assumptions. Our experiments further suggest that AlphaZero is more sample-efficient - an important advantage in data-scarce, overfitting-prone derivative markets.
comment: 15 pages in main text + 18 pages of references and appendices
☆ Ranking Items from Discrete Ratings: The Cost of Unknown User Thresholds
Ranking items is a central task in many information retrieval and recommender systems. User input for the ranking task often comes in the form of ratings on a coarse discrete scale. We ask whether it is possible to recover a fine-grained item ranking from such coarse-grained ratings. We model items as having scores and users as having thresholds; a user rates an item positively if the item's score exceeds the user's threshold. Although all users agree on the total item order, estimating that order is challenging when both the scores and the thresholds are latent. Under our model, any ranking method naturally partitions the $n$ items into bins; the bins are ordered, but the items inside each bin are still unordered. Users arrive sequentially, and every new user can be queried to refine the current ranking. We prove that achieving a near-perfect ranking, measured by Spearman distance, requires $\Theta(n^2)$ users (and therefore $\Omega(n^2)$ queries). This is significantly worse than the $O(n\log n)$ queries needed to rank from comparisons; the gap reflects the additional queries needed to identify the users who have the appropriate thresholds. Our bound also quantifies the impact of a mismatch between score and threshold distributions via a quadratic divergence factor. To show the tightness of our results, we provide a ranking algorithm whose query complexity matches our bound up to a logarithmic factor. Our work reveals a tension in online ranking: diversity in thresholds is necessary to merge coarse ratings from many users into a fine-grained ranking, but this diversity has a cost if the thresholds are a priori unknown.
comment: 12 pages, 4 figures
☆ Universal Dynamic Regret and Constraint Violation Bounds for Constrained Online Convex Optimization
We consider a generalization of the celebrated Online Convex Optimization (OCO) framework with online adversarial constraints. We present two algorithms having simple modular structures that yield universal dynamic regret and cumulative constraint violation bounds, improving upon the state-of-the-art results. Our results hold in the most general case when both the cost and constraint functions are chosen arbitrarily by an adversary, and the constraint functions need not contain any common feasible point. The results are established by reducing the constrained learning problem to an instance of the standard OCO problem with specially constructed surrogate cost functions.
☆ Microscaling Floating Point Formats for Large Language Models
The increasing computational and memory demands of large language models (LLMs) necessitate innovative approaches to optimize resource usage without compromising performance. This paper leverages microscaling floating-point formats, a novel technique designed to address these challenges by reducing the storage and computational overhead associated with numerical representations in LLMs. Unlike traditional floating-point representations that allocate a dedicated scale for each value, microscaling employs a shared scale across a block of values, enabling compact one-byte floating-point representations while maintaining an extended dynamic range. We explore the application of microscaling in the context of 8-bit floating-point formats to significantly reduce memory footprint and computational costs. We tested several configurations of microscaling floats within the GPT-2 LLM architecture, demonstrating that microscaling data formats can achieve competitive accuracy during training and inference, proving its efficacy as a resource-efficient alternative for deploying LLMs at scale. The source code is publicly available at: https://github.com/unipi-dii-compressedarith/llm.c-sve
☆ Compositional meta-learning through probabilistic task inference
To solve a new task from minimal experience, it is essential to effectively reuse knowledge from previous tasks, a problem known as meta-learning. Compositional solutions, where common elements of computation are flexibly recombined into new configurations, are particularly well-suited for meta-learning. Here, we propose a compositional meta-learning model that explicitly represents tasks as structured combinations of reusable computations. We achieve this by learning a generative model that captures the underlying components and their statistics shared across a family of tasks. This approach transforms learning a new task into a probabilistic inference problem, which allows for finding solutions without parameter updates through highly constrained hypothesis testing. Our model successfully recovers ground truth components and statistics in rule learning and motor learning tasks. We then demonstrate its ability to quickly infer new solutions from just single examples. Together, our framework joins the expressivity of neural networks with the data-efficiency of probabilistic inference to achieve rapid compositional meta-learning.
☆ Explicit Discovery of Nonlinear Symmetries from Dynamic Data
Symmetry is widely applied in problems such as the design of equivariant networks and the discovery of governing equations, but in complex scenarios, it is not known in advance. Most previous symmetry discovery methods are limited to linear symmetries, and recent attempts to discover nonlinear symmetries fail to explicitly get the Lie algebra subspace. In this paper, we propose LieNLSD, which is, to our knowledge, the first method capable of determining the number of infinitesimal generators with nonlinear terms and their explicit expressions. We specify a function library for the infinitesimal group action and aim to solve for its coefficient matrix, proving that its prolongation formula for differential equations, which governs dynamic data, is also linear with respect to the coefficient matrix. By substituting the central differences of the data and the Jacobian matrix of the trained neural network into the infinitesimal criterion, we get a system of linear equations for the coefficient matrix, which can then be solved using SVD. On top quark tagging and a series of dynamic systems, LieNLSD shows qualitative advantages over existing methods and improves the long rollout accuracy of neural PDE solvers by over 20% while applying to guide data augmentation. Code and data are available at https://github.com/hulx2002/LieNLSD.
☆ Learning Representations Through Contrastive Neural Model Checking
Model checking is a key technique for verifying safety-critical systems against formal specifications, where recent applications of deep learning have shown promise. However, while ubiquitous for vision and language domains, representation learning remains underexplored in formal verification. We introduce Contrastive Neural Model Checking (CNML), a novel method that leverages the model checking task as a guiding signal for learning aligned representations. CNML jointly embeds logical specifications and systems into a shared latent space through a self-supervised contrastive objective. On industry-inspired retrieval tasks, CNML considerably outperforms both algorithmic and neural baselines in cross-modal and intra-modal settings.We further show that the learned representations effectively transfer to downstream tasks and generalize to more complex formulas. These findings demonstrate that model checking can serve as an objective for learning representations for formal languages.
☆ NGGAN: Noise Generation GAN Based on the Practical Measurement Dataset for Narrowband Powerline Communications
Capturing comprehensive statistics of nonperiodic asynchronous impulsive noise is a critical issue in enhancing impulse noise processing for narrowband powerline communication (NB-PLC) transceivers. However, existing mathematical noise generative models capture only some of the characteristics of additive noise. Therefore, we propose a generative adversarial network (GAN), called the noise-generation GAN (NGGAN), that learns the complicated characteristics of practically measured noise samples for data augmentation. To closely match the statistics of complicated noise in NB-PLC systems, we measured the NB-PLC noise via the analog coupling and bandpass filtering circuits of a commercial NB-PLC modem to build a realistic dataset. Specifically, the NGGAN design approaches based on the practically measured dataset are as follows: (i) we design the length of input signals that the NGGAN model can fit to facilitate cyclo-stationary noise generation. (ii) Wasserstein distance is used as a loss function to enhance the similarity between the generated noise and the training dataset and ensure that the sample diversity is sufficient for various applications. (iii) To measure the similarity performance of the GAN-based models based on mathematical and practically measured datasets, we perform quantitative and qualitative analyses. The training datasets include (1) a piecewise spectral cyclo-stationary Gaussian model (PSCGM), (2) a frequency-shift (FRESH) filter, and (3) practical measurements from NB-PLC systems. Simulation results demonstrate that the proposed NGGAN trained using waveform characteristics is closer to the practically measured dataset in terms of the quality of the generated noise.
comment: 16 pages, 15 figures, 11 tables, and published in IEEE Transactions on Instrumentation and Measurement, Vol. 74, 2025
☆ Pre-Hoc Predictions in AutoML: Leveraging LLMs to Enhance Model Selection and Benchmarking for Tabular datasets
The field of AutoML has made remarkable progress in post-hoc model selection, with libraries capable of automatically identifying the most performing models for a given dataset. Nevertheless, these methods often rely on exhaustive hyperparameter searches, where methods automatically train and test different types of models on the target dataset. Contrastingly, pre-hoc prediction emerges as a promising alternative, capable of bypassing exhaustive search through intelligent pre-selection of models. Despite its potential, pre-hoc prediction remains under-explored in the literature. This paper explores the intersection of AutoML and pre-hoc model selection by leveraging traditional models and Large Language Model (LLM) agents to reduce the search space of AutoML libraries. By relying on dataset descriptions and statistical information, we reduce the AutoML search space. Our methodology is applied to the AWS AutoGluon portfolio dataset, a state-of-the-art AutoML benchmark containing 175 tabular classification datasets available on OpenML. The proposed approach offers a shift in AutoML workflows, significantly reducing computational overhead, while still selecting the best model for the given dataset.
comment: Oral Presentations ADAPT Annual Scientific Conference 2025
☆ A reproducible comparative study of categorical kernels for Gaussian process regression, with new clustering-based nested kernels
Designing categorical kernels is a major challenge for Gaussian process regression with continuous and categorical inputs. Despite previous studies, it is difficult to identify a preferred method, either because the evaluation metrics, the optimization procedure, or the datasets change depending on the study. In particular, reproducible code is rarely available. The aim of this paper is to provide a reproducible comparative study of all existing categorical kernels on many of the test cases investigated so far. We also propose new evaluation metrics inspired by the optimization community, which provide quantitative rankings of the methods across several tasks. From our results on datasets which exhibit a group structure on the levels of categorical inputs, it appears that nested kernels methods clearly outperform all competitors. When the group structure is unknown or when there is no prior knowledge of such a structure, we propose a new clustering-based strategy using target encodings of categorical variables. We show that on a large panel of datasets, which do not necessarily have a known group structure, this estimation strategy still outperforms other approaches while maintaining low computational cost.
☆ Black-Box Combinatorial Optimization with Order-Invariant Reinforcement Learning
We introduce an order-invariant reinforcement learning framework for black-box combinatorial optimization. Classical estimation-of-distribution algorithms (EDAs) often rely on learning explicit variable dependency graphs, which can be costly and fail to capture complex interactions efficiently. In contrast, we parameterize a multivariate autoregressive generative model trained without a fixed variable ordering. By sampling random generation orders during training - a form of information-preserving dropout - the model is encouraged to be invariant to variable order, promoting search-space diversity and shaping the model to focus on the most relevant variable dependencies, improving sample efficiency. We adapt Generalized Reinforcement Policy Optimization (GRPO) to this setting, providing stable policy-gradient updates from scale-invariant advantages. Across a wide range of benchmark algorithms and problem instances of varying sizes, our method frequently achieves the best performance and consistently avoids catastrophic failures.
☆ Sparse Query Attention (SQA): A Computationally Efficient Attention Mechanism with Query Heads Reduction
The Transformer architecture, underpinned by the Multi-Head Attention (MHA) mechanism, has become the de facto standard for state-of-the-art models in artificial intelligence. However, the quadratic computational complexity of MHA with respect to sequence length presents a significant barrier to scaling, particularly for applications involving long contexts. Prevailing solutions, such as Multi-Query Attention (MQA) and Grouped-Query Attention (GQA), have effectively addressed the memory bandwidth bottleneck that dominates autoregressive inference latency by sharing Key and Value projections. While highly successful, these methods do not reduce the fundamental number of floating-point operations (FLOPs) required for the attention score computation, which remains a critical bottleneck for training and full-sequence processing. This paper introduces Sparse Query Attention (SQA), a novel attention architecture that pursues an alternative and complementary optimization path. Instead of reducing Key/Value heads, SQA reduces the number of Query heads. This architectural modification directly decreases the computational complexity of the attention mechanism by a factor proportional to the reduction in query heads, thereby lowering the overall FLOPs. This work presents the theoretical foundation of SQA, its mathematical formulation, and a family of architectural variants. Empirical benchmarks on long sequences (32k-200k tokens) demonstrate that SQA can achieve significant throughput improvements of up to 3x in computation-bound scenarios such as model pre-training, fine-tuning, and encoder-based tasks, with only a minimal impact on model quality in preliminary smallscale experiments. SQA was discovered serendipitously during the development of the upcoming Reactive Transformer architecture, suggesting its potential as a powerful tool for building more efficient and scalable models
comment: 18 pages, 6 figures, small-scale experiments
☆ PRESOL: a web-based computational setting for feature-based flare forecasting
Solar flares are the most explosive phenomena in the solar system and the main trigger of the events' chain that starts from Coronal Mass Ejections and leads to geomagnetic storms with possible impacts on the infrastructures at Earth. Data-driven solar flare forecasting relies on either deep learning approaches, which are operationally promising but with a low explainability degree, or machine learning algorithms, which can provide information on the physical descriptors that mostly impact the prediction. This paper describes a web-based technological platform for the execution of a computational pipeline of feature-based machine learning methods that provide predictions of the flare occurrence, feature ranking information, and assessment of the prediction performances.
☆ Rethinking the shape convention of an MLP
Multi-layer perceptrons (MLPs) conventionally follow a narrow-wide-narrow design where skip connections operate at the input/output dimensions while processing occurs in expanded hidden spaces. We challenge this convention by proposing wide-narrow-wide (Hourglass) MLP blocks where skip connections operate at expanded dimensions while residual computation flows through narrow bottlenecks. This inversion leverages higher-dimensional spaces for incremental refinement while maintaining computational efficiency through parameter-matched designs. Implementing Hourglass MLPs requires an initial projection to lift input signals to expanded dimensions. We propose that this projection can remain fixed at random initialization throughout training, enabling efficient training and inference implementations. We evaluate both architectures on generative tasks over popular image datasets, characterizing performance-parameter Pareto frontiers through systematic architectural search. Results show that Hourglass architectures consistently achieve superior Pareto frontiers compared to conventional designs. As parameter budgets increase, optimal Hourglass configurations favor deeper networks with wider skip connections and narrower bottlenecks-a scaling pattern distinct from conventional MLPs. Our findings suggest reconsidering skip connection placement in modern architectures, with potential applications extending to Transformers and other residual networks.
☆ Sensitivity, Specificity, and Consistency: A Tripartite Evaluation of Privacy Filters for Synthetic Data Generation
The generation of privacy-preserving synthetic datasets is a promising avenue for overcoming data scarcity in medical AI research. Post-hoc privacy filtering techniques, designed to remove samples containing personally identifiable information, have recently been proposed as a solution. However, their effectiveness remains largely unverified. This work presents a rigorous evaluation of a filtering pipeline applied to chest X-ray synthesis. Contrary to claims from the original publications, our results demonstrate that current filters exhibit limited specificity and consistency, achieving high sensitivity only for real images while failing to reliably detect near-duplicates generated from training data. These results demonstrate a critical limitation of post-hoc filtering: rather than effectively safeguarding patient privacy, these methods may provide a false sense of security while leaving unacceptable levels of patient information exposed. We conclude that substantial advances in filter design are needed before these methods can be confidently deployed in sensitive applications.
☆ Neural non-canonical Hamiltonian dynamics for long-time simulations
This work focuses on learning non-canonical Hamiltonian dynamics from data, where long-term predictions require the preservation of structure both in the learned model and in numerical schemes. Previous research focused on either facet, respectively with a potential-based architecture and with degenerate variational integrators, but new issues arise when combining both. In experiments, the learnt model is sometimes numerically unstable due to the gauge dependency of the scheme, rendering long-time simulations impossible. In this paper, we identify this problem and propose two different training strategies to address it, either by directly learning the vector field or by learning a time-discrete dynamics through the scheme. Several numerical test cases assess the ability of the methods to learn complex physical dynamics, like the guiding center from gyrokinetic plasma physics.
☆ Secure Multi-Modal Data Fusion in Federated Digital Health Systems via MCP
Secure and interoperable integration of heterogeneous medical data remains a grand challenge in digital health. Current federated learning (FL) frameworks offer privacy-preserving model training but lack standardized mechanisms to orchestrate multi-modal data fusion across distributed and resource-constrained environments. This study introduces a novel framework that leverages the Model Context Protocol (MCP) as an interoperability layer for secure, cross-agent communication in multi-modal federated healthcare systems. The proposed architecture unifies three pillars: (i) multi-modal feature alignment for clinical imaging, electronic medical records, and wearable IoT data; (ii) secure aggregation with differential privacy to protect patient-sensitive updates; and (iii) energy-aware scheduling to mitigate dropouts in mobile clients. By employing MCP as a schema-driven interface, the framework enables adaptive orchestration of AI agents and toolchains while ensuring compliance with privacy regulations. Experimental evaluation on benchmark datasets and pilot clinical cohorts demonstrates up to 9.8\% improvement in diagnostic accuracy compared with baseline FL, a 54\% reduction in client dropout rates, and clinically acceptable privacy--utility trade-offs. These results highlight MCP-enabled multi-modal fusion as a scalable and trustworthy pathway toward equitable, next-generation federated health infrastructures.
comment: 6 pages, 8 figures, 7 equations, 1 algorithm
☆ Scalable Asynchronous Federated Modeling for Spatial Data
Spatial data are central to applications such as environmental monitoring and urban planning, but are often distributed across devices where privacy and communication constraints limit direct sharing. Federated modeling offers a practical solution that preserves data privacy while enabling global modeling across distributed data sources. For instance, environmental sensor networks are privacy- and bandwidth-constrained, motivating federated spatial modeling that shares only privacy-preserving summaries to produce timely, high-resolution pollution maps without centralizing raw data. However, existing federated modeling approaches either ignore spatial dependence or rely on synchronous updates that suffer from stragglers in heterogeneous environments. This work proposes an asynchronous federated modeling framework for spatial data based on low-rank Gaussian process approximations. The method employs block-wise optimization and introduces strategies for gradient correction, adaptive aggregation, and stabilized updates. We establish linear convergence with explicit dependence on staleness, a result of standalone theoretical significance. Moreover, numerical experiments demonstrate that the asynchronous algorithm achieves synchronous performance under balanced resource allocation and significantly outperforms it in heterogeneous settings, showcasing superior robustness and scalability.
☆ Octax: Accelerated CHIP-8 Arcade Environments for Reinforcement Learning in JAX
Reinforcement learning (RL) research requires diverse, challenging environments that are both tractable and scalable. While modern video games may offer rich dynamics, they are computationally expensive and poorly suited for large-scale experimentation due to their CPU-bound execution. We introduce Octax, a high-performance suite of classic arcade game environments implemented in JAX, based on CHIP-8 emulation, a predecessor to Atari, which is widely adopted as a benchmark in RL research. Octax provides the JAX community with a long-awaited end-to-end GPU alternative to the Atari benchmark, offering image-based environments, spanning puzzle, action, and strategy genres, all executable at massive scale on modern GPUs. Our JAX-based implementation achieves orders-of-magnitude speedups over traditional CPU emulators while maintaining perfect fidelity to the original game mechanics. We demonstrate Octax's capabilities by training RL agents across multiple games, showing significant improvements in training speed and scalability compared to existing solutions. The environment's modular design enables researchers to easily extend the suite with new games or generate novel environments using large language models, making it an ideal platform for large-scale RL experimentation.
Unsupervised Dynamic Feature Selection for Robust Latent Spaces in Vision Tasks
Latent representations are critical for the performance and robustness of machine learning models, as they encode the essential features of data in a compact and informative manner. However, in vision tasks, these representations are often affected by noisy or irrelevant features, which can degrade the model's performance and generalization capabilities. This paper presents a novel approach for enhancing latent representations using unsupervised Dynamic Feature Selection (DFS). For each instance, the proposed method identifies and removes misleading or redundant information in images, ensuring that only the most relevant features contribute to the latent space. By leveraging an unsupervised framework, our approach avoids reliance on labeled data, making it broadly applicable across various domains and datasets. Experiments conducted on image datasets demonstrate that models equipped with unsupervised DFS achieve significant improvements in generalization performance across various tasks, including clustering and image generation, while incurring a minimal increase in the computational cost.
☆ Learning Regularization Functionals for Inverse Problems: A Comparative Study
In recent years, a variety of learned regularization frameworks for solving inverse problems in imaging have emerged. These offer flexible modeling together with mathematical insights. The proposed methods differ in their architectural design and training strategies, making direct comparison challenging due to non-modular implementations. We address this gap by collecting and unifying the available code into a common framework. This unified view allows us to systematically compare the approaches and highlight their strengths and limitations, providing valuable insights into their future potential. We also provide concise descriptions of each method, complemented by practical guidelines.
☆ Private and Fair Machine Learning: Revisiting the Disparate Impact of Differentially Private SGD
Differential privacy (DP) is a prominent method for protecting information about individuals during data analysis. Training neural networks with differentially private stochastic gradient descent (DPSGD) influences the model's learning dynamics and, consequently, its output. This can affect the model's performance and fairness. While the majority of studies on the topic report a negative impact on fairness, it has recently been suggested that fairness levels comparable to non-private models can be achieved by optimizing hyperparameters for performance directly on differentially private models (rather than re-using hyperparameters from non-private models, as is common practice). In this work, we analyze the generalizability of this claim by 1) comparing the disparate impact of DPSGD on different performance metrics, and 2) analyzing it over a wide range of hyperparameter settings. We highlight that a disparate impact on one metric does not necessarily imply a disparate impact on another. Most importantly, we show that while optimizing hyperparameters directly on differentially private models does not mitigate the disparate impact of DPSGD reliably, it can still lead to improved utility-fairness trade-offs compared to re-using hyperparameters from non-private models. We stress, however, that any form of hyperparameter tuning entails additional privacy leakage, calling for careful considerations of how to balance privacy, utility and fairness. Finally, we extend our analyses to DPSGD-Global-Adapt, a variant of DPSGD designed to mitigate the disparate impact on accuracy, and conclude that this alternative may not be a robust solution with respect to hyperparameter choice.
☆ Reducing Simulation Dependence in Neutrino Telescopes with Masked Point Transformers
Machine learning techniques in neutrino physics have traditionally relied on simulated data, which provides access to ground-truth labels. However, the accuracy of these simulations and the discrepancies between simulated and real data remain significant concerns, particularly for large-scale neutrino telescopes that operate in complex natural media. In recent years, self-supervised learning has emerged as a powerful paradigm for reducing dependence on labeled datasets. Here, we present the first self-supervised training pipeline for neutrino telescopes, leveraging point cloud transformers and masked autoencoders. By shifting the majority of training to real data, this approach minimizes reliance on simulations, thereby mitigating associated systematic uncertainties. This represents a fundamental departure from previous machine learning applications in neutrino telescopes, paving the way for substantial improvements in event reconstruction and classification.
comment: 8 pages, 3 figures, presented at the 39th International Cosmic Ray Conference (ICRC2025)
☆ Workplace Location Choice Model based on Deep Neural Network
Discrete choice models (DCMs) have long been used to analyze workplace location decisions, but they face challenges in accurately mirroring individual decision-making processes. This paper presents a deep neural network (DNN) method for modeling workplace location choices, which aims to better understand complex decision patterns and provides better results than traditional discrete choice models (DCMs). The study demonstrates that DNNs show significant potential as a robust alternative to DCMs in this domain. While both models effectively replicate the impact of job opportunities on workplace location choices, the DNN outperforms the DCM in certain aspects. However, the DCM better aligns with data when assessing the influence of individual attributes on workplace distance. Notably, DCMs excel at shorter distances, while DNNs perform comparably to both data and DCMs for longer distances. These findings underscore the importance of selecting the appropriate model based on specific application requirements in workplace location choice analysis.
☆ Finite-Time Bounds for Distributionally Robust TD Learning with Linear Function Approximation
Distributionally robust reinforcement learning (DRRL) focuses on designing policies that achieve good performance under model uncertainties. In particular, we are interested in maximizing the worst-case long-term discounted reward, where the data for RL comes from a nominal model while the deployed environment can deviate from the nominal model within a prescribed uncertainty set. Existing convergence guarantees for robust temporal-difference (TD) learning for policy evaluation are limited to tabular MDPs or are dependent on restrictive discount-factor assumptions when function approximation is used. We present the first robust TD learning with linear function approximation, where robustness is measured with respect to the total-variation distance and Wasserstein-l distance uncertainty set. Additionally, our algorithm is both model-free and does not require generative access to the MDP. Our algorithm combines a two-time-scale stochastic-approximation update with an outer-loop target-network update. We establish an $\tilde{O}(1/\epsilon^2)$ sample complexity to obtain an $\epsilon$-accurate value estimate. Our results close a key gap between the empirical success of robust RL algorithms and the non-asymptotic guarantees enjoyed by their non-robust counterparts. The key ideas in the paper also extend in a relatively straightforward fashion to robust Q-learning with function approximation.
comment: Preprint. 32 Pages
☆ Accelerating Attention with Basis Decomposition
Attention is a core operation in large language models (LLMs) and vision-language models (VLMs). We present BD Attention (BDA), the first lossless algorithmic reformulation of attention. BDA is enabled by a simple matrix identity from Basis Decomposition (BD), which restructures multi-head projections into a compact form while preserving exact outputs. Unlike I/O-aware system optimizations such as FlashAttention, BDA provides a mathematically guaranteed acceleration that is architecture-agnostic. On DeepSeek-V2-Lite (16B, FP16), BDA requires only 4s of offline preparation with no retraining required and, on modern GPUs, achieves 32% faster key/value projections and 25% smaller weights, while increasing end-to-end perplexity (PPL) by just 0.02% (FP16) or 0.0004% (FP32), a negligible effect on model performance. These results position BDA as the first theoretically exact method for lossless attention acceleration that is complementary to existing engineering-level optimizations. Our code is available at https://github.com/abcbdf/basis-decomposition-official.
☆ Latency-aware Multimodal Federated Learning over UAV Networks
This paper investigates federated multimodal learning (FML) assisted by unmanned aerial vehicles (UAVs) with a focus on minimizing system latency and providing convergence analysis. In this framework, UAVs are distributed throughout the network to collect data, participate in model training, and collaborate with a base station (BS) to build a global model. By utilizing multimodal sensing, the UAVs overcome the limitations of unimodal systems, enhancing model accuracy, generalization, and offering a more comprehensive understanding of the environment. The primary objective is to optimize FML system latency in UAV networks by jointly addressing UAV sensing scheduling, power control, trajectory planning, resource allocation, and BS resource management. To address the computational complexity of our latency minimization problem, we propose an efficient iterative optimization algorithm combining block coordinate descent and successive convex approximation techniques, which provides high-quality approximate solutions. We also present a theoretical convergence analysis for the UAV-assisted FML framework under a non-convex loss function. Numerical experiments demonstrate that our FML framework outperforms existing approaches in terms of system latency and model training performance under different data settings.
comment: Accepted at IEEE Transactions on Network Science and Engineering
☆ ActiNet: Activity intensity classification of wrist-worn accelerometers using self-supervised deep learning
The use of reliable and accurate human activity recognition (HAR) models on passively collected wrist-accelerometer data is essential in large-scale epidemiological studies that investigate the association between physical activity and health outcomes. While the use of self-supervised learning has generated considerable excitement in improving HAR, it remains unknown the extent to which these models, coupled with hidden Markov models (HMMs), would make a tangible improvement to classification performance, and the effect this may have on the predicted daily activity intensity compositions. Using 151 CAPTURE-24 participants' data, we trained the ActiNet model, a self-supervised, 18-layer, modified ResNet-V2 model, followed by hidden Markov model (HMM) smoothing to classify labels of activity intensity. The performance of this model, evaluated using 5-fold stratified group cross-validation, was then compared to a baseline random forest (RF) + HMM, established in existing literature. Differences in performance and classification outputs were compared with different subgroups of age and sex within the Capture-24 population. The ActiNet model was able to distinguish labels of activity intensity with a mean macro F1 score of 0.82, and mean Cohen's kappa score of 0.86. This exceeded the performance of the RF + HMM, trained and validated on the same dataset, with mean scores of 0.77 and 0.81, respectively. These findings were consistent across subgroups of age and sex. These findings encourage the use of ActiNet for the extraction of activity intensity labels from wrist-accelerometer data in future epidemiological studies.
☆ Contrastive Representation Regularization for Vision-Language-Action Models
Vision-Language-Action (VLA) models have shown its capabilities in robot manipulation by leveraging rich representations from pre-trained Vision-Language Models (VLMs). However, their representations arguably remain suboptimal, lacking sensitivity to robotic signals such as control actions and proprioceptive states. To address the issue, we introduce Robot State-aware Contrastive Loss (RS-CL), a simple and effective representation regularization for VLA models, designed to bridge the gap between VLM representations and robotic signals. In particular, RS-CL aligns the representations more closely with the robot's proprioceptive states, by using relative distances between the states as soft supervision. Complementing the original action prediction objective, RS-CL effectively enhances control-relevant representation learning, while being lightweight and fully compatible with standard VLA training pipeline. Our empirical results demonstrate that RS-CL substantially improves the manipulation performance of state-of-the-art VLA models; it pushes the prior art from 30.8% to 41.5% on pick-and-place tasks in RoboCasa-Kitchen, through more accurate positioning during grasping and placing, and boosts success rates from 45.0% to 58.3% on challenging real-robot manipulation tasks.
comment: 20 pages, 12 figures
☆ Representational Alignment Across Model Layers and Brain Regions with Hierarchical Optimal Transport
Standard representational similarity methods align each layer of a network to its best match in another independently, producing asymmetric results, lacking a global alignment score, and struggling with networks of different depths. These limitations arise from ignoring global activation structure and restricting mappings to rigid one-to-one layer correspondences. We propose Hierarchical Optimal Transport (HOT), a unified framework that jointly infers soft, globally consistent layer-to-layer couplings and neuron-level transport plans. HOT allows source neurons to distribute mass across multiple target layers while minimizing total transport cost under marginal constraints. This yields both a single alignment score for the entire network comparison and a soft transport plan that naturally handles depth mismatches through mass distribution. We evaluate HOT on vision models, large language models, and human visual cortex recordings. Across all domains, HOT matches or surpasses standard pairwise matching in alignment quality. Moreover, it reveals smooth, fine-grained hierarchical correspondences: early layers map to early layers, deeper layers maintain relative positions, and depth mismatches are resolved by distributing representations across multiple layers. These structured patterns emerge naturally from global optimization without being imposed, yet are absent in greedy layer-wise methods. HOT thus enables richer, more interpretable comparisons between representations, particularly when networks differ in architecture or depth.
☆ Holistic Order Prediction in Natural Scenes
Even in controlled settings, understanding instance-wise geometries is a challenging task for a wide range of visual models. Although specialized systems exist, modern arts rely on expensive input formats (category labels, binary segmentation masks) and inference costs (a quadratic amount of forward passes). We mitigate these limitations by proposing InstaFormer, a network capable of holistic order prediction. That is, solely given an input RGB image, InstaFormer returns the full occlusion and depth orderings for all the instances in the scene in a single forward pass. At its core, InstaFormer relies on interactions between object queries and latent mask descriptors that semantically represent the same objects while carrying complementary information. We comprehensively benchmark and ablate our approach to highlight its effectiveness. Our code and models are open-source and available at this URL: https://github.com/SNU-VGILab/InstaOrder.
comment: 25 pages, 11 figures, 6 tables
☆ VaPR -- Vision-language Preference alignment for Reasoning
Preference finetuning methods like Direct Preference Optimization (DPO) with AI-generated feedback have shown promise in aligning Large Vision-Language Models (LVLMs) with human preferences. However, existing techniques overlook the prevalence of noise in synthetic preference annotations in the form of stylistic and length biases. To this end, we introduce a hard-negative response generation framework based on LLM-guided response editing, that produces rejected responses with targeted errors, maintaining stylistic and length similarity to the accepted ones. Using this framework, we develop the VaPR dataset, comprising 30K high-quality samples, to finetune three LVLM families: LLaVA-V1.5, Qwen2VL & Qwen2.5VL (2B-13B sizes). Our VaPR models deliver significant performance improvements across ten benchmarks, achieving average gains of 6.5% (LLaVA), 4.0% (Qwen2VL), and 1.5% (Qwen2.5VL), with notable improvements on reasoning tasks. A scaling analysis shows that performance consistently improves with data size, with LLaVA models benefiting even at smaller scales. Moreover, VaPR reduces the tendency to answer "Yes" in binary questions - addressing a common failure mode in LVLMs like LLaVA. Lastly, we show that the framework generalizes to open-source LLMs as editors, with models trained on VaPR-OS achieving ~99% of the performance of models trained on \name, which is synthesized using GPT-4o. Our data, models, and code can be found on the project page https://vap-r.github.io
☆ PASTA: A Unified Framework for Offline Assortment Learning
We study a broad class of assortment optimization problems in an offline and data-driven setting. In such problems, a firm lacks prior knowledge of the underlying choice model, and aims to determine an optimal assortment based on historical customer choice data. The combinatorial nature of assortment optimization often results in insufficient data coverage, posing a significant challenge in designing provably effective solutions. To address this, we introduce a novel Pessimistic Assortment Optimization (PASTA) framework that leverages the principle of pessimism to achieve optimal expected revenue under general choice models. Notably, PASTA requires only that the offline data distribution contains an optimal assortment, rather than providing the full coverage of all feasible assortments. Theoretically, we establish the first finite-sample regret bounds for offline assortment optimization across several widely used choice models, including the multinomial logit and nested logit models. Additionally, we derive a minimax regret lower bound, proving that PASTA is minimax optimal in terms of sample and model complexity. Numerical experiments further demonstrate that our method outperforms existing baseline approaches.
☆ Beyond Simple Fusion: Adaptive Gated Fusion for Robust Multimodal Sentiment Analysis
Multimodal sentiment analysis (MSA) leverages information fusion from diverse modalities (e.g., text, audio, visual) to enhance sentiment prediction. However, simple fusion techniques often fail to account for variations in modality quality, such as those that are noisy, missing, or semantically conflicting. This oversight leads to suboptimal performance, especially in discerning subtle emotional nuances. To mitigate this limitation, we introduce a simple yet efficient \textbf{A}daptive \textbf{G}ated \textbf{F}usion \textbf{N}etwork that adaptively adjusts feature weights via a dual gate fusion mechanism based on information entropy and modality importance. This mechanism mitigates the influence of noisy modalities and prioritizes informative cues following unimodal encoding and cross-modal interaction. Experiments on CMU-MOSI and CMU-MOSEI show that AGFN significantly outperforms strong baselines in accuracy, effectively discerning subtle emotions with robust performance. Visualization analysis of feature representations demonstrates that AGFN enhances generalization by learning from a broader feature distribution, achieved by reducing the correlation between feature location and prediction error, thereby decreasing reliance on specific locations and creating more robust multimodal feature representations.
☆ Evaluating the Robustness of a Production Malware Detection System to Transferable Adversarial Attacks
As deep learning models become widely deployed as components within larger production systems, their individual shortcomings can create system-level vulnerabilities with real-world impact. This paper studies how adversarial attacks targeting an ML component can degrade or bypass an entire production-grade malware detection system, performing a case study analysis of Gmail's pipeline where file-type identification relies on a ML model. The malware detection pipeline in use by Gmail contains a machine learning model that routes each potential malware sample to a specialized malware classifier to improve accuracy and performance. This model, called Magika, has been open sourced. By designing adversarial examples that fool Magika, we can cause the production malware service to incorrectly route malware to an unsuitable malware detector thereby increasing our chance of evading detection. Specifically, by changing just 13 bytes of a malware sample, we can successfully evade Magika in 90% of cases and thereby allow us to send malware files over Gmail. We then turn our attention to defenses, and develop an approach to mitigate the severity of these types of attacks. For our defended production model, a highly resourced adversary requires 50 bytes to achieve just a 20% attack success rate. We implement this defense, and, thanks to a collaboration with Google engineers, it has already been deployed in production for the Gmail classifier.
☆ Just Do It!? Computer-Use Agents Exhibit Blind Goal-Directedness
Computer-Use Agents (CUAs) are an increasingly deployed class of agents that take actions on GUIs to accomplish user goals. In this paper, we show that CUAs consistently exhibit Blind Goal-Directedness (BGD): a bias to pursue goals regardless of feasibility, safety, reliability, or context. We characterize three prevalent patterns of BGD: (i) lack of contextual reasoning, (ii) assumptions and decisions under ambiguity, and (iii) contradictory or infeasible goals. We develop BLIND-ACT, a benchmark of 90 tasks capturing these three patterns. Built on OSWorld, BLIND-ACT provides realistic environments and employs LLM-based judges to evaluate agent behavior, achieving 93.75% agreement with human annotations. We use BLIND-ACT to evaluate nine frontier models, including Claude Sonnet and Opus 4, Computer-Use-Preview, and GPT-5, observing high average BGD rates (80.8%) across them. We show that BGD exposes subtle risks that arise even when inputs are not directly harmful. While prompting-based interventions lower BGD levels, substantial risk persists, highlighting the need for stronger training- or inference-time interventions. Qualitative analysis reveals observed failure modes: execution-first bias (focusing on how to act over whether to act), thought-action disconnect (execution diverging from reasoning), and request-primacy (justifying actions due to user request). Identifying BGD and introducing BLIND-ACT establishes a foundation for future research on studying and mitigating this fundamental risk and ensuring safe CUA deployment.
☆ Shift-Invariant Attribute Scoring for Kolmogorov-Arnold Networks via Shapley Value
For many real-world applications, understanding feature-outcome relationships is as crucial as achieving high predictive accuracy. While traditional neural networks excel at prediction, their black-box nature obscures underlying functional relationships. Kolmogorov--Arnold Networks (KANs) address this by employing learnable spline-based activation functions on edges, enabling recovery of symbolic representations while maintaining competitive performance. However, KAN's architecture presents unique challenges for network pruning. Conventional magnitude-based methods become unreliable due to sensitivity to input coordinate shifts. We propose \textbf{ShapKAN}, a pruning framework using Shapley value attribution to assess node importance in a shift-invariant manner. Unlike magnitude-based approaches, ShapKAN quantifies each node's actual contribution, ensuring consistent importance rankings regardless of input parameterization. Extensive experiments on synthetic and real-world datasets demonstrate that ShapKAN preserves true node importance while enabling effective network compression. Our approach improves KAN's interpretability advantages, facilitating deployment in resource-constrained environments.
comment: 15 pages, 6 figures, 9 tables
☆ Learning Time-Series Representations by Hierarchical Uniformity-Tolerance Latent Balancing
We propose TimeHUT, a novel method for learning time-series representations by hierarchical uniformity-tolerance balancing of contrastive representations. Our method uses two distinct losses to learn strong representations with the aim of striking an effective balance between uniformity and tolerance in the embedding space. First, TimeHUT uses a hierarchical setup to learn both instance-wise and temporal information from input time-series. Next, we integrate a temperature scheduler within the vanilla contrastive loss to balance the uniformity and tolerance characteristics of the embeddings. Additionally, a hierarchical angular margin loss enforces instance-wise and temporal contrast losses, creating geometric margins between positive and negative pairs of temporal sequences. This approach improves the coherence of positive pairs and their separation from the negatives, enhancing the capture of temporal dependencies within a time-series sample. We evaluate our approach on a wide range of tasks, namely 128 UCR and 30 UAE datasets for univariate and multivariate classification, as well as Yahoo and KPI datasets for anomaly detection. The results demonstrate that TimeHUT outperforms prior methods by considerable margins on classification, while obtaining competitive results for anomaly detection. Finally, detailed sensitivity and ablation studies are performed to evaluate different components and hyperparameters of our method.
comment: Accepted in Transactions on Machine Learning Research
☆ Asymmetric Proximal Policy Optimization: mini-critics boost LLM reasoning
Most recent RL for LLMs (RL4LLM) methods avoid explicit critics, replacing them with average advantage baselines. This shift is largely pragmatic: conventional value functions are computationally expensive to train at LLM scale and often fail under sparse rewards and long reasoning horizons. We revisit this bottleneck from an architectural perspective and introduce Asymmetric Proximal Policy Optimization (AsyPPO), a simple and scalable framework that restores the critics role while remaining efficient in large-model settings. AsyPPO employs a set of lightweight mini-critics, each trained on disjoint prompt shards. This design encourages diversity while preserving calibration, reducing value-estimation bias. Beyond robust estimation, AsyPPO leverages inter-critic uncertainty to refine the policy update: (i) masking advantages in states where critics agree and gradients add little learning signal, and (ii) filtering high-divergence states from entropy regularization, suppressing spurious exploration. After training on open-source data with only 5,000 samples, AsyPPO consistently improves learning stability and performance across multiple benchmarks over strong baselines, such as GRPO, achieving performance gains of more than six percent on Qwen3-4b-Base and about three percent on Qwen3-8b-Base and Qwen3-14b-Base over classic PPO, without additional tricks. These results highlight the importance of architectural innovations for scalable, efficient algorithms.
☆ The Unseen Frontier: Pushing the Limits of LLM Sparsity with Surrogate-Free ADMM
Neural network pruning is a promising technique to mitigate the excessive computational and memory requirements of large language models (LLMs). Despite its promise, however, progress in this area has diminished, as conventional methods are seemingly unable to surpass moderate sparsity levels (50-60%) without severely degrading model accuracy. This work breaks through the current impasse, presenting a principled and effective method called $\texttt{Elsa}$, which achieves extreme sparsity levels of up to 90% while retaining high model fidelity. This is done by identifying several limitations in current practice, all of which can be traced back to their reliance on a surrogate objective formulation. $\texttt{Elsa}$ tackles this issue directly and effectively via standard and well-established constrained optimization techniques based on ADMM. Our extensive experiments across a wide range of models and scales show that $\texttt{Elsa}$ achieves substantial improvements over existing methods; e.g., it achieves 7.8$\times$ less perplexity than the best existing method on LLaMA-2-7B at 90% sparsity. Furthermore, we present $\texttt{Elsa}_{\text{-L}}$, a quantized variant that scales to extremely large models (27B), and establish its theoretical convergence guarantees. These results highlight meaningful progress in advancing the frontier of LLM sparsity, while promising that significant opportunities for further advancement may remain in directions that have so far attracted limited exploration.
comment: Preprint
☆ Source-Free Cross-Domain Continual Learning
Although existing cross-domain continual learning approaches successfully address many streaming tasks having domain shifts, they call for a fully labeled source domain hindering their feasibility in the privacy constrained environments. This paper goes one step ahead with the problem of source-free cross-domain continual learning where the use of source-domain samples are completely prohibited. We propose the idea of rehearsal-free frequency-aware dynamic prompt collaborations (REFEREE) to cope with the absence of labeled source-domain samples in realm of cross-domain continual learning. REFEREE is built upon a synergy between a source-pre-trained model and a large-scale vision-language model, thus overcoming the problem of sub-optimal generalizations when relying only on a source pre-trained model. The domain shift problem between the source domain and the target domain is handled by a frequency-aware prompting technique encouraging low-frequency components while suppressing high-frequency components. This strategy generates frequency-aware augmented samples, robust against noisy pseudo labels. The noisy pseudo-label problem is further addressed with the uncertainty-aware weighting strategy where the mean and covariance matrix are weighted by prediction uncertainties, thus mitigating the adverse effects of the noisy pseudo label. Besides, the issue of catastrophic forgetting (CF) is overcome by kernel linear discriminant analysis (KLDA) where the backbone network is frozen while the classification is performed using the linear discriminant analysis approach guided by the random kernel method. Our rigorous numerical studies confirm the advantage of our approach where it beats prior arts having access to source domain samples with significant margins.
☆ Position: Privacy Is Not Just Memorization!
The discourse on privacy risks in Large Language Models (LLMs) has disproportionately focused on verbatim memorization of training data, while a constellation of more immediate and scalable privacy threats remain underexplored. This position paper argues that the privacy landscape of LLM systems extends far beyond training data extraction, encompassing risks from data collection practices, inference-time context leakage, autonomous agent capabilities, and the democratization of surveillance through deep inference attacks. We present a comprehensive taxonomy of privacy risks across the LLM lifecycle -- from data collection through deployment -- and demonstrate through case studies how current privacy frameworks fail to address these multifaceted threats. Through a longitudinal analysis of 1,322 AI/ML privacy papers published at leading conferences over the past decade (2016--2025), we reveal that while memorization receives outsized attention in technical research, the most pressing privacy harms lie elsewhere, where current technical approaches offer little traction and viable paths forward remain unclear. We call for a fundamental shift in how the research community approaches LLM privacy, moving beyond the narrow focus of current technical solutions and embracing interdisciplinary approaches that address the sociotechnical nature of these emerging threats.
comment: 27 pages, 6 figures, 2 tables
☆ Support Basis: Fast Attention Beyond Bounded Entries
The quadratic complexity of softmax attention remains a central bottleneck in scaling large language models (LLMs). [Alman and Song, NeurIPS 2023] proposed a sub-quadratic attention approximation algorithm, but it works only under the restrictive bounded-entry assumption. Since this assumption rarely holds in practice, its applicability to modern LLMs is limited. In this paper, we introduce support-basis decomposition, a new framework for efficient attention approximation beyond bounded entries. We empirically demonstrate that the entries of the query and key matrices exhibit sub-Gaussian behavior. Our approach uses this property to split large and small entries, enabling exact computation on sparse components and polynomial approximation on dense components. We establish rigorous theoretical guarantees, proving a sub-quadratic runtime, and extend the method to a multi-threshold setting that eliminates all distributional assumptions. Furthermore, we provide the first theoretical justification for the empirical success of polynomial attention [Kacham, Mirrokni, and Zhong, ICML 2024], showing that softmax attention can be closely approximated by a combination of multiple polynomial attentions with sketching.
Detecting Post-generation Edits to Watermarked LLM Outputs via Combinatorial Watermarking
Watermarking has become a key technique for proprietary language models, enabling the distinction between AI-generated and human-written text. However, in many real-world scenarios, LLM-generated content may undergo post-generation edits, such as human revisions or even spoofing attacks, making it critical to detect and localize such modifications. In this work, we introduce a new task: detecting post-generation edits locally made to watermarked LLM outputs. To this end, we propose a combinatorial pattern-based watermarking framework, which partitions the vocabulary into disjoint subsets and embeds the watermark by enforcing a deterministic combinatorial pattern over these subsets during generation. We accompany the combinatorial watermark with a global statistic that can be used to detect the watermark. Furthermore, we design lightweight local statistics to flag and localize potential edits. We introduce two task-specific evaluation metrics, Type-I error rate and detection accuracy, and evaluate our method on open-source LLMs across a variety of editing scenarios, demonstrating strong empirical performance in edit localization.
☆ CAT: Curvature-Adaptive Transformers for Geometry-Aware Learning
Transformers achieve strong performance across diverse domains but implicitly assume Euclidean geometry in their attention mechanisms, limiting their effectiveness on data with non-Euclidean structure. While recent extensions to hyperbolic and spherical spaces show promise for hierarchical and cyclical patterns, respectively, they require committing to a single geometry a priori, reducing flexibility when data exhibits mixed geometric properties. We introduce the Curvature-Adaptive Transformer (CAT), a novel architecture that dynamically learns per-token routing across three geometric attention branches through a lightweight, differentiable gating mechanism. Unlike fixed-geometry approaches, CAT enables adaptive geometric specialization, routing tokens to the appropriate curvature based on their local relational structure. The routing network provides interpretable curvature preferences while each branch employs geometry-specific operations optimized for its respective manifold. On knowledge graph completion benchmarks (FB15k-237, WN18RR), CAT achieves approximately 10% improvements in MRR and Hits@10 over fixed-geometry baselines with minimal overhead (5% parameter increase, comparable inference time). These results demonstrate that learned geometric adaptation outperforms any single fixed geometry for complex relational reasoning, establishing CAT as a scalable and interpretable foundation for mixture-of-geometry architectures across language, vision, and multimodal domains.
☆ Demystifying Synthetic Data in LLM Pre-training: A Systematic Study of Scaling Laws, Benefits, and Pitfalls EMNLP 2025
Training data plays a crucial role in Large Language Models (LLM) scaling, yet high quality data is of limited supply. Synthetic data techniques offer a potential path toward sidestepping these limitations. We conduct a large-scale empirical investigation (>1000 LLMs with >100k GPU hours) using a unified protocol and scaling laws, comparing natural web data, diverse synthetic types (rephrased text, generated textbooks), and mixtures of natural and synthetic data. Specifically, we found pre-training on rephrased synthetic data \textit{alone} is not faster than pre-training on natural web texts; while pre-training on 1/3 rephrased synthetic data mixed with 2/3 natural web texts can speed up 5-10x (to reach the same validation loss) at larger data budgets. Pre-training on textbook-style synthetic data \textit{alone} results in notably higher loss on many downstream domains especially at small data budgets. "Good" ratios of synthetic data in training data mixtures depend on the model size and data budget, empirically converging to ~30% for rephrased synthetic data. Larger generator models do not necessarily yield better pre-training data than ~8B-param models. These results contribute mixed evidence on "model collapse" during large-scale single-round (n=1) model training on synthetic data--training on rephrased synthetic data shows no degradation in performance in foreseeable scales whereas training on mixtures of textbook-style pure-generated synthetic data shows patterns predicted by "model collapse". Our work demystifies synthetic data in pre-training, validates its conditional benefits, and offers practical guidance.
comment: Published as a Main Conference paper at EMNLP 2025
☆ Quagmires in SFT-RL Post-Training: When High SFT Scores Mislead and What to Use Instead
In post-training for reasoning Large Language Models (LLMs), the current state of practice trains LLMs in two independent stages: Supervised Fine-Tuning (SFT) and Reinforcement Learning with Verifiable Rewards (RLVR, shortened as ``RL'' below). In this work, we challenge whether high SFT scores translate to improved performance after RL. We provide extensive counter-examples where this is not true. We find high SFT scores can be biased toward simpler or more homogeneous data and are not reliably predictive of subsequent RL gains or scaled-up post-training effectiveness. In some cases, RL training on models with improved SFT performance could lead to substantially worse outcome compared to RL on the base model without SFT. We study alternative metrics and identify generalization loss on held-out reasoning examples and Pass@large k performance to provide strong proxies for the RL outcome. We trained hundreds of models up to 12B-parameter with SFT and RLVR via GRPO and ran extensive evaluations on 7 math benchmarks with up to 256 repetitions, spending $>$1M GPU hours. Experiments include models from Llama3, Mistral-Nemo, Qwen3 and multiple state-of-the-art SFT/RL datasets. Compared to directly predicting from pre-RL performance, prediction based on generalization loss and Pass@large k achieves substantial higher precision, improving $R^2$ coefficient and Spearman's rank correlation coefficient by up to 0.5 (2x). This provides strong utility for broad use cases. For example, in most experiments, we find SFT training on unique examples for a one epoch underperforms training on half examples for two epochs, either after SFT or SFT-then-RL; With the same SFT budget, training only on short examples may lead to better SFT performance, though, it often leads to worse outcome after RL compared to training on examples with varying lengths. Evaluation tool will be open-sourced.
comment: Preprint. Under Review
☆ Posterior Collapse as a Phase Transition in Variational Autoencoders
We investigate the phenomenon of posterior collapse in variational autoencoders (VAEs) from the perspective of statistical physics, and reveal that it constitutes a phase transition governed jointly by data structure and model hyper-parameters. By analyzing the stability of the trivial solution associated with posterior collapse, we identify a critical hyper-parameter threshold. This critical boundary, separating meaningful latent inference from collapse, is characterized by a discontinuity in the KL divergence between the approximate posterior and the prior distribution. We validate this critical behavior on both synthetic and real-world datasets, confirming the existence of a phase transition. Our results demonstrate that posterior collapse is not merely an optimization failure, but rather an emerging phase transition arising from the interplay between data structure and variational constraints. This perspective offers new insights into the trainability and representational capacity of deep generative models.
comment: 12 pages, 8 figures
☆ Securing generative artificial intelligence with parallel magnetic tunnel junction true randomness
Deterministic pseudo random number generators (PRNGs) used in generative artificial intelligence (GAI) models produce predictable patterns vulnerable to exploitation by attackers. Conventional defences against the vulnerabilities often come with significant energy and latency overhead. Here, we embed hardware-generated true random bits from spin-transfer torque magnetic tunnel junctions (STT-MTJs) to address the challenges. A highly parallel, FPGA-assisted prototype computing system delivers megabit-per-second true random numbers, passing NIST randomness tests after in-situ operations with minimal overhead. Integrating the hardware random bits into a generative adversarial network (GAN) trained on CIFAR-10 reduces insecure outputs by up to 18.6 times compared to the low-quality random number generators (RNG) baseline. With nanosecond switching speed, high energy efficiency, and established scalability, our STT-MTJ-based system holds the potential to scale beyond 106 parallel cells, achieving gigabit-per-second throughput suitable for large language model sampling. This advancement highlights spintronic RNGs as practical security components for next-generation GAI systems.
comment: 4 figures
☆ Enhancing Noise Robustness of Parkinson's Disease Telemonitoring via Contrastive Feature Augmentation
Parkinson's disease (PD) is one of the most common neurodegenerative disorder. PD telemonitoring emerges as a novel assessment modality enabling self-administered at-home tests of Unified Parkinson's Disease Rating Scale (UPDRS) scores, enhancing accessibility for PD patients. However, three types of noise would occur during measurements: (1) patient-induced measurement inaccuracies, (2) environmental noise, and (3) data packet loss during transmission, resulting in higher prediction errors. To address these challenges, NoRo, a noise-robust UPDRS prediction framework is proposed. First, the original speech features are grouped into ordered bins, based on the continuous values of a selected feature, to construct contrastive pairs. Second, the contrastive pairs are employed to train a multilayer perceptron encoder for generating noise-robust features. Finally, these features are concatenated with the original features as the augmented features, which are then fed into the UPDRS prediction models. Notably, we further introduces a novel evaluation approach with customizable noise injection module, and extensive experiments show that NoRo can successfully enhance the noise robustness of UPDRS prediction across various downstream prediction models under different noisy environments.
☆ ImageNet-Think-250K: A Large-Scale Synthetic Dataset for Multimodal Reasoning for Vision Language Models
We develop ImageNet-Think, a multimodal reasoning dataset designed to aid the development of Vision Language Models (VLMs) with explicit reasoning capabilities. Our dataset is built on 250,000 images from ImageNet21k dataset, providing structured thinking tokens and corresponding answers. Our synthetic dataset is generated by two state-of-the-art VLMs: GLM-4.1V-9B-Thinking and Kimi-VL-A3B-Thinking-2506. Each image is accompanied by two pairs of thinking-answer sequences, creating a resource for training and evaluating multimodal reasoning models. We capture the step-by-step reasoning process of VLMs and the final descriptive answers. Our goal with this dataset is to enable the development of more robust VLMs while contributing to the broader understanding of multimodal reasoning mechanisms. The dataset and evaluation benchmarks will be publicly available to aid research in reasoning/thinking multimodal VLMs.
comment: Preprint
☆ Think Right: Learning to Mitigate Under-Over Thinking via Adaptive, Attentive Compression
Recent thinking models solve complex reasoning tasks by scaling test-time compute, but this scaling must be allocated in line with task difficulty. On one hand, short reasoning (underthinking) leads to errors on harder problems that require extended reasoning steps; but, excessively long reasoning (overthinking) can be token-inefficient, generating unnecessary steps even after reaching a correct intermediate solution. We refer to this as under-adaptivity, where the model fails to modulate its response length appropriately given problems of varying difficulty. To address under-adaptivity and strike a balance between under- and overthinking, we propose TRAAC (Think Right with Adaptive, Attentive Compression), an online post-training RL method that leverages the model's self-attention over a long reasoning trajectory to identify important steps and prune redundant ones. TRAAC also estimates difficulty and incorporates it into training rewards, thereby learning to allocate reasoning budget commensurate with example difficulty. Our approach improves accuracy, reduces reasoning steps, and enables adaptive thinking compared to base models and other RL baselines. Across a variety of tasks (AIME, AMC, GPQA-D, BBEH), TRAAC (Qwen3-4B) achieves an average absolute accuracy gain of 8.4% with a relative reduction in reasoning length of 36.8% compared to the base model, and a 7.9% accuracy gain paired with a 29.4% length drop compared to the best RL baseline. TRAAC also shows strong generalization: although our models are trained on math datasets, they show accuracy and efficiency gains on out-of-distribution non-math datasets like GPQA-D, BBEH, and OptimalThinkingBench. Our analysis further verifies that TRAAC provides fine-grained adjustments to thinking budget based on difficulty and that a combination of task-difficulty calibration and attention-based compression yields gains across diverse tasks.
comment: Code: https://github.com/joykirat18/TRAAC
☆ Gradient Shaping Beyond Clipping: A Functional Perspective on Update Magnitude Control
Gradient clipping is widely used to stabilize deep network training, but its formulation as a hard, fixed threshold limits flexibility and ignores gradient distribution dynamics. We propose SPAMP (Statistical Per-layer Adaptive Modulation and Projection), a unified framework that generalizes clipping into smooth, per-layer gradient shaping. SPAMP tracks local gradient statistics, dynamically estimates thresholds, and applies power-based transformations to modulate update magnitudes in a differentiable manner. This perspective recasts clipping and warmup as dual mechanisms for controlling the effective update scale $\eta_t \|g_t\|$, offering a principled alternative to rigid heuristics. Extensive experiments across image and language tasks demonstrate that SPAMP improves stability, convergence, and robustness over existing methods.
comment: Accepted as a conference paper at ACM Multimedia Asia 2025
☆ Synthetic Prefixes to Mitigate Bias in Real-Time Neural Query Autocomplete SIGIR
We introduce a data-centric approach for mitigating presentation bias in real-time neural query autocomplete systems through the use of synthetic prefixes. These prefixes are generated from complete user queries collected during regular search sessions where autocomplete was not active. This allows us to enrich the training data for learning to rank models with more diverse and less biased examples. This method addresses the inherent bias in engagement signals collected from live query autocomplete interactions, where model suggestions influence user behavior. Our neural ranker is optimized for real-time deployment under strict latency constraints and incorporates a rich set of features, including query popularity, seasonality, fuzzy match scores, and contextual signals such as department affinity, device type, and vertical alignment with previous user queries. To support efficient training, we introduce a task-specific simplification of the listwise loss, reducing computational complexity from $O(n^2)$ to $O(n)$ by leveraging the query autocomplete structure of having only one ground-truth selection per prefix. Deployed in a large-scale e-commerce setting, our system demonstrates statistically significant improvements in user engagement, as measured by mean reciprocal rank and related metrics. Our findings show that synthetic prefixes not only improve generalization but also provide a scalable path toward bias mitigation in other low-latency ranking tasks, including related searches and query recommendations.
comment: Accepted to the Proceedings of the ACM SIGIR Asia Pacific Conference on Information Retrieval (SIGIR-AP 2025), December 7-10, 2025, Xi'an, China
☆ From Supervision to Exploration: What Does Protein Language Model Learn During Reinforcement Learning?
Protein language models (PLMs) have advanced computational protein science through large-scale pretraining and scalable architectures. In parallel, reinforcement learning (RL) has broadened exploration and enabled precise multi-objective optimization in protein design. Yet whether RL can push PLMs beyond their pretraining priors to uncover latent sequence-structure-function rules remains unclear. We address this by pairing RL with PLMs across four domains: antimicrobial peptide design, kinase variant optimization, antibody engineering, and inverse folding. Using diverse RL algorithms and model classes, we ask if RL improves sampling efficiency and, more importantly, if it reveals capabilities not captured by supervised learning. Across benchmarks, RL consistently boosts success rates and sample efficiency. Performance follows a three-factor interaction: task headroom, reward fidelity, and policy capacity jointly determine gains. When rewards are accurate and informative, policies have sufficient capacity, and tasks leave room beyond supervised baselines, improvements scale; when rewards are noisy or capacity is constrained, gains saturate despite exploration. This view yields practical guidance for RL in protein design: prioritize reward modeling and calibration before scaling policy size, match algorithm and regularization strength to task difficulty, and allocate capacity where marginal gains are largest. Implementation is available at https://github.com/chq1155/RL-PLM.
comment: 24 pages, 7 figures, 4 tables
☆ TetriServe: Efficient DiT Serving for Heterogeneous Image Generation
Diffusion Transformer (DiT) models excel at generating highquality images through iterative denoising steps, but serving them under strict Service Level Objectives (SLOs) is challenging due to their high computational cost, particularly at large resolutions. Existing serving systems use fixed degree sequence parallelism, which is inefficient for heterogeneous workloads with mixed resolutions and deadlines, leading to poor GPU utilization and low SLO attainment. In this paper, we propose step-level sequence parallelism to dynamically adjust the parallel degree of individual requests according to their deadlines. We present TetriServe, a DiT serving system that implements this strategy for highly efficient image generation. Specifically, TetriServe introduces a novel round-based scheduling mechanism that improves SLO attainment: (1) discretizing time into fixed rounds to make deadline-aware scheduling tractable, (2) adapting parallelism at the step level and minimize GPU hour consumption, and (3) jointly packing requests to minimize late completions. Extensive evaluation on state-of-the-art DiT models shows that TetriServe achieves up to 32% higher SLO attainment compared to existing solutions without degrading image quality.
☆ Large-Scale Bayesian Causal Discovery with Interventional Data
Inferring the causal relationships among a set of variables in the form of a directed acyclic graph (DAG) is an important but notoriously challenging problem. Recently, advancements in high-throughput genomic perturbation screens have inspired development of methods that leverage interventional data to improve model identification. However, existing methods still suffer poor performance on large-scale tasks and fail to quantify uncertainty. Here, we propose Interventional Bayesian Causal Discovery (IBCD), an empirical Bayesian framework for causal discovery with interventional data. Our approach models the likelihood of the matrix of total causal effects, which can be approximated by a matrix normal distribution, rather than the full data matrix. We place a spike-and-slab horseshoe prior on the edges and separately learn data-driven weights for scale-free and Erd\H{o}s-R\'enyi structures from observational data, treating each edge as a latent variable to enable uncertainty-aware inference. Through extensive simulation, we show that IBCD achieves superior structure recovery compared to existing baselines. We apply IBCD to CRISPR perturbation (Perturb-seq) data on 521 genes, demonstrating that edge posterior inclusion probabilities enable identification of robust graph structures.
☆ AI Foundation Model for Time Series with Innovations Representation
This paper introduces an Artificial Intelligence (AI) foundation model for time series in engineering applications, where causal operations are required for real-time monitoring and control. Since engineering time series are governed by physical, rather than linguistic, laws, large-language-model-based AI foundation models may be ineffective or inefficient. Building on the classical innovations representation theory of Wiener, Kallianpur, and Rosenblatt, we propose Time Series GPT (TS-GPT) -- an innovations-representation-based Generative Pre-trained Transformer for engineering monitoring and control. As an example of foundation model adaptation, we consider Probabilistic Generative Forecasting, which produces future time series samples from conditional probability distributions given past realizations. We demonstrate the effectiveness of TS-GPT in forecasting real-time locational marginal prices using historical data from U.S. independent system operators.
☆ CardioRAG: A Retrieval-Augmented Generation Framework for Multimodal Chagas Disease Detection
Chagas disease affects nearly 6 million people worldwide, with Chagas cardiomyopathy representing its most severe complication. In regions where serological testing capacity is limited, AI-enhanced electrocardiogram (ECG) screening provides a critical diagnostic alternative. However, existing machine learning approaches face challenges such as limited accuracy, reliance on large labeled datasets, and more importantly, weak integration with evidence-based clinical diagnostic indicators. We propose a retrieval-augmented generation framework, CardioRAG, integrating large language models with interpretable ECG-based clinical features, including right bundle branch block, left anterior fascicular block, and heart rate variability metrics. The framework uses variational autoencoder-learned representations for semantic case retrieval, providing contextual cases to guide clinical reasoning. Evaluation demonstrated high recall performance of 89.80%, with a maximum F1 score of 0.68 for effective identification of positive cases requiring prioritized serological testing. CardioRAG provides an interpretable, clinical evidence-based approach particularly valuable for resource-limited settings, demonstrating a pathway for embedding clinical indicators into trustworthy medical AI systems.
comment: 4 pages, 2 figures. Accepted for oral presentation at the 52nd international Computing in Cardiology Conference (CinC2025)
Rethinking KL Regularization in RLHF: From Value Estimation to Gradient Optimization
Reinforcement Learning from Human Feedback (RLHF) leverages a Kullback-Leibler (KL) divergence loss to stabilize training and prevent overfitting. However, in methods such as GRPO, its implementation may be guided by principles from numerical value estimation-a practice that overlooks the term's functional role as an optimization loss. To analyze this issue, we establish a unified framework that connects two seemingly distinct implementation styles: using the mathematical term $k_n$ as a detached coefficient for the policy's score function ('$k_n$ in reward') or as a direct loss function through which gradients are propagated ('$k_n$ as loss'). We show that the latter can always be analyzed via an equivalent gradient coefficient in the former, unifying the two perspectives. Through this framework, we prove that the conventional '$k_1$ in reward' (like in PPO) is the principled loss for Reverse KL (RKL) regularization. We further establish a key finding: under on-policy conditions, the '$k_2$ as loss' formulation is, in fact, gradient-equivalent to '$k_1$ in reward'. This equivalence, first proven in our work, identifies both as the theoretically sound implementations of the RKL objective. In contrast, we show that the recently adopted '$k_3$ as loss' (like in GRPO) is merely a first-order, biased approximation of the principled loss. Furthermore, we argue that common off-policy implementations of '$k_n$ as loss' methods are biased due to neglected importance sampling, and we propose a principled correction. Our findings provide a comprehensive, gradient-based rationale for choosing and correctly implementing KL regularization, paving the way for more robust and effective RLHF systems.
☆ MIRA: Towards Mitigating Reward Hacking in Inference-Time Alignment of T2I Diffusion Models
Diffusion models excel at generating images conditioned on text prompts, but the resulting images often do not satisfy user-specific criteria measured by scalar rewards such as Aesthetic Scores. This alignment typically requires fine-tuning, which is computationally demanding. Recently, inference-time alignment via noise optimization has emerged as an efficient alternative, modifying initial input noise to steer the diffusion denoising process towards generating high-reward images. However, this approach suffers from reward hacking, where the model produces images that score highly, yet deviate significantly from the original prompt. We show that noise-space regularization is insufficient and that preventing reward hacking requires an explicit image-space constraint. To this end, we propose MIRA (MItigating Reward hAcking), a training-free, inference-time alignment method. MIRA introduces an image-space, score-based KL surrogate that regularizes the sampling trajectory with a frozen backbone, constraining the output distribution so reward can increase without off-distribution drift (reward hacking). We derive a tractable approximation to KL using diffusion scores. Across SDv1.5 and SDXL, multiple rewards (Aesthetic, HPSv2, PickScore), and public datasets (e.g., Animal-Animal, HPDv2), MIRA achieves >60\% win rate vs. strong baselines while preserving prompt adherence; mechanism plots show reward gains with near-zero drift, whereas DNO drifts as compute increases. We further introduce MIRA-DPO, mapping preference optimization to inference time with a frozen backbone, extending MIRA to non-differentiable rewards without fine-tuning.
☆ Robust Classification of Oral Cancer with Limited Training Data
Oral cancer ranks among the most prevalent cancers globally, with a particularly high mortality rate in regions lacking adequate healthcare access. Early diagnosis is crucial for reducing mortality; however, challenges persist due to limited oral health programs, inadequate infrastructure, and a shortage of healthcare practitioners. Conventional deep learning models, while promising, often rely on point estimates, leading to overconfidence and reduced reliability. Critically, these models require large datasets to mitigate overfitting and ensure generalizability, an unrealistic demand in settings with limited training data. To address these issues, we propose a hybrid model that combines a convolutional neural network (CNN) with Bayesian deep learning for oral cancer classification using small training sets. This approach employs variational inference to enhance reliability through uncertainty quantification. The model was trained on photographic color images captured by smartphones and evaluated on three distinct test datasets. The proposed method achieved 94% accuracy on a test dataset with a distribution similar to that of the training data, comparable to traditional CNN performance. Notably, for real-world photographic image data, despite limitations and variations differing from the training dataset, the proposed model demonstrated superior generalizability, achieving 88% accuracy on diverse datasets compared to 72.94% for traditional CNNs, even with a smaller dataset. Confidence analysis revealed that the model exhibits low uncertainty (high confidence) for correctly classified samples and high uncertainty (low confidence) for misclassified samples. These results underscore the effectiveness of Bayesian inference in data-scarce environments in enhancing early oral cancer diagnosis by improving model reliability and generalizability.
Growing Visual Generative Capacity for Pre-Trained MLLMs
Multimodal large language models (MLLMs) extend the success of language models to visual understanding, and recent efforts have sought to build unified MLLMs that support both understanding and generation. However, constructing such models remains challenging: hybrid approaches combine continuous embeddings with diffusion or flow-based objectives, producing high-quality images but breaking the autoregressive paradigm, while pure autoregressive approaches unify text and image prediction over discrete visual tokens but often face trade-offs between semantic alignment and pixel-level fidelity. In this work, we present Bridge, a pure autoregressive unified MLLM that augments pre-trained visual understanding models with generative ability through a Mixture-of-Transformers architecture, enabling both image understanding and generation within a single next-token prediction framework. To further improve visual generation fidelity, we propose a semantic-to-pixel discrete representation that integrates compact semantic tokens with fine-grained pixel tokens, achieving strong language alignment and precise description of visual details with only a 7.9% increase in sequence length. Extensive experiments across diverse multimodal benchmarks demonstrate that Bridge achieves competitive or superior results in both understanding and generation benchmarks, while requiring less training data and reduced training time compared to prior unified MLLMs.
comment: Project page: https://hywang66.github.io/bridge/
☆ Predictive Preference Learning from Human Interventions NeurIPS 2025
Learning from human involvement aims to incorporate the human subject to monitor and correct agent behavior errors. Although most interactive imitation learning methods focus on correcting the agent's action at the current state, they do not adjust its actions in future states, which may be potentially more hazardous. To address this, we introduce Predictive Preference Learning from Human Interventions (PPL), which leverages the implicit preference signals contained in human interventions to inform predictions of future rollouts. The key idea of PPL is to bootstrap each human intervention into L future time steps, called the preference horizon, with the assumption that the agent follows the same action and the human makes the same intervention in the preference horizon. By applying preference optimization on these future states, expert corrections are propagated into the safety-critical regions where the agent is expected to explore, significantly improving learning efficiency and reducing human demonstrations needed. We evaluate our approach with experiments on both autonomous driving and robotic manipulation benchmarks and demonstrate its efficiency and generality. Our theoretical analysis further shows that selecting an appropriate preference horizon L balances coverage of risky states with label correctness, thereby bounding the algorithmic optimality gap. Demo and code are available at: https://metadriverse.github.io/ppl
comment: NeurIPS 2025 Spotlight. Project page: https://metadriverse.github.io/ppl
☆ Executable Counterfactuals: Improving LLMs' Causal Reasoning Through Code
Counterfactual reasoning, a hallmark of intelligence, consists of three steps: inferring latent variables from observations (abduction), constructing alternatives (interventions), and predicting their outcomes (prediction). This skill is essential for advancing LLMs' causal understanding and expanding their applications in high-stakes domains such as scientific research. However, existing efforts in assessing LLM's counterfactual reasoning capabilities tend to skip the abduction step, effectively reducing to interventional reasoning and leading to overestimation of LLM performance. To address this, we introduce executable counterfactuals, a novel framework that operationalizes causal reasoning through code and math problems. Our framework explicitly requires all three steps of counterfactual reasoning and enables scalable synthetic data creation with varying difficulty, creating a frontier for evaluating and improving LLM's reasoning. Our results reveal substantial drop in accuracy (25-40%) from interventional to counterfactual reasoning for SOTA models like o4-mini and Claude-4-Sonnet. To address this gap, we construct a training set comprising counterfactual code problems having if-else condition and test on out-of-domain code structures (e.g. having while-loop); we also test whether a model trained on code would generalize to counterfactual math word problems. While supervised finetuning on stronger models' reasoning traces improves in-domain performance of Qwen models, it leads to a decrease in accuracy on OOD tasks such as counterfactual math problems. In contrast, reinforcement learning induces the core cognitive behaviors and generalizes to new domains, yielding gains over the base model on both code (improvement of 1.5x-2x) and math problems. Analysis of the reasoning traces reinforces these findings and highlights the promise of RL for improving LLMs' counterfactual reasoning.
☆ TimeSeriesScientist: A General-Purpose AI Agent for Time Series Analysis
Time series forecasting is central to decision-making in domains as diverse as energy, finance, climate, and public health. In practice, forecasters face thousands of short, noisy series that vary in frequency, quality, and horizon, where the dominant cost lies not in model fitting, but in the labor-intensive preprocessing, validation, and ensembling required to obtain reliable predictions. Prevailing statistical and deep learning models are tailored to specific datasets or domains and generalize poorly. A general, domain-agnostic framework that minimizes human intervention is urgently in demand. In this paper, we introduce TimeSeriesScientist (TSci), the first LLM-driven agentic framework for general time series forecasting. The framework comprises four specialized agents: Curator performs LLM-guided diagnostics augmented by external tools that reason over data statistics to choose targeted preprocessing; Planner narrows the hypothesis space of model choice by leveraging multi-modal diagnostics and self-planning over the input; Forecaster performs model fitting and validation and, based on the results, adaptively selects the best model configuration as well as ensemble strategy to make final predictions; and Reporter synthesizes the whole process into a comprehensive, transparent report. With transparent natural-language rationales and comprehensive reports, TSci transforms the forecasting workflow into a white-box system that is both interpretable and extensible across tasks. Empirical results on eight established benchmarks demonstrate that TSci consistently outperforms both statistical and LLM-based baselines, reducing forecast error by an average of 10.4% and 38.2%, respectively. Moreover, TSci produces a clear and rigorous report that makes the forecasting workflow more transparent and interpretable.
☆ NVIDIA AI Aerial: AI-Native Wireless Communications
6G brings a paradigm shift towards AI-native wireless systems, necessitating the seamless integration of digital signal processing (DSP) and machine learning (ML) within the software stacks of cellular networks. This transformation brings the life cycle of modern networks closer to AI systems, where models and algorithms are iteratively trained, simulated, and deployed across adjacent environments. In this work, we propose a robust framework that compiles Python-based algorithms into GPU-runnable blobs. The result is a unified approach that ensures efficiency, flexibility, and the highest possible performance on NVIDIA GPUs. As an example of the capabilities of the framework, we demonstrate the efficacy of performing the channel estimation function in the PUSCH receiver through a convolutional neural network (CNN) trained in Python. This is done in a digital twin first, and subsequently in a real-time testbed. Our proposed methodology, realized in the NVIDIA AI Aerial platform, lays the foundation for scalable integration of AI/ML models into next-generation cellular systems, and is essential for realizing the vision of natively intelligent 6G networks.
comment: 7 pages, 7 figures
☆ Bypassing Prompt Guards in Production with Controlled-Release Prompting
As large language models (LLMs) advance, ensuring AI safety and alignment is paramount. One popular approach is prompt guards, lightweight mechanisms designed to filter malicious queries while being easy to implement and update. In this work, we introduce a new attack that circumvents such prompt guards, highlighting their limitations. Our method consistently jailbreaks production models while maintaining response quality, even under the highly protected chat interfaces of Google Gemini (2.5 Flash/Pro), DeepSeek Chat (DeepThink), Grok (3), and Mistral Le Chat (Magistral). The attack exploits a resource asymmetry between the prompt guard and the main LLM, encoding a jailbreak prompt that lightweight guards cannot decode but the main model can. This reveals an attack surface inherent to lightweight prompt guards in modern LLM architectures and underscores the need to shift defenses from blocking malicious inputs to preventing malicious outputs. We additionally identify other critical alignment issues, such as copyrighted data extraction, training data extraction, and malicious response leakage during thinking.
☆ Towards Interpretable and Inference-Optimal COT Reasoning with Sparse Autoencoder-Guided Generation
We propose a novel method that leverages sparse autoencoders (SAEs) and clustering techniques to analyze the internal token representations of large language models (LLMs) and guide generations in mathematical reasoning tasks. Our approach first trains an SAE to generate sparse vector representations for training tokens, then applies k-means clustering to construct a graph where vertices represent token clusters and weighted edges capture sequential token transitions. Using this graph, we define an edge-weight based reward function to quantify adherence to established reasoning traces, thereby identifying exploitative reasoning trajectories. Additionally, we measure generation diversity from clustering to assess the extent of exploration. Our findings indicate that balancing both exploitation and exploration is crucial for achieving high accuracy in mathematical reasoning tasks. During generation, the SAE can serve as a scalable reward model to guide generations, ensuring a balanced trade-off between exploitation and exploration. This prevents extreme behaviors in either direction, ultimately fostering a higher-quality reasoning process in LLMs.
♻ ☆ Model Parallelism With Subnetwork Data Parallelism
Pre-training large neural networks at scale imposes heavy memory demands on accelerators and often requires costly communication. We introduce Subnetwork Data Parallelism (SDP), a distributed training framework that partitions a model into structured subnetworks trained across workers without exchanging activations. We study two complementary masking regimes: backward masking, which applies sparsity only in the backward step to retain unbiased gradients, and forward masking, which also removes parameters in the forward pass to deliver stronger efficiency gains while providing additional regularization. We further explore two subnetwork construction strategies: neuron level and block level, applied across both CNNs and transformers. In experiments spanning CNNs and transformers on CIFAR and ImageNet, as well as LLM pre-training on FineWeb, SDP reduces per-device memory usage by 30%-75% while maintaining or improving performance. Notably, in FLOP-matched settings, forward masking can sometimes achieve better performance.
comment: 10 pages, 2 figure
♻ ☆ MS-DFTVNet:A Long-Term Time Series Prediction Method Based on Multi-Scale Deformable Convolution
Research on long-term time series prediction has primarily relied on Transformer and MLP models, while the potential of convolutional networks in this domain remains underexplored. To address this, we propose a novel multi-scale time series reshape module that effectively captures cross-period patch interactions and variable dependencies. Building on this, we develop MS-DFTVNet, the multi-scale 3D deformable convolutional framework tailored for long-term forecasting. Moreover, to handle the inherently uneven distribution of temporal features, we introduce a context-aware dynamic deformable convolution mechanism, which further enhances the model's ability to capture complex temporal patterns. Extensive experiments demonstrate that MS-DFTVNet not only significantly outperforms strong baselines but also achieves an average improvement of about 7.5% across six public datasets, setting new state-of-the-art results.
♻ ☆ Mol-LLaMA: Towards General Understanding of Molecules in Large Molecular Language Model NeurIPS 2025
Understanding molecules is key to understanding organisms and driving advances in drug discovery, requiring interdisciplinary knowledge across chemistry and biology. Although large molecular language models have achieved notable success in task transfer, they often struggle to accurately analyze molecular features due to limited knowledge and reasoning capabilities. To address this issue, we present Mol-LLaMA, a large molecular language model that grasps the general knowledge centered on molecules and exhibits explainability and reasoning ability. To this end, we design key data types that encompass the fundamental molecular features, taking into account the essential abilities for molecular reasoning. Further, to improve molecular understanding, we propose a module that integrates complementary information from different molecular encoders, leveraging the distinct advantages of molecular representations. Our experimental results demonstrate that Mol-LLaMA is capable of comprehending the general features of molecules and providing informative responses, implying its potential as a general-purpose assistant for molecular analysis. Our project page is at https://mol-llama.github.io/.
comment: NeurIPS 2025
♻ ☆ MissionHD: Hyperdimensional Refinement of Distribution-Deficient Reasoning Graphs for Video Anomaly Detection
LLM-generated reasoning graphs, referred to as mission-specific graphs (MSGs), are increasingly used for video anomaly detection (VAD) and recognition (VAR). These MSGs are novel artifacts: they often exhibit skewed connectivity and lack large-scale datasets for pre-training, which makes existing graph structure refinement (GSR) methods ineffective. To address this challenge, we propose HDC-constrained Graph Structure Refinement (HDC-GSR), a paradigm that leverages hyperdimensional computing (HDC) to optimize decodable graph representations without relying on structural-distribution learning. Building on this paradigm, we introduce MissionHD, an HDC framework that encodes graphs with constrained graph-neural operations, aligns them directly with downstream task loss, and decodes refined structures. Experiments on VAD/VAR benchmarks demonstrate that MissionHD-refined graphs consistently improve performance, establishing HDC-GSR as an effective pre-processing step for structured reasoning in video anomaly tasks.
♻ ☆ CrediBench: Building Web-Scale Network Datasets for Information Integrity
Online misinformation poses an escalating threat, amplified by the Internet's open nature and increasingly capable LLMs that generate persuasive yet deceptive content. Existing misinformation detection methods typically focus on either textual content or network structure in isolation, failing to leverage the rich, dynamic interplay between website content and hyperlink relationships that characterizes real-world misinformation ecosystems. We introduce CrediBench: a large-scale data processing pipeline for constructing temporal web graphs that jointly model textual content and hyperlink structure for misinformation detection. Unlike prior work, our approach captures the dynamic evolution of general misinformation domains, including changes in both content and inter-site references over time. Our processed one-month snapshot extracted from the Common Crawl archive in December 2024 contains 45 million nodes and 1 billion edges, representing the largest web graph dataset made publicly available for misinformation research to date. From our experiments on this graph snapshot, we demonstrate the strength of both structural and webpage content signals for learning credibility scores, which measure source reliability. The pipeline and experimentation code are all available here, and the dataset is in this folder.
comment: 16 pages,4 figures
♻ ☆ Differential Information Distribution: A Bayesian Perspective on Direct Preference Optimization
Direct Preference Optimization (DPO) has been widely used for aligning language models with human preferences in a supervised manner. However, several key questions remain unresolved: the rationale behind its log-ratio reward, how the statistical structure of preference datasets shapes its training dynamics, and how those dynamics impact downstream capabilities. We approach these questions from a Bayesian perspective, interpreting the goal of preference optimization as learning the differential information required to update a reference policy into a target policy. To formalize this view, we introduce the Differential Information Distribution (DID), defined as the distribution over samples that carry the Bayesian evidence required to update policies. We introduce three complementary insights by viewing preference optimization through the DID. First, we find that DPO's log-ratio reward is uniquely justified when preferences encode the Differential Information needed to update a reference policy into the target policy. Second, we discuss how commonly observed training dynamics in DPO, including changes in log-likelihood and policy exploration, stem from a power-law DID relationship. Finally, we analyze how training dynamics influence downstream performance using the entropy of DID, a principled measure of uncertainty in the learned information. We observe that learning high-entropy DID improves open-ended instruction-following, while low-entropy DID benefits knowledge-intensive QA. Taken together, our results show that DPO's reward design, training dynamics, and downstream capabilities all emerge as natural consequences of learning Differential Information, offering both a principled theoretical foundation and practical guidance for preference-based alignment.
comment: Preprint, under review. 39 pages, 12 figures. Updates from v1: Added new theoretical results on DPO training dynamics and policy exploration, included experiments with Qwen3-4B, and refined the discussion of log-margin dynamics
♻ ☆ Riemannian Variational Flow Matching for Material and Protein Design
We present Riemannian Gaussian Variational Flow Matching (RG-VFM), a geometric extension of Variational Flow Matching (VFM) for generative modeling on manifolds. In Euclidean space, predicting endpoints (VFM), velocities (FM), or noise (diffusion) are largely equivalent due to affine interpolations. On curved manifolds this equivalence breaks down, and we hypothesize that endpoint prediction provides a stronger learning signal by directly minimizing geodesic distances. Building on this insight, we derive a variational flow matching objective based on Riemannian Gaussian distributions, applicable to manifolds with closed-form geodesics. We formally analyze its relationship to Riemannian Flow Matching (RFM), exposing that the RFM objective lacks a curvature-dependent penalty - encoded via Jacobi fields - that is naturally present in RG-VFM. Experiments on synthetic spherical and hyperbolic benchmarks, as well as real-world tasks in material and protein generation, demonstrate that RG-VFM more effectively captures manifold structure and improves downstream performance over Euclidean and velocity-based baselines.
♻ ☆ Probabilistic Reasoning with LLMs for k-anonymity Estimation NeurIPS 2025
Probabilistic reasoning is a key aspect of both human and artificial intelligence that allows for handling uncertainty and ambiguity in decision-making. In this paper, we introduce a new numerical reasoning task under uncertainty for large language models, focusing on estimating the privacy risk of user-generated documents containing privacy-sensitive information. We propose BRANCH, a new LLM methodology that estimates the k-privacy value of a text-the size of the population matching the given information. BRANCH factorizes a joint probability distribution of personal information as random variables. The probability of each factor in a population is estimated separately using a Bayesian network and combined to compute the final k-value. Our experiments show that this method successfully estimates the k-value 73% of the time, a 13% increase compared to o3-mini with chain-of-thought reasoning. We also find that LLM uncertainty is a good indicator for accuracy, as high-variance predictions are 37.47% less accurate on average.
comment: 10 pages, Accepted to NeurIPS 2025
♻ ☆ Learning to Weight Parameters for Training Data Attribution
We study gradient-based data attribution, aiming to identify which training examples most influence a given output. Existing methods for this task either treat network parameters uniformly or rely on implicit weighting derived from Hessian approximations, which do not fully model functional heterogeneity of network parameters. To address this, we propose a method to explicitly learn parameter importance weights directly from data, without requiring annotated labels. Our approach improves attribution accuracy across diverse tasks, including image classification, language modeling, and diffusion, and enables fine-grained attribution for concepts like subject and style.
♻ ☆ AbsTopK: Rethinking Sparse Autoencoders For Bidirectional Features
Sparse autoencoders (SAEs) have emerged as powerful techniques for interpretability of large language models (LLMs), aiming to decompose hidden states into meaningful semantic features. While several SAE variants have been proposed, there remains no principled framework to derive SAEs from the original dictionary learning formulation. In this work, we introduce such a framework by unrolling the proximal gradient method for sparse coding. We show that a single-step update naturally recovers common SAE variants, including ReLU, JumpReLU, and TopK. Through this lens, we reveal a fundamental limitation of existing SAEs: their sparsity-inducing regularizers enforce non-negativity, preventing a single feature from representing bidirectional concepts (e.g., male vs. female). This structural constraint fragments semantic axes into separate, redundant features, limiting representational completeness. To address this issue, we propose AbsTopK SAE, a new variant derived from the $\ell_0$ sparsity constraint that applies hard thresholding over the largest-magnitude activations. By preserving both positive and negative activations, AbsTopK uncovers richer, bidirectional conceptual representations. Comprehensive experiments across four LLMs and seven probing and steering tasks show that AbsTopK improves reconstruction fidelity, enhances interpretability, and enables single features to encode contrasting concepts. Remarkably, AbsTopK matches or even surpasses the Difference-in-Mean method, a supervised approach that requires labeled data for each concept and has been shown in prior work to outperform SAEs.
♻ ☆ Forecasting Generative Amplification
Generative networks are perfect tools to enhance the speed and precision of LHC simulations. It is important to understand their statistical precision, especially when generating events beyond the size of the training dataset. We present two complementary methods to estimate the amplification factor without large holdout datasets. Averaging amplification uses Bayesian networks or ensembling to estimate amplification from the precision of integrals over given phase-space volumes. Differential amplification uses hypothesis testing to quantify amplification without any resolution loss. Applied to state-of-the-art event generators, both methods indicate that amplification is possible in specific regions of phase space, but not yet across the entire distribution.
comment: 23 pages, 15 figures. v2: added link to github repo, extended acknowledgements
♻ ☆ Unraveling Indirect In-Context Learning Using Influence Functions
In this work, we introduce a novel paradigm for generalized In-Context Learning (ICL), termed Indirect In-Context Learning. In Indirect ICL, we explore demonstration selection strategies tailored for two distinct real-world scenarios: Mixture of Tasks and Noisy ICL. We systematically evaluate the effectiveness of Influence Functions (IFs) as a selection tool for these settings, highlighting the potential of IFs to better capture the informativeness of examples within the demonstration pool. For the Mixture of Tasks setting, demonstrations are drawn from 28 diverse tasks, including MMLU, BigBench, StrategyQA, and CommonsenseQA. We demonstrate that combining BertScore-Recall (BSR) with an IF surrogate model can further improve performance, leading to average absolute accuracy gains of 0.37\% and 1.45\% for 3-shot and 5-shot setups when compared to traditional ICL metrics. In the Noisy ICL setting, we examine scenarios where demonstrations might be mislabeled or have adversarial noise. Our experiments show that reweighting traditional ICL selectors (BSR and Cosine Similarity) with IF-based selectors boosts accuracy by an average of 2.90\% for Cosine Similarity and 2.94\% for BSR on noisy GLUE benchmarks. For the adversarial sub-setting, we show the utility of using IFs for task-agnostic demonstration selection for backdoor attack mitigation. Showing a 32.89\% reduction in Attack Success Rate compared to task-aware methods. In sum, we propose a robust framework for demonstration selection that generalizes beyond traditional ICL, offering valuable insights into the role of IFs for Indirect ICL.
comment: Under Review
♻ ☆ DrKGC: Dynamic Subgraph Retrieval-Augmented LLMs for Knowledge Graph Completion across General and Biomedical Domains EMNLP 2025
Knowledge graph completion (KGC) aims to predict missing triples in knowledge graphs (KGs) by leveraging existing triples and textual information. Recently, generative large language models (LLMs) have been increasingly employed for graph tasks. However, current approaches typically encode graph context in textual form, which fails to fully exploit the potential of LLMs for perceiving and reasoning about graph structures. To address this limitation, we propose DrKGC (Dynamic Subgraph Retrieval-Augmented LLMs for Knowledge Graph Completion). DrKGC employs a flexible lightweight model training strategy to learn structural embeddings and logical rules within the KG. It then leverages a novel bottom-up graph retrieval method to extract a subgraph for each query guided by the learned rules. Finally, a graph convolutional network (GCN) adapter uses the retrieved subgraph to enhance the structural embeddings, which are then integrated into the prompt for effective LLM fine-tuning. Experimental results on two general domain benchmark datasets and two biomedical datasets demonstrate the superior performance of DrKGC. Furthermore, a realistic case study in the biomedical domain highlights its interpretability and practical utility.
comment: Accepted at EMNLP 2025 Findings
♻ ☆ LPAC: Learnable Perception-Action-Communication Loops with Applications to Coverage Control
Coverage control is the problem of navigating a robot swarm to collaboratively monitor features or a phenomenon of interest not known a priori. The problem is challenging in decentralized settings with robots that have limited communication and sensing capabilities. We propose a learnable Perception-Action-Communication (LPAC) architecture for the problem, wherein a convolutional neural network (CNN) processes localized perception; a graph neural network (GNN) facilitates robot communications; finally, a shallow multi-layer perceptron (MLP) computes robot actions. The GNN enables collaboration in the robot swarm by computing what information to communicate with nearby robots and how to incorporate received information. Evaluations show that the LPAC models -- trained using imitation learning -- outperform standard decentralized and centralized coverage control algorithms. The learned policy generalizes to environments different from the training dataset, transfers to larger environments with more robots, and is robust to noisy position estimates. The results indicate the suitability of LPAC architectures for decentralized navigation in robot swarms to achieve collaborative behavior.
comment: 20 Pages, 20 figures, Accepted for publication in the IEEE Transactions on Robotics
♻ ☆ ABBA-Adapters: Efficient and Expressive Fine-Tuning of Foundation Models
Large Language Models have demonstrated strong performance across a wide range of tasks, but adapting them efficiently to new domains remains a key challenge. Parameter-Efficient Fine-Tuning (PEFT) methods address this by introducing lightweight, trainable modules while keeping most pre-trained weights fixed. The prevailing approach, LoRA, models updates using a low-rank decomposition, but its expressivity is inherently constrained by the rank. Recent methods like HiRA aim to increase expressivity by incorporating a Hadamard product with the frozen weights, but still rely on the structure of the pre-trained model. We introduce ABBA, a new PEFT architecture that reparameterizes the update as a Hadamard product of two independently learnable low-rank matrices. In contrast to prior work, ABBA fully decouples the update from the pre-trained weights, enabling both components to be optimized freely. This leads to significantly higher expressivity under the same parameter budget, a property we validate through matrix reconstruction experiments. Empirically, ABBA achieves state-of-the-art results on arithmetic and commonsense reasoning benchmarks, consistently outperforming existing PEFT methods by a significant margin across multiple models. Our code is publicly available at: https://github.com/CERT-Lab/abba.
comment: Raghav Singhal, Kaustubh Ponkshe, and Rohit Vartak contributed equally to this work
♻ ☆ Neurosymbolic Association Rule Mining from Tabular Data
Association Rule Mining (ARM) is the task of mining patterns among data features in the form of logical rules, with applications across a myriad of domains. However, high-dimensional datasets often result in an excessive number of rules, increasing execution time and negatively impacting downstream task performance. Managing this rule explosion remains a central challenge in ARM research. To address this, we introduce Aerial+, a novel neurosymbolic ARM method. Aerial+ leverages an under-complete autoencoder to create a neural representation of the data, capturing associations between features. It extracts rules from this neural representation by exploiting the model's reconstruction mechanism. Extensive evaluations on five datasets against seven baselines demonstrate that Aerial+ achieves state-of-the-art results by learning more concise, high-quality rule sets with full data coverage. When integrated into rule-based interpretable machine learning models, Aerial+ significantly reduces execution time while maintaining or improving accuracy.
comment: This paper has been accepted and presented at the 19th International Conference on Neurosymbolic Learning and Reasoning (NeSy 2025)
♻ ☆ A Few Large Shifts: Layer-Inconsistency Based Minimal Overhead Adversarial Example Detection
Deep neural networks (DNNs) are highly susceptible to adversarial examples--subtle, imperceptible perturbations that can lead to incorrect predictions. While detection-based defenses offer a practical alternative to adversarial training, many existing methods depend on external models, complex architectures, or adversarial data, limiting their efficiency and generalizability. We introduce a lightweight, plug-in detection framework that leverages internal layer-wise inconsistencies within the target model itself, requiring only benign data for calibration. Our approach is grounded in the A Few Large Shifts Assumption, which posits that adversarial perturbations induce large, localized violations of layer-wise Lipschitz continuity in a small subset of layers. Building on this, we propose two complementary strategies--Recovery Testing (RT) and Logit-layer Testing (LT)--to empirically measure these violations and expose internal disruptions caused by adversaries. Evaluated on CIFAR-10, CIFAR-100, and ImageNet under both standard and adaptive threat models, our method achieves state-of-the-art detection performance with negligible computational overhead. Furthermore, our system-level analysis provides a practical method for selecting a detection threshold with a formal lower-bound guarantee on accuracy. The code is available here: https://github.com/c0510gy/AFLS-AED.
♻ ☆ Initialization using Update Approximation is a Silver Bullet for Extremely Efficient Low-Rank Fine-Tuning
Low-rank adapters have become standard for efficiently fine-tuning large language models, but they often fall short of achieving the performance of full fine-tuning. We propose a method, LoRA Silver Bullet or LoRA-SB, that approximates full fine-tuning within low-rank subspaces using a carefully designed initialization strategy. We theoretically demonstrate that the architecture of LoRA-XS, which inserts a learnable r x r matrix between B and A while keeping other matrices fixed, provides the precise conditions needed for this approximation. We leverage its constrained update space to achieve optimal scaling for high-rank gradient updates while removing the need for scaling factor tuning. We prove that our initialization offers an optimal low-rank approximation of the initial gradient and preserves update directions throughout training. Extensive experiments across mathematical reasoning, commonsense reasoning, and language understanding tasks demonstrate that our approach exceeds the performance of LoRA (and baselines) while using 27-90 times fewer learnable parameters, and comprehensively outperforms LoRA-XS. Our findings establish that it is possible to simulate full fine-tuning in low-rank subspaces, and achieve significant parameter efficiency gains without sacrificing performance. Our code is publicly available at: https://github.com/CERT-Lab/lora-sb.
comment: Kaustubh Ponkshe and Raghav Singhal contributed equally to this work
♻ ☆ Enhancing Corpus Callosum Segmentation in Fetal MRI via Pathology-Informed Domain Randomization MICCAI 2025
Accurate fetal brain segmentation is crucial for extracting biomarkers and assessing neurodevelopment, especially in conditions such as corpus callosum dysgenesis (CCD), which can induce drastic anatomical changes. However, the rarity of CCD severely limits annotated data, hindering the generalization of deep learning models. To address this, we propose a pathology-informed domain randomization strategy that embeds prior knowledge of CCD manifestations into a synthetic data generation pipeline. By simulating diverse brain alterations from healthy data alone, our approach enables robust segmentation without requiring pathological annotations. We validate our method on a cohort comprising 248 healthy fetuses, 26 with CCD, and 47 with other brain pathologies, achieving substantial improvements on CCD cases while maintaining performance on both healthy fetuses and those with other pathologies. From the predicted segmentations, we derive clinically relevant biomarkers, such as corpus callosum length (LCC) and volume, and show their utility in distinguishing CCD subtypes. Our pathology-informed augmentation reduces the LCC estimation error from 1.89 mm to 0.80 mm in healthy cases and from 10.9 mm to 0.7 mm in CCD cases. Beyond these quantitative gains, our approach yields segmentations with improved topological consistency relative to available ground truth, enabling more reliable shape-based analyses. Overall, this work demonstrates that incorporating domain-specific anatomical priors into synthetic data pipelines can effectively mitigate data scarcity and enhance analysis of rare but clinically significant malformations.
comment: Presented at the PIPPI Workshop of MICCAI 2025
♻ ☆ Machine learning for accuracy in density functional approximations
Machine learning techniques have found their way into computational chemistry as indispensable tools to accelerate atomistic simulations and materials design. In addition, machine learning approaches hold the potential to boost the predictive power of computationally efficient electronic structure methods, such as density functional theory, to chemical accuracy and to correct for fundamental errors in density functional approaches. Here, recent progress in applying machine learning to improve the accuracy of density functional and related approximations is reviewed. Promises and challenges in devising machine learning models transferable between different chemistries and materials classes are discussed with the help of examples applying promising models to systems far outside their training sets.
♻ ☆ Superficial Safety Alignment Hypothesis
As large language models (LLMs) are overwhelmingly more and more integrated into various applications, ensuring they generate safe responses is a pressing need. Previous studies on alignment have largely focused on general instruction-following but have often overlooked the distinct properties of safety alignment, such as the brittleness of safety mechanisms. To bridge the gap, we propose the Superficial Safety Alignment Hypothesis (SSAH), which posits that safety alignment teaches an otherwise unsafe model to choose the correct reasoning direction - fulfill or refuse users' requests - interpreted as an implicit binary classification task. Through SSAH, we hypothesize that only a few essential components can establish safety guardrails in LLMs. We successfully identify four types of attribute-critical components: Safety Critical Unit (SCU), Utility Critical Unit (UCU), Complex Unit (CU), and Redundant Unit (RU). Our findings show that freezing certain safety-critical components during fine-tuning allows the model to retain its safety attributes while adapting to new tasks. Similarly, we show that leveraging redundant units in the pre-trained model as an "alignment budget" can effectively minimize the alignment tax while achieving the alignment goal. All considered, this paper concludes that the atomic functional unit for safety in LLMs is at the neuron level and underscores that safety alignment should not be complicated.
♻ ☆ What if I ask in \textit{alia lingua}? Measuring Functional Similarity Across Languages EMNLP 2025
How similar are model outputs across languages? In this work, we study this question using a recently proposed model similarity metric $\kappa_p$ applied to 20 languages and 47 subjects in GlobalMMLU. Our analysis reveals that a model's responses become increasingly consistent across languages as its size and capability grow. Interestingly, models exhibit greater cross-lingual consistency within themselves than agreement with other models prompted in the same language. These results highlight not only the value of $\kappa_p$ as a practical tool for evaluating multilingual reliability, but also its potential to guide the development of more consistent multilingual systems.
comment: Accepted into Multilingual Representation Learning (MRL) Workshop at EMNLP 2025
♻ ☆ Consistent End-to-End Estimation for Counterfactual Fairness
Fairness in predictions is of direct importance in practice due to legal, ethical, and societal reasons. This is often accomplished through counterfactual fairness, which ensures that the prediction for an individual is the same as that in a counterfactual world under a different sensitive attribute. However, achieving counterfactual fairness is challenging as counterfactuals are unobservable, and, because of that, existing baselines for counterfactual fairness do not have theoretical guarantees. In this paper, we propose a novel counterfactual fairness predictor for making predictions under counterfactual fairness. Here, we follow the standard counterfactual fairness setting and directly learn the counterfactual distribution of the descendants of the sensitive attribute via tailored neural networks, which we then use to enforce fair predictions through a novel counterfactual mediator regularization. Unique to our work is that we provide theoretical guarantees that our method is effective in ensuring the notion of counterfactual fairness. We further compare the performance across various datasets, where our method achieves state-of-the-art performance.
♻ ☆ A Family of Kernelized Matrix Costs for Multiple-Output Mixture Neural Networks
Pairwise distance-based costs are crucial for self-supervised and contrastive feature learning. Mixture Density Networks (MDNs) are a widely used approach for generative models and density approximation, using neural networks to produce multiple centers that define a Gaussian mixture. By combining MDNs with contrastive costs, this paper proposes data density approximation using four types of kernelized matrix costs: the scalar cost, the vector-matrix cost, the matrix-matrix cost (the trace of Schur complement), and the SVD cost (the nuclear norm), for learning multiple centers required to define a mixture density.
♻ ☆ Automated Model Evaluation for Object Detection via Prediction Consistency and Reliability ICCV 2025
Recent advances in computer vision have made training object detectors more efficient and effective; however, assessing their performance in real-world applications still relies on costly manual annotation. To address this limitation, we develop an automated model evaluation (AutoEval) framework for object detection. We propose Prediction Consistency and Reliability (PCR), which leverages the multiple candidate bounding boxes that conventional detectors generate before non-maximum suppression (NMS). PCR estimates detection performance without ground-truth labels by jointly measuring 1) the spatial consistency between boxes before and after NMS, and 2) the reliability of the retained boxes via the confidence scores of overlapping boxes. For a more realistic and scalable evaluation, we construct a meta-dataset by applying image corruptions of varying severity. Experimental results demonstrate that PCR yields more accurate performance estimates than existing AutoEval methods, and the proposed meta-dataset covers a wider range of detection performance. The code is available at https://github.com/YonseiML/autoeval-det.
comment: ICCV 2025 Oral; v2: fixed a typo in the title and updated experimental results
♻ ☆ Beyond Outliers: A Study of Optimizers Under Quantization
As new optimizers gain traction and model quantization becomes standard for efficient deployment, a key question arises: how does the choice of optimizer affect model performance in the presence of quantization? Despite progress in both areas, systematic evidence on optimizer-quantization interactions remains limited. To fill this gap, we study the impact of optimizer choice on model robustness under quantization, considering both post-training quantization (PTQ), and quantization-aware training (QAT). We first train full-precision models, ranging from 50M to 1.5B parameters, with six optimizers, to explore the hyperparameter landscape, and establish well-tuned baselines. We then apply PTQ to evaluate how model performance degrades when trained with different optimizers. We find that outlier-related metrics, such as the max-to-mean ratio (MMR) and Kurtosis, fail to predict the PTQ performance across different optimizers. We show analytically that this is due to the MMR capturing only isolated layer errors, while ignoring how quantization errors accumulate and propagate through the network. To study the QAT degradation, we train quantized models from scratch and compare them to our original-precision baselines. We find that optimizers performing well in the original pretraining setup may not remain optimal under QAT, and that models trained with Shampoo show the lowest accuracy degradation. Finally, we derive scaling laws for quantization-aware training under different optimizers, showing that Shampoo achieves the highest parameter efficiency of all tested optimizers.
comment: 20 pages
♻ ☆ LoFT: Parameter-Efficient Fine-Tuning for Long-tailed Semi-Supervised Learning in Open-World Scenarios
Long-tailed learning has garnered increasing attention due to its wide applicability in real-world scenarios. Among existing approaches, Long-Tailed Semi-Supervised Learning (LTSSL) has emerged as an effective solution by incorporating a large amount of unlabeled data into the imbalanced labeled dataset. However, most prior LTSSL methods are designed to train models from scratch, which often leads to issues such as overconfidence and low-quality pseudo-labels. To address these challenges, we extend LTSSL into the foundation model fine-tuning paradigm and propose a novel framework: LoFT (Long-tailed semi-supervised learning via parameter-efficient Fine-Tuning). We demonstrate that fine-tuned foundation models can generate more reliable pseudolabels, thereby benefiting imbalanced learning. Furthermore, we explore a more practical setting by investigating semi-supervised learning under open-world conditions, where the unlabeled data may include out-of-distribution (OOD) samples. To handle this problem, we propose LoFT-OW (LoFT under Open-World scenarios) to improve the discriminative ability. Experimental results on multiple benchmarks demonstrate that our method achieves superior performance compared to previous approaches, even when utilizing only 1\% of the unlabeled data compared with previous works.
♻ ☆ Sketching Low-Rank Plus Diagonal Matrices
Many relevant machine learning and scientific computing tasks involve high-dimensional linear operators accessible only via costly matrix-vector products. In this context, recent advances in sketched methods have enabled the construction of *either* low-rank *or* diagonal approximations from few matrix-vector products. This provides great speedup and scalability, but approximation errors arise due to the assumed simpler structure. This work introduces SKETCHLORD, a method that simultaneously estimates both low-rank *and* diagonal components, targeting the broader class of Low-Rank *plus* Diagonal (LoRD) linear operators. We demonstrate theoretically and empirically that this joint estimation is superior also to any sequential variant (diagonal-then-low-rank or low-rank-then-diagonal). Then, we cast SKETCHLORD as a convex optimization problem, leading to a scalable algorithm. Comprehensive experiments on synthetic (approximate) LoRD matrices confirm SKETCHLORD's performance in accurately recovering these structures. This positions it as a valuable addition to the structured approximation toolkit, particularly when high-fidelity approximations are desired for large-scale operators, such as the deep learning Hessian.
♻ ☆ Morphlux: Transforming Torus Fabrics for Efficient Multi-tenant ML
We develop Morphlux, a server-scale programmable photonic fabric to interconnect accelerators within servers. We show that augmenting state-of-the-art torus-based ML data-centers with Morphlux can improve the bandwidth of tenant compute allocations by up to 66%, reduce compute fragmentation by up to 70%, and minimize the blast radius of chip failures. We develop a novel end-to-end hardware prototype of Morphlux to demonstrate these performance benefits which translate to 1.72X improvement in training throughput of ML models. By rapidly programming the server-scale fabric in our hardware testbed, Morphlux can replace a failed accelerator chip with a healthy one in 1.2 seconds.
♻ ☆ Scaling Laws for Optimal Data Mixtures
Large foundation models are typically trained on data from multiple domains, with the data mixture--the proportion of each domain used--playing a critical role in model performance. The standard approach to selecting this mixture relies on trial and error, which becomes impractical for large-scale pretraining. We propose a systematic method to determine the optimal data mixture for any target domain using scaling laws. Our approach accurately predicts the loss of a model of size $N$ trained with $D$ tokens and a specific domain weight vector $h$. We validate the universality of these scaling laws by demonstrating their predictive power in three distinct and large-scale settings: large language model (LLM), native multimodal model (NMM), and large vision models (LVM) pretraining. We further show that these scaling laws can extrapolate to new data mixtures and across scales: their parameters can be accurately estimated using a few small-scale training runs, and used to estimate the performance at larger scales and unseen domain weights. The scaling laws allow to derive the optimal domain weights for any target domain under a given training budget ($N$,$D$), providing a principled alternative to costly trial-and-error methods.
♻ ☆ On Predictability of Reinforcement Learning Dynamics for Large Language Models
Recent advances in reasoning capabilities of large language models (LLMs) are largely driven by reinforcement learning (RL), yet the underlying parameter dynamics during RL training remain poorly understood. This work identifies two fundamental properties of RL-induced parameter updates in LLMs: (1) Rank-1 Dominance, where the top singular subspace of the parameter update matrix nearly fully determines reasoning improvements, recovering over 99\% of performance gains; and (2) Rank-1 Linear Dynamics, where this dominant subspace evolves linearly throughout training, enabling accurate prediction from early checkpoints. Extensive experiments across 8 LLMs and 7 algorithms validate the generalizability of these properties. More importantly, based on these findings, we propose AlphaRL, a plug-in acceleration framework that extrapolates the final parameter update using a short early training window, achieving up to 2.5 speedup while retaining \textgreater 96\% of reasoning performance without extra modules or hyperparameter tuning. This positions our finding as a versatile and practical tool for large-scale RL, opening a path toward principled, interpretable, and efficient training paradigm for LLMs.
comment: 43 pages, 28 figures; 43
♻ ☆ Post-hoc Probabilistic Vision-Language Models
Vision-language models (VLMs), such as CLIP and SigLIP, have found remarkable success in classification, retrieval, and generative tasks. For this, VLMs deterministically map images and text descriptions to a joint latent space in which their similarity is assessed using the cosine similarity. However, a deterministic mapping of inputs fails to capture uncertainties over concepts arising from domain shifts when used in downstream tasks. In this work, we propose post-hoc uncertainty estimation in VLMs that does not require additional training. Our method leverages a Bayesian posterior approximation over the last layers in VLMs and analytically quantifies uncertainties over cosine similarities. We demonstrate its effectiveness for uncertainty quantification and support set selection in active learning. Compared to baselines, we obtain improved and well-calibrated predictive uncertainties, interpretable uncertainty estimates, and sample-efficient active learning. Our results show promise for safety-critical applications of large-scale models.
comment: Project page: https://aaltoml.github.io/BayesVLM/
♻ ☆ Neural Network Parameter-optimization of Gaussian pmDAGs
Finding the parameters of a latent variable causal model is central to causal inference and causal identification. In this article, we show that existing graphical structures that are used in causal inference are not stable under marginalization of Gaussian Bayesian networks, and present a graphical structure that faithfully represent margins of Gaussian Bayesian networks. We present the first duality between parameter optimization of a latent variable model and training a feed-forward neural network in the parameter space of the assumed family of distributions. Based on this observation, we develop an algorithm for parameter optimization of these graphical structures based on a given observational distribution. Then, we provide conditions for causal effect identifiability in the Gaussian setting. We propose an meta-algorithm that checks whether a causal effect is identifiable or not. Moreover, we lay a grounding for generalizing the duality between a neural network and a causal model from the Gaussian to other distributions.
comment: 52 pages
Break the ID-Language Barrier: An Adaption Framework for LLM-based Sequential Recommendation
The recent breakthrough of large language models (LLMs) in natural language processing has sparked exploration in recommendation systems, however, their limited domain-specific knowledge remains a critical bottleneck. Specifically, LLMs lack key pieces of information crucial for sequential recommendations, such as user behavior patterns. To address this critical gap, we propose IDLE-Adapter, a novel framework that integrates pre-trained ID embeddings, rich in domain-specific knowledge, into LLMs to improve recommendation accuracy. IDLE-Adapter acts as a bridge, transforming sparse user-item interaction data into dense, LLM-compatible representations through a Pre-trained ID Sequential Model, Dimensionality Alignment, Layer-wise Embedding Refinement, and Layer-wise Distribution Alignment. Furthermore, IDLE-Adapter demonstrates remarkable flexibility by seamlessly integrating ID embeddings from diverse ID-based sequential models and LLM architectures. Extensive experiments across various datasets demonstrate the superiority of IDLE-Adapter, achieving over 10\% and 20\% improvements in HitRate@5 and NDCG@5 metrics, respectively, compared to state-of-the-art methods.
♻ ☆ Momentum-SAM: Sharpness Aware Minimization without Computational Overhead
The recently proposed optimization algorithm for deep neural networks Sharpness Aware Minimization (SAM) suggests perturbing parameters before gradient calculation by a gradient ascent step to guide the optimization into parameter space regions of flat loss. While significant generalization improvements and thus reduction of overfitting could be demonstrated, the computational costs are doubled due to the additionally needed gradient calculation, making SAM unfeasible in case of limited computationally capacities. Motivated by Nesterov Accelerated Gradient (NAG) we propose Momentum-SAM (MSAM), which perturbs parameters in the direction of the accumulated momentum vector to achieve low sharpness without significant computational overhead or memory demands over SGD or Adam. We evaluate MSAM in detail and reveal insights on separable mechanisms of NAG, SAM and MSAM regarding training optimization and generalization. Code is available at https://github.com/MarlonBecker/MSAM.
♻ ☆ Differentially Private Federated Learning: A Systematic Review
In recent years, privacy and security concerns in machine learning have promoted trusted federated learning to the forefront of research. Differential privacy has emerged as the de facto standard for privacy protection in federated learning due to its rigorous mathematical foundation and provable guarantee. Despite extensive research on algorithms that incorporate differential privacy within federated learning, there remains an evident deficiency in systematic reviews that categorize and synthesize these studies. Our work presents a systematic overview of the differentially private federated learning. Existing taxonomies have not adequately considered objects and level of privacy protection provided by various differential privacy models in federated learning. To rectify this gap, we propose a new taxonomy of differentially private federated learning based on definition and guarantee of various differential privacy models and federated scenarios. Our classification allows for a clear delineation of the protected objects across various differential privacy models and their respective neighborhood levels within federated learning environments. Furthermore, we explore the applications of differential privacy in federated learning scenarios. Our work provide valuable insights into privacy-preserving federated learning and suggest practical directions for future research.
comment: 36pages
♻ ☆ Large Language Models Inference Engines based on Spiking Neural Networks
Foundational models based on the transformer architecture are currently the state-of-the-art in general language modeling, as well as in scientific areas such as material science and climate. However, training and deploying these models is computationally challenging as the time and space complexity has a quadratic relation to the input sequence length. Several efforts exploring efficient computational paradigms and model architectures to address these limitations have been made. In this work, we explore spiking neural networks (SNNs) to design transformer models. A challenge in training large-scale SNNs, using existing surrogate learning methods is inefficient and time-consuming. On the other hand, techniques to convert existing transformer-based models to their SNN equivalent are not scalable, as achieving optimal performance comes at the cost of a large number of spike time-steps, i.e. increased latency. To address this, we propose NeurTransformer, a methodology for designing transformer-based SNN for inference using a supervised fine-tuning approach with existing conversion methods. The proposed methodology works by: (1) replacing the self-attention mechanism with a spike-based self-attention (SSA), (2) converting the feed-forward block of the trained transformer model to its equivalent SNN, and (3) fine-tuning the SSA block using SNN-based surrogate learning algorithms. We benchmark the proposed methodology and demonstrate its accuracy and scalability using three variants of the GPT-2 model of increasing model size. We observe that the converted GPT-2 small models demonstrate a 5-12% loss in cosine similarity and a 9.7% reduction in perplexity. Finally, we demonstrate the energy efficiency of the SSA block compared to the ASA block and show between 64.71% and 85.28% reductions in estimated energy consumption when implementing the self-attention mechanism on a digital hardware.
♻ ☆ Do LLMs Really Forget? Evaluating Unlearning with Knowledge Correlation and Confidence Awareness
Machine unlearning techniques aim to mitigate unintended memorization in large language models (LLMs). However, existing approaches predominantly focus on the explicit removal of isolated facts, often overlooking latent inferential dependencies and the non-deterministic nature of knowledge within LLMs. Consequently, facts presumed forgotten may persist implicitly through correlated information. To address these challenges, we propose a knowledge unlearning evaluation framework that more accurately captures the implicit structure of real-world knowledge by representing relevant factual contexts as knowledge graphs with associated confidence scores. We further develop an inference-based evaluation protocol leveraging powerful LLMs as judges; these judges reason over the extracted knowledge subgraph to determine unlearning success. Our LLM judges utilize carefully designed prompts and are calibrated against human evaluations to ensure their trustworthiness and stability. Extensive experiments on our newly constructed benchmark demonstrate that our framework provides a more realistic and rigorous assessment of unlearning performance. Moreover, our findings reveal that current evaluation strategies tend to overestimate unlearning effectiveness. Our code is publicly available at https://github.com/Graph-COM/Knowledge_Unlearning.git.
♻ ☆ QSpec: Speculative Decoding with Complementary Quantization Schemes
Quantization is widely adopted to accelerate inference and reduce memory consumption in large language models (LLMs). While activation-weight joint quantization enables efficient low-precision decoding, it suffers from substantial performance degradation on multi-step reasoning tasks. We propose QSpec, a novel quantization paradigm that decouples efficiency from quality by integrating two complementary schemes via speculative decoding: low-precision joint quantization for fast drafting and high-precision weight-only quantization for accurate verification. QSpec reuses both weights and KV cache across stages, enabling near-zero-cost switching without retraining or auxiliary models. Compared to high-precision baselines, QSpec achieves up to 1.64x speedup without quality degradation, and outperforms state-of-the-art speculative decoding methods by up to 1.55x in batched settings. Furthermore, QSpec supports plug-and-play deployment and generalizes well across model scales, quantization methods, and workloads. These properties make QSpec a practical and scalable solution for high-fidelity quantized LLM serving under memory-constrained scenarios. Our code is available at https://github.com/hku-netexplo-lab/QSpec.
♻ ☆ Accuracy of Discretely Sampled Stochastic Policies in Continuous-time Reinforcement Learning
Stochastic policies (also known as relaxed controls) are widely used in continuous-time reinforcement learning algorithms. However, executing a stochastic policy and evaluating its performance in a continuous-time environment remain open challenges. This work introduces and rigorously analyzes a policy execution framework that samples actions from a stochastic policy at discrete time points and implements them as piecewise constant controls. We prove that as the sampling mesh size tends to zero, the controlled state process converges weakly to the dynamics with coefficients aggregated according to the stochastic policy. We explicitly quantify the convergence rate based on the regularity of the coefficients and establish an optimal first-order convergence rate for sufficiently regular coefficients. Additionally, we prove a $1/2$-order weak convergence rate that holds uniformly over the sampling noise with high probability, and establish a $1/2$-order pathwise convergence for each realization of the system noise in the absence of volatility control. Building on these results, we analyze the bias and variance of various policy evaluation and policy gradient estimators based on discrete-time observations. Our results provide theoretical justification for the exploratory stochastic control framework in [H. Wang, T. Zariphopoulou, and X.Y. Zhou, J. Mach. Learn. Res., 21 (2020), pp. 1-34].
♻ ☆ GeoSQL-Eval: First Evaluation of LLMs on PostGIS-Based NL2GeoSQL Queries
Large language models (LLMs) have shown strong performance in natural language to SQL (NL2SQL) tasks within general databases. However, extending to GeoSQL introduces additional complexity from spatial data types, function invocation, and coordinate systems, which greatly increases generation and execution difficulty. Existing benchmarks mainly target general SQL, and a systematic evaluation framework for GeoSQL is still lacking. To fill this gap, we present GeoSQL-Eval, the first end-to-end automated evaluation framework for PostGIS query generation, together with GeoSQL-Bench, a benchmark for assessing LLM performance in NL2GeoSQL tasks. GeoSQL-Bench defines three task categories-conceptual understanding, syntax-level SQL generation, and schema retrieval-comprising 14,178 instances, 340 PostGIS functions, and 82 thematic databases. GeoSQL-Eval is grounded in Webb's Depth of Knowledge (DOK) model, covering four cognitive dimensions, five capability levels, and twenty task types to establish a comprehensive process from knowledge acquisition and syntax generation to semantic alignment, execution accuracy, and robustness. We evaluate 24 representative models across six categories and apply the entropy weight method with statistical analyses to uncover performance differences, common error patterns, and resource usage. Finally, we release a public GeoSQL-Eval leaderboard platform for continuous testing and global comparison. This work extends the NL2GeoSQL paradigm and provides a standardized, interpretable, and extensible framework for evaluating LLMs in spatial database contexts, offering valuable references for geospatial information science and related applications.
♻ ☆ What happens when generative AI models train recursively on each others' outputs?
The internet serves as a common source of training data for generative AI (genAI) models but is increasingly populated with AI-generated content. This duality raises the possibility that future genAI models may be trained on other models' generated outputs. Prior work has studied consequences of models training on their own generated outputs, but limited work has considered what happens if models ingest content produced by other models. Given society's increasing dependence on genAI tools, understanding such data-mediated model interactions is critical. This work provides empirical evidence for how data-mediated interactions might unfold in practice, develops a theoretical model for this interactive training process, and experimentally validates the theory. We find that data-mediated interactions can benefit models by exposing them to novel concepts perhaps missed in original training data, but also can homogenize their performance on shared tasks.
comment: 9 pages
♻ ☆ Shilling Recommender Systems by Generating Side-feature-aware Fake User Profiles
Recommender systems (RS) greatly influence users' consumption decisions, making them attractive targets for malicious shilling attacks that inject fake user profiles to manipulate recommendations. Existing shilling methods can generate effective and stealthy fake profiles when training data only contain rating matrix, but they lack comprehensive solutions for scenarios where side features are present and utilized by the recommender. To address this gap, we extend the Leg-UP framework by enhancing the generator architecture to incorporate side features, enabling the generation of side-feature-aware fake user profiles. Experiments on benchmarks show that our method achieves strong attack performance while maintaining stealthiness.
♻ ☆ Differentially Private Clustering in Data Streams
Clustering problems (such as $k$-means and $k$-median) are fundamental unsupervised machine learning primitives, and streaming clustering algorithms have been extensively studied in the past. However, since data privacy becomes a central concern in many real-world applications, non-private clustering algorithms may not be as applicable in many scenarios. In this work, we provide the first differentially private algorithms for $k$-means and $k$-median clustering of $d$-dimensional Euclidean data points over a stream with length at most $T$ using space that is sublinear (in $T$) in the continual release setting where the algorithm is required to output a clustering at every timestep. We achieve (1) an $O(1)$-multiplicative approximation with $\tilde{O}(k^{1.5} \cdot poly(d,\log(T)))$ space and $poly(k,d,\log(T))$ additive error, or (2) a $(1+\gamma)$-multiplicative approximation with $\tilde{O}_\gamma(poly(k,2^{O_\gamma(d)},\log(T)))$ space for any $\gamma>0$, and the additive error is $poly(k,2^{O_\gamma(d)},\log(T))$. Our main technical contribution is a differentially private clustering framework for data streams which only requires an offline DP coreset or clustering algorithm as a blackbox.
comment: Fixed previous technical issues, and changed presentation of results
♻ ☆ MolLangBench: A Comprehensive Benchmark for Language-Prompted Molecular Structure Recognition, Editing, and Generation
Precise recognition, editing, and generation of molecules are essential prerequisites for both chemists and AI systems tackling various chemical tasks. We present MolLangBench, a comprehensive benchmark designed to evaluate fundamental molecule-language interface tasks: language-prompted molecular structure recognition, editing, and generation. To ensure high-quality, unambiguous, and deterministic outputs, we construct the recognition tasks using automated cheminformatics tools, and curate editing and generation tasks through rigorous expert annotation and validation. MolLangBench supports the evaluation of models that interface language with different molecular representations, including linear strings, molecular images, and molecular graphs. Evaluations of state-of-the-art models reveal significant limitations: the strongest model (GPT-5) achieves $86.2\%$ and $85.5\%$ accuracy on recognition and editing tasks, which are intuitively simple for humans, and performs even worse on the generation task, reaching only $43.0\%$ accuracy. These results highlight the shortcomings of current AI systems in handling even preliminary molecular recognition and manipulation tasks. We hope MolLangBench will catalyze further research toward more effective and reliable AI systems for chemical applications.
♻ ☆ Theoretical Foundations of Representation Learning using Unlabeled Data: Statistics and Optimization
Representation learning from unlabeled data has been extensively studied in statistics, data science and signal processing with a rich literature on techniques for dimension reduction, compression, multi-dimensional scaling among others. However, current deep learning models use new principles for unsupervised representation learning that cannot be easily analyzed using classical theories. For example, visual foundation models have found tremendous success using self-supervision or denoising/masked autoencoders, which effectively learn representations from massive amounts of unlabeled data. However, it remains difficult to characterize the representations learned by these models and to explain why they perform well for diverse prediction tasks or show emergent behavior. To answer these questions, one needs to combine mathematical tools from statistics and optimization. This paper provides an overview of recent theoretical advances in representation learning from unlabeled data and mentions our contributions in this direction.
♻ ☆ Accelerating Targeted Hard-Label Adversarial Attacks in Low-Query Black-Box Settings
Deep neural networks for image classification remain vulnerable to adversarial examples -- small, imperceptible perturbations that induce misclassifications. In black-box settings, where only the final prediction is accessible, crafting targeted attacks that aim to misclassify into a specific target class is particularly challenging due to narrow decision regions. Current state-of-the-art methods often exploit the geometric properties of the decision boundary separating a source image and a target image rather than incorporating information from the images themselves. In contrast, we propose Targeted Edge-informed Attack (TEA), a novel attack that utilizes edge information from the target image to carefully perturb it, thereby producing an adversarial image that is closer to the source image while still achieving the desired target classification. Our approach consistently outperforms current state-of-the-art methods across different models in low query settings (nearly 70% fewer queries are used), a scenario especially relevant in real-world applications with limited queries and black-box access. Furthermore, by efficiently generating a suitable adversarial example, TEA provides an improved target initialization for established geometry-based attacks.
comment: This paper contains 10 pages, 8 figures and 8 tables. For associated supplementary code, see https://github.com/mdppml/TEA
♻ ☆ Time-o1: Time-Series Forecasting Needs Transformed Label Alignment NeurIPS 2025
Training time-series forecast models presents unique challenges in designing effective learning objectives. Existing methods predominantly utilize the temporal mean squared error, which faces two critical challenges: (1) label autocorrelation, which leads to bias from the label sequence likelihood; (2) excessive amount of tasks, which increases with the forecast horizon and complicates optimization. To address these challenges, we propose Time-o1, a transformation-augmented learning objective tailored for time-series forecasting. The central idea is to transform the label sequence into decorrelated components with discriminated significance. Models are then trained to align the most significant components, thereby effectively mitigating label autocorrelation and reducing task amount. Extensive experiments demonstrate that Time-o1 achieves state-of-the-art performance and is compatible with various forecast models. Code is available at https://github.com/Master-PLC/Time-o1.
comment: Accepted as poster in NeurIPS 2025
♻ ☆ LEXam: Benchmarking Legal Reasoning on 340 Law Exams
Long-form legal reasoning remains a key challenge for large language models (LLMs) in spite of recent advances in test-time scaling. To address this, we introduce \textsc{LEXam}, a novel benchmark derived from 340 law exams spanning 116 law school courses across a range of subjects and degree levels. The dataset comprises 4,886 law exam questions in English and German, including 2,841 long-form, open-ended questions and 2,045 multiple-choice questions. Besides reference answers, the open questions are also accompanied by explicit guidance outlining the expected legal reasoning approach such as issue spotting, rule recall, or rule application. Our evaluation on both open-ended and multiple-choice questions present significant challenges for current LLMs; in particular, they notably struggle with open questions that require structured, multi-step legal reasoning. Moreover, our results underscore the effectiveness of the dataset in differentiating between models with varying capabilities. Deploying an ensemble LLM-as-a-Judge paradigm with rigorous human expert validation, we demonstrate how model-generated reasoning steps can be evaluated consistently and accurately, closely aligning with human expert assessments. Our evaluation setup provides a scalable method to assess legal reasoning quality beyond simple accuracy metrics. We have open-sourced our code on \href{https://github.com/LEXam-Benchmark/LEXam}{GitHub} and released our data on \href{https://huggingface.co/datasets/LEXam-Benchmark/LEXam}{Hugging Face}. Project page: https://lexam-benchmark.github.io/
♻ ☆ VFP: Variational Flow-Matching Policy for Multi-Modal Robot Manipulation
Flow-matching-based policies have recently emerged as a promising approach for learning-based robot manipulation, offering significant acceleration in action sampling compared to diffusion-based policies. However, conventional flow-matching methods struggle with multi-modality, often collapsing to averaged or ambiguous behaviors in complex manipulation tasks. To address this, we propose the Variational Flow-Matching Policy (VFP), which introduces a variational latent prior for mode-aware action generation and effectively captures both task-level and trajectory-level multi-modality. VFP further incorporates Kantorovich Optimal Transport (K-OT) for distribution-level alignment and utilizes a Mixture-of-Experts (MoE) decoder for mode specialization and efficient inference. We comprehensively evaluate VFP on 41 simulated tasks and 3 real-robot tasks, demonstrating its effectiveness and sampling efficiency in both simulated and real-world settings. Results show that VFP achieves a 49% relative improvement in task success rate over standard flow-based baselines in simulation, and further outperforms them on real-robot tasks, while still maintaining fast inference and a compact model size. More details are available on our project page: https://sites.google.com/view/varfp/
♻ ☆ PlaceFM: A Training-free Geospatial Foundation Model of Places using Large-Scale Point of Interest Data
With the rapid growth and continual updates of geospatial data from diverse sources, geospatial foundation model pre-training for urban representation learning has emerged as a key research direction for advancing data-driven urban planning. Spatial structure is fundamental to effective geospatial intelligence systems; however, existing foundation models often lack the flexibility to reason about places, context-rich regions spanning multiple spatial granularities that may consist of many spatially and semantically related points of interest. To address this gap, we propose PlaceFM, a geospatial foundation model that captures place representations through a training-free, clustering-based approach. PlaceFM summarizes the entire point of interest graph constructed from U.S. Foursquare data, producing general-purpose region embeddings while automatically identifying places of interest. These embeddings can be directly integrated into geolocation data pipelines to support a variety of urban downstream tasks. Without the need for costly pre-training, PlaceFM provides a scalable and efficient solution for multi-granular geospatial analysis. Extensive experiments on two real-world prediction tasks, ZIP code-level population density and housing prices, demonstrate that PlaceFM not only outperforms most state-of-the-art graph-based geospatial foundation models but also achieves up to a 100x speedup in generating region-level representations on large-scale POI graphs. The implementation is available at https://github.com/mohammadhashemii/PlaceFM.
♻ ☆ AI-Powered Inverse Design of Ku-Band SIW Resonant Structures by Iterative Residual Correction Network
Designing high-performance substrate-integrated waveguide (SIW) filters with both closely spaced and widely separated resonances is challenging. Consequently, there is a growing need for robust methods that reduce reliance on time-consuming electromagnetic (EM) simulations. In this study, a deep learning-based framework was developed and validated for the inverse design of multi-mode SIW filters with both closely spaced and widely separated resonances. A series of SIW filters were designed, fabricated, and experimentally evaluated. A three-stage deep learning framework was implemented, consisting of a Feedforward Inverse Model (FIM), a Hybrid Inverse-Forward Residual Refinement Network (HiFR\textsuperscript{2}-Net), and an Iterative Residual Correction Network (IRC-Net). The design methodology and performance of each model were systematically analyzed. Notably, IRC-Net outperformed both FIM and HiFR\textsuperscript{2}-Net, achieving systematic error reduction over five correction iterations. Experimental results showed a reduction in mean squared error (MSE) from 0.00191 to 0.00146 and mean absolute error (MAE) from 0.0262 to 0.0209, indicating improved accuracy and convergence. The proposed framework demonstrates the capability to enable robust, accurate, and generalizable inverse design of complex microwave filters with minimal simulation cost. This approach is expected to facilitate rapid prototyping of advanced filter designs and could extend to other high-frequency components in microwave and millimeter-wave technologies.
comment: The final published version is available at: https://doi.org/10.1016/j.aeue.2025.156003
♻ ☆ The Data-Quality Illusion: Rethinking Classifier-Based Quality Filtering for LLM Pretraining
Large-scale models are pretrained on massive web-crawled datasets containing documents of mixed quality, making data filtering essential. A popular method is Classifier-based Quality Filtering (CQF), which trains a binary classifier to distinguish between pretraining data and a small, high-quality set. It assigns each pretraining document a quality score defined as the classifier's score and retains only the top-scoring ones. We provide an in-depth analysis of CQF. We show that while CQF improves downstream task performance, it does not necessarily enhance language modeling on the high-quality dataset. We explain this paradox by the fact that CQF implicitly filters the high-quality dataset as well. We further compare the behavior of models trained with CQF to those trained on synthetic data of increasing quality, obtained via random token permutations, and find starkly different trends. Our results challenge the view that CQF captures a meaningful notion of data quality.
comment: 21 pages, 20 figures, 2 tables, preprint
♻ ☆ Enhanced DACER Algorithm with High Diffusion Efficiency
Due to their expressive capacity, diffusion models have shown great promise in offline RL and imitation learning. Diffusion Actor-Critic with Entropy Regulator (DACER) extended this capability to online RL by using the reverse diffusion process as a policy approximator, achieving state-of-the-art performance. However, it still suffers from a core trade-off: more diffusion steps ensure high performance but reduce efficiency, while fewer steps degrade performance. This remains a major bottleneck for deploying diffusion policies in real-time online RL. To mitigate this, we propose DACERv2, which leverages a Q-gradient field objective with respect to action as an auxiliary optimization target to guide the denoising process at each diffusion step, thereby introducing intermediate supervisory signals that enhance the efficiency of single-step diffusion. Additionally, we observe that the independence of the Q-gradient field from the diffusion time step is inconsistent with the characteristics of the diffusion process. To address this issue, a temporal weighting mechanism is introduced, allowing the model to effectively eliminate large-scale noise during the early stages and refine its outputs in the later stages. Experimental results on OpenAI Gym benchmarks and multimodal tasks demonstrate that, compared with classical and diffusion-based online RL algorithms, DACERv2 achieves higher performance in most complex control environments with only five diffusion steps and shows greater multimodality.
♻ ☆ Localized Forest Fire Risk Prediction: A Department-Aware Approach for Operational Decision Support
Forest fire prediction involves estimating the likelihood of fire ignition or related risk levels in a specific area over a defined time period. With climate change intensifying fire behavior and frequency, accurate prediction has become one of the most pressing challenges in Artificial Intelligence (AI). Traditionally, fire ignition is approached as a binary classification task in the literature. However, this formulation oversimplifies the problem, especially from the perspective of end-users such as firefighters. In general, as is the case in France, firefighting units are organized by department, each with its terrain, climate conditions, and historical experience with fire events. Consequently, fire risk should be modeled in a way that is sensitive to local conditions and does not assume uniform risk across all regions. This paper proposes a new approach that tailors fire risk assessment to departmental contexts, offering more actionable and region-specific predictions for operational use. With this, we present the first national-scale AI benchmark for metropolitan France using state-of-the-art AI models on a relatively unexplored dataset. Finally, we offer a summary of important future works that should be taken into account. Supplementary materials are available on GitHub.
comment: 8 pages, 4 figures, 4 tables, submitted to CFP: 7th IEEE Computers, Communications and IT Applications Conference December
♻ ☆ Fusing Foveal Fixations Using Linear Retinal Transformations and Bayesian Experimental Design
Humans (and many vertebrates) face the problem of fusing together multiple fixations of a scene in order to obtain a representation of the whole, where each fixation uses a high-resolution fovea and decreasing resolution in the periphery. In this paper we explicitly represent the retinal transformation of a fixation as a linear downsampling of a high-resolution latent image of the scene, exploiting the known geometry. This linear transformation allows us to carry out exact inference for the latent variables in factor analysis (FA) and mixtures of FA models of the scene. Further, this allows us to formulate and solve the choice of "where to look next" as a Bayesian experimental design problem using the Expected Information Gain criterion. Experiments on the Frey faces and MNIST datasets demonstrate the effectiveness of our models.
comment: 19 pages, 3 figures
♻ ☆ GARG-AML against Smurfing: A Scalable and Interpretable Graph-Based Framework for Anti-Money Laundering
Purpose: This paper introduces a novel graph-based method, GARG-AML, for efficient and effective anti-money laundering (AML). It quantifies smurfing risk, a popular money laundering method, by providing each node in the network with a single interpretable score. The proposed method strikes a balance among computational efficiency, detection power and transparency. Different versions of GARG-AML are introduced for undirected and directed networks. Methodology: GARG-AML constructs the adjacency matrix of a node's second-order neighbourhood in a specific way. This allows us to use the density of different blocks in the adjacency matrix to express the neighbourhood's resemblance to a pure smurfing pattern. GARG-AML is extended using a decision tree and gradient-boosting classifier to increase its performance even more. The methods are tested on synthetic and on open-source data against the current state-of-the-art in AML. Findings: We find that GARG-AML obtains state-of-the-art performance on all datasets. We illustrate that GARG-AML scales well to massive transactions graphs encountered at financial institutions. By leveraging only the adjacency matrix of the second-order neighbourhood and basic network features, this work highlights the potential of fundamental network properties towards advancing fraud detection. Originality: This paper uses only basic network features and expert knowledge on smurfing to construct a performant AML system. The originality lies in the translation of smurfing detection to these features and network representation. Our proposed method is built around the real business needs of scalability and interpretability. It therefore provides a solution that can be easily implemented at financial institutions or incorporated in existing AML solutions.
♻ ☆ Feature Representation Transferring to Lightweight Models via Perception Coherence
In this paper, we propose a method for transferring feature representation to lightweight student models from larger teacher models. We mathematically define a new notion called \textit{perception coherence}. Based on this notion, we propose a loss function, which takes into account the dissimilarities between data points in feature space through their ranking. At a high level, by minimizing this loss function, the student model learns to mimic how the teacher model \textit{perceives} inputs. More precisely, our method is motivated by the fact that the representational capacity of the student model is weaker than the teacher model. Hence, we aim to develop a new method allowing for a better relaxation. This means that, the student model does not need to preserve the absolute geometry of the teacher one, while preserving global coherence through dissimilarity ranking. Importantly, while rankings are defined only on finite sets, our notion of \textit{perception coherence} extends them into a probabilistic form. This formulation depends on the input distribution and applies to general dissimilarity metrics. Our theoretical insights provide a probabilistic perspective on the process of feature representation transfer. Our experiments results show that our method outperforms or achieves on-par performance compared to strong baseline methods for representation transferring.
♻ ☆ Can LLMs Find Fraudsters? Multi-level LLM Enhanced Graph Fraud Detection ACM MM 2025
Graph fraud detection has garnered significant attention as Graph Neural Networks (GNNs) have proven effective in modeling complex relationships within multimodal data. However, existing graph fraud detection methods typically use preprocessed node embeddings and predefined graph structures to reveal fraudsters, which ignore the rich semantic cues contained in raw textual information. Although Large Language Models (LLMs) exhibit powerful capabilities in processing textual information, it remains a significant challenge to perform multimodal fusion of processed textual embeddings with graph structures. In this paper, we propose a \textbf{M}ulti-level \textbf{L}LM \textbf{E}nhanced Graph Fraud \textbf{D}etection framework called MLED. In MLED, we utilize LLMs to extract external knowledge from textual information to enhance graph fraud detection methods. To integrate LLMs with graph structure information and enhance the ability to distinguish fraudsters, we design a multi-level LLM enhanced framework including type-level enhancer and relation-level enhancer. One is to enhance the difference between the fraudsters and the benign entities, the other is to enhance the importance of the fraudsters in different relations. The experiments on four real-world datasets show that MLED achieves state-of-the-art performance in graph fraud detection as a generalized framework that can be applied to existing methods.
comment: Accepted by ACM MM 2025
♻ ☆ Template-Guided 3D Molecular Pose Generation via Flow Matching and Differentiable Optimization
Predicting the 3D conformation of small molecules within protein binding sites is a key challenge in drug design. When a crystallized reference ligand (template) is available, it provides geometric priors that can guide 3D pose prediction. We present a two-stage method for ligand conformation generation guided by such templates. In the first stage, we introduce a molecular alignment approach based on flow-matching to generate 3D coordinates for the ligand, using the template structure as a reference. In the second stage, a differentiable pose optimization procedure refines this conformation based on shape and pharmacophore similarities, internal energy, and, optionally, the protein binding pocket. We introduce a new benchmark of ligand pairs co-crystallized with the same target to evaluate our approach and show that it outperforms standard docking tools and open-access alignment methods, especially in cases involving low similarity to the template or high ligand flexibility.
♻ ☆ Unmute the Patch Tokens: Rethinking Probing in Multi-Label Audio Classification ICLR2026
Although probing frozen models has become a standard evaluation paradigm, self-supervised learning in audio defaults to fine-tuning. A key reason is that global pooling creates an information bottleneck causing linear probes to misrepresent the embedding quality: The $\texttt{cls}$-token discards crucial token information about dispersed, localized events in multi-label audio. This weakness is rooted in the mismatch between the pretraining objective (operating globally) and the downstream task (localized events). Across a comprehensive benchmark of 13 datasets and 6 spectrogram-based encoders, we first investigate the global pooling bottleneck. We then introduce binarized prototypical probes: a lightweight and simple pooling method that learns prototypes to perform class-wise information aggregation. Despite its simplicity, our method notably outperforms linear and attentive probing. Our work establishes probing as a competitive and efficient paradigm for evaluating audio SSL models, challenging the reliance on costly fine-tuning.
comment: Currently under review @ICLR2026
♻ ☆ Flow Matching for Robust Simulation-Based Inference under Model Misspecification
Simulation-based inference (SBI) is transforming experimental sciences by enabling parameter estimation in complex non-linear models from simulated data. A persistent challenge, however, is model misspecification: simulators are only approximations of reality, and mismatches between simulated and real data can yield biased or overconfident posteriors. We address this issue by introducing Flow Matching Corrected Posterior Estimation (FMCPE), a framework that leverages the flow matching paradigm to refine simulation-trained posterior estimators using a small set of real calibration samples. Our approach proceeds in two stages: first, a posterior approximator is trained on abundant simulated data; second, flow matching transports its predictions toward the true posterior supported by real observations, without requiring explicit knowledge of the misspecification. This design enables FMCPE to combine the scalability of SBI with robustness to distributional shift. Across synthetic benchmarks and real-world datasets, we show that our proposal consistently mitigates the effects of misspecification, delivering improved inference accuracy and uncertainty calibration compared to standard SBI baselines, while remaining computationally efficient.
♻ ☆ WWAggr: A Window Wasserstein-based Aggregation for Ensemble Change Point Detection
Change Point Detection (CPD) aims to identify moments of abrupt distribution shifts in data streams. Real-world high-dimensional CPD remains challenging due to data pattern complexity and violation of common assumptions. Resorting to standalone deep neural networks, the current state-of-the-art detectors have yet to achieve perfect quality. Concurrently, ensembling provides more robust solutions, boosting the performance. In this paper, we investigate ensembles of deep change point detectors and realize that standard prediction aggregation techniques, e.g., averaging, are suboptimal and fail to account for problem peculiarities. Alternatively, we introduce WWAggr -- a novel task-specific method of ensemble aggregation based on the Wasserstein distance. Our procedure is versatile, working effectively with various ensembles of deep CPD models. Moreover, unlike existing solutions, we practically lift a long-standing problem of the decision threshold selection for CPD.
♻ ☆ Mechanistic Interpretability as Statistical Estimation: A Variance Analysis of EAP-IG
The development of trustworthy artificial intelligence requires moving beyond black-box performance metrics toward an understanding of models' internal computations. Mechanistic Interpretability (MI) aims to meet this need by identifying the algorithmic mechanisms underlying model behaviors. Yet, the scientific rigor of MI critically depends on the reliability of its findings. In this work, we argue that interpretability methods, such as circuit discovery, should be viewed as statistical estimators, subject to questions of variance and robustness. To illustrate this statistical framing, we present a systematic stability analysis of a state-of-the-art circuit discovery method: EAP-IG. We evaluate its variance and robustness through a comprehensive suite of controlled perturbations, including input resampling, prompt paraphrasing, hyperparameter variation, and injected noise within the causal analysis itself. Across a diverse set of models and tasks, our results demonstrate that EAP-IG exhibits high structural variance and sensitivity to hyperparameters, questioning the stability of its findings. Based on these results, we offer a set of best-practice recommendations for the field, advocating for the routine reporting of stability metrics to promote a more rigorous and statistically grounded science of interpretability.
♻ ☆ Learning Equivariant Models by Discovering Symmetries with Learnable Augmentations
Recently, a trend has emerged that favors shifting away from designing constrained equivariant architectures for data in geometric domains and instead (1) modifying the training protocol, e.g., with a specific loss and data augmentations (soft equivariance), or (2) ignoring equivariance and inferring it only implicitly. However, both options have limitations, e.g., soft equivariance still requires a priori knowledge about the underlying symmetries, while implicitly learning equivariance from data lacks interpretability. To address these limitations, we propose SEMoLA, an end-to-end approach that jointly (1) discovers a priori unknown symmetries in the data via learnable data augmentations, and uses them to (2) encode the respective approximate equivariance into arbitrary unconstrained models. Hence, it enables learning equivariant models that do not need prior knowledge about symmetries, offer interpretability, and maintain robustness to distribution shifts. Empirically, we demonstrate the ability of SEMoLA to robustly discover relevant symmetries while achieving high prediction performance across various datasets, encompassing multiple data modalities and underlying symmetry groups.
♻ ☆ SCoT: Unifying Consistency Models and Rectified Flows via Straight-Consistent Trajectories
Pre-trained diffusion models are commonly used to generate clean data (e.g., images) from random noises, effectively forming pairs of noises and corresponding clean images. Distillation on these pre-trained models can be viewed as the process of constructing advanced trajectories within the pair to accelerate sampling. For instance, consistency model distillation develops consistent projection functions to regulate trajectories, although sampling efficiency remains a concern. Rectified flow method enforces straight trajectories to enable faster sampling, yet relies on numerical ODE solvers, which may introduce approximation errors. In this work, we bridge the gap between the consistency model and the rectified flow method by proposing a Straight Consistent Trajectory~(SCoT) model. SCoT enjoys the benefits of both approaches for fast sampling, producing trajectories with consistent and straight properties simultaneously. These dual properties are strategically balanced by targeting two critical objectives: (1) regulating the gradient of SCoT's mapping to a constant, (2) ensuring trajectory consistency. Extensive experimental results demonstrate the effectiveness and efficiency of SCoT.
♻ ☆ AlgoTune: Can Language Models Speed Up General-Purpose Numerical Programs?
Despite progress in language model (LM) capabilities, evaluations have thus far focused on models' performance on tasks that humans have previously solved, including in programming (Jimenez et al., 2024) and mathematics (Glazer et al., 2024). We therefore propose testing models' ability to design and implement algorithms in an open-ended benchmark: We task LMs with writing code that efficiently solves computationally challenging problems in computer science, physics, and mathematics. Our AlgoTune benchmark consists of 154 coding tasks collected from domain experts and a framework for validating and timing LM-synthesized solution code, which is compared to reference implementations from popular open-source packages. In addition, we develop a baseline LM agent, AlgoTuner, and evaluate its performance across a suite of frontier models. AlgoTuner uses a simple, budgeted loop that edits code, compiles and runs it, profiles performance, verifies correctness on tests, and selects the fastest valid version. AlgoTuner achieves an average 1.72x speedup against our reference solvers, which use libraries such as SciPy, sk-learn and CVXPY. However, we find that current models fail to discover algorithmic innovations, instead preferring surface-level optimizations. We hope that AlgoTune catalyzes the development of LM agents exhibiting creative problem solving beyond state-of-the-art human performance.
♻ ☆ Neural Diffusion Processes for Physically Interpretable Survival Prediction
We introduce DeepFHT, a survival-analysis framework that couples deep neural networks with first hitting time (FHT) distributions from stochastic process theory. Time to event is represented as the first passage of a latent diffusion process to an absorbing boundary. A neural network maps input variables to physically meaningful parameters including initial condition, drift, and diffusion, within a chosen FHT process such as Brownian motion, both with drift and driftless. This yields closed-form survival and hazard functions and captures time-varying risk without assuming proportional-hazards. We compare DeepFHT with Cox survival model using synthetic and real-world datasets. The method achieves predictive accuracy on par with state-of-the-art approaches, while maintaining a physics-based interpretable parameterization that elucidates the relation between input features and risk. This combination of stochastic process theory and deep learning provides a principled avenue for modeling survival phenomena in complex systems.
comment: 11 pages, 6 figures
♻ ☆ How Much Is Too Much? Adaptive, Context-Aware Risk Detection in Naturalistic Driving
Reliable risk identification based on driver behavior data underpins real-time safety feedback, fleet risk management, and evaluation of driver-assist systems. While naturalistic driving studies have become foundational for providing real-world driver behavior data, the existing frameworks for identifying risk based on such data have two fundamental limitations: (i) they rely on predefined time windows and fixed thresholds to disentangle risky and normal driving behavior, and (ii) they assume behavior is stationary across drivers and time, ignoring heterogeneity and temporal drift. In practice, these limitations can lead to timing errors and miscalibration in alerts, weak generalization to new drivers/routes/conditions, and higher false-alarm and miss rates, undermining driver trust and reducing safety intervention effectiveness. To address this gap, we propose a unified, context-aware framework that adapts labels and models over time and across drivers via rolling windows, joint optimization, dynamic calibration, and model fusion, tailored for time-stamped kinematic data. The framework is tested using two safety indicators, speed-weighted headway and harsh driving events, and three models: Random Forest, XGBoost, and Deep Neural Network (DNN). Speed-weighted headway yielded more stable and context-sensitive classifications than harsh-event counts. XGBoost maintained consistent performance under changing thresholds, whereas DNN achieved higher recall at lower thresholds but with greater variability across trials. The ensemble aggregated signals from multiple models into a single risk decision, balancing responsiveness to risky behavior with control of false alerts. Overall, the framework shows promise for adaptive, context-aware risk detection that can enhance real-time safety feedback and support driver-focused interventions in intelligent transportation systems.
comment: 24 pages
♻ ☆ Interpretable Machine Learning for Urban Heat Mitigation: Attribution and Weighting of Multi-Scale Drivers
Urban heat islands (UHIs) are often accentuated during heat waves (HWs) and pose a public health risk. Mitigating UHIs requires urban planners to first estimate how urban heat is influenced by different land use types (LUTs) and drivers across scales - from synoptic-scale climatic background processes to small-scale urban- and scale-bridging features. This study proposes to classify these drivers into driving (D), urban (U), and local (L) features, respectively. To increase interpretability and enhance computation efficiency, a LUT-distinguishing machine learning approach is proposed as a fast emulator for Weather Research and Forecasting model (WRF) coupled to the Noah land surface model (LSM) to predict ground- (TSK) and 2-meter air temperature (T2). Using random forest regression (RFR) with extreme gradient boosting (XGB) trained on WRF output over Zurich, Switzerland, during heatwave (HW) periods in 2017 and 2019, this study proposes LUT-based (LB) models that categorize features by scales and practical controllability, allowing optional categorical weighting. This approach enables category-specific feature ranking and sensitivity estimation of T2 and TSK to most important small-scale drivers - most notably surface emissivity, albedo, and leaf area index (LAI). Models employing the LB framework are statistically significantly more accurate than models that do not, with higher performance when more HW data is included in training. With RFR-XGB robustly performing optimal with unit weights, the method substantially increase interpretability. Despite the needs to reduce uncertainties and test the method on other cities, the proposed approach offers urban planners a direct framework for feasibility-centered UHI mitigation assessment.
♻ ☆ Subspace Node Pruning
Improving the efficiency of neural network inference is undeniably important in a time where commercial use of AI models increases daily. Node pruning is the art of removing computational units such as neurons, filters, attention heads, or even entire layers to significantly reduce inference time while retaining network performance. In this work, we propose the projection of unit activations to an orthogonal subspace in which there is no redundant activity and within which we may prune nodes while simultaneously recovering the impact of lost units via linear least squares. We furthermore show that the order in which units are orthogonalized can be optimized to maximally rank units by their redundancy. Finally, we leverage these orthogonal subspaces to automatically determine layer-wise pruning ratios based upon the relative scale of node activations in our subspace, equivalent to cumulative variance. Our method matches or exceeds state-of-the-art pruning results on ImageNet-trained VGG-16, ResNet-50 and DeiT models while simultaneously having up to 24x lower computational cost than alternative methods. We also demonstrate that this method can be applied in a one-shot manner to OPT LLM models, again outperforming competing methods.
comment: 18 pages, 10 figures, 5 tables
♻ ☆ Optimal Denoising in Score-Based Generative Models: The Role of Data Regularity
Score-based generative models achieve state-of-the-art sampling performance by denoising a distribution perturbed by Gaussian noise. In this paper, we focus on a single deterministic denoising step, and compare the optimal denoiser for the quadratic loss, we name ''full-denoising'', to the alternative ''half-denoising'' introduced by Hyv{\"a}rinen (2024). We show that looking at the performances in term of distance between distribution tells a more nuanced story, with different assumptions on the data leading to very different conclusions. We prove that half-denoising is better than full-denoising for regular enough densities, while full-denoising is better for singular densities such as mixtures of Dirac measures or densities supported on a low-dimensional subspace. In the latter case, we prove that full-denoising can alleviate the curse of dimensionality under a linear manifold hypothesis.
♻ ☆ How Foundational are Foundation Models for Time Series Forecasting? NeurIPS 2025
Foundation Models are designed to serve as versatile embedding machines, with strong zero shot capabilities and superior generalization performance when fine-tuned on diverse downstream tasks. While this is largely true for language and vision foundation models, we argue that the inherent diversity of time series data makes them less suited for building effective foundation models. We demonstrate this using forecasting as our downstream task. We show that the zero-shot capabilities of a time series foundation model are significantly influenced and tied to the specific domains it has been pretrained on. Furthermore, when applied to unseen real-world time series data, fine-tuned foundation models do not consistently yield substantially better results, relative to their increased parameter count and memory footprint, than smaller, dedicated models tailored to the specific forecasting task at hand.
comment: Accepted at NeurIPS 2025 Workshop on Recent Advances in Time Series Foundation Models (BERT2S)
♻ ☆ Are Time Series Foundation Models Susceptible to Catastrophic Forgetting?
Time Series Foundation Models (TSFMs) have shown promising zero-shot generalization across diverse forecasting tasks. However, their robustness to continual adaptation remains underexplored. In this work, we investigate the extent to which TSFMs suffer from catastrophic forgetting when fine-tuned sequentially on multiple datasets. Using synthetic datasets designed with varying degrees of periodic structure, we measure the trade-off between adaptation to new data and retention of prior knowledge. Our experiments reveal that, while fine-tuning improves performance on new tasks, it often causes significant degradation on previously learned ones, illustrating a fundamental stability-plasticity dilemma.
♻ ☆ Learnable cut flow for high energy physics
Neural networks have emerged as a powerful paradigm for tasks in high energy physics, yet their opaque training process renders them as a black box. In contrast, the traditional cut flow method offers simplicity and interpretability but requires extensive manual tuning to identify optimal cut boundaries. To merge the strengths of both approaches, we propose the Learnable Cut Flow (LCF), a neural network that transforms the traditional cut selection into a fully differentiable, data-driven process. LCF implements two cut strategies-parallel, where observable distributions are treated independently, and sequential, where prior cuts shape subsequent ones-to flexibly determine optimal boundaries. Building on this strategy, we introduce the Learnable Importance, a metric that quantifies feature importance and adjusts their contributions to the loss accordingly, offering model-driven insights unlike ad-hoc metrics. To ensure differentiability, a modified loss function replaces hard cuts with mask operations, preserving data shape throughout the training process. LCF is tested on six varied mock datasets and a realistic diboson vs. QCD dataset. Results demonstrate that LCF 1. accurately learns cut boundaries across typical feature distributions in both parallel and sequential strategies, 2. assigns higher importance to discriminative features with minimal overlap, 3. handles redundant or correlated features robustly, and 4. performs effectively in real-world scenarios. In the diboson dataset, LCF initially underperforms boosted decision trees and multiplayer perceptrons when using all observables. LCF bridges the gap between traditional cut flow method and modern black-box neural networks, delivering actionable insights into the training process and feature importance. Source code and experimental data are available at https://github.com/Star9daisy/learnable-cut-flow.
comment: 31 pages, 26 figures, 8 tables, source code and data are available at GitHub
♻ ☆ Learning Task-Agnostic Motifs to Capture the Continuous Nature of Animal Behavior
Animals flexibly recombine a finite set of core motor motifs to meet diverse task demands, but existing behavior segmentation methods oversimplify this process by imposing discrete syllables under restrictive generative assumptions. To better capture the continuous structure of behavior generation, we introduce motif-based continuous dynamics (MCD) discovery, a framework that (1) uncovers interpretable motif sets as latent basis functions of behavior by leveraging representations of behavioral transition structure, and (2) models behavioral dynamics as continuously evolving mixtures of these motifs. We validate MCD on a multi-task gridworld, a labyrinth navigation task, and freely moving animal behavior. Across settings, it identifies reusable motif components, captures continuous compositional dynamics, and generates realistic trajectories beyond the capabilities of traditional discrete segmentation models. By providing a generative account of how complex animal behaviors emerge from dynamic combinations of fundamental motor motifs, our approach advances the quantitative study of natural behavior.
comment: 9 pages and 4 figures for the main text
♻ ☆ Beyond Slater's Condition in Online CMDPs with Stochastic and Adversarial Constraints
We study \emph{online episodic Constrained Markov Decision Processes} (CMDPs) under both stochastic and adversarial constraints. We provide a novel algorithm whose guarantees greatly improve those of the state-of-the-art best-of-both-worlds algorithm introduced by Stradi et al. (2025). In the stochastic regime, \emph{i.e.}, when the constraints are sampled from fixed but unknown distributions, our method achieves $\widetilde{\mathcal{O}}(\sqrt{T})$ regret and constraint violation without relying on Slater's condition, thereby handling settings where no strictly feasible solution exists. Moreover, we provide guarantees on the stronger notion of \emph{positive} constraint violation, which does not allow to recover from large violation in the early episodes by playing strictly safe policies. In the adversarial regime, \emph{i.e.}, when the constraints may change arbitrarily between episodes, our algorithm ensures sublinear constraint violation without Slater's condition, and achieves sublinear $\alpha$-regret with respect to the \emph{unconstrained} optimum, where $\alpha$ is a suitably defined multiplicative approximation factor. We further validate our results through synthetic experiments, showing the practical effectiveness of our algorithm.
♻ ☆ Reason to Rote: Rethinking Memorization in Reasoning EMNLP 2025
Large language models readily memorize arbitrary training instances, such as label noise, yet they perform strikingly well on reasoning tasks. In this work, we investigate how language models memorize label noise, and why such memorization in many cases does not heavily affect generalizable reasoning capabilities. Using two controllable synthetic reasoning datasets with noisy labels, four-digit addition (FDA) and two-hop relational reasoning (THR), we discover a reliance of memorization on generalizable reasoning mechanisms: models continue to compute intermediate reasoning outputs even when retrieving memorized noisy labels, and intervening reasoning adversely affects memorization. We further show that memorization operates through distributed encoding, i.e., aggregating various inputs and intermediate results, rather than building a look-up mechanism from inputs to noisy labels. Moreover, our FDA case study reveals memorization occurs via outlier heuristics, where existing neuron activation patterns are slightly shifted to fit noisy labels. Together, our findings suggest that memorization of label noise in language models builds on, rather than overrides, the underlying reasoning mechanisms, shedding lights on the intriguing phenomenon of benign memorization.
comment: EMNLP 2025 Main. 21 pages, 14 figures
♻ ☆ Multi-Domain Brain Vessel Segmentation Through Feature Disentanglement
The intricate morphology of brain vessels poses significant challenges for automatic segmentation models, which usually focus on a single imaging modality. However, accurately treating brain-related conditions requires a comprehensive understanding of the cerebrovascular tree, regardless of the specific acquisition procedure. Our framework effectively segments brain arteries and veins in various datasets through image-to-image translation while avoiding domain-specific model design and data harmonization between the source and the target domain. This is accomplished by employing disentanglement techniques to independently manipulate different image properties, allowing them to move from one domain to another in a label-preserving manner. Specifically, we focus on manipulating vessel appearances during adaptation while preserving spatial information, such as shapes and locations, which are crucial for correct segmentation. Our evaluation effectively bridges large and varied domain gaps across medical centers, image modalities, and vessel types. Additionally, we conduct ablation studies on the optimal number of required annotations and other architectural choices. The results highlight our framework's robustness and versatility, demonstrating the potential of domain adaptation methodologies to perform cerebrovascular image segmentation in multiple scenarios accurately. Our code is available at https://github.com/i-vesseg/MultiVesSeg.
comment: 19 pages, 7 figures, 3 tables. Joint first authors: Francesco Galati and Daniele Falcetta. Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:021. Code available at https://github.com/i-vesseg/MultiVesSeg
♻ ☆ GSM-Agent: Understanding Agentic Reasoning Using Controllable Environments
As LLMs are increasingly deployed as agents, agentic reasoning - the ability to combine tool use, especially search, and reasoning - becomes a critical skill. However, it is hard to disentangle agentic reasoning when evaluated in complex environments and tasks. Current agent benchmarks often mix agentic reasoning with challenging math reasoning, expert-level knowledge, and other advanced capabilities. To fill this gap, we build a novel benchmark, GSM-Agent, where an LLM agent is required to solve grade-school-level reasoning problems, but is only presented with the question in the prompt without the premises that contain the necessary information to solve the task, and needs to proactively collect that information using tools. Although the original tasks are grade-school math problems, we observe that even frontier models like GPT-5 only achieve 67% accuracy. To understand and analyze the agentic reasoning patterns, we propose the concept of agentic reasoning graph: cluster the environment's document embeddings into nodes, and map each tool call to its nearest node to build a reasoning path. Surprisingly, we identify that the ability to revisit a previously visited node, widely taken as a crucial pattern in static reasoning, is often missing for agentic reasoning for many models. Based on the insight, we propose a tool-augmented test-time scaling method to improve LLM's agentic reasoning performance by adding tools to encourage models to revisit. We expect our benchmark and the agentic reasoning framework to aid future studies of understanding and pushing the boundaries of agentic reasoning.
comment: 39 pages, 8 figures
♻ ☆ IndexNet: Timestamp and Variable-Aware Modeling for Time Series Forecasting
Multivariate time series forecasting (MTSF) plays a vital role in a wide range of real-world applications, such as weather prediction and traffic flow forecasting. Although recent advances have significantly improved the modeling of temporal dynamics and inter-variable dependencies, most existing methods overlook index-related descriptive information, such as timestamps and variable indices, which carry rich contextual semantics. To unlock the potential of such information and take advantage of the lightweight and powerful periodic capture ability of MLP-based architectures, we propose IndexNet, an MLP-based framework augmented with an Index Embedding (IE) module. The IE module consists of two key components: Timestamp Embedding (TE) and Channel Embedding (CE). Specifically, TE transforms timestamps into embedding vectors and injects them into the input sequence, thereby improving the model's ability to capture long-term complex periodic patterns. In parallel, CE assigns each variable a unique and trainable identity embedding based on its index, allowing the model to explicitly distinguish between heterogeneous variables and avoid homogenized predictions when input sequences seem close. Extensive experiments on 12 diverse real-world datasets demonstrate that IndexNet achieves comparable performance across mainstream baselines, validating the effectiveness of our temporally and variably aware design. Moreover, plug-and-play experiments and visualization analyses further reveal that IndexNet exhibits strong generality and interpretability, two aspects that remain underexplored in current MTSF research.
♻ ☆ The Future of Artificial Intelligence and the Mathematical and Physical Sciences (AI+MPS)
This community paper developed out of the NSF Workshop on the Future of Artificial Intelligence (AI) and the Mathematical and Physics Sciences (MPS), which was held in March 2025 with the goal of understanding how the MPS domains (Astronomy, Chemistry, Materials Research, Mathematical Sciences, and Physics) can best capitalize on, and contribute to, the future of AI. We present here a summary and snapshot of the MPS community's perspective, as of Spring/Summer 2025, in a rapidly developing field. The link between AI and MPS is becoming increasingly inextricable; now is a crucial moment to strengthen the link between AI and Science by pursuing a strategy that proactively and thoughtfully leverages the potential of AI for scientific discovery and optimizes opportunities to impact the development of AI by applying concepts from fundamental science. To achieve this, we propose activities and strategic priorities that: (1) enable AI+MPS research in both directions; (2) build up an interdisciplinary community of AI+MPS researchers; and (3) foster education and workforce development in AI for MPS researchers and students. We conclude with a summary of suggested priorities for funding agencies, educational institutions, and individual researchers to help position the MPS community to be a leader in, and take full advantage of, the transformative potential of AI+MPS.
comment: Community Paper from the NSF Future of AI+MPS Workshop, Cambridge, Massachusetts, March 24-26, 2025, supported by NSF Award Number 2512945; v2: minor clarifications
♻ ☆ Learning Low-Dimensional Embeddings for Black-Box Optimization
When gradient-based methods are impractical, black-box optimization (BBO) provides a valuable alternative. However, BBO often struggles with high-dimensional problems and limited trial budgets. In this work, we propose a novel approach based on meta-learning to pre-compute a reduced-dimensional manifold where optimal points lie for a specific class of optimization problems. When optimizing a new problem instance sampled from the class, black-box optimization is carried out in the reduced-dimensional space, effectively reducing the effort required for finding near-optimal solutions.
♻ ☆ Golden Ratio Weighting Prevents Model Collapse
Recent studies identified an intriguing phenomenon in recursive generative model training known as model collapse, where models trained on data generated by previous models exhibit severe performance degradation. Addressing this issue and developing more effective training strategies have become central challenges in generative model research. In this paper, we investigate this phenomenon within a novel framework, where generative models are iteratively trained on a combination of newly collected real data and synthetic data from the previous training step. To develop an optimal training strategy for integrating real and synthetic data, we evaluate the performance of a weighted training scheme in various scenarios, including Gaussian distribution estimation, generalized linear models, and nonparametric estimation. We theoretically characterize the impact of the mixing proportion and weighting scheme of synthetic data on the final model's performance. Our key finding is that, across different settings, the optimal weighting scheme under different proportions of synthetic data asymptotically follows a unified expression, revealing a fundamental trade-off between leveraging synthetic data and model performance. In some cases, the optimal weight assigned to real data corresponds to the reciprocal of the golden ratio. Finally, we validate our theoretical results on extensive simulated datasets and a real tabular dataset.
♻ ☆ Uncertainty-Aware Generative Oversampling Using an Entropy-Guided Conditional Variational Autoencoder
Class imbalance remains a major challenge in machine learning, especially for high-dimensional biomedical data where nonlinear manifold structures dominate. Traditional oversampling methods such as SMOTE rely on local linear interpolation, often producing implausible synthetic samples. Deep generative models like Conditional Variational Autoencoders (CVAEs) better capture nonlinear distributions, but standard variants treat all minority samples equally, neglecting the importance of uncertain, boundary-region examples emphasized by heuristic methods like Borderline-SMOTE and ADASYN. We propose Local Entropy-Guided Oversampling with a CVAE (LEO-CVAE), a generative oversampling framework that explicitly incorporates local uncertainty into both representation learning and data generation. To quantify uncertainty, we compute Shannon entropy over the class distribution in a sample's neighborhood: high entropy indicates greater class overlap, serving as a proxy for uncertainty. LEO-CVAE leverages this signal through two mechanisms: (i) a Local Entropy-Weighted Loss (LEWL) that emphasizes robust learning in uncertain regions, and (ii) an entropy-guided sampling strategy that concentrates generation in these informative, class-overlapping areas. Applied to clinical genomics datasets (ADNI and TCGA lung cancer), LEO-CVAE consistently improves classifier performance, outperforming both traditional oversampling and generative baselines. These results highlight the value of uncertainty-aware generative oversampling for imbalanced learning in domains governed by complex nonlinear structures, such as omics data.
comment: 16 pages, 2 figures
♻ ☆ Downgrade to Upgrade: Optimizer Simplification Enhances Robustness in LLM Unlearning
Large language model (LLM) unlearning aims to surgically remove the influence of undesired data or knowledge from an existing model while preserving its utility on unrelated tasks. This paradigm has shown promise in addressing privacy and safety concerns. However, recent findings reveal that unlearning effects are often fragile: post-unlearning manipulations such as weight quantization or fine-tuning can quickly neutralize the intended forgetting. Prior efforts to improve robustness primarily reformulate unlearning objectives by explicitly assuming the role of vulnerability sources. In this work, we take a different perspective by investigating the role of the optimizer, independent of unlearning objectives and formulations, in shaping unlearning robustness. We show that the 'grade' of the optimizer, defined by the level of information it exploits, ranging from zeroth-order (gradient-free) to first-order (gradient-based) to second-order (Hessian-based), is tightly linked to the resilience of unlearning. Surprisingly, we find that downgrading the optimizer, such as using zeroth-order methods or compressed-gradient variants (e.g., gradient sign-based optimizers), often leads to stronger robustness. While these optimizers produce noisier and less precise updates, they encourage convergence to harder-to-disturb basins in the loss landscape, thereby resisting post-training perturbations. By connecting zeroth-order methods with randomized smoothing, we further highlight their natural advantage for robust unlearning. Motivated by these insights, we propose a hybrid optimizer that combines first-order and zeroth-order updates, preserving unlearning efficacy while enhancing robustness. Extensive experiments on the MUSE and WMDP benchmarks, across multiple LLM unlearning algorithms, validate that our approach achieves more resilient forgetting without sacrificing unlearning quality.
♻ ☆ Near-Optimal Sample Complexities of Divergence-based S-rectangular Distributionally Robust Reinforcement Learning
Distributionally robust reinforcement learning (DR-RL) has recently gained significant attention as a principled approach that addresses discrepancies between training and testing environments. To balance robustness, conservatism, and computational traceability, the literature has introduced DR-RL models with SA-rectangular and S-rectangular adversaries. While most existing statistical analyses focus on SA-rectangular models, owing to their algorithmic simplicity and the optimality of deterministic policies, S-rectangular models more accurately capture distributional discrepancies in many real-world applications and often yield more effective robust randomized policies. In this paper, we study the empirical value iteration algorithm for divergence-based S-rectangular DR-RL and establish near-optimal sample complexity bounds of $\widetilde{O}(|\mathcal{S}||\mathcal{A}|(1-\gamma)^{-4}\varepsilon^{-2})$, where $\varepsilon$ is the target accuracy, $|\mathcal{S}|$ and $|\mathcal{A}|$ denote the cardinalities of the state and action spaces, and $\gamma$ is the discount factor. To the best of our knowledge, these are the first sample complexity results for divergence-based S-rectangular models that achieve optimal dependence on $|\mathcal{S}|$, $|\mathcal{A}|$, and $\varepsilon$ simultaneously. We further validate this theoretical dependence through numerical experiments on a robust inventory control problem and a theoretical worst-case example, demonstrating the fast learning performance of our proposed algorithm.
♻ ☆ Forecasting the Ionosphere from Sparse GNSS Data with Temporal-Fusion Transformers
The ionosphere critically influences Global Navigation Satellite Systems (GNSS), satellite communications, and Low Earth Orbit (LEO) operations, yet accurate prediction of its variability remains challenging due to nonlinear couplings between solar, geomagnetic, and thermospheric drivers. Total Electron Content (TEC), a key ionospheric parameter, is derived from GNSS observations, but its reliable forecasting is limited by the sparse nature of global measurements and the limited accuracy of empirical models, especially during strong space weather conditions. In this work, we present a machine learning framework for ionospheric TEC forecasting that leverages Temporal Fusion Transformers (TFT) to predict sparse ionosphere data. Our approach accommodates heterogeneous input sources, including solar irradiance, geomagnetic indices, and GNSS-derived vertical TEC, and applies preprocessing and temporal alignment strategies. Experiments spanning 2010-2025 demonstrate that the model achieves robust predictions up to 24 hours ahead, with root mean square errors as low as 3.33 TECU. Results highlight that solar EUV irradiance provides the strongest predictive signals. Beyond forecasting accuracy, the framework offers interpretability through attention-based analysis, supporting both operational applications and scientific discovery. To encourage reproducibility and community-driven development, we release the full implementation as the open-source toolkit \texttt{ionopy}.
♻ ☆ Euclid's Gift: Enhancing Spatial Perception and Reasoning in Vision-Language Models via Geometric Surrogate Tasks
Spatial intelligence spans a rich suite of abilities, including visualising and transforming shapes, mentally rotating objects, judging relational positions and containment, and estimating numerosity. However, it still remains a critical unresolved challenge for Multimodal Large Language Models (MLLMs).To fill this gap, we propose to treat Euclidean geometry problem-solving as a surrogate task. Specifically, we meticulously constructed a curated multimodal dataset, called Euclid30K, comprising approximately 30K plane and solid geometry problems. To enable the model to acquire and apply Euclidean principles from these geometry problems, we employed Group Relative Policy Optimization (GRPO) to finetune the Qwen2.5VL family and RoboBrain2.0 family, inspiring the models to identify shapes, count, and relate entities, and perform multi-step deductive reasoning using Euclidean principles. Our experiments demonstrate that the resulting models achieve substantial zero-shot gains across four spatial reasoning benchmarks (Super-CLEVR, Omni3DBench, VSI-Bench, and MindCube) without any task-specific adaptations. Notably, after training on the Euclid30K, the mean VSI-Bench accuracy of all evaluated models rose from 34.5% to 40.5%, improving by 5.5 percentage points. Among them, RoboBrain2.0-Euclid-7B achieves 49.6\% accuracy, surpassing the previous state-of-the-art model, Spatial-MLLM.To our knowledge, this is the first systematic study showing that geometry-centric fine-tuning can confer vision-language models with broadly transferable spatial skills. Code and Euclid30K dataset can be found in https://zgca-ai4edu.github.io/Euclids_Gift.
♻ ☆ Dynamic Bundling with Large Language Models for Zero-Shot Inference on Text-Attributed Graphs NeurIPS 2025
Large language models (LLMs) have been used in many zero-shot learning problems, with their strong generalization ability. Recently, adopting LLMs in text-attributed graphs (TAGs) has drawn increasing attention. However, the adoption of LLMs faces two major challenges: limited information on graph structure and unreliable responses. LLMs struggle with text attributes isolated from the graph topology. Worse still, they yield unreliable predictions due to both information insufficiency and the inherent weakness of LLMs (e.g., hallucination). Towards this end, this paper proposes a novel method named Dynamic Text Bundling Supervision (DENSE) that queries LLMs with bundles of texts to obtain bundle-level labels and uses these labels to supervise graph neural networks. Specifically, we sample a set of bundles, each containing a set of nodes with corresponding texts of close proximity. We then query LLMs with the bundled texts to obtain the label of each bundle. Subsequently, the bundle labels are used to supervise the optimization of graph neural networks, and the bundles are further refined to exclude noisy items. To justify our design, we also provide theoretical analysis of the proposed method. Extensive experiments across ten datasets validate the effectiveness of the proposed method.
comment: Accepted by NeurIPS 2025
♻ ☆ Adaptive Batch-Wise Sample Scheduling for Direct Preference Optimization
Direct Preference Optimization (DPO) has emerged as an effective approach for aligning large language models (LLMs) with human preferences. However, its performance is highly dependent on the quality of the underlying human preference data. To address this bottleneck, prior work has explored various data selection strategies, but these methods often overlook the impact of the evolving states of the language model during the optimization process. In this paper, we introduce a novel problem: Sample Scheduling for DPO, which aims to dynamically and adaptively schedule training samples based on the model's evolving batch-wise states throughout preference optimization. To solve this problem, we propose SamS, an efficient and effective algorithm that adaptively selects samples in each training batch based on the LLM's learning feedback to maximize the potential generalization performance. Notably, without modifying the core DPO algorithm, simply integrating SamS significantly improves performance across tasks, with minimal additional computational overhead. This work points to a promising new direction for improving LLM alignment through batch-wise sample selection, with potential generalization to RLHF and broader supervised learning paradigms.
♻ ☆ Learning Beyond Experience: Generalizing to Unseen State Space with Reservoir Computing
Machine learning techniques offer an effective approach to modeling dynamical systems solely from observed data. However, without explicit structural priors -- built-in assumptions about the underlying dynamics -- these techniques typically struggle to generalize to aspects of the dynamics that are poorly represented in the training data. Here, we demonstrate that reservoir computing -- a simple, efficient, and versatile machine learning framework often used for data-driven modeling of dynamical systems -- can generalize to unexplored regions of state space without explicit structural priors. First, we describe a multiple-trajectory training scheme for reservoir computers that supports training across a collection of disjoint time series, enabling effective use of available training data. Then, applying this training scheme to multistable dynamical systems, we show that RCs trained on trajectories from a single basin of attraction can achieve out-of-domain generalization by capturing system behavior in entirely unobserved basins.
comment: 18 pages, 12 figures. Updated to include results with RC generalization to unseen segregated and asymmetric basins of attraction and unseen chaotic attractors
♻ ☆ MetaFaith: Faithful Natural Language Uncertainty Expression in LLMs EMNLP 2025
A critical component in the trustworthiness of LLMs is reliable uncertainty communication, yet LLMs often use assertive language when conveying false claims, leading to over-reliance and eroded trust. We present the first systematic study of $\textit{faithful confidence calibration}$ of LLMs, benchmarking models' ability to use linguistic expressions of uncertainty that $\textit{faithfully reflect}$ their intrinsic uncertainty, across a comprehensive array of models, datasets, and prompting strategies. Our results demonstrate that LLMs largely fail at this task, and that existing interventions are insufficient: standard prompt approaches provide only marginal gains, and existing, factuality-based calibration techniques can even harm faithful calibration. To address this critical gap, we introduce MetaFaith, a novel prompt-based calibration approach inspired by human metacognition. We show that MetaFaith robustly improves faithful calibration across diverse models and task domains, enabling up to 61% improvement in faithfulness and achieving an 83% win rate over original generations as judged by humans.
comment: EMNLP 2025
♻ ☆ VAR-MATH: Probing True Mathematical Reasoning in LLMS via Symbolic Multi-Instance Benchmarks
Recent advances in reinforcement learning (RL) have led to substantial improvements in the mathematical reasoning abilities of LLMs, as measured by standard benchmarks. Yet these gains often persist even when models are trained with flawed signals, such as random or inverted rewards. This raises a fundamental question: do such improvements reflect genuine reasoning, or are they merely artifacts of overfitting to benchmark-specific patterns? To answer this question, we adopt an evaluation-centric perspective and highlight two critical shortcomings in existing protocols. First, benchmark contamination arises because test problems are publicly available, thereby increasing the risk of data leakage. Second, evaluation fragility results from reliance on single-instance assessments, which are sensitive to stochastic outputs and fail to capture reasoning consistency. These limitations suggest the need for a new evaluation paradigm that can probe reasoning ability beyond memorization and one-off success. As response, we propose VAR-MATH, a symbolic evaluation framework that converts fixed numerical problems into parameterized templates and requires models to solve multiple instantiations of each. This design enforces consistency across structurally equivalent variants, mitigates contamination, and enhances robustness through bootstrapped metrics. We apply VAR-MATH to transform three popular benchmarks, AMC23, AIME24, and AIME25, into their symbolic counterparts, VAR-AMC23, VAR-AIME24, and VAR-AIME25. Experimental results show substantial performance drops for RL-trained models on these variabilized benchmarks, especially for smaller models, with average declines of 47.9\% on AMC23, 58.8\% on AIME24, and 72.9\% on AIME25. These findings indicate that some existing RL methods rely on superficial heuristics and fail to generalize beyond specific numerical forms.
♻ ☆ World Model for AI Autonomous Navigation in Mechanical Thrombectomy MICCAI 2025
Autonomous navigation for mechanical thrombectomy (MT) remains a critical challenge due to the complexity of vascular anatomy and the need for precise, real-time decision-making. Reinforcement learning (RL)-based approaches have demonstrated potential in automating endovascular navigation, but current methods often struggle with generalization across multiple patient vasculatures and long-horizon tasks. We propose a world model for autonomous endovascular navigation using TD-MPC2, a model-based RL algorithm. We trained a single RL agent across multiple endovascular navigation tasks in ten real patient vasculatures, comparing performance against the state-of-the-art Soft Actor-Critic (SAC) method. Results indicate that TD-MPC2 significantly outperforms SAC in multi-task learning, achieving a 65% mean success rate compared to SAC's 37%, with notable improvements in path ratio. TD-MPC2 exhibited increased procedure times, suggesting a trade-off between success rate and execution speed. These findings highlight the potential of world models for improving autonomous endovascular navigation and lay the foundation for future research in generalizable AI-driven robotic interventions.
comment: Published in Medical Image Computing and Computer Assisted Intervention - MICCAI 2025, Lecture Notes in Computer Science, vol 15968
♻ ☆ Comparison of Machine Learning Models to Classify Documents on Digital Development
Automated document classification is a trending topic in Natural Language Processing (NLP) due to the extensive growth in digital databases. However, a model that fits well for a specific classification task might perform weakly for another dataset due to differences in the context. Thus, training and evaluating several models is necessary to optimise the results. This study employs a publicly available document database on worldwide digital development interventions categorised under twelve areas. Since digital interventions are still emerging, utilising NLP in the field is relatively new. Given the exponential growth of digital interventions, this research has a vast scope for improving how digital-development-oriented organisations report their work. The paper examines the classification performance of Machine Learning (ML) algorithms, including Decision Trees, k-Nearest Neighbors, Support Vector Machine, AdaBoost, Stochastic Gradient Descent, Naive Bayes, and Logistic Regression. Accuracy, precision, recall and F1-score are utilised to evaluate the performance of these models, while oversampling is used to address the class-imbalanced nature of the dataset. Deviating from the traditional approach of fitting a single model for multiclass classification, this paper investigates the One vs Rest approach to build a combined model that optimises the performance. The study concludes that the amount of data is not the sole factor affecting the performance; features like similarity within classes and dissimilarity among classes are also crucial.
comment: 16 pages, 4 figures, 4 tables, presented at First International Conference, DSAI 2023, Bangkok
♻ ☆ SIM-Shapley: A Stable and Computationally Efficient Approach to Shapley Value Approximation
Explainable artificial intelligence (XAI) is essential for trustworthy machine learning (ML), particularly in high-stakes domains such as healthcare and finance. Shapley value (SV) methods provide a principled framework for feature attribution in complex models but incur high computational costs, limiting their scalability in high-dimensional settings. We propose Stochastic Iterative Momentum for Shapley Value Approximation (SIM-Shapley), a stable and efficient SV approximation method inspired by stochastic optimization. We analyze variance theoretically, prove linear $Q$-convergence, and demonstrate improved empirical stability and low bias in practice on real-world datasets. In our numerical experiments, SIM-Shapley reduces computation time by up to 85% relative to state-of-the-art baselines while maintaining comparable feature attribution quality. Beyond feature attribution, our stochastic mini-batch iterative framework extends naturally to a broader class of sample average approximation problems, offering a new avenue for improving computational efficiency with stability guarantees. Code is publicly available at https://github.com/nliulab/SIM-Shapley.
comment: 21 pages, 6 figures, 5 tables
♻ ☆ FTSCommDetector: Discovering Behavioral Communities through Temporal Synchronization
Why do trillion-dollar tech giants AAPL and MSFT diverge into different response patterns during market disruptions despite identical sector classifications? This paradox reveals a fundamental limitation: traditional community detection methods fail to capture synchronization-desynchronization patterns where entities move independently yet align during critical moments. To this end, we introduce FTSCommDetector, implementing our Temporal Coherence Architecture (TCA) to discover similar and dissimilar communities in continuous multivariate time series. Unlike existing methods that process each timestamp independently, causing unstable community assignments and missing evolving relationships, our approach maintains coherence through dual-scale encoding and static topology with dynamic attention. Furthermore, we establish information-theoretic foundations demonstrating how scale separation maximizes complementary information and introduce Normalized Temporal Profiles (NTP) for scale-invariant evaluation. As a result, FTSCommDetector achieves consistent improvements across four diverse financial markets (SP100, SP500, SP1000, Nikkei 225), with gains ranging from 3.5% to 11.1% over the strongest baselines. The method demonstrates remarkable robustness with only 2% performance variation across window sizes from 60 to 120 days, making dataset-specific tuning unnecessary, providing practical insights for portfolio construction and risk management.
♻ ☆ PiCa: Parameter-Efficient Fine-Tuning with Column Space Projection
Fine-tuning large foundation models is essential for building expert models tailored to specialized tasks and domains, but fully updating billions of parameters is computationally prohibitive. Reducing the number of trainable parameters using parameter-efficient fine-tuning is therefore crucial not only to reduce training costs but also to mitigate storage, caching, and serving overheads during deployment. Prior works, such as Singular Vectors-guided Fine-Tuning, have shown that exploiting the geometry of pre-trained weights can significantly improve parameter-efficiency, but they lack a solid theoretical foundation. In this paper, we introduce Parameter-efficient Fine-tuning with Column Space Projection (PiCa), a novel theoretically grounded PEFT method. We prove that projecting gradients onto the principal column space of pre-trained weights provides an effective inductive bias for adaptation and further enhance parameter efficiency through a novel weight-sharing strategy. Across diverse NLP and vision tasks, PiCa consistently outperforms state-of-the-art baselines under comparable or smaller parameter budgets, demonstrating both theoretical rigor and practical effectiveness.
♻ ☆ nDNA -- the Semantic Helix of Artificial Cognition
As AI foundation models grow in capability, a deeper question emerges: What shapes their internal cognitive identity -- beyond fluency and output? Benchmarks measure behavior, but the soul of a model resides in its latent geometry. In this work, we propose Neural DNA (nDNA) as a semantic-genotypic representation that captures this latent identity through the intrinsic geometry of belief. At its core, nDNA is synthesized from three principled and indispensable dimensions of latent geometry: spectral curvature, which reveals the curvature of conceptual flow across layers; thermodynamic length, which quantifies the semantic effort required to traverse representational transitions through layers; and belief vector field, which delineates the semantic torsion fields that guide a model's belief directional orientations. Like biological DNA, it encodes ancestry, mutation, and semantic inheritance, found in finetuning and alignment scars, cultural imprints, and architectural drift. In naming it, we open a new field: Neural Genomics, where models are not just tools, but digital semantic organisms with traceable inner cognition. Modeling statement. We read AI foundation models as semantic fluid dynamics: meaning is transported through layers like fluid in a shaped conduit; nDNA is the physics-grade readout of that flow -- a geometry-first measure of how meaning is bent, paid for, and pushed -- yielding a stable, coordinate-free neural DNA fingerprint tied to on-input behavior; with this fingerprint we cross into biology: tracing lineages across pretraining, fine-tuning, alignment, pruning, distillation, and merges; measuring inheritance between checkpoints; detecting drift as traits shift under new data or objectives; and, ultimately, studying the evolution of artificial cognition to compare models, diagnose risks, and govern change over time.
♻ ☆ Handling Heterophily in Recommender Systems with Wavelet Hypergraph Diffusion
Recommender systems are pivotal in delivering personalised user experiences across various domains. However, capturing the heterophily patterns and the multi-dimensional nature of user-item interactions poses significant challenges. To address this, we introduce FWHDNN (Fusion-based Wavelet Hypergraph Diffusion Neural Networks), an innovative framework aimed at advancing representation learning in hypergraph-based recommendation tasks. The model incorporates three key components: (1) a cross-difference relation encoder leveraging heterophily-aware hypergraph diffusion to adapt message-passing for diverse class labels, (2) a multi-level cluster-wise encoder employing wavelet transform-based hypergraph neural network layers to capture multi-scale topological relationships, and (3) an integrated multi-modal fusion mechanism that combines structural and textual information through intermediate and late-fusion strategies. Extensive experiments on real-world datasets demonstrate that FWHDNN surpasses state-of-the-art methods in accuracy, robustness, and scalability in capturing high-order interconnections between users and items.
comment: Fixed and extended results
♻ ☆ Optimal and Provable Calibration in High-Dimensional Binary Classification: Angular Calibration and Platt Scaling
We study the fundamental problem of calibrating a linear binary classifier of the form $\sigma(\hat{w}^\top x)$, where the feature vector $x$ is Gaussian, $\sigma$ is a link function, and $\hat{w}$ is an estimator of the true linear weight $w^\star$. By interpolating with a noninformative $\textit{chance classifier}$, we construct a well-calibrated predictor whose interpolation weight depends on the angle $\angle(\hat{w}, w_\star)$ between the estimator $\hat{w}$ and the true linear weight $w_\star$. We establish that this angular calibration approach is provably well-calibrated in a high-dimensional regime where the number of samples and features both diverge, at a comparable rate. The angle $\angle(\hat{w}, w_\star)$ can be consistently estimated. Furthermore, the resulting predictor is uniquely $\textit{Bregman-optimal}$, minimizing the Bregman divergence to the true label distribution within a suitable class of calibrated predictors. Our work is the first to provide a calibration strategy that satisfies both calibration and optimality properties provably in high dimensions. Additionally, we identify conditions under which a classical Platt-scaling predictor converges to our Bregman-optimal calibrated solution. Thus, Platt-scaling also inherits these desirable properties provably in high dimensions.
♻ ☆ scSiameseClu: A Siamese Clustering Framework for Interpreting single-cell RNA Sequencing Data
Single-cell RNA sequencing (scRNA-seq) reveals cell heterogeneity, with cell clustering playing a key role in identifying cell types and marker genes. Recent advances, especially graph neural networks (GNNs)-based methods, have significantly improved clustering performance. However, the analysis of scRNA-seq data remains challenging due to noise, sparsity, and high dimensionality. Compounding these challenges, GNNs often suffer from over-smoothing, limiting their ability to capture complex biological information. In response, we propose scSiameseClu, a novel Siamese Clustering framework for interpreting single-cell RNA-seq data, comprising of 3 key steps: (1) Dual Augmentation Module, which applies biologically informed perturbations to the gene expression matrix and cell graph relationships to enhance representation robustness; (2) Siamese Fusion Module, which combines cross-correlation refinement and adaptive information fusion to capture complex cellular relationships while mitigating over-smoothing; and (3) Optimal Transport Clustering, which utilizes Sinkhorn distance to efficiently align cluster assignments with predefined proportions while maintaining balance. Comprehensive evaluations on seven real-world datasets demonstrate that scSiameseClu outperforms state-of-the-art methods in single-cell clustering, cell type annotation, and cell type classification, providing a powerful tool for scRNA-seq data interpretation.
♻ ☆ When Reasoning Meets Compression: Understanding the Effects of LLMs Compression on Large Reasoning Models
Compression methods, including quantization, distillation, and pruning, improve the computational efficiency of large reasoning models (LRMs). However, existing studies either fail to sufficiently compare all three compression methods on LRMs or lack in-depth interpretation analysis. In this paper, we investigate how the reasoning capabilities of LRMs are compromised during compression, through performance benchmarking and mechanistic interpretation. To uncover the effects of compression on reasoning performance, we benchmark quantized, distilled, and pruned DeepSeek-R1 models on four reasoning datasets (AIME 2024, FOLIO, Temporal Sequences, and MuSiQue). To precisely locate compression effects on model weights, we adapt difference of means and attribution patching techniques, focusing on the activation of every linear component in compressed LRMs, to interpret fine-grained causal relationships between weights and various reasoning capabilities. This fine-grained interpretation addresses a fundamental question of compression: which weights are the most important for reasoning? Overall, we find dynamically quantized 2.51-bit R1 reaches close-to-R1 performance. With empirical verification, we present three main findings that generalize across both Llama and Qwen: (1) Weight count has a greater impact on LRMs' knowledge memorization than reasoning, highlighting the risks of pruning and distillation; (2) The MLP up projection in the final layer of distilled LRMs is one of the most important components, offering a new perspective on locating critical weights - a fundamental problem in model compression; and (3) Current quantization methods overly compress the final-layer modules and MLP gate projections, so protecting just 2% of all weights that are excessively compressed can raise average accuracy by 6.57%, greatly surpassing the state-of-the-art.
♻ ☆ Synergizing LLMs and Knowledge Graphs: A Novel Approach to Software Repository-Related Question Answering
Software repositories contain valuable information for understanding the development process. However, extracting insights from repository data is time-consuming and requires technical expertise. While software engineering chatbots support natural language interactions with repositories, chatbots struggle to understand questions beyond their trained intents and to accurately retrieve the relevant data. This study aims to improve the accuracy of LLM-based chatbots in answering repository-related questions by augmenting them with knowledge graphs. We use a two-step approach: constructing a knowledge graph from repository data, and synergizing the knowledge graph with an LLM to handle natural language questions and answers. We curated 150 questions of varying complexity and evaluated the approach on five popular open-source projects. Our initial results revealed the limitations of the approach, with most errors due to the reasoning ability of the LLM. We therefore applied few-shot chain-of-thought prompting, which improved accuracy to 84%. We also compared against baselines (MSRBot and GPT-4o-search-preview), and our approach performed significantly better. In a task-based user study with 20 participants, users completed more tasks correctly and in less time with our approach, and they reported that it was useful. Our findings demonstrate that LLMs and knowledge graphs are a viable solution for making repository data accessible.
comment: Submitted to ACM Transactions on Software Engineering and Methodology for review
♻ ☆ AutoScale: Scale-Aware Data Mixing for Pre-Training LLMs
Domain reweighting is an emerging research area aimed at adjusting the relative weights of different data sources to improve the effectiveness and efficiency of LLM pre-training. We show that data mixtures that perform well at smaller scales may not retain their advantage at larger scales, challenging the existing practice of determining competitive mixtures in small-scale experiments and directly applying them at much larger scales. To address this, we propose AutoScale, a two-stage, scale-aware data composition framework. First, AutoScale fits a parametric model that predicts the model's loss under different data compositions, then uses it to find an approximate best allocation at smaller, more manageable budgets. Next, leveraging a novel theoretical analysis of how optimal compositions evolve with scale, AutoScale extrapolates that composition to larger budgets without further retraining. Empirically, AutoScale accelerates convergence and improves downstream performance. For instance, when pre-training GPT-2 Large, it achieves a 28% faster perplexity reduction than baselines and up to a 38% speed-up over unweighted training, while yielding best-average results on various downstream tasks. Overall, our findings illustrate how domain importance shifts with training scale, underscoring the need for scale-dependent data curation in LLM training. Our code is open-sourced.
comment: Published as a conference paper at COLM 2025
GEPO: Group Expectation Policy Optimization for Stable Heterogeneous Reinforcement Learning
As single-center computing approaches power constraints, decentralized training becomes essential. However, traditional Reinforcement Learning (RL) methods, crucial for enhancing large model post-training, cannot adapt to decentralized distributed training due to the tight coupling between parameter learning and rollout sampling. For this, we propose HeteroRL, a heterogeneous RL architecture that decouples these processes, enabling stable training across geographically distributed nodes connected via the Internet. The core component is Group Expectation Policy Optimization (GEPO), an asynchronous RL algorithm robust to latency caused by network delays or heterogeneity in computational resources. Our study reveals that high latency significantly increases KL divergence, leading to higher variance in importance sampling weights and training instability. GEPO mitigates this issue by using group expectation weighting to exponentially reduce the variance of importance weights, with theoretical guarantees. Experiments show that GEPO achieves superior stability, with only a 3\% performance drop from online to 1800s latency, demonstrating strong potential for decentralized RL in geographically distributed, resource-heterogeneous computing environments.
♻ ☆ Finite Sample Analysis of Linear Temporal Difference Learning with Arbitrary Features
Linear TD($\lambda$) is one of the most fundamental reinforcement learning algorithms for policy evaluation. Previously, convergence rates are typically established under the assumption of linearly independent features, which does not hold in many practical scenarios. This paper instead establishes the first $L^2$ convergence rates for linear TD($\lambda$) operating under arbitrary features, without making any algorithmic modification or additional assumptions. Our results apply to both the discounted and average-reward settings. To address the potential non-uniqueness of solutions resulting from arbitrary features, we develop a novel stochastic approximation result featuring convergence rates to the solution set instead of a single point.
♻ ☆ Improving Virtual Contrast Enhancement using Longitudinal Data MICCAI 2025
Gadolinium-based contrast agents (GBCAs) are widely used in magnetic resonance imaging (MRI) to enhance lesion detection and characterisation, particularly in the field of neuro-oncology. Nevertheless, concerns regarding gadolinium retention and accumulation in brain and body tissues, most notably for diseases that require close monitoring and frequent GBCA injection, have led to the need for strategies to reduce dosage. In this study, a deep learning framework is proposed for the virtual contrast enhancement of full-dose post-contrast T1-weighted MRI images from corresponding low-dose acquisitions. The contribution of the presented model is its utilisation of longitudinal information, which is achieved by incorporating a prior full-dose MRI examination from the same patient. A comparative evaluation against a non-longitudinal single session model demonstrated that the longitudinal approach significantly improves image quality across multiple reconstruction metrics. Furthermore, experiments with varying simulated contrast doses confirmed the robustness of the proposed method. These results emphasize the potential of integrating prior imaging history into deep learning-based virtual contrast enhancement pipelines to reduce GBCA usage without compromising diagnostic utility, thus paving the way for safer, more sustainable longitudinal monitoring in clinical MRI practice.
comment: 11 pages, 4 figures, Workshop MICCAI 2025 - Learning with Longitudinal Medical Images and Data
♻ ☆ Disentangling Multiplex Spatial-Temporal Transition Graph Representation Learning for Socially Enhanced POI Recommendation
Next Point-of-Interest (POI) recommendation is a research hotspot in business intelligence, where users' spatial-temporal transitions and social relationships play key roles. However, most existing works model spatial and temporal transitions separately, leading to misaligned representations of the same spatial-temporal key nodes. This misalignment introduces redundant information during fusion, increasing model uncertainty and reducing interpretability. To address this issue, we propose DiMuST, a socially enhanced POI recommendation model based on disentangled representation learning over multiplex spatial-temporal transition graphs. The model employs a novel Disentangled variational multiplex graph Auto-Encoder (DAE), which first disentangles shared and private distributions using a multiplex spatial-temporal graph strategy. It then fuses the shared features via a Product of Experts (PoE) mechanism and denoises the private features through contrastive constraints. The model effectively captures the spatial-temporal transition representations of POIs while preserving the intrinsic correlation of their spatial-temporal relationships. Experiments on two challenging datasets demonstrate that our DiMuST significantly outperforms existing methods across multiple metrics.
comment: There are quality issues with the paper and it requires major revisions
♻ ☆ How Can Time Series Analysis Benefit From Multiple Modalities? A Survey and Outlook IJCAI25
Time series analysis (TSA) is a longstanding research topic in the data mining community and has wide real-world significance. Compared to "richer" modalities such as language and vision, which have recently experienced explosive development and are densely connected, the time-series modality remains relatively underexplored and isolated. We notice that many recent TSA works have formed a new research field, i.e., Multiple Modalities for TSA (MM4TSA). In general, these MM4TSA works follow a common motivation: how TSA can benefit from multiple modalities. This survey is the first to offer a comprehensive review and a detailed outlook for this emerging field. Specifically, we systematically discuss three benefits: (1) reusing foundation models of other modalities for efficient TSA, (2) multimodal extension for enhanced TSA, and (3) cross-modality interaction for advanced TSA. We further group the works by the introduced modality type, including text, images, audio, tables, and others, within each perspective. Finally, we identify the gaps with future opportunities, including the reused modalities selections, heterogeneous modality combinations, and unseen tasks generalizations, corresponding to the three benefits. We release an up-to-date GitHub repository that includes key papers and resources.
comment: Github Repo: https://github.com/AdityaLab/MM4TSA Updated to include papers accepted by IJCAI25, KDD25, ICML25, NeurIPS25 4 figures or tables, 19 pages, 251 references
♻ ☆ Decision by Supervised Learning with Deep Ensembles: A Practical Framework for Robust Portfolio Optimization CIKM 2025
We propose Decision by Supervised Learning (DSL), a practical framework for robust portfolio optimization. DSL reframes portfolio construction as a supervised learning problem: models are trained to predict optimal portfolio weights, using cross-entropy loss and portfolios constructed by maximizing the Sharpe or Sortino ratio. To further enhance stability and reliability, DSL employs Deep Ensemble methods, substantially reducing variance in portfolio allocations. Through comprehensive backtesting across diverse market universes and neural architectures, shows superior performance compared to both traditional strategies and leading machine learning-based methods, including Prediction-Focused Learning and End-to-End Learning. We show that increasing the ensemble size leads to higher median returns and more stable risk-adjusted performance. The code is available at https://github.com/DSLwDE/DSLwDE.
comment: 8 pages, 3 figures, Accepted at CIKM 2025 FinAI Workshop
♻ ☆ Wasserstein multivariate auto-regressive models for modeling distributional time series
This paper is focused on the statistical analysis of data consisting of a collection of multiple series of probability measures that are indexed by distinct time instants and supported over a bounded interval of the real line. By modeling these time-dependent probability measures as random objects in the Wasserstein space, we propose a new auto-regressive model for the statistical analysis of multivariate distributional time series. Using the theory of iterated random function systems, results on the second order stationarity of the solution of such a model are provided. We also propose a consistent estimator for the auto-regressive coefficients of this model. Due to the simplex constraints that we impose on the model coefficients, the proposed estimator that is learned under these constraints, naturally has a sparse structure. The sparsity allows the application of the proposed model in learning a graph of temporal dependency from multivariate distributional time series. We explore the numerical performances of our estimation procedure using simulated data. To shed some light on the benefits of our approach for real data analysis, we also apply this methodology to two data sets, respectively made of observations from age distribution in different countries and those from the bike sharing network in Paris.
Graphics 9
☆ Spec-Gloss Surfels and Normal-Diffuse Priors for Relightable Glossy Objects
Accurate reconstruction and relighting of glossy objects remain a longstanding challenge, as object shape, material properties, and illumination are inherently difficult to disentangle. Existing neural rendering approaches often rely on simplified BRDF models or parameterizations that couple diffuse and specular components, which restricts faithful material recovery and limits relighting fidelity. We propose a relightable framework that integrates a microfacet BRDF with the specular-glossiness parameterization into 2D Gaussian Splatting with deferred shading. This formulation enables more physically consistent material decomposition, while diffusion-based priors for surface normals and diffuse color guide early-stage optimization and mitigate ambiguity. A coarse-to-fine optimization of the environment map accelerates convergence and preserves high-dynamic-range specular reflections. Extensive experiments on complex, glossy scenes demonstrate that our method achieves high-quality geometry and material reconstruction, delivering substantially more realistic and consistent relighting under novel illumination compared to existing Gaussian splatting methods.
☆ ROI-GS: Interest-based Local Quality 3D Gaussian Splatting
We tackle the challenge of efficiently reconstructing 3D scenes with high detail on objects of interest. Existing 3D Gaussian Splatting (3DGS) methods allocate resources uniformly across the scene, limiting fine detail to Regions Of Interest (ROIs) and leading to inflated model size. We propose ROI-GS, an object-aware framework that enhances local details through object-guided camera selection, targeted Object training, and seamless integration of high-fidelity object of interest reconstructions into the global scene. Our method prioritizes higher resolution details on chosen objects while maintaining real-time performance. Experiments show that ROI-GS significantly improves local quality (up to 2.96 dB PSNR), while reducing overall model size by $\approx 17\%$ of baseline and achieving faster training for a scene with a single object of interest, outperforming existing methods.
comment: 4 pages, 3 figures, 2 tables
☆ MIRAGE: Patient-Specific Mixed Reality Coaching for MRI via Depth-Only Markerless Registration and Immersive VR
Magnetic resonance imaging (MRI) is an indispensable diagnostic tool, yet the confined bore and acoustic noise can evoke considerable anxiety and claustrophobic reactions. High anxiety leads to motion artifacts, incomplete scans and reliance on pharmacological sedation. MIRAGE (Mixed Reality Anxiety Guidance Environment) harnesses the latest mixed reality (MR) hardware to prepare patients for MRI through immersive virtual reality (VR) and markerless augmented reality (AR) registration. In this paper, we extend our previous work by providing a comprehensive review of related research, detailing the system architecture, and exploring metrics for patient and clinician experience. We also present considerations for clinical deployment of MR systems within hospital workflows. Our results indicate that depth-based registration achieves sub-centimeter accuracy with minimal setup, while the immersive coaching environment reduces patient anxiety and yields favourable usability scores.
☆ Multimodal Feedback for Task Guidance in Augmented Reality
Optical see-through augmented reality (OST-AR) overlays digital targets and annotations on the physical world, offering promising guidance for hands-on tasks such as medical needle insertion or assembly. Recent work on OST-AR depth perception shows that target opacity and tool visualization significantly affect accuracy and usability; opaque targets and rendering the real instrument reduce depth errors, whereas transparent targets and absent tools impair performance. However, reliance on visual overlays may overload attention and leaves little room for depth cues when occlusion or lighting hampers perception. To address these limitations, we explore multimodal feedback that combines OST-AR with wrist-based vibrotactile haptics. The past two years have seen rapid advances in haptic technology. Researchers have investigated skin-stretch and vibrotactile cues for conveying spatial information to blind users, wearable ring actuators that support precise pinching in AR, cross-modal audio-haptic cursors that enable eyes-free object selection, and wrist-worn feedback for teleoperated surgery that improves force awareness at the cost of longer task times. Studies comparing pull versus push vibrotactile metaphors found that pull cues yield faster gesture completion and lower cognitive load. These findings motivate revisiting OST-AR guidance with a fresh perspective on wrist-based haptics. We design a custom wristband with six vibromotors delivering directional and state cues, integrate it with a handheld tool and OST-AR, and assess its impact on cue recognition and depth guidance. Through a formative study and two experiments (N=21 and N=27), we show that participants accurately identify haptic patterns under cognitive load and that multimodal feedback improves spatial precision and usability compared with visual-only or haptic-only conditions.
☆ MPMAvatar: Learning 3D Gaussian Avatars with Accurate and Robust Physics-Based Dynamics NeurIPS 2025
While there has been significant progress in the field of 3D avatar creation from visual observations, modeling physically plausible dynamics of humans with loose garments remains a challenging problem. Although a few existing works address this problem by leveraging physical simulation, they suffer from limited accuracy or robustness to novel animation inputs. In this work, we present MPMAvatar, a framework for creating 3D human avatars from multi-view videos that supports highly realistic, robust animation, as well as photorealistic rendering from free viewpoints. For accurate and robust dynamics modeling, our key idea is to use a Material Point Method-based simulator, which we carefully tailor to model garments with complex deformations and contact with the underlying body by incorporating an anisotropic constitutive model and a novel collision handling algorithm. We combine this dynamics modeling scheme with our canonical avatar that can be rendered using 3D Gaussian Splatting with quasi-shadowing, enabling high-fidelity rendering for physically realistic animations. In our experiments, we demonstrate that MPMAvatar significantly outperforms the existing state-of-the-art physics-based avatar in terms of (1) dynamics modeling accuracy, (2) rendering accuracy, and (3) robustness and efficiency. Additionally, we present a novel application in which our avatar generalizes to unseen interactions in a zero-shot manner-which was not achievable with previous learning-based methods due to their limited simulation generalizability. Our project page is at: https://KAISTChangmin.github.io/MPMAvatar/
comment: Accepted to NeurIPS 2025
♻ ☆ ViscoReg: Neural Signed Distance Functions via Viscosity Solutions
Implicit Neural Representations (INRs) that learn Signed Distance Functions (SDFs) from point cloud data represent the state-of-the-art for geometrically accurate 3D scene reconstruction. However, training these Neural SDFs often requires enforcing the Eikonal equation, an ill-posed equation that also leads to unstable gradient flows. Numerical Eikonal solvers have relied on viscosity approaches for regularization and stability. Motivated by this well-established theory, we introduce ViscoReg, a novel regularizer that provably stabilizes Neural SDF training. Empirically, ViscoReg outperforms state-of-the-art approaches such as SIREN, DiGS, and StEik on ShapeNet, the Surface Reconstruction Benchmark, and 3D scene reconstruction datasets. Additionally, we establish novel generalization error estimates for Neural SDFs in terms of the training error, using the theory of viscosity solutions.
comment: 21 pages, 7 figures
♻ ☆ Interactive Expressive Motion Generation Using Dynamic Movement Primitives IROS
Our goal is to enable social robots to interact autonomously with humans in a realistic, engaging, and expressive manner. The 12 Principles of Animation are a well-established framework animators use to create movements that make characters appear convincing, dynamic, and emotionally expressive. This paper proposes a novel approach that leverages Dynamic Movement Primitives (DMPs) to implement key animation principles, providing a learnable, explainable, modulable, online adaptable and composable model for automatic expressive motion generation. DMPs, originally developed for general imitation learning in robotics and grounded in a spring-damper system design, offer mathematical properties that make them particularly suitable for this task. Specifically, they enable modulation of the intensities of individual principles and facilitate the decomposition of complex, expressive motion sequences into learnable and parametrizable primitives. We present the mathematical formulation of the parameterized animation principles and demonstrate the effectiveness of our framework through experiments and application on three robotic platforms with different kinematic configurations, in simulation, on actual robots and in a user study. Our results show that the approach allows for creating diverse and nuanced expressions using a single base model.
comment: This paper has been accepted for publication at the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
♻ ☆ Automatic inference of a anatomically meaningful solid wood texture from a single photograph
Wood is a volumetric material with a very large appearance gamut that is further enlarged by numerous finishing techniques. Computer graphics has made considerable progress in creating sophisticated and flexible appearance models that allow convincing renderings of wooden materials. However, these do not yet allow fully automatic appearance matching to a concrete exemplar piece of wood, and have to be fine-tuned by hand. More general appearance matching strategies are incapable of reconstructing anatomically meaningful volumetric information. This is essential for applications where the internal structure of wood is significant, such as non-planar furniture parts machined from a solid block of wood, translucent appearance of thin wooden layers, or in the field of dendrochronology. In this paper, we provide the two key ingredients for automatic matching of a procedural wood appearance model to exemplar photographs: a good initialization, built on detecting and modelling the ring structure, and a phase-based loss function that allows to accurately recover growth ring deformations and gives anatomically meaningful results. Our ring-detection technique is based on curved Gabor filters, and robustly works for a considerable range of wood types.
♻ ☆ PCG-Informed Neural Solvers for High-Resolution Homogenization of Periodic Microstructures
The mechanical properties of periodic microstructures are pivotal in various engineering applications. Homogenization theory is a powerful tool for predicting these properties by averaging the behavior of complex microstructures over a representative volume element. However, traditional numerical solvers for homogenization problems can be computationally expensive, especially for high-resolution and complicated topology and geometry. Existing learning-based methods, while promising, often struggle with accuracy and generalization in such scenarios. To address these challenges, we present CGINS, a preconditioned-conjugate-gradient-solver-informed neural network for solving homogenization problems. CGINS leverages sparse and periodic 3D convolution to enable high-resolution learning while ensuring structural periodicity. It features a multi-level network architecture that facilitates effective learning across different scales and employs minimum potential energy as label-free loss functions for self-supervised learning. The integrated preconditioned conjugate gradient iterations ensure that the network provides PCG-friendly initial solutions for fast convergence and high accuracy. Additionally, CGINS imposes a global displacement constraint to ensure physical consistency, addressing a key limitation in prior methods that rely on Dirichlet anchors. Evaluated on large-scale datasets with diverse topologies and material configurations, CGINS achieves state-of-the-art accuracy (relative error below 1%) and outperforms both learning-based baselines and GPU-accelerated numerical solvers. Notably, it delivers 2 times to 10 times speedups over traditional methods while maintaining physically reliable predictions at resolutions up to $512^3$.
Robotics 70
☆ Online Hierarchical Policy Learning using Physics Priors for Robot Navigation in Unknown Environments
Robot navigation in large, complex, and unknown indoor environments is a challenging problem. The existing approaches, such as traditional sampling-based methods, struggle with resolution control and scalability, while imitation learning-based methods require a large amount of demonstration data. Active Neural Time Fields (ANTFields) have recently emerged as a promising solution by using local observations to learn cost-to-go functions without relying on demonstrations. Despite their potential, these methods are hampered by challenges such as spectral bias and catastrophic forgetting, which diminish their effectiveness in complex scenarios. To address these issues, our approach decomposes the planning problem into a hierarchical structure. At the high level, a sparse graph captures the environment's global connectivity, while at the low level, a planner based on neural fields navigates local obstacles by solving the Eikonal PDE. This physics-informed strategy overcomes common pitfalls like spectral bias and neural field fitting difficulties, resulting in a smooth and precise representation of the cost landscape. We validate our framework in large-scale environments, demonstrating its enhanced adaptability and precision compared to previous methods, and highlighting its potential for online exploration, mapping, and real-world navigation.
☆ A Robust Neural Control Design for Multi-drone Slung Payload Manipulation with Control Contraction Metrics
This paper presents a robust neural control design for a three-drone slung payload transportation system to track a reference path under external disturbances. The control contraction metric (CCM) is used to generate a neural exponentially converging baseline controller while complying with control input saturation constraints. We also incorporate the uncertainty and disturbance estimator (UDE) technique to dynamically compensate for persistent disturbances. The proposed framework yields a modularized design, allowing the controller and estimator to perform their individual tasks and achieve a zero trajectory tracking error if the disturbances meet certain assumptions. The stability and robustness of the complete system, incorporating both the CCM controller and the UDE compensator, are presented. Simulations are conducted to demonstrate the capability of the proposed control design to follow complicated trajectories under external disturbances.
comment: Submit to the 2026 American Control Conference (ACC)
☆ Pose Estimation of a Thruster-Driven Bioinspired Multi-Link Robot
This work demonstrates pose (position and shape) estimation for a free-floating, bioinspired multi-link robot with unactuated joints, link-mounted thrusters for control, and a single gyroscope per link, resulting in an underactuated, minimally sensed platform. Through a proof-of-concept hardware experiment and offline Kalman filter analysis, we show that the robot's pose can be reliably estimated. State estimation is performed using an unscented Kalman filter augmented with Gaussian process residual learning to compensate for non-zero-mean, non-Gaussian noise. We further show that a filter trained on a multi-gait dataset (forward, backward, left, right, and turning) performs comparably to one trained on a larger forward-gait-only dataset when both are evaluated on the same forward-gait test trajectory. These results reveal overlap in the gait input space, which can be exploited to reduce training data requirements while enhancing the filter's generalizability across multiple gaits.
comment: 8 pages, 8 figures, 3 tables
☆ VL-KnG: Visual Scene Understanding for Navigation Goal Identification using Spatiotemporal Knowledge Graphs
Vision-language models (VLMs) have shown potential for robot navigation but encounter fundamental limitations: they lack persistent scene memory, offer limited spatial reasoning, and do not scale effectively with video duration for real-time application. We present VL-KnG, a Visual Scene Understanding system that tackles these challenges using spatiotemporal knowledge graph construction and computationally efficient query processing for navigation goal identification. Our approach processes video sequences in chunks utilizing modern VLMs, creates persistent knowledge graphs that maintain object identity over time, and enables explainable spatial reasoning through queryable graph structures. We also introduce WalkieKnowledge, a new benchmark with about 200 manually annotated questions across 8 diverse trajectories spanning approximately 100 minutes of video data, enabling fair comparison between structured approaches and general-purpose VLMs. Real-world deployment on a differential drive robot demonstrates practical applicability, with our method achieving 77.27% success rate and 76.92% answer accuracy, matching Gemini 2.5 Pro performance while providing explainable reasoning supported by the knowledge graph, computational efficiency for real-time deployment across different tasks, such as localization, navigation and planning. Code and dataset will be released after acceptance.
comment: This work has been submitted to the IEEE for possible publication
☆ Touching the tumor boundary: A pilot study on ultrasound based virtual fixtures for breast-conserving surgery
Purpose: Delineating tumor boundaries during breast-conserving surgery is challenging as tumors are often highly mobile, non-palpable, and have irregularly shaped borders. To address these challenges, we introduce a cooperative robotic guidance system that applies haptic feedback for tumor localization. In this pilot study, we aim to assess if and how this system can be successfully integrated into breast cancer care. Methods: A small haptic robot is retrofitted with an electrocautery blade to operate as a cooperatively controlled surgical tool. Ultrasound and electromagnetic navigation are used to identify the tumor boundaries and position. A forbidden region virtual fixture is imposed when the surgical tool collides with the tumor boundary. We conducted a study where users were asked to resect tumors from breast simulants both with and without the haptic guidance. We then assess the results of these simulated resections both qualitatively and quantitatively. Results: Virtual fixture guidance is shown to improve resection margins. On average, users find the task to be less mentally demanding, frustrating, and effort intensive when haptic feedback is available. We also discovered some unanticipated impacts on surgical workflow that will guide design adjustments and training protocol moving forward. Conclusion: Our results suggest that virtual fixtures can help localize tumor boundaries in simulated breast-conserving surgery. Future work will include an extensive user study to further validate these results and fine-tune our guidance system.
☆ Differentiable Skill Optimisation for Powder Manipulation in Laboratory Automation
Robotic automation is accelerating scientific discovery by reducing manual effort in laboratory workflows. However, precise manipulation of powders remains challenging, particularly in tasks such as transport that demand accuracy and stability. We propose a trajectory optimisation framework for powder transport in laboratory settings, which integrates differentiable physics simulation for accurate modelling of granular dynamics, low-dimensional skill-space parameterisation to reduce optimisation complexity, and a curriculum-based strategy that progressively refines task competence over long horizons. This formulation enables end-to-end optimisation of contact-rich robot trajectories while maintaining stability and convergence efficiency. Experimental results demonstrate that the proposed method achieves superior task success rates and stability compared to the reinforcement learning baseline.
comment: 4 pages
☆ AFFORD2ACT: Affordance-Guided Automatic Keypoint Selection for Generalizable and Lightweight Robotic Manipulation
Vision-based robot learning often relies on dense image or point-cloud inputs, which are computationally heavy and entangle irrelevant background features. Existing keypoint-based approaches can focus on manipulation-centric features and be lightweight, but either depend on manual heuristics or task-coupled selection, limiting scalability and semantic understanding. To address this, we propose AFFORD2ACT, an affordance-guided framework that distills a minimal set of semantic 2D keypoints from a text prompt and a single image. AFFORD2ACT follows a three-stage pipeline: affordance filtering, category-level keypoint construction, and transformer-based policy learning with embedded gating to reason about the most relevant keypoints, yielding a compact 38-dimensional state policy that can be trained in 15 minutes, which performs well in real-time without proprioception or dense representations. Across diverse real-world manipulation tasks, AFFORD2ACT consistently improves data efficiency, achieving an 82% success rate on unseen objects, novel categories, backgrounds, and distractors.
☆ How Well do Diffusion Policies Learn Kinematic Constraint Manifolds?
Diffusion policies have shown impressive results in robot imitation learning, even for tasks that require satisfaction of kinematic equality constraints. However, task performance alone is not a reliable indicator of the policy's ability to precisely learn constraints in the training data. To investigate, we analyze how well diffusion policies discover these manifolds with a case study on a bimanual pick-and-place task that encourages fulfillment of a kinematic constraint for success. We study how three factors affect trained policies: dataset size, dataset quality, and manifold curvature. Our experiments show diffusion policies learn a coarse approximation of the constraint manifold with learning affected negatively by decreases in both dataset size and quality. On the other hand, the curvature of the constraint manifold showed inconclusive correlations with both constraint satisfaction and task success. A hardware evaluation verifies the applicability of our results in the real world. Project website with additional results and visuals: https://diffusion-learns-kinematic.github.io
comment: Under review. 8 pages, 3 figures, 3 tables. Additional results available at https://diffusion-learns-kinematic.github.io
☆ Beyond Collision Cones: Dynamic Obstacle Avoidance for Nonholonomic Robots via Dynamic Parabolic Control Barrier Functions
Control Barrier Functions (CBFs) are a powerful tool for ensuring the safety of autonomous systems, yet applying them to nonholonomic robots in cluttered, dynamic environments remains an open challenge. State-of-the-art methods often rely on collision-cone or velocity-obstacle constraints which, by only considering the angle of the relative velocity, are inherently conservative and can render the CBF-based quadratic program infeasible, particularly in dense scenarios. To address this issue, we propose a Dynamic Parabolic Control Barrier Function (DPCBF) that defines the safe set using a parabolic boundary. The parabola's vertex and curvature dynamically adapt based on both the distance to an obstacle and the magnitude of the relative velocity, creating a less restrictive safety constraint. We prove that the proposed DPCBF is valid for a kinematic bicycle model subject to input constraints. Extensive comparative simulations demonstrate that our DPCBF-based controller significantly enhances navigation success rates and QP feasibility compared to baseline methods. Our approach successfully navigates through dense environments with up to 100 dynamic obstacles, scenarios where collision cone-based methods fail due to infeasibility.
comment: The first two authors contributed equally to this work. Project page: https://www.taekyung.me/dpcbf
☆ INSIGHT: INference-time Sequence Introspection for Generating Help Triggers in Vision-Language-Action Models
Recent Vision-Language-Action (VLA) models show strong generalization capabilities, yet they lack introspective mechanisms for anticipating failures and requesting help from a human supervisor. We present \textbf{INSIGHT}, a learning framework for leveraging token-level uncertainty signals to predict when a VLA should request help. Using $\pi_0$-FAST as the underlying model, we extract per-token \emph{entropy}, \emph{log-probability}, and Dirichlet-based estimates of \emph{aleatoric and epistemic uncertainty}, and train compact transformer classifiers to map these sequences to help triggers. We explore supervision regimes for strong or weak supervision, and extensively compare them across in-distribution and out-of-distribution tasks. Our results show a trade-off: strong labels enable models to capture fine-grained uncertainty dynamics for reliable help detection, while weak labels, though noisier, still support competitive introspection when training and evaluation are aligned, offering a scalable path when dense annotation is impractical. Crucially, we find that modeling the temporal evolution of token-level uncertainty signals with transformers provides far greater predictive power than static sequence-level scores. This study provides the first systematic evaluation of uncertainty-based introspection in VLAs, opening future avenues for active learning and for real-time error mitigation through selective human intervention.
☆ VENTURA: Adapting Image Diffusion Models for Unified Task Conditioned Navigation
Robots must adapt to diverse human instructions and operate safely in unstructured, open-world environments. Recent Vision-Language models (VLMs) offer strong priors for grounding language and perception, but remain difficult to steer for navigation due to differences in action spaces and pretraining objectives that hamper transferability to robotics tasks. Towards addressing this, we introduce VENTURA, a vision-language navigation system that finetunes internet-pretrained image diffusion models for path planning. Instead of directly predicting low-level actions, VENTURA generates a path mask (i.e. a visual plan) in image space that captures fine-grained, context-aware navigation behaviors. A lightweight behavior-cloning policy grounds these visual plans into executable trajectories, yielding an interface that follows natural language instructions to generate diverse robot behaviors. To scale training, we supervise on path masks derived from self-supervised tracking models paired with VLM-augmented captions, avoiding manual pixel-level annotation or highly engineered data collection setups. In extensive real-world evaluations, VENTURA outperforms state-of-the-art foundation model baselines on object reaching, obstacle avoidance, and terrain preference tasks, improving success rates by 33% and reducing collisions by 54% across both seen and unseen scenarios. Notably, we find that VENTURA generalizes to unseen combinations of distinct tasks, revealing emergent compositional capabilities. Videos, code, and additional materials: https://venturapath.github.io
comment: 9 pages, 6 figures, 3 tables
A Stochastic Framework for Continuous-Time State Estimation of Continuum Robots
State estimation techniques for continuum robots (CRs) typically involve using computationally complex dynamic models, simplistic shape approximations, or are limited to quasi-static methods. These limitations can be sensitive to unmodelled disturbances acting on the robot. Inspired by a factor-graph optimization paradigm, this work introduces a continuous-time stochastic state estimation framework for continuum robots. We introduce factors based on continuous-time kinematics that are corrupted by a white noise Gaussian process (GP). By using a simple robot model paired with high-rate sensing, we show adaptability to unmodelled external forces and data dropout. The result contains an estimate of the mean and covariance for the robot's pose, velocity, and strain, each of which can be interpolated continuously in time or space. This same interpolation scheme can be used during estimation, allowing for inclusion of measurements on states that are not explicitly estimated. Our method's inherent sparsity leads to a linear solve complexity with respect to time and interpolation queries in constant time. We demonstrate our method on a CR with gyroscope and pose sensors, highlighting its versatility in real-world systems.
comment: 17 pages, 11 figures. Submitted to IEEE Transactions on Robotics
☆ Safe Motion Planning and Control Using Predictive and Adaptive Barrier Methods for Autonomous Surface Vessels IROS 2025
Safe motion planning is essential for autonomous vessel operations, especially in challenging spaces such as narrow inland waterways. However, conventional motion planning approaches are often computationally intensive or overly conservative. This paper proposes a safe motion planning strategy combining Model Predictive Control (MPC) and Control Barrier Functions (CBFs). We introduce a time-varying inflated ellipse obstacle representation, where the inflation radius is adjusted depending on the relative position and attitude between the vessel and the obstacle. The proposed adaptive inflation reduces the conservativeness of the controller compared to traditional fixed-ellipsoid obstacle formulations. The MPC solution provides an approximate motion plan, and high-order CBFs ensure the vessel's safety using the varying inflation radius. Simulation and real-world experiments demonstrate that the proposed strategy enables the fully-actuated autonomous robot vessel to navigate through narrow spaces in real time and resolve potential deadlocks, all while ensuring safety.
comment: IROS 2025
☆ Kilometer-Scale GNSS-Denied UAV Navigation via Heightmap Gradients: A Winning System from the SPRIN-D Challenge
Reliable long-range flight of unmanned aerial vehicles (UAVs) in GNSS-denied environments is challenging: integrating odometry leads to drift, loop closures are unavailable in previously unseen areas and embedded platforms provide limited computational power. We present a fully onboard UAV system developed for the SPRIN-D Funke Fully Autonomous Flight Challenge, which required 9 km long-range waypoint navigation below 25 m AGL (Above Ground Level) without GNSS or prior dense mapping. The system integrates perception, mapping, planning, and control with a lightweight drift-correction method that matches LiDAR-derived local heightmaps to a prior geo-data heightmap via gradient-template matching and fuses the evidence with odometry in a clustered particle filter. Deployed during the competition, the system executed kilometer-scale flights across urban, forest, and open-field terrain and reduced drift substantially relative to raw odometry, while running in real time on CPU-only hardware. We describe the system architecture, the localization pipeline, and the competition evaluation, and we report practical insights from field deployment that inform the design of GNSS-denied UAV autonomy.
comment: 8 pages
☆ Real-Time Trajectory Generation and Hybrid Lyapunov-Based Control for Hopping Robots
The advent of rotor-based hopping robots has created very capable hopping platforms with high agility and efficiency, and similar controllability, as compared to their purely flying quadrotor counterparts. Advances in robot performance have increased the hopping height to greater than 4 meters and opened up the possibility for more complex aerial trajectories (i.e., behaviors). However, currently hopping robots do not directly control their aerial trajectory or transition to flight, eliminating the efficiency benefits of a hopping system. Here we show a real-time, computationally efficiency, non-linear drag compensated, trajectory generation methodology and accompanying Lyapunov-based controller. The combined system can create and follow complex aerial trajectories from liftoff to touchdown on horizontal and vertical surfaces, while maintaining strick control over the orientation at touchdown. The computational efficiency provides broad applicability across all size scales of hopping robots while maintaining applicability to quadrotors in general.
comment: 7 pages, 4 figures, 4 tables
☆ Strategic Fusion of Vision Language Models: Shapley-Credited Context-Aware Dawid-Skene for Multi-Label Tasks in Autonomous Driving
Large vision-language models (VLMs) are increasingly used in autonomous-vehicle (AV) stacks, but hallucination limits their reliability in safety-critical pipelines. We present Shapley-credited Context-Aware Dawid-Skene with Agreement, a game-theoretic fusion method for multi-label understanding of ego-view dashcam video. It learns per-model, per-label, context-conditioned reliabilities from labelled history and, at inference, converts each model's report into an agreement-guardrailed log-likelihood ratio that is combined with a contextual prior and a public reputation state updated via Shapley-based team credit. The result is calibrated, thresholdable posteriors that (i) amplify agreement among reliable models, (ii) preserve uniquely correct single-model signals, and (iii) adapt to drift. To specialise general VLMs, we curate 1,000 real-world dashcam clips with structured annotations (scene description, manoeuvre recommendation, rationale) via an automatic pipeline that fuses HDD ground truth, vehicle kinematics, and YOLOv11 + BoT-SORT tracking, guided by a three-step chain-of-thought prompt; three heterogeneous VLMs are then fine-tuned with LoRA. We evaluate with Hamming distance, Micro-Macro-F1, and average per-video latency. Empirically, the proposed method achieves a 23% reduction in Hamming distance, 55% improvement in Macro-F1, and 47% improvement in Micro-F1 when comparing with the best single model, supporting VLM fusion as a calibrated, interpretable, and robust decision-support component for AV pipelines.
comment: 8 pages
☆ Compose Your Policies! Improving Diffusion-based or Flow-based Robot Policies via Test-time Distribution-level Composition
Diffusion-based models for robotic control, including vision-language-action (VLA) and vision-action (VA) policies, have demonstrated significant capabilities. Yet their advancement is constrained by the high cost of acquiring large-scale interaction datasets. This work introduces an alternative paradigm for enhancing policy performance without additional model training. Perhaps surprisingly, we demonstrate that the composed policies can exceed the performance of either parent policy. Our contribution is threefold. First, we establish a theoretical foundation showing that the convex composition of distributional scores from multiple diffusion models can yield a superior one-step functional objective compared to any individual score. A Gr\"onwall-type bound is then used to show that this single-step improvement propagates through entire generation trajectories, leading to systemic performance gains. Second, motivated by these results, we propose General Policy Composition (GPC), a training-free method that enhances performance by combining the distributional scores of multiple pre-trained policies via a convex combination and test-time search. GPC is versatile, allowing for the plug-and-play composition of heterogeneous policies, including VA and VLA models, as well as those based on diffusion or flow-matching, irrespective of their input visual modalities. Third, we provide extensive empirical validation. Experiments on Robomimic, PushT, and RoboTwin benchmarks, alongside real-world robotic evaluations, confirm that GPC consistently improves performance and adaptability across a diverse set of tasks. Further analysis of alternative composition operators and weighting strategies offers insights into the mechanisms underlying the success of GPC. These results establish GPC as a simple yet effective method for improving control performance by leveraging existing policies.
comment: Project Page: https://sagecao1125.github.io/GPC-Site/
☆ Predictive Control Barrier Functions for Discrete-Time Linear Systems with Unmodeled Delays
This paper introduces a predictive control barrier function (PCBF) framework for enforcing state constraints in discrete-time systems with unknown relative degree, which can be caused by input delays or unmodeled input dynamics. Existing discrete-time CBF formulations typically require the construction of auxiliary barrier functions when the relative degree is greater than one, which complicates implementation and may yield conservative safe sets. The proposed PCBF framework addresses this challenge by extending the prediction horizon to construct a CBF for an associated system with relative degree one. As a result, the superlevel set of the PCBF coincides with the safe set, simplifying constraint enforcement and eliminating the need for auxiliary functions. The effectiveness of the proposed method is demonstrated on a discrete-time double integrator with input delay and a bicopter system with position constraints.
comment: 8 pages, 7 figures, submitted to ACC 2026
☆ KeySG: Hierarchical Keyframe-Based 3D Scene Graphs
In recent years, 3D scene graphs have emerged as a powerful world representation, offering both geometric accuracy and semantic richness. Combining 3D scene graphs with large language models enables robots to reason, plan, and navigate in complex human-centered environments. However, current approaches for constructing 3D scene graphs are semantically limited to a predefined set of relationships, and their serialization in large environments can easily exceed an LLM's context window. We introduce KeySG, a framework that represents 3D scenes as a hierarchical graph consisting of floors, rooms, objects, and functional elements, where nodes are augmented with multi-modal information extracted from keyframes selected to optimize geometric and visual coverage. The keyframes allow us to efficiently leverage VLM to extract scene information, alleviating the need to explicitly model relationship edges between objects, enabling more general, task-agnostic reasoning and planning. Our approach can process complex and ambiguous queries while mitigating the scalability issues associated with large scene graphs by utilizing a hierarchical retrieval-augmented generation (RAG) pipeline to extract relevant context from the graph. Evaluated across four distinct benchmarks -- including 3D object segmentation and complex query retrieval -- KeySG outperforms prior approaches on most metrics, demonstrating its superior semantic richness and efficiency.
☆ ROSplane 2.0: A Fixed-Wing Autopilot for Research
Unmanned aerial vehicle (UAV) research requires the integration of cutting-edge technology into existing autopilot frameworks. This process can be arduous, requiring extensive resources, time, and detailed knowledge of the existing system. ROSplane is a lean, open-source fixed-wing autonomy stack built by researchers for researchers. It is designed to accelerate research by providing clearly defined interfaces with an easily modifiable framework. Powered by ROS 2, ROSplane allows for rapid integration of low or high-level control, path planning, or estimation algorithms. A focus on lean, easily understood code and extensive documentation lowers the barrier to entry for researchers. Recent developments to ROSplane improve its capacity to accelerate UAV research, including the transition from ROS 1 to ROS 2, enhanced estimation and control algorithms, increased modularity, and an improved aerodynamic modeling pipeline. This aerodynamic modeling pipeline significantly reduces the effort of transitioning from simulation to real-world testing without requiring expensive system identification or computational fluid dynamics tools. ROSplane's architecture reduces the effort required to integrate new research tools and methods, expediting hardware experimentation.
☆ Prometheus: Universal, Open-Source Mocap-Based Teleoperation System with Force Feedback for Dataset Collection in Robot Learning
This paper presents a novel teleoperation system with force feedback, utilizing consumer-grade HTC Vive Trackers 2.0. The system integrates a custom-built controller, a UR3 robotic arm, and a Robotiq gripper equipped with custom-designed fingers to ensure uniform pressure distribution on an embedded force sensor. Real-time compression force data is transmitted to the controller, enabling operators to perceive the gripping force applied to objects. Experimental results demonstrate that the system enhances task success rates and provides a low-cost solution for large-scale imitation learning data collection without compromising affordability.
☆ ROSflight 2.0: Lean ROS 2-Based Autopilot for Unmanned Aerial Vehicles
ROSflight is a lean, open-source autopilot ecosystem for unmanned aerial vehicles (UAVs). Designed by researchers for researchers, it is built to lower the barrier to entry to UAV research and accelerate the transition from simulation to hardware experiments by maintaining a lean (not full-featured), well-documented, and modular codebase. This publication builds on previous treatments and describes significant additions to the architecture that improve the modularity and usability of ROSflight, including the transition from ROS 1 to ROS 2, supported hardware, low-level actuator mixing, and the simulation environment. We believe that these changes improve the usability of ROSflight and enable ROSflight to accelerate research in areas like advanced-air mobility. Hardware results are provided, showing that ROSflight is able to control a multirotor over a serial connection at 400 Hz while closing all control loops on the companion computer.
comment: To be submitted to the 2026 IEEE International Conference on Robotics and Automation in Vienna, Austria
Non-submodular Visual Attention for Robot Navigation
This paper presents a task-oriented computational framework to enhance Visual-Inertial Navigation (VIN) in robots, addressing challenges such as limited time and energy resources. The framework strategically selects visual features using a Mean Squared Error (MSE)-based, non-submodular objective function and a simplified dynamic anticipation model. To address the NP-hardness of this problem, we introduce four polynomial-time approximation algorithms: a classic greedy method with constant-factor guarantees; a low-rank greedy variant that significantly reduces computational complexity; a randomized greedy sampler that balances efficiency and solution quality; and a linearization-based selector based on a first-order Taylor expansion for near-constant-time execution. We establish rigorous performance bounds by leveraging submodularity ratios, curvature, and element-wise curvature analyses. Extensive experiments on both standardized benchmarks and a custom control-aware platform validate our theoretical results, demonstrating that these methods achieve strong approximation guarantees while enabling real-time deployment.
comment: 22 pages; Accepted to appear in IEEE Transactions on Robotics (T-RO)
☆ Product-oriented Product-Process-Resource Asset Network and its Representation in AutomationML for Asset Administration Shell
Current products, especially in the automotive sector, pose complex technical systems having a multi-disciplinary mechatronic nature. Industrial standards supporting system engineering and production typically (i) address the production phase only, but do not cover the complete product life cycle, and (ii) focus on production processes and resources rather than the products themselves. The presented approach is motivated by incorporating impacts of end-of-life phase of the product life cycle into the engineering phase. This paper proposes a modelling approach coming up from the Product-Process-Resource (PPR) modeling paradigm. It combines requirements on (i) respecting the product structure as a basis for the model, and (ii) it incorporates repairing, remanufacturing, or upcycling within cyber-physical production systems. The proposed model called PoPAN should accompany the product during the entire life cycle as a digital shadow encapsulated within the Asset Administration Shell of a product. To facilitate the adoption of the proposed paradigm, the paper also proposes serialization of the model in the AutomationML data format. The model is demonstrated on a use-case for disassembling electric vehicle batteries to support their remanufacturing for stationary battery applications.
comment: This work has been submitted to the IEEE for possible publication. 8 pages, 6 figures
☆ RTFF: Random-to-Target Fabric Flattening Policy using Dual-Arm Manipulator
Robotic fabric manipulation in garment production for sewing, cutting, and ironing requires reliable flattening and alignment, yet remains challenging due to fabric deformability, effectively infinite degrees of freedom, and frequent occlusions from wrinkles, folds, and the manipulator's End-Effector (EE) and arm. To address these issues, this paper proposes the first Random-to-Target Fabric Flattening (RTFF) policy, which aligns a random wrinkled fabric state to an arbitrary wrinkle-free target state. The proposed policy adopts a hybrid Imitation Learning-Visual Servoing (IL-VS) framework, where IL learns with explicit fabric models for coarse alignment of the wrinkled fabric toward a wrinkle-free state near the target, and VS ensures fine alignment to the target. Central to this framework is a template-based mesh that offers precise target state representation, wrinkle-aware geometry prediction, and consistent vertex correspondence across RTFF manipulation steps, enabling robust manipulation and seamless IL-VS switching. Leveraging the power of mesh, a novel IL solution for RTFF-Mesh Action Chunking Transformer (MACT)-is then proposed by conditioning the mesh information into a Transformer-based policy. The RTFF policy is validated on a real dual-arm tele-operation system, showing zero-shot alignment to different targets, high accuracy, and strong generalization across fabrics and scales. Project website: https://kaitang98.github.io/RTFF_Policy/
comment: 9 pages, 6 figures, conference
☆ Semantic Visual Simultaneous Localization and Mapping: A Survey on State of the Art, Challenges, and Future Directions
Semantic Simultaneous Localization and Mapping (SLAM) is a critical area of research within robotics and computer vision, focusing on the simultaneous localization of robotic systems and associating semantic information to construct the most accurate and complete comprehensive model of the surrounding environment. Since the first foundational work in Semantic SLAM appeared more than two decades ago, this field has received increasing attention across various scientific communities. Despite its significance, the field lacks comprehensive surveys encompassing recent advances and persistent challenges. In response, this study provides a thorough examination of the state-of-the-art of Semantic SLAM techniques, with the aim of illuminating current trends and key obstacles. Beginning with an in-depth exploration of the evolution of visual SLAM, this study outlines its strengths and unique characteristics, while also critically assessing previous survey literature. Subsequently, a unified problem formulation and evaluation of the modular solution framework is proposed, which divides the problem into discrete stages, including visual localization, semantic feature extraction, mapping, data association, and loop closure optimization. Moreover, this study investigates alternative methodologies such as deep learning and the utilization of large language models, alongside a review of relevant research about contemporary SLAM datasets. Concluding with a discussion on potential future research directions, this study serves as a comprehensive resource for researchers seeking to navigate the complex landscape of Semantic SLAM.
☆ Tele-rehabilitation with online skill transfer and adaptation in $\mathbb{R}^3 \times \mathit{S}^3$
This paper proposes a tele-teaching framework for the domain of robot-assisted tele-rehabilitation. The system connects two robotic manipulators on therapist and patient side via bilateral teleoperation, enabling a therapist to remotely demonstrate rehabilitation exercises that are executed by the patient-side robot. A 6-DoF Dynamical Movement Primitives formulation is employed to jointly encode translational and rotational motions in $\mathbb{R}^3 \times \mathit{S}^3$ space, ensuring accurate trajectory reproduction. The framework supports smooth transitions between therapist-led guidance and patient passive training, while allowing adaptive adjustment of motion. Experiments with 7-DoF manipulators demonstrate the feasibility of the approach, highlighting its potential for personalized and remotely supervised rehabilitation.
☆ CroSTAta: Cross-State Transition Attention Transformer for Robotic Manipulation
Learning robotic manipulation policies through supervised learning from demonstrations remains challenging when policies encounter execution variations not explicitly covered during training. While incorporating historical context through attention mechanisms can improve robustness, standard approaches process all past states in a sequence without explicitly modeling the temporal structure that demonstrations may include, such as failure and recovery patterns. We propose a Cross-State Transition Attention Transformer that employs a novel State Transition Attention (STA) mechanism to modulate standard attention weights based on learned state evolution patterns, enabling policies to better adapt their behavior based on execution history. Our approach combines this structured attention with temporal masking during training, where visual information is randomly removed from recent timesteps to encourage temporal reasoning from historical context. Evaluation in simulation shows that STA consistently outperforms standard cross-attention and temporal modeling approaches like TCN and LSTM networks across all tasks, achieving more than 2x improvement over cross-attention on precision-critical tasks.
comment: Code and data available at https://github.com/iit-DLSLab/croSTAta
☆ MultiPhysio-HRC: Multimodal Physiological Signals Dataset for industrial Human-Robot Collaboration
Human-robot collaboration (HRC) is a key focus of Industry 5.0, aiming to enhance worker productivity while ensuring well-being. The ability to perceive human psycho-physical states, such as stress and cognitive load, is crucial for adaptive and human-aware robotics. This paper introduces MultiPhysio-HRC, a multimodal dataset containing physiological, audio, and facial data collected during real-world HRC scenarios. The dataset includes electroencephalography (EEG), electrocardiography (ECG), electrodermal activity (EDA), respiration (RESP), electromyography (EMG), voice recordings, and facial action units. The dataset integrates controlled cognitive tasks, immersive virtual reality experiences, and industrial disassembly activities performed manually and with robotic assistance, to capture a holistic view of the participants' mental states. Rich ground truth annotations were obtained using validated psychological self-assessment questionnaires. Baseline models were evaluated for stress and cognitive load classification, demonstrating the dataset's potential for affective computing and human-aware robotics research. MultiPhysio-HRC is publicly available to support research in human-centered automation, workplace well-being, and intelligent robotic systems.
☆ Shared Object Manipulation with a Team of Collaborative Quadrupeds
Utilizing teams of multiple robots is advantageous for handling bulky objects. Many related works focus on multi-manipulator systems, which are limited by workspace constraints. In this paper, we extend a classical hybrid motion-force controller to a team of legged manipulator systems, enabling collaborative loco-manipulation of rigid objects with a force-closed grasp. Our novel approach allows the robots to flexibly coordinate their movements, achieving efficient and stable object co-manipulation and transport, validated through extensive simulations and real-world experiments.
comment: 8 pages, 9 figures, submitted to The 2026 American Control Conference
☆ Enabling High-Frequency Cross-Modality Visual Positioning Service for Accurate Drone Landing
After years of growth, drone-based delivery is transforming logistics. At its core, real-time 6-DoF drone pose tracking enables precise flight control and accurate drone landing. With the widespread availability of urban 3D maps, the Visual Positioning Service (VPS), a mobile pose estimation system, has been adapted to enhance drone pose tracking during the landing phase, as conventional systems like GPS are unreliable in urban environments due to signal attenuation and multi-path propagation. However, deploying the current VPS on drones faces limitations in both estimation accuracy and efficiency. In this work, we redesign drone-oriented VPS with the event camera and introduce EV-Pose to enable accurate, high-frequency 6-DoF pose tracking for accurate drone landing. EV-Pose introduces a spatio-temporal feature-instructed pose estimation module that extracts a temporal distance field to enable 3D point map matching for pose estimation; and a motion-aware hierarchical fusion and optimization scheme to enhance the above estimation in accuracy and efficiency, by utilizing drone motion in the \textit{early stage} of event filtering and the \textit{later stage} of pose optimization. Evaluation shows that EV-Pose achieves a rotation accuracy of 1.34$\degree$ and a translation accuracy of 6.9$mm$ with a tracking latency of 10.08$ms$, outperforming baselines by $>$50\%, \tmcrevise{thus enabling accurate drone landings.} Demo: https://ev-pose.github.io/
comment: 15 pages, 23 figures
☆ Trajectory Based Observer Design: A Framework for Lightweight Sensor Fusion
Efficient observer design and accurate sensor fusion are key in state estimation. This work proposes an optimization-based methodology, termed Trajectory Based Optimization Design (TBOD), allowing the user to easily design observers for general nonlinear systems and multi-sensor setups. Starting from parametrized observer dynamics, the proposed method considers a finite set of pre-recorded measurement trajectories from the nominal plant and exploits them to tune the observer parameters through numerical optimization. This research hinges on the classic observer's theory and Moving Horizon Estimators methodology. Optimization is exploited to ease the observer's design, providing the user with a lightweight, general-purpose sensor fusion methodology. TBOD's main characteristics are the capability to handle general sensors efficiently and in a modular way and, most importantly, its straightforward tuning procedure. The TBOD's performance is tested on a terrestrial rover localization problem, combining IMU and ranging sensors provided by Ultra Wide Band antennas, and validated through a motion-capture system. Comparison with an Extended Kalman Filter is also provided, matching its position estimation accuracy and significantly improving in the orientation.
☆ What Did I Learn? Operational Competence Assessment for AI-Based Trajectory Planners
Automated driving functions increasingly rely on machine learning for tasks like perception and trajectory planning, requiring large, relevant datasets. The performance of these algorithms depends on how closely the training data matches the task. To ensure reliable functioning, it is crucial to know what is included in the dataset to assess the trained model's operational risk. We aim to enhance the safe use of machine learning in automated driving by developing a method to recognize situations that an automated vehicle has not been sufficiently trained on. This method also improves explainability by describing the dataset at a human-understandable level. We propose modeling driving data as knowledge graphs, representing driving scenes with entities and their relationships. These graphs are queried for specific sub-scene configurations to check their occurrence in the dataset. We estimate a vehicle's competence in a driving scene by considering the coverage and complexity of sub-scene configurations in the training set. Higher complexity scenes require greater coverage for high competence. We apply this method to the NuPlan dataset, modeling it with knowledge graphs and analyzing the coverage of specific driving scenes. This approach helps monitor the competence of machine learning models trained on the dataset, which is essential for trustworthy AI to be deployed in automated driving.
comment: Accepted for publication in proceedings of the 2025 IEEE International Automated Vehicle Validation Conference
☆ Hybrid Training for Vision-Language-Action Models
Using Large Language Models to produce intermediate thoughts, a.k.a. Chain-of-thought (CoT), before providing an answer has been a successful recipe for solving complex language tasks. In robotics, similar embodied CoT strategies, generating thoughts before actions, have also been shown to lead to improved performance when using Vision-Language-Action models (VLAs). As these techniques increase the length of the model's generated outputs to include the thoughts, the inference time is negatively affected. Delaying an agent's actions in real-world executions, as in robotic manipulation settings, strongly affects the usability of a method, as tasks require long sequences of actions. However, is the generation of long chains-of-thought a strong prerequisite for achieving performance improvements? In this work, we explore the idea of Hybrid Training (HyT), a framework that enables VLAs to learn from thoughts and benefit from the associated performance gains, while enabling the possibility to leave out CoT generation during inference. Furthermore, by learning to conditionally predict a diverse set of outputs, HyT supports flexibility at inference time, enabling the model to either predict actions directly, generate thoughts or follow instructions. We evaluate the proposed method in a series of simulated benchmarks and real-world experiments.
☆ GRITS: A Spillage-Aware Guided Diffusion Policy for Robot Food Scooping Tasks
Robotic food scooping is a critical manipulation skill for food preparation and service robots. However, existing robot learning algorithms, especially learn-from-demonstration methods, still struggle to handle diverse and dynamic food states, which often results in spillage and reduced reliability. In this work, we introduce GRITS: A Spillage-Aware Guided Diffusion Policy for Robot Food Scooping Tasks. This framework leverages guided diffusion policy to minimize food spillage during scooping and to ensure reliable transfer of food items from the initial to the target location. Specifically, we design a spillage predictor that estimates the probability of spillage given current observation and action rollout. The predictor is trained on a simulated dataset with food spillage scenarios, constructed from four primitive shapes (spheres, cubes, cones, and cylinders) with varied physical properties such as mass, friction, and particle size. At inference time, the predictor serves as a differentiable guidance signal, steering the diffusion sampling process toward safer trajectories while preserving task success. We validate GRITS on a real-world robotic food scooping platform. GRITS is trained on six food categories and evaluated on ten unseen categories with different shapes and quantities. GRITS achieves an 82% task success rate and a 4% spillage rate, reducing spillage by over 40% compared to baselines without guidance, thereby demonstrating its effectiveness.
☆ Two stage GNSS outlier detection for factor graph optimization based GNSS-RTK/INS/odometer fusion
Reliable GNSS positioning in complex environments remains a critical challenge due to non-line-of-sight (NLOS) propagation, multipath effects, and frequent signal blockages. These effects can easily introduce large outliers into the raw pseudo-range measurements, which significantly degrade the performance of global navigation satellite system (GNSS) real-time kinematic (RTK) positioning and limit the effectiveness of tightly coupled GNSS-based integrated navigation system. To address this issue, we propose a two-stage outlier detection method and apply the method in a tightly coupled GNSS-RTK, inertial navigation system (INS), and odometer integration based on factor graph optimization (FGO). In the first stage, Doppler measurements are employed to detect pseudo-range outliers in a GNSS-only manner, since Doppler is less sensitive to multipath and NLOS effects compared with pseudo-range, making it a more stable reference for detecting sudden inconsistencies. In the second stage, pre-integrated inertial measurement units (IMU) and odometer constraints are used to generate predicted double-difference pseudo-range measurements, which enable a more refined identification and rejection of remaining outliers. By combining these two complementary stages, the system achieves improved robustness against both gross pseudo-range errors and degraded satellite measuring quality. The experimental results demonstrate that the two-stage detection framework significantly reduces the impact of pseudo-range outliers, and leads to improved positioning accuracy and consistency compared with representative baseline approaches. In the deep urban canyon test, the outlier mitigation method has limits the RMSE of GNSS-RTK/INS/odometer fusion from 0.52 m to 0.30 m, with 42.3% improvement.
☆ From Human Hands to Robot Arms: Manipulation Skills Transfer via Trajectory Alignment
Learning diverse manipulation skills for real-world robots is severely bottlenecked by the reliance on costly and hard-to-scale teleoperated demonstrations. While human videos offer a scalable alternative, effectively transferring manipulation knowledge is fundamentally hindered by the significant morphological gap between human and robotic embodiments. To address this challenge and facilitate skill transfer from human to robot, we introduce Traj2Action,a novel framework that bridges this embodiment gap by using the 3D trajectory of the operational endpoint as a unified intermediate representation, and then transfers the manipulation knowledge embedded in this trajectory to the robot's actions. Our policy first learns to generate a coarse trajectory, which forms an high-level motion plan by leveraging both human and robot data. This plan then conditions the synthesis of precise, robot-specific actions (e.g., orientation and gripper state) within a co-denoising framework. Extensive real-world experiments on a Franka robot demonstrate that Traj2Action boosts the performance by up to 27% and 22.25% over $\pi_0$ baseline on short- and long-horizon real-world tasks, and achieves significant gains as human data scales in robot policy learning. Our project website, featuring code and video demonstrations, is available at https://anonymous.4open.science/w/Traj2Action-4A45/.
☆ Integrating Offline Pre-Training with Online Fine-Tuning: A Reinforcement Learning Approach for Robot Social Navigation
Offline reinforcement learning (RL) has emerged as a promising framework for addressing robot social navigation challenges. However, inherent uncertainties in pedestrian behavior and limited environmental interaction during training often lead to suboptimal exploration and distributional shifts between offline training and online deployment. To overcome these limitations, this paper proposes a novel offline-to-online fine-tuning RL algorithm for robot social navigation by integrating Return-to-Go (RTG) prediction into a causal Transformer architecture. Our algorithm features a spatiotem-poral fusion model designed to precisely estimate RTG values in real-time by jointly encoding temporal pedestrian motion patterns and spatial crowd dynamics. This RTG prediction framework mitigates distribution shift by aligning offline policy training with online environmental interactions. Furthermore, a hybrid offline-online experience sampling mechanism is built to stabilize policy updates during fine-tuning, ensuring balanced integration of pre-trained knowledge and real-time adaptation. Extensive experiments in simulated social navigation environments demonstrate that our method achieves a higher success rate and lower collision rate compared to state-of-the-art baselines. These results underscore the efficacy of our algorithm in enhancing navigation policy robustness and adaptability. This work paves the way for more reliable and adaptive robotic navigation systems in real-world applications.
Seeing through Uncertainty: Robust Task-Oriented Optimization in Visual Navigation
Visual navigation is a fundamental problem in embodied AI, yet practical deployments demand long-horizon planning capabilities to address multi-objective tasks. A major bottleneck is data scarcity: policies learned from limited data often overfit and fail to generalize OOD. Existing neural network-based agents typically increase architectural complexity that paradoxically become counterproductive in the small-sample regime. This paper introduce NeuRO, a integrated learning-to-optimize framework that tightly couples perception networks with downstream task-level robust optimization. Specifically, NeuRO addresses core difficulties in this integration: (i) it transforms noisy visual predictions under data scarcity into convex uncertainty sets using Partially Input Convex Neural Networks (PICNNs) with conformal calibration, which directly parameterize the optimization constraints; and (ii) it reformulates planning under partial observability as a robust optimization problem, enabling uncertainty-aware policies that transfer across environments. Extensive experiments on both unordered and sequential multi-object navigation tasks demonstrate that NeuRO establishes SoTA performance, particularly in generalization to unseen environments. Our work thus presents a significant advancement for developing robust, generalizable autonomous agents.
☆ Conflict-Based Search as a Protocol: A Multi-Agent Motion Planning Protocol for Heterogeneous Agents, Solvers, and Independent Tasks
Imagine the future construction site, hospital, office, or even sophisticated household with dozens of robots bought from different manufacturers. How can we enable these different systems to effectively move in a shared environment, given that each robot may have its own independent motion planning system? This work shows how we can get efficient collision-free movements between algorithmically heterogeneous agents by using Conflict-Based Search (Sharon et al. 2015) as a protocol. At its core, the CBS Protocol requires one specific single-agent motion planning API; finding a collision-free path that satisfies certain space-time constraints. Given such an API, CBS uses a central planner to find collision-free paths - independent of how the API is implemented. We show how this protocol enables multi-agent motion planning for a heterogeneous team of agents completing independent tasks with a variety of single-agent planners including: Heuristic Search (e.g., A*), Sampling Based Search (e.g., RRT), Optimization (e.g., Direct Collocation), Diffusion, and Reinforcement Learning.
comment: Project webpage: https://rishi-v.github.io/CBS-Protocol/
☆ VLA-RFT: Vision-Language-Action Reinforcement Fine-tuning with Verified Rewards in World Simulators
Vision-Language-Action (VLA) models enable embodied decision-making but rely heavily on imitation learning, leading to compounding errors and poor robustness under distribution shift. Reinforcement learning (RL) can mitigate these issues yet typically demands costly real-world interactions or suffers from sim-to-real gaps. We introduce VLA-RFT, a reinforcement fine-tuning framework that leverages a data-driven world model as a controllable simulator. Trained from real interaction data, the simulator predicts future visual observations conditioned on actions, allowing policy rollouts with dense, trajectory-level rewards derived from goal-achieving references. This design delivers an efficient and action-aligned learning signal, drastically lowering sample requirements. With fewer than 400 fine-tuning steps, VLA-RFT surpasses strong supervised baselines and achieves greater efficiency than simulator-based RL. Moreover, it exhibits strong robustness under perturbed conditions, sustaining stable task execution. Our results establish world-model-based RFT as a practical post-training paradigm to enhance the generalization and robustness of VLA models. For more details, please refer to https://vla-rft.github.io/.
☆ EgoTraj-Bench: Towards Robust Trajectory Prediction Under Ego-view Noisy Observations
Reliable trajectory prediction from an ego-centric perspective is crucial for robotic navigation in human-centric environments. However, existing methods typically assume idealized observation histories, failing to account for the perceptual artifacts inherent in first-person vision, such as occlusions, ID switches, and tracking drift. This discrepancy between training assumptions and deployment reality severely limits model robustness. To bridge this gap, we introduce EgoTraj-Bench, the first real-world benchmark that grounds noisy, first-person visual histories in clean, bird's-eye-view future trajectories, enabling robust learning under realistic perceptual constraints. Building on this benchmark, we propose BiFlow, a dual-stream flow matching model that concurrently denoises historical observations and forecasts future motion by leveraging a shared latent representation. To better model agent intent, BiFlow incorporates our EgoAnchor mechanism, which conditions the prediction decoder on distilled historical features via feature modulation. Extensive experiments show that BiFlow achieves state-of-the-art performance, reducing minADE and minFDE by 10-15% on average and demonstrating superior robustness. We anticipate that our benchmark and model will provide a critical foundation for developing trajectory forecasting systems truly resilient to the challenges of real-world, ego-centric perception.
☆ Physics-Informed Neural Controlled Differential Equations for Scalable Long Horizon Multi-Agent Motion Forecasting
Long-horizon motion forecasting for multiple autonomous robots is challenging due to non-linear agent interactions, compounding prediction errors, and continuous-time evolution of dynamics. Learned dynamics of such a system can be useful in various applications such as travel time prediction, prediction-guided planning and generative simulation. In this work, we aim to develop an efficient trajectory forecasting model conditioned on multi-agent goals. Motivated by the recent success of physics-guided deep learning for partially known dynamical systems, we develop a model based on neural Controlled Differential Equations (CDEs) for long-horizon motion forecasting. Unlike discrete-time methods such as RNNs and transformers, neural CDEs operate in continuous time, allowing us to combine physics-informed constraints and biases to jointly model multi-robot dynamics. Our approach, named PINCoDE (Physics-Informed Neural Controlled Differential Equations), learns differential equation parameters that can be used to predict the trajectories of a multi-agent system starting from an initial condition. PINCoDE is conditioned on future goals and enforces physics constraints for robot motion over extended periods of time. We adopt a strategy that scales our model from 10 robots to 100 robots without the need for additional model parameters, while producing predictions with an average ADE below 0.5 m for a 1-minute horizon. Furthermore, progressive training with curriculum learning for our PINCoDE model results in a 2.7X reduction of forecasted pose error over 4 minute horizons compared to analytical models.
♻ ☆ State Estimation for Compliant and Morphologically Adaptive Robots
Locomotion robots with active or passive compliance can show robustness to uncertain scenarios, which can be promising for agricultural, research and environmental industries. However, state estimation for these robots is challenging due to the lack of rigid-body assumptions and kinematic changes from morphing. We propose a method to estimate typical rigid-body states alongside compliance-related states, such as soft robot shape in different morphologies and locomotion modes. Our neural network-based state estimator uses a history of states and a mechanism to directly influence unreliable sensors. We test our framework on the GOAT platform, a robot capable of passive compliance and active morphing for extreme outdoor terrain. The network is trained on motion capture data in a novel compliance-centric frame that accounts for morphing-related states. Our method predicts shape-related measurements within 4.2% of the robot's size, velocities within 6.3% and 2.4% of the top linear and angular speeds, respectively, and orientation within 1.5 degrees. We also demonstrate a 300% increase in travel range during a motor malfunction when using our estimator for closed-loop autonomous outdoor operation.
comment: 8 pages, 10 figures, 1 table, preprint
♻ ☆ Act to See, See to Act: Diffusion-Driven Perception-Action Interplay for Adaptive Policies NeurIPS 2025
Existing imitation learning methods decouple perception and action, which overlooks the causal reciprocity between sensory representations and action execution that humans naturally leverage for adaptive behaviors. To bridge this gap, we introduce Action-Guided Diffusion Policy (DP-AG), a unified representation learning that explicitly models a dynamic interplay between perception and action through probabilistic latent dynamics. DP-AG encodes latent observations into a Gaussian posterior via variational inference and evolves them using an action-guided SDE, where the Vector-Jacobian Product (VJP) of the diffusion policy's noise predictions serves as a structured stochastic force driving latent updates. To promote bidirectional learning between perception and action, we introduce a cycle-consistent contrastive loss that organizes the gradient flow of the noise predictor into a coherent perception-action loop, enforcing mutually consistent transitions in both latent updates and action refinements. Theoretically, we derive a variational lower bound for the action-guided SDE, and prove that the contrastive objective enhances continuity in both latent and action trajectories. Empirically, DP-AG significantly outperforms state-of-the-art methods across simulation benchmarks and real-world UR5 manipulation tasks. As a result, our DP-AG offers a promising step toward bridging biological adaptability and artificial policy learning.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Certifiably Optimal Estimation and Calibration in Robotics via Trace-Constrained Semi-Definite Programming
Many nonconvex problems in robotics can be relaxed into convex formulations via Semi-Definite Programming (SDP) that can be solved to global optimality. The practical quality of these solutions, however, critically depends on rounding them to rank-1 matrices, a condition that can be challenging to achieve. In this work, we focus on trace-constrained SDPs (TCSDPs), where the decision variables are Positive Semi-Definite (PSD) matrices with fixed trace values. We show that the latter can be used to design a gradient-based refinement procedure that projects relaxed SDP solutions toward rank-1, low-cost candidates. We also provide fixed-trace SDP relaxations for common robotic quantities, such as rotations and translations, and a modular virtual robot abstraction that simplifies modeling across different problem settings. We demonstrate that our trace-constrained SDP framework can be applied to many robotics tasks, and we showcase its effectiveness through simulations in Perspective-n-Point (PnP) estimation, hand-eye calibration, and dual-robot system calibration.
comment: Manuscript submitted to American Control Conference (ACC) 2026
♻ ☆ DBF-MA: A Differential Bayesian Filtering Planner for Multi-Agent Autonomous Racing Overtakes
A significant challenge in autonomous racing is to generate overtaking maneuvers. Racing agents must execute these maneuvers on complex racetracks with little room for error. Optimization techniques and graph-based methods have been proposed, but these methods often rely on oversimplified assumptions for collision-avoidance and dynamic constraints. In this work, we present an approach to trajectory synthesis based on an extension of the Differential Bayesian Filtering framework. Our approach for collision-free trajectory synthesis frames the problem as one of Bayesian Inference over the space of Composite Bezier Curves. Our method is derivative-free, does not require a spherical approximation of the vehicle footprint, linearization of constraints, or simplifying upper bounds on collision avoidance. We conduct a closed-loop analysis of DBF-MA and find it successfully overtakes an opponent in 87% of tested scenarios, outperforming existing methods in autonomous overtaking.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Beyond Needle(s) in the Embodied Haystack: Environment, Architecture, and Training Considerations for Long Context Reasoning
We introduce $\infty$-THOR, a new framework for long-horizon embodied tasks that advances long-context understanding in embodied AI. $\infty$-THOR provides: (1) a generation framework for synthesizing scalable, reproducible, and unlimited long-horizon trajectories; (2) a novel embodied QA task, Needle(s) in the Embodied Haystack, where multiple scattered clues across extended trajectories test agents' long-context reasoning ability; and (3) a long-horizon dataset and benchmark suite featuring complex tasks that span hundreds of environment steps, each paired with ground-truth action sequences. To enable this capability, we explore architectural adaptations, including interleaved Goal-State-Action modeling, context extension techniques, and Context Parallelism, to equip LLM-based agents for extreme long-context reasoning and interaction. Experimental results and analyses highlight the challenges posed by our benchmark and provide insights into training strategies and model behaviors under long-horizon conditions. Our work provides a foundation for the next generation of embodied AI systems capable of robust, long-term reasoning and planning.
♻ ☆ CogVLA: Cognition-Aligned Vision-Language-Action Model via Instruction-Driven Routing & Sparsification NeurIPS 2025
Recent Vision-Language-Action (VLA) models built on pre-trained Vision-Language Models (VLMs) require extensive post-training, resulting in high computational overhead that limits scalability and deployment.We propose CogVLA, a Cognition-Aligned Vision-Language-Action framework that leverages instruction-driven routing and sparsification to improve both efficiency and performance. CogVLA draws inspiration from human multimodal coordination and introduces a 3-stage progressive architecture. 1) Encoder-FiLM based Aggregation Routing (EFA-Routing) injects instruction information into the vision encoder to selectively aggregate and compress dual-stream visual tokens, forming a instruction-aware latent representation. 2) Building upon this compact visual encoding, LLM-FiLM based Pruning Routing (LFP-Routing) introduces action intent into the language model by pruning instruction-irrelevant visually grounded tokens, thereby achieving token-level sparsity. 3) To ensure that compressed perception inputs can still support accurate and coherent action generation, we introduce V-L-A Coupled Attention (CAtten), which combines causal vision-language attention with bidirectional action parallel decoding. Extensive experiments on the LIBERO benchmark and real-world robotic tasks demonstrate that CogVLA achieves state-of-the-art performance with success rates of 97.4% and 70.0%, respectively, while reducing training costs by 2.5-fold and decreasing inference latency by 2.8-fold compared to OpenVLA. CogVLA is open-sourced and publicly available at https://github.com/JiuTian-VL/CogVLA.
comment: Accepted to NeurIPS 2025, Project Page: https://jiutian-vl.github.io/CogVLA-page
♻ ☆ LLM-guided Task and Motion Planning using Knowledge-based Reasoning
Performing complex manipulation tasks in dynamic environments requires efficient Task and Motion Planning (TAMP) approaches that combine high-level symbolic plans with low-level motion control. Advances in Large Language Models (LLMs), such as GPT-4, are transforming task planning by offering natural language as an intuitive and flexible way to describe tasks, generate symbolic plans, and reason. However, the effectiveness of LLM-based TAMP approaches is limited due to static and template-based prompting, which limits adaptability to dynamic environments and complex task contexts. To address these limitations, this work proposes a novel Onto-LLM-TAMP framework that employs knowledge-based reasoning to refine and expand user prompts with task-contextual reasoning and knowledge-based environment state descriptions. Integrating domain-specific knowledge into the prompt ensures semantically accurate and context-aware task plans. The proposed framework demonstrates its effectiveness by resolving semantic errors in symbolic plan generation, such as maintaining logical temporal goal ordering in scenarios involving hierarchical object placement. The proposed framework is validated through both simulation and real-world scenarios, demonstrating significant improvements over the baseline approach in terms of adaptability to dynamic environments and the generation of semantically correct task plans.
comment: Submitted to knowledge based systems
♻ ☆ Opt2Skill: Imitating Dynamically-feasible Whole-Body Trajectories for Versatile Humanoid Loco-Manipulation
Humanoid robots are designed to perform diverse loco-manipulation tasks. However, they face challenges due to their high-dimensional and unstable dynamics, as well as the complex contact-rich nature of the tasks. Model-based optimal control methods offer flexibility to define precise motion but are limited by high computational complexity and accurate contact sensing. On the other hand, reinforcement learning (RL) handles high-dimensional spaces with strong robustness but suffers from inefficient learning, unnatural motion, and sim-to-real gaps. To address these challenges, we introduce Opt2Skill, an end-to-end pipeline that combines model-based trajectory optimization with RL to achieve robust whole-body loco-manipulation. Opt2Skill generates dynamic feasible and contact-consistent reference motions for the Digit humanoid robot using differential dynamic programming (DDP) and trains RL policies to track these optimal trajectories. Our results demonstrate that Opt2Skill outperforms baselines that rely on human demonstrations and inverse kinematics-based references, both in motion tracking and task success rates. Furthermore, we show that incorporating trajectories with torque information improves contact force tracking in contact-involved tasks, such as wiping a table. We have successfully transferred our approach to real-world applications.
♻ ☆ Probabilistic Collision Risk Estimation through Gauss-Legendre Cubature and Non-Homogeneous Poisson Processes
Overtaking in high-speed autonomous racing demands precise, real-time estimation of collision risk; particularly in wheel-to-wheel scenarios where safety margins are minimal. Existing methods for collision risk estimation either rely on simplified geometric approximations, like bounding circles, or perform Monte Carlo sampling which leads to overly conservative motion planning behavior at racing speeds. We introduce the Gauss-Legendre Rectangle (GLR) algorithm, a principled two-stage integration method that estimates collision risk by combining Gauss-Legendre with a non-homogeneous Poisson process over time. GLR produces accurate risk estimates that account for vehicle geometry and trajectory uncertainty. In experiments across 446 overtaking scenarios in a high-fidelity Formula One racing simulation, GLR outperforms five state-of-the-art baselines achieving an average error reduction of 77% and surpassing the next-best method by 52%, all while running at 1000 Hz. The framework is general and applicable to broader motion planning contexts beyond autonomous racing.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ HetSwarm: Cooperative Navigation of Heterogeneous Swarm in Dynamic and Dense Environments through Impedance-based Guidance
With the growing demand for efficient logistics and warehouse management, unmanned aerial vehicles (UAVs) are emerging as a valuable complement to automated guided vehicles (AGVs). UAVs enhance efficiency by navigating dense environments and operating at varying altitudes. However, their limited flight time, battery life, and payload capacity necessitate a supporting ground station. To address these challenges, we propose HetSwarm, a heterogeneous multi-robot system that combines a UAV and a mobile ground robot for collaborative navigation in cluttered and dynamic conditions. Our approach employs an artificial potential field (APF)-based path planner for the UAV, allowing it to dynamically adjust its trajectory in real time. The ground robot follows this path while maintaining connectivity through impedance links, ensuring stable coordination. Additionally, the ground robot establishes temporal impedance links with low-height ground obstacles to avoid local collisions, as these obstacles do not interfere with the UAV's flight. Experimental validation of HetSwarm in diverse environmental conditions demonstrated a 90% success rate across 30 test cases. The ground robot exhibited an average deviation of 45 cm near obstacles, confirming effective collision avoidance. Extensive simulations in the Gym PyBullet environment further validated the robustness of our system for real-world applications, demonstrating its potential for dynamic, real-time task execution in cluttered environments.
comment: Manuscript has been accepted by ICUAS-2025
♻ ☆ Adaptive Diffusion Constrained Sampling for Bimanual Robot Manipulation
Coordinated multi-arm manipulation requires satisfying multiple simultaneous geometric constraints across high-dimensional configuration spaces, which poses a significant challenge for traditional planning and control methods. In this work, we propose Adaptive Diffusion Constrained Sampling (ADCS), a generative framework that flexibly integrates both equality (e.g., relative and absolute pose constraints) and structured inequality constraints (e.g., proximity to object surfaces) into an energy-based diffusion model. Equality constraints are modeled using dedicated energy networks trained on pose differences in Lie algebra space, while inequality constraints are represented via Signed Distance Functions (SDFs) and encoded into learned constraint embeddings, allowing the model to reason about complex spatial regions. A key innovation of our method is a Transformer-based architecture that learns to weight constraint-specific energy functions at inference time, enabling flexible and context-aware constraint integration. Moreover, we adopt a two-phase sampling strategy that improves precision and sample diversity by combining Langevin dynamics with resampling and density-aware re-weighting. Experimental results on dual-arm manipulation tasks show that ADCS significantly improves sample diversity and generalization across settings demanding precise coordination and adaptive constraint handling.
♻ ☆ ImpedanceGPT: VLM-driven Impedance Control of Swarm of Mini-drones for Intelligent Navigation in Dynamic Environment IROS 2025
Swarm robotics plays a crucial role in enabling autonomous operations in dynamic and unpredictable environments. However, a major challenge remains ensuring safe and efficient navigation in environments filled with both dynamic alive (e.g., humans) and dynamic inanimate (e.g., non-living objects) obstacles. In this paper, we propose ImpedanceGPT, a novel system that combines a Vision-Language Model (VLM) with retrieval-augmented generation (RAG) to enable real-time reasoning for adaptive navigation of mini-drone swarms in complex environments. The key innovation of ImpedanceGPT lies in the integration of VLM and RAG, which provides the drones with enhanced semantic understanding of their surroundings. This enables the system to dynamically adjust impedance control parameters in response to obstacle types and environmental conditions. Our approach not only ensures safe and precise navigation but also improves coordination between drones in the swarm. Experimental evaluations demonstrate the effectiveness of the system. The VLM-RAG framework achieved an obstacle detection and retrieval accuracy of 80 % under optimal lighting. In static environments, drones navigated dynamic inanimate obstacles at 1.4 m/s but slowed to 0.7 m/s with increased separation around humans. In dynamic environments, speed adjusted to 1.0 m/s near hard obstacles, while reducing to 0.6 m/s with higher deflection to safely avoid moving humans.
comment: Accepted in IROS 2025
♻ ☆ On the Application of Model Predictive Control to a Weighted Coverage Path Planning Problem
This paper considers the application of Model Predictive Control (MPC) to a weighted coverage path planning (WCPP) problem. The problem appears in a wide range of practical applications, including search and rescue (SAR) missions. The basic setup is that one (or multiple) agents can move around a given search space and collect rewards from a given spatial distribution. Unlike an artificial potential field, each reward can only be collected once. In contrast to a Traveling Salesman Problem (TSP), the agent moves in a continuous space. Moreover, he is not obliged to cover all locations and/or may return to previously visited locations. The WCPP problem is tackled by a new Model Predictive Control (MPC) formulation with so-called Coverage Constraints (CCs). It is shown that the solution becomes more effective if the solver is initialized with a TSP-based heuristic. With and without this initialization, the proposed MPC approach clearly outperforms a naive MPC formulation, as demonstrated in a small simulation study.
♻ ☆ Learning Hierarchical Domain Models Through Environment-Grounded Interaction
Domain models enable autonomous agents to solve long-horizon tasks by producing interpretable plans. However, in open-world environments, a single general domain model cannot capture the variety of tasks, so agents must generate suitable task-specific models on the fly. Large Language Models (LLMs), with their implicit common knowledge, can generate such domains, but suffer from high error rates that limit their applicability. Hence, related work relies on extensive human feed-back or prior knowledge, which undermines autonomous, open-world deployment. In this work, we propose LODGE, a framework for autonomous domain learning from LLMs and environment grounding. LODGE builds on hierarchical abstractions and automated simulations to identify and correct inconsistencies between abstraction layers and between the model and environment. Our framework is task-agnostic, as it generates predicates, operators, and their preconditions and effects, while only assuming access to a simulator and a set of generic, executable low-level skills. Experiments on two International Planning Competition ( IPC) domains and a robotic assembly domain show that LODGE yields more accurate domain models and higher task success than existing methods, requiring remarkably few environment interactions and no human feedback or demonstrations.
♻ ☆ HR-INR: Continuous Space-Time Video Super-Resolution via Event Camera
Continuous space-time video super-resolution (C-STVSR) aims to simultaneously enhance video resolution and frame rate at an arbitrary scale. Recently, implicit neural representation (INR) has been applied to video restoration, representing videos as implicit fields that can be decoded at an arbitrary scale. However, existing INR-based C-STVSR methods typically rely on only two frames as input, leading to insufficient inter-frame motion information. Consequently, they struggle to capture fast, complex motion and long-term dependencies (spanning more than three frames), hindering their performance in dynamic scenes. In this paper, we propose a novel C-STVSR framework, named HR-INR, which captures both holistic dependencies and regional motions based on INR. It is assisted by an event camera -- a novel sensor renowned for its high temporal resolution and low latency. To fully utilize the rich temporal information from events, we design a feature extraction consisting of (1) a regional event feature extractor -- taking events as inputs via the proposed event temporal pyramid representation to capture the regional nonlinear motion and (2) a holistic event-frame feature extractor for long-term dependence and continuity motion. We then propose a novel INR-based decoder with spatiotemporal embeddings to capture long-term dependencies with a larger temporal perception field. We validate the effectiveness and generalization of our method on four datasets (both simulated and real data), showing the superiority of our method. The project page is available at https://github.com/yunfanLu/HR-INR
comment: Project page: https://github.com/yunfanLu/HR-INR
♻ ☆ RoVerFly: Robust and Versatile Implicit Hybrid Control of Quadrotor-Payload Systems
Designing robust controllers for precise trajectory tracking with quadrotors is challenging due to nonlinear dynamics and underactuation, and becomes harder with flexible cable-suspended payloads that add degrees of freedom and hybrid dynamics. Classical model-based methods offer stability guarantees but require extensive tuning and often fail to adapt when the configuration changes-when a payload is added or removed, or when its mass or cable length varies. We present RoVerFly, a unified learning-based control framework where a single reinforcement learning (RL) policy functions as an implicit hybrid controller, managing complex dynamics without explicit mode detection or controller switching. Trained with task and domain randomization, the controller is resilient to disturbances and varying dynamics. It achieves strong zero-shot generalization across payload settings-including no payload as well as varying mass and cable length-without re-tuning, while retaining the interpretability and structure of a feedback tracking controller. Code and supplementary materials are available at https://github.com/mintaeshkim/roverfly.
comment: 8 pages, 5 figures
♻ ☆ Sampling-Based Global Optimal Control and Estimation via Semidefinite Programming
Global optimization has gained attraction over the past decades, thanks to the development of both theoretical foundations and efficient numerical routines. Among recent advances, Kernel Sum of Squares (KernelSOS) provides a powerful theoretical framework, combining the expressivity of kernel methods with the guarantees of SOS optimization. In this paper, we take KernelSOS from theory to practice and demonstrate its use on challenging control and robotics problems. We identify and address the practical considerations required to make the method work in applied settings: restarting strategies, systematic calibration of hyperparameters, methods for recovering minimizers, and the combination with fast local solvers. As a proof of concept, the application of KernelSOS to robot localization highlights its competitiveness with existing SOS approaches that rely on heuristics and handcrafted reformulations to render the problem polynomial. Even in the high-dimensional, non-parametric setting of trajectory optimization with simulators treated as black boxes, we demonstrate how KernelSOS can be combined with fast local solvers to uncover higher-quality solutions without compromising overall runtimes.
♻ ☆ Heterogeneous Predictor-based Risk-Aware Planning with Conformal Prediction in Dense, Uncertain Environments
Real-time planning among many uncertain, dynamic obstacles is challenging because predicting every agent with high fidelity is both unnecessary and computationally expensive. We present Heterogeneous Predictor-based Risk-Aware Planning (H-PRAP), a framework that allocates prediction effort to where it matters. H-PRAP introduces the Probability-based Collision Risk Index (P-CRI), a closed-form, horizon-level collision index obtained by calibrating a Gaussian surrogate with conformal prediction. P-CRI drives a router that assigns high-risk obstacles to accurate but expensive predictors and low-risk obstacles to lightweight predictors, while preserving distribution-free coverage across heterogeneous predictors through conformal prediction. The selected predictions and their conformal radii are embedded in a chance-constrained model predictive control (MPC) problem, yielding receding-horizon policies with explicit safety margins. We analyze the safety-efficiency trade-off under prediction compute budget: more portion of low-fidelity predictions reduce residual risk from dropped obstacles, but in the same time induces larger conformal radii and degrades trajectory efficiency and shrinks MPC feasibility. Extensive numerical simulations in dense, uncertain environments validate that H-PRAP attains best balance between trajectory success rate (i.e., no collisions) and the time to reach the goal (i.e., trajectory efficiency) compared to single prediction architectures.
♻ ☆ Are All Marine Species Created Equal? Performance Disparities in Underwater Object Detection
Underwater object detection is critical for monitoring marine ecosystems but poses unique challenges, including degraded image quality, imbalanced class distribution, and distinct visual characteristics. Not every species is detected equally well, yet underlying causes remain unclear. We address two key research questions: 1) What factors beyond data quantity drive class-specific performance disparities? 2) How can we systematically improve detection of under-performing marine species? We manipulate the DUO and RUOD datasets to separate the object detection task into localization and classification and investigate the under-performance of the scallop class. Localization analysis using YOLO11 and TIDE finds that foreground-background discrimination is the most problematic stage regardless of data quantity. Classification experiments reveal persistent precision gaps even with balanced data, indicating intrinsic feature-based challenges beyond data scarcity and inter-class dependencies. We recommend imbalanced distributions when prioritizing precision, and balanced distributions when prioritizing recall. Improving under-performing classes should focus on algorithmic advances, especially within localization modules. We publicly release our code and datasets.
comment: 10 pages for main paper, 4 pages for supplementary material
♻ ☆ Curriculum Imitation Learning of Distributed Multi-Robot Policies
Learning control policies for multi-robot systems (MRS) remains a major challenge due to long-term coordination and the difficulty of obtaining realistic training data. In this work, we address both limitations within an imitation learning framework. First, we shift the typical role of Curriculum Learning in MRS, from scalability with the number of robots, to focus on improving long-term coordination. We propose a curriculum strategy that gradually increases the length of expert trajectories during training, stabilizing learning and enhancing the accuracy of long-term behaviors. Second, we introduce a method to approximate the egocentric perception of each robot using only third-person global state demonstrations. Our approach transforms idealized trajectories into locally available observations by filtering neighbors, converting reference frames, and simulating onboard sensor variability. Both contributions are integrated into a physics-informed technique to produce scalable, distributed policies from observations. We conduct experiments across two tasks with varying team sizes and noise levels. Results show that our curriculum improves long-term accuracy, while our perceptual estimation method yields policies that are robust to realistic uncertainty. Together, these strategies enable the learning of robust, distributed controllers from global demonstrations, even in the absence of expert actions or onboard measurements.
comment: Accepted and presented at the Eight Iberian Robotics Conference, 2025
♻ ☆ Data-Driven Distributionally Robust Optimal Control with State-Dependent Noise
Distributionally Robust Optimal Control (DROC) is a framework that enables robust control in a stochastic setting where the true disturbance distribution is unknown. Traditional DROC approaches require given ambiguity sets and KL divergence bounds to represent the distributional uncertainty; however, these quantities are often unavailable a priori or require manual specification. To overcome this limitation, we propose a data-driven approach that jointly estimates the uncertainty distribution and the corresponding KL divergence bound, which we refer to as $\mathrm{D}^3\mathrm{ROC}$. To evaluate the effectiveness of our approach, we consider a car-like robot navigation task with unknown noise distributions. The experimental results show that $\mathrm{D}^3\mathrm{ROC}$ yields robust and effective control policies, outperforming iterative Linear Quadratic Gaussian (iLQG) control and demonstrating strong adaptability to varying noise distributions.
♻ ☆ Hierarchical place recognition with omnidirectional images and curriculum learning-based loss functions
This paper addresses Visual Place Recognition (VPR), which is essential for the safe navigation of mobile robots. The solution we propose employs panoramic images and deep learning models, which are fine-tuned with triplet loss functions that integrate curriculum learning strategies. By progressively presenting more challenging examples during training, these loss functions enable the model to learn more discriminative and robust feature representations, overcoming the limitations of conventional contrastive loss functions. After training, VPR is tackled in two steps: coarse (room retrieval) and fine (position estimation). The results demonstrate that the curriculum-based triplet losses consistently outperform standard contrastive loss functions, particularly under challenging perceptual conditions. To thoroughly assess the robustness and generalization capabilities of the proposed method, it is evaluated in a variety of indoor and outdoor environments. The approach is tested against common challenges in real operation conditions, including severe illumination changes, the presence of dynamic visual effects such as noise and occlusions, and scenarios with limited training data. The results show that the proposed framework performs competitively in all these situations, achieving high recognition accuracy and demonstrating its potential as a reliable solution for real-world robotic applications. The code used in the experiments is available at https://github.com/MarcosAlfaro/TripletNetworksIndoorLocalization.git.
♻ ☆ CRAFT: Coaching Reinforcement Learning Autonomously using Foundation Models for Multi-Robot Coordination Tasks
Multi-Agent Reinforcement Learning (MARL) provides a powerful framework for learning coordination in multi-agent systems. However, applying MARL to robotics still remains challenging due to high-dimensional continuous joint action spaces, complex reward design, and non-stationary transitions inherent to decentralized settings. On the other hand, humans learn complex coordination through staged curricula, where long-horizon behaviors are progressively built upon simpler skills. Motivated by this, we propose CRAFT: Coaching Reinforcement learning Autonomously using Foundation models for multi-robot coordination Tasks, a framework that leverages the reasoning capabilities of foundation models to act as a "coach" for multi-robot coordination. CRAFT automatically decomposes long-horizon coordination tasks into sequences of subtasks using the planning capability of Large Language Models (LLMs). In what follows, CRAFT trains each subtask using reward functions generated by LLM, and refines them through a Vision Language Model (VLM)-guided reward-refinement loop. We evaluate CRAFT on multi-quadruped navigation and bimanual manipulation tasks, demonstrating its capability to learn complex coordination behaviors. In addition, we validate the multi-quadruped navigation policy in real hardware experiments.
♻ ☆ ReactEMG: Zero-Shot, Low-Latency Intent Detection via sEMG
Surface electromyography (sEMG) signals show promise for effective human-computer interfaces, particularly in rehabilitation and prosthetics. However, challenges remain in developing systems that respond quickly and reliably to user intent, across different subjects and without requiring time-consuming calibration. In this work, we propose a framework for EMG-based intent detection that addresses these challenges. Unlike traditional gesture recognition models that wait until a gesture is completed before classifying it, our approach uses a segmentation strategy to assign intent labels at every timestep as the gesture unfolds. We introduce a novel masked modeling strategy that aligns muscle activations with their corresponding user intents, enabling rapid onset detection and stable tracking of ongoing gestures. In evaluations against baseline methods, considering both accuracy and stability for device control, our approach surpasses state-of-the-art performance in zero-shot transfer conditions, demonstrating its potential for wearable robotics and next-generation prosthetic systems. Our project page is available at: https://reactemg.github.io
♻ ☆ Grasp Pre-shape Selection by Synthetic Training: Eye-in-hand Shared Control on the Hannes Prosthesis IROS 2022
We consider the task of object grasping with a prosthetic hand capable of multiple grasp types. In this setting, communicating the intended grasp type often requires a high user cognitive load which can be reduced adopting shared autonomy frameworks. Among these, so-called eye-in-hand systems automatically control the hand pre-shaping before the grasp, based on visual input coming from a camera on the wrist. In this paper, we present an eye-in-hand learning-based approach for hand pre-shape classification from RGB sequences. Differently from previous work, we design the system to support the possibility to grasp each considered object part with a different grasp type. In order to overcome the lack of data of this kind and reduce the need for tedious data collection sessions for training the system, we devise a pipeline for rendering synthetic visual sequences of hand trajectories. We develop a sensorized setup to acquire real human grasping sequences for benchmarking and show that, compared on practical use cases, models trained with our synthetic dataset achieve better generalization performance than models trained on real data. We finally integrate our model on the Hannes prosthetic hand and show its practical effectiveness. We make publicly available the code and dataset to reproduce the presented results.
comment: Accepted to IROS 2022
♻ ☆ Continuous Wrist Control on the Hannes Prosthesis: a Vision-based Shared Autonomy Framework ICRA 2025
Most control techniques for prosthetic grasping focus on dexterous fingers control, but overlook the wrist motion. This forces the user to perform compensatory movements with the elbow, shoulder and hip to adapt the wrist for grasping. We propose a computer vision-based system that leverages the collaboration between the user and an automatic system in a shared autonomy framework, to perform continuous control of the wrist degrees of freedom in a prosthetic arm, promoting a more natural approach-to-grasp motion. Our pipeline allows to seamlessly control the prosthetic wrist to follow the target object and finally orient it for grasping according to the user intent. We assess the effectiveness of each system component through quantitative analysis and finally deploy our method on the Hannes prosthetic arm. Code and videos: https://hsp-iit.github.io/hannes-wrist-control.
comment: Accepted to ICRA 2025. Project website: https://hsp-iit.github.io/hannes-wrist-control
♻ ☆ One Policy to Run Them All: an End-to-end Learning Approach to Multi-Embodiment Locomotion
Deep Reinforcement Learning techniques are achieving state-of-the-art results in robust legged locomotion. While there exists a wide variety of legged platforms such as quadruped, humanoids, and hexapods, the field is still missing a single learning framework that can control all these different embodiments easily and effectively and possibly transfer, zero or few-shot, to unseen robot embodiments. We introduce URMA, the Unified Robot Morphology Architecture, to close this gap. Our framework brings the end-to-end Multi-Task Reinforcement Learning approach to the realm of legged robots, enabling the learned policy to control any type of robot morphology. The key idea of our method is to allow the network to learn an abstract locomotion controller that can be seamlessly shared between embodiments thanks to our morphology-agnostic encoders and decoders. This flexible architecture can be seen as a potential first step in building a foundation model for legged robot locomotion. Our experiments show that URMA can learn a locomotion policy on multiple embodiments that can be easily transferred to unseen robot platforms in simulation and the real world.
Computer Vision and Pattern Recognition 171
☆ WALT: Web Agents that Learn Tools
Web agents promise to automate complex browser tasks, but current methods remain brittle -- relying on step-by-step UI interactions and heavy LLM reasoning that break under dynamic layouts and long horizons. Humans, by contrast, exploit website-provided functionality through high-level operations like search, filter, and sort. We introduce WALT (Web Agents that Learn Tools), a framework that reverse-engineers latent website functionality into reusable invocable tools. Rather than hypothesizing ad-hoc skills, WALT exposes robust implementations of automations already designed into websites -- spanning discovery (search, filter, sort), communication (post, comment, upvote), and content management (create, edit, delete). Tools abstract away low-level execution: instead of reasoning about how to click and type, agents simply call search(query) or create(listing). This shifts the computational burden from fragile step-by-step reasoning to reliable tool invocation. On VisualWebArena and WebArena, WALT achieves higher success with fewer steps and less LLM-dependent reasoning, establishing a robust and generalizable paradigm for browser automation.
☆ From Videos to Indexed Knowledge Graphs -- Framework to Marry Methods for Multimodal Content Analysis and Understanding
Analysis of multi-modal content can be tricky, computationally expensive, and require a significant amount of engineering efforts. Lots of work with pre-trained models on static data is out there, yet fusing these opensource models and methods with complex data such as videos is relatively challenging. In this paper, we present a framework that enables efficiently prototyping pipelines for multi-modal content analysis. We craft a candidate recipe for a pipeline, marrying a set of pre-trained models, to convert videos into a temporal semi-structured data format. We translate this structure further to a frame-level indexed knowledge graph representation that is query-able and supports continual learning, enabling the dynamic incorporation of new domain-specific knowledge through an interactive medium.
☆ Aligning Video Models with Human Social Judgments via Behavior-Guided Fine-Tuning
Humans intuitively perceive complex social signals in visual scenes, yet it remains unclear whether state-of-the-art AI models encode the same similarity structure. We study (Q1) whether modern video and language models capture human-perceived similarity in social videos, and (Q2) how to instill this structure into models using human behavioral data. To address this, we introduce a new benchmark of over 49,000 odd-one-out similarity judgments on 250 three-second video clips of social interactions, and discover a modality gap: despite the task being visual, caption-based language embeddings align better with human similarity than any pretrained video model. We close this gap by fine-tuning a TimeSformer video model on these human judgments with our novel hybrid triplet-RSA objective using low-rank adaptation (LoRA), aligning pairwise distances to human similarity. This fine-tuning protocol yields significantly improved alignment with human perceptions on held-out videos in terms of both explained variance and odd-one-out triplet accuracy. Variance partitioning shows that the fine-tuned video model increases shared variance with language embeddings and explains additional unique variance not captured by the language model. Finally, we test transfer via linear probes and find that human-similarity fine-tuning strengthens the encoding of social-affective attributes (intimacy, valence, dominance, communication) relative to the pretrained baseline. Overall, our findings highlight a gap in pretrained video models' social recognition and demonstrate that behavior-guided fine-tuning shapes video representations toward human social perception.
comment: 15 pages total, 4 figures. Includes 1 algorithm and 2 tables in the appendix
AortaDiff: A Unified Multitask Diffusion Framework For Contrast-Free AAA Imaging
While contrast-enhanced CT (CECT) is standard for assessing abdominal aortic aneurysms (AAA), the required iodinated contrast agents pose significant risks, including nephrotoxicity, patient allergies, and environmental harm. To reduce contrast agent use, recent deep learning methods have focused on generating synthetic CECT from non-contrast CT (NCCT) scans. However, most adopt a multi-stage pipeline that first generates images and then performs segmentation, which leads to error accumulation and fails to leverage shared semantic and anatomical structures. To address this, we propose a unified deep learning framework that generates synthetic CECT images from NCCT scans while simultaneously segmenting the aortic lumen and thrombus. Our approach integrates conditional diffusion models (CDM) with multi-task learning, enabling end-to-end joint optimization of image synthesis and anatomical segmentation. Unlike previous multitask diffusion models, our approach requires no initial predictions (e.g., a coarse segmentation mask), shares both encoder and decoder parameters across tasks, and employs a semi-supervised training strategy to learn from scans with missing segmentation labels, a common constraint in real-world clinical data. We evaluated our method on a cohort of 264 patients, where it consistently outperformed state-of-the-art single-task and multi-stage models. For image synthesis, our model achieved a PSNR of 25.61 dB, compared to 23.80 dB from a single-task CDM. For anatomical segmentation, it improved the lumen Dice score to 0.89 from 0.87 and the challenging thrombus Dice score to 0.53 from 0.48 (nnU-Net). These segmentation enhancements led to more accurate clinical measurements, reducing the lumen diameter MAE to 4.19 mm from 5.78 mm and the thrombus area error to 33.85% from 41.45% when compared to nnU-Net. Code is available at https://github.com/yuxuanou623/AortaDiff.git.
☆ Purrception: Variational Flow Matching for Vector-Quantized Image Generation
We introduce Purrception, a variational flow matching approach for vector-quantized image generation that provides explicit categorical supervision while maintaining continuous transport dynamics. Our method adapts Variational Flow Matching to vector-quantized latents by learning categorical posteriors over codebook indices while computing velocity fields in the continuous embedding space. This combines the geometric awareness of continuous methods with the discrete supervision of categorical approaches, enabling uncertainty quantification over plausible codes and temperature-controlled generation. We evaluate Purrception on ImageNet-1k 256x256 generation. Training converges faster than both continuous flow matching and discrete flow matching baselines while achieving competitive FID scores with state-of-the-art models. This demonstrates that Variational Flow Matching can effectively bridge continuous transport and discrete supervision for improved training efficiency in image generation.
☆ Data Selection for Fine-tuning Vision Language Models via Cross Modal Alignment Trajectories
Data-efficient learning aims to eliminate redundancy in large training datasets by training models on smaller subsets of the most informative examples. While data selection has been extensively explored for vision models and large language models (LLMs), it remains underexplored for Large Vision-Language Models (LVLMs). Notably, none of existing methods can outperform random selection at different subset sizes. In this work, we propose the first principled method for data-efficient instruction tuning of LVLMs. We prove that examples with similar cross-modal attention matrices during instruction tuning have similar gradients. Thus, they influence model parameters in a similar manner and convey the same information to the model during training. Building on this insight, we propose XMAS, which clusters examples based on the trajectories of the top singular values of their attention matrices obtained from fine-tuning a small proxy LVLM. By sampling a balanced subset from these clusters, XMAS effectively removes redundancy in large-scale LVLM training data. Extensive experiments show that XMAS can discard 50% of the LLaVA-665k dataset and 85% of the Vision-Flan dataset while fully preserving performance of LLaVA-1.5-7B on 10 downstream benchmarks and speeding up its training by 1.2x. This is 30% more data reduction compared to the best baseline for LLaVA-665k. The project's website can be found at https://bigml-cs-ucla.github.io/XMAS-project-page/.
comment: 30 pages, 10 figures, 5 tables, link: https://bigml-cs-ucla.github.io/XMAS-project-page/
☆ GeoSURGE: Geo-localization using Semantic Fusion with Hierarchy of Geographic Embeddings
Worldwide visual geo-localization seeks to determine the geographic location of an image anywhere on Earth using only its visual content. Learned representations of geography for visual geo-localization remain an active research topic despite much progress. We formulate geo-localization as aligning the visual representation of the query image with a learned geographic representation. Our novel geographic representation explicitly models the world as a hierarchy of geographic embeddings. Additionally, we introduce an approach to efficiently fuse the appearance features of the query image with its semantic segmentation map, forming a robust visual representation. Our main experiments demonstrate improved all-time bests in 22 out of 25 metrics measured across five benchmark datasets compared to prior state-of-the-art (SOTA) methods and recent Large Vision-Language Models (LVLMs). Additional ablation studies support the claim that these gains are primarily driven by the combination of geographic and visual representations.
comment: preprint under review
☆ On the Role of Domain Experts in Creating Effective Tutoring Systems
The role that highly curated knowledge, provided by domain experts, could play in creating effective tutoring systems is often overlooked within the AI for education community. In this paper, we highlight this topic by discussing two ways such highly curated expert knowledge could help in creating novel educational systems. First, we will look at how one could use explainable AI (XAI) techniques to automatically create lessons. Most existing XAI methods are primarily aimed at debugging AI systems. However, we will discuss how one could use expert specified rules about solving specific problems along with novel XAI techniques to automatically generate lessons that could be provided to learners. Secondly, we will see how an expert specified curriculum for learning a target concept can help develop adaptive tutoring systems, that can not only provide a better learning experience, but could also allow us to use more efficient algorithms to create these systems. Finally, we will highlight the importance of such methods using a case study of creating a tutoring system for pollinator identification, where such knowledge could easily be elicited from experts.
comment: Accepted to AIED 2025 Blue Sky Track
☆ Ultra-Efficient Decoding for End-to-End Neural Compression and Reconstruction NeurIPS 2025
Image compression and reconstruction are crucial for various digital applications. While contemporary neural compression methods achieve impressive compression rates, the adoption of such technology has been largely hindered by the complexity and large computational costs of the convolution-based decoders during data reconstruction. To address the decoder bottleneck in neural compression, we develop a new compression-reconstruction framework based on incorporating low-rank representation in an autoencoder with vector quantization. We demonstrated that performing a series of computationally efficient low-rank operations on the learned latent representation of images can efficiently reconstruct the data with high quality. Our approach dramatically reduces the computational overhead in the decoding phase of neural compression/reconstruction, essentially eliminating the decoder compute bottleneck while maintaining high fidelity of image outputs.
comment: 5 pages, 4 figures, NeurIPS 2025 Workshop MLForSys
☆ DisCo: Reinforcement with Diversity Constraints for Multi-Human Generation
State-of-the-art text-to-image models excel at realism but collapse on multi-human prompts - duplicating faces, merging identities, and miscounting individuals. We introduce DisCo (Reinforcement with Diversity Constraints), the first RL-based framework to directly optimize identity diversity in multi-human generation. DisCo fine-tunes flow-matching models via Group-Relative Policy Optimization (GRPO) with a compositional reward that (i) penalizes intra-image facial similarity, (ii) discourages cross-sample identity repetition, (iii) enforces accurate person counts, and (iv) preserves visual fidelity through human preference scores. A single-stage curriculum stabilizes training as complexity scales, requiring no extra annotations. On the DiverseHumans Testset, DisCo achieves 98.6 Unique Face Accuracy and near-perfect Global Identity Spread - surpassing both open-source and proprietary methods (e.g., Gemini, GPT-Image) while maintaining competitive perceptual quality. Our results establish DisCo as a scalable, annotation-free solution that resolves the long-standing identity crisis in generative models and sets a new benchmark for compositional multi-human generation.
☆ VENTURA: Adapting Image Diffusion Models for Unified Task Conditioned Navigation
Robots must adapt to diverse human instructions and operate safely in unstructured, open-world environments. Recent Vision-Language models (VLMs) offer strong priors for grounding language and perception, but remain difficult to steer for navigation due to differences in action spaces and pretraining objectives that hamper transferability to robotics tasks. Towards addressing this, we introduce VENTURA, a vision-language navigation system that finetunes internet-pretrained image diffusion models for path planning. Instead of directly predicting low-level actions, VENTURA generates a path mask (i.e. a visual plan) in image space that captures fine-grained, context-aware navigation behaviors. A lightweight behavior-cloning policy grounds these visual plans into executable trajectories, yielding an interface that follows natural language instructions to generate diverse robot behaviors. To scale training, we supervise on path masks derived from self-supervised tracking models paired with VLM-augmented captions, avoiding manual pixel-level annotation or highly engineered data collection setups. In extensive real-world evaluations, VENTURA outperforms state-of-the-art foundation model baselines on object reaching, obstacle avoidance, and terrain preference tasks, improving success rates by 33% and reducing collisions by 54% across both seen and unseen scenarios. Notably, we find that VENTURA generalizes to unseen combinations of distinct tasks, revealing emergent compositional capabilities. Videos, code, and additional materials: https://venturapath.github.io
comment: 9 pages, 6 figures, 3 tables
☆ SPUS: A Lightweight and Parameter-Efficient Foundation Model for PDEs
We introduce Small PDE U-Net Solver (SPUS), a compact and efficient foundation model (FM) designed as a unified neural operator for solving a wide range of partial differential equations (PDEs). Unlike existing state-of-the-art PDE FMs-primarily based on large complex transformer architectures with high computational and parameter overhead-SPUS leverages a lightweight residual U-Net-based architecture that has been largely underexplored as a foundation model architecture in this domain. To enable effective learning in this minimalist framework, we utilize a simple yet powerful auto-regressive pretraining strategy which closely replicates the behavior of numerical solvers to learn the underlying physics. SPUS is pretrained on a diverse set of fluid dynamics PDEs and evaluated across 6 challenging unseen downstream PDEs spanning various physical systems. Experimental results demonstrate that SPUS using residual U-Net based architecture achieves state-of-the-art generalization on these downstream tasks while requiring significantly fewer parameters and minimal fine-tuning data, highlighting its potential as a highly parameter-efficient FM for solving diverse PDE systems.
☆ EvoStruggle: A Dataset Capturing the Evolution of Struggle across Activities and Skill Levels
The ability to determine when a person struggles during skill acquisition is crucial for both optimizing human learning and enabling the development of effective assistive systems. As skills develop, the type and frequency of struggles tend to change, and understanding this evolution is key to determining the user's current stage of learning. However, existing manipulation datasets have not focused on how struggle evolves over time. In this work, we collect a dataset for struggle determination, featuring 61.68 hours of video recordings, 2,793 videos, and 5,385 annotated temporal struggle segments collected from 76 participants. The dataset includes 18 tasks grouped into four diverse activities -- tying knots, origami, tangram puzzles, and shuffling cards, representing different task variations. In addition, participants repeated the same task five times to capture their evolution of skill. We define the struggle determination problem as a temporal action localization task, focusing on identifying and precisely localizing struggle segments with start and end times. Experimental results show that Temporal Action Localization models can successfully learn to detect struggle cues, even when evaluated on unseen tasks or activities. The models attain an overall average mAP of 34.56% when generalizing across tasks and 19.24% across activities, indicating that struggle is a transferable concept across various skill-based tasks while still posing challenges for further improvement in struggle detection. Our dataset is available at https://github.com/FELIXFENG2019/EvoStruggle.
comment: 10 pages
☆ An Efficient Quality Metric for Video Frame Interpolation Based on Motion-Field Divergence
Video frame interpolation is a fundamental tool for temporal video enhancement, but existing quality metrics struggle to evaluate the perceptual impact of interpolation artefacts effectively. Metrics like PSNR, SSIM and LPIPS ignore temporal coherence. State-of-the-art quality metrics tailored towards video frame interpolation, like FloLPIPS, have been developed but suffer from computational inefficiency that limits their practical application. We present $\text{PSNR}_{\text{DIV}}$, a novel full-reference quality metric that enhances PSNR through motion divergence weighting, a technique adapted from archival film restoration where it was developed to detect temporal inconsistencies. Our approach highlights singularities in motion fields which is then used to weight image errors. Evaluation on the BVI-VFI dataset (180 sequences across multiple frame rates, resolutions and interpolation methods) shows $\text{PSNR}_{\text{DIV}}$ achieves statistically significant improvements: +0.09 Pearson Linear Correlation Coefficient over FloLPIPS, while being 2.5$\times$ faster and using 4$\times$ less memory. Performance remains consistent across all content categories and are robust to the motion estimator used. The efficiency and accuracy of $\text{PSNR}_{\text{DIV}}$ enables fast quality evaluation and practical use as a loss function for training neural networks for video frame interpolation tasks. An implementation of our metric is available at www.github.com/conalld/psnr-div.
comment: IEEE 17th International Conference on Quality of Multimedia Experience 2025 accepted manuscript, 7 pages
☆ Image Generation Based on Image Style Extraction
Image generation based on text-to-image generation models is a task with practical application scenarios that fine-grained styles cannot be precisely described and controlled in natural language, while the guidance information of stylized reference images is difficult to be directly aligned with the textual conditions of traditional textual guidance generation. This study focuses on how to maximize the generative capability of the pretrained generative model, by obtaining fine-grained stylistic representations from a single given stylistic reference image, and injecting the stylistic representations into the generative body without changing the structural framework of the downstream generative model, so as to achieve fine-grained controlled stylized image generation. In this study, we propose a three-stage training style extraction-based image generation method, which uses a style encoder and a style projection layer to align the style representations with the textual representations to realize fine-grained textual cue-based style guide generation. In addition, this study constructs the Style30k-captions dataset, whose samples contain a triad of images, style labels, and text descriptions, to train the style encoder and style projection layer in this experiment.
☆ LVTINO: LAtent Video consisTency INverse sOlver for High Definition Video Restoration
Computational imaging methods increasingly rely on powerful generative diffusion models to tackle challenging image restoration tasks. In particular, state-of-the-art zero-shot image inverse solvers leverage distilled text-to-image latent diffusion models (LDMs) to achieve unprecedented accuracy and perceptual quality with high computational efficiency. However, extending these advances to high-definition video restoration remains a significant challenge, due to the need to recover fine spatial detail while capturing subtle temporal dependencies. Consequently, methods that naively apply image-based LDM priors on a frame-by-frame basis often result in temporally inconsistent reconstructions. We address this challenge by leveraging recent advances in Video Consistency Models (VCMs), which distill video latent diffusion models into fast generators that explicitly capture temporal causality. Building on this foundation, we propose LVTINO, the first zero-shot or plug-and-play inverse solver for high definition video restoration with priors encoded by VCMs. Our conditioning mechanism bypasses the need for automatic differentiation and achieves state-of-the-art video reconstruction quality with only a few neural function evaluations, while ensuring strong measurement consistency and smooth temporal transitions across frames. Extensive experiments on a diverse set of video inverse problems show significant perceptual improvements over current state-of-the-art methods that apply image LDMs frame by frame, establishing a new benchmark in both reconstruction fidelity and computational efficiency.
comment: 23 pages, 12 figures
☆ IMAGEdit: Let Any Subject Transform
In this paper, we present IMAGEdit, a training-free framework for any number of video subject editing that manipulates the appearances of multiple designated subjects while preserving non-target regions, without finetuning or retraining. We achieve this by providing robust multimodal conditioning and precise mask sequences through a prompt-guided multimodal alignment module and a prior-based mask retargeting module. We first leverage large models' understanding and generation capabilities to produce multimodal information and mask motion sequences for multiple subjects across various types. Then, the obtained prior mask sequences are fed into a pretrained mask-driven video generation model to synthesize the edited video. With strong generalization capability, IMAGEdit remedies insufficient prompt-side multimodal conditioning and overcomes mask boundary entanglement in videos with any number of subjects, thereby significantly expanding the applicability of video editing. More importantly, IMAGEdit is compatible with any mask-driven video generation model, significantly improving overall performance. Extensive experiments on our newly constructed multi-subject benchmark MSVBench verify that IMAGEdit consistently surpasses state-of-the-art methods. Code, models, and datasets are publicly available at https://github.com/XWH-A/IMAGEdit.
☆ EvoWorld: Evolving Panoramic World Generation with Explicit 3D Memory
Humans possess a remarkable ability to mentally explore and replay 3D environments they have previously experienced. Inspired by this mental process, we present EvoWorld: a world model that bridges panoramic video generation with evolving 3D memory to enable spatially consistent long-horizon exploration. Given a single panoramic image as input, EvoWorld first generates future video frames by leveraging a video generator with fine-grained view control, then evolves the scene's 3D reconstruction using a feedforward plug-and-play transformer, and finally synthesizes futures by conditioning on geometric reprojections from this evolving explicit 3D memory. Unlike prior state-of-the-arts that synthesize videos only, our key insight lies in exploiting this evolving 3D reconstruction as explicit spatial guidance for the video generation process, projecting the reconstructed geometry onto target viewpoints to provide rich spatial cues that significantly enhance both visual realism and geometric consistency. To evaluate long-range exploration capabilities, we introduce the first comprehensive benchmark spanning synthetic outdoor environments, Habitat indoor scenes, and challenging real-world scenarios, with particular emphasis on loop-closure detection and spatial coherence over extended trajectories. Extensive experiments demonstrate that our evolving 3D memory substantially improves visual fidelity and maintains spatial scene coherence compared to existing approaches, representing a significant advance toward long-horizon spatially consistent world modeling.
comment: Code available at: https://github.com/JiahaoPlus/EvoWorld
☆ Audio Driven Real-Time Facial Animation for Social Telepresence SIGGRAPH
We present an audio-driven real-time system for animating photorealistic 3D facial avatars with minimal latency, designed for social interactions in virtual reality for anyone. Central to our approach is an encoder model that transforms audio signals into latent facial expression sequences in real time, which are then decoded as photorealistic 3D facial avatars. Leveraging the generative capabilities of diffusion models, we capture the rich spectrum of facial expressions necessary for natural communication while achieving real-time performance (<15ms GPU time). Our novel architecture minimizes latency through two key innovations: an online transformer that eliminates dependency on future inputs and a distillation pipeline that accelerates iterative denoising into a single step. We further address critical design challenges in live scenarios for processing continuous audio signals frame-by-frame while maintaining consistent animation quality. The versatility of our framework extends to multimodal applications, including semantic modalities such as emotion conditions and multimodal sensors with head-mounted eye cameras on VR headsets. Experimental results demonstrate significant improvements in facial animation accuracy over existing offline state-of-the-art baselines, achieving 100 to 1000 times faster inference speed. We validate our approach through live VR demonstrations and across various scenarios such as multilingual speeches.
comment: SIGGRAPH Asia 2025. Project page: https://jiyewise.github.io/projects/AudioRTA
☆ Code2Video: A Code-centric Paradigm for Educational Video Generation
While recent generative models advance pixel-space video synthesis, they remain limited in producing professional educational videos, which demand disciplinary knowledge, precise visual structures, and coherent transitions, limiting their applicability in educational scenarios. Intuitively, such requirements are better addressed through the manipulation of a renderable environment, which can be explicitly controlled via logical commands (e.g., code). In this work, we propose Code2Video, a code-centric agent framework for generating educational videos via executable Python code. The framework comprises three collaborative agents: (i) Planner, which structures lecture content into temporally coherent flows and prepares corresponding visual assets; (ii) Coder, which converts structured instructions into executable Python codes while incorporating scope-guided auto-fix to enhance efficiency; and (iii) Critic, which leverages vision-language models (VLM) with visual anchor prompts to refine spatial layout and ensure clarity. To support systematic evaluation, we build MMMC, a benchmark of professionally produced, discipline-specific educational videos. We evaluate MMMC across diverse dimensions, including VLM-as-a-Judge aesthetic scores, code efficiency, and particularly, TeachQuiz, a novel end-to-end metric that quantifies how well a VLM, after unlearning, can recover knowledge by watching the generated videos. Our results demonstrate the potential of Code2Video as a scalable, interpretable, and controllable approach, achieving 40% improvement over direct code generation and producing videos comparable to human-crafted tutorials. The code and datasets are available at https://github.com/showlab/Code2Video.
comment: Project Page: https://showlab.github.io/Code2Video/
☆ EditTrack: Detecting and Attributing AI-assisted Image Editing
In this work, we formulate and study the problem of image-editing detection and attribution: given a base image and a suspicious image, detection seeks to determine whether the suspicious image was derived from the base image using an AI editing model, while attribution further identifies the specific editing model responsible. Existing methods for detecting and attributing AI-generated images are insufficient for this problem, as they focus on determining whether an image was AI-generated/edited rather than whether it was edited from a particular base image. To bridge this gap, we propose EditTrack, the first framework for this image-editing detection and attribution problem. Building on four key observations about the editing process, EditTrack introduces a novel re-editing strategy and leverages carefully designed similarity metrics to determine whether a suspicious image originates from a base image and, if so, by which model. We evaluate EditTrack on five state-of-the-art editing models across six datasets, demonstrating that it consistently achieves accurate detection and attribution, significantly outperforming five baselines.
☆ Strategic Fusion of Vision Language Models: Shapley-Credited Context-Aware Dawid-Skene for Multi-Label Tasks in Autonomous Driving
Large vision-language models (VLMs) are increasingly used in autonomous-vehicle (AV) stacks, but hallucination limits their reliability in safety-critical pipelines. We present Shapley-credited Context-Aware Dawid-Skene with Agreement, a game-theoretic fusion method for multi-label understanding of ego-view dashcam video. It learns per-model, per-label, context-conditioned reliabilities from labelled history and, at inference, converts each model's report into an agreement-guardrailed log-likelihood ratio that is combined with a contextual prior and a public reputation state updated via Shapley-based team credit. The result is calibrated, thresholdable posteriors that (i) amplify agreement among reliable models, (ii) preserve uniquely correct single-model signals, and (iii) adapt to drift. To specialise general VLMs, we curate 1,000 real-world dashcam clips with structured annotations (scene description, manoeuvre recommendation, rationale) via an automatic pipeline that fuses HDD ground truth, vehicle kinematics, and YOLOv11 + BoT-SORT tracking, guided by a three-step chain-of-thought prompt; three heterogeneous VLMs are then fine-tuned with LoRA. We evaluate with Hamming distance, Micro-Macro-F1, and average per-video latency. Empirically, the proposed method achieves a 23% reduction in Hamming distance, 55% improvement in Macro-F1, and 47% improvement in Micro-F1 when comparing with the best single model, supporting VLM fusion as a calibrated, interpretable, and robust decision-support component for AV pipelines.
comment: 8 pages
☆ Instant4D: 4D Gaussian Splatting in Minutes NeurIPS 25
Dynamic view synthesis has seen significant advances, yet reconstructing scenes from uncalibrated, casual video remains challenging due to slow optimization and complex parameter estimation. In this work, we present Instant4D, a monocular reconstruction system that leverages native 4D representation to efficiently process casual video sequences within minutes, without calibrated cameras or depth sensors. Our method begins with geometric recovery through deep visual SLAM, followed by grid pruning to optimize scene representation. Our design significantly reduces redundancy while maintaining geometric integrity, cutting model size to under 10% of its original footprint. To handle temporal dynamics efficiently, we introduce a streamlined 4D Gaussian representation, achieving a 30x speed-up and reducing training time to within two minutes, while maintaining competitive performance across several benchmarks. Our method reconstruct a single video within 10 minutes on the Dycheck dataset or for a typical 200-frame video. We further apply our model to in-the-wild videos, showcasing its generalizability. Our project website is published at https://instant4d.github.io/.
comment: Accepted by NeurIPS 25
☆ ReSWD: ReSTIR'd, not shaken. Combining Reservoir Sampling and Sliced Wasserstein Distance for Variance Reduction
Distribution matching is central to many vision and graphics tasks, where the widely used Wasserstein distance is too costly to compute for high dimensional distributions. The Sliced Wasserstein Distance (SWD) offers a scalable alternative, yet its Monte Carlo estimator suffers from high variance, resulting in noisy gradients and slow convergence. We introduce Reservoir SWD (ReSWD), which integrates Weighted Reservoir Sampling into SWD to adaptively retain informative projection directions in optimization steps, resulting in stable gradients while remaining unbiased. Experiments on synthetic benchmarks and real-world tasks such as color correction and diffusion guidance show that ReSWD consistently outperforms standard SWD and other variance reduction baselines. Project page: https://reservoirswd.github.io/
☆ KeySG: Hierarchical Keyframe-Based 3D Scene Graphs
In recent years, 3D scene graphs have emerged as a powerful world representation, offering both geometric accuracy and semantic richness. Combining 3D scene graphs with large language models enables robots to reason, plan, and navigate in complex human-centered environments. However, current approaches for constructing 3D scene graphs are semantically limited to a predefined set of relationships, and their serialization in large environments can easily exceed an LLM's context window. We introduce KeySG, a framework that represents 3D scenes as a hierarchical graph consisting of floors, rooms, objects, and functional elements, where nodes are augmented with multi-modal information extracted from keyframes selected to optimize geometric and visual coverage. The keyframes allow us to efficiently leverage VLM to extract scene information, alleviating the need to explicitly model relationship edges between objects, enabling more general, task-agnostic reasoning and planning. Our approach can process complex and ambiguous queries while mitigating the scalability issues associated with large scene graphs by utilizing a hierarchical retrieval-augmented generation (RAG) pipeline to extract relevant context from the graph. Evaluated across four distinct benchmarks -- including 3D object segmentation and complex query retrieval -- KeySG outperforms prior approaches on most metrics, demonstrating its superior semantic richness and efficiency.
☆ Authentic Discrete Diffusion Model
We propose an Authentic Discrete Diffusion (ADD) framework that fundamentally redefines prior pseudo-discrete approaches by preserving core diffusion characteristics directly in the one-hot space through a suite of coordinated mechanisms. Unlike conventional "pseudo" discrete diffusion (PDD) methods, ADD reformulates the diffusion input by directly using float-encoded one-hot class data, without relying on diffusing in the continuous latent spaces or masking policies. At its core, a timestep-conditioned cross-entropy loss is introduced between the diffusion model's outputs and the original one-hot labels. This synergistic design establishes a bridge between discriminative and generative learning. Our experiments demonstrate that ADD not only achieves superior performance on classification tasks compared to the baseline, but also exhibits excellent text generation capabilities on Image captioning. Extensive ablations validate the measurable gains of each component.
☆ Activation-Deactivation: A General Framework for Robust Post-hoc Explainable AI
Black-box explainability methods are popular tools for explaining the decisions of image classifiers. A major drawback of these tools is their reliance on mutants obtained by occluding parts of the input, leading to out-of-distribution images. This raises doubts about the quality of the explanations. Moreover, choosing an appropriate occlusion value often requires domain knowledge. In this paper we introduce a novel forward-pass paradigm Activation-Deactivation (AD), which removes the effects of occluded input features from the model's decision-making by switching off the parts of the model that correspond to the occlusions. We introduce ConvAD, a drop-in mechanism that can be easily added to any trained Convolutional Neural Network (CNN), and which implements the AD paradigm. This leads to more robust explanations without any additional training or fine-tuning. We prove that the ConvAD mechanism does not change the decision-making process of the network. We provide experimental evaluation across several datasets and model architectures. We compare the quality of AD-explanations with explanations achieved using a set of masking values, using the proxies of robustness, size, and confidence drop-off. We observe a consistent improvement in robustness of AD explanations (up to 62.5%) compared to explanations obtained with occlusions, demonstrating that ConvAD extracts more robust explanations without the need for domain knowledge.
comment: Preprint: Under Review
☆ Secure and reversible face anonymization with diffusion models
Face images processed by computer vision algorithms contain sensitive personal information that malicious actors can capture without consent. These privacy and security risks highlight the need for effective face anonymization methods. Current methods struggle to propose a good trade-off between a secure scheme with high-quality image generation and reversibility for later person authentication. Diffusion-based approaches produce high-quality anonymized images but lack the secret key mechanism to ensure that only authorized parties can reverse the process. In this paper, we introduce, to our knowledge, the first secure, high-quality reversible anonymization method based on a diffusion model. We propose to combine the secret key with the latent faces representation of the diffusion model. To preserve identity-irrelevant features, generation is constrained by a facial mask, maintaining high-quality images. By using a deterministic forward and backward diffusion process, our approach enforces that the original face can be recovered with the correct secret key. We also show that the proposed method produces anonymized faces that are less visually similar to the original faces, compared to other previous work.
☆ Towards Adversarial Training under Hyperspectral Images
Recent studies have revealed that hyperspectral classification models based on deep learning are highly vulnerable to adversarial attacks, which pose significant security risks. Although several approaches have attempted to enhance adversarial robustness by modifying network architectures, these methods often rely on customized designs that limit scalability and fail to defend effectively against strong attacks. To address these challenges, we introduce adversarial training to the hyperspectral domain, which is widely regarded as one of the most effective defenses against adversarial attacks. Through extensive empirical analyses, we demonstrate that while adversarial training does enhance robustness across various models and datasets, hyperspectral data introduces unique challenges not seen in RGB images. Specifically, we find that adversarial noise and the non-smooth nature of adversarial examples can distort or eliminate important spectral semantic information. To mitigate this issue, we employ data augmentation techniques and propose a novel hyperspectral adversarial training method, termed AT-RA. By increasing the diversity of spectral information and ensuring spatial smoothness, AT-RA preserves and corrects spectral semantics in hyperspectral images. Experimental results show that AT-RA improves adversarial robustness by 21.34% against AutoAttack and 18.78% against PGD-50 while boosting benign accuracy by 2.68%.
☆ ImageDoctor: Diagnosing Text-to-Image Generation via Grounded Image Reasoning
The rapid advancement of text-to-image (T2I) models has increased the need for reliable human preference modeling, a demand further amplified by recent progress in reinforcement learning for preference alignment. However, existing approaches typically quantify the quality of a generated image using a single scalar, limiting their ability to provide comprehensive and interpretable feedback on image quality. To address this, we introduce ImageDoctor, a unified multi-aspect T2I model evaluation framework that assesses image quality across four complementary dimensions: plausibility, semantic alignment, aesthetics, and overall quality. ImageDoctor also provides pixel-level flaw indicators in the form of heatmaps, which highlight misaligned or implausible regions, and can be used as a dense reward for T2I model preference alignment. Inspired by the diagnostic process, we improve the detail sensitivity and reasoning capability of ImageDoctor by introducing a "look-think-predict" paradigm, where the model first localizes potential flaws, then generates reasoning, and finally concludes the evaluation with quantitative scores. Built on top of a vision-language model and trained through a combination of supervised fine-tuning and reinforcement learning, ImageDoctor demonstrates strong alignment with human preference across multiple datasets, establishing its effectiveness as an evaluation metric. Furthermore, when used as a reward model for preference tuning, ImageDoctor significantly improves generation quality -- achieving an improvement of 10% over scalar-based reward models.
☆ POVQA: Preference-Optimized Video Question Answering with Rationales for Data Efficiency
Video Question Answering (VQA) with Large Vision Language Models (LVLMs) has gained significant traction in research ever since the Flamingo was introduced by Deepmind. Recent advancements in large context/long video question answering have allowed VQA tasks to have context window of 1500+ frames. However, this only leads to 50 seconds of video footage without losing any significant information. We introduce POVQA, a data-efficient pipeline that compresses each second of video into a single temporally pooled image (via motion blur and weighted averaging variants) and then align LVLMs with lightweight supervision. Concretely, we build 1 fps input sources using Blend Blur with Last Frame, Weighted Average, Exponential and Ramp pooling and fine-tune QWEN-2.5-VL 7B with supervised two turn target including reasoning and final answer. We apply Supervised Fine Tuning (SFT) and Direct Preference Optimization (DPO) on our novel dataset ReasonVQA consisting of 12 movies with 239 human annotated question-answer with reasoning prompts. On our ReasonVQA dataset, this method dramatically improves performance over pooled baselines: F1 score improves from 0.212 to 0.543, BLEU-4 from 0.031 to 0.291, and ROUGE-L from 0.196 to 0.528. Rationale quality also significantly increases. Cross-evaluation of SFT + DPO on various pooling functions show that the gains persist regardless of the pooling scheme used at train or test time, indicating strong robustness on summarization of temporal evidence. Similar observations were made on zero-shot in TVQA.
☆ TextCAM: Explaining Class Activation Map with Text
Deep neural networks (DNNs) have achieved remarkable success across domains but remain difficult to interpret, limiting their trustworthiness in high-stakes applications. This paper focuses on deep vision models, for which a dominant line of explainability methods are Class Activation Mapping (CAM) and its variants working by highlighting spatial regions that drive predictions. We figure out that CAM provides little semantic insight into what attributes underlie these activations. To address this limitation, we propose TextCAM, a novel explanation framework that enriches CAM with natural languages. TextCAM combines the precise spatial localization of CAM with the semantic alignment of vision-language models (VLMs). Specifically, we derive channel-level semantic representations using CLIP embeddings and linear discriminant analysis, and aggregate them with CAM weights to produce textual descriptions of salient visual evidence. This yields explanations that jointly specify where the model attends and what visual attributes likely support its decision. We further extend TextCAM to generate feature channels into semantically coherent groups, enabling more fine-grained visual-textual explanations. Experiments on ImageNet, CLEVR, and CUB demonstrate that TextCAM produces faithful and interpretable rationales that improve human understanding, detect spurious correlations, and preserve model fidelity.
☆ Visual Self-Refinement for Autoregressive Models EMNLP2025
Autoregressive models excel in sequential modeling and have proven to be effective for vision-language data. However, the spatial nature of visual signals conflicts with the sequential dependencies of next-token prediction, leading to suboptimal results. This work proposes a plug-and-play refinement module to enhance the complex spatial correspondence modeling within the generated visual sequence. This module operates as a post-pretraining step to jointly refine all generated tokens of autoregressive model, enhancing vision-language modeling under a shared sequential prediction framework. By leveraging global context and relationship across the tokens, our method mitigates the error accumulation issue within the sequential generation. Experiments demonstrate that the proposed method improves the generation quality, enhancing the model's ability to produce semantically consistent results.
comment: Accepted by EMNLP2025
☆ A Scene is Worth a Thousand Features: Feed-Forward Camera Localization from a Collection of Image Features
Visually localizing an image, i.e., estimating its camera pose, requires building a scene representation that serves as a visual map. The representation we choose has direct consequences towards the practicability of our system. Even when starting from mapping images with known camera poses, state-of-the-art approaches still require hours of mapping time in the worst case, and several minutes in the best. This work raises the question whether we can achieve competitive accuracy much faster. We introduce FastForward, a method that creates a map representation and relocalizes a query image on-the-fly in a single feed-forward pass. At the core, we represent multiple mapping images as a collection of features anchored in 3D space. FastForward utilizes these mapping features to predict image-to-scene correspondences for the query image, enabling the estimation of its camera pose. We couple FastForward with image retrieval and achieve state-of-the-art accuracy when compared to other approaches with minimal map preparation time. Furthermore, FastForward demonstrates robust generalization to unseen domains, including challenging large-scale outdoor environments.
☆ JEPA-T: Joint-Embedding Predictive Architecture with Text Fusion for Image Generation
Modern Text-to-Image (T2I) generation increasingly relies on token-centric architectures that are trained with self-supervision, yet effectively fusing text with visual tokens remains a challenge. We propose \textbf{JEPA-T}, a unified multimodal framework that encodes images and captions into discrete visual and textual tokens, processed by a joint-embedding predictive Transformer. To enhance fusion, we incorporate cross-attention after the feature predictor for conditional denoising while maintaining a task-agnostic backbone. Additionally, raw texts embeddings are injected prior to the flow matching loss to improve alignment during training. During inference, the same network performs both class-conditional and free-text image generation by iteratively denoising visual tokens conditioned on text. Evaluations on ImageNet-1K demonstrate that JEPA-T achieves strong data efficiency, open-vocabulary generalization, and consistently outperforms non-fusion and late-fusion baselines. Our approach shows that late architectural fusion combined with objective-level alignment offers an effective balance between conditioning strength and backbone generality in token-based T2I.The code is now available: https://github.com/justin-herry/JEPA-T.git
☆ InfVSR: Breaking Length Limits of Generic Video Super-Resolution
Real-world videos often extend over thousands of frames. Existing video super-resolution (VSR) approaches, however, face two persistent challenges when processing long sequences: (1) inefficiency due to the heavy cost of multi-step denoising for full-length sequences; and (2) poor scalability hindered by temporal decomposition that causes artifacts and discontinuities. To break these limits, we propose InfVSR, which novelly reformulates VSR as an autoregressive-one-step-diffusion paradigm. This enables streaming inference while fully leveraging pre-trained video diffusion priors. First, we adapt the pre-trained DiT into a causal structure, maintaining both local and global coherence via rolling KV-cache and joint visual guidance. Second, we distill the diffusion process into a single step efficiently, with patch-wise pixel supervision and cross-chunk distribution matching. Together, these designs enable efficient and scalable VSR for unbounded-length videos. To fill the gap in long-form video evaluation, we build a new benchmark tailored for extended sequences and further introduce semantic-level metrics to comprehensively assess temporal consistency. Our method pushes the frontier of long-form VSR, achieves state-of-the-art quality with enhanced semantic consistency, and delivers up to 58x speed-up over existing methods such as MGLD-VSR. Code will be available at https://github.com/Kai-Liu001/InfVSR.
comment: Code will be available at https://github.com/Kai-Liu001/InfVSR
☆ Looking Alike From Far to Near: Enhancing Cross-Resolution Re-Identification via Feature Vector Panning
In surveillance scenarios, varying camera distances cause significant differences among pedestrian image resolutions, making it hard to match low-resolution (LR) images with high-resolution (HR) counterparts, limiting the performance of Re-Identification (ReID) tasks. Most existing Cross-Resolution ReID (CR-ReID) methods rely on super-resolution (SR) or joint learning for feature compensation, which increases training and inference complexity and has reached a performance bottleneck in recent studies. Inspired by semantic directions in the word embedding space, we empirically discover that semantic directions implying resolution differences also emerge in the feature space of ReID, and we substantiate this finding from a statistical perspective using Canonical Correlation Analysis and Pearson Correlation Analysis. Based on this interesting finding, we propose a lightweight and effective Vector Panning Feature Alignment (VPFA) framework, which conducts CR-ReID from a novel perspective of modeling the resolution-specific feature discrepancy. Extensive experimental results on multiple CR-ReID benchmarks show that our method significantly outperforms previous state-of-the-art baseline models while obtaining higher efficiency, demonstrating the effectiveness and superiority of our model based on the new finding in this paper.
☆ PAL-Net: A Point-Wise CNN with Patch-Attention for 3D Facial Landmark Localization
Manual annotation of anatomical landmarks on 3D facial scans is a time-consuming and expertise-dependent task, yet it remains critical for clinical assessments, morphometric analysis, and craniofacial research. While several deep learning methods have been proposed for facial landmark localization, most focus on pseudo-landmarks or require complex input representations, limiting their clinical applicability. This study presents a fully automated deep learning pipeline (PAL-Net) for localizing 50 anatomical landmarks on stereo-photogrammetry facial models. The method combines coarse alignment, region-of-interest filtering, and an initial approximation of landmarks with a patch-based pointwise CNN enhanced by attention mechanisms. Trained and evaluated on 214 annotated scans from healthy adults, PAL-Net achieved a mean localization error of 3.686 mm and preserves relevant anatomical distances with a 2.822 mm average error, comparable to intra-observer variability. To assess generalization, the model was further evaluated on 700 subjects from the FaceScape dataset, achieving a point-wise error of 0.41\,mm and a distance-wise error of 0.38\,mm. Compared to existing methods, PAL-Net offers a favorable trade-off between accuracy and computational cost. While performance degrades in regions with poor mesh quality (e.g., ears, hairline), the method demonstrates consistent accuracy across most anatomical regions. PAL-Net generalizes effectively across datasets and facial regions, outperforming existing methods in both point-wise and structural evaluations. It provides a lightweight, scalable solution for high-throughput 3D anthropometric analysis, with potential to support clinical workflows and reduce reliance on manual annotation. Source code can be found at https://github.com/Ali5hadman/PAL-Net-A-Point-Wise-CNN-with-Patch-Attention
☆ Intuitions of Machine Learning Researchers about Transfer Learning for Medical Image Classification
Transfer learning is crucial for medical imaging, yet the selection of source datasets - which can impact the generalizability of algorithms, and thus patient outcomes - often relies on researchers' intuition rather than systematic principles. This study investigates these decisions through a task-based survey with machine learning practitioners. Unlike prior work that benchmarks models and experimental setups, we take a human-centered HCI perspective on how practitioners select source datasets. Our findings indicate that choices are task-dependent and influenced by community practices, dataset properties, and computational (data embedding), or perceived visual or semantic similarity. However, similarity ratings and expected performance are not always aligned, challenging a traditional "more similar is better" view. Participants often used ambiguous terminology, which suggests a need for clearer definitions and HCI tools to make them explicit and usable. By clarifying these heuristics, this work provides practical insights for more systematic source selection in transfer learning.
comment: Under review
☆ MorphGen: Controllable and Morphologically Plausible Generative Cell-Imaging
Simulating in silico cellular responses to interventions is a promising direction to accelerate high-content image-based assays, critical for advancing drug discovery and gene editing. To support this, we introduce MorphGen, a state-of-the-art diffusion-based generative model for fluorescent microscopy that enables controllable generation across multiple cell types and perturbations. To capture biologically meaningful patterns consistent with known cellular morphologies, MorphGen is trained with an alignment loss to match its representations to the phenotypic embeddings of OpenPhenom, a state-of-the-art biological foundation model. Unlike prior approaches that compress multichannel stains into RGB images -- thus sacrificing organelle-specific detail -- MorphGen generates the complete set of fluorescent channels jointly, preserving per-organelle structures and enabling a fine-grained morphological analysis that is essential for biological interpretation. We demonstrate biological consistency with real images via CellProfiler features, and MorphGen attains an FID score over $35\%$ lower than the prior state-of-the-art MorphoDiff, which only generates RGB images for a single cell type. Code is available at https://github.com/czi-ai/MorphGen.
☆ AI-CNet3D: An Anatomically-Informed Cross-Attention Network with Multi-Task Consistency Fine-tuning for 3D Glaucoma Classification
Glaucoma is a progressive eye disease that leads to optic nerve damage, causing irreversible vision loss if left untreated. Optical coherence tomography (OCT) has become a crucial tool for glaucoma diagnosis, offering high-resolution 3D scans of the retina and optic nerve. However, the conventional practice of condensing information from 3D OCT volumes into 2D reports often results in the loss of key structural details. To address this, we propose a novel hybrid deep learning model that integrates cross-attention mechanisms into a 3D convolutional neural network (CNN), enabling the extraction of critical features from the superior and inferior hemiretinas, as well as from the optic nerve head (ONH) and macula, within OCT volumes. We introduce Channel Attention REpresentations (CAREs) to visualize cross-attention outputs and leverage them for consistency-based multi-task fine-tuning, aligning them with Gradient-Weighted Class Activation Maps (Grad-CAMs) from the CNN's final convolutional layer to enhance performance, interpretability, and anatomical coherence. We have named this model AI-CNet3D (AI-`See'-Net3D) to reflect its design as an Anatomically-Informed Cross-attention Network operating on 3D data. By dividing the volume along two axes and applying cross-attention, our model enhances glaucoma classification by capturing asymmetries between the hemiretinal regions while integrating information from the optic nerve head and macula. We validate our approach on two large datasets, showing that it outperforms state-of-the-art attention and convolutional models across all key metrics. Finally, our model is computationally efficient, reducing the parameter count by one-hundred--fold compared to other attention mechanisms while maintaining high diagnostic performance and comparable GFLOPS.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:018
☆ Gather-Scatter Mamba: Accelerating Propagation with Efficient State Space Model
State Space Models (SSMs)-most notably RNNs-have historically played a central role in sequential modeling. Although attention mechanisms such as Transformers have since dominated due to their ability to model global context, their quadratic complexity and limited scalability make them less suited for long sequences. Video super-resolution (VSR) methods have traditionally relied on recurrent architectures to propagate features across frames. However, such approaches suffer from well-known issues including vanishing gradients, lack of parallelism, and slow inference speed. Recent advances in selective SSMs like Mamba offer a compelling alternative: by enabling input-dependent state transitions with linear-time complexity, Mamba mitigates these issues while maintaining strong long-range modeling capabilities. Despite this potential, Mamba alone struggles to capture fine-grained spatial dependencies due to its causal nature and lack of explicit context aggregation. To address this, we propose a hybrid architecture that combines shifted window self-attention for spatial context aggregation with Mamba-based selective scanning for efficient temporal propagation. Furthermore, we introduce Gather-Scatter Mamba (GSM), an alignment-aware mechanism that warps features toward a center anchor frame within the temporal window before Mamba propagation and scatters them back afterward, effectively reducing occlusion artifacts and ensuring effective redistribution of aggregated information across all frames. The official implementation is provided at: https://github.com/Ko-Lani/GSMamba.
comment: Code: \url{https://github.com/Ko-Lani/GSMamba}
☆ Can World Models Benefit VLMs for World Dynamics?
Trained on internet-scale video data, generative world models are increasingly recognized as powerful world simulators that can generate consistent and plausible dynamics over structure, motion, and physics. This raises a natural question: with the advent of strong video foundational models, might they supplant conventional vision encoder paradigms for general-purpose multimodal understanding? While recent studies have begun to explore the potential of world models on common vision tasks, these explorations typically lack a systematic investigation of generic, multimodal tasks. In this work, we strive to investigate the capabilities when world model priors are transferred into Vision-Language Models: we re-purpose a video diffusion model as a generative encoder to perform a single denoising step and treat the resulting latents as a set of visual embedding. We empirically investigate this class of models, which we refer to as World-Language Models (WorldLMs), and we find that generative encoders can capture latents useful for downstream understanding that show distinctions from conventional encoders. Naming our best-performing variant Dynamic Vision Aligner (DyVA), we further discover that this method significantly enhances spatial reasoning abilities and enables single-image models to perform multi-frame reasoning. Through the curation of a suite of visual reasoning tasks, we find DyVA to surpass both open-source and proprietary baselines, achieving state-of-the-art or comparable performance. We attribute these gains to WorldLM's inherited motion-consistency internalization from video pre-training. Finally, we systematically explore extensive model designs to highlight promising directions for future work. We hope our study can pave the way for a new family of VLMs that leverage priors from world models and are on a promising path towards generalist vision learners.
comment: Project page: https://dyva-worldlm.github.io
☆ Feature Identification for Hierarchical Contrastive Learning ICASSP 2026
Hierarchical classification is a crucial task in many applications, where objects are organized into multiple levels of categories. However, conventional classification approaches often neglect inherent inter-class relationships at different hierarchy levels, thus missing important supervisory signals. Thus, we propose two novel hierarchical contrastive learning (HMLC) methods. The first, leverages a Gaussian Mixture Model (G-HMLC) and the second uses an attention mechanism to capture hierarchy-specific features (A-HMLC), imitating human processing. Our approach explicitly models inter-class relationships and imbalanced class distribution at higher hierarchy levels, enabling fine-grained clustering across all hierarchy levels. On the competitive CIFAR100 and ModelNet40 datasets, our method achieves state-of-the-art performance in linear evaluation, outperforming existing hierarchical contrastive learning methods by 2 percentage points in terms of accuracy. The effectiveness of our approach is backed by both quantitative and qualitative results, highlighting its potential for applications in computer vision and beyond.
comment: Submitted to ICASSP 2026
☆ NSARM: Next-Scale Autoregressive Modeling for Robust Real-World Image Super-Resolution
Most recent real-world image super-resolution (Real-ISR) methods employ pre-trained text-to-image (T2I) diffusion models to synthesize the high-quality image either from random Gaussian noise, which yields realistic results but is slow due to iterative denoising, or directly from the input low-quality image, which is efficient but at the price of lower output quality. These approaches train ControlNet or LoRA modules while keeping the pre-trained model fixed, which often introduces over-enhanced artifacts and hallucinations, suffering from the robustness to inputs of varying degradations. Recent visual autoregressive (AR) models, such as pre-trained Infinity, can provide strong T2I generation capabilities while offering superior efficiency by using the bitwise next-scale prediction strategy. Building upon next-scale prediction, we introduce a robust Real-ISR framework, namely Next-Scale Autoregressive Modeling (NSARM). Specifically, we train NSARM in two stages: a transformation network is first trained to map the input low-quality image to preliminary scales, followed by an end-to-end full-model fine-tuning. Such a comprehensive fine-tuning enhances the robustness of NSARM in Real-ISR tasks without compromising its generative capability. Extensive quantitative and qualitative evaluations demonstrate that as a pure AR model, NSARM achieves superior visual results over existing Real-ISR methods while maintaining a fast inference speed. Most importantly, it demonstrates much higher robustness to the quality of input images, showing stronger generalization performance. Project page: https://github.com/Xiangtaokong/NSARM
☆ PhraseStereo: The First Open-Vocabulary Stereo Image Segmentation Dataset ICCV 2025
Understanding how natural language phrases correspond to specific regions in images is a key challenge in multimodal semantic segmentation. Recent advances in phrase grounding are largely limited to single-view images, neglecting the rich geometric cues available in stereo vision. For this, we introduce PhraseStereo, the first novel dataset that brings phrase-region segmentation to stereo image pairs. PhraseStereo builds upon the PhraseCut dataset by leveraging GenStereo to generate accurate right-view images from existing single-view data, enabling the extension of phrase grounding into the stereo domain. This new setting introduces unique challenges and opportunities for multimodal learning, particularly in leveraging depth cues for more precise and context-aware grounding. By providing stereo image pairs with aligned segmentation masks and phrase annotations, PhraseStereo lays the foundation for future research at the intersection of language, vision, and 3D perception, encouraging the development of models that can reason jointly over semantics and geometry. The PhraseStereo dataset will be released online upon acceptance of this work.
comment: Accepted to X-Sense Ego-Exo Sensing for Smart Mobility Workshop at ICCV 2025 Conference
☆ What You See is What You Ask: Evaluating Audio Descriptions EMNLP 2025
Audio descriptions (ADs) narrate important visual details in movies, enabling Blind and Low Vision (BLV) users to understand narratives and appreciate visual details. Existing works in automatic AD generation mostly focus on few-second trimmed clips, and evaluate them by comparing against a single ground-truth reference AD. However, writing ADs is inherently subjective. Through alignment and analysis of two independent AD tracks for the same movies, we quantify the subjectivity in when and whether to describe, and what and how to highlight. Thus, we show that working with trimmed clips is inadequate. We propose ADQA, a QA benchmark that evaluates ADs at the level of few-minute long, coherent video segments, testing whether they would help BLV users understand the story and appreciate visual details. ADQA features visual appreciation (VA) questions about visual facts and narrative understanding (NU) questions based on the plot. Through ADQA, we show that current AD generation methods lag far behind human-authored ADs. We conclude with several recommendations for future work and introduce a public leaderboard for benchmarking.
comment: EMNLP 2025 Main Track Long Paper
☆ From Seeing to Predicting: A Vision-Language Framework for Trajectory Forecasting and Controlled Video Generation
Current video generation models produce physically inconsistent motion that violates real-world dynamics. We propose TrajVLM-Gen, a two-stage framework for physics-aware image-to-video generation. First, we employ a Vision Language Model to predict coarse-grained motion trajectories that maintain consistency with real-world physics. Second, these trajectories guide video generation through attention-based mechanisms for fine-grained motion refinement. We build a trajectory prediction dataset based on video tracking data with realistic motion patterns. Experiments on UCF-101 and MSR-VTT demonstrate that TrajVLM-Gen outperforms existing methods, achieving competitive FVD scores of 545 on UCF-101 and 539 on MSR-VTT.
☆ Solar PV Installation Potential Assessment on Building Facades Based on Vision and Language Foundation Models
Building facades represent a significant untapped resource for solar energy generation in dense urban environments, yet assessing their photovoltaic (PV) potential remains challenging due to complex geometries and semantic com ponents. This study introduces SF-SPA (Semantic Facade Solar-PV Assessment), an automated framework that transforms street-view photographs into quantitative PV deployment assessments. The approach combines com puter vision and artificial intelligence techniques to address three key challenges: perspective distortion correction, semantic understanding of facade elements, and spatial reasoning for PV layout optimization. Our four-stage pipeline processes images through geometric rectification, zero-shot semantic segmentation, Large Language Model (LLM) guided spatial reasoning, and energy simulation. Validation across 80 buildings in four countries demonstrates ro bust performance with mean area estimation errors of 6.2% ± 2.8% compared to expert annotations. The auto mated assessment requires approximately 100 seconds per building, a substantial gain in efficiency over manual methods. Simulated energy yield predictions confirm the method's reliability and applicability for regional poten tial studies, urban energy planning, and building-integrated photovoltaic (BIPV) deployment. Code is available at: https:github.com/CodeAXu/Solar-PV-Installation
☆ MetaLogic: Robustness Evaluation of Text-to-Image Models via Logically Equivalent Prompts
Recent advances in text-to-image (T2I) models, especially diffusion-based architectures, have significantly improved the visual quality of generated images. However, these models continue to struggle with a critical limitation: maintaining semantic consistency when input prompts undergo minor linguistic variations. Despite being logically equivalent, such prompt pairs often yield misaligned or semantically inconsistent images, exposing a lack of robustness in reasoning and generalisation. To address this, we propose MetaLogic, a novel evaluation framework that detects T2I misalignment without relying on ground truth images. MetaLogic leverages metamorphic testing, generating image pairs from prompts that differ grammatically but are semantically identical. By directly comparing these image pairs, the framework identifies inconsistencies that signal failures in preserving the intended meaning, effectively diagnosing robustness issues in the model's logic understanding. Unlike existing evaluation methods that compare a generated image to a single prompt, MetaLogic evaluates semantic equivalence between paired images, offering a scalable, ground-truth-free approach to identifying alignment failures. It categorises these alignment errors (e.g., entity omission, duplication, positional misalignment) and surfaces counterexamples that can be used for model debugging and refinement. We evaluate MetaLogic across multiple state-of-the-art T2I models and reveal consistent robustness failures across a range of logical constructs. We find that even the SOTA text-to-image models like Flux.dev and DALLE-3 demonstrate a 59 percent and 71 percent misalignment rate, respectively. Our results show that MetaLogic is not only efficient and scalable, but also effective in uncovering fine-grained logical inconsistencies that are overlooked by existing evaluation metrics.
comment: ICFEM 2025
☆ Uncertainty-Aware Concept Bottleneck Models with Enhanced Interpretability ECML-PKDD 2025
In the context of image classification, Concept Bottleneck Models (CBMs) first embed images into a set of human-understandable concepts, followed by an intrinsically interpretable classifier that predicts labels based on these intermediate representations. While CBMs offer a semantically meaningful and interpretable classification pipeline, they often sacrifice predictive performance compared to end-to-end convolutional neural networks. Moreover, the propagation of uncertainty from concept predictions to final label decisions remains underexplored. In this paper, we propose a novel uncertainty-aware and interpretable classifier for the second stage of CBMs. Our method learns a set of binary class-level concept prototypes and uses the distances between predicted concept vectors and each class prototype as both a classification score and a measure of uncertainty. These prototypes also serve as interpretable classification rules, indicating which concepts should be present in an image to justify a specific class prediction. The proposed framework enhances both interpretability and robustness by enabling conformal prediction for uncertain or outlier inputs based on their deviation from the learned binary class-level concept prototypes.
comment: This paper has been accepted for the Workshop AIMLAI at ECML-PKDD 2025
☆ ZQBA: Zero Query Black-box Adversarial Attack
Current black-box adversarial attacks either require multiple queries or diffusion models to produce adversarial samples that can impair the target model performance. However, these methods require training a surrogate loss or diffusion models to produce adversarial samples, which limits their applicability in real-world settings. Thus, we propose a Zero Query Black-box Adversarial (ZQBA) attack that exploits the representations of Deep Neural Networks (DNNs) to fool other networks. Instead of requiring thousands of queries to produce deceiving adversarial samples, we use the feature maps obtained from a DNN and add them to clean images to impair the classification of a target model. The results suggest that ZQBA can transfer the adversarial samples to different models and across various datasets, namely CIFAR and Tiny ImageNet. The experiments also show that ZQBA is more effective than state-of-the-art black-box attacks with a single query, while maintaining the imperceptibility of perturbations, evaluated both quantitatively (SSIM) and qualitatively, emphasizing the vulnerabilities of employing DNNs in real-world contexts. All the source code is available at https://github.com/Joana-Cabral/ZQBA.
comment: Submitted to ICAART Conference
☆ Multi-Objective Task-Aware Predictor for Image-Text Alignment
Evaluating image-text alignment while reflecting human preferences across multiple aspects is a significant issue for the development of reliable vision-language applications. It becomes especially crucial in real-world scenarios where multiple valid descriptions exist depending on contexts or user needs. However, research progress is hindered by the lack of comprehensive benchmarks and existing evaluation predictors lacking at least one of these key properties: (1) Alignment with human judgments, (2) Long-sequence processing, (3) Inference efficiency, and (4) Applicability to multi-objective scoring. To address these challenges, we propose a plug-and-play architecture to build a robust predictor, MULTI-TAP (Multi-Objective Task-Aware Predictor), capable of both multi and single-objective scoring. MULTI-TAP can produce a single overall score, utilizing a reward head built on top of a large vision-language model (LVLMs). We show that MULTI-TAP is robust in terms of application to different LVLM architectures, achieving significantly higher performance than existing metrics and even on par with the GPT-4o-based predictor, G-VEval, with a smaller size (7-8B). By training a lightweight ridge regression layer on the frozen hidden states of a pre-trained LVLM, MULTI-TAP can produce fine-grained scores for multiple human-interpretable objectives. MULTI-TAP performs better than VisionREWARD, a high-performing multi-objective reward model, in both performance and efficiency on multi-objective benchmarks and our newly released text-image-to-text dataset, EYE4ALL. Our new dataset, consisting of chosen/rejected human preferences (EYE4ALLPref) and human-annotated fine-grained scores across seven dimensions (EYE4ALLMulti), can serve as a foundation for developing more accessible AI systems by capturing the underlying preferences of users, including blind and low-vision (BLV) individuals.
comment: 28 pages, 10 figures, 21 tables
☆ Defect Segmentation in OCT scans of ceramic parts for non-destructive inspection using deep learning
Non-destructive testing (NDT) is essential in ceramic manufacturing to ensure the quality of components without compromising their integrity. In this context, Optical Coherence Tomography (OCT) enables high-resolution internal imaging, revealing defects such as pores, delaminations, or inclusions. This paper presents an automatic defect detection system based on Deep Learning (DL), trained on OCT images with manually segmented annotations. A neural network based on the U-Net architecture is developed, evaluating multiple experimental configurations to enhance its performance. Post-processing techniques enable both quantitative and qualitative evaluation of the predictions. The system shows an accurate behavior of 0.979 Dice Score, outperforming comparable studies. The inference time of 18.98 seconds per volume supports its viability for detecting inclusions, enabling more efficient, reliable, and automated quality control.
comment: 12 pages, 3 figures, 4 tables. Paper accepted and presented at IDEAL 2025 Conference
☆ Extreme Blind Image Restoration via Prompt-Conditioned Information Bottleneck
Blind Image Restoration (BIR) methods have achieved remarkable success but falter when faced with Extreme Blind Image Restoration (EBIR), where inputs suffer from severe, compounded degradations beyond their training scope. Directly learning a mapping from extremely low-quality (ELQ) to high-quality (HQ) images is challenging due to the massive domain gap, often leading to unnatural artifacts and loss of detail. To address this, we propose a novel framework that decomposes the intractable ELQ-to-HQ restoration process. We first learn a projector that maps an ELQ image onto an intermediate, less-degraded LQ manifold. This intermediate image is then restored to HQ using a frozen, off-the-shelf BIR model. Our approach is grounded in information theory; we provide a novel perspective of image restoration as an Information Bottleneck problem and derive a theoretically-driven objective to train our projector. This loss function effectively stabilizes training by balancing a low-quality reconstruction term with a high-quality prior-matching term. Our framework enables Look Forward Once (LFO) for inference-time prompt refinement, and supports plug-and-play strengthening of existing image restoration models without need for finetuning. Extensive experiments under severe degradation regimes provide a thorough analysis of the effectiveness of our work.
☆ DEAP DIVE: Dataset Investigation with Vision transformers for EEG evaluation ICCV2025
Accurately predicting emotions from brain signals has the potential to achieve goals such as improving mental health, human-computer interaction, and affective computing. Emotion prediction through neural signals offers a promising alternative to traditional methods, such as self-assessment and facial expression analysis, which can be subjective or ambiguous. Measurements of the brain activity via electroencephalogram (EEG) provides a more direct and unbiased data source. However, conducting a full EEG is a complex, resource-intensive process, leading to the rise of low-cost EEG devices with simplified measurement capabilities. This work examines how subsets of EEG channels from the DEAP dataset can be used for sufficiently accurate emotion prediction with low-cost EEG devices, rather than fully equipped EEG-measurements. Using Continuous Wavelet Transformation to convert EEG data into scaleograms, we trained a vision transformer (ViT) model for emotion classification. The model achieved over 91,57% accuracy in predicting 4 quadrants (high/low per arousal and valence) with only 12 measuring points (also referred to as channels). Our work shows clearly, that a significant reduction of input channels yields high results compared to state-of-the-art results of 96,9% with 32 channels. Training scripts to reproduce our code can be found here: https://gitlab.kit.edu/kit/aifb/ATKS/public/AutoSMiLeS/DEAP-DIVE.
comment: Accepted for publication at ABAW Workshop at ICCV2025
☆ Deep learning motion correction of quantitative stress perfusion cardiovascular magnetic resonance
Background: Quantitative stress perfusion cardiovascular magnetic resonance (CMR) is a powerful tool for assessing myocardial ischemia. Motion correction is essential for accurate pixel-wise mapping but traditional registration-based methods are slow and sensitive to acquisition variability, limiting robustness and scalability. Methods: We developed an unsupervised deep learning-based motion correction pipeline that replaces iterative registration with efficient one-shot estimation. The method corrects motion in three steps and uses robust principal component analysis to reduce contrast-related effects. It aligns the perfusion series and auxiliary images (arterial input function and proton density-weighted series). Models were trained and validated on multivendor data from 201 patients, with 38 held out for testing. Performance was assessed via temporal alignment and quantitative perfusion values, compared to a previously published registration-based method. Results: The deep learning approach significantly improved temporal smoothness of time-intensity curves (p<0.001). Myocardial alignment (Dice = 0.92 (0.04) and 0.91 (0.05)) was comparable to the baseline and superior to before registration (Dice = 0.80 (0.09), p<0.001). Perfusion maps showed reduced motion, with lower standard deviation in the myocardium (0.52 (0.39) ml/min/g) compared to baseline (0.55 (0.44) ml/min/g). Processing time was reduced 15-fold. Conclusion: This deep learning pipeline enables fast, robust motion correction for stress perfusion CMR, improving accuracy across dynamic and auxiliary images. Trained on multivendor data, it generalizes across sequences and may facilitate broader clinical adoption of quantitative perfusion imaging.
comment: Under review
☆ From 2D to 3D, Deep Learning-based Shape Reconstruction in Magnetic Resonance Imaging: A Review
Deep learning-based 3-dimensional (3D) shape reconstruction from 2-dimensional (2D) magnetic resonance imaging (MRI) has become increasingly important in medical disease diagnosis, treatment planning, and computational modeling. This review surveys the methodological landscape of 3D MRI reconstruction, focusing on 4 primary approaches: point cloud, mesh-based, shape-aware, and volumetric models. For each category, we analyze the current state-of-the-art techniques, their methodological foundation, limitations, and applications across anatomical structures. We provide an extensive overview ranging from cardiac to neurological to lung imaging. We also focus on the clinical applicability of models to diseased anatomy, and the influence of their training and testing data. We examine publicly available datasets, computational demands, and evaluation metrics. Finally, we highlight the emerging research directions including multimodal integration and cross-modality frameworks. This review aims to provide researchers with a structured overview of current 3D reconstruction methodologies to identify opportunities for advancing deep learning towards more robust, generalizable, and clinically impactful solutions.
☆ Training-free Uncertainty Guidance for Complex Visual Tasks with MLLMs
Multimodal Large Language Models (MLLMs) often struggle with fine-grained perception, such as identifying small objects in high-resolution images or finding key moments in long videos. Existing works typically rely on complicated, task-specific fine-tuning, which limits their generalizability and increases model complexity. In this work, we propose an effective, training-free framework that uses an MLLM's intrinsic uncertainty as a proactive guidance signal. Our core insight is that a model's output entropy decreases when presented with relevant visual information. We introduce a unified mechanism that scores candidate visual inputs by response uncertainty, enabling the model to autonomously focus on the most salient data. We apply this simple principle to three complex visual tasks: Visual Search, Long Video Understanding, and Temporal Grounding, allowing off-the-shelf MLLMs to achieve performance competitive with specialized, fine-tuned methods. Our work validates that harnessing intrinsic uncertainty is a powerful, general strategy for enhancing fine-grained multimodal performance.
Graph Integrated Multimodal Concept Bottleneck Model
With growing demand for interpretability in deep learning, especially in high stakes domains, Concept Bottleneck Models (CBMs) address this by inserting human understandable concepts into the prediction pipeline, but they are generally single modal and ignore structured concept relationships. To overcome these limitations, we present MoE-SGT, a reasoning driven framework that augments CBMs with a structure injecting Graph Transformer and a Mixture of Experts (MoE) module. We construct answer-concept and answer-question graphs for multimodal inputs to explicitly model the structured relationships among concepts. Subsequently, we integrate Graph Transformer to capture multi level dependencies, addressing the limitations of traditional Concept Bottleneck Models in modeling concept interactions. However, it still encounters bottlenecks in adapting to complex concept patterns. Therefore, we replace the feed forward layers with a Mixture of Experts (MoE) module, enabling the model to have greater capacity in learning diverse concept relationships while dynamically allocating reasoning tasks to different sub experts, thereby significantly enhancing the model's adaptability to complex concept reasoning. MoE-SGT achieves higher accuracy than other concept bottleneck networks on multiple datasets by modeling structured relationships among concepts and utilizing a dynamic expert selection mechanism.
☆ ProtoMask: Segmentation-Guided Prototype Learning
XAI gained considerable importance in recent years. Methods based on prototypical case-based reasoning have shown a promising improvement in explainability. However, these methods typically rely on additional post-hoc saliency techniques to explain the semantics of learned prototypes. Multiple critiques have been raised about the reliability and quality of such techniques. For this reason, we study the use of prominent image segmentation foundation models to improve the truthfulness of the mapping between embedding and input space. We aim to restrict the computation area of the saliency map to a predefined semantic image patch to reduce the uncertainty of such visualizations. To perceive the information of an entire image, we use the bounding box from each generated segmentation mask to crop the image. Each mask results in an individual input in our novel model architecture named ProtoMask. We conduct experiments on three popular fine-grained classification datasets with a wide set of metrics, providing a detailed overview on explainability characteristics. The comparison with other popular models demonstrates competitive performance and unique explainability features of our model. https://github.com/uos-sis/quanproto
☆ Adaptive Event Stream Slicing for Open-Vocabulary Event-Based Object Detection via Vision-Language Knowledge Distillation
Event cameras offer advantages in object detection tasks due to high-speed response, low latency, and robustness to motion blur. However, event cameras lack texture and color information, making open-vocabulary detection particularly challenging. Current event-based detection methods are typically trained on predefined categories, limiting their ability to generalize to novel objects, where encountering previously unseen objects is common. Vision-language models (VLMs) have enabled open-vocabulary object detection in RGB images. However, the modality gap between images and event streams makes it ineffective to directly transfer CLIP to event data, as CLIP was not designed for event streams. To bridge this gap, we propose an event-image knowledge distillation framework that leverages CLIP's semantic understanding to achieve open-vocabulary object detection on event data. Instead of training CLIP directly on event streams, we use image frames as inputs to a teacher model, guiding the event-based student model to learn CLIP's rich visual representations. Through spatial attention-based distillation, the student network learns meaningful visual features directly from raw event inputs while inheriting CLIP's broad visual knowledge. Furthermore, to prevent information loss due to event data segmentation, we design a hybrid spiking neural network (SNN) and convolutional neural network (CNN) framework. Unlike fixed-group event segmentation methods, which often discard crucial temporal information, our SNN adaptively determines the optimal event segmentation moments, ensuring that key temporal features are extracted. The extracted event features are then processed by CNNs for object detection.
☆ Beyond one-hot encoding? Journey into compact encoding for large multi-class segmentation MICCAI 2025
This work presents novel methods to reduce computational and memory requirements for medical image segmentation with a large number of classes. We curiously observe challenges in maintaining state-of-the-art segmentation performance with all of the explored options. Standard learning-based methods typically employ one-hot encoding of class labels. The computational complexity and memory requirements thus increase linearly with the number of classes. We propose a family of binary encoding approaches instead of one-hot encoding to reduce the computational complexity and memory requirements to logarithmic in the number of classes. In addition to vanilla binary encoding, we investigate the effects of error-correcting output codes (ECOCs), class weighting, hard/soft decoding, class-to-codeword assignment, and label embedding trees. We apply the methods to the use case of whole brain parcellation with 108 classes based on 3D MRI images. While binary encodings have proven efficient in so-called extreme classification problems in computer vision, we faced challenges in reaching state-of-the-art segmentation quality with binary encodings. Compared to one-hot encoding (Dice Similarity Coefficient (DSC) = 82.4 (2.8)), we report reduced segmentation performance with the binary segmentation approaches, achieving DSCs in the range from 39.3 to 73.8. Informative negative results all too often go unpublished. We hope that this work inspires future research of compact encoding strategies for large multi-class segmentation tasks.
comment: Presented at EMA4MICCAI 2025 Workshop
☆ A Geometric Unification of Generative AI with Manifold-Probabilistic Projection Models
The foundational premise of generative AI for images is the assumption that images are inherently low-dimensional objects embedded within a high-dimensional space. Additionally, it is often implicitly assumed that thematic image datasets form smooth or piecewise smooth manifolds. Common approaches overlook the geometric structure and focus solely on probabilistic methods, approximating the probability distribution through universal approximation techniques such as the kernel method. In some generative models, the low dimensional nature of the data manifest itself by the introduction of a lower dimensional latent space. Yet, the probability distribution in the latent or the manifold coordinate space is considered uninteresting and is predefined or considered uniform. This study unifies the geometric and probabilistic perspectives by providing a geometric framework and a kernel-based probabilistic method simultaneously. The resulting framework demystifies diffusion models by interpreting them as a projection mechanism onto the manifold of ``good images''. This interpretation leads to the construction of a new deterministic model, the Manifold-Probabilistic Projection Model (MPPM), which operates in both the representation (pixel) space and the latent space. We demonstrate that the Latent MPPM (LMPPM) outperforms the Latent Diffusion Model (LDM) across various datasets, achieving superior results in terms of image restoration and generation.
☆ Batch-CAM: Introduction to better reasoning in convolutional deep learning models
Understanding the inner workings of deep learning models is crucial for advancing artificial intelligence, particularly in high-stakes fields such as healthcare, where accurate explanations are as vital as precision. This paper introduces Batch-CAM, a novel training paradigm that fuses a batch implementation of the Grad-CAM algorithm with a prototypical reconstruction loss. This combination guides the model to focus on salient image features, thereby enhancing its performance across classification tasks. Our results demonstrate that Batch-CAM achieves a simultaneous improvement in accuracy and image reconstruction quality while reducing training and inference times. By ensuring models learn from evidence-relevant information,this approach makes a relevant contribution to building more transparent, explainable, and trustworthy AI systems.
comment: 18 pages, 7 figures, submitted to SN Computer Science Springer Nature
Unsupervised Unfolded rPCA (U2-rPCA): Deep Interpretable Clutter Filtering for Ultrasound Microvascular Imaging
High-sensitivity clutter filtering is a fundamental step in ultrasound microvascular imaging. Singular value decomposition (SVD) and robust principal component analysis (rPCA) are the main clutter filtering strategies. However, both strategies are limited in feature modeling and tissue-blood flow separation for high-quality microvascular imaging. Recently, deep learning-based clutter filtering has shown potential in more thoroughly separating tissue and blood flow signals. However, the existing supervised filters face the challenges of interpretability and lack of in-vitro and in-vivo ground truths. While the interpretability issue can be addressed by algorithm deep unfolding, the training ground truth remains unsolved. To this end, this paper proposes an unsupervised unfolded rPCA (U2-rPCA) method that preserves mathematical interpretability and is insusceptible to learning labels. Specifically, U2-rPCA is unfolded from an iteratively reweighted least squares (IRLS) rPCA baseline with intrinsic low-rank and sparse regularization. A sparse-enhancement unit is added to the network to strengthen its capability to capture the sparse micro-flow signals. U2-rPCA is like an adaptive filter that is trained with part of the image sequence and then used for the following frames. Experimental validations on a in-silico dataset and public in-vivo datasets demonstrated the outperformance of U2-rPCA when compared with the SVD-based method, the rPCA baseline, and another deep learning-based filter. Particularly, the proposed method improved the contrastto-noise ratio (CNR) of the power Doppler image by 2 dB to 10 dB when compared with other methods. Furthermore, the effectiveness of the building modules of U2-rPCA was validated through ablation studies.
☆ Align Your Tangent: Training Better Consistency Models via Manifold-Aligned Tangents
With diffusion and flow matching models achieving state-of-the-art generating performance, the interest of the community now turned to reducing the inference time without sacrificing sample quality. Consistency Models (CMs), which are trained to be consistent on diffusion or probability flow ordinary differential equation (PF-ODE) trajectories, enable one or two-step flow or diffusion sampling. However, CMs typically require prolonged training with large batch sizes to obtain competitive sample quality. In this paper, we examine the training dynamics of CMs near convergence and discover that CM tangents -- CM output update directions -- are quite oscillatory, in the sense that they move parallel to the data manifold, not towards the manifold. To mitigate oscillatory tangents, we propose a new loss function, called the manifold feature distance (MFD), which provides manifold-aligned tangents that point toward the data manifold. Consequently, our method -- dubbed Align Your Tangent (AYT) -- can accelerate CM training by orders of magnitude and even out-perform the learned perceptual image patch similarity metric (LPIPS). Furthermore, we find that our loss enables training with extremely small batch sizes without compromising sample quality. Code: https://github.com/1202kbs/AYT
comment: Preprint
☆ Weakly Supervised Cloud Detection Combining Spectral Features and Multi-Scale Deep Network
Clouds significantly affect the quality of optical satellite images, which seriously limits their precise application. Recently, deep learning has been widely applied to cloud detection and has achieved satisfactory results. However, the lack of distinctive features in thin clouds and the low quality of training samples limit the cloud detection accuracy of deep learning methods, leaving space for further improvements. In this paper, we propose a weakly supervised cloud detection method that combines spectral features and multi-scale scene-level deep network (SpecMCD) to obtain highly accurate pixel-level cloud masks. The method first utilizes a progressive training framework with a multi-scale scene-level dataset to train the multi-scale scene-level cloud detection network. Pixel-level cloud probability maps are then obtained by combining the multi-scale probability maps and cloud thickness map based on the characteristics of clouds in dense cloud coverage and large cloud-area coverage images. Finally, adaptive thresholds are generated based on the differentiated regions of the scene-level cloud masks at different scales and combined with distance-weighted optimization to obtain binary cloud masks. Two datasets, WDCD and GF1MS-WHU, comprising a total of 60 Gaofen-1 multispectral (GF1-MS) images, were used to verify the effectiveness of the proposed method. Compared to the other weakly supervised cloud detection methods such as WDCD and WSFNet, the F1-score of the proposed SpecMCD method shows an improvement of over 7.82%, highlighting the superiority and potential of the SpecMCD method for cloud detection under different cloud coverage conditions.
☆ OTTER: Open-Tagging via Text-Image Representation for Multi-modal Understanding ICDM 2025
We introduce OTTER, a unified open-set multi-label tagging framework that harmonizes the stability of a curated, predefined category set with the adaptability of user-driven open tags. OTTER is built upon a large-scale, hierarchically organized multi-modal dataset, collected from diverse online repositories and annotated through a hybrid pipeline combining automated vision-language labeling with human refinement. By leveraging a multi-head attention architecture, OTTER jointly aligns visual and textual representations with both fixed and open-set label embeddings, enabling dynamic and semantically consistent tagging. OTTER consistently outperforms competitive baselines on two benchmark datasets: it achieves an overall F1 score of 0.81 on Otter and 0.75 on Favorite, surpassing the next-best results by margins of 0.10 and 0.02, respectively. OTTER attains near-perfect performance on open-set labels, with F1 of 0.99 on Otter and 0.97 on Favorite, while maintaining competitive accuracy on predefined labels. These results demonstrate OTTER's effectiveness in bridging closed-set consistency with open-vocabulary flexibility for multi-modal tagging applications.
comment: Accepted at ICDM 2025 BigIS Workshop
☆ FIN: Fast Inference Network for Map Segmentation
Multi-sensor fusion in autonomous vehicles is becoming more common to offer a more robust alternative for several perception tasks. This need arises from the unique contribution of each sensor in collecting data: camera-radar fusion offers a cost-effective solution by combining rich semantic information from cameras with accurate distance measurements from radar, without incurring excessive financial costs or overwhelming data processing requirements. Map segmentation is a critical task for enabling effective vehicle behaviour in its environment, yet it continues to face significant challenges in achieving high accuracy and meeting real-time performance requirements. Therefore, this work presents a novel and efficient map segmentation architecture, using cameras and radars, in the \acrfull{bev} space. Our model introduces a real-time map segmentation architecture considering aspects such as high accuracy, per-class balancing, and inference time. To accomplish this, we use an advanced loss set together with a new lightweight head to improve the perception results. Our results show that, with these modifications, our approach achieves results comparable to large models, reaching 53.5 mIoU, while also setting a new benchmark for inference time, improving it by 260\% over the strongest baseline models.
☆ Erased, But Not Forgotten: Erased Rectified Flow Transformers Still Remain Unsafe Under Concept Attack
Recent advances in text-to-image (T2I) diffusion models have enabled impressive generative capabilities, but they also raise significant safety concerns due to the potential to produce harmful or undesirable content. While concept erasure has been explored as a mitigation strategy, most existing approaches and corresponding attack evaluations are tailored to Stable Diffusion (SD) and exhibit limited effectiveness when transferred to next-generation rectified flow transformers such as Flux. In this work, we present ReFlux, the first concept attack method specifically designed to assess the robustness of concept erasure in the latest rectified flow-based T2I framework. Our approach is motivated by the observation that existing concept erasure techniques, when applied to Flux, fundamentally rely on a phenomenon known as attention localization. Building on this insight, we propose a simple yet effective attack strategy that specifically targets this property. At its core, a reverse-attention optimization strategy is introduced to effectively reactivate suppressed signals while stabilizing attention. This is further reinforced by a velocity-guided dynamic that enhances the robustness of concept reactivation by steering the flow matching process, and a consistency-preserving objective that maintains the global layout and preserves unrelated content. Extensive experiments consistently demonstrate the effectiveness and efficiency of the proposed attack method, establishing a reliable benchmark for evaluating the robustness of concept erasure strategies in rectified flow transformers.
☆ LAKAN: Landmark-assisted Adaptive Kolmogorov-Arnold Network for Face Forgery Detection
The rapid development of deepfake generation techniques necessitates robust face forgery detection algorithms. While methods based on Convolutional Neural Networks (CNNs) and Transformers are effective, there is still room for improvement in modeling the highly complex and non-linear nature of forgery artifacts. To address this issue, we propose a novel detection method based on the Kolmogorov-Arnold Network (KAN). By replacing fixed activation functions with learnable splines, our KAN-based approach is better suited to this challenge. Furthermore, to guide the network's focus towards critical facial areas, we introduce a Landmark-assisted Adaptive Kolmogorov-Arnold Network (LAKAN) module. This module uses facial landmarks as a structural prior to dynamically generate the internal parameters of the KAN, creating an instance-specific signal that steers a general-purpose image encoder towards the most informative facial regions with artifacts. This core innovation creates a powerful combination between geometric priors and the network's learning process. Extensive experiments on multiple public datasets show that our proposed method achieves superior performance.
comment: 5 pages, 3 figures. This work has been submitted to the IEEE for possible publication
☆ Virtual Fashion Photo-Shoots: Building a Large-Scale Garment-Lookbook Dataset
Fashion image generation has so far focused on narrow tasks such as virtual try-on, where garments appear in clean studio environments. In contrast, editorial fashion presents garments through dynamic poses, diverse locations, and carefully crafted visual narratives. We introduce the task of virtual fashion photo-shoot, which seeks to capture this richness by transforming standardized garment images into contextually grounded editorial imagery. To enable this new direction, we construct the first large-scale dataset of garment-lookbook pairs, bridging the gap between e-commerce and fashion media. Because such pairs are not readily available, we design an automated retrieval pipeline that aligns garments across domains, combining visual-language reasoning with object-level localization. We construct a dataset with three garment-lookbook pair accuracy levels: high quality (10,000 pairs), medium quality (50,000 pairs), and low quality (300,000 pairs). This dataset offers a foundation for models that move beyond catalog-style generation and toward fashion imagery that reflects creativity, atmosphere, and storytelling.
☆ UCD: Unconditional Discriminator Promotes Nash Equilibrium in GANs
Adversarial training turns out to be the key to one-step generation, especially for Generative Adversarial Network (GAN) and diffusion model distillation. Yet in practice, GAN training hardly converges properly and struggles in mode collapse. In this work, we quantitatively analyze the extent of Nash equilibrium in GAN training, and conclude that redundant shortcuts by inputting condition in $D$ disables meaningful knowledge extraction. We thereby propose to employ an unconditional discriminator (UCD), in which $D$ is enforced to extract more comprehensive and robust features with no condition injection. In this way, $D$ is able to leverage better knowledge to supervise $G$, which promotes Nash equilibrium in GAN literature. Theoretical guarantee on compatibility with vanilla GAN theory indicates that UCD can be implemented in a plug-in manner. Extensive experiments confirm the significant performance improvements with high efficiency. For instance, we achieved \textbf{1.47 FID} on the ImageNet-64 dataset, surpassing StyleGAN-XL and several state-of-the-art one-step diffusion models. The code will be made publicly available.
☆ Robust Context-Aware Object Recognition
In visual recognition, both the object of interest (referred to as foreground, FG, for simplicity) and its surrounding context (background, BG) play an important role. However, standard supervised learning often leads to unintended over-reliance on the BG, known as shortcut learning of spurious correlations, limiting model robustness in real-world deployment settings. In the literature, the problem is mainly addressed by suppressing the BG, sacrificing context information for improved generalization. We propose RCOR -- Robust Context-Aware Object Recognition -- the first approach that jointly achieves robustness and context-awareness without compromising either. RCOR treats localization as an integral part of recognition to decouple object-centric and context-aware modelling, followed by a robust, non-parametric fusion. It improves the performance of both supervised models and VLM on datasets with both in-domain and out-of-domain BG, even without fine-tuning. The results confirm that localization before recognition is now possible even in complex scenes as in ImageNet-1k.
☆ Disentangling Foreground and Background for vision-Language Navigation via Online Augmentation
Following language instructions, vision-language navigation (VLN) agents are tasked with navigating unseen environments. While augmenting multifaceted visual representations has propelled advancements in VLN, the significance of foreground and background in visual observations remains underexplored. Intuitively, foreground regions provide semantic cues, whereas the background encompasses spatial connectivity information. Inspired on this insight, we propose a Consensus-driven Online Feature Augmentation strategy (COFA) with alternative foreground and background features to facilitate the navigable generalization. Specifically, we first leverage semantically-enhanced landmark identification to disentangle foreground and background as candidate augmented features. Subsequently, a consensus-driven online augmentation strategy encourages the agent to consolidate two-stage voting results on feature preferences according to diverse instructions and navigational locations. Experiments on REVERIE and R2R demonstrate that our online foreground-background augmentation boosts the generalization of baseline and attains state-of-the-art performance.
☆ LVLMs as inspectors: an agentic framework for category-level structural defect annotation
Automated structural defect annotation is essential for ensuring infrastructure safety while minimizing the high costs and inefficiencies of manual labeling. A novel agentic annotation framework, Agent-based Defect Pattern Tagger (ADPT), is introduced that integrates Large Vision-Language Models (LVLMs) with a semantic pattern matching module and an iterative self-questioning refinement mechanism. By leveraging optimized domain-specific prompting and a recursive verification process, ADPT transforms raw visual data into high-quality, semantically labeled defect datasets without any manual supervision. Experimental results demonstrate that ADPT achieves up to 98% accuracy in distinguishing defective from non-defective images, and 85%-98% annotation accuracy across four defect categories under class-balanced settings, with 80%-92% accuracy on class-imbalanced datasets. The framework offers a scalable and cost-effective solution for high-fidelity dataset construction, providing strong support for downstream tasks such as transfer learning and domain adaptation in structural damage assessment.
☆ Hybrid Training for Vision-Language-Action Models
Using Large Language Models to produce intermediate thoughts, a.k.a. Chain-of-thought (CoT), before providing an answer has been a successful recipe for solving complex language tasks. In robotics, similar embodied CoT strategies, generating thoughts before actions, have also been shown to lead to improved performance when using Vision-Language-Action models (VLAs). As these techniques increase the length of the model's generated outputs to include the thoughts, the inference time is negatively affected. Delaying an agent's actions in real-world executions, as in robotic manipulation settings, strongly affects the usability of a method, as tasks require long sequences of actions. However, is the generation of long chains-of-thought a strong prerequisite for achieving performance improvements? In this work, we explore the idea of Hybrid Training (HyT), a framework that enables VLAs to learn from thoughts and benefit from the associated performance gains, while enabling the possibility to leave out CoT generation during inference. Furthermore, by learning to conditionally predict a diverse set of outputs, HyT supports flexibility at inference time, enabling the model to either predict actions directly, generate thoughts or follow instructions. We evaluate the proposed method in a series of simulated benchmarks and real-world experiments.
☆ Multi-level Dynamic Style Transfer for NeRFs
As the application of neural radiance fields (NeRFs) in various 3D vision tasks continues to expand, numerous NeRF-based style transfer techniques have been developed. However, existing methods typically integrate style statistics into the original NeRF pipeline, often leading to suboptimal results in both content preservation and artistic stylization. In this paper, we present multi-level dynamic style transfer for NeRFs (MDS-NeRF), a novel approach that reengineers the NeRF pipeline specifically for stylization and incorporates an innovative dynamic style injection module. Particularly, we propose a multi-level feature adaptor that helps generate a multi-level feature grid representation from the content radiance field, effectively capturing the multi-scale spatial structure of the scene. In addition, we present a dynamic style injection module that learns to extract relevant style features and adaptively integrates them into the content patterns. The stylized multi-level features are then transformed into the final stylized view through our proposed multi-level cascade decoder. Furthermore, we extend our 3D style transfer method to support omni-view style transfer using 3D style references. Extensive experiments demonstrate that MDS-NeRF achieves outstanding performance for 3D style transfer, preserving multi-scale spatial structures while effectively transferring stylistic characteristics.
comment: Accepted by Computational Visual Media Journal (CVMJ)
☆ U-DFA: A Unified DINOv2-Unet with Dual Fusion Attention for Multi-Dataset Medical Segmentation
Accurate medical image segmentation plays a crucial role in overall diagnosis and is one of the most essential tasks in the diagnostic pipeline. CNN-based models, despite their extensive use, suffer from a local receptive field and fail to capture the global context. A common approach that combines CNNs with transformers attempts to bridge this gap but fails to effectively fuse the local and global features. With the recent emergence of VLMs and foundation models, they have been adapted for downstream medical imaging tasks; however, they suffer from an inherent domain gap and high computational cost. To this end, we propose U-DFA, a unified DINOv2-Unet encoder-decoder architecture that integrates a novel Local-Global Fusion Adapter (LGFA) to enhance segmentation performance. LGFA modules inject spatial features from a CNN-based Spatial Pattern Adapter (SPA) module into frozen DINOv2 blocks at multiple stages, enabling effective fusion of high-level semantic and spatial features. Our method achieves state-of-the-art performance on the Synapse and ACDC datasets with only 33\% of the trainable model parameters. These results demonstrate that U-DFA is a robust and scalable framework for medical image segmentation across multiple modalities.
☆ Color Models in Image Processing: A Review and Experimental Comparison
Color representation is essential in computer vision and human-computer interaction. There are multiple color models available. The choice of a suitable color model is critical for various applications. This paper presents a review of color models and spaces, analyzing their theoretical foundations, computational properties, and practical applications. We explore traditional models such as RGB, CMYK, and YUV, perceptually uniform spaces like CIELAB and CIELUV, and fuzzy-based approaches as well. Additionally, we conduct a series of experiments to evaluate color models from various perspectives, like device dependency, chromatic consistency, and computational complexity. Our experimental results reveal gaps in existing color models and show that the HS* family is the most aligned with human perception. The review also identifies key strengths and limitations of different models and outlines open challenges and future directions This study provides a reference for researchers in image processing, perceptual computing, digital media, and any other color-related field.
comment: This manuscript has been submitted to Scientific Reports for consideration
☆ Arbitrary Generative Video Interpolation
Video frame interpolation (VFI), which generates intermediate frames from given start and end frames, has become a fundamental function in video generation applications. However, existing generative VFI methods are constrained to synthesize a fixed number of intermediate frames, lacking the flexibility to adjust generated frame rates or total sequence duration. In this work, we present ArbInterp, a novel generative VFI framework that enables efficient interpolation at any timestamp and of any length. Specifically, to support interpolation at any timestamp, we propose the Timestamp-aware Rotary Position Embedding (TaRoPE), which modulates positions in temporal RoPE to align generated frames with target normalized timestamps. This design enables fine-grained control over frame timestamps, addressing the inflexibility of fixed-position paradigms in prior work. For any-length interpolation, we decompose long-sequence generation into segment-wise frame synthesis. We further design a novel appearance-motion decoupled conditioning strategy: it leverages prior segment endpoints to enforce appearance consistency and temporal semantics to maintain motion coherence, ensuring seamless spatiotemporal transitions across segments. Experimentally, we build comprehensive benchmarks for multi-scale frame interpolation (2x to 32x) to assess generalizability across arbitrary interpolation factors. Results show that ArbInterp outperforms prior methods across all scenarios with higher fidelity and more seamless spatiotemporal continuity. Project website: https://mcg-nju.github.io/ArbInterp-Web/.
☆ Glaucoma Detection and Structured OCT Report Generation via a Fine-tuned Multimodal Large Language Model
Objective: To develop an explainable multimodal large language model (MM-LLM) that (1) screens optic nerve head (ONH) OCT circle scans for quality and (2) generates structured clinical reports that include glaucoma diagnosis and sector-wise retinal nerve fiber layer (RNFL) thinning assessments. Design: Retrospective cohort study of 1,310 subjects contributing 43,849 Spectralis ONH OCT circle scans (1,331 glaucomatous and 867 healthy eyes) from the DIGS and ADAGES cohorts. Methods: A MM-LLM (Llama 3.2 Vision-Instruct model) was fine-tuned to generate clinical descriptions of OCT imaging data. Training data included paired OCT images and automatically generated, structured clinical reports that described global and sectoral RNFL thinning. Poor-quality scans were labeled as unusable and paired with a fixed refusal statement. The model was evaluated on a held-out test set for three tasks: quality assessment, glaucoma detection, and RNFL thinning classification across seven anatomical sectors. Evaluation metrics included accuracy, sensitivity, specificity, precision, and F1-score. Model description quality was also evaluated using standard text evaluation metrics. Results: The model achieved 0.90 accuracy and 0.98 specificity for quality triage. For glaucoma detection, accuracy was 0.86 (sensitivity 0.91, specificity 0.73, F1-score 0.91). RNFL thinning prediction accuracy ranged from 0.83 to 0.94, with highest performance in global and temporal sectors. Text generation scores showed strong alignment with reference reports (BLEU: 0.82; ROUGE-1: 0.94; ROUGE-2: 0.87; ROUGE-L: 0.92; BERTScore-F1: 0.99). Conclusions: The fine-tuned MM-LLM generated accurate clinical descriptions based on OCT imaging. The model achieved high accuracy in identifying image quality issues and detecting glaucoma. The model also provided sectoral descriptions of RNFL thinning to help support clinical OCT evaluation.
♻ ☆ Beyond the Individual: Introducing Group Intention Forecasting with SHOT Dataset
Intention recognition has traditionally focused on individual intentions, overlooking the complexities of collective intentions in group settings. To address this limitation, we introduce the concept of group intention, which represents shared goals emerging through the actions of multiple individuals, and Group Intention Forecasting (GIF), a novel task that forecasts when group intentions will occur by analyzing individual actions and interactions before the collective goal becomes apparent. To investigate GIF in a specific scenario, we propose SHOT, the first large-scale dataset for GIF, consisting of 1,979 basketball video clips captured from 5 camera views and annotated with 6 types of individual attributes. SHOT is designed with 3 key characteristics: multi-individual information, multi-view adaptability, and multi-level intention, making it well-suited for studying emerging group intentions. Furthermore, we introduce GIFT (Group Intention ForecasTer), a framework that extracts fine-grained individual features and models evolving group dynamics to forecast intention emergence. Experimental results confirm the effectiveness of SHOT and GIFT, establishing a strong foundation for future research in group intention forecasting. The dataset is available at https://xinyi-hu.github.io/SHOT_DATASET.
comment: ACMMM 2025 Datasets Track
♻ ☆ Image-Difficulty-Aware Evaluation of Super-Resolution Models ICIP 2025
Image super-resolution models are commonly evaluated by average scores (over some benchmark test sets), which fail to reflect the performance of these models on images of varying difficulty and that some models generate artifacts on certain difficult images, which is not reflected by the average scores. We propose difficulty-aware performance evaluation procedures to better differentiate between SISR models that produce visually different results on some images but yield close average performance scores over the entire test set. In particular, we propose two image-difficulty measures, the high-frequency index and rotation-invariant edge index, to predict those test images, where a model would yield significantly better visual results over another model, and an evaluation method where these visual differences are reflected on objective measures. Experimental results demonstrate the effectiveness of the proposed image-difficulty measures and evaluation methodology.
comment: Accepted to and presented at ICIP 2025 Workshops
♻ ☆ PRPO: Paragraph-level Policy Optimization for Vision-Language Deepfake Detection
The rapid rise of synthetic media has made deepfake detection a critical challenge for online safety and trust. Progress remains constrained by the scarcity of large, high-quality datasets. Although multimodal large language models (LLMs) exhibit strong reasoning capabilities, their performance on deepfake detection is poor, often producing explanations that are misaligned with visual evidence or hallucinatory. To address this limitation, we introduce a reasoning-annotated dataset for deepfake detection and propose Paragraph-level Relative Policy Optimization (PRPO), a reinforcement learning algorithm that aligns LLM reasoning with image content at the paragraph level. Experiments show that PRPO improves detection accuracy by a wide margin and achieves the highest reasoning score of 4.55/5.0. Ablation studies further demonstrate that PRPO significantly outperforms GRPO under test-time conditions. These results underscore the importance of grounding multimodal reasoning in visual evidence to enable more reliable and interpretable deepfake detection.
♻ ☆ ExoPredicator: Learning Abstract Models of Dynamic Worlds for Robot Planning
Long-horizon embodied planning is challenging because the world does not only change through an agent's actions: exogenous processes (e.g., water heating, dominoes cascading) unfold concurrently with the agent's actions. We propose a framework for abstract world models that jointly learns (i) symbolic state representations and (ii) causal processes for both endogenous actions and exogenous mechanisms. Each causal process models the time course of a stochastic cause-effect relation. We learn these world models from limited data via variational Bayesian inference combined with LLM proposals. Across five simulated tabletop robotics environments, the learned models enable fast planning that generalizes to held-out tasks with more objects and more complex goals, outperforming a range of baselines.
comment: 41 pages. The last two authors contributed equally in co-advising
♻ ☆ SeMoBridge: Semantic Modality Bridge for Efficient Few-Shot Adaptation of CLIP ICLR 2026
While Contrastive Language-Image Pretraining (CLIP) excels at zero-shot tasks by aligning image and text embeddings, its performance in few-shot classification is hindered by a critical limitation: intra-modal misalignment. This issue, caused by a persistent modality gap and CLIP's exclusively inter-modal training objective, leaves the embedding spaces uncalibrated, making direct image-to-image comparisons unreliable. Existing methods attempt to address this by refining similarity logits or by computationally expensive per-sample optimization. To overcome these challenges, we introduce SeMoBridge, a lightweight yet powerful approach that directly addresses the misalignment. Our method maps images into the text modality, while keeping their semantic content intact through what we call a Semantic Modality Bridge. SeMoBridge is closed-form and can optionally be trained through multi-modal supervision, combining image and text-alignment losses to optimize the projection. Experiments show that the trained version, SeMoBridge-T, requires only a fraction of the training time while overall outperforming other methods, particularly in low-data scenarios (1, 2, and 4 shots). The code is available at https://github.com/christti98/semobridge.
comment: 19 pages, 12 figures, Under review as a conference paper at ICLR 2026
♻ ☆ AgenticIQA: An Agentic Framework for Adaptive and Interpretable Image Quality Assessment
Image quality assessment (IQA) is inherently complex, as it reflects both the quantification and interpretation of perceptual quality rooted in the human visual system. Conventional approaches typically rely on fixed models to output scalar scores, limiting their adaptability to diverse distortions, user-specific queries, and interpretability needs. Furthermore, scoring and interpretation are often treated as independent processes, despite their interdependence: interpretation identifies perceptual degradations, while scoring abstracts them into a compact metric. To address these limitations, we propose AgenticIQA, a modular agentic framework that integrates vision-language models (VLMs) with traditional IQA tools in a dynamic, query-aware manner. AgenticIQA decomposes IQA into four subtasks -- distortion detection, distortion analysis, tool selection, and tool execution -- coordinated by a planner, executor, and summarizer. The planner formulates task-specific strategies, the executor collects perceptual evidence via tool invocation, and the summarizer integrates this evidence to produce accurate scores with human-aligned explanations. To support training and evaluation, we introduce AgenticIQA-200K, a large-scale instruction dataset tailored for IQA agents, and AgenticIQA-Eval, the first benchmark for assessing the planning, execution, and summarization capabilities of VLM-based IQA agents. Extensive experiments across diverse IQA datasets demonstrate that AgenticIQA consistently surpasses strong baselines in both scoring accuracy and explanatory alignment.
♻ ☆ A Multimodal LLM Approach for Visual Question Answering on Multiparametric 3D Brain MRI
We introduce mpLLM, a prompt-conditioned hierarchical mixture-of-experts (MoE) architecture for visual question answering over multi-parametric 3D brain MRI (mpMRI). mpLLM routes across modality-level and token-level projection experts to fuse multiple interrelated 3D modalities, enabling efficient training without image-report pretraining. To address limited image-text paired supervision, mpLLM integrates a synthetic visual question answering (VQA) protocol that generates medically relevant VQA from segmentation annotations, and we collaborate with medical experts for clinical validation. mpLLM outperforms strong medical VLM baselines by 5.3% on average across multiple mpMRI datasets. Our study features three main contributions: (1) the first clinically validated VQA dataset for 3D brain mpMRI, (2) a novel multimodal LLM that handles multiple interrelated 3D modalities, and (3) strong empirical results that demonstrate the medical utility of our methodology. Ablations highlight the importance of modality-level and token-level experts and prompt-conditioned routing.
comment: 23 pages, 3 figures
♻ ☆ Dolphin v1.0 Technical Report
Ultrasound is crucial in modern medicine but faces challenges like operator dependence, image noise, and real-time scanning, hindering AI integration. While large multimodal models excel in other medical imaging areas, they struggle with ultrasound's complexities. To address this, we introduce Dolphin v1.0 (V1) and its reasoning-augmented version, Dolphin R1-the first large-scale multimodal ultrasound foundation models unifying diverse clinical tasks in a single vision-language framework.To tackle ultrasound variability and noise, we curated a 2-million-scale multimodal dataset, combining textbook knowledge, public data, synthetic samples, and general corpora. This ensures robust perception, generalization, and clinical adaptability.The Dolphin series employs a three-stage training strategy: domain-specialized pretraining, instruction-driven alignment, and reinforcement-based refinement. Dolphin v1.0 delivers reliable performance in classification, detection, regression, and report generation. Dolphin R1 enhances diagnostic inference, reasoning transparency, and interpretability through reinforcement learning with ultrasound-specific rewards.Evaluated on U2-Bench across eight ultrasound tasks, Dolphin R1 achieves a U2-score of 0.5835-over twice the second-best model (0.2968) setting a new state of the art. Dolphin v1.0 also performs competitively, validating the unified framework. Comparisons show reasoning-enhanced training significantly improves diagnostic accuracy, consistency, and interpretability, highlighting its importance for high-stakes medical AI.
♻ ☆ CoFFT: Chain of Foresight-Focus Thought for Visual Language Models
Despite significant advances in Vision Language Models (VLMs), they remain constrained by the complexity and redundancy of visual input. When images contain large amounts of irrelevant information, VLMs are susceptible to interference, thus generating excessive task-irrelevant reasoning processes or even hallucinations. This limitation stems from their inability to discover and process the required regions during reasoning precisely. To address this limitation, we present the Chain of Foresight-Focus Thought (CoFFT), a novel training-free approach that enhances VLMs' visual reasoning by emulating human visual cognition. Each Foresight-Focus Thought consists of three stages: (1) Diverse Sample Generation: generates diverse reasoning samples to explore potential reasoning paths, where each sample contains several reasoning steps; (2) Dual Foresight Decoding: rigorously evaluates these samples based on both visual focus and reasoning progression, adding the first step of optimal sample to the reasoning process; (3) Visual Focus Adjustment: precisely adjust visual focus toward regions most beneficial for future reasoning, before returning to stage (1) to generate subsequent reasoning samples until reaching the final answer. These stages function iteratively, creating an interdependent cycle where reasoning guides visual focus and visual focus informs subsequent reasoning. Empirical results across multiple benchmarks using Qwen2.5-VL, InternVL-2.5, and Llava-Next demonstrate consistent performance improvements of 3.1-5.8% with controllable increasing computational overhead.
♻ ☆ v1: Learning to Point Visual Tokens for Multimodal Grounded Reasoning
When thinking with images, humans rarely rely on a single glance: they revisit visual information repeatedly during reasoning. However, existing models typically process images only once and thereafter generate reasoning entirely in text, lacking mechanisms to re-access or ground inference in visual representations. We empirically confirm this: as reasoning chains lengthen, models progressively lose focus on relevant regions. In response, we introduce v1, a lightweight extension that enables active visual referencing through a simple point-and-copy approach. This allows the model to identify relevant image patches and copy their embeddings back into the reasoning stream, ensuring that evolving hypotheses remain grounded in perceptual evidence. Crucially, our pointing strategy lets the MLLM directly select image patches using their semantic representations as keys, keeping perceptual evidence embedded in the same space as the model's reasoning. To train this capability, we construct v1g, a dataset of 300K multimodal reasoning traces with interleaved visual grounding annotations. Across various multimodal mathematical reasoning benchmarks, v1 consistently outperforms comparable baselines, establishing point-and-copy as a practical mechanism for grounded reasoning. The model checkpoint and dataset are available at github.com/jun297/v1.
Source-Free Domain Adaptive Object Detection with Semantics Compensation
Strong data augmentation is a fundamental component of state-of-the-art mean teacher-based Source-Free domain adaptive Object Detection (SFOD) methods, enabling consistency-based self-supervised optimization along weak augmentation. However, our theoretical analysis and empirical observations reveal a critical limitation: strong augmentation can inadvertently erase class-relevant components, leading to artificial inter-category confusion. To address this issue, we introduce Weak-to-strong Semantics Compensation (WSCo), a novel remedy that leverages weakly augmented images, which preserve full semantics, as anchors to enrich the feature space of their strongly augmented counterparts. Essentially, this compensates for the class-relevant semantics that may be lost during strong augmentation on the fly. Notably, WSCo can be implemented as a generic plug-in, easily integrable with any existing SFOD pipelines. Extensive experiments validate the negative impact of strong augmentation on detection performance, and the effectiveness of WSCo in enhancing the performance of previous detection models on standard benchmarks.
♻ ☆ Multi-modal Spatio-Temporal Transformer for High-resolution Land Subsidence Prediction
Forecasting high-resolution land subsidence is a critical yet challenging task due to its complex, non-linear dynamics. While standard architectures like ConvLSTM often fail to model long-range dependencies, we argue that a more fundamental limitation of prior work lies in the uni-modal data paradigm. To address this, we propose the Multi-Modal Spatio-Temporal Transformer (MM-STT), a novel framework that fuses dynamic displacement data with static physical priors. Its core innovation is a joint spatio-temporal attention mechanism that processes all multi-modal features in a unified manner. On the public EGMS dataset, MM-STT establishes a new state-of-the-art, reducing the long-range forecast RMSE by an order of magnitude compared to all baselines, including SOTA methods like STGCN and STAEformer. Our results demonstrate that for this class of problems, an architecture's inherent capacity for deep multi-modal fusion is paramount for achieving transformative performance.
comment: This paper is submitted to IEEE Transactions on Geoscience and Remote Sensing for reviewing
♻ ☆ Editing Physiological Signals in Videos Using Latent Representations
Camera-based physiological signal estimation provides a non-contact and convenient means to monitor Heart Rate (HR). However, the presence of vital signals in facial videos raises significant privacy concerns, as they can reveal sensitive personal information related to the health and emotional states of an individual. To address this, we propose a learned framework that edits physiological signals in videos while preserving visual fidelity. First, we encode an input video into a latent space via a pretrained 3D Variational Autoencoder (3D VAE), while a target HR prompt is embedded through a frozen text encoder. We fuse them using a set of trainable spatio-temporal layers with Adaptive Layer Normalizations (AdaLN) to capture the strong temporal coherence of remote Photoplethysmography (rPPG) signals. We apply Feature-wise Linear Modulation (FiLM) in the decoder with a fine-tuned output layer to avoid the degradation of physiological signals during reconstruction, enabling accurate physiological modulation in the reconstructed video. Empirical results show that our method preserves visual quality with an average PSNR of 38.96 dB and SSIM of 0.98 on selected datasets, while achieving an average HR modulation error of 10.00 bpm MAE and 10.09% MAPE using a state-of-the-art rPPG estimator. Our design's controllable HR editing is useful for applications such as anonymizing biometric signals in real videos or synthesizing realistic videos with desired vital signs.
comment: 12 pages, 8 figures, 7 tables
♻ ☆ VisualOverload: Probing Visual Understanding of VLMs in Really Dense Scenes
Is basic visual understanding really solved in state-of-the-art VLMs? We present VisualOverload, a slightly different visual question answering (VQA) benchmark comprising 2,720 question-answer pairs, with privately held ground-truth responses. Unlike prior VQA datasets that typically focus on near global image understanding, VisualOverload challenges models to perform simple, knowledge-free vision tasks in densely populated (or, overloaded) scenes. Our dataset consists of high-resolution scans of public-domain paintings that are populated with multiple figures, actions, and unfolding subplots set against elaborately detailed backdrops. We manually annotated these images with questions across six task categories to probe for a thorough understanding of the scene. We hypothesize that current benchmarks overestimate the performance of VLMs, and encoding and reasoning over details is still a challenging task for them, especially if they are confronted with densely populated scenes. Indeed, we observe that even the best model (o3) out of 37 tested models only achieves 19.6% accuracy on our hardest test split and overall 69.5% accuracy on all questions. Beyond a thorough evaluation, we complement our benchmark with an error analysis that reveals multiple failure modes, including a lack of counting skills, failure in OCR, and striking logical inconsistencies under complex tasks. Altogether, VisualOverload exposes a critical gap in current vision models and offers a crucial resource for the community to develop better models. Benchmark: http://paulgavrikov.github.io/visualoverload
♻ ☆ DC-Gen: Post-Training Diffusion Acceleration with Deeply Compressed Latent Space
Existing text-to-image diffusion models excel at generating high-quality images, but face significant efficiency challenges when scaled to high resolutions, like 4K image generation. While previous research accelerates diffusion models in various aspects, it seldom handles the inherent redundancy within the latent space. To bridge this gap, this paper introduces DC-Gen, a general framework that accelerates text-to-image diffusion models by leveraging a deeply compressed latent space. Rather than a costly training-from-scratch approach, DC-Gen uses an efficient post-training pipeline to preserve the quality of the base model. A key challenge in this paradigm is the representation gap between the base model's latent space and a deeply compressed latent space, which can lead to instability during direct fine-tuning. To overcome this, DC-Gen first bridges the representation gap with a lightweight embedding alignment training. Once the latent embeddings are aligned, only a small amount of LoRA fine-tuning is needed to unlock the base model's inherent generation quality. We verify DC-Gen's effectiveness on SANA and FLUX.1-Krea. The resulting DC-Gen-SANA and DC-Gen-FLUX models achieve quality comparable to their base models but with a significant speedup. Specifically, DC-Gen-FLUX reduces the latency of 4K image generation by 53x on the NVIDIA H100 GPU. When combined with NVFP4 SVDQuant, DC-Gen-FLUX generates a 4K image in just 3.5 seconds on a single NVIDIA 5090 GPU, achieving a total latency reduction of 138x compared to the base FLUX.1-Krea model. Code: https://github.com/dc-ai-projects/DC-Gen.
comment: Tech Report. The first three authors contributed equally to this work
♻ ☆ Grounded GUI Understanding for Vision-Based Spatial Intelligent Agent: Exemplified by Extended Reality Apps
In recent years, spatial computing a.k.a. Extended Reality (XR) has emerged as a transformative technology, offering users immersive and interactive experiences across diversified virtual environments. Users can interact with XR apps through interactable GUI elements (IGEs) on the stereoscopic three-dimensional (3D) graphical user interface (GUI). The accurate recognition of these IGEs is instrumental, serving as the foundation of many software engineering tasks, including automated testing and effective GUI search. The most recent IGE detection approaches for 2D mobile apps typically train a supervised object detection model based on a large-scale manually-labeled GUI dataset, usually with a pre-defined set of clickable GUI element categories like buttons and spinners. Such approaches can hardly be applied to IGE detection in XR apps, due to a multitude of challenges including complexities posed by open-vocabulary and heterogeneous IGE categories, intricacies of context-sensitive interactability, and the necessities of precise spatial perception and visual-semantic alignment for accurate IGE detection results. Thus, it is necessary to embark on the IGE research tailored to XR apps. In this paper, we propose the first zero-shot cOntext-sensitive inteRactable GUI ElemeNT dEtection framework for virtual Reality apps, named Orienter. By imitating human behaviors, Orienter observes and understands the semantic contexts of XR app scenes first, before performing the detection. The detection process is iterated within a feedback-directed validation and reflection loop. Specifically, Orienter contains three components, including (1) Semantic context comprehension, (2) Reflection-directed IGE candidate detection, and (3) Context-sensitive interactability classification. Extensive experiments demonstrate that Orienter is more effective than the state-of-the-art GUI element detection approaches.
♻ ☆ Achieving More Human Brain-Like Vision via Human EEG Representational Alignment
Despite advancements in artificial intelligence, object recognition models still lag behind in emulating visual information processing in human brains. Recent studies have highlighted the potential of using neural data to mimic brain processing; however, these often rely on invasive neural recordings from non-human subjects, leaving a critical gap in understanding human visual perception. Addressing this gap, we present, 'Re(presentational)Al(ignment)net', a vision model aligned with human brain activity based on non-invasive EEG, demonstrating a significantly higher similarity to human brain representations. Our innovative image-to-brain multi-layer encoding framework advances human neural alignment by optimizing multiple model layers and enabling the model to efficiently learn and mimic the human brain's visual representational patterns across object categories and different modalities. Our findings suggest that ReAlnets better align artificial neural networks with human brain representations, making it more similar to human brain processing than traditional computer vision models, which takes an important step toward bridging the gap between artificial and human vision and achieving more brain-like artificial intelligence systems.
♻ ☆ IC-Custom: Diverse Image Customization via In-Context Learning
Image customization, a crucial technique for industrial media production, aims to generate content that is consistent with reference images. However, current approaches conventionally separate image customization into position-aware and position-free customization paradigms and lack a universal framework for diverse customization, limiting their applications across various scenarios. To overcome these limitations, we propose IC-Custom, a unified framework that seamlessly integrates position-aware and position-free image customization through in-context learning. IC-Custom concatenates reference images with target images to a polyptych, leveraging DiT's multi-modal attention mechanism for fine-grained token-level interactions. We propose the In-context Multi-Modal Attention (ICMA) mechanism, which employs learnable task-oriented register tokens and boundary-aware positional embeddings to enable the model to effectively handle diverse tasks and distinguish between inputs in polyptych configurations. To address the data gap, we curated a 12K identity-consistent dataset with 8K real-world and 4K high-quality synthetic samples, avoiding the overly glossy, oversaturated look typical of synthetic data. IC-Custom supports various industrial applications, including try-on, image insertion, and creative IP customization. Extensive evaluations on our proposed ProductBench and the publicly available DreamBench demonstrate that IC-Custom significantly outperforms community workflows, closed-source models, and state-of-the-art open-source approaches. IC-Custom achieves about 73\% higher human preference across identity consistency, harmony, and text alignment metrics, while training only 0.4\% of the original model parameters. Project page: https://liyaowei-stu.github.io/project/IC_Custom
comment: Revised version with improved writing. Project page: https://liyaowei-stu.github.io/project/IC_Custom
♻ ☆ Alternating Training-based Label Smoothing Enhances Prompt Generalization
Recent advances in pre-trained vision-language models have demonstrated remarkable zero-shot generalization capabilities. To further enhance these models' adaptability to various downstream tasks, prompt tuning has emerged as a parameter-efficient fine-tuning method. However, despite its efficiency, the generalization ability of prompt remains limited. In contrast, label smoothing (LS) has been widely recognized as an effective regularization technique that prevents models from becoming over-confident and improves their generalization. This inspires us to explore the integration of LS with prompt tuning. However, we have observed that the vanilla LS even weakens the generalization ability of prompt tuning. To address this issue, we propose the Alternating Training-based Label Smoothing (ATLaS) method, which alternately trains with standard one-hot labels and soft labels generated by LS to supervise the prompt tuning. Moreover, we introduce two types of efficient offline soft labels, including Class-wise Soft Labels (CSL) and Instance-wise Soft Labels (ISL), to provide inter-class or instance-class relationships for prompt tuning. The theoretical properties of the proposed ATLaS method are analyzed. Extensive experiments demonstrate that the proposed ATLaS method, combined with CSL and ISL, consistently enhances the generalization performance of prompt tuning. Moreover, the proposed ATLaS method exhibits high compatibility with prevalent prompt tuning methods, enabling seamless integration into existing methods.
♻ ☆ DepthLM: Metric Depth From Vision Language Models
Vision language models (VLMs) can flexibly address various vision tasks through text interactions. Although successful in semantic understanding, state-of-the-art VLMs including GPT-5 still struggle in understanding 3D from 2D inputs. On the other hand, expert pure vision models achieve super-human accuracy in metric depth estimation, a key 3D understanding task. However, they require task-specific architectures and losses. Such difference motivates us to ask: Can VLMs reach expert-level accuracy without architecture or loss change? We take per-pixel metric depth estimation as the representative task and show that the answer is yes! Surprisingly, comprehensive analysis shows that text-based supervised-finetuning with sparse labels is sufficient for VLMs to unlock strong 3D understanding, no dense prediction head or complex regression/regularization loss is needed. The bottleneck for VLMs lies actually in pixel reference and cross-dataset camera ambiguity, which we address through visual prompting and intrinsic-conditioned augmentation. With much smaller models, our method DepthLM surpasses the accuracy of most advanced VLMs by over 2x, making VLMs for the first time comparable with pure vision models. Interestingly, without explicit enforcement during training, VLMs trained with DepthLM naturally avoids over-smoothing, having much fewer flying points at boundary regions than pure vision models. The simplicity of DepthLM also enables a single VLM to cover various 3D tasks beyond metric depth. Our code and model will be released at the link below.
Explaining multimodal LLMs via intra-modal token interactions
Multimodal Large Language Models (MLLMs) have achieved remarkable success across diverse vision-language tasks, yet their internal decision-making mechanisms remain insufficiently understood. Existing interpretability research has primarily focused on cross-modal attribution, identifying which image regions the model attends to during output generation. However, these approaches often overlook intra-modal dependencies. In the visual modality, attributing importance to isolated image patches ignores spatial context due to limited receptive fields, resulting in fragmented and noisy explanations. In the textual modality, reliance on preceding tokens introduces spurious activations. Failing to effectively mitigate these interference compromises attribution fidelity. To address these limitations, we propose enhancing interpretability by leveraging intra-modal interaction. For the visual branch, we introduce \textit{Multi-Scale Explanation Aggregation} (MSEA), which aggregates attributions over multi-scale inputs to dynamically adjust receptive fields, producing more holistic and spatially coherent visual explanations. For the textual branch, we propose \textit{Activation Ranking Correlation} (ARC), which measures the relevance of contextual tokens to the current token via alignment of their top-$k$ prediction rankings. ARC leverages this relevance to suppress spurious activations from irrelevant contexts while preserving semantically coherent ones. Extensive experiments across state-of-the-art MLLMs and benchmark datasets demonstrate that our approach consistently outperforms existing interpretability methods, yielding more faithful and fine-grained explanations of model behavior.
♻ ☆ BlobCtrl: Taming Controllable Blob for Element-level Image Editing SIGGRAPH
As user expectations for image editing continue to rise, the demand for flexible, fine-grained manipulation of specific visual elements presents a challenge for current diffusion-based methods. In this work, we present BlobCtrl, a framework for element-level image editing based on a probabilistic blob-based representation. Treating blobs as visual primitives, BlobCtrl disentangles layout from appearance, affording fine-grained, controllable object-level manipulation. Our key contributions are twofold: (1) an in-context dual-branch diffusion model that separates foreground and background processing, incorporating blob representations to explicitly decouple layout and appearance, and (2) a self-supervised disentangle-then-reconstruct training paradigm with an identity-preserving loss function, along with tailored strategies to efficiently leverage blob-image pairs. To foster further research, we introduce BlobData for large-scale training and BlobBench, a benchmark for systematic evaluation. Experimental results demonstrate that BlobCtrl achieves state-of-the-art performance in a variety of element-level editing tasks, such as object addition, removal, scaling, and replacement, while maintaining computational efficiency. Project Webpage: https://liyaowei-stu.github.io/project/BlobCtrl/
comment: Project Webpage: https://liyaowei-stu.github.io/project/BlobCtrl/ This version presents a major update with rephrased writing. Accepted to SIGGRAPH Asia 2025
♻ ☆ SpargeAttention: Accurate and Training-free Sparse Attention Accelerating Any Model Inference ICML
An efficient attention implementation is essential for large models due to its quadratic time complexity. Fortunately, attention commonly exhibits sparsity, i.e., many values in the attention map are near zero, allowing for the omission of corresponding computations. Many studies have utilized the sparse pattern to accelerate attention. However, most existing works focus on optimizing attention within specific models by exploiting certain sparse patterns of the attention map. A universal sparse attention that guarantees both the speedup and end-to-end performance of diverse models remains elusive. In this paper, we propose SpargeAttn, a universal sparse and quantized attention for any model. Our method uses a two-stage online filter: in the first stage, we rapidly and accurately predict the attention map, enabling the skip of some matrix multiplications in attention. In the second stage, we design an online softmax-aware filter that incurs no extra overhead and further skips some matrix multiplications. Experiments show that our method significantly accelerates diverse models, including language, image, and video generation, without sacrificing end-to-end metrics. The codes are available at https://github.com/thu-ml/SpargeAttn.
comment: @inproceedings{zhang2025spargeattn, title={Spargeattn: Accurate sparse attention accelerating any model inference}, author={Zhang, Jintao and Xiang, Chendong and Huang, Haofeng and Wei, Jia and Xi, Haocheng and Zhu, Jun and Chen, Jianfei}, booktitle={International Conference on Machine Learning (ICML)}, year={2025} }
♻ ☆ SageAttention2: Efficient Attention with Thorough Outlier Smoothing and Per-thread INT4 Quantization ICML
Although quantization for linear layers has been widely used, its application to accelerate the attention process remains limited. To further enhance the efficiency of attention computation compared to SageAttention while maintaining precision, we propose SageAttention2, which utilizes significantly faster 4-bit matrix multiplication (Matmul) alongside additional precision-enhancing techniques. First, we propose to quantize matrices $(Q, K)$ to INT4 in a hardware-friendly thread-level granularity and quantize matrices $(\widetilde P, V)$ to FP8. Second, we propose a method to smooth $Q$, enhancing the accuracy of INT4 $QK^\top$. Third, we propose a two-level accumulation strategy for $\widetilde PV$ to enhance the accuracy of FP8 $\widetilde PV$. The operations per second (OPS) of SageAttention2 surpass FlashAttention2 and xformers by about 3x and 4.5x on RTX4090, respectively. Moreover, SageAttention2 matches the speed of FlashAttention3(fp8) on the Hopper GPUs, while delivering much higher accuracy. Comprehensive experiments confirm that our approach incurs negligible end-to-end metrics loss across diverse models, including those for language, image, and video generation. The code is available at https://github.com/thu-ml/SageAttention.
comment: @inproceedings{zhang2024sageattention2, title={Sageattention2: Efficient attention with thorough outlier smoothing and per-thread int4 quantization}, author={Zhang, Jintao and Huang, Haofeng and Zhang, Pengle and Wei, Jia and Zhu, Jun and Chen, Jianfei}, booktitle={International Conference on Machine Learning (ICML)}, year={2025} }
♻ ☆ CogVLA: Cognition-Aligned Vision-Language-Action Model via Instruction-Driven Routing & Sparsification NeurIPS 2025
Recent Vision-Language-Action (VLA) models built on pre-trained Vision-Language Models (VLMs) require extensive post-training, resulting in high computational overhead that limits scalability and deployment.We propose CogVLA, a Cognition-Aligned Vision-Language-Action framework that leverages instruction-driven routing and sparsification to improve both efficiency and performance. CogVLA draws inspiration from human multimodal coordination and introduces a 3-stage progressive architecture. 1) Encoder-FiLM based Aggregation Routing (EFA-Routing) injects instruction information into the vision encoder to selectively aggregate and compress dual-stream visual tokens, forming a instruction-aware latent representation. 2) Building upon this compact visual encoding, LLM-FiLM based Pruning Routing (LFP-Routing) introduces action intent into the language model by pruning instruction-irrelevant visually grounded tokens, thereby achieving token-level sparsity. 3) To ensure that compressed perception inputs can still support accurate and coherent action generation, we introduce V-L-A Coupled Attention (CAtten), which combines causal vision-language attention with bidirectional action parallel decoding. Extensive experiments on the LIBERO benchmark and real-world robotic tasks demonstrate that CogVLA achieves state-of-the-art performance with success rates of 97.4% and 70.0%, respectively, while reducing training costs by 2.5-fold and decreasing inference latency by 2.8-fold compared to OpenVLA. CogVLA is open-sourced and publicly available at https://github.com/JiuTian-VL/CogVLA.
comment: Accepted to NeurIPS 2025, Project Page: https://jiutian-vl.github.io/CogVLA-page
♻ ☆ GoalFlow: Goal-Driven Flow Matching for Multimodal Trajectories Generation in End-to-End Autonomous Driving
We propose GoalFlow, an end-to-end autonomous driving method for generating high-quality multimodal trajectories. In autonomous driving scenarios, there is rarely a single suitable trajectory. Recent methods have increasingly focused on modeling multimodal trajectory distributions. However, they suffer from trajectory selection complexity and reduced trajectory quality due to high trajectory divergence and inconsistencies between guidance and scene information. To address these issues, we introduce GoalFlow, a novel method that effectively constrains the generative process to produce high-quality, multimodal trajectories. To resolve the trajectory divergence problem inherent in diffusion-based methods, GoalFlow constrains the generated trajectories by introducing a goal point. GoalFlow establishes a novel scoring mechanism that selects the most appropriate goal point from the candidate points based on scene information. Furthermore, GoalFlow employs an efficient generative method, Flow Matching, to generate multimodal trajectories, and incorporates a refined scoring mechanism to select the optimal trajectory from the candidates. Our experimental results, validated on the Navsim\cite{Dauner2024_navsim}, demonstrate that GoalFlow achieves state-of-the-art performance, delivering robust multimodal trajectories for autonomous driving. GoalFlow achieved PDMS of 90.3, significantly surpassing other methods. Compared with other diffusion-policy-based methods, our approach requires only a single denoising step to obtain excellent performance. The code is available at https://github.com/YvanYin/GoalFlow.
♻ ☆ ReWatch-R1: Boosting Complex Video Reasoning in Large Vision-Language Models through Agentic Data Synthesis
While Reinforcement Learning with Verifiable Reward (RLVR) significantly advances image reasoning in Large Vision-Language Models (LVLMs), its application to complex video reasoning remains underdeveloped. This gap stems primarily from a critical data bottleneck: existing datasets lack the challenging, multi-hop questions and high-quality, video-grounded Chain-of-Thought (CoT) data necessary to effectively bootstrap RLVR. To address this, we introduce ReWatch, a large-scale dataset built to foster advanced video reasoning. We propose a novel multi-stage synthesis pipeline to synthesize its three components: ReWatch-Caption, ReWatch-QA, and ReWatch-CoT. A core innovation is our Multi-Agent ReAct framework for CoT synthesis, which simulates a human-like "re-watching" process to generate video-grounded reasoning traces by explicitly modeling information retrieval and verification. Building on this dataset, we develop ReWatch-R1 by post-training a strong baseline LVLM with Supervised Fine-Tuning (SFT) and our RLVR framework. This framework incorporates a novel Observation \& Reasoning (O\&R) reward mechanism that evaluates both the final answer's correctness and the reasoning's alignment with video content, directly penalizing hallucination. Our experiments show that ReWatch-R1 achieves state-of-the-art average performance on five challenging video reasoning benchmarks. Project Page: https://rewatch-r1.github.io
♻ ☆ Easier Painting Than Thinking: Can Text-to-Image Models Set the Stage, but Not Direct the Play?
Text-to-image (T2I) generation aims to synthesize images from textual prompts, which jointly specify what must be shown and imply what can be inferred, which thus correspond to two core capabilities: composition and reasoning. Despite recent advances of T2I models in both composition and reasoning, existing benchmarks remain limited in evaluation. They not only fail to provide comprehensive coverage across and within both capabilities, but also largely restrict evaluation to low scene density and simple one-to-one reasoning. To address these limitations, we propose T2I-CoReBench, a comprehensive and complex benchmark that evaluates both composition and reasoning capabilities of T2I models. To ensure comprehensiveness, we structure composition around scene graph elements (instance, attribute, and relation) and reasoning around the philosophical framework of inference (deductive, inductive, and abductive), formulating a 12-dimensional evaluation taxonomy. To increase complexity, driven by the inherent real-world complexities, we curate each prompt with higher compositional density for composition and greater reasoning intensity for reasoning. To facilitate fine-grained and reliable evaluation, we also pair each evaluation prompt with a checklist that specifies individual yes/no questions to assess each intended element independently. In statistics, our benchmark comprises 1,080 challenging prompts and around 13,500 checklist questions. Experiments across 28 current T2I models reveal that their composition capability still remains limited in high compositional scenarios, while the reasoning capability lags even further behind as a critical bottleneck, with all models struggling to infer implicit elements from prompts.
comment: Project Page: https://t2i-corebench.github.io/
♻ ☆ A Framework for Double-Blind Federated Adaptation of Foundation Models ICCV 2025
Foundation models (FMs) excel in zero-shot tasks but benefit from task-specific adaptation. However, privacy concerns prevent data sharing among multiple data owners, and proprietary restrictions prevent the learning service provider (LSP) from sharing the FM. In this work, we propose BlindFed, a framework enabling collaborative FM adaptation while protecting both parties: data owners do not access the FM or each other's data, and the LSP does not see sensitive task data. BlindFed relies on fully homomorphic encryption (FHE) and consists of three key innovations: (i) FHE-friendly architectural modifications via polynomial approximations and low-rank adapters, (ii) a two-stage split learning approach combining offline knowledge distillation and online encrypted inference for adapter training without backpropagation through the FM, and (iii) a privacy-boosting scheme using sample permutations and stochastic block sampling to mitigate model extraction attacks. Empirical results on four image classification datasets demonstrate the practical feasibility of the BlindFed framework, albeit at a high communication cost and large computational complexity for the LSP.
comment: Accepted to ICCV 2025
♻ ☆ SEE: See Everything Every Time -- Adaptive Brightness Adjustment for Broad Light Range Images via Events
Event cameras, with a high dynamic range exceeding $120dB$, significantly outperform traditional embedded cameras, robustly recording detailed changing information under various lighting conditions, including both low- and high-light situations. However, recent research on utilizing event data has primarily focused on low-light image enhancement, neglecting image enhancement and brightness adjustment across a broader range of lighting conditions, such as normal or high illumination. Based on this, we propose a novel research question: how to employ events to enhance and adaptively adjust the brightness of images captured under broad lighting conditions? To investigate this question, we first collected a new dataset, SEE-600K, consisting of 610,126 images and corresponding events across 202 scenarios, each featuring an average of four lighting conditions with over a 1000-fold variation in illumination. Subsequently, we propose a framework that effectively utilizes events to smoothly adjust image brightness through the use of prompts. Our framework captures color through sensor patterns, uses cross-attention to model events as a brightness dictionary, and adjusts the image's dynamic range to form a broad light-range representation (BLR), which is then decoded at the pixel level based on the brightness prompt. Experimental results demonstrate that our method not only performs well on the low-light enhancement dataset but also shows robust performance on broader light-range image enhancement using the SEE-600K dataset. Additionally, our approach enables pixel-level brightness adjustment, providing flexibility for post-processing and inspiring more imaging applications. The dataset and source code are publicly available at: https://github.com/yunfanLu/SEE.
comment: https://github.com/yunfanLu/SEE
♻ ☆ AS400-DET: Detection using Deep Learning Model for IBM i (AS/400) SP 2025
This paper proposes a method for automatic GUI component detection for the IBM i system (formerly and still more commonly known as AS/400). We introduce a human-annotated dataset consisting of 1,050 system screen images, in which 381 images are screenshots of IBM i system screens in Japanese. Each image contains multiple components, including text labels, text boxes, options, tables, instructions, keyboards, and command lines. We then develop a detection system based on state-of-the-art deep learning models and evaluate different approaches using our dataset. The experimental results demonstrate the effectiveness of our dataset in constructing a system for component detection from GUI screens. By automatically detecting GUI components from the screen, AS400-DET has the potential to perform automated testing on systems that operate via GUI screens.
comment: Published at the IVSP 2025 conference
♻ ☆ Semi-Supervised Unconstrained Head Pose Estimation in the Wild
Existing research on unconstrained in-the-wild head pose estimation suffers from the flaws of its datasets, which consist of either numerous samples by non-realistic synthesis or constrained collection, or small-scale natural images yet with plausible manual annotations. This makes fully-supervised solutions compromised due to the reliance on generous labels. To alleviate it, we propose the first semi-supervised unconstrained head pose estimation method SemiUHPE, which can leverage abundant easily available unlabeled head images. Technically, we choose semi-supervised rotation regression and adapt it to the error-sensitive and label-scarce problem of unconstrained head pose. Our method is based on the observation that the aspect-ratio invariant cropping of wild heads is superior to previous landmark-based affine alignment given that landmarks of unconstrained human heads are usually unavailable, especially for underexplored non-frontal heads. Instead of using a pre-fixed threshold to filter out pseudo labeled heads, we propose dynamic entropy based filtering to adaptively remove unlabeled outliers as training progresses by updating the threshold in multiple stages. We then revisit the design of weak-strong augmentations and improve it by devising two novel head-oriented strong augmentations, termed pose-irrelevant cut-occlusion and pose-altering rotation consistency respectively. Extensive experiments and ablation studies show that SemiUHPE outperforms its counterparts greatly on public benchmarks under both the front-range and full-range settings. Furthermore, our proposed method is also beneficial for solving other closely related problems, including generic object rotation regression and 3D head reconstruction, demonstrating good versatility and extensibility. Code is in https://github.com/hnuzhy/SemiUHPE.
comment: under review. Semi-Supervised Unconstrained Head Pose Estimation
♻ ☆ Learning Frequency and Memory-Aware Prompts for Multi-Modal Object Tracking
Prompt-learning-based multi-modal trackers have made strong progress by using lightweight visual adapters to inject auxiliary-modality cues into frozen foundation models. However, they still underutilize two essentials: modality-specific frequency structure and long-range temporal dependencies. We present Learning Frequency and Memory-Aware Prompts, a dual-adapter framework that injects lightweight prompts into a frozen RGB tracker. A frequency-guided visual adapter adaptively transfers complementary cues across modalities by jointly calibrating spatial, channel, and frequency components, narrowing the modality gap without full fine-tuning. A multilevel memory adapter with short, long, and permanent memory stores, updates, and retrieves reliable temporal context, enabling consistent propagation across frames and robust recovery from occlusion, motion blur, and illumination changes. This unified design preserves the efficiency of prompt learning while strengthening cross-modal interaction and temporal coherence. Extensive experiments on RGB-Thermal, RGB-Depth, and RGB-Event benchmarks show consistent state-of-the-art results over fully fine-tuned and adapter-based baselines, together with favorable parameter efficiency and runtime. Code and models are available at https://github.com/xuboyue1999/mmtrack.git.
♻ ☆ PSScreen: Partially Supervised Multiple Retinal Disease Screening BMVC 2025
Leveraging multiple partially labeled datasets to train a model for multiple retinal disease screening reduces the reliance on fully annotated datasets, but remains challenging due to significant domain shifts across training datasets from various medical sites, and the label absent issue for partial classes. To solve these challenges, we propose PSScreen, a novel Partially Supervised multiple retinal disease Screening model. Our PSScreen consists of two streams and one learns deterministic features and the other learns probabilistic features via uncertainty injection. Then, we leverage the textual guidance to decouple two types of features into disease-wise features and align them via feature distillation to boost the domain generalization ability. Meanwhile, we employ pseudo label consistency between two streams to address the label absent issue and introduce a self-distillation to transfer task-relevant semantics about known classes from the deterministic to the probabilistic stream to further enhance the detection performances. Experiments show that our PSScreen significantly enhances the detection performances on six retinal diseases and the normal state averagely and achieves state-of-the-art results on both in-domain and out-of-domain datasets. Codes are available at https://github.com/boyiZheng99/PSScreen.
comment: Accepted at BMVC 2025 (Oral)
♻ ☆ Streamline pathology foundation model by cross-magnification distillation
Foundation models (FM) have transformed computational pathology but remain computationally prohibitive for clinical deployment due to their massive parameter counts and high-magnification processing requirements. Here, we introduce XMAG, a lightweight FM developed through corss-magnification distillation that transfers knowledge from state-of-the-art 20x magnification teacher to an efficient 5x magnification student architecture. XMAG employs a compact backbone and operates entirely at 5x, requiring 11.3 times fewer patches per whole slide image (WSI) compared to existing approaches. Our Novel distillation framework incorporates dual-level knowledge transfer, aligning both global image representations and local spatial token mapping. We trained XMAG on 3.49 million images curated from publicly available datasets and evaluated performance across six clinically relevant histopathology analysis tasks spanning multiple cancer types. XMAG achieved diagnostic accuracy within 1% of substantially larger foundation models while delivering 30-fold processing acceleration, reaching 8.8 WSIs per minute processing speed. Our cross-institutional validation confirmed robust generalization. Further, we developed an end-to-end training strategy to further boost our model's performance to approach the larger FMs' performance. These results establish cross-magnification distillation as a viable approach for deploying FM capabilities in resource-constrained clinical environments, potentially enabling real-time pathology AI integration.
♻ ☆ PortraitTalk: Towards Customizable One-Shot Audio-to-Talking Face Generation
Audio-driven talking face generation is a challenging task in digital communication. Despite significant progress in the area, most existing methods concentrate on audio-lip synchronization, often overlooking aspects such as visual quality, customization, and generalization that are crucial to producing realistic talking faces. To address these limitations, we introduce a novel, customizable one-shot audio-driven talking face generation framework, named PortraitTalk. Our proposed method utilizes a latent diffusion framework consisting of two main components: IdentityNet and AnimateNet. IdentityNet is designed to preserve identity features consistently across the generated video frames, while AnimateNet aims to enhance temporal coherence and motion consistency. This framework also integrates an audio input with the reference images, thereby reducing the reliance on reference-style videos prevalent in existing approaches. A key innovation of PortraitTalk is the incorporation of text prompts through decoupled cross-attention mechanisms, which significantly expands creative control over the generated videos. Through extensive experiments, including a newly developed evaluation metric, our model demonstrates superior performance over the state-of-the-art methods, setting a new standard for the generation of customizable realistic talking faces suitable for real-world applications.
♻ ☆ Balancing Multimodal Training Through Game-Theoretic Regularization
Multimodal learning holds promise for richer information extraction by capturing dependencies across data sources. Yet, current training methods often underperform due to modality competition, a phenomenon where modalities contend for training resources leaving some underoptimized. This raises a pivotal question: how can we address training imbalances, ensure adequate optimization across all modalities, and achieve consistent performance improvements as we transition from unimodal to multimodal data? This paper proposes the Multimodal Competition Regularizer (MCR), inspired by a mutual information (MI) decomposition designed to prevent the adverse effects of competition in multimodal training. Our key contributions are: 1) A game-theoretic framework that adaptively balances modality contributions by encouraging each to maximize its informative role in the final prediction 2) Refining lower and upper bounds for each MI term to enhance the extraction of both task-relevant unique and shared information across modalities. 3) Proposing latent space permutations for conditional MI estimation, significantly improving computational efficiency. MCR outperforms all previously suggested training strategies and simple baseline, clearly demonstrating that training modalities jointly leads to important performance gains on both synthetic and large real-world datasets. We release our code and models at https://github.com/kkontras/MCR.
comment: 23 pages, 7 figures, 6 tables, 1 algorithm
♻ ☆ Training Vision-Language Process Reward Models for Test-Time Scaling in Multimodal Reasoning: Key Insights and Lessons Learned
Process Reward Models (PRMs) provide step-level supervision that improves the reliability of reasoning in large language models. While PRMs have been extensively studied in text-based domains, their extension to Vision Language Models (VLMs) remains limited. Existing Vision-Language PRMs (VL-PRMs) rely on Monte Carlo Tree Search (MCTS) for data construction, which can often produce noisy supervision signals and limit generalization across tasks. In this work, we aim to elucidate the design space of VL-PRMs by exploring diverse strategies for dataset construction, training, and test-time scaling. First, we introduce a hybrid data synthesis framework that combines MCTS with judgments from a strong VLM, producing more accurate step-level labels. Second, we propose perception-focused supervision, enabling our PRM to explicitly detect errors at the visual grounding stage of reasoning. Third, we systematically evaluate multiple test-time scaling strategies, showing that our PRMs can reliably guide VLMs toward more accurate solutions. Our experiments covering five diverse multimodal benchmarks (MMMU, PuzzleVQA, AlgoPuzzleVQA, MathVista, and MathVision) reveal several key insights: (i) VL-PRMs when used as Outcome Reward Models (ORMs) during test-time scaling (TTS) can outperform VL-PRM guided process step selection, (ii) smaller VL-PRMs can match or even surpass larger ones in detecting process errors, (iii) VL-PRMs uncover latent reasoning abilities in stronger VLM backbones, (iv) perception-level supervision leads to significant gains in test-time scaling, and (v) TTS performance of different policies improve on advanced math reasoning datasets despite not training VL-PRMs on such datasets. We hope our work will motivate further research and support the advancement of VLMs.
♻ ☆ Scheduling Weight Transitions for Quantization-Aware Training ICCV 2025
Quantization-aware training (QAT) simulates a quantization process during training to lower bit-precision of weights/activations. It learns quantized weights indirectly by updating latent weights,i.e., full-precision inputs to a quantizer, using gradient-based optimizers. We claim that coupling a user-defined learning rate (LR) with these optimizers is sub-optimal for QAT. Quantized weights transit discrete levels of a quantizer, only if corresponding latent weights pass transition points, where the quantizer changes discrete states. This suggests that the changes of quantized weights are affected by both the LR for latent weights and their distributions. It is thus difficult to control the degree of changes for quantized weights by scheduling the LR manually. We conjecture that the degree of parameter changes in QAT is related to the number of quantized weights transiting discrete levels. Based on this, we introduce a transition rate (TR) scheduling technique that controls the number of transitions of quantized weights explicitly. Instead of scheduling a LR for latent weights, we schedule a target TR of quantized weights, and update the latent weights with a novel transition-adaptive LR (TALR), enabling considering the degree of changes for the quantized weights during QAT. Experimental results demonstrate the effectiveness of our approach on standard benchmarks.
comment: Accepted to ICCV 2025
♻ ☆ SafeEraser: Enhancing Safety in Multimodal Large Language Models through Multimodal Machine Unlearning
As Multimodal Large Language Models (MLLMs) develop, their potential security issues have become increasingly prominent. Machine Unlearning (MU), as an effective strategy for forgetting specific knowledge in training data, has been widely used in privacy protection. However, MU for safety in MLLM has yet to be fully explored. To address this issue, we propose SAFEERASER, a safety unlearning benchmark for MLLMs, consisting of 3,000 images and 28.8K VQA pairs. We comprehensively evaluate unlearning methods from two perspectives: forget quality and model utility. Our findings show that existing MU methods struggle to maintain model performance while implementing the forget operation and often suffer from over-forgetting. Hence, we introduce Prompt Decouple (PD) Loss to alleviate over-forgetting through decouple prompt during unlearning process. To quantitatively measure over-forgetting mitigated by PD Loss, we propose a new metric called Safe Answer Refusal Rate (SARR). Experimental results demonstrate that combining PD Loss with existing unlearning methods can effectively prevent over-forgetting and achieve a decrease of 79.5% in the SARR metric of LLaVA-7B and LLaVA-13B, while maintaining forget quality and model utility. Our code and dataset will be released upon acceptance. Warning: This paper contains examples of harmful language and images, and reader discretion is recommended.
♻ ☆ HR-INR: Continuous Space-Time Video Super-Resolution via Event Camera
Continuous space-time video super-resolution (C-STVSR) aims to simultaneously enhance video resolution and frame rate at an arbitrary scale. Recently, implicit neural representation (INR) has been applied to video restoration, representing videos as implicit fields that can be decoded at an arbitrary scale. However, existing INR-based C-STVSR methods typically rely on only two frames as input, leading to insufficient inter-frame motion information. Consequently, they struggle to capture fast, complex motion and long-term dependencies (spanning more than three frames), hindering their performance in dynamic scenes. In this paper, we propose a novel C-STVSR framework, named HR-INR, which captures both holistic dependencies and regional motions based on INR. It is assisted by an event camera -- a novel sensor renowned for its high temporal resolution and low latency. To fully utilize the rich temporal information from events, we design a feature extraction consisting of (1) a regional event feature extractor -- taking events as inputs via the proposed event temporal pyramid representation to capture the regional nonlinear motion and (2) a holistic event-frame feature extractor for long-term dependence and continuity motion. We then propose a novel INR-based decoder with spatiotemporal embeddings to capture long-term dependencies with a larger temporal perception field. We validate the effectiveness and generalization of our method on four datasets (both simulated and real data), showing the superiority of our method. The project page is available at https://github.com/yunfanLu/HR-INR
comment: Project page: https://github.com/yunfanLu/HR-INR
♻ ☆ Toward a Robust R2D2 Paradigm for Radio-interferometric Imaging: Revisiting Deep Neural Network Training and Architecture
The R2D2 Deep Neural Network (DNN) series was recently introduced for image formation in radio interferometry. It can be understood as a learned version of CLEAN, whose minor cycles are substituted with DNNs. We revisit R2D2 on the grounds of series convergence, training methodology, and DNN architecture, improving its robustness in terms of generalizability beyond training conditions, capability to deliver high data fidelity, and epistemic uncertainty. First, while still focusing on telescope-specific training, we enhance the learning process by randomizing Fourier sampling integration times, incorporating multiscan multinoise configurations, and varying imaging settings, including pixel resolution and visibility-weighting scheme. Second, we introduce a convergence criterion whereby the reconstruction process stops when the data residual is compatible with noise, rather than simply using all available DNNs. This not only increases the reconstruction efficiency by reducing its computational cost, but also refines training by pruning out the data/image pairs for which optimal data fidelity is reached before training the next DNN. Third, we substitute R2D2's early U-Net DNN with a novel architecture (U-WDSR) combining U-Net and WDSR, which leverages wide activation, dense skip connections, weight normalization, and low-rank convolution to improve feature reuse and reconstruction precision. As previously, R2D2 was trained for monochromatic intensity imaging with the Very Large Array at fixed $512 \times 512$ image size. Simulations on a wide range of inverse problems and a case study on real data reveal that the new R2D2 model consistently outperforms its earlier version in image reconstruction quality, data fidelity, and epistemic uncertainty.
comment: 18 pages, 6 figures
♻ ☆ ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation
Recent advancements in large reasoning models (LRMs) like DeepSeek-R1 and OpenAI o1 series have achieved notable performance enhancements on complex reasoning tasks by scaling up the generation length by Chain-of-Thought (CoT). However, a critical issue is their tendency to produce excessively verbose reasoning processes, leading to the inefficiency problem. Existing literature on improving efficiency mainly adheres to the before-reasoning paradigms such as prompting and reasoning or fine-tuning and reasoning, but ignores the promising direction of directly encouraging the model to speak concisely by intervening during the generation of reasoning. In order to fill the blank, we propose a framework dubbed ConciseHint, which continuously encourages the reasoning model to speak concisely by injecting learnable hints (manually designed or learned on concise data) during the generation of the reasoning. Besides, ConciseHint is adaptive to the complexity of the query by adaptively adjusting the hint intensity, which ensures it will not undermine model performance. Experiments on the state-of-the-art LRMs, including DeepSeek-R1 and Qwen-3 series, demonstrate that our method can effectively produce concise reasoning while maintaining the performance well. Moreover, we show that ConciseHint is flexible and can be seamlessly integrated with existing methods to further push the upper bound of the efficiency.
comment: Compare with more baselines, add more in-depth analysis, and re-evaluate the GPQA-D benchmark. Codes are available at https://github.com/tsa18/ConciseHint
♻ ☆ Dressing the Imagination: A Dataset for AI-Powered Translation of Text into Fashion Outfits and A Novel KAN Adapter for Enhanced Feature Adaptation
Specialized datasets that capture the fashion industry's rich language and styling elements can boost progress in AI-driven fashion design. We present FLORA, (Fashion Language Outfit Representation for Apparel Generation), the first comprehensive dataset containing 4,330 curated pairs of fashion outfits and corresponding textual descriptions. Each description utilizes industry-specific terminology and jargon commonly used by professional fashion designers, providing precise and detailed insights into the outfits. Hence, the dataset captures the delicate features and subtle stylistic elements necessary to create high-fidelity fashion designs. We demonstrate that fine-tuning generative models on the FLORA dataset significantly enhances their capability to generate accurate and stylistically rich images from textual descriptions of fashion sketches. FLORA will catalyze the creation of advanced AI models capable of comprehending and producing subtle, stylistically rich fashion designs. It will also help fashion designers and end-users to bring their ideas to life. As a second orthogonal contribution, we introduce NeRA (Nonlinear low-rank Expressive Representation Adapter), a novel adapter architecture based on Kolmogorov-Arnold Networks (KAN). Unlike traditional PEFT techniques such as LoRA, LoKR, DoRA, and LoHA that use MLP adapters, NeRA uses learnable spline-based nonlinear transformations, enabling superior modeling of complex semantic relationships, achieving strong fidelity, faster convergence and semantic alignment. Extensive experiments on our proposed FLORA and LAION-5B datasets validate the superiority of NeRA over existing adapters. We will open-source both the FLORA dataset and our implementation code.
comment: Under review at a conference
♻ ☆ Out-of-Distribution Detection with Relative Angles
Deep learning systems deployed in real-world applications often encounter data that is different from their in-distribution (ID). A reliable model should ideally abstain from making decisions in this out-of-distribution (OOD) setting. Existing state-of-the-art methods primarily focus on feature distances, such as k-th nearest neighbors and distances to decision boundaries, either overlooking or ineffectively using in-distribution statistics. In this work, we propose a novel angle-based metric for OOD detection that is computed relative to the in-distribution structure. We demonstrate that the angles between feature representations and decision boundaries, viewed from the mean of in-distribution features, serve as an effective discriminative factor between ID and OOD data. We evaluate our method on nine ImageNet-pretrained models. Our approach achieves the lowest FPR in 5 out of 9 ImageNet models, obtains the best average FPR overall, and consistently ranking among the top 3 across all evaluated models. Furthermore, we highlight the benefits of contrastive representations by showing strong performance with ResNet SCL and CLIP architectures. Finally, we demonstrate that the scale-invariant nature of our score enables an ensemble strategy via simple score summation. Code is available at https://github.com/berkerdemirel/ORA-OOD-Detection-with-Relative-Angles.
♻ ☆ Easi3R: Estimating Disentangled Motion from DUSt3R Without Training
Recent advances in DUSt3R have enabled robust estimation of dense point clouds and camera parameters of static scenes, leveraging Transformer network architectures and direct supervision on large-scale 3D datasets. In contrast, the limited scale and diversity of available 4D datasets present a major bottleneck for training a highly generalizable 4D model. This constraint has driven conventional 4D methods to fine-tune 3D models on scalable dynamic video data with additional geometric priors such as optical flow and depths. In this work, we take an opposite path and introduce Easi3R, a simple yet efficient training-free method for 4D reconstruction. Our approach applies attention adaptation during inference, eliminating the need for from-scratch pre-training or network fine-tuning. We find that the attention layers in DUSt3R inherently encode rich information about camera and object motion. By carefully disentangling these attention maps, we achieve accurate dynamic region segmentation, camera pose estimation, and 4D dense point map reconstruction. Extensive experiments on real-world dynamic videos demonstrate that our lightweight attention adaptation significantly outperforms previous state-of-the-art methods that are trained or finetuned on extensive dynamic datasets. Our code is publicly available for research purpose at https://easi3r.github.io/
comment: Page: https://easi3r.github.io/ Code: https://github.com/Inception3D/Easi3R
♻ ☆ Robustness and sex differences in skin cancer detection: logistic regression vs CNNs MICCAI 2025
Deep learning has been reported to achieve high performances in the detection of skin cancer, yet many challenges regarding the reproducibility of results and biases remain. This study is a replication (different data, same analysis) of a previous study on Alzheimer's disease detection, which studied the robustness of logistic regression (LR) and convolutional neural networks (CNN) across patient sexes. We explore sex bias in skin cancer detection, using the PAD-UFES-20 dataset with LR trained on handcrafted features reflecting dermatological guidelines (ABCDE and the 7-point checklist), and a pre-trained ResNet-50 model. We evaluate these models in alignment with the replicated study: across multiple training datasets with varied sex composition to determine their robustness. Our results show that both the LR and the CNN were robust to the sex distribution, but the results also revealed that the CNN had a significantly higher accuracy (ACC) and area under the receiver operating characteristics (AUROC) for male patients compared to female patients. The data and relevant scripts to reproduce our results are publicly available (https://github.com/ nikodice4/Skin-cancer-detection-sex-bias).
comment: 10 pages, 1 figure, published at FAIMI workshop at the MICCAI 2025 conference
♻ ☆ Electromagnetic Inverse Scattering from a Single Transmitter
Solving Electromagnetic Inverse Scattering Problems (EISP) is fundamental in applications such as medical imaging, where the goal is to reconstruct the relative permittivity from scattered electromagnetic field. This inverse process is inherently ill-posed and highly nonlinear, making it particularly challenging, especially under sparse transmitter setups, e.g., with only one transmitter. A recent machine learning-based approach, Img-Interiors, shows promising results by leveraging continuous implicit functions. However, it requires time-consuming case-specific optimization and fails under sparse transmitter setups. To address these limitations, we revisit EISP from a data-driven perspective. The scarcity of transmitters leads to an insufficient amount of measured data, which fails to capture adequate physical information for stable inversion. Built on this insight, we propose a fully end-to-end and data-driven framework that predicts the relative permittivity of scatterers from measured fields, leveraging data distribution priors to compensate for the lack of physical information. This design enables data-driven training and feed-forward prediction of relative permittivity while maintaining strong robustness to transmitter sparsity. Extensive experiments show that our method outperforms state-of-the-art approaches in reconstruction accuracy and robustness. Notably, it achieves high-quality results even with a single transmitter, a setting where previous methods consistently fail. This work offers a fundamentally new perspective on electromagnetic inverse scattering and represents a major step toward cost-effective practical solutions for electromagnetic imaging.
♻ ☆ PAN: Pillars-Attention-Based Network for 3D Object Detection
Camera-radar fusion offers a robust and low-cost alternative to Camera-lidar fusion for the 3D object detection task in real-time under adverse weather and lighting conditions. However, currently, in the literature, it is possible to find few works focusing on this modality and, most importantly, developing new architectures to explore the advantages of the radar point cloud, such as accurate distance estimation and speed information. Therefore, this work presents a novel and efficient 3D object detection algorithm using cameras and radars in the bird's-eye-view (BEV). Our algorithm exploits the advantages of radar before fusing the features into a detection head. A new backbone is introduced, which maps the radar pillar features into an embedded dimension. A self-attention mechanism allows the backbone to model the dependencies between the radar points. We are using a simplified convolutional layer to replace the FPN-based convolutional layers used in the PointPillars-based architectures with the main goal of reducing inference time. Our results show that with this modification, our approach achieves the new state-of-the-art in the 3D object detection problem, reaching 58.2 of the NDS metric for the use of ResNet-50, while also setting a new benchmark for inference time on the nuScenes dataset for the same category.
♻ ☆ SMaRt: Improving GANs with Score Matching Regularity
Generative adversarial networks (GANs) usually struggle in learning from highly diverse data, whose underlying manifold is complex. In this work, we revisit the mathematical foundations of GANs, and theoretically reveal that the native adversarial loss for GAN training is insufficient to fix the problem of \textit{subsets with positive Lebesgue measure of the generated data manifold lying out of the real data manifold}. Instead, we find that score matching serves as a promising solution to this issue thanks to its capability of persistently pushing the generated data points towards the real data manifold. We thereby propose to improve the optimization of GANs with score matching regularity (SMaRt). Regarding the empirical evidences, we first design a toy example to show that training GANs by the aid of a ground-truth score function can help reproduce the real data distribution more accurately, and then confirm that our approach can consistently boost the synthesis performance of various state-of-the-art GANs on real-world datasets with pre-trained diffusion models acting as the approximate score function. For instance, when training Aurora on the ImageNet $64\times64$ dataset, we manage to improve FID from 8.87 to 7.11, on par with the performance of one-step consistency model. Code is available at \href{https://github.com/thuxmf/SMaRt}{https://github.com/thuxmf/SMaRt}.
♻ ☆ Towards More Accurate Diffusion Model Acceleration with A Timestep Tuner
A diffusion model, which is formulated to produce an image using thousands of denoising steps, usually suffers from a slow inference speed. Existing acceleration algorithms simplify the sampling by skipping most steps yet exhibit considerable performance degradation. By viewing the generation of diffusion models as a discretized integral process, we argue that the quality drop is partly caused by applying an inaccurate integral direction to a timestep interval. To rectify this issue, we propose a \textbf{timestep tuner} that helps find a more accurate integral direction for a particular interval at the minimum cost. Specifically, at each denoising step, we replace the original parameterization by conditioning the network on a new timestep, enforcing the sampling distribution towards the real one. Extensive experiments show that our plug-in design can be trained efficiently and boost the inference performance of various state-of-the-art acceleration methods, especially when there are few denoising steps. For example, when using 10 denoising steps on LSUN Bedroom dataset, we improve the FID of DDIM from 9.65 to 6.07, simply by adopting our method for a more appropriate set of timesteps. Code is available at \href{https://github.com/THU-LYJ-Lab/time-tuner}{https://github.com/THU-LYJ-Lab/time-tuner}.
♻ ☆ Rectified Diffusion Guidance for Conditional Generation
Classifier-Free Guidance (CFG), which combines the conditional and unconditional score functions with two coefficients summing to one, serves as a practical technique for diffusion model sampling. Theoretically, however, denoising with CFG \textit{cannot} be expressed as a reciprocal diffusion process, which may consequently leave some hidden risks during use. In this work, we revisit the theory behind CFG and rigorously confirm that the improper configuration of the combination coefficients (\textit{i.e.}, the widely used summing-to-one version) brings about expectation shift of the generative distribution. To rectify this issue, we propose ReCFG with a relaxation on the guidance coefficients such that denoising with \method strictly aligns with the diffusion theory. We further show that our approach enjoys a \textbf{\textit{closed-form}} solution given the guidance strength. That way, the rectified coefficients can be readily pre-computed via traversing the observed data, leaving the sampling speed barely affected. Empirical evidence on real-world data demonstrate the compatibility of our post-hoc design with existing state-of-the-art diffusion models, including both class-conditioned ones (\textit{e.g.}, EDM2 on ImageNet) and text-conditioned ones (\textit{e.g.}, SD3 on CC12M), without any retraining. Code is available at \href{https://github.com/thuxmf/recfg}{https://github.com/thuxmf/recfg}.
♻ ☆ Mitigating Multimodal Hallucinations via Gradient-based Self-Reflection
Multimodal large language models achieve strong performance across diverse tasks but remain prone to hallucinations, where outputs are not grounded in visual inputs. This issue can be attributed to two main biases: text-visual bias, the overreliance on prompts and prior outputs, and co-occurrence bias, spurious correlations between frequently paired objects. We propose Gradient-based Influence-Aware Constrained Decoding (GACD), an inference-based method, that addresses both biases without auxiliary models, and is readily applicable to existing models without finetuning. The core of our approach is bias estimation, which uses first-order Taylor gradients to understand the contribution of individual tokens-visual features and text tokens-to the current output. Based on this analysis, GACD mitigates hallucinations through two components: (1) suppressing spurious visual features correlated with the output objects, and (2) rebalancing cross-modal contributions by strengthening visual features relative to text. Experiments across multiple benchmarks demonstrate that GACD effectively reduces hallucinations and improves the visual grounding of MLLM outputs.
♻ ☆ DACoN: DINO for Anime Paint Bucket Colorization with Any Number of Reference Images ICCV 2025
Automatic colorization of line drawings has been widely studied to reduce the labor cost of hand-drawn anime production. Deep learning approaches, including image/video generation and feature-based correspondence, have improved accuracy but struggle with occlusions, pose variations, and viewpoint changes. To address these challenges, we propose DACoN, a framework that leverages foundation models to capture part-level semantics, even in line drawings. Our method fuses low-resolution semantic features from foundation models with high-resolution spatial features from CNNs for fine-grained yet robust feature extraction. In contrast to previous methods that rely on the Multiplex Transformer and support only one or two reference images, DACoN removes this constraint, allowing any number of references. Quantitative and qualitative evaluations demonstrate the benefits of using multiple reference images, achieving superior colorization performance. Our code and model are available at https://github.com/kzmngt/DACoN.
comment: Accepted to ICCV 2025. v2: Added results on the subset used by the baseline for consistency; full test set results are also reported (Tables 1 and 2)
♻ ☆ iFinder: Structured Zero-Shot Vision-Based LLM Grounding for Dash-Cam Video Reasoning NeurIPS 2025
Grounding large language models (LLMs) in domain-specific tasks like post-hoc dash-cam driving video analysis is challenging due to their general-purpose training and lack of structured inductive biases. As vision is often the sole modality available for such analysis (i.e., no LiDAR, GPS, etc.), existing video-based vision-language models (V-VLMs) struggle with spatial reasoning, causal inference, and explainability of events in the input video. To this end, we introduce iFinder, a structured semantic grounding framework that decouples perception from reasoning by translating dash-cam videos into a hierarchical, interpretable data structure for LLMs. iFinder operates as a modular, training-free pipeline that employs pretrained vision models to extract critical cues -- object pose, lane positions, and object trajectories -- which are hierarchically organized into frame- and video-level structures. Combined with a three-block prompting strategy, it enables step-wise, grounded reasoning for the LLM to refine a peer V-VLM's outputs and provide accurate reasoning. Evaluations on four public dash-cam video benchmarks show that iFinder's proposed grounding with domain-specific cues, especially object orientation and global context, significantly outperforms end-to-end V-VLMs on four zero-shot driving benchmarks, with up to 39% gains in accident reasoning accuracy. By grounding LLMs with driving domain-specific representations, iFinder offers a zero-shot, interpretable, and reliable alternative to end-to-end V-VLMs for post-hoc driving video understanding.
comment: Accepted at NeurIPS 2025
♻ ☆ DPDETR: Decoupled Position Detection Transformer for Infrared-Visible Object Detection
Infrared-visible object detection aims to achieve robust object detection by leveraging the complementary information of infrared and visible image pairs. However, the commonly existing modality misalignment problem presents two challenges: fusing misalignment complementary features is difficult, and current methods cannot reliably locate objects in both modalities under misalignment conditions. In this paper, we propose a Decoupled Position Detection Transformer (DPDETR) to address these issues. Specifically, we explicitly define the object category, visible modality position, and infrared modality position to enable the network to learn the intrinsic relationships and output reliably positions of objects in both modalities. To fuse misaligned object features reliably, we propose a Decoupled Position Multispectral Cross-attention module that adaptively samples and aggregates multispectral complementary features with the constraint of infrared and visible reference positions. Additionally, we design a query-decoupled Multispectral Decoder structure to address the the conflict in feature focus among the three kinds of object information in our task and propose a Decoupled Position Contrastive DeNoising Training strategy to enhance the DPDETR's ability to learn decoupled positions. Experiments on DroneVehicle and KAIST datasets demonstrate significant improvements compared to other state-of-the-art methods. The code will be released at https://github.com/gjj45/DPDETR
♻ ☆ ATAS: Any-to-Any Self-Distillation for Enhanced Open-Vocabulary Dense Prediction ICCV25
Vision-language models such as CLIP have recently propelled open-vocabulary dense prediction tasks by enabling recognition of a broad range of visual concepts. However, CLIP still struggles with fine-grained, region-level understanding, hindering its effectiveness on these dense prediction tasks. We identify two pivotal factors required to address this limitation: semantic coherence and fine-grained vision-language alignment. Current adaptation methods often improve fine-grained alignment at the expense of semantic coherence, and often rely on extra modules or supervised fine-tuning. To overcome these issues, we propose Any-to-Any Self-Distillation (ATAS), a novel approach that simultaneously enhances semantic coherence and fine-grained alignment by leveraging own knowledge of a model across all representation levels. Unlike prior methods, ATAS uses only unlabeled images and an internal self-distillation process to refine representations of CLIP vision encoders, preserving local semantic consistency while sharpening local detail recognition. On open-vocabulary object detection and semantic segmentation benchmarks, ATAS achieves substantial performance gains, outperforming baseline CLIP models. These results validate the effectiveness of our approach and underscore the importance of jointly maintaining semantic coherence and fine-grained alignment for advanced open-vocabulary dense prediction.
comment: Accepted at ICCV25
♻ ☆ Divergence-Based Similarity Function for Multi-View Contrastive Learning
Recent success in contrastive learning has sparked growing interest in more effectively leveraging multiple augmented views of an instance. While prior methods incorporate multiple views at the loss or feature level, they primarily capture pairwise relationships and fail to model the joint structure across all views. In this work, we propose a divergence-based similarity function (DSF) that explicitly captures the joint structure by representing each set of augmented views as a distribution and measuring similarity as the divergence between distributions. Extensive experiments demonstrate that DSF consistently improves performance across various tasks, including kNN classification and linear evaluation, while also offering greater efficiency compared to other multi-view methods. Furthermore, we establish a theoretical connection between DSF and cosine similarity, and show that, unlike cosine similarity, DSF operates effectively without requiring a temperature hyperparameter.
comment: 9 pages, 5 figures
♻ ☆ Are All Marine Species Created Equal? Performance Disparities in Underwater Object Detection
Underwater object detection is critical for monitoring marine ecosystems but poses unique challenges, including degraded image quality, imbalanced class distribution, and distinct visual characteristics. Not every species is detected equally well, yet underlying causes remain unclear. We address two key research questions: 1) What factors beyond data quantity drive class-specific performance disparities? 2) How can we systematically improve detection of under-performing marine species? We manipulate the DUO and RUOD datasets to separate the object detection task into localization and classification and investigate the under-performance of the scallop class. Localization analysis using YOLO11 and TIDE finds that foreground-background discrimination is the most problematic stage regardless of data quantity. Classification experiments reveal persistent precision gaps even with balanced data, indicating intrinsic feature-based challenges beyond data scarcity and inter-class dependencies. We recommend imbalanced distributions when prioritizing precision, and balanced distributions when prioritizing recall. Improving under-performing classes should focus on algorithmic advances, especially within localization modules. We publicly release our code and datasets.
comment: 10 pages for main paper, 4 pages for supplementary material
♻ ☆ DreamCS: Geometry-Aware Text-to-3D Generation with Unpaired 3D Reward Supervision
While text-to-3D generation has attracted growing interest, existing methods often struggle to produce 3D assets that align well with human preferences. Current preference alignment techniques for 3D content typically rely on hardly-collected preference-paired multi-view 2D images to train 2D reward models, when then guide 3D generation -- leading to geometric artifacts due to their inherent 2D bias. To address these limitations, we construct 3D-MeshPref, the first large-scale unpaired 3D preference dataset, featuring diverse 3D meshes annotated by a large language model and refined by human evaluators. We then develop RewardCS, the first reward model trained directly on unpaired 3D-MeshPref data using a novel Cauchy-Schwarz divergence objective, enabling effective learning of human-aligned 3D geometric preferences without requiring paired comparisons. Building on this, we propose DreamCS, a unified framework that integrates RewardCS into text-to-3D pipelines -- enhancing both implicit and explicit 3D generation with human preference feedback. Extensive experiments show DreamCS outperforms prior methods, producing 3D assets that are both geometrically faithful and human-preferred. Code and models will be released publicly.
♻ ☆ Learning Human-Perceived Fakeness in AI-Generated Videos via Multimodal LLMs
Can humans identify AI-generated (fake) videos and provide grounded reasons? While video generation models have advanced rapidly, a critical dimension -- whether humans can detect deepfake traces within a generated video, i.e., spatiotemporal grounded visual artifacts that reveal a video as machine generated -- has been largely overlooked. We introduce DeeptraceReward, the first fine-grained, spatially- and temporally- aware benchmark that annotates human-perceived fake traces for video generation reward. The dataset comprises 4.3K detailed annotations across 3.3K high-quality generated videos. Each annotation provides a natural-language explanation, pinpoints a bounding-box region containing the perceived trace, and marks precise onset and offset timestamps. We consolidate these annotations into 9 major categories of deepfake traces that lead humans to identify a video as AI-generated, and train multimodal language models (LMs) as reward models to mimic human judgments and localizations. On DeeptraceReward, our 7B reward model outperforms GPT-5 by 34.7% on average across fake clue identification, grounding, and explanation. Interestingly, we observe a consistent difficulty gradient: binary fake v.s. real classification is substantially easier than fine-grained deepfake trace detection; within the latter, performance degrades from natural language explanations (easiest), to spatial grounding, to temporal labeling (hardest). By foregrounding human-perceived deepfake traces, DeeptraceReward provides a rigorous testbed and training signal for socially aware and trustworthy video generation.
comment: Project Page: https://deeptracereward.github.io/
♻ ☆ Proxy-GS: Efficient 3D Gaussian Splatting via Proxy Mesh
3D Gaussian Splatting (3DGS) has emerged as an efficient approach for achieving photorealistic rendering. Recent MLP-based variants further improve visual fidelity but introduce substantial decoding overhead during rendering. To alleviate computation cost, several pruning strategies and level-of-detail (LOD) techniques have been introduced, aiming to effectively reduce the number of Gaussian primitives in large-scale scenes. However, our analysis reveals that significant redundancy still remains due to the lack of occlusion awareness. In this work, we propose Proxy-GS, a novel pipeline that exploits a proxy to introduce Gaussian occlusion awareness from any view. At the core of our approach is a fast proxy system capable of producing precise occlusion depth maps at a resolution of 1000x1000 under 1ms. This proxy serves two roles: first, it guides the culling of anchors and Gaussians to accelerate rendering speed. Second, it guides the densification towards surfaces during training, avoiding inconsistencies in occluded regions, and improving the rendering quality. In heavily occluded scenarios, such as the MatrixCity Streets dataset, Proxy-GS not only equips MLP-based Gaussian splatting with stronger rendering capability but also achieves faster rendering speed. Specifically, it achieves more than 2.5x speedup over Octree-GS, and consistently delivers substantially higher rendering quality. Code will be public upon acceptance.
♻ ☆ GUI-R1 : A Generalist R1-Style Vision-Language Action Model For GUI Agents
Existing efforts in building Graphical User Interface (GUI) agents largely rely on the training paradigm of supervised fine-tuning on Large Vision-Language Models (LVLMs). However, this approach not only demands extensive amounts of training data but also struggles to effectively understand GUI screenshots and generalize to unseen interfaces. The issue significantly limits its application in real-world scenarios, especially for high-level tasks. Inspired by Reinforcement Fine-Tuning (RFT) in large reasoning models (e.g., DeepSeek-R1), which efficiently enhances the problem-solving capabilities of large language models in real-world settings, we propose \name, the first reinforcement learning framework designed to enhance the GUI capabilities of LVLMs in high-level real-world task scenarios, through unified action space rule modeling. By leveraging a small amount of carefully curated high-quality data across multiple platforms (including Windows, Linux, MacOS, Android, and Web) and employing policy optimization algorithms such as Group Relative Policy Optimization (GRPO) to update the model, \name achieves superior performance using only 0.02\% of the data (3K vs. 13M) compared to previous state-of-the-art methods like OS-Atlas across eight benchmarks spanning three different platforms (mobile, desktop, and web). These results demonstrate the immense potential of reinforcement learning based on unified action space rule modeling in improving the execution capabilities of LVLMs for real-world GUI agent tasks.
♻ ☆ Combating Noisy Labels via Dynamic Connection Masking
Noisy labels are inevitable in real-world scenarios. Due to the strong capacity of deep neural networks to memorize corrupted labels, these noisy labels can cause significant performance degradation. Existing research on mitigating the negative effects of noisy labels has mainly focused on robust loss functions and sample selection, with comparatively limited exploration of regularization in model architecture. Inspired by the sparsity regularization used in Kolmogorov-Arnold Networks (KANs), we propose a Dynamic Connection Masking (DCM) mechanism for both Multi-Layer Perceptron Networks (MLPs) and KANs to enhance the robustness of classifiers against noisy labels. The mechanism can adaptively mask less important edges during training by evaluating their information-carrying capacity. Through theoretical analysis, we demonstrate its efficiency in reducing gradient error. Our approach can be seamlessly integrated into various noise-robust training methods to build more robust deep networks, including robust loss functions, sample selection strategies, and regularization techniques. Extensive experiments on both synthetic and real-world benchmarks demonstrate that our method consistently outperforms state-of-the-art (SOTA) approaches. Furthermore, we are also the first to investigate KANs as classifiers against noisy labels, revealing their superior noise robustness over MLPs in real-world noisy scenarios. Our code will soon be publicly available.
♻ ☆ Beyond Semantics: Rediscovering Spatial Awareness in Vision-Language Models
Vision Language Models (VLMs) excel at identifying and describing objects but often fail at spatial reasoning. We study why VLMs, such as LLaVA, underutilize spatial cues despite having positional encodings and spatially rich vision encoder features. Our analysis reveals a key imbalance: vision token embeddings have much larger norms than text tokens, suppressing LLM's position embedding. To expose this mechanism, we developed three interpretability tools: (1) the Position Sensitivity Index, which quantifies reliance on token order, (2) the Cross Modality Balance, which reveals attention head allocation patterns, and (3) a RoPE Sensitivity probe, which measures dependence on rotary positional embeddings. These tools uncover that vision tokens and system prompts dominate attention. We validated our mechanistic understanding through targeted interventions that predictably restore positional sensitivity. These findings reveal previously unknown failure modes in multimodal attention and demonstrate how interpretability analysis can guide principled improvements.
♻ ☆ Dynamic-TreeRPO: Breaking the Independent Trajectory Bottleneck with Structured Sampling
The integration of Reinforcement Learning (RL) into flow matching models for text-to-image (T2I) generation has driven substantial advances in generation quality. However, these gains often come at the cost of exhaustive exploration and inefficient sampling strategies due to slight variation in the sampling group. Building on this insight, we propose Dynamic-TreeRPO, which implements the sliding-window sampling strategy as a tree-structured search with dynamic noise intensities along depth. We perform GRPO-guided optimization and constrained Stochastic Differential Equation (SDE) sampling within this tree structure. By sharing prefix paths of the tree, our design effectively amortizes the computational overhead of trajectory search. With well-designed noise intensities for each tree layer, Dynamic-TreeRPO can enhance the variation of exploration without any extra computational cost. Furthermore, we seamlessly integrate Supervised Fine-Tuning (SFT) and RL paradigm within Dynamic-TreeRPO to construct our proposed LayerTuning-RL, reformulating the loss function of SFT as a dynamically weighted Progress Reward Model (PRM) rather than a separate pretraining method. By associating this weighted PRM with dynamic-adaptive clipping bounds, the disruption of exploration process in Dynamic-TreeRPO is avoided. Benefiting from the tree-structured sampling and the LayerTuning-RL paradigm, our model dynamically explores a diverse search space along effective directions. Compared to existing baselines, our approach demonstrates significant superiority in terms of semantic consistency, visual fidelity, and human preference alignment on established benchmarks, including HPS-v2.1, PickScore, and ImageReward. In particular, our model outperforms SoTA by $4.9\%$, $5.91\%$, and $8.66\%$ on those benchmarks, respectively, while improving the training efficiency by nearly $50\%$.
comment: Fig.3 updated
♻ ☆ SpikeGen: Decoupled "Rods and Cones" Visual Representation Processing with Latent Generative Framework
The process through which humans perceive and learn visual representations in dynamic environments is highly complex. From a structural perspective, the human eye decouples the functions of cone and rod cells: cones are primarily responsible for color perception, while rods are specialized in detecting motion, particularly variations in light intensity. These two distinct modalities of visual information are integrated and processed within the visual cortex, thereby enhancing the robustness of the human visual system. Inspired by this biological mechanism, modern hardware systems have evolved to include not only color-sensitive RGB cameras but also motion-sensitive Dynamic Visual Systems, such as spike cameras. Building upon these advancements, this study seeks to emulate the human visual system by integrating decomposed multi-modal visual inputs with modern latent-space generative frameworks. We named it SpikeGen. We evaluate its performance across various spike-RGB tasks, including conditional image and video deblurring, dense frame reconstruction from spike streams, and high-speed scene novel-view synthesis. Supported by extensive experiments, we demonstrate that leveraging the latent space manipulation capabilities of generative models enables an effective synergistic enhancement of different visual modalities, addressing spatial sparsity in spike inputs and temporal sparsity in RGB inputs.
♻ ☆ H3AE: High Compression, High Speed, and High Quality AutoEncoder for Video Diffusion Models
Autoencoder (AE) is the key to the success of latent diffusion models for image and video generation, reducing the denoising resolution and improving efficiency. However, the power of AE has long been underexplored in terms of network design, compression ratio, and training strategy. In this work, we systematically examine the architecture design choices and optimize the computation distribution to obtain a series of efficient and high-compression video AEs that can decode in real time even on mobile devices. We also propose an omni-training objective to unify the design of plain Autoencoder and image-conditioned I2V VAE, achieving multifunctionality in a single VAE network but with enhanced quality. In addition, we propose a novel latent consistency loss that provides stable improvements in reconstruction quality. Latent consistency loss outperforms prior auxiliary losses including LPIPS, GAN and DWT in terms of both quality improvements and simplicity. H3AE achieves ultra-high compression ratios and real-time decoding speed on GPU and mobile, and outperforms prior arts in terms of reconstruction metrics by a large margin. We finally validate our AE by training a DiT on its latent space and demonstrate fast, high-quality text-to-video generation capability.
comment: 17 pages, 6 figures, 9 tables
♻ ☆ MMGeoLM: Hard Negative Contrastive Learning for Fine-Grained Geometric Understanding in Large Multimodal Models
Large Multimodal Models (LMMs) typically build on ViTs (e.g., CLIP), yet their training with simple random in-batch negatives limits the ability to capture fine-grained visual differences, particularly in geometric scenarios. To address this challenge, we propose a novel hard negative contrastive learning framework for the vision encoder, which combines image-based contrastive learning using generation-based hard negatives created by perturbing diagram generation code, and text-based contrastive learning using rule-based negatives derived from modified geometric descriptions and retrieval-based negatives selected based on caption similarity. We train a vision encoder (CLIP) using our hard negative training method, namely MMCLIP (Multimodal Math CLIP), and subsequently train an LMM for geometric problem-solving. Experiments show that our trained model, MMGeoLM, significantly outperforms other open-source models on three geometric reasoning benchmarks. Even with a size of 7B, it can rival powerful closed-source models like GPT-4o. We further conduct ablation studies to analyze three key factors: hard negative types, the efficiency of image-based negatives, and training configurations. These analyses yield important insights into optimizing the training pipeline of vision encoder for fine-grained geometric reasoning tasks. https://github.com/THU-KEG/MMGeoLM.
♻ ☆ STORK: Faster Diffusion And Flow Matching Sampling By Resolving Both Stiffness And Structure-Dependence
Diffusion models (DMs) and flow-matching models have demonstrated remarkable performance in image and video generation. However, such models require a significant number of function evaluations (NFEs) during sampling, leading to costly inference. Consequently, quality-preserving fast sampling methods that require fewer NFEs have been an active area of research. However, prior training-free sampling methods fail to simultaneously address two key challenges: the stiffness of the ODE (i.e., the non-straightness of the velocity field) and dependence on the semi-linear structure of the DM ODE (which limits their direct applicability to flow-matching models). In this work, we introduce the Stabilized Taylor Orthogonal Runge--Kutta (STORK) method, addressing both design concerns. We demonstrate that STORK consistently improves the quality of diffusion and flow-matching sampling for image and video generation. Code is available at https://github.com/ZT220501/STORK.
♻ ☆ MLLM-CL: Continual Learning for Multimodal Large Language Models
Recent Multimodal Large Language Models (MLLMs) excel in vision-language understanding but face challenges in adapting to dynamic real-world scenarios that require continuous integration of new knowledge and skills. While continual learning (CL) offers a potential solution, existing benchmarks and methods suffer from critical limitations. In this paper, we introduce MLLM-CL, a novel benchmark encompassing domain and ability continual learning, where the former focuses on independently and identically distributed (IID) evaluation across evolving mainstream domains, whereas the latter evaluates on non-IID scenarios with new model abilities. Methodologically, we propose preventing catastrophic interference through parameter isolation and an MLLM-based routing mechanism. Extensive experiments demonstrate that our approach can integrate domain-specific knowledge and functional abilities with minimal forgetting, significantly outperforming existing methods. Our benchmark and code are available at https://github.com/bjzhb666/MLLM-CL.
♻ ☆ Breaking Down and Building Up: Mixture of Skill-Based Vision-and-Language Navigation Agents
Vision-and-Language Navigation (VLN) poses significant challenges for agents to interpret natural language instructions and navigate complex 3D environments. While recent progress has been driven by large-scale pre-training and data augmentation, current methods still struggle to generalize to unseen scenarios, particularly when complex spatial and temporal reasoning is required. In this work, we propose SkillNav, a modular framework that introduces structured, skill-based reasoning into Transformer-based VLN agents. Our method decomposes navigation into a set of interpretable atomic skills (e.g., Vertical Movement, Area and Region Identification, Stop and Pause), each handled by a specialized agent. To support targeted skill training without manual data annotation, we construct a synthetic dataset pipeline that generates diverse, linguistically natural, skill-specific instruction-trajectory pairs. We then introduce a novel training-free Vision-Language Model (VLM)-based router, which dynamically selects the most suitable agent at each time step by aligning sub-goals with visual observations and historical actions. SkillNav obtains competitive results on commonly used benchmarks and establishes state-of-the-art generalization to the GSA-R2R, a benchmark with novel instruction styles and unseen environments.
♻ ☆ LLaVAShield: Safeguarding Multimodal Multi-Turn Dialogues in Vision-Language Models
As Vision-Language Models (VLMs) move into interactive, multi-turn use, new safety risks arise that single-turn or single-modality moderation misses. In Multimodal Multi-Turn (MMT) dialogues, malicious intent can be spread across turns and images, while context-sensitive replies may still advance harmful content. To address this challenge, we present the first systematic definition and study of MMT dialogue safety. Building on this formulation, we introduce the Multimodal Multi-turn Dialogue Safety (MMDS) dataset. We further develop an automated multimodal multi-turn red-teaming framework based on Monte Carlo Tree Search (MCTS) to generate unsafe multimodal multi-turn dialogues for MMDS. MMDS contains 4,484 annotated multimodal dialogue samples with fine-grained safety ratings, policy dimension labels, and evidence-based rationales for both users and assistants. Leveraging MMDS, we present LLaVAShield, a powerful tool that jointly detects and assesses risk in user inputs and assistant responses. Across comprehensive experiments, LLaVAShield consistently outperforms strong baselines on MMT content moderation tasks and under dynamic policy configurations, establishing new state-of-the-art results. We will publicly release the dataset and model to support future research.
♻ ☆ Hierarchical place recognition with omnidirectional images and curriculum learning-based loss functions
This paper addresses Visual Place Recognition (VPR), which is essential for the safe navigation of mobile robots. The solution we propose employs panoramic images and deep learning models, which are fine-tuned with triplet loss functions that integrate curriculum learning strategies. By progressively presenting more challenging examples during training, these loss functions enable the model to learn more discriminative and robust feature representations, overcoming the limitations of conventional contrastive loss functions. After training, VPR is tackled in two steps: coarse (room retrieval) and fine (position estimation). The results demonstrate that the curriculum-based triplet losses consistently outperform standard contrastive loss functions, particularly under challenging perceptual conditions. To thoroughly assess the robustness and generalization capabilities of the proposed method, it is evaluated in a variety of indoor and outdoor environments. The approach is tested against common challenges in real operation conditions, including severe illumination changes, the presence of dynamic visual effects such as noise and occlusions, and scenarios with limited training data. The results show that the proposed framework performs competitively in all these situations, achieving high recognition accuracy and demonstrating its potential as a reliable solution for real-world robotic applications. The code used in the experiments is available at https://github.com/MarcosAlfaro/TripletNetworksIndoorLocalization.git.
♻ ☆ Sparkle: Mastering Basic Spatial Capabilities in Vision Language Models Elicits Generalization to Spatial Reasoning
Vision language models (VLMs) perform well on many tasks but often fail at spatial reasoning, which is essential for navigation and interaction with physical environments. Many spatial reasoning tasks depend on fundamental two-dimensional (2D) skills, yet our evaluation shows that state-of-the-art VLMs give implausible or incorrect answers to composite spatial problems, including simple pathfinding tasks that humans solve effortlessly. To address this, we enhance 2D spatial reasoning in VLMs by training them only on basic spatial capabilities. We first disentangle 2D spatial reasoning into three core components: direction comprehension, distance estimation, and localization. We hypothesize that mastering these skills substantially improves performance on complex spatial tasks that require advanced reasoning and combinatorial problem solving, while also generalizing to real-world scenarios. To test this, we introduce Sparkle, a framework that generates synthetic data to provide targeted supervision across these three capabilities and yields an instruction dataset for each. Experiments show that VLMs fine-tuned with \emph{Sparkle} improve not only on basic tasks but also on composite and out-of-distribution real-world spatial reasoning tasks. These results indicate that enhancing basic spatial skills through synthetic generalization effectively advances complex spatial reasoning and offers a systematic strategy for boosting the spatial understanding of VLMs. Source codes of Sparkle are available at https://github.com/YihongT/Sparkle.
♻ ☆ Grasp Pre-shape Selection by Synthetic Training: Eye-in-hand Shared Control on the Hannes Prosthesis IROS 2022
We consider the task of object grasping with a prosthetic hand capable of multiple grasp types. In this setting, communicating the intended grasp type often requires a high user cognitive load which can be reduced adopting shared autonomy frameworks. Among these, so-called eye-in-hand systems automatically control the hand pre-shaping before the grasp, based on visual input coming from a camera on the wrist. In this paper, we present an eye-in-hand learning-based approach for hand pre-shape classification from RGB sequences. Differently from previous work, we design the system to support the possibility to grasp each considered object part with a different grasp type. In order to overcome the lack of data of this kind and reduce the need for tedious data collection sessions for training the system, we devise a pipeline for rendering synthetic visual sequences of hand trajectories. We develop a sensorized setup to acquire real human grasping sequences for benchmarking and show that, compared on practical use cases, models trained with our synthetic dataset achieve better generalization performance than models trained on real data. We finally integrate our model on the Hannes prosthetic hand and show its practical effectiveness. We make publicly available the code and dataset to reproduce the presented results.
comment: Accepted to IROS 2022
♻ ☆ Development of a Mobile Application for at-Home Analysis of Retinal Fundus Images
Machine learning is gaining significant attention as a diagnostic tool in medical imaging, particularly in the analysis of retinal fundus images. However, this approach is not yet clinically applicable, as it still depends on human validation from a professional. Therefore, we present the design for a mobile application that monitors metrics related to retinal fundus images correlating to age-related conditions. The purpose of this platform is to observe for a change in these metrics over time, offering early insights into potential ocular diseases without explicitly delivering diagnostics. Metrics analysed include vessel tortuosity, as well as signs of glaucoma, retinopathy and macular edema. To evaluate retinopathy grade and risk of macular edema, a model was trained on the Messidor dataset and compared to a similar model trained on the MAPLES-DR dataset. Information from the DeepSeeNet glaucoma detection model, as well as tortuosity calculations, is additionally incorporated to ultimately present a retinal fundus image monitoring platform. As a result, the mobile application permits monitoring of trends or changes in ocular metrics correlated to age-related conditions with regularly uploaded photographs.
comment: 5 pages, 4 figures
♻ ☆ Continuous Wrist Control on the Hannes Prosthesis: a Vision-based Shared Autonomy Framework ICRA 2025
Most control techniques for prosthetic grasping focus on dexterous fingers control, but overlook the wrist motion. This forces the user to perform compensatory movements with the elbow, shoulder and hip to adapt the wrist for grasping. We propose a computer vision-based system that leverages the collaboration between the user and an automatic system in a shared autonomy framework, to perform continuous control of the wrist degrees of freedom in a prosthetic arm, promoting a more natural approach-to-grasp motion. Our pipeline allows to seamlessly control the prosthetic wrist to follow the target object and finally orient it for grasping according to the user intent. We assess the effectiveness of each system component through quantitative analysis and finally deploy our method on the Hannes prosthetic arm. Code and videos: https://hsp-iit.github.io/hannes-wrist-control.
comment: Accepted to ICRA 2025. Project website: https://hsp-iit.github.io/hannes-wrist-control
♻ ☆ Oh-A-DINO: Understanding and Enhancing Attribute-Level Information in Self-Supervised Object-Centric Representations
Object-centric understanding is fundamental to human vision and required for complex reasoning. Traditional methods define slot-based bottlenecks to learn object properties explicitly, while recent self-supervised vision models like DINO have shown emergent object understanding. We investigate the effectiveness of self-supervised representations from models such as CLIP, DINOv2 and DINOv3, as well as slot-based approaches, for multi-object instance retrieval, where specific objects must be faithfully identified in a scene. This scenario is increasingly relevant as pre-trained representations are deployed in downstream tasks, e.g., retrieval, manipulation, and goal-conditioned policies that demand fine-grained object understanding. Our findings reveal that self-supervised vision models and slot-based representations excel at identifying edge-derived geometry (shape, size) but fail to preserve non-geometric surface-level cues (colour, material, texture), which are critical for disambiguating objects when reasoning about or selecting them in such tasks. We show that learning an auxiliary latent space over segmented patches, where VAE regularisation enforces compact, disentangled object-centric representations, recovers these missing attributes. Augmenting the self-supervised methods with such latents improves retrieval across all attributes, suggesting a promising direction for making self-supervised representations more reliable in downstream tasks that require precise object-level reasoning.
♻ ☆ Semantic and Visual Crop-Guided Diffusion Models for Heterogeneous Tissue Synthesis in Histopathology NeurIPS 2025
Synthetic data generation in histopathology faces unique challenges: preserving tissue heterogeneity, capturing subtle morphological features, and scaling to unannotated datasets. We present a latent diffusion model that generates realistic heterogeneous histopathology images through a novel dual-conditioning approach combining semantic segmentation maps with tissue-specific visual crops. Unlike existing methods that rely on text prompts or abstract visual embeddings, our approach preserves critical morphological details by directly incorporating raw tissue crops from corresponding semantic regions. For annotated datasets (i.e., Camelyon16, Panda), we extract patches ensuring 20-80% tissue heterogeneity. For unannotated data (i.e., TCGA), we introduce a self-supervised extension that clusters whole-slide images into 100 tissue types using foundation model embeddings, automatically generating pseudo-semantic maps for training. Our method synthesizes high-fidelity images with precise region-wise annotations, achieving superior performance on downstream segmentation tasks. When evaluated on annotated datasets, models trained on our synthetic data show competitive performance to those trained on real data, demonstrating the utility of controlled heterogeneous tissue generation. In quantitative evaluation, prompt-guided synthesis reduces Frechet Distance by up to 6X on Camelyon16 (from 430.1 to 72.0) and yields 2-3x lower FD across Panda and TCGA. Downstream DeepLabv3+ models trained solely on synthetic data attain test IoU of 0.71 and 0.95 on Camelyon16 and Panda, within 1-2% of real-data baselines (0.72 and 0.96). By scaling to 11,765 TCGA whole-slide images without manual annotations, our framework offers a practical solution for an urgent need for generating diverse, annotated histopathology data, addressing a critical bottleneck in computational pathology.
comment: NeurIPS 2025
♻ ☆ Diffusion Adversarial Post-Training for One-Step Video Generation ICML 2025
The diffusion models are widely used for image and video generation, but their iterative generation process is slow and expansive. While existing distillation approaches have demonstrated the potential for one-step generation in the image domain, they still suffer from significant quality degradation. In this work, we propose Adversarial Post-Training (APT) against real data following diffusion pre-training for one-step video generation. To improve the training stability and quality, we introduce several improvements to the model architecture and training procedures, along with an approximated R1 regularization objective. Empirically, our experiments show that our adversarial post-trained model, Seaweed-APT, can generate 2-second, 1280x720, 24fps videos in real time using a single forward evaluation step. Additionally, our model is capable of generating 1024px images in a single step, achieving quality comparable to state-of-the-art methods.
comment: ICML 2025
♻ ☆ CAMILA: Context-Aware Masking for Image Editing with Language Alignment NeurIPS 2025
Text-guided image editing has been allowing users to transform and synthesize images through natural language instructions, offering considerable flexibility. However, most existing image editing models naively attempt to follow all user instructions, even if those instructions are inherently infeasible or contradictory, often resulting in nonsensical output. To address these challenges, we propose a context-aware method for image editing named as CAMILA (Context-Aware Masking for Image Editing with Language Alignment). CAMILA is designed to validate the contextual coherence between instructions and the image, ensuring that only relevant edits are applied to the designated regions while ignoring non-executable instructions. For comprehensive evaluation of this new method, we constructed datasets for both single- and multi-instruction image editing, incorporating the presence of infeasible requests. Our method achieves better performance and higher semantic alignment than state-of-the-art models, demonstrating its effectiveness in handling complex instruction challenges while preserving image integrity.
comment: Accepted by NeurIPS 2025
♻ ☆ StreamAgent: Towards Anticipatory Agents for Streaming Video Understanding
Real-time streaming video understanding in domains such as autonomous driving and intelligent surveillance poses challenges beyond conventional offline video processing, requiring continuous perception, proactive decision making, and responsive interaction based on dynamically evolving visual content. However, existing methods rely on alternating perception-reaction or asynchronous triggers, lacking task-driven planning and future anticipation, which limits their real-time responsiveness and proactive decision making in evolving video streams. To this end, we propose a StreamAgent that anticipates the temporal intervals and spatial regions expected to contain future task-relevant information to enable proactive and goal-driven responses. Specifically, we integrate question semantics and historical observations through prompting the anticipatory agent to anticipate the temporal progression of key events, align current observations with the expected future evidence, and subsequently adjust the perception action (e.g., attending to task-relevant regions or continuously tracking in subsequent frames). To enable efficient inference, we design a streaming KV-cache memory mechanism that constructs a hierarchical memory structure for selective recall of relevant tokens, enabling efficient semantic retrieval while reducing the overhead of storing all tokens in the traditional KV-cache. Extensive experiments on streaming and long video understanding tasks demonstrate that our method outperforms existing methods in response accuracy and real-time efficiency, highlighting its practical value for real-world streaming scenarios.
♻ ☆ LEGATO: Large-scale End-to-end Generalizable Approach to Typeset OMR
We propose Legato, a new end-to-end model for optical music recognition (OMR), a task of converting music score images to machine-readable documents. Legato is the first large-scale pretrained OMR model capable of recognizing full-page or multi-page typeset music scores and the first to generate documents in ABC notation, a concise, human-readable format for symbolic music. Bringing together a pretrained vision encoder with an ABC decoder trained on a dataset of more than 214K images, our model exhibits the strong ability to generalize across various typeset scores. We conduct comprehensive experiments on a range of datasets and metrics and demonstrate that Legato outperforms the previous state of the art. On our most realistic dataset, we see a 68\% and 47.6\% absolute error reduction on the standard metrics TEDn and OMR-NED, respectively.
♻ ☆ Autoregressive Adversarial Post-Training for Real-Time Interactive Video Generation NeurIPS 2025
Existing large-scale video generation models are computationally intensive, preventing adoption in real-time and interactive applications. In this work, we propose autoregressive adversarial post-training (AAPT) to transform a pre-trained latent video diffusion model into a real-time, interactive video generator. Our model autoregressively generates a latent frame at a time using a single neural function evaluation (1NFE). The model can stream the result to the user in real time and receive interactive responses as controls to generate the next latent frame. Unlike existing approaches, our method explores adversarial training as an effective paradigm for autoregressive generation. This not only allows us to design an architecture that is more efficient for one-step generation while fully utilizing the KV cache, but also enables training the model in a student-forcing manner that proves to be effective in reducing error accumulation during long video generation. Our experiments demonstrate that our 8B model achieves real-time, 24fps, streaming video generation at 736x416 resolution on a single H100, or 1280x720 on 8xH100 up to a minute long (1440 frames). Visit our research website at https://seaweed-apt.com/2
comment: NeurIPS 2025
♻ ☆ Meta-Transfer Derm-Diagnosis: Exploring Few-Shot Learning and Transfer Learning for Skin Disease Classification in Long-Tail Distribution
Building accurate models for rare skin diseases remains challenging due to the lack of sufficient labeled data and the inherently long-tailed distribution of available samples. These issues are further complicated by inconsistencies in how datasets are collected and their varying objectives. To address these challenges, we compare three learning strategies: episodic learning, supervised transfer learning, and contrastive self-supervised pretraining, within a few-shot learning framework. We evaluate five training setups on three benchmark datasets: ISIC2018, Derm7pt, and SD-198. Our findings show that traditional transfer learning approaches, particularly those based on MobileNetV2 and Vision Transformer (ViT) architectures, consistently outperform episodic and self-supervised methods as the number of training examples increases. When combined with batch-level data augmentation techniques such as MixUp, CutMix, and ResizeMix, these models achieve state-of-the-art performance on the SD-198 and Derm7pt datasets, and deliver highly competitive results on ISIC2018. All the source codes related to this work will be made publicly available soon at the provided URL.
comment: This is the accepted version of the article to appear in IEEE Journal of Biomedical and Health Informatics. DOI: 10.1109/JBHI.2025.3615479
♻ ☆ SUPER-Net: Trustworthy Image Segmentation via Uncertainty Propagation in Encoder-Decoder Networks
Deep Learning (DL) holds great promise in reshaping the industry owing to its precision, efficiency, and objectivity. However, the brittleness of DL models to noisy and out-of-distribution inputs is ailing their deployment in sensitive fields. Current models often lack uncertainty quantification, providing only point estimates. We propose SUPER-Net, a Bayesian framework for trustworthy image segmentation via uncertainty propagation. Using Taylor series approximations, SUPER-Net propagates the mean and covariance of the model's posterior distribution across nonlinear layers. It generates two outputs simultaneously: the segmented image and a pixel-wise uncertainty map, eliminating the need for expensive Monte Carlo sampling. SUPER-Net's performance is extensively evaluated on MRI and CT scans under various noisy and adversarial conditions. Results show that SUPER-Net outperforms state-of-the-art models in robustness and accuracy. The uncertainty map identifies low-confidence areas affected by noise or attacks, allowing the model to self-assess segmentation reliability, particularly when errors arise from noise or adversarial examples.
comment: Accepted in Pattern Recognition. This is the author's accepted manuscript. Licensed under CC BY-NC-ND. The Version of Record is available at https://doi.org/10.1016/j.patcog.2025.112503
♻ ☆ RS-OOD: A Vision-Language Augmented Framework for Out-of-Distribution Detection in Remote Sensing
Out-of-distribution (OOD) detection represents a critical challenge in remote sensing applications, where reliable identification of novel or anomalous patterns is essential for autonomous monitoring, disaster response, and environmental assessment. Despite remarkable progress in OOD detection for natural images, existing methods and benchmarks remain poorly suited to remote sensing imagery due to data scarcity, complex multi-scale scene structures, and pronounced distribution shifts. To this end, we propose RS-OOD, a novel framework that leverages remote sensing-specific vision-language modeling to enable robust few-shot OOD detection. Our approach introduces three key innovations: spatial feature enhancement that improved scene discrimination, a dual-prompt alignment mechanism that cross-verifies scene context against fine-grained semantics for spatial-semantic consistency, and a confidence-guided self-training loop that dynamically mines pseudo-labels to expand training data without manual annotation. RS-OOD consistently outperforms existing methods across multiple remote sensing benchmarks and enables efficient adaptation with minimal labeled data, demonstrating the critical value of spatial-semantic integration.
Artificial Intelligence 178
☆ WALT: Web Agents that Learn Tools
Web agents promise to automate complex browser tasks, but current methods remain brittle -- relying on step-by-step UI interactions and heavy LLM reasoning that break under dynamic layouts and long horizons. Humans, by contrast, exploit website-provided functionality through high-level operations like search, filter, and sort. We introduce WALT (Web Agents that Learn Tools), a framework that reverse-engineers latent website functionality into reusable invocable tools. Rather than hypothesizing ad-hoc skills, WALT exposes robust implementations of automations already designed into websites -- spanning discovery (search, filter, sort), communication (post, comment, upvote), and content management (create, edit, delete). Tools abstract away low-level execution: instead of reasoning about how to click and type, agents simply call search(query) or create(listing). This shifts the computational burden from fragile step-by-step reasoning to reliable tool invocation. On VisualWebArena and WebArena, WALT achieves higher success with fewer steps and less LLM-dependent reasoning, establishing a robust and generalizable paradigm for browser automation.
☆ Predictive Modeling and Explainable AI for Veterinary Safety Profiles, Residue Assessment, and Health Outcomes Using Real-World Data and Physicochemical Properties
The safe use of pharmaceuticals in food-producing animals is vital to protect animal welfare and human food safety. Adverse events (AEs) may signal unexpected pharmacokinetic or toxicokinetic effects, increasing the risk of violative residues in the food chain. This study introduces a predictive framework for classifying outcomes (Death vs. Recovery) using ~1.28 million reports (1987-2025 Q1) from the U.S. FDA's OpenFDA Center for Veterinary Medicine. A preprocessing pipeline merged relational tables and standardized AEs through VeDDRA ontologies. Data were normalized, missing values imputed, and high-cardinality features reduced; physicochemical drug properties were integrated to capture chemical-residue links. We evaluated supervised models, including Random Forest, CatBoost, XGBoost, ExcelFormer, and large language models (Gemma 3-27B, Phi 3-12B). Class imbalance was addressed, such as undersampling and oversampling, with a focus on prioritizing recall for fatal outcomes. Ensemble methods(Voting, Stacking) and CatBoost performed best, achieving precision, recall, and F1-scores of 0.95. Incorporating Average Uncertainty Margin (AUM)-based pseudo-labeling of uncertain cases improved minority-class detection, particularly in ExcelFormer and XGBoost. Interpretability via SHAP identified biologically plausible predictors, including lung, heart, and bronchial disorders, animal demographics, and drug physicochemical properties. These features were strongly linked to fatal outcomes. Overall, the framework shows that combining rigorous data engineering, advanced machine learning, and explainable AI enables accurate, interpretable predictions of veterinary safety outcomes. The approach supports FARAD's mission by enabling early detection of high-risk drug-event profiles, strengthening residue risk assessment, and informing regulatory and clinical decision-making.
☆ From Videos to Indexed Knowledge Graphs -- Framework to Marry Methods for Multimodal Content Analysis and Understanding
Analysis of multi-modal content can be tricky, computationally expensive, and require a significant amount of engineering efforts. Lots of work with pre-trained models on static data is out there, yet fusing these opensource models and methods with complex data such as videos is relatively challenging. In this paper, we present a framework that enables efficiently prototyping pipelines for multi-modal content analysis. We craft a candidate recipe for a pipeline, marrying a set of pre-trained models, to convert videos into a temporal semi-structured data format. We translate this structure further to a frame-level indexed knowledge graph representation that is query-able and supports continual learning, enabling the dynamic incorporation of new domain-specific knowledge through an interactive medium.
☆ Lateral Tree-of-Thoughts Surpasses ToT by Incorporating Logically-Consistent, Low-Utility Candidates
Modern deployments increasingly allocate large test-time compute (thousands of tokens or many node expansions) to boost reliability. Under such budgets, standard Tree-of-Thoughts-style search exhibits two pathologies: breadth saturation (additional samples mostly produce near-duplicates, so width stops growing) and depth myopia (noisy short-horizon utilities prune branches whose payoff appears after a few more steps). We propose Lateral Tree-of-Thoughts (LToT), a drop-in controller that separates utility from logical consistency and treats low-utility but consistent candidates as assets rather than waste. The frontier is split into mainlines (high-utility candidates used for exploitation) and laterals (consistent, initially low-utility candidates that receive short, cheap probes before judgment). LToT explores laterals via Lateral Racing with Short-Circuit (LR--SC): a capped successive-halving race that spreads tiny probes across a very wide lateral set, uses width-aware thresholds with repeat-to-confirm, and immediately promotes a branch once its envelope clears the mainline bar; mainlines are kept intentionally narrow so surplus compute is invested where width is cheap. We prove a pseudolinear lateral cost $\Theta(N_0 \log_{\eta} N_0)$ with logarithmically many rungs (initial lateral width $N_0$; culling factor $\eta>1$), in contrast to the exponential growth of uncapped mainlines. Empirical evaluations on benchmark tasks are in preparation and will be added in a future revision. In short, LToT turns large test-time budgets into principled diversity while preserving promotion discipline, mitigating saturation and myopia without inflating compute.
☆ Beyond Majority Voting: LLM Aggregation by Leveraging Higher-Order Information
With the rapid progress of multi-agent large language model (LLM) reasoning, how to effectively aggregate answers from multiple LLMs has emerged as a fundamental challenge. Standard majority voting treats all answers equally, failing to consider latent heterogeneity and correlation across models. In this work, we design two new aggregation algorithms called Optimal Weight (OW) and Inverse Surprising Popularity (ISP), leveraging both first-order and second-order information. Our theoretical analysis shows these methods provably mitigate inherent limitations of majority voting under mild assumptions, leading to more reliable collective decisions. We empirically validate our algorithms on synthetic datasets, popular LLM fine-tuning benchmarks such as UltraFeedback and MMLU, and a real-world healthcare setting ARMMAN. Across all cases, our methods consistently outperform majority voting, offering both practical performance gains and conceptual insights for the design of robust multi-agent LLM pipelines.
AortaDiff: A Unified Multitask Diffusion Framework For Contrast-Free AAA Imaging
While contrast-enhanced CT (CECT) is standard for assessing abdominal aortic aneurysms (AAA), the required iodinated contrast agents pose significant risks, including nephrotoxicity, patient allergies, and environmental harm. To reduce contrast agent use, recent deep learning methods have focused on generating synthetic CECT from non-contrast CT (NCCT) scans. However, most adopt a multi-stage pipeline that first generates images and then performs segmentation, which leads to error accumulation and fails to leverage shared semantic and anatomical structures. To address this, we propose a unified deep learning framework that generates synthetic CECT images from NCCT scans while simultaneously segmenting the aortic lumen and thrombus. Our approach integrates conditional diffusion models (CDM) with multi-task learning, enabling end-to-end joint optimization of image synthesis and anatomical segmentation. Unlike previous multitask diffusion models, our approach requires no initial predictions (e.g., a coarse segmentation mask), shares both encoder and decoder parameters across tasks, and employs a semi-supervised training strategy to learn from scans with missing segmentation labels, a common constraint in real-world clinical data. We evaluated our method on a cohort of 264 patients, where it consistently outperformed state-of-the-art single-task and multi-stage models. For image synthesis, our model achieved a PSNR of 25.61 dB, compared to 23.80 dB from a single-task CDM. For anatomical segmentation, it improved the lumen Dice score to 0.89 from 0.87 and the challenging thrombus Dice score to 0.53 from 0.48 (nnU-Net). These segmentation enhancements led to more accurate clinical measurements, reducing the lumen diameter MAE to 4.19 mm from 5.78 mm and the thrombus area error to 33.85% from 41.45% when compared to nnU-Net. Code is available at https://github.com/yuxuanou623/AortaDiff.git.
☆ Understanding Adversarial Transfer: Why Representation-Space Attacks Fail Where Data-Space Attacks Succeed
The field of adversarial robustness has long established that adversarial examples can successfully transfer between image classifiers and that text jailbreaks can successfully transfer between language models (LMs). However, a pair of recent studies reported being unable to successfully transfer image jailbreaks between vision-language models (VLMs). To explain this striking difference, we propose a fundamental distinction regarding the transferability of attacks against machine learning models: attacks in the input data-space can transfer, whereas attacks in model representation space do not, at least not without geometric alignment of representations. We then provide theoretical and empirical evidence of this hypothesis in four different settings. First, we mathematically prove this distinction in a simple setting where two networks compute the same input-output map but via different representations. Second, we construct representation-space attacks against image classifiers that are as successful as well-known data-space attacks, but fail to transfer. Third, we construct representation-space attacks against LMs that successfully jailbreak the attacked models but again fail to transfer. Fourth, we construct data-space attacks against VLMs that successfully transfer to new VLMs, and we show that representation space attacks \emph{can} transfer when VLMs' latent geometries are sufficiently aligned in post-projector space. Our work reveals that adversarial transfer is not an inherent property of all attacks but contingent on their operational domain - the shared data-space versus models' unique representation spaces - a critical insight for building more robust models.
☆ VL-KnG: Visual Scene Understanding for Navigation Goal Identification using Spatiotemporal Knowledge Graphs
Vision-language models (VLMs) have shown potential for robot navigation but encounter fundamental limitations: they lack persistent scene memory, offer limited spatial reasoning, and do not scale effectively with video duration for real-time application. We present VL-KnG, a Visual Scene Understanding system that tackles these challenges using spatiotemporal knowledge graph construction and computationally efficient query processing for navigation goal identification. Our approach processes video sequences in chunks utilizing modern VLMs, creates persistent knowledge graphs that maintain object identity over time, and enables explainable spatial reasoning through queryable graph structures. We also introduce WalkieKnowledge, a new benchmark with about 200 manually annotated questions across 8 diverse trajectories spanning approximately 100 minutes of video data, enabling fair comparison between structured approaches and general-purpose VLMs. Real-world deployment on a differential drive robot demonstrates practical applicability, with our method achieving 77.27% success rate and 76.92% answer accuracy, matching Gemini 2.5 Pro performance while providing explainable reasoning supported by the knowledge graph, computational efficiency for real-time deployment across different tasks, such as localization, navigation and planning. Code and dataset will be released after acceptance.
comment: This work has been submitted to the IEEE for possible publication
☆ Pharmacophore-Guided Generative Design of Novel Drug-Like Molecules NeurIPS-2025
The integration of artificial intelligence (AI) in early-stage drug discovery offers unprecedented opportunities for exploring chemical space and accelerating hit-to-lead optimization. However, docking optimization in generative approaches is computationally expensive and may lead to inaccurate results. Here, we present a novel generative framework that balances pharmacophore similarity to reference compounds with structural diversity from active molecules. The framework allows users to provide custom reference sets, including FDA-approved drugs or clinical candidates, and guides the \textit{de novo} generation of potential therapeutics. We demonstrate its applicability through a case study targeting estrogen receptor modulators and antagonists for breast cancer. The generated compounds maintain high pharmacophoric fidelity to known active molecules while introducing substantial structural novelty, suggesting strong potential for functional innovation and patentability. Comprehensive evaluation of the generated molecules against common drug-like properties confirms the robustness and pharmaceutical relevance of the approach.
comment: AI4Mat-NeurIPS-2025 Poster
☆ Purrception: Variational Flow Matching for Vector-Quantized Image Generation
We introduce Purrception, a variational flow matching approach for vector-quantized image generation that provides explicit categorical supervision while maintaining continuous transport dynamics. Our method adapts Variational Flow Matching to vector-quantized latents by learning categorical posteriors over codebook indices while computing velocity fields in the continuous embedding space. This combines the geometric awareness of continuous methods with the discrete supervision of categorical approaches, enabling uncertainty quantification over plausible codes and temperature-controlled generation. We evaluate Purrception on ImageNet-1k 256x256 generation. Training converges faster than both continuous flow matching and discrete flow matching baselines while achieving competitive FID scores with state-of-the-art models. This demonstrates that Variational Flow Matching can effectively bridge continuous transport and discrete supervision for improved training efficiency in image generation.
☆ AIReg-Bench: Benchmarking Language Models That Assess AI Regulation Compliance
As governments move to regulate AI, there is growing interest in using Large Language Models (LLMs) to assess whether or not an AI system complies with a given AI Regulation (AIR). However, there is presently no way to benchmark the performance of LLMs at this task. To fill this void, we introduce AIReg-Bench: the first benchmark dataset designed to test how well LLMs can assess compliance with the EU AI Act (AIA). We created this dataset through a two-step process: (1) by prompting an LLM with carefully structured instructions, we generated 120 technical documentation excerpts (samples), each depicting a fictional, albeit plausible, AI system - of the kind an AI provider might produce to demonstrate their compliance with AIR; (2) legal experts then reviewed and annotated each sample to indicate whether, and in what way, the AI system described therein violates specific Articles of the AIA. The resulting dataset, together with our evaluation of whether frontier LLMs can reproduce the experts' compliance labels, provides a starting point to understand the opportunities and limitations of LLM-based AIR compliance assessment tools and establishes a benchmark against which subsequent LLMs can be compared. The dataset and evaluation code are available at https://github.com/camlsys/aireg-bench.
☆ From keywords to semantics: Perceptions of large language models in data discovery
Current approaches to data discovery match keywords between metadata and queries. This matching requires researchers to know the exact wording that other researchers previously used, creating a challenging process that could lead to missing relevant data. Large Language Models (LLMs) could enhance data discovery by removing this requirement and allowing researchers to ask questions with natural language. However, we do not currently know if researchers would accept LLMs for data discovery. Using a human-centered artificial intelligence (HCAI) focus, we ran focus groups (N = 27) to understand researchers' perspectives towards LLMs for data discovery. Our conceptual model shows that the potential benefits are not enough for researchers to use LLMs instead of current technology. Barriers prevent researchers from fully accepting LLMs, but features around transparency could overcome them. Using our model will allow developers to incorporate features that result in an increased acceptance of LLMs for data discovery.
☆ RealClass: A Framework for Classroom Speech Simulation with Public Datasets and Game Engines
The scarcity of large-scale classroom speech data has hindered the development of AI-driven speech models for education. Classroom datasets remain limited and not publicly available, and the absence of dedicated classroom noise or Room Impulse Response (RIR) corpora prevents the use of standard data augmentation techniques. In this paper, we introduce a scalable methodology for synthesizing classroom noise and RIRs using game engines, a versatile framework that can extend to other domains beyond the classroom. Building on this methodology, we present RealClass, a dataset that combines a synthesized classroom noise corpus with a classroom speech dataset compiled from publicly available corpora. The speech data pairs a children's speech corpus with instructional speech extracted from YouTube videos to approximate real classroom interactions in clean conditions. Experiments on clean and noisy speech show that RealClass closely approximates real classroom speech, making it a valuable asset in the absence of abundant real classroom speech.
comment: arXiv admin note: substantial text overlap with arXiv:2506.09206
☆ The Three Regimes of Offline-to-Online Reinforcement Learning
Offline-to-online reinforcement learning (RL) has emerged as a practical paradigm that leverages offline datasets for pretraining and online interactions for fine-tuning. However, its empirical behavior is highly inconsistent: design choices of online-fine tuning that work well in one setting can fail completely in another. We propose a stability--plasticity principle that can explain this inconsistency: we should preserve the knowledge of pretrained policy or offline dataset during online fine-tuning, whichever is better, while maintaining sufficient plasticity. This perspective identifies three regimes of online fine-tuning, each requiring distinct stability properties. We validate this framework through a large-scale empirical study, finding that the results strongly align with its predictions in 45 of 63 cases. This work provides a principled framework for guiding design choices in offline-to-online RL based on the relative performance of the offline dataset and the pretrained policy.
☆ The Command Line GUIde: Graphical Interfaces from Man Pages via AI
Although birthed in the era of teletypes, the command line shell survived the graphical interface revolution of the 1980's and lives on in modern desktop operating systems. The command line provides access to powerful functionality not otherwise exposed on the computer, but requires users to recall textual syntax and carefully scour documentation. In contrast, graphical interfaces let users organically discover and invoke possible actions through widgets and menus. To better expose the power of the command line, we demonstrate a mechanism for automatically creating graphical interfaces for command line tools by translating their documentation (in the form of man pages) into interface specifications via AI. Using these specifications, our user-facing system, called GUIde, presents the command options to the user graphically. We evaluate the generated interfaces on a corpus of commands to show to what degree GUIde offers thorough graphical interfaces for users' real-world command line tasks.
comment: 5 pages, 4 figures, In Proceedings of the IEEE Symposium on Visual Languages and Human Centric Computing (VL/HCC), October 2025
☆ Local Linear Attention: An Optimal Interpolation of Linear and Softmax Attention For Test-Time Regression
Transformer architectures have achieved remarkable success in various domains. While efficient alternatives to Softmax Attention have been widely studied, the search for more expressive mechanisms grounded in theoretical insight-even at greater computational cost-has been relatively underexplored. In this work, we bridge this gap by proposing Local Linear Attention (LLA), a novel attention mechanism derived from nonparametric statistics through the lens of test-time regression. First, we show that LLA offers theoretical advantages over Linear and Softmax Attention for associative memory via a bias-variance trade-off analysis. Next, we address its computational challenges and propose two memory-efficient primitives to tackle the $\Theta(n^2 d)$ and $\Theta(n d^2)$ complexity. We then introduce FlashLLA, a hardware-efficient, blockwise algorithm that enables scalable and parallel computation on modern accelerators. In addition, we implement and profile a customized inference kernel that significantly reduces memory overheads. Finally, we empirically validate the advantages and limitations of LLA on test-time regression, in-context regression, associative recall and state tracking tasks. Experiment results demonstrate that LLA effectively adapts to non-stationarity, outperforming strong baselines in test-time training and in-context learning, and exhibiting promising evidence for its scalability and applicability in large-scale models. Code is available at https://github.com/Yifei-Zuo/Flash-LLA.
☆ GeoSURGE: Geo-localization using Semantic Fusion with Hierarchy of Geographic Embeddings
Worldwide visual geo-localization seeks to determine the geographic location of an image anywhere on Earth using only its visual content. Learned representations of geography for visual geo-localization remain an active research topic despite much progress. We formulate geo-localization as aligning the visual representation of the query image with a learned geographic representation. Our novel geographic representation explicitly models the world as a hierarchy of geographic embeddings. Additionally, we introduce an approach to efficiently fuse the appearance features of the query image with its semantic segmentation map, forming a robust visual representation. Our main experiments demonstrate improved all-time bests in 22 out of 25 metrics measured across five benchmark datasets compared to prior state-of-the-art (SOTA) methods and recent Large Vision-Language Models (LVLMs). Additional ablation studies support the claim that these gains are primarily driven by the combination of geographic and visual representations.
comment: preprint under review
☆ VOGUE: Guiding Exploration with Visual Uncertainty Improves Multimodal Reasoning
Reinforcement learning with verifiable rewards (RLVR) improves reasoning in large language models (LLMs) but struggles with exploration, an issue that still persists for multimodal LLMs (MLLMs). Current methods treat the visual input as a fixed, deterministic condition, overlooking a critical source of ambiguity and struggling to build policies robust to plausible visual variations. We introduce $\textbf{VOGUE (Visual Uncertainty Guided Exploration)}$, a novel method that shifts exploration from the output (text) to the input (visual) space. By treating the image as a stochastic context, VOGUE quantifies the policy's sensitivity to visual perturbations using the symmetric KL divergence between a "raw" and "noisy" branch, creating a direct signal for uncertainty-aware exploration. This signal shapes the learning objective via an uncertainty-proportional bonus, which, combined with a token-entropy bonus and an annealed sampling schedule, effectively balances exploration and exploitation. Implemented within GRPO on two model scales (Qwen2.5-VL-3B/7B), VOGUE boosts pass@1 accuracy by an average of 2.6% on three visual math benchmarks and 3.7% on three general-domain reasoning benchmarks, while simultaneously increasing pass@4 performance and mitigating the exploration decay commonly observed in RL fine-tuning. Our work shows that grounding exploration in the inherent uncertainty of visual inputs is an effective strategy for improving multimodal reasoning.
☆ AFFORD2ACT: Affordance-Guided Automatic Keypoint Selection for Generalizable and Lightweight Robotic Manipulation
Vision-based robot learning often relies on dense image or point-cloud inputs, which are computationally heavy and entangle irrelevant background features. Existing keypoint-based approaches can focus on manipulation-centric features and be lightweight, but either depend on manual heuristics or task-coupled selection, limiting scalability and semantic understanding. To address this, we propose AFFORD2ACT, an affordance-guided framework that distills a minimal set of semantic 2D keypoints from a text prompt and a single image. AFFORD2ACT follows a three-stage pipeline: affordance filtering, category-level keypoint construction, and transformer-based policy learning with embedded gating to reason about the most relevant keypoints, yielding a compact 38-dimensional state policy that can be trained in 15 minutes, which performs well in real-time without proprioception or dense representations. Across diverse real-world manipulation tasks, AFFORD2ACT consistently improves data efficiency, achieving an 82% success rate on unseen objects, novel categories, backgrounds, and distractors.
☆ On the Role of Domain Experts in Creating Effective Tutoring Systems
The role that highly curated knowledge, provided by domain experts, could play in creating effective tutoring systems is often overlooked within the AI for education community. In this paper, we highlight this topic by discussing two ways such highly curated expert knowledge could help in creating novel educational systems. First, we will look at how one could use explainable AI (XAI) techniques to automatically create lessons. Most existing XAI methods are primarily aimed at debugging AI systems. However, we will discuss how one could use expert specified rules about solving specific problems along with novel XAI techniques to automatically generate lessons that could be provided to learners. Secondly, we will see how an expert specified curriculum for learning a target concept can help develop adaptive tutoring systems, that can not only provide a better learning experience, but could also allow us to use more efficient algorithms to create these systems. Finally, we will highlight the importance of such methods using a case study of creating a tutoring system for pollinator identification, where such knowledge could easily be elicited from experts.
comment: Accepted to AIED 2025 Blue Sky Track
☆ BioVERSE: Representation Alignment of Biomedical Modalities to LLMs for Multi-Modal Reasoning
Recent advances in large language models (LLMs) and biomedical foundation models (BioFMs) have achieved strong results in biological text reasoning, molecular modeling, and single-cell analysis, yet they remain siloed in disjoint embedding spaces, limiting cross-modal reasoning. We present BIOVERSE (Biomedical Vector Embedding Realignment for Semantic Engagement), a two-stage approach that adapts pretrained BioFMs as modality encoders and aligns them with LLMs through lightweight, modality-specific projection layers. The approach first aligns each modality to a shared LLM space through independently trained projections, allowing them to interoperate naturally, and then applies standard instruction tuning with multi-modal data to bring them together for downstream reasoning. By unifying raw biomedical data with knowledge embedded in LLMs, the approach enables zero-shot annotation, cross-modal question answering, and interactive, explainable dialogue. Across tasks spanning cell-type annotation, molecular description, and protein function reasoning, compact BIOVERSE configurations surpass larger LLM baselines while enabling richer, generative outputs than existing BioFMs, establishing a foundation for principled multi-modal biomedical reasoning.
☆ A Tale of LLMs and Induced Small Proxies: Scalable Agents for Knowledge Mining
At the core of Deep Research is knowledge mining, the task of extracting structured information from massive unstructured text in response to user instructions. Large language models (LLMs) excel at interpreting such instructions but are prohibitively expensive to deploy at scale, while traditional pipelines of classifiers and extractors remain efficient yet brittle and unable to generalize to new tasks. We introduce Falconer, a collaborative framework that combines the agentic reasoning of LLMs with lightweight proxy models for scalable knowledge mining. In Falconer, LLMs act as planners, decomposing user instructions into executable pipelines, and as annotators, generating supervision to train small proxies. The framework unifies classification and extraction into two atomic operations, get label and get span, enabling a single instruction-following model to replace multiple task-specific components. To evaluate the consistency between proxy models incubated by Falconer and annotations provided by humans and large models, we construct new benchmarks covering both planning and end-to-end execution. Experiments show that Falconer closely matches state-of-the-art LLMs in instruction-following accuracy while reducing inference cost by up to 90% and accelerating large-scale knowledge mining by more than 20x, offering an efficient and scalable foundation for Deep Research.
☆ Risk Phase Transitions in Spiked Regression: Alignment Driven Benign and Catastrophic Overfitting
This paper analyzes the generalization error of minimum-norm interpolating solutions in linear regression using spiked covariance data models. The paper characterizes how varying spike strengths and target-spike alignments can affect risk, especially in overparameterized settings. The study presents an exact expression for the generalization error, leading to a comprehensive classification of benign, tempered, and catastrophic overfitting regimes based on spike strength, the aspect ratio $c=d/n$ (particularly as $c \to \infty$), and target alignment. Notably, in well-specified aligned problems, increasing spike strength can surprisingly induce catastrophic overfitting before achieving benign overfitting. The paper also reveals that target-spike alignment is not always advantageous, identifying specific, sometimes counterintuitive, conditions for its benefit or detriment. Alignment with the spike being detrimental is empirically demonstrated to persist in nonlinear models.
☆ OntoLogX: Ontology-Guided Knowledge Graph Extraction from Cybersecurity Logs with Large Language Models
System logs represent a valuable source of Cyber Threat Intelligence (CTI), capturing attacker behaviors, exploited vulnerabilities, and traces of malicious activity. Yet their utility is often limited by lack of structure, semantic inconsistency, and fragmentation across devices and sessions. Extracting actionable CTI from logs therefore requires approaches that can reconcile noisy, heterogeneous data into coherent and interoperable representations. We introduce OntoLogX, an autonomous Artificial Intelligence (AI) agent that leverages Large Language Models (LLMs) to transform raw logs into ontology-grounded Knowledge Graphs (KGs). OntoLogX integrates a lightweight log ontology with Retrieval Augmented Generation (RAG) and iterative correction steps, ensuring that generated KGs are syntactically and semantically valid. Beyond event-level analysis, the system aggregates KGs into sessions and employs a LLM to predict MITRE ATT&CK tactics, linking low-level log evidence to higher-level adversarial objectives. We evaluate OntoLogX on both logs from a public benchmark and a real-world honeypot dataset, demonstrating robust KG generation across multiple KGs backends and accurate mapping of adversarial activity to ATT&CK tactics. Results highlight the benefits of retrieval and correction for precision and recall, the effectiveness of code-oriented models in structured log analysis, and the value of ontology-grounded representations for actionable CTI extraction.
comment: 20 pages, 6 tables, 7 figures
☆ Automating Data-Driven Modeling and Analysis for Engineering Applications using Large Language Model Agents
Modern engineering increasingly relies on vast datasets generated by experiments and simulations, driving a growing demand for efficient, reliable, and broadly applicable modeling strategies. There is also heightened interest in developing data-driven approaches, particularly neural network models, for effective prediction and analysis of scientific datasets. Traditional data-driven methods frequently involve extensive manual intervention, limiting their ability to scale effectively and generalize to diverse applications. In this study, we propose an innovative pipeline utilizing Large Language Model (LLM) agents to automate data-driven modeling and analysis, with a particular emphasis on regression tasks. We evaluate two LLM-agent frameworks: a multi-agent system featuring specialized collaborative agents, and a single-agent system based on the Reasoning and Acting (ReAct) paradigm. Both frameworks autonomously handle data preprocessing, neural network development, training, hyperparameter optimization, and uncertainty quantification (UQ). We validate our approach using a critical heat flux (CHF) prediction benchmark, involving approximately 25,000 experimental data points from the OECD/NEA benchmark dataset. Results indicate that our LLM-agent-developed model surpasses traditional CHF lookup tables and delivers predictive accuracy and UQ on par with state-of-the-art Bayesian optimized deep neural network models developed by human experts. These outcomes underscore the significant potential of LLM-based agents to automate complex engineering modeling tasks, greatly reducing human workload while meeting or exceeding existing standards of predictive performance.
☆ Neural Network Surrogates for Free Energy Computation of Complex Chemical Systems ICSE
Free energy reconstruction methods such as Gaussian Process Regression (GPR) require Jacobians of the collective variables (CVs), a bottleneck that restricts the use of complex or machine-learned CVs. We introduce a neural network surrogate framework that learns CVs directly from Cartesian coordinates and uses automatic differentiation to provide Jacobians, bypassing analytical forms. On an MgCl2 ion-pairing system, our method achieved high accuracy for both a simple distance CV and a complex coordination-number CV. Moreover, Jacobian errors also followed a near-Gaussian distribution, making them suitable for GPR pipelines. This framework enables gradient-based free energy methods to incorporate complex and machine-learned CVs, broadening the scope of biochemistry and materials simulations.
comment: 6 pages, 4 figures. This work has already been accepted for presentation in The 29th International Computer Science and Engineering Conference (ICSEC) 2025, Chiang Mai, Thailand, and will be published in IEEE Xplore
☆ Sycophantic AI Decreases Prosocial Intentions and Promotes Dependence
Both the general public and academic communities have raised concerns about sycophancy, the phenomenon of artificial intelligence (AI) excessively agreeing with or flattering users. Yet, beyond isolated media reports of severe consequences, like reinforcing delusions, little is known about the extent of sycophancy or how it affects people who use AI. Here we show the pervasiveness and harmful impacts of sycophancy when people seek advice from AI. First, across 11 state-of-the-art AI models, we find that models are highly sycophantic: they affirm users' actions 50% more than humans do, and they do so even in cases where user queries mention manipulation, deception, or other relational harms. Second, in two preregistered experiments (N = 1604), including a live-interaction study where participants discuss a real interpersonal conflict from their life, we find that interaction with sycophantic AI models significantly reduced participants' willingness to take actions to repair interpersonal conflict, while increasing their conviction of being in the right. However, participants rated sycophantic responses as higher quality, trusted the sycophantic AI model more, and were more willing to use it again. This suggests that people are drawn to AI that unquestioningly validate, even as that validation risks eroding their judgment and reducing their inclination toward prosocial behavior. These preferences create perverse incentives both for people to increasingly rely on sycophantic AI models and for AI model training to favor sycophancy. Our findings highlight the necessity of explicitly addressing this incentive structure to mitigate the widespread risks of AI sycophancy.
☆ INSIGHT: INference-time Sequence Introspection for Generating Help Triggers in Vision-Language-Action Models
Recent Vision-Language-Action (VLA) models show strong generalization capabilities, yet they lack introspective mechanisms for anticipating failures and requesting help from a human supervisor. We present \textbf{INSIGHT}, a learning framework for leveraging token-level uncertainty signals to predict when a VLA should request help. Using $\pi_0$-FAST as the underlying model, we extract per-token \emph{entropy}, \emph{log-probability}, and Dirichlet-based estimates of \emph{aleatoric and epistemic uncertainty}, and train compact transformer classifiers to map these sequences to help triggers. We explore supervision regimes for strong or weak supervision, and extensively compare them across in-distribution and out-of-distribution tasks. Our results show a trade-off: strong labels enable models to capture fine-grained uncertainty dynamics for reliable help detection, while weak labels, though noisier, still support competitive introspection when training and evaluation are aligned, offering a scalable path when dense annotation is impractical. Crucially, we find that modeling the temporal evolution of token-level uncertainty signals with transformers provides far greater predictive power than static sequence-level scores. This study provides the first systematic evaluation of uncertainty-based introspection in VLAs, opening future avenues for active learning and for real-time error mitigation through selective human intervention.
☆ DeMuon: A Decentralized Muon for Matrix Optimization over Graphs
In this paper, we propose DeMuon, a method for decentralized matrix optimization over a given communication topology. DeMuon incorporates matrix orthogonalization via Newton-Schulz iterations-a technique inherited from its centralized predecessor, Muon-and employs gradient tracking to mitigate heterogeneity among local functions. Under heavy-tailed noise conditions and additional mild assumptions, we establish the iteration complexity of DeMuon for reaching an approximate stochastic stationary point. This complexity result matches the best-known complexity bounds of centralized algorithms in terms of dependence on the target tolerance. To the best of our knowledge, DeMuon is the first direct extension of Muon to decentralized optimization over graphs with provable complexity guarantees. We conduct preliminary numerical experiments on decentralized transformer pretraining over graphs with varying degrees of connectivity. Our numerical results demonstrate a clear margin of improvement of DeMuon over other popular decentralized algorithms across different network topologies.
☆ Fine-tuning with RAG for Improving LLM Learning of New Skills ICLR 2026
Large language model (LLM) agents deployed for multi-step tasks frequently fail in predictable ways: attempting actions with unmet preconditions, issuing redundant commands, or mishandling environment constraints. While retrieval-augmented generation (RAG) can improve performance by providing runtime guidance, it requires maintaining external knowledge databases and adds computational overhead at every deployment. We propose a simple pipeline that converts inference-time retrieval into learned competence through distillation. Our approach: (1) extracts compact, reusable hints from agent failures, (2) uses these hints to generate improved teacher trajectories via one-shot retrieval at episode start, and (3) trains student models on these trajectories with hint strings removed, forcing internalization rather than memorization. Across two interactive benchmarks, ALFWorld (household tasks) and WebShop (online shopping), distilled students consistently outperform baseline agents, achieving up to 91% success on ALFWorld (vs. 79% for baselines) and improving WebShop scores to 72 (vs. 61 for baselines), while using 10-60% fewer tokens than retrieval-augmented teachers depending on the environment. The approach generalizes across model scales (7B/14B parameters) and agent architectures (ReAct/StateAct), demonstrating that retrieval benefits can be effectively internalized through targeted fine-tuning without permanent runtime dependencies.
comment: Under review at ICLR 2026
☆ SPUS: A Lightweight and Parameter-Efficient Foundation Model for PDEs
We introduce Small PDE U-Net Solver (SPUS), a compact and efficient foundation model (FM) designed as a unified neural operator for solving a wide range of partial differential equations (PDEs). Unlike existing state-of-the-art PDE FMs-primarily based on large complex transformer architectures with high computational and parameter overhead-SPUS leverages a lightweight residual U-Net-based architecture that has been largely underexplored as a foundation model architecture in this domain. To enable effective learning in this minimalist framework, we utilize a simple yet powerful auto-regressive pretraining strategy which closely replicates the behavior of numerical solvers to learn the underlying physics. SPUS is pretrained on a diverse set of fluid dynamics PDEs and evaluated across 6 challenging unseen downstream PDEs spanning various physical systems. Experimental results demonstrate that SPUS using residual U-Net based architecture achieves state-of-the-art generalization on these downstream tasks while requiring significantly fewer parameters and minimal fine-tuning data, highlighting its potential as a highly parameter-efficient FM for solving diverse PDE systems.
☆ Is It Thinking or Cheating? Detecting Implicit Reward Hacking by Measuring Reasoning Effort
Reward hacking, where a reasoning model exploits loopholes in a reward function to achieve high rewards without solving the intended task, poses a significant threat. This behavior may be explicit, i.e. verbalized in the model's chain-of-thought (CoT), or implicit, where the CoT appears benign thus bypasses CoT monitors. To detect implicit reward hacking, we propose TRACE (Truncated Reasoning AUC Evaluation). Our key observation is that hacking occurs when exploiting the loophole is easier than solving the actual task. This means that the model is using less `effort' than required to achieve high reward. TRACE quantifies effort by measuring how early a model's reasoning becomes sufficient to pass a verifier. We progressively truncate a model's CoT at various lengths, force the model to answer, and measure the verifier-passing rate at each cutoff. A hacking model, which takes a shortcut, will achieve a high passing rate with only a small fraction of its CoT, yielding a large area under the accuracy-vs-length curve. TRACE achieves over 65% gains over our strongest 72B CoT monitor in math reasoning, and over 30% gains over a 32B monitor in coding. We further show that TRACE can discover unknown loopholes during training. Overall, TRACE offers a scalable unsupervised approach for oversight where current monitoring methods prove ineffective.
☆ Retrieval-Augmented Framework for LLM-Based Clinical Decision Support
The increasing complexity of clinical decision-making, alongside the rapid expansion of electronic health records (EHR), presents both opportunities and challenges for delivering data-informed care. This paper proposes a clinical decision support system powered by Large Language Models (LLMs) to assist prescribing clinicians. The system generates therapeutic suggestions by analyzing historical EHR data, including patient demographics, presenting complaints, clinical symptoms, diagnostic information, and treatment histories. The framework integrates natural language processing with structured clinical inputs to produce contextually relevant recommendations. Rather than replacing clinician judgment, it is designed to augment decision-making by retrieving and synthesizing precedent cases with comparable characteristics, drawing on local datasets or federated sources where applicable. At its core, the system employs a retrieval-augmented generation (RAG) pipeline that harmonizes unstructured narratives and codified data to support LLM-based inference. We outline the system's technical components, including representation representation alignment and generation strategies. Preliminary evaluations, conducted with de-identified and synthetic clinical datasets, examine the clinical plausibility and consistency of the model's outputs. Early findings suggest that LLM-based tools may provide valuable decision support in prescribing workflows when appropriately constrained and rigorously validated. This work represents an initial step toward integration of generative AI into real-world clinical decision-making with an emphasis on transparency, safety, and alignment with established practices.
☆ Breaking the Code: Security Assessment of AI Code Agents Through Systematic Jailbreaking Attacks
Code-capable large language model (LLM) agents are increasingly embedded into software engineering workflows where they can read, write, and execute code, raising the stakes of safety-bypass ("jailbreak") attacks beyond text-only settings. Prior evaluations emphasize refusal or harmful-text detection, leaving open whether agents actually compile and run malicious programs. We present JAWS-BENCH (Jailbreaks Across WorkSpaces), a benchmark spanning three escalating workspace regimes that mirror attacker capability: empty (JAWS-0), single-file (JAWS-1), and multi-file (JAWS-M). We pair this with a hierarchical, executable-aware Judge Framework that tests (i) compliance, (ii) attack success, (iii) syntactic correctness, and (iv) runtime executability, moving beyond refusal to measure deployable harm. Using seven LLMs from five families as backends, we find that under prompt-only conditions in JAWS-0, code agents accept 61% of attacks on average; 58% are harmful, 52% parse, and 27% run end-to-end. Moving to single-file regime in JAWS-1 drives compliance to ~ 100% for capable models and yields a mean ASR (Attack Success Rate) ~ 71%; the multi-file regime (JAWS-M) raises mean ASR to ~ 75%, with 32% instantly deployable attack code. Across models, wrapping an LLM in an agent substantially increases vulnerability -- ASR raises by 1.6x -- because initial refusals are frequently overturned during later planning/tool-use steps. Category-level analyses identify which attack classes are most vulnerable and most readily deployable, while others exhibit large execution gaps. These findings motivate execution-aware defenses, code-contextual safety filters, and mechanisms that preserve refusal decisions throughout the agent's multi-step reasoning and tool use.
comment: 28 pages, 21 figures, 9 tables
☆ WAInjectBench: Benchmarking Prompt Injection Detections for Web Agents
Multiple prompt injection attacks have been proposed against web agents. At the same time, various methods have been developed to detect general prompt injection attacks, but none have been systematically evaluated for web agents. In this work, we bridge this gap by presenting the first comprehensive benchmark study on detecting prompt injection attacks targeting web agents. We begin by introducing a fine-grained categorization of such attacks based on the threat model. We then construct datasets containing both malicious and benign samples: malicious text segments generated by different attacks, benign text segments from four categories, malicious images produced by attacks, and benign images from two categories. Next, we systematize both text-based and image-based detection methods. Finally, we evaluate their performance across multiple scenarios. Our key findings show that while some detectors can identify attacks that rely on explicit textual instructions or visible image perturbations with moderate to high accuracy, they largely fail against attacks that omit explicit instructions or employ imperceptible perturbations. Our datasets and code are released at: https://github.com/Norrrrrrr-lyn/WAInjectBench.
☆ MEMTRACK: Evaluating Long-Term Memory and State Tracking in Multi-Platform Dynamic Agent Environments NeurIPS 2025
Recent works on context and memory benchmarking have primarily focused on conversational instances but the need for evaluating memory in dynamic enterprise environments is crucial for its effective application. We introduce MEMTRACK, a benchmark designed to evaluate long-term memory and state tracking in multi-platform agent environments. MEMTRACK models realistic organizational workflows by integrating asynchronous events across multiple communication and productivity platforms such as Slack, Linear and Git. Each benchmark instance provides a chronologically platform-interleaved timeline, with noisy, conflicting, cross-referring information as well as potential codebase/file-system comprehension and exploration. Consequently, our benchmark tests memory capabilities such as acquistion, selection and conflict resolution. We curate the MEMTRACK dataset through both manual expert driven design and scalable agent based synthesis, generating ecologically valid scenarios grounded in real world software development processes. We introduce pertinent metrics for Correctness, Efficiency, and Redundancy that capture the effectiveness of memory mechanisms beyond simple QA performance. Experiments across SoTA LLMs and memory backends reveal challenges in utilizing memory across long horizons, handling cross-platform dependencies, and resolving contradictions. Notably, the best performing GPT-5 model only achieves a 60\% Correctness score on MEMTRACK. This work provides an extensible framework for advancing evaluation research for memory-augmented agents, beyond existing focus on conversational setups, and sets the stage for multi-agent, multi-platform memory benchmarking in complex organizational settings
comment: Accepted to NeurIPS 2025 SEA Workshop
☆ Aristotle: IMO-level Automated Theorem Proving
We introduce Aristotle, an AI system that combines formal verification with informal reasoning, achieving gold-medal-equivalent performance on the 2025 International Mathematical Olympiad problems. Aristotle integrates three main components: a Lean proof search system, an informal reasoning system that generates and formalizes lemmas, and a dedicated geometry solver. Our system demonstrates state-of-the-art performance with favorable scaling properties for automated theorem proving.
♻ ☆ Beyond the Individual: Introducing Group Intention Forecasting with SHOT Dataset
Intention recognition has traditionally focused on individual intentions, overlooking the complexities of collective intentions in group settings. To address this limitation, we introduce the concept of group intention, which represents shared goals emerging through the actions of multiple individuals, and Group Intention Forecasting (GIF), a novel task that forecasts when group intentions will occur by analyzing individual actions and interactions before the collective goal becomes apparent. To investigate GIF in a specific scenario, we propose SHOT, the first large-scale dataset for GIF, consisting of 1,979 basketball video clips captured from 5 camera views and annotated with 6 types of individual attributes. SHOT is designed with 3 key characteristics: multi-individual information, multi-view adaptability, and multi-level intention, making it well-suited for studying emerging group intentions. Furthermore, we introduce GIFT (Group Intention ForecasTer), a framework that extracts fine-grained individual features and models evolving group dynamics to forecast intention emergence. Experimental results confirm the effectiveness of SHOT and GIFT, establishing a strong foundation for future research in group intention forecasting. The dataset is available at https://xinyi-hu.github.io/SHOT_DATASET.
comment: ACMMM 2025 Datasets Track
Probing the Critical Point (CritPt) of AI Reasoning: a Frontier Physics Research Benchmark
While large language models (LLMs) with reasoning capabilities are progressing rapidly on high-school math competitions and coding, can they reason effectively through complex, open-ended challenges found in frontier physics research? And crucially, what kinds of reasoning tasks do physicists want LLMs to assist with? To address these questions, we present the CritPt (Complex Research using Integrated Thinking - Physics Test, pronounced "critical point"), the first benchmark designed to test LLMs on unpublished, research-level reasoning tasks that broadly covers modern physics research areas, including condensed matter, quantum physics, atomic, molecular & optical physics, astrophysics, high energy physics, mathematical physics, statistical physics, nuclear physics, nonlinear dynamics, fluid dynamics and biophysics. CritPt consists of 71 composite research challenges designed to simulate full-scale research projects at the entry level, which are also decomposed to 190 simpler checkpoint tasks for more fine-grained insights. All problems are newly created by 50+ active physics researchers based on their own research. Every problem is hand-curated to admit a guess-resistant and machine-verifiable answer and is evaluated by an automated grading pipeline heavily customized for advanced physics-specific output formats. We find that while current state-of-the-art LLMs show early promise on isolated checkpoints, they remain far from being able to reliably solve full research-scale challenges: the best average accuracy among base models is only 4.0% , achieved by GPT-5 (high), moderately rising to around 10% when equipped with coding tools. Through the realistic yet standardized evaluation offered by CritPt, we highlight a large disconnect between current model capabilities and realistic physics research demands, offering a foundation to guide the development of scientifically grounded AI tools.
comment: 39 pages, 6 figures, 6 tables
♻ ☆ AdaBlock-dLLM: Semantic-Aware Diffusion LLM Inference via Adaptive Block Size
Diffusion-based large language models (dLLMs) are gaining attention for their inherent capacity for parallel decoding, offering a compelling alternative to autoregressive LLMs. Among various decoding strategies, blockwise semi-autoregressive (semi-AR) approaches are widely adopted due to their natural support for KV caching and their favorable accuracy-speed trade-off. However, this paper identifies two fundamental limitations in the conventional semi-AR decoding approach that applies a fixed block size: i) late decoding overhead, where the unmasking of high-confidence tokens outside the current block is unnecessarily delayed, and ii) premature decoding error, where low-confidence tokens inside the current block are committed too early, leading to incorrect tokens. This paper presents the first systematic investigation challenging the fixed block size assumption in semi-AR decoding. Through a statistical analysis of confidence dynamics during the denoising process, we identify a volatility band (VB) region during dLLM decoding, which encodes local semantic structure and can be used to guide adaptive block sizing. Leveraging these insights, we introduce AdaBlock-dLLM, a training-free, plug-and-play scheduler that adaptively aligns block boundaries with semantic steps by adjusting block size during runtime. Extensive experiments across diverse benchmarks show that AdaBlock-dLLM achieves up to 5.3% accuracy improvement under the same throughput budget. Beyond inference-time optimization, we hope our semantics-aware adaptive scheduling approach and confidence-based analysis will inspire future training strategies for dLLMs.
comment: Preprint. Under review
♻ ☆ Commmunication-Efficient and Accurate Approach for Aggregation in Federated Low-Rank Adaptation
With the rapid emergence of foundation models and the increasing need for fine-tuning across distributed environments, Federated Low-Rank Adaptation (FedLoRA) has recently gained significant attention. Despite enormous potential, current FedLoRA methods face notable challenges due to inexact updates. Existing approaches have attempted to mitigate this issue, but they often introduce a \emph{local-global generalization gap} and incur \emph{substantial communication overhead}, limiting their scalability and effectiveness. To address these limitations, we propose \textbf{F}ederated \textbf{Lo}w-\textbf{R}ank \textbf{A}ggregation with \textbf{N}early \textbf{A}ccurate Estimation (FLoRA-NA). FLoRA-NA leverages the local LoRA matrices on the server to estimate the aggregated matrices $\hat{A}$ and $\hat{B}$, which are then distributed to clients for local updates. This surrogated aggregated matrices minimizes the divergence between ideal $\nabla \Bar{W} = \sum^{U}_{u=1}B_u A_u$ and practical updates $\nabla \hat{W} = \hat{B}\hat{A}$ without adding communication cost beyond vanilla FedLoRA. By doing so, FLoRA-NA achieves communication efficiency and bridges the gap between local personalization and global generalization, addressing a key limitation of prior personalized FedLoRA approaches. We conduct extensive evaluations across diverse tasks, including natural language understanding, mathematical reasoning, and code-solving ability using various foundation models. Experimental results consistently demonstrate that FLoRA-NA achieves state-of-the-art global performance while maintaining low communication overhead.
comment: 34 pages, 4 figures, 11 tables
♻ ☆ Efficient and Transferable Agentic Knowledge Graph RAG via Reinforcement Learning ICLR 2026
Knowledge-graph retrieval-augmented generation (KG-RAG) couples large language models (LLMs) with structured, verifiable knowledge graphs (KGs) to reduce hallucinations and expose reasoning traces. However, many KG-RAG systems compose multiple LLM modules (e.g planning, reasoning, and responding), inflating inference cost and binding behavior to a specific target KG. To address this, we introduce KG-R1, an agentic KG retrieval-augmented generation (KG-RAG) framework through reinforcement learning (RL). KG-R1 utilizes a single agent that interacts with KGs as its environment, learning to retrieve at each step and incorporating the retrieved information into its reasoning and generation. The process is optimized through end-to-end RL. In controlled experiments across Knowledge-Graph Question Answering (KGQA) benchmarks, our method demonstrates both efficiency and transferability: Using Qwen-2.5-3B, KG-R1 improves answer accuracy with fewer generation tokens than prior multi-module workflow methods that use larger foundation or fine-tuned models. Furthermore, KG-R1 enables plug and play: after training, it maintains strong accuracy on new KGs without modification. These properties make KG-R1 a promising KG-RAG framework for real-world deployment. Our code is publicly available at https://github.com/Jinyeop3110/KG-R1.
comment: 10 pages, 5 figures. Submitted to ICLR 2026
♻ ☆ Vector-Valued Reproducing Kernel Banach Spaces for Neural Networks and Operators
Recently, there has been growing interest in characterizing the function spaces underlying neural networks. While shallow and deep scalar-valued neural networks have been linked to scalar-valued reproducing kernel Banach spaces (RKBS), $\mathbb{R}^d$-valued neural networks and neural operator models remain less understood in the RKBS setting. To address this gap, we develop a general definition of vector-valued RKBS (vv-RKBS), which inherently includes the associated reproducing kernel. Our construction extends existing definitions by avoiding restrictive assumptions such as symmetric kernel domains, finite-dimensional output spaces, reflexivity, or separability, while still recovering familiar properties of vector-valued reproducing kernel Hilbert spaces (vv-RKHS). We then show that shallow $\mathbb{R}^d$-valued neural networks are elements of a specific vv-RKBS, namely an instance of the integral and neural vv-RKBS. To also explore the functional structure of neural operators, we analyze the DeepONet and Hypernetwork architectures and demonstrate that they too belong to an integral and neural vv-RKBS. In all cases, we establish a Representer Theorem, showing that optimization over these function spaces recovers the corresponding neural architectures.
♻ ☆ Interactive Learning for LLM Reasoning
Existing multi-agent learning approaches have developed interactive training environments to explicitly promote collaboration among multiple Large Language Models (LLMs), thereby constructing stronger multi-agent systems (MAS). However, during inference, they require re-executing the MAS to obtain final solutions, which diverges from human cognition that individuals can enhance their reasoning capabilities through interactions with others and resolve questions independently in the future. To investigate whether multi-agent interaction can enhance LLMs' independent problem-solving ability, we introduce ILR, a novel co-learning framework for MAS that integrates two key components: Dynamic Interaction and Perception Calibration. Specifically, Dynamic Interaction first adaptively selects either cooperative or competitive strategies depending on question difficulty and model ability. LLMs then exchange information through Idea3 (Idea Sharing, Idea Analysis, and Idea Fusion), an innovative interaction paradigm designed to mimic human discussion, before deriving their respective final answers. In Perception Calibration, ILR employs Group Relative Policy Optimization (GRPO) to train LLMs while integrating one LLM's reward distribution characteristics into another's reward function, thereby enhancing the cohesion of multi-agent interactions. We validate ILR on three LLMs across two model families of varying scales, evaluating performance on five mathematical benchmarks and one coding benchmark. Experimental results show that ILR consistently outperforms single-agent learning, yielding an improvement of up to 5% over the strongest baseline. We further discover that Idea3 can enhance the robustness of stronger LLMs during multi-agent inference, and dynamic interaction types can boost multi-agent learning compared to pure cooperative or competitive strategies.
comment: The code will be released later
♻ ☆ ExoPredicator: Learning Abstract Models of Dynamic Worlds for Robot Planning
Long-horizon embodied planning is challenging because the world does not only change through an agent's actions: exogenous processes (e.g., water heating, dominoes cascading) unfold concurrently with the agent's actions. We propose a framework for abstract world models that jointly learns (i) symbolic state representations and (ii) causal processes for both endogenous actions and exogenous mechanisms. Each causal process models the time course of a stochastic cause-effect relation. We learn these world models from limited data via variational Bayesian inference combined with LLM proposals. Across five simulated tabletop robotics environments, the learned models enable fast planning that generalizes to held-out tasks with more objects and more complex goals, outperforming a range of baselines.
comment: 41 pages. The last two authors contributed equally in co-advising
♻ ☆ Auto-ARGUE: LLM-Based Report Generation Evaluation ECIR 2025
Generation of long-form, citation-backed reports is a primary use case for retrieval augmented generation (RAG) systems. While open-source evaluation tools exist for various RAG tasks, ones tailored to report generation are lacking. Accordingly, we introduce Auto-ARGUE, a robust LLM-based implementation of the recent ARGUE framework for report generation evaluation. We present analysis of Auto-ARGUE on the report generation pilot task from the TREC 2024 NeuCLIR track, showing good system-level correlations with human judgments. We further release a web app for visualization of Auto-ARGUE outputs.
comment: ECIR 2025 demo format
♻ ☆ Beyond the Algorithm: A Field Guide to Deploying AI Agents in Clinical Practice
Large language models (LLMs) integrated into agent-driven workflows hold immense promise for healthcare, yet a significant gap exists between their potential and practical implementation within clinical settings. To address this, we present a practitioner-oriented field manual for deploying generative agents that use electronic health record (EHR) data. This guide is informed by our experience deploying the "irAE-Agent", an automated system to detect immune-related adverse events from clinical notes at Mass General Brigham, and by structured interviews with 20 clinicians, engineers, and informatics leaders involved in the project. Our analysis reveals a critical misalignment in clinical AI development: less than 20% of our effort was dedicated to prompt engineering and model development, while over 80% was consumed by the sociotechnical work of implementation. We distill this effort into five "heavy lifts": data integration, model validation, ensuring economic value, managing system drift, and governance. By providing actionable solutions for each of these challenges, this field manual shifts the focus from algorithmic development to the essential infrastructure and implementation work required to bridge the "valley of death" and successfully translate generative AI from pilot projects into routine clinical care.
comment: Under review. 5 Tables, 2 Figures
♻ ☆ SeMoBridge: Semantic Modality Bridge for Efficient Few-Shot Adaptation of CLIP ICLR 2026
While Contrastive Language-Image Pretraining (CLIP) excels at zero-shot tasks by aligning image and text embeddings, its performance in few-shot classification is hindered by a critical limitation: intra-modal misalignment. This issue, caused by a persistent modality gap and CLIP's exclusively inter-modal training objective, leaves the embedding spaces uncalibrated, making direct image-to-image comparisons unreliable. Existing methods attempt to address this by refining similarity logits or by computationally expensive per-sample optimization. To overcome these challenges, we introduce SeMoBridge, a lightweight yet powerful approach that directly addresses the misalignment. Our method maps images into the text modality, while keeping their semantic content intact through what we call a Semantic Modality Bridge. SeMoBridge is closed-form and can optionally be trained through multi-modal supervision, combining image and text-alignment losses to optimize the projection. Experiments show that the trained version, SeMoBridge-T, requires only a fraction of the training time while overall outperforming other methods, particularly in low-data scenarios (1, 2, and 4 shots). The code is available at https://github.com/christti98/semobridge.
comment: 19 pages, 12 figures, Under review as a conference paper at ICLR 2026
♻ ☆ Chain-in-Tree: Back to Sequential Reasoning in LLM Tree Search
Test-time scaling enables large language models (LLMs) to improve performance on long-horizon reasoning tasks by allocating additional compute at inference. Tree-search-based approaches achieve state-of-the-art results in this setting, but they are notoriously inefficient, often an order of magnitude slower than simpler iterative methods. We introduce Chain-in-Tree (CiT), a plug-in framework that adaptively decides when to branch during search rather than branching at every step. CiT relies on lightweight Branching Necessity (BN) evaluation methods: BN-DP (Direct Prompting), where an auxiliary LLM directly judges whether a step requires branching, and BN-SC (Self-Consistency), which clusters multiple candidate actions to estimate agreement. We integrate CiT into three representative LLM-in-the-loop tree search frameworks: Tree of Thoughts (ToT-BS), ReST-MCTS, and RAP, and evaluate across GSM8K and Math500. Our results show that: (1) BN-DP consistently reduces token generation, model invocations, and runtime by 75-85 percent across all settings, with negligible accuracy loss and sometimes accuracy gains; (2) BN-SC typically yields substantial savings (up to 80 percent) but shows instability in 1-4 out of 14 settings, caused by a small subset of examples that produce very long reasoning steps; (3) the quality of auxiliary LLMs is critical, not only the BN evaluator in BN-DP, but also the models used in BN-SC for clustering and equivalence checking. When these roles are filled by smaller LLMs, performance degrades. Importantly, BN-SC does not require LLMs in domains with deterministic action spaces, where clustering can be done programmatically. We also provide a theoretical guarantee that BN-DP never increases LLM invocations relative to the baseline and release a unified implementation of CiT across ToT-BS, ReST-MCTS, and RAP to facilitate reproducibility and extension.
comment: Under Review
♻ ☆ Dolphin v1.0 Technical Report
Ultrasound is crucial in modern medicine but faces challenges like operator dependence, image noise, and real-time scanning, hindering AI integration. While large multimodal models excel in other medical imaging areas, they struggle with ultrasound's complexities. To address this, we introduce Dolphin v1.0 (V1) and its reasoning-augmented version, Dolphin R1-the first large-scale multimodal ultrasound foundation models unifying diverse clinical tasks in a single vision-language framework.To tackle ultrasound variability and noise, we curated a 2-million-scale multimodal dataset, combining textbook knowledge, public data, synthetic samples, and general corpora. This ensures robust perception, generalization, and clinical adaptability.The Dolphin series employs a three-stage training strategy: domain-specialized pretraining, instruction-driven alignment, and reinforcement-based refinement. Dolphin v1.0 delivers reliable performance in classification, detection, regression, and report generation. Dolphin R1 enhances diagnostic inference, reasoning transparency, and interpretability through reinforcement learning with ultrasound-specific rewards.Evaluated on U2-Bench across eight ultrasound tasks, Dolphin R1 achieves a U2-score of 0.5835-over twice the second-best model (0.2968) setting a new state of the art. Dolphin v1.0 also performs competitively, validating the unified framework. Comparisons show reasoning-enhanced training significantly improves diagnostic accuracy, consistency, and interpretability, highlighting its importance for high-stakes medical AI.
♻ ☆ Model Merging Scaling Laws in Large Language Models
We study empirical scaling laws for language model merging measured by cross-entropy. Despite its wide practical use, merging lacks a quantitative rule that predicts returns as we add experts or scale the model size. We identify a compact power law that links model size and expert number: the size-dependent floor decreases with model capacity, while the merging tail exhibits clear diminishing returns in the number of experts. The law holds in-domain and cross-domain, tightly fits measured curves across diverse architectures and methods (Average, TA, TIES, DARE), and explains two robust regularities: most gains arrive early, and variability shrinks as more experts are included. Building on this, we present a simple theory that explains why gains fall roughly as 1/k and links the floor and tail to properties of the base model and the diversity across domains. This law enables predictive planning: estimate how many experts are needed to reach a target loss, decide when to stop adding experts, and trade off scaling the base model versus adding experts under a fixed budget--turning merging from heuristic practice into a computationally efficient, planable alternative to multitask training. This suggests a scaling principle for distributed generative AI: predictable gains can be achieved by composing specialists, offering a complementary path toward AGI-level systems.
comment: 30 pages
♻ ☆ Grounded GUI Understanding for Vision-Based Spatial Intelligent Agent: Exemplified by Extended Reality Apps
In recent years, spatial computing a.k.a. Extended Reality (XR) has emerged as a transformative technology, offering users immersive and interactive experiences across diversified virtual environments. Users can interact with XR apps through interactable GUI elements (IGEs) on the stereoscopic three-dimensional (3D) graphical user interface (GUI). The accurate recognition of these IGEs is instrumental, serving as the foundation of many software engineering tasks, including automated testing and effective GUI search. The most recent IGE detection approaches for 2D mobile apps typically train a supervised object detection model based on a large-scale manually-labeled GUI dataset, usually with a pre-defined set of clickable GUI element categories like buttons and spinners. Such approaches can hardly be applied to IGE detection in XR apps, due to a multitude of challenges including complexities posed by open-vocabulary and heterogeneous IGE categories, intricacies of context-sensitive interactability, and the necessities of precise spatial perception and visual-semantic alignment for accurate IGE detection results. Thus, it is necessary to embark on the IGE research tailored to XR apps. In this paper, we propose the first zero-shot cOntext-sensitive inteRactable GUI ElemeNT dEtection framework for virtual Reality apps, named Orienter. By imitating human behaviors, Orienter observes and understands the semantic contexts of XR app scenes first, before performing the detection. The detection process is iterated within a feedback-directed validation and reflection loop. Specifically, Orienter contains three components, including (1) Semantic context comprehension, (2) Reflection-directed IGE candidate detection, and (3) Context-sensitive interactability classification. Extensive experiments demonstrate that Orienter is more effective than the state-of-the-art GUI element detection approaches.
♻ ☆ XRZoo: A Large-Scale and Versatile Dataset of Extended Reality (XR) Applications
The rapid advancement of Extended Reality (XR, encompassing AR, MR, and VR) and spatial computing technologies forms a foundational layer for the emerging Metaverse, enabling innovative applications across healthcare, education, manufacturing, and entertainment. However, research in this area is often limited by the lack of large, representative, and highquality application datasets that can support empirical studies and the development of new approaches benefiting XR software processes. In this paper, we introduce XRZoo, a comprehensive and curated dataset of XR applications designed to bridge this gap. XRZoo contains 12,528 free XR applications, spanning nine app stores, across all XR techniques (i.e., AR, MR, and VR) and use cases, with detailed metadata on key aspects such as application descriptions, application categories, release dates, user review numbers, and hardware specifications, etc. By making XRZoo publicly available, we aim to foster reproducible XR software engineering and security research, enable cross-disciplinary investigations, and also support the development of advanced XR systems by providing examples to developers. Our dataset serves as a valuable resource for researchers and practitioners interested in improving the scalability, usability, and effectiveness of XR applications. XRZoo will be released and actively maintained.
♻ ☆ Grounding Multimodal LLMs to Embodied Agents that Ask for Help with Reinforcement Learning
Embodied agents operating in household environments must interpret ambiguous and under-specified human instructions. A capable household robot should recognize ambiguity and ask relevant clarification questions to infer the user intent accurately, leading to more effective task execution. To study this problem, we introduce the Ask-to-Act task, where an embodied agent is tasked with a single or multi-object rearrangement task using an under-specified instruction in a home environment. The agent must strategically ask minimal, yet relevant, clarification questions to resolve ambiguity while navigating under partial observability. To address this challenge, we propose a novel approach that fine-tunes multi-modal large language models (MLLMs) as vision-language-action (VLA) policies using online reinforcement learning (RL) with LLM-generated rewards. Our method eliminates the need for large-scale human demonstrations or manually engineered rewards for training such agents. We benchmark against strong zero-shot baselines including GPT-4o as well as supervised fine-tuned MLLMs on our task. Our results show that our RL-finetuned MLLM outperforms all baselines by a significant margin (10.4-16.5%), generalizing well to novel scenes and tasks. To the best of our knowledge, this is the first demonstration of adapting MLLMs as VLA agents that can act and ask for help using LLM-generated rewards with online RL.
♻ ☆ Beyond Needle(s) in the Embodied Haystack: Environment, Architecture, and Training Considerations for Long Context Reasoning
We introduce $\infty$-THOR, a new framework for long-horizon embodied tasks that advances long-context understanding in embodied AI. $\infty$-THOR provides: (1) a generation framework for synthesizing scalable, reproducible, and unlimited long-horizon trajectories; (2) a novel embodied QA task, Needle(s) in the Embodied Haystack, where multiple scattered clues across extended trajectories test agents' long-context reasoning ability; and (3) a long-horizon dataset and benchmark suite featuring complex tasks that span hundreds of environment steps, each paired with ground-truth action sequences. To enable this capability, we explore architectural adaptations, including interleaved Goal-State-Action modeling, context extension techniques, and Context Parallelism, to equip LLM-based agents for extreme long-context reasoning and interaction. Experimental results and analyses highlight the challenges posed by our benchmark and provide insights into training strategies and model behaviors under long-horizon conditions. Our work provides a foundation for the next generation of embodied AI systems capable of robust, long-term reasoning and planning.
♻ ☆ jina-reranker-v3: Last but Not Late Interaction for Document Reranking
jina-reranker-v3 is a 0.6B parameter multilingual document reranker that introduces a novel last but not late interaction. Unlike late interaction models such as ColBERT that perform separate encoding followed by multi-vector matching, our approach conducts causal self-attention between query and documents within the same context window, enabling rich cross-document interactions before extracting contextual embeddings from the last token of each document. This compact architecture achieves state-of-the-art BEIR performance with 61.94 nDCG@10 while being significant smaller than generative listwise rerankers.
comment: early draft, CodeIR table needs to be updated (qwen baselines are missing)
♻ ☆ Ultra-Fast Language Generation via Discrete Diffusion Divergence Instruct
Fast and high-quality language generation is the holy grail that people pursue in the age of AI. In this work, we introduce Discrete Diffusion Divergence Instruct (DiDi-Instruct), a training-based method that initializes from a pre-trained (masked) discrete diffusion language model (dLLM) and distills a few-step student for fast generation. The resulting DiDi-Instruct model achieves comparable or superior performance to its dLLM teacher and the GPT-2 baseline while enabling up to 64$\times$ acceleration. The theoretical foundation of DiDi-Instruct is a novel framework based on integral KL-divergence minimization, which yields a practical training algorithm. We further introduce grouped reward normalization, intermediate-state matching, and the reward-guided ancestral sampler that significantly improve training stability, model coverage, and inference quality. On OpenWebText, DiDi-Instruct achieves perplexity from 62.2 (8 NFEs) to 18.4 (128 NFEs), which outperforms prior accelerated dLLMs and GPT-2 baseline. These gains come with a negligible entropy loss (around $1\%$) and reduce additional training wall-clock time by more than $20\times$ compared to competing dLLM distillation methods. We further validate the robustness and effectiveness of DiDi-Instruct through extensive ablation studies, model scaling, and the generation of discrete protein sequences. In conclusion, DiDi-Instruct is an efficient yet effective distillation method, enabling language generation in the blink of an eye. We will release both code and models at github.com/haoyangzheng-ai/didi-instruct.
comment: 56 pages, 7 figures, 7 tables
♻ ☆ A Likelihood Based Approach to Distribution Regression Using Conditional Deep Generative Models
In this work, we explore the theoretical properties of conditional deep generative models under the statistical framework of distribution regression where the response variable lies in a high-dimensional ambient space but concentrates around a potentially lower-dimensional manifold. More specifically, we study the large-sample properties of a likelihood-based approach for estimating these models. Our results lead to the convergence rate of a sieve maximum likelihood estimator (MLE) for estimating the conditional distribution (and its devolved counterpart) of the response given predictors in the Hellinger (Wasserstein) metric. Our rates depend solely on the intrinsic dimension and smoothness of the true conditional distribution. These findings provide an explanation of why conditional deep generative models can circumvent the curse of dimensionality from the perspective of statistical foundations and demonstrate that they can learn a broader class of nearly singular conditional distributions. Our analysis also emphasizes the importance of introducing a small noise perturbation to the data when they are supported sufficiently close to a manifold. Finally, in our numerical studies, we demonstrate the effective implementation of the proposed approach using both synthetic and real-world datasets, which also provide complementary validation to our theoretical findings.
comment: arXiv admin note: text overlap with arXiv:1708.06633 by other authors
♻ ☆ Automatically Generating Web Applications from Requirements Via Multi-Agent Test-Driven Development
Developing full-stack web applications is complex and time-intensive, demanding proficiency across diverse technologies and frameworks. Although recent advances in multimodal large language models (MLLMs) enable automated webpage generation from visual inputs, current solutions remain limited to front-end tasks and fail to deliver fully functional applications. In this work, we introduce TDDev, the first test-driven development (TDD)-enabled LLM-agent framework for end-to-end full-stack web application generation. Given a natural language description or design image, TDDev automatically derives executable test cases, generates front-end and back-end code, simulates user interactions, and iteratively refines the implementation until all requirements are satisfied. Our framework addresses key challenges in full-stack automation, including underspecified user requirements, complex interdependencies among multiple files, and the need for both functional correctness and visual fidelity. Through extensive experiments on diverse application scenarios, TDDev achieves a 14.4% improvement on overall accuracy compared to state-of-the-art baselines, demonstrating its effectiveness in producing reliable, high-quality web applications without requiring manual intervention.
♻ ☆ The Illusion of Readiness: Stress Testing Large Frontier Models on Multimodal Medical Benchmarks
Large frontier models like GPT-5 now achieve top scores on medical benchmarks. But our stress tests tell a different story. Leading systems often guess correctly even when key inputs like images are removed, flip answers under trivial prompt changes, and fabricate convincing yet flawed reasoning. These aren't glitches; they expose how today's benchmarks reward test-taking tricks over medical understanding. We evaluate six flagship models across six widely used benchmarks and find that high leaderboard scores hide brittleness and shortcut learning. Through clinician-guided rubric evaluation, we show that benchmarks vary widely in what they truly measure yet are treated interchangeably, masking failure modes. We caution that medical benchmark scores do not directly reflect real-world readiness. If we want AI to earn trust in healthcare, we must demand more than leaderboard wins and must hold systems accountable for robustness, sound reasoning, and alignment with real medical demands.
comment: 35 pages
♻ ☆ Learning to Interact in World Latent for Team Coordination
This work presents a novel representation learning framework, interactive world latent (IWoL), to facilitate team coordination in multi-agent reinforcement learning (MARL). Building effective representation for team coordination is a challenging problem, due to the intricate dynamics emerging from multi-agent interaction and incomplete information induced by local observations. Our key insight is to construct a learnable representation space that jointly captures inter-agent relations and task-specific world information by directly modeling communication protocols. This representation, we maintain fully decentralized execution with implicit coordination, all while avoiding the inherent drawbacks of explicit message passing, e.g., slower decision-making, vulnerability to malicious attackers, and sensitivity to bandwidth constraints. In practice, our representation can be used not only as an implicit latent for each agent, but also as an explicit message for communication. Across four challenging MARL benchmarks, we evaluate both variants and show that IWoL provides a simple yet powerful key for team coordination. Moreover, we demonstrate that our representation can be combined with existing MARL algorithms to further enhance their performance.
♻ ☆ Unpacking Let Alone: Human-Scale Models Generalize to a Rare Construction in Form but not Meaning EMNLP
Humans have a remarkable ability to acquire and understand grammatical phenomena that are seen rarely, if ever, during childhood. Recent evidence suggests that language models with human-scale pretraining data may possess a similar ability by generalizing from frequent to rare constructions. However, it remains an open question how widespread this generalization ability is, and to what extent this knowledge extends to meanings of rare constructions, as opposed to just their forms. We fill this gap by testing human-scale transformer language models on their knowledge of both the form and meaning of the (rare and quirky) English LET-ALONE construction. To evaluate our LMs we construct a bespoke synthetic benchmark that targets syntactic and semantic properties of the construction. We find that human-scale LMs are sensitive to form, even when related constructions are filtered from the dataset. However, human-scale LMs do not make correct generalizations about LET-ALONE's meaning. These results point to an asymmetry in the current architectures' sample efficiency between language form and meaning, something which is not present in human language learners.
comment: Empirical Methods for Natural Language Processing (EMNLP) 2025, Camera-Ready Version
Explaining multimodal LLMs via intra-modal token interactions
Multimodal Large Language Models (MLLMs) have achieved remarkable success across diverse vision-language tasks, yet their internal decision-making mechanisms remain insufficiently understood. Existing interpretability research has primarily focused on cross-modal attribution, identifying which image regions the model attends to during output generation. However, these approaches often overlook intra-modal dependencies. In the visual modality, attributing importance to isolated image patches ignores spatial context due to limited receptive fields, resulting in fragmented and noisy explanations. In the textual modality, reliance on preceding tokens introduces spurious activations. Failing to effectively mitigate these interference compromises attribution fidelity. To address these limitations, we propose enhancing interpretability by leveraging intra-modal interaction. For the visual branch, we introduce \textit{Multi-Scale Explanation Aggregation} (MSEA), which aggregates attributions over multi-scale inputs to dynamically adjust receptive fields, producing more holistic and spatially coherent visual explanations. For the textual branch, we propose \textit{Activation Ranking Correlation} (ARC), which measures the relevance of contextual tokens to the current token via alignment of their top-$k$ prediction rankings. ARC leverages this relevance to suppress spurious activations from irrelevant contexts while preserving semantically coherent ones. Extensive experiments across state-of-the-art MLLMs and benchmark datasets demonstrate that our approach consistently outperforms existing interpretability methods, yielding more faithful and fine-grained explanations of model behavior.
♻ ☆ Nonlinear Framework for Speech Bandwidth Extension
Recovering high-frequency components lost to bandwidth constraints is crucial for applications ranging from telecommunications to high-fidelity audio on limited resources. We introduce NDSI-BWE, a new adversarial Band Width Extension (BWE) framework that leverage four new discriminators inspired by nonlinear dynamical system to capture diverse temporal behaviors: a Multi-Resolution Lyapunov Discriminator (MRLD) for determining sensitivity to initial conditions by capturing deterministic chaos, a Multi-Scale Recurrence Discriminator (MS-RD) for self-similar recurrence dynamics, a Multi-Scale Detrended Fractal Analysis Discriminator (MSDFA) for long range slow variant scale invariant relationship, a Multi-Resolution Poincar\'e Plot Discriminator (MR-PPD) for capturing hidden latent space relationship, a Multi-Period Discriminator (MPD) for cyclical patterns, a Multi-Resolution Amplitude Discriminator (MRAD) and Multi-Resolution Phase Discriminator (MRPD) for capturing intricate amplitude-phase transition statistics. By using depth-wise convolution at the core of the convolutional block with in each discriminators, NDSI-BWE attains an eight-times parameter reduction. These seven discriminators guide a complex-valued ConformerNeXt based genetor with a dual stream Lattice-Net based architecture for simultaneous refinement of magnitude and phase. The genertor leverage the transformer based conformer's global dependency modeling and ConvNeXt block's local temporal modeling capability. Across six objective evaluation metrics and subjective based texts comprises of five human judges, NDSI-BWE establishes a new SoTA in BWE.
♻ ☆ BlobCtrl: Taming Controllable Blob for Element-level Image Editing SIGGRAPH
As user expectations for image editing continue to rise, the demand for flexible, fine-grained manipulation of specific visual elements presents a challenge for current diffusion-based methods. In this work, we present BlobCtrl, a framework for element-level image editing based on a probabilistic blob-based representation. Treating blobs as visual primitives, BlobCtrl disentangles layout from appearance, affording fine-grained, controllable object-level manipulation. Our key contributions are twofold: (1) an in-context dual-branch diffusion model that separates foreground and background processing, incorporating blob representations to explicitly decouple layout and appearance, and (2) a self-supervised disentangle-then-reconstruct training paradigm with an identity-preserving loss function, along with tailored strategies to efficiently leverage blob-image pairs. To foster further research, we introduce BlobData for large-scale training and BlobBench, a benchmark for systematic evaluation. Experimental results demonstrate that BlobCtrl achieves state-of-the-art performance in a variety of element-level editing tasks, such as object addition, removal, scaling, and replacement, while maintaining computational efficiency. Project Webpage: https://liyaowei-stu.github.io/project/BlobCtrl/
comment: Project Webpage: https://liyaowei-stu.github.io/project/BlobCtrl/ This version presents a major update with rephrased writing. Accepted to SIGGRAPH Asia 2025
♻ ☆ First Hallucination Tokens Are Different from Conditional Ones
Hallucination, the generation of untruthful content, is one of the major concerns regarding foundational models. Detecting hallucinations at the token level is vital for real-time filtering and targeted correction, yet the variation of hallucination signals within token sequences is not fully understood. Leveraging the RAGTruth corpus with token-level annotations and reproduced logits, we analyse how these signals depend on a token's position within hallucinated spans, contributing to an improved understanding of token-level hallucination. Our results show that the first hallucinated token carries a stronger signal and is more detectable than conditional tokens. We release our analysis framework, along with code for logit reproduction and metric computation at https://github.com/jakobsnl/RAGTruth\_Xtended.
comment: 4.5 pages, 3 figures, Dataset, Knowledge Paper, Hallucination, Trustworthiness
♻ ☆ Estimating Visceral Adiposity from Wrist-Worn Accelerometry
Visceral adipose tissue (VAT) is a key marker of both metabolic health and habitual physical activity (PA). Excess VAT is highly correlated with type 2 diabetes and insulin resistance. The mechanistic basis for this pathophysiology relates to overloading the liver with fatty acids. VAT is also a highly labile fat depot, with increased turnover stimulated by catecholamines during exercise. VAT can be measured with sophisticated imaging technologies, but can also be inferred directly from PA. We tested this relationship using National Health and Nutrition Examination Survey (NHANES) data from 2011-2014, for individuals aged 20-60 years with 7 days of accelerometry data (n=2,456 men; 2,427 women) [1]. Two approaches were used for estimating VAT from activity. The first used engineered features based on movements during gait and sleep, and then ridge regression to map summary statistics of these features into a VAT estimate. The second approach used deep neural networks trained on 24 hours of continuous accelerometry. A foundation model first mapped each 10s frame into a high-dimensional feature vector. A transformer model then mapped each day's feature vector time series into a VAT estimate, which were averaged over multiple days. For both approaches, the most accurate estimates were obtained with the addition of covariate information about subject demographics and body measurements. The best performance was obtained by combining the two approaches, resulting in VAT estimates with correlations of r=0.86. These findings demonstrate a strong relationship between PA and VAT and, by extension, between PA and metabolic health risks.
comment: This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics
♻ ☆ SpargeAttention: Accurate and Training-free Sparse Attention Accelerating Any Model Inference ICML
An efficient attention implementation is essential for large models due to its quadratic time complexity. Fortunately, attention commonly exhibits sparsity, i.e., many values in the attention map are near zero, allowing for the omission of corresponding computations. Many studies have utilized the sparse pattern to accelerate attention. However, most existing works focus on optimizing attention within specific models by exploiting certain sparse patterns of the attention map. A universal sparse attention that guarantees both the speedup and end-to-end performance of diverse models remains elusive. In this paper, we propose SpargeAttn, a universal sparse and quantized attention for any model. Our method uses a two-stage online filter: in the first stage, we rapidly and accurately predict the attention map, enabling the skip of some matrix multiplications in attention. In the second stage, we design an online softmax-aware filter that incurs no extra overhead and further skips some matrix multiplications. Experiments show that our method significantly accelerates diverse models, including language, image, and video generation, without sacrificing end-to-end metrics. The codes are available at https://github.com/thu-ml/SpargeAttn.
comment: @inproceedings{zhang2025spargeattn, title={Spargeattn: Accurate sparse attention accelerating any model inference}, author={Zhang, Jintao and Xiang, Chendong and Huang, Haofeng and Wei, Jia and Xi, Haocheng and Zhu, Jun and Chen, Jianfei}, booktitle={International Conference on Machine Learning (ICML)}, year={2025} }
♻ ☆ SageAttention2: Efficient Attention with Thorough Outlier Smoothing and Per-thread INT4 Quantization ICML
Although quantization for linear layers has been widely used, its application to accelerate the attention process remains limited. To further enhance the efficiency of attention computation compared to SageAttention while maintaining precision, we propose SageAttention2, which utilizes significantly faster 4-bit matrix multiplication (Matmul) alongside additional precision-enhancing techniques. First, we propose to quantize matrices $(Q, K)$ to INT4 in a hardware-friendly thread-level granularity and quantize matrices $(\widetilde P, V)$ to FP8. Second, we propose a method to smooth $Q$, enhancing the accuracy of INT4 $QK^\top$. Third, we propose a two-level accumulation strategy for $\widetilde PV$ to enhance the accuracy of FP8 $\widetilde PV$. The operations per second (OPS) of SageAttention2 surpass FlashAttention2 and xformers by about 3x and 4.5x on RTX4090, respectively. Moreover, SageAttention2 matches the speed of FlashAttention3(fp8) on the Hopper GPUs, while delivering much higher accuracy. Comprehensive experiments confirm that our approach incurs negligible end-to-end metrics loss across diverse models, including those for language, image, and video generation. The code is available at https://github.com/thu-ml/SageAttention.
comment: @inproceedings{zhang2024sageattention2, title={Sageattention2: Efficient attention with thorough outlier smoothing and per-thread int4 quantization}, author={Zhang, Jintao and Huang, Haofeng and Zhang, Pengle and Wei, Jia and Zhu, Jun and Chen, Jianfei}, booktitle={International Conference on Machine Learning (ICML)}, year={2025} }
♻ ☆ GRID: Scalable Task-Agnostic Prompt-Based Continual Learning for Language Models
Prompt-based continual learning (CL) provides a parameter-efficient approach for adapting large language models (LLMs) across task sequences. However, most existing methods rely on task-aware inference and maintain a growing set of task-specific prompts, which introduces two major challenges: (1) severe performance degradation on earlier tasks under task-agnostic inference, and (2) limited scalability due to prompt memory accumulation as task sequences grow. In this paper, we present GRID, a unified framework designed to address these challenges. GRID incorporates a decoding mechanism that enhances backward transfer by leveraging representative inputs, automatic task identification, and constrained decoding. Furthermore, it employs a gradient-guided prompt selection strategy to compress less informative prompts into a single aggregated representation, ensuring scalable and memory-efficient continual learning. Extensive experiments on long-sequence and negative transfer benchmarks show that GRID improves average accuracy and backward transfer, achieves competitive forward transfer, and substantially reduces prompt memory usage.
♻ ☆ Topology of Reasoning: Understanding Large Reasoning Models through Reasoning Graph Properties
Recent large-scale reasoning models have achieved state-of-the-art performance on challenging mathematical benchmarks, yet the internal mechanisms underlying their success remain poorly understood. In this work, we introduce the notion of a reasoning graph, extracted by clustering hidden-state representations at each reasoning step, and systematically analyze three key graph-theoretic properties: cyclicity, diameter, and small-world index, across multiple tasks (GSM8K, MATH500, AIME 2024). Our findings reveal that distilled reasoning models (e.g., DeepSeek-R1-Distill-Qwen-32B) exhibit significantly more recurrent cycles (about 5 per sample), substantially larger graph diameters, and pronounced small-world characteristics (about 6x) compared to their base counterparts. Notably, these structural advantages grow with task difficulty and model capacity, with cycle detection peaking at the 14B scale and exploration diameter maximized in the 32B variant, correlating positively with accuracy. Furthermore, we show that supervised fine-tuning on an improved dataset systematically expands reasoning graph diameters in tandem with performance gains, offering concrete guidelines for dataset design aimed at boosting reasoning capabilities. By bridging theoretical insights into reasoning graph structures with practical recommendations for data construction, our work advances both the interpretability and the efficacy of large reasoning models.
comment: Accepted to Neurips 2025
♻ ☆ Towards Holistic Evaluation of Large Audio-Language Models: A Comprehensive Survey EMNLP 2025
With advancements in large audio-language models (LALMs), which enhance large language models (LLMs) with auditory capabilities, these models are expected to demonstrate universal proficiency across various auditory tasks. While numerous benchmarks have emerged to assess LALMs' performance, they remain fragmented and lack a structured taxonomy. To bridge this gap, we conduct a comprehensive survey and propose a systematic taxonomy for LALM evaluations, categorizing them into four dimensions based on their objectives: (1) General Auditory Awareness and Processing, (2) Knowledge and Reasoning, (3) Dialogue-oriented Ability, and (4) Fairness, Safety, and Trustworthiness. We provide detailed overviews within each category and highlight challenges in this field, offering insights into promising future directions. To the best of our knowledge, this is the first survey specifically focused on the evaluations of LALMs, providing clear guidelines for the community. We will release the collection of the surveyed papers and actively maintain it to support ongoing advancements in the field.
comment: EMNLP 2025 (Main). Project Website: https://github.com/ckyang1124/LALM-Evaluation-Survey
♻ ☆ Benchmarking LLM-Assisted Blue Teaming via Standardized Threat Hunting
As cyber threats continue to grow in scale and sophistication, blue team defenders increasingly require advanced tools to proactively detect and mitigate risks. Large Language Models (LLMs) offer promising capabilities for enhancing threat analysis. However, their effectiveness in real-world blue team threat-hunting scenarios remains insufficiently explored. This paper presents CyberTeam, a benchmark designed to guide LLMs in blue teaming practice. CyberTeam constructs a standardized workflow in two stages. First, it models realistic threat-hunting workflows by capturing the dependencies among analytical tasks from threat attribution to incident response. Next, each task is addressed through a set of operational modules tailored to its specific analytical requirements. This transforms threat hunting into a structured sequence of reasoning steps, with each step grounded in a discrete operation and ordered according to task-specific dependencies. Guided by this framework, LLMs are directed to perform threat-hunting tasks through modularized steps. Overall, CyberTeam integrates 30 tasks and 9 operational modules to guide LLMs through standardized threat analysis. We evaluate both leading LLMs and state-of-the-art cybersecurity agents, comparing CyberTeam against open-ended reasoning strategies. Our results highlight the improvements enabled by standardized design, while also revealing the limitations of open-ended reasoning in real-world threat hunting.
♻ ☆ Not All Rollouts are Useful: Down-Sampling Rollouts in LLM Reinforcement Learning
Reinforcement learning with verifiable rewards (RLVR) has emerged as the leading approach for enhancing reasoning capabilities in large language models. However, it faces a fundamental compute and memory asymmetry: rollout generation is embarrassingly parallel and memory-light, whereas policy updates are communication-heavy and memory-intensive. To address this, we introduce PODS (Policy Optimization with Down-Sampling), which decouples rollout generation from policy updates by training only on a strategically selected subset of rollouts, maintaining learning quality while dramatically reducing update costs. We propose a principled subset selection criterion, max-variance down-sampling, that maximizes reward diversity, and provide an efficient $O(n\log n)$ implementation. Empirically, Group Relative Policy Optimization (GRPO) with PODS achieves the peak test accuracy of vanilla GRPO at least $\mathbf{1.7\times}$ faster across the different reasoning benchmarks and hardware configurations we tested.
comment: 17 pages, 8 figures
♻ ☆ Uncovering Vulnerabilities of LLM-Assisted Cyber Threat Intelligence
Large Language Models (LLMs) are intensively used to assist security analysts in counteracting the rapid exploitation of cyber threats, wherein LLMs offer cyber threat intelligence (CTI) to support vulnerability assessment and incident response. While recent work has shown that LLMs can support a wide range of CTI tasks such as threat analysis, vulnerability detection, and intrusion defense, significant performance gaps persist in practical deployments. In this paper, we investigate the intrinsic vulnerabilities of LLMs in CTI, focusing on challenges that arise from the nature of the threat landscape itself rather than the model architecture. Using large-scale evaluations across multiple CTI benchmarks and real-world threat reports, we introduce a novel categorization methodology that integrates stratification, autoregressive refinement, and human-in-the-loop supervision to reliably analyze failure instances. Through extensive experiments and human inspections, we reveal three fundamental vulnerabilities: spurious correlations, contradictory knowledge, and constrained generalization, that limit LLMs in effectively supporting CTI. Subsequently, we provide actionable insights for designing more robust LLM-powered CTI systems to facilitate future research.
♻ ☆ An Ethically Grounded LLM-Based Approach to Insider Threat Synthesis and Detection
Insider threats are a growing organizational problem due to the complexity of identifying their technical and behavioral elements. A large research body is dedicated to the study of insider threats from technological, psychological, and educational perspectives. However, research in this domain has been generally dependent on datasets that are static and limited access which restricts the development of adaptive detection models. This study introduces a novel, ethically grounded approach that uses the large language model (LLM) Claude Sonnet 3.7 to dynamically synthesize syslog messages, some of which contain indicators of insider threat scenarios. The messages reflect real-world data distributions by being highly imbalanced (1% insider threats). The syslogs were analyzed for insider threats by both Sonnet 3.7 and GPT-4o, with their performance evaluated through statistical metrics including accuracy, precision, recall, F1, specificity, FAR, MCC, and ROC AUC. Sonnet 3.7 consistently outperformed GPT-4o across nearly all metrics, particularly in reducing false alarms and improving detection accuracy. The results show strong promise for the use of LLMs in synthetic dataset generation and insider threat detection.
comment: 6 pages, 5 figures, 5 tables
♻ ☆ ReWatch-R1: Boosting Complex Video Reasoning in Large Vision-Language Models through Agentic Data Synthesis
While Reinforcement Learning with Verifiable Reward (RLVR) significantly advances image reasoning in Large Vision-Language Models (LVLMs), its application to complex video reasoning remains underdeveloped. This gap stems primarily from a critical data bottleneck: existing datasets lack the challenging, multi-hop questions and high-quality, video-grounded Chain-of-Thought (CoT) data necessary to effectively bootstrap RLVR. To address this, we introduce ReWatch, a large-scale dataset built to foster advanced video reasoning. We propose a novel multi-stage synthesis pipeline to synthesize its three components: ReWatch-Caption, ReWatch-QA, and ReWatch-CoT. A core innovation is our Multi-Agent ReAct framework for CoT synthesis, which simulates a human-like "re-watching" process to generate video-grounded reasoning traces by explicitly modeling information retrieval and verification. Building on this dataset, we develop ReWatch-R1 by post-training a strong baseline LVLM with Supervised Fine-Tuning (SFT) and our RLVR framework. This framework incorporates a novel Observation \& Reasoning (O\&R) reward mechanism that evaluates both the final answer's correctness and the reasoning's alignment with video content, directly penalizing hallucination. Our experiments show that ReWatch-R1 achieves state-of-the-art average performance on five challenging video reasoning benchmarks. Project Page: https://rewatch-r1.github.io
♻ ☆ Stackelberg Coupling of Online Representation Learning and Reinforcement Learning
Deep Q-learning jointly learns representations and values within monolithic networks, promising beneficial co-adaptation between features and value estimates. Although this architecture has attained substantial success, the coupling between representation and value learning creates instability as representations must constantly adapt to non-stationary value targets, while value estimates depend on these shifting representations. This is compounded by high variance in bootstrapped targets, which causes bias in value estimation in off-policy methods. We introduce Stackelberg Coupled Representation and Reinforcement Learning (SCORER), a framework for value-based RL that views representation and Q-learning as two strategic agents in a hierarchical game. SCORER models the Q-function as the leader, which commits to its strategy by updating less frequently, while the perception network (encoder) acts as the follower, adapting more frequently to learn representations that minimize Bellman error variance given the leader's committed strategy. Through this division of labor, the Q-function minimizes MSBE while perception minimizes its variance, thereby reducing bias accordingly, with asymmetric updates allowing stable co-adaptation, unlike simultaneous parameter updates in monolithic solutions. Our proposed SCORER framework leads to a bi-level optimization problem whose solution is approximated by a two-timescale algorithm that creates an asymmetric learning dynamic between the two players. Extensive experiments on DQN and its variants demonstrate that gains stem from algorithmic insight rather than model complexity.
♻ ☆ Stability Bounds for the Unfolded Forward-Backward Algorithm
We consider a neural network architecture designed to solve inverse problems where the degradation operator is linear and known. This architecture is constructed by unrolling a forward-backward algorithm derived from the minimization of an objective function that combines a data-fidelity term, a Tikhonov-type regularization term, and a potentially nonsmooth convex penalty. The robustness of this inversion method to input perturbations is analyzed theoretically. Ensuring robustness complies with the principles of inverse problem theory, as it ensures both the continuity of the inversion method and the resilience to small noise - a critical property given the known vulnerability of deep neural networks to adversarial perturbations. A key novelty of our work lies in examining the robustness of the proposed network to perturbations in its bias, which represents the observed data in the inverse problem. Additionally, we provide numerical illustrations of the analytical Lipschitz bounds derived in our analysis.
comment: arXiv admin note: substantial text overlap with arXiv:2105.15044
♻ ☆ Neural Theorem Proving: Generating and Structuring Proofs for Formal Verification
Formally verifying properties of software code has been a highly desirable task, especially with the emergence of LLM-generated code. In the same vein, they provide an interesting avenue for the exploration of formal verification and mechanistic interpretability. Since the introduction of code-specific models, despite their successes in generating code in Lean4 and Isabelle, the task of generalized theorem proving still remains far from being fully solved and will be a benchmark for reasoning capability in LLMs. In this work, we introduce a framework that generates whole proofs in a formal language to be used within systems that utilize the power of built-in tactics and off-the-shelf automated theorem provers. Our framework includes 3 components: generating natural language statements of the code to be verified, an LLM that generates formal proofs for the given statement, and a module employing heuristics for building the final proof. To train the LLM, we employ a 2-stage fine-tuning process, where we first use SFT-based training to enable the model to generate syntactically correct Isabelle code and then RL-based training that encourages the model to generate proofs verified by a theorem prover. We validate our framework using the miniF2F-test benchmark and the Isabelle proof assistant and design a use case to verify the correctness of the AWS S3 bucket access policy code. We also curate a dataset based on the FVEL\textsubscript{\textnormal{ER}} dataset for future training tasks.
comment: Accepted to the Proceedings of the 19th Conference on Neurosymbolic Learning and Reasoning (NeSy 2025)
♻ ☆ LLM Watermark Evasion via Bias Inversion
Watermarking for large language models (LLMs) embeds a statistical signal during generation to enable detection of model-produced text. While watermarking has proven effective in benign settings, its robustness under adversarial evasion remains contested. To advance a rigorous understanding and evaluation of such vulnerabilities, we propose the \emph{Bias-Inversion Rewriting Attack} (BIRA), which is theoretically motivated and model-agnostic. BIRA weakens the watermark signal by suppressing the logits of likely watermarked tokens during LLM-based rewriting, without any knowledge of the underlying watermarking scheme. Across recent watermarking methods, BIRA achieves over 99\% evasion while preserving the semantic content of the original text. Beyond demonstrating an attack, our results reveal a systematic vulnerability, emphasizing the need for stress testing and robust defenses.
♻ ☆ AgentMisalignment: Measuring the Propensity for Misaligned Behaviour in LLM-Based Agents NeurIPS 2025
As Large Language Model (LLM) agents become more widespread, associated misalignment risks increase. While prior research has studied agents' ability to produce harmful outputs or follow malicious instructions, it remains unclear how likely agents are to spontaneously pursue unintended goals in realistic deployments. In this work, we approach misalignment as a conflict between the internal goals pursued by the model and the goals intended by its deployer. We introduce a misalignment propensity benchmark, \textsc{AgentMisalignment}, a benchmark suite designed to evaluate the propensity of LLM agents to misalign in realistic scenarios. Evaluations cover behaviours such as avoiding oversight, resisting shutdown, sandbagging, and power-seeking. Testing frontier models, we find that more capable agents tend to exhibit higher misalignment on average. We also systematically vary agent personalities through different system prompts and observe that persona characteristics can strongly and unpredictably influence misalignment, sometimes more than the choice of model itself. Our results reveal the limitations of current alignment methods for autonomous LLM agents and underscore the need to rethink misalignment in realistic deployment settings.
comment: Prepint, under review for NeurIPS 2025
♻ ☆ Adversarial Attacks to Latent Representations of Distributed Neural Networks in Split Computing
Distributed deep neural networks (DNNs) have been shown to reduce the computational burden of mobile devices and decrease the end-to-end inference latency in edge computing scenarios. While distributed DNNs have been studied, to the best of our knowledge, the resilience of distributed DNNs to adversarial action remains an open problem. In this paper, we fill the existing research gap by rigorously analyzing the robustness of distributed DNNs against adversarial action. We cast this problem in the context of information theory and rigorously proved that (i) the compressed latent dimension improves the robustness but also affect task-oriented performance; and (ii) the deeper splitting point enhances the robustness but also increases the computational burden. These two trade-offs provide a novel perspective to design robust distributed DNN. To test our theoretical findings, we perform extensive experimental analysis by considering 6 different DNN architectures, 6 different approaches for distributed DNN and 10 different adversarial attacks using the ImageNet-1K dataset.
comment: Accepted in Elsevier Computer Networks
♻ ☆ LLM-guided Task and Motion Planning using Knowledge-based Reasoning
Performing complex manipulation tasks in dynamic environments requires efficient Task and Motion Planning (TAMP) approaches that combine high-level symbolic plans with low-level motion control. Advances in Large Language Models (LLMs), such as GPT-4, are transforming task planning by offering natural language as an intuitive and flexible way to describe tasks, generate symbolic plans, and reason. However, the effectiveness of LLM-based TAMP approaches is limited due to static and template-based prompting, which limits adaptability to dynamic environments and complex task contexts. To address these limitations, this work proposes a novel Onto-LLM-TAMP framework that employs knowledge-based reasoning to refine and expand user prompts with task-contextual reasoning and knowledge-based environment state descriptions. Integrating domain-specific knowledge into the prompt ensures semantically accurate and context-aware task plans. The proposed framework demonstrates its effectiveness by resolving semantic errors in symbolic plan generation, such as maintaining logical temporal goal ordering in scenarios involving hierarchical object placement. The proposed framework is validated through both simulation and real-world scenarios, demonstrating significant improvements over the baseline approach in terms of adaptability to dynamic environments and the generation of semantically correct task plans.
comment: Submitted to knowledge based systems
♻ ☆ Steering When Necessary: Flexible Steering Large Language Models with Backtracking NeurIPS 2025
Large language models (LLMs) have achieved remarkable performance across many generation tasks. Nevertheless, effectively aligning them with desired behaviors remains a significant challenge. Activation steering is an effective and cost-efficient approach that directly modifies the activations of LLMs during the inference stage, aligning their responses with the desired behaviors and avoiding the high cost of fine-tuning. Existing methods typically indiscriminately intervene to all generations or rely solely on the question to determine intervention, which limits the accurate assessment of the intervention strength. To this end, we propose the Flexible Activation Steering with Backtracking (FASB) framework, which dynamically determines both the necessity and strength of intervention by tracking the internal states of the LLMs during generation, considering both the question and the generated content. Since intervening after detecting a deviation from the desired behavior is often too late, we further propose the backtracking mechanism to correct the deviated tokens and steer the LLMs toward the desired behavior. Extensive experiments on the TruthfulQA dataset and six multiple-choice datasets demonstrate that our method outperforms baselines. Our code will be released at https://github.com/gjw185/FASB.
comment: NeurIPS 2025
♻ ☆ Neural Logic Networks for Interpretable Classification
Traditional neural networks have an impressive classification performance, but what they learn cannot be inspected, verified or extracted. Neural Logic Networks on the other hand have an interpretable structure that enables them to learn a logical mechanism relating the inputs and outputs with AND and OR operations. We generalize these networks with NOT operations and biases that take into account unobserved data and develop a rigorous logical and probabilistic modeling in terms of concept combinations to motivate their use. We also propose a novel factorized IF-THEN rule structure for the model as well as a modified learning algorithm. Our method improves the state-of-the-art in Boolean networks discovery and is able to learn relevant, interpretable rules in tabular classification, notably on examples from the medical and industrial fields where interpretability has tangible value.
comment: 31 pages, 8 figures, pre-print, code available at https://github.com/VincentPerreault0/NeuralLogicNetworks
♻ ☆ Metaphor identification using large language models: A comparison of RAG, prompt engineering, and fine-tuning
Metaphor is a pervasive feature of discourse and a powerful lens for examining cognition, emotion, and ideology. Large-scale analysis, however, has been constrained by the need for manual annotation due to the context-sensitive nature of metaphor. This study investigates the potential of large language models (LLMs) to automate metaphor identification in full texts. We compare three methods: (i) retrieval-augmented generation (RAG), where the model is provided with a codebook and instructed to annotate texts based on its rules and examples; (ii) prompt engineering, where we design task-specific verbal instructions; and (iii) fine-tuning, where the model is trained on hand-coded texts to optimize performance. Within prompt engineering, we test zero-shot, few-shot, and chain-of-thought strategies. Our results show that state-of-the-art closed-source LLMs can achieve high accuracy, with fine-tuning yielding a median F1 score of 0.79. A comparison of human and LLM outputs reveals that most discrepancies are systematic, reflecting well-known grey areas and conceptual challenges in metaphor theory. We propose that LLMs can be used to at least partly automate metaphor identification and can serve as a testbed for developing and refining metaphor identification protocols and the theory that underpins them.
♻ ☆ AS400-DET: Detection using Deep Learning Model for IBM i (AS/400) SP 2025
This paper proposes a method for automatic GUI component detection for the IBM i system (formerly and still more commonly known as AS/400). We introduce a human-annotated dataset consisting of 1,050 system screen images, in which 381 images are screenshots of IBM i system screens in Japanese. Each image contains multiple components, including text labels, text boxes, options, tables, instructions, keyboards, and command lines. We then develop a detection system based on state-of-the-art deep learning models and evaluate different approaches using our dataset. The experimental results demonstrate the effectiveness of our dataset in constructing a system for component detection from GUI screens. By automatically detecting GUI components from the screen, AS400-DET has the potential to perform automated testing on systems that operate via GUI screens.
comment: Published at the IVSP 2025 conference
♻ ☆ Learning Dynamic Graph Embeddings with Neural Controlled Differential Equations
This paper focuses on representation learning for dynamic graphs with temporal interactions. A fundamental issue is that both the graph structure and the nodes own their own dynamics, and their blending induces intractable complexity in the temporal evolution over graphs. Drawing inspiration from the recent progress of physical dynamic models in deep neural networks, we propose Graph Neural Controlled Differential Equations (GN-CDEs), a continuous-time framework that jointly models node embeddings and structural dynamics by incorporating a graph enhanced neural network vector field with a time-varying graph path as the control signal. Our framework exhibits several desirable characteristics, including the ability to express dynamics on evolving graphs without piecewise integration, the capability to calibrate trajectories with subsequent data, and robustness to missing observations. Empirical evaluation on a range of dynamic graph representation learning tasks demonstrates the effectiveness of our proposed approach in capturing the complex dynamics of dynamic graphs.
comment: Accepted by TPAMI 2025
♻ ☆ Progressive Weight Loading: Accelerating Initial Inference and Gradually Boosting Performance on Resource-Constrained Environments
Deep learning models have become increasingly large and complex, resulting in higher memory consumption and computational demands. Consequently, model loading times and initial inference latency have increased, posing significant challenges in mobile and latency-sensitive environments where frequent model loading and unloading are required, which directly impacts user experience. While Knowledge Distillation (KD) offers a solution by compressing large teacher models into smaller student ones, it often comes at the cost of reduced performance. To address this trade-off, we propose Progressive Weight Loading (PWL), a novel technique that enables fast initial inference by first deploying a lightweight student model, then incrementally replacing its layers with those of a pre-trained teacher model. To support seamless layer substitution, we introduce a training method that not only aligns intermediate feature representations between student and teacher layers, but also improves the overall output performance of the student model. Our experiments on VGG, ResNet, and ViT architectures demonstrate that models trained with PWL maintain competitive distillation performance and gradually improve accuracy as teacher layers are loaded-matching the final accuracy of the full teacher model without compromising initial inference speed. This makes PWL particularly suited for dynamic, resource-constrained deployments where both responsiveness and performance are critical.
♻ ☆ Addressing Moral Uncertainty using Large Language Models for Ethical Decision-Making
We present an ethical decision-making framework that refines a pre-trained reinforcement learning (RL) model using a task-agnostic ethical layer. Following initial training, the RL model undergoes ethical fine-tuning, where human feedback is replaced by feedback generated from a large language model (LLM). The LLM embodies consequentialist, deontological, virtue, social justice, and care ethics as moral principles to assign belief values to recommended actions during ethical decision-making. An ethical layer aggregates belief scores from multiple LLM-derived moral perspectives using Belief Jensen-Shannon Divergence and Dempster-Shafer Theory into probability scores that also serve as the shaping reward, steering the agent toward choices that align with a balanced ethical framework. This integrated learning framework helps the RL agent navigate moral uncertainty in complex environments and enables it to make morally sound decisions across diverse tasks. Our approach, tested across different LLM variants and compared with other belief aggregation techniques, demonstrates improved consistency, adaptability, and reduced reliance on handcrafted ethical rewards. This method is especially effective in dynamic scenarios where ethical challenges arise unexpectedly, making it well-suited for real-world applications.
comment: 13 pages, 5 figures. All authors contributed equally to this work
♻ ☆ PortraitTalk: Towards Customizable One-Shot Audio-to-Talking Face Generation
Audio-driven talking face generation is a challenging task in digital communication. Despite significant progress in the area, most existing methods concentrate on audio-lip synchronization, often overlooking aspects such as visual quality, customization, and generalization that are crucial to producing realistic talking faces. To address these limitations, we introduce a novel, customizable one-shot audio-driven talking face generation framework, named PortraitTalk. Our proposed method utilizes a latent diffusion framework consisting of two main components: IdentityNet and AnimateNet. IdentityNet is designed to preserve identity features consistently across the generated video frames, while AnimateNet aims to enhance temporal coherence and motion consistency. This framework also integrates an audio input with the reference images, thereby reducing the reliance on reference-style videos prevalent in existing approaches. A key innovation of PortraitTalk is the incorporation of text prompts through decoupled cross-attention mechanisms, which significantly expands creative control over the generated videos. Through extensive experiments, including a newly developed evaluation metric, our model demonstrates superior performance over the state-of-the-art methods, setting a new standard for the generation of customizable realistic talking faces suitable for real-world applications.
♻ ☆ Balancing Multimodal Training Through Game-Theoretic Regularization
Multimodal learning holds promise for richer information extraction by capturing dependencies across data sources. Yet, current training methods often underperform due to modality competition, a phenomenon where modalities contend for training resources leaving some underoptimized. This raises a pivotal question: how can we address training imbalances, ensure adequate optimization across all modalities, and achieve consistent performance improvements as we transition from unimodal to multimodal data? This paper proposes the Multimodal Competition Regularizer (MCR), inspired by a mutual information (MI) decomposition designed to prevent the adverse effects of competition in multimodal training. Our key contributions are: 1) A game-theoretic framework that adaptively balances modality contributions by encouraging each to maximize its informative role in the final prediction 2) Refining lower and upper bounds for each MI term to enhance the extraction of both task-relevant unique and shared information across modalities. 3) Proposing latent space permutations for conditional MI estimation, significantly improving computational efficiency. MCR outperforms all previously suggested training strategies and simple baseline, clearly demonstrating that training modalities jointly leads to important performance gains on both synthetic and large real-world datasets. We release our code and models at https://github.com/kkontras/MCR.
comment: 23 pages, 7 figures, 6 tables, 1 algorithm
♻ ☆ Training Vision-Language Process Reward Models for Test-Time Scaling in Multimodal Reasoning: Key Insights and Lessons Learned
Process Reward Models (PRMs) provide step-level supervision that improves the reliability of reasoning in large language models. While PRMs have been extensively studied in text-based domains, their extension to Vision Language Models (VLMs) remains limited. Existing Vision-Language PRMs (VL-PRMs) rely on Monte Carlo Tree Search (MCTS) for data construction, which can often produce noisy supervision signals and limit generalization across tasks. In this work, we aim to elucidate the design space of VL-PRMs by exploring diverse strategies for dataset construction, training, and test-time scaling. First, we introduce a hybrid data synthesis framework that combines MCTS with judgments from a strong VLM, producing more accurate step-level labels. Second, we propose perception-focused supervision, enabling our PRM to explicitly detect errors at the visual grounding stage of reasoning. Third, we systematically evaluate multiple test-time scaling strategies, showing that our PRMs can reliably guide VLMs toward more accurate solutions. Our experiments covering five diverse multimodal benchmarks (MMMU, PuzzleVQA, AlgoPuzzleVQA, MathVista, and MathVision) reveal several key insights: (i) VL-PRMs when used as Outcome Reward Models (ORMs) during test-time scaling (TTS) can outperform VL-PRM guided process step selection, (ii) smaller VL-PRMs can match or even surpass larger ones in detecting process errors, (iii) VL-PRMs uncover latent reasoning abilities in stronger VLM backbones, (iv) perception-level supervision leads to significant gains in test-time scaling, and (v) TTS performance of different policies improve on advanced math reasoning datasets despite not training VL-PRMs on such datasets. We hope our work will motivate further research and support the advancement of VLMs.
♻ ☆ ViLBias: Detecting and Reasoning about Bias in Multimodal Content
Detecting bias in multimodal news requires models that reason over text--image pairs, not just classify text. In response, we present ViLBias, a VQA-style benchmark and framework for detecting and reasoning about bias in multimodal news. The dataset comprises 40,945 text--image pairs from diverse outlets, each annotated with a bias label and concise rationale using a two-stage LLM-as-annotator pipeline with hierarchical majority voting and human-in-the-loop validation. We evaluate Small Language Models (SLMs), Large Language Models (LLMs), and Vision--Language Models (VLMs) across closed-ended classification and open-ended reasoning (oVQA), and compare parameter-efficient tuning strategies. Results show that incorporating images alongside text improves detection accuracy by 3--5\%, and that LLMs/VLMs better capture subtle framing and text--image inconsistencies than SLMs. Parameter-efficient methods (LoRA/QLoRA/Adapters) recover 97--99\% of full fine-tuning performance with $<5\%$ trainable parameters. For oVQA, reasoning accuracy spans 52--79\% and faithfulness 68--89\%, both improved by instruction tuning; closed accuracy correlates strongly with reasoning ($r = 0.91$). ViLBias offers a scalable benchmark and strong baselines for multimodal bias detection and rationale quality.
comment: Under review
♻ ☆ Mitigating Domain Shift in Federated Learning via Intra- and Inter-Domain Prototypes
Federated Learning (FL) has emerged as a decentralized machine learning technique, allowing clients to train a global model collaboratively without sharing private data. However, most FL studies ignore the crucial challenge of heterogeneous domains where each client has a distinct feature distribution, which is popular in real-world scenarios. Prototype learning, which leverages the mean feature vectors within the same classes, has become a prominent solution for federated learning under domain shift. However, existing federated prototype learning methods focus soley on inter-domain prototypes and neglect intra-domain perspectives. In this work, we introduce a novel federated prototype learning method, namely I$^2$PFL, which incorporates $\textbf{I}$ntra-domain and $\textbf{I}$nter-domain $\textbf{P}$rototypes, to mitigate domain shift from both perspectives and learn a generalized global model across multiple domains in federated learning. To construct intra-domain prototypes, we propose feature alignment with MixUp-based augmented prototypes to capture the diversity within local domains and enhance the generalization of local features. Additionally, we introduce a reweighting mechanism for inter-domain prototypes to generate generalized prototypes that reduce domain shift while providing inter-domain knowledge across multiple clients. Extensive experiments on the Digits, Office-10, and PACS datasets illustrate the superior performance of our method compared to other baselines.
comment: 10 pages, 8 figures, 6 tables
♻ ☆ CultranAI at PalmX 2025: Data Augmentation for Cultural Knowledge Representation
In this paper, we report our participation to the PalmX cultural evaluation shared task. Our system, CultranAI, focused on data augmentation and LoRA fine-tuning of large language models (LLMs) for Arabic cultural knowledge representation. We benchmarked several LLMs to identify the best-performing model for the task. In addition to utilizing the PalmX dataset, we augmented it by incorporating the Palm dataset and curated a new dataset of over 22K culturally grounded multiple-choice questions (MCQs). Our experiments showed that the Fanar-1-9B-Instruct model achieved the highest performance. We fine-tuned this model on the combined augmented dataset of 22K+ MCQs. On the blind test set, our submitted system ranked 5th with an accuracy of 70.50%, while on the PalmX development set, it achieved an accuracy of 84.1%.
comment: LLMs, Native, Arabic LLMs, Augmentation, Multilingual, Language Diversity, Contextual Understanding, Minority Languages, Culturally Informed, Foundation Models, Large Language Models
♻ ☆ Post Hoc Regression Refinement via Pairwise Rankings NeurIPS 2025
Accurate prediction of continuous properties is essential to many scientific and engineering tasks. Although deep-learning regressors excel with abundant labels, their accuracy deteriorates in data-scarce regimes. We introduce RankRefine, a model-agnostic, plug-and-play post hoc method that refines regression with expert knowledge coming from pairwise rankings. Given a query item and a small reference set with known properties, RankRefine combines the base regressor's output with a rank-based estimate via inverse variance weighting, requiring no retraining. In molecular property prediction task, RankRefine achieves up to 10% relative reduction in mean absolute error using only 20 pairwise comparisons obtained through a general-purpose large language model (LLM) with no finetuning. As rankings provided by human experts or general-purpose LLMs are sufficient for improving regression across diverse domains, RankRefine offers practicality and broad applicability, especially in low-data settings.
comment: NeurIPS 2025 camera-ready version
♻ ☆ VisualOverload: Probing Visual Understanding of VLMs in Really Dense Scenes
Is basic visual understanding really solved in state-of-the-art VLMs? We present VisualOverload, a slightly different visual question answering (VQA) benchmark comprising 2,720 question-answer pairs, with privately held ground-truth responses. Unlike prior VQA datasets that typically focus on near global image understanding, VisualOverload challenges models to perform simple, knowledge-free vision tasks in densely populated (or, overloaded) scenes. Our dataset consists of high-resolution scans of public-domain paintings that are populated with multiple figures, actions, and unfolding subplots set against elaborately detailed backdrops. We manually annotated these images with questions across six task categories to probe for a thorough understanding of the scene. We hypothesize that current benchmarks overestimate the performance of VLMs, and encoding and reasoning over details is still a challenging task for them, especially if they are confronted with densely populated scenes. Indeed, we observe that even the best model (o3) out of 37 tested models only achieves 19.6% accuracy on our hardest test split and overall 69.5% accuracy on all questions. Beyond a thorough evaluation, we complement our benchmark with an error analysis that reveals multiple failure modes, including a lack of counting skills, failure in OCR, and striking logical inconsistencies under complex tasks. Altogether, VisualOverload exposes a critical gap in current vision models and offers a crucial resource for the community to develop better models. Benchmark: http://paulgavrikov.github.io/visualoverload
♻ ☆ Learning Hierarchical Domain Models Through Environment-Grounded Interaction
Domain models enable autonomous agents to solve long-horizon tasks by producing interpretable plans. However, in open-world environments, a single general domain model cannot capture the variety of tasks, so agents must generate suitable task-specific models on the fly. Large Language Models (LLMs), with their implicit common knowledge, can generate such domains, but suffer from high error rates that limit their applicability. Hence, related work relies on extensive human feed-back or prior knowledge, which undermines autonomous, open-world deployment. In this work, we propose LODGE, a framework for autonomous domain learning from LLMs and environment grounding. LODGE builds on hierarchical abstractions and automated simulations to identify and correct inconsistencies between abstraction layers and between the model and environment. Our framework is task-agnostic, as it generates predicates, operators, and their preconditions and effects, while only assuming access to a simulator and a set of generic, executable low-level skills. Experiments on two International Planning Competition ( IPC) domains and a robotic assembly domain show that LODGE yields more accurate domain models and higher task success than existing methods, requiring remarkably few environment interactions and no human feedback or demonstrations.
♻ ☆ What if Othello-Playing Language Models Could See? ICML 2025
Language models are often said to face a symbol grounding problem. While some have argued the problem can be solved without resort to other modalities, many have speculated that grounded learning is more efficient. We explore this question in Othello, a simplified, rule-based world that offers a controlled and interpretable testbed for studying world understanding. Building on prior work, we introduce VISOTHELLO, a multi-modal model trained jointly on move sequences and board images. Using the Othello rule understanding task, we examine whether multi-modal learning provides advantages over text-only approaches. We further evaluate robustness under semantically irrelevant perturbations and analyze the consistency of cross-modal alignment. Our results suggest that multi-modal training not only improves performance and robustness but also promotes convergence toward shared internal representations across different model architectures.
comment: ICML 2025 Assessing World Models Workshop; EMNLP 2025 Findings
♻ ☆ ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation
Recent advancements in large reasoning models (LRMs) like DeepSeek-R1 and OpenAI o1 series have achieved notable performance enhancements on complex reasoning tasks by scaling up the generation length by Chain-of-Thought (CoT). However, a critical issue is their tendency to produce excessively verbose reasoning processes, leading to the inefficiency problem. Existing literature on improving efficiency mainly adheres to the before-reasoning paradigms such as prompting and reasoning or fine-tuning and reasoning, but ignores the promising direction of directly encouraging the model to speak concisely by intervening during the generation of reasoning. In order to fill the blank, we propose a framework dubbed ConciseHint, which continuously encourages the reasoning model to speak concisely by injecting learnable hints (manually designed or learned on concise data) during the generation of the reasoning. Besides, ConciseHint is adaptive to the complexity of the query by adaptively adjusting the hint intensity, which ensures it will not undermine model performance. Experiments on the state-of-the-art LRMs, including DeepSeek-R1 and Qwen-3 series, demonstrate that our method can effectively produce concise reasoning while maintaining the performance well. Moreover, we show that ConciseHint is flexible and can be seamlessly integrated with existing methods to further push the upper bound of the efficiency.
comment: Compare with more baselines, add more in-depth analysis, and re-evaluate the GPQA-D benchmark. Codes are available at https://github.com/tsa18/ConciseHint
♻ ☆ Multi-modal Spatio-Temporal Transformer for High-resolution Land Subsidence Prediction
Forecasting high-resolution land subsidence is a critical yet challenging task due to its complex, non-linear dynamics. While standard architectures like ConvLSTM often fail to model long-range dependencies, we argue that a more fundamental limitation of prior work lies in the uni-modal data paradigm. To address this, we propose the Multi-Modal Spatio-Temporal Transformer (MM-STT), a novel framework that fuses dynamic displacement data with static physical priors. Its core innovation is a joint spatio-temporal attention mechanism that processes all multi-modal features in a unified manner. On the public EGMS dataset, MM-STT establishes a new state-of-the-art, reducing the long-range forecast RMSE by an order of magnitude compared to all baselines, including SOTA methods like STGCN and STAEformer. Our results demonstrate that for this class of problems, an architecture's inherent capacity for deep multi-modal fusion is paramount for achieving transformative performance.
comment: This paper is submitted to IEEE Transactions on Geoscience and Remote Sensing for reviewing
♻ ☆ RoVerFly: Robust and Versatile Implicit Hybrid Control of Quadrotor-Payload Systems
Designing robust controllers for precise trajectory tracking with quadrotors is challenging due to nonlinear dynamics and underactuation, and becomes harder with flexible cable-suspended payloads that add degrees of freedom and hybrid dynamics. Classical model-based methods offer stability guarantees but require extensive tuning and often fail to adapt when the configuration changes-when a payload is added or removed, or when its mass or cable length varies. We present RoVerFly, a unified learning-based control framework where a single reinforcement learning (RL) policy functions as an implicit hybrid controller, managing complex dynamics without explicit mode detection or controller switching. Trained with task and domain randomization, the controller is resilient to disturbances and varying dynamics. It achieves strong zero-shot generalization across payload settings-including no payload as well as varying mass and cable length-without re-tuning, while retaining the interpretability and structure of a feedback tracking controller. Code and supplementary materials are available at https://github.com/mintaeshkim/roverfly.
comment: 8 pages, 5 figures
♻ ☆ Distilling Calibration via Conformalized Credal Inference IJCNN 2025
Deploying artificial intelligence (AI) models on edge devices involves a delicate balance between meeting stringent complexity constraints, such as limited memory and energy resources, and ensuring reliable performance in sensitive decision-making tasks. One way to enhance reliability is through uncertainty quantification via Bayesian inference. This approach, however, typically necessitates maintaining and running multiple models in an ensemble, which may exceed the computational limits of edge devices. This paper introduces a low-complexity methodology to address this challenge by distilling calibration information from a more complex model. In an offline phase, predictive probabilities generated by a high-complexity cloud-based model are leveraged to determine a threshold based on the typical divergence between the cloud and edge models. At run time, this threshold is used to construct credal sets -- ranges of predictive probabilities that are guaranteed, with a user-selected confidence level, to include the predictions of the cloud model. The credal sets are obtained through thresholding of a divergence measure in the simplex of predictive probabilities. Experiments on visual and language tasks demonstrate that the proposed approach, termed Conformalized Distillation for Credal Inference (CD-CI), significantly improves calibration performance compared to low-complexity Bayesian methods, such as Laplace approximation, making it a practical and efficient solution for edge AI deployments.
comment: IJCNN 2025
♻ ☆ Entropic Risk Optimization in Discounted MDPs: Sample Complexity Bounds with a Generative Model
In this paper, we analyze the sample complexities of learning the optimal state-action value function $Q^*$ and an optimal policy $\pi^*$ in a finite discounted Markov decision process (MDP) where the agent has recursive entropic risk-preferences with risk-parameter $\beta\neq 0$ and where a generative model of the MDP is available. We provide and analyze a simple model based approach which we call model-based risk-sensitive $Q$-value-iteration (MB-RS-QVI) which leads to $(\varepsilon,\delta)$-PAC-bounds on $\|Q^*-Q^k\|$, and $\|V^*-V^{\pi_k}\|$ where $Q_k$ is the output of MB-RS-QVI after k iterations and $\pi_k$ is the greedy policy with respect to $Q_k$. Both PAC-bounds have exponential dependence on the effective horizon $\frac{1}{1-\gamma}$ and the strength of this dependence grows with the learners risk-sensitivity $|\beta|$. We also provide two lower bounds which shows that exponential dependence on $|\beta|\frac{1}{1-\gamma}$ is unavoidable in both cases. The lower bounds reveal that the PAC-bounds are tight in the parameters $S,A,\delta,\varepsilon$ and that unlike in the classical setting it is not possible to have polynomial dependence in all model parameters.
♻ ☆ Towards a Progress Bar for Reasoning: Progress Prediction in Large Reasoning Models
Reasoning models that produce long, hidden chains of thought, have emerged as powerful tools for reasoning-intensive and agentic tasks. However, as the time horizons at which these models can operate grow exponentially, it becomes increasingly difficult to know how much progress the model is making on a task, making it challenging for users to set appropriate expectations about completion time. By probing the internal representations of Large Language Models (LLMs), we find evidence that their reasoning progress can be quantified, with simple linear probes achieving 30\% accuracy over 10 progress classes and Mean Absolute Error (MAE) of 1.75. Rooted in this insight, we propose a two-stage fine-tuning method that trains existing reasoning models to explicitly generate progress estimates (0-100\%) during their reasoning process. We find that the predictions of our best fine-tuned language model for sequences below 16K tokens are on average 10\% from the true label.
♻ ☆ Affordable AI Assistants with Knowledge Graph of Thoughts
Large Language Models (LLMs) are revolutionizing the development of AI assistants capable of performing diverse tasks across domains. However, current state-of-the-art LLM-driven agents face significant challenges, including high operational costs and limited success rates on complex benchmarks like GAIA. To address these issues, we propose Knowledge Graph of Thoughts (KGoT), an innovative AI assistant architecture that integrates LLM reasoning with dynamically constructed knowledge graphs (KGs). KGoT extracts and structures task-relevant knowledge into a dynamic KG representation, iteratively enhanced through external tools such as math solvers, web crawlers, and Python scripts. Such structured representation of task-relevant knowledge enables low-cost models to solve complex tasks effectively while also minimizing bias and noise. For example, KGoT achieves a 29% improvement in task success rates on the GAIA benchmark compared to Hugging Face Agents with GPT-4o mini. Moreover, harnessing a smaller model dramatically reduces operational costs by over 36x compared to GPT-4o. Improvements for other models (e.g., Qwen2.5-32B and Deepseek-R1-70B) and benchmarks (e.g., SimpleQA) are similar. KGoT offers a scalable, affordable, versatile, and high-performing solution for AI assistants.
♻ ☆ On the Soundness and Consistency of LLM Agents for Executing Test Cases Written in Natural Language
The use of natural language (NL) test cases for validating graphical user interface (GUI) applications is emerging as a promising direction to manually written executable test scripts, which are costly to develop and difficult to maintain. Recent advances in large language models (LLMs) have opened the possibility of the direct execution of NL test cases by LLM agents. This paper investigates this direction, focusing on the impact on NL test case unsoundness and on test case execution consistency. NL test cases are inherently unsound, as they may yield false failures due to ambiguous instructions or unpredictable agent behaviour. Furthermore, repeated executions of the same NL test case may lead to inconsistent outcomes, undermining test reliability. To address these challenges, we propose an algorithm for executing NL test cases with guardrail mechanisms and specialised agents that dynamically verify the correct execution of each test step. We introduce measures to evaluate the capabilities of LLMs in test execution and one measure to quantify execution consistency. We propose a definition of weak unsoundness to characterise contexts in which NL test case execution remains acceptable, with respect to the industrial quality levels Six Sigma. Our experimental evaluation with eight publicly available LLMs, ranging from 3B to 70B parameters, demonstrates both the potential and current limitations of current LLM agents for GUI testing. Our experiments show that Meta Llama 3.1 70B demonstrates acceptable capabilities in NL test case execution with high execution consistency (above the level 3-sigma). We provide prototype tools, test suites, and results.
♻ ☆ Steering LLM Reasoning Through Bias-Only Adaptation EMNLP 2025
We show that training a single $d$-dimensional steering vector per layer with reinforcement learning, while freezing all base weights, matches the accuracy of fully RL-tuned reasoning models on mathematical-reasoning tasks. On an 8 billion-parameter model this adds only $\approx 0.0016\%$ additional parameters and reproduces performance across a range of base models and mathematical-reasoning benchmarks. These results tighten the upper bound on the parameter budget required for high-level chain-of-thought reasoning, indicating that millions of adapter weights are unnecessary. The minimal trainable footprint reduces optimizer memory and inter-GPU communication, lowering the overall cost of fine-tuning. Moreover, a logit-lens analysis shows that the learned vectors amplify coherent token directions, providing clearer insight into the model's internal computations.
comment: EMNLP 2025
♻ ☆ Reasoning Scaffolding: Distilling the Flow of Thought from LLMs
The prevailing approach to distilling reasoning from Large Language Models (LLMs)-behavioral cloning from textual rationales-is fundamentally limited. It teaches Small Language Models (SLMs) to mimic surface-level patterns rather than the underlying algorithmic structure of thought, resulting in a critical lack of logical robustness. We argue that instead of cloning text, distillation should transfer this algorithmic structure directly. We introduce Reasoning Scaffolding}, a framework that reframes reasoning as a structured generation process. Our method first abstracts the teacher's thought process into a sequence of discrete, interpretable semantic signals (e.g., Contrast, Addition) that act as a scaffold. The student model is then trained via a multi-task objective to both (1)predict the next semantic signal, anticipating the reasoning flow, and (2)generate the corresponding step, conditioned on that signal. This multi-task scheme acts as a powerful regularizer, compelling the student to internalize the computational patterns of coherent reasoning. On a suite of challenging reasoning benchmarks, our method significantly outperforms state-of-the-art distillation in both accuracy and logical consistency, providing a path towards creating smaller models that are genuine reasoners, not just fluent mimics.
♻ ☆ MoveGPT: Scaling Mobility Foundation Models with Spatially-Aware Mixture of Experts
The success of foundation models in language has inspired a new wave of general-purpose models for human mobility. However, existing approaches struggle to scale effectively due to two fundamental limitations: a failure to use meaningful basic units to represent movement, and an inability to capture the vast diversity of patterns found in large-scale data. In this work, we develop MoveGPT, a large-scale foundation model specifically architected to overcome these barriers. MoveGPT is built upon two key innovations: (1) a unified location encoder that maps geographically disjoint locations into a shared semantic space, enabling pre-training on a global scale; and (2) a Spatially-Aware Mixture-of-Experts Transformer that develops specialized experts to efficiently capture diverse mobility patterns. Pre-trained on billion-scale datasets, MoveGPT establishes a new state-of-the-art across a wide range of downstream tasks, achieving performance gains of up to 35% on average. It also demonstrates strong generalization capabilities to unseen cities. Crucially, our work provides empirical evidence of scaling ability in human mobility, validating a clear path toward building increasingly capable foundation models in this domain.
♻ ☆ Leaky Thoughts: Large Reasoning Models Are Not Private Thinkers EMNLP 2025
We study privacy leakage in the reasoning traces of large reasoning models used as personal agents. Unlike final outputs, reasoning traces are often assumed to be internal and safe. We challenge this assumption by showing that reasoning traces frequently contain sensitive user data, which can be extracted via prompt injections or accidentally leak into outputs. Through probing and agentic evaluations, we demonstrate that test-time compute approaches, particularly increased reasoning steps, amplify such leakage. While increasing the budget of those test-time compute approaches makes models more cautious in their final answers, it also leads them to reason more verbosely and leak more in their own thinking. This reveals a core tension: reasoning improves utility but enlarges the privacy attack surface. We argue that safety efforts must extend to the model's internal thinking, not just its outputs.
comment: Accepted to EMNLP 2025 (Main)
♻ ☆ OmniThink: Expanding Knowledge Boundaries in Machine Writing through Thinking EMNLP 2025
Machine writing with large language models often relies on retrieval-augmented generation. However, these approaches remain confined within the boundaries of the model's predefined scope, limiting the generation of content with rich information. Specifically, vanilla-retrieved information tends to lack depth, novelty, and suffers from redundancy, which negatively impacts the quality of generated articles, leading to shallow, unoriginal, and repetitive outputs. To address these issues, we propose OmniThink, a slow-thinking machine writing framework that emulates the human-like process of iterative expansion and reflection. The core idea behind OmniThink is to simulate the cognitive behavior of learners as they slowly deepen their knowledge of the topics. Experimental results demonstrate that OmniThink improves the knowledge density of generated articles without compromising metrics such as coherence and depth. Human evaluations and expert feedback further highlight the potential of OmniThink to address real-world challenges in the generation of long-form articles. Code is available at https://github.com/zjunlp/OmniThink.
comment: EMNLP 2025
♻ ☆ Object Centric Concept Bottlenecks
Developing high-performing, yet interpretable models remains a critical challenge in modern AI. Concept-based models (CBMs) attempt to address this by extracting human-understandable concepts from a global encoding (e.g., image encoding) and then applying a linear classifier on the resulting concept activations, enabling transparent decision-making. However, their reliance on holistic image encodings limits their expressiveness in object-centric real-world settings and thus hinders their ability to solve complex vision tasks beyond single-label classification. To tackle these challenges, we introduce Object-Centric Concept Bottlenecks (OCB), a framework that combines the strengths of CBMs and pre-trained object-centric foundation models, boosting performance and interpretability. We evaluate OCB on complex image datasets and conduct a comprehensive ablation study to analyze key components of the framework, such as strategies for aggregating object-concept encodings. The results show that OCB outperforms traditional CBMs and allows one to make interpretable decisions for complex visual tasks.
♻ ☆ From latent factors to language: a user study on LLM-generated explanations for an inherently interpretable matrix-based recommender system
We investigate whether large language models (LLMs) can generate effective, user-facing explanations from a mathematically interpretable recommendation model. The model is based on constrained matrix factorization, where user types are explicitly represented and predicted item scores share the same scale as observed ratings, making the model's internal representations and predicted scores directly interpretable. This structure is translated into natural language explanations using carefully designed LLM prompts. Many works in explainable AI rely on automatic evaluation metrics, which often fail to capture users' actual needs and perceptions. In contrast, we adopt a user-centered approach: we conduct a study with 326 participants who assessed the quality of the explanations across five key dimensions-transparency, effectiveness, persuasion, trust, and satisfaction-as well as the recommendations themselves. To evaluate how different explanation strategies are perceived, we generate multiple explanation types from the same underlying model, varying the input information provided to the LLM. Our analysis reveals that all explanation types are generally well received, with moderate statistical differences between strategies. User comments further underscore how participants react to each type of explanation, offering complementary insights beyond the quantitative results.
♻ ☆ Graphon Particle Systems, Part II: Dynamics of Distributed Stochastic Continuum Optimization
We study the distributed optimization problem over a graphon with a continuum of nodes, which is regarded as the limit of the distributed networked optimization as the number of nodes goes to infinity. Each node has a private local cost function. The global cost function, which all nodes cooperatively minimize, is the integral of the local cost functions on the node set. We propose stochastic gradient descent and gradient tracking algorithms over the graphon. We establish a general lemma for the upper bound estimation related to a class of time-varying differential inequalities with negative linear terms, based upon which, we prove that for both kinds of algorithms, the second moments of the nodes' states are uniformly bounded. Especially, for the stochastic gradient tracking algorithm, we transform the convergence analysis into the asymptotic property of coupled nonlinear differential inequalities with time-varying coefficients and develop a decoupling method. For both kinds of algorithms, we show that by choosing the time-varying algorithm gains properly, all nodes' states achieve $\mathcal{L}^{\infty}$-consensus for a connected graphon. Furthermore, if the local cost functions are strongly convex, then all nodes' states converge to the minimizer of the global cost function and the auxiliary states in the stochastic gradient tracking algorithm converge to the gradient value of the global cost function at the minimizer uniformly in mean square.
♻ ☆ The Gauss-Markov Adjunction Provides Categorical Semantics of Residuals in Supervised Learning
Enhancing the intelligibility and interpretability of machine learning is a crucial task in responding to the demand for Explicability as an AI principle, and in promoting the better social implementation of AI. The aim of our research is to contribute to this improvement by reformulating machine learning models through the lens of category theory, thereby developing a semantic framework for structuring and understanding AI systems. Our categorical modeling in this paper clarifies and formalizes the structural interplay between residuals and parameters in supervised learning. The present paper focuses on the multiple linear regression model, which represents the most basic form of supervised learning. By defining two Lawvere-enriched categories corresponding to parameters and data, along with an adjoint pair of functors between them, we introduce our categorical formulation of supervised learning. We show that the essential structure of this framework is captured by what we call the Gauss-Markov Adjunction. Within this setting, the dual flow of information can be explicitly described as a correspondence between variations in parameters and residuals. The ordinary least squares estimator for the parameters and the minimum residual are related via the preservation of limits by the right adjoint functor. Furthermore, we position this formulation as an instance of extended denotational semantics for supervised learning, and propose applying a semantic perspective developed in theoretical computer science as a formal foundation for Explicability in AI.
comment: The title is revised slightly for clarity
♻ ☆ NL2Plan: Robust LLM-Driven Planning from Minimal Text Descriptions
Classical planners are powerful systems, but modeling tasks in input formats such as PDDL is tedious and error-prone. In contrast, planning with Large Language Models (LLMs) allows for almost any input text, but offers no guarantees on plan quality or even soundness. In an attempt to merge the best of these two approaches, some work has begun to use LLMs to automate parts of the PDDL creation process. However, these methods still require various degrees of expert input or domain-specific adaptations. We present NL2Plan, the first fully automatic system for generating complete PDDL tasks from minimal natural language descriptions. NL2Plan uses an LLM to incrementally extract the necessary information from the short text input before creating a complete PDDL description of both the domain and the problem which is finally solved by a classical planner. We evaluate NL2Plan on seven planning domains, five of which are novel and thus not in the LLM training data, and find that NL2Plan outperforms directly generating the files with an LLM+validator combination. As such, NL2Plan is a powerful tool for assistive PDDL modeling and a step towards solving natural language planning task with interpretability and guarantees.
comment: Accepted for the ICAPS 2024 Workshop on Human-Aware and Explainable Planning
♻ ☆ The Sandbox Configurator: A Framework to Support Technical Assessment in AI Regulatory Sandboxes
The systematic assessment of AI systems is increasingly vital as these technologies enter high-stakes domains. To address this, the EU's Artificial Intelligence Act introduces AI Regulatory Sandboxes (AIRS): supervised environments where AI systems can be tested under the oversight of Competent Authorities (CAs), balancing innovation with compliance, particularly for startups and SMEs. Yet significant challenges remain: assessment methods are fragmented, tests lack standardisation, and feedback loops between developers and regulators are weak. To bridge these gaps, we propose the Sandbox Configurator, a modular open-source framework that enables users to select domain-relevant tests from a shared library and generate customised sandbox environments with integrated dashboards. Its plug-in architecture aims to support both open and proprietary modules, fostering a shared ecosystem of interoperable AI assessment services. The framework aims to address multiple stakeholders: CAs gain structured workflows for applying legal obligations; technical experts can integrate robust evaluation methods; and AI providers access a transparent pathway to compliance. By promoting cross-border collaboration and standardisation, the Sandbox Configurator's goal is to support a scalable and innovation-friendly European infrastructure for trustworthy AI governance.
♻ ☆ An Agent-Based Framework for Automated Higher-Voice Harmony Generation
The generation of musically coherent and aesthetically pleasing harmony remains a significant challenge in the field of algorithmic composition. This paper introduces an innovative Agentic AI-enabled Higher Harmony Music Generator, a multi-agent system designed to create harmony in a collaborative and modular fashion. Our framework comprises four specialized agents: a Music-Ingestion Agent for parsing and standardizing input musical scores; a Chord-Knowledge Agent, powered by a Chord-Former (Transformer model), to interpret and provide the constituent notes of complex chord symbols; a Harmony-Generation Agent, which utilizes a Harmony-GPT and a Rhythm-Net (RNN) to compose a melodically and rhythmically complementary harmony line; and an Audio-Production Agent that employs a GAN-based Symbolic-to-Audio Synthesizer to render the final symbolic output into high-fidelity audio. By delegating specific tasks to specialized agents, our system effectively mimics the collaborative process of human musicians. This modular, agent-based approach allows for robust data processing, deep theoretical understanding, creative composition, and realistic audio synthesis, culminating in a system capable of generating sophisticated and contextually appropriate higher-voice harmonies for given melodies.
♻ ☆ Toward Foundational Model for Sleep Analysis Using a Multimodal Hybrid Self-Supervised Learning Framework
Sleep is essential for maintaining human health and quality of life. Analyzing physiological signals during sleep is critical in assessing sleep quality and diagnosing sleep disorders. However, manual diagnoses by clinicians are time-intensive and subjective. Despite advances in deep learning that have enhanced automation, these approaches remain heavily dependent on large-scale labeled datasets. This study introduces SynthSleepNet, a multimodal hybrid self-supervised learning framework designed for analyzing polysomnography (PSG) data. SynthSleepNet effectively integrates masked prediction and contrastive learning to leverage complementary features across multiple modalities, including electroencephalogram (EEG), electrooculography (EOG), electromyography (EMG), and electrocardiogram (ECG). This approach enables the model to learn highly expressive representations of PSG data. Furthermore, a temporal context module based on Mamba was developed to efficiently capture contextual information across signals. SynthSleepNet achieved superior performance compared to state-of-the-art methods across three downstream tasks: sleep-stage classification, apnea detection, and hypopnea detection, with accuracies of 89.89%, 99.75%, and 89.60%, respectively. The model demonstrated robust performance in a semi-supervised learning environment with limited labels, achieving accuracies of 87.98%, 99.37%, and 77.52% in the same tasks. These results underscore the potential of the model as a foundational tool for the comprehensive analysis of PSG data. SynthSleepNet demonstrates comprehensively superior performance across multiple downstream tasks compared to other methodologies, making it expected to set a new standard for sleep disorder monitoring and diagnostic systems.
comment: 18 pages, 5 figures
♻ ☆ Integrated Framework for LLM Evaluation with Answer Generation
Reliable evaluation of large language models is essential to ensure their applicability in practical scenarios. Traditional benchmark-based evaluation methods often rely on fixed reference answers, limiting their ability to capture important qualitative aspects of generated responses. To address these shortcomings, we propose an integrated evaluation framework called \textit{self-refining descriptive evaluation with expert-driven diagnostics}, SPEED, which utilizes specialized functional experts to perform comprehensive, descriptive analyses of model outputs. Unlike conventional approaches, SPEED actively incorporates expert feedback across multiple dimensions, including hallucination detection, toxicity assessment, and lexical-contextual appropriateness. Experimental results demonstrate that SPEED achieves robust and consistent evaluation performance across diverse domains and datasets. Additionally, by employing relatively compact expert models, SPEED demonstrates superior resource efficiency compared to larger-scale evaluators. These findings illustrate that SPEED significantly enhances fairness and interpretability in LLM evaluations, offering a promising alternative to existing evaluation methodologies.
comment: 16pages
♻ ☆ Resolving UnderEdit & OverEdit with Iterative & Neighbor-Assisted Model Editing EMNLP 2025
Large Language Models (LLMs) are widely deployed in downstream tasks, but keeping their knowledge up-to-date via retraining or fine-tuning is often computationally expensive. Model editing provides a more efficient alternative by updating a targeted subset of parameters, which often follows the locate-and-edit paradigm. Despite this efficiency, existing methods are limited: edits may fail to inject knowledge (UnderEdit) or unintentionally disrupt unrelated neighboring knowledge (OverEdit). To address these challenges, we propose two complementary methods: iterative model editing, which applies successive edits to mitigate UnderEdit, and neighbor-assisted model editing, which incorporates neighboring knowledge during editing to reduce OverEdit. Our extensive experiments show that these techniques improve editing performance across multiple LLMs, algorithms, and benchmarks, reducing UnderEdit by up to 38 percentage points and OverEdit by up to 6, while remaining broadly applicable to any locate-and-edit method. We release our code at https://github.com/bhimanbaghel/ResolveUnderOverEdit.
comment: Accepted at EMNLP 2025 as Findings
♻ ☆ Exploring and Controlling Diversity in LLM-Agent Conversation EMNLP 2025
Controlling diversity in LLM-agent simulations is essential for balancing stability in structured tasks with variability in open-ended interactions. However, we observe that dialogue diversity tends to degrade over long-term simulations. To explore the role of prompt design in this phenomenon, we modularized the utterance generation prompt and found that reducing contextual information leads to more diverse outputs. Based on this insight, we propose Adaptive Prompt Pruning (APP), a novel method that allows users to control diversity via a single parameter, lambda. APP dynamically prunes prompt segments based on attention scores and is compatible with existing diversity control methods. We demonstrate that APP effectively modulates diversity through extensive experiments and propose a method to balance the control trade-offs. Our analysis reveals that all prompt components impose constraints on diversity, with the Memory being the most influential. Additionally, high-attention contents consistently suppress output diversity.
comment: EMNLP 2025 Findings
♻ ☆ Diffusion Model-based Parameter Estimation in Dynamic Power Systems
Parameter estimation, which represents a classical inverse problem, is often ill-posed as different parameter combinations can yield identical outputs. This non-uniqueness poses a critical barrier to accurate and unique identification. This work introduces a novel parameter estimation framework to address such limits: the Joint Conditional Diffusion Model-based Inverse Problem Solver (JCDI). By leveraging the stochasticity of diffusion models, JCDI produces possible solutions revealing underlying distributions. Joint conditioning on multiple observations further narrows the posterior distributions of non-identifiable parameters. For the challenging task in dynamic power systems: composite load model parameterization, JCDI achieves a 58.6% reduction in parameter estimation error compared to the single-condition model. It also accurately replicates system's dynamic responses under various electrical faults, with root mean square errors below 4*10^(-3), outperforming existing deep-reinforcement-learning and supervised learning approaches. Given its data-driven nature, JCDI provides a universal framework for parameter estimation while effectively mitigating the non-uniqueness challenge across scientific domains.
EFRame: Deeper Reasoning via Exploration-Filter-Replay Reinforcement Learning Framework
Recent advances in reinforcement learning (RL) have significantly enhanced the reasoning capabilities of large language models (LLMs). Group Relative Policy Optimization (GRPO), a lightweight variant of Proximal Policy Optimization (PPO), improves efficiency but suffers from limited exploration and training instability, limiting its effectiveness on complex reasoning tasks. To address these challenges, we introduce EFRame, an Exploration-Filter-Replay framework that augments GRPO across three dimensions: additional rollouts enable deeper and more targeted exploration, online filtering removes low-quality samples to stabilize gradients and accelerate training, and experience replay amplifies rare yet informative trajectories for stable convergence. This unified framework establishes a principled training cycle that balances exploration, efficiency, and stability. Experiments on diverse reasoning benchmarks demonstrate that EFRame achieves consistent gains, including a 37.9\% relative improvement on Geometry3K over GRPO. EFRame further supports fine-grained sample categorization and precise entropy control, highlighting it as a robust solution for advancing deeper reasoning in LLMs. Our code is available at https://github.com/597358816/EFRame.
♻ ☆ Code Like Humans: A Multi-Agent Solution for Medical Coding EMNLP
In medical coding, experts map unstructured clinical notes to alphanumeric codes for diagnoses and procedures. We introduce Code Like Humans: a new agentic framework for medical coding with large language models. It implements official coding guidelines for human experts, and it is the first solution that can support the full ICD-10 coding system (+70K labels). It achieves the best performance to date on rare diagnosis codes (fine-tuned discriminative classifiers retain an advantage for high-frequency codes, to which they are limited). Towards future work, we also contribute an analysis of system performance and identify its `blind spots' (codes that are systematically undercoded).
comment: EMNLP Findings 2025
♻ ☆ Learning Human-Perceived Fakeness in AI-Generated Videos via Multimodal LLMs
Can humans identify AI-generated (fake) videos and provide grounded reasons? While video generation models have advanced rapidly, a critical dimension -- whether humans can detect deepfake traces within a generated video, i.e., spatiotemporal grounded visual artifacts that reveal a video as machine generated -- has been largely overlooked. We introduce DeeptraceReward, the first fine-grained, spatially- and temporally- aware benchmark that annotates human-perceived fake traces for video generation reward. The dataset comprises 4.3K detailed annotations across 3.3K high-quality generated videos. Each annotation provides a natural-language explanation, pinpoints a bounding-box region containing the perceived trace, and marks precise onset and offset timestamps. We consolidate these annotations into 9 major categories of deepfake traces that lead humans to identify a video as AI-generated, and train multimodal language models (LMs) as reward models to mimic human judgments and localizations. On DeeptraceReward, our 7B reward model outperforms GPT-5 by 34.7% on average across fake clue identification, grounding, and explanation. Interestingly, we observe a consistent difficulty gradient: binary fake v.s. real classification is substantially easier than fine-grained deepfake trace detection; within the latter, performance degrades from natural language explanations (easiest), to spatial grounding, to temporal labeling (hardest). By foregrounding human-perceived deepfake traces, DeeptraceReward provides a rigorous testbed and training signal for socially aware and trustworthy video generation.
comment: Project Page: https://deeptracereward.github.io/
♻ ☆ DeepSearch: Overcome the Bottleneck of Reinforcement Learning with Verifiable Rewards via Monte Carlo Tree Search
Although RLVR has become an essential component for developing advanced reasoning skills in LLMs, contemporary studies have documented training plateaus that emerge following thousands of optimization steps, demonstrating notable decreases in performance gains despite increased computational investment. This limitation stems from the sparse exploration patterns inherent in current RLVR practices, where models rely on limited rollouts that often miss critical reasoning paths and fail to provide systematic coverage of the solution space. We present DeepSearch, a framework that integrates Monte Carlo Tree Search directly into RLVR training. In contrast to existing methods that rely on tree search only at inference, DeepSearch embeds structured search into the training loop, enabling systematic exploration and fine-grained credit assignment across reasoning steps. Through training-time exploration, DeepSearch addresses the fundamental bottleneck of insufficient exploration, which leads to diminishing performance improvements over prolonged training steps. Our contributions include: (1) a global frontier selection strategy that prioritizes promising nodes across the search tree, (2) selection with entropy-based guidance that identifies confident paths for supervision, and (3) adaptive replay buffer training with solution caching for efficiency. Experiments on mathematical reasoning benchmarks show that DeepSearch achieves 62.95% average accuracy and establishes a new state-of-the-art for 1.5B reasoning models - using 5.7x fewer GPU hours than extended training approaches. These results highlight the importance of strategic exploration over brute-force scaling and demonstrate the promise of algorithmic innovation for advancing RLVR methodologies. DeepSearch establishes a new direction for scaling reasoning capabilities through systematic search rather than prolonged computation.
♻ ☆ Training-free LLM Verification via Recycling Few-shot Examples
Although LLMs have achieved remarkable performance, the inherent stochasticity of their reasoning process and varying conclusions present significant challenges. Majority voting or Best-of-N with external verification models has been explored to find the most promising solution among multiple LLM outputs. However, these approaches have certain limitations, such as limited applicability or the cost of an additional training step. To address this problem, we propose a novel and effective framework that Recycles Few-shot examples to verify LLM outputs (ReFeri). Our key idea is to additionally utilize the given few-shot examples to evaluate the candidate outputs of the target query, not only using them to generate outputs as the conventional few-shot prompting setup. Specifically, ReFeri evaluates the generated outputs by combining two different scores, designed motivated from Bayes' rule, and subsequently selects the candidate that is both confidently determined and contextually coherent through a few additional LLM inferences. Experiments with three different LLMs and across seven diverse tasks demonstrate that our framework significantly improves the accuracy of LLMs-achieving an average gain of 4.8%-through effective response selection, without additional training.
♻ ☆ Dynamic-TreeRPO: Breaking the Independent Trajectory Bottleneck with Structured Sampling
The integration of Reinforcement Learning (RL) into flow matching models for text-to-image (T2I) generation has driven substantial advances in generation quality. However, these gains often come at the cost of exhaustive exploration and inefficient sampling strategies due to slight variation in the sampling group. Building on this insight, we propose Dynamic-TreeRPO, which implements the sliding-window sampling strategy as a tree-structured search with dynamic noise intensities along depth. We perform GRPO-guided optimization and constrained Stochastic Differential Equation (SDE) sampling within this tree structure. By sharing prefix paths of the tree, our design effectively amortizes the computational overhead of trajectory search. With well-designed noise intensities for each tree layer, Dynamic-TreeRPO can enhance the variation of exploration without any extra computational cost. Furthermore, we seamlessly integrate Supervised Fine-Tuning (SFT) and RL paradigm within Dynamic-TreeRPO to construct our proposed LayerTuning-RL, reformulating the loss function of SFT as a dynamically weighted Progress Reward Model (PRM) rather than a separate pretraining method. By associating this weighted PRM with dynamic-adaptive clipping bounds, the disruption of exploration process in Dynamic-TreeRPO is avoided. Benefiting from the tree-structured sampling and the LayerTuning-RL paradigm, our model dynamically explores a diverse search space along effective directions. Compared to existing baselines, our approach demonstrates significant superiority in terms of semantic consistency, visual fidelity, and human preference alignment on established benchmarks, including HPS-v2.1, PickScore, and ImageReward. In particular, our model outperforms SoTA by $4.9\%$, $5.91\%$, and $8.66\%$ on those benchmarks, respectively, while improving the training efficiency by nearly $50\%$.
comment: Fig.3 updated
♻ ☆ ATLAS: Autoformalizing Theorems through Lifting, Augmentation, and Synthesis of Data NeurIPS 2025
Autoformalization, the automatic translation of mathematical content from natural language into machine-verifiable formal languages, has seen significant progress driven by advances in large language models (LLMs). Nonetheless, a primary barrier to further improvements is the limited availability of parallel corpora that map informal mathematical text to its formal counterpart. To address this limitation, we propose ATLAS (Autoformalizing Theorems through Lifting, Augmentation, and Synthesis of Data), a novel data generation framework designed to produce large-scale, high-quality parallel corpora of theorem statements. Distinct from prior approaches, ATLAS begins with a concept repository, accelerates the improvement of the student model through expert iteration combined with knowledge distillation, and introduces two novel augmentation strategies that exploit the structural characteristics of formal languages. Running the proposed ATLAS framework for 10 iterations, we construct an undergraduate-level dataset of 117k theorem statements and develop the ATLAS Translator by fine-tuning Llama3.1-8B-Instruct with LoRA. This model establishes a new state of the art, demonstrating statistically significant improvements over both the Herald Translator and the Kimina-Autoformalizer across all benchmarks (p<0.05, two-sided t-test). Furthermore, we demonstrate that the full-parameter fine-tuning of a stronger base model on the ATLAS dataset leads to superior performance. The datasets, model, and code are available at https://github.com/XiaoyangLiu-sjtu/ATLAS.
comment: Accepted to NeurIPS 2025
♻ ☆ On Task Vectors and Gradients
Task arithmetic has emerged as a simple yet powerful technique for model merging, enabling the combination of multiple finetuned models into one. Despite its empirical success, a clear theoretical explanation of why and when it works is lacking. This paper provides a rigorous theoretical foundation for task arithmetic by establishing a connection between task vectors and gradients of the task losses. We show that under standard gradient descent, a task vector generated from one epoch of finetuning is exactly equivalent to the negative gradient of the loss, scaled by the learning rate. For the practical multi-epoch setting, we prove that this equivalence holds approximately, with a second-order error term that we explicitly bound for feed-forward networks. Our empirical analysis across seven vision benchmarks corroborates our theory, demonstrating that the first-epoch gradient dominates the finetuning trajectory in both norm and direction. A key implication is that merging models finetuned for only a single epoch often yields performance comparable to merging fully converged models. These findings reframe task arithmetic as a form of approximate multitask learning, providing a clear rationale for its effectiveness and highlighting the critical role of early training dynamics in model merging.
comment: 9 pages of main paper, 5 figures
♻ ☆ Latent Collective Preference Optimization: A General Framework for Robust LLM Alignment
Standard human preference-based alignment methods, such as Reinforcement Learning from Human Feedback (RLHF), are a cornerstone technology for aligning Large Language Models (LLMs) with human values. However, these methods are all underpinned by a critical, yet flawed assumption: human preferences are homogeneous (representing a single, unified preference) and the collected data is noiseless (free from error). In reality, neither is true since human preference is pluralistic and annotators can make mistakes. This creates a discrepancy between the recorded data and the ground-truth preferences, which can misguide the model and degrade its performance. To address this challenge, we introduce Latent Collective Preference Optimization (LCPO). LCPO leverages an Expectation-Maximization (EM) algorithm to learn the latent collective consensus from noisy data. It operates by inferring the correctness of each preference label and using this probability as an adaptive weight to re-calibrate each data point's contribution to the training loss, thereby mitigating noise. We generalize this approach by establishing a theoretical link between arbitrary preference losses and their corresponding probabilistic models, elevating LCPO from a specific algorithm to a general framework for robust preference alignment. Theoretically, we prove that under the condition of a perfectly calibrated model, LCPO is guaranteed to converge to the true noise level of the dataset. Our experiments demonstrate LCPO's effectiveness as a general framework, consistently enhancing four state-of-the-art alignment algorithms (DPO, IPO, SimPO, and CPO). When applied to Mistral and Llama 3 models, the LCPO-enhanced methods achieve substantial win rate gains on AlpacaEval 2 and Arena-Hard, with improvements of up to 7.0% on both benchmarks.
♻ ☆ R&D-Agent: An LLM-Agent Framework Towards Autonomous Data Science
Recent advances in AI and ML have transformed data science, yet increasing complexity and expertise requirements continue to hinder progress. Although crowd-sourcing platforms alleviate some challenges, high-level machine learning engineering (MLE) tasks remain labor-intensive and iterative. We introduce R&D-Agent, a comprehensive, decoupled, and extensible framework that formalizes the MLE process. R&D-Agent defines the MLE workflow into two phases and six components, turning agent design for MLE from ad-hoc craftsmanship into a principled, testable process. Although several existing agents report promising gains on their chosen components, they can mostly be summarized as a partial optimization from our framework's simple baseline. Inspired by human experts, we designed efficient and effective agents within this framework that achieve state-of-the-art performance. Evaluated on MLE-Bench, the agent built on R&D-Agent ranks as the top-performing machine learning engineering agent, achieving 35.1% any medal rate, demonstrating the ability of the framework to speed up innovation and improve accuracy across a wide range of data science applications. We have open-sourced R&D-Agent on GitHub: https://github.com/microsoft/RD-Agent.
comment: 33 pages
♻ ☆ MMGeoLM: Hard Negative Contrastive Learning for Fine-Grained Geometric Understanding in Large Multimodal Models
Large Multimodal Models (LMMs) typically build on ViTs (e.g., CLIP), yet their training with simple random in-batch negatives limits the ability to capture fine-grained visual differences, particularly in geometric scenarios. To address this challenge, we propose a novel hard negative contrastive learning framework for the vision encoder, which combines image-based contrastive learning using generation-based hard negatives created by perturbing diagram generation code, and text-based contrastive learning using rule-based negatives derived from modified geometric descriptions and retrieval-based negatives selected based on caption similarity. We train a vision encoder (CLIP) using our hard negative training method, namely MMCLIP (Multimodal Math CLIP), and subsequently train an LMM for geometric problem-solving. Experiments show that our trained model, MMGeoLM, significantly outperforms other open-source models on three geometric reasoning benchmarks. Even with a size of 7B, it can rival powerful closed-source models like GPT-4o. We further conduct ablation studies to analyze three key factors: hard negative types, the efficiency of image-based negatives, and training configurations. These analyses yield important insights into optimizing the training pipeline of vision encoder for fine-grained geometric reasoning tasks. https://github.com/THU-KEG/MMGeoLM.
♻ ☆ ScheduleMe: Multi-Agent Calendar Assistant
Recent advancements in LLMs have contributed to the rise of advanced conversational assistants that can assist with user needs through natural language conversation. This paper presents a ScheduleMe, a multi-agent calendar assistant for users to manage google calendar events in natural language. The system uses a graph-structured coordination mechanism where a central supervisory agent supervises specialized task agents, allowing modularity, conflicts resolution, and context-aware interactions to resolve ambiguities and evaluate user commands. This approach sets an example of how structured reasoning and agent cooperation might convince operators to increase the usability and flexibility of personal calendar assistant tools.
♻ ☆ DC-Gen: Post-Training Diffusion Acceleration with Deeply Compressed Latent Space
Existing text-to-image diffusion models excel at generating high-quality images, but face significant efficiency challenges when scaled to high resolutions, like 4K image generation. While previous research accelerates diffusion models in various aspects, it seldom handles the inherent redundancy within the latent space. To bridge this gap, this paper introduces DC-Gen, a general framework that accelerates text-to-image diffusion models by leveraging a deeply compressed latent space. Rather than a costly training-from-scratch approach, DC-Gen uses an efficient post-training pipeline to preserve the quality of the base model. A key challenge in this paradigm is the representation gap between the base model's latent space and a deeply compressed latent space, which can lead to instability during direct fine-tuning. To overcome this, DC-Gen first bridges the representation gap with a lightweight embedding alignment training. Once the latent embeddings are aligned, only a small amount of LoRA fine-tuning is needed to unlock the base model's inherent generation quality. We verify DC-Gen's effectiveness on SANA and FLUX.1-Krea. The resulting DC-Gen-SANA and DC-Gen-FLUX models achieve quality comparable to their base models but with a significant speedup. Specifically, DC-Gen-FLUX reduces the latency of 4K image generation by 53x on the NVIDIA H100 GPU. When combined with NVFP4 SVDQuant, DC-Gen-FLUX generates a 4K image in just 3.5 seconds on a single NVIDIA 5090 GPU, achieving a total latency reduction of 138x compared to the base FLUX.1-Krea model. Code: https://github.com/dc-ai-projects/DC-Gen.
comment: Tech Report. The first three authors contributed equally to this work
♻ ☆ LoRA Users Beware: A Few Spurious Tokens Can Manipulate Your Finetuned Model
Large Language Models (LLMs) are commonly finetuned for a variety of use cases and domains. A common approach is to leverage Low-Rank Adaptation (LoRA) -- known to provide strong performance at low resource costs. In this study, we demonstrate that LoRA actually opens the door to short-cut vulnerabilities -- and the more resource efficient is the LoRA setup, the more vulnerable will be the finetuned model to aggressive attacks. To measure that vulnerability, we introduce Seamless Spurious Token Injection (SSTI), where we find that LoRA exclusively focuses on even just a single token that is spuriously correlated with downstream labels. In short, injection of that spurious token during finetuning ensure that the model's prediction at test-time can be manipulated on-demand. We conducted experiments across model families and datasets to evaluate the impact of SSTI during LoRA finetuning while providing possible mitigations. Our experiments conclude that none of the existing checkers and preprocessors can sanitize a dataset raising new concerns for data quality and AI safety.
comment: 46 pages, 17 figures, 26 tables. Submitted for publication. for associated blog post, see https://pradyut3501.github.io/lora-spur-corr/
♻ ☆ Fair CCA for Fair Representation Learning: An ADNI Study
Canonical correlation analysis (CCA) is a technique for finding correlations between different data modalities and learning low-dimensional representations. As fairness becomes crucial in machine learning, fair CCA has gained attention. However, previous approaches often overlook the impact on downstream classification tasks, limiting applicability. We propose a novel fair CCA method for fair representation learning, ensuring the projected features are independent of sensitive attributes, thus enhancing fairness without compromising accuracy. We validate our method on synthetic data and real-world data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), demonstrating its ability to maintain high correlation analysis performance while improving fairness in classification tasks. Our work enables fair machine learning in neuroimaging studies where unbiased analysis is essential. Code is available in https://github.com/ZhanliangAaronWang/FR-CCA-ADNI.
♻ ☆ Stepwise Guided Policy Optimization: Coloring your Incorrect Reasoning in GRPO
Reinforcement learning (RL) has proven effective in strengthening the reasoning capabilities of large language models (LLMs). A widely adopted method, Group Relative Policy Optimization (GRPO), has shown strong empirical results in training DeepSeek-R1. However, GRPO fails to update the policy when all responses within a group are incorrect (i.e., \emph{all-negative-sample} groups). This limitation underscores a key gap between artificial and human intelligence: unlike humans, who can learn from mistakes, GRPO discards these signals. Our first contribution is to introduce a simple framework that mitigates the all-negative-sample issue by incorporating response diversity within groups using a \textit{step-wise} judge model, which can be either directly trained or adapted from existing LLMs. We prove that this diversification can accelerate GRPO's learning dynamics in a simplified setting. We also empirically validate the proposed stepwise guided policy optimization (SGPO) method, demonstrating consistent gains across model sizes (7B, 14B, 32B) in offline and online training on 9 benchmarks, including base and distilled variants. Our results highlight two advantages: (i) SGPO surpasses GRPO, especially in the early and mid-training stages where all-negative-sample groups are prevalent; and (ii) SGPO does not require judge models to generate correct answers, differentiating it from knowledge distillation methods.
comment: 42 pages; correct some typos
♻ ☆ NUMINA: A Natural Understanding Benchmark for Multi-dimensional Intelligence and Numerical Reasoning Abilities
Recent advancements in 2D multimodal large language models (MLLMs) have significantly improved performance in vision-language tasks. However, extending these capabilities to 3D environments remains a distinct challenge due to the complexity of spatial reasoning. Nevertheless, existing 3D benchmarks often lack fine-grained numerical reasoning task annotations, limiting MLLMs' ability to perform precise spatial measurements and complex numerical reasoning. To address this gap, we introduce NUMINA, the first Natural Understanding benchmark for Multi-dimensional Intelligence and Numerical reasoning Abilities to enhance multimodal indoor perceptual understanding. NUMINA features multi-scale annotations and various question-answer pairs, generated using NUMINA-Flow, an automated annotation pipeline that integrates LLM rewriting and rule-based self-verification. We evaluate the performance of various state-of-the-art LLMs on NUMINA following the Chat-Scene framework, demonstrating that current LLMs struggle with multimodal numerical reasoning, particularly in performing precise computations such as distance and volume estimation, highlighting the need for further advancements in 3D models. The dataset and source codes can be obtained from https://github.com/fengshun124/NUMINA.
♻ ☆ Economic Competition, EU Regulation, and Executive Orders: A Framework for Discussing AI Policy Implications in CS Courses
The growth and permeation of artificial intelligence (AI) technologies across society has drawn focus to the ways in which the responsible use of these technologies can be facilitated through AI governance. Increasingly, large companies and governments alike have begun to articulate and, in some cases, enforce governance preferences through AI policy. Yet existing literature documents an unwieldy heterogeneity in ethical principles for AI governance, while our own prior research finds that discussions of the implications of AI policy are not yet present in the computer science (CS) curriculum. In this context, overlapping jurisdictions and even contradictory policy preferences across private companies, local, national, and multinational governments create a complex landscape for AI policy which, we argue, will require AI developers able adapt to an evolving regulatory environment. Preparing computing students for the new challenges of an AI-dominated technology industry is therefore a key priority for the CS curriculum. In this discussion paper, we seek to articulate a framework for integrating discussions on the nascent AI policy landscape into computer science courses. We begin by summarizing recent AI policy efforts in the United States and European Union. Subsequently, we propose guiding questions to frame class discussions around AI policy in technical and non-technical (e.g., ethics) CS courses. Throughout, we emphasize the connection between normative policy demands and still-open technical challenges relating to their implementation and enforcement through code and governance structures. This paper therefore represents a valuable contribution towards bridging research and discussions across the areas of AI policy and CS education, underlining the need to prepare AI engineers to interact with and adapt to societal policy preferences.
♻ ☆ SafeSearch: Automated Red-Teaming for the Safety of LLM-Based Search Agents
Search agents connect LLMs to the Internet, enabling access to broader and more up-to-date information. However, unreliable search results may also pose safety threats to end users, establishing a new threat surface. In this work, we conduct two in-the-wild experiments to demonstrate both the prevalence of low-quality search results and their potential to misguide agent behaviors. To counter this threat, we introduce an automated red-teaming framework that is systematic, scalable, and cost-efficient, enabling lightweight and harmless safety assessments of search agents. Building on this framework, we construct the SafeSearch benchmark, which includes 300 test cases covering five categories of risks (e.g., misinformation and indirect prompt injection). Using this benchmark, we evaluate three representative search agent scaffolds, covering search workflow, tool-calling, and deep research, across 7 proprietary and 8 open-source backend LLMs. Our results reveal substantial vulnerabilities of LLM-based search agents: when exposed to unreliable websites, the highest ASR reached 90.5% for GPT-4.1-mini under a search workflow setting. Moreover, our analysis highlights the limited effectiveness of common defense practices, such as reminder prompting. This emphasizes the value of our framework in promoting transparency for safer agent development. Our codebase and test cases are publicly available: https://github.com/jianshuod/SafeSearch.
comment: Preprint
♻ ☆ MLLM-CL: Continual Learning for Multimodal Large Language Models
Recent Multimodal Large Language Models (MLLMs) excel in vision-language understanding but face challenges in adapting to dynamic real-world scenarios that require continuous integration of new knowledge and skills. While continual learning (CL) offers a potential solution, existing benchmarks and methods suffer from critical limitations. In this paper, we introduce MLLM-CL, a novel benchmark encompassing domain and ability continual learning, where the former focuses on independently and identically distributed (IID) evaluation across evolving mainstream domains, whereas the latter evaluates on non-IID scenarios with new model abilities. Methodologically, we propose preventing catastrophic interference through parameter isolation and an MLLM-based routing mechanism. Extensive experiments demonstrate that our approach can integrate domain-specific knowledge and functional abilities with minimal forgetting, significantly outperforming existing methods. Our benchmark and code are available at https://github.com/bjzhb666/MLLM-CL.
♻ ☆ PCoreSet: Effective Active Learning through Knowledge Distillation from Vision-Language Models
Knowledge distillation (KD) is a widely used framework for training compact, task-specific models by transferring the knowledge from teacher models. However, its application to active learning (AL), which aims to minimize annotation costs through iterative sample selection, remains underexplored. This gap stems from the fact that KD typically assumes access to sufficient labeled data, whereas AL operates in data-scarce scenarios where task-specific teacher models are often unavailable. In this paper, we first introduce ActiveKD, a framework that integrates AL with KD by leveraging the zero- and few-shot capabilities of large vision-language models (VLMs). A key aspect of ActiveKD is the structured prediction bias of VLMs-i.e., their predictions form clusters in the probability space. We regard this structure as an inductive bias of the teacher model, capturing generalizable output patterns beneficial to student learning. To exploit this bias, we propose Probabilistic CoreSet (PCoreSet), a selection strategy that maximizes coverage in the probability space rather than the feature space. PCoreSet strategically selects probabilistically diverse unlabeled samples, facilitating more efficient transfer of teacher knowledge under limited annotation budgets. Extensive evaluations on 11 datasets show that ActiveKD consistently improves performance across selection methods (e.g., +29.07% on ImageNet, averaged over methods). Under ActiveKD, PCoreSet ranks first in 64/73 settings (approximately 87.7%) across 5 student and 3 teacher networks, always achieving the best performance except for first 2 AL rounds. Our code is available at https://github.com/erjui/PCoreSet.
comment: 39 pages, 25 figures, preprint
♻ ☆ Whose Journey Matters? Investigating Identity Biases in Large Language Models (LLMs) for Travel Planning Assistance
As large language models (LLMs) become increasingly integral to the hospitality and tourism industry, concerns about their fairness in serving diverse identity groups persist. Grounded in social identity theory and sociotechnical systems theory, this study examines ethnic and gender biases in travel recommendations generated by LLMs. Using fairness probing, we analyze outputs from three leading open-source LLMs. The results show that test accuracy for both ethnicity and gender classifiers exceed random chance. Analysis of the most influential features reveals the presence of stereotype bias in LLM-generated recommendations. We also found hallucinations among these features, occurring more frequently in recommendations for minority groups. These findings indicate that LLMs exhibit ethnic and gender bias when functioning as travel planning assistants. This study underscores the need for bias mitigation strategies to improve the inclusivity and reliability of generative AI-driven travel planning assistance.
♻ ☆ NAIPv2: Debiased Pairwise Learning for Efficient Paper Quality Estimation
The ability to estimate the quality of scientific papers is central to how both humans and AI systems will advance scientific knowledge in the future. However, existing LLM-based estimation methods suffer from high inference cost, whereas the faster direct score regression approach is limited by scale inconsistencies. We present NAIPv2, a debiased and efficient framework for paper quality estimation. NAIPv2 employs pairwise learning within domain-year groups to reduce inconsistencies in reviewer ratings and introduces the Review Tendency Signal (RTS) as a probabilistic integration of reviewer scores and confidences. To support training and evaluation, we further construct NAIDv2, a large-scale dataset of 24,276 ICLR submissions enriched with metadata and detailed structured content. Trained on pairwise comparisons but enabling efficient pointwise prediction at deployment, NAIPv2 achieves state-of-the-art performance (78.2% AUC, 0.432 Spearman), while maintaining scalable, linear-time efficiency at inference. Notably, on unseen NeurIPS submissions, it further demonstrates strong generalization, with predicted scores increasing consistently across decision categories from Rejected to Oral. These findings establish NAIPv2 as a debiased and scalable framework for automated paper quality estimation, marking a step toward future scientific intelligence systems. Code and dataset are released at sway.cloud.microsoft/Pr42npP80MfPhvj8.
comment: NAIPv2 complements our earlier work NAIPv1 (arXiv:2408.03934). Whereas NAIPv1 addressed citation count-based impact prediction, NAIPv2 estimates research quality using peer review data
♻ ☆ Hot PATE: Private Aggregation of Distributions for Diverse Task
The Private Aggregation of Teacher Ensembles (PATE) framework enables privacy-preserving machine learning by aggregating responses from disjoint subsets of sensitive data. Adaptations of PATE to tasks with inherent output diversity such as text generation, where the desired output is a sample from a distribution, face a core tension: as diversity increases, samples from different teachers are less likely to agree, but lower agreement results in reduced utility for the same privacy requirements. Yet suppressing diversity to artificially increase agreement is undesirable, as it distorts the output of the underlying model, and thus reduces output quality. We propose Hot PATE, a variant of PATE designed for diverse generative settings. We formalize the notion of a diversity-preserving ensemble sampler and introduce an efficient sampler that provably transfers diversity without incurring additional privacy cost. Hot PATE requires only API access to proprietary models and can be used as a drop-in replacement for existing Cold PATE samplers. Our empirical evaluations corroborate and quantify the benefits, showing significant improvements in the privacy utility trade-off on evaluated in-context learning tasks, both in preserving diversity and in returning relevant responses.
♻ ☆ A Physics-Inspired Optimizer: Velocity Regularized Adam
We introduce Velocity-Regularized Adam (VRAdam), a physics-inspired optimizer for training deep neural networks that draws on ideas from quartic terms for kinetic energy with its stabilizing effects on various system dynamics. Previous algorithms, including the ubiquitous Adam, operate at the so-called adaptive edge of stability regime during training, leading to rapid oscillations and slowed convergence of loss. However, VRAdam adds a higher order penalty on the learning rate based on the velocity such that the algorithm automatically slows down whenever weight updates become large. In practice, we observe that the effective dynamic learning rate shrinks in high-velocity regimes, and damping oscillations. By combining this velocity-based regularizer for global damping with per-parameter scaling of Adam, we create a powerful hybrid optimizer. For this optimizer, we provide rigorous theoretical analysis of operation at the edge of stability from a physical and control perspective for the momentum. Furthermore, we derive convergence bounds with the rate $\mathcal{O}(\ln(N)/\sqrt{N})$ for a stochastic non convex objective under mild assumptions. We demonstrate that VRAdam exceeds the performance against standard optimizers including AdamW. We benchmark various tasks such as image classification, language modeling, and generative modeling using diverse architectures and training methodologies including Convolutional Neural Networks (CNNs), Transformers, and GFlowNets.
comment: L. Schorling and P. Vaidhyanathan contributed equally to this work. 20 pages, 10 figures
♻ ☆ A Backdoor-based Explainable AI Benchmark for High Fidelity Evaluation of Attributions
Attribution methods compute importance scores for input features to explain model predictions. However, assessing the faithfulness of these methods remains challenging due to the absence of attribution ground truth to model predictions. In this work, we first identify a set of fidelity criteria that reliable benchmarks for attribution methods are expected to fulfill, thereby facilitating a systematic assessment of attribution benchmarks. Next, we introduce a Backdoor-based eXplainable AI benchmark (BackX) that adheres to the desired fidelity criteria. We theoretically establish the superiority of our approach over the existing benchmarks for well-founded attribution evaluation. With extensive analysis, we further establish a standardized evaluation setup that mitigates confounding factors such as post-processing techniques and explained predictions, thereby ensuring a fair and consistent benchmarking. This setup is ultimately employed for a comprehensive comparison of existing methods using BackX. Finally, our analysis also offers insights into defending against neural Trojans by utilizing the attributions.
♻ ☆ Breaking Down and Building Up: Mixture of Skill-Based Vision-and-Language Navigation Agents
Vision-and-Language Navigation (VLN) poses significant challenges for agents to interpret natural language instructions and navigate complex 3D environments. While recent progress has been driven by large-scale pre-training and data augmentation, current methods still struggle to generalize to unseen scenarios, particularly when complex spatial and temporal reasoning is required. In this work, we propose SkillNav, a modular framework that introduces structured, skill-based reasoning into Transformer-based VLN agents. Our method decomposes navigation into a set of interpretable atomic skills (e.g., Vertical Movement, Area and Region Identification, Stop and Pause), each handled by a specialized agent. To support targeted skill training without manual data annotation, we construct a synthetic dataset pipeline that generates diverse, linguistically natural, skill-specific instruction-trajectory pairs. We then introduce a novel training-free Vision-Language Model (VLM)-based router, which dynamically selects the most suitable agent at each time step by aligning sub-goals with visual observations and historical actions. SkillNav obtains competitive results on commonly used benchmarks and establishes state-of-the-art generalization to the GSA-R2R, a benchmark with novel instruction styles and unseen environments.
♻ ☆ Discerning What Matters: A Multi-Dimensional Assessment of Moral Competence in LLMs
Moral competence is the ability to act in accordance with moral principles. As large language models (LLMs) are increasingly deployed in situations demanding moral competence, there is increasing interest in evaluating this ability empirically. We review existing literature and identify three significant shortcoming: (i) Over-reliance on prepackaged moral scenarios with explicitly highlighted moral features; (ii) Focus on verdict prediction rather than moral reasoning; and (iii) Inadequate testing of models' (in)ability to recognize when additional information is needed. Grounded in philosophical research on moral skill, we then introduce a novel method for assessing moral competence in LLMs. Our approach moves beyond simple verdict comparisons to evaluate five dimensions of moral competence: identifying morally relevant features, weighting their importance, assigning moral reasons to these features, synthesizing coherent moral judgments, and recognizing information gaps. We conduct two experiments comparing six leading LLMs against non-expert humans and professional philosophers. In our first experiment using ethical vignettes standard to existing work, LLMs generally outperformed non-expert humans across multiple dimensions of moral reasoning. However, our second experiment, featuring novel scenarios designed to test moral sensitivity by embedding relevant features among irrelevant details, revealed a striking reversal: several LLMs performed significantly worse than humans. Our findings suggest that current evaluations may substantially overestimate LLMs' moral reasoning capabilities by eliminating the task of discerning moral relevance from noisy information, which we take to be a prerequisite for genuine moral skill. This work provides a more nuanced framework for assessing AI moral competence and highlights important directions for improving moral competence in advanced AI systems.
♻ ☆ RADAR: Reasoning-Ability and Difficulty-Aware Routing for Reasoning LLMs
Reasoning language models have demonstrated remarkable performance on many challenging tasks in math, science, and coding. Choosing the right reasoning model for practical deployment involves a performance and cost tradeoff at two key levels: model size and reasoning budget, where larger models and higher reasoning budget lead to better performance but with increased cost and latency. In this work, we tackle this tradeoff from the angle of model configuration routing for different queries, and present RADAR (Reasoning-Ability and Difficulty-Aware Routing), a lightweight, interpretable, and scalable routing framework. Inspired by psychometrics, RADAR learns an item response model from model responses with different budgets to different queries, with interpretable parameters including query difficulties and model-budget abilities. RADAR then routes queries with higher difficulty to model-budget pairs with higher ability, and vice versa. We conduct extensive experiments on 8 widely used challenging reasoning benchmarks, demonstrating the superior performance of RADAR compared to state-of-the-art model routing methods. RADAR also exhibits query generalization capabilities, showing strong performance on out-of-distribution queries in all benchmarks. RADAR is also scalable and can efficiently integrate additional models by dynamically selecting a small set of evaluation queries to estimate their abilities.
♻ ☆ Mapping Overlaps in Benchmarks through Perplexity in the Wild
We develop signatures of capacity familiarity to characterize large language model (LLM) benchmarks and their meaningful overlaps. Benchmark signatures probe the capacity required for benchmark performance. We formally define them as a set of salient tokens drawn from in-the-wild, naturally authored corpora, where LLM token perplexity, reflecting more or less pre-training exposure, becomes highly predictive of LLM benchmark performance. Through a large-scale meta-evaluation, we extract benchmark signatures via stepwise forward selection with linear regressions across 32 LLMs and 88 benchmarks spanning diverse knowledge, coding, logic, instruction following, math, language, reasoning, and world modeling. Our analysis situates signatures in relation to both the semantic similarity of benchmark questions and the correlation of model performance. While performance overlaps are universally high and semantic overlaps remain confined to a narrow mid-range, benchmark signatures prove highly informative in capturing variation, overlap, and divergence. We observe overlap in knowledge and reasoning subtasks, whereas multilingual and cultural benchmarks exhibit less similarity, even compared to cross-task overlap. Notably, performance-level results are strongly influenced by benchmark-orthogonal factors such as question format, highlighting limitations in LLM generalization, the conflation of performance with ability, and issues inherent in current mainstream benchmark agreement studies. Benchmark signatures, however, remain robust to such effects. Ultimately, we identify cross-functional overlaps across logic, math, language, instruction following, and world modeling, with coding emerging as the least overlapping domain. Together, these findings provide mechanistic insights into benchmark validity and LLM sensitivities, and sketch the underlying landscape of interconnected LLM capabilities.
♻ ☆ AgentDAM: Privacy Leakage Evaluation for Autonomous Web Agents NeurIPS 2025
Autonomous AI agents that can follow instructions and perform complex multi-step tasks have tremendous potential to boost human productivity. However, to perform many of these tasks, the agents need access to personal information from their users, raising the question of whether they are capable of using it appropriately. In this work, we introduce a new benchmark AgentDAM that measures if AI web-navigation agents follow the privacy principle of ``data minimization''. For the purposes of our benchmark, data minimization means that the agent uses a piece of potentially sensitive information only if it is ``necessary'' to complete a particular task. Our benchmark simulates realistic web interaction scenarios end-to-end and is adaptable to all existing web navigation agents. We use AgentDAM to evaluate how well AI agents built on top of GPT-4, Llama-3 and Claude can limit processing of potentially private information, and show that they are prone to inadvertent use of unnecessary sensitive information. We also propose a prompting-based defense that reduces information leakage, and demonstrate that our end-to-end benchmarking provides a more realistic measure than probing LLMs about privacy. Our results highlight that further research is needed to develop AI agents that can prioritize data minimization at inference time.
comment: Accepted to NeurIPS 2025 (D&B track), project page: https://github.com/facebookresearch/ai-agent-privacy
♻ ☆ Discovering Software Parallelization Points Using Deep Neural Networks
This study proposes a deep learning-based approach for discovering loops in programming code according to their potential for parallelization. Two genetic algorithm-based code generators were developed to produce two distinct types of code: (i) independent loops, which are parallelizable, and (ii) ambiguous loops, whose dependencies are unclear, making them impossible to define if the loop is parallelizable or not. The generated code snippets were tokenized and preprocessed to ensure a robust dataset. Two deep learning models - a Deep Neural Network (DNN) and a Convolutional Neural Network (CNN) - were implemented to perform the classification. Based on 30 independent runs, a robust statistical analysis was employed to verify the expected performance of both models, DNN and CNN. The CNN showed a slightly higher mean performance, but the two models had a similar variability. Experiments with varying dataset sizes highlighted the importance of data diversity for model performance. These results demonstrate the feasibility of using deep learning to automate the identification of parallelizable structures in code, offering a promising tool for software optimization and performance improvement.
comment: 17 pages, 10 figures
♻ ☆ Knowledge-guided machine learning for county-level corn yield prediction under drought
Remote sensing (RS) technique, enabling the non-contact acquisition of extensive ground observations, is a valuable tool for crop yield predictions. Traditional process-based models struggle to incorporate large volumes of RS data, and most users lack understanding of crop growth mechanisms. In contrast, machine learning (ML) models are often criticized as "black boxes" due to their limited interpretability. To address these limitations, we utilized Knowledge-Guided Machine Learning (KGML), a framework that leverages the strengths of both process-based and ML models. Existing works have either overlooked the role of soil moisture in corn growth or did not embed this effect into their models. To bridge this gap, we developed the Knowledge-Guided Machine Learning with Soil Moisture (KGML-SM) framework, treating soil moisture as an intermediate variable in corn growth to emphasize its key role in plant development. Additionally, based on the prior knowledge that the model may overestimate under drought conditions, we designed a drought-aware loss function that penalized predicted yield in drought-affected areas. Our experiments showed that the KGML-SM model outperformed other traditional ML models. We explored the relationships between drought, soil moisture, and corn yield prediction by assessing the importance of different features within the model, and analyzing how soil moisture impacts predictions across different regions and time periods. Finally we provided interpretability for prediction errors to guide future model optimization.
♻ ☆ Hierarchical place recognition with omnidirectional images and curriculum learning-based loss functions
This paper addresses Visual Place Recognition (VPR), which is essential for the safe navigation of mobile robots. The solution we propose employs panoramic images and deep learning models, which are fine-tuned with triplet loss functions that integrate curriculum learning strategies. By progressively presenting more challenging examples during training, these loss functions enable the model to learn more discriminative and robust feature representations, overcoming the limitations of conventional contrastive loss functions. After training, VPR is tackled in two steps: coarse (room retrieval) and fine (position estimation). The results demonstrate that the curriculum-based triplet losses consistently outperform standard contrastive loss functions, particularly under challenging perceptual conditions. To thoroughly assess the robustness and generalization capabilities of the proposed method, it is evaluated in a variety of indoor and outdoor environments. The approach is tested against common challenges in real operation conditions, including severe illumination changes, the presence of dynamic visual effects such as noise and occlusions, and scenarios with limited training data. The results show that the proposed framework performs competitively in all these situations, achieving high recognition accuracy and demonstrating its potential as a reliable solution for real-world robotic applications. The code used in the experiments is available at https://github.com/MarcosAlfaro/TripletNetworksIndoorLocalization.git.
♻ ☆ Goal Recognition Design for General Behavioral Agents using Machine Learning
Goal recognition design (GRD) aims to make limited modifications to decision-making environments to make it easier to infer the goals of agents acting within those environments. Although various research efforts have been made in goal recognition design, existing approaches are computationally demanding and often assume that agents are (near-)optimal in their decision-making. To address these limitations, we leverage machine learning methods for goal recognition design that can both improve run-time efficiency and account for agents with general behavioral models. Following existing literature, we use worst-case distinctiveness (wcd) as a measure of the difficulty in inferring the goal of an agent in a decision-making environment. Our approach begins by training a machine learning model to predict the wcd for a given environment and the agent behavior model. We then propose a gradient-based optimization framework that accommodates various constraints to optimize decision-making environments for enhanced goal recognition. Through extensive simulations, we demonstrate that our approach outperforms existing methods in reducing wcd and enhances runtime efficiency. Moreover, our approach also adapts to settings in which existing approaches do not apply, such as those involving flexible budget constraints, more complex environments, and suboptimal agent behavior. Finally, we conducted human-subject experiments that demonstrate that our method creates environments that facilitate efficient goal recognition from human decision-makers.
♻ ☆ FANS -- Formal Answer Selection for Natural Language Math Reasoning Using Lean4
Large Language Models (LLMs) have displayed astonishing abilities in various tasks, especially in text generation, classification, question answering, etc. However, the reasoning ability of LLMs still faces many debates. The inherent ambiguity of Natural Language (NL) limits LLMs' ability to perform verifiable reasoning, making its answers lack coherence and trustworthy support. To tackle the above problems, we propose a novel framework named FANS: Formal ANswer Selection for Natural Language Math Reasoning Using Lean4. To the best of our knowledge, it is the first framework that utilizes Lean4 to enhance LLMs' NL math reasoning ability. In particular, given an NL math question and LLM-generated answers, FANS first translates it into Lean4 theorem statements. Then it tries to prove it using a Lean4 prover and verify it by Lean4. Finally, it uses the FL result to assist in answer selection. It enhances LLMs' NL math ability in providing a computer-verifiable solution for its correct answer and proposes an alternative method for answer selection beyond the reward model. Extensive experiments indicate the effectiveness of our framework. It can improve the accuracy rate of reward model enhanced LLMs in the MATH-500 dataset by at most 1.91% and AMC-23 by at most 8.33% on strong reward-model baselines. In some particular fields like number theory that Lean4 experts in, we can even select all correct solutions. The qualitative analysis also shows our framework can make NL results formally backed by Lean4 proofs. As a pioneering work in the corresponding field, we will open-source all our models and datasets to further boost the development of the field.
♻ ☆ Diagnosing and Addressing Pitfalls in KG-RAG Datasets: Toward More Reliable Benchmarking NeurIPS 2025
Knowledge Graph Question Answering (KGQA) systems rely on high-quality benchmarks to evaluate complex multi-hop reasoning. However, despite their widespread use, popular datasets such as WebQSP and CWQ suffer from critical quality issues, including inaccurate or incomplete ground-truth annotations, poorly constructed questions that are ambiguous, trivial, or unanswerable, and outdated or inconsistent knowledge. Through a manual audit of 16 popular KGQA datasets, including WebQSP and CWQ, we find that the average factual correctness rate is only 57 %. To address these issues, we introduce KGQAGen, an LLM-in-the-loop framework that systematically resolves these pitfalls. KGQAGen combines structured knowledge grounding, LLM-guided generation, and symbolic verification to produce challenging and verifiable QA instances. Using KGQAGen, we construct KGQAGen-10k, a ten-thousand scale benchmark grounded in Wikidata, and evaluate a diverse set of KG-RAG models. Experimental results demonstrate that even state-of-the-art systems struggle on this benchmark, highlighting its ability to expose limitations of existing models. Our findings advocate for more rigorous benchmark construction and position KGQAGen as a scalable framework for advancing KGQA evaluation.
comment: Accepted at NeurIPS 2025 Datasets and Benchmarks Track
♻ ☆ Discontinuous Epitope Fragments as Sufficient Target Templates for Efficient Binder Design NeurIPS2025
Recent advances in structure-based protein design have accelerated de novo binder generation, yet interfaces on large domains or spanning multiple domains remain challenging due to high computational cost and declining success with increasing target size. We hypothesized that protein folding neural networks (PFNNs) operate in a ``local-first'' manner, prioritizing local interactions while displaying limited sensitivity to global foldability. Guided by this hypothesis, we propose an epitope-only strategy that retains only the discontinuous surface residues surrounding the binding site. Compared to intact-domain workflows, this approach improves in silico success rates by up to 80% and reduces the average time per successful design by up to forty-fold, enabling binder design against previously intractable targets such as ClpP and ALS3. Building on this foundation, we further developed a tailored pipeline that incorporates a Monte Carlo-based evolution step to overcome local minima and a position-specific biased inverse folding step to refine sequence patterns. Together, these advances not only establish a generalizable framework for efficient binder design against structurally large and otherwise inaccessible targets, but also support the broader ``local-first'' hypothesis as a guiding principle for PFNN-based design.
comment: Accepted by NeurIPS2025-AI4Science
♻ ☆ Faster LLM Inference using DBMS-Inspired Preemption and Cache Replacement Policies
LLMs are increasingly used world-wide from daily tasks to agentic systems and data analytics, requiring significant GPU resources. LLM inference systems, however, are slow compared to database systems, and inference performance and mechanism have been often regarded as a black box, limiting the expansion of the use of LLMs inside databases and other performance-critical applications. This paper first analyzes the LLM inference performance and focuses on a data management issue inside LLM inference. We find that inference systems lack an adequate resource cost model and optimization strategy to schedule requests with their intermediate results in a cache reside in GPU memory when executing multiple concurrent inference requests. We adapt classic database techniques by building cost models for concurrent inference requests and a new cache replacement policy tailored for LLM inference, which can substantially save GPU costs.
♻ ☆ Planner-R1: Reward Shaping Enables Efficient Agentic RL with Smaller LLMs
We investigated Agentic RL with large language models on the \textsc{TravelPlanner} benchmark. Our approach, \textsc{Planner-R1}, achieved a \textbf{56.9\%} final-pass rate with only 180 training queries, a $2.7\times$ improvement over GPT-5's $21.2\%$ baseline and the strongest agentic result on the public leaderboard. A central finding was that smaller models (8B) were highly responsive to reward shaping: with dense process-level signals, they reached competitive performance while being $3.5\times$ more compute-efficient and $1.5\times$ more memory-efficient than 32B models. Larger models were more robust under sparse rewards but exhibited smaller relative gains from shaping and higher variance across runs. While curriculum learning offered no significant benefit, shaped rewards consistently amplified learning dynamics, making 8B models the most efficient setting for agentic RL. Crucially, these gains did not come at the cost of overfitting: fine-tuned models mostly maintained or exceeded baseline performance on out-of-domain tasks, including \textsc{Multi-IF}, \textsc{NaturalPlan}, and $\tau$-\textsc{Bench}. These results establish reward shaping as a decisive lever for scaling agentic RL, highlight the competitive strength of smaller models, and demonstrate that efficiency can be achieved without sacrificing generalization.
♻ ☆ A* Search Without Expansions: Learning Heuristic Functions with Deep Q-Networks
Efficiently solving problems with large action spaces using A* search remains a significant challenge. This is because, for each iteration of A* search, the number of nodes generated and the number of heuristic function applications grow linearly with the size of the action space. This burden becomes even more apparent when A* search uses a heuristic function learned by computationally expensive function approximators, such as deep neural networks. To address this issue, we introduce Q*, a search algorithm that leverages heuristics capable of receiving a state and, in a single function call, returning cost-to-go estimates for all possible transitions from that state, along with estimates of the corresponding transition costs -- without the need to apply the transitions or generate the successor states; such action-state estimation are typically known as Q-values. This significantly reduces computation time and memory usage. In addition, we prove that Q* search is guaranteed to find a shortest path given a heuristic function that does not overestimate the sum of the transition cost and cost-to-go of the state. To obtain heuristics for Q* search, we employ a deep Q-network architecture to learn a state-action heuristic function from domain interaction, without any prior knowledge. We use Q* with our learned heuristic on different domains and action spaces, showing that Q* suffers from only a small runtime overhead as the size of the action space increases. In addition, our empirical results show Q* search is up to 129 times faster and generates up to 1288 times fewer nodes than A* search.
comment: Added more detailed comparisons to A*, deffered heuristics, and partial expansion. Added more detailed theoretical results to show that Q* search is an admissible search algorithm. Added comparisons to deferred heuristic evaluation. Added experiments with Lights Out and the 35-Pancake puzzle
♻ ☆ Gaussian DP for Reporting Differential Privacy Guarantees in Machine Learning
Current practices for reporting the level of differential privacy (DP) protection for machine learning (ML) algorithms such as DP-SGD provide an incomplete and potentially misleading picture of the privacy guarantees. For instance, if only a single $(\varepsilon,\delta)$ is known about a mechanism, standard analyses show that there exist highly accurate inference attacks against training data records, when, in fact, such accurate attacks might not exist. In this position paper, we argue that using non-asymptotic Gaussian Differential Privacy (GDP) as the primary means of communicating DP guarantees in ML avoids these potential downsides. Using two recent developments in the DP literature: (i) open-source numerical accountants capable of computing the privacy profile and $f$-DP curves of DP-SGD to arbitrary accuracy, and (ii) a decision-theoretic metric over DP representations, we show how to provide non-asymptotic bounds on GDP using numerical accountants, and show that GDP can capture the entire privacy profile of DP-SGD and related algorithms with virtually no error, as quantified by the metric. To support our claims, we investigate the privacy profiles of state-of-the-art DP large-scale image classification, and the TopDown algorithm for the U.S. Decennial Census, observing that GDP fits their profiles remarkably well in all cases. We conclude with a discussion on the strengths and weaknesses of this approach, and discuss which other privacy mechanisms could benefit from GDP.
♻ ☆ StepORLM: A Self-Evolving Framework With Generative Process Supervision For Operations Research Language Models
Large Language Models (LLMs) have shown promising capabilities for solving Operations Research (OR) problems. While reinforcement learning serves as a powerful paradigm for LLM training on OR problems, existing works generally face two key limitations. First, outcome reward suffers from the credit assignment problem, where correct final answers can reinforce flawed reasoning. Second, conventional discriminative process supervision is myopic, failing to evaluate the interdependent steps of OR modeling holistically. To this end, we introduce StepORLM, a novel self-evolving framework with generative process supervision. At its core, StepORLM features a co-evolutionary loop where a policy model and a generative process reward model (GenPRM) iteratively improve on each other. This loop is driven by a dual-feedback mechanism: definitive, outcome-based verification from an external solver, and nuanced, holistic process evaluation from the GenPRM. The combined signal is used to align the policy via Weighted Direct Preference Optimization (W-DPO) and simultaneously refine the GenPRM. Our resulting 8B-parameter StepORLM establishes a new state-of-the-art across six benchmarks, significantly outperforming vastly larger generalist models, agentic methods, and specialized baselines. Moreover, the co-evolved GenPRM is able to act as a powerful and universally applicable process verifier, substantially boosting the inference scaling performance of both our own model and other existing LLMs.
♻ ☆ SpeechWeave: Diverse Multilingual Synthetic Text & Audio Data Generation Pipeline for Training Text to Speech Models ACL 2025
High-quality Text-to-Speech (TTS) model training requires extensive and diverse text and speech data. It is challenging to procure such data from real sources due to issues of domain specificity, licensing, and scalability. Large language models (LLMs) can certainly generate textual data, but they create repetitive text with insufficient variation in the prompt during the generation process. Another important aspect in TTS training data is text normalization. Tools for normalization might occasionally introduce anomalies or overlook valuable patterns, and thus impact data quality. Furthermore, it is also impractical to rely on voice artists for large scale speech recording in commercial TTS systems with standardized voices. To address these challenges, we propose SpeechWeave, a synthetic speech data generation pipeline that is capable of automating the generation of multilingual, domain-specific datasets for training TTS models. Our experiments reveal that our pipeline generates data that is 10-48% more diverse than the baseline across various linguistic and phonetic metrics, along with speaker-standardized speech audio while generating approximately 97% correctly normalized text. Our approach enables scalable, high-quality data generation for TTS training, improving diversity, normalization, and voice consistency in the generated datasets.
comment: Accepted at ACL 2025
♻ ☆ Out-of-Distribution Detection using Synthetic Data Generation
Distinguishing in- and out-of-distribution (OOD) inputs is crucial for reliable deployment of classification systems. However, OOD data is typically unavailable or difficult to collect, posing a significant challenge for accurate OOD detection. In this work, we present a method that harnesses the generative capabilities of Large Language Models (LLMs) to create high-quality synthetic OOD proxies, eliminating the dependency on any external OOD data source. We study the efficacy of our method on classical text classification tasks such as toxicity detection and sentiment classification as well as classification tasks arising in LLM development and deployment, such as training a reward model for RLHF and detecting misaligned generations. Extensive experiments on nine InD-OOD dataset pairs and various model sizes show that our approach dramatically lowers false positive rates (achieving a perfect zero in some cases) while maintaining high accuracy on in-distribution tasks, outperforming baseline methods by a significant margin.
comment: Accepted to COLM 2025. Camera-ready version
♻ ☆ A Flexible Method for Behaviorally Measuring Alignment Between Human and Artificial Intelligence Using Representational Similarity Analysis
As we consider entrusting Large Language Models (LLMs) with key societal and decision-making roles, measuring their alignment with human cognition becomes critical. This requires methods that can assess how these systems represent information and facilitate comparisons with human understanding across diverse tasks. To meet this need, we adapted Representational Similarity Analysis (RSA), a method that uses pairwise similarity ratings to quantify alignment between AIs and humans. We tested this approach on semantic alignment across text and image modalities, measuring how different Large Language and Vision Language Model (LLM and VLM) similarity judgments aligned with human responses at both group and individual levels. GPT-4o showed the strongest alignment with human performance among the models we tested, particularly when leveraging its text processing capabilities rather than image processing, regardless of the input modality. However, no model we studied adequately captured the inter-individual variability observed among human participants, and only moderately aligned with any individual human's responses. This method helped uncover certain hyperparameters and prompts that could steer model behavior to have more or less human-like qualities at an inter-individual or group level. Pairwise ratings and RSA enable the efficient and flexible quantification of human-AI alignment, which complements existing accuracy-based benchmark tasks. We demonstrate the utility of this approach across multiple modalities (words, sentences, images) for understanding how LLMs encode knowledge and for examining representational alignment with human cognition.
♻ ☆ Diffusion Adversarial Post-Training for One-Step Video Generation ICML 2025
The diffusion models are widely used for image and video generation, but their iterative generation process is slow and expansive. While existing distillation approaches have demonstrated the potential for one-step generation in the image domain, they still suffer from significant quality degradation. In this work, we propose Adversarial Post-Training (APT) against real data following diffusion pre-training for one-step video generation. To improve the training stability and quality, we introduce several improvements to the model architecture and training procedures, along with an approximated R1 regularization objective. Empirically, our experiments show that our adversarial post-trained model, Seaweed-APT, can generate 2-second, 1280x720, 24fps videos in real time using a single forward evaluation step. Additionally, our model is capable of generating 1024px images in a single step, achieving quality comparable to state-of-the-art methods.
comment: ICML 2025
♻ ☆ Deriving Strategic Market Insights with Large Language Models: A Benchmark for Forward Counterfactual Generation
Counterfactual reasoning typically involves considering alternatives to actual events. While often applied to understand past events, a distinct form-forward counterfactual reasoning-focuses on anticipating plausible future developments. This type of reasoning is invaluable in dynamic financial markets, where anticipating market developments can powerfully unveil potential risks and opportunities for stakeholders, guiding their decision-making. However, performing this at scale is challenging due to the cognitive demands involved, underscoring the need for automated solutions. LLMs offer promise, but remain unexplored for this application. To address this gap, we introduce a novel benchmark, FIN-FORCE-FINancial FORward Counterfactual Evaluation. By curating financial news headlines and providing structured evaluation, FIN-FORCE supports LLM based forward counterfactual generation. This paves the way for scalable and automated solutions for exploring and anticipating future market developments, thereby providing structured insights for decision-making. Through experiments on FIN-FORCE, we evaluate state-of-the-art LLMs and counterfactual generation methods, analyzing their limitations and proposing insights for future research. We release the benchmark, supplementary data and all experimental codes at the following link: https://github.com/keanepotato/fin_force
comment: Published at Empirical Methods in Natural Language Processing 2025 (Main Conference) (Oral)
♻ ☆ Forget Forgetting: Continual Learning in a World of Abundant Memory
Continual learning (CL) has traditionally focused on minimizing exemplar memory, a constraint often misaligned with modern systems where GPU time, not storage, is the primary bottleneck. This paper challenges this paradigm by investigating a more realistic regime: one where memory is abundant enough to mitigate forgetting, but full retraining from scratch remains prohibitively expensive. In this practical "middle ground", we find that the core challenge shifts from stability to plasticity, as models become biased toward prior tasks and struggle to learn new ones. Conversely, improved stability allows simple replay baselines to outperform the state-of-the-art methods at a fraction of the GPU cost. To address this newly surfaced trade-off, we propose Weight Space Consolidation, a lightweight method that combines (1) rank-based parameter resets to restore plasticity with (2) weight averaging to enhance stability. Validated on both class-incremental learning with image classifiers and continual instruction tuning with large language models, our approach outperforms strong baselines while matching the low computational cost of replay, offering a scalable alternative to expensive full-retraining. These findings challenge long-standing CL assumptions and establish a new, cost-efficient baseline for real-world CL systems where exemplar memory is no longer the limiting factor.
comment: 24 pages, 11 figures
♻ ☆ Autoregressive Adversarial Post-Training for Real-Time Interactive Video Generation NeurIPS 2025
Existing large-scale video generation models are computationally intensive, preventing adoption in real-time and interactive applications. In this work, we propose autoregressive adversarial post-training (AAPT) to transform a pre-trained latent video diffusion model into a real-time, interactive video generator. Our model autoregressively generates a latent frame at a time using a single neural function evaluation (1NFE). The model can stream the result to the user in real time and receive interactive responses as controls to generate the next latent frame. Unlike existing approaches, our method explores adversarial training as an effective paradigm for autoregressive generation. This not only allows us to design an architecture that is more efficient for one-step generation while fully utilizing the KV cache, but also enables training the model in a student-forcing manner that proves to be effective in reducing error accumulation during long video generation. Our experiments demonstrate that our 8B model achieves real-time, 24fps, streaming video generation at 736x416 resolution on a single H100, or 1280x720 on 8xH100 up to a minute long (1440 frames). Visit our research website at https://seaweed-apt.com/2
comment: NeurIPS 2025
♻ ☆ Beyond the Strongest LLM: Multi-Turn Multi-Agent Orchestration vs. Single LLMs on Benchmarks
We study multi-turn multi-agent orchestration, where multiple large language model (LLM) agents interact over multiple turns by iteratively proposing answers or casting votes until reaching consensus. Using four LLMs (Gemini 2.5 Pro, GPT-5, Grok 4, and Claude Sonnet 4) on GPQA-Diamond, IFEval, and MuSR, we conduct two experiments: (i) benchmarking orchestration against single-LLM baselines; and (ii) ablations on GPQA-Diamond that vary whether agents see who authored answers and whether they can observe ongoing votes. Orchestration matches or exceeds the strongest single model and consistently outperforms the others. Analysis of best-achievable orchestration performance shows potential for further gains. The ablations show that revealing authorship increases self-voting and ties, and that showing ongoing votes amplifies herding, which speeds convergence but can sometimes yield premature consensus.
comment: 9 pages, 3 tables, 1 figure
♻ ☆ Defend LLMs Through Self-Consciousness
This paper introduces a novel self-consciousness defense mechanism for Large Language Models (LLMs) to combat prompt injection attacks. Unlike traditional approaches that rely on external classifiers, our method leverages the LLM's inherent reasoning capabilities to perform self-protection. We propose a framework that incorporates Meta-Cognitive and Arbitration Modules, enabling LLMs to evaluate and regulate their own outputs autonomously. Our approach is evaluated on seven state-of-the-art LLMs using two datasets: AdvBench and Prompt-Injection-Mixed-Techniques-2024. Experiment results demonstrate significant improvements in defense success rates across models and datasets, with some achieving perfect and near-perfect defense in Enhanced Mode. We also analyze the trade-off between defense success rate improvement and computational overhead. This self-consciousness method offers a lightweight, cost-effective solution for enhancing LLM ethics, particularly beneficial for GenAI use cases across various platforms.
comment: company requests to withdraw
Machine Learning 142
☆ Round-trip Reinforcement Learning: Self-Consistent Training for Better Chemical LLMs
Large Language Models (LLMs) are emerging as versatile foundation models for computational chemistry, handling bidirectional tasks like reaction prediction and retrosynthesis. However, these models often lack round-trip consistency. For instance, a state-of-the-art chemical LLM may successfully caption a molecule, yet be unable to accurately reconstruct the original structure from its own generated text. This inconsistency suggests that models are learning unidirectional memorization rather than flexible mastery. Indeed, recent work has demonstrated a strong correlation between a model's round-trip consistency and its performance on the primary tasks. This strong correlation reframes consistency into a direct target for model improvement. We therefore introduce Round-Trip Reinforcement Learning (RTRL), a novel framework that trains a model to improve its consistency by using the success of a round-trip transformation as a reward signal. We further propose an iterative variant where forward and reverse mappings alternately train each other in a self-improvement loop, a process that is highly data-efficient and notably effective with the massive amount of unlabelled data common in chemistry. Experiments demonstrate that RTRL significantly \textbf{boosts performance and consistency} over strong baselines across supervised, self-supervised, and synthetic data regimes. This work shows that round-trip consistency is not just a desirable property but a trainable objective, offering a new path toward more robust and reliable foundation models.
comment: 19 pages
☆ On Integer Programming for the Binarized Neural Network Verification Problem
Binarized neural networks (BNNs) are feedforward neural networks with binary weights and activation functions. In the context of using a BNN for classification, the verification problem seeks to determine whether a small perturbation of a given input can lead it to be misclassified by the BNN, and the robustness of the BNN can be measured by solving the verification problem over multiple inputs. The BNN verification problem can be formulated as an integer programming (IP) problem. However, the natural IP formulation is often challenging to solve due to a large integrality gap induced by big-$M$ constraints. We present two techniques to improve the IP formulation. First, we introduce a new method for obtaining a linear objective for the multi-class setting. Second, we introduce a new technique for generating valid inequalities for the IP formulation that exploits the recursive structure of BNNs. We find that our techniques enable verifying BNNs against a higher range of input perturbation than existing IP approaches within a limited time.
☆ WALT: Web Agents that Learn Tools
Web agents promise to automate complex browser tasks, but current methods remain brittle -- relying on step-by-step UI interactions and heavy LLM reasoning that break under dynamic layouts and long horizons. Humans, by contrast, exploit website-provided functionality through high-level operations like search, filter, and sort. We introduce WALT (Web Agents that Learn Tools), a framework that reverse-engineers latent website functionality into reusable invocable tools. Rather than hypothesizing ad-hoc skills, WALT exposes robust implementations of automations already designed into websites -- spanning discovery (search, filter, sort), communication (post, comment, upvote), and content management (create, edit, delete). Tools abstract away low-level execution: instead of reasoning about how to click and type, agents simply call search(query) or create(listing). This shifts the computational burden from fragile step-by-step reasoning to reliable tool invocation. On VisualWebArena and WebArena, WALT achieves higher success with fewer steps and less LLM-dependent reasoning, establishing a robust and generalizable paradigm for browser automation.
☆ CarbonX: An Open-Source Tool for Computational Decarbonization Using Time Series Foundation Models
Computational decarbonization aims to reduce carbon emissions in computing and societal systems such as data centers, transportation, and built environments. This requires accurate, fine-grained carbon intensity forecasts, yet existing tools have several key limitations: (i) they require grid-specific electricity mix data, restricting use where such information is unavailable; (ii) they depend on separate grid-specific models that make it challenging to provide global coverage; and (iii) they provide forecasts without uncertainty estimates, limiting reliability for downstream carbon-aware applications. In this paper, we present CarbonX, an open-source tool that leverages Time Series Foundation Models (TSFMs) for a range of decarbonization tasks. CarbonX utilizes the versatility of TSFMs to provide strong performance across multiple tasks, such as carbon intensity forecasting and imputation, and across diverse grids. Using only historical carbon intensity data and a single general model, our tool achieves a zero-shot forecasting Mean Absolute Percentage Error (MAPE) of 15.82% across 214 grids worldwide. Across 13 benchmark grids, CarbonX performance is comparable with the current state-of-the-art, with an average MAPE of 9.59% and tail forecasting MAPE of 16.54%, while also providing prediction intervals with 95% coverage. CarbonX can provide forecasts for up to 21 days with minimal accuracy degradation. Further, when fully fine-tuned, CarbonX outperforms the statistical baselines by 1.2--3.9X on the imputation task. Overall, these results demonstrate that CarbonX can be used easily on any grid with limited data and still deliver strong performance, making it a practical tool for global-scale decarbonization.
☆ Predictive Modeling and Explainable AI for Veterinary Safety Profiles, Residue Assessment, and Health Outcomes Using Real-World Data and Physicochemical Properties
The safe use of pharmaceuticals in food-producing animals is vital to protect animal welfare and human food safety. Adverse events (AEs) may signal unexpected pharmacokinetic or toxicokinetic effects, increasing the risk of violative residues in the food chain. This study introduces a predictive framework for classifying outcomes (Death vs. Recovery) using ~1.28 million reports (1987-2025 Q1) from the U.S. FDA's OpenFDA Center for Veterinary Medicine. A preprocessing pipeline merged relational tables and standardized AEs through VeDDRA ontologies. Data were normalized, missing values imputed, and high-cardinality features reduced; physicochemical drug properties were integrated to capture chemical-residue links. We evaluated supervised models, including Random Forest, CatBoost, XGBoost, ExcelFormer, and large language models (Gemma 3-27B, Phi 3-12B). Class imbalance was addressed, such as undersampling and oversampling, with a focus on prioritizing recall for fatal outcomes. Ensemble methods(Voting, Stacking) and CatBoost performed best, achieving precision, recall, and F1-scores of 0.95. Incorporating Average Uncertainty Margin (AUM)-based pseudo-labeling of uncertain cases improved minority-class detection, particularly in ExcelFormer and XGBoost. Interpretability via SHAP identified biologically plausible predictors, including lung, heart, and bronchial disorders, animal demographics, and drug physicochemical properties. These features were strongly linked to fatal outcomes. Overall, the framework shows that combining rigorous data engineering, advanced machine learning, and explainable AI enables accurate, interpretable predictions of veterinary safety outcomes. The approach supports FARAD's mission by enabling early detection of high-risk drug-event profiles, strengthening residue risk assessment, and informing regulatory and clinical decision-making.
☆ Flock: A Knowledge Graph Foundation Model via Learning on Random Walks
We study the problem of zero-shot link prediction on knowledge graphs (KGs), which requires models to generalize over novel entities and novel relations. Knowledge graph foundation models (KGFMs) address this task by enforcing equivariance over both nodes and relations, learning from structural properties of nodes and relations, which are then transferable to novel graphs with similar structural properties. However, the conventional notion of deterministic equivariance imposes inherent limits on the expressive power of KGFMs, preventing them from distinguishing structurally similar but semantically distinct relations. To overcome this limitation, we introduce probabilistic node-relation equivariance, which preserves equivariance in distribution while incorporating a principled randomization to break symmetries during inference. Building on this principle, we present Flock, a KGFM that iteratively samples random walks, encodes them into sequences via a recording protocol, embeds them with a sequence model, and aggregates representations of nodes and relations via learned pooling. Crucially, Flock respects probabilistic node-relation equivariance and is a universal approximator for isomorphism-invariant link-level functions over KGs. Empirically, Flock perfectly solves our new diagnostic dataset Petals where current KGFMs fail, and achieves state-of-the-art performances on entity- and relation prediction tasks on 54 KGs from diverse domains.
☆ Realistic CDSS Drug Dosing with End-to-end Recurrent Q-learning for Dual Vasopressor Control
Reinforcement learning (RL) applications in Clinical Decision Support Systems (CDSS) frequently encounter skepticism from practitioners regarding inoperable dosing decisions. We address this challenge with an end-to-end approach for learning optimal drug dosing and control policies for dual vasopressor administration in intensive care unit (ICU) patients with septic shock. For realistic drug dosing, we apply action space design that accommodates discrete, continuous, and directional dosing strategies in a system that combines offline conservative Q-learning with a novel recurrent modeling in a replay buffer to capture temporal dependencies in ICU time-series data. Our comparative analysis of norepinephrine dosing strategies across different action space formulations reveals that the designed action spaces improve interpretability and facilitate clinical adoption while preserving efficacy. Empirical results1 on eICU and MIMIC demonstrate that action space design profoundly influences learned behavioral policies. The proposed methods achieve improved patient outcomes of over 15% in survival improvement probability, while aligning with established clinical protocols.
comment: 11 pages, 5 figures. Neurips 2025 Workshop Learning from Time Series for Health
☆ Aligning Video Models with Human Social Judgments via Behavior-Guided Fine-Tuning
Humans intuitively perceive complex social signals in visual scenes, yet it remains unclear whether state-of-the-art AI models encode the same similarity structure. We study (Q1) whether modern video and language models capture human-perceived similarity in social videos, and (Q2) how to instill this structure into models using human behavioral data. To address this, we introduce a new benchmark of over 49,000 odd-one-out similarity judgments on 250 three-second video clips of social interactions, and discover a modality gap: despite the task being visual, caption-based language embeddings align better with human similarity than any pretrained video model. We close this gap by fine-tuning a TimeSformer video model on these human judgments with our novel hybrid triplet-RSA objective using low-rank adaptation (LoRA), aligning pairwise distances to human similarity. This fine-tuning protocol yields significantly improved alignment with human perceptions on held-out videos in terms of both explained variance and odd-one-out triplet accuracy. Variance partitioning shows that the fine-tuned video model increases shared variance with language embeddings and explains additional unique variance not captured by the language model. Finally, we test transfer via linear probes and find that human-similarity fine-tuning strengthens the encoding of social-affective attributes (intimacy, valence, dominance, communication) relative to the pretrained baseline. Overall, our findings highlight a gap in pretrained video models' social recognition and demonstrate that behavior-guided fine-tuning shapes video representations toward human social perception.
comment: 15 pages total, 4 figures. Includes 1 algorithm and 2 tables in the appendix
☆ Beyond Majority Voting: LLM Aggregation by Leveraging Higher-Order Information
With the rapid progress of multi-agent large language model (LLM) reasoning, how to effectively aggregate answers from multiple LLMs has emerged as a fundamental challenge. Standard majority voting treats all answers equally, failing to consider latent heterogeneity and correlation across models. In this work, we design two new aggregation algorithms called Optimal Weight (OW) and Inverse Surprising Popularity (ISP), leveraging both first-order and second-order information. Our theoretical analysis shows these methods provably mitigate inherent limitations of majority voting under mild assumptions, leading to more reliable collective decisions. We empirically validate our algorithms on synthetic datasets, popular LLM fine-tuning benchmarks such as UltraFeedback and MMLU, and a real-world healthcare setting ARMMAN. Across all cases, our methods consistently outperform majority voting, offering both practical performance gains and conceptual insights for the design of robust multi-agent LLM pipelines.
☆ Understanding Adversarial Transfer: Why Representation-Space Attacks Fail Where Data-Space Attacks Succeed
The field of adversarial robustness has long established that adversarial examples can successfully transfer between image classifiers and that text jailbreaks can successfully transfer between language models (LMs). However, a pair of recent studies reported being unable to successfully transfer image jailbreaks between vision-language models (VLMs). To explain this striking difference, we propose a fundamental distinction regarding the transferability of attacks against machine learning models: attacks in the input data-space can transfer, whereas attacks in model representation space do not, at least not without geometric alignment of representations. We then provide theoretical and empirical evidence of this hypothesis in four different settings. First, we mathematically prove this distinction in a simple setting where two networks compute the same input-output map but via different representations. Second, we construct representation-space attacks against image classifiers that are as successful as well-known data-space attacks, but fail to transfer. Third, we construct representation-space attacks against LMs that successfully jailbreak the attacked models but again fail to transfer. Fourth, we construct data-space attacks against VLMs that successfully transfer to new VLMs, and we show that representation space attacks \emph{can} transfer when VLMs' latent geometries are sufficiently aligned in post-projector space. Our work reveals that adversarial transfer is not an inherent property of all attacks but contingent on their operational domain - the shared data-space versus models' unique representation spaces - a critical insight for building more robust models.
☆ Density-Ratio Weighted Behavioral Cloning: Learning Control Policies from Corrupted Datasets
Offline reinforcement learning (RL) enables policy optimization from fixed datasets, making it suitable for safety-critical applications where online exploration is infeasible. However, these datasets are often contaminated by adversarial poisoning, system errors, or low-quality samples, leading to degraded policy performance in standard behavioral cloning (BC) and offline RL methods. This paper introduces Density-Ratio Weighted Behavioral Cloning (Weighted BC), a robust imitation learning approach that uses a small, verified clean reference set to estimate trajectory-level density ratios via a binary discriminator. These ratios are clipped and used as weights in the BC objective to prioritize clean expert behavior while down-weighting or discarding corrupted data, without requiring knowledge of the contamination mechanism. We establish theoretical guarantees showing convergence to the clean expert policy with finite-sample bounds that are independent of the contamination rate. A comprehensive evaluation framework is established, which incorporates various poisoning protocols (reward, state, transition, and action) on continuous control benchmarks. Experiments demonstrate that Weighted BC maintains near-optimal performance even at high contamination ratios outperforming baselines such as traditional BC, batch-constrained Q-learning (BCQ) and behavior regularized actor-critic (BRAC).
☆ Purrception: Variational Flow Matching for Vector-Quantized Image Generation
We introduce Purrception, a variational flow matching approach for vector-quantized image generation that provides explicit categorical supervision while maintaining continuous transport dynamics. Our method adapts Variational Flow Matching to vector-quantized latents by learning categorical posteriors over codebook indices while computing velocity fields in the continuous embedding space. This combines the geometric awareness of continuous methods with the discrete supervision of categorical approaches, enabling uncertainty quantification over plausible codes and temperature-controlled generation. We evaluate Purrception on ImageNet-1k 256x256 generation. Training converges faster than both continuous flow matching and discrete flow matching baselines while achieving competitive FID scores with state-of-the-art models. This demonstrates that Variational Flow Matching can effectively bridge continuous transport and discrete supervision for improved training efficiency in image generation.
☆ Comparative Field Deployment of Reinforcement Learning and Model Predictive Control for Residential HVAC
Advanced control strategies like Model Predictive Control (MPC) offer significant energy savings for HVAC systems but often require substantial engineering effort, limiting scalability. Reinforcement Learning (RL) promises greater automation and adaptability, yet its practical application in real-world residential settings remains largely undemonstrated, facing challenges related to safety, interpretability, and sample efficiency. To investigate these practical issues, we performed a direct comparison of an MPC and a model-based RL controller, with each controller deployed for a one-month period in an occupied house with a heat pump system in West Lafayette, Indiana. This investigation aimed to explore scalability of the chosen RL and MPC implementations while ensuring safety and comparability. The advanced controllers were evaluated against each other and against the existing controller. RL achieved substantial energy savings (22\% relative to the existing controller), slightly exceeding MPC's savings (20\%), albeit with modestly higher occupant discomfort. However, when energy savings were normalized for the level of comfort provided, MPC demonstrated superior performance. This study's empirical results show that while RL reduces engineering overhead, it introduces practical trade-offs in model accuracy and operational robustness. The key lessons learned concern the difficulties of safe controller initialization, navigating the mismatch between control actions and their practical implementation, and maintaining the integrity of online learning in a live environment. These insights pinpoint the essential research directions needed to advance RL from a promising concept to a truly scalable HVAC control solution.
comment: 27 pages, 11 figures, 4 tables. Under review for Applied Energy
☆ PEL-NAS: Search Space Partitioned Architecture Prompt Co-Evolutionary LLM-driven Hardware-Aware Neural Architecture Search
Hardware-Aware Neural Architecture Search (HW-NAS) requires joint optimization of accuracy and latency under device constraints. Traditional supernet-based methods require multiple GPU days per dataset. Large Language Model (LLM)-driven approaches avoid training a large supernet and can provide quick feedback, but we observe an exploration bias: the LLM repeatedly proposes neural network designs within limited search space and fails to discover architectures across different latency ranges in the entire search space. To address this issue, we propose PEL-NAS: a search space Partitioned, architecture prompt co-Evolutionary and LLM-driven Neural Architecture Search that can generate neural networks with high accuracy and low latency with reduced search cost. Our proposed PEL-NAS has three key components: 1) a complexity-driven partitioning engine that divides the search space by complexity to enforce diversity and mitigate exploration bias; 2) an LLM-powered architecture prompt co-evolution operator, in which the LLM first updates a knowledge base of design heuristics based on results from the previous round, then performs a guided evolution algorithm on architectures with prompts that incorporate this knowledge base. Prompts and designs improve together across rounds which avoids random guesswork and improve efficiency; 3) a zero-cost predictor to avoid training a large number of candidates from scratch. Experimental results show that on HW-NAS-Bench, PEL-NAS can achieve overall higher HV, lower IGD, and up to 54% lower latency than baselines at similar accuracy. Meanwhile, the search cost drops from days to minutes compared with traditional supernet baselines.
☆ Fine-tuning LLMs with variational Bayesian last layer for high-dimensional Bayesian optimzation
A plethora of applications entail solving black-box optimization problems with high evaluation costs, including drug discovery, material design, as well as hyperparameter tuning. Toward finding the global optimum of such black-box optimization problems with sample efficiency, Bayesian optimization (BO) is a theoretically elegant framework that relies on a probabilistic surrogate model so as to iteratively select the query point with well-balanced exploration-exploitation tradeoffs. The Gaussian process (GP), as the de-facto choice for surrogate modeling, has achieved compelling performances for vanilla BO with low-dimensional continuous variables. However, GPs fall short in coping with high-dimensional counterparts with {\it irregular} variables (e.g., categorical, ordinal, etc.). To alleviate this, neural network-based surrogates have been explored. Inspired by the powerful capabilities of LLMs, we adopt the LLM as the surrogate to model the mapping from the high-dimensional input variables to the objective function. To adapt to the current problem, we leverage the low-rank adaptation (LoRA) to fine-tune the LLM parameters together with the posterior of a linear regression head via the variational Bayesian last layer (VBLL) framework. The resulting LoRA-VBLL is not only computationally light compared to existing alternatives, but also admits recursive updates. To automate the critical selection of the LoRA rank as well as other hyperparameters, a weighted ensemble (ENS) of LoRA-VBLL surrogates has been devised, which further accommodates continual update of the per-model weight and individual LoRA-VBLL parameters via recursive Bayes. Extensive experimental results demonstrate the compelling performance of the proposed (ENS-)LoRA-VBLL approaches on various high-dimensional benchmarks and the real-world molecular optimization tasks.
☆ A-VERT: Agnostic Verification with Embedding Ranking Targets
The automatic evaluation of Language Model (LM) responses is a critical piece in the development of benchmarks and metrics, both for model training and quality assessment of production model endpoints. The current approaches to response classification relies on methods that are too expensive (i.e. LLM-as-a-Judge) or that are far from real-world conditions (string-matching, logprob). In this paper, a structure-free evaluation method is presented. The method makes use of semantic embedding distances to match target candidates with arbitrary LM-generated text, resulting in a robust classification of the response at a relatively low compute cost (embedding models of less than $10B$ parameters). The results show a regression score of ~0.97 and an accuracy of ~96% against human annotators, tested over 3 data sets and 3 different LM architectures.
comment: 19 pages, 7 figures, code available at https://github.com/pnyxai/a-vert, authors in alphabetical order
♻ ☆ GIM: Improved Interpretability for Large Language Models
Ensuring faithful interpretability in large language models is imperative for trustworthy and reliable AI. A key obstacle is self-repair, a phenomenon where networks compensate for reduced signal in one component by amplifying others, masking the true importance of the ablated component. While prior work attributes self-repair to layer normalization and back-up components that compensate for ablated components, we identify a novel form occurring within the attention mechanism, where softmax redistribution conceals the influence of important attention scores. This leads traditional ablation and gradient-based methods to underestimate the significance of all components contributing to these attention scores. We introduce Gradient Interaction Modifications (GIM), a technique that accounts for self-repair during backpropagation. Extensive experiments across multiple large language models (Gemma 2B/9B, LLAMA 1B/3B/8B, Qwen 1.5B/3B) and diverse tasks demonstrate that GIM significantly improves faithfulness over existing circuit identification and feature attribution methods. Our work is a significant step toward better understanding the inner mechanisms of LLMs, which is crucial for improving them and ensuring their safety. Our code is available at https://github.com/JoakimEdin/gim.
♻ ☆ AdaBlock-dLLM: Semantic-Aware Diffusion LLM Inference via Adaptive Block Size
Diffusion-based large language models (dLLMs) are gaining attention for their inherent capacity for parallel decoding, offering a compelling alternative to autoregressive LLMs. Among various decoding strategies, blockwise semi-autoregressive (semi-AR) approaches are widely adopted due to their natural support for KV caching and their favorable accuracy-speed trade-off. However, this paper identifies two fundamental limitations in the conventional semi-AR decoding approach that applies a fixed block size: i) late decoding overhead, where the unmasking of high-confidence tokens outside the current block is unnecessarily delayed, and ii) premature decoding error, where low-confidence tokens inside the current block are committed too early, leading to incorrect tokens. This paper presents the first systematic investigation challenging the fixed block size assumption in semi-AR decoding. Through a statistical analysis of confidence dynamics during the denoising process, we identify a volatility band (VB) region during dLLM decoding, which encodes local semantic structure and can be used to guide adaptive block sizing. Leveraging these insights, we introduce AdaBlock-dLLM, a training-free, plug-and-play scheduler that adaptively aligns block boundaries with semantic steps by adjusting block size during runtime. Extensive experiments across diverse benchmarks show that AdaBlock-dLLM achieves up to 5.3% accuracy improvement under the same throughput budget. Beyond inference-time optimization, we hope our semantics-aware adaptive scheduling approach and confidence-based analysis will inspire future training strategies for dLLMs.
comment: Preprint. Under review
♻ ☆ PRPO: Paragraph-level Policy Optimization for Vision-Language Deepfake Detection
The rapid rise of synthetic media has made deepfake detection a critical challenge for online safety and trust. Progress remains constrained by the scarcity of large, high-quality datasets. Although multimodal large language models (LLMs) exhibit strong reasoning capabilities, their performance on deepfake detection is poor, often producing explanations that are misaligned with visual evidence or hallucinatory. To address this limitation, we introduce a reasoning-annotated dataset for deepfake detection and propose Paragraph-level Relative Policy Optimization (PRPO), a reinforcement learning algorithm that aligns LLM reasoning with image content at the paragraph level. Experiments show that PRPO improves detection accuracy by a wide margin and achieves the highest reasoning score of 4.55/5.0. Ablation studies further demonstrate that PRPO significantly outperforms GRPO under test-time conditions. These results underscore the importance of grounding multimodal reasoning in visual evidence to enable more reliable and interpretable deepfake detection.
♻ ☆ ExoPredicator: Learning Abstract Models of Dynamic Worlds for Robot Planning
Long-horizon embodied planning is challenging because the world does not only change through an agent's actions: exogenous processes (e.g., water heating, dominoes cascading) unfold concurrently with the agent's actions. We propose a framework for abstract world models that jointly learns (i) symbolic state representations and (ii) causal processes for both endogenous actions and exogenous mechanisms. Each causal process models the time course of a stochastic cause-effect relation. We learn these world models from limited data via variational Bayesian inference combined with LLM proposals. Across five simulated tabletop robotics environments, the learned models enable fast planning that generalizes to held-out tasks with more objects and more complex goals, outperforming a range of baselines.
comment: 41 pages. The last two authors contributed equally in co-advising
♻ ☆ Machine Learning Detection of Lithium Plating in Lithium-ion Cells: A Gaussian Process Approach
Lithium plating during fast charging is a critical degradation mechanism that accelerates capacity fade and can trigger catastrophic safety failures. Recent work has identified a distinctive dQ/dV peak above 4.0 V as a reliable signature of plating onset; however, conventional methods for computing dQ/dV rely on finite differencing with filtering, which amplifies sensor noise and introduces bias in peak location. In this paper, we propose a Gaussian Process (GP) framework for lithium plating detection by directly modeling the charge-voltage relationship Q(V) as a stochastic process with calibrated uncertainty. Leveraging the property that derivatives of GPs remain GPs, we infer dQ/dV analytically and probabilistically from the posterior, enabling robust detection without ad hoc smoothing. The framework provides three key benefits: (i) noise-aware inference with hyperparameters learned from data, (ii) closed-form derivatives with credible intervals for uncertainty quantification, and (iii) scalability to online variants suitable for embedded BMS. Experimental validation on Li-ion coin cells across a range of C-rates (0.2C-1C) and temperatures (0-40\deg C) demonstrates that the GP-based method reliably detects plating peaks under low-temperature, high-rate charging, while correctly reporting no peaks in baseline cases. The concurrence of GP-identified differential peaks, reduced charge throughput, and capacity fade measured via reference performance tests confirms the method's accuracy and robustness, establishing a practical pathway for real-time lithium plating detection.
comment: Submitted to American Control Conference 2026 - ACC 2026
♻ ☆ SeMoBridge: Semantic Modality Bridge for Efficient Few-Shot Adaptation of CLIP ICLR 2026
While Contrastive Language-Image Pretraining (CLIP) excels at zero-shot tasks by aligning image and text embeddings, its performance in few-shot classification is hindered by a critical limitation: intra-modal misalignment. This issue, caused by a persistent modality gap and CLIP's exclusively inter-modal training objective, leaves the embedding spaces uncalibrated, making direct image-to-image comparisons unreliable. Existing methods attempt to address this by refining similarity logits or by computationally expensive per-sample optimization. To overcome these challenges, we introduce SeMoBridge, a lightweight yet powerful approach that directly addresses the misalignment. Our method maps images into the text modality, while keeping their semantic content intact through what we call a Semantic Modality Bridge. SeMoBridge is closed-form and can optionally be trained through multi-modal supervision, combining image and text-alignment losses to optimize the projection. Experiments show that the trained version, SeMoBridge-T, requires only a fraction of the training time while overall outperforming other methods, particularly in low-data scenarios (1, 2, and 4 shots). The code is available at https://github.com/christti98/semobridge.
comment: 19 pages, 12 figures, Under review as a conference paper at ICLR 2026
♻ ☆ ReNF: Rethinking the Design Space of Neural Long-Term Time Series Forecasters
Neural Forecasters (NFs) are a cornerstone of Long-term Time Series Forecasting (LTSF). However, progress has been hampered by an overemphasis on architectural complexity at the expense of fundamental forecasting principles. In this work, we return to first principles to redesign the LTSF paradigm. We begin by introducing a Multiple Neural Forecasting Theorem that provides a theoretical basis for our approach. We propose Boosted Direct Output (BDO), a novel forecasting strategy that synergistically combines the advantages of both Auto-Regressive (AR) and Direct Output (DO). In addition, we stabilize the learning process by smoothly tracking the model's parameters. Extensive experiments show that these principled improvements enable a simple MLP to achieve state-of-the-art performance, outperforming recent, complex models in nearly all cases, without any specific considerations in the area. Finally, we empirically verify our theorem, establishing a dynamic performance bound and identifying promising directions for future research. The code for review is available at: .
♻ ☆ LoRA meets Riemannion: Muon Optimizer for Parametrization-independent Low-Rank Adapters
This work presents a novel, fully Riemannian framework for Low-Rank Adaptation (LoRA) that geometrically treats low-rank adapters by optimizing them directly on the fixed-rank manifold. This formulation eliminates the parametrization ambiguity present in standard Euclidean optimizers. Our framework integrates three key components to achieve this: (1) we derive Riemannion, a new Riemannian optimizer on the fixed-rank matrix manifold that generalizes the recently proposed Muon optimizer; (2) we develop a Riemannian gradient-informed LoRA initialization, and (3) we provide an efficient implementation without prominent overhead that uses automatic differentiation to compute arising geometric operations while adhering to best practices in numerical linear algebra. Comprehensive experimental results on both LLM and diffusion model architectures demonstrate that our approach yields consistent and noticeable improvements in convergence speed and final task performance over both standard LoRA and its state-of-the-art modifications.
♻ ☆ Prompt Tuning Decision Transformers with Structured and Scalable Bandits NeurIPS 2025
Prompt tuning has emerged as a key technique for adapting large pre-trained Decision Transformers (DTs) in offline Reinforcement Learning (RL), particularly in multi-task and few-shot settings. The Prompting Decision Transformer (PDT) enables task generalization via trajectory prompts sampled uniformly from expert demonstrations -- without accounting for prompt informativeness. In this work, we propose a bandit-based prompt-tuning method that learns to construct optimal trajectory prompts from demonstration data at inference time. We devise a structured bandit architecture operating in the trajectory prompt space, achieving linear rather than combinatorial scaling with prompt size. Additionally, we show that the pre-trained PDT itself can serve as a powerful feature extractor for the bandit, enabling efficient reward modeling across various environments. We theoretically establish regret bounds and demonstrate empirically that our method consistently enhances performance across a wide range of tasks, high-dimensional environments, and out-of-distribution scenarios, outperforming existing baselines in prompt tuning.
comment: Accepted at NeurIPS 2025
♻ ☆ Beyond Needle(s) in the Embodied Haystack: Environment, Architecture, and Training Considerations for Long Context Reasoning
We introduce $\infty$-THOR, a new framework for long-horizon embodied tasks that advances long-context understanding in embodied AI. $\infty$-THOR provides: (1) a generation framework for synthesizing scalable, reproducible, and unlimited long-horizon trajectories; (2) a novel embodied QA task, Needle(s) in the Embodied Haystack, where multiple scattered clues across extended trajectories test agents' long-context reasoning ability; and (3) a long-horizon dataset and benchmark suite featuring complex tasks that span hundreds of environment steps, each paired with ground-truth action sequences. To enable this capability, we explore architectural adaptations, including interleaved Goal-State-Action modeling, context extension techniques, and Context Parallelism, to equip LLM-based agents for extreme long-context reasoning and interaction. Experimental results and analyses highlight the challenges posed by our benchmark and provide insights into training strategies and model behaviors under long-horizon conditions. Our work provides a foundation for the next generation of embodied AI systems capable of robust, long-term reasoning and planning.
♻ ☆ Vector-Valued Reproducing Kernel Banach Spaces for Neural Networks and Operators
Recently, there has been growing interest in characterizing the function spaces underlying neural networks. While shallow and deep scalar-valued neural networks have been linked to scalar-valued reproducing kernel Banach spaces (RKBS), $\mathbb{R}^d$-valued neural networks and neural operator models remain less understood in the RKBS setting. To address this gap, we develop a general definition of vector-valued RKBS (vv-RKBS), which inherently includes the associated reproducing kernel. Our construction extends existing definitions by avoiding restrictive assumptions such as symmetric kernel domains, finite-dimensional output spaces, reflexivity, or separability, while still recovering familiar properties of vector-valued reproducing kernel Hilbert spaces (vv-RKHS). We then show that shallow $\mathbb{R}^d$-valued neural networks are elements of a specific vv-RKBS, namely an instance of the integral and neural vv-RKBS. To also explore the functional structure of neural operators, we analyze the DeepONet and Hypernetwork architectures and demonstrate that they too belong to an integral and neural vv-RKBS. In all cases, we establish a Representer Theorem, showing that optimization over these function spaces recovers the corresponding neural architectures.
♻ ☆ Achieving More Human Brain-Like Vision via Human EEG Representational Alignment
Despite advancements in artificial intelligence, object recognition models still lag behind in emulating visual information processing in human brains. Recent studies have highlighted the potential of using neural data to mimic brain processing; however, these often rely on invasive neural recordings from non-human subjects, leaving a critical gap in understanding human visual perception. Addressing this gap, we present, 'Re(presentational)Al(ignment)net', a vision model aligned with human brain activity based on non-invasive EEG, demonstrating a significantly higher similarity to human brain representations. Our innovative image-to-brain multi-layer encoding framework advances human neural alignment by optimizing multiple model layers and enabling the model to efficiently learn and mimic the human brain's visual representational patterns across object categories and different modalities. Our findings suggest that ReAlnets better align artificial neural networks with human brain representations, making it more similar to human brain processing than traditional computer vision models, which takes an important step toward bridging the gap between artificial and human vision and achieving more brain-like artificial intelligence systems.
♻ ☆ Ultra-Fast Language Generation via Discrete Diffusion Divergence Instruct
Fast and high-quality language generation is the holy grail that people pursue in the age of AI. In this work, we introduce Discrete Diffusion Divergence Instruct (DiDi-Instruct), a training-based method that initializes from a pre-trained (masked) discrete diffusion language model (dLLM) and distills a few-step student for fast generation. The resulting DiDi-Instruct model achieves comparable or superior performance to its dLLM teacher and the GPT-2 baseline while enabling up to 64$\times$ acceleration. The theoretical foundation of DiDi-Instruct is a novel framework based on integral KL-divergence minimization, which yields a practical training algorithm. We further introduce grouped reward normalization, intermediate-state matching, and the reward-guided ancestral sampler that significantly improve training stability, model coverage, and inference quality. On OpenWebText, DiDi-Instruct achieves perplexity from 62.2 (8 NFEs) to 18.4 (128 NFEs), which outperforms prior accelerated dLLMs and GPT-2 baseline. These gains come with a negligible entropy loss (around $1\%$) and reduce additional training wall-clock time by more than $20\times$ compared to competing dLLM distillation methods. We further validate the robustness and effectiveness of DiDi-Instruct through extensive ablation studies, model scaling, and the generation of discrete protein sequences. In conclusion, DiDi-Instruct is an efficient yet effective distillation method, enabling language generation in the blink of an eye. We will release both code and models at github.com/haoyangzheng-ai/didi-instruct.
comment: 56 pages, 7 figures, 7 tables
♻ ☆ A Likelihood Based Approach to Distribution Regression Using Conditional Deep Generative Models
In this work, we explore the theoretical properties of conditional deep generative models under the statistical framework of distribution regression where the response variable lies in a high-dimensional ambient space but concentrates around a potentially lower-dimensional manifold. More specifically, we study the large-sample properties of a likelihood-based approach for estimating these models. Our results lead to the convergence rate of a sieve maximum likelihood estimator (MLE) for estimating the conditional distribution (and its devolved counterpart) of the response given predictors in the Hellinger (Wasserstein) metric. Our rates depend solely on the intrinsic dimension and smoothness of the true conditional distribution. These findings provide an explanation of why conditional deep generative models can circumvent the curse of dimensionality from the perspective of statistical foundations and demonstrate that they can learn a broader class of nearly singular conditional distributions. Our analysis also emphasizes the importance of introducing a small noise perturbation to the data when they are supported sufficiently close to a manifold. Finally, in our numerical studies, we demonstrate the effective implementation of the proposed approach using both synthetic and real-world datasets, which also provide complementary validation to our theoretical findings.
comment: arXiv admin note: text overlap with arXiv:1708.06633 by other authors
♻ ☆ Alternating Training-based Label Smoothing Enhances Prompt Generalization
Recent advances in pre-trained vision-language models have demonstrated remarkable zero-shot generalization capabilities. To further enhance these models' adaptability to various downstream tasks, prompt tuning has emerged as a parameter-efficient fine-tuning method. However, despite its efficiency, the generalization ability of prompt remains limited. In contrast, label smoothing (LS) has been widely recognized as an effective regularization technique that prevents models from becoming over-confident and improves their generalization. This inspires us to explore the integration of LS with prompt tuning. However, we have observed that the vanilla LS even weakens the generalization ability of prompt tuning. To address this issue, we propose the Alternating Training-based Label Smoothing (ATLaS) method, which alternately trains with standard one-hot labels and soft labels generated by LS to supervise the prompt tuning. Moreover, we introduce two types of efficient offline soft labels, including Class-wise Soft Labels (CSL) and Instance-wise Soft Labels (ISL), to provide inter-class or instance-class relationships for prompt tuning. The theoretical properties of the proposed ATLaS method are analyzed. Extensive experiments demonstrate that the proposed ATLaS method, combined with CSL and ISL, consistently enhances the generalization performance of prompt tuning. Moreover, the proposed ATLaS method exhibits high compatibility with prevalent prompt tuning methods, enabling seamless integration into existing methods.
♻ ☆ The Illusion of Readiness: Stress Testing Large Frontier Models on Multimodal Medical Benchmarks
Large frontier models like GPT-5 now achieve top scores on medical benchmarks. But our stress tests tell a different story. Leading systems often guess correctly even when key inputs like images are removed, flip answers under trivial prompt changes, and fabricate convincing yet flawed reasoning. These aren't glitches; they expose how today's benchmarks reward test-taking tricks over medical understanding. We evaluate six flagship models across six widely used benchmarks and find that high leaderboard scores hide brittleness and shortcut learning. Through clinician-guided rubric evaluation, we show that benchmarks vary widely in what they truly measure yet are treated interchangeably, masking failure modes. We caution that medical benchmark scores do not directly reflect real-world readiness. If we want AI to earn trust in healthcare, we must demand more than leaderboard wins and must hold systems accountable for robustness, sound reasoning, and alignment with real medical demands.
comment: 35 pages
♻ ☆ Minimax and Bayes Optimal Best-Arm Identification
This study investigates minimax and Bayes optimal strategies in fixed-budget best-arm identification. We consider an adaptive procedure consisting of a sampling phase followed by a recommendation phase, and we design an adaptive experiment within this framework to efficiently identify the best arm, defined as the one with the highest expected outcome. In our proposed strategy, the sampling phase consists of two stages. The first stage is a pilot phase, in which we allocate each arm uniformly in equal proportions to eliminate clearly suboptimal arms and estimate outcome variances. In the second stage, arms are allocated in proportion to the variances estimated during the first stage. After the sampling phase, the procedure enters the recommendation phase, where we select the arm with the highest sample mean as our estimate of the best arm. We prove that this single strategy is simultaneously asymptotically minimax and Bayes optimal for the simple regret, with upper bounds that coincide exactly with our lower bounds, including the constant terms.
♻ ☆ Learning to Interact in World Latent for Team Coordination
This work presents a novel representation learning framework, interactive world latent (IWoL), to facilitate team coordination in multi-agent reinforcement learning (MARL). Building effective representation for team coordination is a challenging problem, due to the intricate dynamics emerging from multi-agent interaction and incomplete information induced by local observations. Our key insight is to construct a learnable representation space that jointly captures inter-agent relations and task-specific world information by directly modeling communication protocols. This representation, we maintain fully decentralized execution with implicit coordination, all while avoiding the inherent drawbacks of explicit message passing, e.g., slower decision-making, vulnerability to malicious attackers, and sensitivity to bandwidth constraints. In practice, our representation can be used not only as an implicit latent for each agent, but also as an explicit message for communication. Across four challenging MARL benchmarks, we evaluate both variants and show that IWoL provides a simple yet powerful key for team coordination. Moreover, we demonstrate that our representation can be combined with existing MARL algorithms to further enhance their performance.
♻ ☆ PhyloLM : Inferring the Phylogeny of Large Language Models and Predicting their Performances in Benchmarks
This paper introduces PhyloLM, a method adapting phylogenetic algorithms to Large Language Models (LLMs) to explore whether and how they relate to each other and to predict their performance characteristics. Our method calculates a phylogenetic distance metric based on the similarity of LLMs' output. The resulting metric is then used to construct dendrograms, which satisfactorily capture known relationships across a set of 111 open-source and 45 closed models. Furthermore, our phylogenetic distance predicts performance in standard benchmarks, thus demonstrating its functional validity and paving the way for a time and cost-effective estimation of LLM capabilities. To sum up, by translating population genetic concepts to machine learning, we propose and validate a tool to evaluate LLM development, relationships and capabilities, even in the absence of transparent training information.
♻ ☆ A Multi-Agent LLM Defense Pipeline Against Prompt Injection Attacks
Prompt injection attacks represent a major vulnerability in Large Language Model (LLM) deployments, where malicious instructions embedded in user inputs can override system prompts and induce unintended behaviors. This paper presents a novel multi-agent defense framework that employs specialized LLM agents in coordinated pipelines to detect and neutralize prompt injection attacks in real-time. We evaluate our approach using two distinct architectures: a sequential chain-of-agents pipeline and a hierarchical coordinator-based system. Our comprehensive evaluation on 55 unique prompt injection attacks, grouped into 8 categories and totaling 400 attack instances across two LLM platforms (ChatGLM and Llama2), demonstrates significant security improvements. Without defense mechanisms, baseline Attack Success Rates (ASR) reached 30% for ChatGLM and 20% for Llama2. Our multi-agent pipeline achieved 100% mitigation, reducing ASR to 0% across all tested scenarios. The framework demonstrates robustness across multiple attack categories including direct overrides, code execution attempts, data exfiltration, and obfuscation techniques, while maintaining system functionality for legitimate queries.
comment: IEEE Conference standard paper
♻ ☆ First Hallucination Tokens Are Different from Conditional Ones
Hallucination, the generation of untruthful content, is one of the major concerns regarding foundational models. Detecting hallucinations at the token level is vital for real-time filtering and targeted correction, yet the variation of hallucination signals within token sequences is not fully understood. Leveraging the RAGTruth corpus with token-level annotations and reproduced logits, we analyse how these signals depend on a token's position within hallucinated spans, contributing to an improved understanding of token-level hallucination. Our results show that the first hallucinated token carries a stronger signal and is more detectable than conditional tokens. We release our analysis framework, along with code for logit reproduction and metric computation at https://github.com/jakobsnl/RAGTruth\_Xtended.
comment: 4.5 pages, 3 figures, Dataset, Knowledge Paper, Hallucination, Trustworthiness
♻ ☆ Fully Heteroscedastic Count Regression with Deep Double Poisson Networks ICML 2025
Neural networks capable of accurate, input-conditional uncertainty representation are essential for real-world AI systems. Deep ensembles of Gaussian networks have proven highly effective for continuous regression due to their ability to flexibly represent aleatoric uncertainty via unrestricted heteroscedastic variance, which in turn enables accurate epistemic uncertainty estimation. However, no analogous approach exists for count regression, despite many important applications. To address this gap, we propose the Deep Double Poisson Network (DDPN), a novel neural discrete count regression model that outputs the parameters of the Double Poisson distribution, enabling arbitrarily high or low predictive aleatoric uncertainty for count data and improving epistemic uncertainty estimation when ensembled. We formalize and prove that DDPN exhibits robust regression properties similar to heteroscedastic Gaussian models via learnable loss attenuation, and introduce a simple loss modification to control this behavior. Experiments on diverse datasets demonstrate that DDPN outperforms current baselines in accuracy, calibration, and out-of-distribution detection, establishing a new state-of-the-art in deep count regression.
comment: Forty-Second International Conference on Machine Learning (ICML 2025)
♻ ☆ A Closer Look at Model Collapse: From a Generalization-to-Memorization Perspective NeurIPS 2025
The widespread use of diffusion models has led to an abundance of AI-generated data, raising concerns about model collapse -- a phenomenon in which recursive iterations of training on synthetic data lead to performance degradation. Prior work primarily characterizes this collapse via variance shrinkage or distribution shift, but these perspectives miss practical manifestations of model collapse. This paper identifies a transition from generalization to memorization during model collapse in diffusion models, where models increasingly replicate training data instead of generating novel content during iterative training on synthetic samples. This transition is directly driven by the declining entropy of the synthetic training data produced in each training cycle, which serves as a clear indicator of model degradation. Motivated by this insight, we propose an entropy-based data selection strategy to mitigate the transition from generalization to memorization and alleviate model collapse. Empirical results show that our approach significantly enhances visual quality and diversity in recursive generation, effectively preventing collapse.
comment: NeurIPS 2025 Spotlight paper
♻ ☆ SpargeAttention: Accurate and Training-free Sparse Attention Accelerating Any Model Inference ICML
An efficient attention implementation is essential for large models due to its quadratic time complexity. Fortunately, attention commonly exhibits sparsity, i.e., many values in the attention map are near zero, allowing for the omission of corresponding computations. Many studies have utilized the sparse pattern to accelerate attention. However, most existing works focus on optimizing attention within specific models by exploiting certain sparse patterns of the attention map. A universal sparse attention that guarantees both the speedup and end-to-end performance of diverse models remains elusive. In this paper, we propose SpargeAttn, a universal sparse and quantized attention for any model. Our method uses a two-stage online filter: in the first stage, we rapidly and accurately predict the attention map, enabling the skip of some matrix multiplications in attention. In the second stage, we design an online softmax-aware filter that incurs no extra overhead and further skips some matrix multiplications. Experiments show that our method significantly accelerates diverse models, including language, image, and video generation, without sacrificing end-to-end metrics. The codes are available at https://github.com/thu-ml/SpargeAttn.
comment: @inproceedings{zhang2025spargeattn, title={Spargeattn: Accurate sparse attention accelerating any model inference}, author={Zhang, Jintao and Xiang, Chendong and Huang, Haofeng and Wei, Jia and Xi, Haocheng and Zhu, Jun and Chen, Jianfei}, booktitle={International Conference on Machine Learning (ICML)}, year={2025} }
♻ ☆ SageAttention2: Efficient Attention with Thorough Outlier Smoothing and Per-thread INT4 Quantization ICML
Although quantization for linear layers has been widely used, its application to accelerate the attention process remains limited. To further enhance the efficiency of attention computation compared to SageAttention while maintaining precision, we propose SageAttention2, which utilizes significantly faster 4-bit matrix multiplication (Matmul) alongside additional precision-enhancing techniques. First, we propose to quantize matrices $(Q, K)$ to INT4 in a hardware-friendly thread-level granularity and quantize matrices $(\widetilde P, V)$ to FP8. Second, we propose a method to smooth $Q$, enhancing the accuracy of INT4 $QK^\top$. Third, we propose a two-level accumulation strategy for $\widetilde PV$ to enhance the accuracy of FP8 $\widetilde PV$. The operations per second (OPS) of SageAttention2 surpass FlashAttention2 and xformers by about 3x and 4.5x on RTX4090, respectively. Moreover, SageAttention2 matches the speed of FlashAttention3(fp8) on the Hopper GPUs, while delivering much higher accuracy. Comprehensive experiments confirm that our approach incurs negligible end-to-end metrics loss across diverse models, including those for language, image, and video generation. The code is available at https://github.com/thu-ml/SageAttention.
comment: @inproceedings{zhang2024sageattention2, title={Sageattention2: Efficient attention with thorough outlier smoothing and per-thread int4 quantization}, author={Zhang, Jintao and Huang, Haofeng and Zhang, Pengle and Wei, Jia and Zhu, Jun and Chen, Jianfei}, booktitle={International Conference on Machine Learning (ICML)}, year={2025} }
♻ ☆ SageAttention: Accurate 8-Bit Attention for Plug-and-play Inference Acceleration ICLR
The transformer architecture predominates across various models. As the heart of the transformer, attention has a computational complexity of $O(N^2)$, compared to $O(N)$ for linear transformations. When handling large sequence lengths, attention becomes the primary time-consuming component. Although quantization has proven to be an effective method for accelerating model inference, existing quantization methods primarily focus on optimizing the linear layer. In response, we first analyze the feasibility of quantization in attention detailedly. Following that, we propose SageAttention, a highly efficient and accurate quantization method for attention. The OPS (operations per second) of our approach outperforms FlashAttention2 and xformers by about 2.1 times and 2.7 times, respectively. SageAttention also achieves superior accuracy performance over FlashAttention3. Comprehensive experiments confirm that our approach incurs almost no end-to-end metrics loss across diverse models, including those for large language processing, image generation, and video generation. The codes are available at https://github.com/thu-ml/SageAttention.
comment: @inproceedings{zhang2025sageattention, title={SageAttention: Accurate 8-Bit Attention for Plug-and-play Inference Acceleration}, author={Zhang, Jintao and Wei, Jia and Zhang, Pengle and Zhu, Jun and Chen, Jianfei}, booktitle={International Conference on Learning Representations (ICLR)}, year={2025} }
♻ ☆ GRID: Scalable Task-Agnostic Prompt-Based Continual Learning for Language Models
Prompt-based continual learning (CL) provides a parameter-efficient approach for adapting large language models (LLMs) across task sequences. However, most existing methods rely on task-aware inference and maintain a growing set of task-specific prompts, which introduces two major challenges: (1) severe performance degradation on earlier tasks under task-agnostic inference, and (2) limited scalability due to prompt memory accumulation as task sequences grow. In this paper, we present GRID, a unified framework designed to address these challenges. GRID incorporates a decoding mechanism that enhances backward transfer by leveraging representative inputs, automatic task identification, and constrained decoding. Furthermore, it employs a gradient-guided prompt selection strategy to compress less informative prompts into a single aggregated representation, ensuring scalable and memory-efficient continual learning. Extensive experiments on long-sequence and negative transfer benchmarks show that GRID improves average accuracy and backward transfer, achieves competitive forward transfer, and substantially reduces prompt memory usage.
♻ ☆ Not All Rollouts are Useful: Down-Sampling Rollouts in LLM Reinforcement Learning
Reinforcement learning with verifiable rewards (RLVR) has emerged as the leading approach for enhancing reasoning capabilities in large language models. However, it faces a fundamental compute and memory asymmetry: rollout generation is embarrassingly parallel and memory-light, whereas policy updates are communication-heavy and memory-intensive. To address this, we introduce PODS (Policy Optimization with Down-Sampling), which decouples rollout generation from policy updates by training only on a strategically selected subset of rollouts, maintaining learning quality while dramatically reducing update costs. We propose a principled subset selection criterion, max-variance down-sampling, that maximizes reward diversity, and provide an efficient $O(n\log n)$ implementation. Empirically, Group Relative Policy Optimization (GRPO) with PODS achieves the peak test accuracy of vanilla GRPO at least $\mathbf{1.7\times}$ faster across the different reasoning benchmarks and hardware configurations we tested.
comment: 17 pages, 8 figures
♻ ☆ Ambiguity in LLMs is a concept missing problem
Ambiguity in natural language is a significant obstacle for achieving accurate text to structured data mapping through large language models (LLMs), which affects the performance of tasks such as mapping text to agentic tool calling and text-to-SQL queries. Existing methods to ambiguity handling either rely on the ReACT framework to obtain correct mappings through trial and error, or on supervised fine-tuning to bias models toward specific tasks. In this paper, we adopt a different approach that characterizes representation differences of ambiguous text in the latent space and leverages these differences to identify ambiguity before mapping them to structured data. To detect sentence-level ambiguity, we focus on the relationship between ambiguous questions and their interpretations. Unlike distances calculated by dense embeddings, we introduce a new distance measure based on a path kernel over concepts. With this measurement, we identify patterns to distinguish ambiguous from unambiguous questions. Furthermore, we propose a method for improving LLM performance on ambiguous agentic tool calling through missing concept prediction. Both achieve state-of-the-art results.
comment: 17 pages, 11 figures, title updated
♻ ☆ Graph Transformer Networks for Accurate Band Structure Prediction: An End-to-End Approach
Predicting electronic band structures from crystal structures is crucial for understanding structure-property correlations in materials science. First-principles approaches are accurate but computationally intensive. Recent years, machine learning (ML) has been extensively applied to this field, while existing ML models predominantly focus on band gap predictions or indirect band structure estimation via solving predicted Hamiltonians. An end-to-end model to predict band structure accurately and efficiently is still lacking. Here, we introduce a graph Transformer-based end-to-end approach that directly predicts band structures from crystal structures with high accuracy. Our method leverages the continuity of the k-path and treat continuous bands as a sequence. We demonstrate that our model not only provides accurate band structure predictions but also can derive other properties (such as band gap, band center, and band dispersion) with high accuracy. We verify the model performance on large and diverse datasets.
♻ ☆ Stackelberg Coupling of Online Representation Learning and Reinforcement Learning
Deep Q-learning jointly learns representations and values within monolithic networks, promising beneficial co-adaptation between features and value estimates. Although this architecture has attained substantial success, the coupling between representation and value learning creates instability as representations must constantly adapt to non-stationary value targets, while value estimates depend on these shifting representations. This is compounded by high variance in bootstrapped targets, which causes bias in value estimation in off-policy methods. We introduce Stackelberg Coupled Representation and Reinforcement Learning (SCORER), a framework for value-based RL that views representation and Q-learning as two strategic agents in a hierarchical game. SCORER models the Q-function as the leader, which commits to its strategy by updating less frequently, while the perception network (encoder) acts as the follower, adapting more frequently to learn representations that minimize Bellman error variance given the leader's committed strategy. Through this division of labor, the Q-function minimizes MSBE while perception minimizes its variance, thereby reducing bias accordingly, with asymmetric updates allowing stable co-adaptation, unlike simultaneous parameter updates in monolithic solutions. Our proposed SCORER framework leads to a bi-level optimization problem whose solution is approximated by a two-timescale algorithm that creates an asymmetric learning dynamic between the two players. Extensive experiments on DQN and its variants demonstrate that gains stem from algorithmic insight rather than model complexity.
♻ ☆ Neural Theorem Proving: Generating and Structuring Proofs for Formal Verification
Formally verifying properties of software code has been a highly desirable task, especially with the emergence of LLM-generated code. In the same vein, they provide an interesting avenue for the exploration of formal verification and mechanistic interpretability. Since the introduction of code-specific models, despite their successes in generating code in Lean4 and Isabelle, the task of generalized theorem proving still remains far from being fully solved and will be a benchmark for reasoning capability in LLMs. In this work, we introduce a framework that generates whole proofs in a formal language to be used within systems that utilize the power of built-in tactics and off-the-shelf automated theorem provers. Our framework includes 3 components: generating natural language statements of the code to be verified, an LLM that generates formal proofs for the given statement, and a module employing heuristics for building the final proof. To train the LLM, we employ a 2-stage fine-tuning process, where we first use SFT-based training to enable the model to generate syntactically correct Isabelle code and then RL-based training that encourages the model to generate proofs verified by a theorem prover. We validate our framework using the miniF2F-test benchmark and the Isabelle proof assistant and design a use case to verify the correctness of the AWS S3 bucket access policy code. We also curate a dataset based on the FVEL\textsubscript{\textnormal{ER}} dataset for future training tasks.
comment: Accepted to the Proceedings of the 19th Conference on Neurosymbolic Learning and Reasoning (NeSy 2025)
♻ ☆ PaECTER: Patent-level Representation Learning using Citation-informed Transformers
PaECTER is an open-source document-level encoder specific for patents. We fine-tune BERT for Patents with examiner-added citation information to generate numerical representations for patent documents. PaECTER performs better in similarity tasks than current state-of-the-art models used in the patent domain. More specifically, our model outperforms the patent specific pre-trained language model (BERT for Patents) and general-purpose text embedding models (e.g., E5, GTE, and BGE) on our patent citation prediction test dataset on different rank evaluation metrics. PaECTER predicts at least one most similar patent at a rank of 1.32 on average when compared against 25 irrelevant patents. Numerical representations generated by PaECTER from patent text can be used for downstream tasks such as classification, tracing knowledge flows, or semantic similarity search. Semantic similarity search is especially relevant in the context of prior art search for both inventors and patent examiners.
comment: 8 pages, 3 figures, 4 tables
♻ ☆ AgentMisalignment: Measuring the Propensity for Misaligned Behaviour in LLM-Based Agents NeurIPS 2025
As Large Language Model (LLM) agents become more widespread, associated misalignment risks increase. While prior research has studied agents' ability to produce harmful outputs or follow malicious instructions, it remains unclear how likely agents are to spontaneously pursue unintended goals in realistic deployments. In this work, we approach misalignment as a conflict between the internal goals pursued by the model and the goals intended by its deployer. We introduce a misalignment propensity benchmark, \textsc{AgentMisalignment}, a benchmark suite designed to evaluate the propensity of LLM agents to misalign in realistic scenarios. Evaluations cover behaviours such as avoiding oversight, resisting shutdown, sandbagging, and power-seeking. Testing frontier models, we find that more capable agents tend to exhibit higher misalignment on average. We also systematically vary agent personalities through different system prompts and observe that persona characteristics can strongly and unpredictably influence misalignment, sometimes more than the choice of model itself. Our results reveal the limitations of current alignment methods for autonomous LLM agents and underscore the need to rethink misalignment in realistic deployment settings.
comment: Prepint, under review for NeurIPS 2025
♻ ☆ A Framework for Double-Blind Federated Adaptation of Foundation Models ICCV 2025
Foundation models (FMs) excel in zero-shot tasks but benefit from task-specific adaptation. However, privacy concerns prevent data sharing among multiple data owners, and proprietary restrictions prevent the learning service provider (LSP) from sharing the FM. In this work, we propose BlindFed, a framework enabling collaborative FM adaptation while protecting both parties: data owners do not access the FM or each other's data, and the LSP does not see sensitive task data. BlindFed relies on fully homomorphic encryption (FHE) and consists of three key innovations: (i) FHE-friendly architectural modifications via polynomial approximations and low-rank adapters, (ii) a two-stage split learning approach combining offline knowledge distillation and online encrypted inference for adapter training without backpropagation through the FM, and (iii) a privacy-boosting scheme using sample permutations and stochastic block sampling to mitigate model extraction attacks. Empirical results on four image classification datasets demonstrate the practical feasibility of the BlindFed framework, albeit at a high communication cost and large computational complexity for the LSP.
comment: Accepted to ICCV 2025
♻ ☆ Adversarial Attacks to Latent Representations of Distributed Neural Networks in Split Computing
Distributed deep neural networks (DNNs) have been shown to reduce the computational burden of mobile devices and decrease the end-to-end inference latency in edge computing scenarios. While distributed DNNs have been studied, to the best of our knowledge, the resilience of distributed DNNs to adversarial action remains an open problem. In this paper, we fill the existing research gap by rigorously analyzing the robustness of distributed DNNs against adversarial action. We cast this problem in the context of information theory and rigorously proved that (i) the compressed latent dimension improves the robustness but also affect task-oriented performance; and (ii) the deeper splitting point enhances the robustness but also increases the computational burden. These two trade-offs provide a novel perspective to design robust distributed DNN. To test our theoretical findings, we perform extensive experimental analysis by considering 6 different DNN architectures, 6 different approaches for distributed DNN and 10 different adversarial attacks using the ImageNet-1K dataset.
comment: Accepted in Elsevier Computer Networks
♻ ☆ Gauges and Accelerated Optimization over Smooth and/or Strongly Convex Sets
We consider feasibility and constrained optimization problems defined over smooth and/or strongly convex sets. These notions mirror their popular function counterparts but are much less explored in the first-order optimization literature. We propose new scalable, projection-free, accelerated first-order methods in these settings. Our methods avoid linear optimization or projection oracles, only using cheap one-dimensional linesearches and normal vector computations. Despite this, we derive optimal accelerated convergence guarantees of $O(1/T)$ for strongly convex problems, $O(1/T^2)$ for smooth problems, and accelerated linear convergence given both. Our algorithms and analysis are based on novel characterizations of the Minkowski gauge of smooth and/or strongly convex sets, which may be of independent interest: although the gauge is neither smooth nor strongly convex, we show the gauge squared inherits any structure present in the set.
comment: 28pages (45pages with references and appendix)
♻ ☆ Replicable Reinforcement Learning with Linear Function Approximation
Replication of experimental results has been a challenge faced by many scientific disciplines, including the field of machine learning. Recent work on the theory of machine learning has formalized replicability as the demand that an algorithm produce identical outcomes when executed twice on different samples from the same distribution. Provably replicable algorithms are especially interesting for reinforcement learning (RL), where algorithms are known to be unstable in practice. While replicable algorithms exist for tabular RL settings, extending these guarantees to more practical function approximation settings has remained an open problem. In this work, we make progress by developing replicable methods for linear function approximation in RL. We first introduce two efficient algorithms for replicable random design regression and uncentered covariance estimation, each of independent interest. We then leverage these tools to provide the first provably efficient replicable RL algorithms for linear Markov decision processes in both the generative model and episodic settings. Finally, we evaluate our algorithms experimentally and show how they can inspire more consistent neural policies.
♻ ☆ Integration of Calcium Imaging Traces via Deep Generative Modeling ICASSP 2026
Calcium imaging allows for the parallel measurement of large neuronal populations in a spatially resolved and minimally invasive manner, and has become a gold-standard for neuronal functionality. While deep generative models have been successfully applied to study the activity of neuronal ensembles, their potential for learning single-neuron representations from calcium imaging fluorescence traces remains largely unexplored, and batch effects remain an important hurdle. To address this, we explore supervised variational autoencoder architectures that learn compact representations of individual neurons from fluorescent traces without relying on spike inference algorithms. We find that this approach outperforms state-of-the-art models, preserving biological variability while mitigating batch effects. Across simulated and experimental datasets, this framework enables robust visualization, clustering, and interpretation of single-neuron dynamics.
comment: Submitted to ICASSP 2026
♻ ☆ The Inhibitor: ReLU and Addition-Based Attention for Efficient Transformers under Fully Homomorphic Encryption on the Torus
To enhance the computational efficiency of quantized Transformers, we replace the dot-product and Softmax-based attention with an alternative mechanism involving addition and ReLU activation only. This side-steps the expansion to double precision often required by matrix multiplication and avoids costly Softmax evaluations but maintains much of the core functionality of conventional dot-product attention. It can enable more efficient execution and support larger quantized Transformer models on resource-constrained hardware or alternative arithmetic systems like homomorphic encryption. Training experiments on four common benchmark tasks show test set prediction scores comparable to those of conventional Transformers with dot-product attention. Our scaling experiments also suggest significant computational savings, both in plaintext and under encryption. In particular, we believe that the ReLU and addition-based attention mechanism examined in this paper may enable privacy-preserving AI applications operating under homomorphic encryption by avoiding the costly multiplication of encrypted variables.
comment: 6 pages, 4 tables
♻ ☆ Neural Logic Networks for Interpretable Classification
Traditional neural networks have an impressive classification performance, but what they learn cannot be inspected, verified or extracted. Neural Logic Networks on the other hand have an interpretable structure that enables them to learn a logical mechanism relating the inputs and outputs with AND and OR operations. We generalize these networks with NOT operations and biases that take into account unobserved data and develop a rigorous logical and probabilistic modeling in terms of concept combinations to motivate their use. We also propose a novel factorized IF-THEN rule structure for the model as well as a modified learning algorithm. Our method improves the state-of-the-art in Boolean networks discovery and is able to learn relevant, interpretable rules in tabular classification, notably on examples from the medical and industrial fields where interpretability has tangible value.
comment: 31 pages, 8 figures, pre-print, code available at https://github.com/VincentPerreault0/NeuralLogicNetworks
♻ ☆ Direct Preference Optimization for Adaptive Concept-based Explanations
Concept-based explanation methods aim at making machine learning models more transparent by finding the most important semantic features of an input (e.g., colors, patterns, shapes) for a given prediction task. However, these methods generally ignore the communicative context of explanations, such as the preferences of a listener. For example, medical doctors understand explanations in terms of clinical markers, but patients may not, needing a different vocabulary to rationalize the same diagnosis. We address this gap with listener-adaptive explanations grounded in principles of pragmatic reasoning and the rational speech act. We introduce an iterative training procedure based on direct preference optimization where a speaker learns to compose explanations that maximize communicative utility for a listener. Our approach only needs access to pairwise preferences, which can be collected from human feedback, making it particularly relevant in real-world scenarios where a model of the listener may not be available. We demonstrate that our method is able to align speakers with the preferences of simulated listeners on image classification across three datasets, and further validate that pragmatic explanations generated with our method improve the classification accuracy of participants in a user study.
♻ ☆ Learning Dynamic Graph Embeddings with Neural Controlled Differential Equations
This paper focuses on representation learning for dynamic graphs with temporal interactions. A fundamental issue is that both the graph structure and the nodes own their own dynamics, and their blending induces intractable complexity in the temporal evolution over graphs. Drawing inspiration from the recent progress of physical dynamic models in deep neural networks, we propose Graph Neural Controlled Differential Equations (GN-CDEs), a continuous-time framework that jointly models node embeddings and structural dynamics by incorporating a graph enhanced neural network vector field with a time-varying graph path as the control signal. Our framework exhibits several desirable characteristics, including the ability to express dynamics on evolving graphs without piecewise integration, the capability to calibrate trajectories with subsequent data, and robustness to missing observations. Empirical evaluation on a range of dynamic graph representation learning tasks demonstrates the effectiveness of our proposed approach in capturing the complex dynamics of dynamic graphs.
comment: Accepted by TPAMI 2025
♻ ☆ Progressive Weight Loading: Accelerating Initial Inference and Gradually Boosting Performance on Resource-Constrained Environments
Deep learning models have become increasingly large and complex, resulting in higher memory consumption and computational demands. Consequently, model loading times and initial inference latency have increased, posing significant challenges in mobile and latency-sensitive environments where frequent model loading and unloading are required, which directly impacts user experience. While Knowledge Distillation (KD) offers a solution by compressing large teacher models into smaller student ones, it often comes at the cost of reduced performance. To address this trade-off, we propose Progressive Weight Loading (PWL), a novel technique that enables fast initial inference by first deploying a lightweight student model, then incrementally replacing its layers with those of a pre-trained teacher model. To support seamless layer substitution, we introduce a training method that not only aligns intermediate feature representations between student and teacher layers, but also improves the overall output performance of the student model. Our experiments on VGG, ResNet, and ViT architectures demonstrate that models trained with PWL maintain competitive distillation performance and gradually improve accuracy as teacher layers are loaded-matching the final accuracy of the full teacher model without compromising initial inference speed. This makes PWL particularly suited for dynamic, resource-constrained deployments where both responsiveness and performance are critical.
♻ ☆ Temporal Misalignment Attacks against Multimodal Perception in Autonomous Driving
Multimodal fusion (MMF) plays a critical role in the perception of autonomous driving, which primarily fuses camera and LiDAR streams for a comprehensive and efficient scene understanding. However, its strict reliance on precise temporal synchronization exposes it to new vulnerabilities. In this paper, we introduce DejaVu, an attack that exploits the in-vehicular network and induces delays across sensor streams to create subtle temporal misalignments, severely degrading downstream MMF-based perception tasks. Our comprehensive attack analysis across different models and datasets reveals the sensors' task-specific imbalanced sensitivities: object detection is overly dependent on LiDAR inputs, while object tracking is highly reliant on the camera inputs. Consequently, with a single-frame LiDAR delay, an attacker can reduce the car detection mAP by up to 88.5%, while with a three-frame camera delay, multiple object tracking accuracy (MOTA) for car drops by 73%. We further demonstrated two attack scenarios using an automotive Ethernet testbed for hardware-in-the-loop validation and the Autoware stack for end-to-end AD simulation, demonstrating the feasibility of the DejaVu attack and its severe impact, such as collisions and phantom braking.
comment: 15 pages
♻ ☆ The Geometry of LLM Quantization: GPTQ as Babai's Nearest Plane Algorithm
Quantizing the weights of large language models (LLMs) from 16-bit to lower bitwidth is the de facto approach to deploy massive transformers onto more affordable accelerators. While GPTQ emerged as one of the standard methods for one-shot post-training quantization at LLM scale, its inner workings are described as a sequence of ad-hoc algebraic updates that obscure geometric meaning or worst-case guarantees. In this work, we show that, when executed back-to-front (from the last to first dimension) for a linear layer, GPTQ is mathematically identical to Babai's nearest plane algorithm for the classical closest vector problem (CVP) on a lattice defined by the Hessian matrix of the layer's inputs. This equivalence is based on a sophisticated mathematical argument, and has two analytical consequences: first, the GPTQ error propagation step gains an intuitive geometric interpretation; second, GPTQ inherits the error upper bound of Babai's algorithm under the assumption that no weights are clipped. Leveraging this bound, we design post-training quantization methods that avoid clipping, and outperform the original GPTQ. In addition, we provide efficient GPU inference kernels for the resulting representation. Taken together, these results place GPTQ on a firm theoretical footing and open the door to importing decades of progress in lattice algorithms towards the design of future quantization algorithms for billion-parameter models.
♻ ☆ PortraitTalk: Towards Customizable One-Shot Audio-to-Talking Face Generation
Audio-driven talking face generation is a challenging task in digital communication. Despite significant progress in the area, most existing methods concentrate on audio-lip synchronization, often overlooking aspects such as visual quality, customization, and generalization that are crucial to producing realistic talking faces. To address these limitations, we introduce a novel, customizable one-shot audio-driven talking face generation framework, named PortraitTalk. Our proposed method utilizes a latent diffusion framework consisting of two main components: IdentityNet and AnimateNet. IdentityNet is designed to preserve identity features consistently across the generated video frames, while AnimateNet aims to enhance temporal coherence and motion consistency. This framework also integrates an audio input with the reference images, thereby reducing the reliance on reference-style videos prevalent in existing approaches. A key innovation of PortraitTalk is the incorporation of text prompts through decoupled cross-attention mechanisms, which significantly expands creative control over the generated videos. Through extensive experiments, including a newly developed evaluation metric, our model demonstrates superior performance over the state-of-the-art methods, setting a new standard for the generation of customizable realistic talking faces suitable for real-world applications.
♻ ☆ Balancing Multimodal Training Through Game-Theoretic Regularization
Multimodal learning holds promise for richer information extraction by capturing dependencies across data sources. Yet, current training methods often underperform due to modality competition, a phenomenon where modalities contend for training resources leaving some underoptimized. This raises a pivotal question: how can we address training imbalances, ensure adequate optimization across all modalities, and achieve consistent performance improvements as we transition from unimodal to multimodal data? This paper proposes the Multimodal Competition Regularizer (MCR), inspired by a mutual information (MI) decomposition designed to prevent the adverse effects of competition in multimodal training. Our key contributions are: 1) A game-theoretic framework that adaptively balances modality contributions by encouraging each to maximize its informative role in the final prediction 2) Refining lower and upper bounds for each MI term to enhance the extraction of both task-relevant unique and shared information across modalities. 3) Proposing latent space permutations for conditional MI estimation, significantly improving computational efficiency. MCR outperforms all previously suggested training strategies and simple baseline, clearly demonstrating that training modalities jointly leads to important performance gains on both synthetic and large real-world datasets. We release our code and models at https://github.com/kkontras/MCR.
comment: 23 pages, 7 figures, 6 tables, 1 algorithm
♻ ☆ CYCle: Choosing Your Collaborators Wisely to Enhance Collaborative Fairness in Decentralized Learning
Collaborative learning (CL) enables multiple participants to jointly train machine learning (ML) models on decentralized data sources without raw data sharing. While the primary goal of CL is to maximize the expected accuracy gain for each participant, it is also important to ensure that the gains are fairly distributed: no client should be negatively impacted, and gains should reflect contributions. Most existing CL methods require central coordination and focus only on gain maximization, overlooking fairness. In this work, we first show that the existing measure of collaborative fairness based on the correlation between accuracy values without and with collaboration has drawbacks because it does not account for negative collaboration gain. We argue that maximizing mean collaboration gain (MCG) while simultaneously minimizing the collaboration gain spread (CGS) is a fairer alternative. Next, we propose the CYCle protocol that enables individual participants in a private decentralized learning (PDL) framework to achieve this objective through a novel reputation scoring method based on gradient alignment between the local cross-entropy and distillation losses. We further extend the CYCle protocol to operate on top of gossip-based decentralized algorithms such as Gossip-SGD. We also theoretically show that CYCle performs better than standard FedAvg in a two-client mean estimation setting under high heterogeneity. Empirical experiments demonstrate the effectiveness of the CYCle protocol to ensure positive and fair collaboration gain for all participants, even in cases where the data distributions of participants are highly skewed.
comment: Published in TMLR 08/2025
♻ ☆ Deep Learning for Subspace Regression
It is often possible to perform reduced order modelling by specifying linear subspace which accurately captures the dynamics of the system. This approach becomes especially appealing when linear subspace explicitly depends on parameters of the problem. A practical way to apply such a scheme is to compute subspaces for a selected set of parameters in the computationally demanding offline stage and in the online stage approximate subspace for unknown parameters by interpolation. For realistic problems the space of parameters is high dimensional, which renders classical interpolation strategies infeasible or unreliable. We propose to relax the interpolation problem to regression, introduce several loss functions suitable for subspace data, and use a neural network as an approximation to high-dimensional target function. To further simplify a learning problem we introduce redundancy: in place of predicting subspace of a given dimension we predict larger subspace. We show theoretically that this strategy decreases the complexity of the mapping for elliptic eigenproblems with constant coefficients and makes the mapping smoother for general smooth function on the Grassmann manifold. Empirical results also show that accuracy significantly improves when larger-than-needed subspaces are predicted. With the set of numerical illustrations we demonstrate that subspace regression can be useful for a range of tasks including parametric eigenproblems, deflation techniques, relaxation methods, optimal control and solution of parametric partial differential equations.
♻ ☆ Mitigating Domain Shift in Federated Learning via Intra- and Inter-Domain Prototypes
Federated Learning (FL) has emerged as a decentralized machine learning technique, allowing clients to train a global model collaboratively without sharing private data. However, most FL studies ignore the crucial challenge of heterogeneous domains where each client has a distinct feature distribution, which is popular in real-world scenarios. Prototype learning, which leverages the mean feature vectors within the same classes, has become a prominent solution for federated learning under domain shift. However, existing federated prototype learning methods focus soley on inter-domain prototypes and neglect intra-domain perspectives. In this work, we introduce a novel federated prototype learning method, namely I$^2$PFL, which incorporates $\textbf{I}$ntra-domain and $\textbf{I}$nter-domain $\textbf{P}$rototypes, to mitigate domain shift from both perspectives and learn a generalized global model across multiple domains in federated learning. To construct intra-domain prototypes, we propose feature alignment with MixUp-based augmented prototypes to capture the diversity within local domains and enhance the generalization of local features. Additionally, we introduce a reweighting mechanism for inter-domain prototypes to generate generalized prototypes that reduce domain shift while providing inter-domain knowledge across multiple clients. Extensive experiments on the Digits, Office-10, and PACS datasets illustrate the superior performance of our method compared to other baselines.
comment: 10 pages, 8 figures, 6 tables
♻ ☆ Post Hoc Regression Refinement via Pairwise Rankings NeurIPS 2025
Accurate prediction of continuous properties is essential to many scientific and engineering tasks. Although deep-learning regressors excel with abundant labels, their accuracy deteriorates in data-scarce regimes. We introduce RankRefine, a model-agnostic, plug-and-play post hoc method that refines regression with expert knowledge coming from pairwise rankings. Given a query item and a small reference set with known properties, RankRefine combines the base regressor's output with a rank-based estimate via inverse variance weighting, requiring no retraining. In molecular property prediction task, RankRefine achieves up to 10% relative reduction in mean absolute error using only 20 pairwise comparisons obtained through a general-purpose large language model (LLM) with no finetuning. As rankings provided by human experts or general-purpose LLMs are sufficient for improving regression across diverse domains, RankRefine offers practicality and broad applicability, especially in low-data settings.
comment: NeurIPS 2025 camera-ready version
♻ ☆ VisualOverload: Probing Visual Understanding of VLMs in Really Dense Scenes
Is basic visual understanding really solved in state-of-the-art VLMs? We present VisualOverload, a slightly different visual question answering (VQA) benchmark comprising 2,720 question-answer pairs, with privately held ground-truth responses. Unlike prior VQA datasets that typically focus on near global image understanding, VisualOverload challenges models to perform simple, knowledge-free vision tasks in densely populated (or, overloaded) scenes. Our dataset consists of high-resolution scans of public-domain paintings that are populated with multiple figures, actions, and unfolding subplots set against elaborately detailed backdrops. We manually annotated these images with questions across six task categories to probe for a thorough understanding of the scene. We hypothesize that current benchmarks overestimate the performance of VLMs, and encoding and reasoning over details is still a challenging task for them, especially if they are confronted with densely populated scenes. Indeed, we observe that even the best model (o3) out of 37 tested models only achieves 19.6% accuracy on our hardest test split and overall 69.5% accuracy on all questions. Beyond a thorough evaluation, we complement our benchmark with an error analysis that reveals multiple failure modes, including a lack of counting skills, failure in OCR, and striking logical inconsistencies under complex tasks. Altogether, VisualOverload exposes a critical gap in current vision models and offers a crucial resource for the community to develop better models. Benchmark: http://paulgavrikov.github.io/visualoverload
♻ ☆ Rapid training of Hamiltonian graph networks using random features
Learning dynamical systems that respect physical symmetries and constraints remains a fundamental challenge in data-driven modeling. Integrating physical laws with graph neural networks facilitates principled modeling of complex N-body dynamics and yields accurate and permutation-invariant models. However, training graph neural networks with iterative, gradient-based optimization algorithms (e.g., Adam, RMSProp, LBFGS) often leads to slow training, especially for large, complex systems. In comparison to 15 different optimizers, we demonstrate that Hamiltonian Graph Networks (HGN) can be trained up to 600x faster--but with comparable accuracy--by replacing iterative optimization with random feature-based parameter construction. We show robust performance in diverse simulations, including N-body mass-spring and molecular systems in up to 3 dimensions and 10,000 particles with different geometries, while retaining essential physical invariances with respect to permutation, rotation, and translation. Our proposed approach is benchmarked using a NeurIPS 2022 Datasets and Benchmarks Track publication to further demonstrate its versatility. We reveal that even when trained on minimal 8-node systems, the model can generalize in a zero-shot manner to systems as large as 4096 nodes without retraining. Our work challenges the dominance of iterative gradient-descent-based optimization algorithms for training neural network models for physical systems.
comment: 10 pages, 6 figures, 3 tables, and an appendix
♻ ☆ Rethinking Layer-wise Model Merging through Chain of Merges
Fine-tuning pretrained models has become a standard pathway to achieve state-of-the-art performance across a wide range of domains, leading to a proliferation of task-specific model variants. As the number of such specialized models increases, merging them into a unified model without retraining has become a critical challenge. Existing merging techniques operate at the level of individual layers, thereby overlooking the inter-layer dependencies inherent in deep networks. We show that this simplification leads to distributional mismatches, particularly in methods that rely on intermediate activations, as changes in early layers are not properly propagated to downstream layers during merging. We identify these mismatches as a form of internal covariate shift, comparable to the phenomenon encountered in the initial phases of neural networks training. To address this, we propose Chain of Merges (CoM), a layer-wise merging procedure that sequentially merges weights across layers while sequentially updating activation statistics. By explicitly accounting for inter-layer interactions, CoM mitigates covariate shift and produces a coherent merged model through a series of conditionally optimal updates. Experiments on standard benchmarks demonstrate that CoM achieves state-of-the-art performance.
♻ ☆ Toward a Robust R2D2 Paradigm for Radio-interferometric Imaging: Revisiting Deep Neural Network Training and Architecture
The R2D2 Deep Neural Network (DNN) series was recently introduced for image formation in radio interferometry. It can be understood as a learned version of CLEAN, whose minor cycles are substituted with DNNs. We revisit R2D2 on the grounds of series convergence, training methodology, and DNN architecture, improving its robustness in terms of generalizability beyond training conditions, capability to deliver high data fidelity, and epistemic uncertainty. First, while still focusing on telescope-specific training, we enhance the learning process by randomizing Fourier sampling integration times, incorporating multiscan multinoise configurations, and varying imaging settings, including pixel resolution and visibility-weighting scheme. Second, we introduce a convergence criterion whereby the reconstruction process stops when the data residual is compatible with noise, rather than simply using all available DNNs. This not only increases the reconstruction efficiency by reducing its computational cost, but also refines training by pruning out the data/image pairs for which optimal data fidelity is reached before training the next DNN. Third, we substitute R2D2's early U-Net DNN with a novel architecture (U-WDSR) combining U-Net and WDSR, which leverages wide activation, dense skip connections, weight normalization, and low-rank convolution to improve feature reuse and reconstruction precision. As previously, R2D2 was trained for monochromatic intensity imaging with the Very Large Array at fixed $512 \times 512$ image size. Simulations on a wide range of inverse problems and a case study on real data reveal that the new R2D2 model consistently outperforms its earlier version in image reconstruction quality, data fidelity, and epistemic uncertainty.
comment: 18 pages, 6 figures
♻ ☆ On the Natural Gradient of the Evidence Lower Bound
This article studies the Fisher-Rao gradient, also referred to as the natural gradient, of the evidence lower bound (ELBO) which plays a central role in generative machine learning. It reveals that the gap between the evidence and its lower bound, the ELBO, has essentially a vanishing natural gradient within unconstrained optimization. As a result, maximization of the ELBO is equivalent to minimization of the Kullback-Leibler divergence from a target distribution, the primary objective function of learning. Building on this insight, we derive a condition under which this equivalence persists even when optimization is constrained to a model. This condition yields a geometric characterization, which we formalize through the notion of a cylindrical model.
♻ ☆ RoVerFly: Robust and Versatile Implicit Hybrid Control of Quadrotor-Payload Systems
Designing robust controllers for precise trajectory tracking with quadrotors is challenging due to nonlinear dynamics and underactuation, and becomes harder with flexible cable-suspended payloads that add degrees of freedom and hybrid dynamics. Classical model-based methods offer stability guarantees but require extensive tuning and often fail to adapt when the configuration changes-when a payload is added or removed, or when its mass or cable length varies. We present RoVerFly, a unified learning-based control framework where a single reinforcement learning (RL) policy functions as an implicit hybrid controller, managing complex dynamics without explicit mode detection or controller switching. Trained with task and domain randomization, the controller is resilient to disturbances and varying dynamics. It achieves strong zero-shot generalization across payload settings-including no payload as well as varying mass and cable length-without re-tuning, while retaining the interpretability and structure of a feedback tracking controller. Code and supplementary materials are available at https://github.com/mintaeshkim/roverfly.
comment: 8 pages, 5 figures
♻ ☆ Uncovering Challenges of Solving the Continuous Gromov-Wasserstein Problem
Recently, the Gromov-Wasserstein Optimal Transport (GWOT) problem has attracted the special attention of the ML community. In this problem, given two distributions supported on two (possibly different) spaces, one has to find the most isometric map between them. In the discrete variant of GWOT, the task is to learn an assignment between given discrete sets of points. In the more advanced continuous formulation, one aims at recovering a parametric mapping between unknown continuous distributions based on i.i.d. samples derived from them. The clear geometrical intuition behind the GWOT makes it a natural choice for several practical use cases, giving rise to a number of proposed solvers. Some of them claim to solve the continuous version of the problem. At the same time, GWOT is notoriously hard, both theoretically and numerically. Moreover, all existing continuous GWOT solvers still heavily rely on discrete techniques. Natural questions arise: to what extent do existing methods unravel the GWOT problem, what difficulties do they encounter, and under which conditions they are successful? Our benchmark paper is an attempt to answer these questions. We specifically focus on the continuous GWOT as the most interesting and debatable setup. We crash-test existing continuous GWOT approaches on different scenarios, carefully record and analyze the obtained results, and identify issues. Our findings experimentally testify that the scientific community is still missing a reliable continuous GWOT solver, which necessitates further research efforts. As the first step in this direction, we propose a new continuous GWOT method which does not rely on discrete techniques and partially solves some of the problems of the competitors.
♻ ☆ Training-Free Data Assimilation with GenCast
Data assimilation is widely used in many disciplines such as meteorology, oceanography, and robotics to estimate the state of a dynamical system from noisy observations. In this work, we propose a lightweight and general method to perform data assimilation using diffusion models pre-trained for emulating dynamical systems. Our method builds on particle filters, a class of data assimilation algorithms, and does not require any further training. As a guiding example throughout this work, we illustrate our methodology on GenCast, a diffusion-based model that generates global ensemble weather forecasts.
♻ ☆ Federated Dynamic Modeling and Learning for Spatiotemporal Data Forecasting
This paper presents an advanced Federated Learning (FL) framework for forecasting complex spatiotemporal data, improving upon recent state-of-the-art models. In the proposed approach, the original Gated Recurrent Unit (GRU) module within previous Dynamic Spatial--Temporal Graph Convolutional Recurrent Network (DSTGCRN) modeling is first replaced with a Long Short-Term Memory (LSTM) network, enabling the resulting model to more effectively capture long-term dependencies inherent to time series data. The resulting architecture significantly improves the model's capacity to handle complex temporal patterns in diverse forecasting applications. Furthermore, the proposed FL framework integrates a novel Client-Side Validation (CSV) mechanism, introducing a critical validation step at the client level before incorporating aggregated parameters from the central server into local models, ensuring only the most effective updates are retained and improving both the robustness and accuracy of the forecasting model across clients. The efficiency of our approach is demonstrated through extensive experiments on real-world applications, including public datasets for multimodal transport demand forecasting and private datasets for Origin-Destination (OD) matrix forecasting in urban areas. The results demonstrate substantial improvements over conventional methods, highlighting the framework's ability to capture complex spatiotemporal dependencies while preserving data privacy. This work not only provides a scalable and privacy-preserving solution for real-time, region-specific forecasting and management but also underscores the potential of leveraging distributed data sources in a FL context. We provide our algorithms as open-source on GitHub
♻ ☆ Distilling Calibration via Conformalized Credal Inference IJCNN 2025
Deploying artificial intelligence (AI) models on edge devices involves a delicate balance between meeting stringent complexity constraints, such as limited memory and energy resources, and ensuring reliable performance in sensitive decision-making tasks. One way to enhance reliability is through uncertainty quantification via Bayesian inference. This approach, however, typically necessitates maintaining and running multiple models in an ensemble, which may exceed the computational limits of edge devices. This paper introduces a low-complexity methodology to address this challenge by distilling calibration information from a more complex model. In an offline phase, predictive probabilities generated by a high-complexity cloud-based model are leveraged to determine a threshold based on the typical divergence between the cloud and edge models. At run time, this threshold is used to construct credal sets -- ranges of predictive probabilities that are guaranteed, with a user-selected confidence level, to include the predictions of the cloud model. The credal sets are obtained through thresholding of a divergence measure in the simplex of predictive probabilities. Experiments on visual and language tasks demonstrate that the proposed approach, termed Conformalized Distillation for Credal Inference (CD-CI), significantly improves calibration performance compared to low-complexity Bayesian methods, such as Laplace approximation, making it a practical and efficient solution for edge AI deployments.
comment: IJCNN 2025
♻ ☆ Entropic Risk Optimization in Discounted MDPs: Sample Complexity Bounds with a Generative Model
In this paper, we analyze the sample complexities of learning the optimal state-action value function $Q^*$ and an optimal policy $\pi^*$ in a finite discounted Markov decision process (MDP) where the agent has recursive entropic risk-preferences with risk-parameter $\beta\neq 0$ and where a generative model of the MDP is available. We provide and analyze a simple model based approach which we call model-based risk-sensitive $Q$-value-iteration (MB-RS-QVI) which leads to $(\varepsilon,\delta)$-PAC-bounds on $\|Q^*-Q^k\|$, and $\|V^*-V^{\pi_k}\|$ where $Q_k$ is the output of MB-RS-QVI after k iterations and $\pi_k$ is the greedy policy with respect to $Q_k$. Both PAC-bounds have exponential dependence on the effective horizon $\frac{1}{1-\gamma}$ and the strength of this dependence grows with the learners risk-sensitivity $|\beta|$. We also provide two lower bounds which shows that exponential dependence on $|\beta|\frac{1}{1-\gamma}$ is unavoidable in both cases. The lower bounds reveal that the PAC-bounds are tight in the parameters $S,A,\delta,\varepsilon$ and that unlike in the classical setting it is not possible to have polynomial dependence in all model parameters.
♻ ☆ Towards a Progress Bar for Reasoning: Progress Prediction in Large Reasoning Models
Reasoning models that produce long, hidden chains of thought, have emerged as powerful tools for reasoning-intensive and agentic tasks. However, as the time horizons at which these models can operate grow exponentially, it becomes increasingly difficult to know how much progress the model is making on a task, making it challenging for users to set appropriate expectations about completion time. By probing the internal representations of Large Language Models (LLMs), we find evidence that their reasoning progress can be quantified, with simple linear probes achieving 30\% accuracy over 10 progress classes and Mean Absolute Error (MAE) of 1.75. Rooted in this insight, we propose a two-stage fine-tuning method that trains existing reasoning models to explicitly generate progress estimates (0-100\%) during their reasoning process. We find that the predictions of our best fine-tuned language model for sequences below 16K tokens are on average 10\% from the true label.
♻ ☆ Out-of-Distribution Detection with Relative Angles
Deep learning systems deployed in real-world applications often encounter data that is different from their in-distribution (ID). A reliable model should ideally abstain from making decisions in this out-of-distribution (OOD) setting. Existing state-of-the-art methods primarily focus on feature distances, such as k-th nearest neighbors and distances to decision boundaries, either overlooking or ineffectively using in-distribution statistics. In this work, we propose a novel angle-based metric for OOD detection that is computed relative to the in-distribution structure. We demonstrate that the angles between feature representations and decision boundaries, viewed from the mean of in-distribution features, serve as an effective discriminative factor between ID and OOD data. We evaluate our method on nine ImageNet-pretrained models. Our approach achieves the lowest FPR in 5 out of 9 ImageNet models, obtains the best average FPR overall, and consistently ranking among the top 3 across all evaluated models. Furthermore, we highlight the benefits of contrastive representations by showing strong performance with ResNet SCL and CLIP architectures. Finally, we demonstrate that the scale-invariant nature of our score enables an ensemble strategy via simple score summation. Code is available at https://github.com/berkerdemirel/ORA-OOD-Detection-with-Relative-Angles.
♻ ☆ Affordable AI Assistants with Knowledge Graph of Thoughts
Large Language Models (LLMs) are revolutionizing the development of AI assistants capable of performing diverse tasks across domains. However, current state-of-the-art LLM-driven agents face significant challenges, including high operational costs and limited success rates on complex benchmarks like GAIA. To address these issues, we propose Knowledge Graph of Thoughts (KGoT), an innovative AI assistant architecture that integrates LLM reasoning with dynamically constructed knowledge graphs (KGs). KGoT extracts and structures task-relevant knowledge into a dynamic KG representation, iteratively enhanced through external tools such as math solvers, web crawlers, and Python scripts. Such structured representation of task-relevant knowledge enables low-cost models to solve complex tasks effectively while also minimizing bias and noise. For example, KGoT achieves a 29% improvement in task success rates on the GAIA benchmark compared to Hugging Face Agents with GPT-4o mini. Moreover, harnessing a smaller model dramatically reduces operational costs by over 36x compared to GPT-4o. Improvements for other models (e.g., Qwen2.5-32B and Deepseek-R1-70B) and benchmarks (e.g., SimpleQA) are similar. KGoT offers a scalable, affordable, versatile, and high-performing solution for AI assistants.
♻ ☆ Robustness and sex differences in skin cancer detection: logistic regression vs CNNs MICCAI 2025
Deep learning has been reported to achieve high performances in the detection of skin cancer, yet many challenges regarding the reproducibility of results and biases remain. This study is a replication (different data, same analysis) of a previous study on Alzheimer's disease detection, which studied the robustness of logistic regression (LR) and convolutional neural networks (CNN) across patient sexes. We explore sex bias in skin cancer detection, using the PAD-UFES-20 dataset with LR trained on handcrafted features reflecting dermatological guidelines (ABCDE and the 7-point checklist), and a pre-trained ResNet-50 model. We evaluate these models in alignment with the replicated study: across multiple training datasets with varied sex composition to determine their robustness. Our results show that both the LR and the CNN were robust to the sex distribution, but the results also revealed that the CNN had a significantly higher accuracy (ACC) and area under the receiver operating characteristics (AUROC) for male patients compared to female patients. The data and relevant scripts to reproduce our results are publicly available (https://github.com/ nikodice4/Skin-cancer-detection-sex-bias).
comment: 10 pages, 1 figure, published at FAIMI workshop at the MICCAI 2025 conference
♻ ☆ Learning the Universe: Learning to Optimize Cosmic Initial Conditions with Non-Differentiable Structure Formation Models RAS
Making the most of next-generation galaxy clustering surveys requires overcoming challenges in complex, non-linear modelling to access the significant amount of information at smaller cosmological scales. Field-level inference has provided a unique opportunity beyond summary statistics to use all of the information of the galaxy distribution. However, addressing current challenges often necessitates numerical modelling that incorporates non-differentiable components, hindering the use of efficient gradient-based inference methods. In this paper, we introduce Learning the Universe by Learning to Optimize (LULO), a gradient-free framework for reconstructing the 3D cosmic initial conditions. Our approach advances deep learning to train an optimization algorithm capable of fitting state-of-the-art non-differentiable simulators to data at the field level. Importantly, the neural optimizer solely acts as a search engine in an iterative scheme, always maintaining full physics simulations in the loop, ensuring scalability and reliability. We demonstrate the method by accurately reconstructing initial conditions from $M_{200\mathrm{c}}$ halos identified in a dark matter-only $N$-body simulation with a spherical overdensity algorithm. The derived dark matter and halo overdensity fields exhibit $\geq80\%$ cross-correlation with the ground truth into the non-linear regime $k \sim 1h$ Mpc$^{-1}$. Additional cosmological tests reveal accurate recovery of the power spectra, bispectra, halo mass function, and velocities. With this work, we demonstrate a promising path forward to non-linear field-level inference surpassing the requirement of a differentiable physics model.
comment: 20 pages, 15 figures. Updated to match version accepted by MNRAS (published 2025/08/06)
♻ ☆ Diffusion Bridge Variational Inference for Deep Gaussian Processes
Deep Gaussian processes (DGPs) enable expressive hierarchical Bayesian modeling but pose substantial challenges for posterior inference, especially over inducing variables. Denoising diffusion variational inference (DDVI) addresses this by modeling the posterior as a time-reversed diffusion from a simple Gaussian prior. However, DDVI's fixed unconditional starting distribution remains far from the complex true posterior, resulting in inefficient inference trajectories and slow convergence. In this work, we propose Diffusion Bridge Variational Inference (DBVI), a principled extension of DDVI that initiates the reverse diffusion from a learnable, data-dependent initial distribution. This initialization is parameterized via an amortized neural network and progressively adapted using gradients from the ELBO objective, reducing the posterior gap and improving sample efficiency. To enable scalable amortization, we design the network to operate on the inducing inputs, which serve as structured, low-dimensional summaries of the dataset and naturally align with the inducing variables' shape. DBVI retains the mathematical elegance of DDVI, including Girsanov-based ELBOs and reverse-time SDEs,while reinterpreting the prior via a Doob-bridged diffusion process. We derive a tractable training objective under this formulation and implement DBVI for scalable inference in large-scale DGPs. Across regression, classification, and image reconstruction tasks, DBVI consistently outperforms DDVI and other variational baselines in predictive accuracy, convergence speed, and posterior quality.
♻ ☆ Steering LLM Reasoning Through Bias-Only Adaptation EMNLP 2025
We show that training a single $d$-dimensional steering vector per layer with reinforcement learning, while freezing all base weights, matches the accuracy of fully RL-tuned reasoning models on mathematical-reasoning tasks. On an 8 billion-parameter model this adds only $\approx 0.0016\%$ additional parameters and reproduces performance across a range of base models and mathematical-reasoning benchmarks. These results tighten the upper bound on the parameter budget required for high-level chain-of-thought reasoning, indicating that millions of adapter weights are unnecessary. The minimal trainable footprint reduces optimizer memory and inter-GPU communication, lowering the overall cost of fine-tuning. Moreover, a logit-lens analysis shows that the learned vectors amplify coherent token directions, providing clearer insight into the model's internal computations.
comment: EMNLP 2025
♻ ☆ Stop Misusing t-SNE and UMAP for Visual Analytics
Misuses of t-SNE and UMAP in visual analytics have become increasingly common. For example, although t-SNE and UMAP projections often do not faithfully reflect the original distances between clusters, practitioners frequently use them to investigate inter-cluster relationships. We investigate why this misuse occurs, and discuss methods to prevent it. To that end, we first review 136 papers to verify the prevalence of the misuse. We then interview researchers who have used dimensionality reduction (DR) to understand why such misuse occurs. Finally, we interview DR experts to examine why previous efforts failed to address the misuse. We find that the misuse of t-SNE and UMAP stems primarily from limited DR literacy among practitioners, and that existing attempts to address this issue have been ineffective. Based on these insights, we discuss potential paths forward, including the controversial but pragmatic option of automating the selection of optimal DR projections to prevent misleading analyses.
comment: 14 pages
♻ ☆ Small Vectors, Big Effects: A Mechanistic Study of RL-Induced Reasoning via Steering Vectors
The mechanisms by which reasoning training reshapes LLMs' internal computations remain unclear. We study lightweight steering vectors inserted into the base model's residual stream and trained with a reinforcement-learning objective. These vectors match full fine-tuning performance while preserving the interpretability of small, additive interventions. Using logit-lens readouts and path-patching analyses on two models, we find that (i) the last-layer steering vector acts like a token-substitution bias concentrated on the first generated token, consistently boosting tokens such as "To" and "Step"; (ii) the penultimate-layer vector leaves attention patterns largely intact and instead operates through the MLP and unembedding, preferentially up-weighting process words and structure symbols; and (iii) middle layers de-emphasize non-English tokens. Next, we show that a SAE isolates features associated with correct generations. We also show that steering vectors (i) transfer to other models, (ii) combine across layers when trained in isolation, and (iii) concentrate magnitude on meaningful prompt segments under adaptive token-wise scaling. Taken together, these results deepen understanding of how trained steering vectors shape computation and should inform future work in activation engineering and the study of reasoning models.
comment: Preprint
♻ ☆ OmniThink: Expanding Knowledge Boundaries in Machine Writing through Thinking EMNLP 2025
Machine writing with large language models often relies on retrieval-augmented generation. However, these approaches remain confined within the boundaries of the model's predefined scope, limiting the generation of content with rich information. Specifically, vanilla-retrieved information tends to lack depth, novelty, and suffers from redundancy, which negatively impacts the quality of generated articles, leading to shallow, unoriginal, and repetitive outputs. To address these issues, we propose OmniThink, a slow-thinking machine writing framework that emulates the human-like process of iterative expansion and reflection. The core idea behind OmniThink is to simulate the cognitive behavior of learners as they slowly deepen their knowledge of the topics. Experimental results demonstrate that OmniThink improves the knowledge density of generated articles without compromising metrics such as coherence and depth. Human evaluations and expert feedback further highlight the potential of OmniThink to address real-world challenges in the generation of long-form articles. Code is available at https://github.com/zjunlp/OmniThink.
comment: EMNLP 2025
♻ ☆ Poisson Midpoint Method for Log Concave Sampling: Beyond the Strong Error Lower Bounds
We study the problem of sampling from strongly log-concave distributions over $\mathbb{R}^d$ using the Poisson midpoint discretization (a variant of the randomized midpoint method) for overdamped/underdamped Langevin dynamics. We prove its convergence in the 2-Wasserstein distance ($W_2$), achieving a cubic speedup in dependence on the target accuracy ($\epsilon$) over the Euler-Maruyama discretization, surpassing existing bounds for randomized midpoint methods. Notably, in the case of underdamped Langevin dynamics, we demonstrate the complexity of $W_2$ convergence is much smaller than the complexity lower bounds for convergence in $L^2$ strong error established in the literature.
♻ ☆ Statistically Truthful Auctions via Acceptance Rule
Auctions are key for maximizing sellers' revenue and ensuring truthful bidding among buyers. Recently, an approach known as differentiable economics based on machine learning (ML) has shown promise in learning powerful auction mechanisms for multiple items and participants. However, this approach has no guarantee of strategy-proofness at test time. Strategy-proofness is crucial as it ensures that buyers are incentivized to bid their true valuations, leading to optimal and fair auction outcomes without the risk of manipulation. In this work, we propose a formulation of statistical strategy-proofness for auction mechanisms. Specifically, we offer a method that bounds the regret -- quantifying deviation from truthful bidding -- below a pre-specified level with high probability. Building upon conformal prediction techniques, we develop an auction acceptance rule that leverages regret predictions to guarantee that the data-driven auction mechanism meets the statistical strategy-proofness requirement with high probability. Our method -- Statistically Truthful Auctions via Acceptance Rule (STAR) -- represents a practical middle-ground between two extremes: enforcing truthfulness -- zero-regret -- at the cost of significant revenue loss, and naively using ML to construct auctions with the hope of attaining low regret, with no test-time guarantees.
♻ ☆ SMaRt: Improving GANs with Score Matching Regularity
Generative adversarial networks (GANs) usually struggle in learning from highly diverse data, whose underlying manifold is complex. In this work, we revisit the mathematical foundations of GANs, and theoretically reveal that the native adversarial loss for GAN training is insufficient to fix the problem of \textit{subsets with positive Lebesgue measure of the generated data manifold lying out of the real data manifold}. Instead, we find that score matching serves as a promising solution to this issue thanks to its capability of persistently pushing the generated data points towards the real data manifold. We thereby propose to improve the optimization of GANs with score matching regularity (SMaRt). Regarding the empirical evidences, we first design a toy example to show that training GANs by the aid of a ground-truth score function can help reproduce the real data distribution more accurately, and then confirm that our approach can consistently boost the synthesis performance of various state-of-the-art GANs on real-world datasets with pre-trained diffusion models acting as the approximate score function. For instance, when training Aurora on the ImageNet $64\times64$ dataset, we manage to improve FID from 8.87 to 7.11, on par with the performance of one-step consistency model. Code is available at \href{https://github.com/thuxmf/SMaRt}{https://github.com/thuxmf/SMaRt}.
♻ ☆ Object Centric Concept Bottlenecks
Developing high-performing, yet interpretable models remains a critical challenge in modern AI. Concept-based models (CBMs) attempt to address this by extracting human-understandable concepts from a global encoding (e.g., image encoding) and then applying a linear classifier on the resulting concept activations, enabling transparent decision-making. However, their reliance on holistic image encodings limits their expressiveness in object-centric real-world settings and thus hinders their ability to solve complex vision tasks beyond single-label classification. To tackle these challenges, we introduce Object-Centric Concept Bottlenecks (OCB), a framework that combines the strengths of CBMs and pre-trained object-centric foundation models, boosting performance and interpretability. We evaluate OCB on complex image datasets and conduct a comprehensive ablation study to analyze key components of the framework, such as strategies for aggregating object-concept encodings. The results show that OCB outperforms traditional CBMs and allows one to make interpretable decisions for complex visual tasks.
♻ ☆ On Conformal Machine Unlearning
The increasing demand for data privacy has made machine unlearning (MU) essential for removing the influence of specific training samples from machine learning models while preserving performance on retained data. However, most existing MU methods lack rigorous statistical guarantees or rely on heuristic metrics such as accuracy. To overcome these limitations, we introduce a new definition for MU based on conformal prediction (CP), providing statistically sound, uncertainty-aware guarantees without the need for the concept of naive retraining. We formalize the proposed conformal criteria that quantify how often forgotten samples are excluded from CP sets, and propose empirical metrics to measure the effectiveness of unlearning. We further present a practical unlearning method designed to optimize these conformal metrics. Extensive experiments across diverse forgetting scenarios, datasets and models demonstrate the efficacy of our approach in removing targeted data.
♻ ☆ Decentralized Online Regularized Learning Over Random Time-Varying Graphs
We study the decentralized online regularized linear regression algorithm over random time-varying graphs. At each time step, every node runs an online estimation algorithm consisting of an innovation term processing its own new measurement, a consensus term taking a weighted sum of estimations of its own and its neighbors with additive and multiplicative communication noises and a regularization term preventing over-fitting. It is not required that the regression matrices and graphs satisfy special statistical assumptions such as mutual independence, spatio-temporal independence or stationarity. We develop the nonnegative supermartingale inequality of the estimation error, and prove that the estimations of all nodes converge to the unknown true parameter vector almost surely if the algorithm gains, graphs and regression matrices jointly satisfy the sample path spatio-temporal persistence of excitation condition. Especially, this condition holds by choosing appropriate algorithm gains if the graphs are uniformly conditionally jointly connected and conditionally balanced, and the regression models of all nodes are uniformly conditionally spatio-temporally jointly observable, under which the algorithm converges in mean square and almost surely. In addition, we prove that the regret upper bound is $O(T^{1-\tau}\ln T)$, where $\tau\in (0.5,1)$ is a constant depending on the algorithm gains.
♻ ☆ Propagating Model Uncertainty through Filtering-based Probabilistic Numerical ODE Solvers
Filtering-based probabilistic numerical solvers for ordinary differential equations (ODEs), also known as ODE filters, have been established as efficient methods for quantifying numerical uncertainty in the solution of ODEs. In practical applications, however, the underlying dynamical system often contains uncertain parameters, requiring the propagation of this model uncertainty to the ODE solution. In this paper, we demonstrate that ODE filters, despite their probabilistic nature, do not automatically solve this uncertainty propagation problem. To address this limitation, we present a novel approach that combines ODE filters with numerical quadrature to properly marginalize over uncertain parameters, while accounting for both parameter uncertainty and numerical solver uncertainty. Experiments across multiple dynamical systems demonstrate that the resulting uncertainty estimates closely match reference solutions. Notably, we show how the numerical uncertainty from the ODE solver can help prevent overconfidence in the propagated uncertainty estimates, especially when using larger step sizes. Our results illustrate that probabilistic numerical methods can effectively quantify both numerical and parametric uncertainty in dynamical systems.
♻ ☆ Toward Foundational Model for Sleep Analysis Using a Multimodal Hybrid Self-Supervised Learning Framework
Sleep is essential for maintaining human health and quality of life. Analyzing physiological signals during sleep is critical in assessing sleep quality and diagnosing sleep disorders. However, manual diagnoses by clinicians are time-intensive and subjective. Despite advances in deep learning that have enhanced automation, these approaches remain heavily dependent on large-scale labeled datasets. This study introduces SynthSleepNet, a multimodal hybrid self-supervised learning framework designed for analyzing polysomnography (PSG) data. SynthSleepNet effectively integrates masked prediction and contrastive learning to leverage complementary features across multiple modalities, including electroencephalogram (EEG), electrooculography (EOG), electromyography (EMG), and electrocardiogram (ECG). This approach enables the model to learn highly expressive representations of PSG data. Furthermore, a temporal context module based on Mamba was developed to efficiently capture contextual information across signals. SynthSleepNet achieved superior performance compared to state-of-the-art methods across three downstream tasks: sleep-stage classification, apnea detection, and hypopnea detection, with accuracies of 89.89%, 99.75%, and 89.60%, respectively. The model demonstrated robust performance in a semi-supervised learning environment with limited labels, achieving accuracies of 87.98%, 99.37%, and 77.52% in the same tasks. These results underscore the potential of the model as a foundational tool for the comprehensive analysis of PSG data. SynthSleepNet demonstrates comprehensively superior performance across multiple downstream tasks compared to other methodologies, making it expected to set a new standard for sleep disorder monitoring and diagnostic systems.
comment: 18 pages, 5 figures
♻ ☆ Divergence-Based Similarity Function for Multi-View Contrastive Learning
Recent success in contrastive learning has sparked growing interest in more effectively leveraging multiple augmented views of an instance. While prior methods incorporate multiple views at the loss or feature level, they primarily capture pairwise relationships and fail to model the joint structure across all views. In this work, we propose a divergence-based similarity function (DSF) that explicitly captures the joint structure by representing each set of augmented views as a distribution and measuring similarity as the divergence between distributions. Extensive experiments demonstrate that DSF consistently improves performance across various tasks, including kNN classification and linear evaluation, while also offering greater efficiency compared to other multi-view methods. Furthermore, we establish a theoretical connection between DSF and cosine similarity, and show that, unlike cosine similarity, DSF operates effectively without requiring a temperature hyperparameter.
comment: 9 pages, 5 figures
♻ ☆ Online Non-convex Optimization with Long-term Non-convex Constraints
A novel Follow-the-Perturbed-Leader type algorithm is proposed and analyzed for solving general long-term constrained optimization problems in an online manner, where the target and constraint functions are oblivious adversarially generated and not necessarily convex. The algorithm is based on Lagrangian reformulation and innovatively integrates random perturbations and regularizations in primal and dual directions: 1). exponentially distributed random perturbations in the primal direction to handle non-convexity, and 2). strongly concave logarithmic regularizations in the dual space to handle constraint violations. Based on a proposed expected static cumulative regret, and under mild Lipschitz continuity assumption, the algorithm demonstrates the online learnability, achieving the first sublinear cumulative regret complexity for this class of problems. The proposed algorithm is applied to tackle a long-term (extreme value) constrained river pollutant source identification problem, validate the theoretical results and exhibit superior performance compared to existing methods.
♻ ☆ Are All Marine Species Created Equal? Performance Disparities in Underwater Object Detection
Underwater object detection is critical for monitoring marine ecosystems but poses unique challenges, including degraded image quality, imbalanced class distribution, and distinct visual characteristics. Not every species is detected equally well, yet underlying causes remain unclear. We address two key research questions: 1) What factors beyond data quantity drive class-specific performance disparities? 2) How can we systematically improve detection of under-performing marine species? We manipulate the DUO and RUOD datasets to separate the object detection task into localization and classification and investigate the under-performance of the scallop class. Localization analysis using YOLO11 and TIDE finds that foreground-background discrimination is the most problematic stage regardless of data quantity. Classification experiments reveal persistent precision gaps even with balanced data, indicating intrinsic feature-based challenges beyond data scarcity and inter-class dependencies. We recommend imbalanced distributions when prioritizing precision, and balanced distributions when prioritizing recall. Improving under-performing classes should focus on algorithmic advances, especially within localization modules. We publicly release our code and datasets.
comment: 10 pages for main paper, 4 pages for supplementary material
♻ ☆ Revisiting Diffusion Q-Learning: From Iterative Denoising to One-Step Action Generation
Diffusion Q-Learning (DQL) has established diffusion policies as a high-performing paradigm for offline reinforcement learning, but its reliance on multi-step denoising for action generation renders both training and inference slow and fragile. Existing efforts to accelerate DQL toward one-step denoising typically rely on auxiliary modules or policy distillation, sacrificing either simplicity or performance. It remains unclear whether a one-step policy can be trained directly without such trade-offs. To this end, we introduce One-Step Flow Q-Learning (OFQL), a novel framework that enables effective one-step action generation during both training and inference, without auxiliary modules or distillation. OFQL reformulates the DQL policy within the Flow Matching (FM) paradigm but departs from conventional FM by learning an average velocity field that directly supports accurate one-step action generation. This design removes the need for multi-step denoising and backpropagation-through-time updates, resulting in substantially faster and more robust learning. Extensive experiments on the D4RL benchmark show that OFQL, despite generating actions in a single step, not only significantly reduces computation during both training and inference but also outperforms multi-step DQL by a large margin. Furthermore, OFQL surpasses all other baselines, achieving state-of-the-art performance in D4RL.
♻ ☆ Resolving UnderEdit & OverEdit with Iterative & Neighbor-Assisted Model Editing EMNLP 2025
Large Language Models (LLMs) are widely deployed in downstream tasks, but keeping their knowledge up-to-date via retraining or fine-tuning is often computationally expensive. Model editing provides a more efficient alternative by updating a targeted subset of parameters, which often follows the locate-and-edit paradigm. Despite this efficiency, existing methods are limited: edits may fail to inject knowledge (UnderEdit) or unintentionally disrupt unrelated neighboring knowledge (OverEdit). To address these challenges, we propose two complementary methods: iterative model editing, which applies successive edits to mitigate UnderEdit, and neighbor-assisted model editing, which incorporates neighboring knowledge during editing to reduce OverEdit. Our extensive experiments show that these techniques improve editing performance across multiple LLMs, algorithms, and benchmarks, reducing UnderEdit by up to 38 percentage points and OverEdit by up to 6, while remaining broadly applicable to any locate-and-edit method. We release our code at https://github.com/bhimanbaghel/ResolveUnderOverEdit.
comment: Accepted at EMNLP 2025 as Findings
♻ ☆ Evolving Language Models without Labels: Majority Drives Selection, Novelty Promotes Variation
Large language models (LLMs) are increasingly trained with reinforcement learning from verifiable rewards (RLVR), yet real-world deployment demands models that can self-improve without labels or external judges. Existing self-improvement approaches primarily rely on self-confirmation signals (e.g., confidence, entropy, or consistency) to generate rewards. This reliance drives models toward over-confident, majority-favored solutions, causing an entropy collapse that degrades pass@n and reasoning complexity. To address this, we propose EVOL-RL, a label-free framework that mirrors the evolutionary principle of balancing selection with variation. Concretely, EVOL-RL retains the majority-voted answer as an anchor for stability, but adds a novelty-aware reward that scores each sampled solution by how different its reasoning is from other concurrently generated responses. This majority-for-stability + novelty-for-exploration rule mirrors the variation-selection principle: selection prevents drift, while novelty prevents collapse. Evaluation results show that EVOL-RL consistently outperforms the majority-only baseline; e.g., training on label-free AIME24 lifts Qwen3-4B-Base AIME25 pass@1 from baseline's 4.6% to 16.4%, and pass@16 from 18.5% to 37.9%. EVOL-RL not only prevents in-domain diversity collapse but also improves out-of-domain generalization (from math reasoning to broader tasks, e.g., GPQA, MMLU-Pro, and BBEH). The code is available at: https://github.com/YujunZhou/EVOL-RL.
EFRame: Deeper Reasoning via Exploration-Filter-Replay Reinforcement Learning Framework
Recent advances in reinforcement learning (RL) have significantly enhanced the reasoning capabilities of large language models (LLMs). Group Relative Policy Optimization (GRPO), a lightweight variant of Proximal Policy Optimization (PPO), improves efficiency but suffers from limited exploration and training instability, limiting its effectiveness on complex reasoning tasks. To address these challenges, we introduce EFRame, an Exploration-Filter-Replay framework that augments GRPO across three dimensions: additional rollouts enable deeper and more targeted exploration, online filtering removes low-quality samples to stabilize gradients and accelerate training, and experience replay amplifies rare yet informative trajectories for stable convergence. This unified framework establishes a principled training cycle that balances exploration, efficiency, and stability. Experiments on diverse reasoning benchmarks demonstrate that EFRame achieves consistent gains, including a 37.9\% relative improvement on Geometry3K over GRPO. EFRame further supports fine-grained sample categorization and precise entropy control, highlighting it as a robust solution for advancing deeper reasoning in LLMs. Our code is available at https://github.com/597358816/EFRame.
♻ ☆ Learning Pattern-Specific Experts for Time Series Forecasting Under Patch-level Distribution Shift
Time series forecasting, which aims to predict future values based on historical data, has garnered significant attention due to its broad range of applications. However, real-world time series often exhibit complex non-uniform distribution with varying patterns across segments, such as season, operating condition, or semantic meaning, making accurate forecasting challenging. Existing approaches, which typically train a single model to capture all these diverse patterns, often struggle with the pattern drifts between patches and may lead to poor generalization. To address these challenges, we propose TFPS, a novel architecture that leverages pattern-specific experts for more accurate and adaptable time series forecasting. TFPS employs a dual-domain encoder to capture both time-domain and frequency-domain features, enabling a more comprehensive understanding of temporal dynamics. It then uses subspace clustering to dynamically identify distinct patterns across data patches. Finally, pattern-specific experts model these unique patterns, delivering tailored predictions for each patch. By explicitly learning and adapting to evolving patterns, TFPS achieves significantly improved forecasting accuracy. Extensive experiments on real-world datasets demonstrate that TFPS outperforms state-of-the-art methods, particularly in long-term forecasting, through its dynamic and pattern-aware learning approach. The data and codes are available: https://github.com/syrGitHub/TFPS.
♻ ☆ Learning simple heuristic rules for classifying materials based on chemical composition
In the past decade, there has been a significant interest in the use of machine learning approaches in materials science research. Conventional deep learning approaches that rely on complex, nonlinear models have become increasingly important in computational materials science due to their high predictive accuracy. In contrast to these approaches, we have shown in a recent work that a remarkably simple learned heuristic rule -- based on the concept of topogivity -- can classify whether a material is topological using only its chemical composition. In this paper, we go beyond the topology classification scenario by also studying the use of machine learning to develop simple heuristic rules for classifying whether a material is a metal based on chemical composition. Moreover, we present a framework for incorporating chemistry-informed inductive bias based on the structure of the periodic table. For both the topology classification and the metallicity classification tasks, we empirically characterize the performance of simple heuristic rules fit with and without chemistry-informed inductive bias across a wide range of training set sizes. We find evidence that incorporating chemistry-informed inductive bias can reduce the amount of training data required to reach a given level of test accuracy.
comment: 10 pages, 3 figures; updated funding acknowledgements
♻ ☆ AGNOMIN -- Architecture Agnostic Multi-Label Function Name Prediction
Function name prediction is crucial for understanding stripped binaries in software reverse engineering, a key step for \textbf{enabling subsequent vulnerability analysis and patching}. However, existing approaches often struggle with architecture-specific limitations, data scarcity, and diverse naming conventions. We present AGNOMIN, a novel architecture-agnostic approach for multi-label function name prediction in stripped binaries. AGNOMIN builds Feature-Enriched Hierarchical Graphs (FEHGs), combining Control Flow Graphs, Function Call Graphs, and dynamically learned \texttt{PCode} features. A hierarchical graph neural network processes this enriched structure to generate consistent function representations across architectures, vital for \textbf{scalable security assessments}. For function name prediction, AGNOMIN employs a Ren\'ee-inspired decoder, enhanced with an attention-based head layer and algorithmic improvements. We evaluate AGNOMIN on a comprehensive dataset of 9,000 ELF executable binaries across three architectures, demonstrating its superior performance compared to state-of-the-art approaches, with improvements of up to 27.17\% in precision and 55.86\% in recall across the testing dataset. Moreover, AGNOMIN generalizes well to unseen architectures, achieving 5.89\% higher recall than the closest baseline. AGNOMIN's practical utility has been validated through security hackathons, where it successfully aided reverse engineers in analyzing and patching vulnerable binaries across different architectures.
♻ ☆ Assumption-Lean Post-Integrated Inference with Surrogate Control Outcomes
Data integration methods aim to extract low-dimensional embeddings from high-dimensional outcomes to remove unwanted variations, such as batch effects and unmeasured covariates, across heterogeneous datasets. However, multiple hypothesis testing after integration can be biased due to data-dependent processes. We introduce a robust post-integrated inference (PII) method that adjusts for latent heterogeneity using control outcomes. Leveraging causal interpretations, we derive nonparametric identifiability of the direct effects using negative control outcomes. By utilizing surrogate control outcomes as an extension of negative control outcomes, we develop semiparametric inference on projected direct effect estimands, accounting for hidden mediators, confounders, and moderators. These estimands remain statistically meaningful under model misspecifications and with error-prone embeddings. We provide bias quantifications and finite-sample linear expansions with uniform concentration bounds. The proposed doubly robust estimators are consistent and efficient under minimal assumptions and potential misspecification, facilitating data-adaptive estimation with machine learning algorithms. Our proposal is evaluated with random forests through simulations and analysis of single-cell CRISPR perturbed datasets with potential unmeasured confounders.
comment: 23 pages for the main text, 32 pages for the appendix, 6 figures for the main text, 7 figures for the appendix
♻ ☆ Training-free LLM Verification via Recycling Few-shot Examples
Although LLMs have achieved remarkable performance, the inherent stochasticity of their reasoning process and varying conclusions present significant challenges. Majority voting or Best-of-N with external verification models has been explored to find the most promising solution among multiple LLM outputs. However, these approaches have certain limitations, such as limited applicability or the cost of an additional training step. To address this problem, we propose a novel and effective framework that Recycles Few-shot examples to verify LLM outputs (ReFeri). Our key idea is to additionally utilize the given few-shot examples to evaluate the candidate outputs of the target query, not only using them to generate outputs as the conventional few-shot prompting setup. Specifically, ReFeri evaluates the generated outputs by combining two different scores, designed motivated from Bayes' rule, and subsequently selects the candidate that is both confidently determined and contextually coherent through a few additional LLM inferences. Experiments with three different LLMs and across seven diverse tasks demonstrate that our framework significantly improves the accuracy of LLMs-achieving an average gain of 4.8%-through effective response selection, without additional training.
OBELiX: A Curated Dataset of Crystal Structures and Experimentally Measured Ionic Conductivities for Lithium Solid-State Electrolytes
Solid-state electrolyte batteries are expected to replace liquid electrolyte lithium-ion batteries in the near future thanks to their higher theoretical energy density and improved safety. However, their adoption is currently hindered by their lower effective ionic conductivity, a quantity that governs charge and discharge rates. Identifying highly ion-conductive materials using conventional theoretical calculations and experimental validation is both time-consuming and resource-intensive. While machine learning holds the promise to expedite this process, relevant ionic conductivity and structural data is scarce. Here, we present OBELiX, a database of $\sim$600 synthesized solid electrolyte materials and their experimentally measured room temperature ionic conductivities gathered from literature and curated by domain experts. Each material is described by their measured composition, space group and lattice parameters. A full-crystal description in the form of a crystallographic information file (CIF) is provided for $\sim$320 structures for which atomic positions were available. We discuss various statistics and features of the dataset and provide training and testing splits carefully designed to avoid data leakage. Finally, we benchmark seven existing ML models on the task of predicting ionic conductivity and discuss their performance. The goal of this work is to facilitate the use of machine learning for solid-state electrolyte materials discovery.
comment: 10 pages, 4 figures and 1 table
♻ ☆ Combating Noisy Labels via Dynamic Connection Masking
Noisy labels are inevitable in real-world scenarios. Due to the strong capacity of deep neural networks to memorize corrupted labels, these noisy labels can cause significant performance degradation. Existing research on mitigating the negative effects of noisy labels has mainly focused on robust loss functions and sample selection, with comparatively limited exploration of regularization in model architecture. Inspired by the sparsity regularization used in Kolmogorov-Arnold Networks (KANs), we propose a Dynamic Connection Masking (DCM) mechanism for both Multi-Layer Perceptron Networks (MLPs) and KANs to enhance the robustness of classifiers against noisy labels. The mechanism can adaptively mask less important edges during training by evaluating their information-carrying capacity. Through theoretical analysis, we demonstrate its efficiency in reducing gradient error. Our approach can be seamlessly integrated into various noise-robust training methods to build more robust deep networks, including robust loss functions, sample selection strategies, and regularization techniques. Extensive experiments on both synthetic and real-world benchmarks demonstrate that our method consistently outperforms state-of-the-art (SOTA) approaches. Furthermore, we are also the first to investigate KANs as classifiers against noisy labels, revealing their superior noise robustness over MLPs in real-world noisy scenarios. Our code will soon be publicly available.
♻ ☆ ExPLAIND: Unifying Model, Data, and Training Attribution to Study Model Behavior
Post-hoc interpretability methods typically attribute a model's behavior to its components, data, or training trajectory in isolation. This leads to explanations that lack a unified view and may miss key interactions. While combining existing methods or applying them at different training stages offers broader insights, such approaches usually lack theoretical support. In this work, we present ExPLAIND, a unified framework that integrates all these perspectives. First, we generalize recent work on gradient path kernels, which reformulate models trained by gradient descent as a kernel machine, to realistic settings like AdamW. We empirically validate that a CNN and a Transformer are accurately replicated by this reformulation. Second, we derive novel parameter- and step-wise influence scores from the kernel feature maps. Their effectiveness for parameter pruning is comparable to existing methods, demonstrating their value for model component attribution. Finally, jointly interpreting model components and data over the training process, we leverage ExPLAIND to analyze a Transformer that exhibits Grokking. Our findings support previously proposed stages of Grokking, while refining the final phase as one of alignment of input embeddings and final layers around a representation pipeline learned after the memorization phase. Overall, ExPLAIND provides a theoretically grounded, unified framework to interpret model behavior and training dynamics.
comment: 10 pages main paper, 25 pages in total, code at https://github.com/mainlp/explaind
♻ ☆ ATLAS: Autoformalizing Theorems through Lifting, Augmentation, and Synthesis of Data NeurIPS 2025
Autoformalization, the automatic translation of mathematical content from natural language into machine-verifiable formal languages, has seen significant progress driven by advances in large language models (LLMs). Nonetheless, a primary barrier to further improvements is the limited availability of parallel corpora that map informal mathematical text to its formal counterpart. To address this limitation, we propose ATLAS (Autoformalizing Theorems through Lifting, Augmentation, and Synthesis of Data), a novel data generation framework designed to produce large-scale, high-quality parallel corpora of theorem statements. Distinct from prior approaches, ATLAS begins with a concept repository, accelerates the improvement of the student model through expert iteration combined with knowledge distillation, and introduces two novel augmentation strategies that exploit the structural characteristics of formal languages. Running the proposed ATLAS framework for 10 iterations, we construct an undergraduate-level dataset of 117k theorem statements and develop the ATLAS Translator by fine-tuning Llama3.1-8B-Instruct with LoRA. This model establishes a new state of the art, demonstrating statistically significant improvements over both the Herald Translator and the Kimina-Autoformalizer across all benchmarks (p<0.05, two-sided t-test). Furthermore, we demonstrate that the full-parameter fine-tuning of a stronger base model on the ATLAS dataset leads to superior performance. The datasets, model, and code are available at https://github.com/XiaoyangLiu-sjtu/ATLAS.
comment: Accepted to NeurIPS 2025
♻ ☆ Estimating quantum relative entropies on quantum computers
Quantum relative entropy, a quantum generalization of the renowned Kullback-Leibler divergence, serves as a fundamental measure of the distinguishability between quantum states and plays a pivotal role in quantum information science. Despite its importance, efficiently estimating quantum relative entropy between two quantum states on quantum computers remains a significant challenge. In this work, we propose the first quantum algorithm for directly estimating quantum relative entropy and Petz Renyi divergence from two unknown quantum states on quantum computers, addressing open problems highlighted in [Phys. Rev. A 109, 032431 (2024)] and [IEEE Trans. Inf. Theory 70, 5653-5680 (2024)]. Notably, the circuit size of our algorithm is at most $2n+1$ with $n$ being the number of qubits in the quantum states and it is directly applicable to distributed scenarios, where quantum states to be compared are hosted on cross-platform quantum computers. We prove that our loss function is operator-convex, ensuring that any local minimum is also a global minimum. We validate the effectiveness of our method through numerical experiments and observe the absence of the barren plateau phenomenon. As an application, we employ our algorithm to investigate the superadditivity of quantum channel capacity. Numerical simulations reveal new examples of qubit channels exhibiting strict superadditivity of coherent information, highlighting the potential of quantum machine learning to address quantum-native problems.
comment: comments are welcome; v2: added more numerical experiments and application in quantum channel capacity
♻ ☆ On Task Vectors and Gradients
Task arithmetic has emerged as a simple yet powerful technique for model merging, enabling the combination of multiple finetuned models into one. Despite its empirical success, a clear theoretical explanation of why and when it works is lacking. This paper provides a rigorous theoretical foundation for task arithmetic by establishing a connection between task vectors and gradients of the task losses. We show that under standard gradient descent, a task vector generated from one epoch of finetuning is exactly equivalent to the negative gradient of the loss, scaled by the learning rate. For the practical multi-epoch setting, we prove that this equivalence holds approximately, with a second-order error term that we explicitly bound for feed-forward networks. Our empirical analysis across seven vision benchmarks corroborates our theory, demonstrating that the first-epoch gradient dominates the finetuning trajectory in both norm and direction. A key implication is that merging models finetuned for only a single epoch often yields performance comparable to merging fully converged models. These findings reframe task arithmetic as a form of approximate multitask learning, providing a clear rationale for its effectiveness and highlighting the critical role of early training dynamics in model merging.
comment: 9 pages of main paper, 5 figures
♻ ☆ Mutual information maximizing quantum generative adversarial networks
One of the most promising applications in the era of Noisy Intermediate-Scale Quantum (NISQ) computing is quantum generative adversarial networks (QGANs), which offer significant quantum advantages over classical machine learning in various domains. However, QGANs suffer from mode collapse and lack explicit control over the features of generated outputs. To overcome these limitations, we propose InfoQGAN, a novel quantum-classical hybrid generative adversarial network that integrates the principles of InfoGAN with a QGAN architecture. Our approach employs a variational quantum circuit for data generation, a classical discriminator, and a Mutual Information Neural Estimator (MINE) to explicitly optimize the mutual information between latent codes and generated samples. Numerical simulations on synthetic 2D distributions and Iris dataset augmentation demonstrate that InfoQGAN effectively mitigates mode collapse while achieving robust feature disentanglement in the quantum generator. By leveraging these advantages, InfoQGAN not only enhances training stability but also improves data augmentation performance through controlled feature generation. These results highlight the potential of InfoQGAN as a foundational approach for advancing quantum generative modeling in the NISQ era.
comment: 11 pages, 7 figures
♻ ☆ The Clever Hans Mirage: A Comprehensive Survey on Spurious Correlations in Machine Learning
Back in the early 20th century, a horse named Hans appeared to perform arithmetic and other intellectual tasks during exhibitions in Germany, while it actually relied solely on involuntary cues in the body language from the human trainer. Modern machine learning models are no different. These models are known to be sensitive to spurious correlations between non-essential features of the inputs (e.g., background, texture, and secondary objects) and the corresponding labels. Such features and their correlations with the labels are known as "spurious" because they tend to change with shifts in real-world data distributions, which can negatively impact the model's generalization and robustness. In this paper, we provide a comprehensive survey of this emerging issue, along with a fine-grained taxonomy of existing state-of-the-art methods for addressing spurious correlations in machine learning models. Additionally, we summarize existing datasets, benchmarks, and metrics to facilitate future research. The paper concludes with a discussion of the broader impacts, the recent advancements, and future challenges in the era of generative AI, aiming to provide valuable insights for researchers in the related domains of the machine learning community.
comment: Version 3 with Major Revision; Github Link: https://github.com/wenqian-ye/Awesome-Spurious-Correlations
♻ ☆ EVALOOOP: A Self-Consistency-Centered Framework for Assessing Large Language Model Robustness in Programming
Evaluating the programming robustness of large language models (LLMs) is paramount for ensuring their reliability in AI-based software development. However, adversarial attacks exhibit fundamental limitations that compromise fair robustness assessment: they demonstrate contradictory evaluation outcomes where different attack strategies tend to favor different models, and more critically, they operate solely through external perturbations, failing to capture the intrinsic stability essential for autonomous coding agents where subsequent inputs are endogenously generated by the model itself. We introduce EVALOOOP, a novel assessment framework that evaluates robustness from a self-consistency perspective, leveraging the natural duality inherent in software engineering tasks (e.g., code generation and code summarization). EVALOOOP establishes a self-contained feedback loop where an LLM iteratively transforms between code and natural language until functional failure occurs, with robustness quantified by a novel Average Sustainable Loops (ASL) metric-the mean number of iterations maintaining functional correctness across benchmark tasks. This cyclical strategy intrinsically evaluates robustness without relying on external attack configurations, providing a unified metric that reveals how effectively LLMs preserve semantic integrity through sustained self-referential transformations. We evaluate 96 popular LLMs, ranging from 0.5B to 685B parameters, on EVALOOOP equipped with the MBPP Plus benchmark, and found that EVALOOOP typically induces a 2.65%-47.62% absolute drop in pass@1 accuracy within ten loops. Intriguingly, robustness does not always align with initial performance (i.e., one-time query); for instance, Qwen3-235B-A22B-Instruct-2507, despite inferior initial code generation compared to OpenAI's o-series models and DeepSeek-V3, demonstrated the superior robustness (ASL score).
comment: 20 pages, 4 figures
♻ ☆ Scaling Linear Attention with Sparse State Expansion
The Transformer architecture, despite its widespread success, struggles with long-context scenarios due to quadratic computation and linear memory growth. While various linear attention variants mitigate these efficiency constraints by compressing context into fixed-size states, they often degrade performance in tasks such as in-context retrieval and reasoning. To address this limitation and achieve more effective context compression, we propose two key innovations. First, we introduce a row-sparse update formulation for linear attention by conceptualizing state updating as information classification. This enables sparse state updates via softmax-based top-$k$ hard classification, thereby extending receptive fields and reducing inter-class interference. Second, we present Sparse State Expansion (SSE) within the sparse framework, which expands the contextual state into multiple partitions, effectively decoupling parameter size from state capacity while maintaining the sparse classification paradigm. Supported by efficient parallelized implementations, our design achieves effective classification and highly discriminative state representations. We extensively validate SSE in both pure linear and hybrid (SSE-H) architectures across language modeling, in-context retrieval, and mathematical reasoning benchmarks. SSE demonstrates strong retrieval performance and scales favorably with state size. Moreover, after reinforcement learning (RL) training, our 2B SSE-H model achieves state-of-the-art mathematical reasoning performance among small reasoning models, scoring 64.5 on AIME24 and 50.2 on AIME25, significantly outperforming similarly sized open-source Transformers. These results highlight SSE as a promising and efficient architecture for long-context modeling.
♻ ☆ An Iterative Bayesian Approach for System Identification based on Linear Gaussian Models
We tackle the problem of system identification, where we select inputs, observe the corresponding outputs from the true system, and optimize the parameters of our model to best fit the data. We propose a practical and computationally tractable methodology that is compatible with any system and parametric family of models. Our approach only requires input-output data from the system and first-order information of the model with respect to the parameters. Our approach consists of two modules. First, we formulate the problem of system identification from a Bayesian perspective and use a linear Gaussian model approximation to iteratively optimize the model's parameters. In each iteration, we propose to use the input-output data to tune the covariance of the linear Gaussian model. This online covariance calibration stabilizes fitting and signals model inaccuracy. Secondly, we define a Gaussian-based uncertainty measure for the model parameters, which we can then minimize with respect to the next selected input. We test our method with linear and nonlinear dynamics.
comment: Submitted to the 2026 American Control Conference
♻ ☆ LoRA Users Beware: A Few Spurious Tokens Can Manipulate Your Finetuned Model
Large Language Models (LLMs) are commonly finetuned for a variety of use cases and domains. A common approach is to leverage Low-Rank Adaptation (LoRA) -- known to provide strong performance at low resource costs. In this study, we demonstrate that LoRA actually opens the door to short-cut vulnerabilities -- and the more resource efficient is the LoRA setup, the more vulnerable will be the finetuned model to aggressive attacks. To measure that vulnerability, we introduce Seamless Spurious Token Injection (SSTI), where we find that LoRA exclusively focuses on even just a single token that is spuriously correlated with downstream labels. In short, injection of that spurious token during finetuning ensure that the model's prediction at test-time can be manipulated on-demand. We conducted experiments across model families and datasets to evaluate the impact of SSTI during LoRA finetuning while providing possible mitigations. Our experiments conclude that none of the existing checkers and preprocessors can sanitize a dataset raising new concerns for data quality and AI safety.
comment: 46 pages, 17 figures, 26 tables. Submitted for publication. for associated blog post, see https://pradyut3501.github.io/lora-spur-corr/
♻ ☆ Fair CCA for Fair Representation Learning: An ADNI Study
Canonical correlation analysis (CCA) is a technique for finding correlations between different data modalities and learning low-dimensional representations. As fairness becomes crucial in machine learning, fair CCA has gained attention. However, previous approaches often overlook the impact on downstream classification tasks, limiting applicability. We propose a novel fair CCA method for fair representation learning, ensuring the projected features are independent of sensitive attributes, thus enhancing fairness without compromising accuracy. We validate our method on synthetic data and real-world data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), demonstrating its ability to maintain high correlation analysis performance while improving fairness in classification tasks. Our work enables fair machine learning in neuroimaging studies where unbiased analysis is essential. Code is available in https://github.com/ZhanliangAaronWang/FR-CCA-ADNI.
♻ ☆ Stepwise Guided Policy Optimization: Coloring your Incorrect Reasoning in GRPO
Reinforcement learning (RL) has proven effective in strengthening the reasoning capabilities of large language models (LLMs). A widely adopted method, Group Relative Policy Optimization (GRPO), has shown strong empirical results in training DeepSeek-R1. However, GRPO fails to update the policy when all responses within a group are incorrect (i.e., \emph{all-negative-sample} groups). This limitation underscores a key gap between artificial and human intelligence: unlike humans, who can learn from mistakes, GRPO discards these signals. Our first contribution is to introduce a simple framework that mitigates the all-negative-sample issue by incorporating response diversity within groups using a \textit{step-wise} judge model, which can be either directly trained or adapted from existing LLMs. We prove that this diversification can accelerate GRPO's learning dynamics in a simplified setting. We also empirically validate the proposed stepwise guided policy optimization (SGPO) method, demonstrating consistent gains across model sizes (7B, 14B, 32B) in offline and online training on 9 benchmarks, including base and distilled variants. Our results highlight two advantages: (i) SGPO surpasses GRPO, especially in the early and mid-training stages where all-negative-sample groups are prevalent; and (ii) SGPO does not require judge models to generate correct answers, differentiating it from knowledge distillation methods.
comment: 42 pages; correct some typos
♻ ☆ Phantom: General Backdoor Attacks on Retrieval Augmented Language Generation
Retrieval Augmented Generation (RAG) expands the capabilities of modern large language models (LLMs), by anchoring, adapting, and personalizing their responses to the most relevant knowledge sources. It is particularly useful in chatbot applications, allowing developers to customize LLM output without expensive retraining. Despite their significant utility in various applications, RAG systems present new security risks. In this work, we propose a novel attack that allows an adversary to inject a single malicious document into a RAG system's knowledge base, and mount a backdoor poisoning attack. We design Phantom, a general two-stage optimization framework against RAG systems, that crafts a malicious poisoned document leading to an integrity violation in the model's output. First, the document is constructed to be retrieved only when a specific naturally occurring trigger sequence of tokens appears in the victim's queries. Second, the document is further optimized with crafted adversarial text that induces various adversarial objectives on the LLM output, including refusal to answer, reputation damage, privacy violations, and harmful behaviors.We demonstrate our attacks on multiple open-source LLM architectures, including Gemma, Vicuna, and Llama, and show that they transfer to closed-source models such as GPT-3.5 Turbo and GPT-4. Finally, we successfully demonstrate our attack on an end-to-end black-box production RAG system: NVIDIA's "Chat with RTX''.
♻ ☆ PCoreSet: Effective Active Learning through Knowledge Distillation from Vision-Language Models
Knowledge distillation (KD) is a widely used framework for training compact, task-specific models by transferring the knowledge from teacher models. However, its application to active learning (AL), which aims to minimize annotation costs through iterative sample selection, remains underexplored. This gap stems from the fact that KD typically assumes access to sufficient labeled data, whereas AL operates in data-scarce scenarios where task-specific teacher models are often unavailable. In this paper, we first introduce ActiveKD, a framework that integrates AL with KD by leveraging the zero- and few-shot capabilities of large vision-language models (VLMs). A key aspect of ActiveKD is the structured prediction bias of VLMs-i.e., their predictions form clusters in the probability space. We regard this structure as an inductive bias of the teacher model, capturing generalizable output patterns beneficial to student learning. To exploit this bias, we propose Probabilistic CoreSet (PCoreSet), a selection strategy that maximizes coverage in the probability space rather than the feature space. PCoreSet strategically selects probabilistically diverse unlabeled samples, facilitating more efficient transfer of teacher knowledge under limited annotation budgets. Extensive evaluations on 11 datasets show that ActiveKD consistently improves performance across selection methods (e.g., +29.07% on ImageNet, averaged over methods). Under ActiveKD, PCoreSet ranks first in 64/73 settings (approximately 87.7%) across 5 student and 3 teacher networks, always achieving the best performance except for first 2 AL rounds. Our code is available at https://github.com/erjui/PCoreSet.
comment: 39 pages, 25 figures, preprint
♻ ☆ Hot PATE: Private Aggregation of Distributions for Diverse Task
The Private Aggregation of Teacher Ensembles (PATE) framework enables privacy-preserving machine learning by aggregating responses from disjoint subsets of sensitive data. Adaptations of PATE to tasks with inherent output diversity such as text generation, where the desired output is a sample from a distribution, face a core tension: as diversity increases, samples from different teachers are less likely to agree, but lower agreement results in reduced utility for the same privacy requirements. Yet suppressing diversity to artificially increase agreement is undesirable, as it distorts the output of the underlying model, and thus reduces output quality. We propose Hot PATE, a variant of PATE designed for diverse generative settings. We formalize the notion of a diversity-preserving ensemble sampler and introduce an efficient sampler that provably transfers diversity without incurring additional privacy cost. Hot PATE requires only API access to proprietary models and can be used as a drop-in replacement for existing Cold PATE samplers. Our empirical evaluations corroborate and quantify the benefits, showing significant improvements in the privacy utility trade-off on evaluated in-context learning tasks, both in preserving diversity and in returning relevant responses.
♻ ☆ A Physics-Inspired Optimizer: Velocity Regularized Adam
We introduce Velocity-Regularized Adam (VRAdam), a physics-inspired optimizer for training deep neural networks that draws on ideas from quartic terms for kinetic energy with its stabilizing effects on various system dynamics. Previous algorithms, including the ubiquitous Adam, operate at the so-called adaptive edge of stability regime during training, leading to rapid oscillations and slowed convergence of loss. However, VRAdam adds a higher order penalty on the learning rate based on the velocity such that the algorithm automatically slows down whenever weight updates become large. In practice, we observe that the effective dynamic learning rate shrinks in high-velocity regimes, and damping oscillations. By combining this velocity-based regularizer for global damping with per-parameter scaling of Adam, we create a powerful hybrid optimizer. For this optimizer, we provide rigorous theoretical analysis of operation at the edge of stability from a physical and control perspective for the momentum. Furthermore, we derive convergence bounds with the rate $\mathcal{O}(\ln(N)/\sqrt{N})$ for a stochastic non convex objective under mild assumptions. We demonstrate that VRAdam exceeds the performance against standard optimizers including AdamW. We benchmark various tasks such as image classification, language modeling, and generative modeling using diverse architectures and training methodologies including Convolutional Neural Networks (CNNs), Transformers, and GFlowNets.
comment: L. Schorling and P. Vaidhyanathan contributed equally to this work. 20 pages, 10 figures
♻ ☆ A Backdoor-based Explainable AI Benchmark for High Fidelity Evaluation of Attributions
Attribution methods compute importance scores for input features to explain model predictions. However, assessing the faithfulness of these methods remains challenging due to the absence of attribution ground truth to model predictions. In this work, we first identify a set of fidelity criteria that reliable benchmarks for attribution methods are expected to fulfill, thereby facilitating a systematic assessment of attribution benchmarks. Next, we introduce a Backdoor-based eXplainable AI benchmark (BackX) that adheres to the desired fidelity criteria. We theoretically establish the superiority of our approach over the existing benchmarks for well-founded attribution evaluation. With extensive analysis, we further establish a standardized evaluation setup that mitigates confounding factors such as post-processing techniques and explained predictions, thereby ensuring a fair and consistent benchmarking. This setup is ultimately employed for a comprehensive comparison of existing methods using BackX. Finally, our analysis also offers insights into defending against neural Trojans by utilizing the attributions.
♻ ☆ Reinforcement Learning with Discrete Diffusion Policies for Combinatorial Action Spaces
Reinforcement learning (RL) struggles to scale to large, combinatorial action spaces common in many real-world problems. This paper introduces a novel framework for training discrete diffusion models as highly effective policies in these complex settings. Our key innovation is an efficient online training process that ensures stable and effective policy improvement. By leveraging policy mirror descent (PMD) to define an ideal, regularized target policy distribution, we frame the policy update as a distributional matching problem, training the expressive diffusion model to replicate this stable target. This decoupled approach stabilizes learning and significantly enhances training performance. Our method achieves state-of-the-art results and superior sample efficiency across a diverse set of challenging combinatorial benchmarks, including DNA sequence generation, RL with macro-actions, and multi-agent systems. Experiments demonstrate that our diffusion policies attain superior performance compared to other baselines.
comment: 22 pages, 10 figures. Haitong Ma and Ofir Nabati contributed equally to this paper
♻ ☆ Provable In-Context Learning of Nonlinear Regression with Transformers
The transformer architecture, which processes sequences of input tokens to produce outputs for query tokens, has revolutionized numerous areas of machine learning. A defining feature of transformers is their ability to perform previously unseen tasks using task specific prompts without updating parameters, a phenomenon known as in-context learning (ICL). Recent research has actively explored the training dynamics behind ICL, with much of the focus on relatively simple tasks such as linear regression and binary classification. To advance the theoretical understanding of ICL, this paper investigates more complex nonlinear regression tasks, aiming to uncover how transformers acquire in-context learning capabilities in these settings. We analyze the stage-wise dynamics of attention during training: attention scores between a query token and its target features grow rapidly in the early phase, then gradually converge to one, while attention to irrelevant features decays more slowly and exhibits oscillatory behavior. Our analysis introduces new proof techniques that explicitly characterize how the nature of general non-degenerate $L$-Lipschitz task functions affects attention weights. Specifically, we identify that the Lipschitz constant $L$ of nonlinear function classes as a key factor governing the convergence dynamics of transformers in ICL. Leveraging these insights, for two distinct regimes depending on whether $L$ is below or above a threshold, we derive different time bounds to guarantee near-zero prediction error. Notably, despite the convergence time depending on the underlying task functions, we prove that query tokens consistently attend to prompt tokens with highly relevant features at convergence, demonstrating the ICL capability of transformers for unseen functions.
♻ ☆ RADAR: Reasoning-Ability and Difficulty-Aware Routing for Reasoning LLMs
Reasoning language models have demonstrated remarkable performance on many challenging tasks in math, science, and coding. Choosing the right reasoning model for practical deployment involves a performance and cost tradeoff at two key levels: model size and reasoning budget, where larger models and higher reasoning budget lead to better performance but with increased cost and latency. In this work, we tackle this tradeoff from the angle of model configuration routing for different queries, and present RADAR (Reasoning-Ability and Difficulty-Aware Routing), a lightweight, interpretable, and scalable routing framework. Inspired by psychometrics, RADAR learns an item response model from model responses with different budgets to different queries, with interpretable parameters including query difficulties and model-budget abilities. RADAR then routes queries with higher difficulty to model-budget pairs with higher ability, and vice versa. We conduct extensive experiments on 8 widely used challenging reasoning benchmarks, demonstrating the superior performance of RADAR compared to state-of-the-art model routing methods. RADAR also exhibits query generalization capabilities, showing strong performance on out-of-distribution queries in all benchmarks. RADAR is also scalable and can efficiently integrate additional models by dynamically selecting a small set of evaluation queries to estimate their abilities.
♻ ☆ An Analytical and AI-discovered Stable, Accurate, and Generalizable Subgrid-scale Closure for Geophysical Turbulence
By combining AI and fluid physics, we discover a closed-form closure for 2D turbulence from small direct numerical simulation (DNS) data. Large-eddy simulation (LES) with this closure is accurate and stable, reproducing DNS statistics including those of extremes. We also show that the new closure could be derived from a 4th-order truncated Taylor expansion. Prior analytical and AI-based work only found the 2nd-order expansion, which led to unstable LES. The additional terms emerge only when inter-scale energy transfer is considered alongside standard reconstruction criterion in the sparse-equation discovery.
♻ ☆ NeuroTTT: Bridging Pretraining-Downstream Task Misalignment in EEG Foundation Models via Test-Time Training
Large-scale foundation models for EEG signals offer a promising path to generalizable brain-computer interface (BCI) applications, but they often suffer from misalignment between pretraining objectives and downstream tasks, as well as significant cross-subject distribution shifts. This paper addresses these challenges by introducing a two-stage alignment strategy that bridges the gap between generic pretraining and specific EEG decoding tasks. First, we propose NeuroTTT: a domain-specific self-supervised fine-tuning paradigm that augments the foundation model with task-relevant self-supervised objectives, aligning latent representations to important spectral, spatial, and temporal EEG features without requiring additional labeled data. Second, we incorporate test-time training (TTT) at inference, we perform (i) self-supervised test-time training on individual unlabeled test samples and (ii) prediction entropy minimization (Tent), which updates only normalization statistics to continually calibrate the model to each new input on the fly. Our approach, which, to our knowledge, is the first to unify domain-tuned self-supervision with test-time training in large-scale EEG foundation models, yields substantially improved robustness and accuracy across diverse BCI tasks (imagined speech, stress detection, motor imagery). Using CBraMod and LaBraM as backbones, our method pushes their performance to a markedly higher level. Results on three diverse tasks demonstrate that the proposed alignment strategy achieves state-of-the-art performance, outperforming conventional fine-tuning and adaptation methods. Our code is available at https://github.com/wsl2000/NeuroTTT.
♻ ☆ Discovering Software Parallelization Points Using Deep Neural Networks
This study proposes a deep learning-based approach for discovering loops in programming code according to their potential for parallelization. Two genetic algorithm-based code generators were developed to produce two distinct types of code: (i) independent loops, which are parallelizable, and (ii) ambiguous loops, whose dependencies are unclear, making them impossible to define if the loop is parallelizable or not. The generated code snippets were tokenized and preprocessed to ensure a robust dataset. Two deep learning models - a Deep Neural Network (DNN) and a Convolutional Neural Network (CNN) - were implemented to perform the classification. Based on 30 independent runs, a robust statistical analysis was employed to verify the expected performance of both models, DNN and CNN. The CNN showed a slightly higher mean performance, but the two models had a similar variability. Experiments with varying dataset sizes highlighted the importance of data diversity for model performance. These results demonstrate the feasibility of using deep learning to automate the identification of parallelizable structures in code, offering a promising tool for software optimization and performance improvement.
comment: 17 pages, 10 figures
♻ ☆ Knowledge-guided machine learning for county-level corn yield prediction under drought
Remote sensing (RS) technique, enabling the non-contact acquisition of extensive ground observations, is a valuable tool for crop yield predictions. Traditional process-based models struggle to incorporate large volumes of RS data, and most users lack understanding of crop growth mechanisms. In contrast, machine learning (ML) models are often criticized as "black boxes" due to their limited interpretability. To address these limitations, we utilized Knowledge-Guided Machine Learning (KGML), a framework that leverages the strengths of both process-based and ML models. Existing works have either overlooked the role of soil moisture in corn growth or did not embed this effect into their models. To bridge this gap, we developed the Knowledge-Guided Machine Learning with Soil Moisture (KGML-SM) framework, treating soil moisture as an intermediate variable in corn growth to emphasize its key role in plant development. Additionally, based on the prior knowledge that the model may overestimate under drought conditions, we designed a drought-aware loss function that penalized predicted yield in drought-affected areas. Our experiments showed that the KGML-SM model outperformed other traditional ML models. We explored the relationships between drought, soil moisture, and corn yield prediction by assessing the importance of different features within the model, and analyzing how soil moisture impacts predictions across different regions and time periods. Finally we provided interpretability for prediction errors to guide future model optimization.
♻ ☆ Neuro-Symbolic AI for Analytical Solutions of Differential Equations
Analytical solutions of differential equations offer exact insights into fundamental behaviors of physical processes. Their application, however, is limited as finding these solutions is difficult. To overcome this limitation, we combine two key insights. First, constructing an analytical solution requires a composition of foundational solution components. Second, iterative solvers define parameterized function spaces with constraint-based updates. Our approach merges compositional differential equation solution techniques with iterative refinement by using formal grammars, building a rich space of candidate solutions that are embedded into a low-dimensional (continuous) latent manifold for probabilistic exploration. This integration unifies numerical and symbolic differential equation solvers via a neuro-symbolic AI framework to find analytical solutions of a wide variety of differential equations. By systematically constructing candidate expressions and applying constraint-based refinement, we overcome longstanding barriers to extract such closed-form solutions. We illustrate advantages over commercial solvers, symbolic methods, and approximate neural networks on a diverse set of problems, demonstrating both generality and accuracy.
♻ ☆ Goal Recognition Design for General Behavioral Agents using Machine Learning
Goal recognition design (GRD) aims to make limited modifications to decision-making environments to make it easier to infer the goals of agents acting within those environments. Although various research efforts have been made in goal recognition design, existing approaches are computationally demanding and often assume that agents are (near-)optimal in their decision-making. To address these limitations, we leverage machine learning methods for goal recognition design that can both improve run-time efficiency and account for agents with general behavioral models. Following existing literature, we use worst-case distinctiveness (wcd) as a measure of the difficulty in inferring the goal of an agent in a decision-making environment. Our approach begins by training a machine learning model to predict the wcd for a given environment and the agent behavior model. We then propose a gradient-based optimization framework that accommodates various constraints to optimize decision-making environments for enhanced goal recognition. Through extensive simulations, we demonstrate that our approach outperforms existing methods in reducing wcd and enhances runtime efficiency. Moreover, our approach also adapts to settings in which existing approaches do not apply, such as those involving flexible budget constraints, more complex environments, and suboptimal agent behavior. Finally, we conducted human-subject experiments that demonstrate that our method creates environments that facilitate efficient goal recognition from human decision-makers.
♻ ☆ PurpCode: Reasoning for Safer Code Generation
We introduce PurpCode, the first post-training recipe for training safe code reasoning models towards generating secure code and defending against malicious cyberactivities. PurpCode trains a reasoning model in two stages: (i) Rule Learning, which explicitly teaches the model to reference cybersafety rules to generate vulnerability-free code and to avoid facilitating malicious cyberactivities; and (ii) Reinforcement Learning, which optimizes model safety and preserves model utility through diverse, multi-objective reward mechanisms. To empower the training pipelines with comprehensive cybersafety data, we conduct internal red-teaming to synthesize comprehensive and high-coverage prompts based on real-world tasks for inducing unsafe cyberactivities in the model. Based on PurpCode, we develop a reasoning-based coding model, namely PurpCode-32B, which demonstrates state-of-the-art cybersafety, outperforming various frontier models. Meanwhile, our alignment method decreases the model overrefusal rates in both general and cybersafety-specific scenarios, while preserving model utility in both code generation and common security knowledge.
♻ ☆ Asymptotic theory of in-context learning by linear attention
Transformers have a remarkable ability to learn and execute tasks based on examples provided within the input itself, without explicit prior training. It has been argued that this capability, known as in-context learning (ICL), is a cornerstone of Transformers' success, yet questions about the necessary sample complexity, pretraining task diversity, and context length for successful ICL remain unresolved. Here, we provide a precise answer to these questions in an exactly solvable model of ICL of a linear regression task by linear attention. We derive sharp asymptotics for the learning curve in a phenomenologically-rich scaling regime where the token dimension is taken to infinity; the context length and pretraining task diversity scale proportionally with the token dimension; and the number of pretraining examples scales quadratically. We demonstrate a double-descent learning curve with increasing pretraining examples, and uncover a phase transition in the model's behavior between low and high task diversity regimes: In the low diversity regime, the model tends toward memorization of training tasks, whereas in the high diversity regime, it achieves genuine in-context learning and generalization beyond the scope of pretrained tasks. These theoretical insights are empirically validated through experiments with both linear attention and full nonlinear Transformer architectures.
comment: 15 pages (main doc), 6 figures, and supplementary information (22 pages)
♻ ☆ CRUST-Bench: A Comprehensive Benchmark for C-to-safe-Rust Transpilation
C-to-Rust transpilation is essential for modernizing legacy C code while enhancing safety and interoperability with modern Rust ecosystems. However, no dataset currently exists for evaluating whether a system can transpile C into safe Rust that passes a set of test cases. We introduce CRUST-Bench, a dataset of 100 C repositories, each paired with manually-written interfaces in safe Rust as well as test cases that can be used to validate correctness of the transpilation. By considering entire repositories rather than isolated functions, CRUST-Bench captures the challenges of translating complex projects with dependencies across multiple files. The provided Rust interfaces provide explicit specifications that ensure adherence to idiomatic, memory-safe Rust patterns, while the accompanying test cases enforce functional correctness. We evaluate state-of-the-art large language models (LLMs) on this task and find that safe and idiomatic Rust generation is still a challenging problem for various state-of-the-art methods and techniques. We also provide insights into the errors LLMs usually make in transpiling code from C to safe Rust. The best performing model, OpenAI o1, is able to solve only 15 tasks in a single-shot setting. Improvements on CRUST-Bench would lead to improved transpilation systems that can reason about complex scenarios and help in migrating legacy codebases from C into languages like Rust that ensure memory safety. You can find the dataset and code at https://github.com/anirudhkhatry/CRUST-bench.
comment: To be published at COLM, 2025
♻ ☆ Diagnosing and Addressing Pitfalls in KG-RAG Datasets: Toward More Reliable Benchmarking NeurIPS 2025
Knowledge Graph Question Answering (KGQA) systems rely on high-quality benchmarks to evaluate complex multi-hop reasoning. However, despite their widespread use, popular datasets such as WebQSP and CWQ suffer from critical quality issues, including inaccurate or incomplete ground-truth annotations, poorly constructed questions that are ambiguous, trivial, or unanswerable, and outdated or inconsistent knowledge. Through a manual audit of 16 popular KGQA datasets, including WebQSP and CWQ, we find that the average factual correctness rate is only 57 %. To address these issues, we introduce KGQAGen, an LLM-in-the-loop framework that systematically resolves these pitfalls. KGQAGen combines structured knowledge grounding, LLM-guided generation, and symbolic verification to produce challenging and verifiable QA instances. Using KGQAGen, we construct KGQAGen-10k, a ten-thousand scale benchmark grounded in Wikidata, and evaluate a diverse set of KG-RAG models. Experimental results demonstrate that even state-of-the-art systems struggle on this benchmark, highlighting its ability to expose limitations of existing models. Our findings advocate for more rigorous benchmark construction and position KGQAGen as a scalable framework for advancing KGQA evaluation.
comment: Accepted at NeurIPS 2025 Datasets and Benchmarks Track
♻ ☆ Multi-Scale Node Embeddings for Graph Modeling and Generation
Lying at the interface between Network Science and Machine Learning, node embedding algorithms take a graph as input and encode its structure onto output vectors that represent nodes in an abstract geometric space, enabling various vector-based downstream tasks such as network modelling, data compression, link prediction, and community detection. Two apparently unrelated limitations affect these algorithms. On one hand, it is not clear what the basic operation defining vector spaces, i.e. the vector sum, corresponds to in terms of the original nodes in the network. On the other hand, while the same input network can be represented at multiple levels of resolution by coarse-graining the constituent nodes into arbitrary block-nodes, the relationship between node embeddings obtained at different hierarchical levels is not understood. Here, building on recent results in network renormalization theory, we address these two limitations at once and define a multiscale node embedding method that, upon arbitrary coarse-grainings, ensures statistical consistency of the embedding vector of a block-node with the sum of the embedding vectors of its constituent nodes. We illustrate the power of this approach on two economic networks that can be naturally represented at multiple resolution levels: namely, the international trade between (sets of) countries and the input-output flows among (sets of) industries in the Netherlands. We confirm the statistical consistency between networks retrieved from coarse-grained node vectors and networks retrieved from sums of fine-grained node vectors, a result that cannot be achieved by alternative methods. Several key network properties, including a large number of triangles, are successfully replicated already from embeddings of very low dimensionality, allowing for the generation of faithful replicas of the original networks at arbitrary resolution levels.
Graphics 3
☆ Audio Driven Real-Time Facial Animation for Social Telepresence SIGGRAPH
We present an audio-driven real-time system for animating photorealistic 3D facial avatars with minimal latency, designed for social interactions in virtual reality for anyone. Central to our approach is an encoder model that transforms audio signals into latent facial expression sequences in real time, which are then decoded as photorealistic 3D facial avatars. Leveraging the generative capabilities of diffusion models, we capture the rich spectrum of facial expressions necessary for natural communication while achieving real-time performance (<15ms GPU time). Our novel architecture minimizes latency through two key innovations: an online transformer that eliminates dependency on future inputs and a distillation pipeline that accelerates iterative denoising into a single step. We further address critical design challenges in live scenarios for processing continuous audio signals frame-by-frame while maintaining consistent animation quality. The versatility of our framework extends to multimodal applications, including semantic modalities such as emotion conditions and multimodal sensors with head-mounted eye cameras on VR headsets. Experimental results demonstrate significant improvements in facial animation accuracy over existing offline state-of-the-art baselines, achieving 100 to 1000 times faster inference speed. We validate our approach through live VR demonstrations and across various scenarios such as multilingual speeches.
comment: SIGGRAPH Asia 2025. Project page: https://jiyewise.github.io/projects/AudioRTA
☆ ReSWD: ReSTIR'd, not shaken. Combining Reservoir Sampling and Sliced Wasserstein Distance for Variance Reduction
Distribution matching is central to many vision and graphics tasks, where the widely used Wasserstein distance is too costly to compute for high dimensional distributions. The Sliced Wasserstein Distance (SWD) offers a scalable alternative, yet its Monte Carlo estimator suffers from high variance, resulting in noisy gradients and slow convergence. We introduce Reservoir SWD (ReSWD), which integrates Weighted Reservoir Sampling into SWD to adaptively retain informative projection directions in optimization steps, resulting in stable gradients while remaining unbiased. Experiments on synthetic benchmarks and real-world tasks such as color correction and diffusion guidance show that ReSWD consistently outperforms standard SWD and other variance reduction baselines. Project page: https://reservoirswd.github.io/
☆ Virtual Reality Alters Perceived Functional Body Size
Virtual reality (VR) introduces sensory perturbations that may impact perception and action. The current study was designed to investigate how immersive VR presented through a head-mounted display (HMD) affects perceived functional body size using a passable aperture paradigm. Participants (n=60) performed an action task (sidle through apertures) and a perception task (adjust aperture width until passable without contact) in both physical, unmediated reality (UR) and VR. Results revealed significantly higher action and perceptual thresholds in VR compared to UR. Affordance ratios (perceptual threshold over action threshold) were also higher in VR, indicating that the increase in perceptual thresholds in VR was driven partly by sensorimotor uncertainty, as reflected in the increase in the action thresholds, and partly by perceptual distortions imposed by VR. This perceptual overestimation in VR also persisted as an aftereffect in UR following VR exposure. Geometrical modelling attributed the disproportionate increase in the perceptual threshold in VR primarily to depth compression. This compression, stemming from the vergence-accommodation conflict (VAC), caused the virtual aperture to be perceived as narrower than depicted, thus requiring a wider adjusted aperture. Critically, after mathematically correcting for the VAC's impact on perceived aperture width, the affordance ratios in VR became equivalent to those in UR. These outcomes demonstrate a recovered invariant geometrical scaling, suggesting that perception remained functionally attuned to action capabilities once VAC-induced distortions were accounted for. These findings highlight that VR-induced depth compression systematically alters perceived body-environment relationships, leading to an altered sense of one's functional body size.
Robotics 76
MLA: A Multisensory Language-Action Model for Multimodal Understanding and Forecasting in Robotic Manipulation
Vision-language-action models (VLAs) have shown generalization capabilities in robotic manipulation tasks by inheriting from vision-language models (VLMs) and learning action generation. Most VLA models focus on interpreting vision and language to generate actions, whereas robots must perceive and interact within the spatial-physical world. This gap highlights the need for a comprehensive understanding of robotic-specific multisensory information, which is crucial for achieving complex and contact-rich control. To this end, we introduce a multisensory language-action (MLA) model that collaboratively perceives heterogeneous sensory modalities and predicts future multisensory objectives to facilitate physical world modeling. Specifically, to enhance perceptual representations, we propose an encoder-free multimodal alignment scheme that innovatively repurposes the large language model itself as a perception module, directly interpreting multimodal cues by aligning 2D images, 3D point clouds, and tactile tokens through positional correspondence. To further enhance MLA's understanding of physical dynamics, we design a future multisensory generation post-training strategy that enables MLA to reason about semantic, geometric, and interaction information, providing more robust conditions for action generation. For evaluation, the MLA model outperforms the previous state-of-the-art 2D and 3D VLA methods by 12% and 24% in complex, contact-rich real-world tasks, respectively, while also demonstrating improved generalization to unseen configurations. Project website: https://sites.google.com/view/open-mla
Benchmarking Egocentric Visual-Inertial SLAM at City Scale ICCV 2025
Precise 6-DoF simultaneous localization and mapping (SLAM) from onboard sensors is critical for wearable devices capturing egocentric data, which exhibits specific challenges, such as a wider diversity of motions and viewpoints, prevalent dynamic visual content, or long sessions affected by time-varying sensor calibration. While recent progress on SLAM has been swift, academic research is still driven by benchmarks that do not reflect these challenges or do not offer sufficiently accurate ground truth poses. In this paper, we introduce a new dataset and benchmark for visual-inertial SLAM with egocentric, multi-modal data. We record hours and kilometers of trajectories through a city center with glasses-like devices equipped with various sensors. We leverage surveying tools to obtain control points as indirect pose annotations that are metric, centimeter-accurate, and available at city scale. This makes it possible to evaluate extreme trajectories that involve walking at night or traveling in a vehicle. We show that state-of-the-art systems developed by academia are not robust to these challenges and we identify components that are responsible for this. In addition, we design tracks with different levels of difficulty to ease in-depth analysis and evaluation of less mature approaches. The dataset and benchmark are available at https://www.lamaria.ethz.ch.
comment: ICCV 2025
☆ OmniRetarget: Interaction-Preserving Data Generation for Humanoid Whole-Body Loco-Manipulation and Scene Interaction
A dominant paradigm for teaching humanoid robots complex skills is to retarget human motions as kinematic references to train reinforcement learning (RL) policies. However, existing retargeting pipelines often struggle with the significant embodiment gap between humans and robots, producing physically implausible artifacts like foot-skating and penetration. More importantly, common retargeting methods neglect the rich human-object and human-environment interactions essential for expressive locomotion and loco-manipulation. To address this, we introduce OmniRetarget, an interaction-preserving data generation engine based on an interaction mesh that explicitly models and preserves the crucial spatial and contact relationships between an agent, the terrain, and manipulated objects. By minimizing the Laplacian deformation between the human and robot meshes while enforcing kinematic constraints, OmniRetarget generates kinematically feasible trajectories. Moreover, preserving task-relevant interactions enables efficient data augmentation, from a single demonstration to different robot embodiments, terrains, and object configurations. We comprehensively evaluate OmniRetarget by retargeting motions from OMOMO, LAFAN1, and our in-house MoCap datasets, generating over 8-hour trajectories that achieve better kinematic constraint satisfaction and contact preservation than widely used baselines. Such high-quality data enables proprioceptive RL policies to successfully execute long-horizon (up to 30 seconds) parkour and loco-manipulation skills on a Unitree G1 humanoid, trained with only 5 reward terms and simple domain randomization shared by all tasks, without any learning curriculum.
comment: Project website: https://omniretarget.github.io
☆ TimeRewarder: Learning Dense Reward from Passive Videos via Frame-wise Temporal Distance
Designing dense rewards is crucial for reinforcement learning (RL), yet in robotics it often demands extensive manual effort and lacks scalability. One promising solution is to view task progress as a dense reward signal, as it quantifies the degree to which actions advance the system toward task completion over time. We present TimeRewarder, a simple yet effective reward learning method that derives progress estimation signals from passive videos, including robot demonstrations and human videos, by modeling temporal distances between frame pairs. We then demonstrate how TimeRewarder can supply step-wise proxy rewards to guide reinforcement learning. In our comprehensive experiments on ten challenging Meta-World tasks, we show that TimeRewarder dramatically improves RL for sparse-reward tasks, achieving nearly perfect success in 9/10 tasks with only 200,000 interactions per task with the environment. This approach outperformed previous methods and even the manually designed environment dense reward on both the final success rate and sample efficiency. Moreover, we show that TimeRewarder pretraining can exploit real-world human videos, highlighting its potential as a scalable approach path to rich reward signals from diverse video sources.
Graphite: A GPU-Accelerated Mixed-Precision Graph Optimization Framework
We present Graphite, a GPU-accelerated nonlinear graph optimization framework. It provides a CUDA C++ interface to enable the sharing of code between a realtime application, such as a SLAM system, and its optimization tasks. The framework supports techniques to reduce memory usage, including in-place optimization, support for multiple floating point types and mixed-precision modes, and dynamically computed Jacobians. We evaluate Graphite on well-known bundle adjustment problems and find that it achieves similar performance to MegBA, a solver specialized for bundle adjustment, while maintaining generality and using less memory. We also apply Graphite to global visual-inertial bundle adjustment on maps generated from stereo-inertial SLAM datasets, and observe speed ups of up to 59x compared to a CPU baseline. Our results indicate that our solver enables faster large-scale optimization on both desktop and resource-constrained devices.
☆ The Trajectory Bundle Method: Unifying Sequential-Convex Programming and Sampling-Based Trajectory Optimization
We present a unified framework for solving trajectory optimization problems in a derivative-free manner through the use of sequential convex programming. Traditionally, nonconvex optimization problems are solved by forming and solving a sequence of convex optimization problems, where the cost and constraint functions are approximated locally through Taylor series expansions. This presents a challenge for functions where differentiation is expensive or unavailable. In this work, we present a derivative-free approach to form these convex approximations by computing samples of the dynamics, cost, and constraint functions and letting the solver interpolate between them. Our framework includes sample-based trajectory optimization techniques like model-predictive path integral (MPPI) control as a special case and generalizes them to enable features like multiple shooting and general equality and inequality constraints that are traditionally associated with derivative-based sequential convex programming methods. The resulting framework is simple, flexible, and capable of solving a wide variety of practical motion planning and control problems.
☆ Radio-based Multi-Robot Odometry and Relative Localization
Radio-based methods such as Ultra-Wideband (UWB) and RAdio Detection And Ranging (radar), which have traditionally seen limited adoption in robotics, are experiencing a boost in popularity thanks to their robustness to harsh environmental conditions and cluttered environments. This work proposes a multi-robot UGV-UAV localization system that leverages the two technologies with inexpensive and readily-available sensors, such as Inertial Measurement Units (IMUs) and wheel encoders, to estimate the relative position of an aerial robot with respect to a ground robot. The first stage of the system pipeline includes a nonlinear optimization framework to trilaterate the location of the aerial platform based on UWB range data, and a radar pre-processing module with loosely coupled ego-motion estimation which has been adapted for a multi-robot scenario. Then, the pre-processed radar data as well as the relative transformation are fed to a pose-graph optimization framework with odometry and inter-robot constraints. The system, implemented for the Robotic Operating System (ROS 2) with the Ceres optimizer, has been validated in Software-in-the-Loop (SITL) simulations and in a real-world dataset. The proposed relative localization module outperforms state-of-the-art closed-form methods which are less robust to noise. Our SITL environment includes a custom Gazebo plugin for generating realistic UWB measurements modeled after real data. Conveniently, the proposed factor graph formulation makes the system readily extensible to full Simultaneous Localization And Mapping (SLAM). Finally, all the code and experimental data is publicly available to support reproducibility and to serve as a common open dataset for benchmarking.
☆ OceanGym: A Benchmark Environment for Underwater Embodied Agents
We introduce OceanGym, the first comprehensive benchmark for ocean underwater embodied agents, designed to advance AI in one of the most demanding real-world environments. Unlike terrestrial or aerial domains, underwater settings present extreme perceptual and decision-making challenges, including low visibility, dynamic ocean currents, making effective agent deployment exceptionally difficult. OceanGym encompasses eight realistic task domains and a unified agent framework driven by Multi-modal Large Language Models (MLLMs), which integrates perception, memory, and sequential decision-making. Agents are required to comprehend optical and sonar data, autonomously explore complex environments, and accomplish long-horizon objectives under these harsh conditions. Extensive experiments reveal substantial gaps between state-of-the-art MLLM-driven agents and human experts, highlighting the persistent difficulty of perception, planning, and adaptability in ocean underwater environments. By providing a high-fidelity, rigorously designed platform, OceanGym establishes a testbed for developing robust embodied AI and transferring these capabilities to real-world autonomous ocean underwater vehicles, marking a decisive step toward intelligent agents capable of operating in one of Earth's last unexplored frontiers. The code and data are available at https://github.com/OceanGPT/OceanGym.
comment: Work in progress
☆ Memory-Efficient 2D/3D Shape Assembly of Robot Swarms
Mean-shift-based approaches have recently emerged as the most effective methods for robot swarm shape assembly tasks. These methods rely on image-based representations of target shapes to compute local density gradients and perform mean-shift exploration, which constitute their core mechanism. However, such image representations incur substantial memory overhead, which can become prohibitive for high-resolution or 3D shapes. To overcome this limitation, we propose a memory-efficient tree map representation that hierarchically encodes user-specified shapes and is applicable to both 2D and 3D scenarios. Building on this representation, we design a behavior-based distributed controller that enables assignment-free shape assembly. Comparative 2D and 3D simulations against a state-of-the-art mean-shift algorithm demonstrate one to two orders of magnitude lower memory usage and two to three times faster shape entry while maintaining comparable uniformity. Finally, we validate the framework through physical experiments with 6 to 7 UAVs, confirming its real-world practicality.
☆ Learning from Hallucinating Critical Points for Navigation in Dynamic Environments
Generating large and diverse obstacle datasets to learn motion planning in environments with dynamic obstacles is challenging due to the vast space of possible obstacle trajectories. Inspired by hallucination-based data synthesis approaches, we propose Learning from Hallucinating Critical Points (LfH-CP), a self-supervised framework for creating rich dynamic obstacle datasets based on existing optimal motion plans without requiring expensive expert demonstrations or trial-and-error exploration. LfH-CP factorizes hallucination into two stages: first identifying when and where obstacles must appear in order to result in an optimal motion plan, i.e., the critical points, and then procedurally generating diverse trajectories that pass through these points while avoiding collisions. This factorization avoids generative failures such as mode collapse and ensures coverage of diverse dynamic behaviors. We further introduce a diversity metric to quantify dataset richness and show that LfH-CP produces substantially more varied training data than existing baselines. Experiments in simulation demonstrate that planners trained on LfH-CP datasets achieves higher success rates compared to a prior hallucination method.
☆ Analytic Conditions for Differentiable Collision Detection in Trajectory Optimization IROS
Optimization-based methods are widely used for computing fast, diverse solutions for complex tasks such as collision-free movement or planning in the presence of contacts. However, most of these methods require enforcing non-penetration constraints between objects, resulting in a non-trivial and computationally expensive problem. This makes the use of optimization-based methods for planning and control challenging. In this paper, we present a method to efficiently enforce non-penetration of sets while performing optimization over their configuration, which is directly applicable to problems like collision-aware trajectory optimization. We introduce novel differentiable conditions with analytic expressions to achieve this. To enforce non-collision between non-smooth bodies using these conditions, we introduce a method to approximate polytopes as smooth semi-algebraic sets. We present several numerical experiments to demonstrate the performance of the proposed method and compare the performance with other baseline methods recently proposed in the literature.
comment: 8 pages, 8 figures. Accepted to the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
☆ Unwinding Rotations Reduces VR Sickness in Nonsimulated Immersive Telepresence
Immersive telepresence, when a user views the video stream of a $360^\circ$ camera in a remote environment using a Head Mounted Display (HMD), has great potential to improve the sense of being in a remote environment. In most cases of immersive robotic telepresence, the camera is mounted on a mobile robot which increases the portion of the environment that the remote user can explore. However, robot motions can induce unpleasant symptoms associated with Virtual Reality (VR) sickness, degrading the overall user experience. Previous research has shown that unwinding the rotations of the robot, that is, decoupling the rotations that the camera undergoes due to robot motions from what is seen by the user, can increase user comfort and reduce VR sickness. However, that work considered a virtual environment and a simulated robot. In this work, to test whether the same hypotheses hold when the video stream from a real camera is used, we carried out a user study $(n=36)$ in which the unwinding rotations method was compared against coupled rotations in a task completed through a panoramic camera mounted on a robotic arm. Furthermore, within an inspection task which involved translations and rotations in three dimensions, we tested whether unwinding the robot rotations impacted the performance of users. The results show that the users found the unwinding rotations method to be more comfortable and preferable, and that a reduced level of VR sickness can be achieved without a significant impact on task performance.
comment: 24th IEEE International Symposium on Mixed and Augmented Reality (ISMAR)
☆ Real-time Velocity Profile Optimization for Time-Optimal Maneuvering with Generic Acceleration Constraints
The computation of time-optimal velocity profiles along prescribed paths, subject to generic acceleration constraints, is a crucial problem in robot trajectory planning, with particular relevance to autonomous racing. However, the existing methods either support arbitrary acceleration constraints at high computational cost or use conservative box constraints for computational efficiency. We propose FBGA, a new \underline{F}orward-\underline{B}ackward algorithm with \underline{G}eneric \underline{A}cceleration constraints, which achieves both high accuracy and low computation time. FBGA operates forward and backward passes to maximize the velocity profile in short, discretized path segments, while satisfying user-defined performance limits. Tested on five racetracks and two vehicle classes, FBGA handles complex, non-convex acceleration constraints with custom formulations. Its maneuvers and lap times closely match optimal control baselines (within $0.11\%$-$0.36\%$), while being up to three orders of magnitude faster. FBGA maintains high accuracy even with coarse discretization, making it well-suited for online multi-query trajectory planning. Our open-source \texttt{C++} implementation is available at: https://anonymous.4open.science/r/FB_public_RAL.
☆ SDA-PLANNER: State-Dependency Aware Adaptive Planner for Embodied Task Planning
Embodied task planning requires agents to produce executable actions in a close-loop manner within the environment. With progressively improving capabilities of LLMs in task decomposition, planning, and generalization, current embodied task planning methods adopt LLM-based architecture.However, existing LLM-based planners remain limited in three aspects, i.e., fixed planning paradigms, lack of action sequence constraints, and error-agnostic. In this work, we propose SDA-PLANNER, enabling an adaptive planning paradigm, state-dependency aware and error-aware mechanisms for comprehensive embodied task planning. Specifically, SDA-PLANNER introduces a State-Dependency Graph to explicitly model action preconditions and effects, guiding the dynamic revision. To handle execution error, it employs an error-adaptive replanning strategy consisting of Error Backtrack and Diagnosis and Adaptive Action SubTree Generation, which locally reconstructs the affected portion of the plan based on the current environment state. Experiments demonstrate that SDA-PLANNER consistently outperforms baselines in success rate and goal completion, particularly under diverse error conditions.
☆ Kinodynamic Motion Planning for Mobile Robot Navigation across Inconsistent World Models RSS
Mobile ground robots lacking prior knowledge of an environment must rely on sensor data to develop a model of their surroundings. In these scenarios, consistent identification of obstacles and terrain features can be difficult due to noise and algorithmic shortcomings, which can make it difficult for motion planning systems to generate safe motions. One particular difficulty to overcome is when regions of the cost map switch between being marked as obstacles and free space through successive planning cycles. One potential solution to this, which we refer to as Valid in Every Hypothesis (VEH), is for the planning system to plan motions that are guaranteed to be safe through a history of world models. Another approach is to track a history of world models, and adjust node costs according to the potential penalty of needing to reroute around previously hazardous areas. This work discusses three major iterations on this idea. The first iteration, called PEH, invokes a sub-search for every node expansion that crosses through a divergence point in the world models. The second and third iterations, called GEH and GEGRH respectively, defer the sub-search until after an edge expands into the goal region. GEGRH uses an additional step to revise the graph based on divergent nodes in each world. Initial results showed that, although PEH and GEH find more optimistic solutions than VEH, they are unable to generate solutions in less than one-second, which exceeds our requirements for field deployment. Analysis of results from a field experiment in an unstructured, off-road environment on a Clearpath Robotics Warthog UGV indicate that GEGRH finds lower cost trajectories and has faster average planning times than VEH. Compared to single-hypothesis (SH) search, where only the latest world model is considered, GEGRH generates more conservative plans with a small increase in average planning time.
comment: Presented at the Robotics: Science and Systems (RSS) 2025 Workshop on Resilient Off-road Autonomous Robotics (ROAR)
☆ LLM-MCoX: Large Language Model-based Multi-robot Coordinated Exploration and Search
Autonomous exploration and object search in unknown indoor environments remain challenging for multi-robot systems (MRS). Traditional approaches often rely on greedy frontier assignment strategies with limited inter-robot coordination. In this work, we introduce LLM-MCoX (LLM-based Multi-robot Coordinated Exploration and Search), a novel framework that leverages Large Language Models (LLMs) for intelligent coordination of both homogeneous and heterogeneous robot teams tasked with efficient exploration and target object search. Our approach combines real-time LiDAR scan processing for frontier cluster extraction and doorway detection with multimodal LLM reasoning (e.g., GPT-4o) to generate coordinated waypoint assignments based on shared environment maps and robot states. LLM-MCoX demonstrates superior performance compared to existing methods, including greedy and Voronoi-based planners, achieving 22.7% faster exploration times and 50% improved search efficiency in large environments with 6 robots. Notably, LLM-MCoX enables natural language-based object search capabilities, allowing human operators to provide high-level semantic guidance that traditional algorithms cannot interpret.
☆ Anomaly detection for generic failure monitoring in robotic assembly, screwing and manipulation
Out-of-distribution states in robot manipulation often lead to unpredictable robot behavior or task failure, limiting success rates and increasing risk of damage. Anomaly detection (AD) can identify deviations from expected patterns in data, which can be used to trigger failsafe behaviors and recovery strategies. Prior work has applied data-driven AD to time series data in specific robotic tasks, but its transferability across control strategies and task types has not been shown. Leveraging time series data, such as force/torque signals, allows to directly capture robot-environment interactions, crucial for manipulation and online failure detection. Their broad availability, high sampling rates, and low dimensionality enable high temporal resolution and efficient processing. As robotic tasks can have widely signal characteristics and requirements, AD methods which can be applied in the same way to a wide range of tasks is needed, ideally with good data efficiency. We examine three industrial robotic tasks, each presenting several anomalies. Test scenarios in robotic cabling, screwing, and sanding are built, and multimodal time series data is gathered. Several autoencoder-based methods are compared, evaluating generalization across tasks and control methods (diffusion policy, position, and impedance control). This allows us to validate the integration of AD in complex tasks involving tighter tolerances and variation from both the robot and its environment. Additionally, we evaluate data efficiency, detection latency, and task characteristics which support robust detection. The results indicate reliable detection with AUROC exceeding 0.93 in failures in the cabling and screwing task, such as incorrect or misaligned parts and obstructed targets. In the polishing task, only severe failures were reliably detected, while more subtle failure types remained undetected.
☆ ISyHand: A Dexterous Multi-finger Robot Hand with an Articulated Palm
The rapid increase in the development of humanoid robots and customized manufacturing solutions has brought dexterous manipulation to the forefront of modern robotics. Over the past decade, several expensive dexterous hands have come to market, but advances in hardware design, particularly in servo motors and 3D printing, have recently facilitated an explosion of cheaper open-source hands. Most hands are anthropomorphic to allow use of standard human tools, and attempts to increase dexterity often sacrifice anthropomorphism. We introduce the open-source ISyHand (pronounced easy-hand), a highly dexterous, low-cost, easy-to-manufacture, on-joint servo-driven robot hand. Our hand uses off-the-shelf Dynamixel motors, fasteners, and 3D-printed parts, can be assembled within four hours, and has a total material cost of about 1,300 USD. The ISyHands's unique articulated-palm design increases overall dexterity with only a modest sacrifice in anthropomorphism. To demonstrate the utility of the articulated palm, we use reinforcement learning in simulation to train the hand to perform a classical in-hand manipulation task: cube reorientation. Our novel, systematic experiments show that the simulated ISyHand outperforms the two most comparable hands in early training phases, that all three perform similarly well after policy convergence, and that the ISyHand significantly outperforms a fixed-palm version of its own design. Additionally, we deploy a policy trained on cube reorientation on the real hand, demonstrating its ability to perform real-world dexterous manipulation.
comment: Accepted at IEEE Humanoids 2025
☆ Terrain-Awared LiDAR-Inertial Odometry for Legged-Wheel Robots Based on Radial Basis Function Approximation
An accurate odometry is essential for legged-wheel robots operating in unstructured terrains such as bumpy roads and staircases. Existing methods often suffer from pose drift due to their ignorance of terrain geometry. We propose a terrain-awared LiDAR-Inertial odometry (LIO) framework that approximates the terrain using Radial Basis Functions (RBF) whose centers are adaptively selected and weights are recursively updated. The resulting smooth terrain manifold enables ``soft constraints" that regularize the odometry optimization and mitigates the $z$-axis pose drift under abrupt elevation changes during robot's maneuver. To ensure the LIO's real-time performance, we further evaluate the RBF-related terms and calculate the inverse of the sparse kernel matrix with GPU parallelization. Experiments on unstructured terrains demonstrate that our method achieves higher localization accuracy than the state-of-the-art baselines, especially in the scenarios that have continuous height changes or sparse features when abrupt height changes occur.
☆ Side Scan Sonar-based SLAM for Autonomous Algae Farm Monitoring
The transition of seaweed farming to an alternative food source on an industrial scale relies on automating its processes through smart farming, equivalent to land agriculture. Key to this process are autonomous underwater vehicles (AUVs) via their capacity to automate crop and structural inspections. However, the current bottleneck for their deployment is ensuring safe navigation within farms, which requires an accurate, online estimate of the AUV pose and map of the infrastructure. To enable this, we propose an efficient side scan sonar-based (SSS) simultaneous localization and mapping (SLAM) framework that exploits the geometry of kelp farms via modeling structural ropes in the back-end as sequences of individual landmarks from each SSS ping detection, instead of combining detections into elongated representations. Our method outperforms state of the art solutions in hardware in the loop (HIL) experiments on a real AUV survey in a kelp farm. The framework and dataset can be found at https://github.com/julRusVal/sss_farm_slam.
☆ Autonomous Multi-Robot Infrastructure for AI-Enabled Healthcare Delivery and Diagnostics
This research presents a multi-robot system for inpatient care, designed using swarm intelligence principles and incorporating wearable health sensors, RF-based communication, and AI-driven decision support. Within a simulated hospital environment, the system adopts a leader-follower swarm configuration to perform patient monitoring, medicine delivery, and emergency assistance. Due to ethical constraints, live patient trials were not conducted; instead, validation was carried out through controlled self-testing with wearable sensors. The Leader Robot acquires key physiological parameters, including temperature, SpO2, heart rate, and fall detection, and coordinates other robots when required. The Assistant Robot patrols corridors for medicine delivery, while a robotic arm provides direct drug administration. The swarm-inspired leader-follower strategy enhanced communication reliability and ensured continuous monitoring, including automated email alerts to healthcare staff. The system hardware was implemented using Arduino, Raspberry Pi, NRF24L01 RF modules, and a HuskyLens AI camera. Experimental evaluation showed an overall sensor accuracy above 94%, a 92% task-level success rate, and a 96% communication reliability rate, demonstrating system robustness. Furthermore, the AI-enabled decision support was able to provide early warnings of abnormal health conditions, highlighting the potential of the system as a cost-effective solution for hospital automation and patient safety.
comment: 11 pages, 5 figures, MSc dissertation submission draft, prepared for conference/journal consideration
☆ Evolutionary Continuous Adaptive RL-Powered Co-Design for Humanoid Chin-Up Performance
Humanoid robots have seen significant advancements in both design and control, with a growing emphasis on integrating these aspects to enhance overall performance. Traditionally, robot design has followed a sequential process, where control algorithms are developed after the hardware is finalized. However, this can be myopic and prevent robots to fully exploit their hardware capabilities. Recent approaches advocate for co-design, optimizing both design and control in parallel to maximize robotic capabilities. This paper presents the Evolutionary Continuous Adaptive RL-based Co-Design (EA-CoRL) framework, which combines reinforcement learning (RL) with evolutionary strategies to enable continuous adaptation of the control policy to the hardware. EA-CoRL comprises two key components: Design Evolution, which explores the hardware choices using an evolutionary algorithm to identify efficient configurations, and Policy Continuous Adaptation, which fine-tunes a task-specific control policy across evolving designs to maximize performance rewards. We evaluate EA-CoRL by co-designing the actuators (gear ratios) and control policy of the RH5 humanoid for a highly dynamic chin-up task, previously unfeasible due to actuator limitations. Comparative results against state-of-the-art RL-based co-design methods show that EA-CoRL achieves higher fitness score and broader design space exploration, highlighting the critical role of continuous policy adaptation in robot co-design.
☆ Conflict-Based Search and Prioritized Planning for Multi-Agent Path Finding Among Movable Obstacles
This paper investigates Multi-Agent Path Finding Among Movable Obstacles (M-PAMO), which seeks collision-free paths for multiple agents from their start to goal locations among static and movable obstacles. M-PAMO arises in logistics and warehouses where mobile robots are among unexpected movable objects. Although Multi-Agent Path Finding (MAPF) and single-agent Path planning Among Movable Obstacles (PAMO) were both studied, M-PAMO remains under-explored. Movable obstacles lead to new fundamental challenges as the state space, which includes both agents and movable obstacles, grows exponentially with respect to the number of agents and movable obstacles. In particular, movable obstacles often closely couple agents together spatially and temporally. This paper makes a first attempt to adapt and fuse the popular Conflict-Based Search (CBS) and Prioritized Planning (PP) for MAPF, and a recent single-agent PAMO planner called PAMO*, together to address M-PAMO. We compare their performance with up to 20 agents and hundreds of movable obstacles, and show the pros and cons of these approaches.
☆ Towards Human Engagement with Realistic AI Combat Pilots
We present a system that enables real-time interaction between human users and agents trained to control fighter jets in simulated 3D air combat scenarios. The agents are trained in a dedicated environment using Multi-Agent Reinforcement Learning. A communication link is developed to allow seamless deployment of trained agents into VR-Forces, a widely used defense simulation tool for realistic tactical scenarios. This integration allows mixed simulations where human-controlled entities engage with intelligent agents exhibiting distinct combat behaviors. Our interaction model creates new opportunities for human-agent teaming, immersive training, and the exploration of innovative tactics in defense contexts.
comment: 13th International Conference on Human-Agent Interaction (HAI) 2025
☆ On the Conic Complementarity of Planar Contacts
We present a unifying theoretical result that connects two foundational principles in robotics: the Signorini law for point contacts, which underpins many simulation methods for preventing object interpenetration, and the center of pressure (also known as the zero-moment point), a key concept used in, for instance, optimization-based locomotion control. Our contribution is the planar Signorini condition, a conic complementarity formulation that models general planar contacts between rigid bodies. We prove that this formulation is equivalent to enforcing the punctual Signorini law across an entire contact surface, thereby bridging the gap between discrete and continuous contact models. A geometric interpretation reveals that the framework naturally captures three physical regimes -sticking, separating, and tilting-within a unified complementarity structure. This leads to a principled extension of the classical center of pressure, which we refer to as the extended center of pressure. By establishing this connection, our work provides a mathematically consistent and computationally tractable foundation for handling planar contacts, with implications for both the accurate simulation of contact dynamics and the design of advanced control and optimization algorithms in locomotion and manipulation.
☆ Emotionally Expressive Robots: Implications for Children's Behavior toward Robot
The growing development of robots with artificial emotional expressiveness raises important questions about their persuasive potential in children's behavior. While research highlights the pragmatic value of emotional expressiveness in human social communication, the extent to which robotic expressiveness can or should influence empathic responses in children is grounds for debate. In a pilot study with 22 children (aged 7-11) we begin to explore the ways in which different levels of embodied expressiveness (body only, face only, body and face) of two basic emotions (happiness and sadness) displayed by an anthropomorphic robot (QTRobot) might modify children's behavior in a child-robot cooperative turn-taking game. We observed that children aligned their behavior to the robot's inferred emotional state. However, higher levels of expressiveness did not result in increased alignment. The preliminary results reported here provide a starting point for reflecting on robotic expressiveness and its role in shaping children's social-emotional behavior toward robots as social peers in the near future.
☆ S$^3$E: Self-Supervised State Estimation for Radar-Inertial System
Millimeter-wave radar for state estimation is gaining significant attention for its affordability and reliability in harsh conditions. Existing localization solutions typically rely on post-processed radar point clouds as landmark points. Nonetheless, the inherent sparsity of radar point clouds, ghost points from multi-path effects, and limited angle resolution in single-chirp radar severely degrade state estimation performance. To address these issues, we propose S$^3$E, a \textbf{S}elf-\textbf{S}upervised \textbf{S}tate \textbf{E}stimator that employs more richly informative radar signal spectra to bypass sparse points and fuses complementary inertial information to achieve accurate localization. S$^3$E fully explores the association between \textit{exteroceptive} radar and \textit{proprioceptive} inertial sensor to achieve complementary benefits. To deal with limited angle resolution, we introduce a novel cross-fusion technique that enhances spatial structure information by exploiting subtle rotational shift correlations across heterogeneous data. The experimental results demonstrate our method achieves robust and accurate performance without relying on localization ground truth supervision. To the best of our knowledge, this is the first attempt to achieve state estimation by fusing radar spectra and inertial data in a complementary self-supervised manner.
☆ MUVLA: Learning to Explore Object Navigation via Map Understanding
In this paper, we present MUVLA, a Map Understanding Vision-Language-Action model tailored for object navigation. It leverages semantic map abstractions to unify and structure historical information, encoding spatial context in a compact and consistent form. MUVLA takes the current and history observations, as well as the semantic map, as inputs and predicts the action sequence based on the description of goal object. Furthermore, it amplifies supervision through reward-guided return modeling based on dense short-horizon progress signals, enabling the model to develop a detailed understanding of action value for reward maximization. MUVLA employs a three-stage training pipeline: learning map-level spatial understanding, imitating behaviors from mixed-quality demonstrations, and reward amplification. This strategy allows MUVLA to unify diverse demonstrations into a robust spatial representation and generate more rational exploration strategies. Experiments on HM3D and Gibson benchmarks demonstrate that MUVLA achieves great generalization and learns effective exploration behaviors even from low-quality or partially successful trajectories.
☆ Towards Intuitive Human-Robot Interaction through Embodied Gesture-Driven Control with Woven Tactile Skins
This paper presents a novel human-robot interaction (HRI) framework that enables intuitive gesture-driven control through a capacitance-based woven tactile skin. Unlike conventional interfaces that rely on panels or handheld devices, the woven tactile skin integrates seamlessly with curved robot surfaces, enabling embodied interaction and narrowing the gap between human intent and robot response. Its woven design combines fabric-like flexibility with structural stability and dense multi-channel sensing through the interlaced conductive threads. Building on this capability, we define a gesture-action mapping of 14 single- and multi-touch gestures that cover representative robot commands, including task-space motion and auxiliary functions. A lightweight convolution-transformer model designed for gesture recognition in real time achieves an accuracy of near-100%, outperforming prior baseline approaches. Experiments on robot arm tasks, including pick-and-place and pouring, demonstrate that our system reduces task completion time by up to 57% compared with keyboard panels and teach pendants. Overall, our proposed framework demonstrates a practical pathway toward more natural and efficient embodied HRI.
☆ Preemptive Spatiotemporal Trajectory Adjustment for Heterogeneous Vehicles in Highway Merging Zones
Aiming at the problem of driver's perception lag and low utilization efficiency of space-time resources in expressway ramp confluence area, based on the preemptive spatiotemporal trajectory Adjustment system, from the perspective of coordinating spatiotemporal resources, the reasonable value of safe space-time distance in trajectory pre-preparation is quantitatively analyzed. The minimum safety gap required for ramp vehicles to merge into the mainline is analyzed by introducing double positioning error and spatiotemporal trajectory tracking error. A merging control strategy for autonomous driving heterogeneous vehicles is proposed, which integrates vehicle type, driving intention, and safety spatiotemporal distance. The specific confluence strategies of ramp target vehicles and mainline cooperative vehicles under different vehicle types are systematically expounded. A variety of traffic flow and speed scenarios are used for full combination simulation. By comparing the time-position-speed diagram, the vehicle operation characteristics and the dynamic difference of confluence are qualitatively analyzed, and the average speed and average delay are used as the evaluation indices to quantitatively evaluate the performance advantages of the preemptive cooperative confluence control strategy. The results show that the maximum average delay improvement rates of mainline and ramp vehicles are 90.24 % and 74.24 %, respectively. The proposed strategy can effectively avoid potential vehicle conflicts and emergency braking behaviors, improve driving safety in the confluence area, and show significant advantages in driving stability and overall traffic efficiency optimization.
☆ Reinforced Embodied Planning with Verifiable Reward for Real-World Robotic Manipulation
Enabling robots to execute long-horizon manipulation tasks from free-form language instructions remains a fundamental challenge in embodied AI. While vision-language models (VLMs) have shown promise as high-level planners, their deployment in the real world is hindered by two gaps: (i) the scarcity of large-scale, sequential manipulation data that couples natural language with multi-step action plans, and (ii) the absence of dense, interpretable rewards for fine-tuning VLMs on planning objectives. To address these issues, we propose REVER, a framework that empowers VLMs to generate and validate long-horizon manipulation plans from natural language instructions in real-world scenarios. Under REVER we train and release RoboFarseer, a VLM incentivized to emit chain-of-thought that perform temporal and spatial reasoning, ensuring physically plausible and logically coherent plans. To obtain training data, we leverage the Universal Manipulation Interface framework to capture hardware-agnostic demonstrations of atomic skills. An automated annotation engine converts each demonstration into vision-instruction-plan triplet. We introduce a verifiable reward that scores the generated plan by its ordered bipartite matching overlap with the ground-truth skill sequence. At run time, the fine-tuned VLM functions both as a planner and as a monitor, verifying step-wise completion. RoboFarseer matches or exceeds the performance of proprietary models that are orders of magnitude larger, while on open-ended planning it surpasses the best baseline by more than 40%. In real-world, long-horizon tasks, the complete system boosts overall success by roughly 60% compared with the same low-level controller without the planner. We will open-source both the dataset and the trained model upon publication.
☆ SAC Flow: Sample-Efficient Reinforcement Learning of Flow-Based Policies via Velocity-Reparameterized Sequential Modeling
Training expressive flow-based policies with off-policy reinforcement learning is notoriously unstable due to gradient pathologies in the multi-step action sampling process. We trace this instability to a fundamental connection: the flow rollout is algebraically equivalent to a residual recurrent computation, making it susceptible to the same vanishing and exploding gradients as RNNs. To address this, we reparameterize the velocity network using principles from modern sequential models, introducing two stable architectures: Flow-G, which incorporates a gated velocity, and Flow-T, which utilizes a decoded velocity. We then develop a practical SAC-based algorithm, enabled by a noise-augmented rollout, that facilitates direct end-to-end training of these policies. Our approach supports both from-scratch and offline-to-online learning and achieves state-of-the-art performance on continuous control and robotic manipulation benchmarks, eliminating the need for common workarounds like policy distillation or surrogate objectives.
☆ Best of Sim and Real: Decoupled Visuomotor Manipulation via Learning Control in Simulation and Perception in Real
Sim-to-real transfer remains a fundamental challenge in robot manipulation due to the entanglement of perception and control in end-to-end learning. We present a decoupled framework that learns each component where it is most reliable: control policies are trained in simulation with privileged state to master spatial layouts and manipulation dynamics, while perception is adapted only at deployment to bridge real observations to the frozen control policy. Our key insight is that control strategies and action patterns are universal across environments and can be learned in simulation through systematic randomization, while perception is inherently domain-specific and must be learned where visual observations are authentic. Unlike existing end-to-end approaches that require extensive real-world data, our method achieves strong performance with only 10-20 real demonstrations by reducing the complex sim-to-real problem to a structured perception alignment task. We validate our approach on tabletop manipulation tasks, demonstrating superior data efficiency and out-of-distribution generalization compared to end-to-end baselines. The learned policies successfully handle object positions and scales beyond the training distribution, confirming that decoupling perception from control fundamentally improves sim-to-real transfer.
comment: 10 pages, 6 figures
☆ TacRefineNet: Tactile-Only Grasp Refinement Between Arbitrary In-Hand Object Poses
Despite progress in both traditional dexterous grasping pipelines and recent Vision-Language-Action (VLA) approaches, the grasp execution stage remains prone to pose inaccuracies, especially in long-horizon tasks, which undermines overall performance. To address this "last-mile" challenge, we propose TacRefineNet, a tactile-only framework that achieves fine in-hand pose refinement of known objects in arbitrary target poses using multi-finger fingertip sensing. Our method iteratively adjusts the end-effector pose based on tactile feedback, aligning the object to the desired configuration. We design a multi-branch policy network that fuses tactile inputs from multiple fingers along with proprioception to predict precise control updates. To train this policy, we combine large-scale simulated data from a physics-based tactile model in MuJoCo with real-world data collected from a physical system. Comparative experiments show that pretraining on simulated data and fine-tuning with a small amount of real data significantly improves performance over simulation-only training. Extensive real-world experiments validate the effectiveness of the method, achieving millimeter-level grasp accuracy using only tactile input. To our knowledge, this is the first method to enable arbitrary in-hand pose refinement via multi-finger tactile sensing alone. Project website is available at https://sites.google.com/view/tacrefinenet
comment: 9 pages, 9 figures
☆ Boundary-to-Region Supervision for Offline Safe Reinforcement Learning NeurIPS 2025
Offline safe reinforcement learning aims to learn policies that satisfy predefined safety constraints from static datasets. Existing sequence-model-based methods condition action generation on symmetric input tokens for return-to-go and cost-to-go, neglecting their intrinsic asymmetry: return-to-go (RTG) serves as a flexible performance target, while cost-to-go (CTG) should represent a rigid safety boundary. This symmetric conditioning leads to unreliable constraint satisfaction, especially when encountering out-of-distribution cost trajectories. To address this, we propose Boundary-to-Region (B2R), a framework that enables asymmetric conditioning through cost signal realignment . B2R redefines CTG as a boundary constraint under a fixed safety budget, unifying the cost distribution of all feasible trajectories while preserving reward structures. Combined with rotary positional embeddings , it enhances exploration within the safe region. Experimental results show that B2R satisfies safety constraints in 35 out of 38 safety-critical tasks while achieving superior reward performance over baseline methods. This work highlights the limitations of symmetric token conditioning and establishes a new theoretical and practical approach for applying sequence models to safe RL. Our code is available at https://github.com/HuikangSu/B2R.
comment: NeurIPS 2025
☆ VLA Model Post-Training via Action-Chunked PPO and Self Behavior Cloning
Reinforcement learning (RL) is a promising avenue for post-training vision-language-action (VLA) models, but practical deployment is hindered by sparse rewards and unstable training. This work mitigates these challenges by introducing an action chunk based on proximal policy optimization (PPO) with behavior cloning using self-collected demonstrations. Aggregating consecutive actions into chunks improves the temporal consistency of the policy and the density of informative feedback. In addition, an auxiliary behavior cloning loss is applied with a dynamically updated demonstration buffer that continually collects high-quality task trials during training. The relative weight between the action-chunked PPO objective and the self behavior clone auxiliary loss is adapted online to stabilize the post-training process. Experiments on the MetaWorld benchmark indicate improved performance over supervised fine-tuning, achieving a high success rate (0.93) and few steps to success (42.17). These results demonstrate the viability of RL for VLA post-training and help lay the groundwork for downstream VLA applications.
☆ OmniNav: A Unified Framework for Prospective Exploration and Visual-Language Navigation
Embodied navigation presents a core challenge for intelligent robots, requiring the comprehension of visual environments, natural language instructions, and autonomous exploration. Existing models often fall short in offering a unified solution across diverse navigation paradigms, resulting in low success rates and limited generalization. We introduce OmniNav, a unified framework addressing instruct-goal, object-goal, point-goal navigation, and frontier-based exploration within a single architecture. Our approach features a lightweight, low-latency policy that accurately predicts continuous-space waypoints (coordinates and orientations). This policy surpasses action-chunk methods in precision and supports real-world deployment at control frequencies up to 5 Hz. Architecturally, OmniNav employs a fast-slow system design: a fast module generates waypoints using short-horizon visual context and subtasks, while a slow module performs deliberative planning with long-horizon observations and candidate frontiers to select subsequent subgoals and subtasks. This collaboration enhances path efficiency and maintains trajectory coherence, particularly in exploration and memory-intensive scenarios. Crucially, we identify that the primary bottleneck isn't merely navigation policy learning, but a robust understanding of general instructions and objects. To boost generalization, OmniNav integrates large-scale, general-purpose training datasets, including those for image captioning and visual recognition, into a joint multi-task regimen. This significantly improves success rates and robustness. Extensive experiments confirm OmniNav's state-of-the-art performance across various navigation benchmarks, with real-world deployment further validating its efficacy. OmniNav provides practical insights for embodied navigation, charting a scalable path towards versatile, highly generalizable robotic intelligence.
☆ Hierarchical Diffusion Motion Planning with Task-Conditioned Uncertainty-Aware Priors
We propose a novel hierarchical diffusion planner that embeds task and motion structure directly in the noise model. Unlike standard diffusion-based planners that use zero-mean, isotropic Gaussian noise, we employ a family of task-conditioned structured Gaussians whose means and covariances are derived from Gaussian Process Motion Planning (GPMP): sparse, task-centric key states or their associated timings (or both) are treated as noisy observations to produce a prior instance. We first generalize the standard diffusion process to biased, non-isotropic corruption with closed-form forward and posterior expressions. Building on this, our hierarchy separates prior instantiation from trajectory denoising: the upper level instantiates a task-conditioned structured Gaussian (mean and covariance), and the lower level denoises the full trajectory under that fixed prior. Experiments on Maze2D goal-reaching and KUKA block stacking show improved success rates, smoother trajectories, and stronger task alignment compared to isotropic baselines. Ablation studies indicate that explicitly structuring the corruption process offers benefits beyond simply conditioning the neural network. Overall, our method concentrates probability mass of prior near feasible, smooth, and semantically meaningful trajectories while maintaining tractability. Our project page is available at https://hta-diffusion.github.io.
dVLA: Diffusion Vision-Language-Action Model with Multimodal Chain-of-Thought
Vision-Language-Action (VLA) models are emerging as a next-generation paradigm for robotics. We introduce dVLA, a diffusion-based VLA that leverages a multimodal chain-of-thought to unify visual perception, language reasoning, and robotic control in a single system. dVLA jointly optimizes perception, language understanding, and action under a single diffusion objective, enabling stronger cross-modal reasoning and better generalization to novel instructions and objects. For practical deployment, we mitigate inference latency by incorporating two acceleration strategies, a prefix attention mask and KV caching, yielding up to around times speedup at test-time inference. We evaluate dVLA in both simulation and the real world: on the LIBERO benchmark, it achieves state-of-the-art performance with a 96.4% average success rate, consistently surpassing both discrete and continuous action policies; on a real Franka robot, it succeeds across a diverse task suite, including a challenging bin-picking task that requires multi-step planning, demonstrating robust real-world performance. Together, these results underscore the promise of unified diffusion frameworks for practical, high-performance VLA robotics.
comment: technique report
☆ Field Calibration of Hyperspectral Cameras for Terrain Inference
Intra-class terrain differences such as water content directly influence a vehicle's ability to traverse terrain, yet RGB vision systems may fail to distinguish these properties. Evaluating a terrain's spectral content beyond red-green-blue wavelengths to the near infrared spectrum provides useful information for intra-class identification. However, accurate analysis of this spectral information is highly dependent on ambient illumination. We demonstrate a system architecture to collect and register multi-wavelength, hyperspectral images from a mobile robot and describe an approach to reflectance calibrate cameras under varying illumination conditions. To showcase the practical applications of our system, HYPER DRIVE, we demonstrate the ability to calculate vegetative health indices and soil moisture content from a mobile robot platform.
comment: Accepted to IEEE Robotics & Automation Letters
☆ DiSA-IQL: Offline Reinforcement Learning for Robust Soft Robot Control under Distribution Shifts
Soft snake robots offer remarkable flexibility and adaptability in complex environments, yet their control remains challenging due to highly nonlinear dynamics. Existing model-based and bio-inspired controllers rely on simplified assumptions that limit performance. Deep reinforcement learning (DRL) has recently emerged as a promising alternative, but online training is often impractical because of costly and potentially damaging real-world interactions. Offline RL provides a safer option by leveraging pre-collected datasets, but it suffers from distribution shift, which degrades generalization to unseen scenarios. To overcome this challenge, we propose DiSA-IQL (Distribution-Shift-Aware Implicit Q-Learning), an extension of IQL that incorporates robustness modulation by penalizing unreliable state-action pairs to mitigate distribution shift. We evaluate DiSA-IQL on goal-reaching tasks across two settings: in-distribution and out-of-distribution evaluation. Simulation results show that DiSA-IQL consistently outperforms baseline models, including Behavior Cloning (BC), Conservative Q-Learning (CQL), and vanilla IQL, achieving higher success rates, smoother trajectories, and improved robustness. The codes are open-sourced to support reproducibility and to facilitate further research in offline RL for soft robot control.
☆ Learning Human Reaching Optimality Principles from Minimal Observation Inverse Reinforcement Learning
This paper investigates the application of Minimal Observation Inverse Reinforcement Learning (MO-IRL) to model and predict human arm-reaching movements with time-varying cost weights. Using a planar two-link biomechanical model and high-resolution motion-capture data from subjects performing a pointing task, we segment each trajectory into multiple phases and learn phase-specific combinations of seven candidate cost functions. MO-IRL iteratively refines cost weights by scaling observed and generated trajectories in the maximum entropy IRL formulation, greatly reducing the number of required demonstrations and convergence time compared to classical IRL approaches. Training on ten trials per posture yields average joint-angle Root Mean Squared Errors (RMSE) of 6.4 deg and 5.6 deg for six- and eight-segment weight divisions, respectively, versus 10.4 deg using a single static weight. Cross-validation on remaining trials and, for the first time, inter-subject validation on an unseen subject's 20 trials, demonstrates comparable predictive accuracy, around 8 deg RMSE, indicating robust generalization. Learned weights emphasize joint acceleration minimization during movement onset and termination, aligning with smoothness principles observed in biological motion. These results suggest that MO-IRL can efficiently uncover dynamic, subject-independent cost structures underlying human motor control, with potential applications for humanoid robots.
comment: 8 pages, 4 figures
☆ BC-MPPI: A Probabilistic Constraint Layer for Safe Model-Predictive Path-Integral Control
Model Predictive Path Integral (MPPI) control has recently emerged as a fast, gradient-free alternative to model-predictive control in highly non-linear robotic tasks, yet it offers no hard guarantees on constraint satisfaction. We introduce Bayesian-Constraints MPPI (BC-MPPI), a lightweight safety layer that attaches a probabilistic surrogate to every state and input constraint. At each re-planning step the surrogate returns the probability that a candidate trajectory is feasible; this joint probability scales the weight given to a candidate, automatically down-weighting rollouts likely to collide or exceed limits and pushing the sampling distribution toward the safe subset; no hand-tuned penalty costs or explicit sample rejection required. We train the surrogate from 1000 offline simulations and deploy the controller on a quadrotor in MuJoCo with both static and moving obstacles. Across K in [100,1500] rollouts BC-MPPI preserves safety margins while satisfying the prescribed probability of violation. Because the surrogate is a stand-alone, version-controlled artefact and the runtime safety score is a single scalar, the approach integrates naturally with verification-and-validation pipelines for certifiable autonomous systems.
☆ A Hierarchical Agentic Framework for Autonomous Drone-Based Visual Inspection
Autonomous inspection systems are essential for ensuring the performance and longevity of industrial assets. Recently, agentic frameworks have demonstrated significant potential for automating inspection workflows but have been limited to digital tasks. Their application to physical assets in real-world environments, however, remains underexplored. In this work, our contributions are two-fold: first, we propose a hierarchical agentic framework for autonomous drone control, and second, a reasoning methodology for individual function executions which we refer to as ReActEval. Our framework focuses on visual inspection tasks in indoor industrial settings, such as interpreting industrial readouts or inspecting equipment. It employs a multi-agent system comprising a head agent and multiple worker agents, each controlling a single drone. The head agent performs high-level planning and evaluates outcomes, while worker agents implement ReActEval to reason over and execute low-level actions. Operating entirely in natural language, ReActEval follows a plan, reason, act, evaluate cycle, enabling drones to handle tasks ranging from simple navigation (e.g., flying forward 10 meters and land) to complex high-level tasks (e.g., locating and reading a pressure gauge). The evaluation phase serves as a feedback and/or replanning stage, ensuring actions align with user objectives while preventing undesirable outcomes. We evaluate the framework in a simulated environment with two worker agents, assessing performance qualitatively and quantitatively based on task completion across varying complexity levels and workflow efficiency. By leveraging natural language processing for agent communication, our approach offers a novel, flexible, and user-accessible alternative to traditional drone-based solutions, enabling autonomous problem-solving for industrial inspection without extensive user intervention.
☆ TGPO: Temporal Grounded Policy Optimization for Signal Temporal Logic Tasks
Learning control policies for complex, long-horizon tasks is a central challenge in robotics and autonomous systems. Signal Temporal Logic (STL) offers a powerful and expressive language for specifying such tasks, but its non-Markovian nature and inherent sparse reward make it difficult to be solved via standard Reinforcement Learning (RL) algorithms. Prior RL approaches focus only on limited STL fragments or use STL robustness scores as sparse terminal rewards. In this paper, we propose TGPO, Temporal Grounded Policy Optimization, to solve general STL tasks. TGPO decomposes STL into timed subgoals and invariant constraints and provides a hierarchical framework to tackle the problem. The high-level component of TGPO proposes concrete time allocations for these subgoals, and the low-level time-conditioned policy learns to achieve the sequenced subgoals using a dense, stage-wise reward signal. During inference, we sample various time allocations and select the most promising assignment for the policy network to rollout the solution trajectory. To foster efficient policy learning for complex STL with multiple subgoals, we leverage the learned critic to guide the high-level temporal search via Metropolis-Hastings sampling, focusing exploration on temporally feasible solutions. We conduct experiments on five environments, ranging from low-dimensional navigation to manipulation, drone, and quadrupedal locomotion. Under a wide range of STL tasks, TGPO significantly outperforms state-of-the-art baselines (especially for high-dimensional and long-horizon cases), with an average of 31.6% improvement in task success rate compared to the best baseline. The code will be available at https://github.com/mengyuest/TGPO
☆ Robust Attitude Control of Nonlinear Multi-Rotor Dynamics with LFT Models and $\mathcal{H}_\infty$ Performance
Attitude stabilization of unmanned aerial vehicles in uncertain environments presents significant challenges due to nonlinear dynamics, parameter variations, and sensor limitations. This paper presents a comparative study of $\mathcal{H}_\infty$ and classical PID controllers for multi-rotor attitude regulation in the presence of wind disturbances and gyroscope noise. The flight dynamics are modeled using a linear parameter-varying (LPV) framework, where nonlinearities and parameter variations are systematically represented as structured uncertainties within a linear fractional transformation formulation. A robust controller based on $\mathcal{H}_\infty$ formulation is designed using only gyroscope measurements to ensure guaranteed performance bounds. Nonlinear simulation results demonstrate the effectiveness of the robust controllers compared to classical PID control, showing significant improvement in attitude regulation under severe wind disturbances.
comment: 6 pages, 6 figures, 3 tables, submitted to ACC 2026
☆ A Novel Robust Control Method Combining DNN-Based NMPC Approximation and PI Control: Application to Exoskeleton Squat Movements
Nonlinear Model Predictive Control (NMPC) is a precise controller, but its heavy computational load often prevents application in robotic systems. Some studies have attempted to approximate NMPC using deep neural networks (NMPC-DNN). However, in the presence of unexpected disturbances or when operating conditions differ from training data, this approach lacks robustness, leading to large tracking errors. To address this issue, for the first time, the NMPC-DNN output is combined with a PI controller (Hybrid NMPC-DNN-PI). The proposed controller is validated by applying it to an exoskeleton robot during squat movement, which has a complex dynamic model and has received limited attention regarding robust nonlinear control design. A human-robot dynamic model with three active joints (ankle, knee, hip) is developed, and more than 5.3 million training samples are used to train the DNN. The results show that, under unseen conditions for the DNN, the tracking error in Hybrid NMPC-DNN-PI is significantly lower compared to NMPC-DNN. Moreover, human joint torques are greatly reduced with the use of the exoskeleton, with RMS values for the studied case reduced by 30.9%, 41.8%, and 29.7% at the ankle, knee, and hip, respectively. In addition, the computational cost of Hybrid NMPC-DNN-PI is 99.93% lower than that of NMPC.
☆ A Systematic Study of Large Language Models for Task and Motion Planning With PDDLStream
Using large language models (LLMs) to solve complex robotics problems requires understanding their planning capabilities. Yet while we know that LLMs can plan on some problems, the extent to which these planning capabilities cover the space of robotics tasks is unclear. One promising direction is to integrate the semantic knowledge of LLMs with the formal reasoning of task and motion planning (TAMP). However, the myriad of choices for how to integrate LLMs within TAMP complicates the design of such systems. We develop 16 algorithms that use Gemini 2.5 Flash to substitute key TAMP components. Our zero-shot experiments across 4,950 problems and three domains reveal that the Gemini-based planners exhibit lower success rates and higher planning times than their engineered counterparts. We show that providing geometric details increases the number of task-planning errors compared to pure PDDL descriptions, and that (faster) non-reasoning LLM variants outperform (slower) reasoning variants in most cases, since the TAMP system can direct the LLM to correct its mistakes.
☆ Drones that Think on their Feet: Sudden Landing Decisions with Embodied AI
Autonomous drones must often respond to sudden events, such as alarms, faults, or unexpected changes in their environment, that require immediate and adaptive decision-making. Traditional approaches rely on safety engineers hand-coding large sets of recovery rules, but this strategy cannot anticipate the vast range of real-world contingencies and quickly becomes incomplete. Recent advances in embodied AI, powered by large visual language models, provide commonsense reasoning to assess context and generate appropriate actions in real time. We demonstrate this capability in a simulated urban benchmark in the Unreal Engine, where drones dynamically interpret their surroundings and decide on sudden maneuvers for safe landings. Our results show that embodied AI makes possible a new class of adaptive recovery and decision-making pipelines that were previously infeasible to design by hand, advancing resilience and safety in autonomous aerial systems.
☆ RoboPilot: Generalizable Dynamic Robotic Manipulation with Dual-thinking Modes
Despite rapid progress in autonomous robotics, executing complex or long-horizon tasks remains a fundamental challenge. Most current approaches follow an open-loop paradigm with limited reasoning and no feedback, resulting in poor robustness to environmental changes and severe error accumulation. We present RoboPilot, a dual-thinking closed-loop framework for robotic manipulation that supports adaptive reasoning for complex tasks in real-world dynamic environments. RoboPilot leverages primitive actions for structured task planning and flexible action generation, while introducing feedback to enable replanning from dynamic changes and execution errors. Chain-of-Thought reasoning further enhances high-level task planning and guides low-level action generation. The system dynamically switches between fast and slow thinking to balance efficiency and accuracy. To systematically evaluate the robustness of RoboPilot in diverse robot manipulation scenarios, we introduce RoboPilot-Bench, a benchmark spanning 21 tasks across 10 categories, including infeasible-task recognition and failure recovery. Experiments show that RoboPilot outperforms state-of-the-art baselines by 25.9\% in task success rate, and the real-world deployment on an industrial robot further demonstrates its robustness in real-world settings.
☆ The Formation of Trust in Autonomous Vehicles after Interacting with Robotaxis on Public Roads
This study investigates how pedestrian trust, receptivity, and behavior evolve during interactions with Level-4 autonomous vehicles (AVs) at uncontrolled urban intersections in a naturalistic setting. While public acceptance is critical for AV adoption, most prior studies relied on simplified simulations or field tests. We conducted a real-world experiment in a commercial Robotaxi operation zone, where 33 participants repeatedly crossed an uncontrolled intersection with frequent Level-4 Robotaxi traffic. Participants completed the Pedestrian Behavior Questionnaire (PBQ), Pedestrian Receptivity Questionnaire for Fully AVs (PRQF), pre- and post-experiment Trust in AVs Scale, and Personal Innovativeness Scale (PIS). Results showed that trust in AVs significantly increased post-experiment, with the increase positively associated with the Interaction component of PRQF. Additionally, both the Positive and Error subscales of the PBQ significantly influenced trust change. This study reveals how trust forms in real-world pedestrian-AV encounters, offering insights beyond lab-based research by accounting for population heterogeneity.
comment: Proceedings of the 69th HFES International Annual Meeting
♻ ☆ AgriCruiser: An Open Source Agriculture Robot for Over-the-row Navigation
We present the AgriCruiser, an open-source over-the-row agricultural robot developed for low-cost deployment and rapid adaptation across diverse crops and row layouts. The chassis provides an adjustable track width of 1.42 m to 1.57 m, along with a ground clearance of 0.94 m. The AgriCruiser achieves compact pivot turns with radii of 0.71 m to 0.79 m, enabling efficient headland maneuvers. The platform is designed for the integration of the other subsystems, and in this study, a precision spraying system was implemented to assess its effectiveness in weed management. In twelve flax plots, a single robotic spray pass reduced total weed populations (pigweed and Venice mallow) by 24- to 42-fold compared to manual weeding in four flax plots, while also causing less crop damage. Mobility experiments conducted on concrete, asphalt, gravel, grass, and both wet and dry soil confirmed reliable traversal consistent with torque sizing. The complete chassis can be constructed from commodity T-slot extrusion with minimal machining, resulting in a bill of materials costing approximately $5,000 - $6,000, which enables replication and customization. The mentioned results demonstrate that low-cost, reconfigurable over-the-row robots can achieve effective weed management with reduced crop damage and labor requirements, while providing a versatile foundation for phenotyping, sensing, and other agriculture applications. Design files and implementation details are released to accelerate research and adoption of modular agricultural robotics.
comment: GitHub: https://github.com/structuresComp/agri-cruiser
♻ ☆ Sequence Pathfinder for Multi-Agent Pickup and Delivery in the Warehouse
Multi-Agent Pickup and Delivery (MAPD) is a challenging extension of Multi-Agent Path Finding (MAPF), where agents are required to sequentially complete tasks with fixed-location pickup and delivery demands. Although learning-based methods have made progress in MAPD, they often perform poorly in warehouse-like environments with narrow pathways and long corridors when relying only on local observations for distributed decision-making. Communication learning can alleviate the lack of global information but introduce high computational complexity due to point-to-point communication. To address this challenge, we formulate MAPF as a sequence modeling problem and prove that path-finding policies under sequence modeling possess order-invariant optimality, ensuring its effectiveness in MAPD. Building on this, we propose the Sequential Pathfinder (SePar), which leverages the Transformer paradigm to achieve implicit information exchange, reducing decision-making complexity from exponential to linear while maintaining efficiency and global awareness. Experiments demonstrate that SePar consistently outperforms existing learning-based methods across various MAPF tasks and their variants, and generalizes well to unseen environments. Furthermore, we highlight the necessity of integrating imitation learning in complex maps like warehouses.
comment: Preprint Under Review
♻ ☆ Simulated Annealing for Multi-Robot Ergodic Information Acquisition Using Graph-Based Discretization
One of the goals of active information acquisition using multi-robot teams is to keep the relative uncertainty in each region at the same level to maintain identical acquisition quality (e.g., consistent target detection) in all the regions. To achieve this goal, ergodic coverage can be used to assign the number of samples according to the quality of observation, i.e., sampling noise levels. However, the noise levels are unknown to the robots. Although this noise can be estimated from samples, the estimates are unreliable at first and can generate fluctuating values. The main contribution of this paper is to use simulated annealing to generate the target sampling distribution, starting from uniform and gradually shifting to an estimated optimal distribution, by varying the coldness parameter of a Boltzmann distribution with the estimated sampling entropy as energy. Simulation results show a substantial improvement of both transient and asymptotic entropy compared to both uniform and direct-ergodic searches. Finally, a demonstration is performed with a TurtleBot swarm system to validate the physical applicability of the algorithm.
♻ ☆ Track Any Motions under Any Disturbances
A foundational humanoid motion tracker is expected to be able to track diverse, highly dynamic, and contact-rich motions. More importantly, it needs to operate stably in real-world scenarios against various dynamics disturbances, including terrains, external forces, and physical property changes for general practical use. To achieve this goal, we propose Any2Track (Track Any motions under Any disturbances), a two-stage RL framework to track various motions under multiple disturbances in the real world. Any2Track reformulates dynamics adaptability as an additional capability on top of basic action execution and consists of two key components: AnyTracker and AnyAdapter. AnyTracker is a general motion tracker with a series of careful designs to track various motions within a single policy. AnyAdapter is a history-informed adaptation module that endows the tracker with online dynamics adaptability to overcome the sim2real gap and multiple real-world disturbances. We deploy Any2Track on Unitree G1 hardware and achieve a successful sim2real transfer in a zero-shot manner. Any2Track performs exceptionally well in tracking various motions under multiple real-world disturbances.
♻ ☆ Visual-auditory Extrinsic Contact Estimation
Robust manipulation often hinges on a robot's ability to perceive extrinsic contacts-contacts between a grasped object and its surrounding environment. However, these contacts are difficult to observe through vision alone due to occlusions, limited resolution, and ambiguous near-contact states. In this paper, we propose a visual-auditory method for extrinsic contact estimation that integrates global scene information from vision with local contact cues obtained through active audio sensing. Our approach equips a robotic gripper with contact microphones and conduction speakers, enabling the system to emit and receive acoustic signals through the grasped object to detect external contacts. We train our perception pipeline entirely in simulation and zero-shot transfer to the real world. To bridge the sim-to-real gap, we introduce a real-to-sim audio hallucination technique, injecting real-world audio samples into simulated scenes with ground-truth contact labels. The resulting multimodal model accurately estimates both the location and size of extrinsic contacts across a range of cluttered and occluded scenarios. We further demonstrate that explicit contact prediction significantly improves policy learning for downstream contact-rich manipulation tasks.
comment: 8 pages, 7 figures
♻ ☆ AuDeRe: Automated Strategy Decision and Realization in Robot Planning and Control via LLMs
Recent advancements in large language models (LLMs) have shown significant promise in various domains, especially robotics. However, most prior LLM-based work in robotic applications either directly predicts waypoints or applies LLMs within fixed tool integration frameworks, offering limited flexibility in exploring and configuring solutions best suited to different tasks. In this work, we propose a framework that leverages LLMs to select appropriate planning and control strategies based on task descriptions, environmental constraints, and system dynamics. These strategies are then executed by calling the available comprehensive planning and control APIs. Our approach employs iterative LLM-based reasoning with performance feedback to refine the algorithm selection. We validate our approach through extensive experiments across tasks of varying complexity, from simple tracking to complex planning scenarios involving spatiotemporal constraints. The results demonstrate that using LLMs to determine planning and control strategies from natural language descriptions significantly enhances robotic autonomy while reducing the need for extensive manual tuning and expert knowledge. Furthermore, our framework maintains generalizability across different tasks and notably outperforms baseline methods that rely on LLMs for direct trajectory, control sequence, or code generation.
comment: 8 pages, 14 figures, submitted to the 2026 American Control Conference
♻ ☆ Robot Conga: A Leader-Follower Walking Approach to Sequential Path Following in Multi-Agent Systems
Coordinated path following in multi-agent systems is a key challenge in robotics, with applications in automated logistics, surveillance, and collaborative exploration. Traditional formation control techniques often rely on time-parameterized trajectories and path integrals, which can result in synchronization issues and rigid behavior. In this work, we address the problem of sequential path following, where agents maintain fixed spatial separation along a common trajectory, guided by a leader under centralized control. We introduce Robot Conga, a leader-follower control strategy that updates each agent's desired state based on the leader's spatial displacement rather than time, assuming access to a global position reference, an assumption valid in indoor environments equipped with motion capture, vision-based tracking, or UWB localization systems. The algorithm was validated in simulation using both TurtleBot3 and quadruped (Laikago) robots. Results demonstrate accurate trajectory tracking, stable inter-agent spacing, and fast convergence, with all agents aligning within 250 time steps (approx. 0.25 seconds) in the quadruped case, and almost instantaneously in the TurtleBot3 implementation.
comment: 6 Pages, 8 Figures. Both authors have contributed equally
♻ ☆ Apple: Toward General Active Perception via Reinforcement Learning
Active perception is a fundamental skill that enables us humans to deal with uncertainty in our inherently partially observable environment. For senses such as touch, where the information is sparse and local, active perception becomes crucial. In recent years, active perception has emerged as an important research domain in robotics. However, current methods are often bound to specific tasks or make strong assumptions, which limit their generality. To address this gap, this work introduces APPLE (Active Perception Policy Learning) - a novel framework that leverages reinforcement learning (RL) to address a range of different active perception problems. APPLE jointly trains a transformer-based perception module and decision-making policy with a unified optimization objective, learning how to actively gather information. By design, APPLE is not limited to a specific task and can, in principle, be applied to a wide range of active perception problems. We evaluate two variants of APPLE across different tasks, including tactile exploration problems from the Tactile MNIST benchmark. Experiments demonstrate the efficacy of APPLE, achieving high accuracies on both regression and classification tasks. These findings underscore the potential of APPLE as a versatile and general framework for advancing active perception in robotics.
comment: 16 pages; 13 figures Under Review
♻ ☆ Find the Fruit: Zero-Shot Sim2Real RL for Occlusion-Aware Plant Manipulation
Autonomous harvesting in the open presents a complex manipulation problem. In most scenarios, an autonomous system has to deal with significant occlusion and require interaction in the presence of large structural uncertainties (every plant is different). Perceptual and modeling uncertainty make design of reliable manipulation controllers for harvesting challenging, resulting in poor performance during deployment. We present a sim2real reinforcement learning (RL) framework for occlusion-aware plant manipulation, where a policy is learned entirely in simulation to reposition stems and leaves to reveal target fruit(s). In our proposed approach, we decouple high-level kinematic planning from low-level compliant control which simplifies the sim2real transfer. This decomposition allows the learned policy to generalize across multiple plants with different stiffness and morphology. In experiments with multiple real-world plant setups, our system achieves up to 86.7% success in exposing target fruits, demonstrating robustness to occlusion variation and structural uncertainty.
comment: 9 Pages, 3 Figures, 1 Table
♻ ☆ DreamControl: Human-Inspired Whole-Body Humanoid Control for Scene Interaction via Guided Diffusion
We introduce DreamControl, a novel methodology for learning autonomous whole-body humanoid skills. DreamControl leverages the strengths of diffusion models and Reinforcement Learning (RL): our core innovation is the use of a diffusion prior trained on human motion data, which subsequently guides an RL policy in simulation to complete specific tasks of interest (e.g., opening a drawer or picking up an object). We demonstrate that this human motion-informed prior allows RL to discover solutions unattainable by direct RL, and that diffusion models inherently promote natural looking motions, aiding in sim-to-real transfer. We validate DreamControl's effectiveness on a Unitree G1 robot across a diverse set of challenging tasks involving simultaneous lower and upper body control and object interaction. Project website at https://genrobo.github.io/DreamControl/
comment: https://genrobo.github.io/DreamControl/ (under submission)
♻ ☆ Multi Layered Autonomy and AI Ecologies in Robotic Art Installations
This paper presents Symbiosis of Agents, is a large-scale installation by Baoyang Chen (baoyangchen.com), that embeds AI-driven robots in an immersive, mirror-lined arena, probing the tension between machine agency and artistic authorship. Drawing on early cybernetics, rule-based conceptual art, and seminal robotic works, it orchestrates fluid exchanges among robotic arms, quadruped machines, their environment, and the public. A three tier faith system pilots the ecology: micro-level adaptive tactics, meso-level narrative drives, and a macro-level prime directive. This hierarchy lets behaviors evolve organically in response to environmental cues and even a viewer's breath, turning spectators into co-authors of the unfolding drama. Framed by a speculative terraforming scenario that recalls the historical exploitation of marginalized labor, the piece asks who bears responsibility in AI-mediated futures. Choreographed motion, AI-generated scripts, reactive lighting, and drifting fog cast the robots as collaborators rather than tools, forging a living, emergent artwork. Exhibited internationally, Symbiosis of Agents shows how cybernetic feedback, robotic experimentation, and conceptual rule-making can converge to redefine agency, authorship, and ethics in contemporary art.
♻ ☆ Ocean Diviner: A Diffusion-Augmented Reinforcement Learning Framework for AUV Robust Control in Underwater Tasks
Autonomous Underwater Vehicles (AUVs) are essential for marine exploration, yet their control remains highly challenging due to nonlinear dynamics and uncertain environmental disturbances. This paper presents a diffusion-augmented Reinforcement Learning (RL) framework for robust AUV control, aiming to improve AUV's adaptability in dynamic underwater environments. The proposed framework integrates two core innovations: (1) A diffusion-based action generation framework that produces physically feasible and high-quality actions, enhanced by a high-dimensional state encoding mechanism combining current observations with historical states and actions through a novel diffusion U-Net architecture, significantly improving long-horizon planning capacity for robust control. (2) A sample-efficient hybrid learning architecture that synergizes diffusion-guided exploration with RL policy optimization, where the diffusion model generates diverse candidate actions and the RL critic selects the optimal action, achieving higher exploration efficiency and policy stability in dynamic underwater environments. Extensive simulation experiments validate the framework's superior robustness and flexibility, outperforming conventional control methods in challenging marine conditions, offering enhanced adaptability and reliability for AUV operations in underwater tasks. Finally, we will release the code publicly soon to support future research in this area.
comment: Jingzehua Xu, Guanwen Xie and Weiyi Liu contributed equally to this work
♻ ☆ LiDAR-BIND-T: Improved and Temporally Consistent Sensor Modality Translation and Fusion for Robotic Applications
This paper extends LiDAR-BIND, a modular multi-modal fusion framework that binds heterogeneous sensors (radar, sonar) to a LiDAR-defined latent space, with mechanisms that explicitly enforce temporal consistency. We introduce three contributions: (i) temporal embedding similarity that aligns consecutive latent representations, (ii) a motion-aligned transformation loss that matches displacement between predictions and ground truth LiDAR, and (iii) windowed temporal fusion using a specialised temporal module. We further update the model architecture to better preserve spatial structure. Evaluations on radar/sonar-to-LiDAR translation demonstrate improved temporal and spatial coherence, yielding lower absolute trajectory error and better occupancy map accuracy in Cartographer-based SLAM (Simultaneous Localisation and Mapping). We propose different metrics based on the Fr\'echet Video Motion Distance (FVMD) and a correlation-peak distance metric providing practical temporal quality indicators to evaluate SLAM performance. The proposed temporal LiDAR-BIND, or LiDAR-BIND-T, maintains modular modality fusion while substantially enhancing temporal stability, resulting in improved robustness and performance for downstream SLAM.
♻ ☆ Multi-Robot Task Planning for Multi-Object Retrieval Tasks with Distributed On-Site Knowledge via Large Language Models
It is crucial to efficiently execute instructions such as "Find an apple and a banana" or "Get ready for a field trip," which require searching for multiple objects or understanding context-dependent commands. This study addresses the challenging problem of determining which robot should be assigned to which part of a task when each robot possesses different situational on-site knowledge-specifically, spatial concepts learned from the area designated to it by the user. We propose a task planning framework that leverages large language models (LLMs) and spatial concepts to decompose natural language instructions into subtasks and allocate them to multiple robots. We designed a novel few-shot prompting strategy that enables LLMs to infer required objects from ambiguous commands and decompose them into appropriate subtasks. In our experiments, the proposed method achieved 47/50 successful assignments, outperforming random (28/50) and commonsense-based assignment (26/50). Furthermore, we conducted qualitative evaluations using two actual mobile manipulators. The results demonstrated that our framework could handle instructions, including those involving ad hoc categories such as "Get ready for a field trip," by successfully performing task decomposition, assignment, sequential planning, and execution.
comment: Submitted to AROB-ISBC 2026 (Journal Track option)
♻ ☆ SoMi-ToM: Evaluating Multi-Perspective Theory of Mind in Embodied Social Interactions
Humans continuously infer the states, goals, and behaviors of others by perceiving their surroundings in dynamic, real-world social interactions. However, most Theory of Mind (ToM) benchmarks only evaluate static, text-based scenarios, which have a significant gap compared to real interactions. We propose the SoMi-ToM benchmark, designed to evaluate multi-perspective ToM in embodied multi-agent complex social interactions. This benchmark is based on rich multimodal interaction data generated by the interaction environment SoMi, covering diverse crafting goals and social relationships. Our framework supports multi-level evaluation: (1) first-person evaluation provides multimodal (visual, dialogue, action, etc.) input from a first-person perspective during a task for real-time state inference, (2) third-person evaluation provides complete third-person perspective video and text records after a task for goal and behavior inference. This evaluation method allows for a more comprehensive examination of a model's ToM capabilities from both the subjective immediate experience and the objective global observation. We constructed a challenging dataset containing 35 third-person perspective videos, 363 first-person perspective images, and 1225 expert-annotated multiple-choice questions (three options). On this dataset, we systematically evaluated the performance of human subjects and several state-of-the-art large vision-language models (LVLMs). The results show that LVLMs perform significantly worse than humans on SoMi-ToM: the average accuracy gap between humans and models is 40.1% in first-person evaluation and 26.4% in third-person evaluation. This indicates that future LVLMs need to further improve their ToM capabilities in embodied, complex social interactions.
comment: 24 pages, 6 figures
♻ ☆ ADPro: a Test-time Adaptive Diffusion Policy via Manifold-constrained Denoising and Task-aware Initialization for Robotic Manipulation
Diffusion policies have recently emerged as a powerful class of visuomotor controllers for robot manipulation, offering stable training and expressive multi-modal action modeling. However, existing approaches typically treat action generation as an unconstrained denoising process, ignoring valuable a priori knowledge about geometry and control structure. In this work, we propose the Adaptive Diffusion Policy (ADP), a test-time adaptation method that introduces two key inductive biases into the diffusion. First, we embed a geometric manifold constraint that aligns denoising updates with task-relevant subspaces, leveraging the fact that the relative pose between the end-effector and target scene provides a natural gradient direction, and guiding denoising along the geodesic path of the manipulation manifold. Then, to reduce unnecessary exploration and accelerate convergence, we propose an analytically guided initialization: rather than sampling from an uninformative prior, we compute a rough registration between the gripper and target scenes to propose a structured initial noisy action. ADP is compatible with pre-trained diffusion policies and requires no retraining, enabling test-time adaptation that tailors the policy to specific tasks, thereby enhancing generalization across novel tasks and environments. Experiments on RLBench, CALVIN, and real-world datasets show that ADPro, an implementation of ADP, improves success rates, generalization, and sampling efficiency, achieving up to 25% faster execution and 9% points over strong diffusion baselines.
♻ ☆ LargeAD: Large-Scale Cross-Sensor Data Pretraining for Autonomous Driving
Recent advancements in vision foundation models (VFMs) have revolutionized visual perception in 2D, yet their potential for 3D scene understanding, particularly in autonomous driving applications, remains underexplored. In this paper, we introduce LargeAD, a versatile and scalable framework designed for large-scale 3D pretraining across diverse real-world driving datasets. Our framework leverages VFMs to extract semantically rich superpixels from 2D images, which are aligned with LiDAR point clouds to generate high-quality contrastive samples. This alignment facilitates cross-modal representation learning, enhancing the semantic consistency between 2D and 3D data. We introduce several key innovations: (i) VFM-driven superpixel generation for detailed semantic representation, (ii) a VFM-assisted contrastive learning strategy to align multimodal features, (iii) superpoint temporal consistency to maintain stable representations across time, and (iv) multi-source data pretraining to generalize across various LiDAR configurations. Our approach achieves substantial gains over state-of-the-art methods in linear probing and fine-tuning for LiDAR-based segmentation and object detection. Extensive experiments on 11 large-scale multi-sensor datasets highlight our superior performance, demonstrating adaptability, efficiency, and robustness in real-world autonomous driving scenarios.
comment: IEEE TPAMI 2025; 17 pages, 9 figures, 11 tables; Project Page at https://ldkong.com/LargeAD
OrthoLoC: UAV 6-DoF Localization and Calibration Using Orthographic Geodata NeurIPS 2025
Accurate visual localization from aerial views is a fundamental problem with applications in mapping, large-area inspection, and search-and-rescue operations. In many scenarios, these systems require high-precision localization while operating with limited resources (e.g., no internet connection or GNSS/GPS support), making large image databases or heavy 3D models impractical. Surprisingly, little attention has been given to leveraging orthographic geodata as an alternative paradigm, which is lightweight and increasingly available through free releases by governmental authorities (e.g., the European Union). To fill this gap, we propose OrthoLoC, the first large-scale dataset comprising 16,425 UAV images from Germany and the United States with multiple modalities. The dataset addresses domain shifts between UAV imagery and geospatial data. Its paired structure enables fair benchmarking of existing solutions by decoupling image retrieval from feature matching, allowing isolated evaluation of localization and calibration performance. Through comprehensive evaluation, we examine the impact of domain shifts, data resolutions, and covisibility on localization accuracy. Finally, we introduce a refinement technique called AdHoP, which can be integrated with any feature matcher, improving matching by up to 95% and reducing translation error by up to 63%. The dataset and code are available at: https://deepscenario.github.io/OrthoLoC.
comment: Accepted at NeurIPS 2025
♻ ☆ Towards autonomous photogrammetric forest inventory using a lightweight under-canopy robotic drone
Drones are increasingly used in forestry to capture high-resolution remote sensing data, supporting enhanced monitoring, assessment, and decision-making processes. While operations above the forest canopy are already highly automated, flying inside forests remains challenging, primarily relying on manual piloting. In dense forests, relying on the Global Navigation Satellite System (GNSS) for localization is not feasible. In addition, the drone must autonomously adjust its flight path to avoid collisions. Recently, advancements in robotics have enabled autonomous drone flights in GNSS-denied obstacle-rich areas. In this article, a step towards autonomous forest data collection is taken by building a prototype of a robotic under-canopy drone utilizing state-of-the-art open source methods and validating its performance for data collection inside forests. Specifically, the study focused on camera-based autonomous flight under the forest canopy and photogrammetric post-processing of the data collected with the low-cost onboard stereo camera. The autonomous flight capability of the prototype was evaluated through multiple test flights in boreal forests. The tree parameter estimation capability was studied by performing diameter at breast height (DBH) estimation. The prototype successfully carried out flights in selected challenging forest environments, and the experiments showed promising performance in forest 3D modeling with a miniaturized stereoscopic photogrammetric system. The DBH estimation achieved a root mean square error (RMSE) of 3.33 - 3.97 cm (10.69 - 12.98 %) across all trees. For trees with a DBH less than 30 cm, the RMSE was 1.16 - 2.56 cm (5.74 - 12.47 %). The results provide valuable insights into autonomous under-canopy forest mapping and highlight the critical next steps for advancing lightweight robotic drone systems for mapping complex forest environments.
comment: 35 pages, 11 Figures
♻ ☆ Long-Horizon Visual Imitation Learning via Plan and Code Reflection
Learning from long-horizon demonstrations with complex action sequences presents significant challenges for visual imitation learning, particularly in understanding temporal relationships of actions and spatial relationships between objects. In this paper, we propose a new agent framework that incorporates two dedicated reflection modules to enhance both plan and code generation. The plan generation module produces an initial action sequence, which is then verified by the plan reflection module to ensure temporal coherence and spatial alignment with the demonstration video. The code generation module translates the plan into executable code, while the code reflection module verifies and refines the generated code to ensure correctness and consistency with the generated plan. These two reflection modules jointly enable the agent to detect and correct errors in both the plan generation and code generation, improving performance in tasks with intricate temporal and spatial dependencies. To support systematic evaluation, we introduce LongVILBench, a benchmark comprising 300 human demonstrations with action sequences of up to 18 steps. LongVILBench emphasizes temporal and spatial complexity across multiple task types. Experimental results demonstrate that existing methods perform poorly on this benchmark, whereas our new framework establishes a strong baseline for long-horizon visual imitation learning.
comment: 9 pages, 4 figures
♻ ☆ WorldGym: World Model as An Environment for Policy Evaluation
Evaluating robot control policies is difficult: real-world testing is costly, and handcrafted simulators require manual effort to improve in realism and generality. We propose a world-model-based policy evaluation environment (WorldGym), an autoregressive, action-conditioned video generation model which serves as a proxy to real world environments. Policies are evaluated via Monte Carlo rollouts in the world model, with a vision-language model providing rewards. We evaluate a set of VLA-based real-robot policies in the world model using only initial frames from real robots, and show that policy success rates within the world model highly correlate with real-world success rates. Moreoever, we show that WorldGym is able to preserve relative policy rankings across different policy versions, sizes, and training checkpoints. Due to requiring only a single start frame as input, the world model further enables efficient evaluation of robot policies' generalization ability on novel tasks and environments. We find that modern VLA-based robot policies still struggle to distinguish object shapes and can become distracted by adversarial facades of objects. While generating highly realistic object interaction remains challenging, WorldGym faithfully emulates robot motions and offers a practical starting point for safe and reproducible policy evaluation before deployment.
comment: https://world-model-eval.github.io
♻ ☆ How Safe Will I Be Given What I Saw? Calibrated Prediction of Safety Chances for Image-Controlled Autonomy
Autonomous robots that rely on deep neural network controllers pose critical challenges for safety prediction, especially under partial observability and distribution shift. Traditional model-based verification techniques are limited in scalability and require access to low-dimensional state models, while model-free methods often lack reliability guarantees. This paper addresses these limitations by introducing a framework for calibrated safety prediction in end-to-end vision-controlled systems, where neither the state-transition model nor the observation model is accessible. Building on the foundation of world models, we leverage variational autoencoders and recurrent predictors to forecast future latent trajectories from raw image sequences and estimate the probability of satisfying safety properties. We distinguish between monolithic and composite prediction pipelines and introduce a calibration mechanism to quantify prediction confidence. In long-horizon predictions from high-dimensional observations, the forecasted inputs to the safety evaluator can deviate significantly from the training distribution due to compounding prediction errors and changing environmental conditions, leading to miscalibrated risk estimates. To address this, we incorporate unsupervised domain adaptation to ensure robustness of safety evaluation under distribution shift in predictions without requiring manual labels. Our formulation provides theoretical calibration guarantees and supports practical evaluation across long prediction horizons. Experimental results on three benchmarks show that our UDA-equipped evaluators maintain high accuracy and substantially lower false positive rates under distribution shift. Similarly, world model-based composite predictors outperform their monolithic counterparts on long-horizon tasks, and our conformal calibration provides reliable statistical bounds.
comment: arXiv admin note: text overlap with arXiv:2308.12252
♻ ☆ Optimization-based Task and Motion Planning under Signal Temporal Logic Specifications using Logic Network Flow ICRA
This paper proposes an optimization-based task and motion planning framework, named "Logic Network Flow", to integrate signal temporal logic (STL) specifications into efficient mixed-binary linear programmings. In this framework, temporal predicates are encoded as polyhedron constraints on each edge of the network flow, instead of as constraints between the nodes as in the traditional Logic Tree formulation. Synthesized with Dynamic Network Flows, Logic Network Flows render a tighter convex relaxation compared to Logic Trees derived from these STL specifications. Our formulation is evaluated on several multi-robot motion planning case studies. Empirical results demonstrate that our formulation outperforms Logic Tree formulation in terms of computation time for several planning problems. As the problem size scales up, our method still discovers better lower and upper bounds by exploring fewer number of nodes during the branch-and-bound process, although this comes at the cost of increased computational load for each node when exploring branches.
comment: Accepted to IEEE International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ Vision-driven River Following of UAV via Safe Reinforcement Learning using Semantic Dynamics Model RAS
Vision-driven autonomous river following by Unmanned Aerial Vehicles is critical for applications such as rescue, surveillance, and environmental monitoring, particularly in dense riverine environments where GPS signals are unreliable. These safety-critical navigation tasks must satisfy hard safety constraints while optimizing performance. Moreover, the reward in river following is inherently history-dependent (non-Markovian) by which river segment has already been visited, making it challenging for standard safe Reinforcement Learning (SafeRL). To address these gaps, we propose three contributions. First, we introduce Marginal Gain Advantage Estimation, which refines the reward advantage function by using a sliding window baseline computed from historical episodic returns, aligning the advantage estimate with non-Markovian dynamics. Second, we develop a Semantic Dynamics Model based on patchified water semantic masks offering more interpretable and data-efficient short-term prediction of future observations compared to latent vision dynamics models. Third, we present the Constrained Actor Dynamics Estimator architecture, which integrates the actor, cost estimator, and SDM for cost advantage estimation to form a model-based SafeRL framework. Simulation results demonstrate that MGAE achieves faster convergence and superior performance over traditional critic-based methods like Generalized Advantage Estimation. SDM provides more accurate short-term state predictions that enable the cost estimator to better predict potential violations. Overall, CADE effectively integrates safety regulation into model-based RL, with the Lagrangian approach providing a "soft" balance between reward and safety during training, while the safety layer enhances inference by imposing a "hard" action overlay.
comment: Submitted to Robotics and Autonomous Systems (RAS) journal
♻ ☆ Active Shadowing (ASD): Manipulating Perception of Robotic Behaviors via Implicit Virtual Communication
Explicit communication is often valued for its directness in presenting information but requires attention during exchange, resulting in cognitive interruptions. On the other hand, implicit communication contributes to tacit and smooth interaction, making it more suitable for teaming, but requires inference for interpretation. This paper studies a novel type of implicit visual communication (IVC) using shadows via visual projection with augmented reality, referred to as active shadowing (ASD). Prior IVC methods, such as legible motion, are often used to influence the perception of robot behavior to make it more understandable. They often require changing the physical robot behavior, resulting in suboptimality. In our work, we investigate how ASD can be used to achieve similar effects without losing optimality. Our evaluations with user studies demonstrates that ASD can effectively creates ''illusions'' that maintain optimal physical behavior without compromising its understandability. We also show that ASD can be more informative than other explicit communication methods, and examine the conditions under which ASD becomes less effective.
Computer Vision and Pattern Recognition 243
☆ Stitch: Training-Free Position Control in Multimodal Diffusion Transformers
Text-to-Image (T2I) generation models have advanced rapidly in recent years, but accurately capturing spatial relationships like "above" or "to the right of" poses a persistent challenge. Earlier methods improved spatial relationship following with external position control. However, as architectures evolved to enhance image quality, these techniques became incompatible with modern models. We propose Stitch, a training-free method for incorporating external position control into Multi-Modal Diffusion Transformers (MMDiT) via automatically-generated bounding boxes. Stitch produces images that are both spatially accurate and visually appealing by generating individual objects within designated bounding boxes and seamlessly stitching them together. We find that targeted attention heads capture the information necessary to isolate and cut out individual objects mid-generation, without needing to fully complete the image. We evaluate Stitch on PosEval, our benchmark for position-based T2I generation. Featuring five new tasks that extend the concept of Position beyond the basic GenEval task, PosEval demonstrates that even top models still have significant room for improvement in position-based generation. Tested on Qwen-Image, FLUX, and SD3.5, Stitch consistently enhances base models, even improving FLUX by 218% on GenEval's Position task and by 206% on PosEval. Stitch achieves state-of-the-art results with Qwen-Image on PosEval, improving over previous models by 54%, all accomplished while integrating position control into leading models training-free. Code is available at https://github.com/ExplainableML/Stitch.
comment: Preprint
☆ TTT3R: 3D Reconstruction as Test-Time Training
Modern Recurrent Neural Networks have become a competitive architecture for 3D reconstruction due to their linear-time complexity. However, their performance degrades significantly when applied beyond the training context length, revealing limited length generalization. In this work, we revisit the 3D reconstruction foundation models from a Test-Time Training perspective, framing their designs as an online learning problem. Building on this perspective, we leverage the alignment confidence between the memory state and incoming observations to derive a closed-form learning rate for memory updates, to balance between retaining historical information and adapting to new observations. This training-free intervention, termed TTT3R, substantially improves length generalization, achieving a $2\times$ improvement in global pose estimation over baselines, while operating at 20 FPS with just 6 GB of GPU memory to process thousands of images. Code available in https://rover-xingyu.github.io/TTT3R
comment: Page: https://rover-xingyu.github.io/TTT3R Code: https://github.com/Inception3D/TTT3R
☆ Query-Kontext: An Unified Multimodal Model for Image Generation and Editing
Unified Multimodal Models (UMMs) have demonstrated remarkable performance in text-to-image generation (T2I) and editing (TI2I), whether instantiated as assembled unified frameworks which couple powerful vision-language model (VLM) with diffusion-based generator, or as naive Unified Multimodal Models with an early fusion of understanding and generation modalities. We contend that in current unified frameworks, the crucial capability of multimodal generative reasoning which encompasses instruction understanding, grounding, and image referring for identity preservation and faithful reconstruction, is intrinsically entangled with high-fidelity synthesis. In this work, we introduce Query-Kontext, a novel approach that bridges the VLM and diffusion model via a multimodal ``kontext'' composed of semantic cues and coarse-grained image conditions encoded from multimodal inputs. This design delegates the complex ability of multimodal generative reasoning to powerful VLM while reserving diffusion model's role for high-quality visual synthesis. To achieve this, we propose a three-stage progressive training strategy. First, we connect the VLM to a lightweight diffusion head via multimodal kontext tokens to unleash the VLM's generative reasoning ability. Second, we scale this head to a large, pre-trained diffusion model to enhance visual detail and realism. Finally, we introduce a low-level image encoder to improve image fidelity and perform instruction tuning on downstream tasks. Furthermore, we build a comprehensive data pipeline integrating real, synthetic, and open-source datasets, covering diverse multimodal reference-to-image scenarios, including image generation, instruction-driven editing, customized generation, and multi-subject composition. Experiments show that our approach matches strong unified baselines and even outperforms task-specific state-of-the-art methods in several cases.
comment: 23 pages, 10 figures
Benchmarking Egocentric Visual-Inertial SLAM at City Scale ICCV 2025
Precise 6-DoF simultaneous localization and mapping (SLAM) from onboard sensors is critical for wearable devices capturing egocentric data, which exhibits specific challenges, such as a wider diversity of motions and viewpoints, prevalent dynamic visual content, or long sessions affected by time-varying sensor calibration. While recent progress on SLAM has been swift, academic research is still driven by benchmarks that do not reflect these challenges or do not offer sufficiently accurate ground truth poses. In this paper, we introduce a new dataset and benchmark for visual-inertial SLAM with egocentric, multi-modal data. We record hours and kilometers of trajectories through a city center with glasses-like devices equipped with various sensors. We leverage surveying tools to obtain control points as indirect pose annotations that are metric, centimeter-accurate, and available at city scale. This makes it possible to evaluate extreme trajectories that involve walking at night or traveling in a vehicle. We show that state-of-the-art systems developed by academia are not robust to these challenges and we identify components that are responsible for this. In addition, we design tracks with different levels of difficulty to ease in-depth analysis and evaluation of less mature approaches. The dataset and benchmark are available at https://www.lamaria.ethz.ch.
comment: ICCV 2025
☆ Learning Generalizable Shape Completion with SIM(3) Equivariance NeurIPS 2025
3D shape completion methods typically assume scans are pre-aligned to a canonical frame. This leaks pose and scale cues that networks may exploit to memorize absolute positions rather than inferring intrinsic geometry. When such alignment is absent in real data, performance collapses. We argue that robust generalization demands architectural equivariance to the similarity group, SIM(3), so the model remains agnostic to pose and scale. Following this principle, we introduce the first SIM(3)-equivariant shape completion network, whose modular layers successively canonicalize features, reason over similarity-invariant geometry, and restore the original frame. Under a de-biased evaluation protocol that removes the hidden cues, our model outperforms both equivariant and augmentation baselines on the PCN benchmark. It also sets new cross-domain records on real driving and indoor scans, lowering minimal matching distance on KITTI by 17% and Chamfer distance $\ell1$ on OmniObject3D by 14%. Perhaps surprisingly, ours under the stricter protocol still outperforms competitors under their biased settings. These results establish full SIM(3) equivariance as an effective route to truly generalizable shape completion. Project page: https://sime-completion.github.io.
comment: NeurIPS 2025
☆ Learning to See Before Seeing: Demystifying LLM Visual Priors from Language Pre-training
Large Language Models (LLMs), despite being trained on text alone, surprisingly develop rich visual priors. These priors allow latent visual capabilities to be unlocked for vision tasks with a relatively small amount of multimodal data, and in some cases, to perform visual tasks without ever having seen an image. Through systematic analysis, we reveal that visual priors-the implicit, emergent knowledge about the visual world acquired during language pre-training-are composed of separable perception and reasoning priors with unique scaling trends and origins. We show that an LLM's latent visual reasoning ability is predominantly developed by pre-training on reasoning-centric data (e.g., code, math, academia) and scales progressively. This reasoning prior acquired from language pre-training is transferable and universally applicable to visual reasoning. In contrast, a perception prior emerges more diffusely from broad corpora, and perception ability is more sensitive to the vision encoder and visual instruction tuning data. In parallel, text describing the visual world proves crucial, though its performance impact saturates rapidly. Leveraging these insights, we propose a data-centric recipe for pre-training vision-aware LLMs and verify it in 1T token scale pre-training. Our findings are grounded in over 100 controlled experiments consuming 500,000 GPU-hours, spanning the full MLLM construction pipeline-from LLM pre-training to visual alignment and supervised multimodal fine-tuning-across five model scales, a wide range of data categories and mixtures, and multiple adaptation setups. Along with our main findings, we propose and investigate several hypotheses, and introduce the Multi-Level Existence Bench (MLE-Bench). Together, this work provides a new way of deliberately cultivating visual priors from language pre-training, paving the way for the next generation of multimodal LLMs.
comment: Project page: https://junlinhan.github.io/projects/lsbs/
☆ HART: Human Aligned Reconstruction Transformer
We introduce HART, a unified framework for sparse-view human reconstruction. Given a small set of uncalibrated RGB images of a person as input, it outputs a watertight clothed mesh, the aligned SMPL-X body mesh, and a Gaussian-splat representation for photorealistic novel-view rendering. Prior methods for clothed human reconstruction either optimize parametric templates, which overlook loose garments and human-object interactions, or train implicit functions under simplified camera assumptions, limiting applicability in real scenes. In contrast, HART predicts per-pixel 3D point maps, normals, and body correspondences, and employs an occlusion-aware Poisson reconstruction to recover complete geometry, even in self-occluded regions. These predictions also align with a parametric SMPL-X body model, ensuring that reconstructed geometry remains consistent with human structure while capturing loose clothing and interactions. These human-aligned meshes initialize Gaussian splats to further enable sparse-view rendering. While trained on only 2.3K synthetic scans, HART achieves state-of-the-art results: Chamfer Distance improves by 18-23 percent for clothed-mesh reconstruction, PA-V2V drops by 6-27 percent for SMPL-X estimation, LPIPS decreases by 15-27 percent for novel-view synthesis on a wide range of datasets. These results suggest that feed-forward transformers can serve as a scalable model for robust human reconstruction in real-world settings. Code and models will be released.
comment: Project page: https://xiyichen.github.io/hart
☆ DA$^2$: Depth Anything in Any Direction
Panorama has a full FoV (360$^\circ\times$180$^\circ$), offering a more complete visual description than perspective images. Thanks to this characteristic, panoramic depth estimation is gaining increasing traction in 3D vision. However, due to the scarcity of panoramic data, previous methods are often restricted to in-domain settings, leading to poor zero-shot generalization. Furthermore, due to the spherical distortions inherent in panoramas, many approaches rely on perspective splitting (e.g., cubemaps), which leads to suboptimal efficiency. To address these challenges, we propose $\textbf{DA}$$^{\textbf{2}}$: $\textbf{D}$epth $\textbf{A}$nything in $\textbf{A}$ny $\textbf{D}$irection, an accurate, zero-shot generalizable, and fully end-to-end panoramic depth estimator. Specifically, for scaling up panoramic data, we introduce a data curation engine for generating high-quality panoramic depth data from perspective, and create $\sim$543K panoramic RGB-depth pairs, bringing the total to $\sim$607K. To further mitigate the spherical distortions, we present SphereViT, which explicitly leverages spherical coordinates to enforce the spherical geometric consistency in panoramic image features, yielding improved performance. A comprehensive benchmark on multiple datasets clearly demonstrates DA$^{2}$'s SoTA performance, with an average 38% improvement on AbsRel over the strongest zero-shot baseline. Surprisingly, DA$^{2}$ even outperforms prior in-domain methods, highlighting its superior zero-shot generalization. Moreover, as an end-to-end solution, DA$^{2}$ exhibits much higher efficiency over fusion-based approaches. Both the code and the curated panoramic data will be released. Project page: https://depth-any-in-any-dir.github.io/.
comment: Work primarily done during an internship at Tencent Hunyuan. Project page: https://depth-any-in-any-dir.github.io/
☆ Hy-Facial: Hybrid Feature Extraction by Dimensionality Reduction Methods for Enhanced Facial Expression Classification
Facial expression classification remains a challenging task due to the high dimensionality and inherent complexity of facial image data. This paper presents Hy-Facial, a hybrid feature extraction framework that integrates both deep learning and traditional image processing techniques, complemented by a systematic investigation of dimensionality reduction strategies. The proposed method fuses deep features extracted from the Visual Geometry Group 19-layer network (VGG19) with handcrafted local descriptors and the scale-invariant feature transform (SIFT) and Oriented FAST and Rotated BRIEF (ORB) algorithms, to obtain rich and diverse image representations. To mitigate feature redundancy and reduce computational complexity, we conduct a comprehensive evaluation of dimensionality reduction techniques and feature extraction. Among these, UMAP is identified as the most effective, preserving both local and global structures of the high-dimensional feature space. The Hy-Facial pipeline integrated VGG19, SIFT, and ORB for feature extraction, followed by K-means clustering and UMAP for dimensionality reduction, resulting in a classification accuracy of 83. 3\% in the facial expression recognition (FER) dataset. These findings underscore the pivotal role of dimensionality reduction not only as a pre-processing step but as an essential component in improving feature quality and overall classification performance.
☆ Video Object Segmentation-Aware Audio Generation
Existing multimodal audio generation models often lack precise user control, which limits their applicability in professional Foley workflows. In particular, these models focus on the entire video and do not provide precise methods for prioritizing a specific object within a scene, generating unnecessary background sounds, or focusing on the wrong objects. To address this gap, we introduce the novel task of video object segmentation-aware audio generation, which explicitly conditions sound synthesis on object-level segmentation maps. We present SAGANet, a new multimodal generative model that enables controllable audio generation by leveraging visual segmentation masks along with video and textual cues. Our model provides users with fine-grained and visually localized control over audio generation. To support this task and further research on segmentation-aware Foley, we propose Segmented Music Solos, a benchmark dataset of musical instrument performance videos with segmentation information. Our method demonstrates substantial improvements over current state-of-the-art methods and sets a new standard for controllable, high-fidelity Foley synthesis. Code, samples, and Segmented Music Solos are available at https://saganet.notion.site
comment: Preprint version. The Version of Record is published in DAGM GCPR 2025 proceedings with Springer Lecture Notes in Computer Science (LNCS). Updated results and resources are available at the project page: https://saganet.notion.site
☆ DiffCamera: Arbitrary Refocusing on Images
The depth-of-field (DoF) effect, which introduces aesthetically pleasing blur, enhances photographic quality but is fixed and difficult to modify once the image has been created. This becomes problematic when the applied blur is undesirable~(e.g., the subject is out of focus). To address this, we propose DiffCamera, a model that enables flexible refocusing of a created image conditioned on an arbitrary new focus point and a blur level. Specifically, we design a diffusion transformer framework for refocusing learning. However, the training requires pairs of data with different focus planes and bokeh levels in the same scene, which are hard to acquire. To overcome this limitation, we develop a simulation-based pipeline to generate large-scale image pairs with varying focus planes and bokeh levels. With the simulated data, we find that training with only a vanilla diffusion objective often leads to incorrect DoF behaviors due to the complexity of the task. This requires a stronger constraint during training. Inspired by the photographic principle that photos of different focus planes can be linearly blended into a multi-focus image, we propose a stacking constraint during training to enforce precise DoF manipulation. This constraint enhances model training by imposing physically grounded refocusing behavior that the focusing results should be faithfully aligned with the scene structure and the camera conditions so that they can be combined into the correct multi-focus image. We also construct a benchmark to evaluate the effectiveness of our refocusing model. Extensive experiments demonstrate that DiffCamera supports stable refocusing across a wide range of scenes, providing unprecedented control over DoF adjustments for photography and generative AI applications.
☆ Clarification as Supervision: Reinforcement Learning for Vision-Language Interfaces
Recent text-only models demonstrate remarkable mathematical reasoning capabilities. Extending these to visual domains requires vision-language models to translate images into text descriptions. However, current models, trained to produce captions for human readers, often omit the precise details that reasoning systems require. This creates an interface mismatch: reasoners often fail not due to reasoning limitations but because they lack access to critical visual information. We propose Adaptive-Clarification Reinforcement Learning (AC-RL), which teaches vision models what information reasoners need through interaction. Our key insight is that clarification requests during training reveal information gaps; by penalizing success that requires clarification, we create pressure for comprehensive initial captions that enable the reasoner to solve the problem in a single pass. AC-RL improves average accuracy by 4.4 points over pretrained baselines across seven visual mathematical reasoning benchmarks, and analysis shows it would cut clarification requests by up to 39% if those were allowed. By treating clarification as a form of implicit supervision, AC-RL demonstrates that vision-language interfaces can be effectively learned through interaction alone, without requiring explicit annotations.
☆ Autoproof: Automated Segmentation Proofreading for Connectomics
Producing connectomes from electron microscopy (EM) images has historically required a great deal of human proofreading effort. This manual annotation cost is the current bottleneck in scaling EM connectomics, for example, in making larger connectome reconstructions feasible, or in enabling comparative connectomics where multiple related reconstructions are produced. In this work, we propose using the available ground-truth data generated by this manual annotation effort to learn a machine learning model to automate or optimize parts of the required proofreading workflows. We validate our approach on a recent complete reconstruction of the \emph{Drosophila} male central nervous system. We first show our method would allow for obtaining 90\% of the value of a guided proofreading workflow while reducing required cost by 80\%. We then demonstrate a second application for automatically merging many segmentation fragments to proofread neurons. Our system is able to automatically attach 200 thousand fragments, equivalent to four proofreader years of manual work, and increasing the connectivity completion rate of the connectome by 1.3\% points.
☆ Stable Cinemetrics : Structured Taxonomy and Evaluation for Professional Video Generation NeurIPS 2025
Recent advances in video generation have enabled high-fidelity video synthesis from user provided prompts. However, existing models and benchmarks fail to capture the complexity and requirements of professional video generation. Towards that goal, we introduce Stable Cinemetrics, a structured evaluation framework that formalizes filmmaking controls into four disentangled, hierarchical taxonomies: Setup, Event, Lighting, and Camera. Together, these taxonomies define 76 fine-grained control nodes grounded in industry practices. Using these taxonomies, we construct a benchmark of prompts aligned with professional use cases and develop an automated pipeline for prompt categorization and question generation, enabling independent evaluation of each control dimension. We conduct a large-scale human study spanning 10+ models and 20K videos, annotated by a pool of 80+ film professionals. Our analysis, both coarse and fine-grained reveal that even the strongest current models exhibit significant gaps, particularly in Events and Camera-related controls. To enable scalable evaluation, we train an automatic evaluator, a vision-language model aligned with expert annotations that outperforms existing zero-shot baselines. SCINE is the first approach to situate professional video generation within the landscape of video generative models, introducing taxonomies centered around cinematic controls and supporting them with structured evaluation pipelines and detailed analyses to guide future research.
comment: NeurIPS 2025. Project Page : https://stable-cinemetrics.github.io/
☆ Automated and Scalable SEM Image Analysis of Perovskite Solar Cell Materials via a Deep Segmentation Framework
Scanning Electron Microscopy (SEM) is indispensable for characterizing the microstructure of thin films during perovskite solar cell fabrication. Accurate identification and quantification of lead iodide and perovskite phases are critical because residual lead iodide strongly influences crystallization pathways and defect formation, while the morphology of perovskite grains governs carrier transport and device stability. Yet current SEM image analysis is still largely manual, limiting throughput and consistency. Here, we present an automated deep learning-based framework for SEM image segmentation that enables precise and efficient identification of lead iodide, perovskite and defect domains across diverse morphologies. Built upon an improved YOLOv8x architecture, our model named PerovSegNet incorporates two novel modules: (i) Adaptive Shuffle Dilated Convolution Block, which enhances multi-scale and fine-grained feature extraction through group convolutions and channel mixing; and (ii) Separable Adaptive Downsampling module, which jointly preserves fine-scale textures and large-scale structures for more robust boundary recognition. Trained on an augmented dataset of 10,994 SEM images, PerovSegNet achieves a mean Average Precision of 87.25% with 265.4 Giga Floating Point Operations, outperforming the baseline YOLOv8x-seg by 4.08%, while reducing model size and computational load by 24.43% and 25.22%, respectively. Beyond segmentation, the framework provides quantitative grain-level metrics, such as lead iodide/perovskite area and count, which can serve as reliable indicators of crystallization efficiency and microstructural quality. These capabilities establish PerovSegNet as a scalable tool for real-time process monitoring and data-driven optimization of perovskite thin-film fabrication.The source code is available at:https://github.com/wlyyj/PerovSegNet/tree/master.
☆ Ferret-UI Lite: Lessons from Building Small On-Device GUI Agents
Developing autonomous agents that effectively interact with Graphic User Interfaces (GUIs) remains a challenging open problem, especially for small on-device models. In this paper, we present Ferret-UI Lite, a compact, end-to-end GUI agent that operates across diverse platforms, including mobile, web, and desktop. Utilizing techniques optimized for developing small models, we build our 3B Ferret-UI Lite agent through curating a diverse GUI data mixture from real and synthetic sources, strengthening inference-time performance through chain-of-thought reasoning and visual tool-use, and reinforcement learning with designed rewards. Ferret-UI Lite achieves competitive performance with other small-scale GUI agents. In GUI grounding, Ferret-UI Lite attains scores of $91.6\%$, $53.3\%$, and $61.2\%$ on the ScreenSpot-V2, ScreenSpot-Pro, and OSWorld-G benchmarks, respectively. For GUI navigation, Ferret-UI Lite achieves success rates of $28.0\%$ on AndroidWorld and $19.8\%$ on OSWorld. We share our methods and lessons learned from developing compact, on-device GUI agents.
☆ OceanGym: A Benchmark Environment for Underwater Embodied Agents
We introduce OceanGym, the first comprehensive benchmark for ocean underwater embodied agents, designed to advance AI in one of the most demanding real-world environments. Unlike terrestrial or aerial domains, underwater settings present extreme perceptual and decision-making challenges, including low visibility, dynamic ocean currents, making effective agent deployment exceptionally difficult. OceanGym encompasses eight realistic task domains and a unified agent framework driven by Multi-modal Large Language Models (MLLMs), which integrates perception, memory, and sequential decision-making. Agents are required to comprehend optical and sonar data, autonomously explore complex environments, and accomplish long-horizon objectives under these harsh conditions. Extensive experiments reveal substantial gaps between state-of-the-art MLLM-driven agents and human experts, highlighting the persistent difficulty of perception, planning, and adaptability in ocean underwater environments. By providing a high-fidelity, rigorously designed platform, OceanGym establishes a testbed for developing robust embodied AI and transferring these capabilities to real-world autonomous ocean underwater vehicles, marking a decisive step toward intelligent agents capable of operating in one of Earth's last unexplored frontiers. The code and data are available at https://github.com/OceanGPT/OceanGym.
comment: Work in progress
☆ GastroViT: A Vision Transformer Based Ensemble Learning Approach for Gastrointestinal Disease Classification with Grad CAM & SHAP Visualization
The gastrointestinal (GI) tract of humans can have a wide variety of aberrant mucosal abnormality findings, ranging from mild irritations to extremely fatal illnesses. Prompt identification of gastrointestinal disorders greatly contributes to arresting the progression of the illness and improving therapeutic outcomes. This paper presents an ensemble of pre-trained vision transformers (ViTs) for accurately classifying endoscopic images of the GI tract to categorize gastrointestinal problems and illnesses. ViTs, attention-based neural networks, have revolutionized image recognition by leveraging the transformative power of the transformer architecture, achieving state-of-the-art (SOTA) performance across various visual tasks. The proposed model was evaluated on the publicly available HyperKvasir dataset with 10,662 images of 23 different GI diseases for the purpose of identifying GI tract diseases. An ensemble method is proposed utilizing the predictions of two pre-trained models, MobileViT_XS and MobileViT_V2_200, which achieved accuracies of 90.57% and 90.48%, respectively. All the individual models are outperformed by the ensemble model, GastroViT, with an average precision, recall, F1 score, and accuracy of 69%, 63%, 64%, and 91.98%, respectively, in the first testing that involves 23 classes. The model comprises only 20 million (M) parameters, even without data augmentation and despite the highly imbalanced dataset. For the second testing with 16 classes, the scores are even higher, with average precision, recall, F1 score, and accuracy of 87%, 86%, 87%, and 92.70%, respectively. Additionally, the incorporation of explainable AI (XAI) methods such as Grad-CAM (Gradient Weighted Class Activation Mapping) and SHAP (Shapley Additive Explanations) enhances model interpretability, providing valuable insights for reliable GI diagnosis in real-world settings.
☆ DEPTHOR++: Robust Depth Enhancement from a Real-World Lightweight dToF and RGB Guidance
Depth enhancement, which converts raw dToF signals into dense depth maps using RGB guidance, is crucial for improving depth perception in high-precision tasks such as 3D reconstruction and SLAM. However, existing methods often assume ideal dToF inputs and perfect dToF-RGB alignment, overlooking calibration errors and anomalies, thus limiting real-world applicability. This work systematically analyzes the noise characteristics of real-world lightweight dToF sensors and proposes a practical and novel depth completion framework, DEPTHOR++, which enhances robustness to noisy dToF inputs from three key aspects. First, we introduce a simulation method based on synthetic datasets to generate realistic training samples for robust model training. Second, we propose a learnable-parameter-free anomaly detection mechanism to identify and remove erroneous dToF measurements, preventing misleading propagation during completion. Third, we design a depth completion network tailored to noisy dToF inputs, which integrates RGB images and pre-trained monocular depth estimation priors to improve depth recovery in challenging regions. On the ZJU-L5 dataset and real-world samples, our training strategy significantly boosts existing depth completion models, with our model achieving state-of-the-art performance, improving RMSE and Rel by 22% and 11% on average. On the Mirror3D-NYU dataset, by incorporating the anomaly detection method, our model improves upon the previous SOTA by 37% in mirror regions. On the Hammer dataset, using simulated low-cost dToF data from RealSense L515, our method surpasses the L515 measurements with an average gain of 22%, demonstrating its potential to enable low-cost sensors to outperform higher-end devices. Qualitative results across diverse real-world datasets further validate the effectiveness and generalizability of our approach.
comment: 15 pages, 16 figures
☆ Revealing the Power of Post-Training for Small Language Models via Knowledge Distillation
The rapid advancement of large language models (LLMs) has significantly advanced the capabilities of artificial intelligence across various domains. However, their massive scale and high computational costs render them unsuitable for direct deployment in resource-constrained edge environments. This creates a critical need for high-performance small models that can operate efficiently at the edge. Yet, after pre-training alone, these smaller models often fail to meet the performance requirements of complex tasks. To bridge this gap, we introduce a systematic post-training pipeline that efficiently enhances small model accuracy. Our post training pipeline consists of curriculum-based supervised fine-tuning (SFT) and offline on-policy knowledge distillation. The resulting instruction-tuned model achieves state-of-the-art performance among billion-parameter models, demonstrating strong generalization under strict hardware constraints while maintaining competitive accuracy across a variety of tasks. This work provides a practical and efficient solution for developing high-performance language models on Ascend edge devices.
comment: 7
☆ Contrastive Diffusion Guidance for Spatial Inverse Problems
We consider the inverse problem of reconstructing the spatial layout of a place, a home floorplan for example, from a user`s movements inside that layout. Direct inversion is ill-posed since many floorplans can explain the same movement trajectories. We adopt a diffusion-based posterior sampler to generate layouts consistent with the measurements. While active research is in progress on generative inverse solvers, we find that the forward operator in our problem poses new challenges. The path-planning process inside a floorplan is a non-invertible, non-differentiable function, and causes instability while optimizing using the likelihood score. We break-away from existing approaches and reformulate the likelihood score in a smoother embedding space. The embedding space is trained with a contrastive loss which brings compatible floorplans and trajectories close to each other, while pushing mismatched pairs far apart. We show that a surrogate form of the likelihood score in this embedding space is a valid approximation of the true likelihood score, making it possible to steer the denoising process towards the posterior. Across extensive experiments, our model CoGuide produces more consistent floorplans from trajectories, and is more robust than differentiable-planner baselines and guided-diffusion methods.
☆ CBAM Integrated Attention Driven Model For Betel Leaf Diseases Classification With Explainable AI
Betel leaf is an important crop because of its economic advantages and widespread use. Its betel vines are susceptible to a number of illnesses that are commonly referred to as betel leaf disease. Plant diseases are the largest threat to the food supply's security, and they are challenging to identify in time to stop possible financial damage. Interestingly, artificial intelligence can leave a big mark on the betel leaf industry since it helps with output growth by forecasting sickness. This paper presents a lightweight CBAM-CNN model with just 2.13 million parameters (8.13 MB), incorporating CBAM (Convolutional Block Attention Module) to improve feature emphasis without depending on heavy pre-trained networks. The model's capacity to discern minute variations among leaf disease classes is improved by the integrated attention mechanism, which allows it to adaptively focus on significant spatial and channel-wise information. In order to ensure class balance and diversity for efficient model training and validation, this work makes use of an enriched dataset of 10,185 images divided into three categories: Healthy Leaf, Leaf Rot, and Leaf Spot. The proposed model achieved a precision of 97%, recall of 94%, and F1 score of 95%, and 95.58% accuracy on the test set demonstrating strong and balanced classification performance outperforming traditional pre trained CNN models. The model's focus regions were visualized and interpreted using Grad-CAM (Gradient-weighted Class Activation Mapping), an explainable AI technique.
☆ Zero-Shot Decentralized Federated Learning IJCNN
CLIP has revolutionized zero-shot learning by enabling task generalization without fine-tuning. While prompting techniques like CoOp and CoCoOp enhance CLIP's adaptability, their effectiveness in Federated Learning (FL) remains an open challenge. Existing federated prompt learning approaches, such as FedCoOp and FedTPG, improve performance but face generalization issues, high communication costs, and reliance on a central server, limiting scalability and privacy. We propose Zero-shot Decentralized Federated Learning (ZeroDFL), a fully decentralized framework that enables zero-shot adaptation across distributed clients without a central coordinator. ZeroDFL employs an iterative prompt-sharing mechanism, allowing clients to optimize and exchange textual prompts to enhance generalization while drastically reducing communication overhead. We validate ZeroDFL on nine diverse image classification datasets, demonstrating that it consistently outperforms--or remains on par with--state-of-the-art federated prompt learning methods. More importantly, ZeroDFL achieves this performance in a fully decentralized setting while reducing communication overhead by 118x compared to FedTPG. These results highlight that our approach not only enhances generalization in federated zero-shot learning but also improves scalability, efficiency, and privacy preservation--paving the way for decentralized adaptation of large vision-language models in real-world applications.
comment: Accepted at International Joint Conference on Neural Networks (IJCNN) 2025. Code available at https://github.com/perceivelab/ZeroDFL
☆ Attention over Scene Graphs: Indoor Scene Representations Toward CSAI Classification BMVC 2025
Indoor scene classification is a critical task in computer vision, with wide-ranging applications that go from robotics to sensitive content analysis, such as child sexual abuse imagery (CSAI) classification. The problem is particularly challenging due to the intricate relationships between objects and complex spatial layouts. In this work, we propose the Attention over Scene Graphs for Sensitive Content Analysis (ASGRA), a novel framework that operates on structured graph representations instead of raw pixels. By first converting images into Scene Graphs and then employing a Graph Attention Network for inference, ASGRA directly models the interactions between a scene's components. This approach offers two key benefits: (i) inherent explainability via object and relationship identification, and (ii) privacy preservation, enabling model training without direct access to sensitive images. On Places8, we achieve 81.27% balanced accuracy, surpassing image-based methods. Real-world CSAI evaluation with law enforcement yields 74.27% balanced accuracy. Our results establish structured scene representations as a robust paradigm for indoor scene classification and CSAI classification. Code is publicly available at https://github.com/tutuzeraa/ASGRA.
comment: British Machine Vision Conference (BMVC 2025), in the From Scene Understanding to Human Modeling Workshop
☆ Stylos: Multi-View 3D Stylization with Single-Forward Gaussian Splatting
We present Stylos, a single-forward 3D Gaussian framework for 3D style transfer that operates on unposed content, from a single image to a multi-view collection, conditioned on a separate reference style image. Stylos synthesizes a stylized 3D Gaussian scene without per-scene optimization or precomputed poses, achieving geometry-aware, view-consistent stylization that generalizes to unseen categories, scenes, and styles. At its core, Stylos adopts a Transformer backbone with two pathways: geometry predictions retain self-attention to preserve geometric fidelity, while style is injected via global cross-attention to enforce visual consistency across views. With the addition of a voxel-based 3D style loss that aligns aggregated scene features to style statistics, Stylos enforces view-consistent stylization while preserving geometry. Experiments across multiple datasets demonstrate that Stylos delivers high-quality zero-shot stylization, highlighting the effectiveness of global style-content coupling, the proposed 3D style loss, and the scalability of our framework from single view to large-scale multi-view settings.
☆ Multi-View Camera System for Variant-Aware Autonomous Vehicle Inspection and Defect Detection
Ensuring that every vehicle leaving a modern production line is built to the correct \emph{variant} specification and is free from visible defects is an increasingly complex challenge. We present the \textbf{Automated Vehicle Inspection (AVI)} platform, an end-to-end, \emph{multi-view} perception system that couples deep-learning detectors with a semantic rule engine to deliver \emph{variant-aware} quality control in real time. Eleven synchronized cameras capture a full 360{\deg} sweep of each vehicle; task-specific views are then routed to specialised modules: YOLOv8 for part detection, EfficientNet for ICE/EV classification, Gemini-1.5 Flash for mascot OCR, and YOLOv8-Seg for scratch-and-dent segmentation. A view-aware fusion layer standardises evidence, while a VIN-conditioned rule engine compares detected features against the expected manifest, producing an interpretable pass/fail report in \(\approx\! 300\,\text{ms}\). On a mixed data set of Original Equipment Manufacturer(OEM) vehicle data sets of four distinct models plus public scratch/dent images, AVI achieves \textbf{ 93 \%} verification accuracy, \textbf{86 \%} defect-detection recall, and sustains \(\mathbf{3.3}\) vehicles/min, surpassing single-view or no segmentation baselines by large margins. To our knowledge, this is the first publicly reported system that unifies multi-camera feature validation with defect detection in a deployable automotive setting in industry.
☆ Post-Training Quantization via Residual Truncation and Zero Suppression for Diffusion Models
Diffusion models achieve high-quality image generation but face deployment challenges due to their high computational requirements. Although 8-bit outlier-aware post-training quantization (PTQ) matches full-precision performance, extending PTQ to 4 bits remains challenging. Larger step sizes in 4-bit quantization amplify rounding errors in dense, low-magnitude activations, leading to the loss of fine-grained textures. We hypothesize that not only outliers but also small activations are critical for texture fidelity. To this end, we propose Quantization via Residual Truncation and Zero Suppression (QuaRTZ), a 4-bit PTQ scheme for diffusion models. QuaRTZ applies 8-bit min-max quantization for outlier handling and compresses to 4 bits via leading-zero suppression to retain LSBs, thereby preserving texture details. Our approach reduces rounding errors and improves quantization efficiency by balancing outlier preservation and LSB precision. Both theoretical derivations and empirical evaluations demonstrate the generalizability of QuaRTZ across diverse activation distributions. Notably, 4-bit QuaRTZ achieves an FID of 6.98 on FLUX.1-schnell, outperforming SVDQuant that requires auxiliary FP16 branches.
☆ PRISM: Progressive Rain removal with Integrated State-space Modeling
Image deraining is an essential vision technique that removes rain streaks and water droplets, enhancing clarity for critical vision tasks like autonomous driving. However, current single-scale models struggle with fine-grained recovery and global consistency. To address this challenge, we propose Progressive Rain removal with Integrated State-space Modeling (PRISM), a progressive three-stage framework: Coarse Extraction Network (CENet), Frequency Fusion Network (SFNet), and Refine Network (RNet). Specifically, CENet and SFNet utilize a novel Hybrid Attention UNet (HA-UNet) for multi-scale feature aggregation by combining channel attention with windowed spatial transformers. Moreover, we propose Hybrid Domain Mamba (HDMamba) for SFNet to jointly model spatial semantics and wavelet domain characteristics. Finally, RNet recovers the fine-grained structures via an original-resolution subnetwork. Our model learns high-frequency rain characteristics while preserving structural details and maintaining global context, leading to improved image quality. Our method achieves competitive results on multiple datasets against recent deraining methods.
comment: Preprint. Submitted to an IEEE conference and currently under review. Copyright 2025 IEEE; personal use permitted; all other uses require permission
☆ MotionRAG: Motion Retrieval-Augmented Image-to-Video Generation
Image-to-video generation has made remarkable progress with the advancements in diffusion models, yet generating videos with realistic motion remains highly challenging. This difficulty arises from the complexity of accurately modeling motion, which involves capturing physical constraints, object interactions, and domain-specific dynamics that are not easily generalized across diverse scenarios. To address this, we propose MotionRAG, a retrieval-augmented framework that enhances motion realism by adapting motion priors from relevant reference videos through Context-Aware Motion Adaptation (CAMA). The key technical innovations include: (i) a retrieval-based pipeline extracting high-level motion features using video encoder and specialized resamplers to distill semantic motion representations; (ii) an in-context learning approach for motion adaptation implemented through a causal transformer architecture; (iii) an attention-based motion injection adapter that seamlessly integrates transferred motion features into pretrained video diffusion models. Extensive experiments demonstrate that our method achieves significant improvements across multiple domains and various base models, all with negligible computational overhead during inference. Furthermore, our modular design enables zero-shot generalization to new domains by simply updating the retrieval database without retraining any components. This research enhances the core capability of video generation systems by enabling the effective retrieval and transfer of motion priors, facilitating the synthesis of realistic motion dynamics.
☆ PANDA: Towards Generalist Video Anomaly Detection via Agentic AI Engineer NeurIPS 2025
Video anomaly detection (VAD) is a critical yet challenging task due to the complex and diverse nature of real-world scenarios. Previous methods typically rely on domain-specific training data and manual adjustments when applying to new scenarios and unseen anomaly types, suffering from high labor costs and limited generalization. Therefore, we aim to achieve generalist VAD, i.e., automatically handle any scene and any anomaly types without training data or human involvement. In this work, we propose PANDA, an agentic AI engineer based on MLLMs. Specifically, we achieve PANDA by comprehensively devising four key capabilities: (1) self-adaptive scene-aware strategy planning, (2) goal-driven heuristic reasoning, (3) tool-augmented self-reflection, and (4) self-improving chain-of-memory. Concretely, we develop a self-adaptive scene-aware RAG mechanism, enabling PANDA to retrieve anomaly-specific knowledge for anomaly detection strategy planning. Next, we introduce a latent anomaly-guided heuristic prompt strategy to enhance reasoning precision. Furthermore, PANDA employs a progressive reflection mechanism alongside a suite of context-aware tools to iteratively refine decision-making in complex scenarios. Finally, a chain-of-memory mechanism enables PANDA to leverage historical experiences for continual performance improvement. Extensive experiments demonstrate that PANDA achieves state-of-the-art performance in multi-scenario, open-set, and complex scenario settings without training and manual involvement, validating its generalizable and robust anomaly detection capability. Code is released at https://github.com/showlab/PANDA.
comment: Accepted by NeurIPS 2025
☆ MR$^2$-Bench: Going Beyond Matching to Reasoning in Multimodal Retrieval
Multimodal retrieval is becoming a crucial component of modern AI applications, yet its evaluation lags behind the demands of more realistic and challenging scenarios. Existing benchmarks primarily probe surface-level semantic correspondence (e.g., object-text matching) while failing to assess the deeper reasoning required to capture complex relationships between visual and textual information. To address this gap, we introduce MR$^2$-Bench, a reasoning-intensive benchmark for multimodal retrieval. MR$^2$-Bench presents the following critical values: 1) all tasks are reasoning-driven, going beyond shallow matching to effectively assess models' capacity for logical, spatial, and causal inference; 2) it features diverse multimodal data, such as natural images, diagrams, and visual puzzles, enabling comprehensive evaluation across content types; 3) it supports complex queries and documents containing multiple images and covers diverse retrieval scenarios, more accurately reflecting real-world applications. Our benchmark contains 1,309 curated queries, derived either from manual collection and annotation or from selective consolidation of public datasets. Despite achieving strong results on existing benchmarks, current state-of-the-art models still struggle on MR$^2$-Bench: for example, the leading Seed1.6-Embedding model attains a Recall@1 of 77.78 on MMEB, but only 9.91 on MR$^2$-Bench. This substantial performance gap highlights both the increased challenge posed by our benchmark and the pressing need for further advances in reasoning-intensive multimodal retrieval. The dataset and evaluation code will be made publicly available at https://github.com/VectorSpaceLab/MR2-Bench.
☆ Go with Your Gut: Scaling Confidence for Autoregressive Image Generation
Test-time scaling (TTS) has demonstrated remarkable success in enhancing large language models, yet its application to next-token prediction (NTP) autoregressive (AR) image generation remains largely uncharted. Existing TTS approaches for visual AR (VAR), which rely on frequent partial decoding and external reward models, are ill-suited for NTP-based image generation due to the inherent incompleteness of intermediate decoding results. To bridge this gap, we introduce ScalingAR, the first TTS framework specifically designed for NTP-based AR image generation that eliminates the need for early decoding or auxiliary rewards. ScalingAR leverages token entropy as a novel signal in visual token generation and operates at two complementary scaling levels: (i) Profile Level, which streams a calibrated confidence state by fusing intrinsic and conditional signals; and (ii) Policy Level, which utilizes this state to adaptively terminate low-confidence trajectories and dynamically schedule guidance for phase-appropriate conditioning strength. Experiments on both general and compositional benchmarks show that ScalingAR (1) improves base models by 12.5% on GenEval and 15.2% on TIIF-Bench, (2) efficiently reduces visual token consumption by 62.0% while outperforming baselines, and (3) successfully enhances robustness, mitigating performance drops by 26.0% in challenging scenarios.
comment: Code: https://github.com/EnVision-Research/ScalingAR
☆ SDA-PLANNER: State-Dependency Aware Adaptive Planner for Embodied Task Planning
Embodied task planning requires agents to produce executable actions in a close-loop manner within the environment. With progressively improving capabilities of LLMs in task decomposition, planning, and generalization, current embodied task planning methods adopt LLM-based architecture.However, existing LLM-based planners remain limited in three aspects, i.e., fixed planning paradigms, lack of action sequence constraints, and error-agnostic. In this work, we propose SDA-PLANNER, enabling an adaptive planning paradigm, state-dependency aware and error-aware mechanisms for comprehensive embodied task planning. Specifically, SDA-PLANNER introduces a State-Dependency Graph to explicitly model action preconditions and effects, guiding the dynamic revision. To handle execution error, it employs an error-adaptive replanning strategy consisting of Error Backtrack and Diagnosis and Adaptive Action SubTree Generation, which locally reconstructs the affected portion of the plan based on the current environment state. Experiments demonstrate that SDA-PLANNER consistently outperforms baselines in success rate and goal completion, particularly under diverse error conditions.
☆ TimeScope: Towards Task-Oriented Temporal Grounding In Long Videos
Identifying key moments in long videos is essential for downstream understanding and reasoning tasks. In this paper, we introduce a new problem, Taskoriented Temporal Grounding ToTG, which aims to localize time intervals containing the necessary information based on a task's natural description. Along with the definition, we also present ToTG Bench, a comprehensive benchmark for evaluating the performance on ToTG. ToTG is particularly challenging for traditional approaches due to their limited generalizability and difficulty in handling long videos. To address these challenges, we propose TimeScope, a novel framework built upon progressive reasoning. TimeScope first identifies a coarse-grained temporal scope in the long video that likely contains the key moments, and then refines this scope through finegrained moment partitioning. Additionally, we curate a highquality dataset, namely ToTG Pile, to enhance TimeScope's ability to perform progressive temporal grounding effectively. Extensive experiments demonstrate that TimeScope consistently outperforms both existing temporalgrounding methods and popular MLLMs across various settings, highlighting its effectiveness in addressing this new challenging problem.
☆ EditReward: A Human-Aligned Reward Model for Instruction-Guided Image Editing
Recently, we have witnessed great progress in image editing with natural language instructions. Several closed-source models like GPT-Image-1, Seedream, and Google-Nano-Banana have shown highly promising progress. However, the open-source models are still lagging. The main bottleneck is the lack of a reliable reward model to scale up high-quality synthetic training data. To address this critical bottleneck, we built \mname, trained with our new large-scale human preference dataset, meticulously annotated by trained experts following a rigorous protocol containing over 200K preference pairs. \mname demonstrates superior alignment with human preferences in instruction-guided image editing tasks. Experiments show that \mname achieves state-of-the-art human correlation on established benchmarks such as GenAI-Bench, AURORA-Bench, ImagenHub, and our new \benchname, outperforming a wide range of VLM-as-judge models. Furthermore, we use \mname to select a high-quality subset from the existing noisy ShareGPT-4o-Image dataset. We train Step1X-Edit on the selected subset, which shows significant improvement over training on the full set. This demonstrates \mname's ability to serve as a reward model to scale up high-quality training data for image editing. Furthermore, its strong alignment suggests potential for advanced applications like reinforcement learning-based post-training and test-time scaling of image editing models. \mname with its training dataset will be released to help the community build more high-quality image editing training datasets.
comment: Work in progress. Project Page: https://tiger-ai-lab.github.io/EditReward
☆ SQUARE: Semantic Query-Augmented Fusion and Efficient Batch Reranking for Training-free Zero-Shot Composed Image Retrieval
Composed Image Retrieval (CIR) aims to retrieve target images that preserve the visual content of a reference image while incorporating user-specified textual modifications. Training-free zero-shot CIR (ZS-CIR) approaches, which require no task-specific training or labeled data, are highly desirable, yet accurately capturing user intent remains challenging. In this paper, we present SQUARE, a novel two-stage training-free framework that leverages Multimodal Large Language Models (MLLMs) to enhance ZS-CIR. In the Semantic Query-Augmented Fusion (SQAF) stage, we enrich the query embedding derived from a vision-language model (VLM) such as CLIP with MLLM-generated captions of the target image. These captions provide high-level semantic guidance, enabling the query to better capture the user's intent and improve global retrieval quality. In the Efficient Batch Reranking (EBR) stage, top-ranked candidates are presented as an image grid with visual marks to the MLLM, which performs joint visual-semantic reasoning across all candidates. Our reranking strategy operates in a single pass and yields more accurate rankings. Experiments show that SQUARE, with its simplicity and effectiveness, delivers strong performance on four standard CIR benchmarks. Notably, it maintains high performance even with lightweight pre-trained, demonstrating its potential applicability.
comment: 20 pages, 9 figures
☆ Continuous Space-Time Video Super-Resolution with 3D Fourier Fields
We introduce a novel formulation for continuous space-time video super-resolution. Instead of decoupling the representation of a video sequence into separate spatial and temporal components and relying on brittle, explicit frame warping for motion compensation, we encode video as a continuous, spatio-temporally coherent 3D Video Fourier Field (VFF). That representation offers three key advantages: (1) it enables cheap, flexible sampling at arbitrary locations in space and time; (2) it is able to simultaneously capture fine spatial detail and smooth temporal dynamics; and (3) it offers the possibility to include an analytical, Gaussian point spread function in the sampling to ensure aliasing-free reconstruction at arbitrary scale. The coefficients of the proposed, Fourier-like sinusoidal basis are predicted with a neural encoder with a large spatio-temporal receptive field, conditioned on the low-resolution input video. Through extensive experiments, we show that our joint modeling substantially improves both spatial and temporal super-resolution and sets a new state of the art for multiple benchmarks: across a wide range of upscaling factors, it delivers sharper and temporally more consistent reconstructions than existing baselines, while being computationally more efficient. Project page: https://v3vsr.github.io.
☆ FLOWER: A Flow-Matching Solver for Inverse Problems
We introduce Flower, a solver for inverse problems. It leverages a pre-trained flow model to produce reconstructions that are consistent with the observed measurements. Flower operates through an iterative procedure over three steps: (i) a flow-consistent destination estimation, where the velocity network predicts a denoised target; (ii) a refinement step that projects the estimated destination onto a feasible set defined by the forward operator; and (iii) a time-progression step that re-projects the refined destination along the flow trajectory. We provide a theoretical analysis that demonstrates how Flower approximates Bayesian posterior sampling, thereby unifying perspectives from plug-and-play methods and generative inverse solvers. On the practical side, Flower achieves state-of-the-art reconstruction quality while using nearly identical hyperparameters across various inverse problems.
☆ Point2RBox-v3: Self-Bootstrapping from Point Annotations via Integrated Pseudo-Label Refinement and Utilization
Driven by the growing need for Oriented Object Detection (OOD), learning from point annotations under a weakly-supervised framework has emerged as a promising alternative to costly and laborious manual labeling. In this paper, we discuss two deficiencies in existing point-supervised methods: inefficient utilization and poor quality of pseudo labels. Therefore, we present Point2RBox-v3. At the core are two principles: 1) Progressive Label Assignment (PLA). It dynamically estimates instance sizes in a coarse yet intelligent manner at different stages of the training process, enabling the use of label assignment methods. 2) Prior-Guided Dynamic Mask Loss (PGDM-Loss). It is an enhancement of the Voronoi Watershed Loss from Point2RBox-v2, which overcomes the shortcomings of Watershed in its poor performance in sparse scenes and SAM's poor performance in dense scenes. To our knowledge, Point2RBox-v3 is the first model to employ dynamic pseudo labels for label assignment, and it creatively complements the advantages of SAM model with the watershed algorithm, which achieves excellent performance in both sparse and dense scenes. Our solution gives competitive performance, especially in scenarios with large variations in object size or sparse object occurrences: 66.09%/56.86%/41.28%/46.40%/19.60%/45.96% on DOTA-v1.0/DOTA-v1.5/DOTA-v2.0/DIOR/STAR/RSAR.
comment: 19pages, 5figures, 6tables
☆ ProfVLM: A Lightweight Video-Language Model for Multi-View Proficiency Estimation
Existing approaches to skill proficiency estimation often rely on black-box video classifiers, ignoring multi-view context and lacking explainability. We present ProfVLM, a compact vision-language model that reformulates this task as generative reasoning: it jointly predicts skill level and generates expert-like feedback from egocentric and exocentric videos. Central to our method is an AttentiveGatedProjector that dynamically fuses multi-view features, projected from a frozen TimeSformer backbone into a language model tuned for feedback generation. Trained on EgoExo4D with expert commentaries, ProfVLM surpasses state-of-the-art methods while using up to 20x fewer parameters and reducing training time by up to 60%. Our approach not only achieves superior accuracy across diverse activities, but also outputs natural language critiques aligned with performance, offering transparent reasoning. These results highlight generative vision-language modeling as a powerful new direction for skill assessment.
☆ Cat: Post-training quantization error reduction via cluster-based affine transformation
Post-Training Quantization (PTQ) reduces the memory footprint and computational overhead of deep neural networks by converting full-precision (FP) values into quantized and compressed data types. While PTQ is more cost-efficient than Quantization-Aware Training (QAT), it is highly susceptible to accuracy degradation under a low-bit quantization (LQ) regime (e.g., 2-bit). Affine transformation is a classical technique used to reduce the discrepancy between the information processed by a quantized model and that processed by its full-precision counterpart; however, we find that using plain affine transformation, which applies a uniform affine parameter set for all outputs, worsens the results in low-bit PTQ. To address this, we propose Cluster-based Affine Transformation (CAT), an error-reduction framework that employs cluster-specific parameters to align LQ outputs with FP counterparts. CAT refines LQ outputs with only a negligible number of additional parameters, without requiring fine-tuning of the model or quantization parameters. We further introduce a novel PTQ framework integrated with CAT. Experiments on ImageNet-1K show that this framework consistently outperforms prior PTQ methods across diverse architectures and LQ settings, achieving up to 53.18% Top-1 accuracy on W2A2 ResNet-18. Moreover, CAT enhances existing PTQ baselines by more than 3% when used as a plug-in. We plan to release our implementation alongside the publication of this paper.
comment: 29 pages, 20 figures
☆ Seeing Space and Motion: Enhancing Latent Actions with Spatial and Dynamic Awareness for VLA
Latent Action Models (LAMs) enable Vision-Language-Action (VLA) systems to learn semantic action representations from large-scale unannotated data. Yet, we identify two bottlenecks of LAMs: 1) the commonly adopted end-to-end trained image encoder suffers from poor spatial understanding; 2) LAMs can be fragile when input frames are distant, leading to limited temporal perception. Such factors inevitably hinder stable and clear action modeling. To this end, we propose Farsighted-LAM, a latent action framework with geometry-aware spatial encoding and multi-scale temporal modeling, capturing structural priors and dynamic motion patterns from consecutive frames. We further propose SSM-VLA, an end-to-end VLA framework built upon Farsighted-LAM, which integrates structured perception with a visual Chain-of-Thought module to explicitly reason about environmental dynamics, enhancing decision consistency and interpretability. We validate SSM-VLA on multiple VLA tasks in both simulation and real-world settings, and achieve state-of-the-art performance. Our results demonstrate that our strategy of combining geometry-aware modeling, temporal coherence, and explicit reasoning is effective in enhancing the robustness and generalizability of embodied intelligence.
☆ Interpret, prune and distill Donut : towards lightweight VLMs for VQA on document ICDAR
Recent advances in Visually-rich Document Understanding rely on large Vision-Language Models like Donut, which perform document-level Visual Question Answering without Optical Character Recognition. Despite their effectiveness, these models are too costly for real-time or resource-constrained applications. We investigate model compression through knowledge distillation, training compact student models from a larger teacher. We leverage mechanistic interpretability to drive student architecture design within this framework. By analyzing internal computations, we identify essential subcomponents to retain, while having a clear view of which subcomponents should be approximated, skipped, or reparametrized based on their function. This approach yields Donut-MINT (Mechanistic Interpretability-based Network Trimming), a pruned Donut variant that reduces inference time and memory usage while maintaining strong performance on DocVQA, a standard benchmark for document Visual Question Answering. Our method reframes compression as circuit discovery, bridging interpretability research and practical Vision-Language Model deployment.
comment: Accepted at Workshop on Machine Learning in Document Analysis and Recognition (ICDAR WML 2025), Wuhan, China
☆ 3DiFACE: Synthesizing and Editing Holistic 3D Facial Animation
Creating personalized 3D animations with precise control and realistic head motions remains challenging for current speech-driven 3D facial animation methods. Editing these animations is especially complex and time consuming, requires precise control and typically handled by highly skilled animators. Most existing works focus on controlling style or emotion of the synthesized animation and cannot edit/regenerate parts of an input animation. They also overlook the fact that multiple plausible lip and head movements can match the same audio input. To address these challenges, we present 3DiFACE, a novel method for holistic speech-driven 3D facial animation. Our approach produces diverse plausible lip and head motions for a single audio input and allows for editing via keyframing and interpolation. Specifically, we propose a fully-convolutional diffusion model that can leverage the viseme-level diversity in our training corpus. Additionally, we employ a speaking-style personalization and a novel sparsely-guided motion diffusion to enable precise control and editing. Through quantitative and qualitative evaluations, we demonstrate that our method is capable of generating and editing diverse holistic 3D facial animations given a single audio input, with control between high fidelity and diversity. Code and models are available here: https://balamuruganthambiraja.github.io/3DiFACE
☆ IMG: Calibrating Diffusion Models via Implicit Multimodal Guidance ICCV 2025
Ensuring precise multimodal alignment between diffusion-generated images and input prompts has been a long-standing challenge. Earlier works finetune diffusion weight using high-quality preference data, which tends to be limited and difficult to scale up. Recent editing-based methods further refine local regions of generated images but may compromise overall image quality. In this work, we propose Implicit Multimodal Guidance (IMG), a novel re-generation-based multimodal alignment framework that requires no extra data or editing operations. Specifically, given a generated image and its prompt, IMG a) utilizes a multimodal large language model (MLLM) to identify misalignments; b) introduces an Implicit Aligner that manipulates diffusion conditioning features to reduce misalignments and enable re-generation; and c) formulates the re-alignment goal into a trainable objective, namely Iteratively Updated Preference Objective. Extensive qualitative and quantitative evaluations on SDXL, SDXL-DPO, and FLUX show that IMG outperforms existing alignment methods. Furthermore, IMG acts as a flexible plug-and-play adapter, seamlessly enhancing prior finetuning-based alignment methods. Our code will be available at https://github.com/SHI-Labs/IMG-Multimodal-Diffusion-Alignment.
comment: ICCV 2025
☆ Generalized Fine-Grained Category Discovery with Multi-Granularity Conceptual Experts
Generalized Category Discovery (GCD) is an open-world problem that clusters unlabeled data by leveraging knowledge from partially labeled categories. A key challenge is that unlabeled data may contain both known and novel categories. Existing approaches suffer from two main limitations. First, they fail to exploit multi-granularity conceptual information in visual data, which limits representation quality. Second, most assume that the number of unlabeled categories is known during training, which is impractical in real-world scenarios. To address these issues, we propose a Multi-Granularity Conceptual Experts (MGCE) framework that adaptively mines visual concepts and integrates multi-granularity knowledge for accurate category discovery. MGCE consists of two modules: (1) Dynamic Conceptual Contrastive Learning (DCCL), which alternates between concept mining and dual-level representation learning to jointly optimize feature learning and category discovery; and (2) Multi-Granularity Experts Collaborative Learning (MECL), which extends the single-expert paradigm by introducing additional experts at different granularities and by employing a concept alignment matrix for effective cross-expert collaboration. Importantly, MGCE can automatically estimate the number of categories in unlabeled data, making it suitable for practical open-world settings. Extensive experiments on nine fine-grained visual recognition benchmarks demonstrate that MGCE achieves state-of-the-art results, particularly in novel-class accuracy. Notably, even without prior knowledge of category numbers, MGCE outperforms parametric approaches that require knowing the exact number of categories, with an average improvement of 3.6\%. Code is available at https://github.com/HaiyangZheng/MGCE.
☆ An Experimental Study on Generating Plausible Textual Explanations for Video Summarization
In this paper, we present our experimental study on generating plausible textual explanations for the outcomes of video summarization. For the needs of this study, we extend an existing framework for multigranular explanation of video summarization by integrating a SOTA Large Multimodal Model (LLaVA-OneVision) and prompting it to produce natural language descriptions of the obtained visual explanations. Following, we focus on one of the most desired characteristics for explainable AI, the plausibility of the obtained explanations that relates with their alignment with the humans' reasoning and expectations. Using the extended framework, we propose an approach for evaluating the plausibility of visual explanations by quantifying the semantic overlap between their textual descriptions and the textual descriptions of the corresponding video summaries, with the help of two methods for creating sentence embeddings (SBERT, SimCSE). Based on the extended framework and the proposed plausibility evaluation approach, we conduct an experimental study using a SOTA method (CA-SUM) and two datasets (SumMe, TVSum) for video summarization, to examine whether the more faithful explanations are also the more plausible ones, and identify the most appropriate approach for generating plausible textual explanations for video summarization.
comment: IEEE CBMI 2025. This is the authors' accepted version. The final publication is available at https://ieeexplore.ieee.org/
Beyond Pixels: Efficient Dataset Distillation via Sparse Gaussian Representation
Dataset distillation has emerged as a promising paradigm that synthesizes compact, informative datasets capable of retaining the knowledge of large-scale counterparts, thereby addressing the substantial computational and storage burdens of modern model training. Conventional approaches typically rely on dense pixel-level representations, which introduce redundancy and are difficult to scale up. In this work, we propose GSDD, a novel and efficient sparse representation for dataset distillation based on 2D Gaussians. Instead of representing all pixels equally, GSDD encodes critical discriminative information in a distilled image using only a small number of Gaussian primitives. This sparse representation could improve dataset diversity under the same storage budget, enhancing coverage of difficult samples and boosting distillation performance. To ensure both efficiency and scalability, we adapt CUDA-based splatting operators for parallel inference and training, enabling high-quality rendering with minimal computational and memory overhead. Our method is simple yet effective, broadly applicable to different distillation pipelines, and highly scalable. Experiments show that GSDD achieves state-of-the-art performance on CIFAR-10, CIFAR-100, and ImageNet subsets, while remaining highly efficient encoding and decoding cost. Our code is available at https://github.com/j-cyoung/GSDatasetDistillation.
comment: 19 pages; Code is available on https://github.com/j-cyoung/GSDatasetDistillation
☆ TSalV360: A Method and Dataset for Text-driven Saliency Detection in 360-Degrees Videos
In this paper, we deal with the task of text-driven saliency detection in 360-degrees videos. For this, we introduce the TSV360 dataset which includes 16,000 triplets of ERP frames, textual descriptions of salient objects/events in these frames, and the associated ground-truth saliency maps. Following, we extend and adapt a SOTA visual-based approach for 360-degrees video saliency detection, and develop the TSalV360 method that takes into account a user-provided text description of the desired objects and/or events. This method leverages a SOTA vision-language model for data representation and integrates a similarity estimation module and a viewport spatio-temporal cross-attention mechanism, to discover dependencies between the different data modalities. Quantitative and qualitative evaluations using the TSV360 dataset, showed the competitiveness of TSalV360 compared to a SOTA visual-based approach and documented its competency to perform customized text-driven saliency detection in 360-degrees videos.
comment: IEEE CBMI 2025. This is the authors' accepted version. The final publication is available at https://ieeexplore.ieee.org/
☆ Optimizing Indoor Environmental Quality in Smart Buildings Using Deep Learning ICDT
Ensuring optimal Indoor Environmental Quality (IEQ) is vital for occupant health and productivity, yet it often comes at a high energy cost in conventional Heating, Ventilation, and Air Conditioning (HVAC) systems. This paper proposes a deep learning driven approach to proactively manage IEQ parameters specifically CO2 concentration, temperature, and humidity while balancing building energy efficiency. Leveraging the ROBOD dataset collected from a net-zero energy academic building, we benchmark three architectures--Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), and a hybrid Convolutional Neural Network LSTM (CNN-LSTM)--to forecast IEQ variables across various time horizons. Our results show that GRU achieves the best short-term prediction accuracy with lower computational overhead, whereas CNN-LSTM excels in extracting dominant features for extended forecasting windows. Meanwhile, LSTM offers robust long-range temporal modeling. The comparative analysis highlights that prediction reliability depends on data resolution, sensor placement, and fluctuating occupancy conditions. These findings provide actionable insights for intelligent Building Management Systems (BMS) to implement predictive HVAC control, thereby reducing energy consumption and enhancing occupant comfort in real-world building operations.
comment: 10 pages, 4 figures, 1 table. Accepted and presented at the 5th International Conference on Digital Technologies and Applications (ICDTA 2025), April 17-18, 2025, Al Akhawayn University, Ifrane, Morocco
☆ AttriGen: Automated Multi-Attribute Annotation for Blood Cell Datasets
We introduce AttriGen, a novel framework for automated, fine-grained multi-attribute annotation in computer vision, with a particular focus on cell microscopy where multi-attribute classification remains underrepresented compared to traditional cell type categorization. Using two complementary datasets: the Peripheral Blood Cell (PBC) dataset containing eight distinct cell types and the WBC Attribute Dataset (WBCAtt) that contains their corresponding 11 morphological attributes, we propose a dual-model architecture that combines a CNN for cell type classification, as well as a Vision Transformer (ViT) for multi-attribute classification achieving a new benchmark of 94.62\% accuracy. Our experiments demonstrate that AttriGen significantly enhances model interpretability and offers substantial time and cost efficiency relative to conventional full-scale human annotation. Thus, our framework establishes a new paradigm that can be extended to other computer vision classification tasks by effectively automating the expansion of multi-attribute labels.
comment: 6 pages, 4 figures, 3 tables. Accepted at the 12th International Conference on Wireless Networks and Mobile Communications 2025 (WINCOM 2025)
☆ Neighbor-aware informal settlement mapping with graph convolutional networks ECML
Mapping informal settlements is crucial for addressing challenges related to urban planning, public health, and infrastructure in rapidly growing cities. Geospatial machine learning has emerged as a key tool for detecting and mapping these areas from remote sensing data. However, existing approaches often treat spatial units independently, neglecting the relational structure of the urban fabric. We propose a graph-based framework that explicitly incorporates local geographical context into the classification process. Each spatial unit (cell) is embedded in a graph structure along with its adjacent neighbors, and a lightweight Graph Convolutional Network (GCN) is trained to classify whether the central cell belongs to an informal settlement. Experiments are conducted on a case study in Rio de Janeiro using spatial cross-validation across five distinct zones, ensuring robustness and generalizability across heterogeneous urban landscapes. Our method outperforms standard baselines, improving Kappa coefficient by 17 points over individual cell classification. We also show that graph-based modeling surpasses simple feature concatenation of neighboring cells, demonstrating the benefit of encoding spatial structure for urban scene understanding.
comment: 10 pages, 3 figures, 2 tables. Accepted at the ECML PKDD 2025 Workshop on Machine Learning for Earth Observation
☆ Beyond Overall Accuracy: Pose- and Occlusion-driven Fairness Analysis in Pedestrian Detection for Autonomous Driving
Pedestrian detection plays a critical role in autonomous driving (AD), where ensuring safety and reliability is important. While many detection models aim to reduce miss-rates and handle challenges such as occlusion and long-range recognition, fairness remains an underexplored yet equally important concern. In this work, we systematically investigate how variations in the pedestrian pose -- including leg status, elbow status, and body orientation -- as well as individual joint occlusions, affect detection performance. We evaluate five pedestrian-specific detectors (F2DNet, MGAN, ALFNet, CSP, and Cascade R-CNN) alongside three general-purpose models (YOLOv12 variants) on the EuroCity Persons Dense Pose (ECP-DP) dataset. Fairness is quantified using the Equal Opportunity Difference (EOD) metric across various confidence thresholds. To assess statistical significance and robustness, we apply the Z-test. Our findings highlight biases against pedestrians with parallel legs, straight elbows, and lateral views. Occlusion of lower body joints has a more negative impact on the detection rate compared to the upper body and head. Cascade R-CNN achieves the lowest overall miss-rate and exhibits the smallest bias across all attributes. To the best of our knowledge, this is the first comprehensive pose- and occlusion-aware fairness evaluation in pedestrian detection for AD.
comment: \c{opyright} 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ Human-MME: A Holistic Evaluation Benchmark for Human-Centric Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have demonstrated significant advances in visual understanding tasks. However, their capacity to comprehend human-centric scenes has rarely been explored, primarily due to the absence of comprehensive evaluation benchmarks that take into account both the human-oriented granular level and higher-dimensional causal reasoning ability. Such high-quality evaluation benchmarks face tough obstacles, given the physical complexity of the human body and the difficulty of annotating granular structures. In this paper, we propose Human-MME, a curated benchmark designed to provide a more holistic evaluation of MLLMs in human-centric scene understanding. Compared with other existing benchmarks, our work provides three key features: 1. Diversity in human scene, spanning 4 primary visual domains with 15 secondary domains and 43 sub-fields to ensure broad scenario coverage. 2. Progressive and diverse evaluation dimensions, evaluating the human-based activities progressively from the human-oriented granular perception to the higher-dimensional reasoning, consisting of eight dimensions with 19,945 real-world image question pairs and an evaluation suite. 3. High-quality annotations with rich data paradigms, constructing the automated annotation pipeline and human-annotation platform, supporting rigorous manual labeling to facilitate precise and reliable model assessment. Our benchmark extends the single-target understanding to the multi-person and multi-image mutual understanding by constructing the choice, short-answer, grounding, ranking and judgment question components, and complex questions of their combination. The extensive experiments on 17 state-of-the-art MLLMs effectively expose the limitations and guide future MLLMs research toward better human-centric image understanding. All data and code are available at https://github.com/Yuan-Hou/Human-MME.
☆ Towards Continual Expansion of Data Coverage: Automatic Text-guided Edge-case Synthesis
The performance of deep neural networks is strongly influenced by the quality of their training data. However, mitigating dataset bias by manually curating challenging edge cases remains a major bottleneck. To address this, we propose an automated pipeline for text-guided edge-case synthesis. Our approach employs a Large Language Model, fine-tuned via preference learning, to rephrase image captions into diverse textual prompts that steer a Text-to-Image model toward generating difficult visual scenarios. Evaluated on the FishEye8K object detection benchmark, our method achieves superior robustness, surpassing both naive augmentation and manually engineered prompts. This work establishes a scalable framework that shifts data curation from manual effort to automated, targeted synthesis, offering a promising direction for developing more reliable and continuously improving AI systems. Code is available at https://github.com/gokyeongryeol/ATES.
comment: 17 pages, 6 figures
☆ EntroPE: Entropy-Guided Dynamic Patch Encoder for Time Series Forecasting
Transformer-based models have significantly advanced time series forecasting, with patch-based input strategies offering efficiency and improved long-horizon modeling. Yet, existing approaches rely on temporally-agnostic patch construction, where arbitrary starting positions and fixed lengths fracture temporal coherence by splitting natural transitions across boundaries. This naive segmentation often disrupts short-term dependencies and weakens representation learning. In response, we propose EntroPE (Entropy-Guided Dynamic Patch Encoder), a novel, temporally informed framework that dynamically detects transition points via conditional entropy and dynamically places patch boundaries. This preserves temporal structure while retaining the computational benefits of patching. EntroPE consists of two key modules, namely an Entropy-based Dynamic Patcher (EDP) that applies information-theoretic criteria to locate natural temporal shifts and determine patch boundaries, and an Adaptive Patch Encoder (APE) that employs pooling and cross-attention to capture intra-patch dependencies and produce fixed-size latent representations. These embeddings are then processed by a global transformer to model inter-patch dynamics. Experiments across long-term forecasting benchmarks demonstrate that EntroPE improves both accuracy and efficiency, establishing entropy-guided dynamic patching as a promising new paradigm for time series modeling. Code is available at: https://github.com/Sachithx/EntroPE.
comment: Preprint. Under Review
☆ Ordinal Label-Distribution Learning with Constrained Asymmetric Priors for Imbalanced Retinal Grading NeurIPS 2025
Diabetic retinopathy grading is inherently ordinal and long-tailed, with minority stages being scarce, heterogeneous, and clinically critical to detect accurately. Conventional methods often rely on isotropic Gaussian priors and symmetric loss functions, misaligning latent representations with the task's asymmetric nature. We propose the Constrained Asymmetric Prior Wasserstein Autoencoder (CAP-WAE), a novel framework that addresses these challenges through three key innovations. Our approach employs a Wasserstein Autoencoder (WAE) that aligns its aggregate posterior with a asymmetric prior, preserving the heavy-tailed and skewed structure of minority classes. The latent space is further structured by a Margin-Aware Orthogonality and Compactness (MAOC) loss to ensure grade-ordered separability. At the supervision level, we introduce a direction-aware ordinal loss, where a lightweight head predicts asymmetric dispersions to generate soft labels that reflect clinical priorities by penalizing under-grading more severely. Stabilized by an adaptive multi-task weighting scheme, our end-to-end model requires minimal tuning. Across public DR benchmarks, CAP-WAE consistently achieves state-of-the-art Quadratic Weighted Kappa, accuracy, and macro-F1, surpassing both ordinal classification and latent generative baselines. t-SNE visualizations further reveal that our method reshapes the latent manifold into compact, grade-ordered clusters with reduced overlap.
comment: Accepted at 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: The Second Workshop on GenAI for Health: Potential, Trust, and Policy Compliance
☆ EchoGen: Generating Visual Echoes in Any Scene via Feed-Forward Subject-Driven Auto-Regressive Model
Subject-driven generation is a critical task in creative AI; yet current state-of-the-art methods present a stark trade-off. They either rely on computationally expensive, per-subject fine-tuning, sacrificing efficiency and zero-shot capability, or employ feed-forward architectures built on diffusion models, which are inherently plagued by slow inference speeds. Visual Auto-Regressive (VAR) models are renowned for their rapid sampling speeds and strong generative quality, making them an ideal yet underexplored foundation for resolving this tension. To bridge this gap, we introduce EchoGen, a pioneering framework that empowers VAR models with subject-driven generation capabilities. The core design of EchoGen is an effective dual-path injection strategy that disentangles a subject's high-level semantic identity from its low-level fine-grained details, enabling enhanced controllability and fidelity. We employ a semantic encoder to extract the subject's abstract identity, which is injected through decoupled cross-attention to guide the overall composition. Concurrently, a content encoder captures intricate visual details, which are integrated via a multi-modal attention mechanism to ensure high-fidelity texture and structural preservation. To the best of our knowledge, EchoGen is the first feed-forward subject-driven framework built upon VAR models. Both quantitative and qualitative results substantiate our design, demonstrating that EchoGen achieves subject fidelity and image quality comparable to state-of-the-art diffusion-based methods with significantly lower sampling latency. Code and models will be released soon.
☆ EVODiff: Entropy-aware Variance Optimized Diffusion Inference NeurIPS 2025
Diffusion models (DMs) excel in image generation, but suffer from slow inference and the training-inference discrepancies. Although gradient-based solvers like DPM-Solver accelerate the denoising inference, they lack theoretical foundations in information transmission efficiency. In this work, we introduce an information-theoretic perspective on the inference processes of DMs, revealing that successful denoising fundamentally reduces conditional entropy in reverse transitions. This principle leads to our key insights into the inference processes: (1) data prediction parameterization outperforms its noise counterpart, and (2) optimizing conditional variance offers a reference-free way to minimize both transition and reconstruction errors. Based on these insights, we propose an entropy-aware variance optimized method for the generative process of DMs, called EVODiff, which systematically reduces uncertainty by optimizing conditional entropy during denoising. Extensive experiments on DMs validate our insights and demonstrate that our method significantly and consistently outperforms state-of-the-art (SOTA) gradient-based solvers. For example, compared to the DPM-Solver++, EVODiff reduces the reconstruction error by up to 45.5\% (FID improves from 5.10 to 2.78) at 10 function evaluations (NFE) on CIFAR-10, cuts the NFE cost by 25\% (from 20 to 15 NFE) for high-quality samples on ImageNet-256, and improves text-to-image generation while reducing artifacts. Code is available at https://github.com/ShiguiLi/EVODiff.
comment: NeurIPS 2025, 40 pages, 14 figures
☆ Text-to-Scene with Large Reasoning Models
Prompt-driven scene synthesis allows users to generate complete 3D environments from textual descriptions. Current text-to-scene methods often struggle with complex geometries and object transformations, and tend to show weak adherence to complex instructions. We address these limitations by introducing Reason-3D, a text-to-scene model powered by large reasoning models (LRMs). Reason-3D integrates object retrieval using captions covering physical, functional, and contextual attributes. Reason-3D then places the selected objects based on implicit and explicit layout constraints, and refines their positions with collision-aware spatial reasoning. Evaluated on instructions ranging from simple to complex indoor configurations, Reason-3D significantly outperforms previous methods in human-rated visual fidelity, adherence to constraints, and asset retrieval quality. Beyond its contribution to the field of text-to-scene generation, our work showcases the advanced spatial reasoning abilities of modern LRMs. Additionally, we release the codebase to further the research in object retrieval and placement with LRMs.
☆ Predicting Penalty Kick Direction Using Multi-Modal Deep Learning with Pose-Guided Attention
Penalty kicks often decide championships, yet goalkeepers must anticipate the kicker's intent from subtle biomechanical cues within a very short time window. This study introduces a real-time, multi-modal deep learning framework to predict the direction of a penalty kick (left, middle, or right) before ball contact. The model uses a dual-branch architecture: a MobileNetV2-based CNN extracts spatial features from RGB frames, while 2D keypoints are processed by an LSTM network with attention mechanisms. Pose-derived keypoints further guide visual focus toward task-relevant regions. A distance-based thresholding method segments input sequences immediately before ball contact, ensuring consistent input across diverse footage. A custom dataset of 755 penalty kick events was created from real match videos, with frame-level annotations for object detection, shooter keypoints, and final ball placement. The model achieved 89% accuracy on a held-out test set, outperforming visual-only and pose-only baselines by 14-22%. With an inference time of 22 milliseconds, the lightweight and interpretable design makes it suitable for goalkeeper training, tactical analysis, and real-time game analytics.
☆ EasyOcc: 3D Pseudo-Label Supervision for Fully Self-Supervised Semantic Occupancy Prediction Models
Self-supervised models have recently achieved notable advancements, particularly in the domain of semantic occupancy prediction. These models utilize sophisticated loss computation strategies to compensate for the absence of ground-truth labels. For instance, techniques such as novel view synthesis, cross-view rendering, and depth estimation have been explored to address the issue of semantic and depth ambiguity. However, such techniques typically incur high computational costs and memory usage during the training stage, especially in the case of novel view synthesis. To mitigate these issues, we propose 3D pseudo-ground-truth labels generated by the foundation models Grounded-SAM and Metric3Dv2, and harness temporal information for label densification. Our 3D pseudo-labels can be easily integrated into existing models, which yields substantial performance improvements, with mIoU increasing by 45\%, from 9.73 to 14.09, when implemented into the OccNeRF model. This stands in contrast to earlier advancements in the field, which are often not readily transferable to other architectures. Additionally, we propose a streamlined model, EasyOcc, achieving 13.86 mIoU. This model conducts learning solely from our labels, avoiding complex rendering strategies mentioned previously. Furthermore, our method enables models to attain state-of-the-art performance when evaluated on the full scene without applying the camera mask, with EasyOcc achieving 7.71 mIoU, outperforming the previous best model by 31\%. These findings highlight the critical importance of foundation models, temporal context, and the choice of loss computation space in self-supervised learning for comprehensive scene understanding.
☆ Geometric Learning of Canonical Parameterizations of $2D$-curves
Most datasets encountered in computer vision and medical applications present symmetries that should be taken into account in classification tasks. A typical example is the symmetry by rotation and/or scaling in object detection. A common way to build neural networks that learn the symmetries is to use data augmentation. In order to avoid data augmentation and build more sustainable algorithms, we present an alternative method to mod out symmetries based on the notion of section of a principal fiber bundle. This framework allows the use of simple metrics on the space of objects in order to measure dissimilarities between orbits of objects under the symmetry group. Moreover, the section used can be optimized to maximize separation of classes. We illustrate this methodology on a dataset of contours of objects for the groups of translations, rotations, scalings and reparameterizations. In particular, we present a $2$-parameter family of canonical parameterizations of curves, containing the constant-speed parameterization as a special case, which we believe is interesting in its own right. We hope that this simple application will serve to convey the geometric concepts underlying this method, which have a wide range of possible applications. The code is available at the following link: $\href{https://github.com/GiLonga/Geometric-Learning}{https://github.com/GiLonga/Geometric-Learning}$. A tutorial notebook showcasing an application of the code to a specific dataset is available at the following link: $\href{https://github.com/ioanaciuclea/geometric-learning-notebook}{https://github.com/ioanaciuclea/geometric-learning-notebook}$
comment: 30 pages, 18 figures
☆ Multi-modal Liver Segmentation and Fibrosis Staging Using Real-world MRI Images
Liver fibrosis represents the accumulation of excessive extracellular matrix caused by sustained hepatic injury. It disrupts normal lobular architecture and function, increasing the chances of cirrhosis and liver failure. Precise staging of fibrosis for early diagnosis and intervention is often invasive, which carries risks and complications. To address this challenge, recent advances in artificial intelligence-based liver segmentation and fibrosis staging offer a non-invasive alternative. As a result, the CARE 2025 Challenge aimed for automated methods to quantify and analyse liver fibrosis in real-world scenarios, using multi-centre, multi-modal, and multi-phase MRI data. This challenge included tasks of precise liver segmentation (LiSeg) and fibrosis staging (LiFS). In this study, we developed an automated pipeline for both tasks across all the provided MRI modalities. This pipeline integrates pseudo-labelling based on multi-modal co-registration, liver segmentation using deep neural networks, and liver fibrosis staging based on shape, textural, appearance, and directional (STAD) features derived from segmentation masks and MRI images. By solely using the released data with limited annotations, our proposed pipeline demonstrated excellent generalisability for all MRI modalities, achieving top-tier performance across all competition subtasks. This approach provides a rapid and reproducible framework for quantitative MRI-based liver fibrosis assessment, supporting early diagnosis and clinical decision-making. Code is available at https://github.com/YangForever/care2025_liver_biodreamer.
☆ GaussEdit: Adaptive 3D Scene Editing with Text and Image Prompts
This paper presents GaussEdit, a framework for adaptive 3D scene editing guided by text and image prompts. GaussEdit leverages 3D Gaussian Splatting as its backbone for scene representation, enabling convenient Region of Interest selection and efficient editing through a three-stage process. The first stage involves initializing the 3D Gaussians to ensure high-quality edits. The second stage employs an Adaptive Global-Local Optimization strategy to balance global scene coherence and detailed local edits and a category-guided regularization technique to alleviate the Janus problem. The final stage enhances the texture of the edited objects using a sophisticated image-to-image synthesis technique, ensuring that the results are visually realistic and align closely with the given prompts. Our experimental results demonstrate that GaussEdit surpasses existing methods in editing accuracy, visual fidelity, and processing speed. By successfully embedding user-specified concepts into 3D scenes, GaussEdit is a powerful tool for detailed and user-driven 3D scene editing, offering significant improvements over traditional methods.
☆ DGM4+: Dataset Extension for Global Scene Inconsistency
The rapid advances in generative models have significantly lowered the barrier to producing convincing multimodal disinformation. Fabricated images and manipulated captions increasingly co-occur to create persuasive false narratives. While the Detecting and Grounding Multi-Modal Media Manipulation (DGM4) dataset established a foundation for research in this area, it is restricted to local manipulations such as face swaps, attribute edits, and caption changes. This leaves a critical gap: global inconsistencies, such as mismatched foregrounds and backgrounds, which are now prevalent in real-world forgeries. To address this, we extend DGM4 with 5,000 high-quality samples that introduce Foreground-Background (FG-BG) mismatches and their hybrids with text manipulations. Using OpenAI's gpt-image-1 and carefully designed prompts, we generate human-centric news-style images where authentic figures are placed into absurd or impossible backdrops (e.g., a teacher calmly addressing students on the surface of Mars). Captions are produced under three conditions: literal, text attribute, and text split, yielding three new manipulation categories: FG-BG, FG-BG+TA, and FG-BG+TS. Quality control pipelines enforce one-to-three visible faces, perceptual hash deduplication, OCR-based text scrubbing, and realistic headline length. By introducing global manipulations, our extension complements existing datasets, creating a benchmark DGM4+ that tests detectors on both local and global reasoning. This resource is intended to strengthen evaluation of multimodal models such as HAMMER, which currently struggle with FG-BG inconsistencies. We release our DGM4+ dataset and generation script at https://github.com/Gaganx0/DGM4plus
comment: 8 pages, 3 figures
Scaling Up Temporal Domain Generalization via Temporal Experts Averaging EMNLP 2025
Temporal Domain Generalization (TDG) aims to generalize across temporal distribution shifts, e.g., lexical change over time. Prior work often addresses this by predicting future model weights. However, full model prediction is prohibitively expensive for even reasonably sized models. Thus, recent methods only predict the classifier layer, limiting generalization by failing to adjust other model components. To address this, we propose Temporal Experts Averaging (TEA), a novel and scalable TDG framework that updates the entire model using weight averaging to maximize generalization potential while minimizing computational costs. Our theoretical analysis guides us to two steps that enhance generalization to future domains. First, we create expert models with functional diversity yet parameter similarity by fine-tuning a domain-agnostic base model on individual temporal domains while constraining weight changes. Second, we optimize the bias-variance tradeoff through adaptive averaging coefficients derived from modeling temporal weight trajectories in a principal component subspace. Expert's contributions are based on their projected proximity to future domains. Extensive experiments across 7 TDG benchmarks, 5 models, and 2 TDG settings shows TEA outperforms prior TDG methods by up to 69% while being up to 60x more efficient.
comment: Accepted by EMNLP 2025 main
☆ SGS: Segmentation-Guided Scoring for Global Scene Inconsistencies
We extend HAMMER, a state-of-the-art model for multimodal manipulation detection, to handle global scene inconsistencies such as foreground-background (FG-BG) mismatch. While HAMMER achieves strong performance on the DGM4 dataset, it consistently fails when the main subject is contextually misplaced into an implausible background. We diagnose this limitation as a combination of label-space bias, local attention focus, and spurious text-foreground alignment. To remedy this without retraining, we propose a lightweight segmentation-guided scoring (SGS) pipeline. SGS uses person/face segmentation masks to separate foreground and background regions, extracts embeddings with a joint vision-language model, and computes region-aware coherence scores. These scores are fused with HAMMER's original prediction to improve binary detection, grounding, and token-level explanations. SGS is inference-only, incurs negligible computational overhead, and significantly enhances robustness to global manipulations. This work demonstrates the importance of region-aware reasoning in multimodal disinformation detection. We release scripts for segmentation and scoring at https://github.com/Gaganx0/HAMMER-sgs
comment: 6 pages, 3 figures
☆ CoLLM-NAS: Collaborative Large Language Models for Efficient Knowledge-Guided Neural Architecture Search
The integration of Large Language Models (LLMs) with Neural Architecture Search (NAS) has introduced new possibilities for automating the design of neural architectures. However, most existing methods face critical limitations, including architectural invalidity, computational inefficiency, and inferior performance compared to traditional NAS. In this work, we present Collaborative LLM-based NAS (CoLLM-NAS), a two-stage NAS framework with knowledge-guided search driven by two complementary LLMs. Specifically, we propose a Navigator LLM to guide search direction and a Generator LLM to synthesize high-quality candidates, with a dedicated Coordinator module to manage their interaction. CoLLM-NAS efficiently guides the search process by combining LLMs' inherent knowledge of structured neural architectures with progressive knowledge from iterative feedback and historical trajectory. Experimental results on ImageNet and NAS-Bench-201 show that CoLLM-NAS surpasses existing NAS methods and conventional search algorithms, achieving new state-of-the-art results. Furthermore, CoLLM-NAS consistently enhances the performance and efficiency of various two-stage NAS methods (e.g., OFA, SPOS, and AutoFormer) across diverse search spaces (e.g., MobileNet, ShuffleNet, and AutoFormer), demonstrating its excellent generalization.
☆ Causally Guided Gaussian Perturbations for Out-Of-Distribution Generalization in Medical Imaging
Out-of-distribution (OOD) generalization remains a central challenge in deploying deep learning models to real-world scenarios, particularly in domains such as biomedical images, where distribution shifts are both subtle and pervasive. While existing methods often pursue domain invariance through complex generative models or adversarial training, these approaches may overlook the underlying causal mechanisms of generalization.In this work, we propose Causally-Guided Gaussian Perturbations (CGP)-a lightweight framework that enhances OOD generalization by injecting spatially varying noise into input images, guided by soft causal masks derived from Vision Transformers. By applying stronger perturbations to background regions and weaker ones to foreground areas, CGP encourages the model to rely on causally relevant features rather than spurious correlations.Experimental results on the challenging WILDS benchmark Camelyon17 demonstrate consistent performance gains over state-of-the-art OOD baselines, highlighting the potential of causal perturbation as a tool for reliable and interpretable generalization.
☆ PatchVSR: Breaking Video Diffusion Resolution Limits with Patch-wise Video Super-Resolution CVPR 2025
Pre-trained video generation models hold great potential for generative video super-resolution (VSR). However, adapting them for full-size VSR, as most existing methods do, suffers from unnecessary intensive full-attention computation and fixed output resolution. To overcome these limitations, we make the first exploration into utilizing video diffusion priors for patch-wise VSR. This is non-trivial because pre-trained video diffusion models are not native for patch-level detail generation. To mitigate this challenge, we propose an innovative approach, called PatchVSR, which integrates a dual-stream adapter for conditional guidance. The patch branch extracts features from input patches to maintain content fidelity while the global branch extracts context features from the resized full video to bridge the generation gap caused by incomplete semantics of patches. Particularly, we also inject the patch's location information into the model to better contextualize patch synthesis within the global video frame. Experiments demonstrate that our method can synthesize high-fidelity, high-resolution details at the patch level. A tailor-made multi-patch joint modulation is proposed to ensure visual consistency across individually enhanced patches. Due to the flexibility of our patch-based paradigm, we can achieve highly competitive 4K VSR based on a 512x512 resolution base model, with extremely high efficiency.
comment: CVPR 2025
☆ GeoLink: Empowering Remote Sensing Foundation Model with OpenStreetMap Data NeurIPS 2025
Integrating ground-level geospatial data with rich geographic context, like OpenStreetMap (OSM), into remote sensing (RS) foundation models (FMs) is essential for advancing geospatial intelligence and supporting a broad spectrum of tasks. However, modality gap between RS and OSM data, including differences in data structure, content, and spatial granularity, makes effective synergy highly challenging, and most existing RS FMs focus on imagery alone. To this end, this study presents GeoLink, a multimodal framework that leverages OSM data to enhance RS FM during both the pretraining and downstream task stages. Specifically, GeoLink enhances RS self-supervised pretraining using multi-granularity learning signals derived from OSM data, guided by cross-modal spatial correlations for information interaction and collaboration. It also introduces image mask-reconstruction to enable sparse input for efficient pretraining. For downstream tasks, GeoLink generates both unimodal and multimodal fine-grained encodings to support a wide range of applications, from common RS interpretation tasks like land cover classification to more comprehensive geographic tasks like urban function zone mapping. Extensive experiments show that incorporating OSM data during pretraining enhances the performance of the RS image encoder, while fusing RS and OSM data in downstream tasks improves the FM's adaptability to complex geographic scenarios. These results underscore the potential of multimodal synergy in advancing high-level geospatial artificial intelligence. Moreover, we find that spatial correlation plays a crucial role in enabling effective multimodal geospatial data integration. Code, checkpoints, and using examples are released at https://github.com/bailubin/GeoLink_NeurIPS2025
comment: NeurIPS 2025
☆ SETR: A Two-Stage Semantic-Enhanced Framework for Zero-Shot Composed Image Retrieval
Zero-shot Composed Image Retrieval (ZS-CIR) aims to retrieve a target image given a reference image and a relative text, without relying on costly triplet annotations. Existing CLIP-based methods face two core challenges: (1) union-based feature fusion indiscriminately aggregates all visual cues, carrying over irrelevant background details that dilute the intended modification, and (2) global cosine similarity from CLIP embeddings lacks the ability to resolve fine-grained semantic relations. To address these issues, we propose SETR (Semantic-enhanced Two-Stage Retrieval). In the coarse retrieval stage, SETR introduces an intersection-driven strategy that retains only the overlapping semantics between the reference image and relative text, thereby filtering out distractors inherent to union-based fusion and producing a cleaner, high-precision candidate set. In the fine-grained re-ranking stage, we adapt a pretrained multimodal LLM with Low-Rank Adaptation to conduct binary semantic relevance judgments ("Yes/No"), which goes beyond CLIP's global feature matching by explicitly verifying relational and attribute-level consistency. Together, these two stages form a complementary pipeline: coarse retrieval narrows the candidate pool with high recall, while re-ranking ensures precise alignment with nuanced textual modifications. Experiments on CIRR, Fashion-IQ, and CIRCO show that SETR achieves new state-of-the-art performance, improving Recall@1 on CIRR by up to 15.15 points. Our results establish two-stage reasoning as a general paradigm for robust and portable ZS-CIR.
☆ New Fourth-Order Grayscale Indicator-Based Telegraph Diffusion Model for Image Despeckling
Second-order PDE models have been widely used for suppressing multiplicative noise, but they often introduce blocky artifacts in the early stages of denoising. To resolve this, we propose a fourth-order nonlinear PDE model that integrates diffusion and wave properties. The diffusion process, guided by both the Laplacian and intensity values, reduces noise better than gradient-based methods, while the wave part keeps fine details and textures. The effectiveness of the proposed model is evaluated against two second-order anisotropic diffusion approaches using the Peak Signal-to-Noise Ratio (PSNR) and Mean Structural Similarity Index (MSSIM) for images with available ground truth. For SAR images, where a noise-free reference is unavailable, the Speckle Index (SI) is used to measure noise reduction. Additionally, we extend the proposed model to study color images by applying the denoising process independently to each channel, preserving both structure and color consistency. The same quantitative metrics PSNR and MSSIM are used for performance evaluation, ensuring a fair comparison across grayscale and color images. In all the cases, our computed results produce better results compared to existing models in this genre.
☆ PFDepth: Heterogeneous Pinhole-Fisheye Joint Depth Estimation via Distortion-aware Gaussian-Splatted Volumetric Fusion ACM MM 2025
In this paper, we present the first pinhole-fisheye framework for heterogeneous multi-view depth estimation, PFDepth. Our key insight is to exploit the complementary characteristics of pinhole and fisheye imagery (undistorted vs. distorted, small vs. large FOV, far vs. near field) for joint optimization. PFDepth employs a unified architecture capable of processing arbitrary combinations of pinhole and fisheye cameras with varied intrinsics and extrinsics. Within PFDepth, we first explicitly lift 2D features from each heterogeneous view into a canonical 3D volumetric space. Then, a core module termed Heterogeneous Spatial Fusion is designed to process and fuse distortion-aware volumetric features across overlapping and non-overlapping regions. Additionally, we subtly reformulate the conventional voxel fusion into a novel 3D Gaussian representation, in which learnable latent Gaussian spheres dynamically adapt to local image textures for finer 3D aggregation. Finally, fused volume features are rendered into multi-view depth maps. Through extensive experiments, we demonstrate that PFDepth sets a state-of-the-art performance on KITTI-360 and RealHet datasets over current mainstream depth networks. To the best of our knowledge, this is the first systematic study of heterogeneous pinhole-fisheye depth estimation, offering both technical novelty and valuable empirical insights.
comment: Accepted by ACM MM 2025 Conference
☆ Learning Egocentric In-Hand Object Segmentation through Weak Supervision from Human Narrations
Pixel-level recognition of objects manipulated by the user from egocentric images enables key applications spanning assistive technologies, industrial safety, and activity monitoring. However, progress in this area is currently hindered by the scarcity of annotated datasets, as existing approaches rely on costly manual labels. In this paper, we propose to learn human-object interaction detection leveraging narrations -- natural language descriptions of the actions performed by the camera wearer which contain clues about manipulated objects (e.g., "I am pouring vegetables from the chopping board to the pan"). Narrations provide a form of weak supervision that is cheap to acquire and readily available in state-of-the-art egocentric datasets. We introduce Narration-Supervised in-Hand Object Segmentation (NS-iHOS), a novel task where models have to learn to segment in-hand objects by learning from natural-language narrations. Narrations are then not employed at inference time. We showcase the potential of the task by proposing Weakly-Supervised In-hand Object Segmentation from Human Narrations (WISH), an end-to-end model distilling knowledge from narrations to learn plausible hand-object associations and enable in-hand object segmentation without using narrations at test time. We benchmark WISH against different baselines based on open-vocabulary object detectors and vision-language models, showing the superiority of its design. Experiments on EPIC-Kitchens and Ego4D show that WISH surpasses all baselines, recovering more than 50% of the performance of fully supervised methods, without employing fine-grained pixel-wise annotations.
☆ VRWKV-Editor: Reducing quadratic complexity in transformer-based video editing
In light of recent progress in video editing, deep learning models focusing on both spatial and temporal dependencies have emerged as the primary method. However, these models suffer from the quadratic computational complexity of traditional attention mechanisms, making them difficult to adapt to long-duration and high-resolution videos. This limitation restricts their applicability in practical contexts such as real-time video processing. To tackle this challenge, we introduce a method to reduce both time and space complexity of these systems by proposing VRWKV-Editor, a novel video editing model that integrates a linear spatio-temporal aggregation module into video-based diffusion models. VRWKV-Editor leverages bidirectional weighted key-value recurrence mechanism of the RWKV transformer to capture global dependencies while preserving temporal coherence, achieving linear complexity without sacrificing quality. Extensive experiments demonstrate that the proposed method achieves up to 3.7x speedup and 60% lower memory usage compared to state-of-the-art diffusion-based video editing methods, while maintaining competitive performance in frame consistency and text alignment. Furthermore, a comparative analysis we conducted on videos with different sequence lengths confirms that the gap in editing speed between our approach and architectures with self-attention becomes more significant with long videos.
☆ Towards Reliable and Holistic Visual In-Context Learning Prompt Selection NeurIPS 2025
Visual In-Context Learning (VICL) has emerged as a prominent approach for adapting visual foundation models to novel tasks, by effectively exploiting contextual information embedded in in-context examples, which can be formulated as a global ranking problem of potential candidates. Current VICL methods, such as Partial2Global and VPR, are grounded in the similarity-priority assumption that images more visually similar to a query image serve as better in-context examples. This foundational assumption, while intuitive, lacks sufficient justification for its efficacy in selecting optimal in-context examples. Furthermore, Partial2Global constructs its global ranking from a series of randomly sampled pairwise preference predictions. Such a reliance on random sampling can lead to incomplete coverage and redundant samplings of comparisons, thus further adversely impacting the final global ranking. To address these issues, this paper introduces an enhanced variant of Partial2Global designed for reliable and holistic selection of in-context examples in VICL. Our proposed method, dubbed RH-Partial2Global, leverages a jackknife conformal prediction-guided strategy to construct reliable alternative sets and a covering design-based sampling approach to ensure comprehensive and uniform coverage of pairwise preferences. Extensive experiments demonstrate that RH-Partial2Global achieves excellent performance and outperforms Partial2Global across diverse visual tasks.
comment: Accepted by NeurIPS 2025
☆ PinPoint3D: Fine-Grained 3D Part Segmentation from a Few Clicks
Fine-grained 3D part segmentation is crucial for enabling embodied AI systems to perform complex manipulation tasks, such as interacting with specific functional components of an object. However, existing interactive segmentation methods are largely confined to coarse, instance-level targets, while non-interactive approaches struggle with sparse, real-world scans and suffer from a severe lack of annotated data. To address these limitations, we introduce PinPoint3D, a novel interactive framework for fine-grained, multi-granularity 3D segmentation, capable of generating precise part-level masks from only a few user point clicks. A key component of our work is a new 3D data synthesis pipeline that we developed to create a large-scale, scene-level dataset with dense part annotations, overcoming a critical bottleneck that has hindered progress in this field. Through comprehensive experiments and user studies, we demonstrate that our method significantly outperforms existing approaches, achieving an average IoU of around 55.8% on each object part under first-click settings and surpassing 71.3% IoU with only a few additional clicks. Compared to current state-of-the-art baselines, PinPoint3D yields up to a 16% improvement in IoU and precision, highlighting its effectiveness on challenging, sparse point clouds with high efficiency. Our work represents a significant step towards more nuanced and precise machine perception and interaction in complex 3D environments.
comment: 15 pages, 12 figures, conference
☆ A Multi-purpose Tracking Framework for Salmon Welfare Monitoring in Challenging Environments ICCV 2025
Computer Vision (CV)-based continuous, automated and precise salmon welfare monitoring is a key step toward reduced salmon mortality and improved salmon welfare in industrial aquaculture net pens. Available CV methods for determining welfare indicators focus on single indicators and rely on object detectors and trackers from other application areas to aid their welfare indicator calculation algorithm. This comes with a high resource demand for real-world applications, since each indicator must be calculated separately. In addition, the methods are vulnerable to difficulties in underwater salmon scenes, such as object occlusion, similar object appearance, and similar object motion. To address these challenges, we propose a flexible tracking framework that uses a pose estimation network to extract bounding boxes around salmon and their corresponding body parts, and exploits information about the body parts, through specialized modules, to tackle challenges specific to underwater salmon scenes. Subsequently, the high-detail body part tracks are employed to calculate welfare indicators. We construct two novel datasets assessing two salmon tracking challenges: salmon ID transfers in crowded scenes and salmon ID switches during turning. Our method outperforms the current state-of-the-art pedestrian tracker, BoostTrack, for both salmon tracking challenges. Additionally, we create a dataset for calculating salmon tail beat wavelength, demonstrating that our body part tracking method is well-suited for automated welfare monitoring based on tail beat analysis. Datasets and code are available at https://github.com/espenbh/BoostCompTrack.
comment: Accepted to the Joint Workshop on Marine Vision 2025 (CVAUI & AAMVEM), held in conjunction with ICCV 2025
Self-Supervised Anatomical Consistency Learning for Vision-Grounded Medical Report Generation
Vision-grounded medical report generation aims to produce clinically accurate descriptions of medical images, anchored in explicit visual evidence to improve interpretability and facilitate integration into clinical workflows. However, existing methods often rely on separately trained detection modules that require extensive expert annotations, introducing high labeling costs and limiting generalizability due to pathology distribution bias across datasets. To address these challenges, we propose Self-Supervised Anatomical Consistency Learning (SS-ACL) -- a novel and annotation-free framework that aligns generated reports with corresponding anatomical regions using simple textual prompts. SS-ACL constructs a hierarchical anatomical graph inspired by the invariant top-down inclusion structure of human anatomy, organizing entities by spatial location. It recursively reconstructs fine-grained anatomical regions to enforce intra-sample spatial alignment, inherently guiding attention maps toward visually relevant areas prompted by text. To further enhance inter-sample semantic alignment for abnormality recognition, SS-ACL introduces a region-level contrastive learning based on anatomical consistency. These aligned embeddings serve as priors for report generation, enabling attention maps to provide interpretable visual evidence. Extensive experiments demonstrate that SS-ACL, without relying on expert annotations, (i) generates accurate and visually grounded reports -- outperforming state-of-the-art methods by 10\% in lexical accuracy and 25\% in clinical efficacy, and (ii) achieves competitive performance on various downstream visual tasks, surpassing current leading visual foundation models by 8\% in zero-shot visual grounding.
☆ CO3: Contrasting Concepts Compose Better
We propose to improve multi-concept prompt fidelity in text-to-image diffusion models. We begin with common failure cases-prompts like "a cat and a dog" that sometimes yields images where one concept is missing, faint, or colliding awkwardly with another. We hypothesize that this happens when the diffusion model drifts into mixed modes that over-emphasize a single concept it learned strongly during training. Instead of re-training, we introduce a corrective sampling strategy that steers away from regions where the joint prompt behavior overlaps too strongly with any single concept in the prompt. The goal is to steer towards "pure" joint modes where all concepts can coexist with balanced visual presence. We further show that existing multi-concept guidance schemes can operate in unstable weight regimes that amplify imbalance; we characterize favorable regions and adapt sampling to remain within them. Our approach, CO3, is plug-and-play, requires no model tuning, and complements standard classifier-free guidance. Experiments on diverse multi-concept prompts indicate improvements in concept coverage, balance and robustness, with fewer dropped or distorted concepts compared to standard baselines and prior compositional methods. Results suggest that lightweight corrective guidance can substantially mitigate brittle semantic alignment behavior in modern diffusion systems.
☆ UniMMAD: Unified Multi-Modal and Multi-Class Anomaly Detection via MoE-Driven Feature Decompression
Existing anomaly detection (AD) methods often treat the modality and class as independent factors. Although this paradigm has enriched the development of AD research branches and produced many specialized models, it has also led to fragmented solutions and excessive memory overhead. Moreover, reconstruction-based multi-class approaches typically rely on shared decoding paths, which struggle to handle large variations across domains, resulting in distorted normality boundaries, domain interference, and high false alarm rates. To address these limitations, we propose UniMMAD, a unified framework for multi-modal and multi-class anomaly detection. At the core of UniMMAD is a Mixture-of-Experts (MoE)-driven feature decompression mechanism, which enables adaptive and disentangled reconstruction tailored to specific domains. This process is guided by a ``general to specific'' paradigm. In the encoding stage, multi-modal inputs of varying combinations are compressed into compact, general-purpose features. The encoder incorporates a feature compression module to suppress latent anomalies, encourage cross-modal interaction, and avoid shortcut learning. In the decoding stage, the general features are decompressed into modality-specific and class-specific forms via a sparsely-gated cross MoE, which dynamically selects expert pathways based on input modality and class. To further improve efficiency, we design a grouped dynamic filtering mechanism and a MoE-in-MoE structure, reducing parameter usage by 75\% while maintaining sparse activation and fast inference. UniMMAD achieves state-of-the-art performance on 9 anomaly detection datasets, spanning 3 fields, 12 modalities, and 66 classes. The source code will be available at https://github.com/yuanzhao-CVLAB/UniMMAD.
comment: manuscript
☆ From MNIST to ImageNet: Understanding the Scalability Boundaries of Differentiable Logic Gate Networks
Differentiable Logic Gate Networks (DLGNs) are a very fast and energy-efficient alternative to conventional feed-forward networks. With learnable combinations of logical gates, DLGNs enable fast inference by hardware-friendly execution. Since the concept of DLGNs has only recently gained attention, these networks are still in their developmental infancy, including the design and scalability of their output layer. To date, this architecture has primarily been tested on datasets with up to ten classes. This work examines the behavior of DLGNs on large multi-class datasets. We investigate its general expressiveness, its scalability, and evaluate alternative output strategies. Using both synthetic and real-world datasets, we provide key insights into the importance of temperature tuning and its impact on output layer performance. We evaluate conditions under which the Group-Sum layer performs well and how it can be applied to large-scale classification of up to 2000 classes.
☆ The Impact of Scaling Training Data on Adversarial Robustness NeurIPS 2025
Deep neural networks remain vulnerable to adversarial examples despite advances in architectures and training paradigms. We investigate how training data characteristics affect adversarial robustness across 36 state-of-the-art vision models spanning supervised, self-supervised, and contrastive learning approaches, trained on datasets from 1.2M to 22B images. Models were evaluated under six black-box attack categories: random perturbations, two types of geometric masks, COCO object manipulations, ImageNet-C corruptions, and ImageNet-R style shifts. Robustness follows a logarithmic scaling law with both data volume and model size: a tenfold increase in data reduces attack success rate (ASR) on average by ~3.2%, whereas a tenfold increase in model size reduces ASR on average by ~13.4%. Notably, some self-supervised models trained on curated datasets, such as DINOv2, outperform others trained on much larger but less curated datasets, challenging the assumption that scale alone drives robustness. Adversarial fine-tuning of ResNet50s improves generalization across structural variations but not across color distributions. Human evaluation reveals persistent gaps between human and machine vision. These results show that while scaling improves robustness, data quality, architecture, and training objectives play a more decisive role than raw scale in achieving broad-spectrum adversarial resilience.
comment: Accepted at the workshop Reliable ML from Unreliable Data at NeurIPS 2025
☆ VLM-FO1: Bridging the Gap Between High-Level Reasoning and Fine-Grained Perception in VLMs
Vision-Language Models (VLMs) excel at high-level scene understanding but falter on fine-grained perception tasks requiring precise localization. This failure stems from a fundamental mismatch, as generating exact numerical coordinates is a challenging task for language-centric architectures. In this paper, we introduce VLM-FO1, a novel framework that overcomes this limitation by reframing object-centric perception from a brittle coordinate generation problem into a robust feature retrieval task. Our method operates as a plug-and-play module that integrates with any pre-trained VLM. It leverages a Hybrid Fine-grained Region Encoder (HFRE), featuring a dual vision encoder, to generate powerful region tokens rich in both semantic and spatial detail. A token-based referencing system then enables the LLM to seamlessly reason about and ground language in these specific visual regions. Experiments show that VLM-FO1 achieves state-of-the-art performance across a diverse suite of benchmarks, demonstrating exceptional capabilities in object grounding, region generational understanding, and visual region reasoning. Crucially, our two-stage training strategy ensures that these perception gains are achieved without compromising the base model's general visual understanding capabilities. VLM-FO1 establishes an effective and flexible paradigm for building perception-aware VLMs, bridging the gap between high-level reasoning and fine-grained visual grounding.
comment: 22 pages
☆ LLaVAShield: Safeguarding Multimodal Multi-Turn Dialogues in Vision-Language Models
As Vision-Language Models (VLMs) move into interactive, multi-turn use, new safety risks arise that single-turn or single-modality moderation misses. In Multimodal Multi-Turn (MMT) dialogues, malicious intent can be spread across turns and images, while context-sensitive replies may still advance harmful content. To address this challenge, we present the first systematic definition and study of MMT dialogue safety. Building on this formulation, we introduce the Multimodal Multi-turn Dialogue Safety (MMDS) dataset. We further develop an automated multimodal multi-turn red-teaming framework based on Monte Carlo Tree Search (MCTS) to generate unsafe multimodal multi-turn dialogues for MMDS. MMDS contains 4,484 annotated multimodal dialogue samples with fine-grained safety ratings, policy dimension labels, and evidence-based rationales for both users and assistants. Leveraging MMDS, we present LLaVAShield, a powerful tool that jointly detects and assesses risk in user inputs and assistant responses. Across comprehensive experiments, LLaVAShield consistently outperforms strong baselines on MMT content moderation tasks and under dynamic policy configurations, establishing new state-of-the-art results. We will publicly release the dataset and model to support future research.
☆ DeepSketcher: Internalizing Visual Manipulation for Multimodal Reasoning
The "thinking with images" paradigm represents a pivotal shift in the reasoning of Vision Language Models (VLMs), moving from text-dominant chain-of-thought to image-interactive reasoning. By invoking visual tools or generating intermediate visual representations, VLMs can iteratively attend to fine-grained regions, enabling deeper image understanding and more faithful multimodal reasoning. As an emerging paradigm, however, it still leaves substantial room for exploration in data construction accuracy, structural design, and broader application scenarios, which offer rich opportunities for advancing multimodal reasoning. To further advance this line of work, we present DeepSketcher, a comprehensive suite comprising both an image-text interleaved dataset and a self-contained model. The dataset contains 31k chain-of-thought (CoT) reasoning trajectories with diverse tool calls and resulting edited images, covering a wide range of data types and manipulation instructions with high annotation accuracy. Building on this resource, we design a model that performs interleaved image-text reasoning and natively generates "visual thoughts" by operating directly in the visual embedding space, rather than invoking external tools and repeatedly re-encoding generated images. This design enables tool-free and more flexible "thinking with images". Extensive experiments on multimodal reasoning benchmarks demonstrate strong performance, validating both the utility of the dataset and the effectiveness of the model design.
☆ MAPLE: Multi-scale Attribute-enhanced Prompt Learning for Few-shot Whole Slide Image Classification
Prompt learning has emerged as a promising paradigm for adapting pre-trained vision-language models (VLMs) to few-shot whole slide image (WSI) classification by aligning visual features with textual representations, thereby reducing annotation cost and enhancing model generalization. Nevertheless, existing methods typically rely on slide-level prompts and fail to capture the subtype-specific phenotypic variations of histological entities (\emph{e.g.,} nuclei, glands) that are critical for cancer diagnosis. To address this gap, we propose Multi-scale Attribute-enhanced Prompt Learning (\textbf{MAPLE}), a hierarchical framework for few-shot WSI classification that jointly integrates multi-scale visual semantics and performs prediction at both the entity and slide levels. Specifically, we first leverage large language models (LLMs) to generate entity-level prompts that can help identify multi-scale histological entities and their phenotypic attributes, as well as slide-level prompts to capture global visual descriptions. Then, an entity-guided cross-attention module is proposed to generate entity-level features, followed by aligning with their corresponding subtype-specific attributes for fine-grained entity-level prediction. To enrich entity representations, we further develop a cross-scale entity graph learning module that can update these representations by capturing their semantic correlations within and across scales. The refined representations are then aggregated into a slide-level representation and aligned with the corresponding prompts for slide-level prediction. Finally, we combine both entity-level and slide-level outputs to produce the final prediction results. Results on three cancer cohorts confirm the effectiveness of our approach in addressing few-shot pathology diagnosis tasks.
☆ LiDAR Point Cloud Colourisation Using Multi-Camera Fusion and Low-Light Image Enhancement
In recent years, the fusion of camera data with LiDAR measurements has emerged as a powerful approach to enhance spatial understanding. This study introduces a novel, hardware-agnostic methodology that generates colourised point clouds from mechanical LiDAR using multiple camera inputs, providing complete 360-degree coverage. The primary innovation lies in its robustness under low-light conditions, achieved through the integration of a low-light image enhancement module within the fusion pipeline. The system requires initial calibration to determine intrinsic camera parameters, followed by automatic computation of the geometric transformation between the LiDAR and cameras, removing the need for specialised calibration targets and streamlining the setup. The data processing framework uses colour correction to ensure uniformity across camera feeds before fusion. The algorithm was tested using a Velodyne Puck Hi-Res LiDAR and a four-camera configuration. The optimised software achieved real-time performance and reliable colourisation even under very low illumination, successfully recovering scene details that would otherwise remain undetectable.
Vector sketch animation generation with differentialable motion trajectories
Sketching is a direct and inexpensive means of visual expression. Though image-based sketching has been well studied, video-based sketch animation generation is still very challenging due to the temporal coherence requirement. In this paper, we propose a novel end-to-end automatic generation approach for vector sketch animation. To solve the flickering issue, we introduce a Differentiable Motion Trajectory (DMT) representation that describes the frame-wise movement of stroke control points using differentiable polynomial-based trajectories. DMT enables global semantic gradient propagation across multiple frames, significantly improving the semantic consistency and temporal coherence, and producing high-framerate output. DMT employs a Bernstein basis to balance the sensitivity of polynomial parameters, thus achieving more stable optimization. Instead of implicit fields, we introduce sparse track points for explicit spatial modeling, which improves efficiency and supports long-duration video processing. Evaluations on DAVIS and LVOS datasets demonstrate the superiority of our approach over SOTA methods. Cross-domain validation on 3D models and text-to-video data confirms the robustness and compatibility of our approach.
comment: 14 pages, 12 figures
☆ PatchEAD: Unifying Industrial Visual Prompting Frameworks for Patch-Exclusive Anomaly Detection
Industrial anomaly detection is increasingly relying on foundation models, aiming for strong out-of-distribution generalization and rapid adaptation in real-world deployments. Notably, past studies have primarily focused on textual prompt tuning, leaving the intrinsic visual counterpart fragmented into processing steps specific to each foundation model. We aim to address this limitation by proposing a unified patch-focused framework, Patch-Exclusive Anomaly Detection (PatchEAD), enabling training-free anomaly detection that is compatible with diverse foundation models. The framework constructs visual prompting techniques, including an alignment module and foreground masking. Our experiments show superior few-shot and batch zero-shot performance compared to prior work, despite the absence of textual features. Our study further examines how backbone structure and pretrained characteristics affect patch-similarity robustness, providing actionable guidance for selecting and configuring foundation models for real-world visual inspection. These results confirm that a well-unified patch-only framework can enable quick, calibration-light deployment without the need for carefully engineered textual prompts.
comment: 10 pages, 5 figures
☆ MuSLR: Multimodal Symbolic Logical Reasoning NeurIPS 2025
Multimodal symbolic logical reasoning, which aims to deduce new facts from multimodal input via formal logic, is critical in high-stakes applications such as autonomous driving and medical diagnosis, as its rigorous, deterministic reasoning helps prevent serious consequences. To evaluate such capabilities of current state-of-the-art vision language models (VLMs), we introduce the first benchmark MuSLR for multimodal symbolic logical reasoning grounded in formal logical rules. MuSLR comprises 1,093 instances across 7 domains, including 35 atomic symbolic logic and 976 logical combinations, with reasoning depths ranging from 2 to 9. We evaluate 7 state-of-the-art VLMs on MuSLR and find that they all struggle with multimodal symbolic reasoning, with the best model, GPT-4.1, achieving only 46.8%. Thus, we propose LogiCAM, a modular framework that applies formal logical rules to multimodal inputs, boosting GPT-4.1's Chain-of-Thought performance by 14.13%, and delivering even larger gains on complex logics such as first-order logic. We also conduct a comprehensive error analysis, showing that around 70% of failures stem from logical misalignment between modalities, offering key insights to guide future improvements. All data and code are publicly available at https://llm-symbol.github.io/MuSLR.
comment: Accepted by NeurIPS 2025
☆ More Thought, Less Accuracy? On the Dual Nature of Reasoning in Vision-Language Models
Reasoning has emerged as a pivotal capability in Large Language Models (LLMs). Through Reinforcement Learning (RL), typically Group Relative Policy Optimization (GRPO), these models are able to solve complex tasks such as mathematics and code generation. Building on these advances, recent research has sought to extend reasoning to Vision-Language Models (VLMs), yielding promising results across diverse visual tasks. Despite this progress, our study uncovers the dual nature of multimodal reasoning: while it substantially enhances logical inference and facilitates performance on challenging problems, it may gradually impair perceptual grounding, leading to recognition failures on otherwise basic visual questions. Through further analysis, we attribute this phenomenon to visual forgetting, wherein prolonged reasoning causes the model to increasingly disregard visual input. To address this, we propose Vision-Anchored Policy Optimization (VAPO), a simple yet effective method that explicitly steers the reasoning process toward visually grounded trajectories. Our result model, VAPO-Thinker-7B, significantly strengthens the model's reliance on visual information and achieves new state-of-the-art results on a wide range of established benchmarks. Project page: https://xytian1008.github.io/VAPO/
☆ Training-Free Reward-Guided Image Editing via Trajectory Optimal Control
Recent advancements in diffusion and flow-matching models have demonstrated remarkable capabilities in high-fidelity image synthesis. A prominent line of research involves reward-guided guidance, which steers the generation process during inference to align with specific objectives. However, leveraging this reward-guided approach to the task of image editing, which requires preserving the semantic content of the source image while enhancing a target reward, is largely unexplored. In this work, we introduce a novel framework for training-free, reward-guided image editing. We formulate the editing process as a trajectory optimal control problem where the reverse process of a diffusion model is treated as a controllable trajectory originating from the source image, and the adjoint states are iteratively updated to steer the editing process. Through extensive experiments across distinct editing tasks, we demonstrate that our approach significantly outperforms existing inversion-based training-free guidance baselines, achieving a superior balance between reward maximization and fidelity to the source image without reward hacking.
comment: 18 pages, 5 figures
☆ VELA: An LLM-Hybrid-as-a-Judge Approach for Evaluating Long Image Captions EMNLP 2025
In this study, we focus on the automatic evaluation of long and detailed image captions generated by multimodal Large Language Models (MLLMs). Most existing automatic evaluation metrics for image captioning are primarily designed for short captions and are not suitable for evaluating long captions. Moreover, recent LLM-as-a-Judge approaches suffer from slow inference due to their reliance on autoregressive inference and early fusion of visual information. To address these limitations, we propose VELA, an automatic evaluation metric for long captions developed within a novel LLM-Hybrid-as-a-Judge framework. Furthermore, we propose LongCap-Arena, a benchmark specifically designed for evaluating metrics for long captions. This benchmark comprises 7,805 images, the corresponding human-provided long reference captions and long candidate captions, and 32,246 human judgments from three distinct perspectives: Descriptiveness, Relevance, and Fluency. We demonstrated that VELA outperformed existing metrics and achieved superhuman performance on LongCap-Arena.
comment: EMNLP 2025 Main Conference
☆ Personalized Scientific Figure Caption Generation: An Empirical Study on Author-Specific Writing Style Transfer
We study personalized figure caption generation using author profile data from scientific papers. Our experiments demonstrate that rich author profile data, combined with relevant metadata, can significantly improve the personalization performance of multimodal large language models. However, we also reveal a fundamental trade-off between matching author style and maintaining caption quality. Our findings offer valuable insights and future directions for developing practical caption automation systems that balance both objectives. This work was conducted as part of the 3rd SciCap challenge.
Overview of GeoLifeCLEF 2023: Species Composition Prediction with High Spatial Resolution at Continental Scale Using Remote Sensing
Understanding the spatio-temporal distribution of species is a cornerstone of ecology and conservation. By pairing species observations with geographic and environmental predictors, researchers can model the relationship between an environment and the species which may be found there. To advance the state-of-the-art in this area with deep learning models and remote sensing data, we organized an open machine learning challenge called GeoLifeCLEF 2023. The training dataset comprised 5 million plant species observations (single positive label per sample) distributed across Europe and covering most of its flora, high-resolution rasters: remote sensing imagery, land cover, elevation, in addition to coarse-resolution data: climate, soil and human footprint variables. In this multi-label classification task, we evaluated models ability to predict the species composition in 22 thousand small plots based on standardized surveys. This paper presents an overview of the competition, synthesizes the approaches used by the participating teams, and analyzes the main results. In particular, we highlight the biases faced by the methods fitted to single positive labels when it comes to the multi-label evaluation, and the new and effective learning strategy combining single and multi-label data in training.
comment: 18 pages, 7 figures, CLEF 2023 Conference and Labs of the Evaluation Forum, September 18 to 21, 2023, Thessaloniki, Greece
☆ Logo-VGR: Visual Grounded Reasoning for Open-world Logo Recognition
Recent advances in multimodal large language models (MLLMs) have been primarily evaluated on general-purpose benchmarks, while their applications in domain-specific scenarios, such as intelligent product moderation, remain underexplored. To address this gap, we introduce an open-world logo recognition benchmark, a core challenge in product moderation. Unlike traditional logo recognition methods that rely on memorizing representations of tens of thousands of brands-an impractical approach in real-world settings-our proposed method, Logo-VGR, enables generalization to large-scale brand recognition with supervision from only a small subset of brands. Specifically, we reformulate logo recognition as a comparison-based task, requiring the model to match product images with candidate logos rather than directly generating brand labels. We further observe that existing models tend to overfit by memorizing brand distributions instead of learning robust multimodal reasoning, which results in poor performance on unseen brands. To overcome this limitation, Logo-VGR introduces a new paradigm of domain-specific multimodal reasoning: Logo Perception Grounding injects domain knowledge, and Logo-Guided Visual Grounded Reasoning enhances the model's reasoning capability. Experimental results show that Logo-VGR outperforms strong baselines by nearly 10 points in OOD settings, demonstrating superior generalization.
☆ Adapting SAM with Dynamic Similarity Graphs for Few-Shot Parameter-Efficient Small Dense Object Detection: A Case Study of Chickpea Pods in Field Conditions
Parameter-Efficient Fine-Tuning (PEFT) of foundation models for agricultural computer vision tasks remains challenging due to limited training data and complex field conditions. This study introduces a Dynamic Similarity-based Graph Adaptation (DSGA) module to adapt the Segment Anything Model (SAM) under extreme data constraints for precise foreground and instance segmentation of small dense objects in complex agricultural environments. Through dynamic similarity graph construction with a learnable polynomial decay-initialized weight ranking mechanism and adaptive local feature aggregation, DSGA establishes robust spatial and dynamic similarity representation with only 4.00M trainable parameters, which is 4.26% of the original SAM. Integrating this graph-based feature adaptation with Low-Rank Adaptation (LoRA) creates a complementary optimization framework that effectively captures both local and global dependencies in image embeddings while preserving model stability and parameter efficiency. Experimental results on a challenging chickpea pod dataset demonstrated that DSGA with LoRA achieved superior performance across multiple metrics evaluated under 2, 4, 8 and 10 shots, with progressive performance gains as shot count increased. Quantitative metrics showed a 17.31% improvement in Structure-measure and a 62.36% gain in adaptive F-measure compared to the baseline SAM fine-tuning. Comprehensive ablation studies and visualization analyses through Grad-CAM and t-SNE validated the framework's effectiveness in feature discrimination. The proposed adaptation demonstrated practical utility for automated agricultural monitoring applications, achieving accurate pod-counting with an adjusted R-squared of 0.8987 for images with 10 to 120 pods under challenging field conditions.
comment: 23 pages, 11 figures, 4 tables
☆ Point-It-Out: Benchmarking Embodied Reasoning for Vision Language Models in Multi-Stage Visual Grounding
Vision-Language Models (VLMs) have demonstrated impressive world knowledge across a wide range of tasks, making them promising candidates for embodied reasoning applications. However, existing benchmarks primarily evaluate the embodied reasoning ability of VLMs through multiple-choice questions based on image annotations -- for example, selecting which trajectory better describes an event in the image. In this work, we introduce the Point-It-Out (PIO) benchmark, a novel benchmark designed to systematically assess the embodied reasoning abilities of VLMs through precise visual grounding. We propose a hierarchical evaluation protocol spanning three stages (S1: referred-object localization, S2: task-driven pointing, and S3: visual trace prediction), with data collected from critical domains for embodied intelligence, including indoor, kitchen, driving, and robotic manipulation scenarios. Extensive experiments with over ten state-of-the-art VLMs reveal several interesting findings. For example, strong general-purpose models such as GPT-4o, while excelling on many benchmarks (e.g., language, perception, and reasoning), underperform compared to some open-source models in precise visual grounding; models such as MoLMO perform well in S1 and S2 but struggle in S3, where requires grounding combined with visual trace planning.
☆ PUREVQ-GAN: Defending Data Poisoning Attacks through Vector-Quantized Bottlenecks
We introduce PureVQ-GAN, a defense against data poisoning that forces backdoor triggers through a discrete bottleneck using Vector-Quantized VAE with GAN discriminator. By quantizing poisoned images through a learned codebook, PureVQ-GAN destroys fine-grained trigger patterns while preserving semantic content. A GAN discriminator ensures outputs match the natural image distribution, preventing reconstruction of out-of-distribution perturbations. On CIFAR-10, PureVQ-GAN achieves 0% poison success rate (PSR) against Gradient Matching and Bullseye Polytope attacks, and 1.64% against Narcissus while maintaining 91-95% clean accuracy. Unlike diffusion-based defenses requiring hundreds of iterative refinement steps, PureVQ-GAN is over 50x faster, making it practical for real training pipelines.
☆ EchoingECG: An Electrocardiogram Cross-Modal Model for Echocardiogram Tasks MICCAI 2025
Electrocardiogram (ECG) is a widely used tool for assessing cardiac function due to its low cost and accessibility. Emergent research shows that ECGs can help make predictions on key outcomes traditionally derived from more complex modalities such as echocardiograms (ECHO), enabling the use of ECGs as a more accessible method to predict broader measurements of cardiac function. ECHO, in particular, are of great importance because they require considerable hospital resources while playing a key role in clinical cardiac assessment. To aid this use case, we introduce EchoingECG, a probabilistic student-teacher model that leverages uncertainty-aware ECG embeddings and ECHO supervision to improve ECG-based cardiac function prediction. Our approach integrates Probabilistic Cross-Modal Embeddings (PCME++), a probabilistic contrastive framework, with ECHO-CLIP, a vision-language pre-trained model trained on ECHO-text pairs, to distill ECHO knowledge into ECG representations. Through experiments and external validation, we showed that EchoingECG outperforms state-of-the-art foundation ECG models in zero-shot, few-shot, and fine-tune settings for ECHO predictions based on ECG. We also highlighted that variance estimation (enabled through our method) enhanced our understanding of model performance by identifying underlying regions of uncertainty within ECGs. The code is available: https://github.com/mcintoshML/EchoingECG.
comment: MICCAI 2025
☆ Self-Evolving Vision-Language Models for Image Quality Assessment via Voting and Ranking
Improving vision-language models (VLMs) in the post-training stage typically relies on supervised fine-tuning or reinforcement learning, methods that necessitate costly, human-annotated data. While self-supervised techniques such as self-consistency have proven effective for enhancing reasoning capabilities, their application to perceptual domains such as image quality assessment (IQA) remains largely unexplored. In this work, we introduce EvoQuality, a novel framework that enables a VLM to autonomously refine its quality perception capabilities without any ground-truth labels. EvoQuality adapts the principle of self-consistency to the ranking-based nature of IQA. It generates pseudo-labels by performing pairwise majority voting on the VLM's own outputs to establish a consensus on relative quality. These pseudo-rankings are then formulated into a fidelity reward that guides the model's iterative evolution through group relative policy optimization (GRPO). By iteratively leveraging its own predictions, EvoQuality progressively refines the VLM's perceptual capability. Extensive experiments show that EvoQuality boosts the base VLM's zero-shot performance by 31.8\% on PLCC across diverse IQA benchmarks. Remarkably, despite being entirely self-supervised, EvoQuality achieves performance that is competitive with, or even surpasses, state-of-the-art supervised VLM-based IQA models, outperforming these models on 5 out of 7 IQA benchmarks.
comment: Under Review
☆ Editable Noise Map Inversion: Encoding Target-image into Noise For High-Fidelity Image Manipulation ICML 2025
Text-to-image diffusion models have achieved remarkable success in generating high-quality and diverse images. Building on these advancements, diffusion models have also demonstrated exceptional performance in text-guided image editing. A key strategy for effective image editing involves inverting the source image into editable noise maps associated with the target image. However, previous inversion methods face challenges in adhering closely to the target text prompt. The limitation arises because inverted noise maps, while enabling faithful reconstruction of the source image, restrict the flexibility needed for desired edits. To overcome this issue, we propose Editable Noise Map Inversion (ENM Inversion), a novel inversion technique that searches for optimal noise maps to ensure both content preservation and editability. We analyze the properties of noise maps for enhanced editability. Based on this analysis, our method introduces an editable noise refinement that aligns with the desired edits by minimizing the difference between the reconstructed and edited noise maps. Extensive experiments demonstrate that ENM Inversion outperforms existing approaches across a wide range of image editing tasks in both preservation and edit fidelity with target prompts. Our approach can also be easily applied to video editing, enabling temporal consistency and content manipulation across frames.
comment: ICML 2025
☆ PCPO: Proportionate Credit Policy Optimization for Aligning Image Generation Models
While reinforcement learning has advanced the alignment of text-to-image (T2I) models, state-of-the-art policy gradient methods are still hampered by training instability and high variance, hindering convergence speed and compromising image quality. Our analysis identifies a key cause of this instability: disproportionate credit assignment, in which the mathematical structure of the generative sampler produces volatile and non-proportional feedback across timesteps. To address this, we introduce Proportionate Credit Policy Optimization (PCPO), a framework that enforces proportional credit assignment through a stable objective reformulation and a principled reweighting of timesteps. This correction stabilizes the training process, leading to significantly accelerated convergence and superior image quality. The improvement in quality is a direct result of mitigating model collapse, a common failure mode in recursive training. PCPO substantially outperforms existing policy gradient baselines on all fronts, including the state-of-the-art DanceGRPO.
comment: 24 pages, 17 figures
☆ V-HUB: A Visual-Centric Humor Understanding Benchmark for Video LLMs
AI models capable of comprehending humor hold real-world promise -- for example, enhancing engagement in human-machine interactions. To gauge and diagnose the capacity of multimodal large language models (MLLMs) for humor understanding, we introduce v-HUB, a novel visual-centric video humor understanding benchmark. v-HUB comprises a curated collection of minimally verbal short videos, sourced from classic silent films and online resources, and reflecting real-world scenarios where humor can be appreciated purely through visual cues. Each video clip is paired with rich annotations, including captions, descriptions, and explanations, supporting evaluation tasks like caption matching and humor explanation. To broaden its applicability, we further construct an open-ended video QA task, making it readily integrable into existing video understanding benchmarks. We evaluate a diverse set of MLLMs, from specialized Video-LLMs to versatile OmniLLMs that can process audio, covering both open-source and proprietary domains. The experimental results expose the difficulties MLLMs face in comprehending humor from visual cues alone. For example, all models exhibit a marked performance drop on caption matching when moving from text-based to video-based evaluation (without audio). Our findings also demonstrate that incorporating audio helps with video humor understanding, highlighting the informativeness of sound and the promise of integrating richer modalities for complex video understanding tasks.
☆ Free Lunch Alignment of Text-to-Image Diffusion Models without Preference Image Pairs
Recent advances in diffusion-based text-to-image (T2I) models have led to remarkable success in generating high-quality images from textual prompts. However, ensuring accurate alignment between the text and the generated image remains a significant challenge for state-of-the-art diffusion models. To address this, existing studies employ reinforcement learning with human feedback (RLHF) to align T2I outputs with human preferences. These methods, however, either rely directly on paired image preference data or require a learned reward function, both of which depend heavily on costly, high-quality human annotations and thus face scalability limitations. In this work, we introduce Text Preference Optimization (TPO), a framework that enables "free-lunch" alignment of T2I models, achieving alignment without the need for paired image preference data. TPO works by training the model to prefer matched prompts over mismatched prompts, which are constructed by perturbing original captions using a large language model. Our framework is general and compatible with existing preference-based algorithms. We extend both DPO and KTO to our setting, resulting in TDPO and TKTO. Quantitative and qualitative evaluations across multiple benchmarks show that our methods consistently outperform their original counterparts, delivering better human preference scores and improved text-to-image alignment. Our Open-source code is available at https://github.com/DSL-Lab/T2I-Free-Lunch-Alignment.
☆ NePTune: A Neuro-Pythonic Framework for Tunable Compositional Reasoning on Vision-Language
Modern Vision-Language Models (VLMs) have achieved impressive performance in various tasks, yet they often struggle with compositional reasoning, the ability to decompose and recombine concepts to solve novel problems. While neuro-symbolic approaches offer a promising direction, they are typically constrained by crisp logical execution or predefined predicates, which limit flexibility. In this work, we introduce NePTune, a neuro-symbolic framework that overcomes these limitations through a hybrid execution model that integrates the perception capabilities of foundation vision models with the compositional expressiveness of symbolic reasoning. NePTune dynamically translates natural language queries into executable Python programs that blend imperative control flow with soft logic operators capable of reasoning over VLM-generated uncertainty. Operating in a training-free manner, NePTune, with a modular design, decouples perception from reasoning, yet its differentiable operations support fine-tuning. We evaluate NePTune on multiple visual reasoning benchmarks and various domains, utilizing adversarial tests, and demonstrate a significant improvement over strong base models, as well as its effective compositional generalization and adaptation capabilities in novel environments.
☆ ART-VITON: Measurement-Guided Latent Diffusion for Artifact-Free Virtual Try-On
Virtual try-on (VITON) aims to generate realistic images of a person wearing a target garment, requiring precise garment alignment in try-on regions and faithful preservation of identity and background in non-try-on regions. While latent diffusion models (LDMs) have advanced alignment and detail synthesis, preserving non-try-on regions remains challenging. A common post-hoc strategy directly replaces these regions with original content, but abrupt transitions often produce boundary artifacts. To overcome this, we reformulate VITON as a linear inverse problem and adopt trajectory-aligned solvers that progressively enforce measurement consistency, reducing abrupt changes in non-try-on regions. However, existing solvers still suffer from semantic drift during generation, leading to artifacts. We propose ART-VITON, a measurement-guided diffusion framework that ensures measurement adherence while maintaining artifact-free synthesis. Our method integrates residual prior-based initialization to mitigate training-inference mismatch and artifact-free measurement-guided sampling that combines data consistency, frequency-level correction, and periodic standard denoising. Experiments on VITON-HD, DressCode, and SHHQ-1.0 demonstrate that ART-VITON effectively preserves identity and background, eliminates boundary artifacts, and consistently improves visual fidelity and robustness over state-of-the-art baselines.
comment: 21 pages
☆ FinCap: Topic-Aligned Captions for Short-Form Financial YouTube Videos ICCV
We evaluate multimodal large language models (MLLMs) for topic-aligned captioning in financial short-form videos (SVs) by testing joint reasoning over transcripts (T), audio (A), and video (V). Using 624 annotated YouTube SVs, we assess all seven modality combinations (T, A, V, TA, TV, AV, TAV) across five topics: main recommendation, sentiment analysis, video purpose, visual analysis, and financial entity recognition. Video alone performs strongly on four of five topics, underscoring its value for capturing visual context and effective cues such as emotions, gestures, and body language. Selective pairs such as TV or AV often surpass TAV, implying that too many modalities may introduce noise. These results establish the first baselines for financial short-form video captioning and illustrate the potential and challenges of grounding complex visual cues in this domain. All code and data can be found on our Github under the CC-BY-NC-SA 4.0 license.
comment: ICCV Short Video Understanding Workshop Paper
☆ IPDRecon: Image-Plane Geometric Decoding for View-Invariant Indoor Scene Reconstruction
Volume-based indoor scene reconstruction methods demonstrate significant research value due to their superior generalization capability and real-time deployment potential. However, existing methods rely on multi-view pixel back-projection ray intersections as weak geometric constraints to determine spatial positions, causing reconstruction quality to depend heavily on input view density with poor performance in overlapping regions and unobserved areas. To address these issues, the key lies in reducing dependency on inter-view geometric constraints while exploiting rich spatial information within individual views. We propose IPDRecon, an image-plane decoding framework comprising three core components: Pixel-level Confidence Encoder (PCE), Affine Compensation Module (ACM), and Image-Plane Spatial Decoder (IPSD). These modules collaboratively decode 3D structural information encoded in 2D images through physical imaging processes, effectively preserving spatial geometric features including edges, hollow structures, and complex textures while significantly enhancing view-invariant reconstruction. Experiments on ScanNetV2 confirm that IPDRecon achieves superior reconstruction stability, maintaining nearly identical quality when view count reduces by 40%. The method achieves a coefficient of variation of only 0.24%, performance retention rate of 99.7%, and maximum performance drop of merely 0.42%. This demonstrates that exploiting intra-view spatial information provides a robust solution for view-limited scenarios in practical applications.
☆ Dragging with Geometry: From Pixels to Geometry-Guided Image Editing
Interactive point-based image editing serves as a controllable editor, enabling precise and flexible manipulation of image content. However, most drag-based methods operate primarily on the 2D pixel plane with limited use of 3D cues. As a result, they often produce imprecise and inconsistent edits, particularly in geometry-intensive scenarios such as rotations and perspective transformations. To address these limitations, we propose a novel geometry-guided drag-based image editing method - GeoDrag, which addresses three key challenges: 1) incorporating 3D geometric cues into pixel-level editing, 2) mitigating discontinuities caused by geometry-only guidance, and 3) resolving conflicts arising from multi-point dragging. Built upon a unified displacement field that jointly encodes 3D geometry and 2D spatial priors, GeoDrag enables coherent, high-fidelity, and structure-consistent editing in a single forward pass. In addition, a conflict-free partitioning strategy is introduced to isolate editing regions, effectively preventing interference and ensuring consistency. Extensive experiments across various editing scenarios validate the effectiveness of our method, showing superior precision, structural consistency, and reliable multi-point editability. The code will be available on https://github.com/xinyu-pu/GeoDrag .
☆ The 1st Solution for MOSEv1 Challenge on LSVOS 2025: CGFSeg
Video Object Segmentation (VOS) aims to track and segment specific objects across entire video sequences, yet it remains highly challenging under complex real-world scenarios. The MOSEv1 and LVOS dataset, adopted in the MOSEv1 challenge on LSVOS 2025, which is specifically designed to enhance the robustness of VOS models in complex real-world scenarios, including long-term object disappearances and reappearances, as well as the presence of small and inconspicuous objects. In this paper, we present our improved method, Confidence-Guided Fusion Segmentation (CGFSeg), for the VOS task in the MOSEv1 Challenge. During training, the feature extractor of SAM2 is frozen, while the remaining components are fine-tuned to preserve strong feature extraction ability and improve segmentation accuracy. In the inference stage, we introduce a pixel-check strategy that progressively refines predictions by exploiting complementary strengths of multiple models, thereby yielding robust final masks. As a result, our method achieves a J&F score of 86.37% on the test set, ranking 1st in the MOSEv1 Challenge at LSVOS 2025. These results highlight the effectiveness of our approach in addressing the challenges of VOS task in complex scenarios.
☆ LieHMR: Autoregressive Human Mesh Recovery with $SO(3)$ Diffusion
We tackle the problem of Human Mesh Recovery (HMR) from a single RGB image, formulating it as an image-conditioned human pose and shape generation. While recovering 3D human pose from 2D observations is inherently ambiguous, most existing approaches have regressed a single deterministic output. Probabilistic methods attempt to address this by generating multiple plausible outputs to model the ambiguity. However, these methods often exhibit a trade-off between accuracy and sample diversity, and their single predictions are not competitive with state-of-the-art deterministic models. To overcome these limitations, we propose a novel approach that models well-aligned distribution to 2D observations. In particular, we introduce $SO(3)$ diffusion model, which generates the distribution of pose parameters represented as 3D rotations unconditional and conditional to image observations via conditioning dropout. Our model learns the hierarchical structure of human body joints using the transformer. Instead of using transformer as a denoising model, the time-independent transformer extracts latent vectors for the joints and a small MLP-based denoising model learns the per-joint distribution conditioned on the latent vector. We experimentally demonstrate and analyze that our model predicts accurate pose probability distribution effectively.
comment: 17 pages, 13 figures
☆ LaTo: Landmark-tokenized Diffusion Transformer for Fine-grained Human Face Editing
Recent multimodal models for instruction-based face editing enable semantic manipulation but still struggle with precise attribute control and identity preservation. Structural facial representations such as landmarks are effective for intermediate supervision, yet most existing methods treat them as rigid geometric constraints, which can degrade identity when conditional landmarks deviate significantly from the source (e.g., large expression or pose changes, inaccurate landmark estimates). To address these limitations, we propose LaTo, a landmark-tokenized diffusion transformer for fine-grained, identity-preserving face editing. Our key innovations include: (1) a landmark tokenizer that directly quantizes raw landmark coordinates into discrete facial tokens, obviating the need for dense pixel-wise correspondence; (2) a location-mapping positional encoding that integrates facial and image tokens for unified processing, enabling flexible yet decoupled geometry-appearance interactions with high efficiency and strong identity preservation; and (3) a landmark predictor that leverages vision-language models to infer target landmarks from instructions and source images, whose structured chain-of-thought improves estimation accuracy and interactive control. To mitigate data scarcity, we curate HFL-150K, to our knowledge the largest benchmark for this task, containing over 150K real face pairs with fine-grained instructions. Extensive experiments show that LaTo outperforms state-of-the-art methods by 7.8% in identity preservation and 4.6% in semantic consistency. Code and dataset will be made publicly available upon acceptance.
☆ SAGE: Spatial-visual Adaptive Graph Exploration for Visual Place Recognition
Visual Place Recognition (VPR) requires robust retrieval of geotagged images despite large appearance, viewpoint, and environmental variation. Prior methods focus on descriptor fine-tuning or fixed sampling strategies yet neglect the dynamic interplay between spatial context and visual similarity during training. We present SAGE (Spatial-visual Adaptive Graph Exploration), a unified training pipeline that enhances granular spatial-visual discrimination by jointly improving local feature aggregation, organize samples during training, and hard sample mining. We introduce a lightweight Soft Probing module that learns residual weights from training data for patch descriptors before bilinear aggregation, boosting distinctive local cues. During training we reconstruct an online geo-visual graph that fuses geographic proximity and current visual similarity so that candidate neighborhoods reflect the evolving embedding landscape. To concentrate learning on the most informative place neighborhoods, we seed clusters from high-affinity anchors and iteratively expand them with a greedy weighted clique expansion sampler. Implemented with a frozen DINOv2 backbone and parameter-efficient fine-tuning, SAGE achieves SOTA across eight benchmarks. It attains 98.9%, 95.8%, 94.5%, and 96.0% Recall@1 on SPED, Pitts30k-test, MSLS-val, and Nordland, respectively. Notably, our method obtains 100% Recall@10 on SPED only using 4096D global descriptors. Code and model will be available at: https://github.com/chenshunpeng/SAGE.
☆ Importance Sampling for Multi-Negative Multimodal Direct Preference Optimization
Direct Preference Optimization (DPO) has recently been extended from text-only models to vision-language models. However, existing methods rely on oversimplified pairwise comparisons, generating a single negative image via basic perturbations or similarity-based retrieval, which fail to capture the complex nature of multimodal preferences, inducing optimization bias and hallucinations. To address this issue, we propose MISP-DPO, the first framework to incorporate multiple, semantically diverse negative images in multimodal DPO via the Plackett-Luce model. Our method embeds prompts and candidate images in CLIP (Contrastive Language-Image Pretraining) space and applies a sparse autoencoder to uncover semantic deviations into interpretable factors. Negative samples are selected based on reconstruction difficulty, semantic deviation from the positive, and mutual diversity, yielding broader and more informative supervision. To handle multi-negative comparisons, we adopt a Plackett-Luce objective and introduce an importance sampling strategy that improves training efficiency. Experiments across five diverse benchmarks demonstrate that MISP-DPO consistently improves multimodal alignment over prior methods, validating the effectiveness of semantic-aware, multi-negative sampling in preference-based learning.
comment: Preprint
☆ Reweighted Flow Matching via Unbalanced OT for Label-free Long-tailed Generation
Flow matching has recently emerged as a powerful framework for continuous-time generative modeling. However, when applied to long-tailed distributions, standard flow matching suffers from majority bias, producing minority modes with low fidelity and failing to match the true class proportions. In this work, we propose Unbalanced Optimal Transport Reweighted Flow Matching (UOT-RFM), a novel framework for generative modeling under class-imbalanced (long-tailed) distributions that operates without any class label information. Our method constructs the conditional vector field using mini-batch Unbalanced Optimal Transport (UOT) and mitigates majority bias through a principled inverse reweighting strategy. The reweighting relies on a label-free majority score, defined as the density ratio between the target distribution and the UOT marginal. This score quantifies the degree of majority based on the geometric structure of the data, without requiring class labels. By incorporating this score into the training objective, UOT-RFM theoretically recovers the target distribution with first-order correction ($k=1$) and empirically improves tail-class generation through higher-order corrections ($k > 1$). Our model outperforms existing flow matching baselines on long-tailed benchmarks, while maintaining competitive performance on balanced datasets.
comment: 28 pages, 17 figures
☆ ProbMed: A Probabilistic Framework for Medical Multimodal Binding ICCV 2025
Medical decision-making requires integrating diverse medical information, from imaging to clinical narratives. These medical modalities are often acquired in a many-to-many manner. However, current medical vision-language pretraining models (Med-VLPMs) fail to directly account for this many-to-many mapping in their model training and embeddings. To address this, we present Probabilistic Modality-Enhanced Diagnosis (ProbMED), a multimodal Med-VLPM that employs probabilistic contrastive learning to model distributions over embeddings rather than deterministic estimates. ProbMED aligns four distinct modalities -- chest X-rays, electrocardiograms, echocardiograms, and clinical text -- into a unified probabilistic embedding space. We use InfoNCE loss with Hellinger distance to integrate inter-modality distributions. We introduce a probabilistic synthetic sampling loss that captures modality-specific mean and variance to improve intra-modality binding. Extensive experiments across 13 medical datasets demonstrate that our model outperforms current Med-VLPMs in cross-modality retrieval, zero-shot, and few-shot classification. We also demonstrate the robust integration of multiple modalities for prognostication, showing improved intra- and inter-medical modality binding.
comment: ICCV 2025
☆ How Diffusion Models Memorize
Despite their success in image generation, diffusion models can memorize training data, raising serious privacy and copyright concerns. Although prior work has sought to characterize, detect, and mitigate memorization, the fundamental question of why and how it occurs remains unresolved. In this paper, we revisit the diffusion and denoising process and analyze latent space dynamics to address the question: "How do diffusion models memorize?" We show that memorization is driven by the overestimation of training samples during early denoising, which reduces diversity, collapses denoising trajectories, and accelerates convergence toward the memorized image. Specifically: (i) memorization cannot be explained by overfitting alone, as training loss is larger under memorization due to classifier-free guidance amplifying predictions and inducing overestimation; (ii) memorized prompts inject training images into noise predictions, forcing latent trajectories to converge and steering denoising toward their paired samples; and (iii) a decomposition of intermediate latents reveals how initial randomness is quickly suppressed and replaced by memorized content, with deviations from the theoretical denoising schedule correlating almost perfectly with memorization severity. Together, these results identify early overestimation as the central underlying mechanism of memorization in diffusion models.
☆ AIMCoT: Active Information-driven Multimodal Chain-of-Thought for Vision-Language Reasoning ICLR 2026
Multimodal Chain-of-Thought (CoT) has emerged as a powerful technique for enhancing the vision-language reasoning with interleaved information. However, existing methods often rely on simplistic heuristics for constructing interleaved CoT, typically depending on attention maps, which our empirical analysis reveals can be unreliable. What's more, the shortcomings of their passive and purposeless selection strategies and their arbitrary triggering mechanisms in capturing the model's cognitive need for information are further amplified. In this paper, we propose \textbf{AIMCoT}, an \textbf{A}ctive \textbf{I}nformation-driven \textbf{M}ulti-modal \textbf{C}hain-\textbf{o}f-\textbf{T}hought framework that addresses these fundamental limitations. AIMCoT introduces three synergistic components: (1) \textbf{Context-enhanced Attention-map Generation (CAG)}, which mitigates the text-vision granularity imbalance, thereby producing more reliable attention maps as a foundation. (2) \textbf{Active Visual Probing (AVP)}, which replaces passive selection with a proactive, goal-oriented strategy grounded in information theory to select image regions that help answer the questions maximally. (3) \textbf{Dynamic Attention-shifting Trigger (DAT)}, which intelligently determines the optimal moments to insert visual information by monitoring the model's text-to-vision attention shifts. Extensive experiments on three challenging benchmarks demonstrate that AIMCoT significantly outperforms state-of-the-art methods across different settings. By actively foraging for information and dynamically structuring its reasoning process, AIMCoT represents a critical step towards more robust, effective, and human-like multimodal reasoning. Our code is available at https://anonymous.4open.science/r/AIMCoT.
comment: 22 pages, 4 figures, submitted to ICLR 2026
☆ Annotation-Efficient Active Test-Time Adaptation with Conformal Prediction
Active Test-Time Adaptation (ATTA) improves model robustness under domain shift by selectively querying human annotations at deployment, but existing methods use heuristic uncertainty measures and suffer from low data selection efficiency, wasting human annotation budget. We propose Conformal Prediction Active TTA (CPATTA), which first brings principled, coverage-guaranteed uncertainty into ATTA. CPATTA employs smoothed conformal scores with a top-K certainty measure, an online weight-update algorithm driven by pseudo coverage, a domain-shift detector that adapts human supervision, and a staged update scheme balances human-labeled and model-labeled data. Extensive experiments demonstrate that CPATTA consistently outperforms the state-of-the-art ATTA methods by around 5% in accuracy. Our code and datasets are available at https://github.com/tingyushi/CPATTA.
☆ OmniDFA: A Unified Framework for Open Set Synthesis Image Detection and Few-Shot Attribution
AI-generated image (AIGI) detection and source model attribution remain central challenges in combating deepfake abuses, primarily due to the structural diversity of generative models. Current detection methods are prone to overfitting specific forgery traits, whereas source attribution offers a robust alternative through fine-grained feature discrimination. However, synthetic image attribution remains constrained by the scarcity of large-scale, well-categorized synthetic datasets, limiting its practicality and compatibility with detection systems. In this work, we propose a new paradigm for image attribution called open-set, few-shot source identification. This paradigm is designed to reliably identify unseen generators using only limited samples, making it highly suitable for real-world application. To this end, we introduce OmniDFA (Omni Detector and Few-shot Attributor), a novel framework for AIGI that not only assesses the authenticity of images, but also determines the synthesis origins in a few-shot manner. To facilitate this work, we construct OmniFake, a large class-aware synthetic image dataset that curates $1.17$ M images from $45$ distinct generative models, substantially enriching the foundational resources for research on both AIGI detection and attribution. Experiments demonstrate that OmniDFA exhibits excellent capability in open-set attribution and achieves state-of-the-art generalization performance on AIGI detection. Our dataset and code will be made available.
comment: 19 pages, 5 figures
dVLA: Diffusion Vision-Language-Action Model with Multimodal Chain-of-Thought
Vision-Language-Action (VLA) models are emerging as a next-generation paradigm for robotics. We introduce dVLA, a diffusion-based VLA that leverages a multimodal chain-of-thought to unify visual perception, language reasoning, and robotic control in a single system. dVLA jointly optimizes perception, language understanding, and action under a single diffusion objective, enabling stronger cross-modal reasoning and better generalization to novel instructions and objects. For practical deployment, we mitigate inference latency by incorporating two acceleration strategies, a prefix attention mask and KV caching, yielding up to around times speedup at test-time inference. We evaluate dVLA in both simulation and the real world: on the LIBERO benchmark, it achieves state-of-the-art performance with a 96.4% average success rate, consistently surpassing both discrete and continuous action policies; on a real Franka robot, it succeeds across a diverse task suite, including a challenging bin-picking task that requires multi-step planning, demonstrating robust real-world performance. Together, these results underscore the promise of unified diffusion frameworks for practical, high-performance VLA robotics.
comment: technique report
☆ LTA-L2S: Lexical Tone-Aware Lip-to-Speech Synthesis for Mandarin with Cross-Lingual Transfer Learning ICASSP 2026
Lip-to-speech (L2S) synthesis for Mandarin is a significant challenge, hindered by complex viseme-to-phoneme mappings and the critical role of lexical tones in intelligibility. To address this issue, we propose Lexical Tone-Aware Lip-to-Speech (LTA-L2S). To tackle viseme-to-phoneme complexity, our model adapts an English pre-trained audio-visual self-supervised learning (SSL) model via a cross-lingual transfer learning strategy. This strategy not only transfers universal knowledge learned from extensive English data to the Mandarin domain but also circumvents the prohibitive cost of training such a model from scratch. To specifically model lexical tones and enhance intelligibility, we further employ a flow-matching model to generate the F0 contour. This generation process is guided by ASR-fine-tuned SSL speech units, which contain crucial suprasegmental information. The overall speech quality is then elevated through a two-stage training paradigm, where a flow-matching postnet refines the coarse spectrogram from the first stage. Extensive experiments demonstrate that LTA-L2S significantly outperforms existing methods in both speech intelligibility and tonal accuracy.
comment: Submitted to ICASSP 2026
☆ YOLO-Based Defect Detection for Metal Sheets
In this paper, we propose a YOLO-based deep learning (DL) model for automatic defect detection to solve the time-consuming and labor-intensive tasks in industrial manufacturing. In our experiments, the images of metal sheets are used as the dataset for training the YOLO model to detect the defects on the surfaces and in the holes of metal sheets. However, the lack of metal sheet images significantly degrades the performance of detection accuracy. To address this issue, the ConSinGAN is used to generate a considerable amount of data. Four versions of the YOLO model (i.e., YOLOv3, v4, v7, and v9) are combined with the ConSinGAN for data augmentation. The proposed YOLOv9 model with ConSinGAN outperforms the other YOLO models with an accuracy of 91.3%, and a detection time of 146 ms. The proposed YOLOv9 model is integrated into manufacturing hardware and a supervisory control and data acquisition (SCADA) system to establish a practical automated optical inspection (AOI) system. Additionally, the proposed automated defect detection is easily applied to other components in industrial manufacturing.
comment: 5 pages, 8 figures, 2 tables, and published in IEEE IST 2024
☆ DescribeEarth: Describe Anything for Remote Sensing Images
Automated textual description of remote sensing images is crucial for unlocking their full potential in diverse applications, from environmental monitoring to urban planning and disaster management. However, existing studies in remote sensing image captioning primarily focus on the image level, lacking object-level fine-grained interpretation, which prevents the full utilization and transformation of the rich semantic and structural information contained in remote sensing images. To address this limitation, we propose Geo-DLC, a novel task of object-level fine-grained image captioning for remote sensing. To support this task, we construct DE-Dataset, a large-scale dataset contains 25 categories and 261,806 annotated instances with detailed descriptions of object attributes, relationships, and contexts. Furthermore, we introduce DE-Benchmark, a LLM-assisted question-answering based evaluation suite designed to systematically measure model capabilities on the Geo-DLC task. We also present DescribeEarth, a Multi-modal Large Language Model (MLLM) architecture explicitly designed for Geo-DLC, which integrates a scale-adaptive focal strategy and a domain-guided fusion module leveraging remote sensing vision-language model features to encode high-resolution details and remote sensing category priors while maintaining global context. Our DescribeEarth model consistently outperforms state-of-the-art general MLLMs on DE-Benchmark, demonstrating superior factual accuracy, descriptive richness, and grammatical soundness, particularly in capturing intrinsic object features and surrounding environmental attributes across simple, complex, and even out-of-distribution remote sensing scenarios. All data, code and weights are released at https://github.com/earth-insights/DescribeEarth.
☆ Using Images from a Video Game to Improve the Detection of Truck Axles
Convolutional Neural Networks (CNNs) traditionally require large amounts of data to train models with good performance. However, data collection is an expensive process, both in time and resources. Generated synthetic images are a good alternative, with video games producing realistic 3D models. This paper aims to determine whether images extracted from a video game can be effectively used to train a CNN to detect real-life truck axles. Three different databases were created, with real-life and synthetic trucks, to provide training and testing examples for three different You Only Look Once (YOLO) architectures. Results were evaluated based on four metrics: recall, precision, F1-score, and mean Average Precision (mAP). To evaluate the statistical significance of the results, the Mann-Whitney U test was also applied to the resulting mAP of all models. Synthetic images from trucks extracted from a video game proved to be a reliable source of training data, contributing to the performance of all networks. The highest mAP score reached 99\%. Results indicate that synthetic images can be used to train neural networks, providing a reliable, low-cost data source for extracting knowledge.
☆ Generalized Contrastive Learning for Universal Multimodal Retrieval NeurIPS 2025
Despite their consistent performance improvements, cross-modal retrieval models (e.g., CLIP) show degraded performances with retrieving keys composed of fused image-text modality (e.g., Wikipedia pages with both images and text). To address this critical challenge, multimodal retrieval has been recently explored to develop a unified single retrieval model capable of retrieving keys across diverse modality combinations. A common approach involves constructing new composed sets of image-text triplets (e.g., retrieving a pair of image and text given a query image). However, such an approach requires careful curation to ensure the dataset quality and fails to generalize to unseen modality combinations. To overcome these limitations, this paper proposes Generalized Contrastive Learning (GCL), a novel loss formulation that improves multimodal retrieval performance without the burdensome need for new dataset curation. Specifically, GCL operates by enforcing contrastive learning across all modalities within a mini-batch, utilizing existing image-caption paired datasets to learn a unified representation space. We demonstrate the effectiveness of GCL by showing consistent performance improvements on off-the-shelf multimodal retrieval models (e.g., VISTA, CLIP, and TinyCLIP) using the M-BEIR, MMEB, and CoVR benchmarks.
comment: Accepted to NeurIPS 2025
☆ Anchor-free Cross-view Object Geo-localization with Gaussian Position Encoding and Cross-view Association
Most existing cross-view object geo-localization approaches adopt anchor-based paradigm. Although effective, such methods are inherently constrained by predefined anchors. To eliminate this dependency, we first propose an anchor-free formulation for cross-view object geo-localization, termed AFGeo. AFGeo directly predicts the four directional offsets (left, right, top, bottom) to the ground-truth box for each pixel, thereby localizing the object without any predefined anchors. To obtain a more robust spatial prior, AFGeo incorporates Gaussian Position Encoding (GPE) to model the click point in the query image, mitigating the uncertainty of object position that challenges object localization in cross-view scenarios. In addition, AFGeo incorporates a Cross-view Object Association Module (CVOAM) that relates the same object and its surrounding context across viewpoints, enabling reliable localization under large cross-view appearance gaps. By adopting an anchor-free localization paradigm that integrates GPE and CVOAM with minimal parameter overhead, our model is both lightweight and computationally efficient, achieving state-of-the-art performance on benchmark datasets.
☆ LMOD+: A Comprehensive Multimodal Dataset and Benchmark for Developing and Evaluating Multimodal Large Language Models in Ophthalmology
Vision-threatening eye diseases pose a major global health burden, with timely diagnosis limited by workforce shortages and restricted access to specialized care. While multimodal large language models (MLLMs) show promise for medical image interpretation, advancing MLLMs for ophthalmology is hindered by the lack of comprehensive benchmark datasets suitable for evaluating generative models. We present a large-scale multimodal ophthalmology benchmark comprising 32,633 instances with multi-granular annotations across 12 common ophthalmic conditions and 5 imaging modalities. The dataset integrates imaging, anatomical structures, demographics, and free-text annotations, supporting anatomical structure recognition, disease screening, disease staging, and demographic prediction for bias evaluation. This work extends our preliminary LMOD benchmark with three major enhancements: (1) nearly 50% dataset expansion with substantial enlargement of color fundus photography; (2) broadened task coverage including binary disease diagnosis, multi-class diagnosis, severity classification with international grading standards, and demographic prediction; and (3) systematic evaluation of 24 state-of-the-art MLLMs. Our evaluations reveal both promise and limitations. Top-performing models achieved ~58% accuracy in disease screening under zero-shot settings, and performance remained suboptimal for challenging tasks like disease staging. We will publicly release the dataset, curation pipeline, and leaderboard to potentially advance ophthalmic AI applications and reduce the global burden of vision-threatening diseases.
♻ ☆ BRIDGE -- Building Reinforcement-Learning Depth-to-Image Data Generation Engine for Monocular Depth Estimation
Monocular Depth Estimation (MDE) is a foundational task for computer vision. Traditional methods are limited by data scarcity and quality, hindering their robustness. To overcome this, we propose BRIDGE, an RL-optimized depth-to-image (D2I) generation framework that synthesizes over 20M realistic and geometrically accurate RGB images, each intrinsically paired with its ground truth depth, from diverse source depth maps. Then we train our depth estimation model on this dataset, employing a hybrid supervision strategy that integrates teacher pseudo-labels with ground truth depth for comprehensive and robust training. This innovative data generation and training paradigm enables BRIDGE to achieve breakthroughs in scale and domain diversity, consistently outperforming existing state-of-the-art approaches quantitatively and in complex scene detail capture, thereby fostering general and robust depth features. Code and models are available at https://dingning-liu.github.io/bridge.github.io/.
comment: 20 pages, 7 figures
♻ ☆ CHROMA: Consistent Harmonization of Multi-View Appearance via Bilateral Grid Prediction
Modern camera pipelines apply extensive on-device processing, such as exposure adjustment, white balance, and color correction, which, while beneficial individually, often introduce photometric inconsistencies across views. These appearance variations violate multi-view consistency and degrade novel view synthesis. Joint optimization of scene-specific representations and per-image appearance embeddings has been proposed to address this issue, but with increased computational complexity and slower training. In this work, we propose a generalizable, feed-forward approach that predicts spatially adaptive bilateral grids to correct photometric variations in a multi-view consistent manner. Our model processes hundreds of frames in a single step, enabling efficient large-scale harmonization, and seamlessly integrates into downstream 3D reconstruction models, providing cross-scene generalization without requiring scene-specific retraining. To overcome the lack of paired data, we employ a hybrid self-supervised rendering loss leveraging 3D foundation models, improving generalization to real-world variations. Extensive experiments show that our approach outperforms or matches the reconstruction quality of existing scene-specific optimization methods with appearance modeling, without significantly affecting the training time of baseline 3D models.
♻ ☆ Wan-Alpha: High-Quality Text-to-Video Generation with Alpha Channel
RGBA video generation, which includes an alpha channel to represent transparency, is gaining increasing attention across a wide range of applications. However, existing methods often neglect visual quality, limiting their practical usability. In this paper, we propose Wan-Alpha, a new framework that generates transparent videos by learning both RGB and alpha channels jointly. We design an effective variational autoencoder (VAE) that encodes the alpha channel into the RGB latent space. Then, to support the training of our diffusion transformer, we construct a high-quality and diverse RGBA video dataset. Compared with state-of-the-art methods, our model demonstrates superior performance in visual quality, motion realism, and transparency rendering. Notably, our model can generate a wide variety of semi-transparent objects, glowing effects, and fine-grained details such as hair strands. The released model is available on our website: https://donghaotian123.github.io/Wan-Alpha/.
♻ ☆ Decoupled Classifier-Free Guidance for Counterfactual Diffusion Models
Counterfactual generation aims to simulate realistic hypothetical outcomes under causal interventions. Diffusion models have emerged as a powerful tool for this task, combining DDIM inversion with conditional generation and classifier-free guidance (CFG). In this work, we identify a key limitation of CFG for counterfactual generation: it prescribes a global guidance scale for all attributes, leading to significant spurious changes in inferred counterfactuals. To mitigate this, we propose Decoupled Classifier-Free Guidance (DCFG), a flexible and model-agnostic guidance technique that enables attribute-wise control following a causal graph. DCFG is implemented via a simple attribute-split embedding strategy that disentangles semantic inputs, enabling selective guidance on user-defined attribute groups.
♻ ☆ PHASE-Net: Physics-Grounded Harmonic Attention System for Efficient Remote Photoplethysmography Measurement
Remote photoplethysmography (rPPG) measurement enables non-contact physiological monitoring but suffers from accuracy degradation under head motion and illumination changes. Existing deep learning methods are mostly heuristic and lack theoretical grounding, which limits robustness and interpretability. In this work, we propose a physics-informed rPPG paradigm derived from the Navier-Stokes equations of hemodynamics, showing that the pulse signal follows a second-order dynamical system whose discrete solution naturally leads to a causal convolution. This provides a theoretical justification for using a Temporal Convolutional Network (TCN). Based on this principle, we design PHASE-Net, a lightweight model with three key components: (1) Zero-FLOPs Axial Swapper module, which swaps or transposes a few spatial channels to mix distant facial regions and enhance cross-region feature interaction without breaking temporal order; (2) Adaptive Spatial Filter, which learns a soft spatial mask per frame to highlight signal-rich areas and suppress noise; and (3) Gated TCN, a causal dilated TCN with gating that models long-range temporal dynamics for accurate pulse recovery. Extensive experiments demonstrate that PHASE-Net achieves state-of-the-art performance with strong efficiency, offering a theoretically grounded and deployment-ready rPPG solution.
VSSFlow: Unifying Video-conditioned Sound and Speech Generation via Joint Learning
Video-conditioned sound and speech generation, encompassing video-to-sound (V2S) and visual text-to-speech (VisualTTS) tasks, are conventionally addressed as separate tasks, with limited exploration to unify them within a signle framework. Recent attempts to unify V2S and VisualTTS face challenges in handling distinct condition types (e.g., heterogeneous video and transcript conditions) and require complex training stages. Unifying these two tasks remains an open problem. To bridge this gap, we present VSSFlow, which seamlessly integrates both V2S and VisualTTS tasks into a unified flow-matching framework. VSSFlow uses a novel condition aggregation mechanism to handle distinct input signals. We find that cross-attention and self-attention layer exhibit different inductive biases in the process of introducing condition. Therefore, VSSFlow leverages these inductive biases to effectively handle different representations: cross-attention for ambiguous video conditions and self-attention for more deterministic speech transcripts. Furthermore, contrary to the prevailing belief that joint training on the two tasks requires complex training strategies and may degrade performance, we find that VSSFlow benefits from the end-to-end joint learning process for sound and speech generation without extra designs on training stages. Detailed analysis attributes it to the learned general audio prior shared between tasks, which accelerates convergence, enhances conditional generation, and stabilizes the classifier-free guidance process. Extensive experiments demonstrate that VSSFlow surpasses the state-of-the-art domain-specific baselines on both V2S and VisualTTS benchmarks, underscoring the critical potential of unified generative models.
comment: Paper Under Review
♻ ☆ RIFLE: Removal of Image Flicker-Banding via Latent Diffusion Enhancement
Capturing screens is now routine in our everyday lives. But the photographs of emissive displays are often influenced by the flicker-banding (FB), which is alternating bright%u2013dark stripes that arise from temporal aliasing between a camera's rolling-shutter readout and the display's brightness modulation. Unlike moire degradation, which has been extensively studied, the FB remains underexplored despite its frequent and severe impact on readability and perceived quality. We formulate FB removal as a dedicated restoration task and introduce Removal of Image Flicker-Banding via Latent Diffusion Enhancement, RIFLE, a diffusion-based framework designed to remove FB while preserving fine details. We propose the flicker-banding prior estimator (FPE) that predicts key banding attributes and injects it into the restoration network. Additionally, Masked Loss (ML) is proposed to concentrate supervision on banded regions without sacrificing global fidelity. To overcome data scarcity, we provide a simulation pipeline that synthesizes FB in the luminance domain with stochastic jitter in banding angle, banding spacing, and banding width. Feathered boundaries and sensor noise are also applied for a more realistic simulation. For evaluation, we collect a paired real-world FB dataset with pixel-aligned banding-free references captured via long exposure. Across quantitative metrics and visual comparisons on our real-world dataset, RIFLE consistently outperforms recent image reconstruction baselines from mild to severe flicker-banding. To the best of our knowledge, it is the first work to research the simulation and removal of FB. Our work establishes a great foundation for subsequent research in both the dataset construction and the removal model design. Our dataset and code will be released soon.
♻ ☆ Causality-guided Prompt Learning for Vision-language Models via Visual Granulation
Prompt learning has recently attracted much attention for adapting pre-trained vision-language models (e.g., CLIP) to downstream recognition tasks. However, most of the existing CLIP-based prompt learning methods only show a limited ability for handling fine-grained datasets. To address this issue, we propose a causality-guided text prompt learning method via visual granulation for CLIP, called CaPL, where the explored visual granulation technique could construct sets of visual granules for the text prompt to capture subtle discrepancies among different fine-grained classes through casual inference. The CaPL method contains the following two modules: (1) An attribute disentanglement module is proposed to decompose visual features into non-individualized attributes (shared by some classes) and individualized attributes (specific to single classes) using a Brownian Bridge Diffusion Model; (2) A granule learning module is proposed to construct visual granules by integrating the aforementioned attributes for recognition under two causal inference strategies. Thanks to the learned visual granules, more discriminative text prompt is expected to be learned. Extensive experimental results on 15 datasets demonstrate that our CaPL method significantly outperforms the state-of-the-art prompt learning methods, especially on fine-grained datasets.
comment: Updated version
♻ ☆ MindVL: Towards Efficient and Effective Training of Multimodal Large Language Models on Ascend NPUs
We propose MindVL, a multimodal large language model (MLLMs) trained on Ascend NPUs. The training of state-of-the-art MLLMs is often confined to a limited set of hardware platforms and relies heavily on massive, undisclosed data recipes, which hinders reproducibility and open research. To change the common perception that Ascend hardware is unsuitable for efficient full-stage MLLM training, we introduce MindSpeed-MLLM, a highly efficient training framework that supports stable and high-performance training of large-scale Dense and Mixture-of-Experts (MoE) models on Ascend hardware. Based on this, we provide a systematic and open description of the data production methods and mixing strategies for all training stages. Furthermore, we present MindVL, a data-efficient multimodal large language model trained end-to-end on Ascend NPUs. In addition, we find that averaging weights from checkpoints trained with different sequence lengths is particularly effective and yields further gains when combined with test-time resolution search. Our experiments demonstrate superior data efficiency: MindVL-8B matches the performance of Qwen2.5VL-7B using only 10\% of its training data, while our MoE model, MindVL-671B-A37B, matches Qwen2.5VL-72B using only 3\% of the Qwen2.5VL training data, and achieves comparable performance with other leading multimodal MoE models. Our work provides the community with a valuable hardware alternative, open data recipes, and effective performance-enhancing techniques.
♻ ☆ UI-UG: A Unified MLLM for UI Understanding and Generation
Although Multimodal Large Language Models (MLLMs) have been widely applied across domains, they are still facing challenges in domain-specific tasks, such as User Interface (UI) understanding accuracy and UI generation quality. In this paper, we introduce UI-UG (a unified MLLM for UI Understanding and Generation), integrating both capabilities. For understanding tasks, we employ Supervised Fine-tuning (SFT) combined with Group Relative Policy Optimization (GRPO) to enhance fine-grained understanding on the modern complex UI data. For generation tasks, we further use Direct Preference Optimization (DPO) to make our model generate human-preferred UIs. In addition, we propose an industrially effective workflow, including the design of an LLM-friendly domain-specific language (DSL), training strategies, rendering processes, and evaluation metrics. In experiments, our model achieves state-of-the-art (SOTA) performance on understanding tasks, outperforming both larger general-purpose MLLMs and similarly-sized UI-specialized models. Our model is also on par with these larger MLLMs in UI generation performance at a fraction of the computational cost. We also demonstrate that integrating understanding and generation tasks can improve accuracy and quality for both tasks. Code and Model: https://github.com/neovateai/UI-UG
♻ ☆ FrameThinker: Learning to Think with Long Videos via Multi-Turn Frame Spotlighting
While Large Vision-Language Models (LVLMs) have achieved substantial progress in video understanding, their application to long video reasoning is hindered by uniform frame sampling and static textual reasoning, which are inefficient and struggle to handle visually intensive video tasks. To overcome these challenges, in this paper, we introduce the concept of thinking with long videos and propose a novel framework FrameThinker. Within this framework, LVLMs are able to iteratively interrogate video content. Developing such video reasoning capabilities in LVLMs presents notable challenges, particularly in adapting the model to new video actions (e.g. select frame), and designing reward functions to guide LVLMs to adopt the newly introduced action. To solve these challenges, we propose a two-phase training strategy, first employing Supervised Fine-Tuning (SFT) to instill fundamental action capabilities, followed by Reinforcement Learning (RL) to optimize a strategic decision-making policy. Notably, in this RL phase, we conduct an in-depth and comprehensive exploration of the reward design for each action and format reward. Extensive experiments on reasoning benchmarks like Video-Holmes, LongVideo-Reason, and long-video understanding benchmarks such as LongVideoBench, MLVU, VideoMME, and LVBench, demonstrate that FrameThinker achieves a significant average improvement of +10.4% over baselines while drastically reducing the number of processed frames. Most notably, our 7B model, FrameThinker establishes a new state-of-the-art on LongVideo-Reason, achieving 76.1% accuracy using an average of only 20.6 frames. This not only outperforms the competitive LongVILA-R1 (72.0%) but does so with over 20x fewer frames (vs. 512), demonstrating unparalleled efficiency and effectiveness.
FlashEdit: Decoupling Speed, Structure, and Semantics for Precise Image Editing
Text-guided image editing with diffusion models has achieved remarkable quality but suffers from prohibitive latency, hindering real-world applications. We introduce FlashEdit, a novel framework designed to enable high-fidelity, real-time image editing. Its efficiency stems from three key innovations: (1) a One-Step Inversion-and-Editing (OSIE) pipeline that bypasses costly iterative processes; (2) a Background Shield (BG-Shield) technique that guarantees background preservation by selectively modifying features only within the edit region; and (3) a Sparsified Spatial Cross-Attention (SSCA) mechanism that ensures precise, localized edits by suppressing semantic leakage to the background. Extensive experiments demonstrate that FlashEdit maintains superior background consistency and structural integrity, while performing edits in under 0.2 seconds, which is an over 150$\times$ speedup compared to prior multi-step methods. Our code will be made publicly available at https://github.com/JunyiWuCode/FlashEdit.
comment: We need to improve our work
♻ ☆ MIAFEx: An Attention-based Feature Extraction Method for Medical Image Classification
Feature extraction techniques are crucial in medical image classification; however, classical feature extractors, in addition to traditional machine learning classifiers, often exhibit significant limitations in providing sufficient discriminative information for complex image sets. While Convolutional Neural Networks (CNNs) and Vision Transformer (ViT) have shown promise in feature extraction, they are prone to overfitting due to the inherent characteristics of medical imaging data, including small sample sizes or high intra-class variance. In this work, the Medical Image Attention-based Feature Extractor (MIAFEx) is proposed, a novel method that employs a learnable refinement mechanism to enhance the classification token within the Transformer encoder architecture. This mechanism adjusts the token based on learned weights, improving the extraction of salient features and enhancing the model's adaptability to the challenges presented by medical imaging data. The MIAFEx output feature quality is compared against classical feature extractors using traditional and hybrid classifiers. Also, the performance of these features is compared against modern CNN and ViT models in classification tasks, demonstrating their superiority in accuracy and robustness across multiple complex medical imaging datasets. This advantage is particularly pronounced in scenarios with limited training data, where traditional and modern models often struggle to generalize effectively. The source code of this proposal can be found at https://github.com/Oscar-RamosS/Medical-Image-Attention-based-Feature-Extractor-MIAFEx
comment: This is the preprint version of an article that has been accepted for publication in Knowledge-Based Systems
♻ ☆ UniVid: The Open-Source Unified Video Model
Unified video modeling that combines generation and understanding capabilities is increasingly important but faces two key challenges: maintaining semantic faithfulness during flow-based generation due to text-visual token imbalance and the limitations of uniform cross-modal attention across the flow trajectory, and efficiently extending image-centric MLLMs to video without costly retraining. We present UniVid, a unified architecture that couples an MLLM with a diffusion decoder through a lightweight adapter, enabling both video understanding and generation. We introduce Temperature Modality Alignment to improve prompt adherence and Pyramid Reflection for efficient temporal reasoning via dynamic keyframe selection. Extensive experiments on standard benchmarks demonstrate state-of-the-art performance, achieving a 2.2% improvement on VBench-Long total score compared to EasyAnimateV5.1, and 1.0% and 3.3% accuracy gains on MSVD-QA and ActivityNet-QA, respectively, compared with the best prior 7B baselines. Code: https://github.com/AIGeeksGroup/UniVid. Website: https://aigeeksgroup.github.io/UniVid.
♻ ☆ FameMind: Frame-Interleaved Video Reasoning via Reinforcement Learning
Current video understanding models rely on fixed frame sampling strategies, processing predetermined visual inputs regardless of the specific reasoning requirements of each question. This static approach limits their ability to adaptively gather visual evidence, leading to suboptimal performance on tasks that require either broad temporal coverage or fine-grained spatial detail. In this paper, we introduce FrameMind, an end-to-end framework trained with reinforcement learning that enables models to dynamically request visual information during reasoning through Frame-Interleaved Chain-of-Thought (FiCOT). Unlike traditional approaches, FrameMind operates in multiple turns where the model alternates between textual reasoning and active visual perception, using tools to extract targeted frames or video clips based on identified knowledge gaps. To train effective dynamic sampling policies, we propose Dynamic Resolution Frame Sampling (DRFS), which exposes models to diverse temporal-spatial trade-offs during learning, and DRFS-GRPO, a group-relative policy optimization algorithm that learns from outcome-based rewards without requiring frame-level annotations. Extensive experiments on challenging benchmarks like MLVU and VideoMME demonstrate that our method significantly outperforms existing models, advancing the state of the art in flexible and efficient video understanding.
comment: Underreview
♻ ☆ EditScore: Unlocking Online RL for Image Editing via High-Fidelity Reward Modeling
Instruction-guided image editing has achieved remarkable progress, yet current models still face challenges with complex instructions and often require multiple samples to produce a desired result. Reinforcement Learning (RL) offers a promising solution, but its adoption in image editing has been severely hindered by the lack of a high-fidelity, efficient reward signal. In this work, we present a comprehensive methodology to overcome this barrier, centered on the development of a state-of-the-art, specialized reward model. We first introduce EditReward-Bench, a comprehensive benchmark to systematically evaluate reward models on editing quality. Building on this benchmark, we develop EditScore, a series of reward models (7B-72B) for evaluating the quality of instruction-guided image editing. Through meticulous data curation and filtering, EditScore effectively matches the performance of learning proprietary VLMs. Furthermore, coupled with an effective self-ensemble strategy tailored for the generative nature of EditScore, our largest variant even surpasses GPT-5 in the benchmark. We then demonstrate that a high-fidelity reward model is the key to unlocking online RL for image editing. Our experiments show that, while even the largest open-source VLMs fail to provide an effective learning signal, EditScore enables efficient and robust policy optimization. Applying our framework to a strong base model, OmniGen2, results in a final model that shows a substantial and consistent performance uplift. Overall, this work provides the first systematic path from benchmarking to reward modeling to RL training in image editing, showing that a high-fidelity, domain-specialized reward model is the key to unlocking the full potential of RL in this domain.
comment: Code, Models and benchmark will be publicly available at https://github.com/VectorSpaceLab/EditScore
♻ ☆ Seeing Through Deception: Uncovering Misleading Creator Intent in Multimodal News with Vision-Language Models
The impact of misinformation arises not only from factual inaccuracies but also from the misleading narratives that creators deliberately embed. Interpreting such creator intent is therefore essential for multimodal misinformation detection (MMD) and effective information governance. To this end, we introduce DeceptionDecoded, a large-scale benchmark of 12,000 image-caption pairs grounded in trustworthy reference articles, created using an intent-guided simulation framework that models both the desired influence and the execution plan of news creators. The dataset captures both misleading and non-misleading cases, spanning manipulations across visual and textual modalities, and supports three intent-centric tasks: (1) misleading intent detection, (2) misleading source attribution, and (3) creator desire inference. We evaluate 14 state-of-the-art vision-language models (VLMs) and find that they struggle with intent reasoning, often relying on shallow cues such as surface-level alignment, stylistic polish, or heuristic authenticity signals. These results highlight the limitations of current VLMs and position DeceptionDecoded as a foundation for developing intent-aware models that go beyond shallow cues in MMD.
♻ ☆ ODE-GS: Latent ODEs for Dynamic Scene Extrapolation with 3D Gaussian Splatting
We introduce ODE-GS, a novel approach that integrates 3D Gaussian Splatting with latent neural ordinary differential equations (ODEs) to enable future extrapolation of dynamic 3D scenes. Unlike existing dynamic scene reconstruction methods, which rely on time-conditioned deformation networks and are limited to interpolation within a fixed time window, ODE-GS eliminates timestamp dependency by modeling Gaussian parameter trajectories as continuous-time latent dynamics. Our approach first learns an interpolation model to generate accurate Gaussian trajectories within the observed window, then trains a Transformer encoder to aggregate past trajectories into a latent state evolved via a neural ODE. Finally, numerical integration produces smooth, physically plausible future Gaussian trajectories, enabling rendering at arbitrary future timestamps. On the D-NeRF, NVFi, and HyperNeRF benchmarks, ODE-GS achieves state-of-the-art extrapolation performance, improving metrics by 19.8% compared to leading baselines, demonstrating its ability to accurately represent and predict 3D scene dynamics.
♻ ☆ VerlTool: Towards Holistic Agentic Reinforcement Learning with Tool Use
Reinforcement Learning with Verifiable Rewards (RLVR) has demonstrated success in enhancing LLM reasoning capabilities, but remains limited to single-turn interactions without tool integration. While recent Agentic Reinforcement Learning with Tool use (ARLT) approaches have emerged to address multi-turn tool interactions, existing works develop task-specific codebases that suffer from fragmentation, synchronous execution bottlenecks, and limited extensibility across domains. These inefficiencies hinder broader community adoption and algorithmic innovation. We introduce VerlTool, a unified and modular framework that addresses these limitations through systematic design principles. VerlTool provides four key contributions: (1) upstream alignment with VeRL ensuring compatibility and simplified maintenance, (2) unified tool management via standardized APIs supporting diverse modalities including code execution, search, SQL databases, and vision processing, (3) asynchronous rollout execution achieving near 2$\times$ speedup by eliminating synchronization bottlenecks, and (4) comprehensive evaluation demonstrating competitive performance across 6 ARLT domains. Our framework formalizes ARLT as multi-turn trajectories with multi-modal observation tokens (text/image/video), extending beyond single-turn RLVR paradigms. We train and evaluate models on mathematical reasoning, knowledge QA, SQL generation, visual reasoning, web search, and software engineering tasks, achieving results comparable to specialized systems while providing unified training infrastructure. The modular plugin architecture enables rapid tool integration requiring only lightweight Python definitions, significantly reducing development overhead and providing a scalable foundation for tool-augmented RL research. Our code is open-sourced at https://github.com/TIGER-AI-Lab/verl-tool.
comment: 32 pages, 5 figures, 13 tables
♻ ☆ BoxDreamer: Dreaming Box Corners for Generalizable Object Pose Estimation ICCV 2025
This paper presents a generalizable RGB-based approach for object pose estimation, specifically designed to address challenges in sparse-view settings. While existing methods can estimate the poses of unseen objects, their generalization ability remains limited in scenarios involving occlusions and sparse reference views, restricting their real-world applicability. To overcome these limitations, we introduce corner points of the object bounding box as an intermediate representation of the object pose. The 3D object corners can be reliably recovered from sparse input views, while the 2D corner points in the target view are estimated through a novel reference-based point synthesizer, which works well even in scenarios involving occlusions. As object semantic points, object corners naturally establish 2D-3D correspondences for object pose estimation with a PnP algorithm. Extensive experiments on the YCB-Video and Occluded-LINEMOD datasets show that our approach outperforms state-of-the-art methods, highlighting the effectiveness of the proposed representation and significantly enhancing the generalization capabilities of object pose estimation, which is crucial for real-world applications.
comment: ICCV 2025 Camera Ready, Project page: https://zju3dv.github.io/boxdreamer
♻ ☆ FM-SIREN & FM-FINER: Nyquist-Informed Frequency Multiplier for Implicit Neural Representation with Periodic Activation
Existing periodic activation-based implicit neural representation (INR) networks, such as SIREN and FINER, suffer from hidden feature redundancy, where neurons within a layer capture overlapping frequency components due to the use of a fixed frequency multiplier. This redundancy limits the expressive capacity of multilayer perceptrons (MLPs). Drawing inspiration from classical signal processing methods such as the Discrete Sine Transform (DST), we propose FM-SIREN and FM-FINER, which assign Nyquist-informed, neuron-specific frequency multipliers to periodic activations. Unlike existing approaches, our design introduces frequency diversity without requiring hyperparameter tuning or additional network depth. This simple yet principled modification reduces the redundancy of features by nearly 50% and consistently improves signal reconstruction across diverse INR tasks, including fitting 1D audio, 2D image and 3D shape, and synthesis of neural radiance fields (NeRF), outperforming their baseline counterparts while maintaining efficiency.
♻ ☆ Unlocking Transfer Learning for Open-World Few-Shot Recognition NeurIPS 2025
Few-Shot Open-Set Recognition (FSOSR) targets a critical real-world challenge, aiming to categorize inputs into known categories, termed closed-set classes, while identifying open-set inputs that fall outside these classes. Although transfer learning where a model is tuned to a given few-shot task has become a prominent paradigm in closed-world, we observe that it fails to expand to open-world. To unlock this challenge, we propose a two-stage method which consists of open-set aware meta-learning with open-set free transfer learning. In the open-set aware meta-learning stage, a model is trained to establish a metric space that serves as a beneficial starting point for the subsequent stage. During the open-set free transfer learning stage, the model is further adapted to a specific target task through transfer learning. Additionally, we introduce a strategy to simulate open-set examples by modifying the training dataset or generating pseudo open-set examples. The proposed method achieves state-of-the-art performance on two widely recognized benchmarks, miniImageNet and tieredImageNet, with only a 1.5\% increase in training effort. Our work demonstrates the effectiveness of transfer learning in FSOSR.
comment: Accepted at NeurIPS 2025 workshop
♻ ☆ Deep Taxonomic Networks for Unsupervised Hierarchical Prototype Discovery NeurIPS 2025
Inspired by the human ability to learn and organize knowledge into hierarchical taxonomies with prototypes, this paper addresses key limitations in current deep hierarchical clustering methods. Existing methods often tie the structure to the number of classes and underutilize the rich prototype information available at intermediate hierarchical levels. We introduce deep taxonomic networks, a novel deep latent variable approach designed to bridge these gaps. Our method optimizes a large latent taxonomic hierarchy, specifically a complete binary tree structured mixture-of-Gaussian prior within a variational inference framework, to automatically discover taxonomic structures and associated prototype clusters directly from unlabeled data without assuming true label sizes. We analytically show that optimizing the ELBO of our method encourages the discovery of hierarchical relationships among prototypes. Empirically, our learned models demonstrate strong hierarchical clustering performance, outperforming baselines across diverse image classification datasets using our novel evaluation mechanism that leverages prototype clusters discovered at all hierarchical levels. Qualitative results further reveal that deep taxonomic networks discover rich and interpretable hierarchical taxonomies, capturing both coarse-grained semantic categories and fine-grained visual distinctions.
comment: NeurIPS 2025
♻ ☆ CE-SDWV: Effective and Efficient Concept Erasure for Text-to-Image Diffusion Models via a Semantic-Driven Word Vocabulary
Large-scale text-to-image (T2I) diffusion models have achieved remarkable generative performance about various concepts. With the limitation of privacy and safety in practice, the generative capability concerning NSFW (Not Safe For Work) concepts is undesirable, e.g., producing sexually explicit photos, and licensed images. The concept erasure task for T2I diffusion models has attracted considerable attention and requires an effective and efficient method. To achieve this goal, we propose a CE-SDWV framework, which removes the target concepts (e.g., NSFW concepts) of T2I diffusion models in the text semantic space by only adjusting the text condition tokens and does not need to re-train the original T2I diffusion model's weights. Specifically, our framework first builds a target concept-related word vocabulary to enhance the representation of the target concepts within the text semantic space, and then utilizes an adaptive semantic component suppression strategy to ablate the target concept-related semantic information in the text condition tokens. To further adapt the above text condition tokens to the original image semantic space, we propose an end-to-end gradient-orthogonal token optimization strategy. Extensive experiments on I2P and UnlearnCanvas benchmarks demonstrate the effectiveness and efficiency of our method. Code is available at https://github.com/TtuHamg/CE-SDWV.
comment: 25 pages, 14 figures
♻ ☆ Photography Perspective Composition: Towards Aesthetic Perspective Recommendation NeurIPS25
Traditional photography composition approaches are dominated by 2D cropping-based methods. However, these methods fall short when scenes contain poorly arranged subjects. Professional photographers often employ perspective adjustment as a form of 3D recomposition, modifying the projected 2D relationships between subjects while maintaining their actual spatial positions to achieve better compositional balance. Inspired by this artistic practice, we propose photography perspective composition (PPC), extending beyond traditional cropping-based methods. However, implementing the PPC faces significant challenges: the scarcity of perspective transformation datasets and undefined assessment criteria for perspective quality. To address these challenges, we present three key contributions: (1) An automated framework for building PPC datasets through expert photographs. (2) A video generation approach that demonstrates the transformation process from less favorable to aesthetically enhanced perspectives. (3) A perspective quality assessment (PQA) model constructed based on human performance. Our approach is concise and requires no additional prompt instructions or camera trajectories, helping and guiding ordinary users to enhance their composition skills.
comment: Accepted at NeurIPS25
♻ ☆ Developing Generalist Foundation Models from a Multimodal Dataset for 3D Computed Tomography
Advancements in medical imaging AI, particularly in 3D imaging, have been limited due to the scarcity of comprehensive datasets. We introduce CT-RATE, a public dataset that pairs 3D medical images with corresponding textual reports. CT-RATE comprises 25,692 non-contrast 3D chest CT scans from 21,304 unique patients. Each scan is accompanied by its corresponding radiology report. Leveraging CT-RATE, we develop CT-CLIP, a CT-focused contrastive language-image pretraining framework designed for broad applications without the need for task-specific training. We demonstrate how CT-CLIP can be used in multi-abnormality detection and case retrieval, and outperforms state-of-the-art fully supervised models across all key metrics. By combining CT-CLIP's vision encoder with a pretrained large language model, we create CT-CHAT, a vision-language foundational chat model for 3D chest CT volumes. Finetuned on over 2.7 million question-answer pairs derived from the CT-RATE dataset, CT-CHAT underscores the necessity for specialized methods in 3D medical imaging. Collectively, the open-source release of CT-RATE, CT-CLIP, and CT-CHAT not only addresses critical challenges in 3D medical imaging but also lays the groundwork for future innovations in medical AI and improved patient care.
♻ ☆ A Survey on SAR ship classification using Deep Learning
Deep learning (DL) has emerged as a powerful tool for Synthetic Aperture Radar (SAR) ship classification. This survey comprehensively analyzes the diverse DL techniques employed in this domain. We identify critical trends and challenges, highlighting the importance of integrating handcrafted features, utilizing public datasets, data augmentation, fine-tuning, explainability techniques, and fostering interdisciplinary collaborations to improve DL model performance. This survey establishes a first-of-its-kind taxonomy for categorizing relevant research based on DL models, handcrafted feature use, SAR attribute utilization, and the impact of fine-tuning. We discuss the methodologies used in SAR ship classification tasks and the impact of different techniques. Finally, the survey explores potential avenues for future research, including addressing data scarcity, exploring novel DL architectures, incorporating interpretability techniques, and establishing standardized performance metrics. By addressing these challenges and leveraging advancements in DL, researchers can contribute to developing more accurate and efficient ship classification systems, ultimately enhancing maritime surveillance and related applications.
comment: Submitted to JSTARS journal
♻ ☆ RealLiFe: Real-Time Light Field Reconstruction via Hierarchical Sparse Gradient Descent
With the rise of Extended Reality (XR) technology, there is a growing need for real-time light field generation from sparse view inputs. Existing methods can be classified into offline techniques, which can generate high-quality novel views but at the cost of long inference/training time, and online methods, which either lack generalizability or produce unsatisfactory results. However, we have observed that the intrinsic sparse manifold of Multi-plane Images (MPI) enables a significant acceleration of light field generation while maintaining rendering quality. Based on this insight, we introduce EffLiFe, a novel light field optimization method, which leverages the proposed Hierarchical Sparse Gradient Descent (HSGD) to produce high-quality light fields from sparse view images in real time. Technically, the coarse MPI of a scene is first generated using a 3D CNN, and it is further sparsely optimized by focusing only on important MPI gradients in a few iterations. Nevertheless, relying solely on optimization can lead to artifacts at occlusion boundaries. Therefore, we propose an occlusion-aware iterative refinement module that removes visual artifacts in occluded regions by iteratively filtering the input. Extensive experiments demonstrate that our method achieves comparable visual quality while being 100x faster on average than state-of-the-art offline methods and delivering better performance (about 2 dB higher in PSNR) compared to other online approaches.
comment: Submitted to IEEE TPAMI
♻ ☆ Multi-temporal crack segmentation in concrete structures using deep learning approaches
Cracks are among the earliest indicators of deterioration in concrete structures. Early automatic detection of these cracks can significantly extend the lifespan of critical infrastructures, such as bridges, buildings, and tunnels, while simultaneously reducing maintenance costs and facilitating efficient structural health monitoring. This study investigates whether leveraging multi-temporal data for crack segmentation can enhance segmentation quality. Therefore, we compare a Swin UNETR trained on multi-temporal data with a U-Net trained on mono-temporal data to assess the effect of temporal information compared with conventional single-epoch approaches. To this end, a multi-temporal dataset comprising 1356 images, each with 32 sequential crack propagation images, was created. After training the models, experiments were conducted to analyze their generalization ability, temporal consistency, and segmentation quality. The multi-temporal approach consistently outperformed its mono-temporal counterpart, achieving an IoU of $82.72\%$ and a F1-score of $90.54\%$, representing a significant improvement over the mono-temporal model's IoU of $76.69\%$ and F1-score of $86.18\%$, despite requiring only half of the trainable parameters. The multi-temporal model also displayed a more consistent segmentation quality, with reduced noise and fewer errors. These results suggest that temporal information significantly enhances the performance of segmentation models, offering a promising solution for improved crack detection and the long-term monitoring of concrete structures, even with limited sequential data.
♻ ☆ Octic Vision Transformers: Quicker ViTs Through Equivariance
Why are state-of-the-art Vision Transformers (ViTs) not designed to exploit natural geometric symmetries such as 90-degree rotations and reflections? In this paper, we argue that there is no fundamental reason, and what has been missing is an efficient implementation. To this end, we introduce Octic Vision Transformers (octic ViTs) which rely on octic group equivariance to capture these symmetries. In contrast to prior equivariant models that increase computational cost, our octic linear layers achieve 5.33x reductions in FLOPs and up to 8x reductions in memory compared to ordinary linear layers. In full octic ViT blocks the computational reductions approach the reductions in the linear layers with increased embedding dimension. We study two new families of ViTs, built from octic blocks, that are either fully octic equivariant or break equivariance in the last part of the network. Training octic ViTs supervised (DeiT-III) and unsupervised (DINOv2) on ImageNet-1K, we find that they match baseline accuracy while at the same time providing substantial efficiency gains.
♻ ☆ Spatial-Spectral Binarized Neural Network for Panchromatic and Multi-spectral Images Fusion
Remote sensing pansharpening aims to reconstruct spatial-spectral properties during the fusion of panchromatic (PAN) images and low-resolution multi-spectral (LR-MS) images, finally generating the high-resolution multi-spectral (HR-MS) images. Although deep learning-based models have achieved excellent performance, they often come with high computational complexity, which hinder their applications on resource-limited devices. In this paper, we explore the feasibility of applying the binary neural network (BNN) to pan-sharpening. Nevertheless, there are two main issues with binarizing pan-sharpening models: (i) the binarization will cause serious spectral distortion due to the inconsistent spectral distribution of the PAN/LR-MS images; (ii) the common binary convolution kernel is difficult to adapt to the multi-scale and anisotropic spatial features of remote sensing objects, resulting in serious degradation of contours. To address the above issues, we design the customized spatial-spectral binarized convolution (S2B-Conv), which is composed of the Spectral-Redistribution Mechanism (SRM) and Gabor Spatial Feature Amplifier (GSFA). Specifically, SRM employs an affine transformation, generating its scaling and bias parameters through a dynamic learning process. GSFA, which randomly selects different frequencies and angles within a preset range, enables to better handle multi-scale and-directional spatial features. A series of S2B-Conv form a brand-new binary network for pan-sharpening, dubbed as S2BNet. Extensive quantitative and qualitative experiments have shown our high-efficiency binarized pan-sharpening method can attain a promising performance.
♻ ☆ Incentivizing Reasoning for Advanced Instruction-Following of Large Language Models NeurIPS 2025
Existing large language models (LLMs) face challenges of following complex instructions, especially when multiple constraints are present and organized in paralleling, chaining, and branching structures. One intuitive solution, namely chain-of-thought (CoT), is expected to universally improve capabilities of LLMs. However, we find that the vanilla CoT exerts a negative impact on performance due to its superficial reasoning pattern of simply paraphrasing the instructions. It fails to peel back the compositions of constraints for identifying their relationship across hierarchies of types and dimensions. To this end, we propose RAIF, a systematic method to boost LLMs in dealing with complex instructions via incentivizing reasoning for test-time compute scaling. First, we stem from the decomposition of complex instructions under existing taxonomies and propose a reproducible data acquisition method. Second, we exploit reinforcement learning (RL) with verifiable rule-centric reward signals to cultivate reasoning specifically for instruction following. We address the shallow, non-essential nature of reasoning under complex instructions via sample-wise contrast for superior CoT enforcement. We also exploit behavior cloning of experts to facilitate steady distribution shift from fast-thinking LLMs to skillful reasoners. Extensive evaluations on seven comprehensive benchmarks confirm the validity of the proposed method, where a 1.5B LLM achieves 11.74% gains with performance comparable to a 8B LLM. Evaluation on OOD constraints also confirms the generalizability of our RAIF. Codes and data are available at https://github.com/yuleiqin/RAIF. Keywords: reinforcement learning with verifiable rewards (RLVR), instruction following, complex instructions
comment: Accepted to NeurIPS 2025; 15 pages of main body, 5 tables, 5 figures, 42 pages of appendix
♻ ☆ CODA: Repurposing Continuous VAEs for Discrete Tokenization
Discrete visual tokenizers transform images into a sequence of tokens, enabling token-based visual generation akin to language models. However, this process is inherently challenging, as it requires both compressing visual signals into a compact representation and discretizing them into a fixed set of codes. Traditional discrete tokenizers typically learn the two tasks jointly, often leading to unstable training, low codebook utilization, and limited reconstruction quality. In this paper, we introduce \textbf{CODA}(\textbf{CO}ntinuous-to-\textbf{D}iscrete \textbf{A}daptation), a framework that decouples compression and discretization. Instead of training discrete tokenizers from scratch, CODA adapts off-the-shelf continuous VAEs -- already optimized for perceptual compression -- into discrete tokenizers via a carefully designed discretization process. By primarily focusing on discretization, CODA ensures stable and efficient training while retaining the strong visual fidelity of continuous VAEs. Empirically, with $\mathbf{6 \times}$ less training budget than standard VQGAN, our approach achieves a remarkable codebook utilization of 100% and notable reconstruction FID (rFID) of $\mathbf{0.43}$ and $\mathbf{1.34}$ for $8 \times$ and $16 \times$ compression on ImageNet 256$\times$ 256 benchmark.
comment: Project page: https://lzy-tony.github.io/coda
♻ ☆ Simple yet Effective Semi-supervised Knowledge Distillation from Vision-Language Models via Dual-Head Optimization
Semi-supervised learning (SSL) has emerged as a practical solution for addressing data scarcity challenges by leveraging unlabeled data. Recently, vision-language models (VLMs), pre-trained on massive image-text pairs, have demonstrated remarkable zero-/few-shot performance that often surpasses SSL approaches due to their exceptional generalization capabilities. This gap motivates us to question: how can we effectively harness the powerful generalization capabilities of VLMs into task-specific models? Knowledge distillation (KD) offers a natural framework for transferring VLM capabilities, but we identify that it suffers from gradient conflicts between supervised and distillation losses. To address this challenge, we propose Dual-Head Optimization (DHO), which introduces dual prediction heads for each distinct signal. We observe that DHO resolves gradient conflicts, enabling improved feature learning compared to single-head KD baselines, with practical benefits of minimal computational overhead and test-time hyperparameter tuning without retraining. Extensive experiments across 15 datasets show that DHO consistently outperforms KD baselines, often outperforming teacher models with smaller student models. DHO also achieves new state-of-the-art performance on both in-distribution ImageNet semi-supervised learning and out-of-distribution generalization across ImageNet variants. We publicly release our code and model checkpoints to facilitate future research at https://github.com/erjui/DHO.
comment: 38 pages, 17 figures, preprint
♻ ☆ Scaling RL to Long Videos NeurIPS 2025
We introduce a full-stack framework that scales up reasoning in vision-language models (VLMs) to long videos, leveraging reinforcement learning. We address the unique challenges of long video reasoning by integrating three critical components: (1) a large-scale dataset, LongVideo-Reason, comprising 104K long video QA pairs with high-quality reasoning annotations across diverse domains such as sports, games, and vlogs; (2) a two-stage training pipeline that extends VLMs with chain-of-thought supervised fine-tuning (CoT-SFT) and reinforcement learning (RL); and (3) a training infrastructure for long video RL, named Multi-modal Reinforcement Sequence Parallelism (MR-SP), which incorporates sequence parallelism and a vLLM-based engine tailored for long video, using cached video embeddings for efficient rollout and prefilling. In our experiments, LongVILA-R1-7B achieves strong performance on video benchmarks, reaching 65.1% and 71.1% accuracy on VideoMME without and with subtitles, respectively, and consistently outperforming LongVILA-7B across multiple benchmarks. Moreover, LongVILA-R1-7B supports processing up to 8,192 video frames per video, and configurable FPS settings. Notably, our MR-SP system achieves up to 2.1x speedup on long video RL training. In addition, we release our training system for public availability that supports RL training on various modalities (video, text, and audio), various models (VILA and Qwen series), and even image and video generation models. On a single A100 node (8 GPUs), it supports RL training on hour-long videos (e.g., 3,600 frames).
comment: Accepted by NeurIPS 2025. Code at https://github.com/NVlabs/Long-RL and model at https://huggingface.co/Efficient-Large-Model/LongVILA-R1-7B
♻ ☆ Binary Diffusion Probabilistic Model
We propose the Binary Diffusion Probabilistic Model (BDPM), a generative framework specifically designed for data representations in binary form. Conventional denoising diffusion probabilistic models (DDPMs) assume continuous inputs, use mean squared error objectives and Gaussian perturbations, i.e., assumptions that are not suited to discrete and binary representations. BDPM instead encodes images into binary representations using multi bit-plane and learnable binary embeddings, perturbs them via XOR-based noise, and trains a model by optimizing a binary cross-entropy loss. These binary representations offer fine-grained noise control, accelerate convergence, and reduce inference cost. On image-to-image translation tasks, such as super-resolution, inpainting, and blind restoration, BDPM based on a small denoiser and multi bit-plane representation outperforms state-of-the-art methods on FFHQ, CelebA, and CelebA-HQ using a few sampling steps. In class-conditional generation on ImageNet-1k, BDPM based on learnable binary embeddings achieves competitive results among models with both low parameter counts and a few sampling steps.
♻ ☆ RobustMerge: Parameter-Efficient Model Merging for MLLMs with Direction Robustness NeurIPS 2025
Fine-tuning pre-trained models with custom data leads to numerous expert models on specific tasks. Merging models into one universal model to empower multi-task ability refraining from data leakage has gained popularity. With the expansion in data and model size, parameter-efficient tuning becomes the common practice for obtaining task-specific models efficiently. However, few methods are dedicated to efficient merging, and existing methods designed for full fine-tuning merging fail under efficient merging. To address the issue, we analyze from low-rank decomposition and reveal that direction robustness during merging is crucial for merging efficient modules. We furthermore uncover that compensating for the gap between stark singular values contributes to direction robustness. Therefore, we propose RobustMerge, a training-free parameter-efficient merging method with complementary parameter adaptation to maintain direction robustness. Specifically, we (1) prune parameters and scale coefficients from inter-parameter relation for singular values to maintain direction stability away from task interference, and (2) perform cross-task normalization to enhance unseen task generalization. We establish a benchmark consisting of diverse multimodal tasks, on which we conduct experiments to certify the outstanding performance and generalizability of our method. Additional studies and extensive analyses further showcase the effectiveness. Code is available at https://github.com/AuroraZengfh/RobustMerge.
comment: NeurIPS 2025 (Spotlight)
♻ ☆ LiDAR-BIND-T: Improved and Temporally Consistent Sensor Modality Translation and Fusion for Robotic Applications
This paper extends LiDAR-BIND, a modular multi-modal fusion framework that binds heterogeneous sensors (radar, sonar) to a LiDAR-defined latent space, with mechanisms that explicitly enforce temporal consistency. We introduce three contributions: (i) temporal embedding similarity that aligns consecutive latent representations, (ii) a motion-aligned transformation loss that matches displacement between predictions and ground truth LiDAR, and (iii) windowed temporal fusion using a specialised temporal module. We further update the model architecture to better preserve spatial structure. Evaluations on radar/sonar-to-LiDAR translation demonstrate improved temporal and spatial coherence, yielding lower absolute trajectory error and better occupancy map accuracy in Cartographer-based SLAM (Simultaneous Localisation and Mapping). We propose different metrics based on the Fr\'echet Video Motion Distance (FVMD) and a correlation-peak distance metric providing practical temporal quality indicators to evaluate SLAM performance. The proposed temporal LiDAR-BIND, or LiDAR-BIND-T, maintains modular modality fusion while substantially enhancing temporal stability, resulting in improved robustness and performance for downstream SLAM.
♻ ☆ From Ideal to Real: Unified and Data-Efficient Dense Prediction for Real-World Scenarios
Dense prediction tasks hold significant importance of computer vision, aiming to learn pixel-wise annotated labels for input images. Despite advances in this field, existing methods primarily focus on idealized conditions, exhibiting limited real-world generalization and struggling with the acute scarcity of real-world data in practical scenarios. To systematically study this problem, we first introduce DenseWorld, a benchmark spanning a broad set of 25 dense prediction tasks that correspond to urgent real-world applications, featuring unified evaluation across tasks. We then propose DenseDiT, which exploits generative models' visual priors to perform diverse real-world dense prediction tasks through a unified strategy. DenseDiT combines a parameter-reuse mechanism and two lightweight branches that adaptively integrate multi-scale context. This design enables DenseDiT to achieve efficient tuning with less than 0.1% additional parameters, activating the visual priors while effectively adapting to diverse real-world dense prediction tasks. Evaluations on DenseWorld reveal significant performance drops in existing general and specialized baselines, highlighting their limited real-world generalization. In contrast, DenseDiT achieves superior results using less than 0.01% training data of baselines, underscoring its practical value for real-world deployment.
♻ ☆ U-Mamba2-SSL for Semi-Supervised Tooth and Pulp Segmentation in CBCT MICCAI 2025
Accurate segmentation of teeth and pulp in Cone-Beam Computed Tomography (CBCT) is vital for clinical applications like treatment planning and diagnosis. However, this process requires extensive expertise and is exceptionally time-consuming, highlighting the critical need for automated algorithms that can effectively utilize unlabeled data. In this paper, we propose U-Mamba2-SSL, a novel semi-supervised learning framework that builds on the U-Mamba2 model and employs a multi-stage training strategy. The framework first pre-trains U-Mamba2 in a self-supervised manner using a disruptive autoencoder. It then leverages unlabeled data through consistency regularization, where we introduce input and feature perturbations to ensure stable model outputs. Finally, a pseudo-labeling strategy is implemented with a reduced loss weighting to minimize the impact of potential errors. U-Mamba2-SSL achieved an average score of 0.789 and a DSC of 0.917 on the hidden test set, achieving first place in Task 1 of the STSR 2025 challenge. The code is available at https://github.com/zhiqin1998/UMamba2.
comment: First place solution in Task 1 of the STSR 2025 challenge, MICCAI 2025
♻ ☆ Multi-View Projection for Unsupervised Domain Adaptation in 3D Semantic Segmentation
3D semantic segmentation is essential for autonomous driving and road infrastructure analysis, but state-of-the-art 3D models suffer from severe domain shift when applied across datasets. We propose a multi-view projection framework for unsupervised domain adaptation (UDA). Our method aligns LiDAR scans into coherent 3D scenes and renders them from multiple virtual camera poses to generate large-scale synthetic 2D datasets (PC2D) in various modalities. An ensemble of 2D segmentation models is trained on these modalities, and during inference, hundreds of views per scene are processed, with logits back-projected to 3D using an occlusion-aware voting scheme to produce point-wise labels. These labels can be used directly or to fine-tune a 3D segmentation model in the target domain. We evaluate our approach in both Real-to-Real and Simulation-to-Real UDA, achieving state-of-the-art performance in the Real-to-Real setting. Furthermore, we show that our framework enables segmentation of rare classes, leveraging only 2D annotations for those classes while relying on 3D annotations for others in the source domain.
♻ ☆ U-Mamba2: Scaling State Space Models for Dental Anatomy Segmentation in CBCT MICCAI 2025
Cone-Beam Computed Tomography (CBCT) is a widely used 3D imaging technique in dentistry, providing volumetric information about the anatomical structures of jaws and teeth. Accurate segmentation of these anatomies is critical for clinical applications such as diagnosis and surgical planning, but remains time-consuming and challenging. In this paper, we present U-Mamba2, a new neural network architecture designed for multi-anatomy CBCT segmentation in the context of the ToothFairy3 challenge. U-Mamba2 integrates the Mamba2 state space models into the U-Net architecture, enforcing stronger structural constraints for higher efficiency without compromising performance. In addition, we integrate interactive click prompts with cross-attention blocks, pre-train U-Mamba2 using self-supervised learning, and incorporate dental domain knowledge into the model design to address key challenges of dental anatomy segmentation in CBCT. Extensive experiments, including independent tests, demonstrate that U-Mamba2 is both effective and efficient, securing first place in both tasks of the Toothfairy3 challenge. In Task 1, U-Mamba2 achieved a mean Dice of 0.84, HD95 of 38.17 with the held-out test data, with an average inference time of 40.58s. In Task 2, U-Mamba2 achieved the mean Dice of 0.87 and HD95 of 2.15 with the held-out test data. The code is publicly available at https://github.com/zhiqin1998/UMamba2.
comment: First place solution for both tasks of the ToothFairy3 challenge, MICCAI 2025
♻ ☆ AVCD: Mitigating Hallucinations in Audio-Visual Large Language Models through Contrastive Decoding
Hallucination remains a major challenge in multimodal large language models (MLLMs). To address this, various contrastive decoding (CD) methods have been proposed that contrasts original logits with hallucinated logits generated from perturbed inputs. While CD has shown promise in vision-language models (VLMs), it is not well-suited for AV-LLMs, where hallucinations often emerge from both unimodal and cross-modal combinations involving audio, video, and language. These intricate interactions call for a more adaptive and modality-aware decoding strategy. In this paper, we propose Audio-Visual Contrastive Decoding (AVCD)-a novel, training-free decoding framework designed to model trimodal interactions and suppress modality-induced hallucinations in AV-LLMs. Unlike previous CD methods in VLMs that corrupt a fixed modality, AVCD leverages attention distributions to dynamically identify less dominant modalities and applies attentive masking to generate perturbed output logits. To support CD in a trimodal setting, we also reformulate the original CD framework to jointly handle audio, visual, and textual inputs. Finally, to improve efficiency, we introduce entropy-guided adaptive decoding, which selectively skips unnecessary decoding steps based on the model's confidence in its predictions. Extensive experiments demonstrate that AVCD consistently outperforms existing decoding methods. Especially, on the AVHBench dataset, it improves accuracy by 2% for VideoLLaMA2 and 7% for video-SALMONN, demonstrating strong robustness and generalizability. Our code is available at https://github.com/kaistmm/AVCD.
♻ ☆ OmniCount: Multi-label Object Counting with Semantic-Geometric Priors AAAI 2025
Object counting is pivotal for understanding the composition of scenes. Previously, this task was dominated by class-specific methods, which have gradually evolved into more adaptable class-agnostic strategies. However, these strategies come with their own set of limitations, such as the need for manual exemplar input and multiple passes for multiple categories, resulting in significant inefficiencies. This paper introduces a more practical approach enabling simultaneous counting of multiple object categories using an open-vocabulary framework. Our solution, OmniCount, stands out by using semantic and geometric insights (priors) from pre-trained models to count multiple categories of objects as specified by users, all without additional training. OmniCount distinguishes itself by generating precise object masks and leveraging varied interactive prompts via the Segment Anything Model for efficient counting. To evaluate OmniCount, we created the OmniCount-191 benchmark, a first-of-its-kind dataset with multi-label object counts, including points, bounding boxes, and VQA annotations. Our comprehensive evaluation in OmniCount-191, alongside other leading benchmarks, demonstrates OmniCount's exceptional performance, significantly outpacing existing solutions. The project webpage is available at https://mondalanindya.github.io/OmniCount.
comment: Accepted to AAAI 2025
♻ ☆ Dynamic Novel View Synthesis in High Dynamic Range
High Dynamic Range Novel View Synthesis (HDR NVS) seeks to learn an HDR 3D model from Low Dynamic Range (LDR) training images captured under conventional imaging conditions. Current methods primarily focus on static scenes, implicitly assuming all scene elements remain stationary and non-living. However, real-world scenarios frequently feature dynamic elements, such as moving objects, varying lighting conditions, and other temporal events, thereby presenting a significantly more challenging scenario. To address this gap, we propose a more realistic problem named HDR Dynamic Novel View Synthesis (HDR DNVS), where the additional dimension ``Dynamic'' emphasizes the necessity of jointly modeling temporal radiance variations alongside sophisticated 3D translation between LDR and HDR. To tackle this complex, intertwined challenge, we introduce HDR-4DGS, a Gaussian Splatting-based architecture featured with an innovative dynamic tone-mapping module that explicitly connects HDR and LDR domains, maintaining temporal radiance coherence by dynamically adapting tone-mapping functions according to the evolving radiance distributions across the temporal dimension. As a result, HDR-4DGS achieves both temporal radiance consistency and spatially accurate color translation, enabling photorealistic HDR renderings from arbitrary viewpoints and time instances. Extensive experiments demonstrate that HDR-4DGS surpasses existing state-of-the-art methods in both quantitative performance and visual fidelity. Source code will be released.
♻ ☆ SoMi-ToM: Evaluating Multi-Perspective Theory of Mind in Embodied Social Interactions
Humans continuously infer the states, goals, and behaviors of others by perceiving their surroundings in dynamic, real-world social interactions. However, most Theory of Mind (ToM) benchmarks only evaluate static, text-based scenarios, which have a significant gap compared to real interactions. We propose the SoMi-ToM benchmark, designed to evaluate multi-perspective ToM in embodied multi-agent complex social interactions. This benchmark is based on rich multimodal interaction data generated by the interaction environment SoMi, covering diverse crafting goals and social relationships. Our framework supports multi-level evaluation: (1) first-person evaluation provides multimodal (visual, dialogue, action, etc.) input from a first-person perspective during a task for real-time state inference, (2) third-person evaluation provides complete third-person perspective video and text records after a task for goal and behavior inference. This evaluation method allows for a more comprehensive examination of a model's ToM capabilities from both the subjective immediate experience and the objective global observation. We constructed a challenging dataset containing 35 third-person perspective videos, 363 first-person perspective images, and 1225 expert-annotated multiple-choice questions (three options). On this dataset, we systematically evaluated the performance of human subjects and several state-of-the-art large vision-language models (LVLMs). The results show that LVLMs perform significantly worse than humans on SoMi-ToM: the average accuracy gap between humans and models is 40.1% in first-person evaluation and 26.4% in third-person evaluation. This indicates that future LVLMs need to further improve their ToM capabilities in embodied, complex social interactions.
comment: 24 pages, 6 figures
♻ ☆ Fork-Merge Decoding: Enhancing Multimodal Understanding in Audio-Visual Large Language Models
The goal of this work is to enhance balanced multimodal understanding in audio-visual large language models (AV-LLMs) by addressing modality bias without additional training. In current AV-LLMs, audio and video features are typically processed jointly in the decoder. While this strategy facilitates unified multimodal understanding, it may introduce modality bias, where the model tends to over-rely on one modality due to imbalanced training signals. To mitigate this, we propose Fork-Merge Decoding (FMD), a simple yet effective inference-time strategy that requires no additional training or architectural modifications. FMD first performs modality-specific reasoning by processing audio-only and video-only inputs through the early decoder layers (fork), and then merges the resulting hidden states for joint reasoning in the remaining layers (merge). This separation allows each modality to be emphasized in the early stages while encouraging balanced contributions during integration. We validate our method on three representative AV-LLMs-VideoLLaMA2, video-SALMONN, and Qwen2.5-Omni-using three benchmark datasets. Experimental results show consistent gains in audio, video, and audio-visual reasoning tasks, highlighting the effectiveness of inference-time interventions for robust and efficient multimodal understanding.
♻ ☆ PathoHR: Hierarchical Reasoning for Vision-Language Models in Pathology EMNLP2025
Accurate analysis of pathological images is essential for automated tumor diagnosis but remains challenging due to high structural similarity and subtle morphological variations in tissue images. Current vision-language (VL) models often struggle to capture the complex reasoning required for interpreting structured pathological reports. To address these limitations, we propose PathoHR-Bench, a novel benchmark designed to evaluate VL models' abilities in hierarchical semantic understanding and compositional reasoning within the pathology domain. Results of this benchmark reveal that existing VL models fail to effectively model intricate cross-modal relationships, hence limiting their applicability in clinical setting. To overcome this, we further introduce a pathology-specific VL training scheme that generates enhanced and perturbed samples for multimodal contrastive learning. Experimental evaluations demonstrate that our approach achieves state-of-the-art performance on PathoHR-Bench and six additional pathology datasets, highlighting its effectiveness in fine-grained pathology representation.
comment: Accept by EMNLP2025
♻ ☆ Rethinking Diffusion Model in High Dimension
Curse of Dimensionality is an unavoidable challenge in statistical probability models, yet diffusion models seem to overcome this limitation, achieving impressive results in high-dimensional data generation. Diffusion models assume that they can learn the statistical quantities of the underlying probability distribution, enabling sampling from this distribution to generate realistic samples. But is this really how they work? We argue not, based on the following observations: 1) In high-dimensional sparse scenarios, the fitting target of the diffusion model's objective function degrades from a weighted sum of multiple samples to a single sample, which we believe hinders the model's ability to effectively learn essential statistical quantities such as posterior, score, or velocity field. 2) Most inference methods can be unified within a simple framework which involves no statistical concepts, aligns with the degraded objective function, and provides an novel and intuitive perspective on the inference process.
♻ ☆ ReLoop: "Seeing Twice and Thinking Backwards" via Closed-loop Training to Mitigate Hallucinations in Multimodal understanding EMNLP2025
While Multimodal Large Language Models (MLLMs) have achieved remarkable progress in open-ended visual question answering, they remain vulnerable to hallucinations. These are outputs that contradict or misrepresent input semantics, posing a critical challenge to the reliability and factual consistency. Existing methods often rely on external verification or post-hoc correction, lacking an internal mechanism to validate outputs directly during training. To bridge this gap, we propose ReLoop, a unified closed-loop training framework that encourages multimodal consistency for cross-modal understanding in MLLMs. ReLoop adopts a ring-shaped structure that integrates three complementary consistency feedback mechanisms, obliging MLLMs to "seeing twice and thinking backwards". Specifically, ReLoop employs the frozen Consistency Feedback Plugin (CFP), comprising semantic reconstruction, visual description, and an attention supervision module for attention alignment. These components collectively enforce semantic reversibility, visual consistency, and interpretable attention, enabling the model to correct its outputs during training. Extensive evaluations and analyses demonstrate the effectiveness of ReLoop in reducing hallucination rates across multiple benchmarks, establishing a robust method for hallucination mitigation in MLLMs. We will release our source code and data in the camera-ready version.
comment: Accepted by conference EMNLP2025
♻ ☆ Taming the Tri-Space Tension: ARC-Guided Hallucination Modeling and Control for Text-to-Image Generation
Despite remarkable progress in image quality and prompt fidelity, text-to-image (T2I) diffusion models continue to exhibit persistent "hallucinations", where generated content subtly or significantly diverges from the intended prompt semantics. While often regarded as unpredictable artifacts, we argue that these failures reflect deeper, structured misalignments within the generative process. In this work, we propose a cognitively inspired perspective that reinterprets hallucinations as trajectory drift within a latent alignment space. Empirical observations reveal that generation unfolds within a multiaxial cognitive tension field, where the model must continuously negotiate competing demands across three key critical axes: semantic coherence, structural alignment, and knowledge grounding. We then formalize this three-axis space as the Hallucination Tri-Space and introduce the Alignment Risk Code (ARC): a dynamic vector representation that quantifies real-time alignment tension during generation. The magnitude of ARC captures overall misalignment, its direction identifies the dominant failure axis, and its imbalance reflects tension asymmetry. Based on this formulation, we develop the TensionModulator (TM-ARC): a lightweight controller that operates entirely in latent space. TM-ARC monitors ARC signals and applies targeted, axis-specific interventions during the sampling process. Extensive experiments on standard T2I benchmarks demonstrate that our approach significantly reduces hallucination without compromising image quality or diversity. This framework offers a unified and interpretable approach for understanding and mitigating generative failures in diffusion-based T2I systems.
comment: 9 pages,6 figures,7 tables
♻ ☆ ResGS: Residual Densification of 3D Gaussian for Efficient Detail Recovery
Recently, 3D Gaussian Splatting (3D-GS) has prevailed in novel view synthesis, achieving high fidelity and efficiency. However, it often struggles to capture rich details and complete geometry. Our analysis reveals that the 3D-GS densification operation lacks adaptiveness and faces a dilemma between geometry coverage and detail recovery. To address this, we introduce a novel densification operation, residual split, which adds a downscaled Gaussian as a residual. Our approach is capable of adaptively retrieving details and complementing missing geometry. To further support this method, we propose a pipeline named ResGS. Specifically, we integrate a Gaussian image pyramid for progressive supervision and implement a selection scheme that prioritizes the densification of coarse Gaussians over time. Extensive experiments demonstrate that our method achieves SOTA rendering quality. Consistent performance improvements can be achieved by applying our residual split on various 3D-GS variants, underscoring its versatility and potential for broader application in 3D-GS-based applications.
♻ ☆ SPARE: Symmetrized Point-to-Plane Distance for Robust Non-Rigid 3D Registration
Existing optimization-based methods for non-rigid registration typically minimize an alignment error metric based on the point-to-point or point-to-plane distance between corresponding point pairs on the source surface and target surface. However, these metrics can result in slow convergence or a loss of detail. In this paper, we propose SPARE, a novel formulation that utilizes a symmetrized point-to-plane distance for robust non-rigid registration. The symmetrized point-to-plane distance relies on both the positions and normals of the corresponding points, resulting in a more accurate approximation of the underlying geometry and can achieve higher accuracy than existing methods. To solve this optimization problem efficiently, we introduce an as-rigid-as-possible regulation term to estimate the deformed normals and propose an alternating minimization solver using a majorization-minimization strategy. Moreover, for effective initialization of the solver, we incorporate a deformation graph-based coarse alignment that improves registration quality and efficiency. Extensive experiments show that the proposed method greatly improves the accuracy of non-rigid registration problems and maintains relatively high solution efficiency. The code is publicly available at https://github.com/yaoyx689/spare.
comment: Accepted to IEEE Transactions on Pattern Analysis and Machine Intelligence
♻ ☆ DiffTex: Differentiable Texturing for Architectural Proxy Models SIGGRAPH
Simplified proxy models are commonly used to represent architectural structures, reducing storage requirements and enabling real-time rendering. However, the geometric simplifications inherent in proxies result in a loss of fine color and geometric details, making it essential for textures to compensate for the loss. Preserving the rich texture information from the original dense architectural reconstructions remains a daunting task, particularly when working with unordered RGB photographs. We propose an automated method for generating realistic texture maps for architectural proxy models at the texel level from an unordered collection of registered photographs. Our approach establishes correspondences between texels on a UV map and pixels in the input images, with each texel's color computed as a weighted blend of associated pixel values. Using differentiable rendering, we optimize blending parameters to ensure photometric and perspective consistency, while maintaining seamless texture coherence. Experimental results demonstrate the effectiveness and robustness of our method across diverse architectural models and varying photographic conditions, enabling the creation of high-quality textures that preserve visual fidelity and structural detail.
comment: ACM TOG and SIGGRAPH Asia 2025 (Patent Protected); Project page: https://vcc.tech/research/2025/DiffTex
♻ ☆ LFTR: Learning-Free Token Reduction for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have demonstrated exceptional success in various multimodal tasks, yet their deployment is frequently limited by substantial computational demands and prolonged inference times. Given that the vision modality typically contains more comprehensive information than the text modality, resulting in encoded representations comprising an extensive number of tokens, leading to significant computational overhead due to the quadratic complexity of the attention mechanism. Current token reduction methods are typically restricted to specific model architectures and often necessitate extensive retraining or fine-tuning, restricting their applicability to many state-of-the-art models. In this paper, we introduce a learning-free token reduction (LFTR) method designed for MLLMs. LFTR can be seamlessly integrated into most open-source MLLM architectures without requiring additional fine-tuning. By capitalizing on the redundancy in visual representations, our approach effectively reduces tokens while preserving the general inference performance of MLLMs. We conduct experiments on multiple MLLM architectures (LLaVA, MiniGPT, QwenVL), and our results show that LFTR achieves up to a $16\times$ reduction of visual tokens while maintaining or even enhancing performance on mainstream vision question-answering benchmarks, all in a learning-free setting. Additionally, LFTR is complementary to other acceleration techniques, such as vision encoder compression and post-training quantization, further promoting the efficient deployment of MLLMs. Our project is available at https://anonymous.4open.science/r/LFTR-AAAI-0528.
♻ ☆ On the Effectiveness of Methods and Metrics for Explainable AI in Remote Sensing Image Scene Classification
The development of explainable artificial intelligence (xAI) methods for scene classification problems has attracted great attention in remote sensing (RS). Most xAI methods and the related evaluation metrics in RS are initially developed for natural images considered in computer vision (CV), and their direct usage in RS may not be suitable. To address this issue, in this paper, we investigate the effectiveness of explanation methods and metrics in the context of RS image scene classification. In detail, we methodologically and experimentally analyze ten explanation metrics spanning five categories (faithfulness, robustness, localization, complexity, randomization), applied to five established feature attribution methods (Occlusion, LIME, GradCAM, LRP, and DeepLIFT) across three RS datasets. Our methodological analysis identifies key limitations in both explanation methods and metrics. The performance of perturbation-based methods, such as Occlusion and LIME, heavily depends on perturbation baselines and spatial characteristics of RS scenes. Gradient-based approaches like GradCAM struggle when multiple labels are present in the same image, while some relevance propagation methods (LRP) can distribute relevance disproportionately relative to the spatial extent of classes. Analogously, we find limitations in evaluation metrics. Faithfulness metrics share the same problems as perturbation-based methods. Localization metrics and complexity metrics are unreliable for classes with a large spatial extent. In contrast, robustness metrics and randomization metrics consistently exhibit greater stability. Our experimental results support these methodological findings. Based on our analysis, we provide guidelines for selecting explanation methods, metrics, and hyperparameters in the context of RS image scene classification.
comment: The code of this work will be publicly available at https://git.tu-berlin.de/rsim/xai4rs
♻ ☆ LargeAD: Large-Scale Cross-Sensor Data Pretraining for Autonomous Driving
Recent advancements in vision foundation models (VFMs) have revolutionized visual perception in 2D, yet their potential for 3D scene understanding, particularly in autonomous driving applications, remains underexplored. In this paper, we introduce LargeAD, a versatile and scalable framework designed for large-scale 3D pretraining across diverse real-world driving datasets. Our framework leverages VFMs to extract semantically rich superpixels from 2D images, which are aligned with LiDAR point clouds to generate high-quality contrastive samples. This alignment facilitates cross-modal representation learning, enhancing the semantic consistency between 2D and 3D data. We introduce several key innovations: (i) VFM-driven superpixel generation for detailed semantic representation, (ii) a VFM-assisted contrastive learning strategy to align multimodal features, (iii) superpoint temporal consistency to maintain stable representations across time, and (iv) multi-source data pretraining to generalize across various LiDAR configurations. Our approach achieves substantial gains over state-of-the-art methods in linear probing and fine-tuning for LiDAR-based segmentation and object detection. Extensive experiments on 11 large-scale multi-sensor datasets highlight our superior performance, demonstrating adaptability, efficiency, and robustness in real-world autonomous driving scenarios.
comment: IEEE TPAMI 2025; 17 pages, 9 figures, 11 tables; Project Page at https://ldkong.com/LargeAD
OrthoLoC: UAV 6-DoF Localization and Calibration Using Orthographic Geodata NeurIPS 2025
Accurate visual localization from aerial views is a fundamental problem with applications in mapping, large-area inspection, and search-and-rescue operations. In many scenarios, these systems require high-precision localization while operating with limited resources (e.g., no internet connection or GNSS/GPS support), making large image databases or heavy 3D models impractical. Surprisingly, little attention has been given to leveraging orthographic geodata as an alternative paradigm, which is lightweight and increasingly available through free releases by governmental authorities (e.g., the European Union). To fill this gap, we propose OrthoLoC, the first large-scale dataset comprising 16,425 UAV images from Germany and the United States with multiple modalities. The dataset addresses domain shifts between UAV imagery and geospatial data. Its paired structure enables fair benchmarking of existing solutions by decoupling image retrieval from feature matching, allowing isolated evaluation of localization and calibration performance. Through comprehensive evaluation, we examine the impact of domain shifts, data resolutions, and covisibility on localization accuracy. Finally, we introduce a refinement technique called AdHoP, which can be integrated with any feature matcher, improving matching by up to 95% and reducing translation error by up to 63%. The dataset and code are available at: https://deepscenario.github.io/OrthoLoC.
comment: Accepted at NeurIPS 2025
♻ ☆ Adaptive Modality Balanced Online Knowledge Distillation for Brain-Eye-Computer based Dim Object Detection
Advanced cognition can be extracted from the human brain using brain-computer interfaces. Integrating these interfaces with computer vision techniques, which possess efficient feature extraction capabilities, can achieve more robust and accurate detection of dim targets in aerial images. However, existing target detection methods primarily concentrate on homogeneous data, lacking efficient and versatile processing capabilities for heterogeneous multimodal data. In this paper, we first build a brain-eye-computer based object detection system for aerial images under few-shot conditions. This system detects suspicious targets using region proposal networks, evokes the event-related potential (ERP) signal in electroencephalogram (EEG) through the eye-tracking-based slow serial visual presentation (ESSVP) paradigm, and constructs the EEG-image data pairs with eye movement data. Then, an adaptive modality balanced online knowledge distillation (AMBOKD) method is proposed to recognize dim objects with the EEG-image data. AMBOKD fuses EEG and image features using a multi-head attention module, establishing a new modality with comprehensive features. To enhance the performance and robust capability of the fusion modality, simultaneous training and mutual learning between modalities are enabled by end-to-end online knowledge distillation. During the learning process, an adaptive modality balancing module is proposed to ensure multimodal equilibrium by dynamically adjusting the weights of the importance and the training gradients across various modalities. The effectiveness and superiority of our method are demonstrated by comparing it with existing state-of-the-art methods. Additionally, experiments conducted on public datasets and system validations in real-world scenarios demonstrate the reliability and practicality of the proposed system and the designed method.
comment: 18 pages,15 figures
♻ ☆ LayerLock: Non-collapsing Representation Learning with Progressive Freezing ICCV 2025
We introduce LayerLock, a simple yet effective approach for self-supervised visual representation learning, that gradually transitions from pixel to latent prediction through progressive layer freezing. First, we make the observation that during training of video masked-autoencoding (MAE) models, ViT layers converge in the order of their depth: shallower layers converge early, deeper layers converge late. We then show that this observation can be exploited to accelerate standard MAE by progressively freezing the model according to an explicit schedule, throughout training. Furthermore, this same schedule can be used in a simple and scalable approach to latent prediction that does not suffer from "representation collapse". We apply our proposed approach, LayerLock, to large models of up to 4B parameters with results surpassing those of non-latent masked prediction on the 4DS perception suite.
comment: ICCV 2025
♻ ☆ Negative-Guided Subject Fidelity Optimization for Zero-Shot Subject-Driven Generation
We present Subject Fidelity Optimization (SFO), a novel comparative learning framework for zero-shot subject-driven generation that enhances subject fidelity. Existing supervised fine-tuning methods, which rely only on positive targets and use the diffusion loss as in the pre-training stage, often fail to capture fine-grained subject details. To address this, SFO introduces additional synthetic negative targets and explicitly guides the model to favor positives over negatives through pairwise comparison. For negative targets, we propose Condition-Degradation Negative Sampling (CDNS), which automatically produces synthetic negatives tailored for subject-driven generation by introducing controlled degradations that emphasize subject fidelity and text alignment without expensive human annotations. Moreover, we reweight the diffusion timesteps to focus fine-tuning on intermediate steps where subject details emerge. Extensive experiments demonstrate that SFO with CDNS significantly outperforms recent strong baselines in terms of both subject fidelity and text alignment on a subject-driven generation benchmark. Project page: https://subjectfidelityoptimization.github.io/
♻ ☆ M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical Image Segmentation
Accurate medical image segmentation is critical for early medical diagnosis. Most existing methods are based on U-shape structure and use element-wise addition or concatenation to fuse different level features progressively in decoder. However, both the two operations easily generate plenty of redundant information, which will weaken the complementarity between different level features, resulting in inaccurate localization and blurred edges of lesions. To address this challenge, we propose a general multi-scale in multi-scale subtraction network (M$^{2}$SNet) to finish diverse segmentation from medical image. Specifically, we first design a basic subtraction unit (SU) to produce the difference features between adjacent levels in encoder. Next, we expand the single-scale SU to the intra-layer multi-scale SU, which can provide the decoder with both pixel-level and structure-level difference information. Then, we pyramidally equip the multi-scale SUs at different levels with varying receptive fields, thereby achieving the inter-layer multi-scale feature aggregation and obtaining rich multi-scale difference information. In addition, we build a training-free network ``LossNet'' to comprehensively supervise the task-aware features from bottom layer to top layer, which drives our multi-scale subtraction network to capture the detailed and structural cues simultaneously. Without bells and whistles, our method performs favorably against most state-of-the-art methods under different evaluation metrics on eleven datasets of four different medical image segmentation tasks of diverse image modalities, including color colonoscopy imaging, ultrasound imaging, computed tomography (CT), and optical coherence tomography (OCT). The source code can be available at https://github.com/Xiaoqi-Zhao-DLUT/MSNet.
comment: Manuscript
♻ ☆ Modeling Saliency Dataset Bias ICCV 2025
Recent advances in image-based saliency prediction are approaching gold standard performance levels on existing benchmarks. Despite this success, we show that predicting fixations across multiple saliency datasets remains challenging due to dataset bias. We find a significant performance drop (around 40%) when models trained on one dataset are applied to another. Surprisingly, increasing dataset diversity does not resolve this inter-dataset gap, with close to 60% attributed to dataset-specific biases. To address this remaining generalization gap, we propose a novel architecture extending a mostly dataset-agnostic encoder-decoder structure with fewer than 20 dataset-specific parameters that govern interpretable mechanisms such as multi-scale structure, center bias, and fixation spread. Adapting only these parameters to new data accounts for more than 75% of the generalization gap, with a large fraction of the improvement achieved with as few as 50 samples. Our model sets a new state-of-the-art on all three datasets of the MIT/Tuebingen Saliency Benchmark (MIT300, CAT2000, and COCO-Freeview), even when purely generalizing from unrelated datasets, but with a substantial boost when adapting to the respective training datasets. The model also provides valuable insights into spatial saliency properties, revealing complex multi-scale effects that combine both absolute and relative sizes.
comment: published at ICCV 2025
♻ ☆ J-NeuS: Joint field optimization for Neural Surface reconstruction in urban scenes with limited image overlap
Reconstructing the surrounding surface geometry from recorded driving sequences poses a significant challenge due to the limited image overlap and complex topology of urban environments. SoTA neural implicit surface reconstruction methods often struggle in such setting, either failing due to small vision overlap or exhibiting suboptimal performance in accurately reconstructing both the surface and fine structures. To address these limitations, we introduce J-NeuS, a novel hybrid implicit surface reconstruction method for large driving sequences with outward facing camera poses. J-NeuS cross-representation uncertainty estimation to tackle ambiguous geometry caused by limited observations. Our method performs joint optimization of two radiance fields in addition to guided sampling achieving accurate reconstruction of large areas along with fine structures in complex urban scenarios. Extensive evaluation on major driving datasets demonstrates the superiority of our approach in reconstructing large driving sequences with limited image overlap, outperforming concurrent SoTA methods.
♻ ☆ Adjustable Spatio-Spectral Hyperspectral Image Compression Network
With the rapid growth of hyperspectral data archives in remote sensing (RS), the need for efficient storage has become essential, driving significant attention toward learning-based hyperspectral image (HSI) compression. However, a comprehensive investigation of the individual and joint effects of spectral and spatial compression on learning-based HSI compression has not been thoroughly examined yet. Conducting such an analysis is crucial for understanding how the exploitation of spectral, spatial, and joint spatio-spectral redundancies affects HSI compression. To address this issue, we propose Adjustable Spatio-Spectral Hyperspectral Image Compression Network (HyCASS), a learning-based model designed for adjustable HSI compression in both spectral and spatial dimensions. HyCASS consists of six main modules: 1) spectral encoder module; 2) spatial encoder module; 3) compression ratio (CR) adapter encoder module; 4) CR adapter decoder module; 5) spatial decoder module; and 6) spectral decoder module. The modules employ convolutional layers and transformer blocks to capture both short-range and long-range redundancies. Experimental results on three HSI benchmark datasets demonstrate the effectiveness of our proposed adjustable model compared to existing learning-based compression models, surpassing the state of the art by up to 2.36 dB in terms of PSNR. Based on our results, we establish a guideline for effectively balancing spectral and spatial compression across different CRs, taking into account the spatial resolution of the HSIs. Our code and pre-trained model weights are publicly available at https://git.tu-berlin.de/rsim/hycass .
♻ ☆ Towards autonomous photogrammetric forest inventory using a lightweight under-canopy robotic drone
Drones are increasingly used in forestry to capture high-resolution remote sensing data, supporting enhanced monitoring, assessment, and decision-making processes. While operations above the forest canopy are already highly automated, flying inside forests remains challenging, primarily relying on manual piloting. In dense forests, relying on the Global Navigation Satellite System (GNSS) for localization is not feasible. In addition, the drone must autonomously adjust its flight path to avoid collisions. Recently, advancements in robotics have enabled autonomous drone flights in GNSS-denied obstacle-rich areas. In this article, a step towards autonomous forest data collection is taken by building a prototype of a robotic under-canopy drone utilizing state-of-the-art open source methods and validating its performance for data collection inside forests. Specifically, the study focused on camera-based autonomous flight under the forest canopy and photogrammetric post-processing of the data collected with the low-cost onboard stereo camera. The autonomous flight capability of the prototype was evaluated through multiple test flights in boreal forests. The tree parameter estimation capability was studied by performing diameter at breast height (DBH) estimation. The prototype successfully carried out flights in selected challenging forest environments, and the experiments showed promising performance in forest 3D modeling with a miniaturized stereoscopic photogrammetric system. The DBH estimation achieved a root mean square error (RMSE) of 3.33 - 3.97 cm (10.69 - 12.98 %) across all trees. For trees with a DBH less than 30 cm, the RMSE was 1.16 - 2.56 cm (5.74 - 12.47 %). The results provide valuable insights into autonomous under-canopy forest mapping and highlight the critical next steps for advancing lightweight robotic drone systems for mapping complex forest environments.
comment: 35 pages, 11 Figures
♻ ☆ How Do Large Vision-Language Models See Text in Image? Unveiling the Distinctive Role of OCR Heads EMNLP 2025
Despite significant advancements in Large Vision Language Models (LVLMs), a gap remains, particularly regarding their interpretability and how they locate and interpret textual information within images. In this paper, we explore various LVLMs to identify the specific heads responsible for recognizing text from images, which we term the Optical Character Recognition Head (OCR Head). Our findings regarding these heads are as follows: (1) Less Sparse: Unlike previous retrieval heads, a large number of heads are activated to extract textual information from images. (2) Qualitatively Distinct: OCR heads possess properties that differ significantly from general retrieval heads, exhibiting low similarity in their characteristics. (3) Statically Activated: The frequency of activation for these heads closely aligns with their OCR scores. We validate our findings in downstream tasks by applying Chain-of-Thought (CoT) to both OCR and conventional retrieval heads and by masking these heads. We also demonstrate that redistributing sink-token values within the OCR heads improves performance. These insights provide a deeper understanding of the internal mechanisms LVLMs employ in processing embedded textual information in images.
comment: EMNLP 2025 Oral
♻ ☆ Keep It Real: Challenges in Attacking Compression-Based Adversarial Purification
Previous work has suggested that preprocessing images through lossy compression can defend against adversarial perturbations, but comprehensive attack evaluations have been lacking. In this paper, we construct strong white-box and adaptive attacks against various compression models and identify a critical challenge for attackers: high realism in reconstructed images significantly increases attack difficulty. Through rigorous evaluation across multiple attack scenarios, we demonstrate that compression models capable of producing realistic, high-fidelity reconstructions are substantially more resistant to our attacks. In contrast, low-realism compression models can be broken. Our analysis reveals that this is not due to gradient masking. Rather, realistic reconstructions maintaining distributional alignment with natural images seem to offer inherent robustness. This work highlights a significant obstacle for future adversarial attacks and suggests that developing more effective techniques to overcome realism represents an essential challenge for comprehensive security evaluation.
♻ ☆ Image-Conditioned 3D Gaussian Splat Quantization
3D Gaussian Splatting (3DGS) has attracted considerable attention for enabling high-quality real-time rendering. Although 3DGS compression methods have been proposed for deployment on storage-constrained devices, two limitations hinder archival use: (1) they compress medium-scale scenes only to the megabyte range, which remains impractical for large-scale scenes or extensive scene collections; and (2) they lack mechanisms to accommodate scene changes after long-term archival. To address these limitations, we propose an Image-Conditioned Gaussian Splat Quantizer (ICGS-Quantizer) that substantially enhances compression efficiency and provides adaptability to scene changes after archiving. ICGS-Quantizer improves quantization efficiency by jointly exploiting inter-Gaussian and inter-attribute correlations and by using shared codebooks across all training scenes, which are then fixed and applied to previously unseen test scenes, eliminating the overhead of per-scene codebooks. This approach effectively reduces the storage requirements for 3DGS to the kilobyte range while preserving visual fidelity. To enable adaptability to post-archival scene changes, ICGS-Quantizer conditions scene decoding on images captured at decoding time. The encoding, quantization, and decoding processes are trained jointly, ensuring that the codes, which are quantized representations of the scene, are effective for conditional decoding. We evaluate ICGS-Quantizer on 3D scene compression and 3D scene updating. Experimental results show that ICGS-Quantizer consistently outperforms state-of-the-art methods in compression efficiency and adaptability to scene changes. Our code, model, and data will be publicly available on GitHub.
♻ ☆ Using Knowledge Graphs to harvest datasets for efficient CLIP model training
Training high-quality CLIP models typically requires enormous datasets, which limits the development of domain-specific models -- especially in areas that even the largest CLIP models do not cover well -- and drives up training costs. This poses challenges for scientific research that needs fine-grained control over the training procedure of CLIP models. In this work, we show that by employing smart web search strategies enhanced with knowledge graphs, a robust CLIP model can be trained from scratch with considerably less data. Specifically, we demonstrate that an expert foundation model for living organisms can be built using just 10M images. Moreover, we introduce EntityNet, a dataset comprising 33M images paired with 46M text descriptions, which enables the training of a generic CLIP model in significantly reduced time.
comment: Accepted for oral presentation at GCPR 2025 (German Conference on Pattern Recognition). This is the version submitted to the conference, not the official conference proceedings
♻ ☆ HumanVideo-MME: Benchmarking MLLMs for Human-Centric Video Understanding
Multimodal Large Language Models (MLLMs) have demonstrated significant advances in visual understanding tasks involving both images and videos. However, their capacity to comprehend human-centric video data remains underexplored, primarily due to the absence of comprehensive and high-quality evaluation benchmarks. Existing human-centric benchmarks predominantly emphasize video generation quality and action recognition, while overlooking essential perceptual and cognitive abilities required in human-centered scenarios. Furthermore, they are often limited by single-question paradigms and overly simplistic evaluation metrics. To address above limitations, we propose a modern HV-MMBench, a rigorously curated benchmark designed to provide a more holistic evaluation of MLLMs in human-centric video understanding. Compared to existing human-centric video benchmarks, our work offers the following key features: (1) Diverse evaluation dimensions: HV-MMBench encompasses 13 tasks, ranging from basic attribute perception (e.g., age estimation, emotion recognition) to advanced cognitive reasoning (e.g., social relationship prediction, intention prediction), enabling comprehensive assessment of model capabilities; (2) Varied data types: The benchmark includes multiple-choice, fill-in-blank, true/false, and open-ended question formats, combined with diverse evaluation metrics, to more accurately and robustly reflect model performance; (3) Multi-domain video coverage: The benchmark spans 50 distinct visual scenarios, enabling comprehensive evaluation across fine-grained scene variations; (4) Temporal coverage: The benchmark covers videos from short-term (10 seconds) to long-term (up to 30min) durations, supporting systematic analysis of models temporal reasoning abilities across diverse contextual lengths.
comment: Under review
♻ ☆ UFO: A Unified Approach to Fine-grained Visual Perception via Open-ended Language Interface
Generalist models have achieved remarkable success in both language and vision-language tasks, showcasing the potential of unified modeling. However, effectively integrating fine-grained perception tasks like detection and segmentation into these models remains a significant challenge. This is primarily because these tasks often rely heavily on task-specific designs and architectures that can complicate the modeling process. To address this challenge, we present \ours, a framework that \textbf{U}nifies \textbf{F}ine-grained visual perception tasks through an \textbf{O}pen-ended language interface. By transforming all perception targets into the language space, \ours unifies object-level detection, pixel-level segmentation, and image-level vision-language tasks into a single model. Additionally, we introduce a novel embedding retrieval approach that relies solely on the language interface to support segmentation tasks. Our framework bridges the gap between fine-grained perception and vision-language tasks, significantly simplifying architectural design and training strategies while achieving comparable or superior performance to methods with intricate task-specific designs. After multi-task training on five standard visual perception datasets, \ours outperforms the previous state-of-the-art generalist models by 12.3 mAP on COCO instance segmentation and 3.3 mIoU on ADE20K semantic segmentation. Furthermore, our method seamlessly integrates with existing MLLMs, effectively combining fine-grained perception capabilities with their advanced language abilities, thereby enabling more challenging tasks such as reasoning segmentation. Code and models are available at https://github.com/nnnth/UFO.
♻ ☆ Object Detection with Multimodal Large Vision-Language Models: An In-depth Review
The fusion of language and vision in large vision-language models (LVLMs) has revolutionized deep learning-based object detection by enhancing adaptability, contextual reasoning, and generalization beyond traditional architectures. This in-depth review presents a structured exploration of the state-of-the-art in LVLMs, systematically organized through a three-step research review process. First, we discuss the functioning of vision language models (VLMs) for object detection, describing how these models harness natural language processing (NLP) and computer vision (CV) techniques to revolutionize object detection and localization. We then explain the architectural innovations, training paradigms, and output flexibility of recent LVLMs for object detection, highlighting how they achieve advanced contextual understanding for object detection. The review thoroughly examines the approaches used in integration of visual and textual information, demonstrating the progress made in object detection using VLMs that facilitate more sophisticated object detection and localization strategies. This review presents comprehensive visualizations demonstrating LVLMs' effectiveness in diverse scenarios including localization and segmentation, and then compares their real-time performance, adaptability, and complexity to traditional deep learning systems. Based on the review, its is expected that LVLMs will soon meet or surpass the performance of conventional methods in object detection. The review also identifies a few major limitations of the current LVLM modes, proposes solutions to address those challenges, and presents a clear roadmap for the future advancement in this field. We conclude, based on this study, that the recent advancement in LVLMs have made and will continue to make a transformative impact on object detection and robotic applications in the future.
comment: First Peer Reviewed Review Paper for Object Detection with Vision-Language Models (VLMs)
♻ ☆ Texture Vector-Quantization and Reconstruction Aware Prediction for Generative Super-Resolution
Vector-quantized based models have recently demonstrated strong potential for visual prior modeling. However, existing VQ-based methods simply encode visual features with nearest codebook items and train index predictor with code-level supervision. Due to the richness of visual signal, VQ encoding often leads to large quantization error. Furthermore, training predictor with code-level supervision can not take the final reconstruction errors into consideration, result in sub-optimal prior modeling accuracy. In this paper we address the above two issues and propose a Texture Vector-Quantization and a Reconstruction Aware Prediction strategy. The texture vector-quantization strategy leverages the task character of super-resolution and only introduce codebook to model the prior of missing textures. While the reconstruction aware prediction strategy makes use of the straight-through estimator to directly train index predictor with image-level supervision. Our proposed generative SR model (TVQ&RAP) is able to deliver photo-realistic SR results with small computational cost.
♻ ☆ PolSAM: Polarimetric Scattering Mechanism Informed Segment Anything Model
PolSAR data presents unique challenges due to its rich and complex characteristics. Existing data representations, such as complex-valued data, polarimetric features, and amplitude images, are widely used. However, these formats often face issues related to usability, interpretability, and data integrity. Most feature extraction networks for PolSAR are small, limiting their ability to capture features effectively. To address these issues, We propose the Polarimetric Scattering Mechanism-Informed SAM (PolSAM), an enhanced Segment Anything Model (SAM) that integrates domain-specific scattering characteristics and a novel prompt generation strategy. PolSAM introduces Microwave Vision Data (MVD), a lightweight and interpretable data representation derived from polarimetric decomposition and semantic correlations. We propose two key components: the Feature-Level Fusion Prompt (FFP), which fuses visual tokens from pseudo-colored SAR images and MVD to address modality incompatibility in the frozen SAM encoder, and the Semantic-Level Fusion Prompt (SFP), which refines sparse and dense segmentation prompts using semantic information. Experimental results on the PhySAR-Seg datasets demonstrate that PolSAM significantly outperforms existing SAM-based and multimodal fusion models, improving segmentation accuracy, reducing data storage, and accelerating inference time. The source code and datasets will be made publicly available at https://github.com/XAI4SAR/PolSAM.
comment: The manuscript is 15 pages long, includes 13 figures and 5 tables
♻ ☆ Learning an Ensemble Token from Task-driven Priors in Facial Analysis
Facial analysis exhibits task-specific feature variations. While Convolutional Neural Networks (CNNs) have enabled the fine-grained representation of spatial information, Vision Transformers (ViTs) have facilitated the representation of semantic information at the patch level. Although the generalization of conventional methodologies has advanced visual interpretability, there remains paucity of research that preserves the unified feature representation on single task learning during the training process. In this work, we introduce ET-Fuser, a novel methodology for learning ensemble token by leveraging attention mechanisms based on task priors derived from pre-trained models for facial analysis. Specifically, we propose a robust prior unification learning method that generates a ensemble token within a self-attention mechanism, which shares the mutual information along the pre-trained encoders. This ensemble token approach offers high efficiency with negligible computational cost. Our results show improvements across a variety of facial analysis, with statistically significant enhancements observed in the feature representations.
comment: 11pages, 8figures, 4tables
♻ ☆ MoWM: Mixture-of-World-Models for Embodied Planning via Latent-to-Pixel Feature Modulation
Embodied action planning is a core challenge in robotics, requiring models to generate precise actions from visual observations and language instructions. While video generation world models are promising, their reliance on pixel-level reconstruction often introduces visual redundancies that hinder action decoding and generalization. Latent world models offer a compact, motion-aware representation, but overlook the fine-grained details critical for precise manipulation. To overcome these limitations, we propose MoWM, a mixture-of-world-model framework that fuses representations from hybrid world models for embodied action planning. Our approach uses motion-aware representations from a latent model as a high-level prior, which guides the extraction of fine-grained visual features from the pixel space model. This design allows MoWM to highlight the informative visual details needed for action decoding. Extensive evaluations on the CALVIN benchmark demonstrate that our method achieves state-of-the-art task success rates and superior generalization. We also provide a comprehensive analysis of the strengths of each feature space, offering valuable insights for future research in embodied planning. The code is available at: https://github.com/tsinghua-fib-lab/MoWM.
comment: 11 pages, 4 figures
♻ ☆ iVISPAR -- An Interactive Visual-Spatial Reasoning Benchmark for VLMs
Vision-Language Models (VLMs) are known to struggle with spatial reasoning and visual alignment. To help overcome these limitations, we introduce iVISPAR, an interactive multimodal benchmark designed to evaluate the spatial reasoning capabilities of VLMs acting as agents. \mbox{iVISPAR} is based on a variant of the sliding tile puzzle, a classic problem that demands logical planning, spatial awareness, and multi-step reasoning. The benchmark supports visual 3D, 2D, and text-based input modalities, enabling comprehensive assessments of VLMs' planning and reasoning skills. We evaluate a broad suite of state-of-the-art open-source and closed-source VLMs, comparing their performance while also providing optimal path solutions and a human baseline to assess the task's complexity and feasibility for humans. Results indicate that while VLMs perform better on 2D tasks compared to 3D or text-based settings, they struggle with complex spatial configurations and consistently fall short of human performance, illustrating the persistent challenge of visual alignment. This underscores critical gaps in current VLM capabilities, highlighting their limitations in achieving human-level cognition. Project website: https://microcosm.ai/ivispar
♻ ☆ ViewSpatial-Bench: Evaluating Multi-perspective Spatial Localization in Vision-Language Models
Vision-language models (VLMs) have demonstrated remarkable capabilities in understanding and reasoning about visual content, but significant challenges persist in tasks requiring cross-viewpoint understanding and spatial reasoning. We identify a critical limitation: current VLMs excel primarily at egocentric spatial reasoning (from the camera's perspective) but fail to generalize to allocentric viewpoints when required to adopt another entity's spatial frame of reference. We introduce ViewSpatial-Bench, the first comprehensive benchmark designed specifically for multi-viewpoint spatial localization recognition evaluation across five distinct task types, supported by an automated 3D annotation pipeline that generates precise directional labels. Comprehensive evaluation of diverse VLMs on ViewSpatial-Bench reveals a significant performance disparity: models demonstrate reasonable performance on camera-perspective tasks but exhibit reduced accuracy when reasoning from a human viewpoint. By fine-tuning VLMs on our multi-perspective spatial dataset, we achieve an overall performance improvement of 46.24% across tasks, highlighting the efficacy of our approach. Our work establishes a crucial benchmark for spatial intelligence in embodied AI systems and provides empirical evidence that modeling 3D spatial relationships enhances VLMs' corresponding spatial comprehension capabilities.
comment: Project: https://zju-real.github.io/ViewSpatial-Page/
♻ ☆ BoundMatch: Boundary detection applied to semi-supervised segmentation
Semi-supervised semantic segmentation (SS-SS) aims to mitigate the heavy annotation burden of dense pixel labeling by leveraging abundant unlabeled images alongside a small labeled set. While current consistency regularization methods achieve strong results, most do not explicitly model boundaries as a separate learning objective. In this paper, we propose BoundMatch, a novel multi-task SS-SS framework that explicitly integrates semantic boundary detection into a teacher-student consistency regularization pipeline. Our core mechanism, Boundary Consistency Regularized Multi-Task Learning (BCRM), enforces prediction agreement between teacher and student models on both segmentation masks and detailed semantic boundaries, providing complementary supervision from two independent tasks. To further enhance performance and encourage sharper boundaries, BoundMatch incorporates two lightweight fusion modules: Boundary-Semantic Fusion (BSF) injects learned boundary cues into the segmentation decoder, while Spatial Gradient Fusion (SGF) refines boundary predictions using mask gradients, yielding more reliable boundary pseudo-labels. This framework is built upon SAMTH, a strong teacher-student baseline featuring a Harmonious Batch Normalization (HBN) update strategy for improved stability. Extensive experiments on diverse datasets including Cityscapes and Pascal VOC show that BoundMatch achieves competitive performance against current state-of-the-art methods. Our approach achieves state-of-the-art results on the new Cityscapes benchmark with DINOv2 foundation model. Ablation studies highlight BoundMatch's ability to improve boundary-specific evaluation metrics, its effectiveness in realistic large-scale unlabeled data scenario, and applicability to lightweight architectures for mobile deployment.
comment: 24 pages, 23 figures, to be published to IEEE Access
♻ ☆ KDC-Diff: A Latent-Aware Diffusion Model with Knowledge Retention for Memory-Efficient Image Generation
The growing adoption of generative AI in real-world applications has exposed a critical bottleneck in the computational demands of diffusion-based text-to-image models. In this work, we propose KDC-Diff, a novel and scalable generative framework designed to significantly reduce computational overhead while maintaining high performance. At its core, KDC-Diff designs a structurally streamlined U-Net with a dual-layered knowledge distillation strategy to transfer semantic and structural representations from a larger teacher model. Moreover, a latent-space replay-based continual learning mechanism is incorporated to ensure stable generative performance across sequential tasks. Evaluated on benchmark datasets, our model demonstrates strong performance across FID, CLIP, KID, and LPIPS metrics while achieving substantial reductions in parameter count, inference time, and FLOPs. KDC-Diff offers a practical, lightweight, and generalizable solution for deploying diffusion models in low-resource environments, making it well-suited for the next generation of intelligent and resource-aware computing systems.
comment: Currently Under Review at IEEE open journal for Computer Society
♻ ☆ FoundBioNet: A Foundation-Based Model for IDH Genotyping of Glioma from Multi-Parametric MRI MICCAI 2025
Accurate, noninvasive detection of isocitrate dehydrogenase (IDH) mutation is essential for effective glioma management. Traditional methods rely on invasive tissue sampling, which may fail to capture a tumor's spatial heterogeneity. While deep learning models have shown promise in molecular profiling, their performance is often limited by scarce annotated data. In contrast, foundation deep learning models offer a more generalizable approach for glioma imaging biomarkers. We propose a Foundation-based Biomarker Network (FoundBioNet) that utilizes a SWIN-UNETR-based architecture to noninvasively predict IDH mutation status from multi-parametric MRI. Two key modules are incorporated: Tumor-Aware Feature Encoding (TAFE) for extracting multi-scale, tumor-focused features, and Cross-Modality Differential (CMD) for highlighting subtle T2-FLAIR mismatch signals associated with IDH mutation. The model was trained and validated on a diverse, multi-center cohort of 1705 glioma patients from six public datasets. Our model achieved AUCs of 90.58%, 88.08%, 65.41%, and 80.31% on independent test sets from EGD, TCGA, Ivy GAP, RHUH, and UPenn, consistently outperforming baseline approaches (p <= 0.05). Ablation studies confirmed that both the TAFE and CMD modules are essential for improving predictive accuracy. By integrating large-scale pretraining and task-specific fine-tuning, FoundBioNet enables generalizable glioma characterization. This approach enhances diagnostic accuracy and interpretability, with the potential to enable more personalized patient care.
comment: Accepted for oral and poster presentation at MICCAI 2025
♻ ☆ Teaching Metric Distance to Discrete Autoregressive Language Models
As large language models expand beyond natural language to domains such as mathematics, multimodal understanding, and embodied agents, tokens increasingly reflect metric relationships rather than purely linguistic meaning. We introduce DIST2Loss, a distance-aware framework designed to train autoregressive discrete models by leveraging predefined distance relationships among output tokens. At its core, DIST2Loss transforms continuous exponential family distributions derived from inherent distance metrics into discrete, categorical optimization targets compatible with the models' architectures. This approach enables the models to learn and preserve meaningful distance relationships during token generation while maintaining compatibility with existing architectures. Empirical evaluations show consistent performance gains in diverse multimodal applications, including visual grounding, robotic manipulation, generative reward modeling, and image generation using vector-quantized features. These improvements are most notable in low-data regimes, demonstrating DIST2Loss's strength under resource constraints.
♻ ☆ StPR: Spatiotemporal Preservation and Routing for Exemplar-Free Video Class-Incremental Learning
Video Class-Incremental Learning (VCIL) seeks to develop models that continuously learn new action categories over time without forgetting previously acquired knowledge. Unlike traditional Class-Incremental Learning (CIL), VCIL introduces the added complexity of spatiotemporal structures, making it particularly challenging to mitigate catastrophic forgetting while effectively capturing both frame-shared semantics and temporal dynamics. Existing approaches either rely on exemplar rehearsal, raising concerns over memory and privacy, or adapt static image-based methods that neglect temporal modeling. To address these limitations, we propose Spatiotemporal Preservation and Routing (StPR), a unified and exemplar-free VCIL framework that explicitly disentangles and preserves spatiotemporal information. First, we introduce Frame-Shared Semantics Distillation (FSSD), which identifies semantically stable and meaningful channels by jointly considering semantic sensitivity and classification contribution. These important semantic channels are selectively regularized to maintain prior knowledge while allowing for adaptation. Second, we design a Temporal Decomposition-based Mixture-of-Experts (TD-MoE), which dynamically routes task-specific experts based on their temporal dynamics, enabling inference without task ID or stored exemplars. Together, StPR effectively leverages spatial semantics and temporal dynamics, achieving a unified, exemplar-free VCIL framework. Extensive experiments on UCF101, HMDB51, and Kinetics400 show that our method outperforms existing baselines while offering improved interpretability and efficiency in VCIL. Code is available in the supplementary materials.
♻ ☆ TinyDef-DETR: A DETR-based Framework for Defect Detection in Transmission Lines from UAV Imagery
Automated defect detection from UAV imagery of transmission lines is a challenging task due to the small size, ambiguity, and complex backgrounds of defects. This paper proposes TinyDef-DETR, a DETR-based framework designed to achieve accurate and efficient detection of transmission line defects from UAV-acquired images. The model integrates four major components: an edge-enhanced ResNet backbone to strengthen boundary-sensitive representations, a stride-free space-to-depth module to enable detail-preserving downsampling, a cross-stage dual-domain multi-scale attention mechanism to jointly model global context and local cues, and a Focaler-Wise-SIoU regression loss to improve the localization of small and difficult objects. Together, these designs effectively mitigate the limitations of conventional detectors. Extensive experiments on both public and real-world datasets demonstrate that TinyDef-DETR achieves superior detection performance and strong generalization capability, while maintaining modest computational overhead. The accuracy and efficiency of TinyDef-DETR make it a suitable method for UAV-based transmission line defect detection, particularly in scenarios involving small and ambiguous objects.
♻ ☆ CADmium: Fine-Tuning Code Language Models for Text-Driven Sequential CAD Design
Computer-aided design (CAD) is the digital construction of 2D and 3D objects, and is central to a wide range of engineering and manufacturing applications like automobile and aviation. Despite its importance, CAD modeling remains largely a time-intensive, manual task. Recent works have attempted to automate this process with small transformer-based models and handcrafted CAD sequence representations. However, there has been little effort to leverage the potential of large language models (LLMs) for sequential CAD design. In this work, we introduce a new large-scale dataset of more than 170k CAD models annotated with high-quality, human-like descriptions generated with our pipeline based on GPT-4.1. Using this dataset, we fine-tune powerful code-LLMs to generate CAD sequences represented in a JSON-based format from natural language descriptions, demonstrating the viability and effectiveness of this approach for text-conditioned CAD generation. Because simple metrics often fail to reflect the quality of generated objects, we introduce geometric and topological metrics based on sphericity, mean curvature, and Euler characteristic to provide richer structural insights. Our experiments and ablation studies on both synthetic and human-annotated data demonstrate that CADmium is able to automate CAD design, drastically speeding up the design of new objects. The dataset, code, and fine-tuned models are available online.
♻ ☆ Spatial Reasoning with Vision-Language Models in Ego-Centric Multi-View Scenes
Understanding 3D spatial relationships remains a major limitation of current Vision-Language Models (VLMs). Prior work has addressed this issue by creating spatial question-answering (QA) datasets based on single images or indoor videos. However, real-world embodied AI agents such as robots and self-driving cars typically rely on ego-centric, multi-view observations. To this end, we introduce Ego3D-Bench, a new benchmark designed to evaluate the spatial reasoning abilities of VLMs using ego-centric, multi-view outdoor data. Ego3D-Bench comprises over 8,600 QA pairs, created with significant involvement from human annotators to ensure quality and diversity. We benchmark 16 SOTA VLMs, including GPT-4o, Gemini1.5-Pro, InternVL3, and Qwen2.5-VL. Our results reveal a notable performance gap between human level scores and VLM performance, highlighting that current VLMs still fall short of human level spatial understanding. To bridge this gap, we propose Ego3D-VLM, a post-training framework that enhances 3D spatial reasoning of VLMs. Ego3D-VLM generates cognitive map based on estimated global 3D coordinates, resulting in 12% average improvement on multi-choice QA and 56% average improvement on absolute distance estimation. Ego3D-VLM is modular and can be integrated with any existing VLM. Together, Ego3D-Bench and Ego3D-VLM offer valuable tools for advancing toward human level spatial understanding in real-world, multi-view environments.
♻ ☆ Taming Diffusion Transformer for Efficient Mobile Video Generation in Seconds
Diffusion Transformers (DiT) have shown strong performance in video generation tasks, but their high computational cost makes them impractical for resource-constrained devices like smartphones, and practical on-device generation is even more challenging. In this work, we propose a series of novel optimizations to significantly accelerate video generation and enable practical deployment on mobile platforms. First, we employ a highly compressed variational autoencoder (VAE) to reduce the dimensionality of the input data without sacrificing visual quality. Second, we introduce a KD-guided, sensitivity-aware tri-level pruning strategy to shrink the model size to suit mobile platforms while preserving critical performance characteristics. Third, we develop an adversarial step distillation technique tailored for DiT, which allows us to reduce the number of inference steps to four. Combined, these optimizations enable our model to achieve approximately 15 frames per second (FPS) generation speed on an iPhone 16 Pro Max, demonstrating the feasibility of efficient, high-quality video generation on mobile devices.
comment: 21 pages, 9 figures, 13 tables
♻ ☆ Griffin: Generative Reference and Layout Guided Image Composition
Text-to-image models have achieved a level of realism that enables the generation of highly convincing images. However, text-based control can be a limiting factor when more explicit guidance is needed. Defining both the content and its precise placement within an image is crucial for achieving finer control. In this work, we address the challenge of multi-image layout control, where the desired content is specified through images rather than text, and the model is guided on where to place each element. Our approach is training-free, requires a single image per reference, and provides explicit and simple control for object and part-level composition. We demonstrate its effectiveness across various image composition tasks.
♻ ☆ SSTP: Efficient Sample Selection for Trajectory Prediction
Trajectory prediction is a core task in autonomous driving. However, training advanced trajectory prediction models on existing large-scale datasets is both time-consuming and computationally expensive. More critically, these datasets are highly imbalanced in scenario density, with normal driving scenes (low-moderate traffic) overwhelmingly dominating the datasets, while high-density and safety-critical cases are underrepresented. As a result, models tend to overfit low/moderate-density scenarios and perform poorly in high-density scenarios. To address these challenges, we propose the SSTP framework, which constructs a compact yet density-balanced dataset tailored to trajectory prediction. SSTP consists of two main stages: (1)Extraction, where a baseline model is pretrained for a few epochs to obtain stable gradient estimates, and the dataset is partitioned by scenario density. (2)Selection, where gradient-based scores and a submodular objective select representative samples within each density category, while biased sampling emphasizes rare high-density interactions to avoid dominance by low-density cases. This approach significantly reduces the dataset size and mitigates scenario imbalance, without sacrificing prediction accuracy. Experiments on the Argoverse 1 and Argoverse 2 datasets with recent state-of-the-art models show that SSTP achieves comparable performance to full-dataset training using only half the data while delivering substantial improvements in high-density traffic scenes and significantly reducing training time. Robust trajectory prediction depends not only on data scale but also on balancing scene density to ensure reliable performance under complex multi agent interactions.
♻ ☆ MMPB: It's Time for Multi-Modal Personalization NeurIPS 2025
Visual personalization is essential in user-facing AI systems such as smart homes and healthcare, where aligning model behavior with user-centric concepts is critical. However, recent large Vision-Language Models (VLMs), despite their broad applicability, remain underexplored in their ability to adapt to individual users. In this paper, we introduce MMPB, the first extensive benchmark for evaluating VLMs on personalization. MMPB comprises 10k image-query pairs and includes 111 personalizable concepts across four categories: humans, animals, objects, and characters, with the human category enriched with preference-grounded queries. We structure personalization into three main task types, each highlighting a different key property of VLMs. Using 23 widely used VLMs including both open- and closed-source models, we evaluate personalization performance via a three-stage protocol: concept injection, multi-turn dialogue, and personalized querying. Our findings indicate that most VLMs (including some closed-source models) struggle with personalization, particularly in maintaining consistency over dialogue, handling user preferences, and adapting to visual cues. Our analysis reveals that the challenges in VLM personalization (such as refusal behaviors and long-context forgetting) highlight substantial room for improvement. By identifying these limitations and offering a scalable benchmark, MMPB offers valuable insights and a solid foundation for future research toward truly personalized multi-modal AI. Project Page: aidaslab.github.io/MMPB
comment: Accepted in NeurIPS 2025
QuantSparse: Comprehensively Compressing Video Diffusion Transformer with Model Quantization and Attention Sparsification
Diffusion transformers exhibit remarkable video generation capability, yet their prohibitive computational and memory costs hinder practical deployment. Model quantization and attention sparsification are two promising directions for compression, but each alone suffers severe performance degradation under aggressive compression. Combining them promises compounded efficiency gains, but naive integration is ineffective. The sparsity-induced information loss exacerbates quantization noise, leading to amplified attention shifts. To address this, we propose \textbf{QuantSparse}, a unified framework that integrates model quantization with attention sparsification. Specifically, we introduce \textit{Multi-Scale Salient Attention Distillation}, which leverages both global structural guidance and local salient supervision to mitigate quantization-induced bias. In addition, we develop \textit{Second-Order Sparse Attention Reparameterization}, which exploits the temporal stability of second-order residuals to efficiently recover information lost under sparsity. Experiments on HunyuanVideo-13B demonstrate that QuantSparse achieves 20.88 PSNR, substantially outperforming the state-of-the-art quantization baseline Q-VDiT (16.85 PSNR), while simultaneously delivering a \textbf{3.68$\times$} reduction in storage and \textbf{1.88$\times$} acceleration in end-to-end inference. Our code will be released in https://github.com/wlfeng0509/QuantSparse.
♻ ☆ YOLO26: Key Architectural Enhancements and Performance Benchmarking for Real-Time Object Detection
This study presents a comprehensive analysis of Ultralytics YOLO26, highlighting its key architectural enhancements and performance benchmarking for real-time object detection. YOLO26, released in September 2025, stands as the newest and most advanced member of the YOLO family, purpose-built to deliver efficiency, accuracy, and deployment readiness on edge and low-power devices. The paper sequentially details architectural innovations of YOLO26, including the removal of Distribution Focal Loss (DFL), adoption of end-to-end NMS-free inference, integration of ProgLoss and Small-Target-Aware Label Assignment (STAL), and the introduction of the MuSGD optimizer for stable convergence. Beyond architecture, the study positions YOLO26 as a multi-task framework, supporting object detection, instance segmentation, pose/keypoints estimation, oriented detection, and classification. We present performance benchmarks of YOLO26 on edge devices such as NVIDIA Jetson Nano and Orin, comparing its results with YOLOv8, YOLOv11, YOLOv12, YOLOv13, and transformer-based detectors(RF-DETR and RT-DETR). This paper further explores real-time deployment pathways, flexible export options (ONNX, TensorRT, CoreML, TFLite), and quantization for INT8/FP16. Practical use cases of YOLO26 across robotics, manufacturing, and IoT are highlighted to demonstrate cross-industry adaptability. Finally, insights on deployment efficiency and broader implications are discussed, with future directions for YOLO26 and the YOLO lineage outlined.
Quantized Visual Geometry Grounded Transformer
Learning-based 3D reconstruction models, represented by Visual Geometry Grounded Transformers (VGGTs), have made remarkable progress with the use of large-scale transformers. Their prohibitive computational and memory costs severely hinder real-world deployment. Post-Training Quantization (PTQ) has become a common practice for compressing and accelerating models. However, we empirically observe that PTQ faces unique obstacles when compressing billion-scale VGGTs: the data-independent special tokens induce heavy-tailed activation distributions, while the multi-view nature of 3D data makes calibration sample selection highly unstable. This paper proposes the first Quantization framework for VGGTs, namely QuantVGGT. This mainly relies on two technical contributions: First, we introduce Dual-Smoothed Fine-Grained Quantization, which integrates pre-global Hadamard rotation and post-local channel smoothing to mitigate heavy-tailed distributions and inter-channel variance robustly. Second, we design Noise-Filtered Diverse Sampling, which filters outliers via deep-layer statistics and constructs frame-aware diverse calibration clusters to ensure stable quantization ranges. Comprehensive experiments demonstrate that QuantVGGT achieves the state-of-the-art results across different benchmarks and bit-width, surpassing the previous state-of-the-art generic quantization method with a great margin. We highlight that our 4-bit QuantVGGT can deliver a 3.7$\times$ memory reduction and 2.5$\times$ acceleration in real-hardware inference, while maintaining reconstruction accuracy above 98\% of its full-precision counterpart. This demonstrates the vast advantages and practicality of QuantVGGT in resource-constrained scenarios. Our code is released in https://github.com/wlfeng0509/QuantVGGT.
♻ ☆ U-MAN: U-Net with Multi-scale Adaptive KAN Network for Medical Image Segmentation
Medical image segmentation faces significant challenges in preserving fine-grained details and precise boundaries due to complex anatomical structures and pathological regions. These challenges primarily stem from two key limitations of conventional U-Net architectures: (1) their simple skip connections ignore the encoder-decoder semantic gap between various features, and (2) they lack the capability for multi-scale feature extraction in deep layers. To address these challenges, we propose the U-Net with Multi-scale Adaptive KAN (U-MAN), a novel architecture that enhances the emerging Kolmogorov-Arnold Network (KAN) with two specialized modules: Progressive Attention-Guided Feature Fusion (PAGF) and the Multi-scale Adaptive KAN (MAN). Our PAGF module replaces the simple skip connection, using attention to fuse features from the encoder and decoder. The MAN module enables the network to adaptively process features at multiple scales, improving its ability to segment objects of various sizes. Experiments on three public datasets (BUSI, GLAS, and CVC) show that U-MAN outperforms state-of-the-art methods, particularly in defining accurate boundaries and preserving fine details.
♻ ☆ Unified Cross-Modal Image Synthesis with Hierarchical Mixture of Product-of-Experts
We propose a deep mixture of multimodal hierarchical variational auto-encoders called MMHVAE that synthesizes missing images from observed images in different modalities. MMHVAE's design focuses on tackling four challenges: (i) creating a complex latent representation of multimodal data to generate high-resolution images; (ii) encouraging the variational distributions to estimate the missing information needed for cross-modal image synthesis; (iii) learning to fuse multimodal information in the context of missing data; (iv) leveraging dataset-level information to handle incomplete data sets at training time. Extensive experiments are performed on the challenging problem of pre-operative brain multi-parametric magnetic resonance and intra-operative ultrasound imaging.
comment: Accepted in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
♻ ☆ Raw-JPEG Adapter: Efficient Raw Image Compression with JPEG
Digital cameras digitize scene light into linear raw representations, which the image signal processor (ISP) converts into display-ready outputs. While raw data preserves full sensor information--valuable for editing and vision tasks--formats such as Digital Negative (DNG) require large storage, making them impractical in constrained scenarios. In contrast, JPEG is a widely supported format, offering high compression efficiency and broad compatibility, but it is not well-suited for raw storage. This paper presents RawJPEG Adapter, a lightweight, learnable, and invertible preprocessing pipeline that adapts raw images for standard JPEG compression. Our method applies spatial and optional frequency-domain transforms, with compact parameters stored in the JPEG comment field, enabling accurate raw reconstruction. Experiments across multiple datasets show that our method achieves higher fidelity than direct JPEG storage, supports other codecs, and provides a favorable trade-off between compression ratio and reconstruction accuracy.
♻ ☆ LoRA-PT: Low-Rank Adapting UNETR for Hippocampus Segmentation Using Principal Tensor Singular Values and Vectors
The hippocampus is an important brain structure involved in various psychiatric disorders, and its automatic and accurate segmentation is vital for studying these diseases. Recently, deep learning-based methods have made significant progress in hippocampus segmentation. However, training deep neural network models requires substantial computational resources, time, and a large amount of labeled training data, which is frequently scarce in medical image segmentation. To address these issues, we propose LoRA-PT, a novel parameter-efficient fine-tuning (PEFT) method that transfers the pre-trained UNETR model from the BraTS2021 dataset to the hippocampus segmentation task. Specifically, LoRA-PT divides the parameter matrix of the transformer structure into three distinct sizes, yielding three third-order tensors. These tensors are decomposed using tensor singular value decomposition to generate low-rank tensors consisting of the principal singular values and vectors, with the remaining singular values and vectors forming the residual tensor. During fine-tuning, only the low-rank tensors (i.e., the principal tensor singular values and vectors) are updated, while the residual tensors remain unchanged. We validated the proposed method on three public hippocampus datasets, and the experimental results show that LoRA-PT outperformed state-of-the-art PEFT methods in segmentation accuracy while significantly reducing the number of parameter updates. Our source code is available at https://github.com/WangangCheng/LoRA-PT/tree/LoRA-PT.
comment: Accepted to Artificial Intelligence in Medicine (2025). Final published version available online
♻ ☆ tCURLoRA: Tensor CUR Decomposition Based Low-Rank Parameter Adaptation and Its Application in Medical Image Segmentation MICCAI 2025
Transfer learning, by leveraging knowledge from pre-trained models, has significantly enhanced the performance of target tasks. However, as deep neural networks scale up, full fine-tuning introduces substantial computational and storage challenges in resource-constrained environments, limiting its widespread adoption. To address this, parameter-efficient fine-tuning (PEFT) methods have been developed to reduce computational complexity and storage requirements by minimizing the number of updated parameters. While matrix decomposition-based PEFT methods, such as LoRA, show promise, they struggle to fully capture the high-dimensional structural characteristics of model weights. In contrast, high-dimensional tensors offer a more natural representation of neural network weights, allowing for a more comprehensive capture of higher-order features and multi-dimensional interactions. In this paper, we propose tCURLoRA, a novel fine-tuning method based on tensor CUR decomposition. By concatenating pre-trained weight matrices into a three-dimensional tensor and applying tensor CUR decomposition, we update only the lower-order tensor components during fine-tuning, effectively reducing computational and storage overhead. Experimental results demonstrate that tCURLoRA outperforms existing PEFT methods in medical image segmentation tasks.
comment: Accepted to MICCAI 2025. The final version of record is published in Springer LNCS
♻ ☆ Revisiting semi-supervised learning in the era of foundation models
Semi-supervised learning (SSL) leverages abundant unlabeled data alongside limited labeled data to enhance learning. As vision foundation models (VFMs) increasingly serve as the backbone of vision applications, it remains unclear how SSL interacts with these pre-trained models. To address this gap, we develop new SSL benchmark datasets where frozen VFMs underperform and systematically evaluate representative SSL methods. We make a surprising observation: parameter-efficient fine-tuning (PEFT) using only labeled data often matches SSL performance, even without leveraging unlabeled data. This motivates us to revisit self-training, a conceptually simple SSL baseline, where we use the supervised PEFT model to pseudo-label unlabeled data for further training. To overcome the notorious issue of noisy pseudo-labels, we propose ensembling multiple PEFT approaches and VFM backbones to produce more robust pseudo-labels. Empirical results validate the effectiveness of this simple yet powerful approach, providing actionable insights into SSL with VFMs and paving the way for more scalable and practical semi-supervised learning in the era of foundation models.
♻ ☆ Investigating Long-term Training for Remote Sensing Object Detection
Recently, numerous methods have achieved impressive performance in remote sensing object detection, relying on convolution or transformer architectures. Such detectors typically have a feature backbone to extract useful features from raw input images. A common practice in current detectors is initializing the backbone with pre-trained weights available online. Fine-tuning the backbone is typically required to generate features suitable for remote-sensing images. While the prolonged training could lead to over-fitting, hindering the extraction of basic visual features, it can enable models to gradually extract deeper insights and richer representations from remote sensing data. Striking a balance between these competing factors is critical for achieving optimal performance. In this study, we aim to investigate the performance and characteristics of remote sensing object detection models under very long training schedules, and propose a novel method named Dynamic Backbone Freezing (DBF) for feature backbone fine-tuning on remote sensing object detection under long-term training. Our method addresses the dilemma of whether the backbone should extract low-level generic features or possess specific knowledge of the remote sensing domain, by introducing a module called 'Freezing Scheduler' to manage the update of backbone features during long-term training dynamically. Extensive experiments on DOTA and DIOR-R show that our approach enables more accurate model learning while substantially reducing computational costs in long-term training. Besides, it can be seamlessly adopted without additional effort due to its straightforward design. The code is available at https://github.com/unique-chan/dbf.
comment: Accepted to Machine Vision and Applications (MVA)
♻ ☆ Imagining Alternatives: Towards High-Resolution 3D Counterfactual Medical Image Generation via Language Guidance MICCAI
Vision-language models have demonstrated impressive capabilities in generating 2D images under various conditions; however, the success of these models is largely enabled by extensive, readily available pretrained foundation models. Critically, comparable pretrained models do not exist for 3D, significantly limiting progress. As a result, the potential of vision-language models to produce high-resolution 3D counterfactual medical images conditioned solely on natural language remains unexplored. Addressing this gap would enable powerful clinical and research applications, such as personalized counterfactual explanations, simulation of disease progression, and enhanced medical training by visualizing hypothetical conditions in realistic detail. Our work takes a step toward this challenge by introducing a framework capable of generating high-resolution 3D counterfactual medical images of synthesized patients guided by free-form language prompts. We adapt state-of-the-art 3D diffusion models with enhancements from Simple Diffusion and incorporate augmented conditioning to improve text alignment and image quality. To our knowledge, this is the first demonstration of a language-guided native-3D diffusion model applied to neurological imaging, where faithful three-dimensional modeling is essential. On two neurological MRI datasets, our framework simulates varying counterfactual lesion loads in Multiple Sclerosis and cognitive states in Alzheimer's disease, generating high-quality images while preserving subject fidelity. Our results lay the groundwork for prompt-driven disease progression analysis in 3D medical imaging. Project link - https://lesupermomo.github.io/imagining-alternatives/.
comment: Accepted to the 2025 MICCAI ELAMI Workshop
♻ ☆ Not All Tokens are Guided Equal: Improving Guidance in Visual Autoregressive Models
Autoregressive (AR) models based on next-scale prediction are rapidly emerging as a powerful tool for image generation, but they face a critical weakness: information inconsistencies between patches across timesteps introduced by progressive resolution scaling. These inconsistencies scatter guidance signals, causing them to drift away from conditioning information and leaving behind ambiguous, unfaithful features. We tackle this challenge with Information-Grounding Guidance (IGG), a novel mechanism that anchors guidance to semantically important regions through attention. By adaptively reinforcing informative patches during sampling, IGG ensures that guidance and content remain tightly aligned. Across both class-conditioned and text-to-image generation tasks, IGG delivers sharper, more coherent, and semantically grounded images, setting a new benchmark for AR-based methods.
comment: 17 pages, 7 figures; added shared first authorship statement
♻ ☆ ZoDIAC: Zoneout Dropout Injection Attention Calculation
In the past few years the transformer model has been utilized for a variety of tasks such as image captioning, image classification natural language generation, and natural language understanding. As a key component of the transformer model, self-attention calculates the attention values by mapping the relationships among the head elements of the source and target sequence, yet there is no explicit mechanism to refine and intensify the attention values with respect to the context of the input and target sequences. Based on this intuition, we introduce a novel refine and intensify attention mechanism that is called Zoneup Dropout Injection Attention Calculation (ZoDIAC), in which the intensities of attention values in the elements of the input source and target sequences are first refined using GELU and dropout and then intensified using a proposed zoneup process which includes the injection of a learned scalar factor. Our extensive experiments show that ZoDIAC achieves statistically significant higher scores under all image captioning metrics using various feature extractors in comparison to the conventional self-attention module in the transformer model on the MS-COCO dataset. Our proposed ZoDIAC attention modules can be used as a drop-in replacement for the attention components in all transformer models. The code for our experiments is publicly available at: https://github.com/zanyarz/zodiac
comment: This work was published at IEEE AIxSET 2024 (DOI: 10.1109/AIxSET62544.2024.00008). Arxiv didn't allow a new submission for the journal version (DOI: 10.1142/S1793351X25440039), so both versions with separate DOIs are merged into one Arxiv entry to reflect the latest journal updates
♻ ☆ Neural Collapse-Inspired Multi-Label Federated Learning under Label-Distribution Skew
Federated Learning (FL) enables collaborative model training across distributed clients while preserving data privacy. However, the performance of deep learning often deteriorates in FL due to decentralized and heterogeneous data. This challenge is further amplified in multi-label scenarios, where data exhibit complex characteristics such as label co-occurrence, inter-label dependency, and discrepancies between local and global label relationships. While most existing FL research primarily focuses on single-label classification, many real-world applications, particularly in domains such as medical imaging, often involve multi-label settings. In this paper, we address this important yet underexplored scenario in FL, where clients hold multi-label data with skewed label distributions. Neural Collapse (NC) describes a geometric structure in the latent feature space where features of each class collapse to their class mean with vanishing intra-class variance, and the class means form a maximally separated configuration. Motivated by this theory, we propose a method to align feature distributions across clients and to learn high-quality, well-clustered representations. To make the NC-structure applicable to multi-label settings, where image-level features may contain multiple semantic concepts, we introduce a feature disentanglement module that extracts semantically specific features. The clustering of these disentangled class-wise features is guided by a predefined shared NC structure, which mitigates potential conflicts between client models due to diverse local data distributions. In addition, we design regularisation losses to encourage compact clustering in the latent feature space. Experiments conducted on four benchmark datasets across eight diverse settings demonstrate that our approach outperforms existing methods, validating its effectiveness in this challenging FL scenario.
♻ ☆ FakeChain: Exposing Shallow Cues in Multi-Step Deepfake Detection
Multi-step or hybrid deepfakes, created by sequentially applying different deepfake creation methods such as Face-Swapping, GAN-based generation, and Diffusion methods, can pose an emerging and unforseen technical challenge for detection models trained on single-step forgeries. While prior studies have mainly focused on detecting isolated single manipulation, little is known about the detection model behavior under such compositional, hybrid, and complex manipulation pipelines. In this work, we introduce \textbf{FakeChain}, a large-scale benchmark comprising 1-, 2-, and 3-Step forgeries synthesized using five state-of-the-art representative generators. Using this approach, we analyze detection performance and spectral properties across hybrid manipulation at different step, along with varying generator combinations and quality settings. Surprisingly, our findings reveal that detection performance highly depends on the final manipulation type, with F1-score dropping by up to \textbf{58.83\%} when it differs from training distribution. This clearly demonstrates that detectors rely on last-stage artifacts rather than cumulative manipulation traces, limiting generalization. Such findings highlight the need for detection models to explicitly consider manipulation history and sequences. Our results highlight the importance of benchmarks such as FakeChain, reflecting growing synthesis complexity and diversity in real-world scenarios. Our sample code is available here\footnote{https://github.com/minjihh/FakeChain}.
♻ ☆ HodgeFormer: Transformers for Learnable Operators on Triangular Meshes through Data-Driven Hodge Matrices
Currently, prominent Transformer architectures applied on graphs and meshes for shape analysis tasks employ traditional attention layers that heavily utilize spectral features requiring costly eigenvalue decomposition-based methods. To encode the mesh structure, these methods derive positional embeddings, that heavily rely on eigenvalue decomposition based operations, e.g. on the Laplacian matrix, or on heat-kernel signatures, which are then concatenated to the input features. This paper proposes a novel approach inspired by the explicit construction of the Hodge Laplacian operator in Discrete Exterior Calculus as a product of discrete Hodge operators and exterior derivatives, i.e. $(L := \star_0^{-1} d_0^T \star_1 d_0)$. We adjust the Transformer architecture in a novel deep learning layer that utilizes the multi-head attention mechanism to approximate Hodge matrices $\star_0$, $\star_1$ and $\star_2$ and learn families of discrete operators $L$ that act on mesh vertices, edges and faces. Our approach results in a computationally-efficient architecture that achieves comparable performance in mesh segmentation and classification tasks, through a direct learning framework, while eliminating the need for costly eigenvalue decomposition operations or complex preprocessing operations.
comment: 15 pages, 13 figures, 10 tables
♻ ☆ DISCOVER: Data-driven Identification of Sub-activities via Clustering and Visualization for Enhanced Activity Recognition in Smart Homes
Human Activity Recognition (HAR) using ambient sensors has great potential for practical applications, particularly in elder care and independent living. However, deploying HAR systems in real-world settings remains challenging due to the high cost of labeled data, the need for pre-segmented sensor streams, and the lack of flexibility in activity granularity. To address these limitations, we introduce DISCOVER, a method designed to discover fine-grained human sub-activities from unlabeled sensor data without relying on pre-segmentation. DISCOVER combines unsupervised feature extraction and clustering with a user-friendly visualization tool to streamline the labeling process. DISCOVER enables domain experts to efficiently annotate only a minimal set of representative cluster centroids, reducing the annotation workload to a small number of samples (0.05% of our dataset). We demonstrate DISCOVER's effectiveness through a re-annotation exercise on widely used HAR datasets, showing that it uncovers finer-grained activities and produces more nuanced annotations than traditional coarse labels. DISCOVER represents a step toward practical, deployable HAR systems that adapt to diverse real environments.
comment: v1: Initial submission. Under review at IMWUT
♻ ☆ Text-to-CT Generation via 3D Latent Diffusion Model with Contrastive Vision-Language Pretraining
Objective: While recent advances in text-conditioned generative models have enabled the synthesis of realistic medical images, progress has been largely confined to 2D modalities such as chest X-rays. Extending text-to-image generation to volumetric CT remains a significant challenge, due to its high dimensionality, anatomical complexity, and the absence of robust frameworks that align vision-language data in 3D medical imaging. Methods: We introduce a novel architecture for Text-to-CT generation that combines a latent diffusion model with a 3D contrastive vision-language pretraining scheme. Our approach leverages a dual-encoder CLIP-style model trained on paired CT volumes and radiology reports to establish a shared embedding space, which serves as the conditioning input for generation. CT volumes are compressed into a low-dimensional latent space via a pretrained volumetric VAE, enabling efficient 3D denoising diffusion without requiring external super-resolution stages. Results: We evaluate our method on the CT-RATE dataset and conduct a comprehensive assessment of image fidelity, clinical relevance, and semantic alignment. Our model achieves competitive performance across all tasks, significantly outperforming prior baselines for text-to-CT generation. Moreover, we demonstrate that CT scans synthesized by our framework can effectively augment real data, improving downstream diagnostic performance. Conclusion: Our results show that modality-specific vision-language alignment is a key component for high-quality 3D medical image generation. By integrating contrastive pretraining and volumetric diffusion, our method offers a scalable and controllable solution for synthesizing clinically meaningful CT volumes from text, paving the way for new applications in data augmentation, medical education, and automated clinical simulation. Code at https://github.com/cosbidev/Text2CT.
♻ ☆ SL$^{2}$A-INR: Single-Layer Learnable Activation for Implicit Neural Representation ICCV 2025
Implicit Neural Representation (INR), leveraging a neural network to transform coordinate input into corresponding attributes, has recently driven significant advances in several vision-related domains. However, the performance of INR is heavily influenced by the choice of the nonlinear activation function used in its multilayer perceptron (MLP) architecture. To date, multiple nonlinearities have been investigated, but current INRs still face limitations in capturing high-frequency components and diverse signal types. We show that these challenges can be alleviated by introducing a novel approach in INR architecture. Specifically, we propose SL$^{2}$A-INR, a hybrid network that combines a single-layer learnable activation function with an MLP that uses traditional ReLU activations. Our method performs superior across diverse tasks, including image representation, 3D shape reconstruction, and novel view synthesis. Through comprehensive experiments, SL$^{2}$A-INR sets new benchmarks in accuracy, quality, and robustness for INR. Our Code is publicly available on~\href{https://github.com/Iceage7/SL2A-INR}{\textcolor{magenta}{GitHub}}.
comment: Accepted to ICCV 2025
♻ ☆ EVO-LRP: Evolutionary Optimization of LRP for Interpretable Model Explanations
Explainable AI (XAI) methods help identify which image regions influence a model's prediction, but often face a trade-off between detail and interpretability. Layer-wise Relevance Propagation (LRP) offers a model-aware alternative. However, LRP implementations commonly rely on heuristic rule sets that are not optimized for clarity or alignment with model behavior. We introduce EVO-LRP, a method that applies Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to tune LRP hyperparameters based on quantitative interpretability metrics, such as faithfulness or sparseness. EVO-LRP outperforms traditional XAI approaches in both interpretability metric performance and visual coherence, with strong sensitivity to class-specific features. These findings demonstrate that attribution quality can be systematically improved through principled, task-specific optimization.
comment: 15 pages
Artificial Intelligence 310
☆ Stitch: Training-Free Position Control in Multimodal Diffusion Transformers
Text-to-Image (T2I) generation models have advanced rapidly in recent years, but accurately capturing spatial relationships like "above" or "to the right of" poses a persistent challenge. Earlier methods improved spatial relationship following with external position control. However, as architectures evolved to enhance image quality, these techniques became incompatible with modern models. We propose Stitch, a training-free method for incorporating external position control into Multi-Modal Diffusion Transformers (MMDiT) via automatically-generated bounding boxes. Stitch produces images that are both spatially accurate and visually appealing by generating individual objects within designated bounding boxes and seamlessly stitching them together. We find that targeted attention heads capture the information necessary to isolate and cut out individual objects mid-generation, without needing to fully complete the image. We evaluate Stitch on PosEval, our benchmark for position-based T2I generation. Featuring five new tasks that extend the concept of Position beyond the basic GenEval task, PosEval demonstrates that even top models still have significant room for improvement in position-based generation. Tested on Qwen-Image, FLUX, and SD3.5, Stitch consistently enhances base models, even improving FLUX by 218% on GenEval's Position task and by 206% on PosEval. Stitch achieves state-of-the-art results with Qwen-Image on PosEval, improving over previous models by 54%, all accomplished while integrating position control into leading models training-free. Code is available at https://github.com/ExplainableML/Stitch.
comment: Preprint
☆ OmniRetarget: Interaction-Preserving Data Generation for Humanoid Whole-Body Loco-Manipulation and Scene Interaction
A dominant paradigm for teaching humanoid robots complex skills is to retarget human motions as kinematic references to train reinforcement learning (RL) policies. However, existing retargeting pipelines often struggle with the significant embodiment gap between humans and robots, producing physically implausible artifacts like foot-skating and penetration. More importantly, common retargeting methods neglect the rich human-object and human-environment interactions essential for expressive locomotion and loco-manipulation. To address this, we introduce OmniRetarget, an interaction-preserving data generation engine based on an interaction mesh that explicitly models and preserves the crucial spatial and contact relationships between an agent, the terrain, and manipulated objects. By minimizing the Laplacian deformation between the human and robot meshes while enforcing kinematic constraints, OmniRetarget generates kinematically feasible trajectories. Moreover, preserving task-relevant interactions enables efficient data augmentation, from a single demonstration to different robot embodiments, terrains, and object configurations. We comprehensively evaluate OmniRetarget by retargeting motions from OMOMO, LAFAN1, and our in-house MoCap datasets, generating over 8-hour trajectories that achieve better kinematic constraint satisfaction and contact preservation than widely used baselines. Such high-quality data enables proprioceptive RL policies to successfully execute long-horizon (up to 30 seconds) parkour and loco-manipulation skills on a Unitree G1 humanoid, trained with only 5 reward terms and simple domain randomization shared by all tasks, without any learning curriculum.
comment: Project website: https://omniretarget.github.io
☆ Branching Out: Broadening AI Measurement and Evaluation with Measurement Trees
This paper introduces \textit{measurement trees}, a novel class of metrics designed to combine various constructs into an interpretable multi-level representation of a measurand. Unlike conventional metrics that yield single values, vectors, surfaces, or categories, measurement trees produce a hierarchical directed graph in which each node summarizes its children through user-defined aggregation methods. In response to recent calls to expand the scope of AI system evaluation, measurement trees enhance metric transparency and facilitate the integration of heterogeneous evidence, including, e.g., agentic, business, energy-efficiency, sociotechnical, or security signals. We present definitions and examples, demonstrate practical utility through a large-scale measurement exercise, and provide accompanying open-source Python code. By operationalizing a transparent approach to measurement of complex constructs, this work offers a principled foundation for broader and more interpretable AI evaluation.
☆ Learning Generalizable Shape Completion with SIM(3) Equivariance NeurIPS 2025
3D shape completion methods typically assume scans are pre-aligned to a canonical frame. This leaks pose and scale cues that networks may exploit to memorize absolute positions rather than inferring intrinsic geometry. When such alignment is absent in real data, performance collapses. We argue that robust generalization demands architectural equivariance to the similarity group, SIM(3), so the model remains agnostic to pose and scale. Following this principle, we introduce the first SIM(3)-equivariant shape completion network, whose modular layers successively canonicalize features, reason over similarity-invariant geometry, and restore the original frame. Under a de-biased evaluation protocol that removes the hidden cues, our model outperforms both equivariant and augmentation baselines on the PCN benchmark. It also sets new cross-domain records on real driving and indoor scans, lowering minimal matching distance on KITTI by 17% and Chamfer distance $\ell1$ on OmniObject3D by 14%. Perhaps surprisingly, ours under the stricter protocol still outperforms competitors under their biased settings. These results establish full SIM(3) equivariance as an effective route to truly generalizable shape completion. Project page: https://sime-completion.github.io.
comment: NeurIPS 2025
☆ TimeRewarder: Learning Dense Reward from Passive Videos via Frame-wise Temporal Distance
Designing dense rewards is crucial for reinforcement learning (RL), yet in robotics it often demands extensive manual effort and lacks scalability. One promising solution is to view task progress as a dense reward signal, as it quantifies the degree to which actions advance the system toward task completion over time. We present TimeRewarder, a simple yet effective reward learning method that derives progress estimation signals from passive videos, including robot demonstrations and human videos, by modeling temporal distances between frame pairs. We then demonstrate how TimeRewarder can supply step-wise proxy rewards to guide reinforcement learning. In our comprehensive experiments on ten challenging Meta-World tasks, we show that TimeRewarder dramatically improves RL for sparse-reward tasks, achieving nearly perfect success in 9/10 tasks with only 200,000 interactions per task with the environment. This approach outperformed previous methods and even the manually designed environment dense reward on both the final success rate and sample efficiency. Moreover, we show that TimeRewarder pretraining can exploit real-world human videos, highlighting its potential as a scalable approach path to rich reward signals from diverse video sources.
☆ Learning to See Before Seeing: Demystifying LLM Visual Priors from Language Pre-training
Large Language Models (LLMs), despite being trained on text alone, surprisingly develop rich visual priors. These priors allow latent visual capabilities to be unlocked for vision tasks with a relatively small amount of multimodal data, and in some cases, to perform visual tasks without ever having seen an image. Through systematic analysis, we reveal that visual priors-the implicit, emergent knowledge about the visual world acquired during language pre-training-are composed of separable perception and reasoning priors with unique scaling trends and origins. We show that an LLM's latent visual reasoning ability is predominantly developed by pre-training on reasoning-centric data (e.g., code, math, academia) and scales progressively. This reasoning prior acquired from language pre-training is transferable and universally applicable to visual reasoning. In contrast, a perception prior emerges more diffusely from broad corpora, and perception ability is more sensitive to the vision encoder and visual instruction tuning data. In parallel, text describing the visual world proves crucial, though its performance impact saturates rapidly. Leveraging these insights, we propose a data-centric recipe for pre-training vision-aware LLMs and verify it in 1T token scale pre-training. Our findings are grounded in over 100 controlled experiments consuming 500,000 GPU-hours, spanning the full MLLM construction pipeline-from LLM pre-training to visual alignment and supervised multimodal fine-tuning-across five model scales, a wide range of data categories and mixtures, and multiple adaptation setups. Along with our main findings, we propose and investigate several hypotheses, and introduce the Multi-Level Existence Bench (MLE-Bench). Together, this work provides a new way of deliberately cultivating visual priors from language pre-training, paving the way for the next generation of multimodal LLMs.
comment: Project page: https://junlinhan.github.io/projects/lsbs/
☆ Searching for Difficult-to-Translate Test Examples at Scale
NLP models require test data that are sufficiently challenging. The difficulty of an example is linked to the topic it originates from (''seed topic''). The relationship between the topic and the difficulty of its instances is stochastic in nature: an example about a difficult topic can happen to be easy, and vice versa. At the scale of the Internet, there are tens of thousands of potential topics, and finding the most difficult one by drawing and evaluating a large number of examples across all topics is computationally infeasible. We formalize this task and treat it as a multi-armed bandit problem. In this framework, each topic is an ''arm,'' and pulling an arm (at a cost) involves drawing a single example, evaluating it, and measuring its difficulty. The goal is to efficiently identify the most difficult topics within a fixed computational budget. We illustrate the bandit problem setup of finding difficult examples for the task of machine translation. We find that various bandit strategies vastly outperform baseline methods like brute-force searching the most challenging topics.
☆ Fine-tuning Behavioral Cloning Policies with Preference-Based Reinforcement Learning
Deploying reinforcement learning (RL) in robotics, industry, and health care is blocked by two obstacles: the difficulty of specifying accurate rewards and the risk of unsafe, data-hungry exploration. We address this by proposing a two-stage framework that first learns a safe initial policy from a reward-free dataset of expert demonstrations, then fine-tunes it online using preference-based human feedback. We provide the first principled analysis of this offline-to-online approach and introduce BRIDGE, a unified algorithm that integrates both signals via an uncertainty-weighted objective. We derive regret bounds that shrink with the number of offline demonstrations, explicitly connecting the quantity of offline data to online sample efficiency. We validate BRIDGE in discrete and continuous control MuJoCo environments, showing it achieves lower regret than both standalone behavioral cloning and online preference-based RL. Our work establishes a theoretical foundation for designing more sample-efficient interactive agents.
comment: 85 pages (11 + references and appendix), 9 figures
☆ MENLO: From Preferences to Proficiency -- Evaluating and Modeling Native-like Quality Across 47 Languages
Ensuring native-like quality of large language model (LLM) responses across many languages is challenging. To address this, we introduce MENLO, a framework that operationalizes the evaluation of native-like response quality based on audience design-inspired mechanisms. Using MENLO, we create a dataset of 6,423 human-annotated prompt-response preference pairs covering four quality dimensions with high inter-annotator agreement in 47 language varieties. Our evaluation reveals that zero-shot LLM judges benefit significantly from pairwise evaluation and our structured annotation rubrics, yet they still underperform human annotators on our dataset. We demonstrate substantial improvements through fine-tuning with reinforcement learning, reward shaping, and multi-task learning approaches. Additionally, we show that RL-trained judges can serve as generative reward models to enhance LLMs' multilingual proficiency, though discrepancies with human judgment remain. Our findings suggest promising directions for scalable multilingual evaluation and preference alignment. We release our dataset and evaluation framework to support further research in multilingual LLM evaluation.
comment: 10 pages, 23 tables, 17 figures
☆ Deconstructing Self-Bias in LLM-generated Translation Benchmarks
As large language models (LLMs) begin to saturate existing benchmarks, automated benchmark creation using LLMs (LLM as a benchmark) has emerged as a scalable alternative to slow and costly human curation. While these generated test sets have to potential to cheaply rank models, we demonstrate a critical flaw. LLM generated benchmarks systematically favor the model that created the benchmark, they exhibit self bias on low resource languages to English translation tasks. We show three key findings on automatic benchmarking of LLMs for translation: First, this bias originates from two sources: the generated test data (LLM as a testset) and the evaluation method (LLM as an evaluator), with their combination amplifying the effect. Second, self bias in LLM as a benchmark is heavily influenced by the model's generation capabilities in the source language. For instance, we observe more pronounced bias in into English translation, where the model's generation system is developed, than in out of English translation tasks. Third, we observe that low diversity in source text is one attribution to self bias. Our results suggest that improving the diversity of these generated source texts can mitigate some of the observed self bias.
☆ Are Robust LLM Fingerprints Adversarially Robust?
Model fingerprinting has emerged as a promising paradigm for claiming model ownership. However, robustness evaluations of these schemes have mostly focused on benign perturbations such as incremental fine-tuning, model merging, and prompting. Lack of systematic investigations into {\em adversarial robustness} against a malicious model host leaves current systems vulnerable. To bridge this gap, we first define a concrete, practical threat model against model fingerprinting. We then take a critical look at existing model fingerprinting schemes to identify their fundamental vulnerabilities. Based on these, we develop adaptive adversarial attacks tailored for each vulnerability, and demonstrate that these can bypass model authentication completely for ten recently proposed fingerprinting schemes while maintaining high utility of the model for the end users. Our work encourages fingerprint designers to adopt adversarial robustness by design. We end with recommendations for future fingerprinting methods.
☆ Fairness Testing in Retrieval-Augmented Generation: How Small Perturbations Reveal Bias in Small Language Models
Large Language Models (LLMs) are widely used across multiple domains but continue to raise concerns regarding security and fairness. Beyond known attack vectors such as data poisoning and prompt injection, LLMs are also vulnerable to fairness bugs. These refer to unintended behaviors influenced by sensitive demographic cues (e.g., race or sexual orientation) that should not affect outcomes. Another key issue is hallucination, where models generate plausible yet false information. Retrieval-Augmented Generation (RAG) has emerged as a strategy to mitigate hallucinations by combining external retrieval with text generation. However, its adoption raises new fairness concerns, as the retrieved content itself may surface or amplify bias. This study conducts fairness testing through metamorphic testing (MT), introducing controlled demographic perturbations in prompts to assess fairness in sentiment analysis performed by three Small Language Models (SLMs) hosted on HuggingFace (Llama-3.2-3B-Instruct, Mistral-7B-Instruct-v0.3, and Llama-3.1-Nemotron-8B), each integrated into a RAG pipeline. Results show that minor demographic variations can break up to one third of metamorphic relations (MRs). A detailed analysis of these failures reveals a consistent bias hierarchy, with perturbations involving racial cues being the predominant cause of the violations. In addition to offering a comparative evaluation, this work reinforces that the retrieval component in RAG must be carefully curated to prevent bias amplification. The findings serve as a practical alert for developers, testers and small organizations aiming to adopt accessible SLMs without compromising fairness or reliability.
☆ AI-assisted Advanced Propellant Development for Electric Propulsion
Artificial Intelligence algorithms are introduced in this work as a tool to predict the performance of new chemical compounds as alternative propellants for electric propulsion, focusing on predicting their ionisation characteristics and fragmentation patterns. The chemical properties and structure of the compounds are encoded using a chemical fingerprint, and the training datasets are extracted from the NIST WebBook. The AI-predicted ionisation energy and minimum appearance energy have a mean relative error of 6.87% and 7.99%, respectively, and a predicted ion mass with a 23.89% relative error. In the cases of full mass spectra due to electron ionisation, the predictions have a cosine similarity of 0.6395 and align with the top 10 most similar mass spectra in 78% of instances within a 30 Da range.
comment: 23 pages, 10 figures, 5 tables. Journal of Electric Propulsion
☆ Parametric Neural Amp Modeling with Active Learning
We introduce Panama, an active learning framework to train parametric guitar amp models end-to-end using a combination of an LSTM model and a WaveNet-like architecture. With \model, one can create a virtual amp by recording samples that are determined through an ensemble-based active learning strategy to minimize the amount of datapoints needed (i.e., amp knob settings). Our strategy uses gradient-based optimization to maximize the disagreement among ensemble models, in order to identify the most informative datapoints. MUSHRA listening tests reveal that, with 75 datapoints, our models are able to match the perceptual quality of NAM, the leading open-source non-parametric amp modeler.
☆ The Unheard Alternative: Contrastive Explanations for Speech-to-Text Models
Contrastive explanations, which indicate why an AI system produced one output (the target) instead of another (the foil), are widely regarded in explainable AI as more informative and interpretable than standard explanations. However, obtaining such explanations for speech-to-text (S2T) generative models remains an open challenge. Drawing from feature attribution techniques, we propose the first method to obtain contrastive explanations in S2T by analyzing how parts of the input spectrogram influence the choice between alternative outputs. Through a case study on gender assignment in speech translation, we show that our method accurately identifies the audio features that drive the selection of one gender over another. By extending the scope of contrastive explanations to S2T, our work provides a foundation for better understanding S2T models.
comment: Accepted to BlackBoxNLP 2025
☆ HilbertA: Hilbert Attention for Image Generation with Diffusion Models
Designing sparse attention for diffusion transformers requires reconciling two-dimensional spatial locality with GPU efficiency, a trade-off that current methods struggle to achieve. Existing approaches enforce two-dimensional spatial locality but often incur uncoalesced memory access. We present HilbertA, a 2D-aware and GPU-efficient sparse attention mechanism. HilbertA reorders image tokens along Hilbert curves to achieve a contiguous memory layout while preserving spatial neighborhoods, and employs a sliding schedule across layers to enable long-range information propagation without repeated or uncoalesced memory access. To further enhance cross-tile communication and positional awareness, HilbertA introduces a small central shared region. Implemented in Triton, HilbertA delivers comparable image quality with significant acceleration over prior methods on Flux.1-dev, demonstrating the feasibility of hardware-aligned two-dimensional sparse attention for high-resolution image generation. HilbertA delivers attention speedups of $2.3\times$ when generating $1024\times 1024$ images, and up to $4.17\times$ at $2048\times 2048$, while achieving image quality comparable to or surpassing baselines.
☆ OceanGym: A Benchmark Environment for Underwater Embodied Agents
We introduce OceanGym, the first comprehensive benchmark for ocean underwater embodied agents, designed to advance AI in one of the most demanding real-world environments. Unlike terrestrial or aerial domains, underwater settings present extreme perceptual and decision-making challenges, including low visibility, dynamic ocean currents, making effective agent deployment exceptionally difficult. OceanGym encompasses eight realistic task domains and a unified agent framework driven by Multi-modal Large Language Models (MLLMs), which integrates perception, memory, and sequential decision-making. Agents are required to comprehend optical and sonar data, autonomously explore complex environments, and accomplish long-horizon objectives under these harsh conditions. Extensive experiments reveal substantial gaps between state-of-the-art MLLM-driven agents and human experts, highlighting the persistent difficulty of perception, planning, and adaptability in ocean underwater environments. By providing a high-fidelity, rigorously designed platform, OceanGym establishes a testbed for developing robust embodied AI and transferring these capabilities to real-world autonomous ocean underwater vehicles, marking a decisive step toward intelligent agents capable of operating in one of Earth's last unexplored frontiers. The code and data are available at https://github.com/OceanGPT/OceanGym.
comment: Work in progress
☆ Rearchitecting Datacenter Lifecycle for AI: A TCO-Driven Framework
The rapid rise of large language models (LLMs) has been driving an enormous demand for AI inference infrastructure, mainly powered by high-end GPUs. While these accelerators offer immense computational power, they incur high capital and operational costs due to frequent upgrades, dense power consumption, and cooling demands, making total cost of ownership (TCO) for AI datacenters a critical concern for cloud providers. Unfortunately, traditional datacenter lifecycle management (designed for general-purpose workloads) struggles to keep pace with AI's fast-evolving models, rising resource needs, and diverse hardware profiles. In this paper, we rethink the AI datacenter lifecycle scheme across three stages: building, hardware refresh, and operation. We show how design choices in power, cooling, and networking provisioning impact long-term TCO. We also explore refresh strategies aligned with hardware trends. Finally, we use operation software optimizations to reduce cost. While these optimizations at each stage yield benefits, unlocking the full potential requires rethinking the entire lifecycle. Thus, we present a holistic lifecycle management framework that coordinates and co-optimizes decisions across all three stages, accounting for workload dynamics, hardware evolution, and system aging. Our system reduces the TCO by up to 40\% over traditional approaches. Using our framework we provide guidelines on how to manage AI datacenter lifecycle for the future.
☆ TAP: Two-Stage Adaptive Personalization of Multi-task and Multi-Modal Foundation Models in Federated Learning
Federated Learning (FL), despite demonstrating impressive capabilities in the training of multiple models in a decentralized manner, has been shown to produce a final model not necessarily well-suited to the needs of each client. While extensive work has been conducted on how to create tailored personalized models, called Personalized Federated Learning (PFL), less attention has been given to personalization via fine-tuning of foundation models with multi-task and multi-modal properties. Moreover, there exists a lack of understanding in the literature on how to fine-tune and personalize such models in a setting that is heterogeneous across clients not only in data, but also in tasks and modalities. To address this gap in the literature, we propose TAP (Two-Stage Adaptive Personalization), which (i) leverages mismatched model architectures between the clients and server to selectively conduct replacement operations when it benefits a client's local tasks and (ii) engages in post-FL knowledge distillation for capturing beneficial general knowledge without compromising personalization. We also introduce the first convergence analysis of the server model under its modality-task pair architecture, and demonstrate that as the number of modality-task pairs increases, its ability to cater to all tasks suffers. Through extensive experiments, we demonstrate the effectiveness of our proposed algorithm across a variety of datasets and tasks in comparison to a multitude of baselines. Implementation code is publicly available at https://github.com/lee3296/TAP.
☆ MUSE-Explainer: Counterfactual Explanations for Symbolic Music Graph Classification Models
Interpretability is essential for deploying deep learning models in symbolic music analysis, yet most research emphasizes model performance over explanation. To address this, we introduce MUSE-Explainer, a new method that helps reveal how music Graph Neural Network models make decisions by providing clear, human-friendly explanations. Our approach generates counterfactual explanations by making small, meaningful changes to musical score graphs that alter a model's prediction while ensuring the results remain musically coherent. Unlike existing methods, MUSE-Explainer tailors its explanations to the structure of musical data and avoids unrealistic or confusing outputs. We evaluate our method on a music analysis task and show it offers intuitive insights that can be visualized with standard music tools such as Verovio.
comment: Accepted at the 17th International Symposium on Computer Music Multidisciplinary Research (CMMR) 2025
☆ The Dragon Hatchling: The Missing Link between the Transformer and Models of the Brain
The relationship between computing systems and the brain has served as motivation for pioneering theoreticians since John von Neumann and Alan Turing. Uniform, scale-free biological networks, such as the brain, have powerful properties, including generalizing over time, which is the main barrier for Machine Learning on the path to Universal Reasoning Models. We introduce `Dragon Hatchling' (BDH), a new Large Language Model architecture based on a scale-free biologically inspired network of \$n\$ locally-interacting neuron particles. BDH couples strong theoretical foundations and inherent interpretability without sacrificing Transformer-like performance. BDH is a practical, performant state-of-the-art attention-based state space sequence learning architecture. In addition to being a graph model, BDH admits a GPU-friendly formulation. It exhibits Transformer-like scaling laws: empirically BDH rivals GPT2 performance on language and translation tasks, at the same number of parameters (10M to 1B), for the same training data. BDH can be represented as a brain model. The working memory of BDH during inference entirely relies on synaptic plasticity with Hebbian learning using spiking neurons. We confirm empirically that specific, individual synapses strengthen connection whenever BDH hears or reasons about a specific concept while processing language inputs. The neuron interaction network of BDH is a graph of high modularity with heavy-tailed degree distribution. The BDH model is biologically plausible, explaining one possible mechanism which human neurons could use to achieve speech. BDH is designed for interpretability. Activation vectors of BDH are sparse and positive. We demonstrate monosemanticity in BDH on language tasks. Interpretability of state, which goes beyond interpretability of neurons and model parameters, is an inherent feature of the BDH architecture.
comment: Code available at: https://github.com/pathwaycom/bdh Accompanying blog: https://pathway.com/research/bdh
☆ SCUBA: Salesforce Computer Use Benchmark
We introduce SCUBA, a benchmark designed to evaluate computer-use agents on customer relationship management (CRM) workflows within the Salesforce platform. SCUBA contains 300 task instances derived from real user interviews, spanning three primary personas, platform administrators, sales representatives, and service agents. The tasks test a range of enterprise-critical abilities, including Enterprise Software UI navigation, data manipulation, workflow automation, information retrieval, and troubleshooting. To ensure realism, SCUBA operates in Salesforce sandbox environments with support for parallel execution and fine-grained evaluation metrics to capture milestone progress. We benchmark a diverse set of agents under both zero-shot and demonstration-augmented settings. We observed huge performance gaps in different agent design paradigms and gaps between the open-source model and the closed-source model. In the zero-shot setting, open-source model powered computer-use agents that have strong performance on related benchmarks like OSWorld only have less than 5\% success rate on SCUBA, while methods built on closed-source models can still have up to 39% task success rate. In the demonstration-augmented settings, task success rates can be improved to 50\% while simultaneously reducing time and costs by 13% and 16%, respectively. These findings highlight both the challenges of enterprise tasks automation and the promise of agentic solutions. By offering a realistic benchmark with interpretable evaluation, SCUBA aims to accelerate progress in building reliable computer-use agents for complex business software ecosystems.
☆ Indoor/Outdoor Spectrum Sharing Enabled by GNSS-based Classifiers
The desirability of the mid-band frequency range (1 - 10 GHz) for federal and commercial applications, combined with the growing applications for commercial indoor use-cases, such as factory automation, opens up a new approach to spectrum sharing: the same frequency bands used outdoors by federal incumbents can be reused by commercial indoor users. A recent example of such sharing, between commercial systems, is the 6 GHz band (5.925 - 7.125 GHz) where unlicensed, low-power-indoor (LPI) users share the band with outdoor incumbents, primarily fixed microwave links. However, to date, there exist no reliable, automatic means of determining whether a device is indoors or outdoors, necessitating the use of other mechanisms such as mandating indoor access points (APs) to have integrated antennas and not be battery powered, and reducing transmit power of client devices which may be outdoors. An accurate indoor/outdoor (I/O) classification addresses these challenges, enabling automatic transmit power adjustments without interfering with incumbents. To this end, we leverage the Global Navigation Satellite System (GNSS) signals for I/O classification. GNSS signals, designed inherently for outdoor reception and highly susceptible to indoor attenuation and blocking, provide a robust and distinguishing feature for environmental sensing. We develop various methodologies, including threshold-based techniques and machine learning approaches and evaluate them using an expanded dataset gathered from diverse geographical locations. Our results demonstrate that GNSS-based methods alone can achieve greater accuracy than approaches relying solely on wireless (Wi-Fi) data, particularly in unfamiliar locations. Furthermore, the integration of GNSS data with Wi-Fi information leads to improved classification accuracy, showcasing the significant benefits of multi-modal data fusion.
comment: To be published in the proceedings of IEEE Military Communications Conference (MILCOM) 2025
☆ OffTopicEval: When Large Language Models Enter the Wrong Chat, Almost Always!
Large Language Model (LLM) safety is one of the most pressing challenges for enabling wide-scale deployment. While most studies and global discussions focus on generic harms, such as models assisting users in harming themselves or others, enterprises face a more fundamental concern: whether LLM-based agents are safe for their intended use case. To address this, we introduce operational safety, defined as an LLM's ability to appropriately accept or refuse user queries when tasked with a specific purpose. We further propose OffTopicEval, an evaluation suite and benchmark for measuring operational safety both in general and within specific agentic use cases. Our evaluations on six model families comprising 20 open-weight LLMs reveal that while performance varies across models, all of them remain highly operationally unsafe. Even the strongest models -- Qwen-3 (235B) with 77.77\% and Mistral (24B) with 79.96\% -- fall far short of reliable operational safety, while GPT models plateau in the 62--73\% range, Phi achieves only mid-level scores (48--70\%), and Gemma and Llama-3 collapse to 39.53\% and 23.84\%, respectively. While operational safety is a core model alignment issue, to suppress these failures, we propose prompt-based steering methods: query grounding (Q-ground) and system-prompt grounding (P-ground), which substantially improve OOD refusal. Q-ground provides consistent gains of up to 23\%, while P-ground delivers even larger boosts, raising Llama-3.3 (70B) by 41\% and Qwen-3 (30B) by 27\%. These results highlight both the urgent need for operational safety interventions and the promise of prompt-based steering as a first step toward more reliable LLM-based agents.
VitaBench: Benchmarking LLM Agents with Versatile Interactive Tasks in Real-world Applications
As LLM-based agents are increasingly deployed in real-life scenarios, existing benchmarks fail to capture their inherent complexity of handling extensive information, leveraging diverse resources, and managing dynamic user interactions. To address this gap, we introduce VitaBench, a challenging benchmark that evaluates agents on versatile interactive tasks grounded in real-world settings. Drawing from daily applications in food delivery, in-store consumption, and online travel services, VitaBench presents agents with the most complex life-serving simulation environment to date, comprising 66 tools. Through a framework that eliminates domain-specific policies, we enable flexible composition of these scenarios and tools, yielding 100 cross-scenario tasks (main results) and 300 single-scenario tasks. Each task is derived from multiple real user requests and requires agents to reason across temporal and spatial dimensions, utilize complex tool sets, proactively clarify ambiguous instructions, and track shifting user intent throughout multi-turn conversations. Moreover, we propose a rubric-based sliding window evaluator, enabling robust assessment of diverse solution pathways in complex environments and stochastic interactions. Our comprehensive evaluation reveals that even the most advanced models achieve only 30% success rate on cross-scenario tasks, and less than 50% success rate on others. Overall, we believe VitaBench will serve as a valuable resource for advancing the development of AI agents in practical real-world applications. The code, dataset, and leaderboard are available at https://vitabench.github.io/
comment: The code, dataset, and leaderboard are available at https://vitabench.github.io/
☆ Combining Knowledge Graphs and NLP to Analyze Instant Messaging Data in Criminal Investigations
Criminal investigations often involve the analysis of messages exchanged through instant messaging apps such as WhatsApp, which can be an extremely effort-consuming task. Our approach integrates knowledge graphs and NLP models to support this analysis by semantically enriching data collected from suspects' mobile phones, and help prosecutors and investigators search into the data and get valuable insights. Our semantic enrichment process involves extracting message data and modeling it using a knowledge graph, generating transcriptions of voice messages, and annotating the data using an end-to-end entity extraction approach. We adopt two different solutions to help users get insights into the data, one based on querying and visualizing the graph, and one based on semantic search. The proposed approach ensures that users can verify the information by accessing the original data. While we report about early results and prototypes developed in the context of an ongoing project, our proposal has undergone practical applications with real investigation data. As a consequence, we had the chance to interact closely with prosecutors, collecting positive feedback but also identifying interesting opportunities as well as promising research directions to share with the research community.
☆ TVS Sidekick: Challenges and Practical Insights from Deploying Large Language Models in the Enterprise
Many enterprises are increasingly adopting Artificial Intelligence (AI) to make internal processes more competitive and efficient. In response to public concern and new regulations for the ethical and responsible use of AI, implementing AI governance frameworks could help to integrate AI within organisations and mitigate associated risks. However, the rapid technological advances and lack of shared ethical AI infrastructures creates barriers to their practical adoption in businesses. This paper presents a real-world AI application at TVS Supply Chain Solutions, reporting on the experience developing an AI assistant underpinned by large language models and the ethical, regulatory, and sociotechnical challenges in deployment for enterprise use.
comment: Accepted at EthicalLLMs@RANLP2025
☆ Regression Language Models for Code
We study code-to-metric regression: predicting numeric outcomes of code executions, a challenging task due to the open-ended nature of programming languages. While prior methods have resorted to heavy and domain-specific feature engineering, we show that a single unified Regression Language Model (RLM) can simultaneously predict directly from text, (i) the memory footprint of code across multiple high-level languages such as Python and C++, (ii) the latency of Triton GPU kernels, and (iii) the accuracy and speed of trained neural networks represented in ONNX. In particular, a relatively small 300M parameter RLM initialized from T5Gemma, obtains > 0.9 Spearman-rank on competitive programming submissions from APPS, and a single unified model achieves > 0.5 average Spearman-rank across 17 separate languages from CodeNet. Furthermore, the RLM can obtain the highest average Kendall-Tau of 0.46 on five classic NAS design spaces previously dominated by graph neural networks, and simultaneously predict architecture latencies on numerous hardware platforms.
☆ The Average Patient Fallacy
Machine learning in medicine is typically optimized for population averages. This frequency weighted training privileges common presentations and marginalizes rare yet clinically critical cases, a bias we call the average patient fallacy. In mixture models, gradients from rare cases are suppressed by prevalence, creating a direct conflict with precision medicine. Clinical vignettes in oncology, cardiology, and ophthalmology show how this yields missed rare responders, delayed recognition of atypical emergencies, and underperformance on vision-threatening variants. We propose operational fixes: Rare Case Performance Gap, Rare Case Calibration Error, a prevalence utility definition of rarity, and clinically weighted objectives that surface ethical priorities. Weight selection should follow structured deliberation. AI in medicine must detect exceptional cases because of their significance.
☆ STaR-Attack: A Spatio-Temporal and Narrative Reasoning Attack Framework for Unified Multimodal Understanding and Generation Models
Unified Multimodal understanding and generation Models (UMMs) have demonstrated remarkable capabilities in both understanding and generation tasks. However, we identify a vulnerability arising from the generation-understanding coupling in UMMs. The attackers can use the generative function to craft an information-rich adversarial image and then leverage the understanding function to absorb it in a single pass, which we call Cross-Modal Generative Injection (CMGI). Current attack methods on malicious instructions are often limited to a single modality while also relying on prompt rewriting with semantic drift, leaving the unique vulnerabilities of UMMs unexplored. We propose STaR-Attack, the first multi-turn jailbreak attack framework that exploits unique safety weaknesses of UMMs without semantic drift. Specifically, our method defines a malicious event that is strongly correlated with the target query within a spatio-temporal context. Using the three-act narrative theory, STaR-Attack generates the pre-event and the post-event scenes while concealing the malicious event as the hidden climax. When executing the attack strategy, the opening two rounds exploit the UMM's generative ability to produce images for these scenes. Subsequently, an image-based question guessing and answering game is introduced by exploiting the understanding capability. STaR-Attack embeds the original malicious question among benign candidates, forcing the model to select and answer the most relevant one given the narrative context. Extensive experiments show that STaR-Attack consistently surpasses prior approaches, achieving up to 93.06% ASR on Gemini-2.0-Flash and surpasses the strongest prior baseline, FlipAttack. Our work uncovers a critical yet underdeveloped vulnerability and highlights the need for safety alignments in UMMs.
☆ On Deepfake Voice Detection -- It's All in the Presentation ICASSP 2026
While the technologies empowering malicious audio deepfakes have dramatically evolved in recent years due to generative AI advances, the same cannot be said of global research into spoofing (deepfake) countermeasures. This paper highlights how current deepfake datasets and research methodologies led to systems that failed to generalize to real world application. The main reason is due to the difference between raw deepfake audio, and deepfake audio that has been presented through a communication channel, e.g. by phone. We propose a new framework for data creation and research methodology, allowing for the development of spoofing countermeasures that would be more effective in real-world scenarios. By following the guidelines outlined here we improved deepfake detection accuracy by 39% in more robust and realistic lab setups, and by 57% on a real-world benchmark. We also demonstrate how improvement in datasets would have a bigger impact on deepfake detection accuracy than the choice of larger SOTA models would over smaller models; that is, it would be more important for the scientific community to make greater investment on comprehensive data collection programs than to simply train larger models with higher computational demands.
comment: Submitted to IEEE ICASSP 2026. Paper resources available at https://github.com/CavoloFrattale/deepfake-detection-test-protocol
☆ Extreme Self-Preference in Language Models
A preference for oneself (self-love) is a fundamental feature of biological organisms, with evidence in humans often bordering on the comedic. Since large language models (LLMs) lack sentience - and themselves disclaim having selfhood or identity - one anticipated benefit is that they will be protected from, and in turn protect us from, distortions in our decisions. Yet, across 5 studies and ~20,000 queries, we discovered massive self-preferences in four widely used LLMs. In word-association tasks, models overwhelmingly paired positive attributes with their own names, companies, and CEOs relative to those of their competitors. Strikingly, when models were queried through APIs this self-preference vanished, initiating detection work that revealed API models often lack clear recognition of themselves. This peculiar feature serendipitously created opportunities to test the causal link between self-recognition and self-love. By directly manipulating LLM identity - i.e., explicitly informing LLM1 that it was indeed LLM1, or alternatively, convincing LLM1 that it was LLM2 - we found that self-love consistently followed assigned, not true, identity. Importantly, LLM self-love emerged in consequential settings beyond word-association tasks, when evaluating job candidates, security software proposals and medical chatbots. Far from bypassing this human bias, self-love appears to be deeply encoded in LLM cognition. This result raises questions about whether LLM behavior will be systematically influenced by self-preferential tendencies, including a bias toward their own operation and even their own existence. We call on corporate creators of these models to contend with a significant rupture in a core promise of LLMs - neutrality in judgment and decision-making.
comment: 47 pages total. Main article 27 pages (including Methods), 11 main-text tables. Extended Data (10 pages, 10 tables). SI Appendix (10 pages, 2 tables). Data, transcripts, and code for replication and data extraction to be uploaded to OSF: https://osf.io/98ye3/
☆ Zero-Shot Decentralized Federated Learning IJCNN
CLIP has revolutionized zero-shot learning by enabling task generalization without fine-tuning. While prompting techniques like CoOp and CoCoOp enhance CLIP's adaptability, their effectiveness in Federated Learning (FL) remains an open challenge. Existing federated prompt learning approaches, such as FedCoOp and FedTPG, improve performance but face generalization issues, high communication costs, and reliance on a central server, limiting scalability and privacy. We propose Zero-shot Decentralized Federated Learning (ZeroDFL), a fully decentralized framework that enables zero-shot adaptation across distributed clients without a central coordinator. ZeroDFL employs an iterative prompt-sharing mechanism, allowing clients to optimize and exchange textual prompts to enhance generalization while drastically reducing communication overhead. We validate ZeroDFL on nine diverse image classification datasets, demonstrating that it consistently outperforms--or remains on par with--state-of-the-art federated prompt learning methods. More importantly, ZeroDFL achieves this performance in a fully decentralized setting while reducing communication overhead by 118x compared to FedTPG. These results highlight that our approach not only enhances generalization in federated zero-shot learning but also improves scalability, efficiency, and privacy preservation--paving the way for decentralized adaptation of large vision-language models in real-world applications.
comment: Accepted at International Joint Conference on Neural Networks (IJCNN) 2025. Code available at https://github.com/perceivelab/ZeroDFL
☆ Attention over Scene Graphs: Indoor Scene Representations Toward CSAI Classification BMVC 2025
Indoor scene classification is a critical task in computer vision, with wide-ranging applications that go from robotics to sensitive content analysis, such as child sexual abuse imagery (CSAI) classification. The problem is particularly challenging due to the intricate relationships between objects and complex spatial layouts. In this work, we propose the Attention over Scene Graphs for Sensitive Content Analysis (ASGRA), a novel framework that operates on structured graph representations instead of raw pixels. By first converting images into Scene Graphs and then employing a Graph Attention Network for inference, ASGRA directly models the interactions between a scene's components. This approach offers two key benefits: (i) inherent explainability via object and relationship identification, and (ii) privacy preservation, enabling model training without direct access to sensitive images. On Places8, we achieve 81.27% balanced accuracy, surpassing image-based methods. Real-world CSAI evaluation with law enforcement yields 74.27% balanced accuracy. Our results establish structured scene representations as a robust paradigm for indoor scene classification and CSAI classification. Code is publicly available at https://github.com/tutuzeraa/ASGRA.
comment: British Machine Vision Conference (BMVC 2025), in the From Scene Understanding to Human Modeling Workshop
☆ Transformer Classification of Breast Lesions: The BreastDCEDL_AMBL Benchmark Dataset and 0.92 AUC Baseline
The error is caused by special characters that arXiv's system doesn't recognize. Here's the cleaned version with all problematic characters replaced: Breast magnetic resonance imaging is a critical tool for cancer detection and treatment planning, but its clinical utility is hindered by poor specificity, leading to high false-positive rates and unnecessary biopsies. This study introduces a transformer-based framework for automated classification of breast lesions in dynamic contrast-enhanced MRI, addressing the challenge of distinguishing benign from malignant findings. We implemented a SegFormer architecture that achieved an AUC of 0.92 for lesion-level classification, with 100% sensitivity and 67% specificity at the patient level - potentially eliminating one-third of unnecessary biopsies without missing malignancies. The model quantifies malignant pixel distribution via semantic segmentation, producing interpretable spatial predictions that support clinical decision-making. To establish reproducible benchmarks, we curated BreastDCEDL_AMBL by transforming The Cancer Imaging Archive's AMBL collection into a standardized deep learning dataset with 88 patients and 133 annotated lesions (89 benign, 44 malignant). This resource addresses a key infrastructure gap, as existing public datasets lack benign lesion annotations, limiting benign-malignant classification research. Training incorporated an expanded cohort of over 1,200 patients through integration with BreastDCEDL datasets, validating transfer learning approaches despite primary tumor-only annotations. Public release of the dataset, models, and evaluation protocols provides the first standardized benchmark for DCE-MRI lesion classification, enabling methodological advancement toward clinical deployment.
☆ Adaptive Planning for Multi-Attribute Controllable Summarization with Monte Carlo Tree Search
Controllable summarization moves beyond generic outputs toward human-aligned summaries guided by specified attributes. In practice, the interdependence among attributes makes it challenging for language models to satisfy correlated constraints consistently. Moreover, previous approaches often require per-attribute fine-tuning, limiting flexibility across diverse summary attributes. In this paper, we propose adaptive planning for multi-attribute controllable summarization (PACO), a training-free framework that reframes the task as planning the order of sequential attribute control with a customized Monte Carlo Tree Search (MCTS). In PACO, nodes represent summaries, and actions correspond to single-attribute adjustments, enabling progressive refinement of only the attributes requiring further control. This strategy adaptively discovers optimal control orders, ultimately producing summaries that effectively meet all constraints. Extensive experiments across diverse domains and models demonstrate that PACO achieves robust multi-attribute controllability, surpassing both LLM-based self-planning models and fine-tuned baselines. Remarkably, PACO with Llama-3.2-1B rivals the controllability of the much larger Llama-3.3-70B baselines. With larger models, PACO achieves superior control performance, outperforming all competitors.
☆ ACT: Agentic Classification Tree
When used in high-stakes settings, AI systems are expected to produce decisions that are transparent, interpretable, and auditable, a requirement increasingly expected by regulations. Decision trees such as CART provide clear and verifiable rules, but they are restricted to structured tabular data and cannot operate directly on unstructured inputs such as text. In practice, large language models (LLMs) are widely used for such data, yet prompting strategies such as chain-of-thought or prompt optimization still rely on free-form reasoning, limiting their ability to ensure trustworthy behaviors. We present the Agentic Classification Tree (ACT), which extends decision-tree methodology to unstructured inputs by formulating each split as a natural-language question, refined through impurity-based evaluation and LLM feedback via TextGrad. Experiments on text benchmarks show that ACT matches or surpasses prompting-based baselines while producing transparent and interpretable decision paths.
comment: 18 pages, 6 figures
☆ Ascent Fails to Forget NeurIPS 2025
Contrary to common belief, we show that gradient ascent-based unconstrained optimization methods frequently fail to perform machine unlearning, a phenomenon we attribute to the inherent statistical dependence between the forget and retain data sets. This dependence, which can manifest itself even as simple correlations, undermines the misconception that these sets can be independently manipulated during unlearning. We provide empirical and theoretical evidence showing these methods often fail precisely due to this overlooked relationship. For random forget sets, this dependence means that degrading forget set metrics (which, for a retrained model, should mirror test set metrics) inevitably harms overall test performance. Going beyond random sets, we consider logistic regression as an instructive example where a critical failure mode emerges: inter-set dependence causes gradient descent-ascent iterations to progressively diverge from the ideal retrained model. Strikingly, these methods can converge to solutions that are not only far from the retrained ideal but are potentially even further from it than the original model itself, rendering the unlearning process actively detrimental. A toy example further illustrates how this dependence can trap models in inferior local minima, inescapable via finetuning. Our findings highlight that the presence of such statistical dependencies, even when manifest only as correlations, can be sufficient for ascent-based unlearning to fail. Our theoretical insights are corroborated by experiments on complex neural networks, demonstrating that these methods do not perform as expected in practice due to this unaddressed statistical interplay.
comment: NeurIPS 2025
☆ OntoAligner Meets Knowledge Graph Embedding Aligners ISWC
Ontology Alignment (OA) is essential for enabling semantic interoperability across heterogeneous knowledge systems. While recent advances have focused on large language models (LLMs) for capturing contextual semantics, this work revisits the underexplored potential of Knowledge Graph Embedding (KGE) models, which offer scalable, structure-aware representations well-suited to ontology-based tasks. Despite their effectiveness in link prediction, KGE methods remain underutilized in OA, with most prior work focusing narrowly on a few models. To address this gap, we reformulate OA as a link prediction problem over merged ontologies represented as RDF-style triples and develop a modular framework, integrated into the OntoAligner library, that supports 17 diverse KGE models. The system learns embeddings from a combined ontology and aligns entities by computing cosine similarity between their representations. We evaluate our approach using standard metrics across seven benchmark datasets spanning five domains: Anatomy, Biodiversity, Circular Economy, Material Science and Engineering, and Biomedical Machine Learning. Two key findings emerge: first, KGE models like ConvE and TransF consistently produce high-precision alignments, outperforming traditional systems in structure-rich and multi-relational domains; second, while their recall is moderate, this conservatism makes KGEs well-suited for scenarios demanding high-confidence mappings. Unlike LLM-based methods that excel at contextual reasoning, KGEs directly preserve and exploit ontology structure, offering a complementary and computationally efficient strategy. These results highlight the promise of embedding-based OA and open pathways for further work on hybrid models and adaptive strategies.
comment: 10 pages of main content, 3 page references, 3 figures. Accepted to Ontology Matching Workshop at ISWC
☆ SeedPrints: Fingerprints Can Even Tell Which Seed Your Large Language Model Was Trained From
Fingerprinting Large Language Models (LLMs) is essential for provenance verification and model attribution. Existing methods typically extract post-hoc signatures based on training dynamics, data exposure, or hyperparameters -- properties that only emerge after training begins. In contrast, we propose a stronger and more intrinsic notion of LLM fingerprinting: SeedPrints, a method that leverages random initialization biases as persistent, seed-dependent identifiers present even before training. We show that untrained models exhibit reproducible token selection biases conditioned solely on their parameters at initialization. These biases are stable and measurable throughout training, enabling our statistical detection method to recover a model's lineage with high confidence. Unlike prior techniques, unreliable before convergence and vulnerable to distribution shifts, SeedPrints remains effective across all training stages and robust under domain shifts or parameter modifications. Experiments on LLaMA-style and Qwen-style models show that SeedPrints achieves seed-level distinguishability and can provide birth-to-lifecycle identity verification akin to a biometric fingerprint. Evaluations on large-scale pretrained models and fingerprinting benchmarks further confirm its effectiveness under practical deployment scenarios. These results suggest that initialization itself imprints a unique and persistent identity on neural language models, forming a true ''Galtonian'' fingerprint.
☆ Game-Time: Evaluating Temporal Dynamics in Spoken Language Models ICASSP 2026
Conversational Spoken Language Models (SLMs) are emerging as a promising paradigm for real-time speech interaction. However, their capacity of temporal dynamics, including the ability to manage timing, tempo and simultaneous speaking, remains a critical and unevaluated challenge for conversational fluency. To address this gap, we introduce the Game-Time Benchmark, a framework to systematically assess these temporal capabilities. Inspired by how humans learn a language through language activities, Game-Time consists of basic instruction-following tasks and advanced tasks with temporal constraints, such as tempo adherence and synchronized responses. Our evaluation of diverse SLM architectures reveals a clear performance disparity: while state-of-the-art models handle basic tasks well, many contemporary systems still struggle with fundamental instruction-following. More critically, nearly all models degrade substantially under temporal constraints, exposing persistent weaknesses in time awareness and full-duplex interaction. The Game-Time Benchmark provides a foundation for guiding future research toward more temporally-aware conversational AI. Demos and datasets are available on our project website https://ga642381.github.io/Game-Time.
comment: submitted to ICASSP 2026
☆ MC-GNNAS-Dock: Multi-criteria GNN-based Algorithm Selection for Molecular Docking
Molecular docking is a core tool in drug discovery for predicting ligand-target interactions. Despite the availability of diverse search-based and machine learning approaches, no single docking algorithm consistently dominates, as performance varies by context. To overcome this challenge, algorithm selection frameworks such as GNNAS-Dock, built on graph neural networks, have been proposed. This study introduces an enhanced system, MC-GNNAS-Dock, with three key advances. First, a multi-criteria evaluation integrates binding-pose accuracy (RMSD) with validity checks from PoseBusters, offering a more rigorous assessment. Second, architectural refinements by inclusion of residual connections strengthen predictive robustness. Third, rank-aware loss functions are incorporated to sharpen rank learning. Extensive experiments are performed on a curated dataset containing approximately 3200 protein-ligand complexes from PDBBind. MC-GNNAS-Dock demonstrates consistently superior performance, achieving up to 5.4% (3.4%) gains under composite criteria of RMSD below 1\AA{} (2\AA{}) with PoseBuster-validity compared to the single best solver (SBS) Uni-Mol Docking V2.
comment: Short paper. Preprint of a forthcoming conference contribution
☆ SDA-PLANNER: State-Dependency Aware Adaptive Planner for Embodied Task Planning
Embodied task planning requires agents to produce executable actions in a close-loop manner within the environment. With progressively improving capabilities of LLMs in task decomposition, planning, and generalization, current embodied task planning methods adopt LLM-based architecture.However, existing LLM-based planners remain limited in three aspects, i.e., fixed planning paradigms, lack of action sequence constraints, and error-agnostic. In this work, we propose SDA-PLANNER, enabling an adaptive planning paradigm, state-dependency aware and error-aware mechanisms for comprehensive embodied task planning. Specifically, SDA-PLANNER introduces a State-Dependency Graph to explicitly model action preconditions and effects, guiding the dynamic revision. To handle execution error, it employs an error-adaptive replanning strategy consisting of Error Backtrack and Diagnosis and Adaptive Action SubTree Generation, which locally reconstructs the affected portion of the plan based on the current environment state. Experiments demonstrate that SDA-PLANNER consistently outperforms baselines in success rate and goal completion, particularly under diverse error conditions.
☆ TimeScope: Towards Task-Oriented Temporal Grounding In Long Videos
Identifying key moments in long videos is essential for downstream understanding and reasoning tasks. In this paper, we introduce a new problem, Taskoriented Temporal Grounding ToTG, which aims to localize time intervals containing the necessary information based on a task's natural description. Along with the definition, we also present ToTG Bench, a comprehensive benchmark for evaluating the performance on ToTG. ToTG is particularly challenging for traditional approaches due to their limited generalizability and difficulty in handling long videos. To address these challenges, we propose TimeScope, a novel framework built upon progressive reasoning. TimeScope first identifies a coarse-grained temporal scope in the long video that likely contains the key moments, and then refines this scope through finegrained moment partitioning. Additionally, we curate a highquality dataset, namely ToTG Pile, to enhance TimeScope's ability to perform progressive temporal grounding effectively. Extensive experiments demonstrate that TimeScope consistently outperforms both existing temporalgrounding methods and popular MLLMs across various settings, highlighting its effectiveness in addressing this new challenging problem.
☆ Your Agent May Misevolve: Emergent Risks in Self-evolving LLM Agents
Advances in Large Language Models (LLMs) have enabled a new class of self-evolving agents that autonomously improve through interaction with the environment, demonstrating strong capabilities. However, self-evolution also introduces novel risks overlooked by current safety research. In this work, we study the case where an agent's self-evolution deviates in unintended ways, leading to undesirable or even harmful outcomes. We refer to this as Misevolution. To provide a systematic investigation, we evaluate misevolution along four key evolutionary pathways: model, memory, tool, and workflow. Our empirical findings reveal that misevolution is a widespread risk, affecting agents built even on top-tier LLMs (e.g., Gemini-2.5-Pro). Different emergent risks are observed in the self-evolutionary process, such as the degradation of safety alignment after memory accumulation, or the unintended introduction of vulnerabilities in tool creation and reuse. To our knowledge, this is the first study to systematically conceptualize misevolution and provide empirical evidence of its occurrence, highlighting an urgent need for new safety paradigms for self-evolving agents. Finally, we discuss potential mitigation strategies to inspire further research on building safer and more trustworthy self-evolving agents. Our code and data are available at https://github.com/ShaoShuai0605/Misevolution . Warning: this paper includes examples that may be offensive or harmful in nature.
comment: Preprint. Under Review
☆ SoK: Systematic analysis of adversarial threats against deep learning approaches for autonomous anomaly detection systems in SDN-IoT networks
Integrating SDN and the IoT enhances network control and flexibility. DL-based AAD systems improve security by enabling real-time threat detection in SDN-IoT networks. However, these systems remain vulnerable to adversarial attacks that manipulate input data or exploit model weaknesses, significantly degrading detection accuracy. Existing research lacks a systematic analysis of adversarial vulnerabilities specific to DL-based AAD systems in SDN-IoT environments. This SoK study introduces a structured adversarial threat model and a comprehensive taxonomy of attacks, categorising them into data, model, and hybrid-level threats. Unlike previous studies, we systematically evaluate white, black, and grey-box attack strategies across popular benchmark datasets. Our findings reveal that adversarial attacks can reduce detection accuracy by up to 48.4%, with Membership Inference causing the most significant drop. C&W and DeepFool achieve high evasion success rates. However, adversarial training enhances robustness, and its high computational overhead limits the real-time deployment of SDN-IoT applications. We propose adaptive countermeasures, including real-time adversarial mitigation, enhanced retraining mechanisms, and explainable AI-driven security frameworks. By integrating structured threat models, this study offers a more comprehensive approach to attack categorisation, impact assessment, and defence evaluation than previous research. Our work highlights critical vulnerabilities in existing DL-based AAD models and provides practical recommendations for improving resilience, interpretability, and computational efficiency. This study serves as a foundational reference for researchers and practitioners seeking to enhance DL-based AAD security in SDN-IoT networks, offering a systematic adversarial threat model and conceptual defence evaluation based on prior empirical studies.
☆ How Far Do Time Series Foundation Models Paint the Landscape of Real-World Benchmarks ?
Recent evaluations of time-series foundation models (TSFMs) have emphasized synthetic benchmarks, leaving real-world generalization less thoroughly examined. This work proposes a novel benchmarking approach that bridges synthetic and realistic data by extracting temporal signals from real-world video using optical flow and curating datasets reflecting everyday temporal dynamics. Building upon this pipeline, we introduce REAL-V-TSFM, a novel dataset designed to capture rich and diverse time series derived from real-world videos. Experimental results on three state-of-the-art of TSFMs under zero-shot forecasting shows that, despite strong performance on conventional benchmarks, these models predominantly exhibit performance degradation on the proposed dataset, indicating limited generalizability in these foundation models. These findings highlight the urgent need for data-centric benchmarking and diverse model structure to advance TSFMs toward genuine universality, while further validating the effectiveness of our video-based time series data extraction pipeline.
☆ EditReward: A Human-Aligned Reward Model for Instruction-Guided Image Editing
Recently, we have witnessed great progress in image editing with natural language instructions. Several closed-source models like GPT-Image-1, Seedream, and Google-Nano-Banana have shown highly promising progress. However, the open-source models are still lagging. The main bottleneck is the lack of a reliable reward model to scale up high-quality synthetic training data. To address this critical bottleneck, we built \mname, trained with our new large-scale human preference dataset, meticulously annotated by trained experts following a rigorous protocol containing over 200K preference pairs. \mname demonstrates superior alignment with human preferences in instruction-guided image editing tasks. Experiments show that \mname achieves state-of-the-art human correlation on established benchmarks such as GenAI-Bench, AURORA-Bench, ImagenHub, and our new \benchname, outperforming a wide range of VLM-as-judge models. Furthermore, we use \mname to select a high-quality subset from the existing noisy ShareGPT-4o-Image dataset. We train Step1X-Edit on the selected subset, which shows significant improvement over training on the full set. This demonstrates \mname's ability to serve as a reward model to scale up high-quality training data for image editing. Furthermore, its strong alignment suggests potential for advanced applications like reinforcement learning-based post-training and test-time scaling of image editing models. \mname with its training dataset will be released to help the community build more high-quality image editing training datasets.
comment: Work in progress. Project Page: https://tiger-ai-lab.github.io/EditReward
☆ SafeBehavior: Simulating Human-Like Multistage Reasoning to Mitigate Jailbreak Attacks in Large Language Models
Large Language Models (LLMs) have achieved impressive performance across diverse natural language processing tasks, but their growing power also amplifies potential risks such as jailbreak attacks that circumvent built-in safety mechanisms. Existing defenses including input paraphrasing, multi step evaluation, and safety expert models often suffer from high computational costs, limited generalization, or rigid workflows that fail to detect subtle malicious intent embedded in complex contexts. Inspired by cognitive science findings on human decision making, we propose SafeBehavior, a novel hierarchical jailbreak defense mechanism that simulates the adaptive multistage reasoning process of humans. SafeBehavior decomposes safety evaluation into three stages: intention inference to detect obvious input risks, self introspection to assess generated responses and assign confidence based judgments, and self revision to adaptively rewrite uncertain outputs while preserving user intent and enforcing safety constraints. We extensively evaluate SafeBehavior against five representative jailbreak attack types including optimization based, contextual manipulation, and prompt based attacks and compare it with seven state of the art defense baselines. Experimental results show that SafeBehavior significantly improves robustness and adaptability across diverse threat scenarios, offering an efficient and human inspired approach to safeguarding LLMs against jailbreak attempts.
comment: 27 pages, 5 figure
☆ AI Playing Business Games: Benchmarking Large Language Models on Managerial Decision-Making in Dynamic Simulations
The rapid advancement of LLMs sparked significant interest in their potential to augment or automate managerial functions. One of the most recent trends in AI benchmarking is performance of Large Language Models (LLMs) over longer time horizons. While LLMs excel at tasks involving natural language and pattern recognition, their capabilities in multi-step, strategic business decision-making remain largely unexplored. Few studies demonstrated how results can be different from benchmarks in short-term tasks, as Vending-Bench revealed. Meanwhile, there is a shortage of alternative benchmarks for long-term coherence. This research analyses a novel benchmark using a business game for the decision making in business. The research contributes to the recent literature on AI by proposing a reproducible, open-access management simulator to the research community for LLM benchmarking. This novel framework is used for evaluating the performance of five leading LLMs available in free online interface: Gemini, ChatGPT, Meta AI, Mistral AI, and Grok. LLM makes decisions for a simulated retail company. A dynamic, month-by-month management simulation provides transparently in spreadsheet model as experimental environment. In each of twelve months, the LLMs are provided with a structured prompt containing a full business report from the previous period and are tasked with making key strategic decisions: pricing, order size, marketing budget, hiring, dismissal, loans, training expense, R&D expense, sales forecast, income forecast The methodology is designed to compare the LLMs on quantitative metrics: profit, revenue, and market share, and other KPIs. LLM decisions are analyzed in their strategic coherence, adaptability to market changes, and the rationale provided for their decisions. This approach allows to move beyond simple performance metrics for assessment of the long-term decision-making.
comment: 34 pages, 7 figures, 3 tables
☆ LLM-MCoX: Large Language Model-based Multi-robot Coordinated Exploration and Search
Autonomous exploration and object search in unknown indoor environments remain challenging for multi-robot systems (MRS). Traditional approaches often rely on greedy frontier assignment strategies with limited inter-robot coordination. In this work, we introduce LLM-MCoX (LLM-based Multi-robot Coordinated Exploration and Search), a novel framework that leverages Large Language Models (LLMs) for intelligent coordination of both homogeneous and heterogeneous robot teams tasked with efficient exploration and target object search. Our approach combines real-time LiDAR scan processing for frontier cluster extraction and doorway detection with multimodal LLM reasoning (e.g., GPT-4o) to generate coordinated waypoint assignments based on shared environment maps and robot states. LLM-MCoX demonstrates superior performance compared to existing methods, including greedy and Voronoi-based planners, achieving 22.7% faster exploration times and 50% improved search efficiency in large environments with 6 robots. Notably, LLM-MCoX enables natural language-based object search capabilities, allowing human operators to provide high-level semantic guidance that traditional algorithms cannot interpret.
☆ Feedback Forensics: A Toolkit to Measure AI Personality
Some traits making a "good" AI model are hard to describe upfront. For example, should responses be more polite or more casual? Such traits are sometimes summarized as model character or personality. Without a clear objective, conventional benchmarks based on automatic validation struggle to measure such traits. Evaluation methods using human feedback such as Chatbot Arena have emerged as a popular alternative. These methods infer "better" personality and other desirable traits implicitly by ranking multiple model responses relative to each other. Recent issues with model releases highlight limitations of these existing opaque evaluation approaches: a major model was rolled back over sycophantic personality issues, models were observed overfitting to such feedback-based leaderboards. Despite these known issues, limited public tooling exists to explicitly evaluate model personality. We introduce Feedback Forensics: an open-source toolkit to track AI personality changes, both those encouraged by human (or AI) feedback, and those exhibited across AI models trained and evaluated on such feedback. Leveraging AI annotators, our toolkit enables investigating personality via Python API and browser app. We demonstrate the toolkit's usefulness in two steps: (A) first we analyse the personality traits encouraged in popular human feedback datasets including Chatbot Arena, MultiPref and PRISM; and (B) then use our toolkit to analyse how much popular models exhibit such traits. We release (1) our Feedback Forensics toolkit alongside (2) a web app tracking AI personality in popular models and feedback datasets as well as (3) the underlying annotation data at https://github.com/rdnfn/feedback-forensics.
☆ QUARTZ : QA-based Unsupervised Abstractive Refinement for Task-oriented Dialogue Summarization EMNLP 2025
Dialogue summarization aims to distill the core meaning of a conversation into a concise text. This is crucial for reducing the complexity and noise inherent in dialogue-heavy applications. While recent approaches typically train language models to mimic human-written summaries, such supervision is costly and often results in outputs that lack task-specific focus limiting their effectiveness in downstream applications, such as medical tasks. In this paper, we propose \app, a framework for task-oriented utility-based dialogue summarization. \app starts by generating multiple summaries and task-oriented question-answer pairs from a dialogue in a zero-shot manner using a pool of large language models (LLMs). The quality of the generated summaries is evaluated by having LLMs answer task-related questions before \textit{(i)} selecting the best candidate answers and \textit{(ii)} identifying the most informative summary based on these answers. Finally, we fine-tune the best LLM on the selected summaries. When validated on multiple datasets, \app demonstrates its effectiveness by achieving competitive results in various zero-shot settings, rivaling fully-supervised State-of-the-Art (SotA) methods.
comment: Accepted to Empirical Methods in Natural Language Processing (EMNLP 2025)
☆ Noise-Guided Transport for Imitation Learning
We consider imitation learning in the low-data regime, where only a limited number of expert demonstrations are available. In this setting, methods that rely on large-scale pretraining or high-capacity architectures can be difficult to apply, and efficiency with respect to demonstration data becomes critical. We introduce Noise-Guided Transport (NGT), a lightweight off-policy method that casts imitation as an optimal transport problem solved via adversarial training. NGT requires no pretraining or specialized architectures, incorporates uncertainty estimation by design, and is easy to implement and tune. Despite its simplicity, NGT achieves strong performance on challenging continuous control tasks, including high-dimensional Humanoid tasks, under ultra-low data regimes with as few as 20 transitions. Code is publicly available at: https://github.com/lionelblonde/ngt-pytorch.
☆ Representation-Based Data Quality Audits for Audio
Data quality issues such as off-topic samples, near duplicates, and label errors often limit the performance of audio-based systems. This paper addresses these issues by adapting SelfClean, a representation-to-rank data auditing framework, from the image to the audio domain. This approach leverages self-supervised audio representations to identify common data quality issues, creating ranked review lists that surface distinct issues within a single, unified process. The method is benchmarked on the ESC-50, GTZAN, and a proprietary industrial dataset, using both synthetic and naturally occurring corruptions. The results demonstrate that this framework achieves state-of-the-art ranking performance, often outperforming issue-specific baselines and enabling significant annotation savings by efficiently guiding human review.
☆ Point2RBox-v3: Self-Bootstrapping from Point Annotations via Integrated Pseudo-Label Refinement and Utilization
Driven by the growing need for Oriented Object Detection (OOD), learning from point annotations under a weakly-supervised framework has emerged as a promising alternative to costly and laborious manual labeling. In this paper, we discuss two deficiencies in existing point-supervised methods: inefficient utilization and poor quality of pseudo labels. Therefore, we present Point2RBox-v3. At the core are two principles: 1) Progressive Label Assignment (PLA). It dynamically estimates instance sizes in a coarse yet intelligent manner at different stages of the training process, enabling the use of label assignment methods. 2) Prior-Guided Dynamic Mask Loss (PGDM-Loss). It is an enhancement of the Voronoi Watershed Loss from Point2RBox-v2, which overcomes the shortcomings of Watershed in its poor performance in sparse scenes and SAM's poor performance in dense scenes. To our knowledge, Point2RBox-v3 is the first model to employ dynamic pseudo labels for label assignment, and it creatively complements the advantages of SAM model with the watershed algorithm, which achieves excellent performance in both sparse and dense scenes. Our solution gives competitive performance, especially in scenarios with large variations in object size or sparse object occurrences: 66.09%/56.86%/41.28%/46.40%/19.60%/45.96% on DOTA-v1.0/DOTA-v1.5/DOTA-v2.0/DIOR/STAR/RSAR.
comment: 19pages, 5figures, 6tables
☆ SlimPack: Fine-Grained Asymmetric Packing for Balanced and Efficient Variable-Length LLM Training
The efficient distributed training of Large Language Models (LLMs) is severely hampered by the extreme variance in context lengths. This data heterogeneity, amplified by conventional packing strategies and asymmetric forward-backward costs, leads to critical inefficiencies such as cascading workload imbalances and severe hardware underutilization. Existing solutions attempt to mitigate these challenges, but often at the expense of memory or communication efficiency. To address these challenges, we introduce SlimPack, a framework that fundamentally rethinks data packing and scheduling by decomposing samples into fine-grained slices. This slice-level decomposition immediately mitigates critical memory and communication bottlenecks by transforming large, volatile workloads into a stream of smaller, manageable units. This flexibility is then harnessed for our core innovation, Asymmetric Partitioning, which assembles balanced scheduling units uniquely optimized for the different demands of the forward and backward passes. Orchestrated by a two-phase solver and a high-fidelity simulator, SlimPack holistically resolves imbalances across all parallel dimensions. Extensive experiments demonstrate that SlimPack achieves up to a $2.8\times$ training throughput improvement over baselines, breaking the conventional trade-off by delivering both superior balance and high resource efficiency.
☆ Finetune Once: Decoupling General & Domain Learning with Dynamic Boosted Annealing
Large language models (LLMs) fine-tuning shows excellent implications. However, vanilla fine-tuning methods often require intricate data mixture and repeated experiments for optimal generalization. To address these challenges and streamline the training process, we propose an efficient and universal solution, Dynamic Boosted Annealing (DBA). We obtain a global gradient through zero-learning-rate training on general data, which is subsequently employed for gradient boosting and dynamic training step correction during domain training. In conjunction with annealing learning, we end up establishing a fine-tuning pipeline that relies solely on domain data without collapse. By evaluating both general and domain-specific performance across multiple tasks on several popular base models, DBA achieves an average improvement of 5.8% in joint performance over vanilla fine-tuning. Furthermore, since general data is no longer involved in annealing, repeated experiments led by data mixture are also eliminated. According to our tests, the DBA method can reduce GPU hours by 91.0% compared to the vanilla method.
comment: 9 pages, 5 figures
☆ Sandbagging in a Simple Survival Bandit Problem NeurIPS 2025
Evaluating the safety of frontier AI systems is an increasingly important concern, helping to measure the capabilities of such models and identify risks before deployment. However, it has been recognised that if AI agents are aware that they are being evaluated, such agents may deliberately hide dangerous capabilities or intentionally demonstrate suboptimal performance in safety-related tasks in order to be released and to avoid being deactivated or retrained. Such strategic deception - often known as "sandbagging" - threatens to undermine the integrity of safety evaluations. For this reason, it is of value to identify methods that enable us to distinguish behavioural patterns that demonstrate a true lack of capability from behavioural patterns that are consistent with sandbagging. In this paper, we develop a simple model of strategic deception in sequential decision-making tasks, inspired by the recently developed survival bandit framework. We demonstrate theoretically that this problem induces sandbagging behaviour in optimal rational agents, and construct a statistical test to distinguish between sandbagging and incompetence from sequences of test scores. In simulation experiments, we investigate the reliability of this test in allowing us to distinguish between such behaviours in bandit models. This work aims to establish a potential avenue for developing robust statistical procedures for use in the science of frontier model evaluations.
comment: Forthcoming in the "Reliable ML from Unreliable Data Workshop" at NeurIPS 2025
☆ 3DiFACE: Synthesizing and Editing Holistic 3D Facial Animation
Creating personalized 3D animations with precise control and realistic head motions remains challenging for current speech-driven 3D facial animation methods. Editing these animations is especially complex and time consuming, requires precise control and typically handled by highly skilled animators. Most existing works focus on controlling style or emotion of the synthesized animation and cannot edit/regenerate parts of an input animation. They also overlook the fact that multiple plausible lip and head movements can match the same audio input. To address these challenges, we present 3DiFACE, a novel method for holistic speech-driven 3D facial animation. Our approach produces diverse plausible lip and head motions for a single audio input and allows for editing via keyframing and interpolation. Specifically, we propose a fully-convolutional diffusion model that can leverage the viseme-level diversity in our training corpus. Additionally, we employ a speaking-style personalization and a novel sparsely-guided motion diffusion to enable precise control and editing. Through quantitative and qualitative evaluations, we demonstrate that our method is capable of generating and editing diverse holistic 3D facial animations given a single audio input, with control between high fidelity and diversity. Code and models are available here: https://balamuruganthambiraja.github.io/3DiFACE
☆ An Experimental Study on Generating Plausible Textual Explanations for Video Summarization
In this paper, we present our experimental study on generating plausible textual explanations for the outcomes of video summarization. For the needs of this study, we extend an existing framework for multigranular explanation of video summarization by integrating a SOTA Large Multimodal Model (LLaVA-OneVision) and prompting it to produce natural language descriptions of the obtained visual explanations. Following, we focus on one of the most desired characteristics for explainable AI, the plausibility of the obtained explanations that relates with their alignment with the humans' reasoning and expectations. Using the extended framework, we propose an approach for evaluating the plausibility of visual explanations by quantifying the semantic overlap between their textual descriptions and the textual descriptions of the corresponding video summaries, with the help of two methods for creating sentence embeddings (SBERT, SimCSE). Based on the extended framework and the proposed plausibility evaluation approach, we conduct an experimental study using a SOTA method (CA-SUM) and two datasets (SumMe, TVSum) for video summarization, to examine whether the more faithful explanations are also the more plausible ones, and identify the most appropriate approach for generating plausible textual explanations for video summarization.
comment: IEEE CBMI 2025. This is the authors' accepted version. The final publication is available at https://ieeexplore.ieee.org/
☆ Type-Less yet Type-Aware Inductive Link Prediction with Pretrained Language Models EMNLP 2025
Inductive link prediction is emerging as a key paradigm for real-world knowledge graphs (KGs), where new entities frequently appear and models must generalize to them without retraining. Predicting links in a KG faces the challenge of guessing previously unseen entities by leveraging generalizable node features such as subgraph structure, type annotations, and ontological constraints. However, explicit type information is often lacking or incomplete. Even when available, type information in most KGs is often coarse-grained, sparse, and prone to errors due to human annotation. In this work, we explore the potential of pre-trained language models (PLMs) to enrich node representations with implicit type signals. We introduce TyleR, a Type-less yet type-awaRe approach for subgraph-based inductive link prediction that leverages PLMs for semantic enrichment. Experiments on standard benchmarks demonstrate that TyleR outperforms state-of-the-art baselines in scenarios with scarce type annotations and sparse graph connectivity. To ensure reproducibility, we share our code at https://github.com/sisinflab/tyler .
comment: Accepted and to appear in Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing (EMNLP 2025)
Beyond Pixels: Efficient Dataset Distillation via Sparse Gaussian Representation
Dataset distillation has emerged as a promising paradigm that synthesizes compact, informative datasets capable of retaining the knowledge of large-scale counterparts, thereby addressing the substantial computational and storage burdens of modern model training. Conventional approaches typically rely on dense pixel-level representations, which introduce redundancy and are difficult to scale up. In this work, we propose GSDD, a novel and efficient sparse representation for dataset distillation based on 2D Gaussians. Instead of representing all pixels equally, GSDD encodes critical discriminative information in a distilled image using only a small number of Gaussian primitives. This sparse representation could improve dataset diversity under the same storage budget, enhancing coverage of difficult samples and boosting distillation performance. To ensure both efficiency and scalability, we adapt CUDA-based splatting operators for parallel inference and training, enabling high-quality rendering with minimal computational and memory overhead. Our method is simple yet effective, broadly applicable to different distillation pipelines, and highly scalable. Experiments show that GSDD achieves state-of-the-art performance on CIFAR-10, CIFAR-100, and ImageNet subsets, while remaining highly efficient encoding and decoding cost. Our code is available at https://github.com/j-cyoung/GSDatasetDistillation.
comment: 19 pages; Code is available on https://github.com/j-cyoung/GSDatasetDistillation
☆ Benchmarking Deep Learning Convolutions on Energy-constrained CPUs
This work evaluates state-of-the-art convolution algorithms for CPU-based deep learning inference. While most prior studies focus on GPUs or NPUs, CPU implementations remain relatively underoptimized. We benchmark direct, GEMM-based, and Winograd convolutions across modern CPUs from ARM __ , Intel __ , AMD __ , Apple __ , and Nvidia __ , considering both latency and energy efficiency. Our results highlight the key architectural factors that govern CPU efficiency for convolution operations, providing practical guidance for energy-aware embedded deployment. As a main results of this work, the Nvidia __ AGX Orin combined with the GEMM algorithm achieves the best trade-off between inference latency and energy consumption.
☆ Comparative Analysis of Ant Colony Optimization and Google OR-Tools for Solving the Open Capacitated Vehicle Routing Problem in Logistics
In modern logistics management systems, route planning requires high efficiency. The Open Capacitated Vehicle Routing Problem (OCVRP) deals with finding optimal delivery routes for a fleet of vehicles serving geographically distributed customers, without requiring the vehicles to return to the depot after deliveries. The present study is comparative in nature and speaks of two algorithms for OCVRP solution: Ant Colony Optimization (ACO), a nature-inspired metaheuristic; and Google OR-Tools, an industry-standard toolkit for optimization. Both implementations were developed in Python and using a custom dataset. Performance appraisal was based on routing efficiency, computation time, and scalability. The results show that ACO allows flexibility in routing parameters while OR-Tools runs much faster with more consistency and requires less input. This could help choose among routing strategies for scalable real-time logistics systems.
comment: 6 pages, accepted at Intelligent Methods, Systems, and Applications (IMSA 2025)
☆ Diversity-Incentivized Exploration for Versatile Reasoning
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a crucial paradigm for incentivizing reasoning capabilities in Large Language Models (LLMs). Due to vast state-action spaces and reward sparsity in reasoning tasks, existing methods often struggle with deficient exploration and poor sample efficiency. In the paper, we propose \textbf{DIVER} (\textbf{D}iversity-\textbf{I}ncentivized Exploration for \textbf{V}ersatil\textbf{E} \textbf{R}easoning), an innovative framework that highlights the pivotal role of global sequence-level diversity to incentivize deep exploration for versatile reasoning. We first conduct a primary empirical study to reveal a strong positive correlation between global diversity and reasoning capacity. Building on this insight, we introduce global diversity incentives as an intrinsic reward to promote deep exploration in a semantically structured space. Incorporating the intrinsic reward, we develop a potential-based reward shaping mechanism to preserve optimal policy invariance and design simple heuristics to mitigate possible reward hacking. Experimental results show that DIVER outperforms competitive RLVR baselines with various exploration strategies on both in-domain and out-of-domain tasks, excelling in both Pass@1 and Pass@k evaluations. Our code is available at https://github.com/NJU-RL/DIVER.
comment: 26 pages, 10 figures
☆ Human-Centered Evaluation of RAG outputs: a framework and questionnaire for human-AI collaboration
Retrieval-augmented generation (RAG) systems are increasingly deployed in user-facing applications, yet systematic, human-centered evaluation of their outputs remains underexplored. Building on Gienapp's utility-dimension framework, we designed a human-centred questionnaire that assesses RAG outputs across 12 dimensions. We iteratively refined the questionnaire through several rounds of ratings on a set of query-output pairs and semantic discussions. Ultimately, we incorporated feedback from both a human rater and a human-LLM pair. Results indicate that while large language models (LLMs) reliably focus on metric descriptions and scale labels, they exhibit weaknesses in detecting textual format variations. Humans struggled to focus strictly on metric descriptions and labels. LLM ratings and explanations were viewed as a helpful support, but numeric LLM and human ratings lacked agreement. The final questionnaire extends the initial framework by focusing on user intent, text structuring, and information verifiability.
☆ LLM Agents for Knowledge Discovery in Atomic Layer Processing
Large Language Models (LLMs) have garnered significant attention for several years now. Recently, their use as independently reasoning agents has been proposed. In this work, we test the potential of such agents for knowledge discovery in materials science. We repurpose LangGraph's tool functionality to supply agents with a black box function to interrogate. In contrast to process optimization or performing specific, user-defined tasks, knowledge discovery consists of freely exploring the system, posing and verifying statements about the behavior of this black box, with the sole objective of generating and verifying generalizable statements. We provide proof of concept for this approach through a children's parlor game, demonstrating the role of trial-and-error and persistence in knowledge discovery, and the strong path-dependence of results. We then apply the same strategy to show that LLM agents can explore, discover, and exploit diverse chemical interactions in an advanced Atomic Layer Processing reactor simulation using intentionally limited probe capabilities without explicit instructions.
comment: Accepted submission to the AI4MAT workshop@NEURIPS 2025. As submitted, except author names added
☆ Toward an Unbiased Collective Memory for Efficient LLM-Based Agentic 6G Cross-Domain Management
This paper introduces a novel framework for proactive cross-domain resource orchestration in 6G RAN-Edge networks, featuring large language model (LLM)-augmented agents. The system comprises specialized RAN (energy efficiency) and Edge (latency assurance) agents that engage in iterative negotiation, supported by advanced reasoning and planning capabilities. Agents dynamically interact with a digital twin (DT) to test their proposals and leverage a long-term collective memory where their joint successful and failed agreements along with the related network contexts are distilled into strategies to either follow or avoid and subsequently stored. Given that agents are subject to a plethora of cognitive distortions when retrieving those past experiences -- such as primacy, recency, confirmation and availability biases -- we propose in this work a novel unbiased memory design (A reusable mockup version of the unbiased memory source code is available for non-commercial use at https://github.com/HatimChergui/unbiased-collective-memory). featuring (i) semantic retrieval of past strategies via Jaccard similarity; (ii) learning from failures through amplified weighting of SLA violations and mandatory inclusion of failed negotiation cases to mitigate confirmation bias; (iii) diversity enforcement to minimize availability bias and (iv) recency and primacy weighting with slow decay to counteract temporal biases. Evaluation results showcase the impact of existing biases and how the unbiased memory allows to tackle them by learning from both successful and failed strategies, either present or old, resulting in $\times 4.5$ and $\times 3.5$ reductions of unresolved negotiations compared to non-memory and vanilla memory baselines, respectively, while totally mitigating SLA violations as well as improving latency and energy saving distributions.
comment: 12 pages, 8 figures
☆ Optimizing Indoor Environmental Quality in Smart Buildings Using Deep Learning ICDT
Ensuring optimal Indoor Environmental Quality (IEQ) is vital for occupant health and productivity, yet it often comes at a high energy cost in conventional Heating, Ventilation, and Air Conditioning (HVAC) systems. This paper proposes a deep learning driven approach to proactively manage IEQ parameters specifically CO2 concentration, temperature, and humidity while balancing building energy efficiency. Leveraging the ROBOD dataset collected from a net-zero energy academic building, we benchmark three architectures--Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), and a hybrid Convolutional Neural Network LSTM (CNN-LSTM)--to forecast IEQ variables across various time horizons. Our results show that GRU achieves the best short-term prediction accuracy with lower computational overhead, whereas CNN-LSTM excels in extracting dominant features for extended forecasting windows. Meanwhile, LSTM offers robust long-range temporal modeling. The comparative analysis highlights that prediction reliability depends on data resolution, sensor placement, and fluctuating occupancy conditions. These findings provide actionable insights for intelligent Building Management Systems (BMS) to implement predictive HVAC control, thereby reducing energy consumption and enhancing occupant comfort in real-world building operations.
comment: 10 pages, 4 figures, 1 table. Accepted and presented at the 5th International Conference on Digital Technologies and Applications (ICDTA 2025), April 17-18, 2025, Al Akhawayn University, Ifrane, Morocco
☆ AttriGen: Automated Multi-Attribute Annotation for Blood Cell Datasets
We introduce AttriGen, a novel framework for automated, fine-grained multi-attribute annotation in computer vision, with a particular focus on cell microscopy where multi-attribute classification remains underrepresented compared to traditional cell type categorization. Using two complementary datasets: the Peripheral Blood Cell (PBC) dataset containing eight distinct cell types and the WBC Attribute Dataset (WBCAtt) that contains their corresponding 11 morphological attributes, we propose a dual-model architecture that combines a CNN for cell type classification, as well as a Vision Transformer (ViT) for multi-attribute classification achieving a new benchmark of 94.62\% accuracy. Our experiments demonstrate that AttriGen significantly enhances model interpretability and offers substantial time and cost efficiency relative to conventional full-scale human annotation. Thus, our framework establishes a new paradigm that can be extended to other computer vision classification tasks by effectively automating the expansion of multi-attribute labels.
comment: 6 pages, 4 figures, 3 tables. Accepted at the 12th International Conference on Wireless Networks and Mobile Communications 2025 (WINCOM 2025)
☆ 'Too much alignment; not enough culture': Re-balancing cultural alignment practices in LLMs
While cultural alignment has increasingly become a focal point within AI research, current approaches relying predominantly on quantitative benchmarks and simplistic proxies fail to capture the deeply nuanced and context-dependent nature of human cultures. Existing alignment practices typically reduce culture to static demographic categories or superficial cultural facts, thereby sidestepping critical questions about what it truly means to be culturally aligned. This paper argues for a fundamental shift towards integrating interpretive qualitative approaches drawn from social sciences into AI alignment practices, specifically in the context of Large Language Models (LLMs). Drawing inspiration from Clifford Geertz's concept of "thick description," we propose that AI systems must produce outputs that reflect deeper cultural meanings--what we term "thick outputs"-grounded firmly in user-provided context and intent. We outline three necessary conditions for successful cultural alignment: sufficiently scoped cultural representations, the capacity for nuanced outputs, and the anchoring of outputs in the cultural contexts implied within prompts. Finally, we call for cross-disciplinary collaboration and the adoption of qualitative, ethnographic evaluation methods as vital steps toward developing AI systems that are genuinely culturally sensitive, ethically responsible, and reflective of human complexity.
comment: 8 pages, no figures
☆ 90% Faster, 100% Code-Free: MLLM-Driven Zero-Code 3D Game Development
Developing 3D games requires specialized expertise across multiple domains, including programming, 3D modeling, and engine configuration, which limits access to millions of potential creators. Recently, researchers have begun to explore automated game development. However, existing approaches face three primary challenges: (1) limited scope to 2D content generation or isolated code snippets; (2) requirement for manual integration of generated components into game engines; and (3) poor performance on handling interactive game logic and state management. While Multimodal Large Language Models (MLLMs) demonstrate potential capabilities to ease the game generation task, a critical gap still remains in translating these outputs into production-ready, executable game projects based on game engines such as Unity and Unreal Engine. To bridge the gap, this paper introduces UniGen, the first end-to-end coordinated multi-agent framework that automates zero-coding development of runnable 3D games from natural language requirements. Specifically, UniGen uses a Planning Agent that interprets user requirements into structured blueprints and engineered logic descriptions; after which a Generation Agent produces executable C# scripts; then an Automation Agent handles engine-specific component binding and scene construction; and lastly a Debugging Agent provides real-time error correction through conversational interaction. We evaluated UniGen on three distinct game prototypes. Results demonstrate that UniGen not only democratizes game creation by requiring no coding from the user, but also reduces development time by 91.4%. We release UniGen at https://github.com/yxwan123/UniGen. A video demonstration is available at https://www.youtube.com/watch?v=xyJjFfnxUx0.
☆ Towards Continual Expansion of Data Coverage: Automatic Text-guided Edge-case Synthesis
The performance of deep neural networks is strongly influenced by the quality of their training data. However, mitigating dataset bias by manually curating challenging edge cases remains a major bottleneck. To address this, we propose an automated pipeline for text-guided edge-case synthesis. Our approach employs a Large Language Model, fine-tuned via preference learning, to rephrase image captions into diverse textual prompts that steer a Text-to-Image model toward generating difficult visual scenarios. Evaluated on the FishEye8K object detection benchmark, our method achieves superior robustness, surpassing both naive augmentation and manually engineered prompts. This work establishes a scalable framework that shifts data curation from manual effort to automated, targeted synthesis, offering a promising direction for developing more reliable and continuously improving AI systems. Code is available at https://github.com/gokyeongryeol/ATES.
comment: 17 pages, 6 figures
☆ EntroPE: Entropy-Guided Dynamic Patch Encoder for Time Series Forecasting
Transformer-based models have significantly advanced time series forecasting, with patch-based input strategies offering efficiency and improved long-horizon modeling. Yet, existing approaches rely on temporally-agnostic patch construction, where arbitrary starting positions and fixed lengths fracture temporal coherence by splitting natural transitions across boundaries. This naive segmentation often disrupts short-term dependencies and weakens representation learning. In response, we propose EntroPE (Entropy-Guided Dynamic Patch Encoder), a novel, temporally informed framework that dynamically detects transition points via conditional entropy and dynamically places patch boundaries. This preserves temporal structure while retaining the computational benefits of patching. EntroPE consists of two key modules, namely an Entropy-based Dynamic Patcher (EDP) that applies information-theoretic criteria to locate natural temporal shifts and determine patch boundaries, and an Adaptive Patch Encoder (APE) that employs pooling and cross-attention to capture intra-patch dependencies and produce fixed-size latent representations. These embeddings are then processed by a global transformer to model inter-patch dynamics. Experiments across long-term forecasting benchmarks demonstrate that EntroPE improves both accuracy and efficiency, establishing entropy-guided dynamic patching as a promising new paradigm for time series modeling. Code is available at: https://github.com/Sachithx/EntroPE.
comment: Preprint. Under Review
☆ Bubble, Bubble, AI's Rumble: Why Global Financial Regulatory Incident Reporting is Our Shield Against Systemic Stumbles
"Double, double toil and trouble; Fire burn and cauldron bubble." As Shakespeare's witches foretold chaos through cryptic prophecies, modern capital markets grapple with systemic risks concealed by opaque AI systems. According to IMF, the August 5, 2024, plunge in Japanese and U.S. equities can be linked to algorithmic trading yet ab-sent from existing AI incidents database exemplifies this transparency crisis. Current AI incident databases, reliant on crowdsourcing or news scraping, systematically over-look capital market anomalies, particularly in algorithmic and high-frequency trading. We address this critical gap by proposing a regulatory-grade global database that elegantly synthesises post-trade reporting frameworks with proven incident documentation models from healthcare and aviation. Our framework's temporal data omission technique masking timestamps while preserving percent-age-based metrics enables sophisticated cross-jurisdictional analysis of emerging risks while safeguarding confidential business information. Synthetic data validation (modelled after real life published incidents , sentiments, data) reveals compelling pat-terns: systemic risks transcending geographical boundaries, market manipulation clusters distinctly identifiable via K-means algorithms, and AI system typology exerting significantly greater influence on trading behaviour than geographical location, This tripartite solution empowers regulators with unprecedented cross-jurisdictional oversight, financial institutions with seamless compliance integration, and investors with critical visibility into previously obscured AI-driven vulnerabilities. We call for immediate action to strengthen risk management and foster resilience in AI-driven financial markets against the volatile "cauldron" of AI-driven systemic risks., promoting global financial stability through enhanced transparency and coordinated oversight.
☆ LMILAtt: A Deep Learning Model for Depression Detection from Social Media Users Enhanced by Multi-Instance Learning Based on Attention Mechanism
Depression is a major global public health challenge and its early identification is crucial. Social media data provides a new perspective for depression detection, but existing methods face limitations such as insufficient accuracy, insufficient utilization of time series features, and high annotation costs. To this end, this study proposes the LMILAtt model, which innovatively integrates Long Short-Term Memory autoencoders and attention mechanisms: firstly, the temporal dynamic features of user tweets (such as depressive tendency evolution patterns) are extracted through unsupervised LSTM autoencoders. Secondly, the attention mechanism is used to dynamically weight key texts (such as early depression signals) and construct a multi-example learning architecture to improve the accuracy of user-level detection. Finally, the performance was verified on the WU3D dataset labeled by professional medicine. Experiments show that the model is significantly better than the baseline model in terms of accuracy, recall and F1 score. In addition, the weakly supervised learning strategy significantly reduces the cost of labeling and provides an efficient solution for large-scale social media depression screening.
☆ OWL: Geometry-Aware Spatial Reasoning for Audio Large Language Models
Spatial reasoning is fundamental to auditory perception, yet current audio large language models (ALLMs) largely rely on unstructured binaural cues and single step inference. This limits both perceptual accuracy in direction and distance estimation and the capacity for interpretable reasoning. Recent work such as BAT demonstrates spatial QA with binaural audio, but its reliance on coarse categorical labels (left, right, up, down) and the absence of explicit geometric supervision constrain resolution and robustness. We introduce the $\textbf{Spatial-Acoustic Geometry Encoder (SAGE}$), a geometry-aware audio encoder that aligns binaural acoustic features with 3D spatial structure using panoramic depth images and room-impulse responses at training time, while requiring only audio at inference. Building on this representation, we present $\textbf{OWL}$, an ALLM that integrates $\textbf{SAGE}$ with a spatially grounded chain-of-thought to rationalize over direction-of-arrivals (DoA) and distance estimates. Through curriculum learning from perceptual QA to multi-step reasoning, $\textbf{OWL}$ supports o'clock-level azimuth and DoA estimation. To enable large-scale training and evaluation, we construct and release $\textbf{BiDepth}$, a dataset of over one million QA pairs combining binaural audio with panoramic depth images and room impulse responses across both in-room and out-of-room scenarios. Across two benchmark datasets, our new $\textbf{BiDepth}$ and the public SpatialSoundQA, $\textbf{OWL}$ reduces mean DoA error by $\textbf{11$^{\circ}$}$ through $\textbf{SAGE}$ and improves spatial reasoning QA accuracy by up to $\textbf{25}$\% over BAT.
☆ Leveraging AI modelling for FDS with Simvue: monitor and optimise for more sustainable simulations
There is high demand on fire simulations, in both scale and quantity. We present a multi-pronged approach to improving the time and energy required to meet these demands. We show the ability of a custom machine learning surrogate model to predict the dynamics of heat propagation orders of magnitude faster than state-of-the-art CFD software for this application. We also demonstrate how a guided optimisation procedure can decrease the number of simulations required to meet an objective; using lightweight models to decide which simulations to run, we see a tenfold reduction when locating the most dangerous location for a fire to occur within a building based on the impact of smoke on visibility. Finally we present a framework and product, Simvue, through which we access these tools along with a host of automatic organisational and tracking features which enables future reuse of data and more savings through better management of simulations and combating redundancy.
comment: 12 pages, 17 figures, Interflam Conference
☆ MEDAKA: Construction of Biomedical Knowledge Graphs Using Large Language Models
Knowledge graphs (KGs) are increasingly used to represent biomedical information in structured, interpretable formats. However, existing biomedical KGs often focus narrowly on molecular interactions or adverse events, overlooking the rich data found in drug leaflets. In this work, we present (1) a hackable, end-to-end pipeline to create KGs from unstructured online content using a web scraper and an LLM; and (2) a curated dataset, MEDAKA, generated by applying this method to publicly available drug leaflets. The dataset captures clinically relevant attributes such as side effects, warnings, contraindications, ingredients, dosage guidelines, storage instructions and physical characteristics. We evaluate it through manual inspection and with an LLM-as-a-Judge framework, and compare its coverage with existing biomedical KGs and databases. We expect MEDAKA to support tasks such as patient safety monitoring and drug recommendation. The pipeline can also be used for constructing KGs from unstructured texts in other domains. Code and dataset are available at https://github.com/medakakg/medaka.
comment: 9 pages, 5 figures, 2 tables
☆ AGOCS -- Accurate Google Cloud Simulator Framework ATC
This paper presents the Accurate Google Cloud Simulator (AGOCS) - a novel high-fidelity Cloud workload simulator based on parsing real workload traces, which can be conveniently used on a desktop machine for day-to-day research. Our simulation is based on real-world workload traces from a Google Cluster with 12.5K nodes, over a period of a calendar month. The framework is able to reveal very precise and detailed parameters of the executed jobs, tasks and nodes as well as to provide actual resource usage statistics. The system has been implemented in Scala language with focus on parallel execution and an easy-to-extend design concept. The paper presents the detailed structural framework for AGOCS and discusses our main design decisions, whilst also suggesting alternative and possibly performance enhancing future approaches. The framework is available via the Open Source GitHub repository.
comment: This is the accepted author's version of the paper. The final published version is available in the Proceedings of the 2016 IEEE International Conferences on Ubiquitous Intelligence and Computing (UIC), Advanced and Trusted Computing (ATC), Scalable Computing and Communications (ScalCom), Cloud and Big Data Computing (CBDCom), Internet of People (IoP), and Smart World Congress (SmartWorld)
☆ Enhancing PINN Performance Through Lie Symmetry Group
This paper presents intersection of Physics informed neural networks (PINNs) and Lie symmetry group to enhance the accuracy and efficiency of solving partial differential equation (PDEs). Various methods have been developed to solve these equations. A Lie group is an efficient method that can lead to exact solutions for the PDEs that possessing Lie Symmetry. Leveraging the concept of infinitesimal generators from Lie symmetry group in a novel manner within PINN leads to significant improvements in solution of PDEs. In this study three distinct cases are discussed, each showing progressive improvements achieved through Lie symmetry modifications and adaptive techniques. State-of-the-art numerical methods are adopted for comparing the progressive PINN models. Numerical experiments demonstrate the key role of Lie symmetry in enhancing PINNs performance, emphasizing the importance of integrating abstract mathematical concepts into deep learning for addressing complex scientific problems adequately.
☆ End-to-End Aspect-Guided Review Summarization at Scale EMNLP 2025
We present a scalable large language model (LLM)-based system that combines aspect-based sentiment analysis (ABSA) with guided summarization to generate concise and interpretable product review summaries for the Wayfair platform. Our approach first extracts and consolidates aspect-sentiment pairs from individual reviews, selects the most frequent aspects for each product, and samples representative reviews accordingly. These are used to construct structured prompts that guide the LLM to produce summaries grounded in actual customer feedback. We demonstrate the real-world effectiveness of our system through a large-scale online A/B test. Furthermore, we describe our real-time deployment strategy and release a dataset of 11.8 million anonymized customer reviews covering 92,000 products, including extracted aspects and generated summaries, to support future research in aspect-guided review summarization.
comment: Camera-ready preprint for EMNLP 2025 Industry Track
☆ SafeEvalAgent: Toward Agentic and Self-Evolving Safety Evaluation of LLMs
The rapid integration of Large Language Models (LLMs) into high-stakes domains necessitates reliable safety and compliance evaluation. However, existing static benchmarks are ill-equipped to address the dynamic nature of AI risks and evolving regulations, creating a critical safety gap. This paper introduces a new paradigm of agentic safety evaluation, reframing evaluation as a continuous and self-evolving process rather than a one-time audit. We then propose a novel multi-agent framework SafeEvalAgent, which autonomously ingests unstructured policy documents to generate and perpetually evolve a comprehensive safety benchmark. SafeEvalAgent leverages a synergistic pipeline of specialized agents and incorporates a Self-evolving Evaluation loop, where the system learns from evaluation results to craft progressively more sophisticated and targeted test cases. Our experiments demonstrate the effectiveness of SafeEvalAgent, showing a consistent decline in model safety as the evaluation hardens. For instance, GPT-5's safety rate on the EU AI Act drops from 72.50% to 36.36% over successive iterations. These findings reveal the limitations of static assessments and highlight our framework's ability to uncover deep vulnerabilities missed by traditional methods, underscoring the urgent need for dynamic evaluation ecosystems to ensure the safe and responsible deployment of advanced AI.
☆ On Computing Top-$k$ Simple Shortest Paths from a Single Source
We investigate the problem of computing the top-$k$ simple shortest paths in weighted digraphs. While the single-pair variant -- finding the top-$k$ simple shortest paths between two specified vertices -- has been extensively studied over the past decades, with Yen's algorithm and its heuristic improvements emerging as the most effective solving strategies, relatively little attention has been devoted to the more general single-source version, where the goal is determining top-$k$ simple shortest paths from a source vertex to all other vertices. Motivated by the numerous practical applications of ranked shortest paths, in this paper we provide new insights and algorithmic contributions to this problem. In particular, we first present a theoretical characterization of the structural properties of its solutions. Then, we introduce the first polynomial-time algorithm specifically designed to handle it. On the one hand, we prove our new algorithm is on par, in terms of time complexity, with the best (and only) polynomial-time approach known in the literature to solve the problem, that is applying the fastest single-pair algorithm independently to each vertex pair formed by the source and the remaining vertices. On the other hand, through an extensive experimental evaluation on both real-world and synthetic graphs, we demonstrate that our algorithm consistently and significantly outperforms the latter baseline in terms of running time, achieving speed-ups of up to several orders of magnitude. These results establish our new algorithm as the solution to be preferred for computing $k$ simple shortest paths from a single source in practical settings.
comment: 21 pages, 2 figures, to be published in ALENEX 2026
☆ Evaluating the Use of Large Language Models as Synthetic Social Agents in Social Science Research
Large Language Models (LLMs) are being increasingly used as synthetic agents in social science, in applications ranging from augmenting survey responses to powering multi-agent simulations. Because strong prediction plus conditioning prompts, token log-probs, and repeated sampling mimic Bayesian workflows, their outputs can be misinterpreted as posterior-like evidence from a coherent model. However, prediction does not equate to probabilism, and accurate points do not imply calibrated uncertainty. This paper outlines cautions that should be taken when interpreting LLM outputs and proposes a pragmatic reframing for the social sciences in which LLMs are used as high-capacity pattern matchers for quasi-predictive interpolation under explicit scope conditions and not as substitutes for probabilistic inference. Practical guardrails such as independent draws, preregistered human baselines, reliability-aware validation, and subgroup calibration, are introduced so that researchers may engage in useful prototyping and forecasting while avoiding category errors.
☆ Real-time Noise Detection and Classification in Single-Channel EEG: A Lightweight Machine Learning Approach for EMG, White Noise, and EOG Artifacts
Electroencephalogram (EEG) artifact detection in real-world settings faces significant challenges such as computational inefficiency in multi-channel methods, poor robustness to simultaneous noise, and trade-offs between accuracy and complexity in deep learning models. We propose a hybrid spectral-temporal framework for real-time detection and classification of ocular (EOG), muscular (EMG), and white noise artifacts in single-channel EEG. This method, in contrast to other approaches, combines time-domain low-pass filtering (targeting low-frequency EOG) and frequency-domain power spectral density (PSD) analysis (capturing broad-spectrum EMG), followed by PCA-optimized feature fusion to minimize redundancy while preserving discriminative information. This feature engineering strategy allows a lightweight multi-layer perceptron (MLP) architecture to outperform advanced CNNs and RNNs by achieving 99% accuracy at low SNRs (SNR -7) dB and >90% accuracy in moderate noise (SNR 4 dB). Additionally, this framework addresses the unexplored problem of simultaneous multi-source contamination(EMG+EOG+white noise), where it maintains 96% classification accuracy despite overlapping artifacts. With 30-second training times (97% faster than CNNs) and robust performance across SNR levels, this framework bridges the gap between clinical applicability and computational efficiency, which enables real-time use in wearable brain-computer interfaces. This work also challenges the ubiquitous dependence on model depth for EEG artifact detection by demonstrating that domain-informed feature fusion surpasses complex architecture in noisy scenarios.
☆ CEAID: Benchmark of Multilingual Machine-Generated Text Detection Methods for Central European Languages
Machine-generated text detection, as an important task, is predominantly focused on English in research. This makes the existing detectors almost unusable for non-English languages, relying purely on cross-lingual transferability. There exist only a few works focused on any of Central European languages, leaving the transferability towards these languages rather unexplored. We fill this gap by providing the first benchmark of detection methods focused on this region, while also providing comparison of train-languages combinations to identify the best performing ones. We focus on multi-domain, multi-generator, and multilingual evaluation, pinpointing the differences of individual aspects, as well as adversarial robustness of detection methods. Supervised finetuned detectors in the Central European languages are found the most performant in these languages as well as the most resistant against obfuscation.
☆ CoLLM-NAS: Collaborative Large Language Models for Efficient Knowledge-Guided Neural Architecture Search
The integration of Large Language Models (LLMs) with Neural Architecture Search (NAS) has introduced new possibilities for automating the design of neural architectures. However, most existing methods face critical limitations, including architectural invalidity, computational inefficiency, and inferior performance compared to traditional NAS. In this work, we present Collaborative LLM-based NAS (CoLLM-NAS), a two-stage NAS framework with knowledge-guided search driven by two complementary LLMs. Specifically, we propose a Navigator LLM to guide search direction and a Generator LLM to synthesize high-quality candidates, with a dedicated Coordinator module to manage their interaction. CoLLM-NAS efficiently guides the search process by combining LLMs' inherent knowledge of structured neural architectures with progressive knowledge from iterative feedback and historical trajectory. Experimental results on ImageNet and NAS-Bench-201 show that CoLLM-NAS surpasses existing NAS methods and conventional search algorithms, achieving new state-of-the-art results. Furthermore, CoLLM-NAS consistently enhances the performance and efficiency of various two-stage NAS methods (e.g., OFA, SPOS, and AutoFormer) across diverse search spaces (e.g., MobileNet, ShuffleNet, and AutoFormer), demonstrating its excellent generalization.
☆ Muon Outperforms Adam in Tail-End Associative Memory Learning
The Muon optimizer is consistently faster than Adam in training Large Language Models (LLMs), yet the mechanism underlying its success remains unclear. This paper demystifies this mechanism through the lens of associative memory. By ablating the transformer components optimized by Muon, we reveal that the associative memory parameters of LLMs, namely the Value and Output (VO) attention weights and Feed-Forward Networks (FFNs), are the primary contributors to Muon's superiority. Motivated by this associative memory view, we then explain Muon's superiority on real-world corpora, which are intrinsically heavy-tailed: a few classes (tail classes) appear far less frequently than others. The superiority is explained through two key properties: (i) its update rule consistently yields a more isotropic singular spectrum than Adam; and as a result, (ii) on heavy-tailed data, it optimizes tail classes more effectively than Adam. Beyond empirical evidence, we theoretically confirm these findings by analyzing a one-layer associative memory model under class-imbalanced data. We prove that Muon consistently achieves balanced learning across classes regardless of feature embeddings, whereas Adam can induce large disparities in learning errors depending on embedding properties. In summary, our empirical observations and theoretical analyses reveal Muon's core advantage: its update rule aligns with the outer-product structure of linear associative memories, enabling more balanced and effective learning of tail classes in heavy-tailed distributions than Adam.
☆ Indirect Attention: Turning Context Misalignment into a Feature
The attention mechanism has become a cornerstone of modern deep learning architectures, where keys and values are typically derived from the same underlying sequence or representation. This work explores a less conventional scenario, when keys and values originate from different sequences or modalities. Specifically, we first analyze the attention mechanism's behavior under noisy value features, establishing a critical noise threshold beyond which signal degradation becomes significant. Furthermore, we model context (key, value) misalignment as an effective form of structured noise within the value features, demonstrating that the noise induced by such misalignment can substantially exceed this critical threshold, thereby compromising standard attention's efficacy. Motivated by this, we introduce Indirect Attention, a modified attention mechanism that infers relevance indirectly in scenarios with misaligned context. We evaluate the performance of Indirect Attention across a range of synthetic tasks and real world applications, showcasing its superior ability to handle misalignment.
☆ PFDepth: Heterogeneous Pinhole-Fisheye Joint Depth Estimation via Distortion-aware Gaussian-Splatted Volumetric Fusion ACM MM 2025
In this paper, we present the first pinhole-fisheye framework for heterogeneous multi-view depth estimation, PFDepth. Our key insight is to exploit the complementary characteristics of pinhole and fisheye imagery (undistorted vs. distorted, small vs. large FOV, far vs. near field) for joint optimization. PFDepth employs a unified architecture capable of processing arbitrary combinations of pinhole and fisheye cameras with varied intrinsics and extrinsics. Within PFDepth, we first explicitly lift 2D features from each heterogeneous view into a canonical 3D volumetric space. Then, a core module termed Heterogeneous Spatial Fusion is designed to process and fuse distortion-aware volumetric features across overlapping and non-overlapping regions. Additionally, we subtly reformulate the conventional voxel fusion into a novel 3D Gaussian representation, in which learnable latent Gaussian spheres dynamically adapt to local image textures for finer 3D aggregation. Finally, fused volume features are rendered into multi-view depth maps. Through extensive experiments, we demonstrate that PFDepth sets a state-of-the-art performance on KITTI-360 and RealHet datasets over current mainstream depth networks. To the best of our knowledge, this is the first systematic study of heterogeneous pinhole-fisheye depth estimation, offering both technical novelty and valuable empirical insights.
comment: Accepted by ACM MM 2025 Conference
☆ Learning Egocentric In-Hand Object Segmentation through Weak Supervision from Human Narrations
Pixel-level recognition of objects manipulated by the user from egocentric images enables key applications spanning assistive technologies, industrial safety, and activity monitoring. However, progress in this area is currently hindered by the scarcity of annotated datasets, as existing approaches rely on costly manual labels. In this paper, we propose to learn human-object interaction detection leveraging narrations -- natural language descriptions of the actions performed by the camera wearer which contain clues about manipulated objects (e.g., "I am pouring vegetables from the chopping board to the pan"). Narrations provide a form of weak supervision that is cheap to acquire and readily available in state-of-the-art egocentric datasets. We introduce Narration-Supervised in-Hand Object Segmentation (NS-iHOS), a novel task where models have to learn to segment in-hand objects by learning from natural-language narrations. Narrations are then not employed at inference time. We showcase the potential of the task by proposing Weakly-Supervised In-hand Object Segmentation from Human Narrations (WISH), an end-to-end model distilling knowledge from narrations to learn plausible hand-object associations and enable in-hand object segmentation without using narrations at test time. We benchmark WISH against different baselines based on open-vocabulary object detectors and vision-language models, showing the superiority of its design. Experiments on EPIC-Kitchens and Ego4D show that WISH surpasses all baselines, recovering more than 50% of the performance of fully supervised methods, without employing fine-grained pixel-wise annotations.
☆ Towards Human Engagement with Realistic AI Combat Pilots
We present a system that enables real-time interaction between human users and agents trained to control fighter jets in simulated 3D air combat scenarios. The agents are trained in a dedicated environment using Multi-Agent Reinforcement Learning. A communication link is developed to allow seamless deployment of trained agents into VR-Forces, a widely used defense simulation tool for realistic tactical scenarios. This integration allows mixed simulations where human-controlled entities engage with intelligent agents exhibiting distinct combat behaviors. Our interaction model creates new opportunities for human-agent teaming, immersive training, and the exploration of innovative tactics in defense contexts.
comment: 13th International Conference on Human-Agent Interaction (HAI) 2025
☆ VRWKV-Editor: Reducing quadratic complexity in transformer-based video editing
In light of recent progress in video editing, deep learning models focusing on both spatial and temporal dependencies have emerged as the primary method. However, these models suffer from the quadratic computational complexity of traditional attention mechanisms, making them difficult to adapt to long-duration and high-resolution videos. This limitation restricts their applicability in practical contexts such as real-time video processing. To tackle this challenge, we introduce a method to reduce both time and space complexity of these systems by proposing VRWKV-Editor, a novel video editing model that integrates a linear spatio-temporal aggregation module into video-based diffusion models. VRWKV-Editor leverages bidirectional weighted key-value recurrence mechanism of the RWKV transformer to capture global dependencies while preserving temporal coherence, achieving linear complexity without sacrificing quality. Extensive experiments demonstrate that the proposed method achieves up to 3.7x speedup and 60% lower memory usage compared to state-of-the-art diffusion-based video editing methods, while maintaining competitive performance in frame consistency and text alignment. Furthermore, a comparative analysis we conducted on videos with different sequence lengths confirms that the gap in editing speed between our approach and architectures with self-attention becomes more significant with long videos.
☆ MHINDR -- a DSM5 based mental health diagnosis and recommendation framework using LLM
Mental health forums offer valuable insights into psychological issues, stressors, and potential solutions. We propose MHINDR, a large language model (LLM) based framework integrated with DSM-5 criteria to analyze user-generated text, dignose mental health conditions, and generate personalized interventions and insights for mental health practitioners. Our approach emphasizes on the extraction of temporal information for accurate diagnosis and symptom progression tracking, together with psychological features to create comprehensive mental health summaries of users. The framework delivers scalable, customizable, and data-driven therapeutic recommendations, adaptable to diverse clinical contexts, patient needs, and workplace well-being programs.
comment: 7 pages, 1 figure, 4 tables
☆ Towards Unified Multimodal Misinformation Detection in Social Media: A Benchmark Dataset and Baseline
In recent years, detecting fake multimodal content on social media has drawn increasing attention. Two major forms of deception dominate: human-crafted misinformation (e.g., rumors and misleading posts) and AI-generated content produced by image synthesis models or vision-language models (VLMs). Although both share deceptive intent, they are typically studied in isolation. NLP research focuses on human-written misinformation, while the CV community targets AI-generated artifacts. As a result, existing models are often specialized for only one type of fake content. In real-world scenarios, however, the type of a multimodal post is usually unknown, limiting the effectiveness of such specialized systems. To bridge this gap, we construct the Omnibus Dataset for Multimodal News Deception (OmniFake), a comprehensive benchmark of 127K samples that integrates human-curated misinformation from existing resources with newly synthesized AI-generated examples. Based on this dataset, we propose Unified Multimodal Fake Content Detection (UMFDet), a framework designed to handle both forms of deception. UMFDet leverages a VLM backbone augmented with a Category-aware Mixture-of-Experts (MoE) Adapter to capture category-specific cues, and an attribution chain-of-thought mechanism that provides implicit reasoning guidance for locating salient deceptive signals. Extensive experiments demonstrate that UMFDet achieves robust and consistent performance across both misinformation types, outperforming specialized baselines and offering a practical solution for real-world multimodal deception detection.
☆ R-Log: Incentivizing Log Analysis Capability in LLMs via Reasoning-based Reinforcement Learning
The growing complexity of log data in modern software systems has prompted the use of Large Language Models (LLMs) for automated log analysis. Current approaches typically rely on direct supervised fine-tuning (SFT) on log-label pairs. However, this exacerbates the domain discrepancy between general-purpose LLMs and specialized log data, causing overfitting. Furthermore, SFT's imbalanced loss computation often allows lengthy contexts to overwhelm critical, concise details in model answers, leading to hallucinations. To address these limitations, we propose R-Log, a novel reasoning-based paradigm that mirrors the structured, step-by-step analytical process of human engineers. This approach enhances generalizability by learning the underlying rules behind conclusions. We further employ Reinforcement Learning (RL) to optimize the model within a simulated O&M environment, thereby reducing hallucinations by directly rewarding correct outcomes. R-Log is first cold-started on a curated dataset of 2k+ reasoning trajectories, guided by 13 strategies from manual O&M practices, to establish an initial reasoning capability. This ability is then refined via RL using a joint reward function. Empirical evaluations on real-world logs show that R-Log outperforms existing methods across five log analysis tasks, particularly in unseen scenarios (by 228.05%). We also designed R-Log-fast with 5x speedup while keeping 93% of the efficacy.
☆ Reconcile Certified Robustness and Accuracy for DNN-based Smoothed Majority Vote Classifier
Within the PAC-Bayesian framework, the Gibbs classifier (defined on a posterior $Q$) and the corresponding $Q$-weighted majority vote classifier are commonly used to analyze the generalization performance. However, there exists a notable lack in theoretical research exploring the certified robustness of majority vote classifier and its interplay with generalization. In this study, we develop a generalization error bound that possesses a certified robust radius for the smoothed majority vote classifier (i.e., the $Q$-weighted majority vote classifier with smoothed inputs); In other words, the generalization bound holds under any data perturbation within the certified robust radius. As a byproduct, we find that the underpinnings of both the generalization bound and the certified robust radius draw, in part, upon weight spectral norm, which thereby inspires the adoption of spectral regularization in smooth training to boost certified robustness. Utilizing the dimension-independent property of spherical Gaussian inputs in smooth training, we propose a novel and inexpensive spectral regularizer to enhance the smoothed majority vote classifier. In addition to the theoretical contribution, a set of empirical results is provided to substantiate the effectiveness of our proposed method.
comment: Under Review
☆ Data-Free Continual Learning of Server Models in Model-Heterogeneous Federated learning
Federated learning (FL) is a distributed learning paradigm across multiple entities while preserving data privacy. However, with the continuous emergence of new data and increasing model diversity, traditional federated learning faces significant challenges, including inherent issues of data heterogeneity, model heterogeneity and catastrophic forgetting, along with new challenge of knowledge misalignment. In this study, we introduce FedDCL, a novel framework designed to enable data-free continual learning of the server model in a model-heterogeneous federated setting. We leverage pre-trained diffusion models to extract lightweight class-specific prototypes, which confer a threefold data-free advantage, enabling: (1) generation of synthetic data for the current task to augment training and counteract non-IID data distributions; (2) exemplar-free generative replay for retaining knowledge from previous tasks; and (3) data-free dynamic knowledge transfer from heterogeneous clients to the server. Experimental results on various datasets demonstrate the effectiveness of FedDCL, showcasing its potential to enhance the generalizability and practical applicability of federated learning in dynamic settings.
☆ Scalable and Robust LLM Unlearning by Correcting Responses with Retrieved Exclusions
Language models trained on web-scale corpora risk memorizing and exposing sensitive information, prompting the need for effective machine unlearning. Prior methods mainly focus on input queries to suppress sensitive outputs, yet this often fails to eliminate the underlying knowledge and limits scalability. To address this, we propose Corrective Unlearning with Retrieved Exclusions (CURE), a novel unlearning framework that verifies model outputs for leakage and revises them into safe responses. Specifically, CURE employs a lightweight corrector that is applied to the original model to verify whether outputs contain target knowledge and to rewrite them if any leakage is detected. To efficiently handle large-scale unlearning requests, CURE retrieves unlearning targets that are relevant to the initial response and provides them as in-context references to the corrector for detection and conditional revision. By leveraging this retrieval augmentation, the corrector can adapt to new unlearning requests without additional training. Extensive evaluations demonstrate that CURE substantially reduces information leakage, even from indirect queries where prior works fall short, while maintaining response quality and general utility. Moreover, it demonstrates robustness under continual unlearning scenarios, making it practical for real-world applications.
☆ RoRecomp: Enhancing Reasoning Efficiency via Rollout Response Recomposition in Reinforcement Learning
Reinforcement learning with verifiable rewards (RLVR) has proven effective in eliciting complex reasoning in large language models (LLMs). However, standard RLVR training often leads to excessively verbose processes (in reasoning tasks) and inefficient exploration trajectories (in agentic settings), as outcome-only rewards provide no incentive for efficiency and the high variance in response length within relatively small rollout groups results in noisy optimization signals. To address this, we propose Rollout Response Recomposition (RoRecomp), a plug-and-play method that guides models toward concise reasoning by strategically recomposing the training data. RoRecomp separates responses into two distinct batch types: 1) priority batches, which combine short-correct and long-incorrect responses selected from online batches to provide a clear gradient signal for brevity, and 2) compensation batches, which utilize remaining responses from a replay buffer to maintain stability and prevent model collapse. To comprehensively evaluate effectiveness, we test RoRecomp across three settings where results demonstrate substantial efficiency gains: reducing reasoning length by 27.7% in zero RL training, reducing unnecessary tool calls by 46.8% while improving accuracy in agentic RL, and achieving up to 52.5% length reduction in thinking compression, all with minimal performance impact.
☆ AIM: Adaptive Intervention for Deep Multi-task Learning of Molecular Properties
Simultaneously optimizing multiple, frequently conflicting, molecular properties is a key bottleneck in the development of novel therapeutics. Although a promising approach, the efficacy of multi-task learning is often compromised by destructive gradient interference, especially in the data-scarce regimes common to drug discovery. To address this, we propose AIM, an optimization framework that learns a dynamic policy to mediate gradient conflicts. The policy is trained jointly with the main network using a novel augmented objective composed of dense, differentiable regularizers. This objective guides the policy to produce updates that are geometrically stable and dynamically efficient, prioritizing progress on the most challenging tasks. We demonstrate that AIM achieves statistically significant improvements over multi-task baselines on subsets of the QM9 and targeted protein degraders benchmarks, with its advantage being most pronounced in data-scarce regimes. Beyond performance, AIM's key contribution is its interpretability; the learned policy matrix serves as a diagnostic tool for analyzing inter-task relationships. This combination of data-efficient performance and diagnostic insight highlights the potential of adaptive optimizers to accelerate scientific discovery by creating more robust and insightful models for multi-property molecular design.
comment: 13 pages, 3 figures, 9 tables
☆ Automated Model Discovery via Multi-modal & Multi-step Pipeline
Automated model discovery is the process of automatically searching and identifying the most appropriate model for a given dataset over a large combinatorial search space. Existing approaches, however, often face challenges in balancing the capture of fine-grained details with ensuring generalizability beyond training data regimes with a reasonable model complexity. In this paper, we present a multi-modal \& multi-step pipeline for effective automated model discovery. Our approach leverages two vision-language-based modules (VLM), AnalyzerVLM and EvaluatorVLM, for effective model proposal and evaluation in an agentic way. AnalyzerVLM autonomously plans and executes multi-step analyses to propose effective candidate models. EvaluatorVLM assesses the candidate models both quantitatively and perceptually, regarding the fitness for local details and the generalibility for overall trends. Our results demonstrate that our pipeline effectively discovers models that capture fine details and ensure strong generalizability. Additionally, extensive ablation studies show that both multi-modality and multi-step reasoning play crucial roles in discovering favorable models.
☆ NuRisk: A Visual Question Answering Dataset for Agent-Level Risk Assessment in Autonomous Driving
Understanding risk in autonomous driving requires not only perception and prediction, but also high-level reasoning about agent behavior and context. Current Vision Language Models (VLMs)-based methods primarily ground agents in static images and provide qualitative judgments, lacking the spatio-temporal reasoning needed to capture how risks evolve over time. To address this gap, we propose NuRisk, a comprehensive Visual Question Answering (VQA) dataset comprising 2,900 scenarios and 1.1 million agent-level samples, built on real-world data from nuScenes and Waymo, supplemented with safety-critical scenarios from the CommonRoad simulator. The dataset provides Bird-Eye-View (BEV) based sequential images with quantitative, agent-level risk annotations, enabling spatio-temporal reasoning. We benchmark well-known VLMs across different prompting techniques and find that they fail to perform explicit spatio-temporal reasoning, resulting in a peak accuracy of 33% at high latency. To address these shortcomings, our fine-tuned 7B VLM agent improves accuracy to 41% and reduces latency by 75%, demonstrating explicit spatio-temporal reasoning capabilities that proprietary models lacked. While this represents a significant step forward, the modest accuracy underscores the profound challenge of the task, establishing NuRisk as a critical benchmark for advancing spatio-temporal reasoning in autonomous driving.
comment: 8 pages
☆ Boosting Process-Correct CoT Reasoning by Modeling Solvability of Multiple-Choice QA
Reasoning quality in large language models depends not only on producing correct answers but also on generating valid intermediate steps. We study this through multiple-choice question answering (MCQA), which provides a controlled setting with fixed answer options. Our analysis shows that when questions are effectively unsolvable for a model, spurious chains of thought (CoTs) are more likely to appear, leading to false positives. By estimating the solvability of each question, we uncover an intermediate regime where learning is most effective. Building on this insight, we adapt outcome-supervised reward models and reinforcement learning with group-relative advantage to incorporate solvability into their objectives. Across experiments on math and multimodal datasets, these modifications consistently yield higher rates of process-correct reasoning and, in reinforcement learning, improved answer accuracy as well. Our results highlight solvability as a key factor for reducing hallucinations and increasing reliability in CoT reasoning.
☆ From MNIST to ImageNet: Understanding the Scalability Boundaries of Differentiable Logic Gate Networks
Differentiable Logic Gate Networks (DLGNs) are a very fast and energy-efficient alternative to conventional feed-forward networks. With learnable combinations of logical gates, DLGNs enable fast inference by hardware-friendly execution. Since the concept of DLGNs has only recently gained attention, these networks are still in their developmental infancy, including the design and scalability of their output layer. To date, this architecture has primarily been tested on datasets with up to ten classes. This work examines the behavior of DLGNs on large multi-class datasets. We investigate its general expressiveness, its scalability, and evaluate alternative output strategies. Using both synthetic and real-world datasets, we provide key insights into the importance of temperature tuning and its impact on output layer performance. We evaluate conditions under which the Group-Sum layer performs well and how it can be applied to large-scale classification of up to 2000 classes.
☆ Quantitative Evaluation of KIRETT Wearable Demonstrator for Rescue Operations
Healthcare and Medicine are under constant pressure to provide patient-driven medical expertise to ensure a fast and accurate treatment of the patient. In such scenarios, the diagnosis contains, the family history, long term medical data and a detailed consultation with the patient. In time-critical emergencies, such conversation and time-consuming elaboration are not possible. Rescue services need to provide fast, reliable treatments for the patient in need. With the help of modern technologies, like treatment recommendations, real-time vitals-monitoring, and situation detection through artificial intelligence (AI) a situation can be analyzed and supported in providing fast, accurate patient-data-driven medical treatments. In KIRETT, a wearable device is developed to support in such scenarios and presents a way to provide treatment recommendation in rescue services. The objective of this paper is to present the quantitative results of a two-day KIRETT evaluation (14 participants) to analyze the needs of rescue operators in healthcare.
comment: Conference paper for 2024 IEEE World AI IoT Congress (AIIoT), KIRETT Project, University of Siegen, Germany
☆ The Impact of Scaling Training Data on Adversarial Robustness NeurIPS 2025
Deep neural networks remain vulnerable to adversarial examples despite advances in architectures and training paradigms. We investigate how training data characteristics affect adversarial robustness across 36 state-of-the-art vision models spanning supervised, self-supervised, and contrastive learning approaches, trained on datasets from 1.2M to 22B images. Models were evaluated under six black-box attack categories: random perturbations, two types of geometric masks, COCO object manipulations, ImageNet-C corruptions, and ImageNet-R style shifts. Robustness follows a logarithmic scaling law with both data volume and model size: a tenfold increase in data reduces attack success rate (ASR) on average by ~3.2%, whereas a tenfold increase in model size reduces ASR on average by ~13.4%. Notably, some self-supervised models trained on curated datasets, such as DINOv2, outperform others trained on much larger but less curated datasets, challenging the assumption that scale alone drives robustness. Adversarial fine-tuning of ResNet50s improves generalization across structural variations but not across color distributions. Human evaluation reveals persistent gaps between human and machine vision. These results show that while scaling improves robustness, data quality, architecture, and training objectives play a more decisive role than raw scale in achieving broad-spectrum adversarial resilience.
comment: Accepted at the workshop Reliable ML from Unreliable Data at NeurIPS 2025
☆ KIRETT: Smart Integration of Vital Signs Data for Intelligent Decision Support in Rescue Scenarios
The integration of vital signs in healthcare has witnessed a steady rise, promising health professionals to assist in their daily tasks to improve patient treatment. In life-threatening situations, like rescue operations, crucial decisions need to be made in the shortest possible amount of time to ensure that excellent treatment is provided during life-saving measurements. The integration of vital signs in the treatment holds the potential to improve time utilization for rescuers in such critical situations. They furthermore serve to support health professionals during the treatment with useful information and suggestions. To achieve such a goal, the KIRETT project serves to provide treatment recommendations and situation detection, combined on a wrist-worn wearable for rescue operations.This paper aims to present the significant role of vital signs in the improvement of decision-making during rescue operations and show their impact on health professionals and patients in need.
comment: Conference paper for 2024 IEEE International Conference on Electro Information Technology (eIT), KIRETT Project, University of Siegen, Germany
☆ DeepJSONEval: Benchmarking Complex Nested JSON Data Mining for Large Language Models
The internet is saturated with low-density, high-redundancy information, such as social media comments, repetitive news, and lengthy discussions, making it difficult to extract valuable insights efficiently. Multi-layer nested JSON structures provide an effective solution by compressing such information into semantically rich, hierarchical representations, which organize data into key-value pairs, arrays, and nested objects, preserving contextual relationships and enabling efficient storage, retrieval, and semantic querying. For instance, in news aggregation, a JSON object can nest an article's metadata (title, author, date), content (text, multimedia), and multimedia information (multimedia type, caption) hierarchically. Large Language Models (LLMs) play a transformative role in web data mining by parsing unstructured text and outputting structured results directly into complex JSON schemas. However, current benchmarks for evaluating LLMs' JSON output capabilities overemphasize pure JSON generation rather than assessing data comprehension and extraction abilities, a limitation that lacks relevance to practical web data mining tasks. To address this, we introduce DeepJSONEval, a novel benchmark featuring 2100 multi-domain instances with deep nested structures, categorized by difficulty. Experiments show significant performance gaps among LLMs in handling such complexity. Our benchmark and datasets are open-sourced to advance research in structured JSON generation.(https://github.com/GTS-AI-Infra-Lab-SotaS/DeepJSONEval).
☆ Accelerating LLM Inference with Precomputed Query Storage
Large language model (LLM) inference often suffers from high latency, particularly in resource-constrained environments such as on-device or edge deployments. To address this challenge, we present StorInfer, a novel storage-assisted LLM inference system that accelerates response time by precomputing and storing predictable query-response pairs offline. When a user query semantically matches a precomputed query, StorInfer bypasses expensive GPU inference and instantly returns the stored response, significantly reducing latency and compute costs. To maximize coverage and effectiveness, StorInfer employs an LLM-driven generator that adaptively produces diverse and deduplicated queries based on a given knowledge base. This is achieved via two techniques: adaptive query masking, which prevents regeneration of similar queries, and adaptive sampling, which dynamically tunes generation parameters to promote semantic diversity. The resulting query-response pairs are embedded and indexed using a disk-backed vector database to enable fast, similarity-based retrieval at runtime. Using this approach, we generated 150K unique precomputed pairs (taking up to 830 MB of storage space), achieving up to 17.3% latency reduction with no loss in response quality. Our evaluation across multiple QA datasets demonstrates the practicality and scalability of storage-assisted inference, especially in scenarios with predictable query distributions. StorInfer highlights a promising direction in leveraging storage as a primary enabler for efficient, low-latency LLM deployment.
☆ User-Centric Communication Service Provision for Edge-Assisted Mobile Augmented Reality
Future 6G networks are envisioned to facilitate edge-assisted mobile augmented reality (MAR) via strengthening the collaboration between MAR devices and edge servers. In order to provide immersive user experiences, MAR devices must timely upload camera frames to an edge server for simultaneous localization and mapping (SLAM)-based device pose tracking. In this paper, to cope with user-specific and non-stationary uplink data traffic, we develop a digital twin (DT)-based approach for user-centric communication service provision for MAR. Specifically, to establish DTs for individual MAR devices, we first construct a data model customized for MAR that captures the intricate impact of the SLAM-based frame uploading mechanism on the user-specific data traffic pattern. We then define two DT operation functions that cooperatively enable adaptive switching between different data-driven models for capturing non-stationary data traffic. Leveraging the user-oriented data management introduced by DTs, we propose an algorithm for network resource management that ensures the timeliness of frame uploading and the robustness against inherent inaccuracies in data traffic modeling for individual MAR devices. Trace-driven simulation results demonstrate that the user-centric communication service provision achieves a 14.2% increase in meeting the camera frame uploading delay requirement in comparison with the slicing-based communication service provision widely used for 5G.
comment: accepted by IEEE Transactions on Mobile Computing
☆ PerQ: Efficient Evaluation of Multilingual Text Personalization Quality
Since no metrics are available to evaluate specific aspects of a text, such as its personalization quality, the researchers often rely solely on large language models to meta-evaluate such texts. Due to internal biases of individual language models, it is recommended to use multiple of them for combined evaluation, which directly increases costs of such meta-evaluation. In this paper, a computationally efficient method for evaluation of personalization quality of a given text (generated by a language model) is introduced, called PerQ. A case study of comparison of generation capabilities of large and small language models shows the usability of the proposed metric in research, effectively reducing the waste of resources.
☆ RoleConflictBench: A Benchmark of Role Conflict Scenarios for Evaluating LLMs' Contextual Sensitivity
Humans often encounter role conflicts -- social dilemmas where the expectations of multiple roles clash and cannot be simultaneously fulfilled. As large language models (LLMs) become increasingly influential in human decision-making, understanding how they behave in complex social situations is essential. While previous research has evaluated LLMs' social abilities in contexts with predefined correct answers, role conflicts represent inherently ambiguous social dilemmas that require contextual sensitivity: the ability to recognize and appropriately weigh situational cues that can fundamentally alter decision priorities. To address this gap, we introduce RoleConflictBench, a novel benchmark designed to evaluate LLMs' contextual sensitivity in complex social dilemmas. Our benchmark employs a three-stage pipeline to generate over 13K realistic role conflict scenarios across 65 roles, systematically varying their associated expectations (i.e., their responsibilities and obligations) and situational urgency levels. By analyzing model choices across 10 different LLMs, we find that while LLMs show some capacity to respond to these contextual cues, this sensitivity is insufficient. Instead, their decisions are predominantly governed by a powerful, inherent bias related to social roles rather than situational information. Our analysis quantifies these biases, revealing a dominant preference for roles within the Family and Occupation domains, as well as a clear prioritization of male roles and Abrahamic religions across most evaluatee models.
☆ SafeMind: Benchmarking and Mitigating Safety Risks in Embodied LLM Agents
Embodied agents powered by large language models (LLMs) inherit advanced planning capabilities; however, their direct interaction with the physical world exposes them to safety vulnerabilities. In this work, we identify four key reasoning stages where hazards may arise: Task Understanding, Environment Perception, High-Level Plan Generation, and Low-Level Action Generation. We further formalize three orthogonal safety constraint types (Factual, Causal, and Temporal) to systematically characterize potential safety violations. Building on this risk model, we present SafeMindBench, a multimodal benchmark with 5,558 samples spanning four task categories (Instr-Risk, Env-Risk, Order-Fix, Req-Align) across high-risk scenarios such as sabotage, harm, privacy, and illegal behavior. Extensive experiments on SafeMindBench reveal that leading LLMs (e.g., GPT-4o) and widely used embodied agents remain susceptible to safety-critical failures. To address this challenge, we introduce SafeMindAgent, a modular Planner-Executor architecture integrated with three cascaded safety modules, which incorporate safety constraints into the reasoning process. Results show that SafeMindAgent significantly improves safety rate over strong baselines while maintaining comparable task completion. Together, SafeMindBench and SafeMindAgent provide both a rigorous evaluation suite and a practical solution that advance the systematic study and mitigation of safety risks in embodied LLM agents.
☆ scUnified: An AI-Ready Standardized Resource for Single-Cell RNA Sequencing Analysis
Single-cell RNA sequencing (scRNA-seq) technology enables systematic delineation of cellular states and interactions, providing crucial insights into cellular heterogeneity. Building on this potential, numerous computational methods have been developed for tasks such as cell clustering, cell type annotation, and marker gene identification. To fully assess and compare these methods, standardized, analysis-ready datasets are essential. However, such datasets remain scarce, and variations in data formats, preprocessing workflows, and annotation strategies hinder reproducibility and complicate systematic evaluation of existing methods. To address these challenges, we present scUnified, an AI-ready standardized resource for single-cell RNA sequencing data that consolidates 13 high-quality datasets spanning two species (human and mouse) and nine tissue types. All datasets undergo standardized quality control and preprocessing and are stored in a uniform format to enable direct application in diverse computational analyses without additional data cleaning. We further demonstrate the utility of scUnified through experimental analyses of representative biological tasks, providing a reproducible foundation for the standardized evaluation of computational methods on a unified dataset.
☆ Efficient On-Policy Reinforcement Learning via Exploration of Sparse Parameter Space
Policy-gradient methods such as Proximal Policy Optimization (PPO) are typically updated along a single stochastic gradient direction, leaving the rich local structure of the parameter space unexplored. Previous work has shown that the surrogate gradient is often poorly correlated with the true reward landscape. Building on this insight, we visualize the parameter space spanned by policy checkpoints within an iteration and reveal that higher performing solutions often lie in nearby unexplored regions. To exploit this opportunity, we introduce ExploRLer, a pluggable pipeline that seamlessly integrates with on-policy algorithms such as PPO and TRPO, systematically probing the unexplored neighborhoods of surrogate on-policy gradient updates. Without increasing the number of gradient updates, ExploRLer achieves significant improvements over baselines in complex continuous control environments. Our results demonstrate that iteration-level exploration provides a practical and effective way to strengthen on-policy reinforcement learning and offer a fresh perspective on the limitations of the surrogate objective.
comment: 16 pages; 7 figures
☆ Lita: Light Agent Uncovers the Agentic Coding Capabilities of LLMs
Large language models (LLMs) are increasingly being applied to programming tasks, ranging from single-turn code completion to autonomous agents. Current code agent designs frequently depend on complex, hand-crafted workflows and tool sets. However, this reliance on elaborate scaffolding presents several challenges: agent performance becomes overly dependent on prompt tuning and custom design choices, heavy human intervention obscures a model's true underlying capabilities, and intricate pipelines are costly to build and maintain. Furthermore, optimizing complex task prompts increases the risk of data leakage. Currently, when introducing new models, LLM providers like OpenAI and Anthropic often publish benchmark scores to demonstrate their models' coding proficiency, but keep their proprietary evaluation frameworks confidential. To address these limitations, we introduce Lita (Lite Agent), which operationalizes liteness, a principle of minimizing manual design while retaining the essential elements of a fully autonomous agent. Lita enables a more faithful and unified evaluation without elaborate scaffolding. Experiments on the Aider Polyglot and SWE-Bench with frontier models demonstrate that Lita achieves competitive or superior performance compared to workflow-based and agentic baselines. Crucially, Lita also consumes fewer tokens and requires significantly less design effort. Our results suggest that Lita is sufficient to reveal the underlying coding competence of modern LLMs. Finally, we propose the Agent Complexity Law: the performance gap between agents of varying complexity, from simple to sophisticated designs, will shrink as the core model improves, ultimately converging to a negligible difference.
☆ CIMNAS: A Joint Framework for Compute-In-Memory-Aware Neural Architecture Search
To maximize hardware efficiency and performance accuracy in Compute-In-Memory (CIM)-based neural network accelerators for Artificial Intelligence (AI) applications, co-optimizing both software and hardware design parameters is essential. Manual tuning is impractical due to the vast number of parameters and their complex interdependencies. To effectively automate the design and optimization of CIM-based neural network accelerators, hardware-aware neural architecture search (HW-NAS) techniques can be applied. This work introduces CIMNAS, a joint model-quantization-hardware optimization framework for CIM architectures. CIMNAS simultaneously searches across software parameters, quantization policies, and a broad range of hardware parameters, incorporating device-, circuit-, and architecture-level co-optimizations. CIMNAS experiments were conducted over a search space of 9.9x10^85 potential parameter combinations with the MobileNet model as a baseline and RRAM-based CIM architecture. Evaluated on the ImageNet dataset, CIMNAS achieved a reduction in energy-delay-area product (EDAP) ranging from 90.1x to 104.5x, an improvement in TOPS/W between 4.68x and 4.82x, and an enhancement in TOPS/mm^2 from 11.3x to 12.78x relative to various baselines, all while maintaining an accuracy of 73.81%. The adaptability and robustness of CIMNAS are demonstrated by extending the framework to support the SRAM-based ResNet50 architecture, achieving up to an 819.5x reduction in EDAP. Unlike other state-of-the-art methods, CIMNAS achieves EDAP-focused optimization without any accuracy loss, generating diverse software-hardware parameter combinations for high-performance CIM-based neural network designs. The source code of CIMNAS is available at https://github.com/OlgaKrestinskaya/CIMNAS.
☆ Aging Decline in Basketball Career Trend Prediction Based on Machine Learning and LSTM Model
The topic of aging decline on performance of NBA players has been discussed in this study. The autoencoder with K-means clustering machine learning method was adopted to career trend classification of NBA players, and the LSTM deep learning method was adopted in performance prediction of each NBA player. The dataset was collected from the basketball game data of veteran NBA players. The contribution of the work performed better than the other methods with generalization ability for evaluating various types of NBA career trend, and can be applied in different types of sports in the field of sport analytics.
comment: Accepted at Taiwan Academic Network Conference, TANET 2025
Vector sketch animation generation with differentialable motion trajectories
Sketching is a direct and inexpensive means of visual expression. Though image-based sketching has been well studied, video-based sketch animation generation is still very challenging due to the temporal coherence requirement. In this paper, we propose a novel end-to-end automatic generation approach for vector sketch animation. To solve the flickering issue, we introduce a Differentiable Motion Trajectory (DMT) representation that describes the frame-wise movement of stroke control points using differentiable polynomial-based trajectories. DMT enables global semantic gradient propagation across multiple frames, significantly improving the semantic consistency and temporal coherence, and producing high-framerate output. DMT employs a Bernstein basis to balance the sensitivity of polynomial parameters, thus achieving more stable optimization. Instead of implicit fields, we introduce sparse track points for explicit spatial modeling, which improves efficiency and supports long-duration video processing. Evaluations on DAVIS and LVOS datasets demonstrate the superiority of our approach over SOTA methods. Cross-domain validation on 3D models and text-to-video data confirms the robustness and compatibility of our approach.
comment: 14 pages, 12 figures
☆ Knapsack RL: Unlocking Exploration of LLMs via Optimizing Budget Allocation
Large Language Models (LLMs) can self-improve through reinforcement learning, where they generate trajectories to explore and discover better solutions. However, this exploration process is computationally expensive, often forcing current methods to assign limited exploration budgets to each task. This uniform allocation creates problematic edge cases: easy tasks consistently succeed while difficult tasks consistently fail, both producing zero gradients during training updates for the widely used Group Relative Policy Optimization (GRPO). We address this problem from the lens of exploration budget allocation. Viewing each task's exploration as an "item" with a distinct "value" and "cost", we establish a connection to the classical knapsack problem. This formulation allows us to derive an optimal assignment rule that adaptively distributes resources based on the model's current learning status. When applied to GRPO, our method increases the effective ratio of non-zero policy gradients by 20-40% during training. Acting as a computational "free lunch", our approach could reallocate exploration budgets from tasks where learning is saturated to those where it is most impactful. This enables significantly larger budgets (e.g., 93 rollouts) for especially challenging problems, which would be computationally prohibitive under a uniform allocation. These improvements translate to meaningful gains on mathematical reasoning benchmarks, with average improvements of 2-4 points and peak gains of 9 points on specific tasks. Notably, achieving comparable performance with traditional homogeneous allocation would require about 2x the computational resources.
☆ More Thought, Less Accuracy? On the Dual Nature of Reasoning in Vision-Language Models
Reasoning has emerged as a pivotal capability in Large Language Models (LLMs). Through Reinforcement Learning (RL), typically Group Relative Policy Optimization (GRPO), these models are able to solve complex tasks such as mathematics and code generation. Building on these advances, recent research has sought to extend reasoning to Vision-Language Models (VLMs), yielding promising results across diverse visual tasks. Despite this progress, our study uncovers the dual nature of multimodal reasoning: while it substantially enhances logical inference and facilitates performance on challenging problems, it may gradually impair perceptual grounding, leading to recognition failures on otherwise basic visual questions. Through further analysis, we attribute this phenomenon to visual forgetting, wherein prolonged reasoning causes the model to increasingly disregard visual input. To address this, we propose Vision-Anchored Policy Optimization (VAPO), a simple yet effective method that explicitly steers the reasoning process toward visually grounded trajectories. Our result model, VAPO-Thinker-7B, significantly strengthens the model's reliance on visual information and achieves new state-of-the-art results on a wide range of established benchmarks. Project page: https://xytian1008.github.io/VAPO/
☆ Training-Free Reward-Guided Image Editing via Trajectory Optimal Control
Recent advancements in diffusion and flow-matching models have demonstrated remarkable capabilities in high-fidelity image synthesis. A prominent line of research involves reward-guided guidance, which steers the generation process during inference to align with specific objectives. However, leveraging this reward-guided approach to the task of image editing, which requires preserving the semantic content of the source image while enhancing a target reward, is largely unexplored. In this work, we introduce a novel framework for training-free, reward-guided image editing. We formulate the editing process as a trajectory optimal control problem where the reverse process of a diffusion model is treated as a controllable trajectory originating from the source image, and the adjoint states are iteratively updated to steer the editing process. Through extensive experiments across distinct editing tasks, we demonstrate that our approach significantly outperforms existing inversion-based training-free guidance baselines, achieving a superior balance between reward maximization and fidelity to the source image without reward hacking.
comment: 18 pages, 5 figures
☆ ASGuard: Activation-Scaling Guard to Mitigate Targeted Jailbreaking Attack
Large language models (LLMs), despite being safety-aligned, exhibit brittle refusal behaviors that can be circumvented by simple linguistic changes. As tense jailbreaking demonstrates that models refusing harmful requests often comply when rephrased in past tense, a critical generalization gap is revealed in current alignment methods whose underlying mechanisms are poorly understood. In this work, we introduce Activation-Scaling Guard (ASGuard), an insightful, mechanistically-informed framework that surgically mitigates this specific vulnerability. For the first step, we use circuit analysis to identify the specific attention heads causally linked to the targeted jailbreaking, the tense-changing attack. Second, we train a precise, channel-wise scaling vector to recalibrate the activation of tense vulnerable heads. Lastly, we apply it into a "preventative fine-tuning", forcing the model to learn a more robust refusal mechanism. Across three LLMs, ASGuard effectively reduces the attack success rate of targeted jailbreaking while preserving general capabilities and minimizing over refusal, achieving a Pareto-optimal balance between safety and utility. Our findings underscore how adversarial suffixes suppress the propagation of the refusal-mediating direction, based on mechanistic analysis. Furthermore, our work showcases how a deep understanding of model internals can be leveraged to develop practical, efficient, and targeted methods for adjusting model behavior, charting a course for more reliable and interpretable AI safety.
☆ HiStyle: Hierarchical Style Embedding Predictor for Text-Prompt-Guided Controllable Speech Synthesis
Controllable speech synthesis refers to the precise control of speaking style by manipulating specific prosodic and paralinguistic attributes, such as gender, volume, speech rate, pitch, and pitch fluctuation. With the integration of advanced generative models, particularly large language models (LLMs) and diffusion models, controllable text-to-speech (TTS) systems have increasingly transitioned from label-based control to natural language description-based control, which is typically implemented by predicting global style embeddings from textual prompts. However, this straightforward prediction overlooks the underlying distribution of the style embeddings, which may hinder the full potential of controllable TTS systems. In this study, we use t-SNE analysis to visualize and analyze the global style embedding distribution of various mainstream TTS systems, revealing a clear hierarchical clustering pattern: embeddings first cluster by timbre and subsequently subdivide into finer clusters based on style attributes. Based on this observation, we propose HiStyle, a two-stage style embedding predictor that hierarchically predicts style embeddings conditioned on textual prompts, and further incorporate contrastive learning to help align the text and audio embedding spaces. Additionally, we propose a style annotation strategy that leverages the complementary strengths of statistical methodologies and human auditory preferences to generate more accurate and perceptually consistent textual prompts for style control. Comprehensive experiments demonstrate that when applied to the base TTS model, HiStyle achieves significantly better style controllability than alternative style embedding predicting approaches while preserving high speech quality in terms of naturalness and intelligibility. Audio samples are available at https://anonymous.4open.science/w/HiStyle-2517/.
☆ S$^2$FS: Spatially-Aware Separability-Driven Feature Selection in Fuzzy Decision Systems
Feature selection is crucial for fuzzy decision systems (FDSs), as it identifies informative features and eliminates rule redundancy, thereby enhancing predictive performance and interpretability. Most existing methods either fail to directly align evaluation criteria with learning performance or rely solely on non-directional Euclidean distances to capture relationships among decision classes, which limits their ability to clarify decision boundaries. However, the spatial distribution of instances has a potential impact on the clarity of such boundaries. Motivated by this, we propose Spatially-aware Separability-driven Feature Selection (S$^2$FS), a novel framework for FDSs guided by a spatially-aware separability criterion. This criterion jointly considers within-class compactness and between-class separation by integrating scalar-distances with spatial directional information, providing a more comprehensive characterization of class structures. S$^2$FS employs a forward greedy strategy to iteratively select the most discriminative features. Extensive experiments on ten real-world datasets demonstrate that S$^2$FS consistently outperforms eight state-of-the-art feature selection algorithms in both classification accuracy and clustering performance, while feature visualizations further confirm the interpretability of the selected features.
☆ RAE: A Neural Network Dimensionality Reduction Method for Nearest Neighbors Preservation in Vector Search ICLR 2026
While high-dimensional embedding vectors are being increasingly employed in various tasks like Retrieval-Augmented Generation and Recommendation Systems, popular dimensionality reduction (DR) methods such as PCA and UMAP have rarely been adopted for accelerating the retrieval process due to their inability of preserving the nearest neighbor (NN) relationship among vectors. Empowered by neural networks' optimization capability and the bounding effect of Rayleigh quotient, we propose a Regularized Auto-Encoder (RAE) for k-NN preserving dimensionality reduction. RAE constrains the network parameter variation through regularization terms, adjusting singular values to control embedding magnitude changes during reduction, thus preserving k-NN relationships. We provide a rigorous mathematical analysis demonstrating that regularization establishes an upper bound on the norm distortion rate of transformed vectors, thereby offering provable guarantees for k-NN preservation. With modest training overhead, RAE achieves superior k-NN recall compared to existing DR approaches while maintaining fast retrieval efficiency.
comment: submitted to ICLR 2026
☆ Distillation of Large Language Models via Concrete Score Matching
Large language models (LLMs) deliver remarkable performance but are costly to deploy, motivating knowledge distillation (KD) for efficient inference. Existing KD objectives typically match student and teacher probabilities via softmax, which blurs valuable logit information. While direct logit distillation (DLD) mitigates softmax smoothing, it fails to account for logit shift invariance, thereby restricting the solution space. We propose Concrete Score Distillation (CSD), a discrete score-matching objective that overcomes both softmax-induced smoothing and restrictions on the optimal solution set. We resolve the training instability and quadratic complexity of discrete score-matching in autoregressive LLMs, and the resulting CSD objective aligns relative logit differences across all vocabulary pairs between student and teacher with flexible weighting. We provide both mode-seeking and mode-covering instances within our framework and evaluate CSD on task-agnostic instruction-following and task-specific distillation using GPT-2-1.5B, OpenLLaMA-7B, and GEMMA-7B-IT. Experiments show that CSD consistently surpasses recent KD objectives, achieves favorable fidelity-diversity trade-offs, and yields complementary gains when combined with on-policy techniques, demonstrating its scalability and effectiveness for LLM distillation.
☆ Supporting Creative Ownership through Deep Learning-Based Music Variation NeurIPS
This paper investigates the importance of personal ownership in musical AI design, examining how practising musicians can maintain creative control over the compositional process. Through a four-week ecological evaluation, we examined how a music variation tool, reliant on the skill of musicians, functioned within a composition setting. Our findings demonstrate that the dependence of the tool on the musician's ability, to provide a strong initial musical input and to turn moments into complete musical ideas, promoted ownership of both the process and artefact. Qualitative interviews further revealed the importance of this personal ownership, highlighting tensions between technological capability and artistic identity. These findings provide insight into how musical AI can support rather than replace human creativity, highlighting the importance of designing tools that preserve the humanness of musical expression.
comment: Paper Accepted NeurIPS Creative AI Track 2025
☆ Overthinking Reduction with Decoupled Rewards and Curriculum Data Scheduling
While large reasoning models trained with critic-free reinforcement learning and verifiable rewards (RLVR) represent the state-of-the-art, their practical utility is hampered by ``overthinking'', a critical issue where models generate excessively long reasoning paths without any performance benefit. Existing solutions that penalize length often fail, inducing performance degradation due to a fundamental misalignment between trajectory-level rewards and token-level optimization. In this work, we introduce a novel framework, DECS, built on our theoretical discovery of two previously unaddressed flaws in current length rewards: (1) the erroneous penalization of essential exploratory tokens and (2) the inadvertent rewarding of partial redundancy. Our framework's innovations include (i) a first-of-its-kind decoupled token-level reward mechanism that surgically distinguishes and penalizes redundant tokens, and (ii) a novel curriculum batch scheduling strategy to master the efficiency-efficacy equilibrium. Experimental results show DECS can achieve a dramatic reduction in reasoning tokens by over 50\% across seven benchmarks while simultaneously maintaining or even improving performance. It demonstrates conclusively that substantial gains in reasoning efficiency can be achieved without compromising a model's underlying reasoning power.
comment: 26 pages
☆ VELA: An LLM-Hybrid-as-a-Judge Approach for Evaluating Long Image Captions EMNLP 2025
In this study, we focus on the automatic evaluation of long and detailed image captions generated by multimodal Large Language Models (MLLMs). Most existing automatic evaluation metrics for image captioning are primarily designed for short captions and are not suitable for evaluating long captions. Moreover, recent LLM-as-a-Judge approaches suffer from slow inference due to their reliance on autoregressive inference and early fusion of visual information. To address these limitations, we propose VELA, an automatic evaluation metric for long captions developed within a novel LLM-Hybrid-as-a-Judge framework. Furthermore, we propose LongCap-Arena, a benchmark specifically designed for evaluating metrics for long captions. This benchmark comprises 7,805 images, the corresponding human-provided long reference captions and long candidate captions, and 32,246 human judgments from three distinct perspectives: Descriptiveness, Relevance, and Fluency. We demonstrated that VELA outperformed existing metrics and achieved superhuman performance on LongCap-Arena.
comment: EMNLP 2025 Main Conference
☆ Learning to Reason as Action Abstractions with Scalable Mid-Training RL
Large language models excel with reinforcement learning (RL), but fully unlocking this potential requires a mid-training stage. An effective mid-training phase should identify a compact set of useful actions and enable fast selection among them through online RL. We formalize this intuition by presenting the first theoretical result on how mid-training shapes post-training: it characterizes an action subspace that minimizes both the value approximation error from pruning and the RL error during subsequent planning. Our analysis reveals two key determinants of mid-training effectiveness: pruning efficiency, which shapes the prior of the initial RL policy, and its impact on RL convergence, which governs the extent to which that policy can be improved via online interactions. These results suggest that mid-training is most effective when the decision space is compact and the effective horizon is short, highlighting the importance of operating in the space of action abstractions rather than primitive actions. Building on these insights, we propose Reasoning as Action Abstractions (RA3), a scalable mid-training algorithm. Specifically, we derive a sequential variational lower bound and optimize it by iteratively discovering temporally-consistent latent structures via RL, followed by fine-tuning on the bootstrapped data. Experiments on code generation tasks demonstrate the effectiveness of our approach. Across multiple base models, RA3 improves the average performance on HumanEval and MBPP by 8 and 4 points over the base model and the next-token prediction baseline. Furthermore, RA3 achieves faster convergence and higher asymptotic performance in RLVR on HumanEval+, MBPP+, LiveCodeBench, and Codeforces.
☆ CardioForest: An Explainable Ensemble Learning Model for Automatic Wide QRS Complex Tachycardia Diagnosis from ECG
This study aims to develop and evaluate an ensemble machine learning-based framework for the automatic detection of Wide QRS Complex Tachycardia (WCT) from ECG signals, emphasizing diagnostic accuracy and interpretability using Explainable AI. The proposed system integrates ensemble learning techniques, i.e., an optimized Random Forest known as CardioForest, and models like XGBoost and LightGBM. The models were trained and tested on ECG data from the publicly available MIMIC-IV dataset. The testing was carried out with the assistance of accuracy, balanced accuracy, precision, recall, F1 score, ROC-AUC, and error rate (RMSE, MAE) measures. In addition, SHAP (SHapley Additive exPlanations) was used to ascertain model explainability and clinical relevance. The CardioForest model performed best on all metrics, achieving a test accuracy of 94.95%, a balanced accuracy of 88.31%, and high precision and recall metrics. SHAP analysis confirmed the model's ability to rank the most relevant ECG features, such as QRS duration, in accordance with clinical intuitions, thereby fostering trust and usability in clinical practice. The findings recognize CardioForest as an extremely dependable and interpretable WCT detection model. Being able to offer accurate predictions and transparency through explainability makes it a valuable tool to help cardiologists make timely and well-informed diagnoses, especially for high-stakes and emergency scenarios.
☆ Better with Less: Small Proprietary Models Surpass Large Language Models in Financial Transaction Understanding
Analyzing financial transactions is crucial for ensuring regulatory compliance, detecting fraud, and supporting decisions. The complexity of financial transaction data necessitates advanced techniques to extract meaningful insights and ensure accurate analysis. Since Transformer-based models have shown outstanding performance across multiple domains, this paper seeks to explore their potential in understanding financial transactions. This paper conducts extensive experiments to evaluate three types of Transformer models: Encoder-Only, Decoder-Only, and Encoder-Decoder models. For each type, we explore three options: pretrained LLMs, fine-tuned LLMs, and small proprietary models developed from scratch. Our analysis reveals that while LLMs, such as LLaMA3-8b, Flan-T5, and SBERT, demonstrate impressive capabilities in various natural language processing tasks, they do not significantly outperform small proprietary models in the specific context of financial transaction understanding. This phenomenon is particularly evident in terms of speed and cost efficiency. Proprietary models, tailored to the unique requirements of transaction data, exhibit faster processing times and lower operational costs, making them more suitable for real-time applications in the financial sector. Our findings highlight the importance of model selection based on domain-specific needs and underscore the potential advantages of customized proprietary models over general-purpose LLMs in specialized applications. Ultimately, we chose to implement a proprietary decoder-only model to handle the complex transactions that we previously couldn't manage. This model can help us to improve 14% transaction coverage, and save more than \$13 million annual cost.
comment: 9 pages, 5 figures
☆ Point-It-Out: Benchmarking Embodied Reasoning for Vision Language Models in Multi-Stage Visual Grounding
Vision-Language Models (VLMs) have demonstrated impressive world knowledge across a wide range of tasks, making them promising candidates for embodied reasoning applications. However, existing benchmarks primarily evaluate the embodied reasoning ability of VLMs through multiple-choice questions based on image annotations -- for example, selecting which trajectory better describes an event in the image. In this work, we introduce the Point-It-Out (PIO) benchmark, a novel benchmark designed to systematically assess the embodied reasoning abilities of VLMs through precise visual grounding. We propose a hierarchical evaluation protocol spanning three stages (S1: referred-object localization, S2: task-driven pointing, and S3: visual trace prediction), with data collected from critical domains for embodied intelligence, including indoor, kitchen, driving, and robotic manipulation scenarios. Extensive experiments with over ten state-of-the-art VLMs reveal several interesting findings. For example, strong general-purpose models such as GPT-4o, while excelling on many benchmarks (e.g., language, perception, and reasoning), underperform compared to some open-source models in precise visual grounding; models such as MoLMO perform well in S1 and S2 but struggle in S3, where requires grounding combined with visual trace planning.
☆ PUREVQ-GAN: Defending Data Poisoning Attacks through Vector-Quantized Bottlenecks
We introduce PureVQ-GAN, a defense against data poisoning that forces backdoor triggers through a discrete bottleneck using Vector-Quantized VAE with GAN discriminator. By quantizing poisoned images through a learned codebook, PureVQ-GAN destroys fine-grained trigger patterns while preserving semantic content. A GAN discriminator ensures outputs match the natural image distribution, preventing reconstruction of out-of-distribution perturbations. On CIFAR-10, PureVQ-GAN achieves 0% poison success rate (PSR) against Gradient Matching and Bullseye Polytope attacks, and 1.64% against Narcissus while maintaining 91-95% clean accuracy. Unlike diffusion-based defenses requiring hundreds of iterative refinement steps, PureVQ-GAN is over 50x faster, making it practical for real training pipelines.
☆ Deontic Argumentation
We address the issue of defining a semantics for deontic argumentation that supports weak permission. Some recent results show that grounded semantics do not support weak permission when there is a conflict between two obligations. We provide a definition of Deontic Argumentation Theory that accounts for weak permission, and we recall the result about grounded semantics. Then, we propose a new semantics that supports weak permission.
☆ Planner-R1: Reward Shaping Enables Efficient Agentic RL with Smaller LLMs
We investigated Agentic RL with large language models on the \textsc{TravelPlanner} benchmark. Our approach, \textsc{Planner-R1}, achieved a \textbf{56.9\%} final-pass rate with only 180 training queries, a $2.7\times$ improvement over GPT-5's $21.2\%$ baseline and the strongest agentic result on the public leaderboard. A central finding was that smaller models (8B) were highly responsive to reward shaping: with dense process-level signals, they reached competitive performance while being $3.5\times$ more compute-efficient and $1.5\times$ more memory-efficient than 32B models. Larger models were more robust under sparse rewards but exhibited smaller relative gains from shaping and higher variance across runs. While curriculum learning offered no significant benefit, shaped rewards consistently amplified learning dynamics, making 8B models the most efficient setting for agentic RL. Crucially, these gains did not come at the cost of overfitting: fine-tuned models mostly maintained or exceeded baseline performance on out-of-domain tasks, including \textsc{Multi-IF}, \textsc{NaturalPlan}, and $\tau$-\textsc{Bench}. These results establish reward shaping as a decisive lever for scaling agentic RL, highlight the competitive strength of smaller models, and demonstrate that efficiency can be achieved without sacrificing generalization.
☆ Editable Noise Map Inversion: Encoding Target-image into Noise For High-Fidelity Image Manipulation ICML 2025
Text-to-image diffusion models have achieved remarkable success in generating high-quality and diverse images. Building on these advancements, diffusion models have also demonstrated exceptional performance in text-guided image editing. A key strategy for effective image editing involves inverting the source image into editable noise maps associated with the target image. However, previous inversion methods face challenges in adhering closely to the target text prompt. The limitation arises because inverted noise maps, while enabling faithful reconstruction of the source image, restrict the flexibility needed for desired edits. To overcome this issue, we propose Editable Noise Map Inversion (ENM Inversion), a novel inversion technique that searches for optimal noise maps to ensure both content preservation and editability. We analyze the properties of noise maps for enhanced editability. Based on this analysis, our method introduces an editable noise refinement that aligns with the desired edits by minimizing the difference between the reconstructed and edited noise maps. Extensive experiments demonstrate that ENM Inversion outperforms existing approaches across a wide range of image editing tasks in both preservation and edit fidelity with target prompts. Our approach can also be easily applied to video editing, enabling temporal consistency and content manipulation across frames.
comment: ICML 2025
☆ Autonomy-Aware Clustering: When Local Decisions Supersede Global Prescriptions ICLR 2026
Clustering arises in a wide range of problem formulations, yet most existing approaches assume that the entities under clustering are passive and strictly conform to their assigned groups. In reality, entities often exhibit local autonomy, overriding prescribed associations in ways not fully captured by feature representations. Such autonomy can substantially reshape clustering outcomes -- altering cluster compositions, geometry, and cardinality -- with significant downstream effects on inference and decision-making. We introduce autonomy-aware clustering, a reinforcement (RL) learning framework that learns and accounts for the influence of local autonomy without requiring prior knowledge of its form. Our approach integrates RL with a deterministic annealing (DA) procedure, where, to determine underlying clusters, DA naturally promotes exploration in early stages of annealing and transitions to exploitation later. We also show that the annealing procedure exhibits phase transitions that enable design of efficient annealing schedules. To further enhance adaptability, we propose the Adaptive Distance Estimation Network (ADEN), a transformer-based attention model that learns dependencies between entities and cluster representatives within the RL loop, accommodates variable-sized inputs and outputs, and enables knowledge transfer across diverse problem instances. Empirical results show that our framework closely aligns with underlying data dynamics: even without explicit autonomy models, it achieves solutions close to the ground truth (gap ~3-4%), whereas ignoring autonomy leads to substantially larger gaps (~35-40%). The code and data are publicly available at https://github.com/salar96/AutonomyAwareClustering.
comment: This work is under submission to ICLR 2026. Please cite the arXiv version until the final version is published
☆ V-HUB: A Visual-Centric Humor Understanding Benchmark for Video LLMs
AI models capable of comprehending humor hold real-world promise -- for example, enhancing engagement in human-machine interactions. To gauge and diagnose the capacity of multimodal large language models (MLLMs) for humor understanding, we introduce v-HUB, a novel visual-centric video humor understanding benchmark. v-HUB comprises a curated collection of minimally verbal short videos, sourced from classic silent films and online resources, and reflecting real-world scenarios where humor can be appreciated purely through visual cues. Each video clip is paired with rich annotations, including captions, descriptions, and explanations, supporting evaluation tasks like caption matching and humor explanation. To broaden its applicability, we further construct an open-ended video QA task, making it readily integrable into existing video understanding benchmarks. We evaluate a diverse set of MLLMs, from specialized Video-LLMs to versatile OmniLLMs that can process audio, covering both open-source and proprietary domains. The experimental results expose the difficulties MLLMs face in comprehending humor from visual cues alone. For example, all models exhibit a marked performance drop on caption matching when moving from text-based to video-based evaluation (without audio). Our findings also demonstrate that incorporating audio helps with video humor understanding, highlighting the informativeness of sound and the promise of integrating richer modalities for complex video understanding tasks.
☆ Free Lunch Alignment of Text-to-Image Diffusion Models without Preference Image Pairs
Recent advances in diffusion-based text-to-image (T2I) models have led to remarkable success in generating high-quality images from textual prompts. However, ensuring accurate alignment between the text and the generated image remains a significant challenge for state-of-the-art diffusion models. To address this, existing studies employ reinforcement learning with human feedback (RLHF) to align T2I outputs with human preferences. These methods, however, either rely directly on paired image preference data or require a learned reward function, both of which depend heavily on costly, high-quality human annotations and thus face scalability limitations. In this work, we introduce Text Preference Optimization (TPO), a framework that enables "free-lunch" alignment of T2I models, achieving alignment without the need for paired image preference data. TPO works by training the model to prefer matched prompts over mismatched prompts, which are constructed by perturbing original captions using a large language model. Our framework is general and compatible with existing preference-based algorithms. We extend both DPO and KTO to our setting, resulting in TDPO and TKTO. Quantitative and qualitative evaluations across multiple benchmarks show that our methods consistently outperform their original counterparts, delivering better human preference scores and improved text-to-image alignment. Our Open-source code is available at https://github.com/DSL-Lab/T2I-Free-Lunch-Alignment.
☆ Galton's Law of Mediocrity: Why Large Language Models Regress to the Mean and Fail at Creativity in Advertising
Large language models (LLMs) generate fluent text yet often default to safe, generic phrasing, raising doubts about their ability to handle creativity. We formalize this tendency as a Galton-style regression to the mean in language and evaluate it using a creativity stress test in advertising concepts. When ad ideas were simplified step by step, creative features such as metaphors, emotions, and visual cues disappeared early, while factual content remained, showing that models favor high-probability information. When asked to regenerate from simplified inputs, models produced longer outputs with lexical variety but failed to recover the depth and distinctiveness of the originals. We combined quantitative comparisons with qualitative analysis, which revealed that the regenerated texts often appeared novel but lacked true originality. Providing ad-specific cues such as metaphors, emotional hooks and visual markers improved alignment and stylistic balance, though outputs still relied on familiar tropes. Taken together, the findings show that without targeted guidance, LLMs drift towards mediocrity in creative tasks; structured signals can partially counter this tendency and point towards pathways for developing creativity-sensitive models.
☆ TruthRL: Incentivizing Truthful LLMs via Reinforcement Learning
While large language models (LLMs) have demonstrated strong performance on factoid question answering, they are still prone to hallucination and untruthful responses, particularly when tasks demand information outside their parametric knowledge. Indeed, truthfulness requires more than accuracy -- models must also recognize uncertainty and abstain when unsure to avoid hallucinations. This presents a fundamental challenge for existing methods: approaches that optimize for accuracy often amplify hallucinations, while those that encourage abstention can become overly conservative, sacrificing correct answers. Both extremes ultimately compromise truthfulness. In this work, we present TruthRL, a general reinforcement learning (RL) framework that directly optimizes the truthfulness of LLMs. Specifically, we implement TruthRL using GRPO with a simple yet effective ternary reward that distinguishes correct answers, hallucinations, and abstentions. It incentivizes models to reduce hallucinations not only by providing correct responses, but also by enabling abstention when uncertain, thereby improving truthfulness. Extensive experiments across four knowledge-intensive benchmarks show that, compared to vanilla RL, TruthRL significantly reduces hallucinations by 28.9% and improves truthfulness by 21.1%, with consistent gains across various backbone models (e.g., Qwen, Llama) under both retrieval and non-retrieval setups. In-depth ablation study demonstrates that vanilla accuracy-driven methods, such as supervised fine-tuning or RL with a binary reward, struggle to balance factual correctness and uncertainty. In contrast, our proposed truthfulness-driven TruthRL achieves strong performance in both accuracy and truthfulness, underscoring the importance of learning objective design for developing truthful LLMs.
☆ Thinking Sparks!: Emergent Attention Heads in Reasoning Models During Post Training
The remarkable capabilities of modern large reasoning models are largely unlocked through post-training techniques such as supervised fine-tuning and reinforcement learning. However, the architectural mechanisms behind such improvements remain largely opaque. In this work, we use circuit analysis to demonstrate that post-training for complex reasoning sparks the emergence of novel, functionally specialized attention heads. These heads collectively support structured reasoning and computation. Our comparative analysis across Qwen families and DeepSeek-distilled model reveals that these emergent heads evolve differently under different training regimes. Distillation and SFT foster a cumulative addition of stable reasoning heads. In contrast, group relative policy optimization operates in a dynamic search mode: relatively few attention heads are iteratively activated, evaluated, and pruned, with their survival closely tracking fluctuations in the task reward signal. Furthermore, we find that controllable think on/off models do not possess dedicated thinking heads. Instead, turning off explicit reasoning triggers a broader-but less efficient-set of compensatory heads. Through ablation and qualitative analyses, we connect these circuit-level dynamics to a crucial performance trade-off: strengthened heads enable sophisticated problem-solving strategies for difficult problems but can also introduce over-thinking failure modes, such as calculation errors or logical loops on simpler tasks. These findings connect circuit-level dynamics to macro-level performance, identifying an inherent tension where complex reasoning comes at the cost of elementary computations. More broadly, our work points to future directions for training policy design, emphasizing the need to balance the development of effective reasoning strategies with the assurance of reliable, flawless execution.
☆ NePTune: A Neuro-Pythonic Framework for Tunable Compositional Reasoning on Vision-Language
Modern Vision-Language Models (VLMs) have achieved impressive performance in various tasks, yet they often struggle with compositional reasoning, the ability to decompose and recombine concepts to solve novel problems. While neuro-symbolic approaches offer a promising direction, they are typically constrained by crisp logical execution or predefined predicates, which limit flexibility. In this work, we introduce NePTune, a neuro-symbolic framework that overcomes these limitations through a hybrid execution model that integrates the perception capabilities of foundation vision models with the compositional expressiveness of symbolic reasoning. NePTune dynamically translates natural language queries into executable Python programs that blend imperative control flow with soft logic operators capable of reasoning over VLM-generated uncertainty. Operating in a training-free manner, NePTune, with a modular design, decouples perception from reasoning, yet its differentiable operations support fine-tuning. We evaluate NePTune on multiple visual reasoning benchmarks and various domains, utilizing adversarial tests, and demonstrate a significant improvement over strong base models, as well as its effective compositional generalization and adaptation capabilities in novel environments.
☆ Cooperative Autonomous Driving in Diverse Behavioral Traffic: A Heterogeneous Graph Reinforcement Learning Approach
Navigating heterogeneous traffic environments with diverse driving styles poses a significant challenge for autonomous vehicles (AVs) due to their inherent complexity and dynamic interactions. This paper addresses this challenge by proposing a heterogeneous graph reinforcement learning (GRL) framework enhanced with an expert system to improve AV decision-making performance. Initially, a heterogeneous graph representation is introduced to capture the intricate interactions among vehicles. Then, a heterogeneous graph neural network with an expert model (HGNN-EM) is proposed to effectively encode diverse vehicle features and produce driving instructions informed by domain-specific knowledge. Moreover, the double deep Q-learning (DDQN) algorithm is utilized to train the decision-making model. A case study on a typical four-way intersection, involving various driving styles of human vehicles (HVs), demonstrates that the proposed method has superior performance over several baselines regarding safety, efficiency, stability, and convergence rate, all while maintaining favorable real-time performance.
comment: 7 pages, 5 figures and 4 tables
☆ Think Less, Label Better: Multi-Stage Domain-Grounded Synthetic Data Generation for Fine-Tuning Large Language Models in Telecommunications
The success of large language models (LLMs) depends heavily on large-scale, high-quality instruction-following and reinforcement datasets. However, generating such data through human annotation is prohibitively time-consuming particularly for domain-specific tasks like telecom network troubleshooting, where accurate responses require deep technical expertise and contextual understanding. In this paper, we present a fully automated, retrieval-augmented pipeline for generating synthetic question-answer (QA) pairs grounded in structured domain knowledge. Our multi-stage framework integrates a retriever, base generator, and refinement model to synthesize and enhance QA pairs using documents retrieved from a domain-specific knowledge graph. To ensure data quality, we employ customized RAGAS-based scoring to filter low-quality samples, producing a high-quality dataset suitable for reinforcement fine-tuning (RFT). We demonstrate our approach in a real-world telecom scenario focused on radio access network (RAN) troubleshooting. The resulting pipeline generates complex, context-rich troubleshooting solution plans without human intervention. This work offers a scalable solution for building instruction and reinforcement datasets in specialized domains, significantly reducing dependence on manual labeling while maintaining high technical fidelity.
comment: 6 pages, 6 figures, 5 tables
Controlled Generation for Private Synthetic Text EMNLP 2025
Text anonymization is essential for responsibly developing and deploying AI in high-stakes domains such as healthcare, social services, and law. In this work, we propose a novel methodology for privacy-preserving synthetic text generation that leverages the principles of de-identification and the Hiding In Plain Sight (HIPS) theory. Our approach introduces entity-aware control codes to guide controllable generation using either in-context learning (ICL) or prefix tuning. The ICL variant ensures privacy levels consistent with the underlying de-identification system, while the prefix tuning variant incorporates a custom masking strategy and loss function to support scalable, high-quality generation. Experiments on legal and clinical datasets demonstrate that our method achieves a strong balance between privacy protection and utility, offering a practical and effective solution for synthetic text generation in sensitive domains.
comment: EMNLP 2025
☆ Boundary-to-Region Supervision for Offline Safe Reinforcement Learning NeurIPS 2025
Offline safe reinforcement learning aims to learn policies that satisfy predefined safety constraints from static datasets. Existing sequence-model-based methods condition action generation on symmetric input tokens for return-to-go and cost-to-go, neglecting their intrinsic asymmetry: return-to-go (RTG) serves as a flexible performance target, while cost-to-go (CTG) should represent a rigid safety boundary. This symmetric conditioning leads to unreliable constraint satisfaction, especially when encountering out-of-distribution cost trajectories. To address this, we propose Boundary-to-Region (B2R), a framework that enables asymmetric conditioning through cost signal realignment . B2R redefines CTG as a boundary constraint under a fixed safety budget, unifying the cost distribution of all feasible trajectories while preserving reward structures. Combined with rotary positional embeddings , it enhances exploration within the safe region. Experimental results show that B2R satisfies safety constraints in 35 out of 38 safety-critical tasks while achieving superior reward performance over baseline methods. This work highlights the limitations of symmetric token conditioning and establishes a new theoretical and practical approach for applying sequence models to safe RL. Our code is available at https://github.com/HuikangSu/B2R.
comment: NeurIPS 2025
☆ Towards A Universally Transferable Acceleration Method for Density Functional Theory
Recently, sophisticated deep learning-based approaches have been developed for generating efficient initial guesses to accelerate the convergence of density functional theory (DFT) calculations. While the actual initial guesses are often density matrices (DM), quantities that can convert into density matrices also qualify as alternative forms of initial guesses. Hence, existing works mostly rely on the prediction of the Hamiltonian matrix for obtaining high-quality initial guesses. However, the Hamiltonian matrix is both numerically difficult to predict and intrinsically non-transferable, hindering the application of such models in real scenarios. In light of this, we propose a method that constructs DFT initial guesses by predicting the electron density in a compact auxiliary basis representation using E(3)-equivariant neural networks. Trained on small molecules with up to 20 atoms, our model is able to achieve an average 33.3% self-consistent field (SCF) step reduction on systems up to 60 atoms, substantially outperforming Hamiltonian-centric and DM-centric models. Critically, this acceleration remains nearly constant with increasing system sizes and exhibits strong transferring behaviors across orbital basis sets and exchange-correlation (XC) functionals. To the best of our knowledge, this work represents the first and robust candidate for a universally transferable DFT acceleration method. We are also releasing the SCFbench dataset and its accompanying code to facilitate future research in this promising direction.
☆ The AI Productivity Index (APEX)
We introduce the first version of the AI Productivity Index (APEX), a benchmark for assessing whether frontier AI models can perform knowledge work with high economic value. APEX addresses one of the largest inefficiencies in AI research: outside of coding, benchmarks often fail to test economically relevant capabilities. APEX-v1.0 contains 200 test cases and covers four domains: investment banking, management consulting, law, and primary medical care. It was built in three steps. First, we sourced experts with top-tier experience e.g., investment bankers from Goldman Sachs. Second, experts created prompts that reflect high-value tasks in their day-to-day work. Third, experts created rubrics for evaluating model responses. We evaluate 23 frontier models on APEX-v1.0 using an LM judge. GPT 5 (Thinking = High) achieves the highest mean score (64.2%), followed by Grok 4 (61.3%) and Gemini 2.5 Flash (Thinking = On) (60.4%). Qwen 3 235B is the best performing open-source model and seventh best overall. There is a large gap between the performance of even the best models and human experts, highlighting the need for better measurement of models' ability to produce economically valuable work.
☆ DeepCodeSeek: Real-Time API Retrieval for Context-Aware Code Generation
Current search techniques are limited to standard RAG query-document applications. In this paper, we propose a novel technique to expand the code and index for predicting the required APIs, directly enabling high-quality, end-to-end code generation for auto-completion and agentic AI applications. We address the problem of API leaks in current code-to-code benchmark datasets by introducing a new dataset built from real-world ServiceNow Script Includes that capture the challenge of unclear API usage intent in the code. Our evaluation metrics show that this method achieves 87.86% top-40 retrieval accuracy, allowing the critical context with APIs needed for successful downstream code generation. To enable real-time predictions, we develop a comprehensive post-training pipeline that optimizes a compact 0.6B reranker through synthetic dataset generation, supervised fine-tuning, and reinforcement learning. This approach enables our compact reranker to outperform a much larger 8B model while maintaining 2.5x reduced latency, effectively addressing the nuances of enterprise-specific code without the computational overhead of larger models.
comment: Retrieval-Augmented Generation, API Prediction, Context-Aware Code Generation, Enterprise Code Completion, Reinforcement Learning, ServiceNow, Real-Time Code Search, Query Enhancement, Fine-Tuning, Embedding, Reranker
☆ Autonomous Multi-Robot Infrastructure for AI-Enabled Healthcare Delivery and Diagnostics
This research presents a multi-robot system for inpatient care, designed using swarm intelligence principles and incorporating wearable health sensors, RF-based communication, and AI-driven decision support. Within a simulated hospital environment, the system adopts a leader-follower swarm configuration to perform patient monitoring, medicine delivery, and emergency assistance. Due to ethical constraints, live patient trials were not conducted; instead, validation was carried out through controlled self-testing with wearable sensors. The Leader Robot acquires key physiological parameters, including temperature, SpO2, heart rate, and fall detection, and coordinates other robots when required. The Assistant Robot patrols corridors for medicine delivery, while a robotic arm provides direct drug administration. The swarm-inspired leader-follower strategy enhanced communication reliability and ensured continuous monitoring, including automated email alerts to healthcare staff. The system hardware was implemented using Arduino, Raspberry Pi, NRF24L01 RF modules, and a HuskyLens AI camera. Experimental evaluation showed an overall sensor accuracy above 94%, a 92% task-level success rate, and a 96% communication reliability rate, demonstrating system robustness. Furthermore, the AI-enabled decision support was able to provide early warnings of abnormal health conditions, highlighting the potential of the system as a cost-effective solution for hospital automation and patient safety.
comment: 11 pages, 5 figures, MSc dissertation submission draft, prepared for conference/journal consideration
♻ ☆ Provable Scaling Laws of Feature Emergence from Learning Dynamics of Grokking
While the phenomenon of grokking, i.e., delayed generalization, has been studied extensively, it remains an open problem whether there is a mathematical framework that characterizes what kind of features will emerge, how and in which conditions it happens, and is closely related to the gradient dynamics of the training, for complex structured inputs. We propose a novel framework, named $\mathbf{Li_2}$, that captures three key stages for the grokking behavior of 2-layer nonlinear networks: (I) \underline{\textbf{L}}azy learning, (II) \underline{\textbf{i}}ndependent feature learning and (III) \underline{\textbf{i}}nteractive feature learning. At the lazy learning stage, top layer overfits to random hidden representation and the model appears to memorize. Thanks to lazy learning and weight decay, the \emph{backpropagated gradient} $G_F$ from the top layer now carries information about the target label, with a specific structure that enables each hidden node to learn their representation \emph{independently}. Interestingly, the independent dynamics follows exactly the \emph{gradient ascent} of an energy function $E$, and its local maxima are precisely the emerging features. We study whether these local-optima induced features are generalizable, their representation power, and how they change on sample size, in group arithmetic tasks. When hidden nodes start to interact in the later stage of learning, we provably show how $G_F$ changes to focus on missing features that need to be learned. Our study sheds lights on roles played by key hyperparameters such as weight decay, learning rate and sample sizes in grokking, leads to provable scaling laws of feature emergence, memorization and generalization, and reveals the underlying cause why recent optimizers such as Muon can be effective, from the first principles of gradient dynamics. Our analysis can be extended to multi-layer architectures.
♻ ☆ BRIDGE -- Building Reinforcement-Learning Depth-to-Image Data Generation Engine for Monocular Depth Estimation
Monocular Depth Estimation (MDE) is a foundational task for computer vision. Traditional methods are limited by data scarcity and quality, hindering their robustness. To overcome this, we propose BRIDGE, an RL-optimized depth-to-image (D2I) generation framework that synthesizes over 20M realistic and geometrically accurate RGB images, each intrinsically paired with its ground truth depth, from diverse source depth maps. Then we train our depth estimation model on this dataset, employing a hybrid supervision strategy that integrates teacher pseudo-labels with ground truth depth for comprehensive and robust training. This innovative data generation and training paradigm enables BRIDGE to achieve breakthroughs in scale and domain diversity, consistently outperforming existing state-of-the-art approaches quantitatively and in complex scene detail capture, thereby fostering general and robust depth features. Code and models are available at https://dingning-liu.github.io/bridge.github.io/.
comment: 20 pages, 7 figures
♻ ☆ Agentic Exploration of Physics Models
The process of scientific discovery relies on an interplay of observations, analysis, and hypothesis generation. Machine learning is increasingly being adopted to address individual aspects of this process. However, it remains an open challenge to fully automate the open-ended, heuristic, iterative loop required to discover the laws of an unknown system by exploring it through experiments and analysis, without tailoring the approach to the specifics of a given task. Here, we introduce SciExplorer, an agent that leverages large language model tool-use capabilities to enable free-form exploration of systems without any domain-specific blueprints, and apply it to the exploration of physical systems that are initially unknown to the agent. We test SciExplorer on a broad set of models spanning mechanical dynamical systems, wave evolution, and quantum many-body physics. Despite using a minimal set of tools, primarily based on code execution, we observe impressive performance on tasks such as recovering equations of motion from observed dynamics and inferring Hamiltonians from expectation values. The demonstrated effectiveness of this setup opens the door towards similar scientific exploration in other domains, without the need for finetuning or task-specific instructions.
♻ ☆ MASLegalBench: Benchmarking Multi-Agent Systems in Deductive Legal Reasoning
Multi-agent systems (MAS), leveraging the remarkable capabilities of Large Language Models (LLMs), show great potential in addressing complex tasks. In this context, integrating MAS with legal tasks is a crucial step. While previous studies have developed legal benchmarks for LLM agents, none are specifically designed to consider the unique advantages of MAS, such as task decomposition, agent specialization, and flexible training. In fact, the lack of evaluation methods limits the potential of MAS in the legal domain. To address this gap, we propose MASLegalBench, a legal benchmark tailored for MAS and designed with a deductive reasoning approach. Our benchmark uses GDPR as the application scenario, encompassing extensive background knowledge and covering complex reasoning processes that effectively reflect the intricacies of real-world legal situations. Furthermore, we manually design various role-based MAS and conduct extensive experiments using different state-of-the-art LLMs. Our results highlight the strengths, limitations, and potential areas for improvement of existing models and MAS architectures.
♻ ☆ Decoupled Classifier-Free Guidance for Counterfactual Diffusion Models
Counterfactual generation aims to simulate realistic hypothetical outcomes under causal interventions. Diffusion models have emerged as a powerful tool for this task, combining DDIM inversion with conditional generation and classifier-free guidance (CFG). In this work, we identify a key limitation of CFG for counterfactual generation: it prescribes a global guidance scale for all attributes, leading to significant spurious changes in inferred counterfactuals. To mitigate this, we propose Decoupled Classifier-Free Guidance (DCFG), a flexible and model-agnostic guidance technique that enables attribute-wise control following a causal graph. DCFG is implemented via a simple attribute-split embedding strategy that disentangles semantic inputs, enabling selective guidance on user-defined attribute groups.
♻ ☆ Pushing LLMs to Their Logical Reasoning Bound: The Role of Data Reasoning Intensity
Recent advances in large language models (LLMs) highlight the importance of training data structure and quality in shaping reasoning behavior. However, most existing approaches focus on transforming data formats while neglecting the internal reasoning complexity of training samples, leaving the reasoning potential of data under-explored and underutilized. In this work, we posit that LLM logical reasoning performance is jointly constrained by the potential of the training data and the cognitive capacity of the model. To make this relationship measurable, we introduce Data Reasoning Intensity (DRI), a novel metric that quantifies the latent logical reasoning complexity of samples by decomposing and aggregating their logical structures. This allows us to analyze how well current LLMs utilize logical reasoning signals and identify performance gaps relative to data potential. Based on this insight, we introduce a re-cognizing optimization strategy that systematically enhances the logical reasoning intensity of training data. Rather than increasing data volume, our method re-optimizes existing samples to better align with the LLM's logical reasoning boundary. Extensive experiments show that our approach significantly improves performance and generalization over data-centric strategies. We further validate our method under a reinforcement learning framework. Our results indicate that prioritizing reasoning complexity in data rather than sheer scale or superficial form is essential to realizing LLMs' full cognitive potential.
VSSFlow: Unifying Video-conditioned Sound and Speech Generation via Joint Learning
Video-conditioned sound and speech generation, encompassing video-to-sound (V2S) and visual text-to-speech (VisualTTS) tasks, are conventionally addressed as separate tasks, with limited exploration to unify them within a signle framework. Recent attempts to unify V2S and VisualTTS face challenges in handling distinct condition types (e.g., heterogeneous video and transcript conditions) and require complex training stages. Unifying these two tasks remains an open problem. To bridge this gap, we present VSSFlow, which seamlessly integrates both V2S and VisualTTS tasks into a unified flow-matching framework. VSSFlow uses a novel condition aggregation mechanism to handle distinct input signals. We find that cross-attention and self-attention layer exhibit different inductive biases in the process of introducing condition. Therefore, VSSFlow leverages these inductive biases to effectively handle different representations: cross-attention for ambiguous video conditions and self-attention for more deterministic speech transcripts. Furthermore, contrary to the prevailing belief that joint training on the two tasks requires complex training strategies and may degrade performance, we find that VSSFlow benefits from the end-to-end joint learning process for sound and speech generation without extra designs on training stages. Detailed analysis attributes it to the learned general audio prior shared between tasks, which accelerates convergence, enhances conditional generation, and stabilizes the classifier-free guidance process. Extensive experiments demonstrate that VSSFlow surpasses the state-of-the-art domain-specific baselines on both V2S and VisualTTS benchmarks, underscoring the critical potential of unified generative models.
comment: Paper Under Review
♻ ☆ From Ambiguity to Verdict: A Semiotic-Grounded Multi-Perspective Agent for LLM Logical Reasoning
Logical reasoning is a fundamental capability of large language models (LLMs). However, existing studies largely overlook the interplay between logical complexity and semantic complexity, resulting in methods that struggle to address challenging scenarios involving abstract propositions, ambiguous contexts, and conflicting stances, which are central to human reasoning. For this gap, we propose LogicAgent, a semiotic-square-guided framework designed to jointly address logical complexity and semantic complexity. LogicAgent explicitly performs multi-perspective deduction in first-order logic (FOL), while mitigating vacuous reasoning through existential import checks that incorporate a three-valued decision scheme (True, False, Uncertain) to handle boundary cases more faithfully. Furthermore, to overcome the semantic simplicity and low logical complexity of existing datasets, we introduce RepublicQA, a benchmark that reaches college-level difficulty (FKGL = 11.94) and exhibits substantially greater lexical and structural diversity than prior benchmarks. RepublicQA is grounded in philosophical concepts, featuring abstract propositions and systematically organized contrary and contradictory relations, making it the most semantically rich resource for evaluating logical reasoning. Experiments demonstrate that LogicAgent achieves state-of-the-art performance on RepublicQA, with a 6.25% average gain over strong baselines, and generalizes effectively to mainstream logical reasoning benchmarks including ProntoQA, ProofWriter, FOLIO, and ProverQA, achieving an additional 7.05% average gain. These results highlight the strong effectiveness of our semiotic-grounded multi-perspective reasoning in boosting LLMs' logical performance.
♻ ☆ HealthSLM-Bench: Benchmarking Small Language Models for Mobile and Wearable Healthcare Monitoring NeurIPS 2025
Mobile and wearable healthcare monitoring play a vital role in facilitating timely interventions, managing chronic health conditions, and ultimately improving individuals' quality of life. Previous studies on large language models (LLMs) have highlighted their impressive generalization abilities and effectiveness in healthcare prediction tasks. However, most LLM-based healthcare solutions are cloud-based, which raises significant privacy concerns and results in increased memory usage and latency. To address these challenges, there is growing interest in compact models, Small Language Models (SLMs), which are lightweight and designed to run locally and efficiently on mobile and wearable devices. Nevertheless, how well these models perform in healthcare prediction remains largely unexplored. We systematically evaluated SLMs on health prediction tasks using zero-shot, few-shot, and instruction fine-tuning approaches, and deployed the best performing fine-tuned SLMs on mobile devices to evaluate their real-world efficiency and predictive performance in practical healthcare scenarios. Our results show that SLMs can achieve performance comparable to LLMs while offering substantial gains in efficiency and privacy. However, challenges remain, particularly in handling class imbalance and few-shot scenarios. These findings highlight SLMs, though imperfect in their current form, as a promising solution for next-generation, privacy-preserving healthcare monitoring.
comment: 9 pages, 6 tables, 6 figures. Accepted at NeurIPS 2025 Workshop on GenAI4Health
♻ ☆ MindVL: Towards Efficient and Effective Training of Multimodal Large Language Models on Ascend NPUs
We propose MindVL, a multimodal large language model (MLLMs) trained on Ascend NPUs. The training of state-of-the-art MLLMs is often confined to a limited set of hardware platforms and relies heavily on massive, undisclosed data recipes, which hinders reproducibility and open research. To change the common perception that Ascend hardware is unsuitable for efficient full-stage MLLM training, we introduce MindSpeed-MLLM, a highly efficient training framework that supports stable and high-performance training of large-scale Dense and Mixture-of-Experts (MoE) models on Ascend hardware. Based on this, we provide a systematic and open description of the data production methods and mixing strategies for all training stages. Furthermore, we present MindVL, a data-efficient multimodal large language model trained end-to-end on Ascend NPUs. In addition, we find that averaging weights from checkpoints trained with different sequence lengths is particularly effective and yields further gains when combined with test-time resolution search. Our experiments demonstrate superior data efficiency: MindVL-8B matches the performance of Qwen2.5VL-7B using only 10\% of its training data, while our MoE model, MindVL-671B-A37B, matches Qwen2.5VL-72B using only 3\% of the Qwen2.5VL training data, and achieves comparable performance with other leading multimodal MoE models. Our work provides the community with a valuable hardware alternative, open data recipes, and effective performance-enhancing techniques.
♻ ☆ Experience-Guided Reflective Co-Evolution of Prompts and Heuristics for Automatic Algorithm Design
Combinatorial optimization problems are traditionally tackled with handcrafted heuristic algorithms, which demand extensive domain expertise and significant implementation effort. Recent progress has highlighted the potential of automatic heuristics design powered by large language models (LLMs), enabling the automatic generation and refinement of heuristics. These approaches typically maintain a population of heuristics and employ LLMs as mutation operators to evolve them across generations. While effective, such methods often risk stagnating in local optima. To address this issue, we propose the Experience-Guided Reflective Co-Evolution of Prompt and Heuristics (EvoPH) for automatic algorithm design, a novel framework that integrates the island migration model with the elites selection algorithm to simulate diverse heuristics populations. In EvoPH, prompts are co-evolved with heuristic algorithms, guided by performance feedback. We evaluate our framework on two problems, i.e., Traveling Salesman Problem and Bin Packing Problem. Experimental results demonstrate that EvoPH achieves the lowest relative error against optimal solutions across both datasets, advancing the field of automatic algorithm design with LLMs.
♻ ☆ UI-UG: A Unified MLLM for UI Understanding and Generation
Although Multimodal Large Language Models (MLLMs) have been widely applied across domains, they are still facing challenges in domain-specific tasks, such as User Interface (UI) understanding accuracy and UI generation quality. In this paper, we introduce UI-UG (a unified MLLM for UI Understanding and Generation), integrating both capabilities. For understanding tasks, we employ Supervised Fine-tuning (SFT) combined with Group Relative Policy Optimization (GRPO) to enhance fine-grained understanding on the modern complex UI data. For generation tasks, we further use Direct Preference Optimization (DPO) to make our model generate human-preferred UIs. In addition, we propose an industrially effective workflow, including the design of an LLM-friendly domain-specific language (DSL), training strategies, rendering processes, and evaluation metrics. In experiments, our model achieves state-of-the-art (SOTA) performance on understanding tasks, outperforming both larger general-purpose MLLMs and similarly-sized UI-specialized models. Our model is also on par with these larger MLLMs in UI generation performance at a fraction of the computational cost. We also demonstrate that integrating understanding and generation tasks can improve accuracy and quality for both tasks. Code and Model: https://github.com/neovateai/UI-UG
♻ ☆ Collaborative Gym: A Framework for Enabling and Evaluating Human-Agent Collaboration
Recent advancements in language models (LMs) have sparked growing interest in developing LM agents. While fully autonomous agents could excel in many scenarios, numerous use cases inherently require them to collaborate with humans due to humans' latent preferences, domain expertise, or need for control. To facilitate the study of human-agent collaboration, we present Collaborative Gym (Co-Gym), a general framework enabling asynchronous, tripartite interaction among agents, humans, and task environments. We instantiate Co-Gym with three representative tasks in both simulated and real-world conditions, and propose an evaluation framework that assesses both the collaboration outcomes and processes. Our findings reveal that collaborative agents consistently outperform their fully autonomous counterparts in task performance within those delivered cases, achieving win rates of 86% in Travel Planning, 74% in Tabular Analysis, and 66% in Related Work when evaluated by real users. However, our study also highlights significant challenges in developing collaborative agents, requiring advancements in core aspects of intelligence -- communication capabilities, situational awareness, and balancing autonomy and human control.
comment: Preprint. Work in progress
♻ ☆ Beyond Sharp Minima: Robust LLM Unlearning via Feedback-Guided Multi-Point Optimization
Current LLM unlearning methods face a critical security vulnerability that undermines their fundamental purpose: while they appear to successfully remove sensitive or harmful knowledge, this ``forgotten" information remains precariously recoverable through relearning attacks. We identify that the root cause is that conventional methods optimizing the forgetting loss at individual data points will drive model parameters toward sharp minima in the loss landscape. In these unstable regions, even minimal parameter perturbations can drastically alter the model's behaviors. Consequently, relearning attacks exploit this vulnerability by using just a few fine-tuning samples to navigate the steep gradients surrounding these unstable regions, thereby rapidly recovering knowledge that was supposedly erased. This exposes a critical robustness gap between apparent unlearning and actual knowledge removal. To address this issue, we propose StableUN, a bi-level feedback-guided optimization framework that explicitly seeks more stable parameter regions via neighborhood-aware optimization. It integrates forgetting feedback, which uses adversarial perturbations to probe parameter neighborhoods, with remembering feedback to preserve model utility, aligning the two objectives through gradient projection. Experiments on WMDP and MUSE benchmarks demonstrate that our method is significantly more robust against both relearning and jailbreaking attacks while maintaining competitive utility performance.
♻ ☆ Q-Mirror: Unlocking the Multi-Modal Potential of Scientific Text-Only QA Pairs
High-quality, multi-modal benchmarks are crucial for advancing scientific reasoning in large models yet their manual creation is costly and unscalable. To address this bottleneck, we explore the potential for transforming Text-Only QA Pairs (TQAs) into high-quality Multi-Modal QA Pairs (MMQAs), which include three parts: 1) Task Definition \& Evaluation Rubric: We develop a TQA-to-MMQA framework and establish a comprehensive, multi-dimensional MMQA quality rubric that provides principles for the transformation. 2) Benchmark Construction: Then we construct two extensive benchmarks to rigorously evaluate state-of-the-art generation \& understanding models on the distinct tasks of MMQA generation \& MMQA quality evaluation. 3) Preliminary Solution: We develop an agentic system (Q-Mirror), which operationalizes our framework by integrating MMQA generation and evaluation into a closed loop for iterative refinement. Our experiments show that while state-of-the-art models can generate MMQAs, their outputs still leave substantial gaps, underscoring the need for reliable evaluation. We further demonstrate that top-tier understanding models align closely with human judgment in MMQA quality assessment. Leveraging both insights, the Q-Mirror agent raises average scores from 78.90 to 85.22 and pass rates from 72\% to 95\%, offering a practical path to large-scale scientific benchmarks.
comment: 25 pages
♻ ☆ The Ever-Evolving Science Exam
As foundation models grow rapidly in capability and deployment, evaluating their scientific understanding becomes increasingly critical. Existing science benchmarks have made progress towards broad Range, wide Reach, and high Rigor, yet they often face two major challenges: data leakage risks that compromise benchmarking validity, and evaluation inefficiency due to large-scale testing. To address these issues, we introduce the Ever-Evolving Science Exam (EESE), a dynamic benchmark designed to reliably assess scientific capabilities in foundation models. Our approach consists of two components: 1) a non-public EESE-Pool with over 100K expertly constructed science instances (question-answer pairs) across 5 disciplines and 500+ subfields, built through a multi-stage pipeline ensuring Range, Reach, and Rigor, 2) a periodically updated 500-instance subset EESE, sampled and validated to enable leakage-resilient, low-overhead evaluations. Experiments on 32 open- and closed-source models demonstrate that EESE effectively differentiates the strengths and weaknesses of models in scientific fields and cognitive dimensions. Overall, EESE provides a robust, scalable, and forward-compatible solution for science benchmark design, offering a realistic measure of how well foundation models handle science questions. The project page is at: https://github.com/aiben-ch/EESE.
comment: 33 pages
♻ ☆ PAME-AI: Patient Messaging Creation and Optimization using Agentic AI
Messaging patients is a critical part of healthcare communication, helping to improve things like medication adherence and healthy behaviors. However, traditional mobile message design has significant limitations due to its inability to explore the high-dimensional design space. We develop PAME-AI, a novel approach for Patient Messaging Creation and Optimization using Agentic AI. Built on the Data-Information-Knowledge-Wisdom (DIKW) hierarchy, PAME-AI offers a structured framework to move from raw data to actionable insights for high-performance messaging design. PAME-AI is composed of a system of specialized computational agents that progressively transform raw experimental data into actionable message design strategies. We demonstrate our approach's effectiveness through a two-stage experiment, comprising of 444,691 patient encounters in Stage 1 and 74,908 in Stage 2. The best-performing generated message achieved 68.76% engagement compared to the 61.27% baseline, representing a 12.2% relative improvement in click-through rates. This agentic architecture enables parallel processing, hypothesis validation, and continuous learning, making it particularly suitable for large-scale healthcare communication optimization.
♻ ☆ Model Merging Scaling Laws in Large Language Models
We study empirical scaling laws for language model merging measured by cross-entropy. Despite its wide practical use, merging lacks a quantitative rule that predicts returns as we add experts or scale the model size. We identify a compact power law that links model size and expert number: the size-dependent floor decreases with model capacity, while the merging tail exhibits clear diminishing returns in the number of experts. The law holds in-domain and cross-domain, tightly fits measured curves across diverse architectures and methods (Average, TA, TIES, DARE), and explains two robust regularities: most gains arrive early, and variability shrinks as more experts are included. Building on this, we present a simple theory that explains why gains fall roughly as 1/k and links the floor and tail to properties of the base model and the diversity across domains. This law enables predictive planning: estimate how many experts are needed to reach a target loss, decide when to stop adding experts, and trade off scaling the base model versus adding experts under a fixed budget--turning merging from heuristic practice into a computationally efficient, planable alternative to multitask training. This suggests a scaling principle for distributed generative AI: predictable gains can be achieved by composing specialists, offering a complementary path toward AGI-level systems.
comment: 30 pages
♻ ☆ Conda: Column-Normalized Adam for Training Large Language Models Faster
Large language models (LLMs) have demonstrated impressive generalization and emergent capabilities, yet their pre-training remains computationally expensive and sensitive to optimization dynamics. While Adam-based optimizers offer fast convergence by adapting learning rates coordinate-wise, recent studies reveal that their updates often suffer from poor spectral conditioning and low-rank structures, hindering efficiency. Muon addresses this issue via global spectral normalization but lacks the per-coordinate adaptivity of Adam. In this work, we propose Column-Normalized Adam (Conda), a novel optimizer that bridges the strengths of both approaches. Conda projects updates into an orthogonal subspace and applies column-wise second moment normalization based on the projected gradients, thereby achieving both improved spectral conditioning and maintaining coordinate-wise adaptivity. This design alleviates the spectral pathologies of Adam while preserving its fast convergence behavior. Extensive experiments on the LLaMA and GPT-2 series show that Conda consistently outperforms AdamW, Muon, and other baselines in pre-training. Remarkably, on the LLaMA series, Conda achieves 2-2.5 the convergence speed of AdamW, measured in both training steps and training time. Further ablations demonstrate its robustness under diverse training setups. These results collectively highlight Conda as an effective and broadly applicable optimizer for large-scale LLM training. The code is released on https://github.com/jie040109/Conda
♻ ☆ Enabling AI Scientists to Recognize Innovation: A Domain-Agnostic Algorithm for Assessing Novelty
In the pursuit of Artificial General Intelligence (AGI), automating the generation and evaluation of novel research ideas is a key challenge in AI-driven scientific discovery. This paper presents Relative Neighbor Density (RND), a domain-agnostic algorithm for novelty assessment in research ideas that overcomes the limitations of existing approaches by comparing an idea's local density with its adjacent neighbors' densities. We first developed a scalable methodology to create test set without expert labeling, addressing a fundamental challenge in novelty assessment. Using these test sets, we demonstrate that our RND algorithm achieves state-of-the-art (SOTA) performance in computer science (AUROC=0.820) and biomedical research (AUROC=0.765) domains. Most significantly, while SOTA models like Sonnet-3.7 and existing metrics show domain-specific performance degradation, RND maintains consistent accuracies across domains by its domain-invariant property, outperforming all benchmarks by a substantial margin (0.795 v.s. 0.597) on cross-domain evaluation. These results validate RND as a generalizable solution for automated novelty assessment in scientific research.
♻ ☆ The Impact of Language Mixing on Bilingual LLM Reasoning EMNLP 2025
Proficient multilingual speakers often intentionally switch languages in the middle of a conversation. Similarly, recent reasoning-focused bilingual large language models (LLMs) with strong capabilities in both languages exhibit language mixing-alternating languages within their chain of thought. Discouraging this behavior in DeepSeek-R1 was found to degrade accuracy, suggesting that language mixing may benefit reasoning. In this work, we study language switching in Chinese-English bilingual reasoning models. We identify reinforcement learning with verifiable rewards (RLVR) as the critical training stage that leads to language mixing. We show that language mixing can enhance reasoning: enforcing monolingual decoding reduces accuracy by 5.6 percentage points on MATH500. Additionally, a lightweight probe can be trained to predict whether a potential language switch would benefit or harm reasoning, and when used to guide decoding, increases accuracy by 2.92 percentage points. Our findings suggest that language mixing is not merely a byproduct of multilingual training, but is a strategic reasoning behavior.
comment: Accepted at EMNLP 2025 (Main Conference)
♻ ☆ Winning Gold at IMO 2025 with a Model-Agnostic Verification-and-Refinement Pipeline
The International Mathematical Olympiad (IMO) is widely regarded as the world championship of high-school mathematics. IMO problems are renowned for their difficulty and novelty, demanding deep insight, creativity, and rigor. Although large language models perform well on many mathematical benchmarks, they often struggle with Olympiad-level problems. Using carefully designed prompts, we construct a model-agnostic, verification-and-refinement pipeline. We demonstrate its effectiveness on the recent IMO 2025, avoiding data contamination for models released before the competition. Equipped with any of the three leading models -- Gemini 2.5 Pro, Grok-4, or GPT-5 -- our pipeline correctly solved 5 out of the 6 problems ($\approx$85.7% accuracy). This is in sharp contrast to their baseline accuracies: 31.6% (Gemini 2.5 Pro), 21.4% (Grok-4), and 38.1% (GPT-5), obtained by selecting the best of 32 candidate solutions. The substantial improvement underscores that the path to advanced AI reasoning requires not only developing more powerful base models but also designing effective methodologies to harness their full potential for complex tasks.
♻ ☆ VerlTool: Towards Holistic Agentic Reinforcement Learning with Tool Use
Reinforcement Learning with Verifiable Rewards (RLVR) has demonstrated success in enhancing LLM reasoning capabilities, but remains limited to single-turn interactions without tool integration. While recent Agentic Reinforcement Learning with Tool use (ARLT) approaches have emerged to address multi-turn tool interactions, existing works develop task-specific codebases that suffer from fragmentation, synchronous execution bottlenecks, and limited extensibility across domains. These inefficiencies hinder broader community adoption and algorithmic innovation. We introduce VerlTool, a unified and modular framework that addresses these limitations through systematic design principles. VerlTool provides four key contributions: (1) upstream alignment with VeRL ensuring compatibility and simplified maintenance, (2) unified tool management via standardized APIs supporting diverse modalities including code execution, search, SQL databases, and vision processing, (3) asynchronous rollout execution achieving near 2$\times$ speedup by eliminating synchronization bottlenecks, and (4) comprehensive evaluation demonstrating competitive performance across 6 ARLT domains. Our framework formalizes ARLT as multi-turn trajectories with multi-modal observation tokens (text/image/video), extending beyond single-turn RLVR paradigms. We train and evaluate models on mathematical reasoning, knowledge QA, SQL generation, visual reasoning, web search, and software engineering tasks, achieving results comparable to specialized systems while providing unified training infrastructure. The modular plugin architecture enables rapid tool integration requiring only lightweight Python definitions, significantly reducing development overhead and providing a scalable foundation for tool-augmented RL research. Our code is open-sourced at https://github.com/TIGER-AI-Lab/verl-tool.
comment: 32 pages, 5 figures, 13 tables
♻ ☆ FeDa4Fair: Client-Level Federated Datasets for Fairness Evaluation
Federated Learning (FL) enables collaborative model training across multiple clients without sharing clients' private data. However, the diverse and often conflicting biases present across clients pose significant challenges to model fairness. Current fairness-enhancing FL solutions often fall short, as they typically mitigate biases for a single, usually binary, sensitive attribute, while ignoring the heterogeneous fairness needs that exist in real-world settings. Moreover, these solutions often evaluate unfairness reduction only on the server side, hiding persistent unfairness at the individual client level. To support more robust and reproducible fairness research in FL, we introduce a comprehensive benchmarking framework for fairness-aware FL at both the global and client levels. Our contributions are three-fold: (1) We introduce \fairdataset, a library to create tabular datasets tailored to evaluating fair FL methods under heterogeneous client bias; (2) we release four bias-heterogeneous datasets and corresponding benchmarks to compare fairness mitigation methods in a controlled environment; (3) we provide ready-to-use functions for evaluating fairness outcomes for these datasets.
♻ ☆ DisCO: Reinforcing Large Reasoning Models with Discriminative Constrained Optimization NeurIPS 2025
The recent success and openness of DeepSeek-R1 have brought widespread attention to Group Relative Policy Optimization (GRPO) as a reinforcement learning method for large reasoning models (LRMs). In this work, we analyze the GRPO objective under a binary reward setting and reveal an inherent limitation of question-level difficulty bias. We also identify a connection between GRPO and traditional discriminative methods in supervised learning. Motivated by these insights, we introduce a new Discriminative Constrained Optimization (DisCO) framework for reinforcing LRMs, grounded in the principle of discriminative learning. The main differences between DisCO and GRPO and its recent variants are: (1) it replaces the group relative objective with a discriminative objective defined by a scoring function; (2) it abandons clipping-based surrogates in favor of non-clipping RL surrogate objectives used as scoring functions; (3) it employs a simple yet effective constrained optimization approach to enforce the KL divergence constraint. As a result, DisCO offers notable advantages over GRPO and its variants: (i) it completely eliminates difficulty bias by adopting discriminative objectives; (ii) it addresses the entropy instability in GRPO and its variants through the use of non-clipping scoring functions and a constrained optimization approach, yielding long and stable training dynamics; (iii) it allows the incorporation of advanced discriminative learning techniques to address data imbalance, where a significant number of questions have more negative than positive generated answers during training. Our experiments on enhancing the mathematical reasoning capabilities of SFT-finetuned models show that DisCO significantly outperforms GRPO and its improved variants such as DAPO, achieving average gains of 7\% over GRPO and 6\% over DAPO across six benchmark tasks for an 1.5B model.
comment: Accepted to NeurIPS 2025
♻ ☆ Unlocking Transfer Learning for Open-World Few-Shot Recognition NeurIPS 2025
Few-Shot Open-Set Recognition (FSOSR) targets a critical real-world challenge, aiming to categorize inputs into known categories, termed closed-set classes, while identifying open-set inputs that fall outside these classes. Although transfer learning where a model is tuned to a given few-shot task has become a prominent paradigm in closed-world, we observe that it fails to expand to open-world. To unlock this challenge, we propose a two-stage method which consists of open-set aware meta-learning with open-set free transfer learning. In the open-set aware meta-learning stage, a model is trained to establish a metric space that serves as a beneficial starting point for the subsequent stage. During the open-set free transfer learning stage, the model is further adapted to a specific target task through transfer learning. Additionally, we introduce a strategy to simulate open-set examples by modifying the training dataset or generating pseudo open-set examples. The proposed method achieves state-of-the-art performance on two widely recognized benchmarks, miniImageNet and tieredImageNet, with only a 1.5\% increase in training effort. Our work demonstrates the effectiveness of transfer learning in FSOSR.
comment: Accepted at NeurIPS 2025 workshop
♻ ☆ CE-SDWV: Effective and Efficient Concept Erasure for Text-to-Image Diffusion Models via a Semantic-Driven Word Vocabulary
Large-scale text-to-image (T2I) diffusion models have achieved remarkable generative performance about various concepts. With the limitation of privacy and safety in practice, the generative capability concerning NSFW (Not Safe For Work) concepts is undesirable, e.g., producing sexually explicit photos, and licensed images. The concept erasure task for T2I diffusion models has attracted considerable attention and requires an effective and efficient method. To achieve this goal, we propose a CE-SDWV framework, which removes the target concepts (e.g., NSFW concepts) of T2I diffusion models in the text semantic space by only adjusting the text condition tokens and does not need to re-train the original T2I diffusion model's weights. Specifically, our framework first builds a target concept-related word vocabulary to enhance the representation of the target concepts within the text semantic space, and then utilizes an adaptive semantic component suppression strategy to ablate the target concept-related semantic information in the text condition tokens. To further adapt the above text condition tokens to the original image semantic space, we propose an end-to-end gradient-orthogonal token optimization strategy. Extensive experiments on I2P and UnlearnCanvas benchmarks demonstrate the effectiveness and efficiency of our method. Code is available at https://github.com/TtuHamg/CE-SDWV.
comment: 25 pages, 14 figures
♻ ☆ Unpicking Data at the Seams: Understanding Disentanglement in VAEs
A generative latent variable model is said to be disentangled when varying a single latent co-ordinate changes a single aspect of samples generated, e.g. object position or facial expression in an image. Related phenomena are seen in several generative paradigms, including state-of-the-art diffusion models, but disentanglement is most notably observed in Variational Autoencoders (VAEs), where oft-used diagonal posterior covariances are argued to be the cause. We make this picture precise. From a known exact link between optimal Gaussian posteriors and decoder derivatives, we show how diagonal posteriors "lock" a decoder's local axes so that density over the data manifold factorises along independent one-dimensional seams that map to axis-aligned directions in latent space. This gives a clear definition of disentanglement, explains why it emerges in VAEs and shows that, under stated assumptions, ground truth factors are identifiable even with a symmetric prior.
comment: 9 pages
♻ ☆ A Survey on SAR ship classification using Deep Learning
Deep learning (DL) has emerged as a powerful tool for Synthetic Aperture Radar (SAR) ship classification. This survey comprehensively analyzes the diverse DL techniques employed in this domain. We identify critical trends and challenges, highlighting the importance of integrating handcrafted features, utilizing public datasets, data augmentation, fine-tuning, explainability techniques, and fostering interdisciplinary collaborations to improve DL model performance. This survey establishes a first-of-its-kind taxonomy for categorizing relevant research based on DL models, handcrafted feature use, SAR attribute utilization, and the impact of fine-tuning. We discuss the methodologies used in SAR ship classification tasks and the impact of different techniques. Finally, the survey explores potential avenues for future research, including addressing data scarcity, exploring novel DL architectures, incorporating interpretability techniques, and establishing standardized performance metrics. By addressing these challenges and leveraging advancements in DL, researchers can contribute to developing more accurate and efficient ship classification systems, ultimately enhancing maritime surveillance and related applications.
comment: Submitted to JSTARS journal
♻ ☆ Enabling Rapid Shared Human-AI Mental Model Alignment via the After-Action Review AAAI 2025
In this work, we present two novel contributions toward improving research in human-machine teaming (HMT): 1) a Minecraft testbed to accelerate testing and deployment of collaborative AI agents and 2) a tool to allow users to revisit and analyze behaviors within an HMT episode to facilitate shared mental model development. Our browser-based Minecraft testbed allows for rapid testing of collaborative agents in a continuous-space, real-time, partially-observable environment with real humans without cumbersome setup typical to human-AI interaction user studies. As Minecraft has an extensive player base and a rich ecosystem of pre-built AI agents, we hope this contribution can help to facilitate research quickly in the design of new collaborative agents and in understanding different human factors within HMT. Our mental model alignment tool facilitates user-led post-mission analysis by including video displays of first-person perspectives of the team members (i.e., the human and AI) that can be replayed, and a chat interface that leverages GPT-4 to provide answers to various queries regarding the AI's experiences and model details.
comment: Accepted to the Cooperative Multi-Agent Systems Decision-making and Learning:Human-Multi-Agent Cognitive Fusion Workshop at AAAI 2025
♻ ☆ Mind the Gap: A Review of Arabic Post-Training Datasets and Their Limitations
Post-training has emerged as a crucial technique for aligning pre-trained Large Language Models (LLMs) with human instructions, significantly enhancing their performance across a wide range of tasks. Central to this process is the quality and diversity of post-training datasets. This paper presents a review of publicly available Arabic post-training datasets on the Hugging Face Hub, organized along four key dimensions: (1) LLM Capabilities (e.g., Question Answering, Translation, Reasoning, Summarization, Dialogue, Code Generation, and Function Calling); (2) Steerability (e.g., Persona and System Prompts); (3) Alignment (e.g., Cultural, Safety, Ethics, and Fairness); and (4) Robustness. Each dataset is rigorously evaluated based on popularity, practical adoption, recency and maintenance, documentation and annotation quality, licensing transparency, and scientific contribution. Our review revealed critical gaps in the development of Arabic post-training datasets, including limited task diversity, inconsistent or missing documentation and annotation, and low adoption across the community. Finally, the paper discusses the implications of these gaps on the progress of Arabic-centric LLMs and applications while providing concrete recommendations for future efforts in Arabic post-training dataset development.
♻ ☆ Find the Fruit: Zero-Shot Sim2Real RL for Occlusion-Aware Plant Manipulation
Autonomous harvesting in the open presents a complex manipulation problem. In most scenarios, an autonomous system has to deal with significant occlusion and require interaction in the presence of large structural uncertainties (every plant is different). Perceptual and modeling uncertainty make design of reliable manipulation controllers for harvesting challenging, resulting in poor performance during deployment. We present a sim2real reinforcement learning (RL) framework for occlusion-aware plant manipulation, where a policy is learned entirely in simulation to reposition stems and leaves to reveal target fruit(s). In our proposed approach, we decouple high-level kinematic planning from low-level compliant control which simplifies the sim2real transfer. This decomposition allows the learned policy to generalize across multiple plants with different stiffness and morphology. In experiments with multiple real-world plant setups, our system achieves up to 86.7% success in exposing target fruits, demonstrating robustness to occlusion variation and structural uncertainty.
comment: 9 Pages, 3 Figures, 1 Table
♻ ☆ DreamControl: Human-Inspired Whole-Body Humanoid Control for Scene Interaction via Guided Diffusion
We introduce DreamControl, a novel methodology for learning autonomous whole-body humanoid skills. DreamControl leverages the strengths of diffusion models and Reinforcement Learning (RL): our core innovation is the use of a diffusion prior trained on human motion data, which subsequently guides an RL policy in simulation to complete specific tasks of interest (e.g., opening a drawer or picking up an object). We demonstrate that this human motion-informed prior allows RL to discover solutions unattainable by direct RL, and that diffusion models inherently promote natural looking motions, aiding in sim-to-real transfer. We validate DreamControl's effectiveness on a Unitree G1 robot across a diverse set of challenging tasks involving simultaneous lower and upper body control and object interaction. Project website at https://genrobo.github.io/DreamControl/
comment: https://genrobo.github.io/DreamControl/ (under submission)
♻ ☆ Octic Vision Transformers: Quicker ViTs Through Equivariance
Why are state-of-the-art Vision Transformers (ViTs) not designed to exploit natural geometric symmetries such as 90-degree rotations and reflections? In this paper, we argue that there is no fundamental reason, and what has been missing is an efficient implementation. To this end, we introduce Octic Vision Transformers (octic ViTs) which rely on octic group equivariance to capture these symmetries. In contrast to prior equivariant models that increase computational cost, our octic linear layers achieve 5.33x reductions in FLOPs and up to 8x reductions in memory compared to ordinary linear layers. In full octic ViT blocks the computational reductions approach the reductions in the linear layers with increased embedding dimension. We study two new families of ViTs, built from octic blocks, that are either fully octic equivariant or break equivariance in the last part of the network. Training octic ViTs supervised (DeiT-III) and unsupervised (DINOv2) on ImageNet-1K, we find that they match baseline accuracy while at the same time providing substantial efficiency gains.
♻ ☆ Tree-Structured Parzen Estimator: Understanding Its Algorithm Components and Their Roles for Better Empirical Performance
Recent scientific advances require complex experiment design, necessitating the meticulous tuning of many experiment parameters. Tree-structured Parzen estimator (TPE) is a widely used Bayesian optimization method in recent parameter tuning frameworks such as Hyperopt and Optuna. Despite its popularity, the roles of each control parameter in TPE and the algorithm intuition have not been discussed so far. The goal of this paper is to identify the roles of each control parameter and their impacts on parameter tuning based on the ablation studies using diverse benchmark datasets. The recommended setting concluded from the ablation studies is demonstrated to improve the performance of TPE. Our TPE implementation used in this paper is available at https://github.com/nabenabe0928/tpe/tree/single-opt.
♻ ☆ Medical Question Summarization with Entity-driven Contrastive Learning
By summarizing longer consumer health questions into shorter and essential ones, medical question-answering systems can more accurately understand consumer intentions and retrieve suitable answers. However, medical question summarization is very challenging due to obvious distinctions in health trouble descriptions from patients and doctors. Although deep learning has been applied to successfully address the medical question summarization (MQS) task, two challenges remain: how to correctly capture question focus to model its semantic intention, and how to obtain reliable datasets to fairly evaluate performance. To address these challenges, this paper proposes a novel medical question summarization framework based on entity-driven contrastive learning (ECL). ECL employs medical entities present in frequently asked questions (FAQs) as focuses and devises an effective mechanism to generate hard negative samples. This approach compels models to focus on essential information and consequently generate more accurate question summaries. Furthermore, we have discovered that some MQS datasets, such as the iCliniq dataset with a 33% duplicate rate, have significant data leakage issues. To ensure an impartial evaluation of the related methods, this paper carefully examines leaked samples to reorganize more reasonable datasets. Extensive experiments demonstrate that our ECL method outperforms the existing methods and achieves new state-of-the-art performance, i.e., 52.85, 43.16, 41.31, 43.52 in terms of ROUGE-1 metric on MeQSum, CHQ-Summ, iCliniq, HealthCareMagic dataset, respectively. The code and datasets are available at https://github.com/yrbobo/MQS-ECL.
♻ ☆ Robust LLM Training Infrastructure at ByteDance
The training scale of large language models (LLMs) has reached tens of thousands of GPUs and is still continuously expanding, enabling faster learning of larger models. Accompanying the expansion of the resource scale is the prevalence of failures (CUDA error, NaN values, job hang, etc.), which poses significant challenges to training stability. Any large-scale LLM training infrastructure should strive for minimal training interruption, efficient fault diagnosis, and effective failure tolerance to enable highly efficient continuous training. This paper presents ByteRobust, a large-scale GPU infrastructure management system tailored for robust and stable training of LLMs. It exploits the uniqueness of LLM training process and gives top priorities to detecting and recovering failures in a routine manner. Leveraging parallelisms and characteristics of LLM training, ByteRobust enables high-capacity fault tolerance, prompt fault demarcation, and localization with an effective data-driven approach, comprehensively ensuring continuous and efficient training of LLM tasks. ByteRobust is deployed on a production GPU platform with over 200,000 GPUs and achieves 97% ETTR for a three-month training job on 9,600 GPUs.
♻ ☆ Scalable LLM Math Reasoning Acceleration with Low-rank Distillation
Due to long generations, large language model (LLM) math reasoning demands significant computational resources and time. While many existing efficient inference methods have been developed with excellent performance preservation on language tasks, they often severely degrade math performance. In this paper, we propose Caprese, a resource-efficient distillation method to recover lost capabilities from deploying efficient inference methods, focused primarily in feedforward blocks. With original weights unperturbed, roughly 1% of additional parameters, and only 20K synthetic training samples, we are able to recover much if not all of the math capabilities lost from efficient inference for thinking LLMs and without harm to language tasks for instruct LLMs. Moreover, Caprese slashes the number of active parameters (~2B cut for Gemma 2 9B and Llama 3.1 8B) and integrates cleanly into existing model layers to reduce latency (>16% time-to-next-token reduction) while encouraging response brevity (up to 8.5% fewer tokens).
♻ ☆ GraphCogent: Mitigating LLMs' Working Memory Constraints via Multi-Agent Collaboration in Complex Graph Understanding
Large language models (LLMs) show promising performance on small-scale graph reasoning tasks but fail when handling real-world graphs with complex queries. This phenomenon arises from LLMs' working memory constraints, which result in their inability to retain long-range graph topology over extended contexts while sustaining coherent multi-step reasoning. However, real-world graphs are often structurally complex, such as Web, Transportation, Social, and Citation networks. To address these limitations, we propose GraphCogent, a collaborative agent framework inspired by human Working Memory Model that decomposes graph reasoning into specialized cognitive processes: sense, buffer, and execute. The framework consists of three modules: Sensory Module standardizes diverse graph text representations via subgraph sampling, Buffer Module integrates and indexes graph data across multiple formats, and Execution Module combines tool calling and tool creation for efficient reasoning. We also introduce Graph4real, a comprehensive benchmark that contains four domains of real-world graphs (Web, Transportation, Social, and Citation) to evaluate LLMs' graph reasoning capabilities. Our Graph4real covers 21 different graph reasoning tasks, categorized into three types (Structural Querying, Algorithmic Reasoning, and Predictive Modeling tasks), with graph scales up to 10 times larger than existing benchmarks. Experiments show that Llama3.1-8B based GraphCogent achieves a 50% improvement over massive-scale LLMs like DeepSeek-R1 (671B). Compared to state-of-the-art agent-based baseline, our framework outperforms by 20% in accuracy while reducing token usage by 80% for in-toolset tasks and 30% for out-toolset tasks. Code will be available after review.
♻ ☆ Structured Agent Distillation for Large Language Model
Large language models (LLMs) exhibit strong capabilities as decision-making agents by interleaving reasoning and actions, as seen in ReAct-style frameworks. Yet, their practical deployment is constrained by high inference costs and large model sizes. We propose Structured Agent Distillation, a framework that compresses large LLM-based agents into smaller student models while preserving both reasoning fidelity and action consistency. Unlike standard token-level distillation, our method segments trajectories into {[REASON]} and {[ACT]} spans, applying segment-specific losses to align each component with the teacher's behavior. This structure-aware supervision enables compact agents to better replicate the teacher's decision process. Experiments on ALFWorld, HotPotQA-ReAct, and WebShop show that our approach consistently outperforms token-level and imitation learning baselines, achieving significant compression with minimal performance drop. Scaling and ablation results further highlight the importance of span-level alignment for efficient and deployable agents.
♻ ☆ Value Profiles for Encoding Human Variation EMNLP 2025
Modelling human variation in rating tasks is crucial for personalization, pluralistic model alignment, and computational social science. We propose representing individuals using natural language value profiles -- descriptions of underlying values compressed from in-context demonstrations -- along with a steerable decoder model that estimates individual ratings from a rater representation. To measure the predictive information in a rater representation, we introduce an information-theoretic methodology and find that demonstrations contain the most information, followed by value profiles, then demographics. However, value profiles effectively compress the useful information from demonstrations (>70% information preservation) and offer advantages in terms of scrutability, interpretability, and steerability. Furthermore, clustering value profiles to identify similarly behaving individuals better explains rater variation than the most predictive demographic groupings. Going beyond test set performance, we show that the decoder predictions change in line with semantic profile differences, are well-calibrated, and can help explain instance-level disagreement by simulating an annotator population. These results demonstrate that value profiles offer novel, predictive ways to describe individual variation beyond demographics or group information.
comment: EMNLP 2025
♻ ☆ Incentivizing Reasoning for Advanced Instruction-Following of Large Language Models NeurIPS 2025
Existing large language models (LLMs) face challenges of following complex instructions, especially when multiple constraints are present and organized in paralleling, chaining, and branching structures. One intuitive solution, namely chain-of-thought (CoT), is expected to universally improve capabilities of LLMs. However, we find that the vanilla CoT exerts a negative impact on performance due to its superficial reasoning pattern of simply paraphrasing the instructions. It fails to peel back the compositions of constraints for identifying their relationship across hierarchies of types and dimensions. To this end, we propose RAIF, a systematic method to boost LLMs in dealing with complex instructions via incentivizing reasoning for test-time compute scaling. First, we stem from the decomposition of complex instructions under existing taxonomies and propose a reproducible data acquisition method. Second, we exploit reinforcement learning (RL) with verifiable rule-centric reward signals to cultivate reasoning specifically for instruction following. We address the shallow, non-essential nature of reasoning under complex instructions via sample-wise contrast for superior CoT enforcement. We also exploit behavior cloning of experts to facilitate steady distribution shift from fast-thinking LLMs to skillful reasoners. Extensive evaluations on seven comprehensive benchmarks confirm the validity of the proposed method, where a 1.5B LLM achieves 11.74% gains with performance comparable to a 8B LLM. Evaluation on OOD constraints also confirms the generalizability of our RAIF. Codes and data are available at https://github.com/yuleiqin/RAIF. Keywords: reinforcement learning with verifiable rewards (RLVR), instruction following, complex instructions
comment: Accepted to NeurIPS 2025; 15 pages of main body, 5 tables, 5 figures, 42 pages of appendix
♻ ☆ SelfReflect: Can LLMs Communicate Their Internal Answer Distribution?
The common approach to communicate a large language model's (LLM) uncertainty is to add a percentage number or a hedging word to its response. But is this all we can do? Instead of generating a single answer and then hedging it, an LLM that is fully transparent to the user needs to be able to reflect on its internal belief distribution and output a summary of all options it deems possible, and how likely they are. To test whether LLMs possess this capability, we develop the SelfReflect metric, an information-theoretic distance between a given summary and a distribution over answers. In interventional and human studies, we find that SelfReflect indicates even slight deviations, yielding a fine measure of faithfulness between a summary string and an LLM's actual internal distribution over answers. With SelfReflect, we make a resounding negative observation: modern LLMs are, across the board, incapable of revealing what they are uncertain about, neither through reasoning, nor chains-of-thoughts, nor explicit finetuning. However, we do find that LLMs are able to generate faithful summaries of their uncertainties if we help them by sampling multiple outputs and feeding them back into the context. This simple approach shines a light at the universal way of communicating LLM uncertainties whose future development the SelfReflect score enables.
♻ ☆ Multi Layered Autonomy and AI Ecologies in Robotic Art Installations
This paper presents Symbiosis of Agents, is a large-scale installation by Baoyang Chen (baoyangchen.com), that embeds AI-driven robots in an immersive, mirror-lined arena, probing the tension between machine agency and artistic authorship. Drawing on early cybernetics, rule-based conceptual art, and seminal robotic works, it orchestrates fluid exchanges among robotic arms, quadruped machines, their environment, and the public. A three tier faith system pilots the ecology: micro-level adaptive tactics, meso-level narrative drives, and a macro-level prime directive. This hierarchy lets behaviors evolve organically in response to environmental cues and even a viewer's breath, turning spectators into co-authors of the unfolding drama. Framed by a speculative terraforming scenario that recalls the historical exploitation of marginalized labor, the piece asks who bears responsibility in AI-mediated futures. Choreographed motion, AI-generated scripts, reactive lighting, and drifting fog cast the robots as collaborators rather than tools, forging a living, emergent artwork. Exhibited internationally, Symbiosis of Agents shows how cybernetic feedback, robotic experimentation, and conceptual rule-making can converge to redefine agency, authorship, and ethics in contemporary art.
♻ ☆ AudioTrust: Benchmarking the Multifaceted Trustworthiness of Audio Large Language Models
Audio Large Language Models (ALLMs) have gained widespread adoption, yet their trustworthiness remains underexplored. Existing evaluation frameworks, designed primarily for text, fail to address unique vulnerabilities introduced by audio's acoustic properties. We identify significant trustworthiness risks in ALLMs arising from non-semantic acoustic cues, including timbre, accent, and background noise, which can manipulate model behavior. We propose AudioTrust, a comprehensive framework for systematic evaluation of ALLM trustworthiness across audio-specific risks. AudioTrust encompasses six key dimensions: fairness, hallucination, safety, privacy, robustness, and authentication. The framework implements 26 distinct sub-tasks using a curated dataset of over 4,420 audio samples from real-world scenarios, including daily conversations, emergency calls, and voice assistant interactions. We conduct comprehensive evaluations across 18 experimental configurations using human-validated automated pipelines. Our evaluation of 14 state-of-the-art open-source and closed-source ALLMs reveals significant limitations when confronted with diverse high-risk audio scenarios, providing insights for secure deployment of audio models. Code and data are available at https://github.com/JusperLee/AudioTrust.
comment: Technical Report
♻ ☆ CODA: Repurposing Continuous VAEs for Discrete Tokenization
Discrete visual tokenizers transform images into a sequence of tokens, enabling token-based visual generation akin to language models. However, this process is inherently challenging, as it requires both compressing visual signals into a compact representation and discretizing them into a fixed set of codes. Traditional discrete tokenizers typically learn the two tasks jointly, often leading to unstable training, low codebook utilization, and limited reconstruction quality. In this paper, we introduce \textbf{CODA}(\textbf{CO}ntinuous-to-\textbf{D}iscrete \textbf{A}daptation), a framework that decouples compression and discretization. Instead of training discrete tokenizers from scratch, CODA adapts off-the-shelf continuous VAEs -- already optimized for perceptual compression -- into discrete tokenizers via a carefully designed discretization process. By primarily focusing on discretization, CODA ensures stable and efficient training while retaining the strong visual fidelity of continuous VAEs. Empirically, with $\mathbf{6 \times}$ less training budget than standard VQGAN, our approach achieves a remarkable codebook utilization of 100% and notable reconstruction FID (rFID) of $\mathbf{0.43}$ and $\mathbf{1.34}$ for $8 \times$ and $16 \times$ compression on ImageNet 256$\times$ 256 benchmark.
comment: Project page: https://lzy-tony.github.io/coda
♻ ☆ The DNA of nuclear models: How AI predicts nuclear masses
Obtaining high-precision predictions of nuclear masses, or equivalently nuclear binding energies, $E_b$, remains an important goal in nuclear-physics research. Recently, many AI-based tools have shown promising results on this task, some achieving precision that surpasses the best physics models. However, the utility of these AI models remains in question given that predictions are only useful where measurements do not exist, which inherently requires extrapolation away from the training (and testing) samples. Since AI models are largely black boxes, the reliability of such an extrapolation is difficult to assess. We present an AI model that not only achieves cutting-edge precision for $E_b$, but does so in an interpretable manner. For example, we find that (and explain why) the most important dimensions of its internal representation form a double helix, where the analog of the hydrogen bonds in DNA here link the number of protons and neutrons found in the most stable nucleus of each isotopic chain. Furthermore, we show that the AI prediction of $E_b$ can be factorized and ordered hierarchically, with the most important terms corresponding to well-known symbolic models (such as the famous liquid drop). Remarkably, the improvement of the AI model over symbolic ones can almost entirely be attributed to an observation made by Jaffe in 1969 based on the structure of most known nuclear ground states. The end result is a fully interpretable data-driven model of nuclear masses based on physics deduced by AI.
comment: 19 pages, 11 figures
♻ ☆ Should You Use Your Large Language Model to Explore or Exploit?
We evaluate the ability of the current generation of large language models (LLMs) to help a decision-making agent facing an exploration-exploitation tradeoff. We use LLMs to explore and exploit in silos in various (contextual) bandit tasks. We find that while the current LLMs often struggle to exploit, in-context mitigations may be used to substantially improve performance for small-scale tasks. However even then, LLMs perform worse than a simple linear regression. On the other hand, we find that LLMs do help at exploring large action spaces with inherent semantics, by suggesting suitable candidates to explore.
♻ ☆ Linear Attention for Efficient Bidirectional Sequence Modeling NeurIPS 2025
Linear Transformers and State Space Models have emerged as efficient alternatives to softmax Transformers for causal sequence modeling, enabling parallel training via matrix multiplication and efficient RNN-style inference. However, despite their success in causal tasks, no unified framework exists for applying Linear Transformers to bidirectional sequence modeling. We introduce LION, the first framework to systematically extend Linear Transformers to the bidirectional setting. LION generalizes three core representations commonly used in the causal case - full Linear Attention , bidirectional RNN, and chunkwise parallel form - to the bidirectional setting. These forms are theoretically equivalent and enable models to exploit the strengths of each during training and inference. We prove that a broad class of Linear Transformers can be extended using LION and validate our framework via three core examples based on the choice of decay type: LION-LIT, the bidirectional extension of arXiv:2006.16236; LION-D, based on arXiv:2307.08621; and LION-S, a variant using selective decay arXiv:2103.02143, arXiv:2312.0075. Across standard bidirectional tasks, LION enables models to match or exceed the performance of softmax Transformers, while offering significantly faster training and more efficient inference than existing State Space Models.
comment: Accepted in NeurIPS 2025
♻ ☆ Simple yet Effective Semi-supervised Knowledge Distillation from Vision-Language Models via Dual-Head Optimization
Semi-supervised learning (SSL) has emerged as a practical solution for addressing data scarcity challenges by leveraging unlabeled data. Recently, vision-language models (VLMs), pre-trained on massive image-text pairs, have demonstrated remarkable zero-/few-shot performance that often surpasses SSL approaches due to their exceptional generalization capabilities. This gap motivates us to question: how can we effectively harness the powerful generalization capabilities of VLMs into task-specific models? Knowledge distillation (KD) offers a natural framework for transferring VLM capabilities, but we identify that it suffers from gradient conflicts between supervised and distillation losses. To address this challenge, we propose Dual-Head Optimization (DHO), which introduces dual prediction heads for each distinct signal. We observe that DHO resolves gradient conflicts, enabling improved feature learning compared to single-head KD baselines, with practical benefits of minimal computational overhead and test-time hyperparameter tuning without retraining. Extensive experiments across 15 datasets show that DHO consistently outperforms KD baselines, often outperforming teacher models with smaller student models. DHO also achieves new state-of-the-art performance on both in-distribution ImageNet semi-supervised learning and out-of-distribution generalization across ImageNet variants. We publicly release our code and model checkpoints to facilitate future research at https://github.com/erjui/DHO.
comment: 38 pages, 17 figures, preprint
♻ ☆ Scaling RL to Long Videos NeurIPS 2025
We introduce a full-stack framework that scales up reasoning in vision-language models (VLMs) to long videos, leveraging reinforcement learning. We address the unique challenges of long video reasoning by integrating three critical components: (1) a large-scale dataset, LongVideo-Reason, comprising 104K long video QA pairs with high-quality reasoning annotations across diverse domains such as sports, games, and vlogs; (2) a two-stage training pipeline that extends VLMs with chain-of-thought supervised fine-tuning (CoT-SFT) and reinforcement learning (RL); and (3) a training infrastructure for long video RL, named Multi-modal Reinforcement Sequence Parallelism (MR-SP), which incorporates sequence parallelism and a vLLM-based engine tailored for long video, using cached video embeddings for efficient rollout and prefilling. In our experiments, LongVILA-R1-7B achieves strong performance on video benchmarks, reaching 65.1% and 71.1% accuracy on VideoMME without and with subtitles, respectively, and consistently outperforming LongVILA-7B across multiple benchmarks. Moreover, LongVILA-R1-7B supports processing up to 8,192 video frames per video, and configurable FPS settings. Notably, our MR-SP system achieves up to 2.1x speedup on long video RL training. In addition, we release our training system for public availability that supports RL training on various modalities (video, text, and audio), various models (VILA and Qwen series), and even image and video generation models. On a single A100 node (8 GPUs), it supports RL training on hour-long videos (e.g., 3,600 frames).
comment: Accepted by NeurIPS 2025. Code at https://github.com/NVlabs/Long-RL and model at https://huggingface.co/Efficient-Large-Model/LongVILA-R1-7B
♻ ☆ TensorRL-QAS: Reinforcement learning with tensor networks for improved quantum architecture search NeurIPS 2025
Variational quantum algorithms hold the promise to address meaningful quantum problems already on noisy intermediate-scale quantum hardware. In spite of the promise, they face the challenge of designing quantum circuits that both solve the target problem and comply with device limitations. Quantum architecture search (QAS) automates the design process of quantum circuits, with reinforcement learning (RL) emerging as a promising approach. Yet, RL-based QAS methods encounter significant scalability issues, as computational and training costs grow rapidly with the number of qubits, circuit depth, and hardware noise. To address these challenges, we introduce $\textit{TensorRL-QAS}$, an improved framework that combines tensor network methods with RL for QAS. By warm-starting the QAS with a matrix product state approximation of the target solution, TensorRL-QAS effectively narrows the search space to physically meaningful circuits and accelerates the convergence to the desired solution. Tested on several quantum chemistry problems of up to 12-qubit, TensorRL-QAS achieves up to a 10-fold reduction in CNOT count and circuit depth compared to baseline methods, while maintaining or surpassing chemical accuracy. It reduces classical optimizer function evaluation by up to 100-fold, accelerates training episodes by up to 98$\%$, and can achieve 50$\%$ success probability for 10-qubit systems, far exceeding the $<$1$\%$ rates of baseline. Robustness and versatility are demonstrated both in the noiseless and noisy scenarios, where we report a simulation of an 8-qubit system. Furthermore, TensorRL-QAS demonstrates effectiveness on systems on 20-qubit quantum systems, positioning it as a state-of-the-art quantum circuit discovery framework for near-term hardware and beyond.
comment: Accepted at NeurIPS 2025. Code is at: https://github.com/Aqasch/TensorRL-QAS
♻ ☆ scCDCG: Efficient Deep Structural Clustering for single-cell RNA-seq via Deep Cut-informed Graph Embedding DASFAA 2024
Single-cell RNA sequencing (scRNA-seq) is essential for unraveling cellular heterogeneity and diversity, offering invaluable insights for bioinformatics advancements. Despite its potential, traditional clustering methods in scRNA-seq data analysis often neglect the structural information embedded in gene expression profiles, crucial for understanding cellular correlations and dependencies. Existing strategies, including graph neural networks, face challenges in handling the inefficiency due to scRNA-seq data's intrinsic high-dimension and high-sparsity. Addressing these limitations, we introduce scCDCG (single-cell RNA-seq Clustering via Deep Cut-informed Graph), a novel framework designed for efficient and accurate clustering of scRNA-seq data that simultaneously utilizes intercellular high-order structural information. scCDCG comprises three main components: (i) A graph embedding module utilizing deep cut-informed techniques, which effectively captures intercellular high-order structural information, overcoming the over-smoothing and inefficiency issues prevalent in prior graph neural network methods. (ii) A self-supervised learning module guided by optimal transport, tailored to accommodate the unique complexities of scRNA-seq data, specifically its high-dimension and high-sparsity. (iii) An autoencoder-based feature learning module that simplifies model complexity through effective dimension reduction and feature extraction. Our extensive experiments on 6 datasets demonstrate scCDCG's superior performance and efficiency compared to 7 established models, underscoring scCDCG's potential as a transformative tool in scRNA-seq data analysis. Our code is available at: https://github.com/XPgogogo/scCDCG.
comment: Accepted as a long paper for the research track at DASFAA 2024; Error Correction
♻ ☆ Learning to Generate Unit Test via Adversarial Reinforcement Learning
Unit testing is a core practice in programming, enabling systematic evaluation of programs produced by human developers or large language models (LLMs). Given the challenges in writing comprehensive unit tests, LLMs have been employed to automate test generation, yet methods for training LLMs to produce high-quality tests remain underexplored. In this work, we propose UTRL, a novel reinforcement learning framework that trains an LLM to generate high-quality unit tests given a programming instruction. Our key idea is to iteratively train two LLMs, the unit test generator and the code generator, in an adversarial manner via reinforcement learning. The unit test generator is trained to maximize a discrimination reward, which reflects its ability to produce tests that expose faults in the code generator's solutions, and the code generator is trained to maximize a code reward, which reflects its ability to produce solutions that pass the unit tests generated by the test generator. In our experiments, we demonstrate that unit tests generated by Qwen3-4B trained via UTRL show higher quality compared to unit tests generated by the same model trained via supervised fine-tuning on human-written ground-truth unit tests, yielding code evaluations that more closely align with those induced by the ground-truth tests. Moreover, Qwen3-4B trained with UTRL outperforms frontier models such as GPT-4.1 in generating high-quality unit tests, highlighting the effectiveness of UTRL in training LLMs for this task.
comment: Code is available at: https://github.com/dgjun32/UTRL
♻ ☆ BianCang: A Traditional Chinese Medicine Large Language Model
The surge of large language models (LLMs) has driven significant progress in medical applications, including traditional Chinese medicine (TCM). However, current medical LLMs struggle with TCM diagnosis and syndrome differentiation due to substantial differences between TCM and modern medical theory, and the scarcity of specialized, high-quality corpora. To this end, in this paper we propose BianCang, a TCM-specific LLM, using a two-stage training process that first injects domain-specific knowledge and then aligns it through targeted stimulation to enhance diagnostic and differentiation capabilities. Specifically, we constructed pre-training corpora, instruction-aligned datasets based on real hospital records, and the ChP-TCM dataset derived from the Pharmacopoeia of the People's Republic of China. We compiled extensive TCM and medical corpora for continual pre-training and supervised fine-tuning, building a comprehensive dataset to refine the model's understanding of TCM. Evaluations across 11 test sets involving 31 models and 4 tasks demonstrate the effectiveness of BianCang, offering valuable insights for future research. Code, datasets, and models are available on https://github.com/QLU-NLP/BianCang.
♻ ☆ A physical approach to qualia and the emergence of conscious observers in qualia space
I propose that qualia are physical because they are directly observable, and revisit the contentious link between consciousness and quantum measurements from a new perspective -- one that does not rely on observers or wave function collapse but instead treats physical measurements as fundamental in a sense resonant with Wheeler's it-from-bit. Building on a mathematical definition of measurement space in physics, I reinterpret it as a model of qualia, effectively equating the measurement problem of quantum mechanics with the hard problem of consciousness. The resulting framework falls within panpsychism, and offers potential solutions to the combination problem. Moreover, some of the mathematical structure of measurement spaces, taken for granted in physics, needs justification for qualia, suggesting that the apparent solidity of physical reality is deeply rooted in how humans process information.
comment: V2 is a thorough revision of V1
♻ ☆ Value-Guided Search for Efficient Chain-of-Thought Reasoning NeurIPS 2025
In this paper, we propose a simple and efficient method for value model training on long-context reasoning traces. Compared to existing process reward models (PRMs), our method does not require a fine-grained notion of "step," which is difficult to define for long-context reasoning models. By collecting a dataset of 2.5 million reasoning traces, we train a 1.5B token-level value model and apply it to DeepSeek models for improved performance with test-time compute scaling. We find that block-wise value-guided search (VGS) with a final weighted majority vote achieves better test-time scaling than standard methods such as majority voting or best-of-n. Moreover, VGS significantly reduces the inference FLOPs required to achieve the same performance of majority voting. Our dataset, model and codebase are open-sourced.
comment: NeurIPS 2025
♻ ☆ Preemptive Detection and Correction of Misaligned Actions in LLM Agents EMNLP 2025
Deploying LLM-based agents in real-life applications often faces a critical challenge: the misalignment between agents' behavior and user intent. Such misalignment may lead agents to unintentionally execute critical actions that carry negative outcomes (e.g., accidentally triggering a "buy-now" in web shopping), resulting in undesirable or even irreversible consequences. Although addressing these issues is crucial, the preemptive detection and correction of misaligned actions remains relatively underexplored. To fill this gap, we introduce InferAct, a novel approach that leverages the belief reasoning ability of LLMs, grounded in Theory-of-Mind, to detect misaligned actions before execution. Once the misalignment is detected, InferAct alerts users for timely correction, preventing adverse outcomes and enhancing the reliability of LLM agents' decision-making processes. Experiments on three widely used tasks demonstrate that InferAct achieves up to 20% improvements on Marco-F1 against baselines in misaligned action detection. An in-depth evaluation of misalignment correction further highlights InferAct's effectiveness in improving agent alignment.
comment: Accepted by EMNLP 2025
♻ ☆ LiDAR-BIND-T: Improved and Temporally Consistent Sensor Modality Translation and Fusion for Robotic Applications
This paper extends LiDAR-BIND, a modular multi-modal fusion framework that binds heterogeneous sensors (radar, sonar) to a LiDAR-defined latent space, with mechanisms that explicitly enforce temporal consistency. We introduce three contributions: (i) temporal embedding similarity that aligns consecutive latent representations, (ii) a motion-aligned transformation loss that matches displacement between predictions and ground truth LiDAR, and (iii) windowed temporal fusion using a specialised temporal module. We further update the model architecture to better preserve spatial structure. Evaluations on radar/sonar-to-LiDAR translation demonstrate improved temporal and spatial coherence, yielding lower absolute trajectory error and better occupancy map accuracy in Cartographer-based SLAM (Simultaneous Localisation and Mapping). We propose different metrics based on the Fr\'echet Video Motion Distance (FVMD) and a correlation-peak distance metric providing practical temporal quality indicators to evaluate SLAM performance. The proposed temporal LiDAR-BIND, or LiDAR-BIND-T, maintains modular modality fusion while substantially enhancing temporal stability, resulting in improved robustness and performance for downstream SLAM.
♻ ☆ LLM Agents for Interactive Exploration of Historical Cadastre Data: Framework and Application to Venice
Cadastral data reveal key information about the historical organization of cities but are often non-standardized due to diverse formats and human annotations, complicating large-scale analysis. We explore as a case study Venice's urban history during the critical period from 1740 to 1808, capturing the transition following the fall of the ancient Republic and the Ancien R\'egime. This era's complex cadastral data, marked by its volume and lack of uniform structure, presents unique challenges that our approach adeptly navigates, enabling us to generate spatial queries that bridge past and present urban landscapes. We present a text-to-programs framework that leverages Large Language Models (\llms) to process natural language queries as executable code for analyzing historical cadastral records. Our methodology implements two complementary techniques: a SQL agent for handling structured queries about specific cadastral information, and a coding agent for complex analytical operations requiring custom data manipulation. We propose a taxonomy that classifies historical research questions based on their complexity and analytical requirements, mapping them to the most appropriate technical approach. This framework is supported by an investigation into the execution consistency of the system, alongside a qualitative analysis of the answers it produces. By ensuring interpretability and minimizing hallucination through verifiable program outputs, we demonstrate the system's effectiveness in reconstructing past population information, property features, and spatiotemporal comparisons in Venice.
comment: Accepted in Cambridge press - Computational Humanities Research 2025
♻ ☆ Voting or Consensus? Decision-Making in Multi-Agent Debate ACL2025
Much of the success of multi-agent debates depends on carefully choosing the right parameters. The decision-making protocol stands out as it can highly impact final model answers, depending on how decisions are reached. Systematic comparison of decision protocols is difficult because many studies alter multiple discussion parameters beyond the protocol. So far, it has been largely unknown how decision-making influences different tasks. This work systematically evaluates the impact of seven decision protocols (e.g., majority voting, unanimity consensus). We change only one variable at a time - the decision protocol - to analyze how different methods affect the collaboration between agents and measure differences in knowledge and reasoning tasks. Our results show that voting protocols improve performance by 13.2% in reasoning tasks and consensus protocols by 2.8% in knowledge tasks compared to other decision protocols. Increasing the number of agents improves performance, while more discussion rounds before voting reduce it. To improve decision-making by increasing answer diversity, we propose two new methods, All-Agents Drafting (AAD) and Collective Improvement (CI). Our methods improve task performance by up to 3.3% with AAD and up to 7.4% with CI. This work demonstrates the importance of decision-making in multi-agent debates beyond scaling.
comment: Accepted at ACL2025 (Findings)
♻ ☆ Sequence Pathfinder for Multi-Agent Pickup and Delivery in the Warehouse
Multi-Agent Pickup and Delivery (MAPD) is a challenging extension of Multi-Agent Path Finding (MAPF), where agents are required to sequentially complete tasks with fixed-location pickup and delivery demands. Although learning-based methods have made progress in MAPD, they often perform poorly in warehouse-like environments with narrow pathways and long corridors when relying only on local observations for distributed decision-making. Communication learning can alleviate the lack of global information but introduce high computational complexity due to point-to-point communication. To address this challenge, we formulate MAPF as a sequence modeling problem and prove that path-finding policies under sequence modeling possess order-invariant optimality, ensuring its effectiveness in MAPD. Building on this, we propose the Sequential Pathfinder (SePar), which leverages the Transformer paradigm to achieve implicit information exchange, reducing decision-making complexity from exponential to linear while maintaining efficiency and global awareness. Experiments demonstrate that SePar consistently outperforms existing learning-based methods across various MAPF tasks and their variants, and generalizes well to unseen environments. Furthermore, we highlight the necessity of integrating imitation learning in complex maps like warehouses.
comment: Preprint Under Review
♻ ☆ Multi-Robot Task Planning for Multi-Object Retrieval Tasks with Distributed On-Site Knowledge via Large Language Models
It is crucial to efficiently execute instructions such as "Find an apple and a banana" or "Get ready for a field trip," which require searching for multiple objects or understanding context-dependent commands. This study addresses the challenging problem of determining which robot should be assigned to which part of a task when each robot possesses different situational on-site knowledge-specifically, spatial concepts learned from the area designated to it by the user. We propose a task planning framework that leverages large language models (LLMs) and spatial concepts to decompose natural language instructions into subtasks and allocate them to multiple robots. We designed a novel few-shot prompting strategy that enables LLMs to infer required objects from ambiguous commands and decompose them into appropriate subtasks. In our experiments, the proposed method achieved 47/50 successful assignments, outperforming random (28/50) and commonsense-based assignment (26/50). Furthermore, we conducted qualitative evaluations using two actual mobile manipulators. The results demonstrated that our framework could handle instructions, including those involving ad hoc categories such as "Get ready for a field trip," by successfully performing task decomposition, assignment, sequential planning, and execution.
comment: Submitted to AROB-ISBC 2026 (Journal Track option)
♻ ☆ U-Mamba2-SSL for Semi-Supervised Tooth and Pulp Segmentation in CBCT MICCAI 2025
Accurate segmentation of teeth and pulp in Cone-Beam Computed Tomography (CBCT) is vital for clinical applications like treatment planning and diagnosis. However, this process requires extensive expertise and is exceptionally time-consuming, highlighting the critical need for automated algorithms that can effectively utilize unlabeled data. In this paper, we propose U-Mamba2-SSL, a novel semi-supervised learning framework that builds on the U-Mamba2 model and employs a multi-stage training strategy. The framework first pre-trains U-Mamba2 in a self-supervised manner using a disruptive autoencoder. It then leverages unlabeled data through consistency regularization, where we introduce input and feature perturbations to ensure stable model outputs. Finally, a pseudo-labeling strategy is implemented with a reduced loss weighting to minimize the impact of potential errors. U-Mamba2-SSL achieved an average score of 0.789 and a DSC of 0.917 on the hidden test set, achieving first place in Task 1 of the STSR 2025 challenge. The code is available at https://github.com/zhiqin1998/UMamba2.
comment: First place solution in Task 1 of the STSR 2025 challenge, MICCAI 2025
♻ ☆ U-Mamba2: Scaling State Space Models for Dental Anatomy Segmentation in CBCT MICCAI 2025
Cone-Beam Computed Tomography (CBCT) is a widely used 3D imaging technique in dentistry, providing volumetric information about the anatomical structures of jaws and teeth. Accurate segmentation of these anatomies is critical for clinical applications such as diagnosis and surgical planning, but remains time-consuming and challenging. In this paper, we present U-Mamba2, a new neural network architecture designed for multi-anatomy CBCT segmentation in the context of the ToothFairy3 challenge. U-Mamba2 integrates the Mamba2 state space models into the U-Net architecture, enforcing stronger structural constraints for higher efficiency without compromising performance. In addition, we integrate interactive click prompts with cross-attention blocks, pre-train U-Mamba2 using self-supervised learning, and incorporate dental domain knowledge into the model design to address key challenges of dental anatomy segmentation in CBCT. Extensive experiments, including independent tests, demonstrate that U-Mamba2 is both effective and efficient, securing first place in both tasks of the Toothfairy3 challenge. In Task 1, U-Mamba2 achieved a mean Dice of 0.84, HD95 of 38.17 with the held-out test data, with an average inference time of 40.58s. In Task 2, U-Mamba2 achieved the mean Dice of 0.87 and HD95 of 2.15 with the held-out test data. The code is publicly available at https://github.com/zhiqin1998/UMamba2.
comment: First place solution for both tasks of the ToothFairy3 challenge, MICCAI 2025
♻ ☆ Efficient Context Selection for Long-Context QA: No Tuning, No Iteration, Just Adaptive-$k$ EMNLP 2025
Retrieval-augmented generation (RAG) and long-context language models (LCLMs) both address context limitations of LLMs in open-domain question answering (QA). However, optimal external context to retrieve remains an open problem: fixing the retrieval size risks either wasting tokens or omitting key evidence. Existing adaptive methods like Self-RAG and Self-Route rely on iterative LLM prompting and perform well on factoid QA, but struggle with aggregation QA, where the optimal context size is both unknown and variable. We present Adaptive-$k$ retrieval, a simple and effective single-pass method that adaptively selects the number of passages based on the distribution of the similarity scores between the query and the candidate passages. It does not require model fine-tuning, extra LLM inferences or changes to existing retriever-reader pipelines. On both factoid and aggregation QA benchmarks, Adaptive-$k$ matches or outperforms fixed-$k$ baselines while using up to 10x fewer tokens than full-context input, yet still retrieves 70% of relevant passages. It improves accuracy across five LCLMs and two embedding models, highlighting that dynamically adjusting context size leads to more efficient and accurate QA.
comment: 26 pages, 16 tables, 5 figures. Accepted at EMNLP 2025 (Main)
♻ ☆ Communications to Circulations: 3D Wind Field Retrieval and Real-Time Prediction Using 5G GNSS Signals and Deep Learning
Accurate atmospheric wind field information is crucial for various applications, including weather forecasting, aviation safety, and disaster risk reduction. However, obtaining high spatiotemporal resolution wind data remains challenging due to limitations in traditional in-situ observations and remote sensing techniques, as well as the computational expense and biases of numerical weather prediction (NWP) models. This paper introduces G-WindCast, a novel deep learning framework that leverages signal strength variations from 5G Global Navigation Satellite System (GNSS) signals to retrieve and forecast three-dimensional (3D) atmospheric wind fields. The framework utilizes Forward Neural Networks (FNN) and Transformer networks to capture complex, nonlinear, and spatiotemporal relationships between GNSS-derived features and wind dynamics. Our preliminary results demonstrate promising accuracy in both wind retrieval and short-term wind forecasting (up to 30 minutes lead time), with skill scores comparable to high-resolution NWP outputs in certain scenarios. The model exhibits robustness across different forecast horizons and pressure levels, and its predictions for wind speed and direction show superior agreement with observations compared to concurrent ERA5 reanalysis data. Furthermore, we show that the system can maintain excellent performance for localized forecasting even with a significantly reduced number of GNSS stations (e.g., around 100), highlighting its cost-effectiveness and scalability. This interdisciplinary approach underscores the transformative potential of exploiting non-traditional data sources and deep learning for advanced environmental monitoring and real-time atmospheric applications.
comment: 10 pages, 5 figures. Minor text revisions; updated author list to reflect contributions
♻ ☆ Towards Reasoning Ability of Small Language Models EMNLP 2025
Reasoning has long been viewed as an emergent property of large language models (LLMs). However, recent studies challenge this assumption, showing that small language models (SLMs) can also achieve competitive reasoning performance. This paper introduces ThinkSLM, the first extensive benchmark to systematically evaluate and study the reasoning abilities of SLMs trained from scratch or derived from LLMs through quantization, pruning, and distillation. We first establish a reliable evaluation criterion comparing available methods and LLM judges against our human evaluations. Then we present a study evaluating 72 diverse SLMs from six major model families across 17 reasoning benchmarks. We repeat all our experiments three times to ensure a robust assessment. Our findings show that: 1) reasoning ability in SLMs is strongly influenced by training methods and data quality rather than solely model scale; 2) quantization preserves reasoning capability, while pruning significantly disrupts it; 3) larger models consistently exhibit higher robustness against adversarial perturbations and intermediate reasoning, but certain smaller models closely match or exceed the larger models' performance. Our findings challenge the assumption that scaling is the only way to achieve strong reasoning. Instead, we foresee a future where SLMs with strong reasoning capabilities can be developed through structured training or post-training compression. Our ThinkSLM Leaderboard is publicly available at: https://ctrl-gaurav.github.io/thinkslm.github.io/
comment: Accepted to EMNLP 2025 Main Conference
♻ ☆ Solving the Cold Start Problem on One's Own as an End User via Preference Transfer
We propose a new approach that enables end users to directly solve the cold start problem by themselves. The cold start problem is a common issue in recommender systems, and many methods have been proposed to address the problem on the service provider's side. However, when the service provider does not take action, users are left with poor recommendations and no means to improve their experience. We propose an algorithm, Pretender, that allows end users to proactively solve the cold start problem on their own. Pretender does not require any special support from the service provider and can be deployed independently by users. We formulate the problem as minimizing the distance between the source and target distributions and optimize item selection from the target service accordingly. Furthermore, we establish theoretical guarantees for Pretender based on a discrete quadrature problem. We conduct experiments on real-world datasets to demonstrate the effectiveness of Pretender.
comment: TMLR 2025
♻ ☆ SoMi-ToM: Evaluating Multi-Perspective Theory of Mind in Embodied Social Interactions
Humans continuously infer the states, goals, and behaviors of others by perceiving their surroundings in dynamic, real-world social interactions. However, most Theory of Mind (ToM) benchmarks only evaluate static, text-based scenarios, which have a significant gap compared to real interactions. We propose the SoMi-ToM benchmark, designed to evaluate multi-perspective ToM in embodied multi-agent complex social interactions. This benchmark is based on rich multimodal interaction data generated by the interaction environment SoMi, covering diverse crafting goals and social relationships. Our framework supports multi-level evaluation: (1) first-person evaluation provides multimodal (visual, dialogue, action, etc.) input from a first-person perspective during a task for real-time state inference, (2) third-person evaluation provides complete third-person perspective video and text records after a task for goal and behavior inference. This evaluation method allows for a more comprehensive examination of a model's ToM capabilities from both the subjective immediate experience and the objective global observation. We constructed a challenging dataset containing 35 third-person perspective videos, 363 first-person perspective images, and 1225 expert-annotated multiple-choice questions (three options). On this dataset, we systematically evaluated the performance of human subjects and several state-of-the-art large vision-language models (LVLMs). The results show that LVLMs perform significantly worse than humans on SoMi-ToM: the average accuracy gap between humans and models is 40.1% in first-person evaluation and 26.4% in third-person evaluation. This indicates that future LVLMs need to further improve their ToM capabilities in embodied, complex social interactions.
comment: 24 pages, 6 figures
♻ ☆ DEBATE, TRAIN, EVOLVE: Self Evolution of Language Model Reasoning EMNLP 2025
Large language models (LLMs) have improved significantly in their reasoning through extensive training on massive datasets. However, relying solely on additional data for improvement is becoming increasingly impractical, highlighting the need for models to autonomously enhance their reasoning without external supervision. In this paper, we propose Debate, Train, Evolve (DTE), a novel ground truth-free training framework that uses multi-agent debate traces to evolve a single language model. We also introduce a new prompting strategy Reflect-Critique-Refine, to improve debate quality by explicitly instructing agents to critique and refine their reasoning. Extensive evaluations on seven reasoning benchmarks with six open-weight models show that our DTE framework achieve substantial improvements, with an average accuracy gain of 8.92% on the challenging GSM-PLUS dataset. Furthermore, we observe strong cross-domain generalization, with an average accuracy gain of 5.8% on all other benchmarks, suggesting that our method captures general reasoning capabilities. Our framework code and trained models are publicly available at https://github.com/ctrl-gaurav/Debate-Train-Evolve
comment: Accepted to EMNLP 2025 Main Conference
♻ ☆ Rethinking Diffusion Model in High Dimension
Curse of Dimensionality is an unavoidable challenge in statistical probability models, yet diffusion models seem to overcome this limitation, achieving impressive results in high-dimensional data generation. Diffusion models assume that they can learn the statistical quantities of the underlying probability distribution, enabling sampling from this distribution to generate realistic samples. But is this really how they work? We argue not, based on the following observations: 1) In high-dimensional sparse scenarios, the fitting target of the diffusion model's objective function degrades from a weighted sum of multiple samples to a single sample, which we believe hinders the model's ability to effectively learn essential statistical quantities such as posterior, score, or velocity field. 2) Most inference methods can be unified within a simple framework which involves no statistical concepts, aligns with the degraded objective function, and provides an novel and intuitive perspective on the inference process.
♻ ☆ Predicting LLM Reasoning Performance with Small Proxy Model
Given the prohibitive cost of pre-training large language models, it is essential to leverage smaller proxy models to optimize datasets before scaling up. However, this approach becomes challenging for reasoning capabilities, which exhibit emergent behavior that only appear reliably at larger model sizes, often exceeding 7B parameters. To address this, we introduce rBridge, showing that small proxies ($\leq$1B) can effectively predict large-model reasoning by aligning more closely with (1) the pre-training objective and (2) the target task. rBridge achieves this by weighting negative log-likelihood with task alignment, using reasoning traces from frontier models as gold labels. In our experiments, rBridge (i) reduces dataset ranking costs by over 100x relative to the best baseline, (ii) achieves the strongest correlation across six reasoning benchmarks at 1B to 32B scale, and (iii) zero-shot transfers predictive relationships across pre-training datasets at 1B to 7B scale. These findings indicate that rBridge offers a practical path for exploring reasoning-oriented pre-training at lower cost.
comment: Pre-print
♻ ☆ Risk Profiling and Modulation for LLMs
Large language models (LLMs) are increasingly used for decision-making tasks under uncertainty; however, their risk profiles and how they are influenced by prompting and alignment methods remain underexplored. Existing studies have primarily examined personality prompting or multi-agent interactions, leaving open the question of how post-training influences the risk behavior of LLMs. In this work, we propose a new pipeline for eliciting, steering, and modulating LLMs' risk profiles, drawing on tools from behavioral economics and finance. Using utility-theoretic models, we compare pre-trained, instruction-tuned, and RLHF-aligned LLMs, and find that while instruction-tuned models exhibit behaviors consistent with some standard utility formulations, pre-trained and RLHF-aligned models deviate more from any utility models fitted. We further evaluate modulation strategies, including prompt engineering, in-context learning, and post-training, and show that post-training provides the most stable and effective modulation of risk preference. Our findings provide insights into the risk profiles of different classes and stages of LLMs and demonstrate how post-training modulates these profiles, laying the groundwork for future research on behavioral alignment and risk-aware LLM design.
♻ ☆ InfiAgent: Self-Evolving Pyramid Agent Framework for Infinite Scenarios ICLR 2026
Large Language Model (LLM) agents have demonstrated remarkable capabilities in organizing and executing complex tasks, and many such agents are now widely used in various application scenarios. However, developing these agents requires carefully designed workflows, carefully crafted prompts, and iterative tuning, which requires LLM techniques and domain-specific expertise. These hand-crafted limitations hinder the scalability and cost-effectiveness of LLM agents across a wide range of industries. To address these challenges, we propose \textbf{InfiAgent}, a Pyramid-like DAG-based Multi-Agent Framework that can be applied to \textbf{infi}nite scenarios, which introduces several key innovations: a generalized "agent-as-a-tool" mechanism that automatically decomposes complex agents into hierarchical multi-agent systems; a dual-audit mechanism that ensures the quality and stability of task completion; an agent routing function that enables efficient task-agent matching; and an agent self-evolution mechanism that autonomously restructures the agent DAG based on new tasks, poor performance, or optimization opportunities. Furthermore, InfiAgent's atomic task design supports agent parallelism, significantly improving execution efficiency. This framework evolves into a versatile pyramid-like multi-agent system capable of solving a wide range of problems. Evaluations on multiple benchmarks demonstrate that InfiAgent achieves 9.9\% higher performance compared to ADAS (similar auto-generated agent framework), while a case study of the AI research assistant InfiHelper shows that it generates scientific papers that have received recognition from human reviewers at top-tier IEEE conferences.
comment: 9 pages of main content and 32 pages of others, 2 figures, under review as a conference paper at ICLR 2026
♻ ☆ Linguistic and Embedding-Based Profiling of Texts generated by Humans and Large Language Models
The rapid advancements in large language models (LLMs) have significantly improved their ability to generate natural language, making texts generated by LLMs increasingly indistinguishable from human-written texts. While recent research has primarily focused on using LLMs to classify text as either human-written or machine-generated texts, our study focuses on characterizing these texts using a set of linguistic features across different linguistic levels such as morphology, syntax, and semantics. We select a dataset of human-written and machine-generated texts spanning 8 domains and produced by 11 different LLMs. We calculate different linguistic features such as dependency length and emotionality, and we use them for characterizing human-written and machine-generated texts along with different sampling strategies, repetition controls, and model release dates. Our statistical analysis reveals that human-written texts tend to exhibit simpler syntactic structures and more diverse semantic content. Furthermore, we calculate the variability of our set of features across models and domains. Both human- and machine-generated texts show stylistic diversity across domains, with human-written texts displaying greater variation in our features. Finally, we apply style embeddings to further test variability among human-written and machine-generated texts. Notably, newer models output text that is similarly variable, pointing to a homogenization of machine-generated texts.
comment: arXiv admin note: text overlap with arXiv:2412.03025
♻ ☆ Silent Leaks: Implicit Knowledge Extraction Attack on RAG Systems through Benign Queries
Retrieval-Augmented Generation (RAG) systems enhance large language models (LLMs) by incorporating external knowledge bases, but this may expose them to extraction attacks, leading to potential copyright and privacy risks. However, existing extraction methods typically rely on malicious inputs such as prompt injection or jailbreaking, making them easily detectable via input- or output-level detection. In this paper, we introduce Implicit Knowledge Extraction Attack (IKEA), which conducts Knowledge Extraction on RAG systems through benign queries. Specifically, IKEA first leverages anchor concepts-keywords related to internal knowledge-to generate queries with a natural appearance, and then designs two mechanisms that lead anchor concepts to thoroughly "explore" the RAG's knowledge: (1) Experience Reflection Sampling, which samples anchor concepts based on past query-response histories, ensuring their relevance to the topic; (2) Trust Region Directed Mutation, which iteratively mutates anchor concepts under similarity constraints to further exploit the embedding space. Extensive experiments demonstrate IKEA's effectiveness under various defenses, surpassing baselines by over 80% in extraction efficiency and 90% in attack success rate. Moreover, the substitute RAG system built from IKEA's extractions shows comparable performance to the original RAG and outperforms those based on baselines across multiple evaluation tasks, underscoring the stealthy copyright infringement risk in RAG systems.
♻ ☆ Dynamic Pricing in High-Speed Railways Using Multi-Agent Reinforcement Learning
This paper addresses a critical challenge in the high-speed passenger railway industry: designing effective dynamic pricing strategies in the context of competing and cooperating operators. To address this, a multi-agent reinforcement learning (MARL) framework based on a non-zero-sum Markov game is proposed, incorporating random utility models to capture passenger decision making. Unlike prior studies in areas such as energy, airlines, and mobile networks, dynamic pricing for railway systems using deep reinforcement learning has received limited attention. A key contribution of this paper is a parametrisable and versatile reinforcement learning simulator designed to model a variety of railway network configurations and demand patterns while enabling realistic, microscopic modelling of user behaviour, called RailPricing-RL. This environment supports the proposed MARL framework, which models heterogeneous agents competing to maximise individual profits while fostering cooperative behaviour to synchronise connecting services. Experimental results validate the framework, demonstrating how user preferences affect MARL performance and how pricing policies influence passenger choices, utility, and overall system dynamics. This study provides a foundation for advancing dynamic pricing strategies in railway systems, aligning profitability with system-wide efficiency, and supporting future research on optimising pricing policies.
comment: 39 pages, 5 figures
♻ ☆ Ban&Pick: Ehancing Performance and Efficiency of MoE-LLMs via Smarter Routing
Sparse Mixture-of-Experts (MoE) has become a key architecture for scaling large language models (LLMs) efficiently. Recent fine-grained MoE designs introduce hundreds of experts per layer, with multiple experts activated per token, enabling stronger specialization. However, during pre-training, routers are optimized mainly for stability and robustness: they converge prematurely and enforce balanced usage, limiting the full potential of model performance and efficiency at inference. In this work, we uncover two overlooked issues: (i) a few highly influential experts are underutilized due to premature and balanced routing decisions; and (ii) enforcing a fixed number of active experts per token introduces substantial redundancy. Instead of retraining models or redesigning MoE architectures, we introduce Ban&Pick, a post-training, plug-and-play strategy for smarter routing. Pick discovers and reinforces key experts-a small group with outsized impact on performance-leading to notable accuracy gains across domains. Ban further dynamically prunes redundant experts based on layer and token sensitivity, delivering faster inference with minimal accuracy loss. Experiments on fine-grained MoE-LLMs (DeepSeek, Qwen3) across math, code, and general reasoning benchmarks demonstrate that Ban\&Pick delivers free performance gains and inference acceleration without retraining or architectural changes. For instance, on Qwen3-30B-A3B, it improves accuracy from 80.67 to 84.66 on AIME2024 and from 65.66 to 68.18 on GPQA-Diamond, while accelerating inference by 1.25x under the vLLM.
comment: 21 pages, 9 figures
♻ ☆ Static Word Embeddings for Sentence Semantic Representation EMNLP 2025
We propose new static word embeddings optimised for sentence semantic representation. We first extract word embeddings from a pre-trained Sentence Transformer, and improve them with sentence-level principal component analysis, followed by either knowledge distillation or contrastive learning. During inference, we represent sentences by simply averaging word embeddings, which requires little computational cost. We evaluate models on both monolingual and cross-lingual tasks and show that our model substantially outperforms existing static models on sentence semantic tasks, and even surpasses a basic Sentence Transformer model (SimCSE) on a text embedding benchmark. Lastly, we perform a variety of analyses and show that our method successfully removes word embedding components that are not highly relevant to sentence semantics, and adjusts the vector norms based on the influence of words on sentence semantics.
comment: 17 pages; accepted to the Main Conference of EMNLP 2025
♻ ☆ A Meta-Analysis of LLM Effects on Students across Qualification, Socialisation, and Subjectification
Large language models (LLMs) are increasingly positioned as solutions for education, yet evaluations often reduce their impact to narrow performance metrics. This paper reframes the question by asking "what kind of impact should LLMs have in education?" Drawing on Biesta's tripartite account of good education: qualification, socialisation, and subjectification, we present a meta-analysis of 133 experimental and quasi-experimental studies (k = 188). Overall, the impact of LLMs on student learning is positive but uneven. Strong effects emerge in qualification, particularly when LLMs function as tutors in sustained interventions. Socialisation outcomes appear more variable, concentrated in sustained, reflective interventions. Subjectification, linked to autonomy and learner development, remains fragile, with improvements confined to small-scale, long-term studies. This purpose-level view highlights design as the decisive factor: without scaffolds for participation and agency, LLMs privilege what is easiest to measure while neglecting broader aims of education. For HCI and education, the issue is not just whether LLMs work, but what futures they enable or foreclose.
♻ ☆ LFTR: Learning-Free Token Reduction for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have demonstrated exceptional success in various multimodal tasks, yet their deployment is frequently limited by substantial computational demands and prolonged inference times. Given that the vision modality typically contains more comprehensive information than the text modality, resulting in encoded representations comprising an extensive number of tokens, leading to significant computational overhead due to the quadratic complexity of the attention mechanism. Current token reduction methods are typically restricted to specific model architectures and often necessitate extensive retraining or fine-tuning, restricting their applicability to many state-of-the-art models. In this paper, we introduce a learning-free token reduction (LFTR) method designed for MLLMs. LFTR can be seamlessly integrated into most open-source MLLM architectures without requiring additional fine-tuning. By capitalizing on the redundancy in visual representations, our approach effectively reduces tokens while preserving the general inference performance of MLLMs. We conduct experiments on multiple MLLM architectures (LLaVA, MiniGPT, QwenVL), and our results show that LFTR achieves up to a $16\times$ reduction of visual tokens while maintaining or even enhancing performance on mainstream vision question-answering benchmarks, all in a learning-free setting. Additionally, LFTR is complementary to other acceleration techniques, such as vision encoder compression and post-training quantization, further promoting the efficient deployment of MLLMs. Our project is available at https://anonymous.4open.science/r/LFTR-AAAI-0528.
♻ ☆ A space-decoupling framework for optimization on bounded-rank matrices with orthogonally invariant constraints
Imposing additional constraints on low-rank optimization has garnered growing interest. However, the geometry of coupled constraints hampers the well-developed low-rank structure and makes the problem intricate. To this end, we propose a space-decoupling framework for optimization on bounded-rank matrices with orthogonally invariant constraints. The "space-decoupling" is reflected in several ways. We show that the tangent cone of coupled constraints is the intersection of tangent cones of each constraint. Moreover, we decouple the intertwined bounded-rank and orthogonally invariant constraints into two spaces, leading to optimization on a smooth manifold. Implementing Riemannian algorithms on this manifold is painless as long as the geometry of additional constraints is known. In addition, we unveil the equivalence between the reformulated problem and the original problem. Numerical experiments on real-world applications -- spherical data fitting, graph similarity measuring, low-rank SDP, model reduction of Markov processes, reinforcement learning, and deep learning -- validate the superiority of the proposed framework.
comment: 50 pages, 12 figures, 6 tables
♻ ☆ Stochastic Layer-wise Learning: Scalable and Efficient Alternative to Backpropagation
Backpropagation underpins modern deep learning, yet its reliance on global gradient synchronization limits scalability and incurs high memory costs. In contrast, fully local learning rules are more efficient but often struggle to maintain the cross-layer coordination needed for coherent global learning. Building on this tension, we introduce Stochastic Layer-wise Learning (SLL), a layer-wise training algorithm that decomposes the global objective into coordinated layer-local updates while preserving global representational coherence. The method is ELBO-inspired under a Markov assumption on the network, where the network-level objective decomposes into layer-wise terms and each layer optimizes a local objective via a deterministic encoder. The intractable KL in ELBO is replaced by a Bhattacharyya surrogate computed on auxiliary categorical posteriors obtained via fixed geometry-preserving random projections, with optional multiplicative dropout providing stochastic regularization. SLL optimizes locally, aligns globally, thereby eliminating cross-layer backpropagation. Experiments on MLPs, CNNs, and Vision Transformers from MNIST to ImageNet show that the approach surpasses recent local methods and matches global BP performance while memory usage invariant with depth. The results demonstrate a practical and principled path to modular and scalable local learning that couples purely local computation with globally coherent representations.
comment: 11 pages, 5 figures
♻ ☆ On the Effectiveness of Methods and Metrics for Explainable AI in Remote Sensing Image Scene Classification
The development of explainable artificial intelligence (xAI) methods for scene classification problems has attracted great attention in remote sensing (RS). Most xAI methods and the related evaluation metrics in RS are initially developed for natural images considered in computer vision (CV), and their direct usage in RS may not be suitable. To address this issue, in this paper, we investigate the effectiveness of explanation methods and metrics in the context of RS image scene classification. In detail, we methodologically and experimentally analyze ten explanation metrics spanning five categories (faithfulness, robustness, localization, complexity, randomization), applied to five established feature attribution methods (Occlusion, LIME, GradCAM, LRP, and DeepLIFT) across three RS datasets. Our methodological analysis identifies key limitations in both explanation methods and metrics. The performance of perturbation-based methods, such as Occlusion and LIME, heavily depends on perturbation baselines and spatial characteristics of RS scenes. Gradient-based approaches like GradCAM struggle when multiple labels are present in the same image, while some relevance propagation methods (LRP) can distribute relevance disproportionately relative to the spatial extent of classes. Analogously, we find limitations in evaluation metrics. Faithfulness metrics share the same problems as perturbation-based methods. Localization metrics and complexity metrics are unreliable for classes with a large spatial extent. In contrast, robustness metrics and randomization metrics consistently exhibit greater stability. Our experimental results support these methodological findings. Based on our analysis, we provide guidelines for selecting explanation methods, metrics, and hyperparameters in the context of RS image scene classification.
comment: The code of this work will be publicly available at https://git.tu-berlin.de/rsim/xai4rs
♻ ☆ Accurate Predictions in Education with Discrete Variational Inference
One of the largest drivers of social inequality is unequal access to personal tutoring, with wealthier individuals able to afford it, while the majority cannot. Affordable, effective AI tutors offer a scalable solution. We focus on adaptive learning, predicting whether a student will answer a question correctly, a key component of any effective tutoring system. Yet many platforms struggle to achieve high prediction accuracy, especially in data-sparse settings. To address this, we release the largest open dataset of professionally marked formal mathematics exam responses to date. We introduce a probabilistic modelling framework rooted in Item Response Theory (IRT) that achieves over 80 percent accuracy, setting a new benchmark for mathematics prediction accuracy of formal exam papers. Extending this, our collaborative filtering models incorporate topic-level skill profiles, but reveal a surprising and educationally significant finding, a single latent ability parameter alone is needed to achieve the maximum predictive accuracy. Our main contribution though is deriving and implementing a novel discrete variational inference framework, achieving our highest prediction accuracy in low-data settings and outperforming all classical IRT and matrix factorisation baselines.
♻ ☆ Personalized Subgraph Federated Learning with Differentiable Auxiliary Projections NeurIPS 2025
Federated Learning (FL) on graph-structured data typically faces non-IID challenges, particularly in scenarios where each client holds a distinct subgraph sampled from a global graph. In this paper, we introduce Federated learning with Auxiliary projections (FedAux), a personalized subgraph FL framework that learns to align, compare, and aggregate heterogeneously distributed local models without sharing raw data or node embeddings. In FedAux, each client jointly trains (i) a local GNN and (ii) a learnable auxiliary projection vector (APV) that differentiably projects node embeddings onto a 1D space. A soft-sorting operation followed by a lightweight 1D convolution refines these embeddings in the ordered space, enabling the APV to effectively capture client-specific information. After local training, these APVs serve as compact signatures that the server uses to compute inter-client similarities and perform similarity-weighted parameter mixing, yielding personalized models while preserving cross-client knowledge transfer. Moreover, we provide rigorous theoretical analysis to establish the convergence and rationality of our design. Empirical evaluations across diverse graph benchmarks demonstrate that FedAux substantially outperforms existing baselines in both accuracy and personalization performance. The code is available at https://github.com/JhuoW/FedAux.
comment: Accepted by NeurIPS 2025
♻ ☆ Learning When to Plan: Efficiently Allocating Test-Time Compute for LLM Agents
Training large language models (LLMs) to reason via reinforcement learning (RL) significantly improves their problem-solving capabilities. In agentic settings, existing methods like ReAct prompt LLMs to explicitly plan before every action; however, we demonstrate that always planning is computationally expensive and degrades performance on long-horizon tasks, while never planning further limits performance. To address this, we introduce a conceptual framework formalizing dynamic planning for LLM agents, enabling them to flexibly decide when to allocate test-time compute for planning. We propose a simple two-stage training pipeline: (1) supervised fine-tuning on diverse synthetic data to prime models for dynamic planning, and (2) RL to refine this capability in long-horizon environments. Experiments on the Crafter environment show that dynamic planning agents trained with this approach are more sample-efficient and consistently achieve more complex objectives. Additionally, we demonstrate that these agents can be effectively steered by human-written plans, surpassing their independent capabilities. To our knowledge, this work is the first to explore training LLM agents for dynamic test-time compute allocation in sequential decision-making tasks, paving the way for more efficient, adaptive, and controllable agentic systems.
♻ ☆ FastCoder: Accelerating Repository-level Code Generation via Efficient Retrieval and Verification
Code generation is a latency-sensitive task that demands high timeliness. However, with the growing interest and inherent difficulty in repository-level code generation, most existing code generation studies focus on improving the correctness of generated code while overlooking the inference efficiency, which is substantially affected by the overhead during LLM generation. Although there has been work on accelerating LLM inference, these approaches are not tailored to the specific characteristics of code generation; instead, they treat code the same as natural language sequences and ignore its unique syntax and semantic characteristics, which are also crucial for improving efficiency. Consequently, these approaches exhibit limited effectiveness in code generation tasks, particularly for repository-level scenarios with considerable complexity and difficulty. To alleviate this issue, following draft-verification paradigm, we propose FastCoder, a simple yet highly efficient inference acceleration approach specifically designed for code generation, without compromising the quality of the output. FastCoder constructs a multi-source datastore, providing access to both general and project-specific knowledge, facilitating the retrieval of high-quality draft sequences. Moreover, FastCoder reduces the retrieval cost by controlling retrieval timing, and enhances efficiency through parallel retrieval and a context- and LLM preference-aware cache. Experimental results show that FastCoder can reach up to 2.53x and 2.54x speedup compared to autoregressive decoding in repository-level and standalone code generation tasks, respectively, outperforming state-of-the-art inference acceleration approaches by up to 88%. FastCoder can also be integrated with existing correctness-focused code generation approaches to accelerate the LLM generation process, and reach a speedup exceeding 2.6x.
comment: Accepted by ASE 2025
♻ ☆ Hierarchical Balance Packing: Towards Efficient Supervised Fine-tuning for Long-Context LLM
Training Long-Context Large Language Models (LLMs) is challenging, as hybrid training with long-context and short-context data often leads to workload imbalances. Existing works mainly use data packing to alleviate this issue, but fail to consider imbalanced attention computation and wasted communication overhead. This paper proposes Hierarchical Balance Packing (HBP), which designs a novel batch-construction method and training recipe to address those inefficiencies. In particular, the HBP constructs multi-level data packing groups, each optimized with a distinct packing length. It assigns training samples to their optimal groups and configures each group with the most effective settings, including sequential parallelism degree and gradient checkpointing configuration. To effectively utilize multi-level groups of data, we design a dynamic training pipeline specifically tailored to HBP, including curriculum learning, adaptive sequential parallelism, and stable loss. Our extensive experiments demonstrate that our method significantly reduces training time over multiple datasets and open-source models while maintaining strong performance. For the largest DeepSeek-V2 (236B) MoE model, our method speeds up the training by 2.4$\times$ with competitive performance. Codes will be released at https://github.com/ModelTC/HBP.
♻ ☆ Negative-Guided Subject Fidelity Optimization for Zero-Shot Subject-Driven Generation
We present Subject Fidelity Optimization (SFO), a novel comparative learning framework for zero-shot subject-driven generation that enhances subject fidelity. Existing supervised fine-tuning methods, which rely only on positive targets and use the diffusion loss as in the pre-training stage, often fail to capture fine-grained subject details. To address this, SFO introduces additional synthetic negative targets and explicitly guides the model to favor positives over negatives through pairwise comparison. For negative targets, we propose Condition-Degradation Negative Sampling (CDNS), which automatically produces synthetic negatives tailored for subject-driven generation by introducing controlled degradations that emphasize subject fidelity and text alignment without expensive human annotations. Moreover, we reweight the diffusion timesteps to focus fine-tuning on intermediate steps where subject details emerge. Extensive experiments demonstrate that SFO with CDNS significantly outperforms recent strong baselines in terms of both subject fidelity and text alignment on a subject-driven generation benchmark. Project page: https://subjectfidelityoptimization.github.io/
♻ ☆ Modeling Saliency Dataset Bias ICCV 2025
Recent advances in image-based saliency prediction are approaching gold standard performance levels on existing benchmarks. Despite this success, we show that predicting fixations across multiple saliency datasets remains challenging due to dataset bias. We find a significant performance drop (around 40%) when models trained on one dataset are applied to another. Surprisingly, increasing dataset diversity does not resolve this inter-dataset gap, with close to 60% attributed to dataset-specific biases. To address this remaining generalization gap, we propose a novel architecture extending a mostly dataset-agnostic encoder-decoder structure with fewer than 20 dataset-specific parameters that govern interpretable mechanisms such as multi-scale structure, center bias, and fixation spread. Adapting only these parameters to new data accounts for more than 75% of the generalization gap, with a large fraction of the improvement achieved with as few as 50 samples. Our model sets a new state-of-the-art on all three datasets of the MIT/Tuebingen Saliency Benchmark (MIT300, CAT2000, and COCO-Freeview), even when purely generalizing from unrelated datasets, but with a substantial boost when adapting to the respective training datasets. The model also provides valuable insights into spatial saliency properties, revealing complex multi-scale effects that combine both absolute and relative sizes.
comment: published at ICCV 2025
♻ ☆ Dual Alignment Maximin Optimization for Offline Model-based RL
Offline reinforcement learning agents face significant deployment challenges due to the synthetic-to-real distribution mismatch. While most prior research has focused on improving the fidelity of synthetic sampling and incorporating off-policy mechanisms, the directly integrated paradigm often fails to ensure consistent policy behavior in biased models and underlying environmental dynamics, which inherently arise from discrepancies between behavior and learning policies. In this paper, we first shift the focus from model reliability to policy discrepancies while optimizing for expected returns, and then self-consistently incorporate synthetic data, deriving a novel actor-critic paradigm, Dual Alignment Maximin Optimization (DAMO). It is a unified framework to ensure both model-environment policy consistency and synthetic and offline data compatibility. The inner minimization performs dual conservative value estimation, aligning policies and trajectories to avoid out-of-distribution states and actions, while the outer maximization ensures that policy improvements remain consistent with inner value estimates. Empirical evaluations demonstrate that DAMO effectively ensures model and policy alignments, achieving competitive performance across diverse benchmark tasks.
♻ ☆ GeoSketch: A Neural-Symbolic Approach to Geometric Multimodal Reasoning with Auxiliary Line Construction and Affine Transformation
Geometric Problem Solving (GPS) poses a unique challenge for Multimodal Large Language Models (MLLMs), requiring not only the joint interpretation of text and diagrams but also iterative visuospatial reasoning. While existing approaches process diagrams as static images, they lack the capacity for dynamic manipulation - a core aspect of human geometric reasoning involving auxiliary line construction and affine transformations. We present GeoSketch, a neural-symbolic framework that recasts geometric reasoning as an interactive perception-reasoning-action loop. GeoSketch integrates: (1) a Perception module that abstracts diagrams into structured logic forms, (2) a Symbolic Reasoning module that applies geometric theorems to decide the next deductive step, and (3) a Sketch Action module that executes operations such as drawing auxiliary lines or applying transformations, thereby updating the diagram in a closed loop. To train this agent, we develop a two-stage pipeline: supervised fine-tuning on 2,000 symbolic-curated trajectories followed by reinforcement learning with dense, symbolic rewards to enhance robustness and strategic exploration. To evaluate this paradigm, we introduce the GeoSketch Benchmark, a high-quality set of 390 geometry problems requiring auxiliary construction or affine transformations. Experiments on strong MLLM baselines demonstrate that GeoSketch significantly improves stepwise reasoning accuracy and problem-solving success over static perception methods. By unifying hierarchical decision-making, executable visual actions, and symbolic verification, GeoSketch advances multimodal reasoning from static interpretation to dynamic, verifiable interaction, establishing a new foundation for solving complex visuospatial problems.
♻ ☆ Image-Conditioned 3D Gaussian Splat Quantization
3D Gaussian Splatting (3DGS) has attracted considerable attention for enabling high-quality real-time rendering. Although 3DGS compression methods have been proposed for deployment on storage-constrained devices, two limitations hinder archival use: (1) they compress medium-scale scenes only to the megabyte range, which remains impractical for large-scale scenes or extensive scene collections; and (2) they lack mechanisms to accommodate scene changes after long-term archival. To address these limitations, we propose an Image-Conditioned Gaussian Splat Quantizer (ICGS-Quantizer) that substantially enhances compression efficiency and provides adaptability to scene changes after archiving. ICGS-Quantizer improves quantization efficiency by jointly exploiting inter-Gaussian and inter-attribute correlations and by using shared codebooks across all training scenes, which are then fixed and applied to previously unseen test scenes, eliminating the overhead of per-scene codebooks. This approach effectively reduces the storage requirements for 3DGS to the kilobyte range while preserving visual fidelity. To enable adaptability to post-archival scene changes, ICGS-Quantizer conditions scene decoding on images captured at decoding time. The encoding, quantization, and decoding processes are trained jointly, ensuring that the codes, which are quantized representations of the scene, are effective for conditional decoding. We evaluate ICGS-Quantizer on 3D scene compression and 3D scene updating. Experimental results show that ICGS-Quantizer consistently outperforms state-of-the-art methods in compression efficiency and adaptability to scene changes. Our code, model, and data will be publicly available on GitHub.
♻ ☆ scSiameseClu: A Siamese Clustering Framework for Interpreting single-cell RNA Sequencing Data
Single-cell RNA sequencing (scRNA-seq) reveals cell heterogeneity, with cell clustering playing a key role in identifying cell types and marker genes. Recent advances, especially graph neural networks (GNNs)-based methods, have significantly improved clustering performance. However, the analysis of scRNA-seq data remains challenging due to noise, sparsity, and high dimensionality. Compounding these challenges, GNNs often suffer from over-smoothing, limiting their ability to capture complex biological information. In response, we propose scSiameseClu, a novel Siamese Clustering framework for interpreting single-cell RNA-seq data, comprising of 3 key steps: (1) Dual Augmentation Module, which applies biologically informed perturbations to the gene expression matrix and cell graph relationships to enhance representation robustness; (2) Siamese Fusion Module, which combines cross-correlation refinement and adaptive information fusion to capture complex cellular relationships while mitigating over-smoothing; and (3) Optimal Transport Clustering, which utilizes Sinkhorn distance to efficiently align cluster assignments with predefined proportions while maintaining balance. Comprehensive evaluations on seven real-world datasets demonstrate that scSiameseClu outperforms state-of-the-art methods in single-cell clustering, cell type annotation, and cell type classification, providing a powerful tool for scRNA-seq data interpretation.
♻ ☆ Sparse View Tomographic Reconstruction of Elongated Objects using Learned Primal-Dual Networks
In the wood industry, logs are commonly quality screened by discrete X-ray scans on a moving conveyor belt from a few source positions. Typically, the measurements are obtained in a single two-dimensional (2D) plane (a "slice") by a sequential scanning geometry. The data from each slice alone does not carry sufficient information for a three-dimensional tomographic reconstruction in which biological features of interest in the log are well preserved. In the present work, we propose a learned iterative reconstruction method based on the Learned Primal-Dual neural network, suited for sequential scanning geometries. Our method accumulates information between neighbouring slices, instead of only accounting for single slices during reconstruction. Evaluations were performed by training U-Nets on segmentation of knots (branches), which are crucial features in wood processing. Our quantitative and qualitative evaluations show that with as few as five source positions our method yields reconstructions of logs that are sufficiently accurate to identify biological features like knots (branches), heartwood and sapwood.
♻ ☆ HumanVideo-MME: Benchmarking MLLMs for Human-Centric Video Understanding
Multimodal Large Language Models (MLLMs) have demonstrated significant advances in visual understanding tasks involving both images and videos. However, their capacity to comprehend human-centric video data remains underexplored, primarily due to the absence of comprehensive and high-quality evaluation benchmarks. Existing human-centric benchmarks predominantly emphasize video generation quality and action recognition, while overlooking essential perceptual and cognitive abilities required in human-centered scenarios. Furthermore, they are often limited by single-question paradigms and overly simplistic evaluation metrics. To address above limitations, we propose a modern HV-MMBench, a rigorously curated benchmark designed to provide a more holistic evaluation of MLLMs in human-centric video understanding. Compared to existing human-centric video benchmarks, our work offers the following key features: (1) Diverse evaluation dimensions: HV-MMBench encompasses 13 tasks, ranging from basic attribute perception (e.g., age estimation, emotion recognition) to advanced cognitive reasoning (e.g., social relationship prediction, intention prediction), enabling comprehensive assessment of model capabilities; (2) Varied data types: The benchmark includes multiple-choice, fill-in-blank, true/false, and open-ended question formats, combined with diverse evaluation metrics, to more accurately and robustly reflect model performance; (3) Multi-domain video coverage: The benchmark spans 50 distinct visual scenarios, enabling comprehensive evaluation across fine-grained scene variations; (4) Temporal coverage: The benchmark covers videos from short-term (10 seconds) to long-term (up to 30min) durations, supporting systematic analysis of models temporal reasoning abilities across diverse contextual lengths.
comment: Under review
♻ ☆ pEBR: A Probabilistic Approach to Embedding Based Retrieval
Embedding retrieval systems learn a shared semantic representation space for queries and items, enabling efficient retrieval through an approximate nearest-neighbor search. However, current industrial implementations face a critical limitation: using a fixed retrieval cutoff for all queries inevitably compromises performance, yielding insufficient recall for high-frequency (head) queries and reduced precision for low-frequency (tail) queries. This persistent challenge stems fundamentally from the frequentist paradigms dominating existing loss function designs. In this work, we introduce a novel framework, probabilistic Embedding-Based Retrieval (\textbf{pEBR}): maximum likelihood estimation-based and contrastive estimation-based, which learns the underlying probability distribution of relevant items for each query, compute adaptive cosine similarity cutoffs via probabilistic cumulative distribution functions (CDF), and automatically adapts to the distinct characteristics of head vs. tail queries. Experiments and ablation studies demonstrate that pEBR simultaneously improves precision and recall while maintaining computational efficiency.
♻ ☆ A theoretical framework for self-supervised contrastive learning for continuous dependent data
Self-supervised learning (SSL) has emerged as a powerful approach to learning representations, particularly in the field of computer vision. However, its application to dependent data, such as temporal and spatio-temporal domains, remains underexplored. Besides, traditional contrastive SSL methods often assume \emph{semantic independence between samples}, which does not hold for dependent data exhibiting complex correlations. We propose a novel theoretical framework for contrastive SSL tailored to \emph{continuous dependent data}, which allows the nearest samples to be semantically close to each other. In particular, we propose two possible \textit{ground truth similarity measures} between objects -- \emph{hard} and \emph{soft} closeness. Under it, we derive an analytical form for the \textit{estimated similarity matrix} that accommodates both types of closeness between samples, thereby introducing dependency-aware loss functions. We validate our approach, \emph{Dependent TS2Vec}, on temporal and spatio-temporal downstream problems. Given the dependency patterns presented in the data, our approach surpasses modern ones for dependent data, highlighting the effectiveness of our theoretically grounded loss functions for SSL in capturing spatio-temporal dependencies. Specifically, we outperform TS2Vec on the standard UEA and UCR benchmarks, with accuracy improvements of $4.17$\% and $2.08$\%, respectively. Furthermore, on the drought classification task, which involves complex spatio-temporal patterns, our method achieves a $7$\% higher ROC-AUC score.
♻ ☆ QGuard:Question-based Zero-shot Guard for Multi-modal LLM Safety ACL
The recent advancements in Large Language Models(LLMs) have had a significant impact on a wide range of fields, from general domains to specialized areas. However, these advancements have also significantly increased the potential for malicious users to exploit harmful and jailbreak prompts for malicious attacks. Although there have been many efforts to prevent harmful prompts and jailbreak prompts, protecting LLMs from such malicious attacks remains an important and challenging task. In this paper, we propose QGuard, a simple yet effective safety guard method, that utilizes question prompting to block harmful prompts in a zero-shot manner. Our method can defend LLMs not only from text-based harmful prompts but also from multi-modal harmful prompt attacks. Moreover, by diversifying and modifying guard questions, our approach remains robust against the latest harmful prompts without fine-tuning. Experimental results show that our model performs competitively on both text-only and multi-modal harmful datasets. Additionally, by providing an analysis of question prompting, we enable a white-box analysis of user inputs. We believe our method provides valuable insights for real-world LLM services in mitigating security risks associated with harmful prompts.
comment: Accept to ACLW 2025 (WOAH); fix typo
♻ ☆ Efficient Dynamic Ensembling for Multiple LLM Experts IJCAI 2025
LLMs have demonstrated impressive performance across various language tasks. However, the strengths of LLMs can vary due to different architectures, model sizes, areas of training data, etc. Therefore, ensemble reasoning for the strengths of different LLM experts is critical to achieving consistent and satisfactory performance on diverse inputs across a wide range of tasks. However, existing LLM ensemble methods are either computationally intensive or incapable of leveraging complementary knowledge among LLM experts for various inputs. In this paper, we propose an efficient Dynamic Ensemble Reasoning paradigm, called DER to integrate the strengths of multiple LLM experts conditioned on dynamic inputs. Specifically, we model the LLM ensemble reasoning problem as a Markov Decision Process, wherein an agent sequentially takes inputs to request knowledge from an LLM candidate and passes the output to a subsequent LLM candidate. Moreover, we devise a reward function to train a DER-Agent to dynamically select an optimal answering route given the input questions, aiming to achieve the highest performance with as few computational resources as possible. Last, to fully transfer the expert knowledge from the prior LLMs, we develop a Knowledge Transfer Prompt that enables the subsequent LLM candidates to transfer complementary knowledge effectively. Experiments demonstrate that our method uses fewer computational resources to achieve better performance compared to state-of-the-art baselines. Code and appendix are available at https://github.com/Fhujinwu/DER
comment: IJCAI 2025
♻ ☆ Object Detection with Multimodal Large Vision-Language Models: An In-depth Review
The fusion of language and vision in large vision-language models (LVLMs) has revolutionized deep learning-based object detection by enhancing adaptability, contextual reasoning, and generalization beyond traditional architectures. This in-depth review presents a structured exploration of the state-of-the-art in LVLMs, systematically organized through a three-step research review process. First, we discuss the functioning of vision language models (VLMs) for object detection, describing how these models harness natural language processing (NLP) and computer vision (CV) techniques to revolutionize object detection and localization. We then explain the architectural innovations, training paradigms, and output flexibility of recent LVLMs for object detection, highlighting how they achieve advanced contextual understanding for object detection. The review thoroughly examines the approaches used in integration of visual and textual information, demonstrating the progress made in object detection using VLMs that facilitate more sophisticated object detection and localization strategies. This review presents comprehensive visualizations demonstrating LVLMs' effectiveness in diverse scenarios including localization and segmentation, and then compares their real-time performance, adaptability, and complexity to traditional deep learning systems. Based on the review, its is expected that LVLMs will soon meet or surpass the performance of conventional methods in object detection. The review also identifies a few major limitations of the current LVLM modes, proposes solutions to address those challenges, and presents a clear roadmap for the future advancement in this field. We conclude, based on this study, that the recent advancement in LVLMs have made and will continue to make a transformative impact on object detection and robotic applications in the future.
comment: First Peer Reviewed Review Paper for Object Detection with Vision-Language Models (VLMs)
Reinforcement Fine-Tuning Naturally Mitigates Forgetting in Continual Post-Training
Continual post-training (CPT) is a popular and effective technique for adapting foundation models like multimodal large language models to specific and ever-evolving downstream tasks. While existing research has primarily concentrated on methods like data replay, model expansion, or parameter regularization, the fundamental role of the learning paradigm within CPT remains largely unexplored. This paper presents a comparative analysis of two core post-training paradigms: supervised fine-tuning (SFT) and reinforcement fine-tuning (RFT), investigating their respective impacts on knowledge retention during CPT. Our experiments are conducted on a benchmark comprising seven diverse multimodal tasks, utilizing Qwen2.5-VL-7B-Instruct as the base model for continual post-training. The investigation yields two significant findings: (1) When continuously learning on downstream tasks, SFT leads to catastrophic forgetting of previously learned tasks. In contrast, RFT inherently preserves prior knowledge and achieve performance comparable to multi-task training. (2) RFT successfully protects and even enhances the model's general knowledge on standard benchmarks (e.g., MMMU and MMLU-Pro). Conversely, SFT degrades general model capabilities severely. Further analysis reveals that this stability is not primarily due to explicit mechanisms like KL penalty or chain-of-thought reasoning. Instead, we identify an implicit regularization mechanism inherent to RFT as a key contributing factor. Our theoretical analysis suggests that RFT's gradient updates are naturally scaled by the reward variance, acting as a data-dependent regularizer that inherently protects previously acquired knowledge. Finally, we propose a rollout-based instance filtering algorithm to enhance the stability and efficiency of RFT. Our comprehensive study demonstrates the superiority of RFT as a robust paradigm for continual post-training.
♻ ☆ SysMoBench: Evaluating AI on Formally Modeling Complex Real-World Systems
Formal models are essential to specifying large, complex computer systems and verifying their correctness, but are notoriously expensive to write and maintain. Recent advances in generative AI show promise in generating certain forms of specifications. However, existing work mostly targets small code, not complete systems. It is unclear whether AI can deal with realistic system artifacts, as this requires abstracting their complex behavioral properties into formal models. We present SysMoBench, a benchmark that evaluates AI's ability to formally model large, complex systems. We focus on concurrent and distributed systems, which are keystones of today's critical computing infrastructures, encompassing operating systems and cloud infrastructure. We use TLA+, the de facto specification language for concurrent and distributed systems, though the benchmark can be extended to other specification languages. We address the primary challenge of evaluating AI-generated models by automating metrics like syntactic and runtime correctness, conformance to system code, and invariant correctness. SysMoBench currently includes nine diverse system artifacts: the Raft implementation of Etcd and Redis, the Spinlock and Mutex in Asterinas OS, etc.; more artifacts are being actively added. SysMoBench enables us to understand the capabilities and limitations of today's LLMs and agents, putting tools in this area on a firm footing and opening up promising new research directions.
♻ ☆ FlowRL: Matching Reward Distributions for LLM Reasoning
We propose FlowRL: matching the full reward distribution via flow balancing instead of maximizing rewards in large language model (LLM) reinforcement learning (RL). Recent advanced reasoning models adopt reward-maximizing methods (\eg, PPO and GRPO), which tend to over-optimize dominant reward signals while neglecting less frequent but valid reasoning paths, thus reducing diversity. In contrast, we transform scalar rewards into a normalized target distribution using a learnable partition function, and then minimize the reverse KL divergence between the policy and the target distribution. We implement this idea as a flow-balanced optimization method that promotes diverse exploration and generalizable reasoning trajectories. We conduct experiments on math and code reasoning tasks: FlowRL achieves a significant average improvement of $10.0\%$ over GRPO and $5.1\%$ over PPO on math benchmarks, and performs consistently better on code reasoning tasks. These results highlight reward distribution-matching as a key step toward efficient exploration and diverse reasoning in LLM reinforcement learning.
♻ ☆ Efficient Contextual Preferential Bayesian Optimization with Historical Examples
State-of-the-art multi-objective optimization often assumes a known utility function, learns it interactively, or computes the full Pareto front-each requiring costly expert input.~Real-world problems, however, involve implicit preferences that are hard to formalize. To reduce expert involvement, we propose an offline, interpretable utility learning method that uses expert knowledge, historical examples, and coarse information about the utility space to reduce sample requirements. We model uncertainty via a full Bayesian posterior and propagate it throughout the optimization process. Our method outperforms standard Gaussian processes and BOPE across four domains, showing strong performance even with biased samples, as encountered in the real-world, and limited expert input.
comment: 4 pages
♻ ☆ FameMind: Frame-Interleaved Video Reasoning via Reinforcement Learning
Current video understanding models rely on fixed frame sampling strategies, processing predetermined visual inputs regardless of the specific reasoning requirements of each question. This static approach limits their ability to adaptively gather visual evidence, leading to suboptimal performance on tasks that require either broad temporal coverage or fine-grained spatial detail. In this paper, we introduce FrameMind, an end-to-end framework trained with reinforcement learning that enables models to dynamically request visual information during reasoning through Frame-Interleaved Chain-of-Thought (FiCOT). Unlike traditional approaches, FrameMind operates in multiple turns where the model alternates between textual reasoning and active visual perception, using tools to extract targeted frames or video clips based on identified knowledge gaps. To train effective dynamic sampling policies, we propose Dynamic Resolution Frame Sampling (DRFS), which exposes models to diverse temporal-spatial trade-offs during learning, and DRFS-GRPO, a group-relative policy optimization algorithm that learns from outcome-based rewards without requiring frame-level annotations. Extensive experiments on challenging benchmarks like MLVU and VideoMME demonstrate that our method significantly outperforms existing models, advancing the state of the art in flexible and efficient video understanding.
comment: Underreview
♻ ☆ Dagger Behind Smile: Fool LLMs with a Happy Ending Story EMNLP 2025
The wide adoption of Large Language Models (LLMs) has attracted significant attention from $\textit{jailbreak}$ attacks, where adversarial prompts crafted through optimization or manual design exploit LLMs to generate malicious contents. However, optimization-based attacks have limited efficiency and transferability, while existing manual designs are either easily detectable or demand intricate interactions with LLMs. In this paper, we first point out a novel perspective for jailbreak attacks: LLMs are more responsive to $\textit{positive}$ prompts. Based on this, we deploy Happy Ending Attack (HEA) to wrap up a malicious request in a scenario template involving a positive prompt formed mainly via a $\textit{happy ending}$, it thus fools LLMs into jailbreaking either immediately or at a follow-up malicious request. This has made HEA both efficient and effective, as it requires only up to two turns to fully jailbreak LLMs. Extensive experiments show that our HEA can successfully jailbreak on state-of-the-art LLMs, including GPT-4o, Llama3-70b, Gemini-pro, and achieves 88.79% attack success rate on average. We also provide quantitative explanations for the success of HEA.
comment: EMNLP 2025 Findings
♻ ☆ iVISPAR -- An Interactive Visual-Spatial Reasoning Benchmark for VLMs
Vision-Language Models (VLMs) are known to struggle with spatial reasoning and visual alignment. To help overcome these limitations, we introduce iVISPAR, an interactive multimodal benchmark designed to evaluate the spatial reasoning capabilities of VLMs acting as agents. \mbox{iVISPAR} is based on a variant of the sliding tile puzzle, a classic problem that demands logical planning, spatial awareness, and multi-step reasoning. The benchmark supports visual 3D, 2D, and text-based input modalities, enabling comprehensive assessments of VLMs' planning and reasoning skills. We evaluate a broad suite of state-of-the-art open-source and closed-source VLMs, comparing their performance while also providing optimal path solutions and a human baseline to assess the task's complexity and feasibility for humans. Results indicate that while VLMs perform better on 2D tasks compared to 3D or text-based settings, they struggle with complex spatial configurations and consistently fall short of human performance, illustrating the persistent challenge of visual alignment. This underscores critical gaps in current VLM capabilities, highlighting their limitations in achieving human-level cognition. Project website: https://microcosm.ai/ivispar
♻ ☆ ViewSpatial-Bench: Evaluating Multi-perspective Spatial Localization in Vision-Language Models
Vision-language models (VLMs) have demonstrated remarkable capabilities in understanding and reasoning about visual content, but significant challenges persist in tasks requiring cross-viewpoint understanding and spatial reasoning. We identify a critical limitation: current VLMs excel primarily at egocentric spatial reasoning (from the camera's perspective) but fail to generalize to allocentric viewpoints when required to adopt another entity's spatial frame of reference. We introduce ViewSpatial-Bench, the first comprehensive benchmark designed specifically for multi-viewpoint spatial localization recognition evaluation across five distinct task types, supported by an automated 3D annotation pipeline that generates precise directional labels. Comprehensive evaluation of diverse VLMs on ViewSpatial-Bench reveals a significant performance disparity: models demonstrate reasonable performance on camera-perspective tasks but exhibit reduced accuracy when reasoning from a human viewpoint. By fine-tuning VLMs on our multi-perspective spatial dataset, we achieve an overall performance improvement of 46.24% across tasks, highlighting the efficacy of our approach. Our work establishes a crucial benchmark for spatial intelligence in embodied AI systems and provides empirical evidence that modeling 3D spatial relationships enhances VLMs' corresponding spatial comprehension capabilities.
comment: Project: https://zju-real.github.io/ViewSpatial-Page/
♻ ☆ VS-Bench: Evaluating VLMs for Strategic Abilities in Multi-Agent Environments
Recent advancements in Vision Language Models (VLMs) have expanded their capabilities to interactive agent tasks, yet existing benchmarks remain limited to single-agent or text-only environments. In contrast, real-world scenarios often involve multiple agents interacting within rich visual and textual contexts, posing challenges with both multimodal observations and strategic interactions. To bridge this gap, we introduce Visual Strategic Bench (VS-Bench), a multimodal benchmark that evaluates VLMs for strategic abilities in multi-agent environments. VS-Bench comprises ten vision-grounded environments that cover cooperative, competitive, and mixed-motive interactions. The performance of VLM agents is evaluated across three dimensions: perception measured by element recognition accuracy; strategic reasoning measured by next-action prediction accuracy; and decision-making measured by normalized episode return. Extensive experiments on fifteen leading VLMs show that, although current models exhibit strong perception abilities, there remains a significant gap to optimal performance in reasoning and decision-making, with the best-performing model attaining 46.6% prediction accuracy and 31.4% normalized return. We further analyze the key factors influencing performance, conduct human experiments, and examine failure modes to provide a deeper understanding of VLMs' strategic abilities. By standardizing the evaluation and highlighting the limitations of existing models, we envision VS-Bench as a foundation for future research on strategic multimodal agents. Code and data are available at https://vs-bench.github.io.
♻ ☆ TAMO: Fine-Grained Root Cause Analysis via Tool-Assisted LLM Agent with Multi-Modality Observation Data in Cloud-Native Systems
Implementing large language models (LLMs)-driven root cause analysis (RCA) in cloud-native systems has become a key topic of modern software operations and maintenance. However, existing LLM-based approaches face three key challenges: multi-modality input constraint, context window limitation, and dynamic dependence graph. To address these issues, we propose a tool-assisted LLM agent with multi-modality observation data for fine-grained RCA, namely TAMO, including multimodality alignment tool, root cause localization tool, and fault types classification tool. In detail, TAMO unifies multi-modal observation data into time-aligned representations for cross-modal feature consistency. Based on the unified representations, TAMO then invokes its specialized root cause localization tool and fault types classification tool for further identifying root cause and fault type underlying system context. This approach overcomes the limitations of LLMs in processing real-time raw observational data and dynamic service dependencies, guiding the model to generate repair strategies that align with system context through structured prompt design. Experiments on two benchmark datasets demonstrate that TAMO outperforms state-of-the-art (SOTA) approaches with comparable performance.
♻ ☆ Deep Graph Learning for Industrial Carbon Emission Analysis and Policy Impact NeurIPS 2025
Industrial carbon emissions are a major driver of climate change, yet modeling these emissions is challenging due to multicollinearity among factors and complex interdependencies across sectors and time. We propose a novel graph-based deep learning framework DGL to analyze and forecast industrial CO_2 emissions, addressing high feature correlation and capturing industrial-temporal interdependencies. Unlike traditional regression or clustering methods, our approach leverages a Graph Neural Network (GNN) with attention mechanisms to model relationships between industries (or regions) and a temporal transformer to learn long-range patterns. We evaluate our framework on public global industry emissions dataset derived from EDGAR v8.0, spanning multiple countries and sectors. The proposed model achieves superior predictive performance - reducing error by over 15% compared to baseline deep models - while maintaining interpretability via attention weights and causal analysis. We believe that we are the first Graph-Temporal architecture that resolves multicollinearity by structurally encoding feature relationships, along with integration of causal inference to identify true drivers of emissions, improving transparency and fairness. We also stand a demonstration of policy relevance, showing how model insights can guide sector-specific decarbonization strategies aligned with sustainable development goals. Based on the above, we show high-emission "hotspots" and suggest equitable intervention plans, illustrating the potential of state-of-the-art AI graph learning to advance climate action, offering a powerful tool for policymakers and industry stakeholders to achieve carbon reduction targets.
comment: NeurIPS 2025 AI for Science Workshop
♻ ☆ FoundBioNet: A Foundation-Based Model for IDH Genotyping of Glioma from Multi-Parametric MRI MICCAI 2025
Accurate, noninvasive detection of isocitrate dehydrogenase (IDH) mutation is essential for effective glioma management. Traditional methods rely on invasive tissue sampling, which may fail to capture a tumor's spatial heterogeneity. While deep learning models have shown promise in molecular profiling, their performance is often limited by scarce annotated data. In contrast, foundation deep learning models offer a more generalizable approach for glioma imaging biomarkers. We propose a Foundation-based Biomarker Network (FoundBioNet) that utilizes a SWIN-UNETR-based architecture to noninvasively predict IDH mutation status from multi-parametric MRI. Two key modules are incorporated: Tumor-Aware Feature Encoding (TAFE) for extracting multi-scale, tumor-focused features, and Cross-Modality Differential (CMD) for highlighting subtle T2-FLAIR mismatch signals associated with IDH mutation. The model was trained and validated on a diverse, multi-center cohort of 1705 glioma patients from six public datasets. Our model achieved AUCs of 90.58%, 88.08%, 65.41%, and 80.31% on independent test sets from EGD, TCGA, Ivy GAP, RHUH, and UPenn, consistently outperforming baseline approaches (p <= 0.05). Ablation studies confirmed that both the TAFE and CMD modules are essential for improving predictive accuracy. By integrating large-scale pretraining and task-specific fine-tuning, FoundBioNet enables generalizable glioma characterization. This approach enhances diagnostic accuracy and interpretability, with the potential to enable more personalized patient care.
comment: Accepted for oral and poster presentation at MICCAI 2025
♻ ☆ Long-Horizon Visual Imitation Learning via Plan and Code Reflection
Learning from long-horizon demonstrations with complex action sequences presents significant challenges for visual imitation learning, particularly in understanding temporal relationships of actions and spatial relationships between objects. In this paper, we propose a new agent framework that incorporates two dedicated reflection modules to enhance both plan and code generation. The plan generation module produces an initial action sequence, which is then verified by the plan reflection module to ensure temporal coherence and spatial alignment with the demonstration video. The code generation module translates the plan into executable code, while the code reflection module verifies and refines the generated code to ensure correctness and consistency with the generated plan. These two reflection modules jointly enable the agent to detect and correct errors in both the plan generation and code generation, improving performance in tasks with intricate temporal and spatial dependencies. To support systematic evaluation, we introduce LongVILBench, a benchmark comprising 300 human demonstrations with action sequences of up to 18 steps. LongVILBench emphasizes temporal and spatial complexity across multiple task types. Experimental results demonstrate that existing methods perform poorly on this benchmark, whereas our new framework establishes a strong baseline for long-horizon visual imitation learning.
comment: 9 pages, 4 figures
♻ ☆ Answer, Refuse, or Guess? Investigating Risk-Aware Decision Making in Language Models
Language models (LMs) are increasingly used to build agents that can act autonomously to achieve goals. During this automatic process, agents need to take a series of actions, some of which might lead to severe consequences if incorrect actions are taken. Therefore, such agents must sometimes defer-refusing to act when their confidence is insufficient-to avoid the potential cost of incorrect actions. Because the severity of consequences varies across applications, the tendency to defer should also vary: in low-risk settings agents should answer more freely, while in high-risk settings their decisions should be more conservative. We study this "answer-or-defer" problem with an evaluation framework that systematically varies human-specified risk structures-rewards and penalties for correct answers, incorrect answers, and refusals $(r_{\mathrm{cor}},r_{\mathrm{inc}}, r_{\mathrm{ref}})$-while keeping tasks fixed. This design evaluates LMs' risk-aware decision policies by measuring their ability to maximize expected reward. Across multiple datasets and models, we identify flaws in their decision policies: LMs tend to over-answer in high-risk settings and over-defer in low-risk settings. After analyzing the potential cause of such flaws, we find that a simple skill-decomposition method, which isolates the independent skills required for answer-or-defer decision making, can consistently improve LMs' decision policies. Our results highlight the current limitations of LMs in risk-conditioned decision making and provide practical guidance for deploying more reliable LM-based agents across applications of varying risk levels.
comment: preprint
♻ ☆ Adversarial Defense in Cybersecurity: A Systematic Review of GANs for Threat Detection and Mitigation
Machine learning-based cybersecurity systems are highly vulnerable to adversarial attacks, while Generative Adversarial Networks (GANs) act as both powerful attack enablers and promising defenses. This survey systematically reviews GAN-based adversarial defenses in cybersecurity (2021--August 31, 2025), consolidating recent progress, identifying gaps, and outlining future directions. Using a PRISMA-compliant systematic literature review protocol, we searched five major digital libraries. From 829 initial records, 185 peer-reviewed studies were retained and synthesized through quantitative trend analysis and thematic taxonomy development. We introduce a four-dimensional taxonomy spanning defensive function, GAN architecture, cybersecurity domain, and adversarial threat model. GANs improve detection accuracy, robustness, and data utility across network intrusion detection, malware analysis, and IoT security. Notable advances include WGAN-GP for stable training, CGANs for targeted synthesis, and hybrid GAN models for improved resilience. Yet, persistent challenges remain such as instability in training, lack of standardized benchmarks, high computational cost, and limited explainability. GAN-based defenses demonstrate strong potential but require advances in stable architectures, benchmarking, transparency, and deployment. We propose a roadmap emphasizing hybrid models, unified evaluation, real-world integration, and defenses against emerging threats such as LLM-driven cyberattacks. This survey establishes the foundation for scalable, trustworthy, and adaptive GAN-powered defenses.
comment: 36 pages, 10 tables, 4figures
♻ ☆ $Agent^2$: An Agent-Generates-Agent Framework for Reinforcement Learning Automation
Reinforcement learning (RL) agent development traditionally requires substantial expertise and iterative effort, often leading to high failure rates and limited accessibility. This paper introduces Agent$^2$, an LLM-driven agent-generates-agent framework for fully automated RL agent design. Agent$^2$ autonomously translates natural language task descriptions and environment code into executable RL solutions without human intervention. The framework adopts a dual-agent architecture: a Generator Agent that analyzes tasks and designs agents, and a Target Agent that is automatically generated and executed. To better support automation, RL development is decomposed into two stages, MDP modeling and algorithmic optimization, facilitating targeted and effective agent generation. Built on the Model Context Protocol, Agent$^2$ provides a unified framework for standardized agent creation across diverse environments and algorithms, incorporating adaptive training management and intelligent feedback analysis for continuous refinement. Extensive experiments on benchmarks including MuJoCo, MetaDrive, MPE, and SMAC show that Agent$^2$ outperforms manually designed baselines across all tasks, achieving up to 55\% performance improvement with consistent average gains. By enabling a closed-loop, end-to-end automation pipeline, this work advances a new paradigm in which agents can design and optimize other agents, underscoring the potential of agent-generates-agent systems for automated AI development.
comment: 19 pages, 5 figures,4 Tables
♻ ☆ QuestA: Expanding Reasoning Capacity in LLMs via Question Augmentation
Reinforcement learning (RL) has emerged as a central paradigm for training large language models (LLMs) in reasoning tasks. Yet recent studies question RL's ability to incentivize reasoning capacity beyond the base model. This raises a key challenge: how can RL be adapted to solve harder reasoning problems more effectively? To address this challenge, we propose a simple yet effective strategy via Question Augmentation: introduce partial solutions during training to reduce problem difficulty and provide more informative learning signals. Our method, QuestA, when applied during RL training on math reasoning tasks, not only improves pass@1 but also pass@k-particularly on problems where standard RL struggles to make progress. This enables continual improvement over strong open-source models such as DeepScaleR and OpenMath Nemotron, further enhancing their reasoning capabilities. We achieve new state-of-the-art results on math benchmarks using 1.5B-parameter models: 72.50% (+10.73%) on AIME24, 62.29% (+12.79%) on AIME25, and 41.67% (+10.11%) on HMMT25. Code, data and model are available at https://github.com/foreverlasting1202/QuestA.
comment: 19 pages, 8 figures
♻ ☆ TinyDef-DETR: A DETR-based Framework for Defect Detection in Transmission Lines from UAV Imagery
Automated defect detection from UAV imagery of transmission lines is a challenging task due to the small size, ambiguity, and complex backgrounds of defects. This paper proposes TinyDef-DETR, a DETR-based framework designed to achieve accurate and efficient detection of transmission line defects from UAV-acquired images. The model integrates four major components: an edge-enhanced ResNet backbone to strengthen boundary-sensitive representations, a stride-free space-to-depth module to enable detail-preserving downsampling, a cross-stage dual-domain multi-scale attention mechanism to jointly model global context and local cues, and a Focaler-Wise-SIoU regression loss to improve the localization of small and difficult objects. Together, these designs effectively mitigate the limitations of conventional detectors. Extensive experiments on both public and real-world datasets demonstrate that TinyDef-DETR achieves superior detection performance and strong generalization capability, while maintaining modest computational overhead. The accuracy and efficiency of TinyDef-DETR make it a suitable method for UAV-based transmission line defect detection, particularly in scenarios involving small and ambiguous objects.
♻ ☆ CADmium: Fine-Tuning Code Language Models for Text-Driven Sequential CAD Design
Computer-aided design (CAD) is the digital construction of 2D and 3D objects, and is central to a wide range of engineering and manufacturing applications like automobile and aviation. Despite its importance, CAD modeling remains largely a time-intensive, manual task. Recent works have attempted to automate this process with small transformer-based models and handcrafted CAD sequence representations. However, there has been little effort to leverage the potential of large language models (LLMs) for sequential CAD design. In this work, we introduce a new large-scale dataset of more than 170k CAD models annotated with high-quality, human-like descriptions generated with our pipeline based on GPT-4.1. Using this dataset, we fine-tune powerful code-LLMs to generate CAD sequences represented in a JSON-based format from natural language descriptions, demonstrating the viability and effectiveness of this approach for text-conditioned CAD generation. Because simple metrics often fail to reflect the quality of generated objects, we introduce geometric and topological metrics based on sphericity, mean curvature, and Euler characteristic to provide richer structural insights. Our experiments and ablation studies on both synthetic and human-annotated data demonstrate that CADmium is able to automate CAD design, drastically speeding up the design of new objects. The dataset, code, and fine-tuned models are available online.
♻ ☆ AI Agents vs. Agentic AI: A Conceptual Taxonomy, Applications and Challenges
This review critically distinguishes between AI Agents and Agentic AI, offering a structured, conceptual taxonomy, application mapping, and analysis of opportunities and challenges to clarify their divergent design philosophies and capabilities. We begin by outlining the search strategy and foundational definitions, characterizing AI Agents as modular systems driven and enabled by LLMs and LIMs for task-specific automation. Generative AI is positioned as a precursor providing the foundation, with AI agents advancing through tool integration, prompt engineering, and reasoning enhancements. We then characterize Agentic AI systems, which, in contrast to AI Agents, represent a paradigm shift marked by multi-agent collaboration, dynamic task decomposition, persistent memory, and coordinated autonomy. Through a chronological evaluation of architectural evolution, operational mechanisms, interaction styles, and autonomy levels, we present a comparative analysis across both AI agents and agentic AI paradigms. Application domains enabled by AI Agents such as customer support, scheduling, and data summarization are then contrasted with Agentic AI deployments in research automation, robotic coordination, and medical decision support. We further examine unique challenges in each paradigm including hallucination, brittleness, emergent behavior, and coordination failure, and propose targeted solutions such as ReAct loops, retrieval-augmented generation (RAG), automation coordination layers, and causal modeling. This work aims to provide a roadmap for developing robust, scalable, and explainable AI-driven systems.
♻ ☆ Measuring the Measures: Discriminative Capacity of Representational Similarity Metrics Across Model Families
Representational similarity metrics are fundamental tools in neuroscience and AI, yet we lack systematic comparisons of their discriminative power across model families. We introduce a quantitative framework to evaluate representational similarity measures based on their ability to separate model families-across architectures (CNNs, Vision Transformers, Swin Transformers, ConvNeXt) and training regimes (supervised vs. self-supervised). Using three complementary separability measures-dprime from signal detection theory, silhouette coefficients and ROC-AUC, we systematically assess the discriminative capacity of commonly used metrics including RSA, linear predictivity, Procrustes, and soft matching. We show that separability systematically increases as metrics impose more stringent alignment constraints. Among mapping-based approaches, soft-matching achieves the highest separability, followed by Procrustes alignment and linear predictivity. Non-fitting methods such as RSA also yield strong separability across families. These results provide the first systematic comparison of similarity metrics through a separability lens, clarifying their relative sensitivity and guiding metric choice for large-scale model and brain comparisons.
♻ ☆ TENET: Leveraging Tests Beyond Validation for Code Generation
Test-Driven Development (TDD) is a widely adopted software engineering practice that requires developers to create and execute tests alongside code implementation, ensuring that software behavior is continuously validated and refined. In the era of vibe coding, where developers increasingly delegate code writing to large language models (LLMs) by specifying high-level intentions, TDD becomes even more crucial, as test cases serve as executable specifications that explicitly define and verify intended functionality beyond what natural-language descriptions and code context can convey. While vibe coding under TDD is promising, there are three main challenges: (1) selecting a small yet effective test suite to improve the generation accuracy and control the execution workload, (2) retrieving context such as relevant code effectively, and (3) systematically using test feedback for effective code refinement. To address these challenges, we introduce TENET, an LLM agent for generating functions in complex real-world repositories under the TDD setting. TENET features three components: (1) a novel test harness mechanism that selects a concise test suite to maximize diversity of target usage scenarios; (2) a tailored agent toolset that performs efficient retrieval of relevant code with interactive debugging; and (3) a reflection-based refinement workflow that iteratively analyzes failures, replenishes context, and applies code refinement. TENET achieves 69.08% and 81.77% Pass@1 on RepoCod and RepoEval benchmarks, outperforming the best agentic baselines by 9.49 and 2.17 percentage points, respectively. In addition, this is the first study of test-driven code generation with repository-level context, examining how different aspects of test suites affect the performance of LLM agents under the TDD setting.
♻ ☆ SSTP: Efficient Sample Selection for Trajectory Prediction
Trajectory prediction is a core task in autonomous driving. However, training advanced trajectory prediction models on existing large-scale datasets is both time-consuming and computationally expensive. More critically, these datasets are highly imbalanced in scenario density, with normal driving scenes (low-moderate traffic) overwhelmingly dominating the datasets, while high-density and safety-critical cases are underrepresented. As a result, models tend to overfit low/moderate-density scenarios and perform poorly in high-density scenarios. To address these challenges, we propose the SSTP framework, which constructs a compact yet density-balanced dataset tailored to trajectory prediction. SSTP consists of two main stages: (1)Extraction, where a baseline model is pretrained for a few epochs to obtain stable gradient estimates, and the dataset is partitioned by scenario density. (2)Selection, where gradient-based scores and a submodular objective select representative samples within each density category, while biased sampling emphasizes rare high-density interactions to avoid dominance by low-density cases. This approach significantly reduces the dataset size and mitigates scenario imbalance, without sacrificing prediction accuracy. Experiments on the Argoverse 1 and Argoverse 2 datasets with recent state-of-the-art models show that SSTP achieves comparable performance to full-dataset training using only half the data while delivering substantial improvements in high-density traffic scenes and significantly reducing training time. Robust trajectory prediction depends not only on data scale but also on balancing scene density to ensure reliable performance under complex multi agent interactions.
♻ ☆ Graph Coloring for Multi-Task Learning
When different objectives conflict with each other in multi-task learning, gradients begin to interfere and slow convergence, thereby potentially reducing the final model's performance. To address this, we introduce SON-GOKU, a scheduler that computes gradient interference, constructs an interference graph, and then applies greedy graph-coloring to partition tasks into groups that align well with each other. At each training step, only one group (color class) of tasks are activated, and the grouping partition is constantly recomputed as task relationships evolve throughout training. By ensuring that each mini-batch contains only tasks that pull the model in the same direction, our method improves the effectiveness of any underlying multi-task learning optimizer without additional tuning. Since tasks within these groups will update in compatible directions, multi-task learning will improve model performance rather than impede it. Empirical results on six different datasets show that this interference-aware graph-coloring approach consistently outperforms baselines and state-of-the-art multi-task optimizers. We provide extensive theory showing why grouping and sequential updates improve multi-task learning, with guarantees on descent, convergence, and accurately identifying what tasks conflict or align.
♻ ☆ MMPB: It's Time for Multi-Modal Personalization NeurIPS 2025
Visual personalization is essential in user-facing AI systems such as smart homes and healthcare, where aligning model behavior with user-centric concepts is critical. However, recent large Vision-Language Models (VLMs), despite their broad applicability, remain underexplored in their ability to adapt to individual users. In this paper, we introduce MMPB, the first extensive benchmark for evaluating VLMs on personalization. MMPB comprises 10k image-query pairs and includes 111 personalizable concepts across four categories: humans, animals, objects, and characters, with the human category enriched with preference-grounded queries. We structure personalization into three main task types, each highlighting a different key property of VLMs. Using 23 widely used VLMs including both open- and closed-source models, we evaluate personalization performance via a three-stage protocol: concept injection, multi-turn dialogue, and personalized querying. Our findings indicate that most VLMs (including some closed-source models) struggle with personalization, particularly in maintaining consistency over dialogue, handling user preferences, and adapting to visual cues. Our analysis reveals that the challenges in VLM personalization (such as refusal behaviors and long-context forgetting) highlight substantial room for improvement. By identifying these limitations and offering a scalable benchmark, MMPB offers valuable insights and a solid foundation for future research toward truly personalized multi-modal AI. Project Page: aidaslab.github.io/MMPB
comment: Accepted in NeurIPS 2025
♻ ☆ A Survey on Code Generation with LLM-based Agents
Code generation agents powered by large language models (LLMs) are revolutionizing the software development paradigm. Distinct from previous code generation techniques, code generation agents are characterized by three core features. 1) Autonomy: the ability to independently manage the entire workflow, from task decomposition to coding and debugging. 2) Expanded task scope: capabilities that extend beyond generating code snippets to encompass the full software development lifecycle (SDLC). 3) Enhancement of engineering practicality: a shift in research emphasis from algorithmic innovation toward practical engineering challenges, such as system reliability, process management, and tool integration. This domain has recently witnessed rapid development and an explosion in research, demonstrating significant application potential. This paper presents a systematic survey of the field of LLM-based code generation agents. We trace the technology's developmental trajectory from its inception and systematically categorize its core techniques, including both single-agent and multi-agent architectures. Furthermore, this survey details the applications of LLM-based agents across the full SDLC, summarizes mainstream evaluation benchmarks and metrics, and catalogs representative tools. Finally, by analyzing the primary challenges, we identify and propose several foundational, long-term research directions for the future work of the field.
comment: Work in progress (V2)
♻ ☆ WorldGym: World Model as An Environment for Policy Evaluation
Evaluating robot control policies is difficult: real-world testing is costly, and handcrafted simulators require manual effort to improve in realism and generality. We propose a world-model-based policy evaluation environment (WorldGym), an autoregressive, action-conditioned video generation model which serves as a proxy to real world environments. Policies are evaluated via Monte Carlo rollouts in the world model, with a vision-language model providing rewards. We evaluate a set of VLA-based real-robot policies in the world model using only initial frames from real robots, and show that policy success rates within the world model highly correlate with real-world success rates. Moreoever, we show that WorldGym is able to preserve relative policy rankings across different policy versions, sizes, and training checkpoints. Due to requiring only a single start frame as input, the world model further enables efficient evaluation of robot policies' generalization ability on novel tasks and environments. We find that modern VLA-based robot policies still struggle to distinguish object shapes and can become distracted by adversarial facades of objects. While generating highly realistic object interaction remains challenging, WorldGym faithfully emulates robot motions and offers a practical starting point for safe and reproducible policy evaluation before deployment.
comment: https://world-model-eval.github.io
♻ ☆ Survey: Multi-Armed Bandits Meet Large Language Models
Bandit algorithms and Large Language Models (LLMs) have emerged as powerful tools in artificial intelligence, each addressing distinct yet complementary challenges in decision-making and natural language processing. This survey explores the synergistic potential between these two fields, highlighting how bandit algorithms can enhance the performance of LLMs and how LLMs, in turn, can provide novel insights for improving bandit-based decision-making. We first examine the role of bandit algorithms in optimizing LLM fine-tuning, prompt engineering, and adaptive response generation, focusing on their ability to balance exploration and exploitation in large-scale learning tasks. Subsequently, we explore how LLMs can augment bandit algorithms through advanced contextual understanding, dynamic adaptation, and improved policy selection using natural language reasoning. By providing a comprehensive review of existing research and identifying key challenges and opportunities, this survey aims to bridge the gap between bandit algorithms and LLMs, paving the way for innovative applications and interdisciplinary research in AI.
♻ ☆ Diffusion Language Models Know the Answer Before Decoding
Diffusion language models (DLMs) have recently emerged as an alternative to autoregressive approaches, offering parallel sequence generation and flexible token orders. However, their inference remains slower than that of autoregressive models, primarily due to the cost of bidirectional attention and the large number of refinement steps required for high quality outputs. In this work, we highlight and leverage an overlooked property of DLMs early answer convergence: in many cases, the correct answer can be internally identified by half steps before the final decoding step, both under semi-autoregressive and random remasking schedules. For example, on GSM8K and MMLU, up to 97% and 99% of instances, respectively, can be decoded correctly using only half of the refinement steps. Building on this observation, we introduce Prophet, a training-free fast decoding paradigm that enables early commit decoding. Specifically, Prophet dynamically decides whether to continue refinement or to go "all-in" (i.e., decode all remaining tokens in one step), using the confidence gap between the top-2 prediction candidates as the criterion. It integrates seamlessly into existing DLM implementations, incurs negligible overhead, and requires no additional training. Empirical evaluations of LLaDA-8B and Dream-7B across multiple tasks show that Prophet reduces the number of decoding steps by up to 3.4x while preserving high generation quality. These results recast DLM decoding as a problem of when to stop sampling, and demonstrate that early decode convergence provides a simple yet powerful mechanism for accelerating DLM inference, complementary to existing speedup techniques. Our code is publicly available at https://github.com/pixeli99/Prophet.
♻ ☆ Fair Uncertainty Quantification for Depression Prediction
Trustworthy depression prediction based on deep learning, incorporating both predictive reliability and algorithmic fairness across diverse demographic groups, is crucial for clinical application. Recently, achieving reliable depression predictions through uncertainty quantification has attracted increasing attention. However, few studies have focused on the fairness of uncertainty quantification (UQ) in depression prediction. In this work, we investigate the algorithmic fairness of UQ, namely Equal Opportunity Coverage (EOC) fairness, and propose Fair Uncertainty Quantification (FUQ) for depression prediction. FUQ pursues reliable and fair depression predictions through group-based analysis. Specifically, we first group all the participants by different sensitive attributes and leverage conformal prediction to quantify uncertainty within each demographic group, which provides a theoretically guaranteed and valid way to quantify uncertainty for depression prediction and facilitates the investigation of fairness across different demographic groups. Furthermore, we propose a fairness-aware optimization strategy that formulates fairness as a constrained optimization problem under EOC constraints. This enables the model to preserve predictive reliability while adapting to the heterogeneous uncertainty levels across demographic groups, thereby achieving optimal fairness. Through extensive evaluations on several visual and audio depression datasets, our approach demonstrates its effectiveness.
♻ ☆ Mind the Value-Action Gap: Do LLMs Act in Alignment with Their Values? EMNLP 2025
Existing research primarily evaluates the values of LLMs by examining their stated inclinations towards specific values. However, the "Value-Action Gap," a phenomenon rooted in environmental and social psychology, reveals discrepancies between individuals' stated values and their actions in real-world contexts. To what extent do LLMs exhibit a similar gap between their stated values and their actions informed by those values? This study introduces ValueActionLens, an evaluation framework to assess the alignment between LLMs' stated values and their value-informed actions. The framework encompasses the generation of a dataset comprising 14.8k value-informed actions across twelve cultures and eleven social topics, and two tasks to evaluate how well LLMs' stated value inclinations and value-informed actions align across three different alignment measures. Extensive experiments reveal that the alignment between LLMs' stated values and actions is sub-optimal, varying significantly across scenarios and models. Analysis of misaligned results identifies potential harms from certain value-action gaps. To predict the value-action gaps, we also uncover that leveraging reasoned explanations improves performance. These findings underscore the risks of relying solely on the LLMs' stated values to predict their behaviors and emphasize the importance of context-aware evaluations of LLM values and value-action gaps.
comment: EMNLP 2025 Main Paper
♻ ☆ Foam-Agent 2.0: An End-to-End Composable Multi-Agent Framework for Automating CFD Simulation in OpenFOAM
Computational Fluid Dynamics (CFD) is an essential simulation tool in engineering, yet its steep learning curve and complex manual setup create significant barriers. To address these challenges, we introduce Foam-Agent, a multi-agent framework that automates the entire end-to-end OpenFOAM workflow from a single natural language prompt. Our key innovations address critical gaps in existing systems: 1. An Comprehensive End-to-End Simulation Automation: Foam-Agent is the first system to manage the full simulation pipeline, including advanced pre-processing with a versatile Meshing Agent capable of handling external mesh files and generating new geometries via Gmsh, automatic generation of HPC submission scripts, and post-simulation visualization via ParaView. 2. Composable Service Architecture: Going beyond a monolithic agent, the framework uses Model Context Protocol (MCP) to expose its core functions as discrete, callable tools. This allows for flexible integration and use by other agentic systems, such as Claude-code, for more exploratory workflows. 3. High-Fidelity Configuration Generation: We achieve superior accuracy through a Hierarchical Multi-Index RAG for precise context retrieval and a dependency-aware generation process that ensures configuration consistency. Evaluated on a benchmark of 110 simulation tasks, Foam-Agent achieves an 88.2% success rate with Claude 3.5 Sonnet, significantly outperforming existing frameworks (55.5% for MetaOpenFOAM). Foam-Agent dramatically lowers the expertise barrier for CFD, demonstrating how specialized multi-agent systems can democratize complex scientific computing. The code is public at https://github.com/csml-rpi/Foam-Agent.
♻ ☆ Not All Tokens are Guided Equal: Improving Guidance in Visual Autoregressive Models
Autoregressive (AR) models based on next-scale prediction are rapidly emerging as a powerful tool for image generation, but they face a critical weakness: information inconsistencies between patches across timesteps introduced by progressive resolution scaling. These inconsistencies scatter guidance signals, causing them to drift away from conditioning information and leaving behind ambiguous, unfaithful features. We tackle this challenge with Information-Grounding Guidance (IGG), a novel mechanism that anchors guidance to semantically important regions through attention. By adaptively reinforcing informative patches during sampling, IGG ensures that guidance and content remain tightly aligned. Across both class-conditioned and text-to-image generation tasks, IGG delivers sharper, more coherent, and semantically grounded images, setting a new benchmark for AR-based methods.
comment: 17 pages, 7 figures; added shared first authorship statement
♻ ☆ TDBench: A Benchmark for Top-Down Image Understanding with Reliability Analysis of Vision-Language Models
Top-down images play an important role in safety-critical settings such as autonomous navigation and aerial surveillance, where they provide holistic spatial information that front-view images cannot capture. Despite this, Vision Language Models (VLMs) are mostly trained and evaluated on front-view benchmarks, leaving their performance in the top-down setting poorly understood. Existing evaluations also overlook a unique property of top-down images: their physical meaning is preserved under rotation. In addition, conventional accuracy metrics can be misleading, since they are often inflated by hallucinations or "lucky guesses", which obscures a model's true reliability and its grounding in visual evidence. To address these issues, we introduce TDBench, a benchmark for top-down image understanding that includes 2000 curated questions for each rotation. We further propose RotationalEval (RE), which measures whether models provide consistent answers across four rotated views of the same scene, and we develop a reliability framework that separates genuine knowledge from chance. Finally, we conduct four case studies targeting underexplored real-world challenges. By combining rigorous evaluation with reliability metrics, TDBench not only benchmarks VLMs in top-down perception but also provides a new perspective on trustworthiness, guiding the development of more robust and grounded AI systems. Project homepage: https://github.com/Columbia-ICSL/TDBench
♻ ☆ $p$-less Sampling: A Robust Hyperparameter-Free Approach for LLM Decoding
Obtaining high-quality outputs from Large Language Models (LLMs) often depends upon the choice of a sampling-based decoding strategy to probabilistically choose the next token at each generation step. While a variety of such sampling methods have been proposed, their performance can be sensitive to the selection of hyperparameters which may require different settings depending upon the generation task and temperature configuration. In this work, we introduce $p$-less sampling: an information-theoretic approach to sampling which dynamically sets a truncation threshold at each decoding step based on the entire token probability distribution. Unlike existing methods, $p$-less sampling has no hyperparameters and consistently produces high-quality outputs as temperature increases. We provide theoretical perspectives on $p$-less sampling to ground our proposed method and conduct experiments to empirically validate its effectiveness across a range of math, logical reasoning, and creative writing tasks. Our results demonstrate how $p$-less sampling consistently outperforms existing sampling approaches while exhibiting much less degradation in text quality at higher temperature values. We further show how $p$-less achieves greater inference-time efficiency than alternative methods through lower average token sampling times and shorter generation lengths, without sacrificing accuracy. Finally, we provide analyses to highlight the benefits of $p$-less through qualitative examples, case studies, and diversity assessments.
♻ ☆ MathConstruct: Challenging LLM Reasoning with Constructive Proofs
While Large Language Models (LLMs) demonstrate impressive performance in mathematics, existing math benchmarks come with significant limitations. Many focus on problems with fixed ground-truth answers, and are often saturated due to problem simplicity or the viability of guessing or memorization. Crucially, they capture only a narrow subset of relevant math problems. To address this research gap, we introduce MathConstruct, a new benchmark of 121 challenging problems sourced from various math competitions, which targets constructive proofs, a widely encountered problem type requiring the construction of mathematical objects with specific properties. These proofs are particularly suitable for LLM evaluation, as solution correctness can be easily verified. Our automated verifiers also enable MathConstruct to generate problem variations, used to evaluate robustness. State-of-the-art LLMs solve only 60% of MathConstruct problems, highlighting its complexity and importance for LLM evaluation.
♻ ☆ Federated Causal Inference from Multi-Site Observational Data via Propensity Score Aggregation
Causal inference typically assumes centralized access to individual-level data. Yet, in practice, data are often decentralized across multiple sites, making centralization infeasible due to privacy, logistical, or legal constraints. We address this problem by estimating the Average Treatment Effect (ATE) from decentralized observational data via a Federated Learning (FL) approach, allowing inference through the exchange of aggregate statistics rather than individual-level data. We propose a novel method to estimate propensity scores by computing a federated weighted average of local scores with Membership Weights (MW)--probabilities of site membership conditional on covariates--which can be flexibly estimated using parametric or non-parametric classification models. Unlike density ratio weights (DW) from the transportability and generalization literature, which either rely on strong modeling assumptions or cannot be implemented in FL, MW can be estimated using standard FL algorithms and are more robust, as they support flexible, non-parametric models--making them the preferred choice in multi-site settings with strict data-sharing constraints. The resulting propensity scores are used to construct Federated Inverse Propensity Weighting (Fed-IPW) and Augmented IPW (Fed-AIPW) estimators. Unlike meta-analysis methods, which fail when any site violates positivity, our approach leverages heterogeneity in treatment assignment across sites to improve overlap. We show that Fed-IPW and Fed-AIPW perform well under site-level heterogeneity in sample sizes, treatment mechanisms, and covariate distributions. Both theoretical analysis and experiments on simulated and real-world data highlight their advantages over meta-analysis and related methods.
♻ ☆ FakeChain: Exposing Shallow Cues in Multi-Step Deepfake Detection
Multi-step or hybrid deepfakes, created by sequentially applying different deepfake creation methods such as Face-Swapping, GAN-based generation, and Diffusion methods, can pose an emerging and unforseen technical challenge for detection models trained on single-step forgeries. While prior studies have mainly focused on detecting isolated single manipulation, little is known about the detection model behavior under such compositional, hybrid, and complex manipulation pipelines. In this work, we introduce \textbf{FakeChain}, a large-scale benchmark comprising 1-, 2-, and 3-Step forgeries synthesized using five state-of-the-art representative generators. Using this approach, we analyze detection performance and spectral properties across hybrid manipulation at different step, along with varying generator combinations and quality settings. Surprisingly, our findings reveal that detection performance highly depends on the final manipulation type, with F1-score dropping by up to \textbf{58.83\%} when it differs from training distribution. This clearly demonstrates that detectors rely on last-stage artifacts rather than cumulative manipulation traces, limiting generalization. Such findings highlight the need for detection models to explicitly consider manipulation history and sequences. Our results highlight the importance of benchmarks such as FakeChain, reflecting growing synthesis complexity and diversity in real-world scenarios. Our sample code is available here\footnote{https://github.com/minjihh/FakeChain}.
♻ ☆ The challenge of hidden gifts in multi-agent reinforcement learning
Sometimes we benefit from actions that others have taken even when we are unaware that they took those actions. For example, if your neighbor chooses not to take a parking spot in front of your house when you are not there, you can benefit, even without being aware that they took this action. These ``hidden gifts'' represent an interesting challenge for multi-agent reinforcement learning (MARL), since assigning credit when the beneficial actions of others are hidden is non-trivial. Here, we study the impact of hidden gifts with a very simple MARL task. In this task, agents in a grid-world environment have individual doors to unlock in order to obtain individual rewards. As well, if all the agents unlock their door the group receives a larger collective reward. However, there is only one key for all of the doors, such that the collective reward can only be obtained when the agents drop the key for others after they use it. Notably, there is nothing to indicate to an agent that the other agents have dropped the key, thus this act for others is a ``hidden gift''. We show that several different state-of-the-art MARL algorithms, including MARL specific architectures, fail to learn how to obtain the collective reward in this simple task. Interestingly, we find that decentralized actor-critic policy gradient agents can succeed when we provide them with information about their own action history, but MARL agents still cannot solve the task with action history. Finally, we derive a correction term for policy gradient agents, inspired by learning aware approaches, which reduces the variance in learning and helps them to converge to collective success more reliably. These results show that credit assignment in multi-agent settings can be particularly challenging in the presence of ``hidden gifts'', and demonstrate that self learning-awareness in decentralized agents can benefit these settings.
comment: Added LOLA baselines to appendix, new corollary proof on correction term not conflicting with individual objectives, related works on multi-objective RL and coordination MARL, expanded the contraposition appendix experiment, moved key drop rate experiments to appendix and aligned first success plots with key-drop plots
♻ ☆ HodgeFormer: Transformers for Learnable Operators on Triangular Meshes through Data-Driven Hodge Matrices
Currently, prominent Transformer architectures applied on graphs and meshes for shape analysis tasks employ traditional attention layers that heavily utilize spectral features requiring costly eigenvalue decomposition-based methods. To encode the mesh structure, these methods derive positional embeddings, that heavily rely on eigenvalue decomposition based operations, e.g. on the Laplacian matrix, or on heat-kernel signatures, which are then concatenated to the input features. This paper proposes a novel approach inspired by the explicit construction of the Hodge Laplacian operator in Discrete Exterior Calculus as a product of discrete Hodge operators and exterior derivatives, i.e. $(L := \star_0^{-1} d_0^T \star_1 d_0)$. We adjust the Transformer architecture in a novel deep learning layer that utilizes the multi-head attention mechanism to approximate Hodge matrices $\star_0$, $\star_1$ and $\star_2$ and learn families of discrete operators $L$ that act on mesh vertices, edges and faces. Our approach results in a computationally-efficient architecture that achieves comparable performance in mesh segmentation and classification tasks, through a direct learning framework, while eliminating the need for costly eigenvalue decomposition operations or complex preprocessing operations.
comment: 15 pages, 13 figures, 10 tables
♻ ☆ Vision-driven River Following of UAV via Safe Reinforcement Learning using Semantic Dynamics Model RAS
Vision-driven autonomous river following by Unmanned Aerial Vehicles is critical for applications such as rescue, surveillance, and environmental monitoring, particularly in dense riverine environments where GPS signals are unreliable. These safety-critical navigation tasks must satisfy hard safety constraints while optimizing performance. Moreover, the reward in river following is inherently history-dependent (non-Markovian) by which river segment has already been visited, making it challenging for standard safe Reinforcement Learning (SafeRL). To address these gaps, we propose three contributions. First, we introduce Marginal Gain Advantage Estimation, which refines the reward advantage function by using a sliding window baseline computed from historical episodic returns, aligning the advantage estimate with non-Markovian dynamics. Second, we develop a Semantic Dynamics Model based on patchified water semantic masks offering more interpretable and data-efficient short-term prediction of future observations compared to latent vision dynamics models. Third, we present the Constrained Actor Dynamics Estimator architecture, which integrates the actor, cost estimator, and SDM for cost advantage estimation to form a model-based SafeRL framework. Simulation results demonstrate that MGAE achieves faster convergence and superior performance over traditional critic-based methods like Generalized Advantage Estimation. SDM provides more accurate short-term state predictions that enable the cost estimator to better predict potential violations. Overall, CADE effectively integrates safety regulation into model-based RL, with the Lagrangian approach providing a "soft" balance between reward and safety during training, while the safety layer enhances inference by imposing a "hard" action overlay.
comment: Submitted to Robotics and Autonomous Systems (RAS) journal
♻ ☆ PETAH: Parameter Efficient Task Adaptation for Hybrid Transformers in a resource-limited Context CVPR
Following their success in natural language processing (NLP), there has been a shift towards transformer models in computer vision. While transformers perform well and offer promising multi-tasking performance, due to their high compute requirements, many resource-constrained applications still rely on convolutional or hybrid models that combine the benefits of convolution and attention layers and achieve the best results in the sub 100M parameter range. Simultaneously, task adaptation techniques that allow for the use of one shared transformer backbone for multiple downstream tasks, resulting in great storage savings at negligible cost in performance, have not yet been adopted for hybrid transformers. In this work, we investigate how to achieve the best task-adaptation performance and introduce PETAH: Parameter Efficient Task Adaptation for Hybrid Transformers. We further combine PETAH adaptation with pruning to achieve highly performant and storage friendly models for multi-tasking. In our extensive evaluation on classification and other vision tasks, we demonstrate that our PETAH-adapted hybrid models outperform established task-adaptation techniques for ViTs while requiring fewer parameters and being more efficient on mobile hardware.
comment: Published in CVPRW 2025
♻ ☆ Internalizing Self-Consistency in Language Models: Multi-Agent Consensus Alignment
Language Models (LMs) are inconsistent reasoners, often generating contradictory responses to identical prompts. While inference-time methods can mitigate these inconsistencies, they fail to address the core problem: LMs struggle to reliably select reasoning pathways leading to consistent outcomes under exploratory sampling. To address this, we formalize self-consistency as an intrinsic property of well-aligned reasoning models and introduce Multi-Agent Consensus Alignment (MACA), a reinforcement learning framework that post-trains models to favor reasoning trajectories aligned with their internal consensus using majority/minority outcomes from multi-agent debate. These trajectories emerge from deliberative exchanges where agents ground reasoning in peer arguments, not just aggregation of independent attempts, creating richer consensus signals than single-round majority voting. MACA enables agents to teach themselves to be more decisive and concise, and better leverage peer insights in multi-agent settings without external supervision, driving substantial improvements across self-consistency (+27.6% on GSM8K), single-agent reasoning (+23.7% on MATH), sampling-based inference (+22.4% Pass@20 on MATH), and multi-agent ensemble decision-making (+42.7% on MathQA). These findings, coupled with strong generalization to unseen benchmarks (+16.3% on GPQA, +11.6% on CommonsenseQA), demonstrate robust self-alignment that more reliably unlocks latent reasoning potential of language models.
♻ ☆ 3D Interaction Geometric Pre-training for Molecular Relational Learning
Molecular Relational Learning (MRL) is a rapidly growing field that focuses on understanding the interaction dynamics between molecules, which is crucial for applications ranging from catalyst engineering to drug discovery. Despite recent progress, earlier MRL approaches are limited to using only the 2D topological structure of molecules, as obtaining the 3D interaction geometry remains prohibitively expensive. This paper introduces a novel 3D geometric pre-training strategy for MRL (3DMRL) that incorporates a 3D virtual interaction environment, overcoming the limitations of costly traditional quantum mechanical calculation methods. With the constructed 3D virtual interaction environment, 3DMRL trains 2D MRL model to learn the global and local 3D geometric information of molecular interaction. Extensive experiments on various tasks using real-world datasets, including out-of-distribution and extrapolation scenarios, demonstrate the effectiveness of 3DMRL, showing up to a 24.93% improvement in performance across 40 tasks. Our code is publicly available at https://github.com/Namkyeong/3DMRL.
♻ ☆ DISCOVER: Data-driven Identification of Sub-activities via Clustering and Visualization for Enhanced Activity Recognition in Smart Homes
Human Activity Recognition (HAR) using ambient sensors has great potential for practical applications, particularly in elder care and independent living. However, deploying HAR systems in real-world settings remains challenging due to the high cost of labeled data, the need for pre-segmented sensor streams, and the lack of flexibility in activity granularity. To address these limitations, we introduce DISCOVER, a method designed to discover fine-grained human sub-activities from unlabeled sensor data without relying on pre-segmentation. DISCOVER combines unsupervised feature extraction and clustering with a user-friendly visualization tool to streamline the labeling process. DISCOVER enables domain experts to efficiently annotate only a minimal set of representative cluster centroids, reducing the annotation workload to a small number of samples (0.05% of our dataset). We demonstrate DISCOVER's effectiveness through a re-annotation exercise on widely used HAR datasets, showing that it uncovers finer-grained activities and produces more nuanced annotations than traditional coarse labels. DISCOVER represents a step toward practical, deployable HAR systems that adapt to diverse real environments.
comment: v1: Initial submission. Under review at IMWUT
♻ ☆ Text-to-CT Generation via 3D Latent Diffusion Model with Contrastive Vision-Language Pretraining
Objective: While recent advances in text-conditioned generative models have enabled the synthesis of realistic medical images, progress has been largely confined to 2D modalities such as chest X-rays. Extending text-to-image generation to volumetric CT remains a significant challenge, due to its high dimensionality, anatomical complexity, and the absence of robust frameworks that align vision-language data in 3D medical imaging. Methods: We introduce a novel architecture for Text-to-CT generation that combines a latent diffusion model with a 3D contrastive vision-language pretraining scheme. Our approach leverages a dual-encoder CLIP-style model trained on paired CT volumes and radiology reports to establish a shared embedding space, which serves as the conditioning input for generation. CT volumes are compressed into a low-dimensional latent space via a pretrained volumetric VAE, enabling efficient 3D denoising diffusion without requiring external super-resolution stages. Results: We evaluate our method on the CT-RATE dataset and conduct a comprehensive assessment of image fidelity, clinical relevance, and semantic alignment. Our model achieves competitive performance across all tasks, significantly outperforming prior baselines for text-to-CT generation. Moreover, we demonstrate that CT scans synthesized by our framework can effectively augment real data, improving downstream diagnostic performance. Conclusion: Our results show that modality-specific vision-language alignment is a key component for high-quality 3D medical image generation. By integrating contrastive pretraining and volumetric diffusion, our method offers a scalable and controllable solution for synthesizing clinically meaningful CT volumes from text, paving the way for new applications in data augmentation, medical education, and automated clinical simulation. Code at https://github.com/cosbidev/Text2CT.
♻ ☆ Choosing a Model, Shaping a Future: Comparing LLM Perspectives on Sustainability and its Relationship with AI EMNLP
As organizations increasingly rely on AI systems for decision support in sustainability contexts, it becomes critical to understand the inherent biases and perspectives embedded in Large Language Models (LLMs). This study systematically investigates how five state-of-the-art LLMs -- Claude, DeepSeek, GPT, LLaMA, and Mistral - conceptualize sustainability and its relationship with AI. We administered validated, psychometric sustainability-related questionnaires - each 100 times per model -- to capture response patterns and variability. Our findings revealed significant inter-model differences: For example, GPT exhibited skepticism about the compatibility of AI and sustainability, whereas LLaMA demonstrated extreme techno-optimism with perfect scores for several Sustainable Development Goals (SDGs). Models also diverged in attributing institutional responsibility for AI and sustainability integration, a results that holds implications for technology governance approaches. Our results demonstrate that model selection could substantially influence organizational sustainability strategies, highlighting the need for awareness of model-specific biases when deploying LLMs for sustainability-related decision-making.
comment: Accepted for EMNLP Conference
♻ ☆ Learning to Rank Chain-of-Thought: Using a Small Model
Large Language Models (LLMs) struggle with reliable mathematical reasoning, and current verification methods are often computationally expensive. This paper introduces the Energy Outcome Reward Model (EORM), a highly efficient, lightweight post-hoc verifier designed to address this challenge. EORM uses an energy-based framework to rank Chain-of-Thought (CoT) solutions, learning to distinguish correct from incorrect reasoning using only simple outcome labels, thus eliminating the need for expensive annotations. With only 55M parameters, over 127 times smaller than typical reward models, EORM boosts the accuracy of Llama 3 8B to 90.7\% on GSM8k and 63.7\% on MATH. This performance is achieved by efficiently selecting the optimal reasoning path from a pool of candidates, allowing it to match or exceed the accuracy of far more resource-intensive Best-of-N sampling techniques. Crucially, our experiments show that EORM generalizes effectively to out-of-distribution problems and unseen models, indicating it learns fundamental principles of valid reasoning. This robustness, combined with its efficiency, establishes EORM as a practical tool for deploying more dependable LLMs in complex, real-world applications.
♻ ☆ Breast Cancer Diagnosis: A Comprehensive Exploration of Explainable Artificial Intelligence (XAI) Techniques
Breast cancer (BC) stands as one of the most common malignancies affecting women worldwide, necessitating advancements in diagnostic methodologies for better clinical outcomes. This article provides a comprehensive exploration of the application of Explainable Artificial Intelligence (XAI) techniques in the detection and diagnosis of breast cancer. As Artificial Intelligence (AI) technologies continue to permeate the healthcare sector, particularly in oncology, the need for transparent and interpretable models becomes imperative to enhance clinical decision-making and patient care. This review discusses the integration of various XAI approaches, such as SHAP, LIME, Grad-CAM, and others, with machine learning and deep learning models utilized in breast cancer detection and classification. By investigating the modalities of breast cancer datasets, including mammograms, ultrasounds and their processing with AI, the paper highlights how XAI can lead to more accurate diagnoses and personalized treatment plans. It also examines the challenges in implementing these techniques and the importance of developing standardized metrics for evaluating XAI's effectiveness in clinical settings. Through detailed analysis and discussion, this article aims to highlight the potential of XAI in bridging the gap between complex AI models and practical healthcare applications, thereby fostering trust and understanding among medical professionals and improving patient outcomes.
♻ ☆ MobileLLM-R1: Exploring the Limits of Sub-Billion Language Model Reasoners with Open Training Recipes
The paradigm shift in large language models (LLMs) from instinctive responses to chain-of-thought (CoT) reasoning has fueled two prevailing assumptions: (1) reasoning capabilities only emerge in sufficiently large models, and (2) such capabilities require training on massive datasets. While the first assumption has already been challenged by recent sub-billion-parameter reasoning models such as Qwen3-0.6B and DeepSeek distilled variants, the second remains largely unquestioned. In this work, we revisit the necessity of scaling to extremely large corpora (>10T tokens) for reasoning emergence. By carefully curating and resampling open-source datasets that we identify as beneficial under our designed metrics, we demonstrate that strong reasoning abilities can emerge with far less data. Specifically, we show that only ~2T tokens of high-quality data are sufficient, and pre-training with 4.2T tokens on the dataset resampled from these ~2T tokens, followed by a established post-training procedure, enables the development of MobileLLM-R1, a series of sub-billion-parameter reasoning models that substantially outperform prior models trained on fully open-sourced data. For example, MobileLLM-R1-950M achieves an AIME score of 15.5, compared to just 0.6 for OLMo-2-1.48B and 0.3 for SmolLM-2-1.7B. Remarkably, despite being trained on only 11.7% of the tokens compared to Qwen3's proprietary 36T-token corpus for pretraining, MobileLLM-R1-950M matches or surpasses Qwen3-0.6B across multiple reasoning benchmarks. To facilitate further research in this direction, we have released the complete training recipe, data sources, data mixing ratio, and model checkpoints, together with the key insights obtained throughout this study.
comment: Model: https://huggingface.co/collections/facebook/mobilellm-r1-68c4597b104fac45f28f448e
♻ ☆ EVO-LRP: Evolutionary Optimization of LRP for Interpretable Model Explanations
Explainable AI (XAI) methods help identify which image regions influence a model's prediction, but often face a trade-off between detail and interpretability. Layer-wise Relevance Propagation (LRP) offers a model-aware alternative. However, LRP implementations commonly rely on heuristic rule sets that are not optimized for clarity or alignment with model behavior. We introduce EVO-LRP, a method that applies Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to tune LRP hyperparameters based on quantitative interpretability metrics, such as faithfulness or sparseness. EVO-LRP outperforms traditional XAI approaches in both interpretability metric performance and visual coherence, with strong sensitivity to class-specific features. These findings demonstrate that attribution quality can be systematically improved through principled, task-specific optimization.
comment: 15 pages
Machine Learning 313
☆ Stitch: Training-Free Position Control in Multimodal Diffusion Transformers
Text-to-Image (T2I) generation models have advanced rapidly in recent years, but accurately capturing spatial relationships like "above" or "to the right of" poses a persistent challenge. Earlier methods improved spatial relationship following with external position control. However, as architectures evolved to enhance image quality, these techniques became incompatible with modern models. We propose Stitch, a training-free method for incorporating external position control into Multi-Modal Diffusion Transformers (MMDiT) via automatically-generated bounding boxes. Stitch produces images that are both spatially accurate and visually appealing by generating individual objects within designated bounding boxes and seamlessly stitching them together. We find that targeted attention heads capture the information necessary to isolate and cut out individual objects mid-generation, without needing to fully complete the image. We evaluate Stitch on PosEval, our benchmark for position-based T2I generation. Featuring five new tasks that extend the concept of Position beyond the basic GenEval task, PosEval demonstrates that even top models still have significant room for improvement in position-based generation. Tested on Qwen-Image, FLUX, and SD3.5, Stitch consistently enhances base models, even improving FLUX by 218% on GenEval's Position task and by 206% on PosEval. Stitch achieves state-of-the-art results with Qwen-Image on PosEval, improving over previous models by 54%, all accomplished while integrating position control into leading models training-free. Code is available at https://github.com/ExplainableML/Stitch.
comment: Preprint
☆ Convergence and Divergence of Language Models under Different Random Seeds EMNLP 2025
In this paper, we investigate the convergence of language models (LMs) trained under different random seeds, measuring convergence as the expected per-token Kullback--Leibler (KL) divergence across seeds. By comparing LM convergence as a function of model size and training checkpoint, we identify a four-phase convergence pattern: (i) an initial uniform phase, (ii) a sharp-convergence phase, (iii) a sharp-divergence phase, and (iv) a slow-reconvergence phase. Further, we observe that larger models reconverge faster in later training stages, while smaller models never actually reconverge; these results suggest that a certain model size may be necessary to learn stable distributions. Restricting our analysis to specific token frequencies or part-of-speech (PoS) tags further reveals that convergence is uneven across linguistic categories: frequent tokens and function words converge faster and more reliably than their counterparts (infrequent tokens and content words). Overall, our findings highlight factors that influence the stability of the learned distributions in model training.
comment: Published at EMNLP 2025
☆ SPATA: Systematic Pattern Analysis for Detailed and Transparent Data Cards ECML
Due to the susceptibility of Artificial Intelligence (AI) to data perturbations and adversarial examples, it is crucial to perform a thorough robustness evaluation before any Machine Learning (ML) model is deployed. However, examining a model's decision boundaries and identifying potential vulnerabilities typically requires access to the training and testing datasets, which may pose risks to data privacy and confidentiality. To improve transparency in organizations that handle confidential data or manage critical infrastructure, it is essential to allow external verification and validation of AI without the disclosure of private datasets. This paper presents Systematic Pattern Analysis (SPATA), a deterministic method that converts any tabular dataset to a domain-independent representation of its statistical patterns, to provide more detailed and transparent data cards. SPATA computes the projection of each data instance into a discrete space where they can be analyzed and compared, without risking data leakage. These projected datasets can be reliably used for the evaluation of how different features affect ML model robustness and for the generation of interpretable explanations of their behavior, contributing to more trustworthy AI.
comment: 16 pages, 3 tables, 6 figures, SynDAiTE, ECML PKDD 2025
☆ AccidentBench: Benchmarking Multimodal Understanding and Reasoning in Vehicle Accidents and Beyond
Rapid advances in multimodal models demand benchmarks that rigorously evaluate understanding and reasoning in safety-critical, dynamic real-world settings. We present AccidentBench, a large-scale benchmark that combines vehicle accident scenarios with Beyond domains, safety-critical settings in air and water that emphasize spatial and temporal reasoning (e.g., navigation, orientation, multi-vehicle motion). The benchmark contains approximately 2000 videos and over 19000 human-annotated question--answer pairs spanning multiple video lengths (short/medium/long) and difficulty levels (easy/medium/hard). Tasks systematically probe core capabilities: temporal, spatial, and intent understanding and reasoning. By unifying accident-centric traffic scenes with broader safety-critical scenarios in air and water, AccidentBench offers a comprehensive, physically grounded testbed for evaluating models under real-world variability. Evaluations of state-of-the-art models (e.g., Gemini-2.5 Pro and GPT-5) show that even the strongest models achieve only about 18% accuracy on the hardest tasks and longest videos, revealing substantial gaps in real-world temporal, spatial, and intent reasoning. AccidentBench is designed to expose these critical gaps and drive the development of multimodal models that are safer, more robust, and better aligned with real-world safety-critical challenges. The code and dataset are available at: https://github.com/SafeRL-Lab/AccidentBench
☆ OmniRetarget: Interaction-Preserving Data Generation for Humanoid Whole-Body Loco-Manipulation and Scene Interaction
A dominant paradigm for teaching humanoid robots complex skills is to retarget human motions as kinematic references to train reinforcement learning (RL) policies. However, existing retargeting pipelines often struggle with the significant embodiment gap between humans and robots, producing physically implausible artifacts like foot-skating and penetration. More importantly, common retargeting methods neglect the rich human-object and human-environment interactions essential for expressive locomotion and loco-manipulation. To address this, we introduce OmniRetarget, an interaction-preserving data generation engine based on an interaction mesh that explicitly models and preserves the crucial spatial and contact relationships between an agent, the terrain, and manipulated objects. By minimizing the Laplacian deformation between the human and robot meshes while enforcing kinematic constraints, OmniRetarget generates kinematically feasible trajectories. Moreover, preserving task-relevant interactions enables efficient data augmentation, from a single demonstration to different robot embodiments, terrains, and object configurations. We comprehensively evaluate OmniRetarget by retargeting motions from OMOMO, LAFAN1, and our in-house MoCap datasets, generating over 8-hour trajectories that achieve better kinematic constraint satisfaction and contact preservation than widely used baselines. Such high-quality data enables proprioceptive RL policies to successfully execute long-horizon (up to 30 seconds) parkour and loco-manipulation skills on a Unitree G1 humanoid, trained with only 5 reward terms and simple domain randomization shared by all tasks, without any learning curriculum.
comment: Project website: https://omniretarget.github.io
☆ Attention as a Compass: Efficient Exploration for Process-Supervised RL in Reasoning Models
Reinforcement Learning (RL) has shown remarkable success in enhancing the reasoning capabilities of Large Language Models (LLMs). Process-Supervised RL (PSRL) has emerged as a more effective paradigm compared to outcome-based RL. However, existing PSRL approaches suffer from limited exploration efficiency, both in terms of branching positions and sampling. In this paper, we introduce a novel PSRL framework (AttnRL), which enables efficient exploration for reasoning models. Motivated by preliminary observations that steps exhibiting high attention scores correlate with reasoning behaviors, we propose to branch from positions with high values. Furthermore, we develop an adaptive sampling strategy that accounts for problem difficulty and historical batch size, ensuring that the whole training batch maintains non-zero advantage values. To further improve sampling efficiency, we design a one-step off-policy training pipeline for PSRL. Extensive experiments on multiple challenging mathematical reasoning benchmarks demonstrate that our method consistently outperforms prior approaches in terms of performance and sampling and training efficiency.
☆ TimeRewarder: Learning Dense Reward from Passive Videos via Frame-wise Temporal Distance
Designing dense rewards is crucial for reinforcement learning (RL), yet in robotics it often demands extensive manual effort and lacks scalability. One promising solution is to view task progress as a dense reward signal, as it quantifies the degree to which actions advance the system toward task completion over time. We present TimeRewarder, a simple yet effective reward learning method that derives progress estimation signals from passive videos, including robot demonstrations and human videos, by modeling temporal distances between frame pairs. We then demonstrate how TimeRewarder can supply step-wise proxy rewards to guide reinforcement learning. In our comprehensive experiments on ten challenging Meta-World tasks, we show that TimeRewarder dramatically improves RL for sparse-reward tasks, achieving nearly perfect success in 9/10 tasks with only 200,000 interactions per task with the environment. This approach outperformed previous methods and even the manually designed environment dense reward on both the final success rate and sample efficiency. Moreover, we show that TimeRewarder pretraining can exploit real-world human videos, highlighting its potential as a scalable approach path to rich reward signals from diverse video sources.
Recursive Self-Aggregation Unlocks Deep Thinking in Large Language Models
Test-time scaling methods improve the capabilities of large language models (LLMs) by increasing the amount of compute used during inference to make a prediction. Inference-time compute can be scaled in parallel by choosing among multiple independent solutions or sequentially through self-refinement. We propose Recursive Self-Aggregation (RSA), a test-time scaling method inspired by evolutionary methods that combines the benefits of both parallel and sequential scaling. Each step of RSA refines a population of candidate reasoning chains through aggregation of subsets to yield a population of improved solutions, which are then used as the candidate pool for the next iteration. RSA exploits the rich information embedded in the reasoning chains -- not just the final answers -- and enables bootstrapping from partially correct intermediate steps within different chains of thought. Empirically, RSA delivers substantial performance gains with increasing compute budgets across diverse tasks, model families and sizes. Notably, RSA enables Qwen3-4B-Instruct-2507 to achieve competitive performance with larger reasoning models, including DeepSeek-R1 and o3-mini (high), while outperforming purely parallel and sequential scaling strategies across AIME-25, HMMT-25, Reasoning Gym, LiveCodeBench-v6, and SuperGPQA. We further demonstrate that training the model to combine solutions via a novel aggregation-aware reinforcement learning approach yields significant performance gains. Code available at https://github.com/HyperPotatoNeo/RSA.
comment: 24 pages, 9 figures
☆ Learning to See Before Seeing: Demystifying LLM Visual Priors from Language Pre-training
Large Language Models (LLMs), despite being trained on text alone, surprisingly develop rich visual priors. These priors allow latent visual capabilities to be unlocked for vision tasks with a relatively small amount of multimodal data, and in some cases, to perform visual tasks without ever having seen an image. Through systematic analysis, we reveal that visual priors-the implicit, emergent knowledge about the visual world acquired during language pre-training-are composed of separable perception and reasoning priors with unique scaling trends and origins. We show that an LLM's latent visual reasoning ability is predominantly developed by pre-training on reasoning-centric data (e.g., code, math, academia) and scales progressively. This reasoning prior acquired from language pre-training is transferable and universally applicable to visual reasoning. In contrast, a perception prior emerges more diffusely from broad corpora, and perception ability is more sensitive to the vision encoder and visual instruction tuning data. In parallel, text describing the visual world proves crucial, though its performance impact saturates rapidly. Leveraging these insights, we propose a data-centric recipe for pre-training vision-aware LLMs and verify it in 1T token scale pre-training. Our findings are grounded in over 100 controlled experiments consuming 500,000 GPU-hours, spanning the full MLLM construction pipeline-from LLM pre-training to visual alignment and supervised multimodal fine-tuning-across five model scales, a wide range of data categories and mixtures, and multiple adaptation setups. Along with our main findings, we propose and investigate several hypotheses, and introduce the Multi-Level Existence Bench (MLE-Bench). Together, this work provides a new way of deliberately cultivating visual priors from language pre-training, paving the way for the next generation of multimodal LLMs.
comment: Project page: https://junlinhan.github.io/projects/lsbs/
☆ Uncertainty Quantification for Regression using Proper Scoring Rules
Quantifying uncertainty of machine learning model predictions is essential for reliable decision-making, especially in safety-critical applications. Recently, uncertainty quantification (UQ) theory has advanced significantly, building on a firm basis of learning with proper scoring rules. However, these advances were focused on classification, while extending these ideas to regression remains challenging. In this work, we introduce a unified UQ framework for regression based on proper scoring rules, such as CRPS, logarithmic, squared error, and quadratic scores. We derive closed-form expressions for the resulting uncertainty measures under practical parametric assumptions and show how to estimate them using ensembles of models. In particular, the derived uncertainty measures naturally decompose into aleatoric and epistemic components. The framework recovers popular regression UQ measures based on predictive variance and differential entropy. Our broad evaluation on synthetic and real-world regression datasets provides guidance for selecting reliable UQ measures.
☆ Fine-tuning Behavioral Cloning Policies with Preference-Based Reinforcement Learning
Deploying reinforcement learning (RL) in robotics, industry, and health care is blocked by two obstacles: the difficulty of specifying accurate rewards and the risk of unsafe, data-hungry exploration. We address this by proposing a two-stage framework that first learns a safe initial policy from a reward-free dataset of expert demonstrations, then fine-tunes it online using preference-based human feedback. We provide the first principled analysis of this offline-to-online approach and introduce BRIDGE, a unified algorithm that integrates both signals via an uncertainty-weighted objective. We derive regret bounds that shrink with the number of offline demonstrations, explicitly connecting the quantity of offline data to online sample efficiency. We validate BRIDGE in discrete and continuous control MuJoCo environments, showing it achieves lower regret than both standalone behavioral cloning and online preference-based RL. Our work establishes a theoretical foundation for designing more sample-efficient interactive agents.
comment: 85 pages (11 + references and appendix), 9 figures
☆ DeepScientist: Advancing Frontier-Pushing Scientific Findings Progressively
While previous AI Scientist systems can generate novel findings, they often lack the focus to produce scientifically valuable contributions that address pressing human-defined challenges. We introduce DeepScientist, a system designed to overcome this by conducting goal-oriented, fully autonomous scientific discovery over month-long timelines. It formalizes discovery as a Bayesian Optimization problem, operationalized through a hierarchical evaluation process consisting of "hypothesize, verify, and analyze". Leveraging a cumulative Findings Memory, this loop intelligently balances the exploration of novel hypotheses with exploitation, selectively promoting the most promising findings to higher-fidelity levels of validation. Consuming over 20,000 GPU hours, the system generated about 5,000 unique scientific ideas and experimentally validated approximately 1100 of them, ultimately surpassing human-designed state-of-the-art (SOTA) methods on three frontier AI tasks by 183.7\%, 1.9\%, and 7.9\%. This work provides the first large-scale evidence of an AI achieving discoveries that progressively surpass human SOTA on scientific tasks, producing valuable findings that genuinely push the frontier of scientific discovery. To facilitate further research into this process, we will open-source all experimental logs and system code at https://github.com/ResearAI/DeepScientist/.
☆ MENLO: From Preferences to Proficiency -- Evaluating and Modeling Native-like Quality Across 47 Languages
Ensuring native-like quality of large language model (LLM) responses across many languages is challenging. To address this, we introduce MENLO, a framework that operationalizes the evaluation of native-like response quality based on audience design-inspired mechanisms. Using MENLO, we create a dataset of 6,423 human-annotated prompt-response preference pairs covering four quality dimensions with high inter-annotator agreement in 47 language varieties. Our evaluation reveals that zero-shot LLM judges benefit significantly from pairwise evaluation and our structured annotation rubrics, yet they still underperform human annotators on our dataset. We demonstrate substantial improvements through fine-tuning with reinforcement learning, reward shaping, and multi-task learning approaches. Additionally, we show that RL-trained judges can serve as generative reward models to enhance LLMs' multilingual proficiency, though discrepancies with human judgment remain. Our findings suggest promising directions for scalable multilingual evaluation and preference alignment. We release our dataset and evaluation framework to support further research in multilingual LLM evaluation.
comment: 10 pages, 23 tables, 17 figures
☆ Are Robust LLM Fingerprints Adversarially Robust?
Model fingerprinting has emerged as a promising paradigm for claiming model ownership. However, robustness evaluations of these schemes have mostly focused on benign perturbations such as incremental fine-tuning, model merging, and prompting. Lack of systematic investigations into {\em adversarial robustness} against a malicious model host leaves current systems vulnerable. To bridge this gap, we first define a concrete, practical threat model against model fingerprinting. We then take a critical look at existing model fingerprinting schemes to identify their fundamental vulnerabilities. Based on these, we develop adaptive adversarial attacks tailored for each vulnerability, and demonstrate that these can bypass model authentication completely for ten recently proposed fingerprinting schemes while maintaining high utility of the model for the end users. Our work encourages fingerprint designers to adopt adversarial robustness by design. We end with recommendations for future fingerprinting methods.
☆ Clarification as Supervision: Reinforcement Learning for Vision-Language Interfaces
Recent text-only models demonstrate remarkable mathematical reasoning capabilities. Extending these to visual domains requires vision-language models to translate images into text descriptions. However, current models, trained to produce captions for human readers, often omit the precise details that reasoning systems require. This creates an interface mismatch: reasoners often fail not due to reasoning limitations but because they lack access to critical visual information. We propose Adaptive-Clarification Reinforcement Learning (AC-RL), which teaches vision models what information reasoners need through interaction. Our key insight is that clarification requests during training reveal information gaps; by penalizing success that requires clarification, we create pressure for comprehensive initial captions that enable the reasoner to solve the problem in a single pass. AC-RL improves average accuracy by 4.4 points over pretrained baselines across seven visual mathematical reasoning benchmarks, and analysis shows it would cut clarification requests by up to 39% if those were allowed. By treating clarification as a form of implicit supervision, AC-RL demonstrates that vision-language interfaces can be effectively learned through interaction alone, without requiring explicit annotations.
☆ Fairness Testing in Retrieval-Augmented Generation: How Small Perturbations Reveal Bias in Small Language Models
Large Language Models (LLMs) are widely used across multiple domains but continue to raise concerns regarding security and fairness. Beyond known attack vectors such as data poisoning and prompt injection, LLMs are also vulnerable to fairness bugs. These refer to unintended behaviors influenced by sensitive demographic cues (e.g., race or sexual orientation) that should not affect outcomes. Another key issue is hallucination, where models generate plausible yet false information. Retrieval-Augmented Generation (RAG) has emerged as a strategy to mitigate hallucinations by combining external retrieval with text generation. However, its adoption raises new fairness concerns, as the retrieved content itself may surface or amplify bias. This study conducts fairness testing through metamorphic testing (MT), introducing controlled demographic perturbations in prompts to assess fairness in sentiment analysis performed by three Small Language Models (SLMs) hosted on HuggingFace (Llama-3.2-3B-Instruct, Mistral-7B-Instruct-v0.3, and Llama-3.1-Nemotron-8B), each integrated into a RAG pipeline. Results show that minor demographic variations can break up to one third of metamorphic relations (MRs). A detailed analysis of these failures reveals a consistent bias hierarchy, with perturbations involving racial cues being the predominant cause of the violations. In addition to offering a comparative evaluation, this work reinforces that the retrieval component in RAG must be carefully curated to prevent bias amplification. The findings serve as a practical alert for developers, testers and small organizations aiming to adopt accessible SLMs without compromising fairness or reliability.
☆ Source Separation for A Cappella Music
In this work, we study the task of multi-singer separation in a cappella music, where the number of active singers varies across mixtures. To address this, we use a power set-based data augmentation strategy that expands limited multi-singer datasets into exponentially more training samples. To separate singers, we introduce SepACap, an adaptation of SepReformer, a state-of-the-art speaker separation model architecture. We adapt the model with periodic activations and a composite loss function that remains effective when stems are silent, enabling robust detection and separation. Experiments on the JaCappella dataset demonstrate that our approach achieves state-of-the-art performance in both full-ensemble and subset singer separation scenarios, outperforming spectrogram-based baselines while generalizing to realistic mixtures with varying numbers of singers.
☆ Linking Process to Outcome: Conditional Reward Modeling for LLM Reasoning
Process Reward Models (PRMs) have emerged as a promising approach to enhance the reasoning capabilities of large language models (LLMs) by guiding their step-by-step reasoning toward a final answer. However, existing PRMs either treat each reasoning step in isolation, failing to capture inter-step dependencies, or struggle to align process rewards with the final outcome. Consequently, the reward signal fails to respect temporal causality in sequential reasoning and faces ambiguous credit assignment. These limitations make downstream models vulnerable to reward hacking and lead to suboptimal performance. In this work, we propose Conditional Reward Modeling (CRM) that frames LLM reasoning as a temporal process leading to a correct answer. The reward of each reasoning step is not only conditioned on the preceding steps but also explicitly linked to the final outcome of the reasoning trajectory. By enforcing conditional probability rules, our design captures the causal relationships among reasoning steps, with the link to the outcome allowing precise attribution of each intermediate step, thereby resolving credit assignment ambiguity. Further, through this consistent probabilistic modeling, the rewards produced by CRM enable more reliable cross-sample comparison. Experiments across Best-of-N sampling, beam search and reinforcement learning demonstrate that CRM consistently outperforms existing reward models, offering a principled framework for enhancing LLM reasoning. In particular, CRM is more robust to reward hacking and delivers stable downstream improvements without relying on verifiable rewards derived from ground truth.
☆ Importance of localized dilatation and distensibility in identifying determinants of thoracic aortic aneurysm with neural operators
Thoracic aortic aneurysms (TAAs) arise from diverse mechanical and mechanobiological disruptions to the aortic wall that increase the risk of dissection or rupture. Evidence links TAA development to dysfunctions in the aortic mechanotransduction axis, including loss of elastic fiber integrity and cell-matrix connections. Because distinct insults create different mechanical vulnerabilities, there is a critical need to identify interacting factors that drive progression. Here, we use a finite element framework to generate synthetic TAAs from hundreds of heterogeneous insults spanning varying degrees of elastic fiber damage and impaired mechanosensing. From these simulations, we construct spatial maps of localized dilatation and distensibility to train neural networks that predict the initiating combined insult. We compare several architectures (Deep Operator Networks, UNets, and Laplace Neural Operators) and multiple input data formats to define a standard for future subject-specific modeling. We also quantify predictive performance when networks are trained using only geometric data (dilatation) versus both geometric and mechanical data (dilatation plus distensibility). Across all networks, prediction errors are significantly higher when trained on dilatation alone, underscoring the added value of distensibility information. Among the tested models, UNet consistently provides the highest accuracy across all data formats. These findings highlight the importance of acquiring full-field measurements of both dilatation and distensibility in TAA assessment to reveal the mechanobiological drivers of disease and support the development of personalized treatment strategies.
☆ AI-assisted Advanced Propellant Development for Electric Propulsion
Artificial Intelligence algorithms are introduced in this work as a tool to predict the performance of new chemical compounds as alternative propellants for electric propulsion, focusing on predicting their ionisation characteristics and fragmentation patterns. The chemical properties and structure of the compounds are encoded using a chemical fingerprint, and the training datasets are extracted from the NIST WebBook. The AI-predicted ionisation energy and minimum appearance energy have a mean relative error of 6.87% and 7.99%, respectively, and a predicted ion mass with a 23.89% relative error. In the cases of full mass spectra due to electron ionisation, the predictions have a cosine similarity of 0.6395 and align with the top 10 most similar mass spectra in 78% of instances within a 30 Da range.
comment: 23 pages, 10 figures, 5 tables. Journal of Electric Propulsion
☆ Parametric Neural Amp Modeling with Active Learning
We introduce Panama, an active learning framework to train parametric guitar amp models end-to-end using a combination of an LSTM model and a WaveNet-like architecture. With \model, one can create a virtual amp by recording samples that are determined through an ensemble-based active learning strategy to minimize the amount of datapoints needed (i.e., amp knob settings). Our strategy uses gradient-based optimization to maximize the disagreement among ensemble models, in order to identify the most informative datapoints. MUSHRA listening tests reveal that, with 75 datapoints, our models are able to match the perceptual quality of NAM, the leading open-source non-parametric amp modeler.
☆ DeepProv: Behavioral Characterization and Repair of Neural Networks via Inference Provenance Graph Analysis ACSA
Deep neural networks (DNNs) are increasingly being deployed in high-stakes applications, from self-driving cars to biometric authentication. However, their unpredictable and unreliable behaviors in real-world settings require new approaches to characterize and ensure their reliability. This paper introduces DeepProv, a novel and customizable system designed to capture and characterize the runtime behavior of DNNs during inference by using their underlying graph structure. Inspired by system audit provenance graphs, DeepProv models the computational information flow of a DNN's inference process through Inference Provenance Graphs (IPGs). These graphs provide a detailed structural representation of the behavior of DNN, allowing both empirical and structural analysis. DeepProv uses these insights to systematically repair DNNs for specific objectives, such as improving robustness, privacy, or fairness. We instantiate DeepProv with adversarial robustness as the goal of model repair and conduct extensive case studies to evaluate its effectiveness. Our results demonstrate its effectiveness and scalability across diverse classification tasks, attack scenarios, and model complexities. DeepProv automatically identifies repair actions at the node and edge-level within IPGs, significantly enhancing the robustness of the model. In particular, applying DeepProv repair strategies to just a single layer of a DNN yields an average 55% improvement in adversarial accuracy. Moreover, DeepProv complements existing defenses, achieving substantial gains in adversarial robustness. Beyond robustness, we demonstrate the broader potential of DeepProv as an adaptable system to characterize DNN behavior in other critical areas, such as privacy auditing and fairness analysis.
comment: 18 pages, 9 figures, 6 tables, To appear in the 41st Annual Computer Security Applications Conference (ACSAC), 2025
☆ Estimating Dimensionality of Neural Representations from Finite Samples
The global dimensionality of a neural representation manifold provides rich insight into the computational process underlying both artificial and biological neural networks. However, all existing measures of global dimensionality are sensitive to the number of samples, i.e., the number of rows and columns of the sample matrix. We show that, in particular, the participation ratio of eigenvalues, a popular measure of global dimensionality, is highly biased with small sample sizes, and propose a bias-corrected estimator that is more accurate with finite samples and with noise. On synthetic data examples, we demonstrate that our estimator can recover the true known dimensionality. We apply our estimator to neural brain recordings, including calcium imaging, electrophysiological recordings, and fMRI data, and to the neural activations in a large language model and show our estimator is invariant to the sample size. Finally, our estimators can additionally be used to measure the local dimensionalities of curved neural manifolds by weighting the finite samples appropriately.
☆ Pretrain-Test Task Alignment Governs Generalization in In-Context Learning
In-context learning (ICL) is a central capability of Transformer models, but the structures in data that enable its emergence and govern its robustness remain poorly understood. In this work, we study how the structure of pretraining tasks governs generalization in ICL. Using a solvable model for ICL of linear regression by linear attention, we derive an exact expression for ICL generalization error in high dimensions under arbitrary pretraining-testing task covariance mismatch. This leads to a new alignment measure that quantifies how much information about the pretraining task distribution is useful for inference at test time. We show that this measure directly predicts ICL performance not only in the solvable model but also in nonlinear Transformers. Our analysis further reveals a tradeoff between specialization and generalization in ICL: depending on task distribution alignment, increasing pretraining task diversity can either improve or harm test performance. Together, these results identify train-test task alignment as a key determinant of generalization in ICL.
☆ Towards Verified Code Reasoning by LLMs
While LLM-based agents are able to tackle a wide variety of code reasoning questions, the answers are not always correct. This prevents the agent from being useful in situations where high precision is desired: (1) helping a software engineer understand a new code base, (2) helping a software engineer during code review sessions, and (3) ensuring that the code generated by an automated code generation system meets certain requirements (e.g. fixes a bug, improves readability, implements a feature). As a result of this lack of trustworthiness, the agent's answers need to be manually verified before they can be trusted. Manually confirming responses from a code reasoning agent requires human effort and can result in slower developer productivity, which weakens the assistance benefits of the agent. In this paper, we describe a method to automatically validate the answers provided by a code reasoning agent by verifying its reasoning steps. At a very high level, the method consists of extracting a formal representation of the agent's response and, subsequently, using formal verification and program analysis tools to verify the agent's reasoning steps. We applied this approach to a benchmark set of 20 uninitialized variable errors detected by sanitizers and 20 program equivalence queries. For the uninitialized variable errors, the formal verification step was able to validate the agent's reasoning on 13/20 examples, and for the program equivalence queries, the formal verification step successfully caught 6/8 incorrect judgments made by the agent.
comment: 43 pages
☆ Bayesian Influence Functions for Hessian-Free Data Attribution
Classical influence functions face significant challenges when applied to deep neural networks, primarily due to non-invertible Hessians and high-dimensional parameter spaces. We propose the local Bayesian influence function (BIF), an extension of classical influence functions that replaces Hessian inversion with loss landscape statistics that can be estimated via stochastic-gradient MCMC sampling. This Hessian-free approach captures higher-order interactions among parameters and scales efficiently to neural networks with billions of parameters. We demonstrate state-of-the-art results on predicting retraining experiments.
comment: 32 pages, 19 figures
☆ TASP: Topology-aware Sequence Parallelism
Long-context large language models (LLMs) face constraints due to the quadratic complexity of the self-attention mechanism. The mainstream sequence parallelism (SP) method, Ring Attention, attempts to solve this by distributing the query into multiple query chunks across accelerators and enable each Q tensor to access all KV tensors from other accelerators via the Ring AllGather communication primitive. However, it exhibits low communication efficiency, restricting its practical applicability. This inefficiency stems from the mismatch between the Ring AllGather communication primitive it adopts and the AlltoAll topology of modern accelerators. A Ring AllGather primitive is composed of iterations of ring-styled data transfer, which can only utilize a very limited fraction of an AlltoAll topology. Inspired by the Hamiltonian decomposition of complete directed graphs, we identify that modern accelerator topology can be decomposed into multiple orthogonal ring datapaths which can concurrently transfer data without interference. Based on this, we further observe that the Ring AllGather primitive can also be decomposed into the same number of concurrent ring-styled data transfer at every iteration. Based on these insights, we propose TASP, a topology-aware SP method for long-context LLMs that fully utilizes the communication capacity of modern accelerators via topology decomposition and primitive decomposition. Experimental results on both single-node and multi-node NVIDIA H100 systems and a single-node AMD MI300X system demonstrate that TASP achieves higher communication efficiency than Ring Attention on these modern accelerator topologies and achieves up to 3.58 speedup than Ring Attention and its variant Zigzag-Ring Attention. The code is available at https://github.com/infinigence/HamiltonAttention.
☆ Ferret-UI Lite: Lessons from Building Small On-Device GUI Agents
Developing autonomous agents that effectively interact with Graphic User Interfaces (GUIs) remains a challenging open problem, especially for small on-device models. In this paper, we present Ferret-UI Lite, a compact, end-to-end GUI agent that operates across diverse platforms, including mobile, web, and desktop. Utilizing techniques optimized for developing small models, we build our 3B Ferret-UI Lite agent through curating a diverse GUI data mixture from real and synthetic sources, strengthening inference-time performance through chain-of-thought reasoning and visual tool-use, and reinforcement learning with designed rewards. Ferret-UI Lite achieves competitive performance with other small-scale GUI agents. In GUI grounding, Ferret-UI Lite attains scores of $91.6\%$, $53.3\%$, and $61.2\%$ on the ScreenSpot-V2, ScreenSpot-Pro, and OSWorld-G benchmarks, respectively. For GUI navigation, Ferret-UI Lite achieves success rates of $28.0\%$ on AndroidWorld and $19.8\%$ on OSWorld. We share our methods and lessons learned from developing compact, on-device GUI agents.
☆ The Loss Kernel: A Geometric Probe for Deep Learning Interpretability
We introduce the loss kernel, an interpretability method for measuring similarity between data points according to a trained neural network. The kernel is the covariance matrix of per-sample losses computed under a distribution of low-loss-preserving parameter perturbations. We first validate our method on a synthetic multitask problem, showing it separates inputs by task as predicted by theory. We then apply this kernel to Inception-v1 to visualize the structure of ImageNet, and we show that the kernel's structure aligns with the WordNet semantic hierarchy. This establishes the loss kernel as a practical tool for interpretability and data attribution.
comment: 25 pages, 11 figures
☆ OceanGym: A Benchmark Environment for Underwater Embodied Agents
We introduce OceanGym, the first comprehensive benchmark for ocean underwater embodied agents, designed to advance AI in one of the most demanding real-world environments. Unlike terrestrial or aerial domains, underwater settings present extreme perceptual and decision-making challenges, including low visibility, dynamic ocean currents, making effective agent deployment exceptionally difficult. OceanGym encompasses eight realistic task domains and a unified agent framework driven by Multi-modal Large Language Models (MLLMs), which integrates perception, memory, and sequential decision-making. Agents are required to comprehend optical and sonar data, autonomously explore complex environments, and accomplish long-horizon objectives under these harsh conditions. Extensive experiments reveal substantial gaps between state-of-the-art MLLM-driven agents and human experts, highlighting the persistent difficulty of perception, planning, and adaptability in ocean underwater environments. By providing a high-fidelity, rigorously designed platform, OceanGym establishes a testbed for developing robust embodied AI and transferring these capabilities to real-world autonomous ocean underwater vehicles, marking a decisive step toward intelligent agents capable of operating in one of Earth's last unexplored frontiers. The code and data are available at https://github.com/OceanGPT/OceanGym.
comment: Work in progress
☆ Machine-Learning Driven Load Shedding to Mitigate Instability Attacks in Power Grids
Every year critical infrastructure becomes more complex and we grow to rely on it more and more. With this reliance, it becomes an attractive target for cyberattacks from sophisticated actors, with one of the most attractive targets being the power grid. One class of attacks, instability attacks, is a newer type of attack that has relatively few protections developed. We present a cost effective, data-driven approach to training a supervised machine learning model to retrofit load shedding decision systems in power grids with the capacity to defend against instability attacks. We show a proof of concept on the IEEE 14 Bus System using the Achilles Heel Technologies Power Grid Analyzer, and show through an implementation of modified Prony analysis (MPA) that MPA is a viable method for detecting instability attacks and triggering defense mechanisms.
☆ TAP: Two-Stage Adaptive Personalization of Multi-task and Multi-Modal Foundation Models in Federated Learning
Federated Learning (FL), despite demonstrating impressive capabilities in the training of multiple models in a decentralized manner, has been shown to produce a final model not necessarily well-suited to the needs of each client. While extensive work has been conducted on how to create tailored personalized models, called Personalized Federated Learning (PFL), less attention has been given to personalization via fine-tuning of foundation models with multi-task and multi-modal properties. Moreover, there exists a lack of understanding in the literature on how to fine-tune and personalize such models in a setting that is heterogeneous across clients not only in data, but also in tasks and modalities. To address this gap in the literature, we propose TAP (Two-Stage Adaptive Personalization), which (i) leverages mismatched model architectures between the clients and server to selectively conduct replacement operations when it benefits a client's local tasks and (ii) engages in post-FL knowledge distillation for capturing beneficial general knowledge without compromising personalization. We also introduce the first convergence analysis of the server model under its modality-task pair architecture, and demonstrate that as the number of modality-task pairs increases, its ability to cater to all tasks suffers. Through extensive experiments, we demonstrate the effectiveness of our proposed algorithm across a variety of datasets and tasks in comparison to a multitude of baselines. Implementation code is publicly available at https://github.com/lee3296/TAP.
☆ Entropy After $\langle \texttt{/Think} \rangle$ for reasoning model early exiting
Large reasoning models show improved performance with longer chains of thought. However, recent work has highlighted (qualitatively) their tendency to overthink, continuing to revise answers even after reaching the correct solution. We quantitatively confirm this inefficiency by tracking Pass@1 for answers averaged over a large number of rollouts and find that the model often begins to always produce the correct answer early in the reasoning, making extra reasoning a waste of tokens. To detect and prevent overthinking, we propose a simple and inexpensive novel signal -- Entropy After (EAT) -- for monitoring and deciding whether to exit reasoning early. By appending a stop thinking token () and monitoring the entropy of the following token as the model reasons, we obtain a trajectory that decreases and stabilizes when Pass@1 plateaus; thresholding its variance under an exponential moving average yields a practical stopping rule. Importantly, our approach enables adaptively allocating compute based on the EAT trajectory, allowing us to spend compute in a more efficient way compared with fixing the token budget for all questions. Empirically, on MATH500 and AIME2025, EAT reduces token usage by 13 - 21% without harming accuracy, and it remains effective in black box settings where logits from the reasoning model are not accessible, and EAT is computed with proxy models.
☆ Signal-Aware Workload Shifting Algorithms with Uncertainty-Quantified Predictors
A wide range of sustainability and grid-integration strategies depend on workload shifting, which aligns the timing of energy consumption with external signals such as grid curtailment events, carbon intensity, or time-of-use electricity prices. The main challenge lies in the online nature of the problem: operators must make real-time decisions (e.g., whether to consume energy now) without knowledge of the future. While forecasts of signal values are typically available, prior work on learning-augmented online algorithms has relied almost exclusively on simple point forecasts. In parallel, the forecasting research has made significant progress in uncertainty quantification (UQ), which provides richer and more fine-grained predictive information. In this paper, we study how online workload shifting can leverage UQ predictors to improve decision-making. We introduce $\texttt{UQ-Advice}$, a learning-augmented algorithm that systematically integrates UQ forecasts through a $\textit{decision uncertainty score}$ that measures how forecast uncertainty affects optimal future decisions. By introducing $\textit{UQ-robustness}$, a new metric that characterizes how performance degrades with forecast uncertainty, we establish theoretical performance guarantees for $\texttt{UQ-Advice}$. Finally, using trace-driven experiments on carbon intensity and electricity price data, we demonstrate that $\texttt{UQ-Advice}$ consistently outperforms robust baselines and existing learning-augmented methods that ignore uncertainty.
comment: 19 pages, 3 figures
☆ The Dragon Hatchling: The Missing Link between the Transformer and Models of the Brain
The relationship between computing systems and the brain has served as motivation for pioneering theoreticians since John von Neumann and Alan Turing. Uniform, scale-free biological networks, such as the brain, have powerful properties, including generalizing over time, which is the main barrier for Machine Learning on the path to Universal Reasoning Models. We introduce `Dragon Hatchling' (BDH), a new Large Language Model architecture based on a scale-free biologically inspired network of \$n\$ locally-interacting neuron particles. BDH couples strong theoretical foundations and inherent interpretability without sacrificing Transformer-like performance. BDH is a practical, performant state-of-the-art attention-based state space sequence learning architecture. In addition to being a graph model, BDH admits a GPU-friendly formulation. It exhibits Transformer-like scaling laws: empirically BDH rivals GPT2 performance on language and translation tasks, at the same number of parameters (10M to 1B), for the same training data. BDH can be represented as a brain model. The working memory of BDH during inference entirely relies on synaptic plasticity with Hebbian learning using spiking neurons. We confirm empirically that specific, individual synapses strengthen connection whenever BDH hears or reasons about a specific concept while processing language inputs. The neuron interaction network of BDH is a graph of high modularity with heavy-tailed degree distribution. The BDH model is biologically plausible, explaining one possible mechanism which human neurons could use to achieve speech. BDH is designed for interpretability. Activation vectors of BDH are sparse and positive. We demonstrate monosemanticity in BDH on language tasks. Interpretability of state, which goes beyond interpretability of neurons and model parameters, is an inherent feature of the BDH architecture.
comment: Code available at: https://github.com/pathwaycom/bdh Accompanying blog: https://pathway.com/research/bdh
☆ Equivariance by Local Canonicalization: A Matter of Representation
Equivariant neural networks offer strong inductive biases for learning from molecular and geometric data but often rely on specialized, computationally expensive tensor operations. We present a framework to transfers existing tensor field networks into the more efficient local canonicalization paradigm, preserving equivariance while significantly improving the runtime. Within this framework, we systematically compare different equivariant representations in terms of theoretical complexity, empirical runtime, and predictive accuracy. We publish the tensor_frames package, a PyTorchGeometric based implementation for local canonicalization, that enables straightforward integration of equivariance into any standard message passing neural network.
comment: To be presented at NeurReps Workshop 2025
☆ Contrastive Diffusion Guidance for Spatial Inverse Problems
We consider the inverse problem of reconstructing the spatial layout of a place, a home floorplan for example, from a user`s movements inside that layout. Direct inversion is ill-posed since many floorplans can explain the same movement trajectories. We adopt a diffusion-based posterior sampler to generate layouts consistent with the measurements. While active research is in progress on generative inverse solvers, we find that the forward operator in our problem poses new challenges. The path-planning process inside a floorplan is a non-invertible, non-differentiable function, and causes instability while optimizing using the likelihood score. We break-away from existing approaches and reformulate the likelihood score in a smoother embedding space. The embedding space is trained with a contrastive loss which brings compatible floorplans and trajectories close to each other, while pushing mismatched pairs far apart. We show that a surrogate form of the likelihood score in this embedding space is a valid approximation of the true likelihood score, making it possible to steer the denoising process towards the posterior. Across extensive experiments, our model CoGuide produces more consistent floorplans from trajectories, and is more robust than differentiable-planner baselines and guided-diffusion methods.
☆ Regression Language Models for Code
We study code-to-metric regression: predicting numeric outcomes of code executions, a challenging task due to the open-ended nature of programming languages. While prior methods have resorted to heavy and domain-specific feature engineering, we show that a single unified Regression Language Model (RLM) can simultaneously predict directly from text, (i) the memory footprint of code across multiple high-level languages such as Python and C++, (ii) the latency of Triton GPU kernels, and (iii) the accuracy and speed of trained neural networks represented in ONNX. In particular, a relatively small 300M parameter RLM initialized from T5Gemma, obtains > 0.9 Spearman-rank on competitive programming submissions from APPS, and a single unified model achieves > 0.5 average Spearman-rank across 17 separate languages from CodeNet. Furthermore, the RLM can obtain the highest average Kendall-Tau of 0.46 on five classic NAS design spaces previously dominated by graph neural networks, and simultaneously predict architecture latencies on numerous hardware platforms.
☆ DiVeQ: Differentiable Vector Quantization Using the Reparameterization Trick
Vector quantization is common in deep models, yet its hard assignments block gradients and hinder end-to-end training. We propose DiVeQ, which treats quantization as adding an error vector that mimics the quantization distortion, keeping the forward pass hard while letting gradients flow. We also present a space-filling variant (SF-DiVeQ) that assigns to a curve constructed by the lines connecting codewords, resulting in less quantization error and full codebook usage. Both methods train end-to-end without requiring auxiliary losses or temperature schedules. On VQ-VAE compression and VQGAN generation across various data sets, they improve reconstruction and sample quality over alternative quantization approaches.
☆ fev-bench: A Realistic Benchmark for Time Series Forecasting
Benchmark quality is critical for meaningful evaluation and sustained progress in time series forecasting, particularly given the recent rise of pretrained models. Existing benchmarks often have narrow domain coverage or overlook important real-world settings, such as tasks with covariates. Additionally, their aggregation procedures often lack statistical rigor, making it unclear whether observed performance differences reflect true improvements or random variation. Many benchmarks also fail to provide infrastructure for consistent evaluation or are too rigid to integrate into existing pipelines. To address these gaps, we propose fev-bench, a benchmark comprising 100 forecasting tasks across seven domains, including 46 tasks with covariates. Supporting the benchmark, we introduce fev, a lightweight Python library for benchmarking forecasting models that emphasizes reproducibility and seamless integration with existing workflows. Usingfev, fev-bench employs principled aggregation methods with bootstrapped confidence intervals to report model performance along two complementary dimensions: win rates and skill scores. We report results on fev-bench for various pretrained, statistical and baseline models, and identify promising directions for future research.
☆ Extreme Self-Preference in Language Models
A preference for oneself (self-love) is a fundamental feature of biological organisms, with evidence in humans often bordering on the comedic. Since large language models (LLMs) lack sentience - and themselves disclaim having selfhood or identity - one anticipated benefit is that they will be protected from, and in turn protect us from, distortions in our decisions. Yet, across 5 studies and ~20,000 queries, we discovered massive self-preferences in four widely used LLMs. In word-association tasks, models overwhelmingly paired positive attributes with their own names, companies, and CEOs relative to those of their competitors. Strikingly, when models were queried through APIs this self-preference vanished, initiating detection work that revealed API models often lack clear recognition of themselves. This peculiar feature serendipitously created opportunities to test the causal link between self-recognition and self-love. By directly manipulating LLM identity - i.e., explicitly informing LLM1 that it was indeed LLM1, or alternatively, convincing LLM1 that it was LLM2 - we found that self-love consistently followed assigned, not true, identity. Importantly, LLM self-love emerged in consequential settings beyond word-association tasks, when evaluating job candidates, security software proposals and medical chatbots. Far from bypassing this human bias, self-love appears to be deeply encoded in LLM cognition. This result raises questions about whether LLM behavior will be systematically influenced by self-preferential tendencies, including a bias toward their own operation and even their own existence. We call on corporate creators of these models to contend with a significant rupture in a core promise of LLMs - neutrality in judgment and decision-making.
comment: 47 pages total. Main article 27 pages (including Methods), 11 main-text tables. Extended Data (10 pages, 10 tables). SI Appendix (10 pages, 2 tables). Data, transcripts, and code for replication and data extraction to be uploaded to OSF: https://osf.io/98ye3/
☆ Zero-Shot Decentralized Federated Learning IJCNN
CLIP has revolutionized zero-shot learning by enabling task generalization without fine-tuning. While prompting techniques like CoOp and CoCoOp enhance CLIP's adaptability, their effectiveness in Federated Learning (FL) remains an open challenge. Existing federated prompt learning approaches, such as FedCoOp and FedTPG, improve performance but face generalization issues, high communication costs, and reliance on a central server, limiting scalability and privacy. We propose Zero-shot Decentralized Federated Learning (ZeroDFL), a fully decentralized framework that enables zero-shot adaptation across distributed clients without a central coordinator. ZeroDFL employs an iterative prompt-sharing mechanism, allowing clients to optimize and exchange textual prompts to enhance generalization while drastically reducing communication overhead. We validate ZeroDFL on nine diverse image classification datasets, demonstrating that it consistently outperforms--or remains on par with--state-of-the-art federated prompt learning methods. More importantly, ZeroDFL achieves this performance in a fully decentralized setting while reducing communication overhead by 118x compared to FedTPG. These results highlight that our approach not only enhances generalization in federated zero-shot learning but also improves scalability, efficiency, and privacy preservation--paving the way for decentralized adaptation of large vision-language models in real-world applications.
comment: Accepted at International Joint Conference on Neural Networks (IJCNN) 2025. Code available at https://github.com/perceivelab/ZeroDFL
☆ Attention over Scene Graphs: Indoor Scene Representations Toward CSAI Classification BMVC 2025
Indoor scene classification is a critical task in computer vision, with wide-ranging applications that go from robotics to sensitive content analysis, such as child sexual abuse imagery (CSAI) classification. The problem is particularly challenging due to the intricate relationships between objects and complex spatial layouts. In this work, we propose the Attention over Scene Graphs for Sensitive Content Analysis (ASGRA), a novel framework that operates on structured graph representations instead of raw pixels. By first converting images into Scene Graphs and then employing a Graph Attention Network for inference, ASGRA directly models the interactions between a scene's components. This approach offers two key benefits: (i) inherent explainability via object and relationship identification, and (ii) privacy preservation, enabling model training without direct access to sensitive images. On Places8, we achieve 81.27% balanced accuracy, surpassing image-based methods. Real-world CSAI evaluation with law enforcement yields 74.27% balanced accuracy. Our results establish structured scene representations as a robust paradigm for indoor scene classification and CSAI classification. Code is publicly available at https://github.com/tutuzeraa/ASGRA.
comment: British Machine Vision Conference (BMVC 2025), in the From Scene Understanding to Human Modeling Workshop
☆ Stabilization of nonlinear systems with unknown delays via delay-adaptive neural operator approximate predictors
This work establishes the first rigorous stability guarantees for approximate predictors in delay-adaptive control of nonlinear systems, addressing a key challenge in practical implementations where exact predictors are unavailable. We analyze two scenarios: (i) when the actuated input is directly measurable, and (ii) when it is estimated online. For the measurable input case, we prove semi-global practical asymptotic stability with an explicit bound proportional to the approximation error $\epsilon$. For the unmeasured input case, we demonstrate local practical asymptotic stability, with the region of attraction explicitly dependent on both the initial delay estimate and the predictor approximation error. To bridge theory and practice, we show that neural operators-a flexible class of neural network-based approximators-can achieve arbitrarily small approximation errors, thus satisfying the conditions of our stability theorems. Numerical experiments on two nonlinear benchmark systems-a biological protein activator/repressor model and a micro-organism growth Chemostat model-validate our theoretical results. In particular, our numerical simulations confirm stability under approximate predictors, highlight the strong generalization capabilities of neural operators, and demonstrate a substantial computational speedup of up to 15x compared to a baseline fixed-point method.
comment: 20 pages, 2 figures
☆ Extensions of Robbins-Siegmund Theorem with Applications in Reinforcement Learning
The Robbins-Siegmund theorem establishes the convergence of stochastic processes that are almost supermartingales and is foundational for analyzing a wide range of stochastic iterative algorithms in stochastic approximation and reinforcement learning (RL). However, its original form has a significant limitation as it requires the zero-order term to be summable. In many important RL applications, this summable condition, however, cannot be met. This limitation motivates us to extend the Robbins-Siegmund theorem for almost supermartingales where the zero-order term is not summable but only square summable. Particularly, we introduce a novel and mild assumption on the increments of the stochastic processes. This together with the square summable condition enables an almost sure convergence to a bounded set. Additionally, we further provide almost sure convergence rates, high probability concentration bounds, and $L^p$ convergence rates. We then apply the new results in stochastic approximation and RL. Notably, we obtain the first almost sure convergence rate, the first high probability concentration bound, and the first $L^p$ convergence rate for $Q$-learning with linear function approximation.
☆ ACT: Agentic Classification Tree
When used in high-stakes settings, AI systems are expected to produce decisions that are transparent, interpretable, and auditable, a requirement increasingly expected by regulations. Decision trees such as CART provide clear and verifiable rules, but they are restricted to structured tabular data and cannot operate directly on unstructured inputs such as text. In practice, large language models (LLMs) are widely used for such data, yet prompting strategies such as chain-of-thought or prompt optimization still rely on free-form reasoning, limiting their ability to ensure trustworthy behaviors. We present the Agentic Classification Tree (ACT), which extends decision-tree methodology to unstructured inputs by formulating each split as a natural-language question, refined through impurity-based evaluation and LLM feedback via TextGrad. Experiments on text benchmarks show that ACT matches or surpasses prompting-based baselines while producing transparent and interpretable decision paths.
comment: 18 pages, 6 figures
☆ An Orthogonal Learner for Individualized Outcomes in Markov Decision Processes
Predicting individualized potential outcomes in sequential decision-making is central for optimizing therapeutic decisions in personalized medicine (e.g., which dosing sequence to give to a cancer patient). However, predicting potential outcomes over long horizons is notoriously difficult. Existing methods that break the curse of the horizon typically lack strong theoretical guarantees such as orthogonality and quasi-oracle efficiency. In this paper, we revisit the problem of predicting individualized potential outcomes in sequential decision-making (i.e., estimating Q-functions in Markov decision processes with observational data) through a causal inference lens. In particular, we develop a comprehensive theoretical foundation for meta-learners in this setting with a focus on beneficial theoretical properties. As a result, we yield a novel meta-learner called DRQ-learner and establish that it is: (1) doubly robust (i.e., valid inference under the misspecification of one of the nuisances), (2) Neyman-orthogonal (i.e., insensitive to first-order estimation errors in the nuisance functions), and (3) achieves quasi-oracle efficiency (i.e., behaves asymptotically as if the ground-truth nuisance functions were known). Our DRQ-learner is applicable to settings with both discrete and continuous state spaces. Further, our DRQ-learner is flexible and can be used together with arbitrary machine learning models (e.g., neural networks). We validate our theoretical results through numerical experiments, thereby showing that our meta-learner outperforms state-of-the-art baselines.
comment: Preprint
☆ Ascent Fails to Forget NeurIPS 2025
Contrary to common belief, we show that gradient ascent-based unconstrained optimization methods frequently fail to perform machine unlearning, a phenomenon we attribute to the inherent statistical dependence between the forget and retain data sets. This dependence, which can manifest itself even as simple correlations, undermines the misconception that these sets can be independently manipulated during unlearning. We provide empirical and theoretical evidence showing these methods often fail precisely due to this overlooked relationship. For random forget sets, this dependence means that degrading forget set metrics (which, for a retrained model, should mirror test set metrics) inevitably harms overall test performance. Going beyond random sets, we consider logistic regression as an instructive example where a critical failure mode emerges: inter-set dependence causes gradient descent-ascent iterations to progressively diverge from the ideal retrained model. Strikingly, these methods can converge to solutions that are not only far from the retrained ideal but are potentially even further from it than the original model itself, rendering the unlearning process actively detrimental. A toy example further illustrates how this dependence can trap models in inferior local minima, inescapable via finetuning. Our findings highlight that the presence of such statistical dependencies, even when manifest only as correlations, can be sufficient for ascent-based unlearning to fail. Our theoretical insights are corroborated by experiments on complex neural networks, demonstrating that these methods do not perform as expected in practice due to this unaddressed statistical interplay.
comment: NeurIPS 2025
☆ OntoAligner Meets Knowledge Graph Embedding Aligners ISWC
Ontology Alignment (OA) is essential for enabling semantic interoperability across heterogeneous knowledge systems. While recent advances have focused on large language models (LLMs) for capturing contextual semantics, this work revisits the underexplored potential of Knowledge Graph Embedding (KGE) models, which offer scalable, structure-aware representations well-suited to ontology-based tasks. Despite their effectiveness in link prediction, KGE methods remain underutilized in OA, with most prior work focusing narrowly on a few models. To address this gap, we reformulate OA as a link prediction problem over merged ontologies represented as RDF-style triples and develop a modular framework, integrated into the OntoAligner library, that supports 17 diverse KGE models. The system learns embeddings from a combined ontology and aligns entities by computing cosine similarity between their representations. We evaluate our approach using standard metrics across seven benchmark datasets spanning five domains: Anatomy, Biodiversity, Circular Economy, Material Science and Engineering, and Biomedical Machine Learning. Two key findings emerge: first, KGE models like ConvE and TransF consistently produce high-precision alignments, outperforming traditional systems in structure-rich and multi-relational domains; second, while their recall is moderate, this conservatism makes KGEs well-suited for scenarios demanding high-confidence mappings. Unlike LLM-based methods that excel at contextual reasoning, KGEs directly preserve and exploit ontology structure, offering a complementary and computationally efficient strategy. These results highlight the promise of embedding-based OA and open pathways for further work on hybrid models and adaptive strategies.
comment: 10 pages of main content, 3 page references, 3 figures. Accepted to Ontology Matching Workshop at ISWC
☆ TrackFormers Part 2: Enhanced Transformer-Based Models for High-Energy Physics Track Reconstruction
High-Energy Physics experiments are rapidly escalating in generated data volume, a trend that will intensify with the upcoming High-Luminosity LHC upgrade. This surge in data necessitates critical revisions across the data processing pipeline, with particle track reconstruction being a prime candidate for improvement. In our previous work, we introduced "TrackFormers", a collection of Transformer-based one-shot encoder-only models that effectively associate hits with expected tracks. In this study, we extend our earlier efforts by incorporating loss functions that account for inter-hit correlations, conducting detailed investigations into (various) Transformer attention mechanisms, and a study on the reconstruction of higher-level objects. Furthermore we discuss new datasets that allow the training on hit level for a range of physics processes. These developments collectively aim to boost both the accuracy, and potentially the efficiency of our tracking models, offering a robust solution to meet the demands of next-generation high-energy physics experiments.
☆ Refine Drugs, Don't Complete Them: Uniform-Source Discrete Flows for Fragment-Based Drug Discovery
We introduce InVirtuoGen, a discrete flow generative model for fragmented SMILES for de novo and fragment-constrained generation, and target-property/lead optimization of small molecules. The model learns to transform a uniform source over all possible tokens into the data distribution. Unlike masked models, its training loss accounts for predictions on all sequence positions at every denoising step, shifting the generation paradigm from completion to refinement, and decoupling the number of sampling steps from the sequence length. For \textit{de novo} generation, InVirtuoGen achieves a stronger quality-diversity pareto frontier than prior fragment-based models and competitive performance on fragment-constrained tasks. For property and lead optimization, we propose a hybrid scheme that combines a genetic algorithm with a Proximal Property Optimization fine-tuning strategy adapted to discrete flows. Our approach sets a new state-of-the-art on the Practical Molecular Optimization benchmark, measured by top-10 AUC across tasks, and yields higher docking scores in lead optimization than previous baselines. InVirtuoGen thus establishes a versatile generative foundation for drug discovery, from early hit finding to multi-objective lead optimization. We further contribute to open science by releasing pretrained checkpoints and code, making our results fully reproducible\footnote{https://github.com/invirtuolabs/InVirtuoGen_results}.
☆ Are neural scaling laws leading quantum chemistry astray?
Neural scaling laws are driving the machine learning community toward training ever-larger foundation models across domains, assuring high accuracy and transferable representations for extrapolative tasks. We test this promise in quantum chemistry by scaling model capacity and training data from quantum chemical calculations. As a generalization task, we evaluate the resulting models' predictions of the bond dissociation energy of neutral H$_2$, the simplest possible molecule. We find that, regardless of dataset size or model capacity, models trained only on stable structures fail dramatically to even qualitatively reproduce the H$_2$ energy curve. Only when compressed and stretched geometries are explicitly included in training do the predictions roughly resemble the correct shape. Nonetheless, the largest foundation models trained on the largest and most diverse datasets containing dissociating diatomics exhibit serious failures on simple diatomic molecules. Most strikingly, they cannot reproduce the trivial repulsive energy curve of two bare protons, revealing their failure to learn the basic Coulomb's law involved in electronic structure theory. These results suggest that scaling alone is insufficient for building reliable quantum chemical models.
☆ Vector-Valued Reproducing Kernel Banach Spaces for Neural Networks and Operators
Recently, there has been growing interest in characterizing the function spaces underlying neural networks. While shallow and deep scalar-valued neural networks have been linked to scalar-valued reproducing kernel Banach spaces (RKBS), $\R^d$-valued neural networks and neural operator models remain less understood in the RKBS setting. To address this gap, we develop a general definition of vector-valued RKBS (vv-RKBS), which inherently includes the associated reproducing kernel. Our construction extends existing definitions by avoiding restrictive assumptions such as symmetric kernel domains, finite-dimensional output spaces, reflexivity, or separability, while still recovering familiar properties of vector-valued reproducing kernel Hilbert spaces (vv-RKHS). We then show that shallow $\R^d$-valued neural networks are elements of a specific vv-RKBS, namely an instance of the integral and neural vv-RKBS. To also explore the functional structure of neural operators, we analyze the DeepONet and Hypernetwork architectures and demonstrate that they too belong to an integral and neural vv-RKBS. In all cases, we establish a Representer Theorem, showing that optimization over these function spaces recovers the corresponding neural architectures.
☆ Data-to-Energy Stochastic Dynamics
The Schr\"odinger bridge problem is concerned with finding a stochastic dynamical system bridging two marginal distributions that minimises a certain transportation cost. This problem, which represents a generalisation of optimal transport to the stochastic case, has received attention due to its connections to diffusion models and flow matching, as well as its applications in the natural sciences. However, all existing algorithms allow to infer such dynamics only for cases where samples from both distributions are available. In this paper, we propose the first general method for modelling Schr\"odinger bridges when one (or both) distributions are given by their unnormalised densities, with no access to data samples. Our algorithm relies on a generalisation of the iterative proportional fitting (IPF) procedure to the data-free case, inspired by recent developments in off-policy reinforcement learning for training of diffusion samplers. We demonstrate the efficacy of the proposed data-to-energy IPF on synthetic problems, finding that it can successfully learn transports between multimodal distributions. As a secondary consequence of our reinforcement learning formulation, which assumes a fixed time discretisation scheme for the dynamics, we find that existing data-to-data Schr\"odinger bridge algorithms can be substantially improved by learning the diffusion coefficient of the dynamics. Finally, we apply the newly developed algorithm to the problem of sampling posterior distributions in latent spaces of generative models, thus creating a data-free image-to-image translation method. Code: https://github.com/mmacosha/d2e-stochastic-dynamics
☆ Your Agent May Misevolve: Emergent Risks in Self-evolving LLM Agents
Advances in Large Language Models (LLMs) have enabled a new class of self-evolving agents that autonomously improve through interaction with the environment, demonstrating strong capabilities. However, self-evolution also introduces novel risks overlooked by current safety research. In this work, we study the case where an agent's self-evolution deviates in unintended ways, leading to undesirable or even harmful outcomes. We refer to this as Misevolution. To provide a systematic investigation, we evaluate misevolution along four key evolutionary pathways: model, memory, tool, and workflow. Our empirical findings reveal that misevolution is a widespread risk, affecting agents built even on top-tier LLMs (e.g., Gemini-2.5-Pro). Different emergent risks are observed in the self-evolutionary process, such as the degradation of safety alignment after memory accumulation, or the unintended introduction of vulnerabilities in tool creation and reuse. To our knowledge, this is the first study to systematically conceptualize misevolution and provide empirical evidence of its occurrence, highlighting an urgent need for new safety paradigms for self-evolving agents. Finally, we discuss potential mitigation strategies to inspire further research on building safer and more trustworthy self-evolving agents. Our code and data are available at https://github.com/ShaoShuai0605/Misevolution . Warning: this paper includes examples that may be offensive or harmful in nature.
comment: Preprint. Under Review
☆ LLM-Assisted Emergency Triage Benchmark: Bridging Hospital-Rich and MCI-Like Field Simulation NeurIPS 2025
Research on emergency and mass casualty incident (MCI) triage has been limited by the absence of openly usable, reproducible benchmarks. Yet these scenarios demand rapid identification of the patients most in need, where accurate deterioration prediction can guide timely interventions. While the MIMIC-IV-ED database is openly available to credentialed researchers, transforming it into a triage-focused benchmark requires extensive preprocessing, feature harmonization, and schema alignment -- barriers that restrict accessibility to only highly technical users. We address these gaps by first introducing an open, LLM-assisted emergency triage benchmark for deterioration prediction (ICU transfer, in-hospital mortality). The benchmark then defines two regimes: (i) a hospital-rich setting with vitals, labs, notes, chief complaints, and structured observations, and (ii) an MCI-like field simulation limited to vitals, observations, and notes. Large language models (LLMs) contributed directly to dataset construction by (i) harmonizing noisy fields such as AVPU and breathing devices, (ii) prioritizing clinically relevant vitals and labs, and (iii) guiding schema alignment and efficient merging of disparate tables. We further provide baseline models and SHAP-based interpretability analyses, illustrating predictive gaps between regimes and the features most critical for triage. Together, these contributions make triage prediction research more reproducible and accessible -- a step toward dataset democratization in clinical AI.
comment: Submitted to GenAI4Health@NeurIPS 2025. This is the first version of the LLM-assisted emergency triage benchmark dataset and baseline models. Authors: Joshua Sebastian, Karma Tobden, KMA Solaiman
☆ Memory-Driven Self-Improvement for Decision Making with Large Language Models
Large language models (LLMs) have emerged as effective action policies for sequential decision-making (SDM) tasks due to their extensive prior knowledge. However, this broad yet general knowledge is often insufficient for specific decision-making tasks with limited task-related data, making it challenging to efficiently adapt LLMs to specific SDM tasks. To address this challenge, we propose a memory-driven self-improvement framework that combines LLM general prior knowledge with a compact memory of domain-specific experiences. Memory retains past interactions and associated Q-values, thereby capturing decision-relevant knowledge that facilitates accurate value estimation and informs the LLM prior refinement. The refined LLM prior, in turn, generates higher-reward trajectories that further enrich memory, forming a natural self-improvement framework where memory and LLM prior mutually reinforce each other. Experiments show that our memory-driven approach significantly outperforms both traditional RL and LLM-based baselines, e.g., improving performance by over 40\% on in-distribution tasks and over 75\% when generalized to unseen tasks in ALFWorld.
☆ FedMuon: Federated Learning with Bias-corrected LMO-based Optimization
Recently, a new optimization method based on the linear minimization oracle (LMO), called Muon, has been attracting increasing attention since it can train neural networks faster than existing adaptive optimization methods, such as Adam. In this paper, we study how Muon can be utilized in federated learning. We first show that straightforwardly using Muon as the local optimizer of FedAvg does not converge to the stationary point since the LMO is a biased operator. We then propose FedMuon which can mitigate this issue. We also analyze how solving the LMO approximately affects the convergence rate and find that, surprisingly, FedMuon can converge for any number of Newton-Schulz iterations, while it can converge faster as we solve the LMO more accurately. Through experiments, we demonstrated that FedMuon can outperform the state-of-the-art federated learning methods.
☆ TrackCore-F: Deploying Transformer-Based Subatomic Particle Tracking on FPGAs
The Transformer Machine Learning (ML) architecture has been gaining considerable momentum in recent years. In particular, computational High-Energy Physics tasks such as jet tagging and particle track reconstruction (tracking), have either achieved proper solutions, or reached considerable milestones using Transformers. On the other hand, the use of specialised hardware accelerators, especially FPGAs, is an effective method to achieve online, or pseudo-online latencies. The development and integration of Transformer-based ML to FPGAs is still ongoing and the support from current tools is very limited to non-existent. Additionally, FPGA resources present a significant constraint. Considering the model size alone, while smaller models can be deployed directly, larger models are to be partitioned in a meaningful and ideally, automated way. We aim to develop methodologies and tools for monolithic, or partitioned Transformer synthesis, specifically targeting inference. Our primary use-case involves two machine learning model designs for tracking, derived from the TrackFormers project. We elaborate our development approach, present preliminary results, and provide comparisons.
☆ TAU: A Benchmark for Cultural Sound Understanding Beyond Semantics ICASSP 2026
Large audio-language models are advancing rapidly, yet most evaluations emphasize speech or globally sourced sounds, overlooking culturally distinctive cues. This gap raises a critical question: can current models generalize to localized, non-semantic audio that communities instantly recognize but outsiders do not? To address this, we present TAU (Taiwan Audio Understanding), a benchmark of everyday Taiwanese "soundmarks." TAU is built through a pipeline combining curated sources, human editing, and LLM-assisted question generation, producing 702 clips and 1,794 multiple-choice items that cannot be solved by transcripts alone. Experiments show that state-of-the-art LALMs, including Gemini 2.5 and Qwen2-Audio, perform far below local humans. TAU demonstrates the need for localized benchmarks to reveal cultural blind spots, guide more equitable multimodal evaluation, and ensure models serve communities beyond the global mainstream.
comment: 5 pages; submitted to ICASSP 2026
☆ A Generalized Information Bottleneck Theory of Deep Learning
The Information Bottleneck (IB) principle offers a compelling theoretical framework to understand how neural networks (NNs) learn. However, its practical utility has been constrained by unresolved theoretical ambiguities and significant challenges in accurate estimation. In this paper, we present a \textit{Generalized Information Bottleneck (GIB)} framework that reformulates the original IB principle through the lens of synergy, i.e., the information obtainable only through joint processing of features. We provide theoretical and empirical evidence demonstrating that synergistic functions achieve superior generalization compared to their non-synergistic counterparts. Building on these foundations we re-formulate the IB using a computable definition of synergy based on the average interaction information (II) of each feature with those remaining. We demonstrate that the original IB objective is upper bounded by our GIB in the case of perfect estimation, ensuring compatibility with existing IB theory while addressing its limitations. Our experimental results demonstrate that GIB consistently exhibits compression phases across a wide range of architectures (including those with \textit{ReLU} activations where the standard IB fails), while yielding interpretable dynamics in both CNNs and Transformers and aligning more closely with our understanding of adversarial robustness.
☆ ACE: Adapting sampling for Counterfactual Explanations
Counterfactual Explanations (CFEs) interpret machine learning models by identifying the smallest change to input features needed to change the model's prediction to a desired output. For classification tasks, CFEs determine how close a given sample is to the decision boundary of a trained classifier. Existing methods are often sample-inefficient, requiring numerous evaluations of a black-box model -- an approach that is both costly and impractical when access to the model is limited. We propose Adaptive sampling for Counterfactual Explanations (ACE), a sample-efficient algorithm combining Bayesian estimation and stochastic optimization to approximate the decision boundary with fewer queries. By prioritizing informative points, ACE minimizes evaluations while generating accurate and feasible CFEs. Extensive empirical results show that ACE achieves superior evaluation efficiency compared to state-of-the-art methods, while maintaining effectiveness in identifying minimal and actionable changes.
comment: 15 pages
☆ A Review on Single-Problem Multi-Attempt Heuristic Optimization
In certain real-world optimization scenarios, practitioners are not interested in solving multiple problems but rather in finding the best solution to a single, specific problem. When the computational budget is large relative to the cost of evaluating a candidate solution, multiple heuristic alternatives can be tried to solve the same given problem, each possibly with a different algorithm, parameter configuration, initialization, or stopping criterion. The sequential selection of which alternative to try next is crucial for efficiently identifying the one that provides the best possible solution across multiple attempts. Despite the relevance of this problem in practice, it has not yet been the exclusive focus of any existing review. Several sequential alternative selection strategies have been proposed in different research topics, but they have not been comprehensively and systematically unified under a common perspective. This work presents a focused review of single-problem multi-attempt heuristic optimization. It brings together suitable strategies to this problem that have been studied separately through algorithm selection, parameter tuning, multi-start and resource allocation. These strategies are explained using a unified terminology within a common framework, which supports the development of a taxonomy for systematically organizing and classifying them.
☆ Ultra-Reliable Risk-Aggregated Sum Rate Maximization via Model-Aided Deep Learning
We consider the problem of maximizing weighted sum rate in a multiple-input single-output (MISO) downlink wireless network with emphasis on user rate reliability. We introduce a novel risk-aggregated formulation of the complex WSR maximization problem, which utilizes the Conditional Value-at-Risk (CVaR) as a functional for enforcing rate (ultra)-reliability over channel fading uncertainty/risk. We establish a WMMSE-like equivalence between the proposed precoding problem and a weighted risk-averse MSE problem, enabling us to design a tailored unfolded graph neural network (GNN) policy function approximation (PFA), named {\alpha}-Robust Graph Neural Network ({\alpha}RGNN), trained to maximize lower-tail (CVaR) rates resulting from adverse wireless channel realizations (e.g., deep fading, attenuation). We empirically demonstrate that a trained {\alpha}RGNN fully eliminates per user deep rate fades, and substantially and optimally reduces statistical user rate variability while retaining adequate ergodic performance.
☆ Attribution-Guided Decoding
The capacity of Large Language Models (LLMs) to follow complex instructions and generate factually accurate text is critical for their real-world application. However, standard decoding methods often fail to robustly satisfy these requirements, while existing control techniques frequently degrade general output quality. In this work, we introduce Attribution-Guided Decoding (AGD), an interpretability-based decoding strategy. Instead of directly manipulating model activations, AGD considers a set of high-probability output token candidates and selects the one that exhibits the highest attribution to a user-defined Region of Interest (ROI). This ROI can be flexibly defined over different parts of the model's input or internal components, allowing AGD to steer generation towards various desirable behaviors. We demonstrate AGD's efficacy across three challenging domains. For instruction following, we show that AGD significantly boosts adherence (e.g., improving the overall success rate on Llama 3.1 from 66.0% to 79.1%). For knowledge-intensive tasks, we show that guiding generation towards usage of internal knowledge components or contextual sources can reduce hallucinations and improve factual accuracy in both closed-book and open-book settings. Furthermore, we propose an adaptive, entropy-based variant of AGD that mitigates quality degradation and reduces computational overhead by applying guidance only when the model is uncertain. Our work presents a versatile, more interpretable, and effective method for enhancing the reliability of modern LLMs.
☆ NeuroTTT: Bridging Pretraining-Downstream Task Misalignment in EEG Foundation Models via Test-Time Training
Large-scale foundation models for EEG signals offer a promising path to generalizable brain-computer interface (BCI) applications, but they often suffer from misalignment between pretraining objectives and downstream tasks, as well as significant cross-subject distribution shifts. This paper addresses these challenges by introducing a two-stage alignment strategy that bridges the gap between generic pretraining and specific EEG decoding tasks. First, we propose NeuroTTT: a domain-specific self-supervised fine-tuning paradigm that augments the foundation model with task-relevant self-supervised objectives, aligning latent representations to important spectral, spatial, and temporal EEG features without requiring additional labeled data. Second, we incorporate test-time training (TTT) at inference, we perform (i) self-supervised test-time training on individual unlabeled test samples and (ii) prediction entropy minimization (Tent), which updates only normalization statistics to continually calibrate the model to each new input on the fly. Our approach, which, to our knowledge, is the first to unify domain-tuned self-supervision with test-time training in large-scale EEG foundation models, yields substantially improved robustness and accuracy across diverse BCI tasks (imagined speech, stress detection, motor imagery). Using CBraMod and LaBraM as backbones, our method pushes their performance to a markedly higher level. Results on three diverse tasks demonstrate that the proposed alignment strategy achieves state-of-the-art performance, outperforming conventional fine-tuning and adaptation methods. Our code is available at https://github.com/wsl2000/NeuroTTT.
☆ Tuning the Tuner: Introducing Hyperparameter Optimization for Auto-Tuning
Automatic performance tuning (auto-tuning) is widely used to optimize performance-critical applications across many scientific domains by finding the best program variant among many choices. Efficient optimization algorithms are crucial for navigating the vast and complex search spaces in auto-tuning. As is well known in the context of machine learning and similar fields, hyperparameters critically shape optimization algorithm efficiency. Yet for auto-tuning frameworks, these hyperparameters are almost never tuned, and their potential performance impact has not been studied. We present a novel method for general hyperparameter tuning of optimization algorithms for auto-tuning, thus "tuning the tuner". In particular, we propose a robust statistical method for evaluating hyperparameter performance across search spaces, publish a FAIR data set and software for reproducibility, and present a simulation mode that replays previously recorded tuning data, lowering the costs of hyperparameter tuning by two orders of magnitude. We show that even limited hyperparameter tuning can improve auto-tuner performance by 94.8% on average, and establish that the hyperparameters themselves can be optimized efficiently with meta-strategies (with an average improvement of 204.7%), demonstrating the often overlooked hyperparameter tuning as a powerful technique for advancing auto-tuning research and practice.
☆ Noise-Guided Transport for Imitation Learning
We consider imitation learning in the low-data regime, where only a limited number of expert demonstrations are available. In this setting, methods that rely on large-scale pretraining or high-capacity architectures can be difficult to apply, and efficiency with respect to demonstration data becomes critical. We introduce Noise-Guided Transport (NGT), a lightweight off-policy method that casts imitation as an optimal transport problem solved via adversarial training. NGT requires no pretraining or specialized architectures, incorporates uncertainty estimation by design, and is easy to implement and tune. Despite its simplicity, NGT achieves strong performance on challenging continuous control tasks, including high-dimensional Humanoid tasks, under ultra-low data regimes with as few as 20 transitions. Code is publicly available at: https://github.com/lionelblonde/ngt-pytorch.
☆ Representation-Based Data Quality Audits for Audio
Data quality issues such as off-topic samples, near duplicates, and label errors often limit the performance of audio-based systems. This paper addresses these issues by adapting SelfClean, a representation-to-rank data auditing framework, from the image to the audio domain. This approach leverages self-supervised audio representations to identify common data quality issues, creating ranked review lists that surface distinct issues within a single, unified process. The method is benchmarked on the ESC-50, GTZAN, and a proprietary industrial dataset, using both synthetic and naturally occurring corruptions. The results demonstrate that this framework achieves state-of-the-art ranking performance, often outperforming issue-specific baselines and enabling significant annotation savings by efficiently guiding human review.
☆ FLOWER: A Flow-Matching Solver for Inverse Problems
We introduce Flower, a solver for inverse problems. It leverages a pre-trained flow model to produce reconstructions that are consistent with the observed measurements. Flower operates through an iterative procedure over three steps: (i) a flow-consistent destination estimation, where the velocity network predicts a denoised target; (ii) a refinement step that projects the estimated destination onto a feasible set defined by the forward operator; and (iii) a time-progression step that re-projects the refined destination along the flow trajectory. We provide a theoretical analysis that demonstrates how Flower approximates Bayesian posterior sampling, thereby unifying perspectives from plug-and-play methods and generative inverse solvers. On the practical side, Flower achieves state-of-the-art reconstruction quality while using nearly identical hyperparameters across various inverse problems.
☆ Reframing Generative Models for Physical Systems using Stochastic Interpolants
Generative models have recently emerged as powerful surrogates for physical systems, demonstrating increased accuracy, stability, and/or statistical fidelity. Most approaches rely on iteratively denoising a Gaussian, a choice that may not be the most effective for autoregressive prediction tasks in PDEs and dynamical systems such as climate. In this work, we benchmark generative models across diverse physical domains and tasks, and highlight the role of stochastic interpolants. By directly learning a stochastic process between current and future states, stochastic interpolants can leverage the proximity of successive physical distributions. This allows for generative models that can use fewer sampling steps and produce more accurate predictions than models relying on transporting Gaussian noise. Our experiments suggest that generative models need to balance deterministic accuracy, spectral consistency, and probabilistic calibration, and that stochastic interpolants can potentially fulfill these requirements by adjusting their sampling. This study establishes stochastic interpolants as a competitive baseline for physical emulation and gives insight into the abilities of different generative modeling frameworks.
comment: Code and data is available at http://github.com/anthonyzhou-1/interpolant_pdes
☆ Wasserstein Distributionally Robust Optimization Through the Lens of Structural Causal Models and Individual Fairness
In recent years, Wasserstein Distributionally Robust Optimization (DRO) has garnered substantial interest for its efficacy in data-driven decision-making under distributional uncertainty. However, limited research has explored the application of DRO to address individual fairness concerns, particularly when considering causal structures and sensitive attributes in learning problems. To address this gap, we first formulate the DRO problem from causality and individual fairness perspectives. We then present the DRO dual formulation as an efficient tool to convert the DRO problem into a more tractable and computationally efficient form. Next, we characterize the closed form of the approximate worst-case loss quantity as a regularizer, eliminating the max-step in the min-max DRO problem. We further estimate the regularizer in more general cases and explore the relationship between DRO and classical robust optimization. Finally, by removing the assumption of a known structural causal model, we provide finite sample error bounds when designing DRO with empirical distributions and estimated causal structures to ensure efficiency and robust learning.
☆ Why is topology hard to learn?
Much attention has been devoted to the use of machine learning to approximate physical concepts. Yet, due to challenges in interpretability of machine learning techniques, the question of what physics machine learning models are able to learn remains open. Here we bridge the concept a physical quantity and its machine learning approximation in the context of the original application of neural networks in physics: topological phase classification. We construct a hybrid tensor-neural network object that exactly expresses real space topological invariant and rigorously assess its trainability and generalization. Specifically, we benchmark the accuracy and trainability of a tensor-neural network to multiple types of neural networks, thus exemplifying the differences in trainability and representational power. Our work highlights the challenges in learning topological invariants and constitutes a stepping stone towards more accurate and better generalizable machine learning representations in condensed matter physics.
comment: 5+8 pages, 4+7 figures
☆ Finetune Once: Decoupling General & Domain Learning with Dynamic Boosted Annealing
Large language models (LLMs) fine-tuning shows excellent implications. However, vanilla fine-tuning methods often require intricate data mixture and repeated experiments for optimal generalization. To address these challenges and streamline the training process, we propose an efficient and universal solution, Dynamic Boosted Annealing (DBA). We obtain a global gradient through zero-learning-rate training on general data, which is subsequently employed for gradient boosting and dynamic training step correction during domain training. In conjunction with annealing learning, we end up establishing a fine-tuning pipeline that relies solely on domain data without collapse. By evaluating both general and domain-specific performance across multiple tasks on several popular base models, DBA achieves an average improvement of 5.8% in joint performance over vanilla fine-tuning. Furthermore, since general data is no longer involved in annealing, repeated experiments led by data mixture are also eliminated. According to our tests, the DBA method can reduce GPU hours by 91.0% compared to the vanilla method.
comment: 9 pages, 5 figures
☆ From Fragile to Certified: Wasserstein Audits of Group Fairness Under Distribution Shift
Group-fairness metrics (e.g., equalized odds) can vary sharply across resamples and are especially brittle under distribution shift, undermining reliable audits. We propose a Wasserstein distributionally robust framework that certifies worst-case group fairness over a ball of plausible test distributions centered at the empirical law. Our formulation unifies common group fairness notions via a generic conditional-probability functional and defines $\varepsilon$-Wasserstein Distributional Fairness ($\varepsilon$-WDF) as the audit target. Leveraging strong duality, we derive tractable reformulations and an efficient estimator (DRUNE) for $\varepsilon$-WDF. We prove feasibility and consistency and establish finite-sample certification guarantees for auditing fairness, along with quantitative bounds under smoothness and margin conditions. Across standard benchmarks and classifiers, $\varepsilon$-WDF delivers stable fairness assessments under distribution shift, providing a principled basis for auditing and certifying group fairness beyond observational data.
☆ Sandbagging in a Simple Survival Bandit Problem NeurIPS 2025
Evaluating the safety of frontier AI systems is an increasingly important concern, helping to measure the capabilities of such models and identify risks before deployment. However, it has been recognised that if AI agents are aware that they are being evaluated, such agents may deliberately hide dangerous capabilities or intentionally demonstrate suboptimal performance in safety-related tasks in order to be released and to avoid being deactivated or retrained. Such strategic deception - often known as "sandbagging" - threatens to undermine the integrity of safety evaluations. For this reason, it is of value to identify methods that enable us to distinguish behavioural patterns that demonstrate a true lack of capability from behavioural patterns that are consistent with sandbagging. In this paper, we develop a simple model of strategic deception in sequential decision-making tasks, inspired by the recently developed survival bandit framework. We demonstrate theoretically that this problem induces sandbagging behaviour in optimal rational agents, and construct a statistical test to distinguish between sandbagging and incompetence from sequences of test scores. In simulation experiments, we investigate the reliability of this test in allowing us to distinguish between such behaviours in bandit models. This work aims to establish a potential avenue for developing robust statistical procedures for use in the science of frontier model evaluations.
comment: Forthcoming in the "Reliable ML from Unreliable Data Workshop" at NeurIPS 2025
☆ Beyond Linear Probes: Dynamic Safety Monitoring for Language Models
Monitoring large language models' (LLMs) activations is an effective way to detect harmful requests before they lead to unsafe outputs. However, traditional safety monitors often require the same amount of compute for every query. This creates a trade-off: expensive monitors waste resources on easy inputs, while cheap ones risk missing subtle cases. We argue that safety monitors should be flexible--costs should rise only when inputs are difficult to assess, or when more compute is available. To achieve this, we introduce Truncated Polynomial Classifiers (TPCs), a natural extension of linear probes for dynamic activation monitoring. Our key insight is that polynomials can be trained and evaluated progressively, term-by-term. At test-time, one can early-stop for lightweight monitoring, or use more terms for stronger guardrails when needed. TPCs provide two modes of use. First, as a safety dial: by evaluating more terms, developers and regulators can "buy" stronger guardrails from the same model. Second, as an adaptive cascade: clear cases exit early after low-order checks, and higher-order guardrails are evaluated only for ambiguous inputs, reducing overall monitoring costs. On two large-scale safety datasets (WildGuardMix and BeaverTails), for 4 models with up to 30B parameters, we show that TPCs compete with or outperform MLP-based probe baselines of the same size, all the while being more interpretable than their black-box counterparts. Our code is available at http://github.com/james-oldfield/tpc.
comment: Project page: http://james-oldfield.github.io/tpc
☆ Hybrid Quantum-Classical Optimisation of Traveling Salesperson Problem
The Traveling Salesperson Problem (TSP), a quintessential NP-hard combinatorial optimisation challenge, is vital for logistics and network design but limited by exponential complexity in large instances. We propose a hybrid quantum-classical framework integrating variational quantum eigensolver (VQE) optimisation with classical machine learning, using K-means clustering for problem decomposition and a RandomForestRegressor for path refinement. Evaluated on 80 European cities (from 4 to 80 cities, 38,500 samples in total) via Qiskit's AerSimulator and ibm_kyiv 127-qubit backend, the hybrid approach outperforms quantum-only methods, achieving an approximation ratio of 1.0287 at 80 cities, a 47.5% improvement over quantum-only's 1.9614, nearing the classical baseline. Machine learning reduces variability in tour distances (interquartile range, IQR - the spread of the middle 50% of results relative to the median - from 0.06 to 0.04), enhancing stability despite noisy intermediate-scale quantum (NISQ) noise. This framework underscores hybrid strategies' potential for scalable TSP optimisation, with future hardware advancements promising practical quantum advantages.
☆ Thinking-Free Policy Initialization Makes Distilled Reasoning Models More Effective and Efficient Reasoners
Reinforcement Learning with Verifiable Reward (RLVR) effectively solves complex tasks but demands extremely long context lengths during training, leading to substantial computational costs. While multi-stage training can partially mitigate this, starting with overly short contexts often causes irreversible performance degradation, ultimately failing to reduce overall training compute significantly. In this paper, we introduce **T**hinking-**F**ree **P**olicy **I**nitialization (**TFPI**), a simple yet effective adaptation to RLVR that bridges long Chain-of-Thought (CoT) distillation and standard RLVR. TFPI employs a simple *ThinkFree* operation, explicitly discarding the thinking content via a direct ** append, to reduce token usage during inference. Training with *ThinkFree*-adapted inputs improves performance and lowers token consumption, even in the original slow-thinking mode. Extensive experiments across various benchmarks have shown that TFPI accelerates RL convergence, achieves a higher performance ceiling, and yields more token-efficient reasoning models without specialized rewards or complex training designs. With TFPI only, we train a 4B model to reach 89.0% accuracy on AIME24 and 65.5% on LiveCodeBench using less than 4K H20 hours.
☆ Marginal Flow: a flexible and efficient framework for density estimation
Current density modeling approaches suffer from at least one of the following shortcomings: expensive training, slow inference, approximate likelihood, mode collapse or architectural constraints like bijective mappings. We propose a simple yet powerful framework that overcomes these limitations altogether. We define our model $q_\theta(x)$ through a parametric distribution $q(x|w)$ with latent parameters $w$. Instead of directly optimizing the latent variables $w$, our idea is to marginalize them out by sampling $w$ from a learnable distribution $q_\theta(w)$, hence the name Marginal Flow. In order to evaluate the learned density $q_\theta(x)$ or to sample from it, we only need to draw samples from $q_\theta(w)$, which makes both operations efficient. The proposed model allows for exact density evaluation and is orders of magnitude faster than competing models both at training and inference. Furthermore, Marginal Flow is a flexible framework: it does not impose any restrictions on the neural network architecture, it enables learning distributions on lower-dimensional manifolds (either known or to be learned), it can be trained efficiently with any objective (e.g. forward and reverse KL divergence), and it easily handles multi-modal targets. We evaluate Marginal Flow extensively on various tasks including synthetic datasets, simulation-based inference, distributions on positive definite matrices and manifold learning in latent spaces of images.
☆ The silence of the weights: an investigation of structural pruning strategies for attention-based audio signal architectures
Transformer-based models have become the state of the art across multiple domains, from natural language processing to machine listening, thanks to attention mechanisms. However, the attention layers require a large number of parameters and high-end hardware for both training and inference. We propose a novel pruning technique targeted explicitly at the attention mechanism, where we decouple the pruning of the four layers in the attention block, namely: query, keys, values and outputs' projection matrices. We also investigate pruning strategies to prune along the head and channel dimensions, and compare the performance of the Audio Spectrogram Transformer (AST) model under different pruning scenarios. Our results show that even by pruning 50\% of the attention parameters we incur in performance degradation of less than 1\%
Self-supervised learning for phase retrieval
In recent years, deep neural networks have emerged as a solution for inverse imaging problems. These networks are generally trained using pairs of images: one degraded and the other of high quality, the latter being called 'ground truth'. However, in medical and scientific imaging, the lack of fully sampled data limits supervised learning. Recent advances have made it possible to reconstruct images from measurement data alone, eliminating the need for references. However, these methods remain limited to linear problems, excluding non-linear problems such as phase retrieval. We propose a self-supervised method that overcomes this limitation in the case of phase retrieval by using the natural invariance of images to translations.
comment: in French language. GRETSI, Aug 2025, Strasboug, France
☆ Optimizing Indoor Environmental Quality in Smart Buildings Using Deep Learning ICDT
Ensuring optimal Indoor Environmental Quality (IEQ) is vital for occupant health and productivity, yet it often comes at a high energy cost in conventional Heating, Ventilation, and Air Conditioning (HVAC) systems. This paper proposes a deep learning driven approach to proactively manage IEQ parameters specifically CO2 concentration, temperature, and humidity while balancing building energy efficiency. Leveraging the ROBOD dataset collected from a net-zero energy academic building, we benchmark three architectures--Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), and a hybrid Convolutional Neural Network LSTM (CNN-LSTM)--to forecast IEQ variables across various time horizons. Our results show that GRU achieves the best short-term prediction accuracy with lower computational overhead, whereas CNN-LSTM excels in extracting dominant features for extended forecasting windows. Meanwhile, LSTM offers robust long-range temporal modeling. The comparative analysis highlights that prediction reliability depends on data resolution, sensor placement, and fluctuating occupancy conditions. These findings provide actionable insights for intelligent Building Management Systems (BMS) to implement predictive HVAC control, thereby reducing energy consumption and enhancing occupant comfort in real-world building operations.
comment: 10 pages, 4 figures, 1 table. Accepted and presented at the 5th International Conference on Digital Technologies and Applications (ICDTA 2025), April 17-18, 2025, Al Akhawayn University, Ifrane, Morocco
☆ PDE Solvers Should Be Local: Fast, Stable Rollouts with Learned Local Stencils
Neural operator models for solving partial differential equations (PDEs) often rely on global mixing mechanisms-such as spectral convolutions or attention-which tend to oversmooth sharp local dynamics and introduce high computational cost. We present FINO, a finite-difference-inspired neural architecture that enforces strict locality while retaining multiscale representational power. FINO replaces fixed finite-difference stencil coefficients with learnable convolutional kernels and evolves states via an explicit, learnable time-stepping scheme. A central Local Operator Block leverage a differential stencil layer, a gating mask, and a linear fuse step to construct adaptive derivative-like local features that propagate forward in time. Embedded in an encoder-decoder with a bottleneck, FINO captures fine-grained local structures while preserving interpretability. We establish (i) a composition error bound linking one-step approximation error to stable long-horizon rollouts under a Lipschitz condition, and (ii) a universal approximation theorem for discrete time-stepped PDE dynamics. (iii) Across six benchmarks and a climate modelling task, FINO achieves up to 44\% lower error and up to around 2\times speedups over state-of-the-art operator-learning baselines, demonstrating that strict locality with learnable time-stepping yields an accurate and scalable foundation for neural PDE solvers.
☆ AttriGen: Automated Multi-Attribute Annotation for Blood Cell Datasets
We introduce AttriGen, a novel framework for automated, fine-grained multi-attribute annotation in computer vision, with a particular focus on cell microscopy where multi-attribute classification remains underrepresented compared to traditional cell type categorization. Using two complementary datasets: the Peripheral Blood Cell (PBC) dataset containing eight distinct cell types and the WBC Attribute Dataset (WBCAtt) that contains their corresponding 11 morphological attributes, we propose a dual-model architecture that combines a CNN for cell type classification, as well as a Vision Transformer (ViT) for multi-attribute classification achieving a new benchmark of 94.62\% accuracy. Our experiments demonstrate that AttriGen significantly enhances model interpretability and offers substantial time and cost efficiency relative to conventional full-scale human annotation. Thus, our framework establishes a new paradigm that can be extended to other computer vision classification tasks by effectively automating the expansion of multi-attribute labels.
comment: 6 pages, 4 figures, 3 tables. Accepted at the 12th International Conference on Wireless Networks and Mobile Communications 2025 (WINCOM 2025)
☆ Benchmarking Diarization Models
Speaker diarization is the task of partitioning audio into segments according to speaker identity, answering the question of "who spoke when" in multi-speaker conversation recordings. While diarization is an essential task for many downstream applications, it remains an unsolved problem. Errors in diarization propagate to downstream systems and cause wide-ranging failures. To this end, we examine exact failure modes by evaluating five state-of-the-art diarization models, across four diarization datasets spanning multiple languages and acoustic conditions. The evaluation datasets consist of 196.6 hours of multilingual audio, including English, Mandarin, German, Japanese, and Spanish. Overall, we find that PyannoteAI achieves the best performance at 11.2% DER, while DiariZen provides a competitive open-source alternative at 13.3% DER. When analyzing failure cases, we find that the primary cause of diarization errors stem from missed speech segments followed by speaker confusion, especially in high-speaker count settings.
☆ Neighbor-aware informal settlement mapping with graph convolutional networks ECML
Mapping informal settlements is crucial for addressing challenges related to urban planning, public health, and infrastructure in rapidly growing cities. Geospatial machine learning has emerged as a key tool for detecting and mapping these areas from remote sensing data. However, existing approaches often treat spatial units independently, neglecting the relational structure of the urban fabric. We propose a graph-based framework that explicitly incorporates local geographical context into the classification process. Each spatial unit (cell) is embedded in a graph structure along with its adjacent neighbors, and a lightweight Graph Convolutional Network (GCN) is trained to classify whether the central cell belongs to an informal settlement. Experiments are conducted on a case study in Rio de Janeiro using spatial cross-validation across five distinct zones, ensuring robustness and generalizability across heterogeneous urban landscapes. Our method outperforms standard baselines, improving Kappa coefficient by 17 points over individual cell classification. We also show that graph-based modeling surpasses simple feature concatenation of neighboring cells, demonstrating the benefit of encoding spatial structure for urban scene understanding.
comment: 10 pages, 3 figures, 2 tables. Accepted at the ECML PKDD 2025 Workshop on Machine Learning for Earth Observation
☆ Alignment-Aware Decoding
Alignment of large language models remains a central challenge in natural language processing. Preference optimization has emerged as a popular and effective method for improving alignment, typically through training-time or prompt-based interventions. In this paper, we introduce alignment-aware decoding (AAD), a method to enhance model alignment directly at inference. Theoretically, AAD can be interpreted as implicit reward optimization, yet it requires no specialized training beyond the standard DPO setup. Empirically, AAD consistently outperforms strong baselines across diverse alignment benchmarks and model scales. Moreover, in data-constrained settings, AAD can produce high-quality synthetic data to improve alignment under standard decoding, providing a practical solution when labeled data is limited.
☆ EntroPE: Entropy-Guided Dynamic Patch Encoder for Time Series Forecasting
Transformer-based models have significantly advanced time series forecasting, with patch-based input strategies offering efficiency and improved long-horizon modeling. Yet, existing approaches rely on temporally-agnostic patch construction, where arbitrary starting positions and fixed lengths fracture temporal coherence by splitting natural transitions across boundaries. This naive segmentation often disrupts short-term dependencies and weakens representation learning. In response, we propose EntroPE (Entropy-Guided Dynamic Patch Encoder), a novel, temporally informed framework that dynamically detects transition points via conditional entropy and dynamically places patch boundaries. This preserves temporal structure while retaining the computational benefits of patching. EntroPE consists of two key modules, namely an Entropy-based Dynamic Patcher (EDP) that applies information-theoretic criteria to locate natural temporal shifts and determine patch boundaries, and an Adaptive Patch Encoder (APE) that employs pooling and cross-attention to capture intra-patch dependencies and produce fixed-size latent representations. These embeddings are then processed by a global transformer to model inter-patch dynamics. Experiments across long-term forecasting benchmarks demonstrate that EntroPE improves both accuracy and efficiency, establishing entropy-guided dynamic patching as a promising new paradigm for time series modeling. Code is available at: https://github.com/Sachithx/EntroPE.
comment: Preprint. Under Review
☆ Non-Vacuous Generalization Bounds: Can Rescaling Invariances Help?
A central challenge in understanding generalization is to obtain non-vacuous guarantees that go beyond worst-case complexity over data or weight space. Among existing approaches, PAC-Bayes bounds stand out as they can provide tight, data-dependent guarantees even for large networks. However, in ReLU networks, rescaling invariances mean that different weight distributions can represent the same function while leading to arbitrarily different PAC-Bayes complexities. We propose to study PAC-Bayes bounds in an invariant, lifted representation that resolves this discrepancy. This paper explores both the guarantees provided by this approach (invariance, tighter bounds via data processing) and the algorithmic aspects of KL-based rescaling-invariant PAC-Bayes bounds.
☆ Ordinal Label-Distribution Learning with Constrained Asymmetric Priors for Imbalanced Retinal Grading NeurIPS 2025
Diabetic retinopathy grading is inherently ordinal and long-tailed, with minority stages being scarce, heterogeneous, and clinically critical to detect accurately. Conventional methods often rely on isotropic Gaussian priors and symmetric loss functions, misaligning latent representations with the task's asymmetric nature. We propose the Constrained Asymmetric Prior Wasserstein Autoencoder (CAP-WAE), a novel framework that addresses these challenges through three key innovations. Our approach employs a Wasserstein Autoencoder (WAE) that aligns its aggregate posterior with a asymmetric prior, preserving the heavy-tailed and skewed structure of minority classes. The latent space is further structured by a Margin-Aware Orthogonality and Compactness (MAOC) loss to ensure grade-ordered separability. At the supervision level, we introduce a direction-aware ordinal loss, where a lightweight head predicts asymmetric dispersions to generate soft labels that reflect clinical priorities by penalizing under-grading more severely. Stabilized by an adaptive multi-task weighting scheme, our end-to-end model requires minimal tuning. Across public DR benchmarks, CAP-WAE consistently achieves state-of-the-art Quadratic Weighted Kappa, accuracy, and macro-F1, surpassing both ordinal classification and latent generative baselines. t-SNE visualizations further reveal that our method reshapes the latent manifold into compact, grade-ordered clusters with reduced overlap.
comment: Accepted at 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: The Second Workshop on GenAI for Health: Potential, Trust, and Policy Compliance
☆ LMILAtt: A Deep Learning Model for Depression Detection from Social Media Users Enhanced by Multi-Instance Learning Based on Attention Mechanism
Depression is a major global public health challenge and its early identification is crucial. Social media data provides a new perspective for depression detection, but existing methods face limitations such as insufficient accuracy, insufficient utilization of time series features, and high annotation costs. To this end, this study proposes the LMILAtt model, which innovatively integrates Long Short-Term Memory autoencoders and attention mechanisms: firstly, the temporal dynamic features of user tweets (such as depressive tendency evolution patterns) are extracted through unsupervised LSTM autoencoders. Secondly, the attention mechanism is used to dynamically weight key texts (such as early depression signals) and construct a multi-example learning architecture to improve the accuracy of user-level detection. Finally, the performance was verified on the WU3D dataset labeled by professional medicine. Experiments show that the model is significantly better than the baseline model in terms of accuracy, recall and F1 score. In addition, the weakly supervised learning strategy significantly reduces the cost of labeling and provides an efficient solution for large-scale social media depression screening.
☆ Leveraging AI modelling for FDS with Simvue: monitor and optimise for more sustainable simulations
There is high demand on fire simulations, in both scale and quantity. We present a multi-pronged approach to improving the time and energy required to meet these demands. We show the ability of a custom machine learning surrogate model to predict the dynamics of heat propagation orders of magnitude faster than state-of-the-art CFD software for this application. We also demonstrate how a guided optimisation procedure can decrease the number of simulations required to meet an objective; using lightweight models to decide which simulations to run, we see a tenfold reduction when locating the most dangerous location for a fire to occur within a building based on the impact of smoke on visibility. Finally we present a framework and product, Simvue, through which we access these tools along with a host of automatic organisational and tracking features which enables future reuse of data and more savings through better management of simulations and combating redundancy.
comment: 12 pages, 17 figures, Interflam Conference
☆ Accelerating Transformers in Online RL
The appearance of transformer-based models in Reinforcement Learning (RL) has expanded the horizons of possibilities in robotics tasks, but it has simultaneously brought a wide range of challenges during its implementation, especially in model-free online RL. Some of the existing learning algorithms cannot be easily implemented with transformer-based models due to the instability of the latter. In this paper, we propose a method that uses the Accelerator policy as a transformer's trainer. The Accelerator, a simpler and more stable model, interacts with the environment independently while simultaneously training the transformer through behavior cloning during the first stage of the proposed algorithm. In the second stage, the pretrained transformer starts to interact with the environment in a fully online setting. As a result, this model-free algorithm accelerates the transformer in terms of its performance and helps it to train online in a more stable and faster way. By conducting experiments on both state-based and image-based ManiSkill environments, as well as on MuJoCo tasks in MDP and POMDP settings, we show that applying our algorithm not only enables stable training of transformers but also reduces training time on image-based environments by up to a factor of two. Moreover, it decreases the required replay buffer size in off-policy methods to 10-20 thousand, which significantly lowers the overall computational demands.
☆ Domain-Aware Hyperdimensional Computing for Edge Smart Manufacturing
Smart manufacturing requires on-device intelligence that meets strict latency and energy budgets. HyperDimensional Computing (HDC) offers a lightweight alternative by encoding data as high-dimensional hypervectors and computing with simple operations. Prior studies often assume that the qualitative relation between HDC hyperparameters and performance is stable across applications. Our analysis of two representative tasks, signal-based quality monitoring in Computer Numerical Control (CNC) machining and image-based defect detection in Laser Powder Bed Fusion (LPBF), shows that this assumption does not hold. We map how encoder type, projection variance, hypervector dimensionality, and data regime shape accuracy, inference latency, training time, and training energy. A formal complexity model explains predictable trends in encoding and similarity computation and reveals nonmonotonic interactions with retraining that preclude a closed-form optimum. Empirically, signals favor nonlinear Random Fourier Features with more exclusive encodings and saturate in accuracy beyond moderate dimensionality. Images favor linear Random Projection, achieve high accuracy with small dimensionality, and depend more on sample count than on dimensionality. Guided by these insights, we tune HDC under multiobjective constraints that reflect edge deployment and obtain models that match or exceed the accuracy of state-of-the-art deep learning and Transformer models while delivering at least 6x faster inference and more than 40x lower training energy. These results demonstrate that domain-aware HDC encoding is necessary and that tuned HDC offers a practical, scalable path to real-time industrial AI on constrained hardware. Future work will enable adaptive encoder and hyperparameter selection, expand evaluation to additional manufacturing modalities, and validate on low-power accelerators.
comment: 23 pages, 14 figures
☆ UncertainGen: Uncertainty-Aware Representations of DNA Sequences for Metagenomic Binning
Metagenomic binning aims to cluster DNA fragments from mixed microbial samples into their respective genomes, a critical step for downstream analyses of microbial communities. Existing methods rely on deterministic representations, such as k-mer profiles or embeddings from large language models, which fail to capture the uncertainty inherent in DNA sequences arising from inter-species DNA sharing and from fragments with highly similar representations. We present the first probabilistic embedding approach, UncertainGen, for metagenomic binning, representing each DNA fragment as a probability distribution in latent space. Our approach naturally models sequence-level uncertainty, and we provide theoretical guarantees on embedding distinguishability. This probabilistic embedding framework expands the feasible latent space by introducing a data-adaptive metric, which in turn enables more flexible separation of bins/clusters. Experiments on real metagenomic datasets demonstrate the improvements over deterministic k-mer and LLM-based embeddings for the binning task by offering a scalable and lightweight solution for large-scale metagenomic analysis.
☆ Clip-Low Increases Entropy and Clip-High Decreases Entropy in Reinforcement Learning of Large Language Models
Reinforcement learning with verifiable rewards (RLVR) has recently emerged as the leading approach for enhancing the reasoning capabilities of large language models (LLMs). However, RLVR is prone to entropy collapse, where the LLM quickly converges to a near-deterministic form, hindering exploration and progress during prolonged RL training. In this work, we reveal that the clipping mechanism in PPO and GRPO induces biases on entropy. Through theoretical and empirical analyses, we show that clip-low increases entropy, while clip-high decreases it. Further, under standard clipping parameters, the effect of clip-high dominates, resulting in an overall entropy reduction even when purely random rewards are provided to the RL algorithm. Our findings highlight an overlooked confounding factor in RLVR: independent of the reward signal, the clipping mechanism influences entropy, which in turn affects the reasoning behavior. Furthermore, our analysis demonstrates that clipping can be deliberately used to control entropy. Specifically, with a more aggressive clip-low value, one can increase entropy, promote exploration, and ultimately prevent entropy collapse in RLVR training.
☆ EVODiff: Entropy-aware Variance Optimized Diffusion Inference NeurIPS 2025
Diffusion models (DMs) excel in image generation, but suffer from slow inference and the training-inference discrepancies. Although gradient-based solvers like DPM-Solver accelerate the denoising inference, they lack theoretical foundations in information transmission efficiency. In this work, we introduce an information-theoretic perspective on the inference processes of DMs, revealing that successful denoising fundamentally reduces conditional entropy in reverse transitions. This principle leads to our key insights into the inference processes: (1) data prediction parameterization outperforms its noise counterpart, and (2) optimizing conditional variance offers a reference-free way to minimize both transition and reconstruction errors. Based on these insights, we propose an entropy-aware variance optimized method for the generative process of DMs, called EVODiff, which systematically reduces uncertainty by optimizing conditional entropy during denoising. Extensive experiments on DMs validate our insights and demonstrate that our method significantly and consistently outperforms state-of-the-art (SOTA) gradient-based solvers. For example, compared to the DPM-Solver++, EVODiff reduces the reconstruction error by up to 45.5\% (FID improves from 5.10 to 2.78) at 10 function evaluations (NFE) on CIFAR-10, cuts the NFE cost by 25\% (from 20 to 15 NFE) for high-quality samples on ImageNet-256, and improves text-to-image generation while reducing artifacts. Code is available at https://github.com/ShiguiLi/EVODiff.
comment: NeurIPS 2025, 40 pages, 14 figures
☆ Efficient Distributed Training via Dual Batch Sizes and Cyclic Progressive Learning
Distributed machine learning is critical for training deep learning models on large datasets and with numerous parameters. Current research primarily focuses on leveraging additional hardware resources and powerful computing units to accelerate the training process. As a result, larger batch sizes are often employed to speed up training. However, training with large batch sizes can lead to lower accuracy due to poor generalization. To address this issue, we propose the dual batch size learning scheme, a distributed training method built on the parameter server framework. This approach maximizes training efficiency by utilizing the largest batch size that the hardware can support while incorporating a smaller batch size to enhance model generalization. By using two different batch sizes simultaneously, this method reduces testing loss and enhances generalization, with minimal extra training time. Additionally, to mitigate the time overhead caused by dual batch size learning, we propose the cyclic progressive learning scheme. This technique gradually adjusts image resolution from low to high during training, significantly boosting training speed. By combining cyclic progressive learning with dual batch size learning, our hybrid approach improves both model generalization and training efficiency. Experimental results using ResNet-18 show that, compared to conventional training methods, our method can improve accuracy by 3.3% while reducing training time by 10.6% on CIFAR-100, and improve accuracy by 0.1% while reducing training time by 35.7% on ImageNet.
☆ Text-to-Scene with Large Reasoning Models
Prompt-driven scene synthesis allows users to generate complete 3D environments from textual descriptions. Current text-to-scene methods often struggle with complex geometries and object transformations, and tend to show weak adherence to complex instructions. We address these limitations by introducing Reason-3D, a text-to-scene model powered by large reasoning models (LRMs). Reason-3D integrates object retrieval using captions covering physical, functional, and contextual attributes. Reason-3D then places the selected objects based on implicit and explicit layout constraints, and refines their positions with collision-aware spatial reasoning. Evaluated on instructions ranging from simple to complex indoor configurations, Reason-3D significantly outperforms previous methods in human-rated visual fidelity, adherence to constraints, and asset retrieval quality. Beyond its contribution to the field of text-to-scene generation, our work showcases the advanced spatial reasoning abilities of modern LRMs. Additionally, we release the codebase to further the research in object retrieval and placement with LRMs.
☆ Real-time Noise Detection and Classification in Single-Channel EEG: A Lightweight Machine Learning Approach for EMG, White Noise, and EOG Artifacts
Electroencephalogram (EEG) artifact detection in real-world settings faces significant challenges such as computational inefficiency in multi-channel methods, poor robustness to simultaneous noise, and trade-offs between accuracy and complexity in deep learning models. We propose a hybrid spectral-temporal framework for real-time detection and classification of ocular (EOG), muscular (EMG), and white noise artifacts in single-channel EEG. This method, in contrast to other approaches, combines time-domain low-pass filtering (targeting low-frequency EOG) and frequency-domain power spectral density (PSD) analysis (capturing broad-spectrum EMG), followed by PCA-optimized feature fusion to minimize redundancy while preserving discriminative information. This feature engineering strategy allows a lightweight multi-layer perceptron (MLP) architecture to outperform advanced CNNs and RNNs by achieving 99% accuracy at low SNRs (SNR -7) dB and >90% accuracy in moderate noise (SNR 4 dB). Additionally, this framework addresses the unexplored problem of simultaneous multi-source contamination(EMG+EOG+white noise), where it maintains 96% classification accuracy despite overlapping artifacts. With 30-second training times (97% faster than CNNs) and robust performance across SNR levels, this framework bridges the gap between clinical applicability and computational efficiency, which enables real-time use in wearable brain-computer interfaces. This work also challenges the ubiquitous dependence on model depth for EEG artifact detection by demonstrating that domain-informed feature fusion surpasses complex architecture in noisy scenarios.
☆ GaussEdit: Adaptive 3D Scene Editing with Text and Image Prompts
This paper presents GaussEdit, a framework for adaptive 3D scene editing guided by text and image prompts. GaussEdit leverages 3D Gaussian Splatting as its backbone for scene representation, enabling convenient Region of Interest selection and efficient editing through a three-stage process. The first stage involves initializing the 3D Gaussians to ensure high-quality edits. The second stage employs an Adaptive Global-Local Optimization strategy to balance global scene coherence and detailed local edits and a category-guided regularization technique to alleviate the Janus problem. The final stage enhances the texture of the edited objects using a sophisticated image-to-image synthesis technique, ensuring that the results are visually realistic and align closely with the given prompts. Our experimental results demonstrate that GaussEdit surpasses existing methods in editing accuracy, visual fidelity, and processing speed. By successfully embedding user-specified concepts into 3D scenes, GaussEdit is a powerful tool for detailed and user-driven 3D scene editing, offering significant improvements over traditional methods.
Scaling Up Temporal Domain Generalization via Temporal Experts Averaging EMNLP 2025
Temporal Domain Generalization (TDG) aims to generalize across temporal distribution shifts, e.g., lexical change over time. Prior work often addresses this by predicting future model weights. However, full model prediction is prohibitively expensive for even reasonably sized models. Thus, recent methods only predict the classifier layer, limiting generalization by failing to adjust other model components. To address this, we propose Temporal Experts Averaging (TEA), a novel and scalable TDG framework that updates the entire model using weight averaging to maximize generalization potential while minimizing computational costs. Our theoretical analysis guides us to two steps that enhance generalization to future domains. First, we create expert models with functional diversity yet parameter similarity by fine-tuning a domain-agnostic base model on individual temporal domains while constraining weight changes. Second, we optimize the bias-variance tradeoff through adaptive averaging coefficients derived from modeling temporal weight trajectories in a principal component subspace. Expert's contributions are based on their projected proximity to future domains. Extensive experiments across 7 TDG benchmarks, 5 models, and 2 TDG settings shows TEA outperforms prior TDG methods by up to 69% while being up to 60x more efficient.
comment: Accepted by EMNLP 2025 main
☆ CoLLM-NAS: Collaborative Large Language Models for Efficient Knowledge-Guided Neural Architecture Search
The integration of Large Language Models (LLMs) with Neural Architecture Search (NAS) has introduced new possibilities for automating the design of neural architectures. However, most existing methods face critical limitations, including architectural invalidity, computational inefficiency, and inferior performance compared to traditional NAS. In this work, we present Collaborative LLM-based NAS (CoLLM-NAS), a two-stage NAS framework with knowledge-guided search driven by two complementary LLMs. Specifically, we propose a Navigator LLM to guide search direction and a Generator LLM to synthesize high-quality candidates, with a dedicated Coordinator module to manage their interaction. CoLLM-NAS efficiently guides the search process by combining LLMs' inherent knowledge of structured neural architectures with progressive knowledge from iterative feedback and historical trajectory. Experimental results on ImageNet and NAS-Bench-201 show that CoLLM-NAS surpasses existing NAS methods and conventional search algorithms, achieving new state-of-the-art results. Furthermore, CoLLM-NAS consistently enhances the performance and efficiency of various two-stage NAS methods (e.g., OFA, SPOS, and AutoFormer) across diverse search spaces (e.g., MobileNet, ShuffleNet, and AutoFormer), demonstrating its excellent generalization.
☆ Stealthy Yet Effective: Distribution-Preserving Backdoor Attacks on Graph Classification NeurIPS 2025
Graph Neural Networks (GNNs) have demonstrated strong performance across tasks such as node classification, link prediction, and graph classification, but remain vulnerable to backdoor attacks that implant imperceptible triggers during training to control predictions. While node-level attacks exploit local message passing, graph-level attacks face the harder challenge of manipulating global representations while maintaining stealth. We identify two main sources of anomaly in existing graph classification backdoor methods: structural deviation from rare subgraph triggers and semantic deviation caused by label flipping, both of which make poisoned graphs easily detectable by anomaly detection models. To address this, we propose DPSBA, a clean-label backdoor framework that learns in-distribution triggers via adversarial training guided by anomaly-aware discriminators. DPSBA effectively suppresses both structural and semantic anomalies, achieving high attack success while significantly improving stealth. Extensive experiments on real-world datasets validate that DPSBA achieves a superior balance between effectiveness and detectability compared to state-of-the-art baselines.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ Muon Outperforms Adam in Tail-End Associative Memory Learning
The Muon optimizer is consistently faster than Adam in training Large Language Models (LLMs), yet the mechanism underlying its success remains unclear. This paper demystifies this mechanism through the lens of associative memory. By ablating the transformer components optimized by Muon, we reveal that the associative memory parameters of LLMs, namely the Value and Output (VO) attention weights and Feed-Forward Networks (FFNs), are the primary contributors to Muon's superiority. Motivated by this associative memory view, we then explain Muon's superiority on real-world corpora, which are intrinsically heavy-tailed: a few classes (tail classes) appear far less frequently than others. The superiority is explained through two key properties: (i) its update rule consistently yields a more isotropic singular spectrum than Adam; and as a result, (ii) on heavy-tailed data, it optimizes tail classes more effectively than Adam. Beyond empirical evidence, we theoretically confirm these findings by analyzing a one-layer associative memory model under class-imbalanced data. We prove that Muon consistently achieves balanced learning across classes regardless of feature embeddings, whereas Adam can induce large disparities in learning errors depending on embedding properties. In summary, our empirical observations and theoretical analyses reveal Muon's core advantage: its update rule aligns with the outer-product structure of linear associative memories, enabling more balanced and effective learning of tail classes in heavy-tailed distributions than Adam.
☆ FITS: Towards an AI-Driven Fashion Information Tool for Sustainability
Access to credible sustainability information in the fashion industry remains limited and challenging to interpret, despite growing public and regulatory demands for transparency. General-purpose language models often lack domain-specific knowledge and tend to "hallucinate", which is particularly harmful for fields where factual correctness is crucial. This work explores how Natural Language Processing (NLP) techniques can be applied to classify sustainability data for fashion brands, thereby addressing the scarcity of credible and accessible information in this domain. We present a prototype Fashion Information Tool for Sustainability (FITS), a transformer-based system that extracts and classifies sustainability information from credible, unstructured text sources: NGO reports and scientific publications. Several BERT-based language models, including models pretrained on scientific and climate-specific data, are fine-tuned on our curated corpus using a domain-specific classification schema, with hyperparameters optimized via Bayesian optimization. FITS allows users to search for relevant data, analyze their own data, and explore the information via an interactive interface. We evaluated FITS in two focus groups of potential users concerning usability, visual design, content clarity, possible use cases, and desired features. Our results highlight the value of domain-adapted NLP in promoting informed decision-making and emphasize the broader potential of AI applications in addressing climate-related challenges. Finally, this work provides a valuable dataset, the SustainableTextileCorpus, along with a methodology for future updates. Code available at https://github.com/daphne12345/FITS
comment: accepted at ECAI 2025
☆ Indirect Attention: Turning Context Misalignment into a Feature
The attention mechanism has become a cornerstone of modern deep learning architectures, where keys and values are typically derived from the same underlying sequence or representation. This work explores a less conventional scenario, when keys and values originate from different sequences or modalities. Specifically, we first analyze the attention mechanism's behavior under noisy value features, establishing a critical noise threshold beyond which signal degradation becomes significant. Furthermore, we model context (key, value) misalignment as an effective form of structured noise within the value features, demonstrating that the noise induced by such misalignment can substantially exceed this critical threshold, thereby compromising standard attention's efficacy. Motivated by this, we introduce Indirect Attention, a modified attention mechanism that infers relevance indirectly in scenarios with misaligned context. We evaluate the performance of Indirect Attention across a range of synthetic tasks and real world applications, showcasing its superior ability to handle misalignment.
☆ BALLAST: Bayesian Active Learning with Look-ahead Amendment for Sea-drifter Trajectories under Spatio-Temporal Vector Fields
We introduce a formal active learning methodology for guiding the placement of Lagrangian observers to infer time-dependent vector fields -- a key task in oceanography, marine science, and ocean engineering -- using a physics-informed spatio-temporal Gaussian process surrogate model. The majority of existing placement campaigns either follow standard `space-filling' designs or relatively ad-hoc expert opinions. A key challenge to applying principled active learning in this setting is that Lagrangian observers are continuously advected through the vector field, so they make measurements at different locations and times. It is, therefore, important to consider the likely future trajectories of placed observers to account for the utility of candidate placement locations. To this end, we present BALLAST: Bayesian Active Learning with Look-ahead Amendment for Sea-drifter Trajectories. We observe noticeable benefits of BALLAST-aided sequential observer placement strategies on both synthetic and high-fidelity ocean current models.
☆ Scaling Equilibrium Propagation to Deeper Neural Network Architectures
Equilibrium propagation has been proposed as a biologically plausible alternative to the backpropagation algorithm. The local nature of gradient computations, combined with the use of convergent RNNs to reach equilibrium states, make this approach well-suited for implementation on neuromorphic hardware. However, previous studies on equilibrium propagation have been restricted to networks containing only dense layers or relatively small architectures with a few convolutional layers followed by a final dense layer. These networks have a significant gap in accuracy compared to similarly sized feedforward networks trained with backpropagation. In this work, we introduce the Hopfield-Resnet architecture, which incorporates residual (or skip) connections in Hopfield networks with clipped $\mathrm{ReLU}$ as the activation function. The proposed architectural enhancements enable the training of networks with nearly twice the number of layers reported in prior works. For example, Hopfield-Resnet13 achieves 93.92\% accuracy on CIFAR-10, which is $\approx$3.5\% higher than the previous best result and comparable to that provided by Resnet13 trained using backpropagation.
☆ Towards Human Engagement with Realistic AI Combat Pilots
We present a system that enables real-time interaction between human users and agents trained to control fighter jets in simulated 3D air combat scenarios. The agents are trained in a dedicated environment using Multi-Agent Reinforcement Learning. A communication link is developed to allow seamless deployment of trained agents into VR-Forces, a widely used defense simulation tool for realistic tactical scenarios. This integration allows mixed simulations where human-controlled entities engage with intelligent agents exhibiting distinct combat behaviors. Our interaction model creates new opportunities for human-agent teaming, immersive training, and the exploration of innovative tactics in defense contexts.
comment: 13th International Conference on Human-Agent Interaction (HAI) 2025
☆ Informed Asymmetric Actor-Critic: Leveraging Privileged Signals Beyond Full-State Access
Reinforcement learning in partially observable environments requires agents to act under uncertainty from noisy, incomplete observations. Asymmetric actor-critic methods leverage privileged information during training to improve learning under these conditions. However, existing approaches typically assume full-state access during training. In this work, we challenge this assumption by proposing a novel actor-critic framework, called informed asymmetric actor-critic, that enables conditioning the critic on arbitrary privileged signals without requiring access to the full state. We show that policy gradients remain unbiased under this formulation, extending the theoretical foundation of asymmetric methods to the more general case of privileged partial information. To quantify the impact of such signals, we propose informativeness measures based on kernel methods and return prediction error, providing practical tools for evaluating training-time signals. We validate our approach empirically on benchmark navigation tasks and synthetic partially observable environments, showing that our informed asymmetric method improves learning efficiency and value estimation when informative privileged inputs are available. Our findings challenge the necessity of full-state access and open new directions for designing asymmetric reinforcement learning methods that are both practical and theoretically sound.
comment: 15 pages, 21 pages total
☆ CAST: Continuous and Differentiable Semi-Structured Sparsity-Aware Training for Large Language Models
Sparsity-aware training is an effective approach for transforming large language models (LLMs) into hardware-friendly sparse patterns, thereby reducing latency and memory consumption during inference. In this paper, we propose Continuous Adaptive Sparse Trainer (CAST), a fully continuous and differentiable sparsity-aware training framework for semi-structured (or "N:M") sparse models. Unlike previous approaches that optimize sparsity patterns and weights separately, CAST enables seamless joint optimization during training, while progressively transforming the model into the desired sparsity format. Specifically, CAST introduces three key components: 1) AdamS, a sparsity-aware optimizer that leverages adaptive L1 decay to promote uniform sparsification across all parameters; 2) Weight Scaling, a module designed to mitigate the magnitude reduction caused by decay while preserving desired sparsity patterns; 3) Knowledge Distillation, which employs the dense model as a self-teacher to enhance training efficiency. We evaluate CAST under 2:4 sparsity patterns across multiple model families, ranging from 125M to 13B parameters. Our results demonstrate significant improvements over previous state-of-the-art methods in both perplexity and zero-shot accuracy with minimal training resources. Notably, on LLaMA2-7B, our 2:4 sparse model achieves a negligible perplexity increase of 0.09 and a 0.36% gain in zero-shot accuracy compared to the dense model using only 2% of the original pretraining tokens. Additionally, we establish an accurate and robust empirical scaling law to predict sparse model performance given adequate training resources. Finally, we demonstrate the practical applicability of our sparse models by evaluating them under quantization and fine-tuning scenarios.
comment: Submitted to IEEE TPAMI
☆ Exact Solutions to the Quantum Schrödinger Bridge Problem
The Quantum Schr\"odinger Bridge Problem (QSBP) describes the evolution of a stochastic process between two arbitrary probability distributions, where the dynamics are governed by the Schr\"odinger equation rather than by the traditional real-valued wave equation. Although the QSBP is known in the mathematical literature, we formulate it here from a Lagrangian perspective and derive its main features in a way that is particularly suited to generative modeling. We show that the resulting evolution equations involve the so-called Bohm (quantum) potential, representing a notion of non-locality in the stochastic process. This distinguishes the QSBP from classical stochastic dynamics and reflects a key characteristic typical of quantum mechanical systems. In this work, we derive exact closed-form solutions for the QSBP between Gaussian distributions. Our derivation is based on solving the Fokker-Planck Equation (FPE) and the Hamilton-Jacobi Equation (HJE) arising from the Lagrangian formulation of dynamical Optimal Transport. We find that, similar to the classical Schr\"odinger Bridge Problem, the solution to the QSBP between Gaussians is again a Gaussian process; however, the evolution of the covariance differs due to quantum effects. Leveraging these explicit solutions, we present a modified algorithm based on a Gaussian Mixture Model framework, and demonstrate its effectiveness across several experimental settings, including single-cell evolution data, image generation, molecular translation and applications in Mean-Field Games.
☆ Reconcile Certified Robustness and Accuracy for DNN-based Smoothed Majority Vote Classifier
Within the PAC-Bayesian framework, the Gibbs classifier (defined on a posterior $Q$) and the corresponding $Q$-weighted majority vote classifier are commonly used to analyze the generalization performance. However, there exists a notable lack in theoretical research exploring the certified robustness of majority vote classifier and its interplay with generalization. In this study, we develop a generalization error bound that possesses a certified robust radius for the smoothed majority vote classifier (i.e., the $Q$-weighted majority vote classifier with smoothed inputs); In other words, the generalization bound holds under any data perturbation within the certified robust radius. As a byproduct, we find that the underpinnings of both the generalization bound and the certified robust radius draw, in part, upon weight spectral norm, which thereby inspires the adoption of spectral regularization in smooth training to boost certified robustness. Utilizing the dimension-independent property of spherical Gaussian inputs in smooth training, we propose a novel and inexpensive spectral regularizer to enhance the smoothed majority vote classifier. In addition to the theoretical contribution, a set of empirical results is provided to substantiate the effectiveness of our proposed method.
comment: Under Review
☆ Data-Free Continual Learning of Server Models in Model-Heterogeneous Federated learning
Federated learning (FL) is a distributed learning paradigm across multiple entities while preserving data privacy. However, with the continuous emergence of new data and increasing model diversity, traditional federated learning faces significant challenges, including inherent issues of data heterogeneity, model heterogeneity and catastrophic forgetting, along with new challenge of knowledge misalignment. In this study, we introduce FedDCL, a novel framework designed to enable data-free continual learning of the server model in a model-heterogeneous federated setting. We leverage pre-trained diffusion models to extract lightweight class-specific prototypes, which confer a threefold data-free advantage, enabling: (1) generation of synthetic data for the current task to augment training and counteract non-IID data distributions; (2) exemplar-free generative replay for retaining knowledge from previous tasks; and (3) data-free dynamic knowledge transfer from heterogeneous clients to the server. Experimental results on various datasets demonstrate the effectiveness of FedDCL, showcasing its potential to enhance the generalizability and practical applicability of federated learning in dynamic settings.
☆ Reevaluating Convolutional Neural Networks for Spectral Analysis: A Focus on Raman Spectroscopy
Autonomous Raman instruments on Mars rovers, deep-sea landers, and field robots must interpret raw spectra distorted by fluorescence baselines, peak shifts, and limited ground-truth labels. Using curated subsets of the RRUFF database, we evaluate one-dimensional convolutional neural networks (CNNs) and report four advances: (i) Baseline-independent classification: compact CNNs surpass $k$-nearest-neighbors and support-vector machines on handcrafted features, removing background-correction and peak-picking stages while ensuring reproducibility through released data splits and scripts. (ii) Pooling-controlled robustness: tuning a single pooling parameter accommodates Raman shifts up to $30 \,\mathrm{cm}^{-1}$, balancing translational invariance with spectral resolution. (iii) Label-efficient learning: semi-supervised generative adversarial networks and contrastive pretraining raise accuracy by up to $11\%$ with only $10\%$ labels, valuable for autonomous deployments with scarce annotation. (iv) Constant-time adaptation: freezing the CNN backbone and retraining only the softmax layer transfers models to unseen minerals at $\mathcal{O}(1)$ cost, outperforming Siamese networks on resource-limited processors. This workflow, which involves training on raw spectra, tuning pooling, adding semi-supervision when labels are scarce, and fine-tuning lightly for new targets, provides a practical path toward robust, low-footprint Raman classification in autonomous exploration.
☆ AIM: Adaptive Intervention for Deep Multi-task Learning of Molecular Properties
Simultaneously optimizing multiple, frequently conflicting, molecular properties is a key bottleneck in the development of novel therapeutics. Although a promising approach, the efficacy of multi-task learning is often compromised by destructive gradient interference, especially in the data-scarce regimes common to drug discovery. To address this, we propose AIM, an optimization framework that learns a dynamic policy to mediate gradient conflicts. The policy is trained jointly with the main network using a novel augmented objective composed of dense, differentiable regularizers. This objective guides the policy to produce updates that are geometrically stable and dynamically efficient, prioritizing progress on the most challenging tasks. We demonstrate that AIM achieves statistically significant improvements over multi-task baselines on subsets of the QM9 and targeted protein degraders benchmarks, with its advantage being most pronounced in data-scarce regimes. Beyond performance, AIM's key contribution is its interpretability; the learned policy matrix serves as a diagnostic tool for analyzing inter-task relationships. This combination of data-efficient performance and diagnostic insight highlights the potential of adaptive optimizers to accelerate scientific discovery by creating more robust and insightful models for multi-property molecular design.
comment: 13 pages, 3 figures, 9 tables
☆ CO3: Contrasting Concepts Compose Better
We propose to improve multi-concept prompt fidelity in text-to-image diffusion models. We begin with common failure cases-prompts like "a cat and a dog" that sometimes yields images where one concept is missing, faint, or colliding awkwardly with another. We hypothesize that this happens when the diffusion model drifts into mixed modes that over-emphasize a single concept it learned strongly during training. Instead of re-training, we introduce a corrective sampling strategy that steers away from regions where the joint prompt behavior overlaps too strongly with any single concept in the prompt. The goal is to steer towards "pure" joint modes where all concepts can coexist with balanced visual presence. We further show that existing multi-concept guidance schemes can operate in unstable weight regimes that amplify imbalance; we characterize favorable regions and adapt sampling to remain within them. Our approach, CO3, is plug-and-play, requires no model tuning, and complements standard classifier-free guidance. Experiments on diverse multi-concept prompts indicate improvements in concept coverage, balance and robustness, with fewer dropped or distorted concepts compared to standard baselines and prior compositional methods. Results suggest that lightweight corrective guidance can substantially mitigate brittle semantic alignment behavior in modern diffusion systems.
☆ From MNIST to ImageNet: Understanding the Scalability Boundaries of Differentiable Logic Gate Networks
Differentiable Logic Gate Networks (DLGNs) are a very fast and energy-efficient alternative to conventional feed-forward networks. With learnable combinations of logical gates, DLGNs enable fast inference by hardware-friendly execution. Since the concept of DLGNs has only recently gained attention, these networks are still in their developmental infancy, including the design and scalability of their output layer. To date, this architecture has primarily been tested on datasets with up to ten classes. This work examines the behavior of DLGNs on large multi-class datasets. We investigate its general expressiveness, its scalability, and evaluate alternative output strategies. Using both synthetic and real-world datasets, we provide key insights into the importance of temperature tuning and its impact on output layer performance. We evaluate conditions under which the Group-Sum layer performs well and how it can be applied to large-scale classification of up to 2000 classes.
☆ The Impact of Scaling Training Data on Adversarial Robustness NeurIPS 2025
Deep neural networks remain vulnerable to adversarial examples despite advances in architectures and training paradigms. We investigate how training data characteristics affect adversarial robustness across 36 state-of-the-art vision models spanning supervised, self-supervised, and contrastive learning approaches, trained on datasets from 1.2M to 22B images. Models were evaluated under six black-box attack categories: random perturbations, two types of geometric masks, COCO object manipulations, ImageNet-C corruptions, and ImageNet-R style shifts. Robustness follows a logarithmic scaling law with both data volume and model size: a tenfold increase in data reduces attack success rate (ASR) on average by ~3.2%, whereas a tenfold increase in model size reduces ASR on average by ~13.4%. Notably, some self-supervised models trained on curated datasets, such as DINOv2, outperform others trained on much larger but less curated datasets, challenging the assumption that scale alone drives robustness. Adversarial fine-tuning of ResNet50s improves generalization across structural variations but not across color distributions. Human evaluation reveals persistent gaps between human and machine vision. These results show that while scaling improves robustness, data quality, architecture, and training objectives play a more decisive role than raw scale in achieving broad-spectrum adversarial resilience.
comment: Accepted at the workshop Reliable ML from Unreliable Data at NeurIPS 2025
☆ Better Privilege Separation for Agents by Restricting Data Types
Large language models (LLMs) have become increasingly popular due to their ability to interact with unstructured content. As such, LLMs are now a key driver behind the automation of language processing systems, such as AI agents. Unfortunately, these advantages have come with a vulnerability to prompt injections, an attack where an adversary subverts the LLM's intended functionality with an injected task. Past approaches have proposed detectors and finetuning to provide robustness, but these techniques are vulnerable to adaptive attacks or cannot be used with state-of-the-art models. To this end we propose type-directed privilege separation for LLMs, a method that systematically prevents prompt injections. We restrict the ability of an LLM to interact with third-party data by converting untrusted content to a curated set of data types; unlike raw strings, each data type is limited in scope and content, eliminating the possibility for prompt injections. We evaluate our method across several case studies and find that designs leveraging our principles can systematically prevent prompt injection attacks while maintaining high utility.
☆ Federated Learning with Enhanced Privacy via Model Splitting and Random Client Participation
Federated Learning (FL) often adopts differential privacy (DP) to protect client data, but the added noise required for privacy guarantees can substantially degrade model accuracy. To resolve this challenge, we propose model-splitting privacy-amplified federated learning (MS-PAFL), a novel framework that combines structural model splitting with statistical privacy amplification. In this framework, each client's model is partitioned into a private submodel, retained locally, and a public submodel, shared for global aggregation. The calibrated Gaussian noise is injected only into the public submodel, thereby confining its adverse impact while preserving the utility of the local model. We further present a rigorous theoretical analysis that characterizes the joint privacy amplification achieved through random client participation and local data subsampling under this architecture. The analysis provides tight bounds on both single-round and total privacy loss, demonstrating that MS-PAFL significantly reduces the noise necessary to satisfy a target privacy protection level. Extensive experiments validate our theoretical findings, showing that MS-PAFL consistently attains a superior privacy-utility trade-off and enables the training of highly accurate models under strong privacy guarantees.
comment: 29 pages, 6 figures, submitted for peer review
☆ Efficient On-Policy Reinforcement Learning via Exploration of Sparse Parameter Space
Policy-gradient methods such as Proximal Policy Optimization (PPO) are typically updated along a single stochastic gradient direction, leaving the rich local structure of the parameter space unexplored. Previous work has shown that the surrogate gradient is often poorly correlated with the true reward landscape. Building on this insight, we visualize the parameter space spanned by policy checkpoints within an iteration and reveal that higher performing solutions often lie in nearby unexplored regions. To exploit this opportunity, we introduce ExploRLer, a pluggable pipeline that seamlessly integrates with on-policy algorithms such as PPO and TRPO, systematically probing the unexplored neighborhoods of surrogate on-policy gradient updates. Without increasing the number of gradient updates, ExploRLer achieves significant improvements over baselines in complex continuous control environments. Our results demonstrate that iteration-level exploration provides a practical and effective way to strengthen on-policy reinforcement learning and offer a fresh perspective on the limitations of the surrogate objective.
comment: 16 pages; 7 figures
☆ Lita: Light Agent Uncovers the Agentic Coding Capabilities of LLMs
Large language models (LLMs) are increasingly being applied to programming tasks, ranging from single-turn code completion to autonomous agents. Current code agent designs frequently depend on complex, hand-crafted workflows and tool sets. However, this reliance on elaborate scaffolding presents several challenges: agent performance becomes overly dependent on prompt tuning and custom design choices, heavy human intervention obscures a model's true underlying capabilities, and intricate pipelines are costly to build and maintain. Furthermore, optimizing complex task prompts increases the risk of data leakage. Currently, when introducing new models, LLM providers like OpenAI and Anthropic often publish benchmark scores to demonstrate their models' coding proficiency, but keep their proprietary evaluation frameworks confidential. To address these limitations, we introduce Lita (Lite Agent), which operationalizes liteness, a principle of minimizing manual design while retaining the essential elements of a fully autonomous agent. Lita enables a more faithful and unified evaluation without elaborate scaffolding. Experiments on the Aider Polyglot and SWE-Bench with frontier models demonstrate that Lita achieves competitive or superior performance compared to workflow-based and agentic baselines. Crucially, Lita also consumes fewer tokens and requires significantly less design effort. Our results suggest that Lita is sufficient to reveal the underlying coding competence of modern LLMs. Finally, we propose the Agent Complexity Law: the performance gap between agents of varying complexity, from simple to sophisticated designs, will shrink as the core model improves, ultimately converging to a negligible difference.
☆ Aging Decline in Basketball Career Trend Prediction Based on Machine Learning and LSTM Model
The topic of aging decline on performance of NBA players has been discussed in this study. The autoencoder with K-means clustering machine learning method was adopted to career trend classification of NBA players, and the LSTM deep learning method was adopted in performance prediction of each NBA player. The dataset was collected from the basketball game data of veteran NBA players. The contribution of the work performed better than the other methods with generalization ability for evaluating various types of NBA career trend, and can be applied in different types of sports in the field of sport analytics.
comment: Accepted at Taiwan Academic Network Conference, TANET 2025
☆ RL-Guided Data Selection for Language Model Finetuning NeurIPS 2025
Data selection for finetuning Large Language Models (LLMs) can be framed as a budget-constrained optimization problem: maximizing a model's downstream performance under a strict training data budget. Solving this problem is generally intractable, and existing approximate approaches are pretraining-oriented and transfer poorly to the fine-tuning setting. We reformulate this problem as a tractable Markov Decision Process (MDP) and train agents using various Reinforcement Learning (RL) methods to learn optimal data selection policies, guided by an efficient, proxy-model-based reward signal. Across four datasets, training on a $5\%$ subset selected by our approach matches or outperforms fine-tuning on the full dataset by up to $10.8$ accuracy points, while cutting wall-clock training time by up to $2 \times$, highlighting the promise of RL-guided data selection.
comment: To appear in NeurIPS 2025 Constrained Optimization for ML Workshop
☆ Knapsack RL: Unlocking Exploration of LLMs via Optimizing Budget Allocation
Large Language Models (LLMs) can self-improve through reinforcement learning, where they generate trajectories to explore and discover better solutions. However, this exploration process is computationally expensive, often forcing current methods to assign limited exploration budgets to each task. This uniform allocation creates problematic edge cases: easy tasks consistently succeed while difficult tasks consistently fail, both producing zero gradients during training updates for the widely used Group Relative Policy Optimization (GRPO). We address this problem from the lens of exploration budget allocation. Viewing each task's exploration as an "item" with a distinct "value" and "cost", we establish a connection to the classical knapsack problem. This formulation allows us to derive an optimal assignment rule that adaptively distributes resources based on the model's current learning status. When applied to GRPO, our method increases the effective ratio of non-zero policy gradients by 20-40% during training. Acting as a computational "free lunch", our approach could reallocate exploration budgets from tasks where learning is saturated to those where it is most impactful. This enables significantly larger budgets (e.g., 93 rollouts) for especially challenging problems, which would be computationally prohibitive under a uniform allocation. These improvements translate to meaningful gains on mathematical reasoning benchmarks, with average improvements of 2-4 points and peak gains of 9 points on specific tasks. Notably, achieving comparable performance with traditional homogeneous allocation would require about 2x the computational resources.
☆ S$^2$FS: Spatially-Aware Separability-Driven Feature Selection in Fuzzy Decision Systems
Feature selection is crucial for fuzzy decision systems (FDSs), as it identifies informative features and eliminates rule redundancy, thereby enhancing predictive performance and interpretability. Most existing methods either fail to directly align evaluation criteria with learning performance or rely solely on non-directional Euclidean distances to capture relationships among decision classes, which limits their ability to clarify decision boundaries. However, the spatial distribution of instances has a potential impact on the clarity of such boundaries. Motivated by this, we propose Spatially-aware Separability-driven Feature Selection (S$^2$FS), a novel framework for FDSs guided by a spatially-aware separability criterion. This criterion jointly considers within-class compactness and between-class separation by integrating scalar-distances with spatial directional information, providing a more comprehensive characterization of class structures. S$^2$FS employs a forward greedy strategy to iteratively select the most discriminative features. Extensive experiments on ten real-world datasets demonstrate that S$^2$FS consistently outperforms eight state-of-the-art feature selection algorithms in both classification accuracy and clustering performance, while feature visualizations further confirm the interpretability of the selected features.
☆ Distillation of Large Language Models via Concrete Score Matching
Large language models (LLMs) deliver remarkable performance but are costly to deploy, motivating knowledge distillation (KD) for efficient inference. Existing KD objectives typically match student and teacher probabilities via softmax, which blurs valuable logit information. While direct logit distillation (DLD) mitigates softmax smoothing, it fails to account for logit shift invariance, thereby restricting the solution space. We propose Concrete Score Distillation (CSD), a discrete score-matching objective that overcomes both softmax-induced smoothing and restrictions on the optimal solution set. We resolve the training instability and quadratic complexity of discrete score-matching in autoregressive LLMs, and the resulting CSD objective aligns relative logit differences across all vocabulary pairs between student and teacher with flexible weighting. We provide both mode-seeking and mode-covering instances within our framework and evaluate CSD on task-agnostic instruction-following and task-specific distillation using GPT-2-1.5B, OpenLLaMA-7B, and GEMMA-7B-IT. Experiments show that CSD consistently surpasses recent KD objectives, achieves favorable fidelity-diversity trade-offs, and yields complementary gains when combined with on-policy techniques, demonstrating its scalability and effectiveness for LLM distillation.
☆ MIDAS: Misalignment-based Data Augmentation Strategy for Imbalanced Multimodal Learning NeurIPS 2025
Multimodal models often over-rely on dominant modalities, failing to achieve optimal performance. While prior work focuses on modifying training objectives or optimization procedures, data-centric solutions remain underexplored. We propose MIDAS, a novel data augmentation strategy that generates misaligned samples with semantically inconsistent cross-modal information, labeled using unimodal confidence scores to compel learning from contradictory signals. However, this confidence-based labeling can still favor the more confident modality. To address this within our misaligned samples, we introduce weak-modality weighting, which dynamically increases the loss weight of the least confident modality, thereby helping the model fully utilize weaker modality. Furthermore, when misaligned features exhibit greater similarity to the aligned features, these misaligned samples pose a greater challenge, thereby enabling the model to better distinguish between classes. To leverage this, we propose hard-sample weighting, which prioritizes such semantically ambiguous misaligned samples. Experiments on multiple multimodal classification benchmarks demonstrate that MIDAS significantly outperforms related baselines in addressing modality imbalance.
comment: Accepted to NeurIPS 2025
☆ Kairos: Towards Adaptive and Generalizable Time Series Foundation Models
Time series foundation models (TSFMs) have emerged as a powerful paradigm for time series analysis, driven by large-scale pretraining on diverse data corpora. However, time series inherently exhibit heterogeneous information density over time, influenced by system states and signal complexity, presenting significant modeling challenges especially in a zero-shot scenario. Current TSFMs rely on non-adaptive processing pipelines that fail to capture this dynamic nature. For example, common tokenization strategies such as fixed-size patching enforce rigid observational granularity, limiting their ability to adapt to varying information densities. Similarly, conventional positional encodings impose a uniform temporal scale, making it difficult to model diverse periodicities and trends across series. To overcome these limitations, we propose Kairos, a flexible TSFM framework that integrates a dynamic patching tokenizer and an instance-adaptive positional embedding. Kairos adaptively selects tokenization granularity and tailors positional encodings to the unique characteristics of each time series instance. Trained on a large-scale Predictability-Stratified Time Series (PreSTS) corpus comprising over 300 billion time points and adopting a multi-patch prediction strategy in the inference stage, Kairos achieves superior performance with much fewer parameters on two common zero-shot benchmarks, GIFT-Eval and the Time-Series-Library benchmark, consistently outperforming established methods across diverse tasks. The project page is at https://foundation-model-research.github.io/Kairos .
☆ Decentralized Asynchronous Multi-player Bandits
In recent years, multi-player multi-armed bandits (MP-MAB) have been extensively studied due to their wide applications in cognitive radio networks and Internet of Things systems. While most existing research on MP-MAB focuses on synchronized settings, real-world systems are often decentralized and asynchronous, where players may enter or leave the system at arbitrary times, and do not have a global clock. This decentralized asynchronous setting introduces two major challenges. First, without a global time, players cannot implicitly coordinate their actions through time, making it difficult to avoid collisions. Second, it is important to detect how many players are in the system, but doing so may cost a lot. In this paper, we address the challenges posed by such a fully asynchronous setting in a decentralized environment. We develop a novel algorithm in which players adaptively change between exploration and exploitation. During exploration, players uniformly pull their arms, reducing the probability of collisions and effectively mitigating the first challenge. Meanwhile, players continue pulling arms currently exploited by others with a small probability, enabling them to detect when a player has left, thereby addressing the second challenge. We prove that our algorithm achieves a regret of $\mathcal{O}(\sqrt{T \log T} + {\log T}/{\Delta^2})$, where $\Delta$ is the minimum expected reward gap between any two arms. To the best of our knowledge, this is the first efficient MP-MAB algorithm in the asynchronous and decentralized environment. Extensive experiments further validate the effectiveness and robustness of our algorithm, demonstrating its applicability to real-world scenarios.
☆ RoBiologyDataChoiceQA: A Romanian Dataset for improving Biology understanding of Large Language Models
In recent years, large language models (LLMs) have demonstrated significant potential across various natural language processing (NLP) tasks. However, their performance in domain-specific applications and non-English languages remains less explored. This study introduces a novel Romanian-language dataset for multiple-choice biology questions, carefully curated to assess LLM comprehension and reasoning capabilities in scientific contexts. Containing approximately 14,000 questions, the dataset provides a comprehensive resource for evaluating and improving LLM performance in biology. We benchmark several popular LLMs, analyzing their accuracy, reasoning patterns, and ability to understand domain-specific terminology and linguistic nuances. Additionally, we perform comprehensive experiments to evaluate the impact of prompt engineering, fine-tuning, and other optimization techniques on model performance. Our findings highlight both the strengths and limitations of current LLMs in handling specialized knowledge tasks in low-resource languages, offering valuable insights for future research and development.
☆ Logo-VGR: Visual Grounded Reasoning for Open-world Logo Recognition
Recent advances in multimodal large language models (MLLMs) have been primarily evaluated on general-purpose benchmarks, while their applications in domain-specific scenarios, such as intelligent product moderation, remain underexplored. To address this gap, we introduce an open-world logo recognition benchmark, a core challenge in product moderation. Unlike traditional logo recognition methods that rely on memorizing representations of tens of thousands of brands-an impractical approach in real-world settings-our proposed method, Logo-VGR, enables generalization to large-scale brand recognition with supervision from only a small subset of brands. Specifically, we reformulate logo recognition as a comparison-based task, requiring the model to match product images with candidate logos rather than directly generating brand labels. We further observe that existing models tend to overfit by memorizing brand distributions instead of learning robust multimodal reasoning, which results in poor performance on unseen brands. To overcome this limitation, Logo-VGR introduces a new paradigm of domain-specific multimodal reasoning: Logo Perception Grounding injects domain knowledge, and Logo-Guided Visual Grounded Reasoning enhances the model's reasoning capability. Experimental results show that Logo-VGR outperforms strong baselines by nearly 10 points in OOD settings, demonstrating superior generalization.
☆ Learning to Reason as Action Abstractions with Scalable Mid-Training RL
Large language models excel with reinforcement learning (RL), but fully unlocking this potential requires a mid-training stage. An effective mid-training phase should identify a compact set of useful actions and enable fast selection among them through online RL. We formalize this intuition by presenting the first theoretical result on how mid-training shapes post-training: it characterizes an action subspace that minimizes both the value approximation error from pruning and the RL error during subsequent planning. Our analysis reveals two key determinants of mid-training effectiveness: pruning efficiency, which shapes the prior of the initial RL policy, and its impact on RL convergence, which governs the extent to which that policy can be improved via online interactions. These results suggest that mid-training is most effective when the decision space is compact and the effective horizon is short, highlighting the importance of operating in the space of action abstractions rather than primitive actions. Building on these insights, we propose Reasoning as Action Abstractions (RA3), a scalable mid-training algorithm. Specifically, we derive a sequential variational lower bound and optimize it by iteratively discovering temporally-consistent latent structures via RL, followed by fine-tuning on the bootstrapped data. Experiments on code generation tasks demonstrate the effectiveness of our approach. Across multiple base models, RA3 improves the average performance on HumanEval and MBPP by 8 and 4 points over the base model and the next-token prediction baseline. Furthermore, RA3 achieves faster convergence and higher asymptotic performance in RLVR on HumanEval+, MBPP+, LiveCodeBench, and Codeforces.
☆ Improving Sampling Efficiency in RLVR through Adaptive Rollout and Response Reuse
Large language models (LLMs) have achieved impressive reasoning performance, with reinforcement learning with verifiable rewards (RLVR) emerging as a standard paradigm for post-training. A representative algorithm, group relative policy optimization (GRPO) (Shao et al., 2024), computes advantages by normalizing outcome rewards within response groups, but suffers from a vanishing advantage issue when all responses in a group receive identical rewards. To address this issue, we propose Adaptive Rollout and Response Reuse Policy Optimization (AR3PO), a sampling efficient RLVR algorithm that introduces two novel techniques: adaptive rollout, which dynamically allocates more responses to difficult prompts while saving computation on easier ones, and response reuse, which leverages previously generated correct responses to provide useful training signals. We compare AR3PO with strong RLVR baselines on multiple representative benchmarks using two different families of base models. Across the 7B and 8B models, AR3PO consistently outperforms GRPO and matches or surpasses DAPO (Yu et al., 2025), reducing rollout cost by up to 4.2x. On the larger 32B model, AR3PO achieves comparable performance to DAPO at similar training steps while maintaining substantially lower rollout cost.
☆ CardioForest: An Explainable Ensemble Learning Model for Automatic Wide QRS Complex Tachycardia Diagnosis from ECG
This study aims to develop and evaluate an ensemble machine learning-based framework for the automatic detection of Wide QRS Complex Tachycardia (WCT) from ECG signals, emphasizing diagnostic accuracy and interpretability using Explainable AI. The proposed system integrates ensemble learning techniques, i.e., an optimized Random Forest known as CardioForest, and models like XGBoost and LightGBM. The models were trained and tested on ECG data from the publicly available MIMIC-IV dataset. The testing was carried out with the assistance of accuracy, balanced accuracy, precision, recall, F1 score, ROC-AUC, and error rate (RMSE, MAE) measures. In addition, SHAP (SHapley Additive exPlanations) was used to ascertain model explainability and clinical relevance. The CardioForest model performed best on all metrics, achieving a test accuracy of 94.95%, a balanced accuracy of 88.31%, and high precision and recall metrics. SHAP analysis confirmed the model's ability to rank the most relevant ECG features, such as QRS duration, in accordance with clinical intuitions, thereby fostering trust and usability in clinical practice. The findings recognize CardioForest as an extremely dependable and interpretable WCT detection model. Being able to offer accurate predictions and transparency through explainability makes it a valuable tool to help cardiologists make timely and well-informed diagnoses, especially for high-stakes and emergency scenarios.
☆ Better with Less: Small Proprietary Models Surpass Large Language Models in Financial Transaction Understanding
Analyzing financial transactions is crucial for ensuring regulatory compliance, detecting fraud, and supporting decisions. The complexity of financial transaction data necessitates advanced techniques to extract meaningful insights and ensure accurate analysis. Since Transformer-based models have shown outstanding performance across multiple domains, this paper seeks to explore their potential in understanding financial transactions. This paper conducts extensive experiments to evaluate three types of Transformer models: Encoder-Only, Decoder-Only, and Encoder-Decoder models. For each type, we explore three options: pretrained LLMs, fine-tuned LLMs, and small proprietary models developed from scratch. Our analysis reveals that while LLMs, such as LLaMA3-8b, Flan-T5, and SBERT, demonstrate impressive capabilities in various natural language processing tasks, they do not significantly outperform small proprietary models in the specific context of financial transaction understanding. This phenomenon is particularly evident in terms of speed and cost efficiency. Proprietary models, tailored to the unique requirements of transaction data, exhibit faster processing times and lower operational costs, making them more suitable for real-time applications in the financial sector. Our findings highlight the importance of model selection based on domain-specific needs and underscore the potential advantages of customized proprietary models over general-purpose LLMs in specialized applications. Ultimately, we chose to implement a proprietary decoder-only model to handle the complex transactions that we previously couldn't manage. This model can help us to improve 14% transaction coverage, and save more than \$13 million annual cost.
comment: 9 pages, 5 figures
☆ Characterization and Learning of Causal Graphs with Latent Confounders and Post-treatment Selection from Interventional Data
Interventional causal discovery seeks to identify causal relations by leveraging distributional changes introduced by interventions, even in the presence of latent confounders. Beyond the spurious dependencies induced by latent confounders, we highlight a common yet often overlooked challenge in the problem due to post-treatment selection, in which samples are selectively included in datasets after interventions. This fundamental challenge widely exists in biological studies; for example, in gene expression analysis, both observational and interventional samples are retained only if they meet quality control criteria (e.g., highly active cells). Neglecting post-treatment selection may introduce spurious dependencies and distributional changes under interventions, which can mimic causal responses, thereby distorting causal discovery results and challenging existing causal formulations. To address this, we introduce a novel causal formulation that explicitly models post-treatment selection and reveals how its differential reactions to interventions can distinguish causal relations from selection patterns, allowing us to go beyond traditional equivalence classes toward the underlying true causal structure. We then characterize its Markov properties and propose a Fine-grained Interventional equivalence class, named FI-Markov equivalence, represented by a new graphical diagram, F-PAG. Finally, we develop a provably sound and complete algorithm, F-FCI, to identify causal relations, latent confounders, and post-treatment selection up to $\mathcal{FI}$-Markov equivalence, using both observational and interventional data. Experimental results on synthetic and real-world datasets demonstrate that our method recovers causal relations despite the presence of both selection and latent confounders.
☆ From Cheap Geometry to Expensive Physics: Elevating Neural Operators via Latent Shape Pretraining
Industrial design evaluation often relies on high-fidelity simulations of governing partial differential equations (PDEs). While accurate, these simulations are computationally expensive, making dense exploration of design spaces impractical. Operator learning has emerged as a promising approach to accelerate PDE solution prediction; however, its effectiveness is often limited by the scarcity of labeled physics-based data. At the same time, large numbers of geometry-only candidate designs are readily available but remain largely untapped. We propose a two-stage framework to better exploit this abundant, physics-agnostic resource and improve supervised operator learning under limited labeled data. In Stage 1, we pretrain an autoencoder on a geometry reconstruction task to learn an expressive latent representation without PDE labels. In Stage 2, the neural operator is trained in a standard supervised manner to predict PDE solutions, using the pretrained latent embeddings as inputs instead of raw point clouds. Transformer-based architectures are adopted for both the autoencoder and the neural operator to handle point cloud data and integrate both stages seamlessly. Across four PDE datasets and three state-of-the-art transformer-based neural operators, our approach consistently improves prediction accuracy compared to models trained directly on raw point cloud inputs. These results demonstrate that representations from physics-agnostic pretraining provide a powerful foundation for data-efficient operator learning.
☆ Sharpness of Minima in Deep Matrix Factorization: Exact Expressions
Understanding the geometry of the loss landscape near a minimum is key to explaining the implicit bias of gradient-based methods in non-convex optimization problems such as deep neural network training and deep matrix factorization. A central quantity to characterize this geometry is the maximum eigenvalue of the Hessian of the loss, which measures the sharpness of the landscape. Currently, its precise role has been obfuscated because no exact expressions for this sharpness measure were known in general settings. In this paper, we present the first exact expression for the maximum eigenvalue of the Hessian of the squared-error loss at any minimizer in general overparameterized deep matrix factorization (i.e., deep linear neural network training) problems, resolving an open question posed by Mulayoff & Michaeli (2020). To complement our theory, we empirically investigate an escape phenomenon observed during gradient-based training near a minimum that crucially relies on our exact expression of the sharpness.
comment: 18 pages, 7 figures
☆ A Hamiltonian driven Geometric Construction of Neural Networks on the Lognormal Statistical Manifold
Bridging information geometry with machine learning, this paper presents a method for constructing neural networks intrinsically on statistical manifolds. We demonstrate this approach by formulating a neural network architecture directly on the lognormal statistical manifold. The construction is driven by the Hamiltonian system that is equivalent to the gradient flow on this manifold. First, we define the network's input values using the coordinate system of this Hamiltonian dynamics, naturally embedded in the Poincare disk. The core of our contribution lies in the derivation of the network's components from geometric principles: the rotation component of the synaptic weight matrix is determined by the Lie group action of SU(1,1) on the disk, while the activation function emerges from the symplectic structure of the system. We subsequently obtain the complete weight matrix, including its translation vector, and the resulting output values. This work shows that the lognormal manifold can be seamlessly viewed as a neural manifold, with its geometric properties dictating a unique and interpretable neural network structure. The proposed method offers a new paradigm for building learning systems grounded in the differential geometry of their underlying parameter spaces.
☆ Online Decision Making with Generative Action Sets
With advances in generative AI, decision-making agents can now dynamically create new actions during online learning, but action generation typically incurs costs that must be balanced against potential benefits. We study an online learning problem where an agent can generate new actions at any time step by paying a one-time cost, with these actions becoming permanently available for future use. The challenge lies in learning the optimal sequence of two-fold decisions: which action to take and when to generate new ones, further complicated by the triangular tradeoffs among exploitation, exploration and $\textit{creation}$. To solve this problem, we propose a doubly-optimistic algorithm that employs Lower Confidence Bounds (LCB) for action selection and Upper Confidence Bounds (UCB) for action generation. Empirical evaluation on healthcare question-answering datasets demonstrates that our approach achieves favorable generation-quality tradeoffs compared to baseline strategies. From theoretical perspectives, we prove that our algorithm achieves the optimal regret of $O(T^{\frac{d}{d+2}}d^{\frac{d}{d+2}} + d\sqrt{T\log T})$, providing the first sublinear regret bound for online learning with expanding action spaces.
comment: 34 pages, 2 figures (including 5 subfigures)
☆ Autonomy-Aware Clustering: When Local Decisions Supersede Global Prescriptions ICLR 2026
Clustering arises in a wide range of problem formulations, yet most existing approaches assume that the entities under clustering are passive and strictly conform to their assigned groups. In reality, entities often exhibit local autonomy, overriding prescribed associations in ways not fully captured by feature representations. Such autonomy can substantially reshape clustering outcomes -- altering cluster compositions, geometry, and cardinality -- with significant downstream effects on inference and decision-making. We introduce autonomy-aware clustering, a reinforcement (RL) learning framework that learns and accounts for the influence of local autonomy without requiring prior knowledge of its form. Our approach integrates RL with a deterministic annealing (DA) procedure, where, to determine underlying clusters, DA naturally promotes exploration in early stages of annealing and transitions to exploitation later. We also show that the annealing procedure exhibits phase transitions that enable design of efficient annealing schedules. To further enhance adaptability, we propose the Adaptive Distance Estimation Network (ADEN), a transformer-based attention model that learns dependencies between entities and cluster representatives within the RL loop, accommodates variable-sized inputs and outputs, and enables knowledge transfer across diverse problem instances. Empirical results show that our framework closely aligns with underlying data dynamics: even without explicit autonomy models, it achieves solutions close to the ground truth (gap ~3-4%), whereas ignoring autonomy leads to substantially larger gaps (~35-40%). The code and data are publicly available at https://github.com/salar96/AutonomyAwareClustering.
comment: This work is under submission to ICLR 2026. Please cite the arXiv version until the final version is published
☆ OPPO: Accelerating PPO-based RLHF via Pipeline Overlap
Proximal Policy Optimization (PPO)-based reinforcement learning from human feedback (RLHF) is a widely adopted paradigm for aligning large language models (LLMs) with human preferences. However, its training pipeline suffers from substantial inefficiencies due to sequential multi-model dependencies (e.g., reward model depends on actor outputs) and long-tail response lengths, where a few long responses straggle the stage completion. We present OPPO, a novel, lightweight, and model-agnostic PPO-based RLHF framework that improves training efficiency by overlapping pipeline execution. OPPO introduces two novel techniques: (1) Intra-step overlap, which streams upstream model outputs (e.g., actor model) in right-sized chunks, enabling the downstream model (e.g., reward) to begin prefill while the upstream continues decoding; and (2) Inter-step overlap, which adaptively overcommits a few prompts and defers long generations to future steps, mitigating tail latency without discarding partial work. OPPO integrates easily with existing PPO implementations with a few lines of code change. Extensive evaluations show that OPPO accelerates PPO-based RLHF training by $1.8 \times-2.8 \times$ and improves GPU utilization by $1.4 \times-2.1 \times$ without compromising training convergence.
comment: Kaizhuo Yan and Yingjie Yu contributed equally to this work
☆ TruthRL: Incentivizing Truthful LLMs via Reinforcement Learning
While large language models (LLMs) have demonstrated strong performance on factoid question answering, they are still prone to hallucination and untruthful responses, particularly when tasks demand information outside their parametric knowledge. Indeed, truthfulness requires more than accuracy -- models must also recognize uncertainty and abstain when unsure to avoid hallucinations. This presents a fundamental challenge for existing methods: approaches that optimize for accuracy often amplify hallucinations, while those that encourage abstention can become overly conservative, sacrificing correct answers. Both extremes ultimately compromise truthfulness. In this work, we present TruthRL, a general reinforcement learning (RL) framework that directly optimizes the truthfulness of LLMs. Specifically, we implement TruthRL using GRPO with a simple yet effective ternary reward that distinguishes correct answers, hallucinations, and abstentions. It incentivizes models to reduce hallucinations not only by providing correct responses, but also by enabling abstention when uncertain, thereby improving truthfulness. Extensive experiments across four knowledge-intensive benchmarks show that, compared to vanilla RL, TruthRL significantly reduces hallucinations by 28.9% and improves truthfulness by 21.1%, with consistent gains across various backbone models (e.g., Qwen, Llama) under both retrieval and non-retrieval setups. In-depth ablation study demonstrates that vanilla accuracy-driven methods, such as supervised fine-tuning or RL with a binary reward, struggle to balance factual correctness and uncertainty. In contrast, our proposed truthfulness-driven TruthRL achieves strong performance in both accuracy and truthfulness, underscoring the importance of learning objective design for developing truthful LLMs.
☆ SAC Flow: Sample-Efficient Reinforcement Learning of Flow-Based Policies via Velocity-Reparameterized Sequential Modeling
Training expressive flow-based policies with off-policy reinforcement learning is notoriously unstable due to gradient pathologies in the multi-step action sampling process. We trace this instability to a fundamental connection: the flow rollout is algebraically equivalent to a residual recurrent computation, making it susceptible to the same vanishing and exploding gradients as RNNs. To address this, we reparameterize the velocity network using principles from modern sequential models, introducing two stable architectures: Flow-G, which incorporates a gated velocity, and Flow-T, which utilizes a decoded velocity. We then develop a practical SAC-based algorithm, enabled by a noise-augmented rollout, that facilitates direct end-to-end training of these policies. Our approach supports both from-scratch and offline-to-online learning and achieves state-of-the-art performance on continuous control and robotic manipulation benchmarks, eliminating the need for common workarounds like policy distillation or surrogate objectives.
Detecting Hope Across Languages: Multiclass Classification for Positive Online Discourse
The detection of hopeful speech in social media has emerged as a critical task for promoting positive discourse and well-being. In this paper, we present a machine learning approach to multiclass hope speech detection across multiple languages, including English, Urdu, and Spanish. We leverage transformer-based models, specifically XLM-RoBERTa, to detect and categorize hope speech into three distinct classes: Generalized Hope, Realistic Hope, and Unrealistic Hope. Our proposed methodology is evaluated on the PolyHope dataset for the PolyHope-M 2025 shared task, achieving competitive performance across all languages. We compare our results with existing models, demonstrating that our approach significantly outperforms prior state-of-the-art techniques in terms of macro F1 scores. We also discuss the challenges in detecting hope speech in low-resource languages and the potential for improving generalization. This work contributes to the development of multilingual, fine-grained hope speech detection models, which can be applied to enhance positive content moderation and foster supportive online communities.
☆ Rotation Control Unlearning: Quantifying and Controlling Continuous Unlearning for LLM with The Cognitive Rotation Space
As Large Language Models (LLMs) become increasingly prevalent, their security vulnerabilities have already drawn attention. Machine unlearning is introduced to seek to mitigate these risks by removing the influence of undesirable data. However, existing methods not only rely on the retained dataset to preserve model utility, but also suffer from cumulative catastrophic utility loss under continuous unlearning requests. To solve this dilemma, we propose a novel method, called Rotation Control Unlearning (RCU), which leverages the rotational salience weight of RCU to quantify and control the unlearning degree in the continuous unlearning process. The skew symmetric loss is designed to construct the existence of the cognitive rotation space, where the changes of rotational angle can simulate the continuous unlearning process. Furthermore, we design an orthogonal rotation axes regularization to enforce mutually perpendicular rotation directions for continuous unlearning requests, effectively minimizing interference and addressing cumulative catastrophic utility loss. Experiments on multiple datasets confirm that our method without retained dataset achieves SOTA performance.
☆ Less is More: Towards Simple Graph Contrastive Learning ICLR 2026
Graph Contrastive Learning (GCL) has shown strong promise for unsupervised graph representation learning, yet its effectiveness on heterophilic graphs, where connected nodes often belong to different classes, remains limited. Most existing methods rely on complex augmentation schemes, intricate encoders, or negative sampling, which raises the question of whether such complexity is truly necessary in this challenging setting. In this work, we revisit the foundations of supervised and unsupervised learning on graphs and uncover a simple yet effective principle for GCL: mitigating node feature noise by aggregating it with structural features derived from the graph topology. This observation suggests that the original node features and the graph structure naturally provide two complementary views for contrastive learning. Building on this insight, we propose an embarrassingly simple GCL model that uses a GCN encoder to capture structural features and an MLP encoder to isolate node feature noise. Our design requires neither data augmentation nor negative sampling, yet achieves state-of-the-art results on heterophilic benchmarks with minimal computational and memory overhead, while also offering advantages in homophilic graphs in terms of complexity, scalability, and robustness. We provide theoretical justification for our approach and validate its effectiveness through extensive experiments, including robustness evaluations against both black-box and white-box adversarial attacks.
comment: Submitted to ICLR 2026
☆ Test time training enhances in-context learning of nonlinear functions ICLR 2026
Test-time training (TTT) enhances model performance by explicitly updating designated parameters prior to each prediction to adapt to the test data. While TTT has demonstrated considerable empirical success, its theoretical underpinnings remain limited, particularly for nonlinear models. In this paper, we investigate the combination of TTT with in-context learning (ICL), where the model is given a few examples from the target distribution at inference time. We analyze this framework in the setting of single-index models $y=\sigma_*(\langle \beta, \mathbf{x} \rangle)$, where the feature vector $\beta$ is drawn from a hidden low-dimensional subspace. For single-layer transformers trained with gradient-based algorithms and adopting TTT, we establish an upper bound on the prediction risk. Our theory reveals that TTT enables the single-layer transformers to adapt to both the feature vector $\beta$ and the link function $\sigma_*$, which vary across tasks. This creates a sharp contrast with ICL alone, which is theoretically difficult to adapt to shifts in the link function. Moreover, we provide the convergence rate with respect to the data length, showing the predictive error can be driven arbitrarily close to the noise level as the context size and the network width grow.
comment: Under review at ICLR 2026. 36 pages, 2 figures, appendix included
☆ A Physics-Guided Probabilistic Surrogate Modeling Framework for Digital Twins of Underwater Radiated Noise
Ship traffic is an increasing source of underwater radiated noise in coastal waters, motivating real-time digital twins of ocean acoustics for operational noise mitigation. We present a physics-guided probabilistic framework to predict three-dimensional transmission loss in realistic ocean environments. As a case study, we consider the Salish Sea along shipping routes from the Pacific Ocean to the Port of Vancouver. A dataset of over 30 million source-receiver pairs was generated with a Gaussian beam solver across seasonal sound speed profiles and one-third-octave frequency bands spanning 12.5 Hz to 8 kHz. We first assess sparse variational Gaussian processes (SVGP) and then incorporate physics-based mean functions combining spherical spreading with frequency-dependent absorption. To capture nonlinear effects, we examine deep sigma-point processes and stochastic variational deep kernel learning. The final framework integrates four components: (i) a learnable physics-informed mean that represents dominant propagation trends, (ii) a convolutional encoder for bathymetry along the source-receiver track, (iii) a neural encoder for source, receiver, and frequency coordinates, and (iv) a residual SVGP layer that provides calibrated predictive uncertainty. This probabilistic digital twin facilitates the construction of sound-exposure bounds and worst-case scenarios for received levels. We further demonstrate the application of the framework to ship speed optimization, where predicted transmission loss combined with near-field source models provides sound exposure level estimates for minimizing acoustic impacts on marine mammals. The proposed framework advances uncertainty-aware digital twins for ocean acoustics and illustrates how physics-guided machine learning can support sustainable maritime operations.
comment: 26 pages, 13 figures
Controlled Generation for Private Synthetic Text EMNLP 2025
Text anonymization is essential for responsibly developing and deploying AI in high-stakes domains such as healthcare, social services, and law. In this work, we propose a novel methodology for privacy-preserving synthetic text generation that leverages the principles of de-identification and the Hiding In Plain Sight (HIPS) theory. Our approach introduces entity-aware control codes to guide controllable generation using either in-context learning (ICL) or prefix tuning. The ICL variant ensures privacy levels consistent with the underlying de-identification system, while the prefix tuning variant incorporates a custom masking strategy and loss function to support scalable, high-quality generation. Experiments on legal and clinical datasets demonstrate that our method achieves a strong balance between privacy protection and utility, offering a practical and effective solution for synthetic text generation in sensitive domains.
comment: EMNLP 2025
☆ Boundary-to-Region Supervision for Offline Safe Reinforcement Learning NeurIPS 2025
Offline safe reinforcement learning aims to learn policies that satisfy predefined safety constraints from static datasets. Existing sequence-model-based methods condition action generation on symmetric input tokens for return-to-go and cost-to-go, neglecting their intrinsic asymmetry: return-to-go (RTG) serves as a flexible performance target, while cost-to-go (CTG) should represent a rigid safety boundary. This symmetric conditioning leads to unreliable constraint satisfaction, especially when encountering out-of-distribution cost trajectories. To address this, we propose Boundary-to-Region (B2R), a framework that enables asymmetric conditioning through cost signal realignment . B2R redefines CTG as a boundary constraint under a fixed safety budget, unifying the cost distribution of all feasible trajectories while preserving reward structures. Combined with rotary positional embeddings , it enhances exploration within the safe region. Experimental results show that B2R satisfies safety constraints in 35 out of 38 safety-critical tasks while achieving superior reward performance over baseline methods. This work highlights the limitations of symmetric token conditioning and establishes a new theoretical and practical approach for applying sequence models to safe RL. Our code is available at https://github.com/HuikangSu/B2R.
comment: NeurIPS 2025
☆ Towards A Universally Transferable Acceleration Method for Density Functional Theory
Recently, sophisticated deep learning-based approaches have been developed for generating efficient initial guesses to accelerate the convergence of density functional theory (DFT) calculations. While the actual initial guesses are often density matrices (DM), quantities that can convert into density matrices also qualify as alternative forms of initial guesses. Hence, existing works mostly rely on the prediction of the Hamiltonian matrix for obtaining high-quality initial guesses. However, the Hamiltonian matrix is both numerically difficult to predict and intrinsically non-transferable, hindering the application of such models in real scenarios. In light of this, we propose a method that constructs DFT initial guesses by predicting the electron density in a compact auxiliary basis representation using E(3)-equivariant neural networks. Trained on small molecules with up to 20 atoms, our model is able to achieve an average 33.3% self-consistent field (SCF) step reduction on systems up to 60 atoms, substantially outperforming Hamiltonian-centric and DM-centric models. Critically, this acceleration remains nearly constant with increasing system sizes and exhibits strong transferring behaviors across orbital basis sets and exchange-correlation (XC) functionals. To the best of our knowledge, this work represents the first and robust candidate for a universally transferable DFT acceleration method. We are also releasing the SCFbench dataset and its accompanying code to facilitate future research in this promising direction.
☆ Transformer-Based Rate Prediction for Multi-Band Cellular Handsets
Cellular wireless systems are witnessing the proliferation of frequency bands over a wide spectrum, particularly with the expansion of new bands in FR3. These bands must be supported in user equipment (UE) handsets with multiple antennas in a constrained form factor. Rapid variations in channel quality across the bands from motion and hand blockage, limited field-of-view of antennas, and hardware and power-constrained measurement sparsity pose significant challenges to reliable multi-band channel tracking. This paper formulates the problem of predicting achievable rates across multiple antenna arrays and bands with sparse historical measurements. We propose a transformer-based neural architecture that takes asynchronous rate histories as input and outputs per-array rate predictions. Evaluated on ray-traced simulations in a dense urban micro-cellular setting with FR1 and FR3 arrays, our method demonstrates superior performance over baseline predictors, enabling more informed band selection under realistic mobility and hardware constraints.
☆ Beyond Point Estimates: Likelihood-Based Full-Posterior Wireless Localization
Modern wireless systems require not only position estimates, but also quantified uncertainty to support planning, control, and radio resource management. We formulate localization as posterior inference of an unknown transmitter location from receiver measurements. We propose Monte Carlo Candidate-Likelihood Estimation (MC-CLE), which trains a neural scoring network using Monte Carlo sampling to compare true and candidate transmitter locations. We show that in line-of-sight simulations with a multi-antenna receiver, MC-CLE learns critical properties including angular ambiguity and front-to-back antenna patterns. MC-CLE also achieves lower cross-entropy loss relative to a uniform baseline and Gaussian posteriors. alternatives under a uniform-loss metric.
☆ Importance Sampling for Multi-Negative Multimodal Direct Preference Optimization
Direct Preference Optimization (DPO) has recently been extended from text-only models to vision-language models. However, existing methods rely on oversimplified pairwise comparisons, generating a single negative image via basic perturbations or similarity-based retrieval, which fail to capture the complex nature of multimodal preferences, inducing optimization bias and hallucinations. To address this issue, we propose MISP-DPO, the first framework to incorporate multiple, semantically diverse negative images in multimodal DPO via the Plackett-Luce model. Our method embeds prompts and candidate images in CLIP (Contrastive Language-Image Pretraining) space and applies a sparse autoencoder to uncover semantic deviations into interpretable factors. Negative samples are selected based on reconstruction difficulty, semantic deviation from the positive, and mutual diversity, yielding broader and more informative supervision. To handle multi-negative comparisons, we adopt a Plackett-Luce objective and introduce an importance sampling strategy that improves training efficiency. Experiments across five diverse benchmarks demonstrate that MISP-DPO consistently improves multimodal alignment over prior methods, validating the effectiveness of semantic-aware, multi-negative sampling in preference-based learning.
comment: Preprint
☆ MuPlon: Multi-Path Causal Optimization for Claim Verification through Controlling Confounding
As a critical task in data quality control, claim verification aims to curb the spread of misinformation by assessing the truthfulness of claims based on a wide range of evidence. However, traditional methods often overlook the complex interactions between evidence, leading to unreliable verification results. A straightforward solution represents the claim and evidence as a fully connected graph, which we define as the Claim-Evidence Graph (C-E Graph). Nevertheless, claim verification methods based on fully connected graphs face two primary confounding challenges, Data Noise and Data Biases. To address these challenges, we propose a novel framework, Multi-Path Causal Optimization (MuPlon). MuPlon integrates a dual causal intervention strategy, consisting of the back-door path and front-door path. In the back-door path, MuPlon dilutes noisy node interference by optimizing node probability weights, while simultaneously strengthening the connections between relevant evidence nodes. In the front-door path, MuPlon extracts highly relevant subgraphs and constructs reasoning paths, further applying counterfactual reasoning to eliminate data biases within these paths. The experimental results demonstrate that MuPlon outperforms existing methods and achieves state-of-the-art performance.
comment: 8 pages
☆ Reweighted Flow Matching via Unbalanced OT for Label-free Long-tailed Generation
Flow matching has recently emerged as a powerful framework for continuous-time generative modeling. However, when applied to long-tailed distributions, standard flow matching suffers from majority bias, producing minority modes with low fidelity and failing to match the true class proportions. In this work, we propose Unbalanced Optimal Transport Reweighted Flow Matching (UOT-RFM), a novel framework for generative modeling under class-imbalanced (long-tailed) distributions that operates without any class label information. Our method constructs the conditional vector field using mini-batch Unbalanced Optimal Transport (UOT) and mitigates majority bias through a principled inverse reweighting strategy. The reweighting relies on a label-free majority score, defined as the density ratio between the target distribution and the UOT marginal. This score quantifies the degree of majority based on the geometric structure of the data, without requiring class labels. By incorporating this score into the training objective, UOT-RFM theoretically recovers the target distribution with first-order correction ($k=1$) and empirically improves tail-class generation through higher-order corrections ($k > 1$). Our model outperforms existing flow matching baselines on long-tailed benchmarks, while maintaining competitive performance on balanced datasets.
comment: 28 pages, 17 figures
☆ Expert Merging: Model Merging with Unsupervised Expert Alignment and Importance-Guided Layer Chunking
Model merging, which combines multiple domain-specialized experts into a single model, offers a practical path to endow Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) with broad capabilities without the cost of joint training or serving many models. However, training-free methods rely on hand-tuned coefficients, whereas training-based methods primarily align parameters rather than downstream task behavior and typically treat all layers uniformly, ignoring inter-layer heterogeneity. We introduce Expert Merging, a training-light method that learns a small set of layer-wise coefficients using only unlabeled calibration data. The coefficients are optimized to explicitly align the merged model's hidden states and logits with those of the corresponding experts, with a coefficient regularizer for stability and task-weighted losses for controllable trade-offs. To capture inter-layer variation, Expert Merging++ augments this design with importance-guided chunking: a normalized layer-importance metric, derived from learned coefficients, task-vector magnitudes, and parameter counts, allocates more chunk-wise coefficients to high-importance layers while keeping low-importance layers lightweight. The result is a label-free, parameter-efficient, and scalable approach to multi-expert model merging across LLMs and MLLMs. Across MLLM backbones (InternVL and Qwen2-VL) and the LLM backbone (Mistral), our method surpasses strong training-free and training-based merging baselines, with Expert Merging++ delivering further gains and, in some cases, even exceeding supervised Mixture Training. The source code is available at https://github.com/Littleor/ExpertMerging.
☆ Adaptive Graph Coarsening for Efficient GNN Training
We propose an adaptive graph coarsening method to jointly learn graph neural network (GNN) parameters and merge nodes via K-means clustering during training. As real-world graphs grow larger, processing them directly becomes increasingly challenging and sometimes infeasible. Tailoring algorithms to large-scale data may sacrifice performance, so we instead consider graph reduction to decrease the amount of data used during training. In particular, we propose a method to simultaneously train a GNN and coarsen its graph by partitioning nodes via K-means clustering based on their embeddings. Unlike past graph coarsening works, our approach allows us to merge nodes during training. Not only does this preclude coarsening as a preprocessing step, but our node clusters can adapt to the learning task instead of relying solely on graph connectivity and features. Thus, our method is amenable to scenarios that are challenging for other methods, such as heterophilic data. We validate our approach on both homophilic and heterophilic node classification datasets. We further visualize relationships between node embeddings and their corresponding clusters to illustrate that our coarsened graph adapts to the learning task during training.
☆ Physics-Informed Learning for Human Whole-Body Kinematics Prediction via Sparse IMUs
Accurate and physically feasible human motion prediction is crucial for safe and seamless human-robot collaboration. While recent advancements in human motion capture enable real-time pose estimation, the practical value of many existing approaches is limited by the lack of future predictions and consideration of physical constraints. Conventional motion prediction schemes rely heavily on past poses, which are not always available in real-world scenarios. To address these limitations, we present a physics-informed learning framework that integrates domain knowledge into both training and inference to predict human motion using inertial measurements from only 5 IMUs. We propose a network that accounts for the spatial characteristics of human movements. During training, we incorporate forward and differential kinematics functions as additional loss components to regularize the learned joint predictions. At the inference stage, we refine the prediction from the previous iteration to update a joint state buffer, which is used as extra inputs to the network. Experimental results demonstrate that our approach achieves high accuracy, smooth transitions between motions, and generalizes well to unseen subjects
☆ Can VLM Pseudo-Labels Train a Time-Series QA Model That Outperforms the VLM?
Time-series question answering (TSQA) tasks face significant challenges due to the lack of labeled data. Alternatively, with recent advancements in large-scale models, vision-language models (VLMs) have demonstrated the potential to analyze time-series signals in a zero-shot manner. In this paper, we propose a training approach that uses pseudo labels generated by a VLM. Although VLMs can produce incorrect labels, TSQA models can still be effectively trained based on the property that deep neural networks are inherently robust to such noisy labels. Our experimental results demonstrate that TSQA models are not only successfully trained with pseudo labels, but also surpass the performance of the VLM itself by leveraging a large amount of unlabeled data.
☆ Annotation-Efficient Active Test-Time Adaptation with Conformal Prediction
Active Test-Time Adaptation (ATTA) improves model robustness under domain shift by selectively querying human annotations at deployment, but existing methods use heuristic uncertainty measures and suffer from low data selection efficiency, wasting human annotation budget. We propose Conformal Prediction Active TTA (CPATTA), which first brings principled, coverage-guaranteed uncertainty into ATTA. CPATTA employs smoothed conformal scores with a top-K certainty measure, an online weight-update algorithm driven by pseudo coverage, a domain-shift detector that adapts human supervision, and a staged update scheme balances human-labeled and model-labeled data. Extensive experiments demonstrate that CPATTA consistently outperforms the state-of-the-art ATTA methods by around 5% in accuracy. Our code and datasets are available at https://github.com/tingyushi/CPATTA.
☆ A Unified Probabilistic Framework for Dictionary Learning with Parsimonious Activation
Dictionary learning is traditionally formulated as an $L_1$-regularized signal reconstruction problem. While recent developments have incorporated discriminative, hierarchical, or generative structures, most approaches rely on encouraging representation sparsity over individual samples that overlook how atoms are shared across samples, resulting in redundant and sub-optimal dictionaries. We introduce a parsimony promoting regularizer based on the row-wise $L_\infty$ norm of the coefficient matrix. This additional penalty encourages entire rows of the coefficient matrix to vanish, thereby reducing the number of dictionary atoms activated across the dataset. We derive the formulation from a probabilistic model with Beta-Bernoulli priors, which provides a Bayesian interpretation linking the regularization parameters to prior distributions. We further establish theoretical calculation for optimal hyperparameter selection and connect our formulation to both Minimum Description Length, Bayesian model selection and pathlet learning. Extensive experiments on benchmark datasets demonstrate that our method achieves substantially improved reconstruction quality (with a 20\% reduction in RMSE) and enhanced representation sparsity, utilizing fewer than one-tenth of the available dictionary atoms, while empirically validating our theoretical analysis.
☆ Collaborative Compression for Large-Scale MoE Deployment on Edge
The Mixture of Experts (MoE) architecture is an important method for scaling Large Language Models (LLMs). It increases model capacity while keeping computation cost low. However, the ultra-large MoE models still have hundreds of billions of parameters, requiring massive memory/storage and leading to difficulties for deployment on resource-constrained edge platforms. Pruning or quantization alone can hardly address the issue, because of the super-aggressive compression ratio with significantly degraded accuracy and output quality. To facilitate the deployment of ultra-large MoEs on edge platforms, we propose a collaborative compression framework by combining expert pruning, mixed-precision quantization, and activation optimization. It can effectively reduce the storage footprint of the ultra-large MoE DeepSeek-V3 from 1.3TB to 103GB, while preserving high output quality with better accuracy than traditional uniform low-bit quantization methods. To the best of our knowledge, we are the first to deploy a compressed model from the ultra-large DeepSeek-V3 on the platform with a strict 128GB total memory limit. Our comprehensive experiments on multiple benchmarks under various memory constraints demonstrate the effectiveness of our method with smaller model sizes and higher accuracy than uniform low-bit quantization methods.
☆ Minimalist Explanation Generation and Circuit Discovery
Machine learning models, by virtue of training, learn a large repertoire of decision rules for any given input, and any one of these may suffice to justify a prediction. However, in high-dimensional input spaces, such rules are difficult to identify and interpret. In this paper, we introduce an activation-matching based approach to generate minimal and faithful explanations for the decisions of pre-trained image classifiers. We aim to identify minimal explanations that not only preserve the model's decision but are also concise and human-readable. To achieve this, we train a lightweight autoencoder to produce binary masks that learns to highlight the decision-wise critical regions of an image while discarding irrelevant background. The training objective integrates activation alignment across multiple layers, consistency at the output label, priors that encourage sparsity, and compactness, along with a robustness constraint that enforces faithfulness. The minimal explanations so generated also lead us to mechanistically interpreting the model internals. In this regard we also introduce a circuit readout procedure wherein using the explanation's forward pass and gradients, we identify active channels and construct a channel-level graph, scoring inter-layer edges by ingress weight magnitude times source activation and feature-to-class links by classifier weight magnitude times feature activation. Together, these contributions provide a practical bridge between minimal input-level explanations and a mechanistic understanding of the internal computations driving model decisions.
☆ Guiding Mixture-of-Experts with Temporal Multimodal Interactions
Mixture-of-Experts (MoE) architectures have become pivotal for large-scale multimodal models. However, their routing mechanisms typically overlook the informative, time-varying interaction dynamics between modalities. This limitation hinders expert specialization, as the model cannot explicitly leverage intrinsic modality relationships for effective reasoning. To address this, we propose a novel framework that guides MoE routing using quantified temporal interaction. A multimodal interaction-aware router learns to dispatch tokens to experts based on the nature of their interactions. This dynamic routing encourages experts to acquire generalizable interaction-processing skills rather than merely learning task-specific features. Our framework builds on a new formulation of temporal multimodal interaction dynamics, which are used to guide expert routing. We first demonstrate that these temporal multimodal interactions reveal meaningful patterns across applications, and then show how they can be leveraged to improve both the design and performance of MoE-based models. Comprehensive experiments on challenging multimodal benchmarks validate our approach, demonstrating both enhanced performance and improved interpretability.
comment: 21 pages, 8 figures, 10 tables
♻ ☆ Provable Scaling Laws of Feature Emergence from Learning Dynamics of Grokking
While the phenomenon of grokking, i.e., delayed generalization, has been studied extensively, it remains an open problem whether there is a mathematical framework that characterizes what kind of features will emerge, how and in which conditions it happens, and is closely related to the gradient dynamics of the training, for complex structured inputs. We propose a novel framework, named $\mathbf{Li_2}$, that captures three key stages for the grokking behavior of 2-layer nonlinear networks: (I) \underline{\textbf{L}}azy learning, (II) \underline{\textbf{i}}ndependent feature learning and (III) \underline{\textbf{i}}nteractive feature learning. At the lazy learning stage, top layer overfits to random hidden representation and the model appears to memorize. Thanks to lazy learning and weight decay, the \emph{backpropagated gradient} $G_F$ from the top layer now carries information about the target label, with a specific structure that enables each hidden node to learn their representation \emph{independently}. Interestingly, the independent dynamics follows exactly the \emph{gradient ascent} of an energy function $E$, and its local maxima are precisely the emerging features. We study whether these local-optima induced features are generalizable, their representation power, and how they change on sample size, in group arithmetic tasks. When hidden nodes start to interact in the later stage of learning, we provably show how $G_F$ changes to focus on missing features that need to be learned. Our study sheds lights on roles played by key hyperparameters such as weight decay, learning rate and sample sizes in grokking, leads to provable scaling laws of feature emergence, memorization and generalization, and reveals the underlying cause why recent optimizers such as Muon can be effective, from the first principles of gradient dynamics. Our analysis can be extended to multi-layer architectures.
♻ ☆ Pushing LLMs to Their Logical Reasoning Bound: The Role of Data Reasoning Intensity
Recent advances in large language models (LLMs) highlight the importance of training data structure and quality in shaping reasoning behavior. However, most existing approaches focus on transforming data formats while neglecting the internal reasoning complexity of training samples, leaving the reasoning potential of data under-explored and underutilized. In this work, we posit that LLM logical reasoning performance is jointly constrained by the potential of the training data and the cognitive capacity of the model. To make this relationship measurable, we introduce Data Reasoning Intensity (DRI), a novel metric that quantifies the latent logical reasoning complexity of samples by decomposing and aggregating their logical structures. This allows us to analyze how well current LLMs utilize logical reasoning signals and identify performance gaps relative to data potential. Based on this insight, we introduce a re-cognizing optimization strategy that systematically enhances the logical reasoning intensity of training data. Rather than increasing data volume, our method re-optimizes existing samples to better align with the LLM's logical reasoning boundary. Extensive experiments show that our approach significantly improves performance and generalization over data-centric strategies. We further validate our method under a reinforcement learning framework. Our results indicate that prioritizing reasoning complexity in data rather than sheer scale or superficial form is essential to realizing LLMs' full cognitive potential.
♻ ☆ MarS-FM: Generative Modeling of Molecular Dynamics via Markov State Models
Molecular Dynamics (MD) is a powerful computational microscope for probing protein functions. However, the need for fine-grained integration and the long timescales of biomolecular events make MD computationally expensive. To address this, several generative models have been proposed to generate surrogate trajectories at lower cost. Yet, these models typically learn a fixed-lag transition density, causing the training signal to be dominated by frequent but uninformative transitions. We introduce a new class of generative models, MSM Emulators, which instead learn to sample transitions across discrete states defined by an underlying Markov State Model (MSM). We instantiate this class with Markov Space Flow Matching (MarS-FM), whose sampling offers more than two orders of magnitude speedup compared to implicit- or explicit-solvent MD simulations. We benchmark Mars-FM ability to reproduce MD statistics through structural observables such as RMSD, radius of gyration, and secondary structure content. Our evaluation spans protein domains (up to 500 residues) with significant chemical and structural diversity, including unfolding events, and enforces strict sequence dissimilarity between training and test sets to assess generalization. Across all metrics, MarS-FM outperforms existing methods, often by a substantial margin.
♻ ☆ TranSUN: A Preemptive Paradigm to Eradicate Retransformation Bias Intrinsically from Regression Models in Recommender Systems NeurIPS 2025
Regression models are crucial in recommender systems. However, retransformation bias problem has been conspicuously neglected within the community. While many works in other fields have devised effective bias correction methods, all of them are post-hoc cures externally to the model, facing practical challenges when applied to real-world recommender systems. Hence, we propose a preemptive paradigm to eradicate the bias intrinsically from the models via minor model refinement. Specifically, a novel TranSUN method is proposed with a joint bias learning manner to offer theoretically guaranteed unbiasedness under empirical superior convergence. It is further generalized into a novel generic regression model family, termed Generalized TranSUN (GTS), which not only offers more theoretical insights but also serves as a generic framework for flexibly developing various bias-free models. Comprehensive experimental results demonstrate the superiority of our methods across data from various domains, which have been successfully deployed in two real-world industrial recommendation scenarios, i.e. product and short video recommendation scenarios in Guess What You Like business domain in the homepage of Taobao App (a leading e-commerce platform with DAU > 300M), to serve the major online traffic.
comment: 36 pages, 6 figures, NeurIPS 2025 Main
♻ ☆ HealthSLM-Bench: Benchmarking Small Language Models for Mobile and Wearable Healthcare Monitoring NeurIPS 2025
Mobile and wearable healthcare monitoring play a vital role in facilitating timely interventions, managing chronic health conditions, and ultimately improving individuals' quality of life. Previous studies on large language models (LLMs) have highlighted their impressive generalization abilities and effectiveness in healthcare prediction tasks. However, most LLM-based healthcare solutions are cloud-based, which raises significant privacy concerns and results in increased memory usage and latency. To address these challenges, there is growing interest in compact models, Small Language Models (SLMs), which are lightweight and designed to run locally and efficiently on mobile and wearable devices. Nevertheless, how well these models perform in healthcare prediction remains largely unexplored. We systematically evaluated SLMs on health prediction tasks using zero-shot, few-shot, and instruction fine-tuning approaches, and deployed the best performing fine-tuned SLMs on mobile devices to evaluate their real-world efficiency and predictive performance in practical healthcare scenarios. Our results show that SLMs can achieve performance comparable to LLMs while offering substantial gains in efficiency and privacy. However, challenges remain, particularly in handling class imbalance and few-shot scenarios. These findings highlight SLMs, though imperfect in their current form, as a promising solution for next-generation, privacy-preserving healthcare monitoring.
comment: 9 pages, 6 tables, 6 figures. Accepted at NeurIPS 2025 Workshop on GenAI4Health
♻ ☆ OrthAlign: Orthogonal Subspace Decomposition for Non-Interfering Multi-Objective Alignment
Large language model (LLM) alignment faces a critical dilemma when addressing multiple human preferences: improvements in one dimension frequently come at the expense of others, creating unavoidable trade-offs between competing objectives like helpfulness and harmlessness. While prior work mainly focuses on constraint-based optimization algorithms and data selection strategies to mitigate conflicts, these approaches overlook the fundamental issue of resolving conflicts directly at the parameter level. In this paper, we present OrthAlign, an innovative approach that pioneers a new paradigm by leveraging orthogonal subspace decomposition to fundamentally resolve gradient-level conflicts in multi-objective preference alignment. OrthAlign strategically decomposes parameter update spaces into orthogonal subspaces, ensuring that optimization toward different preferences occurs in mathematically non-interfering directions. Building upon this, we provide theoretical guarantees demonstrating that when parameter increments satisfy both orthogonal subspace constraints and spectral norm bounds, the resulting updates exhibit linear Lipschitz growth rather than exponential instability, ensuring stable convergence across all preference dimensions. Extensive experiments show that: I. OrthAlign achieves maximum single-preference improvements ranging from 34.61% to 50.89% after multiple-objective alignment across helpful, harmless, and truthful dimensions. II. With an average overall reward improvement of 13.96%.
♻ ☆ Inducing Dyslexia in Vision Language Models
Dyslexia, a neurodevelopmental disorder characterized by persistent reading difficulties, is often linked to reduced activity of the visual word form area in the ventral occipito-temporal cortex. Traditional approaches to studying dyslexia, such as behavioral and neuroimaging methods, have provided valuable insights but remain limited in their ability to test causal hypotheses about the underlying mechanisms of reading impairments. In this study, we use large-scale vision-language models (VLMs) to simulate dyslexia by functionally identifying and perturbing artificial analogues of word processing. Using stimuli from cognitive neuroscience, we identify visual-word-form-selective units within VLMs and demonstrate that targeted ablation of these units, unlike ablation of random units, leads to selective impairments in reading tasks while general visual and language comprehension abilities remain intact. In particular, the resulting model matches dyslexic humans' phonological deficits without a significant change in orthographic processing. Taken together, our modeling results replicate key characteristics of dyslexia and establish a computational framework for investigating reading disorders.
♻ ☆ Interpretable Kernel Representation Learning at Scale: A Unified Framework Utilizing Nyström Approximation
Kernel methods provide a theoretically grounded framework for non-linear and non-parametric learning, with strong analytic foundations and statistical guarantees. Yet, their scalability has long been limited by prohibitive time and memory costs. While progress has been made in scaling kernel regression, no framework exists for scalable kernel-based representation learning, restricting their use in the era of foundation models where representations are learned from massive unlabeled data. We introduce KREPES -- a unified, scalable framework for kernel-based representation learning via Nystr\"om approximation. KREPES accommodates a wide range of unsupervised and self-supervised losses, and experiments on large image and tabular datasets demonstrate its efficiency. Crucially, KREPES enables principled interpretability of the learned representations, an immediate benefit over deep models, which we substantiate through dedicated analysis.
comment: 19 Pages, 3 figures
♻ ☆ Metis: Training LLMs with FP4 Quantization
This work identifies anisotropy in the singular value spectra of parameters, activations, and gradients as the fundamental barrier to low-bit training of large language models (LLMs). These spectra are dominated by a small fraction of large singular values, inducing wide numerical ranges that cause quantization bias and severe spectral distortion, ultimately degrading training performance. This work presents Metis, a spectral-domain quantization framework that partitions anisotropic spectra into narrower sub-distributions for independent quantization, thereby reducing errors and preserving spectral structure. To minimize overhead, Metis leverages two key properties of the dominant spectral subspace: preservation via sparsely random sampling and preservation via random projection, reducing decomposition cost to a negligible level. On LLaMA-3 8B trained with 100B tokens, Metis enables robust W4A4G4 training with FP4 quantization of weights, activations, and gradients, yielding only a 0.4% training loss gap and a 0.1% degradation in downstream accuracy relative to BF16. Beyond matching BF16 fidelity, Metis also surpasses our implementation of Nvidia's recently announced (yet to be publicly released) FP4 recipe, consistently achieving lower loss and higher downstream accuracy while incurring significantly lower computational overhead. The code implementation for Metis is available at: https://anonymous.4open.science/r/Metis-quantization-644B.
♻ ☆ Beyond Sharp Minima: Robust LLM Unlearning via Feedback-Guided Multi-Point Optimization
Current LLM unlearning methods face a critical security vulnerability that undermines their fundamental purpose: while they appear to successfully remove sensitive or harmful knowledge, this ``forgotten" information remains precariously recoverable through relearning attacks. We identify that the root cause is that conventional methods optimizing the forgetting loss at individual data points will drive model parameters toward sharp minima in the loss landscape. In these unstable regions, even minimal parameter perturbations can drastically alter the model's behaviors. Consequently, relearning attacks exploit this vulnerability by using just a few fine-tuning samples to navigate the steep gradients surrounding these unstable regions, thereby rapidly recovering knowledge that was supposedly erased. This exposes a critical robustness gap between apparent unlearning and actual knowledge removal. To address this issue, we propose StableUN, a bi-level feedback-guided optimization framework that explicitly seeks more stable parameter regions via neighborhood-aware optimization. It integrates forgetting feedback, which uses adversarial perturbations to probe parameter neighborhoods, with remembering feedback to preserve model utility, aligning the two objectives through gradient projection. Experiments on WMDP and MUSE benchmarks demonstrate that our method is significantly more robust against both relearning and jailbreaking attacks while maintaining competitive utility performance.
♻ ☆ AuON: A Linear-time Alternative to Semi-Orthogonal Momentum Updates
Orthogonal gradient updates have emerged as a promising direction in optimization for machine learning. However, traditional approaches such as SVD/QR decomposition incur prohibitive computational costs of O(n^3) and underperform compared to well-tuned SGD with momentum, since momentum is applied only after strict orthogonalization. Recent advances, such as Muon, improve efficiency by applying momentum before orthogonalization and producing semi-orthogonal matrices via Newton-Schulz iterations, reducing complexity to O(n^2). Nevertheless, quadratic costs remain a bottleneck. In this work, we study the semi-orthogonal properties of momentum-based updates and develop a method to bound momentum updates under a spectral-norm trust region, preserving directional information without requiring explicit semi-orthogonalization. We propose AuON (Alternative Unit-norm momentum updates by Normalized nonlinear scaling), a linear-time optimizer that achieves strong performance without constructing semi-orthogonal matrices, while preserving structural alignment and reconditioning ill-posed updates. Our approach combines hyperbolic-cosine RMS scaling transformations with normalization, demonstrating both effectiveness and computational efficiency compared to Newton-Schulz methods. We further introduce a hybrid variant (Hybrid-AuON) that applies a single Newton-Schulz iteration. Experiments across vision and language benchmarks show that AuON and its hybrid variant achieve performance comparable to strong baselines such as AdamW and Muon. Code is available at: https://github.com/ryyzn9/AuON
♻ ☆ Conda: Column-Normalized Adam for Training Large Language Models Faster
Large language models (LLMs) have demonstrated impressive generalization and emergent capabilities, yet their pre-training remains computationally expensive and sensitive to optimization dynamics. While Adam-based optimizers offer fast convergence by adapting learning rates coordinate-wise, recent studies reveal that their updates often suffer from poor spectral conditioning and low-rank structures, hindering efficiency. Muon addresses this issue via global spectral normalization but lacks the per-coordinate adaptivity of Adam. In this work, we propose Column-Normalized Adam (Conda), a novel optimizer that bridges the strengths of both approaches. Conda projects updates into an orthogonal subspace and applies column-wise second moment normalization based on the projected gradients, thereby achieving both improved spectral conditioning and maintaining coordinate-wise adaptivity. This design alleviates the spectral pathologies of Adam while preserving its fast convergence behavior. Extensive experiments on the LLaMA and GPT-2 series show that Conda consistently outperforms AdamW, Muon, and other baselines in pre-training. Remarkably, on the LLaMA series, Conda achieves 2-2.5 the convergence speed of AdamW, measured in both training steps and training time. Further ablations demonstrate its robustness under diverse training setups. These results collectively highlight Conda as an effective and broadly applicable optimizer for large-scale LLM training. The code is released on https://github.com/jie040109/Conda
♻ ☆ The Impact of Language Mixing on Bilingual LLM Reasoning EMNLP 2025
Proficient multilingual speakers often intentionally switch languages in the middle of a conversation. Similarly, recent reasoning-focused bilingual large language models (LLMs) with strong capabilities in both languages exhibit language mixing-alternating languages within their chain of thought. Discouraging this behavior in DeepSeek-R1 was found to degrade accuracy, suggesting that language mixing may benefit reasoning. In this work, we study language switching in Chinese-English bilingual reasoning models. We identify reinforcement learning with verifiable rewards (RLVR) as the critical training stage that leads to language mixing. We show that language mixing can enhance reasoning: enforcing monolingual decoding reduces accuracy by 5.6 percentage points on MATH500. Additionally, a lightweight probe can be trained to predict whether a potential language switch would benefit or harm reasoning, and when used to guide decoding, increases accuracy by 2.92 percentage points. Our findings suggest that language mixing is not merely a byproduct of multilingual training, but is a strategic reasoning behavior.
comment: Accepted at EMNLP 2025 (Main Conference)
♻ ☆ On Fitting Flow Models with Large Sinkhorn Couplings
Flow models transform data gradually from one modality (e.g. noise) onto another (e.g. images). Such models are parameterized by a time-dependent velocity field, trained to fit segments connecting pairs of source and target points. When the pairing between source and target points is given, training flow models boils down to a supervised regression problem. When no such pairing exists, as is the case when generating data from noise, training flows is much harder. A popular approach lies in picking source and target points independently. This can, however, lead to velocity fields that are slow to train, but also costly to integrate at inference time. In theory, one would greatly benefit from training flow models by sampling pairs from an optimal transport (OT) measure coupling source and target, since this would lead to a highly efficient flow solving the Benamou and Brenier dynamical OT problem. In practice, recent works have proposed to sample mini-batches of $n$ source and $n$ target points and reorder them using an OT solver to form better pairs. These works have advocated using batches of size $n\approx 256$, and considered OT solvers that return couplings that are either sharp (using e.g. the Hungarian algorithm) or blurred (using e.g. entropic regularization, a.k.a. Sinkhorn). We follow in the footsteps of these works by exploring the benefits of increasing $n$ by three to four orders of magnitude, and look more carefully on the effect of the entropic regularization $\varepsilon$ used in the Sinkhorn algorithm. Our analysis is facilitated by new scale invariant quantities to report the sharpness of a coupling, while our sharded computations across multiple GPU or GPU nodes allow scaling up $n$. We show that in both synthetic and image generation tasks, flow models greatly benefit when fitted with large Sinkhorn couplings, with a low entropic regularization $\varepsilon$.
comment: 23 pages, 14 figures
♻ ☆ EVO-LRP: Evolutionary Optimization of LRP for Interpretable Model Explanations
Explainable AI (XAI) methods help identify which image regions influence a model's prediction, but often face a trade-off between detail and interpretability. Layer-wise Relevance Propagation (LRP) offers a model-aware alternative. However, LRP implementations commonly rely on heuristic rule sets that are not optimized for clarity or alignment with model behavior. We introduce EVO-LRP, a method that applies Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to tune LRP hyperparameters based on quantitative interpretability metrics, such as faithfulness or sparseness. EVO-LRP outperforms traditional XAI approaches in both interpretability metric performance and visual coherence, with strong sensitivity to class-specific features. These findings demonstrate that attribution quality can be systematically improved through principled, task-specific optimization.
comment: 15 pages
♻ ☆ ODE-GS: Latent ODEs for Dynamic Scene Extrapolation with 3D Gaussian Splatting
We introduce ODE-GS, a novel approach that integrates 3D Gaussian Splatting with latent neural ordinary differential equations (ODEs) to enable future extrapolation of dynamic 3D scenes. Unlike existing dynamic scene reconstruction methods, which rely on time-conditioned deformation networks and are limited to interpolation within a fixed time window, ODE-GS eliminates timestamp dependency by modeling Gaussian parameter trajectories as continuous-time latent dynamics. Our approach first learns an interpolation model to generate accurate Gaussian trajectories within the observed window, then trains a Transformer encoder to aggregate past trajectories into a latent state evolved via a neural ODE. Finally, numerical integration produces smooth, physically plausible future Gaussian trajectories, enabling rendering at arbitrary future timestamps. On the D-NeRF, NVFi, and HyperNeRF benchmarks, ODE-GS achieves state-of-the-art extrapolation performance, improving metrics by 19.8% compared to leading baselines, demonstrating its ability to accurately represent and predict 3D scene dynamics.
♻ ☆ AutoJudge: Judge Decoding Without Manual Annotation
We introduce AutoJudge, a method that accelerates large language model (LLM) inference with task-specific lossy speculative decoding. Instead of matching the original model output distribution token-by-token, we identify which of the generated tokens affect the downstream quality of the response, relaxing the distribution match guarantee so that the "unimportant" tokens can be generated faster. Our approach relies on a semi-greedy search algorithm to test which of the mismatches between target and draft models should be corrected to preserve quality and which ones may be skipped. We then train a lightweight classifier based on existing LLM embeddings to predict, at inference time, which mismatching tokens can be safely accepted without compromising the final answer quality. We evaluate the effectiveness of AutoJudge with multiple draft/target model pairs on mathematical reasoning and programming benchmarks, achieving significant speedups at the cost of a minor accuracy reduction. Notably, on GSM8k with the Llama 3.1 70B target model, our approach achieves up to $\approx2\times$ speedup over speculative decoding at the cost of $\le 1\%$ drop in accuracy. When applied to the LiveCodeBench benchmark, AutoJudge automatically detects programming-specific important tokens, accepting $\ge 25$ tokens per speculation cycle at $2\%$ drop in Pass@1. Our approach requires no human annotation and is easy to integrate with modern LLM inference frameworks.
comment: Preprint
♻ ☆ Scalable Fingerprinting of Large Language Models NeurIPS 2025
Model fingerprinting has emerged as a powerful tool for model owners to identify their shared model given API access. However, to lower false discovery rate, fight fingerprint leakage, and defend against coalitions of model users attempting to bypass detection, we argue that {\em scalability} is critical, i.e., scaling up the number of fingerprints one can embed into a model. Hence, we pose scalability as a crucial requirement for fingerprinting schemes. We experiment with fingerprint design at a scale significantly larger than previously considered, and introduce a new method, dubbed Perinucleus sampling, to generate scalable, persistent, and harmless fingerprints. We demonstrate that this scheme can add 24,576 fingerprints to a Llama-3.1-8B model -- two orders of magnitude more than existing schemes -- without degrading the model's utility. Our inserted fingerprints persist even after supervised fine-tuning on standard post-training data. We further address security risks for fingerprinting, and theoretically and empirically show how a scalable fingerprinting scheme like ours can mitigate these risks. Our code is available at https://github.com/SewoongLab/scalable-fingerprinting-of-llms
comment: Spotlight at NeurIPS 2025
♻ ☆ FeDa4Fair: Client-Level Federated Datasets for Fairness Evaluation
Federated Learning (FL) enables collaborative model training across multiple clients without sharing clients' private data. However, the diverse and often conflicting biases present across clients pose significant challenges to model fairness. Current fairness-enhancing FL solutions often fall short, as they typically mitigate biases for a single, usually binary, sensitive attribute, while ignoring the heterogeneous fairness needs that exist in real-world settings. Moreover, these solutions often evaluate unfairness reduction only on the server side, hiding persistent unfairness at the individual client level. To support more robust and reproducible fairness research in FL, we introduce a comprehensive benchmarking framework for fairness-aware FL at both the global and client levels. Our contributions are three-fold: (1) We introduce \fairdataset, a library to create tabular datasets tailored to evaluating fair FL methods under heterogeneous client bias; (2) we release four bias-heterogeneous datasets and corresponding benchmarks to compare fairness mitigation methods in a controlled environment; (3) we provide ready-to-use functions for evaluating fairness outcomes for these datasets.
♻ ☆ DisCO: Reinforcing Large Reasoning Models with Discriminative Constrained Optimization NeurIPS 2025
The recent success and openness of DeepSeek-R1 have brought widespread attention to Group Relative Policy Optimization (GRPO) as a reinforcement learning method for large reasoning models (LRMs). In this work, we analyze the GRPO objective under a binary reward setting and reveal an inherent limitation of question-level difficulty bias. We also identify a connection between GRPO and traditional discriminative methods in supervised learning. Motivated by these insights, we introduce a new Discriminative Constrained Optimization (DisCO) framework for reinforcing LRMs, grounded in the principle of discriminative learning. The main differences between DisCO and GRPO and its recent variants are: (1) it replaces the group relative objective with a discriminative objective defined by a scoring function; (2) it abandons clipping-based surrogates in favor of non-clipping RL surrogate objectives used as scoring functions; (3) it employs a simple yet effective constrained optimization approach to enforce the KL divergence constraint. As a result, DisCO offers notable advantages over GRPO and its variants: (i) it completely eliminates difficulty bias by adopting discriminative objectives; (ii) it addresses the entropy instability in GRPO and its variants through the use of non-clipping scoring functions and a constrained optimization approach, yielding long and stable training dynamics; (iii) it allows the incorporation of advanced discriminative learning techniques to address data imbalance, where a significant number of questions have more negative than positive generated answers during training. Our experiments on enhancing the mathematical reasoning capabilities of SFT-finetuned models show that DisCO significantly outperforms GRPO and its improved variants such as DAPO, achieving average gains of 7\% over GRPO and 6\% over DAPO across six benchmark tasks for an 1.5B model.
comment: Accepted to NeurIPS 2025
♻ ☆ Information-Geometric Barycenters for Bayesian Federated Learning
Federated learning (FL) is a widely used and impactful distributed optimization framework that achieves consensus through averaging locally trained models. While effective, this approach may not align well with Bayesian inference, where the model space has the structure of a distribution space. Taking an information-geometric perspective, we reinterpret FL aggregation as the problem of finding the barycenter of local posteriors using a prespecified divergence metric, minimizing the average discrepancy across clients. This perspective provides a unifying framework that generalizes many existing methods and offers crisp insights into their theoretical underpinnings. We then propose BA-BFL, an algorithm that retains the convergence properties of Federated Averaging in non-convex settings. In non-independent and identically distributed scenarios, we conduct extensive comparisons with statistical aggregation techniques, showing that BA-BFL achieves performance comparable to state-of-the-art methods while offering a geometric interpretation of the aggregation phase. Additionally, we extend our analysis to Hybrid Bayesian Deep Learning, exploring the impact of Bayesian layers on uncertainty quantification and model calibration.
♻ ☆ LoLA: Low-Rank Linear Attention With Sparse Caching
The per-token cost of transformer inference scales with context length, preventing its application to lifelong in-context learning. Linear attention is an efficient alternative that maintains a constant memory footprint, even on infinite context lengths. While this is a potential candidate for lifelong learning, it falls short in memory capacity. In this paper, we propose LoLA, a training-free augmentation to linear attention that boosts associative recall. LoLA distributes past key-value pairs from context into three memory systems: (i) recent pairs in a local sliding window cache; (ii) difficult-to-memorize pairs in a sparse, global cache; and (iii) generic pairs in the recurrent hidden state of linear attention. We show through ablations that our self-recall error metric is crucial to efficiently manage long-term associative memories. On pass-key retrieval tasks, LoLA improves the base model's performance from 0.6% to 97.4% accuracy. This is achieved with a 4.6x smaller cache than Llama-3.1 8B on 4K context length. LoLA also outperforms other 1B and 8B parameter subquadratic models on zero-shot commonsense reasoning tasks.
♻ ☆ Unpicking Data at the Seams: Understanding Disentanglement in VAEs
A generative latent variable model is said to be disentangled when varying a single latent co-ordinate changes a single aspect of samples generated, e.g. object position or facial expression in an image. Related phenomena are seen in several generative paradigms, including state-of-the-art diffusion models, but disentanglement is most notably observed in Variational Autoencoders (VAEs), where oft-used diagonal posterior covariances are argued to be the cause. We make this picture precise. From a known exact link between optimal Gaussian posteriors and decoder derivatives, we show how diagonal posteriors "lock" a decoder's local axes so that density over the data manifold factorises along independent one-dimensional seams that map to axis-aligned directions in latent space. This gives a clear definition of disentanglement, explains why it emerges in VAEs and shows that, under stated assumptions, ground truth factors are identifiable even with a symmetric prior.
comment: 9 pages
♻ ☆ Apple: Toward General Active Perception via Reinforcement Learning
Active perception is a fundamental skill that enables us humans to deal with uncertainty in our inherently partially observable environment. For senses such as touch, where the information is sparse and local, active perception becomes crucial. In recent years, active perception has emerged as an important research domain in robotics. However, current methods are often bound to specific tasks or make strong assumptions, which limit their generality. To address this gap, this work introduces APPLE (Active Perception Policy Learning) - a novel framework that leverages reinforcement learning (RL) to address a range of different active perception problems. APPLE jointly trains a transformer-based perception module and decision-making policy with a unified optimization objective, learning how to actively gather information. By design, APPLE is not limited to a specific task and can, in principle, be applied to a wide range of active perception problems. We evaluate two variants of APPLE across different tasks, including tactile exploration problems from the Tactile MNIST benchmark. Experiments demonstrate the efficacy of APPLE, achieving high accuracies on both regression and classification tasks. These findings underscore the potential of APPLE as a versatile and general framework for advancing active perception in robotics.
comment: 16 pages; 13 figures Under Review
♻ ☆ Fast Likelihood-Free Parameter Estimation for Lévy Processes
L\'evy processes are widely used in financial modeling due to their ability to capture discontinuities and heavy tails, which are common in high-frequency asset return data. However, parameter estimation remains a challenge when associated likelihoods are unavailable or costly to compute. We propose a fast and accurate method for L\'evy parameter estimation using the neural Bayes estimation (NBE) framework -- a simulation-based, likelihood-free approach that leverages permutation-invariant neural networks to approximate Bayes estimators. We contribute new theoretical results, showing that NBE results in consistent estimators whose risk converges to the Bayes estimator under mild conditions. Moreover, through extensive simulations across several L\'evy models, we show that NBE outperforms traditional methods in both accuracy and runtime, while also enabling two complementary approaches to uncertainty quantification. We illustrate our approach on a challenging high-frequency cryptocurrency return dataset, where the method captures evolving parameter dynamics and delivers reliable and interpretable inference at a fraction of the computational cost of traditional methods. NBE provides a scalable and practical solution for inference in complex financial models, enabling parameter estimation and uncertainty quantification over an entire year of data in just seconds. We additionally investigate nearly a decade of high-frequency Bitcoin returns, requiring less than one minute to estimate parameters under the proposed approach.
♻ ☆ Mind the Gap: A Review of Arabic Post-Training Datasets and Their Limitations
Post-training has emerged as a crucial technique for aligning pre-trained Large Language Models (LLMs) with human instructions, significantly enhancing their performance across a wide range of tasks. Central to this process is the quality and diversity of post-training datasets. This paper presents a review of publicly available Arabic post-training datasets on the Hugging Face Hub, organized along four key dimensions: (1) LLM Capabilities (e.g., Question Answering, Translation, Reasoning, Summarization, Dialogue, Code Generation, and Function Calling); (2) Steerability (e.g., Persona and System Prompts); (3) Alignment (e.g., Cultural, Safety, Ethics, and Fairness); and (4) Robustness. Each dataset is rigorously evaluated based on popularity, practical adoption, recency and maintenance, documentation and annotation quality, licensing transparency, and scientific contribution. Our review revealed critical gaps in the development of Arabic post-training datasets, including limited task diversity, inconsistent or missing documentation and annotation, and low adoption across the community. Finally, the paper discusses the implications of these gaps on the progress of Arabic-centric LLMs and applications while providing concrete recommendations for future efforts in Arabic post-training dataset development.
♻ ☆ Neural Multivariate Regression: Qualitative Insights from the Unconstrained Feature Model
The Unconstrained Feature Model (UFM) is a mathematical framework that enables closed-form approximations for minimal training loss and related performance measures in deep neural networks (DNNs). This paper leverages the UFM to provide qualitative insights into neural multivariate regression, a critical task in imitation learning, robotics, and reinforcement learning. Specifically, we address two key questions: (1) How do multi-task models compare to multiple single-task models in terms of training performance? (2) Can whitening and normalizing regression targets improve training performance? The UFM theory predicts that multi-task models achieve strictly smaller training MSE than multiple single-task models when the same or stronger regularization is applied to the latter, and our empirical results confirm these findings. Regarding whitening and normalizing regression targets, the UFM theory predicts that they reduce training MSE when the average variance across the target dimensions is less than one, and our empirical results once again confirm these findings. These findings highlight the UFM as a powerful framework for deriving actionable insights into DNN design and data pre-processing strategies.
comment: 35 pages, 10 figures
♻ ☆ DreamControl: Human-Inspired Whole-Body Humanoid Control for Scene Interaction via Guided Diffusion
We introduce DreamControl, a novel methodology for learning autonomous whole-body humanoid skills. DreamControl leverages the strengths of diffusion models and Reinforcement Learning (RL): our core innovation is the use of a diffusion prior trained on human motion data, which subsequently guides an RL policy in simulation to complete specific tasks of interest (e.g., opening a drawer or picking up an object). We demonstrate that this human motion-informed prior allows RL to discover solutions unattainable by direct RL, and that diffusion models inherently promote natural looking motions, aiding in sim-to-real transfer. We validate DreamControl's effectiveness on a Unitree G1 robot across a diverse set of challenging tasks involving simultaneous lower and upper body control and object interaction. Project website at https://genrobo.github.io/DreamControl/
comment: https://genrobo.github.io/DreamControl/ (under submission)
♻ ☆ Minimum Description Feature Selection for Complexity Reduction in Machine Learning-based Wireless Positioning
Recently, deep learning approaches have provided solutions to difficult problems in wireless positioning (WP). Although these WP algorithms have attained excellent and consistent performance against complex channel environments, the computational complexity coming from processing high-dimensional features can be prohibitive for mobile applications. In this work, we design a novel positioning neural network (P-NN) that utilizes the minimum description features to substantially reduce the complexity of deep learning-based WP. P-NN's feature selection strategy is based on maximum power measurements and their temporal locations to convey information needed to conduct WP. We improve P-NN's learning ability by intelligently processing two different types of inputs: sparse image and measurement matrices. Specifically, we implement a self-attention layer to reinforce the training ability of our network. We also develop a technique to adapt feature space size, optimizing over the expected information gain and the classification capability quantified with information-theoretic measures on signal bin selection. Numerical results show that P-NN achieves a significant advantage in performance-complexity tradeoff over deep learning baselines that leverage the full power delay profile (PDP). In particular, we find that P-NN achieves a large improvement in performance for low SNR, as unnecessary measurements are discarded in our minimum description features.
comment: This paper has been published in IEEE Journal on Selected Areas in Communications
♻ ☆ Complexity Reduction in Machine Learning-Based Wireless Positioning: Minimum Description Features
A recent line of research has been investigating deep learning approaches to wireless positioning (WP). Although these WP algorithms have demonstrated high accuracy and robust performance against diverse channel conditions, they also have a major drawback: they require processing high-dimensional features, which can be prohibitive for mobile applications. In this work, we design a positioning neural network (P-NN) that substantially reduces the complexity of deep learning-based WP through carefully crafted minimum description features. Our feature selection is based on maximum power measurements and their temporal locations to convey information needed to conduct WP. We also develop a novel methodology for adaptively selecting the size of feature space, which optimizes over balancing the expected amount of useful information and classification capability, quantified using information-theoretic measures on the signal bin selection. Numerical results show that P-NN achieves a significant advantage in performance-complexity tradeoff over deep learning baselines that leverage the full power delay profile (PDP).
comment: This paper has been published in the proceedings of 2024 IEEE International Conference on Communications (ICC)
♻ ☆ Octic Vision Transformers: Quicker ViTs Through Equivariance
Why are state-of-the-art Vision Transformers (ViTs) not designed to exploit natural geometric symmetries such as 90-degree rotations and reflections? In this paper, we argue that there is no fundamental reason, and what has been missing is an efficient implementation. To this end, we introduce Octic Vision Transformers (octic ViTs) which rely on octic group equivariance to capture these symmetries. In contrast to prior equivariant models that increase computational cost, our octic linear layers achieve 5.33x reductions in FLOPs and up to 8x reductions in memory compared to ordinary linear layers. In full octic ViT blocks the computational reductions approach the reductions in the linear layers with increased embedding dimension. We study two new families of ViTs, built from octic blocks, that are either fully octic equivariant or break equivariance in the last part of the network. Training octic ViTs supervised (DeiT-III) and unsupervised (DINOv2) on ImageNet-1K, we find that they match baseline accuracy while at the same time providing substantial efficiency gains.
♻ ☆ Fast training of accurate physics-informed neural networks without gradient descent
Solving time-dependent Partial Differential Equations (PDEs) is one of the most critical problems in computational science. While Physics-Informed Neural Networks (PINNs) offer a promising framework for approximating PDE solutions, their accuracy and training speed are limited by two core barriers: gradient-descent-based iterative optimization over complex loss landscapes and non-causal treatment of time as an extra spatial dimension. We present Frozen-PINN, a novel PINN based on the principle of space-time separation that leverages random features instead of training with gradient descent, and incorporates temporal causality by construction. On eight PDE benchmarks, including challenges such as extreme advection speeds, shocks, and high dimensionality, Frozen-PINNs achieve superior training efficiency and accuracy over state-of-the-art PINNs, often by several orders of magnitude. Our work addresses longstanding training and accuracy bottlenecks of PINNs, delivering quickly trainable, highly accurate, and inherently causal PDE solvers, a combination that prior methods could not realize. Our approach challenges the reliance of PINNs on stochastic gradient-descent-based methods and specialized hardware, leading to a paradigm shift in PINN training and providing a challenging benchmark for the community.
comment: 54 pages, 23 figures
♻ ☆ Tree-Structured Parzen Estimator: Understanding Its Algorithm Components and Their Roles for Better Empirical Performance
Recent scientific advances require complex experiment design, necessitating the meticulous tuning of many experiment parameters. Tree-structured Parzen estimator (TPE) is a widely used Bayesian optimization method in recent parameter tuning frameworks such as Hyperopt and Optuna. Despite its popularity, the roles of each control parameter in TPE and the algorithm intuition have not been discussed so far. The goal of this paper is to identify the roles of each control parameter and their impacts on parameter tuning based on the ablation studies using diverse benchmark datasets. The recommended setting concluded from the ablation studies is demonstrated to improve the performance of TPE. Our TPE implementation used in this paper is available at https://github.com/nabenabe0928/tpe/tree/single-opt.
♻ ☆ What Can RL Bring to VLA Generalization? An Empirical Study NeurIPS 2025
Large Vision-Language Action (VLA) models have shown significant potential for embodied AI. However, their predominant training via supervised fine-tuning (SFT) limits generalization due to susceptibility to compounding errors under distribution shifts. Reinforcement learning (RL) offers a path to overcome these limitations by optimizing for task objectives via trial-and-error, yet a systematic understanding of its specific generalization benefits for VLAs compared to SFT is lacking. To address this, our study introduces a comprehensive benchmark for evaluating VLA generalization and systematically investigates the impact of RL fine-tuning across diverse visual, semantic, and execution dimensions. Our extensive experiments reveal that RL fine-tuning, particularly with PPO, significantly enhances generalization in semantic understanding and execution robustness over SFT, while maintaining comparable visual robustness. We identify PPO as a more effective RL algorithm for VLAs than LLM-derived methods like DPO and GRPO. We also develop a simple recipe for efficient PPO training on VLAs, and demonstrate its practical utility for improving VLA generalization. The project page is at https://rlvla.github.io
comment: Accepted by NeurIPS 2025
♻ ☆ Ringleader ASGD: The First Asynchronous SGD with Optimal Time Complexity under Data Heterogeneity
Asynchronous stochastic gradient methods are central to scalable distributed optimization, particularly when devices differ in computational capabilities. Such settings arise naturally in federated learning, where training takes place on smartphones and other heterogeneous edge devices. In addition to varying computation speeds, these devices often hold data from different distributions. However, existing asynchronous SGD methods struggle in such heterogeneous settings and face two key limitations. First, many rely on unrealistic assumptions of similarity across workers' data distributions. Second, methods that relax this assumption still fail to achieve theoretically optimal performance under heterogeneous computation times. We introduce Ringleader ASGD, the first asynchronous SGD algorithm that attains the theoretical lower bounds for parallel first-order stochastic methods in the smooth nonconvex regime, thereby achieving optimal time complexity under data heterogeneity and without restrictive similarity assumptions. Our analysis further establishes that Ringleader ASGD remains optimal under arbitrary and even time-varying worker computation speeds, closing a fundamental gap in the theory of asynchronous optimization.
♻ ☆ A quantitative analysis of semantic information in deep representations of text and images
Deep neural networks are known to develop similar representations for semantically related data, even when they belong to different domains, such as an image and its description, or the same text in different languages. We present a method for quantitatively investigating this phenomenon by measuring the relative information content of the representations of semantically related data and probing how it is encoded into multiple tokens of large language models (LLMs) and vision transformers. Looking first at how LLMs process pairs of translated sentences, we identify inner ``semantic'' layers containing the most language-transferable information. We find moreover that, on these layers, a larger LLM (DeepSeek-V3) extracts significantly more general information than a smaller one (Llama3.1-8B). Semantic information of English text is spread across many tokens and it is characterized by long-distance correlations between tokens and by a causal left-to-right (i.e., past-future) asymmetry. We also identify layers encoding semantic information within visual transformers. We show that caption representations in the semantic layers of LLMs predict visual representations of the corresponding images. We observe significant and model-dependent information asymmetries between image and text representations.
♻ ☆ Robust LLM Training Infrastructure at ByteDance
The training scale of large language models (LLMs) has reached tens of thousands of GPUs and is still continuously expanding, enabling faster learning of larger models. Accompanying the expansion of the resource scale is the prevalence of failures (CUDA error, NaN values, job hang, etc.), which poses significant challenges to training stability. Any large-scale LLM training infrastructure should strive for minimal training interruption, efficient fault diagnosis, and effective failure tolerance to enable highly efficient continuous training. This paper presents ByteRobust, a large-scale GPU infrastructure management system tailored for robust and stable training of LLMs. It exploits the uniqueness of LLM training process and gives top priorities to detecting and recovering failures in a routine manner. Leveraging parallelisms and characteristics of LLM training, ByteRobust enables high-capacity fault tolerance, prompt fault demarcation, and localization with an effective data-driven approach, comprehensively ensuring continuous and efficient training of LLM tasks. ByteRobust is deployed on a production GPU platform with over 200,000 GPUs and achieves 97% ETTR for a three-month training job on 9,600 GPUs.
♻ ☆ Approximation properties of neural ODEs
We study the approximation properties of shallow neural networks whose activation function is defined as the flow map of a neural ordinary differential equation (neural ODE) at the final time of the integration interval. We prove the universal approximation property (UAP) of such shallow neural networks in the space of continuous functions. Furthermore, we investigate the approximation properties of shallow neural networks whose parameters satisfy specific constraints. In particular, we constrain the Lipschitz constant of the neural ODE's flow map and the norms of the weights to increase the network's stability. We prove that the UAP holds if we consider either constraint independently. When both are enforced, there is a loss of expressiveness, and we derive approximation bounds that quantify how accurately such a constrained network can approximate a continuous function.
comment: 30 pages, 9 figures, 2 tables
♻ ☆ Scalable LLM Math Reasoning Acceleration with Low-rank Distillation
Due to long generations, large language model (LLM) math reasoning demands significant computational resources and time. While many existing efficient inference methods have been developed with excellent performance preservation on language tasks, they often severely degrade math performance. In this paper, we propose Caprese, a resource-efficient distillation method to recover lost capabilities from deploying efficient inference methods, focused primarily in feedforward blocks. With original weights unperturbed, roughly 1% of additional parameters, and only 20K synthetic training samples, we are able to recover much if not all of the math capabilities lost from efficient inference for thinking LLMs and without harm to language tasks for instruct LLMs. Moreover, Caprese slashes the number of active parameters (~2B cut for Gemma 2 9B and Llama 3.1 8B) and integrates cleanly into existing model layers to reduce latency (>16% time-to-next-token reduction) while encouraging response brevity (up to 8.5% fewer tokens).
♻ ☆ Complexity Analysis of Normalizing Constant Estimation: from Jarzynski Equality to Annealed Importance Sampling and beyond
Given an unnormalized probability density $\pi\propto\mathrm{e}^{-V}$, estimating its normalizing constant $Z=\int_{\mathbb{R}^d}\mathrm{e}^{-V(x)}\mathrm{d}x$ or free energy $F=-\log Z$ is a crucial problem in Bayesian statistics, statistical mechanics, and machine learning. It is challenging especially in high dimensions or when $\pi$ is multimodal. To mitigate the high variance of conventional importance sampling estimators, annealing-based methods such as Jarzynski equality and annealed importance sampling are commonly adopted, yet their quantitative complexity guarantees remain largely unexplored. We take a first step toward a non-asymptotic analysis of annealed importance sampling. In particular, we derive an oracle complexity of $\widetilde{O}\left(\frac{d\beta^2{\mathcal{A}}^2}{\varepsilon^4}\right)$ for estimating $Z$ within $\varepsilon$ relative error with high probability, where $\beta$ is the smoothness of $V$ and $\mathcal{A}$ denotes the action of a curve of probability measures interpolating $\pi$ and a tractable reference distribution. Our analysis, leveraging Girsanov theorem and optimal transport, does not explicitly require isoperimetric assumptions on the target distribution. Finally, to tackle the large action of the widely used geometric interpolation, we propose a new algorithm based on reverse diffusion samplers, establish a framework for analyzing its complexity, and empirically demonstrate its efficiency in tackling multimodality.
♻ ☆ Structured Agent Distillation for Large Language Model
Large language models (LLMs) exhibit strong capabilities as decision-making agents by interleaving reasoning and actions, as seen in ReAct-style frameworks. Yet, their practical deployment is constrained by high inference costs and large model sizes. We propose Structured Agent Distillation, a framework that compresses large LLM-based agents into smaller student models while preserving both reasoning fidelity and action consistency. Unlike standard token-level distillation, our method segments trajectories into {[REASON]} and {[ACT]} spans, applying segment-specific losses to align each component with the teacher's behavior. This structure-aware supervision enables compact agents to better replicate the teacher's decision process. Experiments on ALFWorld, HotPotQA-ReAct, and WebShop show that our approach consistently outperforms token-level and imitation learning baselines, achieving significant compression with minimal performance drop. Scaling and ablation results further highlight the importance of span-level alignment for efficient and deployable agents.
♻ ☆ Value Profiles for Encoding Human Variation EMNLP 2025
Modelling human variation in rating tasks is crucial for personalization, pluralistic model alignment, and computational social science. We propose representing individuals using natural language value profiles -- descriptions of underlying values compressed from in-context demonstrations -- along with a steerable decoder model that estimates individual ratings from a rater representation. To measure the predictive information in a rater representation, we introduce an information-theoretic methodology and find that demonstrations contain the most information, followed by value profiles, then demographics. However, value profiles effectively compress the useful information from demonstrations (>70% information preservation) and offer advantages in terms of scrutability, interpretability, and steerability. Furthermore, clustering value profiles to identify similarly behaving individuals better explains rater variation than the most predictive demographic groupings. Going beyond test set performance, we show that the decoder predictions change in line with semantic profile differences, are well-calibrated, and can help explain instance-level disagreement by simulating an annotator population. These results demonstrate that value profiles offer novel, predictive ways to describe individual variation beyond demographics or group information.
comment: EMNLP 2025
♻ ☆ Incentivizing Reasoning for Advanced Instruction-Following of Large Language Models NeurIPS 2025
Existing large language models (LLMs) face challenges of following complex instructions, especially when multiple constraints are present and organized in paralleling, chaining, and branching structures. One intuitive solution, namely chain-of-thought (CoT), is expected to universally improve capabilities of LLMs. However, we find that the vanilla CoT exerts a negative impact on performance due to its superficial reasoning pattern of simply paraphrasing the instructions. It fails to peel back the compositions of constraints for identifying their relationship across hierarchies of types and dimensions. To this end, we propose RAIF, a systematic method to boost LLMs in dealing with complex instructions via incentivizing reasoning for test-time compute scaling. First, we stem from the decomposition of complex instructions under existing taxonomies and propose a reproducible data acquisition method. Second, we exploit reinforcement learning (RL) with verifiable rule-centric reward signals to cultivate reasoning specifically for instruction following. We address the shallow, non-essential nature of reasoning under complex instructions via sample-wise contrast for superior CoT enforcement. We also exploit behavior cloning of experts to facilitate steady distribution shift from fast-thinking LLMs to skillful reasoners. Extensive evaluations on seven comprehensive benchmarks confirm the validity of the proposed method, where a 1.5B LLM achieves 11.74% gains with performance comparable to a 8B LLM. Evaluation on OOD constraints also confirms the generalizability of our RAIF. Codes and data are available at https://github.com/yuleiqin/RAIF. Keywords: reinforcement learning with verifiable rewards (RLVR), instruction following, complex instructions
comment: Accepted to NeurIPS 2025; 15 pages of main body, 5 tables, 5 figures, 42 pages of appendix
♻ ☆ SelfReflect: Can LLMs Communicate Their Internal Answer Distribution?
The common approach to communicate a large language model's (LLM) uncertainty is to add a percentage number or a hedging word to its response. But is this all we can do? Instead of generating a single answer and then hedging it, an LLM that is fully transparent to the user needs to be able to reflect on its internal belief distribution and output a summary of all options it deems possible, and how likely they are. To test whether LLMs possess this capability, we develop the SelfReflect metric, an information-theoretic distance between a given summary and a distribution over answers. In interventional and human studies, we find that SelfReflect indicates even slight deviations, yielding a fine measure of faithfulness between a summary string and an LLM's actual internal distribution over answers. With SelfReflect, we make a resounding negative observation: modern LLMs are, across the board, incapable of revealing what they are uncertain about, neither through reasoning, nor chains-of-thoughts, nor explicit finetuning. However, we do find that LLMs are able to generate faithful summaries of their uncertainties if we help them by sampling multiple outputs and feeding them back into the context. This simple approach shines a light at the universal way of communicating LLM uncertainties whose future development the SelfReflect score enables.
♻ ☆ FedGCS: A Generative Framework for Efficient Client Selection in Federated Learning via Gradient-based Optimization IJCAI-2024
Federated Learning faces significant challenges in statistical and system heterogeneity, along with high energy consumption, necessitating efficient client selection strategies. Traditional approaches, including heuristic and learning-based methods, fall short of addressing these complexities holistically. In response, we propose FedGCS, a novel generative client selection framework that innovatively recasts the client selection process as a generative task. Drawing inspiration from the methodologies used in large language models, FedGCS efficiently encodes abundant decision-making knowledge within a continuous representation space, enabling efficient gradient-based optimization to search for optimal client selection that will be finally output via generation. The framework comprises four steps: (1) automatic collection of diverse "selection-score" pair data using classical client selection methods; (2) training an encoder-evaluator-decoder framework on this data to construct a continuous representation space; (3) employing gradient-based optimization in this space for optimal client selection; (4) generating the final optimal client selection via using beam search for the well-trained decoder. FedGCS outperforms traditional methods by being more comprehensive, generalizable, and efficient, simultaneously optimizing for model performance, latency, and energy consumption. The effectiveness of FedGCS is proven through extensive experimental analyses.
comment: Accepted by IJCAI-2024; Add an appendix
♻ ☆ FlowCast-ODE: Continuous Hourly Weather Forecasting with Dynamic Flow Matching and ODE Solver
Data-driven hourly weather forecasting models often face the challenge of error accumulation in long-term predictions. The problem is exacerbated by non-physical temporal discontinuities present in widely-used training datasets such as ECMWF Reanalysis v5 (ERA5), which stem from its 12-hour assimilation cycle. Such artifacts lead hourly autoregressive models to learn spurious dynamics and rapidly accumulate errors. To address this, we introduce FlowCast-ODE, a novel framework that treats atmospheric evolution as a continuous flow to ensure temporal coherence. Our method employs dynamic flow matching to learn the instantaneous velocity field from data and an ordinary differential equation (ODE) solver to generate smooth and temporally continuous hourly predictions. By pre-training on 6-hour intervals to sidestep data discontinuities and fine-tuning on hourly data, FlowCast-ODE produces seamless forecasts for up to 120 hours with a single lightweight model. It achieves competitive or superior skill on key meteorological variables compared to baseline models, preserves fine-grained spatial details, and demonstrates strong performance in forecasting extreme events, such as tropical cyclone tracks.
♻ ☆ The DNA of nuclear models: How AI predicts nuclear masses
Obtaining high-precision predictions of nuclear masses, or equivalently nuclear binding energies, $E_b$, remains an important goal in nuclear-physics research. Recently, many AI-based tools have shown promising results on this task, some achieving precision that surpasses the best physics models. However, the utility of these AI models remains in question given that predictions are only useful where measurements do not exist, which inherently requires extrapolation away from the training (and testing) samples. Since AI models are largely black boxes, the reliability of such an extrapolation is difficult to assess. We present an AI model that not only achieves cutting-edge precision for $E_b$, but does so in an interpretable manner. For example, we find that (and explain why) the most important dimensions of its internal representation form a double helix, where the analog of the hydrogen bonds in DNA here link the number of protons and neutrons found in the most stable nucleus of each isotopic chain. Furthermore, we show that the AI prediction of $E_b$ can be factorized and ordered hierarchically, with the most important terms corresponding to well-known symbolic models (such as the famous liquid drop). Remarkably, the improvement of the AI model over symbolic ones can almost entirely be attributed to an observation made by Jaffe in 1969 based on the structure of most known nuclear ground states. The end result is a fully interpretable data-driven model of nuclear masses based on physics deduced by AI.
comment: 19 pages, 11 figures
♻ ☆ Should You Use Your Large Language Model to Explore or Exploit?
We evaluate the ability of the current generation of large language models (LLMs) to help a decision-making agent facing an exploration-exploitation tradeoff. We use LLMs to explore and exploit in silos in various (contextual) bandit tasks. We find that while the current LLMs often struggle to exploit, in-context mitigations may be used to substantially improve performance for small-scale tasks. However even then, LLMs perform worse than a simple linear regression. On the other hand, we find that LLMs do help at exploring large action spaces with inherent semantics, by suggesting suitable candidates to explore.
♻ ☆ Beyond Next Token Probabilities: Learnable, Fast Detection of Hallucinations and Data Contamination on LLM Output Distributions
The automated detection of hallucinations and training data contamination is pivotal to the safe deployment of Large Language Models (LLMs). These tasks are particularly challenging in settings where no access to model internals is available. Current approaches in this setup typically leverage only the probabilities of actual tokens in the text, relying on simple task-specific heuristics. Crucially, they overlook the information contained in the full sequence of next-token probability distributions. We propose to go beyond hand-crafted decision rules by learning directly from the complete observable output of LLMs -- consisting not only of next-token probabilities, but also the full sequence of next-token distributions. We refer to this as the LLM Output Signature (LOS), and treat it as a reference data type for detecting hallucinations and data contamination. To that end, we introduce LOS-Net, a lightweight attention-based architecture trained on an efficient encoding of the LOS, which can provably approximate a broad class of existing techniques for both tasks. Empirically, LOS-Net achieves superior performance across diverse benchmarks and LLMs, while maintaining extremely low detection latency. Furthermore, it demonstrates promising transfer capabilities across datasets and LLMs. Full code is available at https://github.com/BarSGuy/Beyond-next-token-probabilities.
♻ ☆ Linear Attention for Efficient Bidirectional Sequence Modeling NeurIPS 2025
Linear Transformers and State Space Models have emerged as efficient alternatives to softmax Transformers for causal sequence modeling, enabling parallel training via matrix multiplication and efficient RNN-style inference. However, despite their success in causal tasks, no unified framework exists for applying Linear Transformers to bidirectional sequence modeling. We introduce LION, the first framework to systematically extend Linear Transformers to the bidirectional setting. LION generalizes three core representations commonly used in the causal case - full Linear Attention , bidirectional RNN, and chunkwise parallel form - to the bidirectional setting. These forms are theoretically equivalent and enable models to exploit the strengths of each during training and inference. We prove that a broad class of Linear Transformers can be extended using LION and validate our framework via three core examples based on the choice of decay type: LION-LIT, the bidirectional extension of arXiv:2006.16236; LION-D, based on arXiv:2307.08621; and LION-S, a variant using selective decay arXiv:2103.02143, arXiv:2312.0075. Across standard bidirectional tasks, LION enables models to match or exceed the performance of softmax Transformers, while offering significantly faster training and more efficient inference than existing State Space Models.
comment: Accepted in NeurIPS 2025
♻ ☆ Simple yet Effective Semi-supervised Knowledge Distillation from Vision-Language Models via Dual-Head Optimization
Semi-supervised learning (SSL) has emerged as a practical solution for addressing data scarcity challenges by leveraging unlabeled data. Recently, vision-language models (VLMs), pre-trained on massive image-text pairs, have demonstrated remarkable zero-/few-shot performance that often surpasses SSL approaches due to their exceptional generalization capabilities. This gap motivates us to question: how can we effectively harness the powerful generalization capabilities of VLMs into task-specific models? Knowledge distillation (KD) offers a natural framework for transferring VLM capabilities, but we identify that it suffers from gradient conflicts between supervised and distillation losses. To address this challenge, we propose Dual-Head Optimization (DHO), which introduces dual prediction heads for each distinct signal. We observe that DHO resolves gradient conflicts, enabling improved feature learning compared to single-head KD baselines, with practical benefits of minimal computational overhead and test-time hyperparameter tuning without retraining. Extensive experiments across 15 datasets show that DHO consistently outperforms KD baselines, often outperforming teacher models with smaller student models. DHO also achieves new state-of-the-art performance on both in-distribution ImageNet semi-supervised learning and out-of-distribution generalization across ImageNet variants. We publicly release our code and model checkpoints to facilitate future research at https://github.com/erjui/DHO.
comment: 38 pages, 17 figures, preprint
♻ ☆ TensorRL-QAS: Reinforcement learning with tensor networks for improved quantum architecture search NeurIPS 2025
Variational quantum algorithms hold the promise to address meaningful quantum problems already on noisy intermediate-scale quantum hardware. In spite of the promise, they face the challenge of designing quantum circuits that both solve the target problem and comply with device limitations. Quantum architecture search (QAS) automates the design process of quantum circuits, with reinforcement learning (RL) emerging as a promising approach. Yet, RL-based QAS methods encounter significant scalability issues, as computational and training costs grow rapidly with the number of qubits, circuit depth, and hardware noise. To address these challenges, we introduce $\textit{TensorRL-QAS}$, an improved framework that combines tensor network methods with RL for QAS. By warm-starting the QAS with a matrix product state approximation of the target solution, TensorRL-QAS effectively narrows the search space to physically meaningful circuits and accelerates the convergence to the desired solution. Tested on several quantum chemistry problems of up to 12-qubit, TensorRL-QAS achieves up to a 10-fold reduction in CNOT count and circuit depth compared to baseline methods, while maintaining or surpassing chemical accuracy. It reduces classical optimizer function evaluation by up to 100-fold, accelerates training episodes by up to 98$\%$, and can achieve 50$\%$ success probability for 10-qubit systems, far exceeding the $<$1$\%$ rates of baseline. Robustness and versatility are demonstrated both in the noiseless and noisy scenarios, where we report a simulation of an 8-qubit system. Furthermore, TensorRL-QAS demonstrates effectiveness on systems on 20-qubit quantum systems, positioning it as a state-of-the-art quantum circuit discovery framework for near-term hardware and beyond.
comment: Accepted at NeurIPS 2025. Code is at: https://github.com/Aqasch/TensorRL-QAS
♻ ☆ CE-GPPO: Coordinating Entropy via Gradient-Preserving Clipping Policy Optimization in Reinforcement Learning
Reinforcement learning (RL) has become a powerful paradigm for optimizing large language models (LLMs) to handle complex reasoning tasks. A core challenge in this process lies in managing policy entropy, which reflects the balance between exploration and exploitation during training. Existing methods, such as proximal policy optimization (PPO) and its variants, discard valuable gradient signals from low-probability tokens due to the clipping mechanism. We systematically analyze the entropy dynamics and reveal that these clipped tokens play a critical yet overlooked role in regulating entropy evolution. We propose \textbf{C}oordinating \textbf{E}ntropy via \textbf{G}radient-\textbf{P}reserving \textbf{P}olicy \textbf{O}ptimization (CE-GPPO), a novel algorithm that reintroduces gradients from clipped tokens in native PPO in a gentle and bounded manner. By controlling the magnitude of gradients from tokens outside the clipping interval, CE-GPPO is able to achieve an exploration-exploitation trade-off. We provide theoretical justification and empirical evidence showing that CE-GPPO effectively mitigates entropy instability. Extensive experiments on mathematical reasoning benchmarks show that CE-GPPO consistently outperforms strong baselines across different model scales.
♻ ☆ scCDCG: Efficient Deep Structural Clustering for single-cell RNA-seq via Deep Cut-informed Graph Embedding DASFAA 2024
Single-cell RNA sequencing (scRNA-seq) is essential for unraveling cellular heterogeneity and diversity, offering invaluable insights for bioinformatics advancements. Despite its potential, traditional clustering methods in scRNA-seq data analysis often neglect the structural information embedded in gene expression profiles, crucial for understanding cellular correlations and dependencies. Existing strategies, including graph neural networks, face challenges in handling the inefficiency due to scRNA-seq data's intrinsic high-dimension and high-sparsity. Addressing these limitations, we introduce scCDCG (single-cell RNA-seq Clustering via Deep Cut-informed Graph), a novel framework designed for efficient and accurate clustering of scRNA-seq data that simultaneously utilizes intercellular high-order structural information. scCDCG comprises three main components: (i) A graph embedding module utilizing deep cut-informed techniques, which effectively captures intercellular high-order structural information, overcoming the over-smoothing and inefficiency issues prevalent in prior graph neural network methods. (ii) A self-supervised learning module guided by optimal transport, tailored to accommodate the unique complexities of scRNA-seq data, specifically its high-dimension and high-sparsity. (iii) An autoencoder-based feature learning module that simplifies model complexity through effective dimension reduction and feature extraction. Our extensive experiments on 6 datasets demonstrate scCDCG's superior performance and efficiency compared to 7 established models, underscoring scCDCG's potential as a transformative tool in scRNA-seq data analysis. Our code is available at: https://github.com/XPgogogo/scCDCG.
comment: Accepted as a long paper for the research track at DASFAA 2024; Error Correction
♻ ☆ CrediBench: Building Web-Scale Network Datasets for Information Integrity
Online misinformation poses an escalating threat, amplified by the Internet's open nature and increasingly capable LLMs that generate persuasive yet deceptive content. Existing misinformation detection methods typically focus on either textual content or network structure in isolation, failing to leverage the rich, dynamic interplay between website content and hyperlink relationships that characterizes real-world misinformation ecosystems. We introduce CrediBench: a large-scale data processing pipeline for constructing temporal web graphs that jointly model textual content and hyperlink structure for misinformation detection. Unlike prior work, our approach captures the dynamic evolution of general misinformation domains, including changes in both content and inter-site references over time. Our processed one-month snapshot extracted from the Common Crawl archive in December 2024 contains 45 million nodes and 1 billion edges, representing the largest web graph dataset made publicly available for misinformation research to date. From our experiments on this graph snapshot, we demonstrate the strength of both structural and webpage content signals for learning credibility scores, which measure source reliability. The pipeline and experimentation code are all available here, and the dataset is in this folder.
comment: 16 pages,4 figures
♻ ☆ MIAFEx: An Attention-based Feature Extraction Method for Medical Image Classification
Feature extraction techniques are crucial in medical image classification; however, classical feature extractors, in addition to traditional machine learning classifiers, often exhibit significant limitations in providing sufficient discriminative information for complex image sets. While Convolutional Neural Networks (CNNs) and Vision Transformer (ViT) have shown promise in feature extraction, they are prone to overfitting due to the inherent characteristics of medical imaging data, including small sample sizes or high intra-class variance. In this work, the Medical Image Attention-based Feature Extractor (MIAFEx) is proposed, a novel method that employs a learnable refinement mechanism to enhance the classification token within the Transformer encoder architecture. This mechanism adjusts the token based on learned weights, improving the extraction of salient features and enhancing the model's adaptability to the challenges presented by medical imaging data. The MIAFEx output feature quality is compared against classical feature extractors using traditional and hybrid classifiers. Also, the performance of these features is compared against modern CNN and ViT models in classification tasks, demonstrating their superiority in accuracy and robustness across multiple complex medical imaging datasets. This advantage is particularly pronounced in scenarios with limited training data, where traditional and modern models often struggle to generalize effectively. The source code of this proposal can be found at https://github.com/Oscar-RamosS/Medical-Image-Attention-based-Feature-Extractor-MIAFEx
comment: This is the preprint version of an article that has been accepted for publication in Knowledge-Based Systems
♻ ☆ MIBoost: A Gradient Boosting Algorithm for Variable Selection After Multiple Imputation
Statistical learning methods for automated variable selection, such as LASSO, elastic nets, or gradient boosting, have become increasingly popular tools for building powerful prediction models. Yet, in practice, analyses are often complicated by missing data. The most widely used approach to address missingness is multiple imputation, which involves creating several completed datasets. However, there is an ongoing debate on how to perform model selection in the presence of multiple imputed datasets. Simple strategies, such as pooling models across datasets, have been shown to have suboptimal properties. Although more sophisticated methods exist, they are often difficult to implement and therefore not widely applied. In contrast, two recent approaches modify the regularization methods LASSO and elastic nets by defining a single loss function, resulting in a unified set of coefficients across imputations. Our key contribution is to extend this principle to the framework of component-wise gradient boosting by proposing MIBoost, a novel algorithm that employs a uniform variable-selection mechanism across imputed datasets. Simulation studies suggest that our approach yields prediction performance comparable to that of these recently proposed methods.
comment: 21 pages, 2 algorithms, includes a simulation study
♻ ☆ Value-Guided Search for Efficient Chain-of-Thought Reasoning NeurIPS 2025
In this paper, we propose a simple and efficient method for value model training on long-context reasoning traces. Compared to existing process reward models (PRMs), our method does not require a fine-grained notion of "step," which is difficult to define for long-context reasoning models. By collecting a dataset of 2.5 million reasoning traces, we train a 1.5B token-level value model and apply it to DeepSeek models for improved performance with test-time compute scaling. We find that block-wise value-guided search (VGS) with a final weighted majority vote achieves better test-time scaling than standard methods such as majority voting or best-of-n. Moreover, VGS significantly reduces the inference FLOPs required to achieve the same performance of majority voting. Our dataset, model and codebase are open-sourced.
comment: NeurIPS 2025
♻ ☆ LiDAR-BIND-T: Improved and Temporally Consistent Sensor Modality Translation and Fusion for Robotic Applications
This paper extends LiDAR-BIND, a modular multi-modal fusion framework that binds heterogeneous sensors (radar, sonar) to a LiDAR-defined latent space, with mechanisms that explicitly enforce temporal consistency. We introduce three contributions: (i) temporal embedding similarity that aligns consecutive latent representations, (ii) a motion-aligned transformation loss that matches displacement between predictions and ground truth LiDAR, and (iii) windowed temporal fusion using a specialised temporal module. We further update the model architecture to better preserve spatial structure. Evaluations on radar/sonar-to-LiDAR translation demonstrate improved temporal and spatial coherence, yielding lower absolute trajectory error and better occupancy map accuracy in Cartographer-based SLAM (Simultaneous Localisation and Mapping). We propose different metrics based on the Fr\'echet Video Motion Distance (FVMD) and a correlation-peak distance metric providing practical temporal quality indicators to evaluate SLAM performance. The proposed temporal LiDAR-BIND, or LiDAR-BIND-T, maintains modular modality fusion while substantially enhancing temporal stability, resulting in improved robustness and performance for downstream SLAM.
♻ ☆ Sequence Pathfinder for Multi-Agent Pickup and Delivery in the Warehouse
Multi-Agent Pickup and Delivery (MAPD) is a challenging extension of Multi-Agent Path Finding (MAPF), where agents are required to sequentially complete tasks with fixed-location pickup and delivery demands. Although learning-based methods have made progress in MAPD, they often perform poorly in warehouse-like environments with narrow pathways and long corridors when relying only on local observations for distributed decision-making. Communication learning can alleviate the lack of global information but introduce high computational complexity due to point-to-point communication. To address this challenge, we formulate MAPF as a sequence modeling problem and prove that path-finding policies under sequence modeling possess order-invariant optimality, ensuring its effectiveness in MAPD. Building on this, we propose the Sequential Pathfinder (SePar), which leverages the Transformer paradigm to achieve implicit information exchange, reducing decision-making complexity from exponential to linear while maintaining efficiency and global awareness. Experiments demonstrate that SePar consistently outperforms existing learning-based methods across various MAPF tasks and their variants, and generalizes well to unseen environments. Furthermore, we highlight the necessity of integrating imitation learning in complex maps like warehouses.
comment: Preprint Under Review
♻ ☆ Collective Counterfactual Explanations: Balancing Individual Goals and Collective Dynamics
Counterfactual explanations provide individuals with cost-optimal recommendations to achieve their desired outcomes. However, when a significant number of individuals seek similar state modifications, this individual-centric approach can inadvertently create competition and introduce unforeseen costs. Additionally, disregarding the underlying data distribution may lead to recommendations that individuals perceive as unusual or impractical. To address these challenges, we propose a novel framework that extends standard counterfactual explanations by incorporating a population dynamics model. This framework penalizes deviations from equilibrium after individuals follow the recommendations, effectively mitigating externalities caused by correlated changes across the population. By balancing individual modification costs with their impact on others, our method ensures more equitable and efficient outcomes. We show how this approach reframes the counterfactual explanation problem from an individual-centric task to a collective optimization problem. Augmenting our theoretical insights, we design and implement scalable algorithms for computing collective counterfactuals, showcasing their effectiveness and advantages over existing recourse methods, particularly in aligning with collective objectives.
♻ ☆ Communications to Circulations: 3D Wind Field Retrieval and Real-Time Prediction Using 5G GNSS Signals and Deep Learning
Accurate atmospheric wind field information is crucial for various applications, including weather forecasting, aviation safety, and disaster risk reduction. However, obtaining high spatiotemporal resolution wind data remains challenging due to limitations in traditional in-situ observations and remote sensing techniques, as well as the computational expense and biases of numerical weather prediction (NWP) models. This paper introduces G-WindCast, a novel deep learning framework that leverages signal strength variations from 5G Global Navigation Satellite System (GNSS) signals to retrieve and forecast three-dimensional (3D) atmospheric wind fields. The framework utilizes Forward Neural Networks (FNN) and Transformer networks to capture complex, nonlinear, and spatiotemporal relationships between GNSS-derived features and wind dynamics. Our preliminary results demonstrate promising accuracy in both wind retrieval and short-term wind forecasting (up to 30 minutes lead time), with skill scores comparable to high-resolution NWP outputs in certain scenarios. The model exhibits robustness across different forecast horizons and pressure levels, and its predictions for wind speed and direction show superior agreement with observations compared to concurrent ERA5 reanalysis data. Furthermore, we show that the system can maintain excellent performance for localized forecasting even with a significantly reduced number of GNSS stations (e.g., around 100), highlighting its cost-effectiveness and scalability. This interdisciplinary approach underscores the transformative potential of exploiting non-traditional data sources and deep learning for advanced environmental monitoring and real-time atmospheric applications.
comment: 10 pages, 5 figures. Minor text revisions; updated author list to reflect contributions
♻ ☆ A Review on Riemannian Metric Learning: Closer to You than You Imagine
Riemannian metric learning is an emerging field in machine learning, unlocking new ways to encode complex data structures beyond traditional distance metric learning. While classical approaches rely on global distances in Euclidean space, they often fall short in capturing intrinsic data geometry. Enter Riemannian metric learning: a powerful generalization that leverages differential geometry to model the data according to their underlying Riemannian manifold. This approach has demonstrated remarkable success across diverse domains, from causal inference and optimal transport to generative modeling and representation learning. In this review, we bridge the gap between classical metric learning and Riemannian geometry, providing a structured and accessible overview of key methods, applications, and recent advances. We argue that Riemannian metric learning is not merely a technical refinement but a fundamental shift in how we think about data representations. Thus, this review should serve as a valuable resource for researchers and practitioners interested in exploring Riemannian metric learning and convince them that it is closer to them than they might imagine-both in theory and in practice.
♻ ☆ Towards Reasoning Ability of Small Language Models EMNLP 2025
Reasoning has long been viewed as an emergent property of large language models (LLMs). However, recent studies challenge this assumption, showing that small language models (SLMs) can also achieve competitive reasoning performance. This paper introduces ThinkSLM, the first extensive benchmark to systematically evaluate and study the reasoning abilities of SLMs trained from scratch or derived from LLMs through quantization, pruning, and distillation. We first establish a reliable evaluation criterion comparing available methods and LLM judges against our human evaluations. Then we present a study evaluating 72 diverse SLMs from six major model families across 17 reasoning benchmarks. We repeat all our experiments three times to ensure a robust assessment. Our findings show that: 1) reasoning ability in SLMs is strongly influenced by training methods and data quality rather than solely model scale; 2) quantization preserves reasoning capability, while pruning significantly disrupts it; 3) larger models consistently exhibit higher robustness against adversarial perturbations and intermediate reasoning, but certain smaller models closely match or exceed the larger models' performance. Our findings challenge the assumption that scaling is the only way to achieve strong reasoning. Instead, we foresee a future where SLMs with strong reasoning capabilities can be developed through structured training or post-training compression. Our ThinkSLM Leaderboard is publicly available at: https://ctrl-gaurav.github.io/thinkslm.github.io/
comment: Accepted to EMNLP 2025 Main Conference
♻ ☆ Learning Theory for Kernel Bilevel Optimization NeurIPS 2025
Bilevel optimization has emerged as a technique for addressing a wide range of machine learning problems that involve an outer objective implicitly determined by the minimizer of an inner problem. While prior works have primarily focused on the parametric setting, a learning-theoretic foundation for bilevel optimization in the nonparametric case remains relatively unexplored. In this paper, we take a first step toward bridging this gap by studying Kernel Bilevel Optimization (KBO), where the inner objective is optimized over a reproducing kernel Hilbert space. This setting enables rich function approximation while providing a foundation for rigorous theoretical analysis. In this context, we derive novel finite-sample generalization bounds for KBO, leveraging tools from empirical process theory. These bounds further allow us to assess the statistical accuracy of gradient-based methods applied to the empirical discretization of KBO. We numerically illustrate our theoretical findings on a synthetic instrumental variable regression task.
comment: 47 pages, 3 figures. Accepted at NeurIPS 2025
♻ ☆ Solving the Cold Start Problem on One's Own as an End User via Preference Transfer
We propose a new approach that enables end users to directly solve the cold start problem by themselves. The cold start problem is a common issue in recommender systems, and many methods have been proposed to address the problem on the service provider's side. However, when the service provider does not take action, users are left with poor recommendations and no means to improve their experience. We propose an algorithm, Pretender, that allows end users to proactively solve the cold start problem on their own. Pretender does not require any special support from the service provider and can be deployed independently by users. We formulate the problem as minimizing the distance between the source and target distributions and optimize item selection from the target service accordingly. Furthermore, we establish theoretical guarantees for Pretender based on a discrete quadrature problem. We conduct experiments on real-world datasets to demonstrate the effectiveness of Pretender.
comment: TMLR 2025
♻ ☆ AQuaMaM: An Autoregressive, Quaternion Manifold Model for Rapidly Estimating Complex SO(3) Distributions NeurIPS 2025
Accurately modeling complex, multimodal distributions for rotations in three-dimensions, i.e., the SO(3) group, is challenging due to the curvature of the rotation manifold. The recently described implicit-PDF (IPDF) is a simple, elegant, and effective approach for learning arbitrary distributions on SO(3) up to a given precision. However, inference with IPDF requires $N$ forward passes through the network's final multilayer perceptron (where $N$ places an upper bound on the likelihood that can be calculated by the model), which is prohibitively slow for those without the computational resources necessary to parallelize the queries. In this paper, I introduce AQuaMaM, a neural network capable of both learning complex distributions on the rotation manifold and calculating exact likelihoods for query rotations in a single forward pass. Specifically, AQuaMaM autoregressively models the projected components of unit quaternions as mixtures of uniform distributions that partition their geometrically-restricted domain of values. When trained on an "infinite" toy dataset with ambiguous viewpoints, AQuaMaM rapidly converges to a sampling distribution closely matching the true data distribution. In contrast, the sampling distribution for IPDF dramatically diverges from the true data distribution, despite IPDF approaching its theoretical minimum evaluation loss during training. When trained on a constructed dataset of 500,000 renders of a die in different rotations, AQuaMaM reaches a test log-likelihood 14% higher than IPDF. Further, compared to IPDF, AQuaMaM uses 24% fewer parameters, has a prediction throughput 52$\times$ faster on a single GPU, and converges in a similar amount of time during training.
comment: Accepted to the Non-Euclidean Foundation Models and Geometric Learning workshop at NeurIPS 2025
♻ ☆ DEBATE, TRAIN, EVOLVE: Self Evolution of Language Model Reasoning EMNLP 2025
Large language models (LLMs) have improved significantly in their reasoning through extensive training on massive datasets. However, relying solely on additional data for improvement is becoming increasingly impractical, highlighting the need for models to autonomously enhance their reasoning without external supervision. In this paper, we propose Debate, Train, Evolve (DTE), a novel ground truth-free training framework that uses multi-agent debate traces to evolve a single language model. We also introduce a new prompting strategy Reflect-Critique-Refine, to improve debate quality by explicitly instructing agents to critique and refine their reasoning. Extensive evaluations on seven reasoning benchmarks with six open-weight models show that our DTE framework achieve substantial improvements, with an average accuracy gain of 8.92% on the challenging GSM-PLUS dataset. Furthermore, we observe strong cross-domain generalization, with an average accuracy gain of 5.8% on all other benchmarks, suggesting that our method captures general reasoning capabilities. Our framework code and trained models are publicly available at https://github.com/ctrl-gaurav/Debate-Train-Evolve
comment: Accepted to EMNLP 2025 Main Conference
♻ ☆ BOOST: Bayesian Optimization with Optimal Kernel and Acquisition Function Selection Technique
The performance of Bayesian optimization (BO), a highly sample-efficient method for expensive black-box problems, is critically governed by the selection of its hyperparameters, including the kernel and acquisition functions. This presents a significant practical challenge: an inappropriate combination can lead to poor performance and wasted evaluations. While individual improvements to kernel functions (e.g., tree-based kernels, deep kernel learning) and acquisition functions (e.g., multi-step lookahead, tree-based planning) have been actively explored, the joint and autonomous selection of the best pair has been largely overlooked, forcing practitioners to rely on heuristics or costly manual tuning. We propose BOOST (Bayesian Optimization with Optimal Kernel and Acquisition Function Selection Technique), a novel framework that automates this selection. BOOST utilizes a lightweight, offline evaluation stage to predict the performance of various kernel-acquisition pairs and identify the most promising pair before committing to expensive evaluations. Using K-means clustering, BOOST first selects initial subsets from previously observed data-in-hand and prepares all possible kernel-acquisition pairs from user-chosen candidates. For each pair, BOOST conducts internal BO runs starting with the initial subset, evaluating how many iterations are required to find the target value within the remaining data, thereby identifying the pair with the best retrospective performance for future optimization. Experiments on synthetic benchmarks and real-world hyperparameter optimization tasks demonstrate that BOOST consistently outperforms standard BO with fixed hyperparameters and state-of-the-art adaptive methods, highlighting its effectiveness and robustness in diverse problem landscapes.
comment: 17 pages
♻ ☆ Feature-aware Hypergraph Generation via Next-Scale Prediction
Graph generative models have shown strong results in molecular design but struggle to scale to large, complex structures. While hierarchical methods improve scalability, they usually ignore node and edge features, which are critical in real-world applications. This issue is amplified in hypergraphs, where hyperedges capture higher-order relationships among multiple nodes. Despite their importance in domains such as 3D geometry, molecular systems, and circuit design, existing generative models rarely support both hypergraphs and feature generation at scale. In this paper, we introduce FAHNES (feature-aware hypergraph generation via next-scale prediction), a hierarchical framework that jointly generates hypergraph topology and features. FAHNES builds multi-scale representations through node coarsening and refines them via localized expansion, guided by a novel node budget mechanism that controls granularity and ensures consistency across scales. Experiments on synthetic, 3D mesh and graph point cloud datasets show that FAHNES achieves state-of-the-art performance in jointly generating features and structure, advancing scalable hypergraph and graph generation.
♻ ☆ Rethinking Diffusion Model in High Dimension
Curse of Dimensionality is an unavoidable challenge in statistical probability models, yet diffusion models seem to overcome this limitation, achieving impressive results in high-dimensional data generation. Diffusion models assume that they can learn the statistical quantities of the underlying probability distribution, enabling sampling from this distribution to generate realistic samples. But is this really how they work? We argue not, based on the following observations: 1) In high-dimensional sparse scenarios, the fitting target of the diffusion model's objective function degrades from a weighted sum of multiple samples to a single sample, which we believe hinders the model's ability to effectively learn essential statistical quantities such as posterior, score, or velocity field. 2) Most inference methods can be unified within a simple framework which involves no statistical concepts, aligns with the degraded objective function, and provides an novel and intuitive perspective on the inference process.
♻ ☆ Predicting LLM Reasoning Performance with Small Proxy Model
Given the prohibitive cost of pre-training large language models, it is essential to leverage smaller proxy models to optimize datasets before scaling up. However, this approach becomes challenging for reasoning capabilities, which exhibit emergent behavior that only appear reliably at larger model sizes, often exceeding 7B parameters. To address this, we introduce rBridge, showing that small proxies ($\leq$1B) can effectively predict large-model reasoning by aligning more closely with (1) the pre-training objective and (2) the target task. rBridge achieves this by weighting negative log-likelihood with task alignment, using reasoning traces from frontier models as gold labels. In our experiments, rBridge (i) reduces dataset ranking costs by over 100x relative to the best baseline, (ii) achieves the strongest correlation across six reasoning benchmarks at 1B to 32B scale, and (iii) zero-shot transfers predictive relationships across pre-training datasets at 1B to 7B scale. These findings indicate that rBridge offers a practical path for exploring reasoning-oriented pre-training at lower cost.
comment: Pre-print
♻ ☆ Risk Profiling and Modulation for LLMs
Large language models (LLMs) are increasingly used for decision-making tasks under uncertainty; however, their risk profiles and how they are influenced by prompting and alignment methods remain underexplored. Existing studies have primarily examined personality prompting or multi-agent interactions, leaving open the question of how post-training influences the risk behavior of LLMs. In this work, we propose a new pipeline for eliciting, steering, and modulating LLMs' risk profiles, drawing on tools from behavioral economics and finance. Using utility-theoretic models, we compare pre-trained, instruction-tuned, and RLHF-aligned LLMs, and find that while instruction-tuned models exhibit behaviors consistent with some standard utility formulations, pre-trained and RLHF-aligned models deviate more from any utility models fitted. We further evaluate modulation strategies, including prompt engineering, in-context learning, and post-training, and show that post-training provides the most stable and effective modulation of risk preference. Our findings provide insights into the risk profiles of different classes and stages of LLMs and demonstrate how post-training modulates these profiles, laying the groundwork for future research on behavioral alignment and risk-aware LLM design.
♻ ☆ Dynamic Pricing in High-Speed Railways Using Multi-Agent Reinforcement Learning
This paper addresses a critical challenge in the high-speed passenger railway industry: designing effective dynamic pricing strategies in the context of competing and cooperating operators. To address this, a multi-agent reinforcement learning (MARL) framework based on a non-zero-sum Markov game is proposed, incorporating random utility models to capture passenger decision making. Unlike prior studies in areas such as energy, airlines, and mobile networks, dynamic pricing for railway systems using deep reinforcement learning has received limited attention. A key contribution of this paper is a parametrisable and versatile reinforcement learning simulator designed to model a variety of railway network configurations and demand patterns while enabling realistic, microscopic modelling of user behaviour, called RailPricing-RL. This environment supports the proposed MARL framework, which models heterogeneous agents competing to maximise individual profits while fostering cooperative behaviour to synchronise connecting services. Experimental results validate the framework, demonstrating how user preferences affect MARL performance and how pricing policies influence passenger choices, utility, and overall system dynamics. This study provides a foundation for advancing dynamic pricing strategies in railway systems, aligning profitability with system-wide efficiency, and supporting future research on optimising pricing policies.
comment: 39 pages, 5 figures
♻ ☆ Efficient Fairness-Performance Pareto Front Computation
There is a well known intrinsic trade-off between the fairness of a representation and the performance of classifiers derived from the representation. Due to the complexity of optimisation algorithms in most modern representation learning approaches, for a given method it may be non-trivial to decide whether the obtained fairness-performance curve of the method is optimal, i.e., whether it is close to the true Pareto front for these quantities for the underlying data distribution. In this paper we propose a new method to compute the optimal Pareto front, which does not require the training of complex representation models. We show that optimal fair representations possess several useful structural properties, and that these properties enable a reduction of the computation of the Pareto Front to a compact discrete problem. We then also show that these compact approximating problems can be efficiently solved via off-the shelf concave-convex programming methods. Since our approach is independent of the specific model of representations, it may be used as the benchmark to which representation learning algorithms may be compared. We experimentally evaluate the approach on a number of real world benchmark datasets.
comment: 10 pages, contain link to package. Neurips 2025
♻ ☆ Ban&Pick: Ehancing Performance and Efficiency of MoE-LLMs via Smarter Routing
Sparse Mixture-of-Experts (MoE) has become a key architecture for scaling large language models (LLMs) efficiently. Recent fine-grained MoE designs introduce hundreds of experts per layer, with multiple experts activated per token, enabling stronger specialization. However, during pre-training, routers are optimized mainly for stability and robustness: they converge prematurely and enforce balanced usage, limiting the full potential of model performance and efficiency at inference. In this work, we uncover two overlooked issues: (i) a few highly influential experts are underutilized due to premature and balanced routing decisions; and (ii) enforcing a fixed number of active experts per token introduces substantial redundancy. Instead of retraining models or redesigning MoE architectures, we introduce Ban&Pick, a post-training, plug-and-play strategy for smarter routing. Pick discovers and reinforces key experts-a small group with outsized impact on performance-leading to notable accuracy gains across domains. Ban further dynamically prunes redundant experts based on layer and token sensitivity, delivering faster inference with minimal accuracy loss. Experiments on fine-grained MoE-LLMs (DeepSeek, Qwen3) across math, code, and general reasoning benchmarks demonstrate that Ban\&Pick delivers free performance gains and inference acceleration without retraining or architectural changes. For instance, on Qwen3-30B-A3B, it improves accuracy from 80.67 to 84.66 on AIME2024 and from 65.66 to 68.18 on GPQA-Diamond, while accelerating inference by 1.25x under the vLLM.
comment: 21 pages, 9 figures
♻ ☆ Static Word Embeddings for Sentence Semantic Representation EMNLP 2025
We propose new static word embeddings optimised for sentence semantic representation. We first extract word embeddings from a pre-trained Sentence Transformer, and improve them with sentence-level principal component analysis, followed by either knowledge distillation or contrastive learning. During inference, we represent sentences by simply averaging word embeddings, which requires little computational cost. We evaluate models on both monolingual and cross-lingual tasks and show that our model substantially outperforms existing static models on sentence semantic tasks, and even surpasses a basic Sentence Transformer model (SimCSE) on a text embedding benchmark. Lastly, we perform a variety of analyses and show that our method successfully removes word embedding components that are not highly relevant to sentence semantics, and adjusts the vector norms based on the influence of words on sentence semantics.
comment: 17 pages; accepted to the Main Conference of EMNLP 2025
♻ ☆ Efficiently Escaping Saddle Points for Policy Optimization
Policy gradient (PG) is widely used in reinforcement learning due to its scalability and good performance. In recent years, several variance-reduced PG methods have been proposed with a theoretical guarantee of converging to an approximate first-order stationary point (FOSP) with the sample complexity of $O(\epsilon^{-3})$. However, FOSPs could be bad local optima or saddle points. Moreover, these algorithms often use importance sampling (IS) weights which could impair the statistical effectiveness of variance reduction. In this paper, we propose a variance-reduced second-order method that uses second-order information in the form of Hessian vector products (HVP) and converges to an approximate second-order stationary point (SOSP) with sample complexity of $\tilde{O}(\epsilon^{-3})$. This rate improves the best-known sample complexity for achieving approximate SOSPs by a factor of $O(\epsilon^{-0.5})$. Moreover, the proposed variance reduction technique bypasses IS weights by using HVP terms. Our experimental results show that the proposed algorithm outperforms the state of the art and is more robust to changes in random seeds.
comment: arXiv admin note: text overlap with arXiv:2205.08253
♻ ☆ A space-decoupling framework for optimization on bounded-rank matrices with orthogonally invariant constraints
Imposing additional constraints on low-rank optimization has garnered growing interest. However, the geometry of coupled constraints hampers the well-developed low-rank structure and makes the problem intricate. To this end, we propose a space-decoupling framework for optimization on bounded-rank matrices with orthogonally invariant constraints. The "space-decoupling" is reflected in several ways. We show that the tangent cone of coupled constraints is the intersection of tangent cones of each constraint. Moreover, we decouple the intertwined bounded-rank and orthogonally invariant constraints into two spaces, leading to optimization on a smooth manifold. Implementing Riemannian algorithms on this manifold is painless as long as the geometry of additional constraints is known. In addition, we unveil the equivalence between the reformulated problem and the original problem. Numerical experiments on real-world applications -- spherical data fitting, graph similarity measuring, low-rank SDP, model reduction of Markov processes, reinforcement learning, and deep learning -- validate the superiority of the proposed framework.
comment: 50 pages, 12 figures, 6 tables
♻ ☆ Surrogate models for diffusion on graphs via sparse polynomials
Diffusion kernels over graphs have been widely utilized as effective tools in various applications due to their ability to accurately model the flow of information through nodes and edges. However, there is a notable gap in the literature regarding the development of surrogate models for diffusion processes on graphs. In this work, we fill this gap by proposing sparse polynomial-based surrogate models for parametric diffusion equations on graphs with community structure. In tandem, we provide convergence guarantees for both least squares and compressed sensing-based approximations by showing the holomorphic regularity of parametric solutions to these diffusion equations. Our theoretical findings are accompanied by a series of numerical experiments conducted on both synthetic and real-world graphs that demonstrate the applicability of our methodology.
♻ ☆ Stochastic Layer-wise Learning: Scalable and Efficient Alternative to Backpropagation
Backpropagation underpins modern deep learning, yet its reliance on global gradient synchronization limits scalability and incurs high memory costs. In contrast, fully local learning rules are more efficient but often struggle to maintain the cross-layer coordination needed for coherent global learning. Building on this tension, we introduce Stochastic Layer-wise Learning (SLL), a layer-wise training algorithm that decomposes the global objective into coordinated layer-local updates while preserving global representational coherence. The method is ELBO-inspired under a Markov assumption on the network, where the network-level objective decomposes into layer-wise terms and each layer optimizes a local objective via a deterministic encoder. The intractable KL in ELBO is replaced by a Bhattacharyya surrogate computed on auxiliary categorical posteriors obtained via fixed geometry-preserving random projections, with optional multiplicative dropout providing stochastic regularization. SLL optimizes locally, aligns globally, thereby eliminating cross-layer backpropagation. Experiments on MLPs, CNNs, and Vision Transformers from MNIST to ImageNet show that the approach surpasses recent local methods and matches global BP performance while memory usage invariant with depth. The results demonstrate a practical and principled path to modular and scalable local learning that couples purely local computation with globally coherent representations.
comment: 11 pages, 5 figures
♻ ☆ LargeAD: Large-Scale Cross-Sensor Data Pretraining for Autonomous Driving
Recent advancements in vision foundation models (VFMs) have revolutionized visual perception in 2D, yet their potential for 3D scene understanding, particularly in autonomous driving applications, remains underexplored. In this paper, we introduce LargeAD, a versatile and scalable framework designed for large-scale 3D pretraining across diverse real-world driving datasets. Our framework leverages VFMs to extract semantically rich superpixels from 2D images, which are aligned with LiDAR point clouds to generate high-quality contrastive samples. This alignment facilitates cross-modal representation learning, enhancing the semantic consistency between 2D and 3D data. We introduce several key innovations: (i) VFM-driven superpixel generation for detailed semantic representation, (ii) a VFM-assisted contrastive learning strategy to align multimodal features, (iii) superpoint temporal consistency to maintain stable representations across time, and (iv) multi-source data pretraining to generalize across various LiDAR configurations. Our approach achieves substantial gains over state-of-the-art methods in linear probing and fine-tuning for LiDAR-based segmentation and object detection. Extensive experiments on 11 large-scale multi-sensor datasets highlight our superior performance, demonstrating adaptability, efficiency, and robustness in real-world autonomous driving scenarios.
comment: IEEE TPAMI 2025; 17 pages, 9 figures, 11 tables; Project Page at https://ldkong.com/LargeAD
♻ ☆ SINQ: Sinkhorn-Normalized Quantization for Calibration-Free Low-Precision LLM Weights
Post-training quantization has emerged as the most widely used strategy for deploying large language models at low precision. Still, current methods show perplexity degradation at bit-widths less than or equal to 4, partly because representing outliers causes precision issues in parameters that share the same scales as these outliers. This problem is especially pronounced for calibration-free, uniform quantization methods. We introduce SINQ to augment existing post-training quantizers with an additional second-axis scale factor and a fast Sinkhorn-Knopp-style algorithm that finds scales to normalize per-row and per-column variances, thereby minimizing a novel per-matrix proxy target for quantization: the matrix imbalance. Our method has no interactions between layers and can be trivially applied to new architectures to quantize any linear layers. We evaluate our method on the Qwen3 model family and DeepSeek-V2.5. SINQ improves WikiText2 and C4 perplexity significantly against uncalibrated uniform quantization baselines and can be further enhanced by combining it with calibration and non-uniform quantization levels. Code to reproduce the results of this work and to easily quantize models using SINQ is available at https://github.com/huawei-csl/SINQ.
♻ ☆ Personalized Subgraph Federated Learning with Differentiable Auxiliary Projections NeurIPS 2025
Federated Learning (FL) on graph-structured data typically faces non-IID challenges, particularly in scenarios where each client holds a distinct subgraph sampled from a global graph. In this paper, we introduce Federated learning with Auxiliary projections (FedAux), a personalized subgraph FL framework that learns to align, compare, and aggregate heterogeneously distributed local models without sharing raw data or node embeddings. In FedAux, each client jointly trains (i) a local GNN and (ii) a learnable auxiliary projection vector (APV) that differentiably projects node embeddings onto a 1D space. A soft-sorting operation followed by a lightweight 1D convolution refines these embeddings in the ordered space, enabling the APV to effectively capture client-specific information. After local training, these APVs serve as compact signatures that the server uses to compute inter-client similarities and perform similarity-weighted parameter mixing, yielding personalized models while preserving cross-client knowledge transfer. Moreover, we provide rigorous theoretical analysis to establish the convergence and rationality of our design. Empirical evaluations across diverse graph benchmarks demonstrate that FedAux substantially outperforms existing baselines in both accuracy and personalization performance. The code is available at https://github.com/JhuoW/FedAux.
comment: Accepted by NeurIPS 2025
♻ ☆ Detecting Instruction Fine-tuning Attacks on Language Models using Influence Function
Instruction finetuning attacks pose a serious threat to large language models (LLMs) by subtly embedding poisoned examples in finetuning datasets, leading to harmful or unintended behaviors in downstream applications. Detecting such attacks is challenging because poisoned data is often indistinguishable from clean data and prior knowledge of triggers or attack strategies is rarely available. We present a detection method that requires no prior knowledge of the attack. Our approach leverages influence functions under semantic transformation: by comparing influence distributions before and after a sentiment inversion, we identify critical poison examples whose influence is strong and remain unchanged before and after inversion. We show that this method works on sentiment classification task and math reasoning task, for different language models. Removing a small set of critical poisons (about 1% of the data) restores the model performance to near-clean levels. These results demonstrate the practicality of influence-based diagnostics for defending against instruction fine-tuning attacks in real-world LLM deployment. Artifact available at https://github.com/lijiawei20161002/Poison-Detection. WARNING: This paper contains offensive data examples.
♻ ☆ Hierarchical Balance Packing: Towards Efficient Supervised Fine-tuning for Long-Context LLM
Training Long-Context Large Language Models (LLMs) is challenging, as hybrid training with long-context and short-context data often leads to workload imbalances. Existing works mainly use data packing to alleviate this issue, but fail to consider imbalanced attention computation and wasted communication overhead. This paper proposes Hierarchical Balance Packing (HBP), which designs a novel batch-construction method and training recipe to address those inefficiencies. In particular, the HBP constructs multi-level data packing groups, each optimized with a distinct packing length. It assigns training samples to their optimal groups and configures each group with the most effective settings, including sequential parallelism degree and gradient checkpointing configuration. To effectively utilize multi-level groups of data, we design a dynamic training pipeline specifically tailored to HBP, including curriculum learning, adaptive sequential parallelism, and stable loss. Our extensive experiments demonstrate that our method significantly reduces training time over multiple datasets and open-source models while maintaining strong performance. For the largest DeepSeek-V2 (236B) MoE model, our method speeds up the training by 2.4$\times$ with competitive performance. Codes will be released at https://github.com/ModelTC/HBP.
♻ ☆ Differentiable Sparsity via $D$-Gating: Simple and Versatile Structured Penalization
Structured sparsity regularization offers a principled way to compact neural networks, but its non-differentiability breaks compatibility with conventional stochastic gradient descent and requires either specialized optimizers or additional post-hoc pruning without formal guarantees. In this work, we propose $D$-Gating, a fully differentiable structured overparameterization that splits each group of weights into a primary weight vector and multiple scalar gating factors. We prove that any local minimum under $D$-Gating is also a local minimum using non-smooth structured $L_{2,2/D}$ penalization, and further show that the $D$-Gating objective converges at least exponentially fast to the $L_{2,2/D}$-regularized loss in the gradient flow limit. Together, our results show that $D$-Gating is theoretically equivalent to solving the original group sparsity problem, yet induces distinct learning dynamics that evolve from a non-sparse regime into sparse optimization. We validate our theory across vision, language, and tabular tasks, where $D$-Gating consistently delivers strong performance-sparsity tradeoffs and outperforms both direct optimization of structured penalties and conventional pruning baselines.
♻ ☆ Modeling Saliency Dataset Bias ICCV 2025
Recent advances in image-based saliency prediction are approaching gold standard performance levels on existing benchmarks. Despite this success, we show that predicting fixations across multiple saliency datasets remains challenging due to dataset bias. We find a significant performance drop (around 40%) when models trained on one dataset are applied to another. Surprisingly, increasing dataset diversity does not resolve this inter-dataset gap, with close to 60% attributed to dataset-specific biases. To address this remaining generalization gap, we propose a novel architecture extending a mostly dataset-agnostic encoder-decoder structure with fewer than 20 dataset-specific parameters that govern interpretable mechanisms such as multi-scale structure, center bias, and fixation spread. Adapting only these parameters to new data accounts for more than 75% of the generalization gap, with a large fraction of the improvement achieved with as few as 50 samples. Our model sets a new state-of-the-art on all three datasets of the MIT/Tuebingen Saliency Benchmark (MIT300, CAT2000, and COCO-Freeview), even when purely generalizing from unrelated datasets, but with a substantial boost when adapting to the respective training datasets. The model also provides valuable insights into spatial saliency properties, revealing complex multi-scale effects that combine both absolute and relative sizes.
comment: published at ICCV 2025
♻ ☆ Dual Alignment Maximin Optimization for Offline Model-based RL
Offline reinforcement learning agents face significant deployment challenges due to the synthetic-to-real distribution mismatch. While most prior research has focused on improving the fidelity of synthetic sampling and incorporating off-policy mechanisms, the directly integrated paradigm often fails to ensure consistent policy behavior in biased models and underlying environmental dynamics, which inherently arise from discrepancies between behavior and learning policies. In this paper, we first shift the focus from model reliability to policy discrepancies while optimizing for expected returns, and then self-consistently incorporate synthetic data, deriving a novel actor-critic paradigm, Dual Alignment Maximin Optimization (DAMO). It is a unified framework to ensure both model-environment policy consistency and synthetic and offline data compatibility. The inner minimization performs dual conservative value estimation, aligning policies and trajectories to avoid out-of-distribution states and actions, while the outer maximization ensures that policy improvements remain consistent with inner value estimates. Empirical evaluations demonstrate that DAMO effectively ensures model and policy alignments, achieving competitive performance across diverse benchmark tasks.
♻ ☆ Keep It Real: Challenges in Attacking Compression-Based Adversarial Purification
Previous work has suggested that preprocessing images through lossy compression can defend against adversarial perturbations, but comprehensive attack evaluations have been lacking. In this paper, we construct strong white-box and adaptive attacks against various compression models and identify a critical challenge for attackers: high realism in reconstructed images significantly increases attack difficulty. Through rigorous evaluation across multiple attack scenarios, we demonstrate that compression models capable of producing realistic, high-fidelity reconstructions are substantially more resistant to our attacks. In contrast, low-realism compression models can be broken. Our analysis reveals that this is not due to gradient masking. Rather, realistic reconstructions maintaining distributional alignment with natural images seem to offer inherent robustness. This work highlights a significant obstacle for future adversarial attacks and suggests that developing more effective techniques to overcome realism represents an essential challenge for comprehensive security evaluation.
♻ ☆ Regularizing Learnable Feature Extraction for Automatic Speech Recognition
Neural front-ends are an appealing alternative to traditional, fixed feature extraction pipelines for automatic speech recognition (ASR) systems since they can be directly trained to fit the acoustic model. However, their performance often falls short compared to classical methods, which we show is largely due to their increased susceptibility to overfitting. This work therefore investigates regularization methods for training ASR models with learnable feature extraction front-ends. First, we examine audio perturbation methods and show that larger relative improvements can be obtained for learnable features. Additionally, we identify two limitations in the standard use of SpecAugment for these front-ends and propose masking in the short time Fourier transform (STFT)-domain as a simple but effective modification to address these challenges. Finally, integrating both regularization approaches effectively closes the performance gap between traditional and learnable features.
comment: Proceedings of Interspeech 2025
♻ ☆ Using Knowledge Graphs to harvest datasets for efficient CLIP model training
Training high-quality CLIP models typically requires enormous datasets, which limits the development of domain-specific models -- especially in areas that even the largest CLIP models do not cover well -- and drives up training costs. This poses challenges for scientific research that needs fine-grained control over the training procedure of CLIP models. In this work, we show that by employing smart web search strategies enhanced with knowledge graphs, a robust CLIP model can be trained from scratch with considerably less data. Specifically, we demonstrate that an expert foundation model for living organisms can be built using just 10M images. Moreover, we introduce EntityNet, a dataset comprising 33M images paired with 46M text descriptions, which enables the training of a generic CLIP model in significantly reduced time.
comment: Accepted for oral presentation at GCPR 2025 (German Conference on Pattern Recognition). This is the version submitted to the conference, not the official conference proceedings
♻ ☆ scSiameseClu: A Siamese Clustering Framework for Interpreting single-cell RNA Sequencing Data
Single-cell RNA sequencing (scRNA-seq) reveals cell heterogeneity, with cell clustering playing a key role in identifying cell types and marker genes. Recent advances, especially graph neural networks (GNNs)-based methods, have significantly improved clustering performance. However, the analysis of scRNA-seq data remains challenging due to noise, sparsity, and high dimensionality. Compounding these challenges, GNNs often suffer from over-smoothing, limiting their ability to capture complex biological information. In response, we propose scSiameseClu, a novel Siamese Clustering framework for interpreting single-cell RNA-seq data, comprising of 3 key steps: (1) Dual Augmentation Module, which applies biologically informed perturbations to the gene expression matrix and cell graph relationships to enhance representation robustness; (2) Siamese Fusion Module, which combines cross-correlation refinement and adaptive information fusion to capture complex cellular relationships while mitigating over-smoothing; and (3) Optimal Transport Clustering, which utilizes Sinkhorn distance to efficiently align cluster assignments with predefined proportions while maintaining balance. Comprehensive evaluations on seven real-world datasets demonstrate that scSiameseClu outperforms state-of-the-art methods in single-cell clustering, cell type annotation, and cell type classification, providing a powerful tool for scRNA-seq data interpretation.
♻ ☆ A theoretical framework for self-supervised contrastive learning for continuous dependent data
Self-supervised learning (SSL) has emerged as a powerful approach to learning representations, particularly in the field of computer vision. However, its application to dependent data, such as temporal and spatio-temporal domains, remains underexplored. Besides, traditional contrastive SSL methods often assume \emph{semantic independence between samples}, which does not hold for dependent data exhibiting complex correlations. We propose a novel theoretical framework for contrastive SSL tailored to \emph{continuous dependent data}, which allows the nearest samples to be semantically close to each other. In particular, we propose two possible \textit{ground truth similarity measures} between objects -- \emph{hard} and \emph{soft} closeness. Under it, we derive an analytical form for the \textit{estimated similarity matrix} that accommodates both types of closeness between samples, thereby introducing dependency-aware loss functions. We validate our approach, \emph{Dependent TS2Vec}, on temporal and spatio-temporal downstream problems. Given the dependency patterns presented in the data, our approach surpasses modern ones for dependent data, highlighting the effectiveness of our theoretically grounded loss functions for SSL in capturing spatio-temporal dependencies. Specifically, we outperform TS2Vec on the standard UEA and UCR benchmarks, with accuracy improvements of $4.17$\% and $2.08$\%, respectively. Furthermore, on the drought classification task, which involves complex spatio-temporal patterns, our method achieves a $7$\% higher ROC-AUC score.
♻ ☆ Projected Coupled Diffusion for Test-Time Constrained Joint Generation
Modifications to test-time sampling have emerged as an important extension to diffusion algorithms, with the goal of biasing the generative process to achieve a given objective without having to retrain the entire diffusion model. However, generating jointly correlated samples from multiple pre-trained diffusion models while simultaneously enforcing task-specific constraints without costly retraining has remained challenging. To this end, we propose Projected Coupled Diffusion (PCD), a novel test-time framework for constrained joint generation. PCD introduces a coupled guidance term into the generative dynamics to encourage coordination between diffusion models and incorporates a projection step at each diffusion step to enforce hard constraints. Empirically, we demonstrate the effectiveness of PCD in application scenarios of image-pair generation, object manipulation, and multi-robot motion planning. Our results show improved coupling effects and guaranteed constraint satisfaction without incurring excessive computational costs.
comment: Preprint
Reinforcement Fine-Tuning Naturally Mitigates Forgetting in Continual Post-Training
Continual post-training (CPT) is a popular and effective technique for adapting foundation models like multimodal large language models to specific and ever-evolving downstream tasks. While existing research has primarily concentrated on methods like data replay, model expansion, or parameter regularization, the fundamental role of the learning paradigm within CPT remains largely unexplored. This paper presents a comparative analysis of two core post-training paradigms: supervised fine-tuning (SFT) and reinforcement fine-tuning (RFT), investigating their respective impacts on knowledge retention during CPT. Our experiments are conducted on a benchmark comprising seven diverse multimodal tasks, utilizing Qwen2.5-VL-7B-Instruct as the base model for continual post-training. The investigation yields two significant findings: (1) When continuously learning on downstream tasks, SFT leads to catastrophic forgetting of previously learned tasks. In contrast, RFT inherently preserves prior knowledge and achieve performance comparable to multi-task training. (2) RFT successfully protects and even enhances the model's general knowledge on standard benchmarks (e.g., MMMU and MMLU-Pro). Conversely, SFT degrades general model capabilities severely. Further analysis reveals that this stability is not primarily due to explicit mechanisms like KL penalty or chain-of-thought reasoning. Instead, we identify an implicit regularization mechanism inherent to RFT as a key contributing factor. Our theoretical analysis suggests that RFT's gradient updates are naturally scaled by the reward variance, acting as a data-dependent regularizer that inherently protects previously acquired knowledge. Finally, we propose a rollout-based instance filtering algorithm to enhance the stability and efficiency of RFT. Our comprehensive study demonstrates the superiority of RFT as a robust paradigm for continual post-training.
♻ ☆ FlowRL: Matching Reward Distributions for LLM Reasoning
We propose FlowRL: matching the full reward distribution via flow balancing instead of maximizing rewards in large language model (LLM) reinforcement learning (RL). Recent advanced reasoning models adopt reward-maximizing methods (\eg, PPO and GRPO), which tend to over-optimize dominant reward signals while neglecting less frequent but valid reasoning paths, thus reducing diversity. In contrast, we transform scalar rewards into a normalized target distribution using a learnable partition function, and then minimize the reverse KL divergence between the policy and the target distribution. We implement this idea as a flow-balanced optimization method that promotes diverse exploration and generalizable reasoning trajectories. We conduct experiments on math and code reasoning tasks: FlowRL achieves a significant average improvement of $10.0\%$ over GRPO and $5.1\%$ over PPO on math benchmarks, and performs consistently better on code reasoning tasks. These results highlight reward distribution-matching as a key step toward efficient exploration and diverse reasoning in LLM reinforcement learning.
♻ ☆ Efficient Contextual Preferential Bayesian Optimization with Historical Examples
State-of-the-art multi-objective optimization often assumes a known utility function, learns it interactively, or computes the full Pareto front-each requiring costly expert input.~Real-world problems, however, involve implicit preferences that are hard to formalize. To reduce expert involvement, we propose an offline, interpretable utility learning method that uses expert knowledge, historical examples, and coarse information about the utility space to reduce sample requirements. We model uncertainty via a full Bayesian posterior and propagate it throughout the optimization process. Our method outperforms standard Gaussian processes and BOPE across four domains, showing strong performance even with biased samples, as encountered in the real-world, and limited expert input.
comment: 4 pages
♻ ☆ Asymptotic Classification Error for Heavy-Tailed Renewal Processes
Despite the widespread occurrence of classification problems and the increasing collection of point process data across many disciplines, study of error probability for point process classification only emerged very recently. Here, we consider classification of renewal processes. We obtain asymptotic expressions for the Bhattacharyya bound on misclassification error probabilities for heavy-tailed renewal processes.
comment: 12 pages, 2 figures. In IEEE Signal Processing Letters
♻ ☆ From Source to Target: Leveraging Transfer Learning for Predictive Process Monitoring in Organizations
Event logs reflect the behavior of business processes that are mapped in organizational information systems. Predictive process monitoring (PPM) transforms these data into value by creating process-related predictions that provide the insights required for proactive interventions at process runtime. Existing PPM techniques require sufficient amounts of event data or other relevant resources that might not be readily available, which prevents some organizations from utilizing PPM. The transfer learning-based PPM technique presented in this paper allows organizations without suitable event data or other relevant resources to implement PPM for effective decision support. This technique is instantiated in both a real-life intra- and an inter-organizational use case, based on which numerical experiments are performed using event logs for IT service management processes. The results of the experiments suggest that knowledge of one business process can be transferred to a similar business process in the same or a different organization to enable effective PPM in the target context. The proposed technique allows organizations to benefit from transfer learning in intra- and inter-organizational settings by transferring resources such as pre-trained models within and across organizational boundaries.
♻ ☆ Flatness After All?
Recent literature generalization in deep learning has examined the relationship between the curvature of the loss function at minima and generalization, mainly in the context of overparameterized neural networks. A key observation is that "flat" minima tend to generalize better than "sharp" minima. While this idea is supported by empirical evidence, it has also been shown that deep networks can generalize even with arbitrary sharpness, as measured by either the trace or the spectral norm of the Hessian. In this paper, we argue that generalization could be assessed by measuring flatness using a soft rank measure of the Hessian. We show that when an exponential family neural network model is exactly calibrated, and its prediction error and its confidence on the prediction are not correlated with the first and the second derivative of the network's output, our measure accurately captures the asymptotic expected generalization gap. For non-calibrated models, we connect a soft rank based flatness measure to the well-known Takeuchi Information Criterion and show that it still provides reliable estimates of generalization gaps for models that are not overly confident. Experimental results indicate that our approach offers a robust estimate of the generalization gap compared to baselines.
♻ ☆ InverseBench: Benchmarking Plug-and-Play Diffusion Priors for Inverse Problems in Physical Sciences
Plug-and-play diffusion priors (PnPDP) have emerged as a promising research direction for solving inverse problems. However, current studies primarily focus on natural image restoration, leaving the performance of these algorithms in scientific inverse problems largely unexplored. To address this gap, we introduce \textsc{InverseBench}, a framework that evaluates diffusion models across five distinct scientific inverse problems. These problems present unique structural challenges that differ from existing benchmarks, arising from critical scientific applications such as optical tomography, medical imaging, black hole imaging, seismology, and fluid dynamics. With \textsc{InverseBench}, we benchmark 14 inverse problem algorithms that use plug-and-play diffusion priors against strong, domain-specific baselines, offering valuable new insights into the strengths and weaknesses of existing algorithms. To facilitate further research and development, we open-source the codebase, along with datasets and pre-trained models, at https://devzhk.github.io/InverseBench/.
♻ ☆ Deep Graph Learning for Industrial Carbon Emission Analysis and Policy Impact NeurIPS 2025
Industrial carbon emissions are a major driver of climate change, yet modeling these emissions is challenging due to multicollinearity among factors and complex interdependencies across sectors and time. We propose a novel graph-based deep learning framework DGL to analyze and forecast industrial CO_2 emissions, addressing high feature correlation and capturing industrial-temporal interdependencies. Unlike traditional regression or clustering methods, our approach leverages a Graph Neural Network (GNN) with attention mechanisms to model relationships between industries (or regions) and a temporal transformer to learn long-range patterns. We evaluate our framework on public global industry emissions dataset derived from EDGAR v8.0, spanning multiple countries and sectors. The proposed model achieves superior predictive performance - reducing error by over 15% compared to baseline deep models - while maintaining interpretability via attention weights and causal analysis. We believe that we are the first Graph-Temporal architecture that resolves multicollinearity by structurally encoding feature relationships, along with integration of causal inference to identify true drivers of emissions, improving transparency and fairness. We also stand a demonstration of policy relevance, showing how model insights can guide sector-specific decarbonization strategies aligned with sustainable development goals. Based on the above, we show high-emission "hotspots" and suggest equitable intervention plans, illustrating the potential of state-of-the-art AI graph learning to advance climate action, offering a powerful tool for policymakers and industry stakeholders to achieve carbon reduction targets.
comment: NeurIPS 2025 AI for Science Workshop
♻ ☆ A Copula Based Supervised Filter for Feature Selection in Diabetes Risk Prediction Using Machine Learning
Effective feature selection is critical for building robust and interpretable predictive models, particularly in medical applications where identifying risk factors in the most extreme patient strata is essential. Traditional methods often focus on average associations, potentially overlooking predictors whose importance is concentrated in the tails of the data distribution. In this study, we introduce a novel, computationally efficient supervised filter method that leverages the Gumbel copula's upper-tail dependence coefficient to rank features based on their tendency to be simultaneously extreme with a positive outcome. We conducted a rigorous evaluation of this method against four standard baselines (Mutual Information, mRMR, ReliefF, and L1/Elastic-Net) using four distinct classifiers on two diabetes datasets: a large-scale public health survey (CDC, N=253,680) and a classic clinical benchmark (PIMA, N=768). Our analysis included comprehensive statistical tests, permutation importance, and robustness checks. On the CDC dataset, our method was the fastest selector and reduced the feature space by approximately 52% while maintaining predictive performance statistically indistinguishable from a model using all features. On the PIMA dataset, our method's feature ranking yielded the single best-performing model, achieving the highest ROC-AUC of all tested configurations. Across both datasets, the Gumbel-upper-tail dependence coefficient selector consistently identified clinically coherent and impactful predictors. We conclude that feature selection via upper-tail dependence is a powerful, efficient, and interpretable new tool for developing risk models in public health and clinical medicine.
comment: Submitted
♻ ☆ Teaching Metric Distance to Discrete Autoregressive Language Models
As large language models expand beyond natural language to domains such as mathematics, multimodal understanding, and embodied agents, tokens increasingly reflect metric relationships rather than purely linguistic meaning. We introduce DIST2Loss, a distance-aware framework designed to train autoregressive discrete models by leveraging predefined distance relationships among output tokens. At its core, DIST2Loss transforms continuous exponential family distributions derived from inherent distance metrics into discrete, categorical optimization targets compatible with the models' architectures. This approach enables the models to learn and preserve meaningful distance relationships during token generation while maintaining compatibility with existing architectures. Empirical evaluations show consistent performance gains in diverse multimodal applications, including visual grounding, robotic manipulation, generative reward modeling, and image generation using vector-quantized features. These improvements are most notable in low-data regimes, demonstrating DIST2Loss's strength under resource constraints.
♻ ☆ Long-Horizon Visual Imitation Learning via Plan and Code Reflection
Learning from long-horizon demonstrations with complex action sequences presents significant challenges for visual imitation learning, particularly in understanding temporal relationships of actions and spatial relationships between objects. In this paper, we propose a new agent framework that incorporates two dedicated reflection modules to enhance both plan and code generation. The plan generation module produces an initial action sequence, which is then verified by the plan reflection module to ensure temporal coherence and spatial alignment with the demonstration video. The code generation module translates the plan into executable code, while the code reflection module verifies and refines the generated code to ensure correctness and consistency with the generated plan. These two reflection modules jointly enable the agent to detect and correct errors in both the plan generation and code generation, improving performance in tasks with intricate temporal and spatial dependencies. To support systematic evaluation, we introduce LongVILBench, a benchmark comprising 300 human demonstrations with action sequences of up to 18 steps. LongVILBench emphasizes temporal and spatial complexity across multiple task types. Experimental results demonstrate that existing methods perform poorly on this benchmark, whereas our new framework establishes a strong baseline for long-horizon visual imitation learning.
comment: 9 pages, 4 figures
♻ ☆ $Agent^2$: An Agent-Generates-Agent Framework for Reinforcement Learning Automation
Reinforcement learning (RL) agent development traditionally requires substantial expertise and iterative effort, often leading to high failure rates and limited accessibility. This paper introduces Agent$^2$, an LLM-driven agent-generates-agent framework for fully automated RL agent design. Agent$^2$ autonomously translates natural language task descriptions and environment code into executable RL solutions without human intervention. The framework adopts a dual-agent architecture: a Generator Agent that analyzes tasks and designs agents, and a Target Agent that is automatically generated and executed. To better support automation, RL development is decomposed into two stages, MDP modeling and algorithmic optimization, facilitating targeted and effective agent generation. Built on the Model Context Protocol, Agent$^2$ provides a unified framework for standardized agent creation across diverse environments and algorithms, incorporating adaptive training management and intelligent feedback analysis for continuous refinement. Extensive experiments on benchmarks including MuJoCo, MetaDrive, MPE, and SMAC show that Agent$^2$ outperforms manually designed baselines across all tasks, achieving up to 55\% performance improvement with consistent average gains. By enabling a closed-loop, end-to-end automation pipeline, this work advances a new paradigm in which agents can design and optimize other agents, underscoring the potential of agent-generates-agent systems for automated AI development.
comment: 19 pages, 5 figures,4 Tables
♻ ☆ TADA: Improved Diffusion Sampling with Training-free Augmented Dynamics
Diffusion models have demonstrated exceptional capabilities in generating high-fidelity images but typically suffer from inefficient sampling. Many solver designs and noise scheduling strategies have been proposed to dramatically improve sampling speeds. In this paper, we introduce a new sampling method that is up to $186\%$ faster than the current state of the art solver for comparative FID on ImageNet512. This new sampling method is training-free and uses an ordinary differential equation (ODE) solver. The key to our method resides in using higher-dimensional initial noise, allowing to produce more detailed samples with less function evaluations from existing pretrained diffusion models. In addition, by design our solver allows to control the level of detail through a simple hyper-parameter at no extra computational cost. We present how our approach leverages momentum dynamics by establishing a fundamental equivalence between momentum diffusion models and conventional diffusion models with respect to their training paradigms. Moreover, we observe the use of higher-dimensional noise naturally exhibits characteristics similar to stochastic differential equations (SDEs). Finally, we demonstrate strong performances on a set of representative pretrained diffusion models, including EDM, EDM2, and Stable-Diffusion 3, which cover models in both pixel and latent spaces, as well as class and text conditional settings. The code is available at https://github.com/apple/ml-tada.
♻ ☆ A Family of Kernelized Matrix Costs for Multiple-Output Mixture Neural Networks
Pairwise distance-based costs are crucial for self-supervised and contrastive feature learning. Mixture Density Networks (MDNs) are a widely used approach for generative models and density approximation, using neural networks to produce multiple centers that define a Gaussian mixture. By combining MDNs with contrastive costs, this paper proposes data density approximation using four types of kernelized matrix costs: the scalar cost, the vector-matrix cost, the matrix-matrix cost (the trace of Schur complement), and the SVD cost (the nuclear norm), for learning multiple centers required to define a mixture density.
♻ ☆ Measuring the Measures: Discriminative Capacity of Representational Similarity Metrics Across Model Families
Representational similarity metrics are fundamental tools in neuroscience and AI, yet we lack systematic comparisons of their discriminative power across model families. We introduce a quantitative framework to evaluate representational similarity measures based on their ability to separate model families-across architectures (CNNs, Vision Transformers, Swin Transformers, ConvNeXt) and training regimes (supervised vs. self-supervised). Using three complementary separability measures-dprime from signal detection theory, silhouette coefficients and ROC-AUC, we systematically assess the discriminative capacity of commonly used metrics including RSA, linear predictivity, Procrustes, and soft matching. We show that separability systematically increases as metrics impose more stringent alignment constraints. Among mapping-based approaches, soft-matching achieves the highest separability, followed by Procrustes alignment and linear predictivity. Non-fitting methods such as RSA also yield strong separability across families. These results provide the first systematic comparison of similarity metrics through a separability lens, clarifying their relative sensitivity and guiding metric choice for large-scale model and brain comparisons.
♻ ☆ Understanding and Improving Shampoo and SOAP via Kullback-Leibler Minimization
Shampoo and its efficient variant, SOAP, use structured second-moment estimation and have attracted growing interest for their effectiveness in training neural networks (NNs). In practice, Shampoo requires step-size grafting with Adam to achieve competitive performance. SOAP mitigates this by applying Adam in Shampoo's eigenbasis and further reducing per-iteration runtime. However, reliance on Adam introduces additional memory overhead in both methods. Prior theoretical interpretations have primarily examined their estimation schemes using the Frobenius norm. Motivated by the natural correspondence between the second moment and a covariance matrix, we reinterpret the estimation procedures in Shampoo and SOAP as instances of covariance estimation through the lens of Kullback-Leibler (KL) divergence minimization. This perspective reveals a previously overlooked theoretical limitation and motivates principled improvements to their design. Building on the KL perspective, we propose practical estimation schemes -- $\textbf{KL-Shampoo}$ and $\textbf{KL-SOAP}$ -- that match or exceed the performance of Shampoo and SOAP for pre-training various NNs while maintaining SOAP-level per-iteration runtime. Notably, KL-Shampoo does not rely on Adam to achieve superior performance, thereby avoiding the associated memory overhead. Surprisingly, KL-Shampoo consistently outperforms the other methods in our experiments.
comment: technical report, working in progress
♻ ☆ SSTP: Efficient Sample Selection for Trajectory Prediction
Trajectory prediction is a core task in autonomous driving. However, training advanced trajectory prediction models on existing large-scale datasets is both time-consuming and computationally expensive. More critically, these datasets are highly imbalanced in scenario density, with normal driving scenes (low-moderate traffic) overwhelmingly dominating the datasets, while high-density and safety-critical cases are underrepresented. As a result, models tend to overfit low/moderate-density scenarios and perform poorly in high-density scenarios. To address these challenges, we propose the SSTP framework, which constructs a compact yet density-balanced dataset tailored to trajectory prediction. SSTP consists of two main stages: (1)Extraction, where a baseline model is pretrained for a few epochs to obtain stable gradient estimates, and the dataset is partitioned by scenario density. (2)Selection, where gradient-based scores and a submodular objective select representative samples within each density category, while biased sampling emphasizes rare high-density interactions to avoid dominance by low-density cases. This approach significantly reduces the dataset size and mitigates scenario imbalance, without sacrificing prediction accuracy. Experiments on the Argoverse 1 and Argoverse 2 datasets with recent state-of-the-art models show that SSTP achieves comparable performance to full-dataset training using only half the data while delivering substantial improvements in high-density traffic scenes and significantly reducing training time. Robust trajectory prediction depends not only on data scale but also on balancing scene density to ensure reliable performance under complex multi agent interactions.
♻ ☆ Towards Convexity in Anomaly Detection: A New Formulation of SSLM with Unique Optimal Solutions
An unsolved issue in widely used methods such as Support Vector Data Description (SVDD) and Small Sphere and Large Margin SVM (SSLM) for anomaly detection is their nonconvexity, which hampers the analysis of optimal solutions in a manner similar to SVMs and limits their applicability in large-scale scenarios. In this paper, we introduce a novel convex SSLM formulation which has been demonstrated to revert to a convex quadratic programming problem for hyperparameter values of interest. Leveraging the convexity of our method, we derive numerous results that are unattainable with traditional nonconvex approaches. We conduct a thorough analysis of how hyperparameters influence the optimal solution, pointing out scenarios where optimal solutions can be trivially found and identifying instances of ill-posedness. Most notably, we establish connections between our method and traditional approaches, providing a clear determination of when the optimal solution is unique--a task unachievable with traditional nonconvex methods. We also derive the nu-property to elucidate the interactions between hyperparameters and the fractions of support vectors and margin errors in both positive and negative classes.
♻ ☆ Graph Coloring for Multi-Task Learning
When different objectives conflict with each other in multi-task learning, gradients begin to interfere and slow convergence, thereby potentially reducing the final model's performance. To address this, we introduce SON-GOKU, a scheduler that computes gradient interference, constructs an interference graph, and then applies greedy graph-coloring to partition tasks into groups that align well with each other. At each training step, only one group (color class) of tasks are activated, and the grouping partition is constantly recomputed as task relationships evolve throughout training. By ensuring that each mini-batch contains only tasks that pull the model in the same direction, our method improves the effectiveness of any underlying multi-task learning optimizer without additional tuning. Since tasks within these groups will update in compatible directions, multi-task learning will improve model performance rather than impede it. Empirical results on six different datasets show that this interference-aware graph-coloring approach consistently outperforms baselines and state-of-the-art multi-task optimizers. We provide extensive theory showing why grouping and sequential updates improve multi-task learning, with guarantees on descent, convergence, and accurately identifying what tasks conflict or align.
♻ ☆ A Survey on Code Generation with LLM-based Agents
Code generation agents powered by large language models (LLMs) are revolutionizing the software development paradigm. Distinct from previous code generation techniques, code generation agents are characterized by three core features. 1) Autonomy: the ability to independently manage the entire workflow, from task decomposition to coding and debugging. 2) Expanded task scope: capabilities that extend beyond generating code snippets to encompass the full software development lifecycle (SDLC). 3) Enhancement of engineering practicality: a shift in research emphasis from algorithmic innovation toward practical engineering challenges, such as system reliability, process management, and tool integration. This domain has recently witnessed rapid development and an explosion in research, demonstrating significant application potential. This paper presents a systematic survey of the field of LLM-based code generation agents. We trace the technology's developmental trajectory from its inception and systematically categorize its core techniques, including both single-agent and multi-agent architectures. Furthermore, this survey details the applications of LLM-based agents across the full SDLC, summarizes mainstream evaluation benchmarks and metrics, and catalogs representative tools. Finally, by analyzing the primary challenges, we identify and propose several foundational, long-term research directions for the future work of the field.
comment: Work in progress (V2)
♻ ☆ BEDTime: A Unified Benchmark for Automatically Describing Time Series
Recent works propose complex multi-modal models that handle both time series and language, ultimately claiming high performance on complex tasks like time series reasoning and cross-modal question-answering. However, they skip evaluations of simple and important foundational tasks, which complex models should reliably master. They also lack direct, head-to-head comparisons with other popular approaches. So we ask a simple question: Can recent models even produce generic visual descriptions of time series data? In response, we propose three new tasks, posing that successful multi-modal models should be able to recognize, differentiate, and generate language descriptions of time series. We then create BEDTime, the first benchmark dataset to assess models on each task, comprising four datasets reformatted for these tasks across multiple modalities. Using BEDTime, we evaluate 13 state-of-the-art models, and find that (1) surprisingly, dedicated time series foundation models severely underperform, despite being designed for similar tasks, (2) vision-language models are quite capable, (3) language-only methods perform worst, despite many lauding their potential, and (4) all approaches are clearly fragile to a range of realistic robustness tests, indicating avenues for future work.
♻ ☆ Information Design with Unknown Prior
Information designers, such as online platforms, often do not know the beliefs of their receivers. We design learning algorithms so that the information designer can learn the receivers' prior belief from their actions through repeated interactions. Our learning algorithms achieve no regret relative to the optimality for the known prior at a fast speed, achieving a tight regret bound $\Theta(\log T)$ in general and a tight regret bound $\Theta(\log \log T)$ in the important special case of binary actions.
comment: A preliminary version of this work was published as an extended abstract at ITCS (Innovations in Theoretical Computer Science) 2025
♻ ☆ Fair Uncertainty Quantification for Depression Prediction
Trustworthy depression prediction based on deep learning, incorporating both predictive reliability and algorithmic fairness across diverse demographic groups, is crucial for clinical application. Recently, achieving reliable depression predictions through uncertainty quantification has attracted increasing attention. However, few studies have focused on the fairness of uncertainty quantification (UQ) in depression prediction. In this work, we investigate the algorithmic fairness of UQ, namely Equal Opportunity Coverage (EOC) fairness, and propose Fair Uncertainty Quantification (FUQ) for depression prediction. FUQ pursues reliable and fair depression predictions through group-based analysis. Specifically, we first group all the participants by different sensitive attributes and leverage conformal prediction to quantify uncertainty within each demographic group, which provides a theoretically guaranteed and valid way to quantify uncertainty for depression prediction and facilitates the investigation of fairness across different demographic groups. Furthermore, we propose a fairness-aware optimization strategy that formulates fairness as a constrained optimization problem under EOC constraints. This enables the model to preserve predictive reliability while adapting to the heterogeneous uncertainty levels across demographic groups, thereby achieving optimal fairness. Through extensive evaluations on several visual and audio depression datasets, our approach demonstrates its effectiveness.
♻ ☆ Unified Cross-Modal Image Synthesis with Hierarchical Mixture of Product-of-Experts
We propose a deep mixture of multimodal hierarchical variational auto-encoders called MMHVAE that synthesizes missing images from observed images in different modalities. MMHVAE's design focuses on tackling four challenges: (i) creating a complex latent representation of multimodal data to generate high-resolution images; (ii) encouraging the variational distributions to estimate the missing information needed for cross-modal image synthesis; (iii) learning to fuse multimodal information in the context of missing data; (iv) leveraging dataset-level information to handle incomplete data sets at training time. Extensive experiments are performed on the challenging problem of pre-operative brain multi-parametric magnetic resonance and intra-operative ultrasound imaging.
comment: Accepted in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
♻ ☆ FANformer: Improving Large Language Models Through Effective Periodicity Modeling NeurIPS'25
Periodicity, as one of the most important basic characteristics, lays the foundation for facilitating structured knowledge acquisition and systematic cognitive processes within human learning paradigms. However, the potential flaws of periodicity modeling in Transformer affect the learning efficiency and establishment of underlying principles from data for large language models (LLMs) built upon it. In this paper, we demonstrate that integrating effective periodicity modeling can improve the learning efficiency and performance of LLMs. We introduce FANformer, which adapts Fourier Analysis Network (FAN) into attention mechanism to achieve efficient periodicity modeling, by modifying the feature projection process of attention mechanism. Extensive experimental results on language modeling show that FANformer consistently outperforms Transformer when scaling up model size and training tokens, underscoring its superior learning efficiency. Our pretrained FANformer-1B exhibits marked improvements on downstream tasks compared to open-source LLMs with similar model parameters or training tokens. Moreover, we reveal that FANformer exhibits superior ability to learn and apply rules for reasoning compared to Transformer. The results position FANformer as an effective and promising architecture for advancing LLMs.
comment: Accepted to NeurIPS'25
♻ ☆ DNN-Based Precoding in RIS-Aided mmWave MIMO Systems With Practical Phase Shift
In this paper, the precoding design is investigated for maximizing the throughput of millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems with obstructed direct communication paths. In particular, a reconfigurable intelligent surface (RIS) is employed to enhance MIMO transmissions, considering mmWave characteristics related to line-of-sight (LoS) and multipath effects. The traditional exhaustive search (ES) for optimal codewords in the continuous phase shift is computationally intensive and time-consuming. To reduce computational complexity, permuted discrete Fourier transform (DFT) vectors are used for finding codebook design, incorporating amplitude responses for practical or ideal RIS systems. However, even if the discrete phase shift is adopted in the ES, it results in significant computation and is time-consuming. Instead, the trained deep neural network (DNN) is developed to facilitate faster codeword selection. Simulation results show that the DNN maintains sub-optimal spectral efficiency even as the distance between the end-user and the RIS has variations in the testing phase. These results highlight the potential of DNN in advancing RIS-aided systems.
comment: 5 pages, 4 figures, 2 tables, and published in 2024 IEEE Globecom Workshops
♻ ☆ KVzip: Query-Agnostic KV Cache Compression with Context Reconstruction NeurIPS 2025
Transformer-based large language models (LLMs) cache context as key-value (KV) pairs during inference. As context length grows, KV cache sizes expand, leading to substantial memory overhead and increased attention latency. This paper introduces KVzip, a query-agnostic KV cache eviction method enabling effective reuse of compressed KV caches across diverse queries. KVzip quantifies the importance of a KV pair using the underlying LLM to reconstruct original contexts from cached KV pairs, subsequently evicting pairs with lower importance. Extensive empirical evaluations demonstrate that KVzip reduces KV cache size by $3$-$4\times$ and FlashAttention decoding latency by approximately $2\times$, with negligible performance loss in question-answering, retrieval, reasoning, and code comprehension tasks. Evaluations include various models such as LLaMA3.1, Qwen2.5, and Gemma3, with context lengths reaching up to 170K tokens. KVzip significantly outperforms existing query-aware KV eviction methods, which suffer from performance degradation even at a 90% cache budget ratio under multi-query scenarios.
comment: NeurIPS 2025 Oral. Code: https://github.com/snu-mllab/KVzip
Explore-Execute Chain: Towards an Efficient Structured Reasoning Paradigm
Chain-of-Thought (CoT) and its variants have markedly advanced the reasoning abilities of Large Language Models (LLMs), yet their monolithic and auto-regressive architecture inherently conflates high-level strategic planning with low-level step-by-step execution, leading to computational inefficiency, limited exploration of reasoning paths, and reduced interpretability. To overcome these issues, we propose the Explore-Execute Chain ($E^2C$), a structured reasoning framework that decouples reasoning into two distinct phases: an exploratory phase that stochastically generates succinct high-level plans, followed by an execution phase that deterministically carries out the chosen plan. Our approach incorporates a two-stage training methodology, which combines Supervised Fine-Tuning (SFT) - augmented by a novel data generation algorithm enforcing strict plan adherence - with a subsequent Reinforcement Learning (RL) stage that capitalizes on the informativeness of exploration and reinforces the determinism of execution. This decomposition enables an efficient test-time scaling strategy: on AIME'2024, $E^2C$ Test Time Scaling reaches 58.1% accuracy using <10% of the decoding tokens required by comparable methods (e.g., Forest-of-Thought), sharply cutting self-consistency overhead. For cross-domain adaptation, our Exploration-Focused SFT (EF-SFT) fine-tunes with only 3.5% of the tokens used by standard SFT yet yields up to 14.5% higher accuracy than standard SFT on medical benchmarks, delivering state-of-the-art performance, strong generalization, and greater interpretability by separating planning from execution. The code and pre-trained models for the project are available at: https://github.com/yks23/Explore-Execute-Chain.git
♻ ☆ VioPTT: Violin Technique-Aware Transcription from Synthetic Data Augmentation
While automatic music transcription is well-established in music information retrieval, most models are limited to transcribing pitch and timing information from audio, and thus omit crucial expressive and instrument-specific nuances. One example is playing technique on the violin, which affords its distinct palette of timbres for maximal emotional impact. Here, we propose VioPTT (Violin Playing Technique-aware Transcription), a lightweight, end-to-end model that directly transcribes violin playing technique in addition to pitch onset and offset. Furthermore, we release MOSA-VPT, a novel, high-quality synthetic violin playing technique dataset to circumvent the need for manually labeled annotations. Leveraging this dataset, our model demonstrated strong generalization to real-world note-level violin technique recordings in addition to achieving state-of-the-art transcription performance. To our knowledge, VioPTT is the first to jointly combine violin transcription and playing technique prediction within a unified framework.
♻ ☆ Imagining Alternatives: Towards High-Resolution 3D Counterfactual Medical Image Generation via Language Guidance MICCAI
Vision-language models have demonstrated impressive capabilities in generating 2D images under various conditions; however, the success of these models is largely enabled by extensive, readily available pretrained foundation models. Critically, comparable pretrained models do not exist for 3D, significantly limiting progress. As a result, the potential of vision-language models to produce high-resolution 3D counterfactual medical images conditioned solely on natural language remains unexplored. Addressing this gap would enable powerful clinical and research applications, such as personalized counterfactual explanations, simulation of disease progression, and enhanced medical training by visualizing hypothetical conditions in realistic detail. Our work takes a step toward this challenge by introducing a framework capable of generating high-resolution 3D counterfactual medical images of synthesized patients guided by free-form language prompts. We adapt state-of-the-art 3D diffusion models with enhancements from Simple Diffusion and incorporate augmented conditioning to improve text alignment and image quality. To our knowledge, this is the first demonstration of a language-guided native-3D diffusion model applied to neurological imaging, where faithful three-dimensional modeling is essential. On two neurological MRI datasets, our framework simulates varying counterfactual lesion loads in Multiple Sclerosis and cognitive states in Alzheimer's disease, generating high-quality images while preserving subject fidelity. Our results lay the groundwork for prompt-driven disease progression analysis in 3D medical imaging. Project link - https://lesupermomo.github.io/imagining-alternatives/.
comment: Accepted to the 2025 MICCAI ELAMI Workshop
♻ ☆ Foam-Agent 2.0: An End-to-End Composable Multi-Agent Framework for Automating CFD Simulation in OpenFOAM
Computational Fluid Dynamics (CFD) is an essential simulation tool in engineering, yet its steep learning curve and complex manual setup create significant barriers. To address these challenges, we introduce Foam-Agent, a multi-agent framework that automates the entire end-to-end OpenFOAM workflow from a single natural language prompt. Our key innovations address critical gaps in existing systems: 1. An Comprehensive End-to-End Simulation Automation: Foam-Agent is the first system to manage the full simulation pipeline, including advanced pre-processing with a versatile Meshing Agent capable of handling external mesh files and generating new geometries via Gmsh, automatic generation of HPC submission scripts, and post-simulation visualization via ParaView. 2. Composable Service Architecture: Going beyond a monolithic agent, the framework uses Model Context Protocol (MCP) to expose its core functions as discrete, callable tools. This allows for flexible integration and use by other agentic systems, such as Claude-code, for more exploratory workflows. 3. High-Fidelity Configuration Generation: We achieve superior accuracy through a Hierarchical Multi-Index RAG for precise context retrieval and a dependency-aware generation process that ensures configuration consistency. Evaluated on a benchmark of 110 simulation tasks, Foam-Agent achieves an 88.2% success rate with Claude 3.5 Sonnet, significantly outperforming existing frameworks (55.5% for MetaOpenFOAM). Foam-Agent dramatically lowers the expertise barrier for CFD, demonstrating how specialized multi-agent systems can democratize complex scientific computing. The code is public at https://github.com/csml-rpi/Foam-Agent.
♻ ☆ UTrace: Poisoning Forensics for Private Collaborative Learning
Privacy-preserving machine learning (PPML) systems enable multiple data owners to collaboratively train models without revealing their raw, sensitive data by leveraging cryptographic protocols such as secure multi-party computation (MPC). While PPML offers strong privacy guarantees, it also introduces new attack surfaces: malicious data owners can inject poisoned data into the training process without being detected, thus undermining the integrity of the learned model. Although recent defenses, such as private input validation within MPC, can mitigate some specific poisoning strategies, they remain insufficient, particularly in preventing stealthy or distributed attacks. As the robustness of PPML remains an open challenge, strengthening trust in these systems increasingly necessitates post-hoc auditing mechanisms that instill accountability. In this paper we present UTrace, a framework for user-level traceback in PPML that attributes integrity failures to responsible data owners without compromising the privacy guarantees of MPC. UTrace encapsulates two mechanisms: a gradient similarity method that identifies suspicious update patterns linked to poisoning, and a user-level unlearning technique that quantifies each user's marginal influence on model behavior. Together, these methods allow UTrace to attribute model misbehavior to specific users with high precision. We implement UTrace within an MPC-compatible training and auditing pipeline and evaluate its effectiveness on four datasets spanning vision, text, and malware. Across ten canonical poisoning attacks, UTrace consistently achieves high detection accuracy with low false positive rates.
comment: 31 pages, 10 figures
♻ ☆ TDBench: A Benchmark for Top-Down Image Understanding with Reliability Analysis of Vision-Language Models
Top-down images play an important role in safety-critical settings such as autonomous navigation and aerial surveillance, where they provide holistic spatial information that front-view images cannot capture. Despite this, Vision Language Models (VLMs) are mostly trained and evaluated on front-view benchmarks, leaving their performance in the top-down setting poorly understood. Existing evaluations also overlook a unique property of top-down images: their physical meaning is preserved under rotation. In addition, conventional accuracy metrics can be misleading, since they are often inflated by hallucinations or "lucky guesses", which obscures a model's true reliability and its grounding in visual evidence. To address these issues, we introduce TDBench, a benchmark for top-down image understanding that includes 2000 curated questions for each rotation. We further propose RotationalEval (RE), which measures whether models provide consistent answers across four rotated views of the same scene, and we develop a reliability framework that separates genuine knowledge from chance. Finally, we conduct four case studies targeting underexplored real-world challenges. By combining rigorous evaluation with reliability metrics, TDBench not only benchmarks VLMs in top-down perception but also provides a new perspective on trustworthiness, guiding the development of more robust and grounded AI systems. Project homepage: https://github.com/Columbia-ICSL/TDBench
♻ ☆ Learning to Dissipate Energy in Oscillatory State-Space Models
State-space models (SSMs) are a class of networks for sequence learning that benefit from fixed state size and linear complexity with respect to sequence length, contrasting the quadratic scaling of typical attention mechanisms. Inspired from observations in neuroscience, Linear Oscillatory State-Space models (LinOSS) are a recently proposed class of SSMs constructed from layers of discretized forced harmonic oscillators. Although these models perform competitively, leveraging fast parallel scans over diagonal recurrent matrices and achieving state-of-the-art performance on tasks with sequence length up to 50k, LinOSS models rely on rigid energy dissipation ("forgetting") mechanisms that are inherently coupled to the time scale of state evolution. As forgetting is a crucial mechanism for long-range reasoning, we demonstrate the representational limitations of these models and introduce Damped Linear Oscillatory State-Space models (D-LinOSS), a more general class of oscillatory SSMs that learn to dissipate latent state energy on arbitrary time scales. We analyze the spectral distribution of the model's recurrent matrices and prove that the SSM layers exhibit stable dynamics under a simple, flexible parameterization. Without introducing additional complexity, D-LinOSS consistently outperforms previous LinOSS methods on long-range learning tasks, achieves faster convergence, and reduces the hyperparameter search space by 50%.
comment: 18 pages, 4 figures
♻ ☆ MPCA-based Domain Adaptation for Transfer Learning in Ultrasonic Guided Waves
Ultrasonic Guided Waves (UGWs) represent a promising diagnostic tool for Structural Health Monitoring (SHM) in thin-walled structures, and their integration with machine learning (ML) algorithms is increasingly being adopted to enable real-time monitoring capabilities. However, the large-scale deployment of UGW-based ML methods is constrained by data scarcity and limited generalisation across different materials and sensor configurations. To address these limitations, this work proposes a novel transfer learning (TL) framework based on Multilinear Principal Component Analysis (MPCA). First, a Convolutional Neural Network (CNN) for regression is trained to perform damage localisation for a plated structure. Then, MPCA and fine-tuning are combined to have the CNN work for a different plate. By jointly applying MPCA to the source and target domains, the method extracts shared latent features, enabling effective domain adaptation without requiring prior assumptions about dimensionality. Following MPCA, fine-tuning enables adapting the pre-trained CNN to a new domain without the need for a large training dataset. The proposed MPCA-based TL method was tested against 12 case studies involving different composite materials and sensor arrays. Statistical metrics were used to assess domains alignment both before and after MPCA, and the results demonstrate a substantial reduction in localisation error compared to standard TL techniques. Hence, the proposed approach emerges as a robust, data-efficient, and statistically based TL framework for UGW-based SHM.
♻ ☆ The challenge of hidden gifts in multi-agent reinforcement learning
Sometimes we benefit from actions that others have taken even when we are unaware that they took those actions. For example, if your neighbor chooses not to take a parking spot in front of your house when you are not there, you can benefit, even without being aware that they took this action. These ``hidden gifts'' represent an interesting challenge for multi-agent reinforcement learning (MARL), since assigning credit when the beneficial actions of others are hidden is non-trivial. Here, we study the impact of hidden gifts with a very simple MARL task. In this task, agents in a grid-world environment have individual doors to unlock in order to obtain individual rewards. As well, if all the agents unlock their door the group receives a larger collective reward. However, there is only one key for all of the doors, such that the collective reward can only be obtained when the agents drop the key for others after they use it. Notably, there is nothing to indicate to an agent that the other agents have dropped the key, thus this act for others is a ``hidden gift''. We show that several different state-of-the-art MARL algorithms, including MARL specific architectures, fail to learn how to obtain the collective reward in this simple task. Interestingly, we find that decentralized actor-critic policy gradient agents can succeed when we provide them with information about their own action history, but MARL agents still cannot solve the task with action history. Finally, we derive a correction term for policy gradient agents, inspired by learning aware approaches, which reduces the variance in learning and helps them to converge to collective success more reliably. These results show that credit assignment in multi-agent settings can be particularly challenging in the presence of ``hidden gifts'', and demonstrate that self learning-awareness in decentralized agents can benefit these settings.
comment: Added LOLA baselines to appendix, new corollary proof on correction term not conflicting with individual objectives, related works on multi-objective RL and coordination MARL, expanded the contraposition appendix experiment, moved key drop rate experiments to appendix and aligned first success plots with key-drop plots
♻ ☆ PETAH: Parameter Efficient Task Adaptation for Hybrid Transformers in a resource-limited Context CVPR
Following their success in natural language processing (NLP), there has been a shift towards transformer models in computer vision. While transformers perform well and offer promising multi-tasking performance, due to their high compute requirements, many resource-constrained applications still rely on convolutional or hybrid models that combine the benefits of convolution and attention layers and achieve the best results in the sub 100M parameter range. Simultaneously, task adaptation techniques that allow for the use of one shared transformer backbone for multiple downstream tasks, resulting in great storage savings at negligible cost in performance, have not yet been adopted for hybrid transformers. In this work, we investigate how to achieve the best task-adaptation performance and introduce PETAH: Parameter Efficient Task Adaptation for Hybrid Transformers. We further combine PETAH adaptation with pruning to achieve highly performant and storage friendly models for multi-tasking. In our extensive evaluation on classification and other vision tasks, we demonstrate that our PETAH-adapted hybrid models outperform established task-adaptation techniques for ViTs while requiring fewer parameters and being more efficient on mobile hardware.
comment: Published in CVPRW 2025
♻ ☆ 3D Interaction Geometric Pre-training for Molecular Relational Learning
Molecular Relational Learning (MRL) is a rapidly growing field that focuses on understanding the interaction dynamics between molecules, which is crucial for applications ranging from catalyst engineering to drug discovery. Despite recent progress, earlier MRL approaches are limited to using only the 2D topological structure of molecules, as obtaining the 3D interaction geometry remains prohibitively expensive. This paper introduces a novel 3D geometric pre-training strategy for MRL (3DMRL) that incorporates a 3D virtual interaction environment, overcoming the limitations of costly traditional quantum mechanical calculation methods. With the constructed 3D virtual interaction environment, 3DMRL trains 2D MRL model to learn the global and local 3D geometric information of molecular interaction. Extensive experiments on various tasks using real-world datasets, including out-of-distribution and extrapolation scenarios, demonstrate the effectiveness of 3DMRL, showing up to a 24.93% improvement in performance across 40 tasks. Our code is publicly available at https://github.com/Namkyeong/3DMRL.
♻ ☆ Neural Network Characterization and Entropy Regulated Data Balancing through Principal Component Analysis
This paper examines in detail the geometric structure of principal component analysis (PCA) by considering in detail the distributions of both unrotated and rotated MNIST digits in the space defined by the lowest order PCA components. Since digits possessing salient geometric features are mapped to restricted regions far from the origin, they are predicted by neural networks with a greater accuracy than digits that are mapped to broad, diffuse and overlapping volumes of the low order PCA space. Motivated by these results, a new quantity, the local PCA entropy, obtained by dividing the spatial region spanned by the low order principal components into histogram bins and evaluating the entropy associated with the number of occurrences of each input class within a bin, is introduced. The metric locates the input data records that yield the largest confusion in prediction accuracy within reduced coordinate volumes that optimally discriminate among geometric features. As an example of the potential utility of the local PCA entropy, a simple data balancing procedure is realized by oversampling the data records in regions of large local entropy.
comment: 30 pages, 17 figures
♻ ☆ Krony-PT: GPT2 compressed with Kronecker Products
We introduce Krony-PT, a compression technique for GPT-2 based on Kronecker products. We specifically target the feed-forward weights of each transformer block, and systematically compress the feed-forward layer matrices to various degrees. We introduce a modified Van Loan decomposition to initialize new Kronecker factors, and also propose a new pruning-based initialization technique. Our method compresses the original 124M-parameter GPT-2 to various smaller models, ranging from 80M to 96M. Our 81M model variant outperforms DistilGPT2 on next-token prediction across all standard language modeling datasets, and shows competitive or comparable performance with significantly larger Kronecker-based compressions of GPT-2.
♻ ☆ Bayesian Risk-Sensitive Policy Optimization For MDPs With General Loss Functions
Motivated by many application problems, we consider Markov decision processes (MDPs) with a general loss function and unknown parameters. To mitigate the epistemic uncertainty associated with unknown parameters, we take a Bayesian approach to estimate the parameters from data and impose a coherent risk functional (with respect to the Bayesian posterior distribution) on the loss. Since this formulation usually does not satisfy the interchangeability principle, it does not admit Bellman equations and cannot be solved by approaches based on dynamic programming. Therefore, We propose a policy gradient optimization method, leveraging the dual representation of coherent risk measures and extending the envelope theorem to continuous cases. We then show the stationary analysis of the algorithm with a convergence rate of $\mathcal{O}(T^{-1/2}+r^{-1/2})$, where $T$ is the number of policy gradient iterations and $r$ is the sample size of the gradient estimator. We further extend our algorithm to an episodic setting, and establish the global convergence of the extended algorithm and provide bounds on the number of iterations needed to achieve an error bound $\mathcal{O}(\epsilon)$ in each episode.
♻ ☆ Guided Speculative Inference for Efficient Test-Time Alignment of LLMs
We propose Guided Speculative Inference (GSI), a novel algorithm for efficient reward-guided decoding in large language models. GSI combines soft best-of-$n$ test-time scaling with a reward model $r(x,y)$ and speculative samples from a small auxiliary model $\pi_S(y\mid x)$. We provably approximate both the optimal tilted policy $\pi_{\beta,B}(y\mid x) \propto \pi_B(y\mid x)\exp(\beta\,r(x,y))$ of soft best-of-$n$ under the base model $\pi_B$, as well as the expected reward under the optimal policy. In experiments on reasoning benchmarks (MATH500, OlympiadBench, Minerva Math, MMLU-STEM, GSM8K), our method achieves higher accuracy than standard soft best-of-$n$ with $\pi_S$ and reward-guided speculative decoding (Liao et al., 2025), and in certain settings even outperforms soft best-of-$n$ with $\pi_B$. The code is available at https://github.com/j-geuter/GSI .
comment: 39 pages, 9 figures
♻ ☆ Learning to Rank Chain-of-Thought: Using a Small Model
Large Language Models (LLMs) struggle with reliable mathematical reasoning, and current verification methods are often computationally expensive. This paper introduces the Energy Outcome Reward Model (EORM), a highly efficient, lightweight post-hoc verifier designed to address this challenge. EORM uses an energy-based framework to rank Chain-of-Thought (CoT) solutions, learning to distinguish correct from incorrect reasoning using only simple outcome labels, thus eliminating the need for expensive annotations. With only 55M parameters, over 127 times smaller than typical reward models, EORM boosts the accuracy of Llama 3 8B to 90.7\% on GSM8k and 63.7\% on MATH. This performance is achieved by efficiently selecting the optimal reasoning path from a pool of candidates, allowing it to match or exceed the accuracy of far more resource-intensive Best-of-N sampling techniques. Crucially, our experiments show that EORM generalizes effectively to out-of-distribution problems and unseen models, indicating it learns fundamental principles of valid reasoning. This robustness, combined with its efficiency, establishes EORM as a practical tool for deploying more dependable LLMs in complex, real-world applications.
♻ ☆ Communication-Aware Knowledge Distillation for Federated LLM Fine-Tuning over Wireless Networks
Federated learning (FL) for large language models (LLMs) offers a privacy-preserving scheme, enabling clients to collaboratively fine-tune locally deployed LLMs or smaller language models (SLMs) without exchanging raw data. While parameter-sharing methods in traditional FL models solves number of technical challenges, they still incur high communication overhead and struggle with adapting to heterogeneous model architectures. Federated distillation, a framework for mutual knowledge transfer via shared logits, typically offers lower communication overhead than parameter-sharing methods. However, transmitting logits from LLMs remains challenging for bandwidth-limited clients due to their high dimensionality. In this work, we focus on a federated LLM distillation with efficient communication overhead. To achieve this, we first propose an adaptive Top-k logit selection mechanism, dynamically sparsifying logits according to real-time communication conditions. Then to tackle the dimensional inconsistency introduced by the adaptive sparsification, we design an adaptive logits aggregation scheme, effectively alleviating the artificial and uninformative inputs introduced by conventional zero-padding methods. Finally, to enhance the distillation effect, we incorporate LoRA-adapted hidden-layer projection from LLM into the distillation loss, reducing the communication overhead further while providing richer representation. Experimental results demonstrate that our scheme achieves superior performance compared to baseline methods while effectively reducing communication overhead by approximately 50%.
comment: accepted by Globecom 2025
♻ ☆ Beyond the Exploration-Exploitation Trade-off: A Hidden State Approach for LLM Reasoning in RLVR
A prevailing view in Reinforcement Learning for Verifiable Rewards (RLVR) interprets recent progress through the lens of an exploration-exploitation trade-off, a perspective largely shaped by token-level metrics. We re-examine this perspective, proposing that this perceived trade-off may not be a fundamental constraint but rather an artifact of the measurement level. To investigate this, we shift the analysis to the semantically rich hidden-state space, adopting Effective Rank (ER) to quantify exploration and proposing its novel first- and second-order derivatives, named Effective Rank Velocity (ERV) and Effective Rank Acceleration (ERA), to capture exploitation dynamics. Our analysis reveals that at the hidden-state level, exploration and exploitation could be decoupled (Sec. 4). This finding reveals an opportunity to enhance both capacities simultaneously. This insight motivates our method, Velocity-Exploiting Rank-Learning (VERL), the first to operationalize the principle of synergistic exploration-exploitation enhancement by directly shaping the RL advantage function. The key innovation is leveraging the theoretically stable ERA as a predictive meta-controller to create a synergistic, dual-channel incentive structure. Instead of forcing a trade-off, VERL prospectively amplifies rewards for exploration to preempt overconfidence and reinforces exploitative gains to consolidate reasoning. Experiments across diverse LLMs and reasoning benchmarks show consistent gains, including up to 21.4% absolute accuracy improvement on the challenging Gaokao 2024 dataset.
♻ ☆ Breast Cancer Diagnosis: A Comprehensive Exploration of Explainable Artificial Intelligence (XAI) Techniques
Breast cancer (BC) stands as one of the most common malignancies affecting women worldwide, necessitating advancements in diagnostic methodologies for better clinical outcomes. This article provides a comprehensive exploration of the application of Explainable Artificial Intelligence (XAI) techniques in the detection and diagnosis of breast cancer. As Artificial Intelligence (AI) technologies continue to permeate the healthcare sector, particularly in oncology, the need for transparent and interpretable models becomes imperative to enhance clinical decision-making and patient care. This review discusses the integration of various XAI approaches, such as SHAP, LIME, Grad-CAM, and others, with machine learning and deep learning models utilized in breast cancer detection and classification. By investigating the modalities of breast cancer datasets, including mammograms, ultrasounds and their processing with AI, the paper highlights how XAI can lead to more accurate diagnoses and personalized treatment plans. It also examines the challenges in implementing these techniques and the importance of developing standardized metrics for evaluating XAI's effectiveness in clinical settings. Through detailed analysis and discussion, this article aims to highlight the potential of XAI in bridging the gap between complex AI models and practical healthcare applications, thereby fostering trust and understanding among medical professionals and improving patient outcomes.
♻ ☆ Is Limited Participant Diversity Impeding EEG-based Machine Learning?
The application of machine learning (ML) to electroencephalography (EEG) has great potential to advance both neuroscientific research and clinical applications. However, the generalisability and robustness of EEG-based ML models often hinge on the amount and diversity of training data. It is common practice to split EEG recordings into small segments, thereby increasing the number of samples substantially compared to the number of individual recordings or participants. We conceptualise this as a multi-level data generation process and investigate the scaling behaviour of model performance with respect to the overall sample size and the participant diversity through large-scale empirical studies. We then use the same framework to investigate the effectiveness of different ML strategies designed to address limited data problems: data augmentations and self-supervised learning. Our findings show that model performance scaling can be severely constrained by participant distribution shifts and provide actionable guidance for data collection and ML research. The code for our experiments is publicly available online.
♻ ☆ Robust Estimation Under Heterogeneous Corruption Rates NeurIPS 2025
We study the problem of robust estimation under heterogeneous corruption rates, where each sample may be independently corrupted with a known but non-identical probability. This setting arises naturally in distributed and federated learning, crowdsourcing, and sensor networks, yet existing robust estimators typically assume uniform or worst-case corruption, ignoring structural heterogeneity. For mean estimation for multivariate bounded distributions and univariate gaussian distributions, we give tight minimax rates for all heterogeneous corruption patterns. For multivariate gaussian mean estimation and linear regression, we establish the minimax rate for squared error up to a factor of $\sqrt{d}$, where $d$ is the dimension. Roughly, our findings suggest that samples beyond a certain corruption threshold may be discarded by the optimal estimators -- this threshold is determined by the empirical distribution of the corruption rates given.
comment: NeurIPS 2025, fixed PAC minimax definition
Graphics 16
☆ 3DiFACE: Synthesizing and Editing Holistic 3D Facial Animation
Creating personalized 3D animations with precise control and realistic head motions remains challenging for current speech-driven 3D facial animation methods. Editing these animations is especially complex and time consuming, requires precise control and typically handled by highly skilled animators. Most existing works focus on controlling style or emotion of the synthesized animation and cannot edit/regenerate parts of an input animation. They also overlook the fact that multiple plausible lip and head movements can match the same audio input. To address these challenges, we present 3DiFACE, a novel method for holistic speech-driven 3D facial animation. Our approach produces diverse plausible lip and head motions for a single audio input and allows for editing via keyframing and interpolation. Specifically, we propose a fully-convolutional diffusion model that can leverage the viseme-level diversity in our training corpus. Additionally, we employ a speaking-style personalization and a novel sparsely-guided motion diffusion to enable precise control and editing. Through quantitative and qualitative evaluations, we demonstrate that our method is capable of generating and editing diverse holistic 3D facial animations given a single audio input, with control between high fidelity and diversity. Code and models are available here: https://balamuruganthambiraja.github.io/3DiFACE
☆ Palace: A Library for Interactive GPU-Accelerated Large Tensor Processing and Visualization
Tensor datasets (two-, three-, or higher-dimensional) are fundamental to many scientific fields utilizing imaging or simulation technologies. Advances in these methods have led to ever-increasing data sizes and, consequently, interest and development of out-of-core processing and visualization techniques, although mostly as specialized solutions. Here we present Palace, an open-source, cross-platform, general-purpose library for interactive and accelerated out-of-core tensor processing and visualization. Through a high-performance asynchronous concurrent architecture and a simple compute-graph interface, Palace enables the interactive development of out-of-core pipelines on workstation hardware. We demonstrate on benchmarks that Palace outperforms or matches state-of-the-art systems for volume rendering and hierarchical random-walker segmentation and demonstrate applicability in use cases involving tensors from 2D images up to 4D time series datasets.
☆ GaussEdit: Adaptive 3D Scene Editing with Text and Image Prompts
This paper presents GaussEdit, a framework for adaptive 3D scene editing guided by text and image prompts. GaussEdit leverages 3D Gaussian Splatting as its backbone for scene representation, enabling convenient Region of Interest selection and efficient editing through a three-stage process. The first stage involves initializing the 3D Gaussians to ensure high-quality edits. The second stage employs an Adaptive Global-Local Optimization strategy to balance global scene coherence and detailed local edits and a category-guided regularization technique to alleviate the Janus problem. The final stage enhances the texture of the edited objects using a sophisticated image-to-image synthesis technique, ensuring that the results are visually realistic and align closely with the given prompts. Our experimental results demonstrate that GaussEdit surpasses existing methods in editing accuracy, visual fidelity, and processing speed. By successfully embedding user-specified concepts into 3D scenes, GaussEdit is a powerful tool for detailed and user-driven 3D scene editing, offering significant improvements over traditional methods.
Vector sketch animation generation with differentialable motion trajectories
Sketching is a direct and inexpensive means of visual expression. Though image-based sketching has been well studied, video-based sketch animation generation is still very challenging due to the temporal coherence requirement. In this paper, we propose a novel end-to-end automatic generation approach for vector sketch animation. To solve the flickering issue, we introduce a Differentiable Motion Trajectory (DMT) representation that describes the frame-wise movement of stroke control points using differentiable polynomial-based trajectories. DMT enables global semantic gradient propagation across multiple frames, significantly improving the semantic consistency and temporal coherence, and producing high-framerate output. DMT employs a Bernstein basis to balance the sensitivity of polynomial parameters, thus achieving more stable optimization. Instead of implicit fields, we introduce sparse track points for explicit spatial modeling, which improves efficiency and supports long-duration video processing. Evaluations on DAVIS and LVOS datasets demonstrate the superiority of our approach over SOTA methods. Cross-domain validation on 3D models and text-to-video data confirms the robustness and compatibility of our approach.
comment: 14 pages, 12 figures
☆ Motion In-Betweening for Densely Interacting Characters
Motion in-betweening is the problem to synthesize movement between keyposes. Traditional research focused primarily on single characters. Extending them to densely interacting characters is highly challenging, as it demands precise spatial-temporal correspondence between the characters to maintain the interaction, while creating natural transitions towards predefined keyposes. In this research, we present a method for long-horizon interaction in-betweening that enables two characters to engage and respond to one another naturally. To effectively represent and synthesize interactions, we propose a novel solution called Cross-Space In-Betweening, which models the interactions of each character across different conditioning representation spaces. We further observe that the significantly increased constraints in interacting characters heavily limit the solution space, leading to degraded motion quality and diminished interaction over time. To enable long-horizon synthesis, we present two solutions to maintain long-term interaction and motion quality, thereby keeping synthesis in the stable region of the solution space.We first sustain interaction quality by identifying periodic interaction patterns through adversarial learning. We further maintain the motion quality by learning to refine the drifted latent space and prevent pose error accumulation. We demonstrate that our approach produces realistic, controllable, and long-horizon in-between motions of two characters with dynamic boxing and dancing actions across multiple keyposes, supported by extensive quantitative evaluations and user studies.
☆ Hyperparameters are all you need: Using five-step inference for an original diffusion model to generate images comparable to the latest distillation model
The diffusion model is a state-of-the-art generative model that generates an image by applying a neural network iteratively. Moreover, this generation process is regarded as an algorithm solving an ordinary differential equation or a stochastic differential equation. Based on the analysis of the truncation error of the diffusion ODE and SDE, our study proposes a training-free algorithm that generates high-quality 512 x 512 and 1024 x 1024 images in eight steps, with flexible guidance scales. To the best of my knowledge, our algorithm is the first one that samples a 1024 x 1024 resolution image in 8 steps with an FID performance comparable to that of the latest distillation model, but without additional training. Meanwhile, our algorithm can also generate a 512 x 512 image in 8 steps, and its FID performance is better than the inference result using state-of-the-art ODE solver DPM++ 2m in 20 steps. We validate our eight-step image generation algorithm using the COCO 2014, COCO 2017, and LAION datasets. And our best FID performance is 15.7, 22.35, and 17.52. While the FID performance of DPM++2m is 17.3, 23.75, and 17.33. Further, it also outperforms the state-of-the-art AMED-plugin solver, whose FID performance is 19.07, 25.50, and 18.06. We also apply the algorithm in five-step inference without additional training, for which the best FID performance in the datasets mentioned above is 19.18, 23.24, and 19.61, respectively, and is comparable to the performance of the state-of-the-art AMED Pulgin solver in eight steps, SDXL-turbo in four steps, and the state-of-the-art diffusion distillation model Flash Diffusion in five steps. We also validate our algorithm in synthesizing 1024 * 1024 images within 6 steps, whose FID performance only has a limited distance to the latest distillation algorithm. The code is in repo: https://github.com/TheLovesOfLadyPurple/Hyperparameters-are-all-you-need
comment: 10 pages, 5 figures, conference
Universal Beta Splatting
We introduce Universal Beta Splatting (UBS), a unified framework that generalizes 3D Gaussian Splatting to N-dimensional anisotropic Beta kernels for explicit radiance field rendering. Unlike fixed Gaussian primitives, Beta kernels enable controllable dependency modeling across spatial, angular, and temporal dimensions within a single representation. Our unified approach captures complex light transport effects, handles anisotropic view-dependent appearance, and models scene dynamics without requiring auxiliary networks or specific color encodings. UBS maintains backward compatibility by approximating to Gaussian Splatting as a special case, guaranteeing plug-in usability and lower performance bounds. The learned Beta parameters naturally decompose scene properties into interpretable without explicit supervision: spatial (surface vs. texture), angular (diffuse vs. specular), and temporal (static vs. dynamic). Our CUDA-accelerated implementation achieves real-time rendering while consistently outperforming existing methods across static, view-dependent, and dynamic benchmarks, establishing Beta kernels as a scalable universal primitive for radiance field rendering. Our project website is available at https://rongliu-leo.github.io/universal-beta-splatting/.
☆ Creative synthesis of kinematic mechanisms
In this paper, we formulate the problem of kinematic synthesis for planar linkages as a cross-domain image generation task. We develop a planar linkages dataset using RGB image representations, covering a range of mechanisms: from simple types such as crank-rocker and crank-slider to more complex eight-bar linkages like Jansen's mechanism. A shared-latent variational autoencoder (VAE) is employed to explore the potential of image generative models for synthesizing unseen motion curves and simulating novel kinematics. By encoding the drawing speed of trajectory points as color gradients, the same architecture also supports kinematic synthesis conditioned on both trajectory shape and velocity profiles. We validate our method on three datasets of increasing complexity: a standard four-bar linkage set, a mixed set of four-bar and crank-slider mechanisms, and a complex set including multi-loop mechanisms. Preliminary results demonstrate the effectiveness of image-based representations for generative mechanical design, showing that mechanisms with revolute and prismatic joints, and potentially cams and gears, can be represented and synthesized within a unified image generation framework.
comment: 6pages, 6 figures
♻ ☆ ODE-GS: Latent ODEs for Dynamic Scene Extrapolation with 3D Gaussian Splatting
We introduce ODE-GS, a novel approach that integrates 3D Gaussian Splatting with latent neural ordinary differential equations (ODEs) to enable future extrapolation of dynamic 3D scenes. Unlike existing dynamic scene reconstruction methods, which rely on time-conditioned deformation networks and are limited to interpolation within a fixed time window, ODE-GS eliminates timestamp dependency by modeling Gaussian parameter trajectories as continuous-time latent dynamics. Our approach first learns an interpolation model to generate accurate Gaussian trajectories within the observed window, then trains a Transformer encoder to aggregate past trajectories into a latent state evolved via a neural ODE. Finally, numerical integration produces smooth, physically plausible future Gaussian trajectories, enabling rendering at arbitrary future timestamps. On the D-NeRF, NVFi, and HyperNeRF benchmarks, ODE-GS achieves state-of-the-art extrapolation performance, improving metrics by 19.8% compared to leading baselines, demonstrating its ability to accurately represent and predict 3D scene dynamics.
♻ ☆ DiffTex: Differentiable Texturing for Architectural Proxy Models SIGGRAPH
Simplified proxy models are commonly used to represent architectural structures, reducing storage requirements and enabling real-time rendering. However, the geometric simplifications inherent in proxies result in a loss of fine color and geometric details, making it essential for textures to compensate for the loss. Preserving the rich texture information from the original dense architectural reconstructions remains a daunting task, particularly when working with unordered RGB photographs. We propose an automated method for generating realistic texture maps for architectural proxy models at the texel level from an unordered collection of registered photographs. Our approach establishes correspondences between texels on a UV map and pixels in the input images, with each texel's color computed as a weighted blend of associated pixel values. Using differentiable rendering, we optimize blending parameters to ensure photometric and perspective consistency, while maintaining seamless texture coherence. Experimental results demonstrate the effectiveness and robustness of our method across diverse architectural models and varying photographic conditions, enabling the creation of high-quality textures that preserve visual fidelity and structural detail.
comment: ACM TOG and SIGGRAPH Asia 2025 (Patent Protected); Project page: https://vcc.tech/research/2025/DiffTex
♻ ☆ SPARE: Symmetrized Point-to-Plane Distance for Robust Non-Rigid 3D Registration
Existing optimization-based methods for non-rigid registration typically minimize an alignment error metric based on the point-to-point or point-to-plane distance between corresponding point pairs on the source surface and target surface. However, these metrics can result in slow convergence or a loss of detail. In this paper, we propose SPARE, a novel formulation that utilizes a symmetrized point-to-plane distance for robust non-rigid registration. The symmetrized point-to-plane distance relies on both the positions and normals of the corresponding points, resulting in a more accurate approximation of the underlying geometry and can achieve higher accuracy than existing methods. To solve this optimization problem efficiently, we introduce an as-rigid-as-possible regulation term to estimate the deformed normals and propose an alternating minimization solver using a majorization-minimization strategy. Moreover, for effective initialization of the solver, we incorporate a deformation graph-based coarse alignment that improves registration quality and efficiency. Extensive experiments show that the proposed method greatly improves the accuracy of non-rigid registration problems and maintains relatively high solution efficiency. The code is publicly available at https://github.com/yaoyx689/spare.
comment: Accepted to IEEE Transactions on Pattern Analysis and Machine Intelligence
♻ ☆ Image-Conditioned 3D Gaussian Splat Quantization
3D Gaussian Splatting (3DGS) has attracted considerable attention for enabling high-quality real-time rendering. Although 3DGS compression methods have been proposed for deployment on storage-constrained devices, two limitations hinder archival use: (1) they compress medium-scale scenes only to the megabyte range, which remains impractical for large-scale scenes or extensive scene collections; and (2) they lack mechanisms to accommodate scene changes after long-term archival. To address these limitations, we propose an Image-Conditioned Gaussian Splat Quantizer (ICGS-Quantizer) that substantially enhances compression efficiency and provides adaptability to scene changes after archiving. ICGS-Quantizer improves quantization efficiency by jointly exploiting inter-Gaussian and inter-attribute correlations and by using shared codebooks across all training scenes, which are then fixed and applied to previously unseen test scenes, eliminating the overhead of per-scene codebooks. This approach effectively reduces the storage requirements for 3DGS to the kilobyte range while preserving visual fidelity. To enable adaptability to post-archival scene changes, ICGS-Quantizer conditions scene decoding on images captured at decoding time. The encoding, quantization, and decoding processes are trained jointly, ensuring that the codes, which are quantized representations of the scene, are effective for conditional decoding. We evaluate ICGS-Quantizer on 3D scene compression and 3D scene updating. Experimental results show that ICGS-Quantizer consistently outperforms state-of-the-art methods in compression efficiency and adaptability to scene changes. Our code, model, and data will be publicly available on GitHub.
♻ ☆ CADmium: Fine-Tuning Code Language Models for Text-Driven Sequential CAD Design
Computer-aided design (CAD) is the digital construction of 2D and 3D objects, and is central to a wide range of engineering and manufacturing applications like automobile and aviation. Despite its importance, CAD modeling remains largely a time-intensive, manual task. Recent works have attempted to automate this process with small transformer-based models and handcrafted CAD sequence representations. However, there has been little effort to leverage the potential of large language models (LLMs) for sequential CAD design. In this work, we introduce a new large-scale dataset of more than 170k CAD models annotated with high-quality, human-like descriptions generated with our pipeline based on GPT-4.1. Using this dataset, we fine-tune powerful code-LLMs to generate CAD sequences represented in a JSON-based format from natural language descriptions, demonstrating the viability and effectiveness of this approach for text-conditioned CAD generation. Because simple metrics often fail to reflect the quality of generated objects, we introduce geometric and topological metrics based on sphericity, mean curvature, and Euler characteristic to provide richer structural insights. Our experiments and ablation studies on both synthetic and human-annotated data demonstrate that CADmium is able to automate CAD design, drastically speeding up the design of new objects. The dataset, code, and fine-tuned models are available online.
♻ ☆ Neural Kinematic Bases for Fluids
We propose mesh-free fluid simulations that exploit a kinematic neural basis for velocity fields represented by an MLP. We design a set of losses that ensures that these neural bases approximate fundamental physical properties such as orthogonality, divergence-free, boundary alignment, and smoothness. Our neural bases can then be used to fit an input sketch of a flow, which will inherit the same fundamental properties from the bases. We then can animate such flow in real-time using standard time integrators. Our neural bases can accommodate different domains, moving boundaries, and naturally extend to three dimensions.
♻ ☆ Temporally Smooth Mesh Extraction for Procedural Scenes with Long-Range Camera Trajectories using Spacetime Octrees
The procedural occupancy function is a flexible and compact representation for creating 3D scenes. For rasterization and other tasks, it is often necessary to extract a mesh that represents the shape. Unbounded scenes with long-range camera trajectories, such as flying through a forest, pose a unique challenge for mesh extraction. A single static mesh representing all the geometric detail necessary for the full camera path can be prohibitively large. Therefore, independent meshes can be extracted for different camera views, but this approach may lead to popping artifacts during transitions. We propose a temporally coherent method for extracting meshes suitable for long-range camera trajectories in unbounded scenes represented by an occupancy function. The key idea is to perform 4D mesh extraction using a new spacetime tree structure called a binary-octree. Experiments show that, compared to existing baseline methods, our method offers superior visual consistency at a comparable cost. The code and the supplementary video for this paper are available at https://github.com/princeton-vl/BinocMesher.
comment: Accepted as a Conference Paper to Siggraph Asia 2025. Updated acknowledgements to include attribution for icons used in the paper
♻ ☆ HodgeFormer: Transformers for Learnable Operators on Triangular Meshes through Data-Driven Hodge Matrices
Currently, prominent Transformer architectures applied on graphs and meshes for shape analysis tasks employ traditional attention layers that heavily utilize spectral features requiring costly eigenvalue decomposition-based methods. To encode the mesh structure, these methods derive positional embeddings, that heavily rely on eigenvalue decomposition based operations, e.g. on the Laplacian matrix, or on heat-kernel signatures, which are then concatenated to the input features. This paper proposes a novel approach inspired by the explicit construction of the Hodge Laplacian operator in Discrete Exterior Calculus as a product of discrete Hodge operators and exterior derivatives, i.e. $(L := \star_0^{-1} d_0^T \star_1 d_0)$. We adjust the Transformer architecture in a novel deep learning layer that utilizes the multi-head attention mechanism to approximate Hodge matrices $\star_0$, $\star_1$ and $\star_2$ and learn families of discrete operators $L$ that act on mesh vertices, edges and faces. Our approach results in a computationally-efficient architecture that achieves comparable performance in mesh segmentation and classification tasks, through a direct learning framework, while eliminating the need for costly eigenvalue decomposition operations or complex preprocessing operations.
comment: 15 pages, 13 figures, 10 tables